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ABSTRACT 

 

This thesis describes a new microwave-assisted method for the synthesis of poly-

deuterated anilines and pyridines. The microwave mediated deuteration of aniline 

derivatives both with and without a platinum catalyst has been studied. Selectivity and 

yields are compared, showing the well established electronic selectivity of deuteration 

in the absence of a platinum catalyst, and a selectivity governed by steric factors for the 

platinum catalysed exchange. Differences in percentage yield can be explained for each 

method but vary greatly with changes in substrate. The ability for platinum catalysed 

exchange to deuterate aliphatic positions has also been observed and a tentative 

mechanism is proposed for the exchange of protons on substituents. Following 

investigation into the two different catalysts, the yield for the microwave assisted 

procedure is good, and high levels of deuterium incorporation are observed with only a 

single cycle. 
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1. Introduction 

1.1. The Use of H/D-Exchange Reactions 

During the 1960s and 70s the use of H/D-exchange reactions for the synthesis of 

deuterium containing compounds emerged as an area of considerable interest.
1
 Despite 

considerable advances, interest in this process reduced dramatically in subsequent years 

until the mid 1990s when the development of this process was re-investigated.
1
 This 

was primarily a consequence of the increase in demand for isotopically labelled 

compounds. Such compounds are used in pharmacokinetic and metabolic studies during 

drug development,
2,3

 but are of equal importance in mechanistic investigations into 

catalysts and reaction pathways
4,5,6

 and in C-H bond activation.
7,8 

Deuterated internal 

standards provide an important quantitative handle in the study of human, animal and 

environmental samples. Similarities in physical and chemical properties of the 

substance under investigation result in deuterated standards generally exhibiting 

unchanged ionisation behaviour and retention times in LC/MS but differ on account of 

their mass difference. As a consequence, if the mass difference is large enough to 

separate signals from natural isotope patterns, quantitative analysis is possible.
1
         

For the production of an isotopically labelled compound there are two possible 

strategies. Firstly it is possible to synthesise labelled compounds using the 

corresponding isotopically-labelled precursors. The second strategy is to directly 

exchange a carbon bonded hydrogen atom for a deuterium atom. This second method is 

commonly preferable as the first route often requires multi-step synthesis and the 

labelled precursors are generally expensive. In contrast the second strategy is a lot more 

efficient and cost-effective, because one can carry out the exchange reaction on the 

target molecule or a late intermediate in the synthesis. Other methods include halogen-

deuterium exchange
9,10 

 and reductive deuteration.
11 

 

1.2.The First H/D-Exchange Reactions 

One of oldest methods for H/D exchange is pH dependent H/D exchange. Exchange 

occurs via base- or acid-catalysed formation of an enolate/enol, with H/D exchange 

occurring at the active positions in the molecule by application of deuterated Brønsted 
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acids. Such methods often require the deactivation of the compound to prevent the 

reverse exchange occurring.
1
  

H/D exchange can also occur without the presence of an acid or base but just using 

deuterium oxide. This exchange occurs on acidic carbon-bonded hydrogen atoms, and 

works due to deuterium oxide’s ability to act as either an acid or a base.  

Such exchange is possible with a number of different compounds and the experimental 

conditions vary dramatically. For example, Junk and Catallo used conditions to achieve 

almost complete H/D exchange during the deuteration of phenanthrene (1) at 380-430 

°C (Scheme 1).
12

 Harsh conditions were used similarly by Werstiuk and Ju to carry out 

H/D exchange on pyridine derivatives, reporting good yields (>80%) and high levels of 

deuteration in the 3-, 5- and 6-positions of 2-hydroxypyridine (2) and 2-

mercaptopyridine (3) (Scheme 2).
13

 

Scheme 1. H/D exchange of phenanthrene (1) 
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Scheme 2. H/D exchange of pyridine derivatives 
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Edlund and Berson showed that it is not always necessary to use such extreme 

conditions for H/D exchange.
14 

During the synthesis of [1,1,3,3-D4]2-indanone (4), 

exchange occurs by repeatedly heating the precursor in D2O under reflux, to furnish the 
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deuterated product with high % deuteration. The milder conditions again led to high 

regioselectivity (Scheme 3). 

 

Scheme 3. Highly regioselective deuteration of 2-indanone (4) 

 

                                      

Reflux, 8 Cycles

D2O
O O

[99]

4

 

H/D exchange of methyl groups has also been reported under base catalysed 

conditions.
15 

Berthelette and Scheigetz achieved such exchanges on methyl groups of 

aryl methyl ketones.
15

 The exchange varied greatly with substrate, base and solvent but 

was achieved with high yield and percentage deuteration with 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU). Deuteration of a base sensitive diketone 5 was 

also achieved without decomposition with the addition of triethylamine (Scheme 4). 

 

Scheme 4. Deuteration of a base-sensitive diketone 5 
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                                                          % = yields        [  ] = % deuteration 

 

H/D exchange under conditions with or without the presence of a base has been 

successful in a number of cases, and is certainly not limited to the few examples 

mentioned above. However, one area of more relevance and a much larger field for this 

project is that of acid-catalysed H/D exchange. 
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1.3. Acid-Catalysed H/D Exchange 

There are two possible exchange methods in acid-catalysed exchange: either strong 

deuterated Brønsted acids or alternatively a Lewis acid with a deuterium source can be 

used to deuterate an aromatic compound. The use of both of these deuteration methods 

combined together has also been researched. Wälälä et al. demonstrated this 

combination on a number of substrates including flavonoids, isoflavonoids and 

lignans.
16 

With the use of a mixture of D3PO4, BF3, and D2O, good yields and high 

levels of deuteration at the activated positions were achieved at temperatures between 

20 and 55 °C. The reaction involved many cycles over a period of one to four days.  

Wälälä et al. did further work showing that with more severe conditions it was possible, 

using diadzein and enterolactone (6) as a substrate, to also deuterate at inactive 

positions.
17 

The synthesis actually gave almost full deuteration of enterolactone (6) 

(>99%) including the inactive meta positions (Scheme 5). 

 

Scheme 5. H/D exchange using both a Brønsted and Lewis acid 
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H/D exchange reactions using methods in the presence of a Lewis acid are somewhat 

limited. The reactions are restricted to nonpolar arenes, as substrates such as aniline, 

phenol, anisole, and benzoic acid do not undergo exchange under these conditions. This 

is because of inhibition of the Lewis acid by complexation.
18

  

Acid-catalysed H/D exchange has also been reported in hydrocarbons. Sommer et al. 

reported deuteration using support-bound reagents.
19 

The H/D exchange of isoalkanes 

with D2SO4 was observed, giving regioselective exchange of the isoalkanes with 

support-bound acids. Hydrogens bonded to a tertiary carbon were preferentially 
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exchanged whilst exchange on the linear hydrocarbons needed greater temperatures 

(>200 °C). 

As with most areas of H/D exchange, acid-catalysed exchange is experiencing 

considerable growth enabled by microwave-assisted chemistry. This is due to 

advantages such as greatly reduced reaction times with similar percentage 

deuteration.
20,21

 Vaidyanathan and Surber utilised this new method and its advantages in 

the isotopic labelling of ABT-724 (Scheme 6), with exchange occurring in minutes 

following H/D exchange on the diaminobenzene precursor; this was incorporated into a 

benzimidazole synthesis to elaborate d6-ABT-724 in reasonable yield.
21 

One variant, which uses only D2O during the deuteration process, was demonstrated by 

Jones and co-workers using the hydrochloride salt of 2-methylaniline (7) (Scheme 7).
22

 

This method has also been shown to be successful for aminopyridine derivatives.
23

 

Labile hydrogen atoms (NH) were exchanged by prior treatment with D2O and then 

upon irradiation, deuteration was complete within a few minutes. Using this method 

high levels H/D exchange were achieved at the positions ortho and para to the amino 

group, depending upon substrate. 

Scheme 6. Deuteration of ABT-724               
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 Scheme 7. Microwave-assisted H/D-exchange of anilines  

                      

NH3Cl ND3Cl ND3Cl

D2O

RT

MW, D2O

15x2 min

[100]

[100]7 

Anilines are a comparatively reactive group of aromatic molecules, as opposed to 

phenols or benzene for example. This is due to the interaction of the lone pair on the 

nitrogen with the π system. This is also true of oxygen but its greater electronegativity 
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means that its lone pair does not interact to the same extent. The differences in reactivity 

attributed to this interaction can be seen in (Figure 1).
24

  

 

Figure 1. Relative rates of bromination of aromatic compounds
24 

 

1 109 1014

Relative Rate of
Bromination

OMe NMe2

 

 

Anilines undergo electrophilic aromatic substitution with the regioselectivity of this 

process directing H/D exchange to the ortho and para positions. This is due to the 

stabilization of the positively changed transition state. The chemical shift of methines in 

the 
1
H NMR of aniline reflects how electron density at the different positions is affected 

by its resonance forms. Both can be seen in Scheme 8. These factors mean that ΔG
‡
 is 

lower, therefore giving a faster reaction at these positions.
24

  

Scheme 8. Regioselectivity of electrophilic aromatic substitution
24 
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The amino group is one of the most powerful ortho, para-directing groups in 

electrophilic substitution. If the conditions of the reaction are not too acidic, aniline (8) 

and its derivatives undergo rapid ring substitution. For example, aniline (8) like phenol, 

brominates three times under mild conditions (Scheme 9).
25
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Scheme 9. Anilines undergo bromination at ortho and para positions 

 

NH2

+ 3Br2

NH2

BrBr

Br

+ 3HBr

8                                       

The selectivity of such aromatic compounds is well established and now chemists are 

looking towards altering such selectivity. One particularly interesting article was 

published by Phipps and Gaunt in 2009, in which the selectivity of reaction of aromatic 

compounds with an electron donating group was completely reversed to meta 

selectivity.
26 

    

1.4. H/D Exchange Using a Heterogeneous Metal Catalyst 

Metal catalysed reactions provide great synthetic routes for the deuteration of many 

substrates and have become popular due to advantages such as milder conditions and, 

more importantly, their greater tolerance towards numerous functional groups. This 

means that fewer destructive side reactions occur, such as hydrolysis, dehalogenation, 

deuterium addition to multiple bonds, epimerisation and cleavage of protecting groups.
1
  

Furthermore difficulties brought about by the regioselectivity of substrates using other 

methods can frequently be overcome, while high percentage deuteration is still attained 

for both aromatic and aliphatic compounds under metal-catalysed exchange. 

These methods also allow for the use of a number of deuterium sources, increasing the 

range of the substrates that can undergo exchange, i.e. [D6]benzene is an appropriate 

deuterium source allowing for H/D exchange in less polar substrates.
1
  

Heterogeneous metal catalysed exchange gives further advantages over that of 

homogeneous exchange. The ability to remove the catalyst by filtration is commonly 

possible. Furthermore, if there are no side products to the reaction there is no need for 

any work up.
27

 The deuterium source is generally deuterium gas
28

, D2O or deuterated 

protic solvents.
29 

Two mechanisms are proposed to exist for the exchange: the associative π-complex 

mechanism and the dissociative π-complex mechanism (Scheme 10).
30

 The extent to 

which each mechanism is involved in the exchange is dependent on the metal. For 
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platinum-catalysed exchange reactions the dissociative mechanism is proposed to 

predominate, while for palladium the associative mechanism is proposed to 

predominate. Rhodium is thought to have equal involvement of both mechanisms.
31 

 

Scheme 10. Mechanisms of exchange using a heterogeneous metal catalyst 

Associative mechanism: 

 

Dissociative mechanism: 

                                           

 

1.4.1. Palladium catalysis 

A lot of early methods developed for H/D exchange with heterogeneous palladium used 

deuterium gas as the source of deuterium.
32

 Azran et al. developed a method using 

deuterium not as the solvent but to purge the catalyst surface of hydrogen and protic 

compounds.
33

 This led to a highly effective Pd/C catalyst, and the complete and 

selective deuteration of benzylic protons could be achieved at room temperature within 

an hour for benzyl alcohol (using [D8]-dioxane as the deuterium source) and dibenzyl 

ether (using D2 gas as the deuterium source). A number of other substrates also 

experienced a high level of deuteration including benzylamine, dibenzyl and 

dibenzylamine. The deuteration of substrates was influenced by the deuterium source 

and catalyst/substrate ratios. 
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Myasoedov et al. used gaseous deuterium for the effective deuteration of amino acids 

and peptides using a method they developed called ‘high-temperature solid-state 

catalytic isotope exchange’ or HSCIE.
34,35,36

 This method uses the action of the D2 gas 

on a highly dispersed mixture of solid substrate with the catalyst. 

A hydrothermal method for deuteration of aliphatic hydrocarbons, with deuteration 

occurring at temperatures up to 290 °C, has been reported by Möbius and Schaaf.
37

 The 

compound is placed in an autoclave and subjected to a D2/D2O atmosphere at pressures 

of approximately 25 MPa, with a basket containing the catalyst placed above it. 

Under hydrothermal conditions, water dissociates a thousand times faster than at room 

temperature.
38

 This means that the Pd
0
 can readily oxidatively insert into the O-H bond 

to form the Pd
II
 species, which in turn catalyses the H/D exchange (Scheme 11).

39
  

Scheme 11. H/D exchange under hydrothermal conditions 
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According to Matsubara et al., completely deuterated aromatic or aliphatic 

hydrocarbons were formed under hydrothermal reaction conditions by decarboxylation 

of carboxylic acids. For example, the lactone 9 in D2O afforded phenol derivative 10 

with a high degree of deuteration in the presence of 10% Pd/C (5 mol%) at 250 °C and a 

pressure of 4-5 MPa (Scheme 12).
40 

Scheme 12. H/D exchange of lactones under hydrothermal conditions 

                          

O O
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89%

OH
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[85][98]
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9 10  
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With previous knowledge of catalyst activation by initial occupation of the catalyst 

surface by hydrogen, Hirota and Sajiki have developed a ‘one-pot’ method for H/D 

exchange in which the palladium catalyst is activated by hydrogen in situ. Maximum 

exchange was achieved in the presence of catalytic amounts of hydrogen gas (0.45 

equiv.) with no side reactions occurring to give the pure products. Substrates included 

diphenylmethane (11), 4-ethylbenzoate and 3-phenylpropanol. The deuteration of 

diphenylmethane (11) is shown below (Scheme 13). 

Scheme 13. H/D exchange of diphenylmethane (11) 

3 days, R.T.

H2, D2O

88%

10% Pd/C

11

[95]

 

A method for the selective deuteration of the β-position of phenylaniline (12) without 

racemisation using a Pd/C-H2/D2O system has been developed by Maegawa et al.
41 

H/D 

exchange occurs at 110 °C to give the L-enantiomer in 96% ee from starting material of 

96% ee (Scheme 14). At 160 °C the α-position is also deuterated but racemisation 

occurs to give the product in only 17% ee. 

Scheme 14. H/D exchange of phenylalanine (12) 

110°C, 6 h

H2, D2O

100%

10% Pd/C

(96% ee)

COOH

NH2

COOH

NH2

[96]

12  

 

The use of sodium borodeuterate for the in situ activation of the palladium catalyst in a 

method reported by Derau and Alzrodt, makes the reaction conditions suitable for 

microwave irradiation, due to the absence of gaseous reactants.
42 

This meant that the 

reaction duration could once again be reduced by the application of microwave heating 

and still proceeds to give similar amounts of deuteration. Suitable substrates included 

carbocyclic compounds, isoquinone derivatives 13 and indole derivatives 14 (Figure 2). 

Figure 2. H/D exchange of substrates with in situ catalyst activation 

NH
N
H

O HO

HO

[97]

[92]

[98]
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[46]

[75]
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[70]
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[99][69]

[71]

[66]
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13 14  
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1.4.2. Platinum catalysis 

Heterogeneous platinum-catalysed H/D exchange is in many aspects, such as activation 

and scope, similar to heterogeneous palladium-catalysed H/D exchange.
43

 However, it 

has been shown by comparative studies by Sajiki et al. that generally, while palladium 

catalysts preferentially deuterate aliphatic positions, platinum catalysts preferentially 

deuterate aromatic positions.
44 

The difference in the catalyst’s selectivity allows for 

more effective exchange for compounds with aliphatic and aromatic regions via 

stepwise deuteration. The advantages of this technique were demonstrated by Sajiki et 

al. in the deuteration of Ibuprofen
44

 (15), giving an almost fully labelled product 

(Scheme 15).  

Scheme 15. Stepwise H/D exchange of Ibuprofen (15) 
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[94]
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15

 

 

 

It is also possible to combine the two catalysts. Such catalysis has been used in the 

deuteration of sterically hindered aromatic positions to great effect.
45

 For the deuteration 

of 5-phenylvaleric acid (16) for example, the addition of palladium (10% Pd/C) gives 

only 14% deuteration of the ortho positions, and addition of platinum (5% Pt/C) gives 

only 19% deuteration. However, if the two systems are combined then almost complete 

deuteration of the ortho positions occurs (97% deuteration) (Scheme 16). This suggests 

a synergistic effect between the platinum and palladium complexes formed.  
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Scheme 16. Synergistic catalyst effects in the H/D exchange of phenylvaleric acid (16) 
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During the deuteration of aliphatic amines and amino acids catalysed by Adam’s 

catalyst (PtO2∙H2O), exchange selectivity is dependent upon the number and steric 

demand of substituents on the nitrogen atom. It is assumed that the nitrogen binds to the 

catalyst surface, inhibiting the catalysis of H/D exchange. This is supported by the 

decrease in reactivity with fewer substituents: tertiary>secondary>primary.
46

  

A method using hydrothermal reaction conditions for platinum-catalysed exchange 

reactions has also been developed. Matsubara et al. reported the selective deuteration of 

aryl silanes, with anti ortho selectivity (Scheme 17). This was again proposed to be due 

to steric hindrance at the ortho position.
47

  

Scheme 17. Anti ortho selectivity in H/D exchange of aryl silanes 

 

  

The proposed mechanism under hydrothermal conditions begins with the formation of 

metallic platinum during an inductive phase. The metallic platinum then inserts into the 

D2O to give a D-Pt-OD complex. Dissociation of the complex follows to give the D-Pt
+
 

species that reacts with the aryl group to eventually give the deuterated product.
47
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Microwave irradiation methods are also compatible, giving shorter reaction times and 

frequently give fewer side reactions.
22 

 

1.4.3. Catalysis using other metals 

Rhodium catalysed H/D exchange experienced a boom at the end of the 1980s, with a 

number of breakthroughs for heterogeneous methods in deuteration, using rhodium.
48-50

 

Lockley et al. developed a method for the ortho selective deuteration of N-heterocycles 

such as pyridines, quinolines and phthalazine derivatives, using rhodium and ruthenium 

in the presence of D2 gas
51

 (Scheme 18). Reasonable deuterium incorporation was 

achieved in just 2 hours. 

Scheme 18. Ru-catalysed H/D exchange of N-heterocycles 

 

N

R
D2, Ru catalyst, THF

R.T. 2 h
N

R

DD

R = range of substituents,
including fused-ring analogues  

 

These results are of interest to the project as deuteration is occurring selectively at 

positions electronically unfavourable for electrophilic substitution. 

Nickel was first reported as a catalyst for H/D exchange in 1954 by Errede et al.
52

, and 

since has generally been used for the deuteration of aromatic compounds.
53

  

Microwave assisted exchange in the presence of a nickel catalyst is an efficient method 

of deuteration. This has been demonstrated with N-methylindole, to give complete 

deuteration with protic solvents, and C4-position selective deuteration with nonprotic 

solvents
23

.  

Cioffi et al. also reported the use of microwave irradiation in Raney nickel catalysed 

H/D exchange.
54

 Deuterium incorporation was significant after very short reaction times 

(4 minutes) and high levels of H/D exchange could be achieved with longer time scales 

(6 minutes). Exchange occurred without decomposition or epimerization. The substrates 

used were sucrose and 1-O-methyl-β-D-galactopyranoside, and it was proposed that 

many other compounds containing vicinal OH groups would be suitable for this method. 

Raney copper is of less use in the catalytic exchange of hydrogen and deuterium but 

does offer methods for the deuteration of aromatic compounds via dehalogenation.
55 
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1.5. H/D Exchange using a Homogeneous Metal Catalyst. 

A great number of homogeneous catalysed exchange methods are available for the 

efficient deuteration of a wide range of substrates. Such reactions give the benefits of 

milder conditions and tolerance towards functional groups is common. Many familiar 

metals used in heterogeneous catalysed exchange have been used effectively in this 

area, such as platinum, palladium and rhodium, whilst also a number of other new 

metals are of huge importance. For example; at the forefront of homogeneous metal 

catalysed exchange reactions are those using cationic iridium complexes, with 

substantially more published examples than any other catalyst.
1 

 

1.5.1. Iridium catalysis  

Cationic iridium complexes have been found to be of great importance in homogeneous 

metal catalysis for H/D exchange due to their great proficiency for activating C-H 

bonds. Investigation into the ortho deuteration of arylketones 17 and acetanilides 18 has 

been one of the most well covered areas for iridium catalysed exchange
56,57

, with many 

studies into the effect of different factors, such as deuterium source, solvent, 

temperature, and duration
58

, on the selectivity and the percentage of deuteration. 

The proposed mechanism for the ortho deuteration (Scheme 19) begins with the 

coordination of the substrate to the cationic catalyst. Following complexation, oxidative 

insertion occurs to produce a five-membered metalocycle. H/D exchange followed by 

reductive elimination gives the ortho deuterated product and regenerates the catalyst. 
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Scheme 19. Mechanism of Ir-catalysed H/D exchange 

 

 

The substrates steric and electronic properties affect the success of the deuteration. 

Acetophenone amongst other substrates (benzamides, benzoic acid derivatives and 

acetanilides 18) produce high degrees of ortho deuteration while other substituted 

derivatives give a reduced degree of deuteration.
56,57

 Commonly used in these exchange 

reactions is the Crabtree catalyst [Ir(cod)(PCy3)(py)]PF6 (cod=1,5-cyclooctadiene, 

Cy=cyclohexyl, py=pyridine). 

Fels et al. have reported the deuteration of α,β-unsaturated carbonyl compounds
58

, with 

generally good deuteration in the β-position occurring via a similar mechanism to that 

shown in Scheme 19. 

When using the catalyst [Ir(co)-(acac)] (acac = acetylacetonate), Fels et al. found that 

the regioselectivity of the exchange was dependent on the deuterium source used. Hence 

when using 2-methylbenzoic acid as a substrate, deuteration (45%) was observed solely 

in the para position as opposed to 98% deuteration in the ortho position. This is thought 
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to be due to the reduction of the ligand with simultaneous formation of elemental 

iridium. The precipitation of elemental iridium brings about the altered selectivity by a 

heterogeneous catalytic exchange reaction. Deuterium source dependent selectivity was 

also reported by Lockley et al. in the catalysed ortho deuteration of anilines (Table 1)
59

 

by using [Ir(cod)-(acac-F6)] (acac-F6 = hexafluoroacetylacetonate) and gaseous 

deuterium, an exclusively ortho H/D exchange relative to the position of the amino 

group was found. 4-Aminobenzoic acid (19) and 4-aminoacetophenone (20) are 

particularly interesting here, because they show reversed selectivity with gaseous D2 

compared with D2O. 

Table 1. Exclusively ortho H/D exchange of anilines using an Ir catalyst 

Compound                           Degree of 

                                                deuteration[%]     

                       77                              

D

NH2

D   

D

NH2

D
HO

O 19                                       80                           

  

D

NH2

D

O 20                                        72                       

    

Bergmann et al. have shown that the activation of aliphatic, carbon-bonded hydrogens 

for H/D exchange is also possible and has been observed in a number of substrates 

including certain hydrocarbons, amides, carboxylic acids, alcohols, phenols and 

nonfunctionalised aromatic compounds.
60-62

  

With the further development of iridium catalysts for homogeneous exchange reactions, 

it has been possible to deuterate an even greater number of substrates. Peris et al. have 

reported the efficient deuteration of substrates such as diethyl ether, ethyl methyl 
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ketone, isopropanol, and styrene using N-heterocyclic iridium-carbene complexes.
63

 

More recently still, Salter has observed the ortho directed deuteration of sp
3
 carbons of 

N,N-dialkylamides, and other complex molecules containing multiple subsidiary groups, 

using [(cod)Ir(PPh3)2]BF4.
64

  

Developments with microwave synthesis equipment have also made it possible for 

iridium catalysed exchange to be accelerated, to give high percentage deuteration with 

reduced duration of reaction.
65 

 

1.5.2. Platinum Catalysis. 

Platinum complexes were first established as important catalysts for H/D exchange by 

Garnett
66-69

 and Shilov
70

 during the 1960s and 1970s. Since then, the majority of 

exchange methods have used tetrachloroplatinate(II) salts as the exchange catalyst, 

which has for the majority been used in the deuteration of arenes.
1
 Exchange reactions 

often use D2O or AcOD as a deuterium source and due to the pH dependent stability 

and activity of the platinum catalyst, acidic conditions are required. 

This may not be the case however for catalytic systems under microwave irradiation. 

Such reactions occur with reduced reaction duration, and could allow for acid free 

deuteration of arenes. Such an exchange has been reported by Jones et al. The H/D 

exchange reaction gave complete deuteration of the positions meta to the carboxylic 

acid group in benzoic acid derived 21 substrates (Scheme 20).
22

  

 

Scheme 20. Pt-catalysed H/D exchange of benzoic acids under microwave irradiation 

 

OHO

RR

OHO

RR
MW, 15 min

Na2[PtCl4], D2O

R = H, OMe

[100]

21  

 

Kański and Kańska also reported the deuteration of methoxybenzoic acids using a 

homogeneous platinum catalyst.
71

 The rate constants for deuteration at different 

positions on the aromatic ring were calculated at 130 °C for the three different isomers 

of methoxybenzoic acid (Table 2). 
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Table 2. Rate constants for Pt-catalysed H/D exchange in methoxybenzoic acids 

Compound Rate Constant for Exchange, h
-1

 

 k2 k3 k4 k5 k6 

 

- 0.087 0.22 0.2 0.045 

 

0.043 - 0.04 0.12 0.045 

 

0.0055 0.0135 - 0.0135 0.0055 

 

The difference in rates was again proposed to be due to steric hindrance in which the 

bulky nature of the substituents to some extent prevents the formation of the σ-

complex.
71

This was observed to a greater extent in the carboxylic acid group. This is 

most obviously seen in the example of 4-methoxybenzoic acid. 

The work by Kański and Kańska above followed previous research into a number of 

other substrates.
72

 Substrates including chloro, bromo, and nitrobenzoic acids where 

observed to give analogous reactivity to the table above with steric effects determining 

the rate constants for deuteration, supporting Garnett’s original proposal of a 

predominant dissociative mechanism.
67

 

The most important pioneering work into platinum-catalysed hydrogen/deuterium 

exchange reactions was done by Garnett in the 1960’s and 70’s and is certainly of 

greatest relevance to this project. His work is summarised in more detail in the 

following paragraphs. 

 

1.5.3. Rhodium and ruthenium catalysis 

Less prominent in the area of H/D exchange catalysis is rhodium. While it has been 

shown to be proficient for such exchange reactions in arenes by Garnett et al.
73

, very 

few methods involving rhodium have been reported. Brookhart et al. have achieved 

high percentage deuteration in substrates including aniline (8) and cylopentene (22) 
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(Scheme 21) using a rhodium-olefin complex 23.
74

 Joό et al. observed H/D exchange in 

the C-2 position of itaconic acid (24) following the reduction of the double bond, using 

soluble rhodium phosphate complexes with a mixture of H2 and D2O (Scheme 22).
75 

Scheme 21. H/D exchange using Rh-olefin complex 23 

                                                 

                                                         

Rh

SiMe3Me3Si

23  

 

 

                                       

NH2 NH2

[91]

[97]

[97]

23

C6D6, 110 °C, 24 h

8
 

 

                                        

[49]

[49][49]

23

C6D6, 110 °C, 5 h

22  

 

 

Scheme 22. Rh-catalysed H/D exchange of itaconic acid (24) 

 

DOOC
COOD

DOOC
COOD

25 °C, 2 MPa

H2/D2O

pH = 3.2

[RhCl(tppms)3]

[85]

24  

 

Lockley and Hesk more recently observed the deuteration of pyridine and a number of 

arene substrates using rhodium catalysts; RhH[P(iPr)3]3 and 

[Rh(benzo[h]quinoline)(H)(PPh2Bn)2(acetone)]PF6 respectively.
51
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Ruthenium complexes can also be used in the homogeneous catalysis of H/D exchange. 

Matsubara et al. observed the catalysed deuteration of substrates with an electron 

donating group under microwave irradiation.
76

 The scheme below (Scheme 23) shows 

the deuteration of an alkenol 25 in D2O via a ruthenium-mediated migration of the 

double bond and isomerisation to ketone 17. 

Scheme23. Ru-catalysed H/D exchange of alkenol 25 

 

OH

Ph

MW, 185 °C, 15 min

[RuCl2(PPh3)3], D2O

O

Ph
[69]

[80]

[80]

[72]

[69] [14]

25  

 

It was also shown that under similar conditions it was possible to selectively deuterate 

the α-position of primary alcohols 26 and amides (Scheme 24).
77

 The reaction 

conditions were milder in this case to prevent deuteration of the stereocenter in alcohol 

26 - the β position was unaffected at temperatures below 100 °C. 

Scheme 24. Ru-catalysed exchange of a chiral alcohol 26 

 

  

Recent work done by Lockley and Hesk has shown the utility of ruthenium complexes 

in the homogeneous catalysed H/D exchange of alcohols, cyclic and aromatic 

substrates.
51

 Regioselectivity in substituted aromatic precursors such as toluene is 

thought to be governed by steric factors with a greater selectivity at the meta (84%) and 

para (28%) positions over ortho (5%). 

 

1.6. Garnett H/D Exchange using K2PtCl4 

Garnett published a review called “π-Complex Intermediates in Homogeneous and 

Heterogeneous Catalytic Exchange Reactions of Hydrocarbons and Derivatives with 

Metals” in 1971 addressing the importance of platinum in H/D exchange reactions in 

unsaturated and aromatic hydrocarbons.
67

 The proposed exchange mechanisms 

(dissociative and associative) are compared to previous classical mechanisms. Further 

studies of the exchange reactions revealed several problems with the classical 

mechanisms previously proposed by Farkas and Farkas
78

 (dissociative) and Horiuti and 
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Polanyi (associative)
79

 (Scheme 25). These problems will be discussed in the following 

paragraphs. 

Scheme 25. 

Farkas and Farkas Dissociative Mechanism: 

 

 

 

Horiuti and Polanyi Associative Mechanism: 

 

 

Throughout the review, factors affecting the platinum-catalysed exchange are 

mentioned. Such factors include ionisation potential of functional groups, strength of 

adsorption to catalyst, sterics of functional groups and acidity of reaction mixture. 

Exchange reactions carried out on monohalogenated aromatics showed that the rate and 

percentage of hydrogen / deuterium exchange was directly related to the ionisation 

potential of the halogen: fluorobenzene with the highest ionisation potential exhibited 

the greatest rate and percentage of exchange, whilst iodobenzene with the lowest proved 

the least effective substrate with both the lowest rate and percentage of exchange. 

This effect was also seen when the exchange rate was compared between different 

delocalised systems. Naphthalene for example has a slower rate of exchange than 
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benzene because, due to its lower ionisation potential, delocalisation of its π-system 

occurs more readily to the catalyst, resulting in a stronger adsorption. This leads to 

preferential displacement of the deuterium leading to a slower rate of exchange. 

These results could not be explained by the classical associative and dissociative 

mechanisms: the classical associative mechanism predicts a loss in resonance energy 

which does not occur. The classical dissociative mechanism predicts approximately 

equal chemisorption strengths which are also contradicted by Garnett’s results. 

The problems mentioned above can be resolved if π-electrons are used in the adsorption 

process. With classical association one would expect a loss of resonance energy. These 

observations led to the proposal of a new mode for aromatic adsorption by Garnett in 

1960 (Figure 3).
67,80

  

 

Figure 3. 

 

The new proposed adsorption mechanism was described as a donor-acceptor interaction 

in which there was a net flow of charge during the forward and backward donation of 

electrons. Quantum mechanically this is explained in terms of the complexity of the 

antibonding orbitals. The greater complexity leads to more nodal planes. This leads to 

the bonding orbital interaction predominating, causing net charge transfer to be in the 

direction of the metal.
67

  

Garnett also reported a significant steric effect on the ortho position of monosubstituted 

alkylbenzenes (Table 3). Furthermore, Garnett showed that electronic factors no longer 

had an effect on selectivity, reporting very similar reactivity between trifluorotoluene 

and toluene in the catalysed homogeneous exchange (other than a steric effect reducing 

the number of ‘active aromatic hydrogens’). 

Table 3. Absence of electronic effects on selectivity in Pt-catalysed H/D exchange 

 

Compound Deuteration, % Amount of D in active aromatic hydrogens, % Active Aromatic Hydrogens 

Benzene 63 52 6 

Toluene 66.6 16 5 

Trifluorotoluene 77 14 3 
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Following analysis of the data for homogeneous catalysis, Garnett proposed two 

mechanisms to be occurring during the catalysis reaction. The homogeneous associative 

π-complex mechanism is shown below (Scheme 26). In this mechanism, the π-complex 

formed undergoes electrophilic attack by the deuteron with the formation of an 

associative intermediate. This occurs under acidic conditions to give the 

monodeuterated benzene following the loss of H
+
 from the intermediate. Multiple 

deuteration is seen following rapid exchange cycles of the π-complex before the 

complex breaks. 

Scheme 26. Homogeneous associative π-complex mechanism 

 

 

 

The second mechanism is the homogeneous dissociative π-complex mechanism 

(Scheme 27). This mechanism is proposed to predominate, as Garnett found that 

activating and deactivating substituents do not considerably affect the rate of exchange. 

This suggested that a mechanism with an associative intermediate would be very 

unlikely to predominate. This was supported by later work by Kański and Kańska.
71,72

  

The homogeneous dissociative π-complex mechanism involves a reversible π-σ 

conversion. Such conversions had been observed before with ruthenium complexes.
81

 

The exchange step was proposed to be either a reversible electrophilic displacement of a 

proton from the π-bonded aromatic (27), or the formation of a six-coordinate hydride 

complex (28) in a reversible rearrangement that undergoes exchange involving the 

hydride group. 
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Scheme 27. Homogeneous dissociative π-complex mechanism 
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Deuteration has also been seen in the alkyl groups of alkyl substituted aromatic 

compounds. It was again observed that groups ortho to the alkyl substituents sterically 

hindered the catalytic exchange reducing the percentage of deuteration (Table 3).  

Table 3. Deuteration in alkyl group  

 

Compound Deuteration in alkyl group, % 

Toluene 15.6 

o-Xylene 6.6 

m-Xylene 16.8 

p-Xylene 20.2 

 

Deuteration in the alkyl groups is analogous to the exchange in the aromatic positions 

with both stepwise and multiple exchange processes occurring.   
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Garnett’s analysis of the M value (or Multiple exchange parameter) for p-xylene, 

suggested that multiple exchange is preferred and exchange occurs only on one methyl 

group for each interaction with the platinum catalyst. This led Garnett to propose an 

intermediate involving the localisation of a double bond, or the interaction of the ψ2-

orbitals of the p-xylene. This intermediate allows for the reversible π-aryl (29) to π-

allylic complex (30) to form via proton elimination. Three mechanisms are proposed for 

the alkyl hydrogen deuterium exchange, one (Scheme 28) utilising the intermediate 

mentioned above is proposed to predominate. 

Scheme 28. Proposed mechanism for alkyl H/D exchange 
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A second mechanism was proposed involving dealkylation without using the above 

intermediate for π-complexation.
ref

 This has been discounted after studies showed 

conclusively that dealkylation does not occur as a predominant exchange mechanism. 

The second mechanism to be discounted was exchange via an increase in the hyper-

conjugation in the alkyl group. 

Garnett’s review is of great importance to the work in this project and offers great 

insights into the chemistry taking place in the platinum-catalysed exchange reactions 

that have been studied. 
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1.4. The Goals of the project 

Given the great capacity of Garnett’s methods for homogenous Pt-catalysed H/D 

exchange, it seemed plausible that by combination with microwave heating, this 

approach could offer the potential to deuterate unactivated positions in much shorter 

reaction times. A similar phenomenon has been observed in heterogeneous systems.  

 

It was proposed that a new method for facile H/D exchange of anilines, could be 

developed that featured:- 

1- A single step / cycle; 

2- The use of a commercial, readily available catalyst; 

3- Microwave irradiation at readily accessible temperatures; 

4- The incorporation of D at unactivated positions; 

5- The facility to incorporate multiple D atoms; 

6- The facility to exchange at side chain positions as well as aromatic methines; 

7- Wide substrate scope so that the process will also work for electron poor 

systems.  
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2. Results and Discussion 

A variety of aniline derivatives and aminopyridines were selected as suitable substrates 

for deuteration using microwave irradiation with and without the presence of a platinum 

catalyst in a modified Garnett procedure. Evaluating both processes would allow for the 

quantification of the catalyst effect on the deuteration of the substrate. It was also 

important to establish the efficiency of exchange and yields for the new microwave-

assisted procedure. 

Such results are desirable for a number of reasons. A microwave-mediated modified 

Garnett procedure opens opportunities for rapid and efficient H/D exchange for a 

number of substrates that should be independent of electronic effects and enable 

efficient exchange at unactivated positions. Aniline derivatives were chosen as the first 

substrate of study in this project, as previous work by Garnett on the deuteration of such 

compounds, and precedent from Sanofi-Aventis (Scheme 29),
83 

provided a foundation 

on which to build an understanding of this modified procedure. The combination of 

previous mechanistic understanding and the importance of aniline derivatives as useful 

building blocks in drug synthesis (in particular quinoline derivatives) make aniline 

derivatives ideal substrates.  

Scheme 29. Overall goals and precedent (R = 3-Cl) for microwave-assisted Garnett 

H/D exchange of anilines  

Uncatalysed Deuteration: 

NH2 NH2

DD2O, DCl (4 equiv)

Microwaves, 200 °C, 2 h

D

D

R R
 

Catalysed Deuteration: 

NH2 NH2

DD2O, DCl (4 equiv), K2PtCl4 (20%)

Microwaves, 200 °C, 2 h

D

D

D D
R R

 

 

Subsequent to deuteration a number of techniques were employed to firstly purify the 

product and secondly establish the efficiency of the process, both in terms of chemical 

yield and the incorporation of deuterium. 
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Following the platinum-catalysed deuteration of a substrate, addition of thioglycolic 

acid was used to remove platinum contamination. Sulphur’s high affinity for platinum 

gives rise to fast formation of a thiolate acid – platinum complex. The glycolic acid 

group then allows for easy removal of the platinum during the aqueous work up. 

The use of deuterium oxide as the deuterium source was employed to minimise 

competing reactions, such as hydrogenation on the surface of the exchange catalyst. The 

lack of gaseous reagents is also beneficial when using microwave irradiation in 

synthesis.
42

 The solvent plays an important factor in the catalysed exchange reactions. 

The relationship between acidity and percentage exchange/hour, as demonstrated by 

Garnett,
67

 clearly indicates an optimum acidity of 50 mol% acetic acid (Figure 4). At 

lower concentrations the platinum catalyst precipitates quickly to give a lower 

concentration of catalyst in solution, hence the rate of exchange is reduced, 

complicating the process by the presence of heterogeneous Pt. At higher concentrations, 

D
+
 competes with the aromatic compound for complex formation with the catalyst, 

again reducing the rate of exchange. 

 

Figure 4. The relationship between acidity and H/D exchange
67
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The temperature and time of the reaction are important in exchange. Garnett showed for 

nitrobenzene with CH3COODD2O containing DCl (0.02 M) and K2PtCl4 (0.02 M), 2 h 

at 120 °C, gives deuteration of 90% meta+para, and 12% ortho.
67 

 

2.1. Calculating the Percentage Deuteration. 

Following deuteration of the substrate it was considered important to establish both 

accurate percentage deuteration at each active hydrogen position and percentage yield 

of the deuterated substrate. This would be achieved by the introduction of an internal 

reference by acetylation of the amine group (Scheme 30) for analysis by 
1
H NMR 

spectroscopy. 

 

Scheme 30. Introduction of an internal reference  
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Acetylation of Pyridine Substrates: 
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With the addition of the acetyl group it was possible to calculate the percentage 

deuteration using 
1
H NMR spectroscopic analysis with the methyl group as an internal 

reference peak. This is shown below in the example of d4-p-anisidine (Figure 5).
82 
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Figure 5.
 1
H NMR spectrum of d4-N-(p-anisidine)acetamide where the acetyl group 

acts as an internal reference
82

 

  

 

  

Using the acetyl methyl peak as a reference, it would be possible to accurately calculate 

the deuteration of the different hydrogen environments by integrating each peak against 

the three hydrogen integration of the acetyl methyl (δ = 1.99 ppm) peak. Only simple 

calculations would then be required to work out the percentage deuteration. 

For example the peak corresponding to that of the protons ortho to the amide (δ = 7.31 

ppm), have an integration of 0.20 H, as opposed to the undeuterated integration of 2.00 

H. A simple subtraction quantifies that 1.80 of the 2.00 hydrogens have been exchanged 

for deuterium; this corresponds to 90% deuteration. The same calculations could then 

used for each environment to give the deuteration of each active hydrogen position. 

Peaks are assigned by the use of reference spectra. These would be produced by the 

acetylation of the corresponding undeuterated substrate, and thus are of great 

importance when assigning peaks. This is especially true in highly deuterated species, 

where it is not always possible to see each proton environment due to the high 

incorporation of deuterium in these positions. 

Integration quantifies the % of 

non deuteration by comparison 

with reference  

Internal 3H reference peak 
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In certain spectra small impurities or overlaps between peaks of interest could be 

anticipated to make it difficult to obtain accurate levels of deuteration for all positions. 

This could then be overcome by the combined use of both the acetylated product 

spectrum and that of the unacetylated product. For this reason, it was considered 

important to analyze also the non-acetylated deuterated products in anticipation of any 

of these problems. An example of a poorly resolved acetamide spectrum is shown 

below for the H/D exchange of d2-2-chloroaniline (Figure 6).
82 

 

Figure 6. Integration of the aromatic region in the 
1
H NMR spectrum of d2-N-(2-

chloroaniline)acetamide
82 

 

 

 

 

The impure nature of the spectrum and lack of complete resolution/separation of peaks 

meant that the majority of integrations shown were inaccurate. However, the peak 

corresponding to the proton in the 5-position (δ = 7.31 ppm) appeared unaffected by 

impurities and therefore has been used as a second reference in the spectrum of the 

unacetylated substrate (Figure 7).
82 
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Figure 7. All aromatic peaks are resolved in the the 
1
H NMR spectrum of d2-2-

chloroaniline
82

 

 

Using this dual approach the percentage deuteration could be calculated accurately for 

problematic substrates and errors due to impurities accounted for. 

2.2. Calculating the Percentage Yield 

Once the percentage deuteration of the substrate had been calculated, it was possible to 

calculate an accurate average molecular weight (Mr′) for the product by simple 

calculation. Although the real percentage yield would not be expected to be at great 

disparity from that using the Mr of the starting material this level of rigour was carried 

out as a matter of course. This in turn would enable the calculation of accurate 

percentage yields in the usual manner: 

 

 

 

 

 

Mr(D)-Mr(H) 

 

Levels of Deuteration 
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2.3. Use of Other Characterisation Data 

Supporting evidence was obtained by mass spectrometry, not only to provide 

information on the structure of the molecule but also to support the percentage 

deuteration data provided by the 
1
H NMR spectroscopic analysis (Figure 7). 

13
C NMR 

spectroscopy was also used where appropriate, to give information on not only the 

structure of the final product but also on the positions of high deuterium exchange. This 

is due to the difference in spin of deuterium giving a different multiplicity for the 

deuterated carbons than those bonded to a proton in a 
1
H decoupled 

13
C spectrum.

82
 IR 

spectroscopy and melting points were also used to characterise the different compounds.  

Figure 8. Mass spectrum of N-(d4-2-anisidin)acetamide
82

 

 

 

 

For example, in the mass spectrum of N-(d4-2-anisidin)acetamide (Figure 8),
82

 one 

expects a mass of 169 with deuteration in four aromatic positions. This mass was 

confirmed by mass spectrometry whilst the expansion showed the different 
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isotopologues present. High resolution masses were obtained where possible although it 

was not always possible to separate the isotopologue peaks from those of the 

corresponding 
13

C peaks (
13

C is present at an isotopic natural abundance of 1.10%) of 

an isotopologue containing one less deuterium (Figure 9). 

 

Figure 9.Resolution of isotopologue peaks in the mass spectrum 

 

                                                 Resolved                    Unresolved   

 

 

The resolution required can be calculated for each specific substrate. For example, for 

d2-p-toluidine 

 

The resolution of the mass spectrometer used was ≈ 7000 and therefore the two peaks 

would be observed as a broad unresolved peak, thus preventing recovery of the highly 

resolved mass spectrometric data. 

 

2.4. Pt-Catalyzed and Metal-Free H-D Exchange of Substituted 

Anilines 

2.4.1. H/D-Exchange of p-Toluidine 

For the first reaction of study, the Pt-catalyzed H-D exchange of p-toluidine (31) was 

investigated under microwave irradiation. This substrate would demonstrate the 

influence of this catalyst system on both aryl and alkyl H/D exchange and could 

establish if an ortho-steric effect was in evidence in the Pt-catalysed process, as one 

might expect. A solution of p-toluidine was added to a stirred solution of the Pt catalyst 

and DCl in D2O in a Pyrex tube and the mixture was irradiated at 200 °C in the sealed 
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vessel for 2 hours. Thioglycolic acid was added to the mixture after cooling in a stream 

of compressed air to remove platinum contamination. Then the solution was neutralized 

by the addition of NaOH and extracted with CH2Cl2 to give the d7-p-toluidine (d7-31) 

which was analyzed by 
1
H NMR spectroscopy and mass spectrometry. Further 

derivatization by acetylation was carried out to quantify the overall degree of H-D 

exchange by adding acetyl chloride to a stirred solution of d7-p-toluidine (d7-31) in 

CH2Cl2 and NEt3 on ice under a N2 atmosphere. The mixture was warmed to room 

temperature and stirred for 30 min then quenched by the addition of hydrochloric acid to 

give the d7-N-(4-toluidine)acetamide (d7-31a) (Scheme 31). The same reaction was 

repeated but in the absence of the Pt catalyst to give the d2-N-(4-toluidine)acetamide 

(d2-31a) (Scheme 32).  

Scheme 31. Pt-catalyzed deuteration of p-toluidine (31) 
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Scheme 32. Metal-free deuteration of p-toluidine (31) 
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Acetylation as before was used to calculate the percentage deuteration of the different 

hydrogen environments by integrating each peak against the three hydrogen integration 

of the acetyl methyl peak as an internal reference. In this analysis the peak 

corresponding to the protons meta to the amide NH (δ = 6.91 ppm) exhibited an 

integration of 0.18 H for the Pt-catalyzed process, as opposed to the integration of the 

product of the uncatalyzed reaction, the 
1
H NMR of which following deuteration 

showed an integration of 2.00 H. A simple subtraction quantified that an average of 1.82 

of the 2.00 hydrogens had been exchanged for deuterium; this corresponded to 91% 
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deuterium incorporation. The same analysis of the peak corresponding to the protons at 

C-2/C-6 (δ = 6.91 ppm ) showed an integration of 0.12 H, as opposed to the product 

from the metal-free reaction which showed an integration in this region of 1.76 H. The 

peak corresponding to the protons at C-1′ (δ = 2.16 ppm) displayed an integration of 

0.23 H, as opposed to the product from the uncatalyzed reaction where the same 

resonance showed an integration of 2.99 H. The yield for the H-D exchange reaction 

was 56% and in the absence of the metal catalyst it was similar (55%). The mass of the 

product was confirmed using analysis by mass spectrometry and showed the major peak 

at m/z 160 for the catalyzed reaction and 151 in the absence of a catalyst. All of this 

evidence illustrates that without a Pt catalyst no significant exchange occurs at 

unactivated aromatic or alkyl side chain positions but there is good incorporation at C-2 

and C-6. Using a Pt catalyst there is still good deuterium incorporation at C-2 and C-6, 

and at C-3/C-4/C-5 the metal has facilitated exchange. Given the ready incorporation of 

deuterium in the side chain, this could be envisaged to occur by formation of a Pt-alkyl 

σ-complex. The study of an alternative substrate containing a longer length of side chain 

would provide further evidence for and understanding of this process.  

 

2.4.2. H/D-Exchange of p-n-Butylaniline 

The Pt-catalyzed H-D exchange of p-n-butylaniline (32) was investigated under 

microwave irradiation as a substituted butylaniline to establish the effect of increasing 

chain length on the H/D exchange process. A solution of p-n-butylaniline (32) was 

added to a stirred solution of the Pt catalyst and DCl in D2O in a Pyrex tube and the 

mixture was irradiated at 200 °C in the sealed vessel for 2 hours. Thioglycolic acid was 

added to the mixture after cooling in a stream of compressed air to remove platinum 

contamination. Then the solution was neutralized by the addition of NaOH and 

extracted with CH2Cl2 to give the d13-4-n-butylaniline (d13-32) which was analyzed by 

1
H NMR spectroscopy and mass spectrometry. Further derivatization by acetylation was 

carried out to quantify the overall degree of H-D exchange by adding acetyl chloride to 

a stirred solution of d13-4-n-butylaniline (d13-32) in CH2Cl2 and NEt3 on ice under a N2 

atmosphere. The mixture was warmed to room temperature and stirred for 30 min then 

quenched by the addition of hydrochloric acid to give the d13-N-(4-n-

butylphenyl)acetamide (d13-32a) (Scheme 33). The same reaction was repeated but in 

the absence of the Pt catalyst to give the d2-N-(4-n-butylphenyl)acetamide (d2-32a) 

(Scheme 34).  
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Scheme 33. Pt-catalyzed deuteration of p-n-butylaniline (32) 
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Scheme 34. Metal-free deuteration of p-n-butylaniline (32) 
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Acetylation as before was used to calculate the percentage deuteration of the different 

hydrogen environments by integrating each peak against the three hydrogen integration 

of the acetyl methyl peak as an internal reference. In this analysis the peak 

corresponding to the protons meta to the amide NH (δ = 6.66 ppm) exhibited an 

integration of 0.57 H, as opposed to the integration of the product of the uncatalyzed 

reaction, the 
1
H NMR of which following deuteration showed an integration of 2.00 H. 

A simple subtraction quantified that an average of 1.43 of the 2.00 hydrogens had been 

exchanged for deuterium; this corresponded to 71% deuterium incorporation. The same 

analysis of the peak corresponding to the protons at C-2/C-6,(δ = 6.91 ppm), showed an 

integration of 0.11 H, as opposed to the product from the metal-free reaction which 

showed an integration in this region of 0.5 H. The peak corresponding to the protons at 

C-1′ (δ = 2.44 ppm) displayed an integration of 0.13 H, as opposed to the product from 

the uncatalyzed reaction where the same resonance showed an integration of 2 H. 

Furthermore, the peak corresponding to the protons at C-2′ (δ = 1.47 ppm) exhibited an 
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integration of 0.44 H, as opposed to the uncatalyzed reaction where no incorporation 

occurred at this position (integration of 2H). Similarly, the peak corresponding to the 

protons at C-3′ (δ = 1.26 ppm), displayed an integration of 0.39 H from the Pt-catalyzed 

reaction, as opposed to the product from the metal-free reaction which showed an 

integration of 2 H in this region. The yield for the H-D exchange reaction was 50% 

whereas in the absence of the metal catalyst it was 80%. The mass of the product was 

confirmed by analysis by mass spectrometry and showed the major peak at m/z 160 for 

the catalyzed reaction and m/z 151 in the absence of a catalyst. All of this evidence 

illustrates that without a Pt catalyst no significant exchange occurs at unactivated 

aromatic or alkyl side chain positions but there is good incorporation at C-2 and C-6 

(Scheme 34). Using a Pt catalyst there is still good deuterium incorporation at C-2 and 

C-6, although this is reduced slightly due to increased exchange elsewhere, with good 

incorporation at C-3 and C-5, lowered due to an ortho steric effect; whereas in the side 

chain the role of the catalyst is clear in that there is high exchange at C-1′ and C-4′ and 

less significant exchange at C-2′ and C-3′ (Scheme 33). Given the ready incorporation 

of deuterium in the side chain, this could be envisaged to occur by formation of a Pt-

alkyl σ-complex. The study of an alternative substrate containing a quaternary centre 

would provide further evidence for and understanding of this process. 

 

2.4.3. H/D-Exchange of 4-tert-Butylaniline 

4-tert-Butylaniline (33) was selected as a substrate with a quaternary centre to see the 

effect of this structure on H-D exchange. A solution of 4-tert-butylaniline (33) was 

added to a stirred solution of the Pt catalyst and DCl in D2O in a Pyrex tube and the 

mixture was irradiated at 200 °C in the sealed vessel for 2 hours. Thioglycolic acid was 

added to the mixture after cooling in a stream of compressed air to remove platinum 

contamination. Then the solution was neutralized by the addition of NaOH and 

extracted with CH2Cl2 to give the d2-4-tert-butylaniline (d2-33) which was analyzed by 

1
H NMR spectroscopy and mass spectrometry. Further derivatization by acetylation was 

carried out to quantify the overall degree of H-D exchange by adding acetyl chloride to 

a stirred solution of d2-4-tert-butylaniline (d2-33) in CH2Cl2 and NEt3 on ice under a N2 

atmosphere. The mixture was warmed to room temperature and stirred for 30 min then 

quenched by the addition of hydrochloric acid to give the d2-N-(4-tert-

butylphenyl)acetamide (d2-33a) (Scheme 35). The same reaction was repeated but in the 
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absence of the Pt catalyst to give the d2-N-(4-tert-butylphenyl)acetamide (d2-33a) 

(Scheme 36).  

 

Scheme 35. Pt-catalyzed deuteration of 4-tert-butylaniline (33) 
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Scheme 36. Metal-free deuteration of 4-tert-butylaniline (33) 

33 d2-33ad2-33

NH2 NH2

[4]

[7]

[99]

NH

[4]

[7]

[99]

O

D2O, DCl (4 equiv),

Microwaves, 200 °C, 2 h

O

Cl (1.1 equiv)

NEt3 (2.2 equiv),
R.T. 30 minCH2Cl2,

94%

 

 

Acetylation as before was used to calculate the percentage deuteration of the different 

hydrogen environments by integrating each peak against the three hydrogen integration 

of the acetyl methyl peak as an internal reference. In this analysis the peak 

corresponding to the protons meta to the amide NH (δ = 7.13 ppm) exhibited an 

integration of 1.83 H, as opposed to the integration of the product of the uncatalyzed 

reaction, the 
1
H NMR of which following deuteration showed an integration of 2.00 H. 

A simple subtraction quantified that an average of 0.17 of the 2.00 hydrogens had been 

exchanged for deuterium; this corresponded to 9% deuterium incorporation at each 

methine position. The same analysis of the peak corresponding to the protons at C-2/C-

6 (δ = 6.67 ppm) showed an integration of 0.23 H, as opposed to the product from the 

metal-free reaction which showed an integration in this region of 0.02 H. The peak 

corresponding to the protons at C-1′ (δ = 1.25 ppm) displayed an integration of 7.72 H, 
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as opposed to the product from the metal-free reaction which showed an integration of 

8.61 H in this region. The yield for the H-D exchange reaction was 55% whereas in the 

absence of the metal catalyst it was 94%. The mass of the product was confirmed by 

analysis by mass spectrometry and showed the major peak at m/z 151 for the catalyzed 

reaction and m/z 151 in the absence of a catalyst. All of this evidence illustrates that 

exchange cannot occur past a quaternary centre as the species cannot form the σ-

complex. Furthermore, an ortho steric effect prevents metal exchange to C-3/5 of the 

aniline, as this would hinder formation of a Pt-alkyl σ-complex. The study of an 

alternative substrate containing branching in the side chain would provide further 

evidence for this process. 

 

2.4.4. H/D-Exchange of 4-Isopropylaniline 

4-Isopropylaniline (34) was selected as a substrate with increased branching to see the 

effect of this structure on H-D exchange. A solution of 4-isopropylaniline (34) was 

added to a stirred solution of the Pt catalyst and DCl in D2O in a Pyrex tube and the 

mixture was irradiated at 200 °C in the sealed vessel for 2 hours. Thioglycolic acid was 

added to the mixture after cooling in a stream of compressed air again to remove 

platinum contamination. Then the solution was neutralized by the addition of NaOH and 

extracted to give the d8-4-isopropylaniline (d8-34) which was analyzed by 
1
H NMR 

spectroscopy and mass spectrometry. Further derivatization by acetylation was carried 

out to quantify the overall degree of H-D exchange. Adding acetyl chloride to a stirred 

solution of d8-4-isopropylaniline (d8-34) in CH2Cl2 and NEt3 on ice under a N2 

atmosphere gave the d8-N-(4-isopropylphenyl)acetamide (d8-34a) (Scheme 37).  

Scheme 37. Pt-catalyzed deuteration of 4-isopropylaniline (34) 
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Each peak was integrated against the three hydrogen integration of the acetyl methyl 

peak as an internal reference. In this analysis the peak corresponding to the protons 
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meta to the amide NH (δ = 7.16 ppm) exhibited an integration of 1.12 H, the 
1
H NMR 

of which should in the absence of exchange show an integration of 2.00 H. A simple 

subtraction quantified that an average of 0.88 of the 2.00 hydrogens had been 

exchanged for deuterium; this corresponded to 44% deuterium incorporation at each 

methine. The same analysis of the peak corresponding to the protons at C-2/C-6 (δ = 

7.42 ppm) showed an integration of 0.19 H. The peak corresponding to the protons at C-

1′ (δ = 2.46 ppm) displayed an integration of 0.60 H. The peak corresponding to the 

protons at C-2′ (δ = 1.14 ppm) displayed an integration of 0.60 H which corresponds to 

very high H/D exchange at this terminal position (90%). The yield for the H-D 

exchange reaction was 62%. The mass of the product was confirmed by analysis by 

mass spectrometry and showed the major peak at m/z 143 for the catalyzed reaction. All 

of this evidence illustrates that exchange does occur with branching in the side chain of 

the substrate as under Pt-catalysis the σ-complex will form providing there is not a 

quaternary centre. An ortho steric effect hinders metal exchange to aniline, by 

preventing formation of the Pt-alkyl σ-complex. The study of an alternative substrate 

with an alternative substitution pattern containing branching in the side chain would 

provide further evidence for this process. 

 

2.4.5. H/D-Exchange of 2-Isopropylaniline   

2-Isopropylaniline (35) was selected as a substrate with increased branching to see the 

effect of this structure on H-D exchange. A solution of 2-isopropylaniline (35) was 

added to a stirred solution of the Pt catalyst and DCl in D2O in a Pyrex tube and the 

mixture was irradiated at 200 °C in the sealed vessel for 2 hours, as before. Thioglycolic 

acid was added to the mixture after cooling in a stream of compressed air to remove 

platinum contamination. Then the solution was neutralized by the addition of NaOH and 

extracted with CH2Cl2 to give the d9-2-isopropylaniline (d9-35) which was analyzed by 

1
H NMR spectroscopy and mass spectrometry. Further derivatization by acetylation was 

carried out to quantify the overall degree of H-D exchange by adding acetyl chloride to 

a stirred solution of d9-2-isopropylaniline (d9-35) in CH2Cl2 and NEt3 on ice under a N2 

atmosphere. The mixture was warmed to room temperature and stirred for 30 min then 

quenched by the addition of hydrochloric acid to give the d9-N-(2-

isopropylphenyl)acetamide (d9-35a) (Scheme 38). 
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Scheme 38. Pt-catalyzed deuteration of 2-isopropylaniline (35) 
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Each peak was integrated against the three hydrogen integration of the acetyl methyl 

peak as an internal reference. In this analysis the peak corresponding to the protons at 

C-6 (δ = 7.24 ppm) exhibited an integration of 0.08 H, the 
1
H NMR of which following 

deuteration showed an integration of 2.00 H. A simple subtraction quantified that an 

average of 0.92 of the 2.00 hydrogens had been exchanged for deuterium; this 

corresponded to 92% deuterium incorporation. The same analysis of the peak 

corresponding to the protons at C-3 (δ = 7.34 ppm) showed an integration of 0.95 H. 

The same analysis of the peak corresponding to the protons at C-4 (δ = 7.18 ppm) 

showed an integration of 0.09 H. The same analysis of the peak corresponding to the 

protons at C-5 (δ = 7.18 ppm) demonstrated an integration of 0.08 H. The peak 

corresponding to the protons at C-1′ (δ = 3.13 ppm) displayed an integration of 0.71 H. 

The peak corresponding to the protons at C-2′ (δ = 1.58 ppm) displayed an integration 

of 0.98 H. The yield for the H-D exchange reaction was 72%. The mass of the product 

was confirmed by analysis by mass spectrometry and showed the major peak at m/z 144 

for the catalyzed reaction. All of this evidence illustrates that exchange can occur with 

branching in the side chain and so a σ-complex must be forming. An ortho steric effect 

prevents metal-mediated exchange at the hindered positions of the aniline but efficient 

metal-mediated exchange is occurring at C-5; this could be envisaged to occur by 

formation of a Pt-alkyl σ-complex. The study of an alternative substrate containing a 

smaller side chain would provide further evidence for this process. 

 

2.4.6. H/D-Exchange of 4-Ethylaniline 

4-Ethylaniline (36)was selected as a substrate with increased chain length (over the 

toluidine) to see the effect of this structure on H-D exchange. A solution of 4-

ethylaniline (36) was added to a stirred solution of the Pt catalyst and DCl in D2O in a 
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Pyrex tube and the mixture was irradiated at 200 °C in the sealed vessel for 2 hours. 

Thioglycolic acid was added to the mixture after cooling in a stream of compressed air 

to remove platinum contamination. Then the solution was neutralized by the addition of 

NaOH and extracted with CH2Cl2 to give the d9-4-ethylaniline (d9-36) which was 

analyzed by 
1
H NMR spectroscopy and mass spectrometry. Further derivatization by 

acetylation was carried out to quantify the overall degree of H-D exchange by adding 

acetyl chloride to a stirred solution of d9-4-ethylaniline (d9-36) in CH2Cl2 and NEt3 on 

ice under a N2 atmosphere. The mixture was warmed to room temperature and stirred 

for 30 min then quenched by the addition of hydrochloric acid to give the d9-N-(4-

ethylphenyl)acetamide (d9-36a) (Scheme 39). 

Scheme 39. Pt-catalyzed deuteration of 4-ethylaniline(36) 
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Each peak was integrated against the three hydrogen integration of the acetyl methyl 

peak as an internal reference. In this analysis the peak corresponding to the protons 

meta to the amide NH (δ = 7.15 ppm) exhibited an integration of 0.77 H, the 
1
H NMR 

of which following deuteration showed an integration of 2.00 H. A simple subtraction 

quantified that an average of 1.23 of the 2.00 hydrogens had been exchanged for 

deuterium; this corresponded to 62% deuterium incorporation. The same analysis of the 

peak corresponding to the protons at C-2/C-6 (δ = 7.44 ppm) showed an integration of 

0.27 H. The peak corresponding to the protons at C-1′ (δ = 1.19 ppm) displayed an 

integration of 0.24 H. The peak corresponding to the protons at C-2′ (δ = 2.58 ppm) 

displayed an integration of 0.17 H. The yield for the H-D exchange reaction was 56%. 

The mass of the product was confirmed by analysis by mass spectrometry and showed 

the major peak at m/z 130 for the catalyzed reaction. All of this evidence illustrates that 

exchange in the side chain can occur and is highly efficient at all positions. An ortho 

steric effect prevents metal exchange to the aniline by hindering formation of a Pt-alkyl 
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σ-complex. The study of an alternative substitution pattern would provide further 

evidence for this process. 

 

2.4.7. H/D-Exchange of 2-Ethylaniline 

2-Ethylaniline (37) was selected as an alternative substrate in to see the effect of this 

structure on H-D exchange. A solution of 2-ethylaniline (37) was added to a stirred 

solution of the Pt catalyst and DCl in D2O in a Pyrex tube and the mixture was 

irradiated at 200 °C in the sealed vessel for 2 hours. Thioglycolic acid was added to the 

mixture after cooling in a stream of compressed air to remove platinum contamination. 

Then the solution was neutralized by the addition of NaOH and extracted with CH2Cl2 

to give the d8-2-ethylaniline (d8-37) which was analyzed by 
1
H NMR spectroscopy and 

mass spectrometry. Further derivatization by acetylation was carried out to quantify the 

overall degree of H-D exchange by adding acetyl chloride to a stirred solution of d8-2-

ethylaniline (d8-37) in CH2Cl2 and NEt3 on ice under a N2 atmosphere. The mixture was 

warmed to room temperature and stirred for 30 min then quenched by the addition of 

hydrochloric acid to give the d8-N-(2-ethylphenyl)acetamide (d8-37a) (Scheme 40). 

Scheme 40. Pt-catalyzed deuteration of 2-ethylaniline (37) 
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Each peak was integrated against the three hydrogen integration of the acetyl methyl 

peak as an internal reference. In this analysis the peak corresponding to the protons 

meta to the amide NH (δ = 7.21 ppm) exhibited an integration of 0.77 H, the 
1
H NMR 

of which following deuteration showed an integration of 2.00 H. A simple subtraction 

quantified that an average of 0.23 of the 1 hydrogen had been exchanged for deuterium; 

this corresponded to 23% deuterium incorporation. The same analysis of the peak 

corresponding to the protons at C-4/C-5 (δ = 7.12 ppm) showed an integration of 0.15 

H. The peak corresponding to the protons at C-6 (δ = 7.32 ppm) displayed an 

integration of 0.08 H. The peak corresponding to the protons at C-1′ (δ = 2.55 ppm) 
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displayed an integration of 0.23 H. The peak corresponding to the protons at C-2′ (δ = 

1.05 ppm) displayed an integration of 0.25 H. The yield for the H-D exchange reaction 

was 75%. The mass of the product was confirmed by analysis by mass spectrometry and 

showed the major peak at m/z 129 for the catalyzed reaction. All of this evidence 

illustrates that exchange can occur in the side chain of this alternative substrate. Again, 

an ortho steric effect prevents metal exchange at the hindered positions by inhibiting the 

formation of a Pt-alkyl σ-complex. The study of the last isomer would provide further 

evidence for this process. 

 

2.4.8. H/D-Exchange of 3-Ethylaniline 

3-Ethylaniline (38) was selected to complete this part of the study to see the effect of 

this structure on H-D exchange. With this substrate, all hindered positions are activated 

towards electrophilic aromatic substitution. A solution of 3-ethylaniline (38) was added 

to a stirred solution of the Pt catalyst and DCl in D2O in a Pyrex tube and the mixture 

was irradiated at 200 °C in the sealed vessel for 2 hours. Thioglycolic acid was added to 

the mixture after cooling in a stream of compressed air to remove platinum 

contamination. Then the solution was neutralized by the addition of NaOH and 

extracted with CH2Cl2 to give the d9-3-ethylaniline (d9-38) which was analyzed by 
1
H 

NMR spectroscopy and mass spectrometry. Further derivatization by acetylation was 

carried out to quantify the overall degree of H-D exchange by adding acetyl chloride to 

a stirred solution of d9-3-ethylaniline (d9-38) in CH2Cl2 and NEt3 on ice under a N2 

atmosphere. The mixture was warmed to room temperature and stirred for 30 min then 

quenched by the addition of hydrochloric acid to give the d9-N-(3-

ethylphenyl)acetamide (d9-38a) (Scheme 41). 

Scheme 41. Pt-catalyzed deuteration of 3-ethylaniline (38) 
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Each peak was integrated against the three hydrogen integration of the acetyl methyl 

peak as an internal reference. In this analysis the peak corresponding to the protons at 

C-2/C-6 (δ = 7.37 ppm) exhibited an integration of 0.08 H, the 
1
H NMR of which 
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following deuteration showed an integration of 2.00 H. A simple subtraction quantified 

that an average of 1.92 of the 2.00 hydrogens had been exchanged for deuterium; this 

corresponded to 96% deuterium incorporation. The same analysis of the peak 

corresponding to the protons at C-4 (δ = 7.33 ppm) showed an integration of 0.09 H. 

The peak corresponding to the protons at C-5 (δ = 7.19 ppm) displayed an integration of 

0.08 H. The peak corresponding to the protons at C-1′ (δ = 2.57 ppm) displayed an 

integration of 0.21 H. The peak corresponding to the protons at C-2′ (δ = 1.16 ppm) 

displayed an integration of 0.28 H. The yield for the H-D exchange reaction was 81%. 

The mass of the product was confirmed by analysis by mass spectrometry and showed 

the major peak at m/z 130 for the catalyzed reaction. All of this evidence illustrates that 

now all positions undergo H/D exchange – the ortho steric effect being countered by 

electronic activation towards electrophilic aromatic substitution. However what was not 

clear from these experiments was whether H/D exchange could occur in a side chain 

beyond a heteroatom. The study of an alternative substrate containing a heteroatom in 

the side chain would provide further evidence for this process. 

 

2.4.9. H/D-Exchange of N-Phenylpiperazine 

N-Phenylpiperazine (39) was selected as a substrate bearing a heteroatom in the side 

chain to see the effect of this structure on H-D exchange. A solution of the 

phenylpiperazine (39) was added to a stirred solution of the Pt catalyst and DCl in D2O 

in a Pyrex tube and the mixture was irradiated at 200 °C in the sealed vessel for 2 hours. 

Thioglycolic acid was added to the mixture after cooling in a stream of compressed air 

to remove platinum contamination. Then the solution was neutralized by the addition of 

NaOH and extracted with CH2Cl2 to give the d3-1-phenylpiperazine (d3-39) which was 

analyzed by 
1
H NMR spectroscopy and mass spectrometry. Further derivatization by 

acetylation was carried out to quantify the overall degree of H-D exchange by adding 

acetyl chloride to a stirred solution of d3-1-phenylpiperazine (d3-39) in CH2Cl2 and NEt3 

on ice under a N2 atmosphere. The mixture was warmed to room temperature and stirred 

for 30 min then quenched by the addition of hydrochloric acid to give the d3-N-(1-

phenylpiperazine)acetamide (d3-39a) (Scheme 42). 
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Scheme 42. Pt-catalyzed deuteration of phenylpiperazine (39) 
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Each peak was integrated against the three hydrogen integration of the acetyl methyl 

peak as an internal reference. In this analysis the peak corresponding to the protons at 

C-2/C-6 (δ = 7.09 ppm) exhibited an integration of 0.05 H, the 
1
H NMR of which 

following deuteration showed an integration of 2.00 H. A simple subtraction quantified 

that an average of 1.95 of the 2.00 hydrogens had been exchanged for deuterium; this 

corresponded to 99% deuterium incorporation. The same analysis of the peak 

corresponding to the protons at C-3/C-5 (δ = 7.24 ppm) showed an integration of 1.07 

H. The peak corresponding to the protons at C-4 (δ = 6.96 ppm) displayed an 

integration of 0.02 H. The yield for the H-D exchange reaction was 83%. The mass of 

the product was confirmed by analysis by mass spectrometry and showed the major 

peak at m/z 165 for the catalyzed reaction. All of this evidence illustrates that exchange 

cannot occur in the side chain past a heteroatom which could be because the π-allylic 

complex is not forming (see Scheme 28 in the Introduction for comparison) and/or it 

could be because the Pt-alkyl σ-complex is not able to form. This represents a limit of 

the methodology; that a heteroatom in the side chain would seem to prevent further H/D 

exchange. 

 

2.5. Pt-Catalyzed and Metal-Free H-D Exchange of Substituted 

Pyridines 

2.5.1. H/D-Exchange of 4-Amino-2-methylpyridine 

With a suitable method established for H/D exchange of anilines, it now remained to 

establish the scope of the process by investigating a series of alternative substrates. 

Thus, aminopyridines were chosen as they exhibit different electronic properties and yet 

are valuable building blocks in heterocyclic chemistry. Pyridines are electron-poor 
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aromatic compounds and do not ordinarily undergo electrophilic aromatic substitution 

with ease, although the introduction of an electron-donating group (such as an amino 

group) can facilitate this process. The Pt-catalyzed H-D exchange of 4-amino-2-

methylpyridine (40) was first investigated under microwave irradiation as an example of 

a substituted methylpyridine. A solution of 4-amino-2-methylpyridine (40) was added to 

a stirred solution of the Pt catalyst and DCl in D2O in a Pyrex tube and the mixture was 

irradiated at 200 °C in the sealed vessel for 2 hours, as before. Thioglycolic acid was 

added to the mixture after cooling in a stream of compressed air to remove platinum 

contamination. Then the solution was basified by the addition of NaOH and extracted 

with CH2Cl2 to give the d6-4-amino-2-methylpyridine (d6-40) which was analyzed by 

1
H NMR spectroscopy and mass spectrometry. Further derivatization by acetylation was 

carried out to quantify the overall degree of H-D exchange by adding acetyl chloride to 

a stirred solution of d6-4-amino-2-methylpyridine (d6-40) in K2CO3. The mixture was 

stirred for 3 h then quenched by the addition of water to give the d6-N-(pyridine-2-

methyl-4-yl)acetamide (d6-40a) (Scheme 43). The same reaction was repeated but in the 

absence of the Pt catalyst to establish the behaviour of this electron-rich pyridine under 

the metal-free conditions (Scheme 44). 

Scheme 43. Pt-catalyzed deuteration of 4-amino-2-methylpyridine (40) 
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Scheme 44. Metal-free deuteration of 4-amino-2-methylpyridine (40) 
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Each peak was integrated against the three hydrogen integration of the acetyl methyl 

peak as an internal reference. In this analysis the peak corresponding to the protons at 

C-3 (δ = 6.42 ppm) exhibited an integration of 0.04 H, as opposed to the integration of 

the product of the uncatalyzed reaction, the 
1
H NMR of which following deuteration 

showed an integration of 1 H. A simple subtraction quantified that an average of 0.96 

of the 1 hydrogens had been exchanged for deuterium; this corresponded to 96% 

deuterium incorporation. The same analysis of the peak corresponding to the protons at 

C-5 (δ = 6.37 ppm) showed an integration of 0.05 H, as opposed to the product from 

the metal-free reaction which showed an integration in this region of 1 H. The peak 

corresponding to the protons at C-6 (δ = 7.83 ppm) displayed an integration of 0.08 H, 

as opposed to the product from the uncatalyzed reaction where the same resonance 

showed an integration of 1 H. Furthermore, the peak corresponding to the protons at 2-

Me (δ = 2.27 ppm) exhibited an integration of 0.94 H, as opposed to the product from 

the metal-free reaction which showed an integration of 0.42 H in this region. The yield 

for the H-D exchange reaction was 47% whereas in the absence of the metal catalyst it 

was 56%. These yields seemed reduced in comparison to the aniline series and this was 

considered to be a consequence of reduced efficiency in the work up and isolation 

procedure. The mass of the product was confirmed by analysis by mass spectrometry 

and showed the major peak at m/z 114 for the catalyzed reaction and m/z 110 in the 

absence of a catalyst. All of this evidence illustrates that without a Pt catalyst poor ring 

exchange has occurred whereas good exchange is in evidence at 2-Me. Using a Pt 

catalyst, excellent ring exchange is now in evidence, whereas at the 2-Me group the 

level of exchange is reduced presumably due to ready incorporation in the ring. The 

study of an alternative substrate would provide further evidence for and understanding 

of this process. 

 

2.5.2. H/D-Exchange of 3-Amino-2-methylpyridine 

The Pt-catalyzed H-D exchange of 3-amino-2-methylpyridine (41) was investigated 

under microwave irradiation as an alternatively substituted methylpyridine. A solution 

of 3-amino-2-methylpyridine (41) was added to a stirred solution of the Pt catalyst and 

DCl in D2O in a Pyrex tube and the mixture was irradiated at 200 °C in the sealed vessel 

for 2 hours. Thioglycolic acid was added to the mixture after cooling in a stream of 

compressed air to remove platinum contamination. Then the solution was neutralized by 
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the addition of NaOH and extracted with CH2Cl2 to give the d6-3-amino-2-

methylpyridine (d6-41) which was analyzed by 
1
H NMR spectroscopy and mass 

spectrometry. Further derivatization by acetylation was carried out to quantify the 

overall degree of H-D exchange by adding acetyl chloride to a stirred solution of d6-3-

amino-2-methylpyridine (d6-41) in K2CO3. The mixture was stirred for 3 h then 

quenched by the addition of water to give the d6-N-(pyridine-2-methyl-3-yl)acetamide 

(d6-41a) (Scheme 45). The same reaction was repeated but in the absence of the Pt 

catalyst to give the d3-N-(2-methyl-3-yl)acetamide (d3-41a) (Scheme 46). 

Scheme 45. Pt-catalyzed deuteration of 3-amino-2-methylpyridine (41) 
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Scheme 46. Metal-free deuteration of 3-amino-2-methylpyridine (41) 
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Each peak was integrated against the three hydrogen integration of the acetyl methyl 

peak as an internal reference. In this analysis the peak corresponding to the protons at 

C-4 (δ = 8.25 ppm) exhibited an integration of 0.19 H, as opposed to the integration of 

the product of the uncatalyzed reaction, the 
1
H NMR of which following deuteration 

showed an integration of 1 H. A simple subtraction quantified that an average of 0.81 of 

the 1 hydrogens had been exchanged for deuterium; this corresponded to 81% 

deuterium incorporation. The same analysis of the peak corresponding to the protons at 

C-5 (δ = 7.88 ppm) showed an integration of 0.04 H, as opposed to the product from the 

metal-free reaction which showed an integration in this region of 1 H. The peak 

corresponding to the protons at C-6 (δ = 7.28 ppm) displayed an integration of 0.08 H, 

as opposed to the product from the uncatalyzed reaction where the same resonance 

showed an integration of 0.59 H. Furthermore, the peak corresponding to the protons at 

2-Me (δ = 2.46 ppm) exhibited an integration of 0.41 H, as opposed to the product from 

the metal-free reaction which showed an integration of 0.37 H in this region. The yield 
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for the H-D exchange reaction was again low at 38% whereas in the absence of the 

metal catalyst it was 73%. The mass of the product was confirmed by analysis by mass 

spectrometry and showed the major peak at m/z 114 for the catalyzed reaction and m/z 

111 in the absence of a catalyst. All of this evidence illustrates that without a Pt catalyst 

poor ring exchange and good exchange at in the 2-methyl group is occurring, whereas 

with the catalyst excellent ring exchange is facilitated by Pt, with a corresponding 

reduction in exchange in the side chain due to ready incorporation in ring perhaps. 

Interestingly, H/D exchange at C-4 was reduced and this could be due to the ortho 

substituent and pyridines preference for electrophilic aromatic substitution directed 

towards the β-position. The study of an alternative substrate would provide further 

evidence for and understanding of this process. 

 

2.5.3. H/D-Exchange of 5-Amino-2-methylpyridine 

The Pt-catalyzed H-D exchange of 5-amino-2-methylpyridine (42) was investigated 

under microwave irradiation as another example of a substituted methylpyridine. A 

solution of 5-amino-2-methylpyridine (42) was added to a stirred solution of the Pt 

catalyst and DCl in D2O in a Pyrex tube and the mixture was irradiated at 200 °C in the 

sealed vessel for 2 hours. Thioglycolic acid was added to the mixture after cooling in a 

stream of compressed air to remove platinum contamination. Then the solution was 

neutralized by the addition of NaOH and extracted with CH2Cl2 to give the d4-5-amino-

2-methylpyridine (d4-42) which was analyzed by 
1
H NMR spectroscopy and mass 

spectrometry. Further derivatization by acetylation was carried out to quantify the 

overall degree of H-D exchange by adding acetyl chloride to a stirred solution of d4-5-

amino-2-methylpyridine (d4-42) in K2CO3. The mixture was stirred for 3 h then 

quenched by the addition of water to give the d4-N-(pyridine-2-methyl-5-yl)acetamide 

(d4-42a) (Scheme 47). The same reaction was repeated but in the absence of the Pt 

catalyst to give the d4-N-(2-methyl-5-yl)acetamide (d4-42a) (Scheme 48). 

Scheme 47. Pt-catalyzed deuteration of 5-amino-2-methylpyridine (42) 
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Scheme 48. Metal-free deuteration of 5-amino-2-methylpyridine (42) 
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Each peak was integrated against the three hydrogen integration of the acetyl methyl 

peak as an internal reference. In this analysis the peak corresponding to the protons at 

C-3 (δ = 7.26 ppm) exhibited an integration of 0.92 H, as opposed to the integration of 

the product of the uncatalyzed reaction, the 
1
H NMR of which following deuteration 

showed an integration of 1 H. A simple subtraction quantified that an average of 0.08 of 

the 1 hydrogens had been exchanged for deuterium; this corresponded to 8% deuterium 

incorporation. The same analysis of the peak corresponding to the protons at C-4 (δ = 

7.95 ppm) showed an integration of 0.67 H, as opposed to the product from the metal-

free reaction which showed an integration in this region of 0.69 H. The peak 

corresponding to the protons at C-6 (δ = 8.58 ppm) displayed an integration of 0.09 H, 

as opposed to the product from the uncatalyzed reaction where the same resonance 

showed an integration of 0.21 H. Furthermore, the peak corresponding to the protons at 

2-Me (δ = 2.45 ppm) exhibited an integration of 0.50 H, as opposed to the product from 

the metal-free reaction which showed an integration of 0.75 H in this region. The yield 

for the H-D exchange reaction was again low both in the presence (44%) and absence 

(49%) of the metal catalyst and so isolation issues could not be ruled out. The mass of 

the product was confirmed by analysis by mass spectrometry and showed the major 

peak at m/z 112 for both the catalyzed and metal-free reactions. All of this evidence 

illustrates that without a Pt catalyst incorporation has improved at C-6 and in the methyl 

group but at C-3 it has not increased due to an ortho steric effect. The study of an 

alternative substrate would provide further evidence on understanding of this process. 

 

2.5.4. H/D-Exchange of 3-Amino-5-methylpyridine 

The Pt-catalyzed H-D exchange of 3-amino-5-methylpyridine (43) was investigated 

under microwave irradiation on a substituted methylpyridine. A solution of 3-amino-5-

methylpyridine (43) was added to a stirred solution of the Pt catalyst and DCl in D2O in 

a Pyrex tube and the mixture was irradiated at 200 °C in the sealed vessel for 2 hours. 
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Thioglycolic acid was added to the mixture after cooling in a stream of compressed air 

to remove platinum contamination. Then the solution was neutralized by the addition of 

NaOH and extracted with CH2Cl2 to give the d6-3-amino-5-methylpyridine (d6-43) 

which was analyzed by 
1
H NMR spectroscopy and mass spectrometry. Further 

derivatization by acetylation was carried out to quantify the overall degree of H-D 

exchange by adding acetyl chloride to a stirred solution of d6-3-amino-5-methylpyridine 

(d6-43) in K2CO3. The mixture was stirred for 3 h then quenched by the addition of 

water to give the d6-N-(pyridine-5-methyl-3-yl)acetamide (d6-43a) (Scheme 49). The 

same reaction was repeated but in the absence of the Pt catalyst to give the d2-N-(5-

methyl-3-yl)acetamide (d2-43a) (Scheme 50). 

Scheme 49. Pt-catalyzed deuteration of 3-amino-5-methylpyridine (43) 
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Scheme 50. Metal-free deuteration of 3-amino-5-methylpyridine (43) 
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Each peak was integrated against the three hydrogen integration of the acetyl methyl 

peak as an internal reference. In this analysis the peak corresponding to the protons at 

C-2 (δ = 8.09 ppm) exhibited an integration of 0.03 H, as opposed to the integration of 

the product of the uncatalyzed reaction, the 
1
H NMR of which following deuteration 

showed an integration of 1 H. A simple subtraction quantified that an average of 0.97 of 

the 1 hydrogens had been exchanged for deuterium; this corresponded to 97% 

deuterium incorporation. The same analysis of the peak corresponding to the protons at 

C-4 (δ = 7.93 ppm) showed an integration of 0.35 H, as opposed to the product from the 

metal-free reaction which showed an integration in this region of 0.60 H. The peak 

corresponding to the protons at C-6 (δ = 8.51 ppm) displayed an integration of 0.03 H, 

as opposed to the product from the uncatalyzed reaction where the same resonance 
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showed an integration of 0.01 H. Furthermore, the peak corresponding to the protons in 

the methyl group (δ = 2.31 ppm) exhibited an integration of 0.61 H, as opposed to the 

product from the metal-free reaction which showed an integration of 1.76 H in this 

region. The yield for the H-D exchange reaction was again low (26%) whereas in the 

absence of the metal catalyst it was 77%, perhaps indicating in this case that 

complexation to the metal was reducing the efficiency of the isolation procedure. The 

mass of the product was confirmed by analysis by mass spectrometry and showed the 

major peak at m/z 114 for the catalyzed reaction and m/z 110 in the absence of a 

catalyst. All of this evidence illustrates that with a Pt catalyst exchange does improve at 

C-4 but is impeded by an ortho steric effect; without the Pt catalyst exchange is very 

good at activated positions, although reduced exchange is observed in the methyl group 

as it is less acidic at C-5. Higher exchange is observed under both sets of conditions at 

C-2 and C-6 as these positions are now activated by the amino group. The study of an 

alternative substrate would provide further evidence for and understanding of this 

process. 

 

2.5.5. H/D-Exchange of 3-Amino-4-methylpyridine 

The Pt-catalyzed H-D exchange of 3-amino-4-methylpyridine (44) was investigated 

under microwave irradiation as an alternatively substituted methylpyridine. A solution 

of 3-amino-4-methylpyridine (44) was added to a stirred solution of the Pt catalyst and 

DCl in D2O in a Pyrex tube and the mixture was irradiated at 200 °C in the sealed vessel 

for 2 hours. Thioglycolic acid was added to the mixture after cooling in a stream of 

compressed air to remove platinum contamination. Then the solution was neutralized by 

the addition of NaOH and extracted with CH2Cl2 to give the d5-3-amino-4-

methylpyridine (d5-44) which was analyzed by 
1
H NMR spectroscopy and mass 

spectrometry. Further derivatization by acetylation was carried out to quantify the 

overall degree of H-D exchange by adding acetyl chloride to a stirred solution of d5-3-

amino-4-methylpyridine (d5-44) in K2CO3. The mixture was stirred for 3 h then 

quenched by the addition of water to give the d5-N-(pyridine-4-methyl-3-yl)acetamide 

(d5-44a) (Scheme 51). The same reaction was repeated but in the absence of the Pt 

catalyst to give the d4-N-(4-methyl-3-yl)acetamide (d4-44a) (Scheme 52). 
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Scheme 51. Pt-catalyzed deuteration of 3-amino-4-methylpyridine (44) 
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Scheme 52. Metal-free deuteration of 3-amino-4-methylpyridine (44) 
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Each peak was integrated against the three hydrogen integration of the acetyl methyl 

peak as an internal reference. In this analysis the peak corresponding to the protons at 

C-2 (δ = 8.21 ppm) exhibited an integration of 0.06 H, as opposed to the integration of 

the product of the uncatalyzed reaction, the 
1
H NMR of which following deuteration 

showed an integration of 1 H. A simple subtraction quantified that an average of 0.94 of 

the 1 hydrogens had been exchanged for deuterium; this corresponded to 94% 

deuterium incorporation. The same analysis of the peak corresponding to the protons at 

C-6 (δ = 8.45 ppm) showed an integration of 0.08 H, as opposed to the product from the 

metal-free reaction which showed an integration in this region of 0.84 H. The peak 

corresponding to the protons at C-5 (δ = 7.25 ppm) displayed an integration of 0.67 H, 

as opposed to the product from the uncatalyzed reaction where the same resonance 

showed an integration of 0.90 H. Furthermore, the peak corresponding to the protons in 

the methyl group (δ = 2.31 ppm) exhibited an integration of 0.57 H, as opposed to the 

product from the metal-free reaction which showed an integration of 0.27 H in this 

region. The yield for the H-D exchange reaction was 42% whereas in the absence of the 

metal catalyst it was 61%. The mass of the product was confirmed by analysis by mass 

spectrometry and showed the major peak at m/z 113 for the catalyzed reaction and m/z 

112 in the absence of a catalyst. All of this evidence illustrates that with a Pt catalyst 

reduced exchange was observed in the side chain due to increased incorporation 

elsewhere and high incorporation occurred at C-6, whereas at C-5 it was lower than 

expected due to the ortho steric effect.  
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All-in-all, this series of aminopyridines demonstrated that the microwave-assisted 

method that had been successful for substituted anilines was also appropriate for 

different targets. Alternative substitution patterns have probed the ortho-steric effect 

and although yields were lower than the aniline series the study was considered a 

success. Not only was this method able to facilitate exchange in a β-methyl group but 

this study has shown it can also alter and improve the deuteration of a pyridine ring.                                                                                          

3. Conclusion 

 

The deuteration of aniline derivatives using microwave irradiation has given an insight 

into the selectivity and efficiency of both acid and platinum-catalysed deuteration. 

While the understanding of acid-catalysed electrophilic substitution is well established, 

the combination of such reactions with the analogous platinum-catalysed process 

allowed for direct comparison, giving a greater insight into the selectivity and chemistry 

of the platinum-catalysed exchange reactions. 

It has been shown that the H/D exchange of aniline derivatives without platinate 

catalysis proceeded as expected giving deuteration at activated positions and the H/D 

exchange with the platinum catalyst provided deuteration at all aromatic positions, 

undergoing H/D exchange providing there is no ortho steric affect. Furthermore, 

platinum catalysis was able to facilitate exchange in alkyl side chains with high 

efficiency providing there was no quaternary centre.      

The H/D exchange of pyridine derivatives without platinum catalysis proceeded as 

expected giving deuteration at activated positions and in the methyl group but the 

deuteration was reduced for some substrates due to ortho steric affect. Sometimes good 

exchange occurred at all positions even though there were ortho substituents when a 

platinum catalyst was used. 

In general, the yield for the microwave assisted procedure is good, varying between 73 

to 81%. The reactions are relatively short, and high levels of deuterium incorporation 

are observed with only a single cycle/pass. Furthermore, the method requires no 

chromatographic purification and is simple to carry out. 

In conclusion, this is a useful procedure for the synthesis of deuterated targets that 

should find use in the chemist’s modern toolkit.   
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4. Experimental 

 

4.1. General Procedures 

Commercially available reagents were used without further purification. Analytical thin 

layer chromatography was carried out using aluminium-backed plates coated with 

Merck Kieselgel 60 GF254 that were visualised under UV light (at 254 and/or 360 nm). 

Microwave irradiation experiments were performed using a self-tunable CEM Discover 

focused monomodal microwave synthesiser at the given temperature, measured using 

the instrument’s in-built IR sensor, by varying the irradiation power (initial power given 

in parentheses). Infra-red (IR) spectra were recorded in the range 4000-600 cm-1 using 

KBr disks for solid samples and thin films between NaCl plates for liquid samples or as 

a nujol mull and are reported in cm-1. Nuclear magnetic resonance (NMR) spectra were 

recorded in CDCl3 at 25 °C unless stated otherwise and were reported in ppm; J values 

were recorded in Hz and multiplicities were expressed by the usual conventions. Low-

resolution mass spectra (MS) were determined using electron ionization (EI). In vacuo 

refers to evaporation at reduced pressure using a rotary evaporator and diaphragm 

pump, followed by the removal of trace volatiles using a vacuum (oil) pump. 

 

4.1.1. General Procedure for Pt-Catalysed H/D Exchange 

A solution of aniline derivatives or pyridines derivatives was added to a stirred solution 

of K2PtCl4) (20 mol %.) and DCl (35%) in D2O (3 mL) in a 10 mL Pyrex tube. The 

mixture was irradiated at 200 °C using a CEM Discover microwave synthesiser by 

moderating the initial power (300 W) with maximum pressure of 150 psi in a sealed 

vessel for 2 hours. The reaction mixture was cooled to room temperature. To the 

solution thioglycolic acid was added. Then the solution was neutralized by the addition 

of NaOH (1M; 10 mL) and extracted with CH2Cl2 (3 x 10 mL). The organic extracts 

were combined, dried (MgSO4), filtered and evaporated under vacuum. 

 

4.1.2. General Procedure for Metal-Free H/D Exchange 

A solution of an aniline derivative or pyridine derivative was added to a stirred solution 

of DCl (35%) in D2O (3 mL) in a 10 mL Pyrex tube. The mixture was irradiated at 200 

°C using a CEM Discover microwave synthesiser by moderating the initial power (300 

W) with a maximum pressure of 150 psi in sealed vessel for 2 hours. The reaction 
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mixture was cooled to room temperature. To the solution thioglycolic acid was added. 

Then the solution was neutralized by the addition of NaOH (1M; 10 mL) and extracted 

with CH2Cl2 (3 x 10 mL). The organic extracts were combined, dried (MgSO4), filtered 

and evaporated under vacuum. 

 

4.1.3. General Procedure for Acetylation 

4.1.3.1 Acetylation of Aniline Derivatives  

Acetyl chloride was added to a stirred solution of the aniline derivative in CH2Cl2 (5 

mL) and NEt3 on ice under a N2 atmosphere. The mixture was warmed to room 

temperature and stirred for 30 min. Hydrochloric acid was added and the organic layer 

was washed with hydrochloric acid, dried (MgSO4), and evaporated under vacuum. 

 

4.1.3.2 Acetylation of Pyridine Derivatives  

A solution of the pyridine derivative was dissolved in acetone (20 mL) and K2CO3 was 

added, followed by the dropwise addition of acetyl chloride in acetone (5 mL). The 

reaction mixture was stirred for 3 h. The solution was quenched by water, then the 

solvent was evaporated in vacuo and the crude extracted three times with CH2Cl2. The 

organic phase was dried by Na2SO4 and filtrated. Then the solvent was evaporated in 

vacuo. 

 

4.2.Experimental Data for Pt-Catalysed H/D Exchange 

d8-4-Isopropylaniline (d8-34) 

 

                                d8-34

NH2

CD3D3C

DD

                                          d8-34

NH2

[90]

[44]

[91]

[90] [40]

 

 

According to General Procedure 4.1, using 4-isopropylaniline (34) (300 mg, 303 μL, 

2.22 mmol, 1 equiv), K2PtCl4 (182 mg, 0.44 mmol, 20 mol%), DCl (35%; 731 μL, 8.88 

mmol, 4 equiv) in D2O (3 mL), thioglycolic acid (124 μL, 1.76 mmol, 4 equiv), and 

aqueous NaOH solution (1 M; 10 mL) gave the d8-4-isopropylaniline (d8-34) (209 mg, 
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62%) as a brown oil (Found M
•+

, 143.1678. C9H5D8N [M
•
] requires 143.1676); νmax 

(KBr) 3349, 3216, 3022, 2927, 2889, 2211, 2125, 2065, 1618, 1477, 1460, 1259; δH 

(400 MHz; CD3OD) 
a
6.93 (0.40H, s), 

a
6.68 (0.19H, s), 

a
2.46 (0.40H, s), 

a
1.14 (0.60H, 

s), 
a
0.91 (0.42H, s); δc (125 MHz, CD3OD) 145.8 (s, C-N), 140.2 (s, C-C), 127.7 (s, 

CH), 116.7 (t, 2CD, JC-D 23.5), 34.2 (s, CH), 23.9 (m, 2CD3); m/z (EI) 143 (M
•+

, 60%), 

125 (100), 96 (20). 

                       a
Signal arises due to the presence of isotopologues and/or isotopomers.  

 

d8-N-(4-Isopropylphenyl)acetamide (d8-34a) 

 

                                        d8-34a

NH

CD3D3C

O

DD

                                       d8-34a

NH

[90]

[44]

[91]

O

[90] [40]

 

 

According to General Procedure 4.1, using d8-4-isopropylaniline (d8-34) (166 mg, 1.16 

mmol, 1 equiv), acetyl chloride (92.43 L, 1.3 mmol, 1.1 equiv), NEt3 (337 L, 2.5 

mmol, 2.2 equiv) in CH2Cl2 (10 ml ) at 0 °C under a N2 atmosphere gave the d8-N-(4-

isopropylphenyl)acetamide (d8-34a) (128 mg, 60%) as a yellow solid (Found M
•+

, 

185.1783. C11H7D8NO [M
•
] requires 185.1781), mp 91 °C; νmax (KBr) 3284, 3240, 

3167, 3095, 3041, 2963, 2934, 2893, 2213, 2125, 2065, 1662, 1604, 1540, 1515, 1370, 

1306; δH (400 MHz; CD3OD) 7.42 (0.19H, m), 7.16 (1.12H, s), 2.82 (0.88H, s), 2.10 

(3H, s), 1.18 (0.53H, m); δc (125MHz, CD3OD) 171.6 (s, C=O), 146.1 (s, C-N), 137.4 

(s, C-C), 127.4 (s, 2CH), 121.2 (m, 2CD), 34.4 (s, CH), 23.7 (s, CH3), 23.5 (m, CH3), 

13.5 (m, 2CD3); m/z (EI) 185 (M
•+

, 90%), 168 (60), 125 (100), 96 (40). 143 (35), 107 

(10).  

                  
a
Signal arises due to the presence of isotopologues and/or isotopomers. 
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d9-2-Isopropylaniline (d9-35) 

 

                          d9-35

NH2

CD3

CD3

D

D

D

                                    

NH2

[91]

[84]

[92]

[92] [5]

[84]

[29]

d9-35      

 

According to General Procedure 4.1, using 2-isopropylaniline (35) (300 mg, 314 μL, 

2.22 mmol, 1 equiv), K2PtCl4 (184 mg, 0.44 mmol, 20 mol%), DCl (35%; 731 μL, 8.88 

mmol, 4 equiv) in D2O (3 mL), thioglycolic acid (125 μL, 1.76 mmol, 4 equiv), and 

NaOH solution (1 M;10 mL) gave the d9-2-isopropylaniline (d9-35) (229 mg, 72%) as a 

brown oil (Found M
•+

, 144.1615. C9H4D9N [M
•
] requires 144.1613); νmax (KBr) 3464, 

3375, 3228, 3060 , 2929, 2278, 2216, 2067, 1619, 1561, 1446, 1383, 1302; δH (400 

MHz; CD3OD) 7.08 (0.95H, s), 
a
6.92 (0.09H, s), 

a
6.70 (0.17H, m), 2.97 (0.71H, m), 

a
1.22 (0.98H, d, 

3
JH-H 7); δc (125 MHz, CD3OD) 144.9 (s, C-N), 134.4 (s, C-C), 126.8 

(t, CD, 
1
JC-D 24), 126.0 (s, CH), 119.6 (t, 1CD, 

1
JC-D 24), 117.0 (t, 1CD,

1
JC-D 24), 28 

(m, CH), 22.5 (m, CD3); m/z (EI) 144 (M
•+

, 30%), 125 (100), 96 (20), 107 (15). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d9-N-(2-Isopropylphenyl)acetamide (d9-35a) 

 

                                 d9-35a

NH

D

D

D

CD3

CD3

O

                         

[84]
NH

[92]

[91]

[5]

O

[92]
[84]

[29]

d9-35a  

 

According to General Procedure 4.1, using d9-2-isopropylaniline (d9-35) (180 mg, 1.23 

mmol, 1 equiv), acetyl chloride (92 L, 1.3 mmol, 1.1 equiv), and NEt3 (379 L, 2.70 

mmol, 2.2 equiv) in CH2Cl2 (10 ml ) at 0 °C under a N2 atmosphere gave the d9-N-(2-

isopropylphenyl)acetamide (d9-35a) (162 mg, 72%) as a yellow solid (Found M
•+

, 

186.1787. C11H6D9NO [M
•
] requires 186.1781), mp 43 °C; νmax (KBr) 3289, 3013, 



64 
 

 

2959, 2952, 2780, 2269, 2210, 2130, 2066, 1653, 1522, 1289, 1011, 973, 694, 608; δH 

(400 MHz; CD3OD) 7.34 (0.95H, s), 
a
7.24 (0.09H, d,

3
JH-H 8), 

a
7.18 (0.17H, d, JH-H 7), 

3.13 (0.71H, m), 2.14 (3H, s), 1.58 (0.98H, d, JH-H 7); δc (125 MHz, CD3OD) 172.7 (s, 

C=O), 145.6 (s, C-N), 135.3 (s, C-C), 128.0 (m, CD), 126.9 (t, CD, 
1
JC-D 24), 126.8 (s, 

CH), 28.8 (m, CH), 23.5 (m, 2CD3), 22.9 (s, CH3); m/z (EI) 186 (M
•+

, 92%), 141 ( 90), 

124 (100), 96 (40). 168 (30), 107 (25). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d13-4-n-Butylaniline (d13-32)  

                                   d13-32

NH2

DD

CD3

D
D D

D

D

D

D D

                                        

NH2

[78]
[94]

[81]
[94]

[71]

[95]

d13-32                  

 

According to General Procedure 4.1, using 4-n-butylaniline (32) (300 mg, 317 μL, 2.01 

mmol, 1 equiv), K2PtCl4 (166 mg, 0.40 mmol, 20 mol%), DCl (35%; 662 μL, 8.04 

mmol, 4 equiv) in D2O (3 mL), thioglycolic acid (113 μL, 1.61 mmol, 4 equiv), and 

NaOH solution (1 M;10 mL) gave the d13-4-n-butylaniline (d13-32) (160 mg, 50%) as a 

brown oil (Found M
•+

, 160.1895. C10H4D11N [M
•
] requires 160.1895); νmax (KBr) 3444, 

3349, 3214, 3019, 2901, 2212, 2102, 1619, 1499, 1462, 1442, 1300, 1256; δH (400 

MHz; CD3OD) 
a
6.91 (0.11H, s), 6.66 (0.57H, t, JC-D 4), 

a
2.44 (0.13H, s), 

a
1.47 (0.44H, 

m),
 
1.26 (0.39H, m), 

a
0.86 (0.18H, m); δc (125 MHz, CD3OD) 145.9 (s, C-N), 134.1 (s, 

C-C), 129.9 (s, CH), 117.0 (m, CD), 35.8 (m, CD), 35.2 (m, CD), 23.3 (m, CD), 14.3 

(m, CD); m/z (EI) 160 (M
•+

, 80%), 111 (100), 96 (30). 

                 
a
Signal arises due to the presence of isotopologues and/or isotopomers. 
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d13-N-(4-n-Butylphenyl)acetamide (d13-32a)  

                            d13-32a

NH

DD

CD3

D
D D

D

D

D

O

D D

                                  

NH

[78]
[94]

[81]
[94]

[71]

[95]

O

d13-32a       

 

According to General Procedure 4.1, using d13-4-n-butylaniline (d13-32) (130 mg, 0.89 

mmol, 1 equiv), acetyl chloride (63 L, 0.88 mmol, 1.1 equiv), and NEt3 (247 L, 1.77 

mmol, 2.2 equiv) in CH2Cl2 (10 ml ) at 0 °C under a N2 atmosphere gave the d13-N-(4-

n-butylphenyl)acetamide (d13-32a) (59 mg, 36%) as a colourless solid (Found M
•+

, 

202.1997. C12H6D11NO[M
•
] requires 202.2001), mp 101 °C; νmax (KBr) 3267, 3124, 

2916, 2930, 2854, 2200, 2213, 2120, 2067, 1660, 1514, 1451, 1371, 1291; δH (400 

MHz; CD3OD) 
a
7.43 (0.22H, m), 7.11 (1.13H, s), 

a
2.53 (0.26H, m), 2.10 (3H, s), 

a
1.53 

(0.88H, s), 
a
1.29 (0.78H, m), 

a
0.88 (0.54H, m); δc (125 MHz, CD3OD) 171.5 (s, C=O), 

139.9 (m, C-N), 137.3 (s, C-C), 129.5 (s, 2CH), 121.3 (m, 2CD), 36.0 (m, 2CD), 34.9 

(m, 2CD), 23.7 (s, CH3), 23.3 (m, 2CD), 14.2 (m, 3CD); m/z (EI) 202 (M
•+

, 45%), 160 

(35) 111 (90). 

a
Signal arises duo to the presence of isotopologues and/or isotopomers. 

 

d2-4-tert-Butylaniline (d2-33)  

                                  

NH2

d2-33

DD

                                              

NH2

[14]

[9]

[89]

d2-33                                           

According to General Procedure 4.1, using 4-tert-butylaniline (33) (300 mg, 318 μL, 

2.01 mmol, 1 equiv), K2PtCl4 (166 mg, 0.40 mmol, 20 mol%), DCl (35%; 662 μL, 8.04 

mmol, 4 equiv) in D2O (3 mL), thioglycolic acid (113 μL, 1.61 mmol, 4 equiv), and 

NaOH solution (1 M;10 mL) gave the d2-4-tert-butylaniline (d2-33) (167 mg, 55%) as a 

brown oil (Found M
•+

, 151.1334. C10H13D2N [M
•
] requires 151.1330); νmax (KBr) 3434, 
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3353, 3215, 3063, 3034, 2927, 2868, 2253, 2212, 2169, 1619, 1500, 1216, 1043, 898; 

δH (400 MHz; CD3OD) 7.13 (1.83H, s), 
a
6.67 (0.23H, d, 

3
JH-H 9), 1.25 (7.72H, s); δc 

(125 MHz, CD3OD) 145.1 (s, C-N), 142.1 (s, C-C), 116.2 (t, 2CD, JC-D 24.7), 34.5 (m, 

C-CD3), 31.7 (tt, 3CD3, 
1
JC-D 19.2, 

2
JC-D 2.8); m/z (EI) 151 (M

•+
, 40%), 137 (100), 108 

(40), 96 (30). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d2-N-(4-tert-Butylphenyl)acetamide (d2-33a)  

                               

NH

O

d2-33a

D D

                                                   

NH

[14]

[9]

[89]

O

d2-33a  

 

According to General Procedure 4.1, using d2-4-tert-butylaniline (d2-33) (127 mg, 0.84 

mmol, 1 equiv), acetyl chloride (66 L, 0.84 mmol, 1.1 equiv), NEt3 (260 L, 1.85 

mmol, 2.2 equiv) in CH2Cl2 (10 mL) at 0 °C under a N2 atmosphere gave the d2-N-(4-

tert-butylphenyl)acetamide (d2-33a) (102 mg, 63%) as a colourless solid (Found M
•+

, 

193.1435. C12H15D2NO [M
•
] requires 193.1436), mp 154 °C; νmax (KBr) 3289, 3248, 

3172, 3096, 3034, 2958, 2926, 2865, 2167, 1688, 1670, 1604, 1537, 1471, 1382, 1321, 

1266, 1043, 1010, 969, 899, 765; δH (400 MHz; CD3OD) 
a
7.41 (0.23H, m), 7.34 

(1.83H, s), 2.10 (3H, s), 1.30 (7.72H, s); δc (125 MHz, CD3OD) 171.5 (s, C=O), 148.1 

(s, C-N), 137.0 (s, C-C), 126.0 (s, 2CH), 120.0 (t, 2CD, JC-D 24), 35.0 (m, C-CD3), 31.5 

(tt, 3CD3, 
1
JC-D 19.2, 

2
JC-D 2.8), 23.7 (s, CH3); m/z (EI) 193 (M

•+
, 45%), 137 (100), 179 

(80).  

a
Signal arises due to the presence of isotopologues and/or isotopomers. 
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d3-1-Phenylpiperazine (d3-39)  

                                        

N

H
N

d3-39

D D

D

                                       

[99]

[99]

N

H
N

[46]

d3-39  

 

According to General Procedure 4.1, using phenylpiperazine (39) (300 mg, 282 μL, 

1.85 mmol, 1 equiv), K2PtCl4 (153 mg, 0.37 mmol, 20 mol%), DCl (35%; 609 μL, 7.4 

mmol, 4 equiv) in D2O (3 mL), thioglycolic acid (113 μL, 1.61 mmol, 4 equiv), NaOH 

solution (1 M;10 mL) gave the d3-1-phenylpiperazine (d3-39) (257 mg, 83%) as a 

yellow oil (Found M
•+

, 165.1470. C10H11D3N2 [M
•
] requires 165.1471); νmax (KBr) 

3302, 3047, 2947, 2828, 2275, 1575, 1550, 1436, 1381, 1326, 1274; 1227; δH (400 

MHz; CD3OD) 
a
7.23 (1.07H, s), 

a
7.10 (0.05H, m), 

a
6.96 (0.02H, t, JH-H 4.3), 3.10 (4H, 

m), 2.95 (4H, m); δc (125 MHz, CD3OD) 153.0 (s, C-N), 129.8 (s, 2CH), 120.7 (m, 

1CD), 117.5 (t, 2CD,JC-D 25.2), 51.1 (s, 2C-NCOCH3), 46.4 (s, 2C-NCOCH3); m/z (EI) 

165 (M
•+

, 45%), 124 (90), 109 (50), 136 (25), 95 (10). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d3-N-(1-Phenylpiperazine)acetamide (d3-39a)  

                                

N

N

O

d3-39a

D D

D

                                            

[99]

[99]

N

N

[46]

O

d3-39a  

 

According to General Procedure 4.1, using d3-1-phenylpiperazine (d3-39) (191 mg, 1.09  

mmol, 1 equiv) acetyl chloride (94 L, 1.20 mmol, 1.1 equiv), NEt3 (242 mg, 2.40 

mmol, 1 equiv) in CH2Cl2 (10 ml ) at 0 
o
C under a N2 atmosphere gave the d3-N-(1- 

phenylpiperazine)acetamide (d3-39a) (56 mg, 24%) as a colourless solid (Found M
•+

, 
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207.1569. C12H13D3N2O [M
•
] requires 207.1576), mp 43 °C; νmax (KBr) 3282, 2916, 

2849, 2815, 1627, 1573, 1428, 1277, 1254, 1226, 1043, 1002, 985; δH (400 MHz; 

CD3OD) 7.24 (1.07H, s), 7.09 (0.05H, s), 6.96 (0.02H, s), 3.73 (2H, m), 3.69 (2H, m), 

3.18 (2H, m), 3.13 (2H, m), 2.14 (3H, s); δc (125 MHz, CD3OD) 171.7 (s, C=O), 152.4 

(s, C-N), 129.9 (s, 2CH), 126.4 (s, 2CH), 117.7 (t, 2CD, JC-D 23.7), 51.0 (s, C-

NCOCH3), 50.3 (s, C-NCOCH3), 47.4 (s, C-N), 42.7 (s, C-N), 21.1 (s, CH3); m/z (EI) 

207 (M
•+

, 100%), 109 (35), 169 (40), 136 (25). 

 

d8-2-Ethylaniline (d8-37)   

                              d8-37

NH2

CD3

D

D

D

D
D

                                      d8-37

NH2

[92]
[92]

[92]

[92]

[88]

[23]

 

 

According to General Procedure 4.1 using 2-ethylaniline (37) (300 mg, 293 μL, 2.48 

mmol, 1 equiv), K2PtCl4 (205 mg, 0.48 mmol, 20 mol%), DCl (35%; 816 μL, 9.92 

mmol, 4 equiv) in D2O (3 mL), thioglycolic acid (136 μL, 1.92 mmol, 4 equiv), NaOH 

solution (1 M;10 mL) gave the d8-2-ethylaniline (d8-37) (239 mg, 75%) as a yellow oil 

(Found M
•+

, 129.1397. C8H3D8N [M
•
] requires 129.1394); νmax (KBr) 3227, 3184, 3107, 

3046, 3012, 2929, 2784, 2279, 2219, 2168, 2144, 2069, 1648, 1566, 1524, 1374, 1272; 

δH (500 MHz; CD3OD) 6.99 (0.77H, s), 
a
6.94 (0.08H, m), 

a
6.71 (0.08H, s), 

a
6.66 

(0.08H, m), 
a
2.49 (0.36H, m), 

a
1.53 (0.24H, m); δc (125 MHz, CD3OD) 145.6 (s, C-N), 

129.9 (s, C-C), 129.2 (s, CH), 127.3 (m, CD), 119 (m, CD) , 116.6 (m, CD), 24.5 (m, 

CD), 13.3 (m, CD); m/z (EI) 129 (M
•+

, 50%), 111 (100), 96 (10). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d8-N-(2-Ethylphenyl)acetamide (d8-37a)  

                                 d8-37a

NH

CD3

D

D

D

D
D

O

                                    d8-37a

[92]

NH

[92]
[92]

O

[23]
[92]

[88]
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According to General Procedure 4.1, using d8-2-ethylaniline (d8-37) (96 mg, 0.74 

mmol, 1 equiv), acetyl chloride (65 L, 0.81 mmol, 1.1 equiv), NEt3 (228 L, 1.63 

mmol, 2.2 equiv) in CH2Cl2 (10 ml) at 0 
o
C under a N2 atmosphere  gave the d8-N-(2-

ethylphenyl)acetamide (d8-37a) (39 mg, 31%) as a yellow solid (Found M
•.+

, 171.1500. 

C10H5D8NO [M
•
] requires 171.1499), mp 106 °C; νmax (KBr) 3459, 3374, 3227, 3048, 

3006, 2936, 2271, 2221, 2072, 1619, 1561, 1446; δH (400 MHz; CD3OD) 7.32 (0.08H, 

s), 7.21 (0.77H, s), 7.12 (0.15H, m), 2.55 (0.23H, m), 2.04 (3H, s), 1.05 (0.25H, m); δc 

(125 MHz, CD3OD) 172.5 (s, C=O), 140.5 (s, C-N), 136.3 (s, C-C), 129.8 (s, 1CH), 

127.9 (m, CD), 127.0 (m, CD), 126.9 (m, CD), 25.3 (m, CD), 24.2 (s, CH3), 13.5 (m, 

CD); m/z (EI) 171 (M
•+

, 60%), 111 (100), 128 (90), 97 (10). 

 

d9-3-Ethylaniline (d9-38)  

                                   d9-38

NH2

D D

D

D

D
D

CD3

                                 d9-38

NH2

[90]

[96]

[92]

[92]

[91]

 

 

According to General Procedure 4.1 using 3-ethylaniline (38) (300 mg, 307 μL, 2.48 

mmol, 1 equiv), K2PtCl4 (205 mg, 0.48 mmol, 20 mol%), DCl (35%; 816 μL, 9.92 

mmol, 4 equiv) in D2O (3 mL), thioglycolic acid (141 μL, 1.99 mmol, 4 equiv), NaOH 

solution (1 M;10 mL) gave the d9-3-ethylaniline (d9-38a) (260 mg, 81%) as a brown oil 

(Found M
•+

, 130.1452. C8H2D9N [M
•
] requires 130.1456); νmax (KBr) 3442, 3350, 3220, 

2934, 2223, 2091, 2071, 1618, 1518, 1400, 1301, 1258, 1053; δH (400 MHz; CD3OD) 

a
6.99 (0.08H, s), 

a
6.59 (0.09H, s), 

a
6.54 (0.16H, s), 

a
2.48 (0.21 H, s), 

a
1.13 (0.28 H, s); 

δc (125 MHz, CD3OD) 148.2 (s, C-N), 146.1 (s, C-C), 129.4 (t, 1CD, JC-D 23.9), 118.7 

(t, 1CD, JC-D 24.3), 116.0 (t, 1CD, JC-D 22.9), 113.8 (t, 1CD, JC-D 23.4), 29.1 (m, CD2), 

15.2 (m, CD3); m/z(EI) 130 (M
•+

, 80%), 112 (100), 96 (20). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 
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d9-N-(3-Ethylphenyl)acetamide (d9-38a) 

                            d9-38a

NH

D D

D

D

D
D

CD3

O

                             d9-38a

[96]

NH

[92] [90]

O

[91]

[92]

 

 

According to General Procedure 4.1 using d9-3-ethylaniline (d9-38) (200 mg, 1.79 

mmol, 1 equiv), acetyl chloride (127 L, 1.79 mmol, 1.1 equiv), NEt3 (503 L, 3.59 

mmol, 2.2 equiv) in CH2Cl2 (10 ml) at 0 
o
C under a N2 atmosphere gave the d9-N-(3-

ethylphenyl)acetamide (d9-38a) (281 mg, 87%) as a yellow oil (Found M
•+

, 172.1562. 

C10H4D9NO [M
•
] requires 172.1562); νmax (KBr) 3301, 3152, 3104, 3054, 2931, 2860, 

2278, 2224, 2136, 2096, 2070, 1667, 1537, 1393, 1269, 1127, 835; δH (400 MHz; 

CD3OD) 7.37 (0.08H, s), 7.33 (0.09H, s), 7.19 (0.08H, s), 6.93 (0.09H, s), 2.57 (0.21H, 

s), 2.11 (3H, s), 1.16 (0.28H, m); δc (125 MHz, CD3OD) 171.4 (s, C=O), 145.7 (s, C-

N), 139.5 (s, C-C), 129.1 ( t, 1CD, JC-D 24.2), 124.2 (t, 1CD, JC-D 24.2), 120.2 (t, 1CD, 

JC-D 24.2), 118.1 (t, 1CD, JC-D 24.6), 28.8 (m, CD2), 23.9 (s, CH3), 15.0 (m, CD3); m/z 

(EI) 172 (M
•+

, 20%), 130 (50), 112 (35), 149 (15), 98 (10). 

 

d9-4-Ethylaniline (d9-36)  

                                   d9-36

CD3

NH2

D D

D D

D

D

                        d9-36

NH2

[86]

[62]

[94]
[88]

 

 

According to General Procedure 4.1, using 4-ethylaniline (36) (300 mg, 309 μL, 2.48 

mmol, 1 equiv), K2PtCl4 (205 mg, 0.48 mmol, 20 mol%), DCl (35%; 816 μL, 9.92 

mmol, 4 equiv) in D2O (3 mL), thioglycolic acid (136 μL, 1.92 mmol, 4 equiv), NaOH 

solution (1 M;10 mL) gave the d9-4-ethylaniline (d9-36) (180 mg, 56%) as a brown oil 

(Found M
•+

, 130.1456. C8H2D9N [M
•
] requires 130.1456); νmax (KBr) 3349, 2960, 2220, 

2100, 2069, 1617, 1477, 1463, 1442, 1301, 1254; δH (400 MHz; CD3OD) 
a
6.93 (0.77H, 

s), 
a
6.67 (0.27H, m), 

a
2.46 (0.17H, m), 

a
1.05 (0.24H, m); δc (125 MHz, CD3OD) 145.7 
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(s, C-N), 135.5 (s, C-C), 128.9 (m, 2CD ), 116.9 (m, 2CD), 28.1 (m, CD2), 15.8 (m, 

CD3); m/z (EI) 130 (M
•+

, 50%), 111 (100), 97 (10). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d9-N-(4-Ethylphenyl)acetamide (d9-36a)     

                             d9-36a

CD3

NH

O

D D

D D

D

D

                                             d9-36a

[86]

NH

[62]

O

[94]
[88]

 

 

According to General Procedure 4.1, using d9-4-ethylaniline (d9-36) (150 mg, 1.22 

mmol, 1 equiv), acetyl chloride (95 L, 1.34 mmol, 1.1 equiv), NEt3 (270 L, 2.68 

mmol, 2.2 equiv) in CH2CL2 (10 mL) at 0 
o
C under a N2 atmosphere gave the d9-N-(4-

ethylphenyl)acetamide (d9-36a) (210 mg, 95%) as a brown solid (Found M
•+

, 172.1560. 

C10H4D9NO [M
•
] requires 172.1562), mp 45 °C; νmax (KBr) 3298, 3094, 3227, 2962, 

2222, 1664, 1593, 1524, 1372, 1313, 1264; δH (400 MHz; CD3OD) 7.44 (0.27H, m), 

7.15 (0.77H, s), 2.58 (0.17H, m), 2.12 (3H, s), 1.19 (0.24H, m); δc (150 MHz, CD3OD) 

171.5 (s, C=O), 140.5 (s, C-N), 137.3 (s, C-C), 128.6 (t, 2CD, JC-D 24.3), 121.1 (m, 

2CD), 28.5 (m, CD2), 23.8(s, CH3), 15.3 (m, CD3); m/z (EI) 172 (M
•+

, 65%), 129 (50), 

111 ( 95), 98 (10). 

 

d7-p-Toluidine (d7-31) 

                                         d7-31

NH2

CD3

D

D D

D

                               

NH2

[92]

[91]

[94]

d7-31  

 

According to General Procedure 4.1, using p-toluidine (31) (300 mg, 2.8 mmol, 1 

equiv), K2PtCl4 (233 mg, 0.56 mmol, 20 mol%), DCl (35%; 921 μL, 1102 mmol, 4 

equiv) in D2O (3 mL), thioglycolic acid (156 μL, 2.24 mmol, 4 equiv), NaOH solution 

(1 M;10 mL) gave the d7-p-toluidine (d7-31) (179 mg, 56%) as a brown oil (Found M
•+

, 
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114.1170 C7H2D7N [M
•
] requires 114.1174), mp 34 °C; νmax (KBr) 3417, 3343, 3220, 

3022, 3006, 2499, 2264, 2244, 2191, 2114, 2077, 2224, 2048, 1617, 1597, 1477, 

1463,1442, 1294, 1254, 1239; δH (400 MHz; CD3OD) 
a
6.91 (0.18H, s), 

a
6.91 (0.12H, 

s), 2.16 (0.23 H, m); δc (125 MHz, CD3OD) 145.3 (s, C-N), 130.1 (t, C-D, JCD 23.8), 

128.5 (s, C-CD3), 116.7 (t, C-D, JCD 23.9), 19.6 (m, CD3); m/z (EI) 114 (M
•+

, 40%), 

112 (100), 98 (10). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d7-N-(4-Toluidine)acetamide (d7-31a)  

                                       d7-31a

NH

CD3

D

D D

D

O

                                        

NH

[92]

[91]

[94]

O

d7-31a  

 

According to General Procedure 4.1, using d7-p-toluidine (d7-31) (125 mg, 1.21 mmol, 

1.1 equiv), acetyl chloride (85 L, 1.21 mmol, 1.1 equiv), NEt3 (340 L, 2.41 mmol, 

2.2 equiv) in CH2CL2 (10 mL) at 0 
o
C under a N2 atmosphere gave the d7-N-(4-

toluidine)acetamide (d7-31a)  (136 mg, 79%) as a colorless solid (Found M
•+

, 156.1281 

.C9H4D7NO [M
•
] requires 156.1280), mp 121 °C; νmax (KBr) 3289, 3245, 3166, 3092, 

3031, 2930, 2852, 2782, 2277, 2222, 2202, 2115, 2048, 1660, 1597, 1533, 1367, 1314, 

1263, 1038, 1013; δH (400 MHz; CD3OD) 7.38 (0.07H, m), 7.10 (0.79H, s), 7.15 

(0.08H, s), 2.25 (0.19, m,), 2.09 (3H, s); δc (125 MHz, CD3OD) 171.5 (s, C=O), 

137.2(s, C-N), 134.6 (s, C-CD3), 23.7 (s, CH3); m/z (EI) 156 (M
•+

, 45%), 147 (15), 112 

(100). 

 

d6-3-Amino-5-methylpyridine (d6-43)  

                               d6-43

N

D3C NH2

D

D D

                                   d6-43

[97][97] N

[79] [65]
NH2
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According to General Procedure 4.1, using 3-amino-5-methylpyridine (43) (300 mg, 2.7 

mmol, 1 equiv), K2PtCl4 (224 mg, 0.54 mmol, 20 mol%), DCl (35%; 889 μL, 10.8 

mmol, 4 equiv) in D2O (3 mL), thioglycolic acid (153 μL, 2.16 mmol, 4 equiv), NaOH 

solution (1 M;10 mL) gave the d6-3-amino-5-methylpyridine (d6-43) (153 mg, 26%) as a 

yellow solid (Found M
•+

, 114.1064. C6H2D6N2[M
•
] requires 114.1064), mp 53 ºC; νmax 

(KBr) 3334, 3210, 2235, 1627, 1589, 1575, 1410, 1389, 1259, 884; δH (400 MHz; 

CD3OD) 
a
7.76 (0.03H, s), 

a
7.61 (0.03H, s), 

a
6.92 (0.35H, s), 

a
2.20 (0.61H, m); δc (125 

MHz, CD3OD) 145.9 (d, C-N, JC-D 7.59), 138.7 (t, 1C-D,  JC-D 26.5), 138.6 (t, C-CD3, 

JC-D 4.4), 134.3 (t, 1CD, JC-D 27.0), 123.7 (s, 1 CH), 17.6 (m, CD3); m/z (EI) 114 (M
•+

, 

60%), 95 (5). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d6-N-(5-Methylpyridin-3-yl)acetamide (d6-43a) 

 

                              d6-43a

N

D3C
H
N

D

D D

O

                              d6-43a

[97]
[97] N

[79] [65] H
N

O

 

 

According to General Procedure 4.1, using d6-3-Amino-5-methylpyridine (d6-43) (100 

mg, 0.88 mmol, 1 equiv), dissolved in acetone (20 mL), K2CO3 (607 mg, 4.4 mmol, 5 

equiv), acetyl chloride (207 mg, 187 L, 2.6 mmol, 3 equiv) in acetone (5 ml) to give 

the d6-N-(5-methylpyridin-3-yl)acetamide (d6-43a) (100 mg, 95%) as a yellow solid 

(Found M
•+

, 156.1175. C8H4D6N2O [M
•.
] requires 155.1170), mp 125 °C; νmax (KBr) 

3224, 2922, 1691, 1602, 1531, 1409, 1387, 1289, 1018, 881, 769; δH (400 MHz; 

CD3OD) 8.51 (0.03H, s), 8.09 (0.03H, s), 7.93 (0.35H, s), 2.31 (0.61H, m), 2.15 (3H, s); 

δc (125 MHz, CD3OD) 171.8 (s, C=O), 145.0 (t, 1CD, JC-D 26.5), 138.6 (t, 1CD, JC-D 

28.8), 137 (d, C-NH2, JC-D 8.8) 135.2 (m, C-CD3), 128.9  (t, 1CD, JC-D 27.6), 23.8 (s, 

CH3), 17.7 (m, CH3); m/z (EI) 156 ( M
•+

, 40%), 113 (80). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 
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d6-4-Amino-2-methylpyridine (d6-40) 

 

                                     d6-40

N

NH2

CD3

DD

D

                                  d6-40

[69]
[92] N

[95]

NH2

[96]

   

 

According to General Procedure 4.1, using 4-amino-2-methylpyridine (40) (300 mg, 

2.7 mmol, 1 equiv), K2PtCl4 (224 mg, 0.54 mmol, 20 mol%), DCl (35%; 889 μL, 10.8 

mmol, 4 equiv) in D2O (3 mL), thioglycolic acid (153 μL, 2.16 mmol, 4 equiv), NaOH 

solution (1 M;10 mL) gave the d6-4-amino-2-methylpyridine (d6-40) (141 mg, 47%) as 

a colourless solid (Found M
•+

, 114.1068.C6H2D6N2 [M
•
] requires 114.1064), mp 77 ºC; 

νmax (KBr) 3332, 3197, 3090, 2919, 2568, 2515, 2400, 2302, 1584, 1492, 1440, 1247, 

964; δH (400 MHz; CD3OD) 
a
7.83 (0.08H, s),

a
6.42 (0.04H, s), 

a
6.37 (0.05H, s), 

a
2.27 

(0.94H, m); δc (125 MHz, CD3OD) 158.6 (s, C-NH2), 157.1 (s, C-CD3), 148.7 (t, 1CD, 

JC-D  26.5), 109.0 (t, 1CD,  JC-D 24.7), 107.6 (t, 1CD, JC-D 25.2), 22.9 (m, CD3); m/z (EI) 

114 (M
•+

, 65%), 95 (5). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d4-5-Amino-2-methylpyridine (d4-42)  

 

                                  d4-42

N

H2N

CD3D

                                 

[91] N

[33]
H2N

[8]

[84]

d4-42   

 

According to General Procedure 4.1, using 5-amino-2-methylpyridine (42) (300 mg, 

2.7 mmol, 1 equiv), K2PtCl4 (224 mg, 0.54 mmol, 20 mol%), DCl (35%; 889 μL, 10.8 

mmol, 4 equiv) in D2O (3 mL), thioglycolic acid (153 μL, 2.16 mmol, 4 equiv), NaOH 

solution (1 M;10 mL) gave the d4-5-amino-2-methylpyridine (d4-42) (132 mg, 44%) as 

a colourless solid (Found M
•+

, 112.0936. C6H4D4N2 [M
•
] requires 112.0939), mp 78 ºC; 

νmax (KBr) 3396, 3323, 3269, 3030, 2928, 2497, 2402, 2232, 2052, 1909, 1635, 1597, 

1564, 1460, 1371, 1301, 1250, 1153, 1086, 1042, 914; δH (400 MHz; CD3OD) 
a
7.85 

(0.09H, s), 
a
7.04 (0.67H, d, J1 8.48), 

a
6.92 (0.92H d, J1 8.48,), 

a
2.32 (0.50H, m); δc (125 
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MHz, CD3OD) 147.3 (s, C-NH2), 143.5 (s, C-CD3), 148.7 (t, 1CD,  JC-D  26.8), 124.8 

(s, 1CH), 124.5 (s, 1CH), 22.1 (m, CD3); m/z (EI) 112 (M
•+

, 20%), 145 (55). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d4-N-(2-Methylpyridin-5-yl)acetamide (d4-42a) 

 

                           d4-42a

N

H
N

CD3D

O

                                

[8]

[91] N

[33]H
NO

[84]

d4-42a  

 

According to General Procedure 4.1, using d4-5-amino-2-methylpyridine (d4-42) (100 

mg, 0.88 mmol, 1 equiv), dissolved in acetone (20 mL), K2CO3 (607 mg, 4.4 mmol, 5 

equiv), acetyl chloride (207 mg, 187 L, 2.6 mmol, 3 equiv) in acetone (5 ml) to give 

the d4-N-(2-methylpyridin-5-yl)acetamide (d4-42a) (67 mg, 50%) as a colourless solid 

(Found M
•+

, 154.1046 .C8H6D4N2O [M
•
] requires 154.1044), mp 110 °C; νmax (KBr) 

3395, 3296, 3232, 3163, 3090, 3009, 2871, 2236, 2151, 2054, 1851, 1685, 1610, 1582, 

1463, 1452, 1295, 1139, 1006, 826; δH (400 MHz; CD3OD) 8.58 (0.09H, s), 7.95 

(0.67H, d, J1 8.48), 7.26 (0.92H, d, J1 8.48), 2.45 (0.50 H,m), 2.14 (3H, s); δc (125 

MHz, CD3OD) 171.9 (s, C=O), 154.2 (s, C-NH), 140.8 (m, 1CD), 134.8 (s, C-CD3), 

129.7 (s,  1CH), 124.7 (s, 1CH), 23.6 (s, CH3), 22.4 (m, CH3); m/z (EI) 154 ( M
•+

, 

30%), 112 (60), 95 (5). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d5-3-Amino-4-methylpyridine (d5-44)  

                                   d5-44

N

NH2

CD3

D D

                                  d5-44

[94][92] N

[33]

[81]

NH2

 

 

According to General Procedure 4.1, using 3-amino-4-methylpyridine (44) (300 mg, 

2.7 mmol, 1 equiv), K2PtCl4 (224 mg, 0.54 mmol, 20 mol%), DCl (35%; 889 μL, 10.8 

mmol, 4 equiv) in D2O (3 mL), thioglycolic acid (153 μL, 2.16 mmol, 4 equiv), NaOH 
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solution (1 M;10 mL) gave the d5-3-amino-4-methylpyridine (d5-44) (126 mg, 42%) as 

a colourless solid (Found M
•+

, 113.1064 .C6H3D5N2O [M
•
] requires 113.1064, mp 55 

ºC; νmax (KBr) 3950, 3880, 3807, 3745, 3464, 2806, 2634, 2254, 2053, 1420, 1388, 

1252, 953, 852; δH (400 MHz; CD3OD) 
a
7.75 (0.08H, s),

 a
7.62 (0.06H, s), 

a
6.93 (0.67H, 

s), 
a
2.21 (0.57H, m); m/z (EI) 113 (M

•
+, 60%), 95 (5). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d5-N-(4-Methylpyridin-3-yl)acetamide (d5-44a) 

 

                                 d5-44a

N

H
N

O

CD3

DD

                                d5-44a

[94][92] N

[33]

[81]
H
N

O

                    

 

According to General Procedure 4.1, using d5-3-amino-4-methylpyridine (d5-44) (126 

mg, 1.12 mmol, 1 equiv), dissolved in acetone (50 mL), K2CO3 (772 mg, 5.6 mmol, 5 

equiv), acetyl chloride (207 mg, 187 L, 2.6 mmol, 3 equiv) in acetone (5 ml) to give 

the d5-N-(4-methylpyridin-3-yl)acetamide (d5-44a) (96 mg, 55%) as a colourless solid 

(Found M
•+

, 155.1110 .C8H5D5N2O [M
•.
] requires 155.1170), mp 105 °C; νmax (KBr) 

3950, 3886, 3802, 3745, 2806, 2634, 2546, 2486, 2414, 2254, 1420; δH (400 MHz; 

CD3OD)  8.45 (0.08H, s), 8.21 (0.06H, s), 7.25 (0.67H, s), 2.31 (0.57 H, m), 2.15 (3H, 

s); m/z (EI) 155 ( M
•+

, 85%), 113 (100). 

 

d6-3-Amino-2-methylpyridine (d6-41) 

 

                                   d6-41

N

NH2

CD3

D

D

D

                                         d6-41

[86]
[92] N

[96]
[81]

NH2

 

 

According to General Procedure 4.1, using 3-amino-2-methylpyridine (41) (300 mg, 

2.7 mmol, 1 equiv), K2PtCl4 (224 mg, 0.54 mmol, 20 mol%), DCl (35%; 889 μL, 10.8  
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mmol, 4 equiv) in D2O (3 mL), thioglycolic acid (153 μL, 2.16 mmol, 4 equiv), NaOH 

solution (1 M;10 mL) gave the d6-3-amino-2-methylpyridine (d6-41) (116 mg, 38%) as 

a colourless solid (Found M
•+

, 114.1061. C6H2D6N2 [M
•
] requires 114.1064), mp 91 ºC; 

νmax (KBr) 3345, 3311, 3164, 2536, 2404, 2367, 2288, 2237, 2194, 1631, 1553, 1436, 

1264, 1197, 1042, 877; δH (400 MHz; CD3OD) 
a
7.70 (0.04H, s), 

a
7.06 (0.19H, s), 

a
6.99 

(0.05H d, J1 8.05), 
a
2.32 (0.40H, m); δc (125 MHz, CD3OD) 144.5 (s, C-NH2), 144.4 (s, 

C-CD3), 137.9 (t, 1CD,  JC-D28.0), 123.5 (t, 1CD,  JC-D 25.0), 123.9 (s, 1CH), 19.5 (q, 

1CD3, JC-D 20); m/z (EI) 114 (M
•+

, 75%), 96 (5). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d6-N-(2-Methylpyridin-3-yl)acetamide (d6-41a) 

 

                                  d6-41a

N

H
N

CD3

D

D

O

D

                               d6-41a

[86]
[92] N

[96]

[81] H
N

O

 

 

According to General Procedure 4.1, using d6-3-amino-2-methylpyridine (d6-41) (88 

mg, 0,77 mmol, 1 equiv), dissolved in acetone (50 mL), and K2CO3 (772 mg, 5.6 

mmol, 5 equiv), acetyl chloride (207 mg, 187 L, 2.6 mmol, 3 equiv) in acetone (5 ml) 

to give the d6-N-(2-methylpyridin-3-yl)acetamide (d6-41a) (50 mg, 41%) as a colourless 

solid (Found M
•+

, 156.116 .C8H4D6N2O [M
•
] requires 156.1170), mp 46 °C; νmax (KBr) 

3841, 3296, 3077, 3006, 2926, 2850, 2785, 2262, 1660, 1567, 1511, 1377, 1174, 1013, 

954, 705; δH (400 MHz; CD3OD) 8.25 (0.19H, s), 7.88 (0.03H, s), 7.28 (0.08H, s), 2.46 

(0.41H, m), 2.18 (3H, s); δc (125 MHz, CD3OD) 172.3 (s, C=O), 153.8 (s, C-NH), 

146.5 (t, 1CD, JC-D 26.8), 134.7 (t, 1CD, JC-D 24.3), 134.1 (s, C-CD3), 122.7 (s, 1CD, 

JC-D 26.8), 23.1 (s, CH3), 20.1 (m, CH3); m/z (EI) 156 (M
•+

, 80%), 112 (100), 95 (5). 
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4.3. Experimental Data for Metal-Free H/D Exchange 

d2-4-n-Butylaniline (d2-32) 

                  d2-32

NH2

D D

                                                   d2-32

NH2

[98]

[0]

[0]
[0]

[0]
[0]

 

According to General Procedure 4.1, using 4-n-butylaniline (23) (300 mg, 317 μL, 2.01 

mmol, 1 equiv), DCl (35%; 662 μL, 8.04 mmol, 4 equiv) and D2O (3 mL) the d2-4-n-

butylaniline (d2-32) (243 mg, 80%) was obtained as a brown oil (Found M
•+

, 151.1328. 

C10H13D2N [M
•
] requires 151.1330); νmax (KBr) 3425, 3349, 3214, 3020, 1499, 1405, 

1376, 1314, 1196, 1104, 1060; δH (400 MHz; CD3OD) 
a
6.91 (0.05H, m), 6.65 (1.92H, 

s), 2.47 (2H, t, J ), 1.52 (2H, m), 1.32 (2H, t), 0.91 (3H, t, J); m/z (EI) 151 (M
•+

, 50%), 

121 (20), 108 (100). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d2-N-(4-n-Butylphenyl)acetamide (d2-32a) 

                              d2-32a

NH

O

D D

                                         d2-32a

NH

[98]

[0]

[0]
[0]

[0]
[0]

O

 

 

According to General Procedure 4.1, using d2-4-n-butylaniline (d2-32) (204 mg, 1.35 

mmol, 1 equiv), acetyl chloride (105L, 1.5 mmol, 1.1 equiv) and NEt3 (416.6 L, 2.97 

mmol, 2.2 equiv) in CH2Cl2 (10 ml ) at 0 
o
C under a N2 atmosphere gave the d2-N-(4-n-

butylphenyl)acetamide (d2-32a) (188 mg, 72%) as a colourless solid (Found M
•+

, 

193.1997. C12H15D2NO [M
•
] requires 193.2001); νmax (KBr) 3166, 3119, 2854, 1640, 

1514,  1459, 1361, 1281; δH (400 MHz; CD3OD) 
a
7.41 (0.06H, m), 7.11 (1.97H, s), 2.57 
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(2H, t, J), 2.10 (3H, s), 1.57 (2H, m), 1.34 (2H, t), 0.93 (3H, t, J); m/z (EI) 193 (M
•+

, 

45%), 151 (30), 111 (90). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d4-3-Amino-4-methylpyridine (d4-44)  

 

                                 d4-44

N

NH2

CD3

D

                                      d4-44

[95][16]
N

[10]

[91]

NH2

  

      

According to General Procedure 4.1, using 3-amino-4-methylpyridine (44) (300 mg, 2.7 

mmol, 1 equiv), DCl (35%; 889 μL, 10.8 mmol, 4 equiv) in D2O (3 mL) the d4-3-amino-

4-methylpyridine (d5-44) (183 mg, 61%) was obtained as a colourless solid (Found M
•+

, 

112.1064. C6H4D4N2 [M
•
] requires 112.1064); νmax (KBr) 3442, 3204, 2960, 2696, 2526, 

1375, 1324; δH (400 MHz; CD3OD) 
a
7.89 (0.05H, s), 

a
7.70 (0.84H, d), 

a
7.02 (0.90H, s), 

a
2.14 (0.27H, m); m/z (EI) 112 (M

•+
, 100%), 113 (20). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d4-N-(4-Methylpyridin-3-yl)acetamide (d4-44a) 

                            d4-44a

N

H
N

O

CD3

D

                                      d4-44a

[95]
[16]

N

[10]

[91]

H
N

O

 

 

According to General Procedure 4.1 using d4-3-amino-4-methylpyridine (d4-44) (142 

mg, 1.3 mmol, 1 equiv), dissolved in acetone (50 mL), and K2CO3 (894 mg, 6.4 mmol, 5 

equiv), acetyl chloride (305 mg, 276 L, 3.8 mmol, 3 equiv) in acetone (5 ml) to give 

the d4-N-(4-methylpyridin-3-yl)acetamide (d4-44a) (26 mg, 14%) as a yellow solid 

(Found M
•+

, 154.1175. C8H6D4N2O [M
•
] requires 154.1170); νmax (KBr) 3905, 3892, 

3886, 3881, 3874, 3865, 3760, 3752,  3736, 3670, 3656, 3629, 2814, 2415, 2169, 2092; 
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δH (400 MHz; CD3OD)  8.51 (0.05H, s), 8.24 (0.84H, d), 7.33 (0.90H, d), 2.27 (0.27H, 

s), 2.19 (3H, s); m/z (EI) 154 ( M
•+

, 100%), 112 (100).
 

 

d2-4-tert-Butylaniline (d2-33)  

                            d2-33

NH2

D D

                                                   d2-33

NH2

[4]

[7]

[99]

 

 

According to General Procedure 4.1, using 4-tert-butylaniline (33) (300 mg, 318 μL, 

2.01 mmol, 1 equiv), DCl (35%;  662 μL, 8.04 mmol, 4 equiv) D2O (3 mL) to give the 

d2-4-tert-butylaniline (d2-33) (286 mg, 94%) as a brown oil (Found M
•+

, 151.1335. 

C10H13D2N [M
•
] requires 151.1330); νmax (KBr) 3851, 3836, 3743, 3674, 3585, 2915, 

2848, 1699, 1684, 1652, 1558, 668; δH (400 MHz; CD3OD) 
a
7.14 (1.86H, s), 

a
6.68

 

(0.02H, d, JH-H 9 ), 
a
1.25 (8.61H, s); δc (125 MHz, CD3OD) 145.1 (s, C-N), 142.1 (s, C-

C), 116.2 (t, 2CD, 
1
JC-D 24.7), 34.5 (m, C-CMe3), 31.7 (tt, 3CD3,  J1 C-D 19.2, J2 C-D2.8); 

m/z (EI) 151 (M
•+

, 60%), 136 (100), 108 (50), 96 (30).
 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d2-N-(4-tert-Butylphenyl)acetamide (d2-33a)  

                           d2-33a

NH

O

D D

                                      d2-33a

NH

[4]

[7]

[99]

O

       

       

According to General Procedure 4.1, using d2-4-tert-butylaniline (d2-33) (127 mg, 0.84 

mmol, 1 equiv), acetyl chloride (65.8L, 0.88 mmol, 1.1 equiv) and NEt3 (259.5L, 

1.85 mmol, 2.2 equiv) in CH2Cl2 (10 ml ) at 0 
o
C under a N2 atmosphere to give the d2-

N-(4-tert-butylphenyl)acetamide (d2-33a) (110 mg, 67%) as a colourless solid (Found 

M
•+

, 193.1429. C12H15D2NO [M
•
] requires 193.1436); νmax (KBr) 3288, 3171, 3097, 
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2961, 2865, 1685, 1669, 1654, 1593, 1518, 1483, 1420, 1382, 1361, 1317, 1039, 1010, 

979, 898, 765; δH (400 MHz; CD3OD) 
a
7.41 (0.02H, m), 7.33 (1.86H, s), 2.10 (3H, s), 

1.30 (8.61H, s); δc (125 MHz, CD3OD) 171.5 (s, C=O), 148.1 (s, C-N), 137.0 (s, C-C), 

126.4 (s, 2CH), 120.7 (t, 2CD, 
1
JC-D 24.3), 35.0 (m, C-CD3), 31.5 (tt, 3CD3,  J1 C-D 19.2, 

J2 C-D2.8), 23.7 (s, CH3); m/z (EI) 193 (M
•+

, 30%), 136 (50), 178 (40). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d2-3-Amino-5-methylpyridine (d2-43)  

                                 d2-43

N

NH2

D D

                              d2-43

[95][99] N

[42] [40]
NH2

 

 

According to General Procedure 4.1, using 3-amino-5-methylpyridine (43) (100 mg, 

0.93 mmol, 1 equiv), DCl (35%; 305 μL, 3.7 mmol, 4 equiv) and D2O (3 mL) to give the 

d2-3-amino-5-methylpyridine (d2-43) (81 mg, 77%) as a yellow solid (Found M
•+

, 

110.0810. C6H6D2N2 [M
•
] requires 110.0813); νmax (KBr) 3324, 2235, 1627, 1589, 1575, 

1410, 1389, 1259, 864; δH (400 MHz; CD3OD) 
a
7.76 (0.06H, s), 

a
7.61 (0.01H, s), 

a
6.93 

(0.60H, s), 
a
2.21 (1.76H, m); m/z (EI) 110 (M

•+
, 60%), 95 (5). 

a
Signal arises due to the presence of isotopologues and/or isotopomers.  

 

d2-N-(5-Methylpyridin-3-yl)acetamide (d2-43a) 

                          d2-43a

N

H
N

O
D D

                                   d2-43a

[94][99] N

[42] [40] H
N

O

 

 

According to General Procedure 4.1, using d2-3-amino-5-methylpyridine (d2-43) (70 

mg, 0.61 mmol, 1 equiv), dissolved in acetone (20 mL), and K2CO3 (423 mg, 3.07 

mmol, 5 equiv), acetyl chloride (144 mg, 131 L, 1.84 mmol, 3 equiv) in acetone (5 ml) 

to give the d2-N-(5-methylpyridin-3-yl)acetamide (d2-43a) (25 mg, 27%) as a  yellow 

solid (Found M
•+

, 152.0915 .C8H8D2N2O [M
•
] requires 152.0919); νmax (KBr) 3234, 

2933, 1681, 1622, 1531, 1409, 1387, 1289, 1018, 881, 769; δH (400 MHz; CD3OD) 8.51 
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(0.01H, s), 
a
8.10 (0.06H, s), 

a
7.93 (0.60H, s), 2.34 (1.76 H, m), 2.15 (3H, s); m/z (EI) 

152 (M
•+

, 45%), 110 (100).
 

a
Signal arises due to the presence of isotopologues and/or isotopomers.  

 

d3-4-Amino-2-methylpyridine (d3-40) 

                              d3-40

N CD3

NH2

                       d3-40

[86]

[0] N

[0]

NH2

[0]

          

     

According to General Procedure 3.1, using 4-amino-2-methylpyridine (40) (150 mg, 1.4 

mmol, 1 equiv), DCl (35%; 457 μL, 5.6 mmol, 4 equiv) in  D2O (3 mL) to give the d3-4-

amino-2-methylpyridine (d3-40) (99 mg, 56%) as a colourless solid (Found M
•+

 

110.0812. C6H5D3N2 [M
•
] requires 110.0813); νmax (KBr) 3233, 3199, 3088, 2965, 1247, 

994; δH (400 MHz; CD3OD) 7.83 (1H, d), 6.42 (1H, d), 6.37 (1H, dd), 
a
2.26 (0.42H, m); 

m/z (EI) 110 (M
•+

, 100%), 95 (5). 

a
Signal arises due to the presence of isotopologues and/or isotopomers.   

 

d3-N-(2-Methylpyridin-4-yl)acetamide (d3-40a) 

                             d3-40a

N CD3

HN

O

                                            d3-40a

[86]
[0]

N

HN

O

[0] [0]

 

According to General Procedure 3.1, using d3-4-amino-2-methylpyridine (d3-40) (70 

mg, 0.61 mmol, 1 equiv), dissolved in acetone (20 mL), and K2CO3 (423 mg, 3.07 

mmol, 5 equiv), acetyl chloride (144 mg, 131 L, 1.84 mmol, 3 equiv) in acetone (5 ml) 

to give the d3-N-(2-Methylpyridin-4-yl)acetamide (d3-40a) (25 mg, 27%) as a yellow 

solid (Found M
•+

, 153.0982. C8H7D3N2O [M
•
] requires 153.0981); νmax (KBr) 3235, 

2916, 2849, 2242, 1672, 1606, 1585, 1569, 1536, 1469, 1373, 1300, 1040, 963, 893; δH 

(400 MHz; CD3OD) 7.95 (1H, d), 
a
7.25 (1H, d), 

a
7.04 (1H, dd), 2.34 (0.42H, m), 2.14 

(3H, s); m/z (EI) 153 (M
•+

, 60%), 112 (100). 

a
Signal arises due to the presence of isotopologues and/or isotopomers.  
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d3-3-Amino-2-methylpyridine (d3-41)      

                                    d3-41

N CD3

NH2

                 d3-41
[87]

[41] N

[0]

[8]
NH2

  

 

According to General Procedure 3.1, using 3-amino-2-methylpyridine (41) (150 mg, 1.4 

mmol, 1 equiv), DCl (35%; 457 μL, 5.5 mmol, 4 equiv) in D2O (3 mL) to give the d3-3-

amino-2-methylpyridine (d3-41) (112 mg, 73%) as a colourless solid (Found M
•+

 

111.0878. C6H5D3N2 [M
•
] requires 111.0876); νmax (KBr) 3846, 3756, 3639, 2583, 2913, 

2361, 1658, 1370, 1264, 1197, 1042, 877; δH (400 MHz; MeOD) 7.70 (0.59H, d), 7.06 

(0.92H, d), 6.99 (1H, m), 
a
2.31 (0.37H, m); m/z (EI) 111 (M

•+
, 25%), 94 (5). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

d3-N-(2-Methylpyridin-3-yl)acetamide (d3-41a) 

                            d3-41a

N CD3

H
N

O

                          d3-41a

[87]
[41] N

[0]
[8] H

N

O

 

 

According to General Procedure 3.1, using d3-3-amino-2-methylpyridine (d3-41) (100 

mg, 0.87 mmol, 1 equiv), dissolved in acetone (20 mL), and K2CO3 (605 mg, 4.4 mmol, 

5 equiv), acetyl chloride (207 mg, 187 L, 2.6 mmol, 3 equiv) in acetone (5 ml) to give 

the d3-N-(2-methylpyridin-3-yl)acetamide (d3-41a) (23 mg, 18%) as a colourless solid 

(Found M
•+

, 153.0986. C8H7D3N2O [M
•
] requires 153.0981); νmax (KBr) 3246, 3011, 

2916, 2849, 2348, 2251, 1670, 1591, 1574, 1525, 1441, 1396, 1463, 1370, 1294, 1246, 

1186, 1114, 1039, 1014, 856, 804; δH (400 MHz; CD3OD) 8.25 (0.59H, d), 7.88 (0.92H, 

d), 7.27 (1H, m), 
a
2.25 (0.37 H, m), 2.18 (3H, s); m/z (EI) 153 ( M

•+
, 45%), 111 (100), 

94 (5). 

a
Signal arises due to the presence of isotopologues and/or isotopomers. 

 

 

 



84 
 

 

d4-5-Amino-2-methylpyridine (d4-42)  

 

                      d4-42

N

H2N

CD3D

     d4-42

[75]
[79] N

[31]
H2N

[9]

 

 

According to general procedure 3.1 using 5-amino-2-methylpyridine (42) (150 mg, 1.4 

mmol, 1 equiv), DCl (35%; 457 μL, 5.5 mmol, 4 equiv) in D2O (3 mL) to give the d4-5-

amino-2-methylpyridine (d4-42) (76 mg, 49%) as a colourless solid (Found M
•+

 

112.0936. C6H4D4N2 [M
•
] requires 112.0939); νmax (KBr) 3584, 3390, 3269, 3030, 2928,  

2264, 1635, 1596, 1363, 1460, 1371, 1301, 1250, 1115, 1086, 1042, 914; δH (400 MHz; 

CD3OD) 
a
7.85 (0.21H, d), 7.04 (0.78H, d, J3 8), 6.92 (0.69H d, J3 8), 

a
2.32 (0.75H, m); 

m/z (EI) 112 (M
•+

, 65%), 117(20). 

a
Signal arises due to the presence of isotopologues and/or isotopomers.   

 

d4-N-(2-Methylpyridin-5-yl)acetamide (d4-42a) 

      

                          d4-42a

N

H
N

CD3D

O

           d4-42a

[75]
[79] N

[31]H
NO

[9]

 
              

 

According to General Procedure 4.1 using d4-5-amino-2-methylpyridine (d4-42) (70 mg, 

0.62 mmol, 1 equiv), dissolved in acetone (20 mL) and K2CO3 (423 mg, 3.1 mmol, 5 

equiv), acetyl chloride (144 mg, 130 L, 1.8 mmol, 3 equiv)  in acetone (5 mL) to give 

the d4-N-(2-Methylpyridine-5-yl)acetamide (20 mg, 22%) as a colourless solid (Found 

M
•+

, 154.1013. C8H6D4N2O [M
•
] requires 154.1013); νmax (KBr) 3584, 3296, 2917, 

2849, 2289, 1738, 1582, 1538, 1463, 1452, 1282, 1129, 1116, 931; δH (400 MHz; 

CD3OD) 7.95 (0.87H, s), 7.44 (0.21H, d, J3 8), 7.25 (0.69H, d, J1 8.48), 2.45 (0.75 H, 

m), 2.14 (3H, s); m/z (EI) 154 ( M
•+

, 85%), 111 (100),  97 (5).  
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d2-p-Toluidine (d2-31) 

  

                                   d2-31

NH2

D D

                                   d2-31

NH2

[99]

[12]

[2]

 

 

According to General Procedure 3.1, using p-toluidine (300 mg, 2.8 mmol, 1 equiv), 

DCl (35%; 921μL, 11.2 mmol, 4 equiv) in D2O (3 mL) to give the  d2-p-toluidine (d2-

31) (169 mg, 55%) as a beige solid (Found M
•+

, 109.1335. C7H7D2N [M
•
] requires 

109.1330); δH (400 MHz; CD3OD,) 6.91 (1.76H, s),
  

6.65 (0.06H, d, JH-H 8.6), 2.21 

(2.99H, m); m/z (EI) 109 (M
•+

, 70%), 108 (100). 

 

d2-N-(4-Toluidine)acetamide (d2-31a)  

                                  d2-31a

NH

O

D D

                                  d2-31a

NH

[99]

[12]

[2]

O

 

 

According to General Procedure 3.1, using d2-p-toluidine (d2-31) (100mg, 0.88 mmol, 1 

equiv), acetyl chloride (68.3L, 0.96 mmol, 1.1 equiv), NEt3 (271L, 1.95  mmol, 2.2 

equiv) in CH2Cl2 (10 ml ) at 0 
o
C under a N2 atmosphere to give the d2-N-(4-

toluidine)acetamide (d2-31a) (84.6 mg, 63 %) as a white solid (Found M
•+

, 151.1235. 

C9H9D2NO [M
•
] requires 151.1320); νmax (KBr) 3291, 3176, 3104, 3005, 2954, 1662, 

1599, 1540, 1371, 1316; δH (400 MHz; CD3OD) 7.10 (1.76H, s), 2.29 (2.99H, m), 2.10 

(3H, s); m/z (EI) 109 (M
•+

, 100%), 151 (50). 
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