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SUMMARY 

 

A fully segmented body and jointed legs are defining characteristics of the 

Arthropoda (Insecta, Crustacea, Myriapoda, and Chelicerata). The underlying mechanisms 

involved in achieving these features are not well understood outside of the insect 

Drosophila melanogaster (fruit fly) – a long germ band organism where segmentation 

occurs all at once in a syncytial blastoderm. In the more common, ancestral mode of 

development, short germ band, new segments are added sequentially from the cellular 

environment of a posteriorly extending growth zone. Segmentation in these organisms 

may not always be comparable to the “Drosophila paradigm” and, therefore, require 

further analysis. My thesis will explore the conservation and divergence of the molecular 

mechanisms of segmentation in a phylogenetically basal, short germ band insect, 

Periplaneta americana (American cockroach). Presented over three results chapters, I will 

discuss aspects of cockroach segmentation processes, from the establishment of a posterior 

organiser and growth zone, to subsequent posterior growth and the formation of new 

segments. In particular, Chapter III describes how interactions between the Cad/Wnt-

dependent posterior organiser and the Notch-segmentation clock control posterior growth 

and segmentation. Chapter IV encompasses the expression patterns and potential roles for 

Periplaneta homologues of the pair-rule genes: even-skipped, runt, pairberry, and sloppy-

paired throughout embryogenesis, identifying deviations in function between anterior and 

posterior segmentation processes. New functions for the non-canonical, polycistronic 

small Open Reading Frame (smORF) gene tarsal-less in body patterning are discussed in 

Chapter V, along with the conserved roles for tarsal-less, nubbin, Notch, and Delta in leg 

and development. Elucidation of the networks involved in these processes will help 

establish putative ancestral gene functions allowing us to gain further insights into the 

evolution of insect (and arthropod) body segmentation and leg joint formation.   
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CHAPTER I 

GENERAL INTRODUCTION 

Arthropods, annelids, and vertebrates represent some of the most successful and 

diverse organisms; they are found in all climates and environments. One of the keys to 

their evolutionary success is the development of a segmented body. The definition of 

segmentation has been argued by many (Budd, 2001; Couso, 2009; Davis and Patel, 1999; 

Minelli and Fusco, 2004; Scholtz, 2002), but in essence it is the subdivision of the body 

and/or organ systems into smaller serially repeated units that may be evident externally, 

internally, or both. Each segment, or group of segments (tagma), may function as a semi-

independent unit (i.e. insect head, thorax, and abdomen) (French, 1983) and over the 

course of evolution, changes in the early genetic programs during embryogenesis led to 

modification of these units, resulting in the great morphological diversity we see today. 

The flexibility and increased mobility provided by this segmented/modular body plan, 

combined with phenotypic variation, allowed organisms to adapt to new and changing 

environmental conditions, leading to their rapid spread during the Cambrian radiation.  

That segmentation exists among three of the largest and most successful animal 

phyla begs the question of relationship and the origin of segmentation. But why is 

segmentation so common among these three seeming divergent clades? There are three 

main theories on the evolutionary origin of segmentation (Fig. 1.1): 1) it developed 

independently in each of the three phyla (Chipman, 2010); 2) it arose separately in the 

protostomes and deuterostomes; or 3) it was already present in the last common bilaterian 

ancestor, Urbilateria (Davis and Patel, 1999; De Robertis, 1997). While data can be found 

to argue each of the three cases, more information is becoming available suggesting that 

the origin of segmentation was founded in the Urbilateria (Balavoine and Adoutte, 2003; 

Couso, 2009; De Robertis, 1997; De Robertis, 2008b; de Rosa et al., 2005; Erwin and 
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Davidson, 2002; Holland et al., 1997; Kimmel, 1996; Pueyo et al., 2008). To begin to 

understand the evolutionary relationship between these phyla, we need to examine the 

mechanisms of segmentation used in each case, comparing the similarities and differences 

between them. Exploring the available data and investigating more diverse and basal 

representative organisms from each phylum will expand our understanding of the 

evolution of segmentation and developmental mechanisms. 

 

POSTERIOR GROWTH VIA A WNT-BASED POSTERIOR ORGANISER 

A shared feature among most segmented bilaterians is embryonic growth along the 

anterior-posterior (AP) axis combined with the sequential addition of segments/somites 

from a posterior growth zone (GZ) or presomitic mesoderm (PSM – vertebrates) 

(Balavoine and Adoutte, 2003; Couso, 2009; De Robertis, 1997; Jacobs et al., 2005). An 

early step in embryonic growth is setting up the posterior axis and a ‘posterior organiser’ 

that expresses the Caudal and Wnt proteins; a mechanism that is considered ancestral to all 

segmented (and non-segmented) bilaterians (Holland, 2002; Kimelman and Martin, 2012; 

Martin and Kimelman, 2009; McGregor et al., 2009; Niehrs, 2010; Wei et al., 2012). In 

vertebrates, one of the three segmented phyla, this involves the interplay of several 

developmental factors including members of the Wnt-signalling pathway (i.e. Wnt3a) that 

regulate expression of the homeobox gene caudal/Cdx (Ikeya and Takada, 2001; Lohnes, 

2003; Prinos et al., 2001; Shimizu et al., 2005; van de Ven et al., 2011). Wnt and Cdx 

function in the posterior PSM are required throughout embryonic development for proper 

growth and somitogenesis, as a loss of function of either leads to posterior segment 

abnormalities and truncations (Aulehla et al., 2003; Aulehla et al., 2008; Martin and 

Kimelman, 2009; Takada et al., 1994; Young et al., 2009).  
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Annelids and arthropods represent the other two segmented phyla, after 

vertebrates, and similarly grow and segment from the posterior. Although once considered 

more closely related, the annelids and arthropods are now placed within separate 

superphyla - the Lophotrochozoa and Ecdysozoa, respectively (Aguinaldo et al., 1997; 

Dunn et al., 2008; Philippe et al., 2005). Together these sister clades form the Protostomia 

that split from the Deuterostomia, of which the chordates belong, approximately 570mya. 

In the annelids, there is conservation in the expression of cad and Wnt family homologues 

in the small posterior growth zone of the polychaete worms Platynereis dumerilii and 

Capitella telata and the teloblastic ‘growth zone’ of the leech Helobdella robusta (Cho et 

al., 2010; de Rosa et al., 2005; Dray et al., 2010; Hui et al., 2009; Janssen et al., 2010). 

While functional analysis has not been carried out in these organisms, the similarity of 

expression patterns may indicate a conserved function for annelid Cad and Wnt1 in 

establishing a posterior organiser that regulates growth and segmentation.  

Arthropods in which segments are added from a posteriorly extending GZ undergo 

what is called a short or intermediate germ band mode of development. During the earliest 

stages of embryogenesis, as the germ primordium condenses, posterior expression of cad 

and Wnt1/wingless (wg) establish the posterior axis and set up an organiser required for 

future growth and segmentation. Posterior expression of Wnt1/wg and cad is conserved in 

the short germ arthropods studied, including: the insects Tribolium castaneum (Bolognesi 

et al., 2008; Schulz et al., 1998), Gryllus bimaculatus (Miyawaki et al., 2004; Shinmyo et 

al., 2005), and Oncopeltus fasciatus (Angelini and Kaufman, 2005a); the crustaceans 

Artemia franciscana (Copf et al., 2003; Copf et al., 2004) and Triops longicaudatus 

(Nulsen and Nagy, 1999); the spider Achaearanea tepidariorum (Akiyama-Oda and Oda, 

2003; Janssen et al., 2010; McGregor et al., 2008); and the myriapods Glomeris marginata 

(Janssen et al., 2010) and Strigamia maritima (Chipman et al., 2004). The function of a 
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Wnt-Cad organiser, where Wnt-signalling regulates cad expression, has been 

experimentally established in Gryllus (Shinmyo et al., 2005) and Achaearanea (McGregor 

et al., 2008). Posterior interaction between Cad and Wnt-signalling is an important feature 

and, similar to vertebrates, loss of function of either gene leads to posterior truncation 

(Bolognesi et al., 2008; Copf et al., 2004; Martin and Kimelman, 2009; McGregor et al., 

2009; McGregor et al., 2008; Shinmyo et al., 2005).  

Caudal and Wnt-signalling in the posterior end of the developing embryo work 

together to establish the posterior axis, form a posterior organiser, and establish a 

functional growth zone; processes conserved in most bilaterian animals. Not only are these 

genes important for continued posterior growth, they are also essential in regulating the 

processes of segmentation/somitogenesis. The mechanisms of segmentation can vary 

between phyla, but again, there is incredible similarity in the mechanisms involved in 

these processes, largely based around the N-signalling pathway. I will first review what is 

known about vertebrate somitogenesis (‘clock and wavefront’), before briefly touching on 

annelid segmentation, and concluding with the various methods involved in arthropod 

body and appendage segmentation. 

 

MECHANISMS OF SEGMENTATION 

 

Vertebrate somitogenesis 

Vertebrates make up the majority of the phylum Chordata, and exhibit metameric 

patterning of the muscles, nervous system, and skeleton compared to the more obvious, 

overt segmentation of the annelid worms and arthropods. Nevertheless, in each case new 

segments arise sequentially from the posteriorly extending PSM/GZ. The coordination of 

somite formation in vertebrates occurs through a series of synchronised oscillations of 
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gene expression that begins in the posterior PSM and move as a wave of transcription 

towards the anterior, inducing the expression of segmentation genes leading to somite 

formation in the anterior. This process involves complex interactions between three major 

signalling pathways: Notch (N), Wnt, and Fibroblast Growth Factor (FGF). Interactions 

between these pathways form a “clock and wavefront” mechanism of segmentation 

utilized by all vertebrates studied to date (Fig. 1.2) (Cooke and Zeeman, 1976; Dequeant 

and Pourquie, 2008; Giudicelli and Lewis, 2004; Jiang et al., 2000; Kageyama et al., 2007; 

Lewis, 2003; Naiche et al., 2011; Ozbudak and Pourquie, 2008; Palmeirim et al., 1997; 

Pourquie, 2011).  

FGF and N-signalling both regulate the expression of the transcriptional regulator 

hairy and Enhancer of split (hes/her). In turn, hes/her negatively regulates its own 

expression as well as the ability of the N-pathway to signal to neighbouring cells, by 

inhibiting the expression of the N ligands Delta (Dl; in zebrafish) or lunatic fringe (lfng; 

chick and mouse) (Cinquin, 2007; Evrard et al., 1998; Kageyama et al., 2012; Kawamura 

et al., 2005; Lewis, 2003; Palmeirim et al., 1997; Pourquie, 2011). As the temporal waves 

of N-activation travel through the PSM, they are translated into a spatial pattern leading to 

somite formation in the anterior. The spatial readout is in the form of stripes from which 

segment boundaries and somite polarity will be regulated by segmentation genes, 

including lfng and mesoderm posterior protein 2 (mesp2) (Aulehla et al., 2003; Dunty et 

al., 2008; Kawamura et al., 2005; Morimoto et al., 2005; Pourquie, 1999). Defects in any 

part of this highly complex patterning network may result in abnormal somite formation 

(Dubrulle et al., 2001; Lewis, 2003; Shimizu et al., 2005; Wahl et al., 2007); where these 

effects occur because of loss of N-signalling, they are attributed to desychronisation and 

decoupling of oscillations in the posterior PSM (Horikawa et al., 2006; Jiang et al., 2000; 

Lewis, 2003; Mara et al., 2007). 
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A diagrammatic summary of the vertebrate ‘clock and wavefront’ method of 

somitogenesis is presented in Figure 1.2. In brief, periodic waves of Notch activation 

travel from the posterior PSM to the anterior activating downstream effector genes, like 

hes/her, forming the synchronised “clock” mechanism (Forsberg et al., 1998; Jiang et al., 

2000; Palmeirim et al., 1997). The posterior-to-anterior gradients of Wnt and FGF 

(“wavefront”) signalling are counteracted by an opposite and antagonistic anterior-

posterior gradient of retinoic acid. It is here, the determination zone, that the periodic 

wave of the clock is translated into a patterned stripe of expression and the production of 

one somite (Aulehla et al., 2003; Dubrulle et al., 2001; Morimoto et al., 2005; Oginuma et 

al., 2008).  

Adding further complexity to the segmentation process are the varied rates of 

transcription/translation and mRNA/protein degradation for each of the components 

discussed above, which can have profound effects on segment formation. The 

intracellular, autoinhibitory oscillations of hes/her are correlated with the rates of 

production and decay, creating a delayed negative feedback loop (Bessho et al., 2003; 

Lewis, 2003; Oates et al., 2012). This cell-autonomous, autoinhibitory delay is very 

important as part of the clock mechanism added to coupling of the intracellular 

oscillations and synchronisation with neighbouring cells (via N-signalling), as loss of 

expression often leads to segmentation defects (Bessho et al., 2001; Herrgen et al., 2010; 

Lewis, 2003; Oates et al., 2012; Ozbudak and Lewis, 2008). The regulatory actions of 

Hes/Her are suggestive of a role as the clock pacemaker, but this responsibility is still 

unclear, as each of the signalling pathways have also been ruled out in this role, this 

elusive pace-keeper remains to be identified. Each pathway may have its own independent 

oscillation mechanism that overlaps at some interval, revealing a coordination between 

them, synchronized through N-signalling (Goldbeter and Pourquie, 2008; Kageyama et al., 
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2012; Krol et al., 2011; Pourquie, 2011) or, alternatively, there may not be an autonomous 

pacemaker, leaving the oscillations to occur on a multicellular level. 

Degradation rates of mRNA or protein also have an important role in the formation 

of the posterior-to-anterior Wnt and FGF gradients, which are linked to the rate of 

posterior growth. Both genes are expressed in the posterior, yet the rate of protein decay is 

quite slow; as the tail bud grows posteriorly this leads to a gradient of Wnt and FGF along 

the PSM with high levels in the posterior and lower levels in the anterior (Aulehla and 

Pourquie, 2010; Aulehla et al., 2003; Dubrulle and Pourquie, 2004b). The relative rates of 

production and decay affect segmentation in a way that can determine how large or small 

a somite may be. A slower clock, relative to posterior growth, leads to larger and/or fewer 

segments, whereas a faster clock may lead to smaller and/or more numerous segments 

(Gomez et al., 2008; Oates et al., 2012; Sawada et al., 2001; Schroter and Oates, 2010). 

The timing of the clock and the onset of somitogenesis varies amongst the organisms 

studied, ranging from one somite formed every 30 minutes in zebrafish to one every 120 

minutes in mouse (Forsberg et al., 1998; Gomez et al., 2008). These are just a few 

examples of the flexibility and plasticity of the mechanisms of somitogenesis based 

around the integration of the conserved core players: FGF, Notch, Wnt, and hes/her. The 

interplay between these pathways has been extensively studied, but is not completely 

understood.  

Interactions between the early establishment of a Wnt-cad posterior organiser and 

later segmentation via N-signalling are beginning to emerge. A positive interaction has 

recently been shown between Cdx/Cad and the Notch ligand Delta-like1 (Dll1) during 

mouse somitogenesis (Grainger et al., 2012). Here, Cdx directly binds to the Dll1 

promoter, regulating its expression, illustrating the intimate link between posterior growth 

and segmentation (Aulehla et al., 2003; Aulehla et al., 2008; Dubrulle and Pourquie, 
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2004a; Grainger et al., 2012). Understanding the connections between and among the 

different segmented Bilateria will help us elucidate the evolution of the mechanisms 

involved. 

 

Annelid segmentation 

Annelid segmentation is externally visible along the annulated body and is carried 

through internally as each segment is divided by a septum. Unfortunately, research on 

segment patterning in this group is lacking; however, exciting results have shown 

similarities between annelid and vertebrate segmentation in the oscillatory expression of 

Notch-signalling. In the polychaete Capitella capitata, homologues of N, Dl, and hes/her 

are expressed in the juvenile sub-terminal growth zone, although functional analysis is still 

required to determine a possible function in segmentation (Thamm and Seaver, 2008). In 

the leech Helobdella robusta, homologues of N and hes/her oscillate in a manner that is 

tightly linked to the cell cycle, relying on the rate of teloblast cell divisions before 

activation of segmentation mechanisms (Rivera et al., 2005; Song et al., 2004). The 

presumed segmentation function for N and hes was confirmed in the leech by inhibition of 

N-signalling via DAPT treatment in cultured embryos and/or morpholino inhibition of 

Hro-hes translation (Rivera and Weisblat, 2009). Loss of N-signalling led to the reduction 

of Hro-hes expression, indicating hes as a downstream target, and loss of both Hro-N and 

Hro-hes lead to segmentation defects. The relationship between oscillatory N and hes 

expression with segment formation is very similar to the clock-and-wavefront mechanism 

of vertebrates and indicates a conserved, ancient mechanism between annelids and other 

segmented phyla. However, interactions between N-mediated segmentation and the 

presumed mechanisms of posterior growth, via caudal and Wnt-signalling, remain to be 

determined in annelids. 
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Arthropod segmentation 

Highly segmented bodies and appendages are defining features of the Arthropoda. 

Members of this phylum include insects (flies, cockroaches), crustaceans (crabs, wood 

lice), chelicerates (spiders, mites), and myriapods (centipedes, millipedes). Overt 

segmentation of the body and appendages allowed for rapid evolution of the arthropods 

making them the most speciose and morphologically diverse phylum seen today. There are 

three main types of segmentation in arthropods: short, intermediate, and long germ band. 

In short and intermediate germ band organisms, the anterior head and thoracic segments 

form in the blastoderm while the remaining segments are added sequentially from a 

posteriorly extending growth zone. The short and intermediate modes differ in the number 

of segments specified in the blastoderm, but otherwise development is the same and, for 

simplicity, both will be referred to as short germ band throughout the text. In the long 

germ band mode of development, all body segments form almost simultaneously in the 

syncytial blastoderm with no directional posterior growth or sequential segment 

formation. The long germ band mode is highly derived compared to short germ band 

development and is the method utilized by the fruit fly, Drosophila melanogaster, of 

which much is known about the processes of segmentation. 

 

Long germ band segmentation 

During Drosophila embryogenesis, segments are specified simultaneously in the 

cell-free environment of a syncytial blastoderm. Much of what we know about arthropod 

segmentation today began with the intensive studies of Drosophila mutants displaying 

segmentation defects by the Nüsslein-Volhard/Wieschaus group (Nüsslein-Volhard and 

Wieschaus, 1980; Nusslein-Volhard et al., 1984). Examination of these phenotypes and 

the genes involved led to the establishment of the “Drosophila paradigm” – a hierarchic 
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cascade of transcription factors working together to pattern and segment the fly embryo 

into successively smaller units (Fig. 1.3A) (Ingham, 1988; Lawrence, 1992; Peel et al., 

2005). In this paradigm, the first genes to be expressed are the maternal coordinate genes, 

such as bicoid (bcd) and caudal, in broad anterior and posterior gradients that define the 

axes of the egg. The maternal effect genes regulate the gap genes, such as Krüppel (Kr) 

and giant (gt), which are expressed in broad overlapping domains covering several 

contiguous segments of the developing embryo. The gap genes, in turn, regulate 

expression of the pair-rule genes (i.e. even-skipped, runt) in a double segmental manner 

which ultimately leads to the expression and regulation of the segment polarity genes, 

wingless (wg) and engrailed (en), that establish anteroposterior identity within each 

segment (‘polarity’) and delineate the borders between the developing parasegments. 

In Drosophila, the maternally loaded bicoid gene is expressed as a gradient that 

establishes the anterior axis. bcd is a relatively new gene found only in Diptera, where in 

other organisms the anterior end is specified by orthodenticle (otd) and hunchback (hb) 

(Lynch et al., 2006; Pultz et al., 2005; Rosenberg et al., 2009). Bcd inhibits the anterior 

spread of cad expression leading to the formation of a posterior cad gradient that, along 

with nanos, establishes the posterior (Rosenberg et al., 2009; Wang and Lehmann, 1991). 

The maternal component of Dm-cad has a stronger effect on overall body patterning 

(Macdonald and Struhl, 1986), but the zygotic component has relatively minimal 

functions, in the posterior-most segments only (Moreno and Morata, 1999). cad plays a 

larger role in other long germ organisms, such as the parasitic wasp Nasonia vitripennis 

(Hymenoptera), where loss of function results in a “head only” phenotype (Olesnicky et 

al., 2006). The Wnt-Cad posterior organiser found in vertebrates, annelids, and basal 

arthropods has been lost in long germ band organisms like Drosophila, suggesting a 
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decoupling of posterior growth and segmentation mechanisms, yet remnants of this 

relationship remain (Vorwald-Denholtz and De Robertis, 2011; Wu and Lengyel, 1998).  

 The maternal effect genes regulate the broad domains of gap gene expressions 

along the length of the syncytial blastoderm. The gap gene expression domains overlap 

and interact with each other to establish expression of the genes in the next step of the 

segmentation hierarchy: the pair-rule genes. The pair-rule genes are expressed in a 

‘classic’ pattern of seven stripes in alternate parasegments and are, themselves, split into a 

small hierarchy based on the timing of their expressions (Jaynes and Fujioka, 2004). In 

Drosophila, the first to be expressed are the primary pair-rule genes even-skipped (eve), 

runt (run), and hairy (h), which are directly regulated by the gap genes. In turn, the 

primary pair-rule genes, along with the gap genes, regulate the expression of the 

secondary pair-rule genes paired (prd), sloppy-paired (slp), odd-skipped (odd), and fushi 

tarazu (ftz) (Gutjahr et al., 1993; Jaynes and Fujioka, 2004; Peel et al., 2005). The mostly 

inhibitory interactions between the pair-rule genes are highly complex and differentially 

regulate the expression of the segment polarity genes wg and en, defining the borders 

between adjacent parasegments and future embryonic segments, thus, finalizing the 

segmentation cascade (Jaynes and Fujioka, 2004). 

First described in hypomorphic mutants of Drosophila, the ‘classic’ pair-rule 

phenotype is embryos lacking every other body segment (Nüsslein-Volhard and 

Wieschaus, 1980). Subsequent studies showed that the expression patterns of the pair-rule 

genes correspond to their mutant phenotypes (Gergen and Butler, 1988; Grossniklaus et 

al., 1992; Holmgren, 1984; Kilchherr et al., 1986; Macdonald and Struhl, 1986). 

Regulation of the pair-rule genes is the key step in long germ band segmentation as it is 

here that the first sign of a periodic pattern is observed. Initially expressed as seven stripes 

in alternating segments, each pair-rule gene is eventually expressed in all fourteen future 
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segments. However, there is some variation in pair-rule expression patterns between the 

long germ band insects, such as the rapid sequential formation of eve stripes in the 

endoparasitic wasp Copidosoma floridanum (Grbic et al., 1996) and stripes of prd the 

honey bee Apis mellifera (Osborne and Dearden, 2005).  

 The underlying mechanisms involved in achieving a segmented body are fairly 

well understood in Drosophila. However, as Drosophila undergoes the highly derived and 

specialised long germ band mode of segmentation, gene expression and consequent 

functions may not be generally applicable to all arthropods. By studying elements of the 

Drosophila paradigm (maternal  gap  pair-rule  segment polarity) in other 

organisms, we can begin to understand how the evolution of body patterning mechanisms 

changed over time and to draw a clearer picture of the putative common ancestor of 

insects and other arthropods.  

 

Short germ band segmentation 

The more common and presumed ancestral mode of segmentation in arthropods is 

short germ band (Davis and Patel, 2002; Liu and Kaufman, 2005b). In this mode of 

development, the head and anterior thoracic segments are specified ‘all-at-once’ at the 

syncytial blastoderm stage, similar to that described for long germ band insects, while the 

remaining segments are added sequentially from the extending posterior GZ (Fig. 1.3B) 

(Davis and Patel, 2002; Liu and Kaufman, 2005b). In addition to the Wnt-Cad posterior 

organiser, elements of Notch-signalling are becoming recognised as important factors in 

short germ band arthropod segmentation, similar to their counterparts in vertebrates and 

annelids. Homologues of N, Dl, and h are expressed in the posterior growth zone of the 

spiders Cupiennius salei (Schoppmeier and Damen, 2005b; Stollewerk, 2002; Stollewerk 

et al., 2003) and Achaearanea (Oda et al., 2007); the myriapods Strigamia (Chipman and 
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Akam, 2008), Glomeris (Dove and Stollewerk, 2003), and Lithobius forficatus (Kadner 

and Stollewerk, 2004); the crustacean Parhyale hawaiensis (O'Day, 2006); and the basal 

insects Periplaneta americana (Pueyo et al., 2008) and Gryllus bimaculatus (Kainz et al., 

2011; Mito et al., 2011).  

Functional analyses, where possible, have shown the importance for Dl/N-

signalling and Hairy in the segmentation process of short germ band organisms. Previous 

work in our lab has shown that segment formation is disrupted in Periplaneta upon the 

loss of Pa-N or Pa-h expression resulting in segmentation defects and posterior truncation 

(Pueyo et al., 2008). Similar results were obtained in the spiders Cupiennius and 

Achaearanea (Oda et al., 2007; Stollewerk et al., 2003) and the crustaceans Artemia 

(Williams et al., 2012) and Parhyale (O'Day, 2006). This research adds credence to the 

notion of an evolutionarily conserved N-mediated segmentation mechanism shared 

between most arthropods, vertebrates, and annelids, which was subsequently lost in highly 

derived organisms, such as Drosophila and other holometabolous insects. 

The loss of N-mediated segmentation in Holometabola (Aranda et al., 2008; Tautz, 

2004; Wilson et al., 2010b) may have occurred around the time of the split between 

holometabolous and hemimetabolous insects over 350 million years ago. Even though it 

has a short germ band mode of segmentation, the holometabolous insect Tribolium 

castaneum does not utilize N-signalling to pattern its segments. This may seem 

counterintuitive compared to the other short germ arthropods in which N-signalling has a 

major role; however, Tribolium has developed a novel mechanism in the pair-rule gene 

circuit (Choe and Brown, 2009; Choe et al., 2006). This circuit involves the cyclic 

activation and repression of the primary pair-rule genes eve, run, and odd in the posterior 

growth zone during germ band elongation. In this circuit, the initial expression of Tc-eve 

activates the expression of Tc-run, which then activates Tc-odd expression. Tc-odd, in 
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turn, inhibits the expression of Tc-eve, thus completing the circuit (eve  run  odd    | 

eve). Recently, Sarrazin et al. (2012) and El-Sherif et al. (2012) showed that Tc-odd and 

Tc-eve, respectively, oscillate spatiotemporally and the moving waves of expression 

through the posterior GZ are part of a cyclic segmentation clock mechanism, thus 

signifying the importance of an oscillator in regulating sequential addition of segments 

during short germ band development. 

 In short germ band organisms, the anterior-most segments form rapidly in a 

syncytial blastoderm, while the remaining segments are added sequentially from the 

posterior growth zone. While the posterior addition of segments is regulated in a Notch-

dependent manner, the anterior segments form independent of N-signalling. This Notch-

independent segmentation mechanism is likely the precursor to what exists in higher 

insects today. As new methods were gained to speed up embryonic development (i.e. 

meroistic ovaries and nurse cells), addition of segments from a posterior GZ became less 

important as more segments formed in the syncytial blastoderm. Along with this, the 

requirement for Notch became unnecessary as signalling now occurred in a cell-free 

environment allowing the gap genes to take over control of pair-rule gene expression and, 

consequently, segmentation (Damen, 2007; Peel, 2004). The expression patterns of the 

pair-rule genes are highly variable, yet there seems to be some conservation in the pair-

rule gene hierarchy and the regulation of the segment polarity genes (Choe and Brown, 

2009; Damen et al., 2005; Janssen et al., 2011; Jaynes and Fujioka, 2004), demonstrating 

the plastic and adaptable nature of these genes during segment formation.  

Still, it appears as though the function of the pair-rule genes in segmentation may 

be restricted to the arthropods. Homologues of the pair-rule genes have been found in 

annelids and vertebrates, but may not function during segmentation/somitogenesis (Cruz 

et al., 2010; Jostes et al., 1990; Seaver et al., 2012). On the other hand, neural expression 
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of many pair-rule genes is conserved among vertebrates, annelids, and arthropods and may 

represent the true ancestral nature of these genes (Inoue et al., 2002a; Moran-Rivard et al., 

2001; Patel et al., 1992; Song et al., 2002). Through the course of evolution, the pair-rule 

genes may have gained a new function in arthropod body segmentation, initially regulated 

by N-signalling before coming under control of the gap genes (Damen, 2007; Peel, 2004); 

however, additional functional analysis is needed in phylogenetically basal organisms to 

determine the ancestral state. 

 

tarsal-less: a new segmentation gene? 

Initially identified as a putative non-coding RNA (Tupy et al., 2005), further 

investigation has shown the non-canonical, polycistronic gene tarsal-less (also called 

polished rice) is translated into several short peptides through small Open Reading Frames 

(smORF) of less than 100 amino acids (Galindo et al., 2007; Kondo et al., 2007; Savard et 

al., 2006). In Drosophila, tal encodes three different peptides: Type-A, AA, and B. The 

Type-A and Type-AA peptides contain a conserved motif of LDPTGXY and have been 

shown to function, non-autonomously, during embryonic and post-embryonic 

development (Galindo et al., 2007; Kondo et al., 2007; Pueyo and Couso, 2008; Pueyo and 

Couso, 2011), while the Type-B peptide is non-functional/non-translated (Galindo et al., 

2007).  

Embryonic expression of Dm-tal is dynamic and is required for the proper 

formation of the trachea, cephalopharyngeal skeleton, and posterior spiracles (Galindo et 

al., 2007; Kondo et al., 2007). Although expressed in several stripes in the developing 

embryo, these segmental stripes do not function in segmentation, instead Dm-tal in this 

location correlates with and is necessary for development of the future denticle belts 

(Galindo et al., 2007; Kondo et al., 2007). Dm-tal function in denticle belt formation is 
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carried out through regulation of an active form of the transcription factor shavenbaby 

(svb); loss of Dm-tal expression leads to loss of denticle belt formation as a result of the 

defective organisation of filamentous actin (F-actin) bundles (Chanut-Delalande et al., 

2006; Delon et al., 2003; Galindo et al., 2007; Kondo et al., 2007; Kondo et al., 2010). A 

similar loss of F-actin bundle organisation leads to a breakdown in taenidial folding and 

truncated trachea in Dm-tal mutants (Galindo et al., 2007; Kondo et al., 2007). However, 

in this instance, the function of Dm-tal is not mediated through svb, indicating that tal 

function in ectoderm morphogenesis may operate through different modes in varying 

developmental contexts (Galindo et al., 2007; Kondo et al., 2007; Kondo et al., 2010; 

Pueyo and Couso, 2008; Pueyo and Couso, 2011). The post-embryonic functions of Dm-

tal can be separated into three main functions: 1) tarsal joint formation (Pueyo and Couso, 

2011); 2) formation of trachea (Galindo et al., 2007; Pueyo and Couso, 2008); and 3) wing 

development (Galindo et al., 2007; Pi et al., 2011), of which tarsal leg development will 

be the focus of the following section. 

A tal homologue, called mille-pattes (mlpt), has been found in the short germ band 

insect Tribolium. Tc-mlpt encodes for several small peptides that contain the conserved 

heptapeptide sequence, LDPTGXY (Savard et al., 2006). Similar to Dm-tal, Tc-mlpt 

expression is dynamic; however, Tc-mlpt
RNAi

 revealed that this gene has differing 

functions than Dm-tal, being required for proper body patterning. Tc-mlpt functions in 

Tribolium as a gap gene and, indeed, it has been shown to regulate and be regulated by the 

other gap genes Tc-hunchback (hb), Tc-Krüppel (Kr), and Tc-giant (gt) (Savard et al., 

2006). Recently work by Schnellhammer (2012) indicates a possible interaction between 

Tc-mlpt and a Tribolium homologue of shavenbaby during segment patterning. Loss-of-

function of either gene leads to stumpy legs with malformed joints and truncation of the 

posterior-most abdomen with the remaining segments taking on a thoracic identity, 



  17   

 

including ectopic legs (Savard et al., 2006; Schnellhammer, 2012). With the exception of 

Tribolium-mlpt, the role(s) of this gene have not been studied in other organisms. 

 Bioinformatic searches of the short peptide motif LDPTGXY revealed tal 

homologues in many insect species and at least one crustacean (Galindo et al., 2007; 

Savard et al., 2006). These tal homologues are variable in length and amino acid content 

outside of the conserved motif and there appears to be a tendency of increasing copy 

numbers of tal smORFs, from one in crustaceans to an average of three or four in 

holometabolous insects (Galindo et al., 2007). The variations in sequence, along with the 

deviations in function between Tribolium and Drosophila, illustrate the evolvability of this 

small gene and the need to analyse this, and other smORF genes, in more basal species. 

 

Arthropod leg patterning 

Segmented appendages are the key defining characteristic of the Arthropoda and 

gave the phylum its name (arthro – joint, podos – leg). Arthropod legs, like their bodies, 

display innumerable morphologic diversity, having been extensively modified and adapted 

for various functions (running, jumping, swimming, etc.). Though outwardly different in 

appearance, all arthropod legs are subdivided into several smaller units (podomeres), 

separated by joints that allow flexibility and ease of motion. The mechanisms of leg 

development are remarkably conserved, involving the ‘leg gap’ genes for proximodistal 

regionalization (Angelini and Kaufman, 2005b; Jockusch et al., 2000; Niwa et al., 2000; 

Panganiban et al., 1994) and N-signalling in border and joint formation (Bishop et al., 

1999; de Celis et al., 1998; Prpic and Damen, 2009; Rauskolb and Irvine, 1999).  

Early expression of the leg gap genes homothorax (hth), dachshund (dac), and 

Distal-less (Dll) respectively pattern the proximal, medial, and distal regions of the 

developing legs (Abzhanov and Kaufman, 2000; Angelini and Kaufman, 2005b; Blagburn, 
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2007; Couso and Bishop, 1998; Inoue et al., 2002b; Pechmann et al., 2010; Prpic et al., 

2003; Prpic and Tautz, 2003; Wu and Cohen, 1999). Further patterning of the leg involves 

N-signalling in defining segment borders, which may represent a phylotypic trait in 

arthropods (Prpic and Damen, 2009; Rauskolb and Irvine, 1999). 

  Leg development has been well studied in Drosophila, in which the legs are 

composed of five basic segments; from proximal to distal: coxa (cx), trochanter (tr), femur 

(fe), tibia (ti), and tarsus (ta – itself subdivided into smaller tarsomeres). In Drosophila 

and other holometabolous insects, the legs are derived from thickened invaginated pockets 

of undifferentiated cells contained within the larval epidermis called imaginal discs. By 

the end of larval development and through pupariation, concentric rings of gene 

expression lead to a series of concentric folding of leg tissue, which later evert as fully 

formed legs. The genes that pattern fly legs are the same as those used to pattern the direct 

developing legs (limb buds) of lower insects and arthropods during embryogenesis. These 

include the leg gap genes and members of the N-pathway, such as Dl and Serrate (Ser), 

important for appendage growth and segmentation (Angelini et al., 2012; Bishop et al., 

1999; de Celis et al., 1998; Dearden and Akam, 2000; Greenberg and Hatini, 2009; Mito 

et al., 2011; Pechmann et al., 2010; Prpic and Damen, 2009; Rauskolb and Irvine, 1999). 

In Drosophila, Notch regulation of leg segmentation varies between the ‘true’ 

joints containing muscle attachments (cx, tr, fe, and ti) and the ball-and-socket joints of 

the tarsomeres. Downstream targets of N-signalling in Drosophila leg development 

include genes important in leg growth and controlling joint intercalation/formation such as 

odd-skipped related (odd-r), Enhancer of split (E(spl)), and nubbin (nub) (Bishop et al., 

1999; de Celis et al., 1998; Hao et al., 2003; Rauskolb and Irvine, 1999). In the true joints, 

Dl/Ser and N are expressed in the distal end of each podomere where the genes odd-r, 

lines, and bowl form a negative feedback mechanism that maintains a boundary between 
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Dl/Ser expression and the N-responsive region, consequently promoting growth, defining 

the leg segment, and regulating joint morphogenesis (Greenberg and Hatini, 2009; 

Kojima, 2004).  

Also of note is the N-regulated expression of nubbin (a POU homeodomain 

transcription factor) at the distal end of each true jointed leg segment (Greenberg and 

Hatini, 2009; Rauskolb and Irvine, 1999). Loss of Dm-nub leads to the loss of joint 

definition and fusions between adjacent podomeres, except for most of the tarsal sub-

segments (Turchyn et al., 2011). Although expressed in a broad domain across the 

presumptive tarsi at early third instar, Dm-nub is no longer expressed at the time of 

tarsomere folding and joint formation, except tarsomere-5 (Natori et al., 2012; Turchyn et 

al., 2011). Thus, Dm-nub functions in the tarsi as a temporal modulator of tarsal gene 

expression, but not in the actual process of tarsal joint formation (Natori et al., 2012). 

One of the main components of tarsal patterning in the fly is the N-regulation of 

tarsal-less, which then goes on to activate the expression of the zinc-finger transcription 

factor rotund (rn) (Natori et al., 2012; Pueyo and Couso, 2008). Through mid-third instar, 

the progressive clearance of Dm-nub from the medial tarsus allows derepression of rn 

expression, which, in turn, inhibits Bar, leading to the sequential formation of the tarsal 

subsegments (Kojima et al., 2000; Natori et al., 2012). During pupation, Dm-tal is also 

involved in the intercalation and formation of tarsal joints by modulating the expression of 

an active form of shavenbaby (Galindo et al., 2007; Kondo et al., 2010; Pueyo and Couso, 

2008; Pueyo and Couso, 2011). Dm-Svb inhibits the expression of Delta, thus forming a 

negative feedback loop between Tal and N, leading to the formation of a sharp Dl+/Dl- 

border at the future tarsal joint boundaries (Pueyo and Couso, 2011). Depleted Dm-tal 

expression leads to loss of tarsomeres, while gain-of-function of Dm-tal leads to the 

development of ectopic joints, confirming the function of Dm-tal in tarsal development 
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and joint formation (Galindo et al., 2007; Pueyo and Couso, 2008). In Drosophila, tal is 

not expressed in the “true joints” and could be an evolutionary novelty in specifying the 

non-muscle joints of the tarsi, acting as a link between patterning and morphogenesis in 

this location. In brief, the true joints require Notch regulation of nub and odd-r expression 

for proper formation, where the tarsomeres are formed by the initial activation of tal by 

Notch, which leads to the cleavage of the long form of Svb into its active form required 

for proper joint development. 

Leg patterning in other arthropods has not been as extensively studied as in 

Drosophila. Outside of the conserved expression and function of the leg gap genes 

mentioned above, only a few studies have shown a requirement for N-signalling in leg 

patterning in other arthropods (Angelini et al., 2012; Mito et al., 2011; Prpic and Damen, 

2009). As a putative downstream target of Notch, nubbin is variably expressed in the 

developing appendages of many arthropods, at the distal end of all, or most, podomeres 

(Hrycaj et al., 2008; Li and Popadić, 2004; Popadic, 2005; Prpic and Damen, 2005), and is 

important for proper appendage patterning (Prpic and Damen, 2005; Turchyn et al., 2011). 

Recently, Turchyn et al. (2011) have further described the divergence in expression and 

function of nub in Acheta domesticus (house cricket), Periplaneta, and Drosophila. Their 

results illustrate that although nub is expressed in all (crickets and roaches) or most (flies) 

leg segments, the major effect of the gene differs in location in different species. Acheta-

nub functions mainly in the tibia and first tarsus, while Periplaneta-nub is more essential 

in the coxa, trochanter, and femur (Turchyn et al., 2011). Drosophila-nub is important in 

all leg joints except tarsi. Additionally, it was shown that the expression and function of 

nub in joint formation is reliant on Notch signalling in the cockroach, a mechanism that is 

conserved in flies and spiders (Pechmann et al., 2010; Rauskolb and Irvine, 1999; Turchyn 

et al., 2011).  
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The mechanisms of leg segmentation have been well studied in Drosophila, but 

less so in other organisms. In Drosophila, nub and tal have complementary roles in joint 

formation in true joints versus tarsi, respectively. Conversely, Tribolium-tal is expressed 

in all podomeres and loss of expression via Tc-tal
RNAi

 resulted in larvae with short, stubby 

legs (Savard et al., 2006). Expression and function of Notch and Nubbin in leg 

development appear to be conserved and there is a potentially conserved role for the newly 

discovered gene, tarsal-less, in leg patterning. Having mainly been studied in Drosophila 

leg and denticle belt formation and Tribolium body patterning, the expression and 

function(s) of this gene have yet to be examined and compared in more basal arthropod 

species. 
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Thesis Aims 

 In this thesis, I present results of my doctoral research investigating the 

mechanisms of segmentation in the American cockroach, Periplaneta americana. 

Periplaneta is a suitable candidate for these investigations, as elucidation of these 

mechanisms in a phylogenetically basal, short germ band organism will help to establish 

putative ancestral gene expression and function, allowing us to gain further insights into 

the evolution of segmentation. Cockroaches are a good system in which to study these 

mechanisms, as they are highly susceptible to RNA interference (RNAi), embryos can be 

cultured ex ovo, and within a single ootheca there is an age gradient where younger 

embryos differ from older ones by approximately one half segment. These advantages 

were instrumental in showing that the sequential addition of segments in Periplaneta is 

comparable to vertebrate somitogenesis involving cyclic waves of Notch-signalling from 

the posterior (Pueyo et al., 2008); this feature is important when drawing evolutionary 

corollaries between closely or distantly related species. This thesis is organised into three 

main results sections discussing the following aims: 

 

1) Investigate the Wnt-Cad posterior organiser and analyse any potential 

relationship with N-mediated segmentation.  

The function of the Wnt-Cad posterior organiser in axis formation and growth is 

generally accepted to be true for all bilaterians and the function of N-signalling in 

segmentation/somitogenesis is conserved among the segmented phyla. There is an 

intimate relationship between posterior growth and segmentation; however, the unification 

of the Wnt-cad organiser and N-signalling has rarely been examined. In Chapter III, I 

discuss the interactions between these networks and show that they are dependent on each 
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other in order to maintain posterior growth and achieve proper segmentation during 

Periplaneta embryogenesis. 

  

2) Examine the role of the pair-rule genes in anterior and posterior segmentation.  

The pair-rule genes are important in segmentation of both long and short germ 

band arthropods, though it is unclear whether the ancestral state of these genes is single or 

double segmental. Between species, expression patterns vary widely and even within the 

same embryo there can be differences between expression and function in the anterior and 

the posterior. I set out to investigate the patterns of expression and putative functions of 

four pair-rule genes during Periplaneta embryogenesis: even-skipped, runt, paired, and 

sloppy-paired. Chapter IV will discuss the requirement for these pair-rule genes in proper 

anterior segmentation and their apparent semi-redundant functions in posterior patterning 

in the cockroach. 

 

3) Isolate and analyse the expression and function of the smORF gene tarsal-less. 

While there is considerable conservation in tal sequences between the different 

arthropod species, this gene has only been studied in two holometabolous insects, 

Drosophila and Tribolium. The expression patterns and functions are divergent between 

these organisms during body segmentation, but may be conserved in leg patterning. I set 

out to isolate a tal homologue in Periplaneta in order to determine any conserved 

mechanisms shared between these three species. Periplaneta is the first hemimetabolous 

insect in which this gene has been studied (Chapter V), showing conserved expression in 

the legs, but divergent expression and function in body patterning.  
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Figure 1.1: Theories on the origin of bilaterian segmentation. A segmented body plan 

is a common theme amongst the Bilateria, found in the three most successful groups, i.e. 

vertebrates, annelids, and arthropods. The origin of segmentation is contested and three 

main views exist: (1) each group evolved segmentation mechanisms independently (red 

bars), (2) segmentation evolved separately in the deuterostomes (vertebrates) and 

protostomes (blue bars), or (3) it may have already been present in the last common 

bilaterian ancestor (green bar). Adapted from Peel and Akam (2003). 
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Figure 1.2: Vertebrate ‘clock and wavefront’ model of segmentation. Vertebrate 

embryos grow and new segments emerge from the posteriorly extending presomitic 

mesoderm (PSM). Posterior elongation involves Cdx/cad and Wnt-signalling. Periodic 

waves of the N-based clock mechanism (orange), involving the oscillatory 

activation/inhibition of Delta, Notch, and hes/her, move through the PSM resolving into 

stripes of expression in the anterior leading to boundary and somite formation (purple). 

Spatiotemporal regulation of somitogenesis occurs through two opposing gradients: 1) a 

posterior-to-anterior ‘wavefront’ of FGF and Wnt signalling (green triangle) that is 

opposed by 2) the inhibitory effects of retinoic acid (RA; blue triangle) expressed in a 

counter anterior-to-posterior gradient. Where these gradients meet, the determination zone, 

is where the temporal N-clock is translated into a spatial pattern of gene expressions 

involved in boundary formation (i.e. mesp2 and lfng). 

  



  26   

 

 

 

Figure 1.3: Two general modes of arthropod embryonic segmentation, short and long 

germ band. (A) Long germ band insects are highly derived and all body segments are 

specified at the same time in the blastoderm. This process is controlled through a highly 

complex cascade of transcription factors called the “Drosophila paradigm”. At the top of 

this cascade are the maternal effect genes that function to establish the AP axis and to 

regulate the downstream gap genes. Gap genes are expressed in broad domains within the 

blastoderm and, in turn, regulate the pair-rule genes in the ‘classic’ double-segment 

pattern of expression. The pair-rule genes then go on to regulate the segment polarity 

genes that define parasegment boundaries and give separate anterior and posterior 

identities within each segmental unit. (B) In contrast, during the short germ band mode of 

development, only the anterior-most head and some thoracic segments are formed in the 

early blastoderm, while the remaining posterior segments are added sequentially from a 

posteriorly extending growth zone, a process likely to be regulated through N-signalling. 

Modified from Liu and Kaufman (2005b). 
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CHAPTER II 

MATERIALS AND METHODS 

A. Animal rearing 

A Periplaneta americana colony was kept in the laboratory at 29ºC and provided 

with a regular supply of tap water and Cockroach Diet (Blades Biological Ltd. – 

Cat#DTS079). Freshly laid oothecae were collected and placed in a humidified incubator 

at 29º C
 
allowing the embryos to develop to the required stage for dissection (according to 

Lenoir-Rousseaux and Lender, 1970) or were allowed to hatch to first nymph.   

Gryllus bimaculatus eggs were kindly provided by Robert Ray from his laboratory 

colony. Eggs were collected and placed in a petri dish on wet paper towel for humidity 

and embryos allowed to develop at 29ºC until the required stage (according to Niwa et al., 

1997) before dissecting. 

 

B. Embryo dissection and fixation 

Periplaneta and Gryllus embryos at the desired stages were dissected in a watch 

glass containing nuclease free 1X PBS (Phosphate Buffered Saline; Roche – 

Cat#11666789001). For Periplaneta, the top “zipper” part of the ootheca was removed 

with scissors and the two halves were pried apart using sterile forceps. Each ootheca 

contains 12-18 eggs, which were individually peeled open to expose the embryo within. 

After removing the surrounding yolk, embryos were transferred to a 0.5 ml eppendorf tube 

and fixed with 4% paraformaldehyde in a slow moving rotator at room temperature for 

one hour (for in situ hybridisation) or 20 minutes (for antibody staining). The embryos 

were then washed several times with 1X PBS, and dehydrated in an increasing ethanol 

series (30%, 50%, 70%, 90%, and 100%) and stored at -20ºC until ready for use.  
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Gryllus eggs are laid individually and embryos were removed, in 1X PBS, by 

cutting off the anterior end of the egg and either peeling the rest open or gently pushing 

the embryo through the opened end with forceps. Cricket embryos were fixed and stored 

in the same manner as cockroach embryos. 

 

C. RNA extraction 

Total RNA was extracted from Periplaneta or Gryllus embryos of mixed stages 

using either of two methods. The first method used the RNAqueous
®
-4PCR kit (Ambion – 

Cat#AM1912) following the manufacturer’s protocol. Briefly, 40-60 cockroach embryos 

or cricket eggs were homogenized in a nuclease-free 1.5 mL eppendorf tube using a sterile 

pestle. The cells were lysed in a solution containing guanidium thiocynate, which also 

inactivates ribonucleases. After the addition of ethanol, the homogenate was passed 

through a silica-based filter cartridge to which the RNA is bound. Proteins, DNA, and 

other contaminants were removed through several washes with reagents provided in the kit 

and RNA was recovered in a sterile 1.5 mL tube by the addition of the Elution Solution 

(Ambion). Any residual DNA contamination was removed with DNase1 treatment at 37ºC 

for 30 minutes.  

The second method for RNA isolation used the TRIzol
®
 reagent (Invitrogen – 

Cat#15596-026), which contains a mixture of phenol, guanidium thiocynate, and 

ammonium thiocynate for fast, ‘one-step’ RNA isolation. With this method, the embryos 

were homogenized and lysed using a sterile pestle in a 1.5 mL eppendorf tube containing a 

small amount of TRIzol
®
 reagent. After the addition of chloroform:isoamyl (24:1) the 

tubes were incubated for 5 minutes at room temperature, spun to separate phases, and the 

resulting supernatant was transferred to a sterile, nuclease-free tube. In subsequent steps, 

the RNA was precipitated with isopropanol and washed with ethanol before being 
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resuspended in nuclease-free H2O. Visualisation of both RNA extraction techniques was 

done via agarose gel electrophoresis (section G) and RNA was stored at -80ºC. 

 

D. cDNA synthesis 

cDNA was synthesized using the RETROscript
®
 kit (Ambion – Cat#AM1710M) 

following the protocol for the ‘Two-step RT-PCR with heat denaturation of RNA’ 

procedure provided by the manufacturer. One microgram total RNA was combined with 

either random decamers or oligo(dT) primers and nuclease-free water, then denatured at 

80ºC before the addition of the remaining RT reagents: 10X RT buffer, dNTPs, RNase 

inhibitor, and the M-MLV Reverse Transcriptase. Reverse transcription of cDNA was 

done at 42ºC for 1-2 hours. The reaction was stopped by inactivating the reverse 

transcriptase at 92ºC for 10 minutes. Newly synthesized cDNA was stored at -80ºC until 

ready to use in PCR reactions. Visualisation of the newly synthesised cDNA was done via 

agarose gel electrophoresis, as described in section G. 

 

E. Primer design 

Previously published gene sequences from insects and other arthropod species 

were obtained from GenBank (http://www.ncbi.nlm.nih.gov/) and aligned using 

Lasergene® MegAlign
TM

 sequencing analysis software (DNASTAR) looking for highly 

conserved regions. Degenerate primers were designed by hand towards these conserved 

sequences and prepared by Invitrogen Custom Primers (http://www.invitrogen.com). 

Upon receipt, all primers were resuspended in sterile water to a stock concentration of 100 

µM from which a 10 µM working solution was prepared; both were stored at -20ºC.  

Where possible, primer degeneracy was reduced to allow for fewer incidents of 

non-specific priming by analysing codon usage bias in P. americana via the Codon Usage 
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Database (Appendix 1) (http://www.kazusa.or.jp/codon) (Nakamura et al., 2000). Gene 

fragments resulting from degenerate PCR were sequenced and used to design gene-

specific primers for use in future PCR reactions in order to obtain longer or full-length 

gene sequences. A complete list of degenerate and specific primers used for each gene can 

be found in Appendix 2. 

 

F. Polymerase Chain Reaction (PCR) 

PCR reactions were conducted using reagents provided in the Taq PCR Core Kit 

(QIAGEN – Cat#201225). PCR reactions were prepared on ice to a total volume of 100 µl 

as follows: 5 µl 10X PCR buffer; 10 µl 5X Q-Solution; 2-4 µl MgCl2 (25mM); 2 µl dNTP 

mix (10 mM each); 2 µl each forward/reverse specific primer (5 µl degenerate); 2 µl 

template cDNA; 0.5 µl Taq DNA polymerase (5 Units/µl); H20 up to 100 µl. Final 

concentrations of some reagents, such as MgCl2 and dNTP, were adjusted where necessary 

to improve optimal target amplification. Nested primer pairs were used in order to 

decrease the number of non-specific target fragments in degenerate PCR reactions – first 

round PCR using outer primers and second round PCR using inner (nested) primers. PCR 

was performed using either a Techne TC-3000 or an eppendorf Mastercycler Gradient 

thermocycler. Cycling conditions were optimized based on use of degenerate or specific 

primers, melting temperatures (Tm), and target sequence length. Standard PCR conditions:  

 

1 cycle:   extended DNA denaturation at 94ºC – 5 minutes 

30 cycles: denaturation at 94ºC – 30 seconds 

  annealing at 3-5ºC below average primer Tm – 30 seconds  

  extension at 72ºC – 30 seconds to 2 minutes (depending on target length) 

1 cycle: extended extension at 72ºC – 10 minutes 

Hold:   4ºC 
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Visualisation of PCR products was done via agarose gel electrophoresis as described in 

section G. 

 

G. Agarose gel electrophoresis 

Visualisation of the various RNA, cDNA, and PCR products was done via agarose 

gel electrophoresis. Gels were prepared by combining 0.5-1.5% agarose, based on 

expected product size, in 1X TBE (89 mM Tris, 89 mM boric acid, 2 mM EDTA) and 

heated in a microwave to dissolve. For visualisation, 0.5 µg/ml ethidium bromide was 

added to the liquid agarose before pouring into the gel cast. The DNA or RNA product 

was combined with MassRuler
TM

 DNA Loading Dye (Fermentas – Cat#SM0403) at a 

proportion of 1 µl dye for every 5 µl product, and loaded into the wells of the agarose gel 

alongside the MassRuler
TM

 DNA Ladder Mix (80-10,000 bp fragments; Fermentas – 

Cat#SM0403) to assess length of product and calculate approximate sample concentration. 

Gel pictures were taken using an Uvidoc gel documentation system (Uvitec Cambridge) 

and UviPhotoMW image analysis software. 

 

H. Gene cloning  

Upon successful PCR amplification, the desired gene fragment was cloned using 

the pCR
®
4-TOPO TA cloning kit (Invitrogen – Cat#K4575-02) and transformed, via heat-

shock, into One Shot
®
 TOP10 competent E. coli cells (Invitrogen – supplied with kit) 

following the manufacturer’s instructions. The plasmid cloning vector contains antibiotic 

resistance genes and those bacteria successfully transformed are selected for by first 

growing overnight at 37ºC on Luria-Bertania (LB) agarose plates containing the antibiotic 

Kanamycin (50 µg/ml). Individual colonies were picked and transferred with sterile 

toothpicks into separate bottles of liquid LB media containing Ampicillin (100 µg/ml) in 
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which they were allowed to grow overnight at 37ºC with constant shaking. On the 

following day, the plasmids were isolated via miniprep (section I). 

 

I. Minipreparation of plasmid DNA 

Plasmid DNA was isolated from bacterial cultures using the QIAprep
®
 Spin 

Miniprep Kit (QIAGEN – Cat#27106) following the instructions provided by the 

manufacturer. Two millilitres of overnight culture were spun to pellet the cells and the 

remaining supernatant was poured off. The cells were lysed in an alkaline solution and 

cleared via centrifugation. The DNA containing supernatant was transferred to a spin 

column containing a silica membrane to which the DNA is adsorbed. After several clean-

up washes using the kit provided reagents, DNA was removed from the membrane using 

the low-salt Elution Buffer provided. 

The TOPO plasmid vector contains EcoRI restriction sites on either side of the 

insertion site allowing the inserted gene fragment to be excised and isolated by digesting 

the plasmid with the EcoRI restriction enzyme (Invitrogen) for several hours at 37ºC. 

Confirmation of plasmid insert excision was done via agarose gel electrophoresis (section 

G). Aliquots of plasmids containing the putative insert were prepared and sent for 

sequencing with the remaining plasmid stored at -20ºC. 

 

J. Sequencing and phylogenetic analysis 

All plasmids were sent for sequencing to Eurofins MWG Operon 

(http://eurofinsdna.com). Approximately 1-2 µg of plasmid DNA template was sent in 

nuclease-free water to be sequenced in the forward direction using the universal forward 

M13uni(-21), that recognise regions on the plasmid flanking the insert, provided by the 
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company. Larger fragments (>1000 bp) were also sequenced in reverse using the 

M13rev(-29) primer. Primer sequences can be found on the Eurofins website.  

Upon receipt, sequences were analysed using the Lasergene
®
 Software Suite for 

Sequence Analysis (DNASTAR). Initial trimming of the extraneous plasmid sequence was 

done using the EditSeq
TM

 program, leaving the insert sequence which was then subjected 

to BLAST (Basic Local Alignment Search Tool – http://blast.ncbi.nlm. nih.gov/Blast.cgi) 

(Altschul et al., 1990) analysis to confirm homology of the isolated Periplaneta gene. 

Upon confirmation, orthologous protein sequences from other arthropods were acquired 

from GenBank (http://www.ncbi.nlm.nih.gov/genbank) and used for alignment and 

phylogenetic comparison via MegAlign
TM

 software (DNASTAR). 

 

K. 5’ and 3’ RLM-RACE 

Periplaneta cDNA sequences resulting from degenerate PCR were extended into 

the 5’ and 3’ directions using the FirstChoice
®
 RNA Ligase Mediated-Rapid 

Amplification of cDNA Ends (RLM-RACE; Ambion – Cat#AM1700) technique 

following the manufacturer’s protocol. In both methods, 1 µg of Periplaneta total RNA 

was used as a template along with gene specific primers (Appendix 2) and the adaptor 

specific primers provided with the kit. For 5’RACE, the 5’-phosphate from 

incomplete/uncapped RNAs was first removed using Calf Intestine Alkaline Phosphatase 

(CIP). Complete, full-length mRNAs were treated with Tobacco Acid Pyrophosphatase 

(TAP) to remove the cap, leaving a monophosphate at the 5’end to which an adaptor 

oligonucleotide is ligated; this adaptor cannot be ligated to the previously 

dephosphorylated, incomplete RNAs. Full-length mRNAs are reverse transcribed and the 

resultant cDNA used in 5’RACE PCR reactions. 3’RACE uses an adaptor containing a 

poly-T sequence that specifically binds to the poly-A tail of the mRNA. The adaptor 
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sequences contain a recognition site for M-MLV reverse transcriptase. Newly synthesised 

cDNA was used in subsequent 3’RACE PCR reactions. 5’ and 3’ RLM-RACE PCR 

thermocycling profile: 

 

1 cycle:   extended DNA denaturation at 94ºC – 5 minutes 

30 cycles: denaturation at 94ºC – 30 seconds 

  annealing at 3-5ºC below average primer Tm – 30 seconds  

  extension at 72ºC – 2-3 minutes 

1 cycle: extended extension at 72ºC – 10 minutes 

Hold:   4ºC 

 

RACE PCR annealing temperature as recommended in the kit ranges from 55-

65ºC, therefore is flexible and is optimised according to the Tm of the gene-specific 

primer. On occasion, the Tm of a gene-specific primer is significantly different from that 

of the RACE primer and, therefore, a touchdown PCR was performed. In these instances, 

the thermocycling profile was altered: starting with the higher annealing temperature 

corresponding to the RACE-specific primer (60ºC for 5 cycles) and subsequently lowering 

the annealing temperature by 3ºC (5 cycles each) until reaching the optimum gene-specific 

primer Tm, which was then allowed to cycle 20-25 times. Visualisation of RACE PCR 

products was done via agarose gel electrophoresis as described in section G. 

 

L. Riboprobe synthesis  

Plasmids containing the sequence of a desired gene of interest were linearised with 

an appropriate restriction enzyme that cut the plasmid one time on either side of the insert, 

depending on the orientation, and use of either the T7 or T3 polymerase priming site. 

Plasmids containing a Pa-nubbin fragment were kindly provided by A. Popadić (Wayne 
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State University, Detroit, USA). RE digestions were performed for at least two hours at 

37ºC. The linearised plasmid DNA was purified by phenol/chloroform extraction, ethanol 

precipitated, and resuspended in nuclease-free water. Concentration was checked by 

running both 0.2 µl and 1µl aliquots on a 1% agarose gel and comparing band intensity 

with the MassRuler
TM

 DNA Ladder Mix.  

RNA riboprobes were synthesised, under RNase free conditions, using the RNA 

Labelling Kit (Roche – Cat#11175025910) following the manufacturer’s protocol. One 

microgram of DNA was used as a template for transcription and RNA probes were 

generated by incorporating labelled UTPs [Digoxigenin (DIG; Roche – 

Cat#11175025910); Biotin (BIO; Roche - 11685597910); Dinitrophenol (DNP; Perkin 

Elmer – NEL55001EA] during this process. Transcription reactions were conducted for 

two hours at 37ºC, after which the cDNA template was removed via DNAse I treatment. 

RNA was precipitated overnight at -20ºC after the addition of 8M LiCl and 100% ethanol, 

then centrifuged to pellet, washed with 70% ethanol, and resuspended in 40 µl nuclease-

free water. Details of probe length and mRNA hybridisation sequences for each gene are 

described within each chapter.  

 

M. Hydrolysis of riboprobes 

 Newly synthesised riboprobes were hydrolysed into smaller fragments of 100-200 

bp in order to improve signal in subsequent in situ hybridisation. Probe hydrolysis, as 

described by Lanfear (2007), consisted of adding equal volumes of 0.4 M sodium 

bicarbonate and 0.6 M sodium carbonate to the riboprobe and incubating at 60ºC for a 

calculated time:   
               

                    
, where Lstart is starting length of the riboprobe (in kb) 

and Lend is the desired end length (in kb). The reaction was stopped by adding ammonium 

acetate, 3 M glacial acetic acid, and precipitated with 100% ethanol at -20ºC for 20 
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minutes. The mixture was then centrifuged and the resulting pellet washed with 70% 

ethanol, air-dried, and resuspended in 80-100 µl hybridisation solution (Section O). 

  

N. Dot blot 

Labelling efficiency and quantification of DIG-labelled riboprobes were done via 

dot blot. A dilution series (1:100; 1:1000; 1:10000 in nuclease-free water) was prepared 

for the gene specific riboprobe alongside a DIG-labelled control RNA provided in the 

Roche DIG-labelling kit. Two microliters of each dilution was blotted onto a positively 

charged nylon membrane (Roche – Cat#1417240) and fixed using the UV Stratalinker
®

 

(Stratagene). The membrane was rinsed twice for 5 minutes with Maleic acid buffer pH 

7.5 (0.1 M maleic acid, 0.15 M NaCl) before blocking for 30 minutes in 10% Blocking 

Solution (0.5 g Blocking Reagent [Roche – Cat# 11096176001] in 50 ml maleic acid 

buffer). After blocking, the membrane was incubated for 30 minutes with the Alkaline 

Phosphatase conjugated anti-DIG antibodies, Fab fragments (α-DIG-AP; Roche – 

Cat#11093274910) at 1:10000 in Blocking Solution. Excess antibody was removed with 

two 15-minute washes using Wash Buffer (Maleic acid buffer + 0.3% Tween-20). Before 

detection, the membrane was equilibrated with two 5-minute washes in Detection Buffer 

(0.1 M Tris-HCl; 0.1 M NaCl; 50 mM MgCl2; pH 9.5). Colour was developed in the dark 

in Detection Buffer containing NBT (Roche – Cat#11383213001) and BCIP (Roche – 

Cat#11383221001); when colour developed, the reaction was stopped via several washes 

with distilled water. 

 

O. Colorimetric in situ hybridization  

Colorimetric in situ hybridization protocols were slightly modified from that 

described by Marie et al. (2000) and Lanfear (2007). Embryos stored at -20ºC were 
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removed and allowed to warm up to room temperature, then rehydrated in a decreasing 

series of ethanol dilutions (90%, 70%, 50%, 30%), and washed several times with 1X PBT 

(1X PBS + 0.2% Tween-20) to remove excess ethanol. The embryos were then 

permeabilised using either of two methods. The first method used Proteinase K (Roche – 

Cat#3115828) digestion at 3 µg/ml in PBT for 1 hour on ice. The reaction was stopped by 

washing two times with 2 mg/ml glycine in PBT followed by several washes with 1X PBT 

to remove the glycine. The second treatment used 0.1% sodium borohydride (Acros 

Organics – Cat#AC41947-1000) in 1X PBT for 10 minutes, uncapped in a fume hood as 

this produces a large amount of hydrogen gas. The embryos were washed 3 times with 

PBT before moving on to the next step. 

When a DIG-labelled probe was used, the embryos were incubated with 0.2 M HCl 

for 10 minutes to remove endogenous alkaline phosphatase activity. Embryos were 

washed several times in 1X PBT then post-fixed in 4% paraformaldehyde for 20 minutes. 

Embryos were prepared for hybridisation by first washing with a 1:1 solution of 

PBT:Hybridisation Solution (HS – a mixture of deionised formamide, 20X standard saline 

citrate, heparin (50 µg/ml), Tween-20, boiled salmon sperm (10 mg/ml), tRNA, and 

nuclease free H2O) then washed with neat HS. Pre-hybridisation was performed in HS for 

two or more hours in a 56ºC water bath. 200-500 ng of hydrolysed probe in HS was heated 

to 90ºC for one minute to relax any secondary structures before adding to the embryos; the 

probe was allowed to hybridise at 56ºC overnight, for at least 16 hours. 

The probe was removed and stored at -80ºC for later re-use. Embryos were washed 

several times in HS to remove excess probe and then slowly transferred to PBT in a series 

of HS:PBT solutions (1:3, 1:1, 3:1), finally being brought down to room temperature in 

1X PBT. Embryos were blocked for 2 hours in a solution of 1% bovine serum albumin 

(Sigma) and 5% normal horse serum (Vector Labs) in 1X PBT. After blocking, embryos 



  38   

 

were incubated in a slow rotator at 4ºC overnight in a 1:1000 dilution of α-DIG-AP 

(Roche) in blocking buffer. The antibody was removed by washing the embryos several 

times with PBT over 2 hours followed by three rinses with staining solution (5 M NaCl, 1 

M Tris-HCl, 1 M MgCl2, 0.2% Tween-20, and H2O). A developing solution was made by 

combining staining solution with 4.5 µl/ml NBT and 3.5 µl/ml BCIP. Signal was allowed 

to develop in the dark and monitored periodically as to not overstain. Embryos were then 

washed several times in 1X PBS before mounting on glass slides in Aqua-Poly/Mount 

(Polysciences – Cat#18606-20) prior to imaging. 

 

P. Fluorescence in situ hybridisation (FISH) 

Embryos undergoing fluorescence in situ hybridisation were treated similarly as 

described above (section N) up to the post-hybridisation PBT washes. Embryos were then 

subjected to the Tyramide Signal Amplification (TSA) System (PerkinElmer Life 

Sciences) protocol. Here, the embryos were incubated in 3% hydrogen peroxide for 30 

minutes in order to deactivate endogenous peroxidase activity so as not to interfere with 

the horseradish peroxidase (HRP) driven processes during the signal detection stage. The 

embryos were washed twice for 10 minutes with 1X PBT, then blocked for 2 hours with 

TNB Buffer (0.1 M Tris-HCl pH7.5; 15 M NaCl; 0.5% Blocking Reagent [TSA kit], 

sterile H2O). For biotin-labelled probes, a 1:100 dilution of the streptavidin-HRP 

conjugated antibody (TSA kit) in TNB was added to the embryos, which were then 

incubated overnight at 4ºC. DIG-labelled probes were treated with HRP conjugated α-

DIG-POD, Fab fragments (Roche – Cat#11207733910) at 1:100 dilution in TNB and 

similarly stored overnight at 4ºC. DIG-labelled probes used in double FISH experiments 

were incubated overnight at 4ºC with sheep α-DIG (Roche – Cat#11333089001) at 1:200 
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in TNB, then washed three times in TNB and incubated for 2 hours at room temperature 

with a donkey α-sheep Alexa555 antibody (Molecular Probes – A21436) at 1:200 in TNB. 

In either case, embryos were washed 3 times with TNT (0.1 M Tris-HCl pH 7.5; 

0.15 M NaCl; 0.05% Tween-20; sterile H2O) before signal amplification and detection. 

TSA amplification was done by adding a 1:50 dilution of either Cyanine3 (red; 

PerkinElmer – Cat#NEL704A001KT) or Fluorescein (green; PerkinElmer – 

Cat#NEL701A001KT) in 1X Amplification Diluent (all components provided in the TSA 

kits; PerkinElmer). Embryos were placed in a slow moving rotator for 10-30 minutes and 

periodically checked for optimal fluorescent signal. Reactions were stopped by washing 

two times in TNT followed by several washes with PBS. Embryos were mounted on glass 

slides in Aqua-Poly/Mount (Polysciences) prior to imaging. 

 

Q. Immunocytochemistry  

Protein expression was detected using various cross-reactive antibodies following 

protocols described by Pueyo et al. (2008). Primary monoclonal mouse antibody FP6.87 

(α-Ubx/α-AbdA; from Rob White, University of Cambridge, Cambridge, UK) was used at 

a 1:10 dilution. Mouse α-Eve monoclonal antibody 2B8 from the Developmental Studies 

Hybridoma Bank at the University of Iowa as described by Patel et al. (1992; 1994) and 

executed by JP Couso (University of Sussex). Apoptosis was detected using a rabbit α-

cleaved caspase 3 antibody (cas3; Cell Signalling Technology) at a 1:50 dilution and cells 

undergoing mitosis were detected using a polyclonal rabbit α-phosphorylated Histone 3 

antibody (H3P; Upstate) at 1:1000 dilution. Nuclei were detected using DAPI (4’,6-

diamidino-2-phenylindole; Invitrogen). Secondary antibodies conjugated with biotin or 

fluorophores were from Jackson Immunochemicals.  
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 Fixed embryos were removed from -20ºC and allowed to warm to room 

temperature, then washed several times with PBTx (1X PBS,  0.3% Triton X-100, 1% 

Bovine Serum Albumin). Embryos were incubated with the primary antibody overnight at 

4ºC. The following day, embryos were washed two times with PBTx prior to addition of 

the secondary antibody and incubated at room temperature for 2 hours. A single embryo 

was removed from the tube periodically in order to examine strength of signal; at optimal 

staining embryos were washed several times over 1 hour with PBTx before mounting on 

glass slides in Aqua-Poly/Mount (Polysciences). Images taken as described in Section U. 

 

R. Double stranded RNA synthesis  

Gene-specific forward and reverse primers were designed containing the T7 

polymerase promoter sequence (TAATACGACTCACTATAGGGA) at the 5’ end 

(Appendix 2); this method allows for dsRNA production directly from the PCR products. 

A standard PCR reaction was prepared as described in section F, using plasmid clones as 

the template. PCR products were run on a 0.8% agarose gel and the band of the expected 

sized was excised on a UV transilluminator (Syngene) with a sterile razor, then extracted 

and cleaned up using the QIAquick Gel Extraction Kit (QIAGEN – Cat#28706), following 

the protocol provided by the manufacturer.  

The purified DNA fragment was used to synthesise dsRNA with the T7 

RiboMAX
TM

 Express Large Scale RNA Production System (Promega – Cat#P1320), 

according to the manufacturer’s instructions. One microgram of cDNA from the PCR 

reaction above was used per transcription reaction, which was allowed to run at 37ºC for 

one hour. DNA template was removed via treatment with DNase I for 15 minutes at 37ºC 

and RNA was extracted with phenol:chloroform (5:1), then chloroform:isoamyl (24:1), 
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followed by isopropanol precipitation at -20ºC for 2 hours. RNA precipitate was spun to 

pellet, washed with 70% ethanol, air-dried, and resuspended in nuclease-free H2O. 

 

S. RNA interference (RNAi) 

Periplaneta maternal RNAi was conducted as described by Pueyo et al. (2008). 

dsRNA, of varying concentration by gene (Table 2.1), was injected into the ventrolateral 

abdomen of adult virgin females using a 5 ml BD Plastipak syringe (Becton Dickinson) 

modified to fit pulled glass capillary needles. Prior to injection females were anaesthetized 

with CO2. Females were subjected to two injections, first on the left side then on the right 

side of the abdomen, spaced three hours apart. Post-injection, up to six similarly injected 

females were placed in isolated containers with 3 males and kept in a 29ºC incubator; 

oothecae were collected and incubated as described in section A. As a control, several 

adult females were injected with 10 μl H2O. Phenotypic analysis of resultant embryos and 

first nymphs are described within each chapter. 

 

T. RT-PCR 

Total RNA isolation and cDNA synthesis from stage 9 wild type, Class ‘T’ Pa-

Wnt1
RNAi

, and Class ‘T’ Pa-cad
RNAi

 embryos were conducted as described in sections C 

and D above. Equal concentrations of cDNA were used in subsequent RT-PCR reactions 

using specific primers for Pa-Wnt or Pa-cad to determine the amount of each in Pa-

cad
RNAi

 or Pa-Wnt
RNAi

 compared to wild type. Specific primers were designed towards the 

Periplaneta 18S ribosomal subunit (Appendix 2I), used as a positive control. PCR 

reactions were run on a 1% agarose gel as describe in section G. 
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dsRNA Concentration Amount injected Total injected 

Pa-caudal 2.0 μg/μl 2 x 4 μl 16 μg 

Pa-Wnt1 0.5 μg/μl 2 x 4 μl 4 μg 

Pa-even-skipped 2.0 μg/μl 2 x 5 μl 20 μg 

Pa-runt 2.0 μg/μl 2 x 5 μl 20 μg 

Pa-pairberry 2.0 μg/μl 2 x 4 μl 16 μg 

Pa-sloppy-paired 2.0 μg/μl 2 x 5 μl 20 μg 

Pa-tarsal-less 4.0 μg/μl 2 x 4 μl 32 μg 

Pa-nubbin 3.0 μg/μl 2 x 5 μl 30 μg 

Pa-Notch 0.5 μg/μl 2 x 4 μl 4 μg 

Pa-eve/run 2.5 μg/μl each 2 x 2.5 μl each 12.5 μg each 

Pa-tal/nub 2.0 μg/μl each 2 x 2.5 μl each 12.5 μg each 

H2O (negative) --- 2 x 5 μl --- 

 

Table 2.1: dsRNA concentration used in RNA interference. Stock solutions of each 

dsRNA were diluted in water to a final concentration of 0.5-4.0 μg/μl. Two injections of 

equal volume (2.5-5 μl) were administered at three hour intervals. Sterile water was 

injected as a negative control. 

 

U. Periplaneta embryo culturing and inhibitor treatment 

ex ovo cultures of Periplaneta embryos were performed according to Wang et al. 

(1992) and modified by Pueyo et al. (2008). Artificial culture medium was prepared in 100 

ml batches as follows: 98 ml Liebovitz L-15 medium (Sigma – Cat#L1518), 6 µl 

hydroxyecdysterone (2.5 mg/ml; Sigma), 80 µl bovine insulin (10 mg/ml; Sigma), 1 ml 

penicillin (50000 units/ml; Sigma), 1ml streptomycin (50 mg/ml; Sigma), 400 mg glucose. 

Embryos were dissected in pre-warmed culture medium and transferred to a sterile low-

adhesion 96-well tissue culture plate (Corning Incorporated) containing 200 µl pre-

warmed culture medium and one of three treatments: the Notch inhibitor DAPT, the Wnt 

inhibitor IWP-3, or DMSO as a control.  
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 Inhibition of N-signalling was carried out through the addition of DAPT (N-[N-

(3,5-Difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester; Calbiochem – 

Cat#565770), which inhibits γ-secretase cleavage of the Notch intracellular domain 

(Dovey et al., 2001). Embryos were cultured for 24 hours at 29ºC in 100 μM DAPT 

following the protocol described in Pueyo et al. (2008). Inhibition of Wnt-signalling was 

conducted by adding the Inhibitor of Wnt Production – compound 3 (IWP-3; 2-(3-(4-

fluorophenyl)-3,4,6,7-tetrahydro-4-oxothieno[3,2-d]pyrimidin-2-ylthio)-N-(6-methyl 

benzo[d] thiazol-2-yl)acetamide; Stemgent – Cat#04-0035), which blocks the secretion of 

Wnt ligands by inhibiting palmitoylation of Wnt by Porcupine (Chen et al., 2009). Upon 

receipt, the compound was diluted in DMSO (dimethyl sulfoxide; Sigma – Cat#D8418) to 

a stock concentration of 10 mM. Various working dilutions were added to the embryo 

cultures to a final concentration between 20 μM and 40 μM. Exposure response analysis 

showed various results at different concentrations (see Fig. 3.7): < 20 μM had no effect; 

20-30 μM had hypomorph/weak effects; 30-40 μM had strong effects; > 40 μM produced 

cytotoxic effects. Exposure to IWP-3 for times longer than 18-24 hours also produced 

cytotoxic effects.  

In all cases, embryos from the same ootheca were split into three groups. First, 

several embryos were fixed immediately to report the developmental stage before culture 

(0 hours control). The remaining embryos were then split into two groups and cultured for 

16-24 hours at 29ºC either with or without inhibitor (culture control). Control cultured 

embryos were treated with the same amount of DMSO as the respective inhibitor used. 

Post-culture, embryos were fixed with 4% paraformaldehyde and stored at -20ºC until 

ready to use for in situ hybridisation. 
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V. Cuticle preparation 

Technique modified from the cuticle preparation protocol for flies as described by 

Alexandre (2008). Hatched first nymphs or late stage embryos (stages 30-32) were 

dissected and cleaned of debris in 1X PBS, then rinsed twice with sterile H2O. The 

embryos or nymphs were then transferred to a 1M NaOH solution and incubated for 7 

minutes on a 60ºC hotplate, rinsed 3 times with H2O, then incubated at 60ºC for 20-40 

minutes in a 1:1 solution of Hoyer’s:Lactic Acid (Hoyer’s mountant/fixative: 30 g gum 

arabic, 16 ml glycerol, 200 g chloral hydrate, 50 ml distilled H2O). Dissected first nymph 

abdomens and embryo cuticles were mounted on a glass slide with 1:1 Hoyer’s:Lactic 

Acid and a coverslip and flattened with a weight on top at 60ºC for several hours, then 

cooled to room temperature allowing the mountant to solidify. 

 

W. Imaging 

Unstained or non-fluorescently stained mounted embryos were analysed and 

imaged using a Leica DMRB research microscope with a mounted Hamamatsu digital 

camera and SimplePCI 6 software. Images of whole, unmounted late-stage embryos and 

first nymphs were taken using a Leica MZ7.5 stereomicroscope with a Leica DFC420 C 

digital camera and Leica FireCam software (kindly offered for use by the Alonso group; 

University of Sussex). FISH and fluorescent antibody stained embryos were analyzed and 

images captured using a Zeiss LSM510 Meta point scanning confocal microscope and the 

Zeiss LSM software (Sussex Centre for Advanced Microscopy, University of Sussex). 

Image adjustments and figure preparations were done using Adobe Photoshop CS2 

software. 
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CHAPTER III 

Interplay between a Wnt-dependent organiser and the Notch segmentation 

clock regulates posterior development in Periplaneta americana 

 

ABSTRACT 

Sequential addition of segments in the posteriorly growing end of the embryo is a 

developmental mechanism common to many bilaterians. However, posterior growth and 

patterning in most animals also entails the establishment of a ‘posterior organiser’ that 

expresses the Caudal and Wnt proteins and has been proposed to be an ancestral feature of 

animal development. We have studied the functional relationships between the Wnt-driven 

organiser and the segmentation mechanisms in a basal insect, the cockroach Periplaneta 

americana. Here, posteriorly-expressed Wnt1 promotes caudal and Delta expression early 

in development to generate a growth zone from which segments will later bud off. caudal 

maintains the undifferentiated growth zone by dampening Delta expression and hence 

Notch-mediated segmentation occurs just outside the caudal domain. In turn, Delta 

expression maintains Wnt1 creating a posterior gene network that functions until all 

segments have formed. This feedback between caudal, Wnt and Notch-signalling in 

regulating growth and segmentation seems conserved in other arthropods, with some 

aspects found even in vertebrates. These findings not only support an ancestral Wnt 

posterior organiser, but also impinge on the proposals for a common origin of 

segmentation in arthropods, annelids, and vertebrates. 

 

 

N.B. This chapter has been accepted for publication in Biology Open: Chesebro JE, Pueyo 

JI, Couso JP. (2012). Interplay between a Wnt-dependent organiser and the Notch 

segmentation clock regulates posterior development in Periplaneta americana. doi: 

10.1242/bio.20123699 
  

N.B. Some experiments discussed in this chapter were conducted by Inyaki Pueyo, 

including: sequencing of Pa-Wnt1 (with Alex Hurst), cockroach embryo cultures, caspase-

3 and Histone-3-P immunocytochemistry. 
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INTRODUCTION  

Animals display a great variety of morphologies and body plans. Despite this 

diversity, a common form of development entails the early setting up of a small 

anteriorized embryo which then grows from its posterior end until the final body length is 

achieved (Jacobs et al., 2005). This is the mode of development for most complex animals 

with bilateral symmetry, except atypical ones, such as the indirect developing 

Echinoderms and Tunicates (Holland, 2002; Mooi and David, 2008). In many animals that 

display posterior growth, this occurs through the sequential addition of metameric, serially 

repeated, units called segments or somites (Balavoine and Adoutte, 2003; Couso, 2009; 

De Robertis, 1997). This is the case of vertebrates, annelids, and most arthropods. 

To implement this posterior growth mode of development, the developing embryo 

must establish a ‘posterior organiser’ that drives development and growth from the 

posterior end of the embryo. In vertebrates this involves the early expression of genes of 

the Wnt family (Shimizu et al., 2005; Takada et al., 1994). In fact, Wnts are found to be 

expressed in the posterior of all bilaterians studied to date and have even been found to 

pattern the posterior axis in non-bilaterian Porifera larvae (Adamska et al., 2007; Cho et 

al., 2010; Janssen et al., 2010; Martin and Kimelman, 2009; Niehrs, 2010; Riddiford and 

Olson, 2011; Ryan and Baxevanis, 2007). Another gene required for proper posterior 

growth is Cdx, the vertebrate homologue of the homeobox transcription factor caudal 

(cad). It has been determined that Cdx expression is controlled by Wnt and, indeed, that 

the effects of posterior Wnt-signalling are mediated through Cdx (Lohnes, 2003; Shimizu 

et al., 2005; van de Ven et al., 2011). Thus, the use of a Wnt-cad posterior organiser may 

be a common mechanism utilized by animals in which posterior growth occurs through the 

sequential addition of segments (Martin and Kimelman, 2009).  
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In arthropods this mode of development is referred to as short germ band and is the 

most common, and inferred ancestral, developmental mechanism of the group (Anderson, 

1972; Davis and Patel, 2002; Liu and Kaufman, 2005b; Peel and Akam, 2003). In short 

germ arthropods most segments are subsequently added during germ band elongation from 

an undifferentiated region of proliferating cells at the posterior end of the embryo called 

the growth zone (GZ – analogous to the presomitic mesoderm of vertebrates) (Davis and 

Patel, 2002; Liu and Kaufman, 2005b; Peel and Akam, 2003). Comparison of different 

arthropods has revealed a conserved set of genes involved in early posterior development 

consisting of caudal and the Wnt-signalling pathway. Similar to vertebrates 

(Chawengsaksophak et al., 2004; van de Ven et al., 2011; van den Akker et al., 2002), 

knock-down of either cad or Wnt in arthropods results in posterior truncations (Bolognesi 

et al., 2008; Copf et al., 2004; Martin and Kimelman, 2009; McGregor et al., 2009; 

McGregor et al., 2008; Shimizu et al., 2005; Shinmyo et al., 2005; Takada et al., 1994), 

highlighting their importance in establishing a posterior organiser driving development 

and growth.  

The basal, short germ band insect, Periplaneta americana (American cockroach), 

was used to gain insight about the interaction between this posterior organiser and the 

segmentation mechanisms. Sequential segmentation in Periplaneta involves cyclic waves 

of Delta (Dl) and hairy/hes (h) expression that emanate from the posterior and resolve into 

segmental stripes in the anterior GZ prior to segment formation (Pueyo et al., 2008). Loss 

of Notch (N) signalling via RNAi resulted in embryos in which the posterior is truncated 

and unsegmented (Pueyo et al., 2008). This N-mediated segmentation is reminiscent of the 

‘clock and wavefront’ mechanism found in vertebrate somitogenesis (Dequeant and 

Pourquie, 2008; Jiang et al., 2000). Dynamic expression of Dl/N has been found in spiders 

and determined to be important for proper segmentation and been proposed to be 
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ancestral, though whether these patterns are also oscillatory in the spider remain to be 

determined (Oda et al., 2007; Stollewerk et al., 2003). A number of studies have indicated 

that an interplay between Wnt, Cad and N signalling during somitogenesis in vertebrates 

may exist (Aulehla and Herrmann, 2004; Grainger et al., 2012; Savory et al., 2011; Young 

et al., 2009); however, the nature of such a connection has not yet been established 

definitively.  

Discussed in this chapter, Periplaneta cad and Wnt1 are expressed in the posterior 

GZ and disrupting their functions using RNAi or chemical inhibitors produced embryos 

with segmentation defects and revealed two distinct phases of Pa-cad and Pa-Wnt1 

function. First, early in development, Pa-Wnt1 is required for Pa-cad expression and 

together they establish a posterior organiser and a functional GZ. Second, during germ 

band elongation, Pa-Wnt1 regulates axial growth and posterior segmentation by activating 

Pa-Delta and Pa-cad expression in the GZ. Subsequently, Pa-cad maintains the GZ in an 

unsegmented and proliferative state through which the dynamic waves of Delta (Pueyo et 

al., 2008) are allowed to progress in order to form segments outside the Pa-cad domain. 

Reciprocally, Dl-N signalling in the posterior tip is necessary to maintain posterior Pa-

Wnt1 expression. Thus, the interplay between Cad, Wnt, and N signalling pathways 

regulates posterior growth, elongation, and segmentation in Periplaneta. This two-step 

model can explain results in other arthropods and shows conserved features in vertebrates, 

suggesting that Wnt and Notch-signalling form an ancestral gene network controlling 

posterior growth and segmentation. 
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RESULTS  

Isolation and patterns of expression of Pa-caudal and Pa-Wnt1 transcripts 

The full-length transcripts of Pa-cad and Pa-Wnt1 were cloned using a degenerate 

RT-PCR approach (Appendix 2A and 2B, respectively). A single Pa-cad transcript of 

1420 nucleotides that encodes for a 290aa protein was identified (Appendix 3A). 

Phylogenetic analysis indicates that Pa-Cad is the Periplaneta orthologue as it aligns 

closely to Caudal from related species, such as Gryllus bimaculatus (cricket) and 

Schistocerca gregaria (locust) (Appendix 3B). Likewise, a single 2364bp Pa-Wnt1 

transcript was isolated that encodes for a 373aa protein (Appendix 4A-B). According to 

the alignment with other arthropod Wnt proteins, Pa-Wnt1 is the Periplaneta orthologue 

closely related to Cryptotermes (termite; Blattodea) and the orthopterans Schistocerca 

(locust) and Gryllus (cricket), which follows the predicted insect phylogeny (Appendix 

4B). 

in situ hybridisation using a Pa-cad riboprobe shows that at early, post-blastoderm 

stages of embryogenesis, Pa-cad is strongly expressed at the posterior end of the embryo 

(Fig. 3.1A). This broad domain of expression remains at the onset of germ band 

elongation (Fig. 3.1B), but is cleared from the posterior tip at late germ band elongation 

(Fig. 3.1C). This expression pattern of Pa-cad is similar to that observed in other short 

germ band insects (Copf et al., 2004; Dearden and Akam, 2001; Shinmyo et al., 2005). 

Pa-Wnt1 transcripts are detected at the post-blastoderm stage in the posterior GZ as two 

symmetrical clusters of cells (Fig. 3.1D). In addition, anterior Pa-Wnt1 expression is 

observed in the head lobes and in the antennal primordia (Fig. 3.1D). During early germ 

band elongation, anterior stripes of Pa-Wnt1 expression become apparent in the 

presumptive gnathal and thoracic segments while the two posterior clusters of expression 

start to fuse (Fig. 3.1E). By late germ band elongation, the two Pa-Wnt1 clusters of cells 
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have joined together forming a wide arc of expression in the posterior end of the GZ, set 

apart from the posterior tip (Fig. 3.1F). New stripes of Pa-Wnt1 expression appear one by 

one in the anterior-most GZ and remain in the developing segments and ventral 

appendages throughout embryogenesis (Fig. 3.1F). The early, dynamic posterior 

expression of Pa-Wnt1 lies close to the expression of Pa-cad, and thus would be 

consistent with a conserved role for these two genes during posterior patterning. The later 

Pa-Wnt1 segmental stripe pattern is consistent with Wnt1 expression in other insects and 

arthropods in which its function in parasegmental boundary formation, segmentation, and 

appendage development has been established (Bolognesi et al., 2008; Couso et al., 1993; 

Grossmann et al., 2009; Martinez-Arias, 1993; Miyawaki et al., 2004).  

In order to establish precisely the spatial and temporal details of Pa-Wnt1 and Pa-

cad expression, double fluorescence in situ hybridization (FISH) was employed, as well as 

comparison with the pan-segmental marker engrailed (en) (Patel et al., 1989). Pa-Wnt1 

slightly overlaps and is posterior to Pa-cad expression during both post-blastoderm (Fig. 

3.2A-A”) and germ band elongation (Fig. 3.2B-B”). In comparison, post-blastoderm 

expression of Pa-en (Marie and Bacon, 2000) appears as several stripes from the head 

segments up to the T2 segment (Fig. 3.1G). During early (Fig. 3.1H) and late (Fig. 3.1I) 

germ band elongation, additional stripes of Pa-en appear sequentially in the anterior GZ, 

slightly before the corresponding Pa-Wnt1 segmental stripe expression (compare Fig. 

3.1E-F with 3.1H-I). Double FISH experiments confirm the temporal delay of segmental 

Pa-Wnt1 expression after Pa-en (Fig. 3.2C-C”), as well as their adjacent expression at the 

parasegmental boundary as Pa-Wnt1 abuts anterior to Pa-en expression (Farzana and 

Brown, 2008; Martinez Arias and Lawrence, 1985; Prud'homme et al., 2003). 
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Pa-Cad and Pa-Wnt1 act as a posterior organiser 

Maternal RNAi was used to test the possible conservation of Wnt and cad 

function. In Pa-Wnt1
RNAi

 embryos, Pa-cad expression is greatly reduced at post-

blastoderm (Fig. 3.3B; compare with wild type, Fig. 3.3A). By contrast, posterior Pa-Wnt1 

expression in Pa-cad
RNAi

 embryos at this stage was similar to wild type, despite a 

premature fusion of the two Pa-Wnt1 expressing clusters (Fig. 3.3D, compare with Fig. 

3.3C). Pa-Wnt1
RNAi 

and Pa-cad
RNAi

 embryos developing up to germ band elongation 

display a truncated or tapering posterior end with growth and development of new 

segments arrested at the thoracic region (Fig. 3.3F and H). To ascertain the cellular basis 

of this reduced and abnormal GZ in Pa-Wnt1
RNAi 

embryos, cell death and proliferation 

were examined (Fig. 3.4). Pa-Wnt1
RNAi

 embryos do not show an increase in apoptosis in 

the GZ (Fig. 3.4A-B, I), but there is a reduction in cell proliferation (Fig. 3.4C-D, I). In 

these Pa-Wnt1
RNAi

 germ band elongation embryos, expression of Pa-cad appears 

completely lost according to both in situ hybridisation (compare Figs. 3.3F and 3.3E) and 

RT-PCR (Fig. 3.5D). However, in the reciprocal experiment, the number of cells 

expressing Pa-Wnt1 in Pa-cad
RNAi

 appears similar to that of the wild type, albeit the 

region displays an abnormal shape (compare Figs. 3.3H and 3.3G). Accordingly, RT-PCR 

shows normal levels of Pa-Wnt1 transcript in Pa-cad
RNAi

 compared to wild type (Fig. 

3.5D). These results suggest that Pa-Wnt1 regulates Pa-cad expression and that the 

apparent alteration of the Pa-Wnt1 expression domain in Pa-cad
RNAi

 is a secondary 

consequence of abnormal posterior tip development (Fig. 3.3D; 3.3H). 

A detailed quantification of the phenotypes observed indicates a graded variability 

within a conserved requirement for posterior development of the embryo. Pa-cad
RNAi 

embryos were classified according to the strength of the phenotype into three different 

classes (Table 3.1). In Class ‘H’ embryos, only the head segments form properly (Fig. 
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3.5A) and often a less defined region of undifferentiated tissue forms just posterior to 

these structures, representing a complete or near complete loss of Pa-cad expression. In 

Class ‘H’ embryos, no posterior segmental addition is observed (Fig. 3.5B). In Class ‘T’ 

embryos, the head and some of the thoracic segments developed normally but with 

truncations after either T2 or T3 (Fig. 3.3J and Fig. 3.6E), suggesting that some Pa-cad 

expression may have remained in the early post-blastoderm, but later expression was lost, 

leading to the eventual development of segments only up to T2/T3. This would explain the 

residual expression of Pa-cad detected in RT-PCR using Class ‘T’ Pa-cad
RNAi

 embryos 

(Fig. 3.5D). Finally, Class ‘A’ embryos display a reduced GZ and abnormal and thin 

attempts at abdominal segment development (Fig. 3.5B and Fig. 3.6H).  

Pa-Wnt1
RNAi

 embryos displayed a similar range of posterior segmentation 

phenotypes (Table 3.1). Pa-Wnt1
RNAi

 embryos in Class ‘T’ show severe truncations 

ranging from the second thoracic segment to the first abdominal segment (Fig. 3.3K). In 

these embryos, the GZ is narrow and posterior segmentation proceeds abnormally (Fig. 

3.6F). Class ‘A’ Pa-Wnt1
RNAi 

embryos displayed moderate truncations involving only a 

few abdominal segments and only a slight reduction in the GZ (Fig. 3.5C and Fig. 3.6I). 

The absence of Class ‘H’ embryos, which correlate with a total loss of Pa-cad, in Pa-

Wnt1
RNAi

 may be due to several reasons. First, Pa-Wnt1
RNAi 

may not create a total null 

condition at stages 4-5 (post-blastoderm) or, second, there could be other Wnt genes 

acting at these early stages. Third, there could be some Wnt-independent, maternally 

deposited, Pa-cad expression. The absence of Pa-Wnt1 in Pa-Wnt1
RNAi

 RT-PCR (Fig. 

3.5D) may discard the first explanation, but in principle either of the three is compatible 

with both the residual Pa-cad expression observed in Pa-Wnt1
RNAi

 post-blastoderm 

embryos (Fig. 3.3B), but not later (Fig. 3.3F), and the similarity in phenotypes of Class ‘T’ 

embryos between the two RNAi treatments (Fig. 3.3J and 3.3K).  
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Specificity of Wnt-Cad posterior organiser phenotypes 

Altogether these results are compatible with the model where Wnt-signalling 

activates zygotic cad expression during the early stages of development, establishing a 

posterior organiser (McGregor et al., 2008; Shinmyo et al., 2005). This Periplaneta 

‘posterior organiser’ seems required for proper patterning of the posterior end of the 

embryo, which includes the GZ, and would be required for subsequent growth and 

segmentation. However, these RNAi results do not clarify whether the activity of this 

Wnt-Cad organiser is still required during germ band elongation, or whether the 

phenotypes observed arise secondarily from earlier defects – perhaps a failure to properly 

establish the GZ.  

In order to clarify this issue, the embryo culture technique developed previously in 

our laboratory for application of chemical inhibitors of specific protein activity was used 

(Pueyo et al., 2008). Here, germ band elongating embryos were cultured and exposed to a 

previously described inhibitor of Wnt protein secretion, IWP-3 (Chen et al., 2009), to 

decouple the function of Wnt-signalling during germ band elongation from earlier or 

indirect perturbations. Embryos exposed to IWP-3 showed a marked decrease in Pa-cad 

expression and develop a slightly reduced GZ (Fig. 3.3N, compared to 3.3L-M) and 

disrupted segmentation (Fig. 3.7), while the expression of other genes, such as Ubx and 

AbdA, remain unaffected (Fig. 3.4E-F). Compared to control cultured embryos (Fig. 

3.4E,G), a slightly increased rate of apoptosis (Fig. 3.4F,J), but a decrease in cell 

proliferation (Fig. 3.4H,K), is observed in embryos cultured with IWP-3. Staining with the 

vital dye DAPI confirms that the overall majority of cells are alive throughout the 

posterior embryo (Fig. 3.4G-H). Altogether, these effects are in accordance with Pa-

Wnt1
RNAi

 data where Wnt-signalling seems to be required mainly for the maintenance of 

cell proliferation in the GZ (Fig. 3.4C-D, I-K). In addition, those cells detected as dying or 
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proliferating are scattered throughout the embryo and not localised to the posterior GZ 

such that these changes in growth and death cannot account for the proportional reduction 

in Pa-cad expression in this area. These data confirm that a) Wnt-signalling is required for 

Pa-cad expression, and b) this requirement extends into the germ band elongation stages.  

 

Regulatory interactions between the posterior organiser and the Notch pathway 

As dynamic N-signalling is necessary for posterior segmentation in Periplaneta 

(Pueyo et al., 2008), potential interactions between Pa-cad and Pa-Wnt1 with elements of 

the N-signalling pathway were investigated. First, their patterns of expression in the GZ 

were compared during post-blastoderm (Fig. 3.8A-B) and germ band elongation (Fig. 

3.8C-F). At post-blastoderm, five stripes of Pa-Dl expression appear simultaneously in the 

anterior part of the embryo, yet its expression is noticeably absent from the posterior end 

(Fig. 3.8A) where Pa-Wnt1 and Pa-cad are expressed (Fig. 3.8B). These early Pa-Dl 

stripes have faded by germ band elongation at stage 6/7 when a new Pa-Dl pattern 

emerges at the posterior to include the new sequentially arising segmental stripes 

described in Pueyo et al. (2008). This germ band elongation pattern is composed of a 

small domain in the posterior tip from which cyclic waves emanate periodically (Pueyo et 

al., 2008) and the resulting 2-3 stripes in the anterior GZ which, interestingly, only form 

outside of the Pa-cad expression domain (Fig. 3.8C-C”). As previously described by 

Pueyo et al. (2008), these stripes of Pa-Dl just outside the mid-GZ regulate the striped 

expression of Pa-en in the anterior GZ (Figs. 3.8E-E”), eventually leading to segment 

border formation.  

When these patterns of Pa-Dl and Pa-en are overlaid with the patterns of Pa-cad 

and Pa-Wnt1 described above (Figs. 3.8C’,D), it appears that the posterior expression of 

these genes during germ band elongation divides the GZ into four distinct gene expression 
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regions (Fig. 3.8F), from posterior to anterior: 1) the posterior tip expressing Pa-Dl; 2) a 

wide posterior arc of Pa-Wnt1; 3) a broad domain of Pa-cad in the mid-GZ; and 4) an 

anterior pre-segmental region expressing first Pa-Dl, then Pa-en, and finally Pa-Wnt1. 

Based on these spatiotemporal expression patterns it appears that as the early post-

blastoderm embryo develops into an elongating germ band where segments are added 

sequentially at the GZ, the most significant change is the addition of Pa-Dl, and hence 

Notch-signalling, to the posterior gene network.  

 To understand the regulatory relationships between the genes of this posterior 

network, their patterns of expression were compared in different maternal RNAi 

conditions. Pa-N
RNAi

 was used instead of Pa-Dl
RNAi

, which has fewer effects on oogenesis, 

as the latter produces sterile females (Lanfear, 2007). Pa-N
RNAi

 leads to a loss of Pa-Dl 

expression in the posterior tip and a failure to form stripes in the anterior GZ (Fig. 3.9A-

B), corresponding to the loss of sequential segment addition (Pueyo et al., 2008). A 

similar effect is observed in embryos cultured in the Notch pathway inhibitor DAPT, 

compared to controls (Fig. 3.9C-D). In both cases, neurogenic phenotypes are also 

observed, as expected (Fig. 3.4A’-D’). 

In post-blastoderm Pa-Wnt1
RNAi

 embryos the early segmental stripes of Pa-Dl 

expression remain (Fig. 3.10B, compare with Fig. 3.10A). Conversely, Pa-N
RNAi

 had no 

effect on the activity of the Wnt-Cad organiser at this stage, as indicated by normal Pa-cad 

expression (Fig. 3.10E-F). However, the situation changes during germ band elongation. 

Pa-Wnt1
RNAi 

embryos at this stage show an absence of Pa-Dl expression in the posterior 

tip as well as a loss of the stripes in the anterior GZ even though the neural Pa-Dl 

expression remains (Fig. 3.10C-D). Similarly, embryos cultured with the Wnt-signalling 

inhibitor, IWP-3, during germ band elongation experienced an almost total loss of Pa-Dl 

in the posterior tip (Fig. 3.10K). Interestingly, the Pa-Dl segmental stripes do not 
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disappear in IWP-3 embryos; however, only one new stripe can form in the anterior GZ 

(Fig. 3.10K) compared to two stripes that form in the control culture (Fig. 3.10J), 

indicating a temporal component to the stronger phenotypes revealed previously by Pa-

Wnt1
RNAi

.  

The posterior tip expression of Pa-Dl, which lies adjacent to the posterior arc of 

Pa-Wnt1 expression, seems to have an immediate requirement for Pa-Wnt1 signalling. 

The anterior stripes of Pa-Dl, which at least initially do not lie near any source of Pa-Wnt1 

(whether the posterior arc or the segmental stripes), seem to have a delayed, most likely 

indirect, requirement. The simplest explanation is that the loss of Pa-Dl segmental stripes 

in the anterior GZ follows the loss of the posterior tip expression. In wild type, the 

segmental stripes of Pa-Dl are transient, each one arising from a wave in the GZ and 

disappearing as it moves towards the anterior (Pueyo et al., 2008). Hence, the loss of the 

posterior tip domain, from which the waves of Pa-Dl expression emanate, will lead in 

time to the absence of segmental stripes. This secondary loss can be seen after 16 hours of 

development in IWP-3 culture where only one additional stripe forms in the anterior GZ 

(Fig. 3.10K) compared to the two stripes of Pa-Dl that form in control culture (Fig. 3.10J), 

and is more completely observed in Pa-Wnt1
RNAi

 embryos left to develop for several days 

after blastoderm (Fig. 3.10D).  

Interestingly, this function of Pa-Wnt1 in activating Pa-Dl posterior tip expression 

does not seem to be mediated by Pa-cad. In Pa-cad
RNAi

 embryos at germ band elongation, 

the tip expression of Pa-Dl remains unaffected, but the anterior stripes do not form (Fig. 

3.10H). Instead, there is a strong, expanded expression of Pa-Dl covering the posterior 

region of the embryo, in what corresponds to the entire GZ region of a wild type embryo. 

The lack of effect of Pa-Cad on Pa-Dl posterior tip expression is not unexpected, as these 

expression domains do not overlap. However, the revealed repressory function of Pa-cad 
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on Pa-Dl expression in the mid-GZ matches the wild type expression patterns, since 

previous observations showed that the strong segmental stripes of Pa-Dl only form outside 

the Pa-cad domain (Fig. 3.8C). These results imply that Pa-Wnt1 signalling modulates the 

cyclic expression of Pa-Dl during germ band elongation in two opposite ways: it locally 

promotes Pa-Dl in the nearby posterior tip, while the anterior stripes of Pa-Dl seem to 

have a delayed, indirect requirement for Pa-Wnt1, regulated through Pa-cad. The 

combined effect of these two inputs is that the posterior tip source from which the cyclic 

waves of Pa-Dl originate is maintained, but the waves are only allowed to coalesce into a 

stripe at the anterior GZ. This model explains why the loss of Pa-cad expression in Pa-

Wnt1
RNAi

 does not result in the expansion of Pa-Dl expression, as in Pa-Wnt1
RNAi

 there is 

also no emanating source of Pa-Dl expression from the posterior tip. 

Unexpectedly, functional assessment of Notch-signalling indicates that this 

modulating effect of the posterior Wnt-Cad organiser on Pa-Dl expression is reciprocated. 

Pa-N
RNAi

 embryos at germ band elongation have a reduced and tapered GZ that does not 

express either Pa-cad (Fig. 3.11B) or Pa-Wnt1 (Fig. 3.11D), implying that Pa-Dl may be 

required to maintain the posterior expression of Pa-Wnt1, and hence, Pa-cad. This 

inference is corroborated by embryo culture experiments. When embryos were cultured 

with the Notch inhibitor DAPT there was a noticeable reduction in Pa-cad expression 

(Fig. 3.11G) and the arc of Pa-Wnt1 is reduced from a 4-cell wide band to a 2-cell wide 

narrow strip of expression (Fig. 3.11J). These results confirm the role of Pa-Dl in 

maintaining Pa-Wnt1, and Pa-cad, expression in a feedback mechanism in the posterior 

GZ. The reduction, but not loss, of both Pa-Wnt1 and Pa-cad expression can be explained 

by the incomplete block of Notch activity in these experiments. For example, the 

segmentation process is perturbed but not entirely blocked, as shown by new but 

incomplete segmental stripes of Pa-Wnt1 (Fig. 3.11J) and Pa-en (Pueyo et al., 2008) 
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appearing during DAPT culture. Importantly, this hypomorphy allows a normal-sized GZ 

to remain and consequently shows that the gene expression effects observed here and in 

Pa-N
RNAi 

experiments are not purely a secondary consequence of the lack of expressing 

cells; see also (Pueyo et al., 2008).  
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DISCUSSION 

A Wnt-dependent posterior organiser is present in Periplaneta americana 

The results presented above reveal the presence of a posterior organiser regulating 

posterior development and segmentation in the short germ band insect, Periplaneta 

americana. Shortly after cellularisation and before the sequential addition of segments 

takes place, Pa-Wnt1 is observed in two clusters of cells in the posterior-most part of the 

embryo and Pa-cad is strongly detected in nearby cells covering what will become the GZ 

(Fig. 3.12A). The data presented here suggest that Pa-Wnt1 expression at this stage 

activates or maintains Pa-cad, which in turn is essential for the proper patterning of the 

embryo. Since this patterning includes the establishment of a GZ from which most of the 

segments will form during germ band elongation, perturbation of Pa-Wnt1 and Pa-cad at 

this early stage precludes the proper development of much of the embryo.  

In this sense, this Pa-Wnt1+Pa-Cad module is operationally similar to the 

‘posterior organiser’ observed in other animals. Wnt-signalling knock-down experiments 

in other arthropods, such as the spider Achaearanea and the insects Gryllus, Oncopeltus, 

and Tribolium all show similar phenotypes to Periplaneta-Wnt1
RNAi

 embryos: posterior 

truncations and a reduced GZ (Angelini and Kaufman, 2005a; Bolognesi et al., 2008; 

McGregor et al., 2008; Miyawaki et al., 2004). These results suggest a conserved role of 

Wnt-signalling in establishing and/or maintaining the GZ, including the activation of 

caudal (McGregor et al., 2008; Shinmyo et al., 2005), as in Periplaneta. In vertebrates, 

Wnt and cad/Cdx genes are also involved in posterior patterning and their regulatory 

interactions appear to be conserved as well. For instance, Wnt-signalling activates 

cad/Cdx expression in the posterior end of zebrafish and mouse embryos (Ikeya and 

Takada, 2001; Shimizu et al., 2005) and this activation is essential for the proper 

development of the animal. In fact, it has been proposed that most metazoans display a 
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Wnt-dependant posterior organiser and this must be a conserved ancestral feature of 

animal development (Martin and Kimelman, 2009). Results from Periplaneta are 

consistent with such a model. 

Despite early Pa-Wnt1 expression, no effects on the formation of the most anterior 

segments in Pa-Wnt1
RNAi

 embryos were noted, suggesting that formation of these 

segments is Wnt1 independent or that there could be other, functionally redundant, Wnt 

ligands implicated at this stage (Bolognesi et al., 2008; Janssen et al., 2010; McGregor et 

al., 2008). Interestingly, formation of these anterior segments does not seem to involve N-

signalling either (Pueyo et al., 2008), but a separate head-segmentation mechanism 

possibly involving the head gap genes empty spiracles, buttonhead, and orthodenticle, 

which in Drosophila and Tribolium directly regulate segmental genes such as engrailed 

and wingless/Wnt1, and whose expression and function seems widely conserved (Cohen 

and Jurgens, 1990; Royet and Finkelstein, 1997; Schinko et al., 2008; Schroder, 2003).  

 

Control of segmentation by the posterior organiser 

Altogether, the results presented here indicate that there exist interdependent and 

dual roles of the Wnt and N signalling pathways during posterior development and 

segmentation in Periplaneta (Fig. 3.12B). Pa-Wnt1 signalling modulates the cyclic 

expression of Pa-Dl during germ band elongation in two opposite ways: it locally 

promotes Pa-Dl expression in the nearby posterior tip, while indirectly and via Pa-cad, 

dampens Pa-Dl expression in the mid-GZ. The combined effect of these two inputs is that 

the posterior tip source from which the cyclic waves of Pa-Dl originate is maintained, but 

the waves are only allowed to coalesce into a stripe at the anterior GZ. Reciprocally, Pa-

Dl expression at the posterior tip has two distinct roles during posterior segmentation. On 

the one hand, it gives rise to the cyclical waves that precede and promote the sequential 
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formation of segments in the anterior GZ (Pueyo et al., 2008). On the other hand, constant 

N-signalling in the posterior tip of the embryo maintains the non-cyclic expression of Pa-

Wnt1 in nearby cells during germ band elongation, allowing for maintenance of the GZ 

until all the segments are laid down. 

This model links with the earlier findings of Pueyo et al. (2008), and indeed 

explains some of the features then reported. Pa-Notch
RNAi

 embryos rarely display 

disruptions of segmentation in head or T1 segments, despite the generation of neurogenic 

phenotypes in these places (caused by the requirement for Notch in arthropod 

neurogenesis (Jiménez and Campos-Ortega, 1982)). The results reported here also 

highlight that the posterior tip expression of Pa-Dl and other members of the Notch 

pathway (Pueyo et al., 2008) is a relevant feature during Notch-mediated segmentation. 

The stripes of N-signalling promote the formation of segments in the anterior GZ but N-

signalling also has a role in the maintenance of the GZ itself. This structure is highly 

reduced in Pa-N
RNAi

 embryos, involving a reduction of cell division and a mild increase in 

cell death (Pueyo et al., 2008). Following these results, this requirement for GZ 

maintenance can now be attributed to the expression of Pa-Dl at the posterior tip, which is 

essential to maintain Pa-Wnt1 and Pa-cad.  

Pa-cad appears as the most direct agent studied here involved in maintaining a GZ 

of appropriate size. Pa-Cad could act through a stimulation of cell division, or through a 

repression of differentiation as suggested by the lack of Pa-Dl, Pa-en, and Pa-Wnt1 

segmental stripes in the Pa-cad domain. In a unified hypothesis, these cellular and gene 

regulation effects can be traced to the role of Pa-Cad in dampening Pa-Dl expression 

throughout the posterior GZ. This partial repression still allows the progression of Notch-

signalling waves through the Pa-cad domain, but only allows the formation of segmental 

Notch-signalling stripes outside it. Since these stripes of Notch-signalling eventually lead 
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to segment formation and differentiation, the expression of Pa-cad might be essential to 

maintain an undifferentiated, actively dividing cell population at the GZ that can continue 

to bud off new segments. Loss of Pa-Cad eventually allows high Pa-Dl levels across the 

posterior region of the embryo, producing widespread Notch-signalling, and hence, 

differentiation of all GZ cells and truncation of the embryo. In this model, as in normal 

development, patterning and growth are inextricably linked. The patterning activity of the 

Wnt posterior organiser sets up a GZ, which is then needed to provide cells for the 

formation and patterning of new segments by Notch. Notch itself maintains the posterior 

organiser, and hence the GZ, thus completing the circle. 

 

The posterior segmentation gene network in other arthropods 

Comparing the roles of Cad, Wnt, and Notch-signalling in different arthropods 

allows us to examine the possible conservation of a ‘posterior segmentation gene network’ 

(Wnt  Cad  N). Assessment of Notch-signalling has revealed dynamic expression of 

N-signalling members in the GZ in two spider species, Achaearanea tepidariorum and 

Cupiennius salei (Oda et al., 2007; Schoppmeier and Damen, 2005b; Stollewerk et al., 

2003). Knockdown of N-signalling members via RNAi leads to loss of posterior 

segmentation in both species (Oda et al., 2007; Schoppmeier and Damen, 2005b; 

Stollewerk et al., 2003), but some differences were reported in the different studies. In 

Cupiennius-N
RNAi

, only the segmentation of posterior segments was affected, while 

Achaearanea-Dl
RNAi

 and N
RNAi

 not only affected posterior segmentation but also had 

effects earlier in the formation of the caudal lobe (the spider GZ). These differences could 

be due to the RNAi techniques used. In Cupiennius dsRNA was injected into the eggs at 

blastula stage, whereas in Achaearanea RNAi was injected in the mothers, which 

produced stronger and earlier phenotypes hinting that zygotic RNAi may be less efficient 
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at interfering with N-signalling. Indeed, the Achaearanea results are similar to the 

maternal Periplaneta-N
RNAi

, whereas the Cupiennius results are more similar to the 

cockroach embryos cultured with the Notch inhibitor DAPT. In Achaearanea, N-

signalling is revealed as necessary for caudal expression in the GZ during later stages 

(Oda et al., 2007), and is similarly regulated by Wnt-signalling (McGregor et al., 2008). 

Thus, there seems to exist a connection between N and Wnt signalling in the establishment 

of the GZ and posterior germ band elongation in spiders, similar to the one reported here 

in Periplaneta, as well as striking similarities in the regulatory interactions between Cad, 

N, and Wnt signalling pathways during these processes. 

This view is supported by a recent report in Gryllus where maternal Gb-Dl
RNAi

 and 

Gb-N
RNAi

 produced embryos displaying similar truncated phenotypes with reduced GZ 

similar to those observed in Achaearanea and Periplaneta (Mito et al., 2011). The authors 

suggest that posterior segmentation might be controlled by parallel mechanisms, one via 

stripes of N-signalling (segmentation) and the other through cad and Wnt-signalling 

(posterior growth). These pathways, however, appear to be dynamically linked in Gryllus, 

as in Periplaneta. At early stages, Gb-wg and Gb-cad are not regulated by N-signalling, 

whereas during germ band elongation Gb-N signalling at the posterior tip maintains Gb-

wg and, therefore, Gb-cad which feeds back onto Gb-Dl (Mito et al., 2011). As in 

Periplaneta, these regulatory interactions can allow for sustained growth by maintaining a 

properly sized and functional GZ. Another study in Gryllus by Kainz et al. (2011) used 

zygotic Gb-Dl
RNAi

 and observed defects mostly in the development of the nervous system 

(a universal function of Notch-signalling in arthropods and the function that is most 

sensitive to loss or partial loss, as shown in Drosophila (Mohr, 1924; Van Breugel and 

Langhout, 1983), but partial loss of segment markers in only a small minority of embryos. 
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These results could be explained as in spiders where zygotic RNAi produced weaker 

phenotypes compared to maternal RNAi.  

Overall, the different studies of Wnt and Notch signalling in different arthropods 

can be explained by the two functions of Wnt and Cad in maintaining 1) the GZ and 2) 

Delta expression; and by the two functions of Notch-signalling, 1) maintaining posterior 

Wnt1 expression, and 2) in segmental stripes triggering segment formation in the anterior 

GZ. Different perturbations in different species (zygotic vs. maternal RNAi, embryo 

culture) reveal different aspects of these functions, but in doing so they offer a temporal 

window to the regulatory intricacies of the posterior gene segmentation network. 

 

Evolution of the posterior gene network 

My findings in Periplaneta, along with previous studies in other arthropods, 

suggest that there exists conservation in both the developmental roles and in the regulatory 

interactions among the Wnt  Cad  N posterior segmentation network. The most 

parsimonious explanation is that these different arthropods must have inherited such a 

network from their last common arthropod ancestor. This hypothesis begs the question 

whether conservation of the posterior gene network can be pushed back further in time. In 

vertebrates, Wnt-signalling regulates cyclic expression of N-signalling members in the 

presomitic mesoderm (PSM) (Dunty et al., 2008; Gibb et al., 2009). Recently, it has been 

shown that this Wnt-dependant regulation of N-signalling oscillations seems partly 

mediated through Cdx, as the expression of the mouse Delta homologue Delta-like1 (Dll1) 

is disrupted in the PSM in Cdx mutants, and Cdx protein binds to the regulatory regions of 

Dll1 (Grainger et al., 2012). Furthermore, patterns of expression of this posterior gene 

network have also been found in the GZ of several different species of annelids, the third 

segmented phyla, including segmental stripes of Delta and Notch and posterior expression 
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of Wnt and cad (Cho et al., 2010; de Rosa et al., 2005; Janssen et al., 2010; Rivera and 

Weisblat, 2009; Thamm and Seaver, 2008).  

Curiously, vestiges of a Wnt-Cad organiser remain in insects that seem to have lost 

the requirement for N-mediated segmentation (Tautz, 2004). In the long germ band insect 

Drosophila, segmentation occurs ‘all-at-once’ without the need for a posterior organiser. 

However, a posterior stripe of Dm-wg is expressed in the blastoderm, independent of its 

future segment polarity expression and regulated to Dm-cad, though this expression has 

rarely been examined (Vorwald-Denholtz and De Robertis, 2011; Wu and Lengyel, 1998). 

While a Wnt-Cad posterior organiser may exist in Tribolium (Beermann et al., 2011; 

Bolognesi et al., 2008; Copf et al., 2004), the sequential addition of posterior segments 

occurs through a cyclical mechanism which involves pair-rule genes (Choe et al., 2006; 

El-Sherif et al., 2012; Sarrazin et al., 2012), but is not yet completely understood. 

In summary, the available data strongly suggest that at least two components of the 

regulatory gene network, Wnt  Cad, were involved in posterior organization and growth 

in the last common bilaterian ancestor, the Urbilateria (De Robertis, 1997; Martin and 

Kimelman, 2009). In addition, following reports from annelids (Rivera and Weisblat, 

2009; Thamm and Seaver, 2008), it seems likely that the third component of this gene 

network, N-signalling, would also have been involved in the Urbilateria. However, data is 

as yet unavailable from partially segmented (metameric) phyla and thus one cannot rule 

out the possibility that each of the segmented clades convergently and independently 

recruited a N-mediated segmentation mechanism (Chipman, 2010). However, this would 

require a) an ancestral in-built tendency of Cad to modulate Delta, b) a predisposition for 

the Notch pathway to form oscillatory clocks, and c) some unknown constraint of selective 

advantage leading to the repeated recruitment of these pathways in different phyla, in the 

face of other genes that could fulfil similar roles. The most parsimonious explanation 
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remains that this posterior gene regulatory network evolved once and is ancestral. Perhaps 

the Urbilateria developed by posterior elongation (Jacobs et al., 2005) and contained some 

kind of serially repeated structures, added sequentially from the posterior end of the 

animal (Balavoine and Adoutte, 2003; Couso, 2009; De Robertis, 2008b), and generated 

by the interplay between a Notch oscillator and the Wnt-Cad posterior organiser. 
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 Class H Class T Class A Wild Type 

Pa-cad
RNAi 202  

(20.2%) 

346   

(34.5%) 

167   

(16.7%) 

287   

(28.6%) 

Pa-Wnt1
RNAi 0   

(0%) 

309   

(36.1 %) 

281   

(32.9%) 

265   

(31.0%) 

Pa-H2O 
0   

(0%) 

0   

(0%) 

0   

(0%) 

300   

(100%) 

 

Table 3.1: Phenotypic series of Pa-cad
RNAi

 and Pa-Wnt1
RNAi 

embryos. RNAi embryos 

displayed a range of phenotypes categorized into three classes. Class ‘H’ embryos 

displayed head only or head with some undifferentiated tissue in the posterior and were 

found only in Pa-cad
RNAi

. Class ‘T’ embryos form the head and some thoracic segments 

properly, but are truncated after either T2 or T3; this was the most common phenotype in 

both Pa-cad
RNAi

 and Pa-Wnt1
RNAi

 embryos. Class ‘A’ embryos were also observed in both 

Pa-cad
RNAi

 and Pa-Wnt1
RNAi

. Embryos in this class developed complete head and thorax 

with defects in abdominal segmentation, usually tapering at the posterior. Control Pa-H2O 

embryos showed no abnormalities, all were wild type in appearance. 
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Figure 3.1: Wild type expression patterns of Pa-cad (A-C), Pa-Wnt1 (D-F), and Pa-en 

(G-I) in Periplaneta americana. (A-B) Pa-cad is expressed in a broad posterior domain 

(brackets) in post-blastoderm (stage 5; A) and early germ band elongation (stage 7; B) 

embryos. (C) During late germ band elongation, stage 9, Pa-cad is restricted to the mid-

GZ (bracket) and is lost from the posterior tip (arrow). (D) Pa-Wnt1 stage 4, post-

blastoderm expression in head (arrow) and antennae (arrowhead) and in two posterior 

clusters of cells (*). (E) By early germ band elongation, stage 7, Pa-Wnt1 is at the 

posterior (*) and in segmental stripes reaching T3. (F) During late germ band elongation, 

stage 10, Pa-Wnt1 is expressed in an arc-like stripe in the posterior GZ (*) – set apart from 

the posterior tip (arrow), in segmental stripes in the anterior GZ (open arrowheads), in 

anterior segments and ventral appendages (black arrowheads). (G) Pa-en segmental 

expression up to T2 during post-blastoderm, stage 6. Additional stripes (black arrowheads) 

are added sequentially from the posterior during early (stage 7; H) and late (stage 10; I) 

germ band elongation and remain in the posterior of each segment throughout 

development (open arrowheads). T2, T3: second, third thoracic segment; A1, A4: first, 

fourth abdominal segment. 
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Figure 3.1 
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Figure 3.2: FISH reveals spatiotemporal patterns of Pa-Wnt1, Pa-cad, and Pa-en. (A-

A”) Posterior end of a post-blastoderm embryo (stage 6) showing Pa-Wnt1 (red, A’) and 

Pa-cad (green, A”) patterns. Pa-Wnt1 expression in segmental stripes (arrowheads), and 

posterior clusters (*) overlapping with Pa-cad domain (bracket). (B-B”) Posterior end of a 

germ band elongation embryo (stage 9), showing Pa-Wnt1 expression (B’) in segmental 

stripes in anterior GZ (arrowhead) and a posterior arc (*) slightly overlapping with Pa-cad 

(B’’; bracket). (C-C”) Pa-Wnt1 (C’) and Pa-en (blue, C’’) in the anterior GZ of a stage 7 

embryo, with stripes of Pa-en (*) developing before Wnt1 and defining the parasegment 

boundary. Pa-Wnt1 (arrowhead) is expressed anterior and adjacent to Pa-en (arrow).
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Figure 3.3: Disruption of Wnt1 and cad function by maternal RNAi and embryo 

culture. (A-D) RNAi effects on Pa-cad and Pa-Wnt1 expression at post-blastoderm, stage 

6. The broad posterior domain of Pa-cad in wild type embryos (bracket, A) is greatly 

reduced in Pa-Wnt1
RNAi

 (bracket, B). Conversely, the wild type expression of Pa-Wnt1 

(arrow, C) is relatively unaltered in Pa-cad
RNAi

 (arrow, D; brackets in C-D insets). (E-H) 

RNAi affects Pa-cad and Pa-Wnt1 during germ band elongation. The Pa-cad domain 

(bracket, E) is absent in Pa-Wnt1
RNAi

 embryos (*, F), while the arc of Pa-Wnt1 (arrow, G) 

is unaffected in location (arrow, H) and width of expressing cells in Pa-cad
RNAi

 embryos 

(brackets in G-H insets). (I-K) RNAi phenotypes. (I) Stage 22 wild type embryo 

displaying head, thorax and abdomen. Class ‘T’ Pa-cad
RNAi

 (J) and Pa-Wnt1
RNAi

 (K) 

embryos show a similar body truncation after T3. (L-N) IWP-3 culture inhibition of Wnt-

signalling affects Pa-cad expression. (L) Prior to culture (0 hour control), Pa-cad is in a 

broad posterior domain (bracket). After 16 hours in DMSO control culture there is no 

effect on Pa-cad (bracket, M), while IWP-3 cultured embryos show a marked decrease in 

Pa-cad (*, N). h: head; t: thorax; a: abdomen. 
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Figure 3.3 
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Figure 3.4: Wnt1 regulates growth but not cell death in the growth zone. All embryos 

are stage 9 and the growth zone is marked with a bracket. In both wild type (A) and Pa-

Wnt1
RNAi

 (B) embryos, apoptosis (as detected by α-cleaved caspase 3; cas3) is minimal 

and scattered throughout the GZ. (C) In wild type, numerous cells undergoing mitosis are 

seen (as detected by α-phosphorylated Histone 3; H3P). (D) Cell proliferation is lower in 

the small GZ of Pa-Wnt1
RNAi

 embryos. (E-F) The number of dying cells is increased in 

DMSO control (E) and IWP-3 (F) cultured embryos compared to A and B, yet similar to 

each other. This increase in cell death is likely due to the cytotoxic nature of DMSO and 

not to a role of Wnt signalling in apoptosis. Additionally, expression of the Hox genes 

Ubx and AbdA (as detected by mouse monoclonal antibody FP6.87; α-UbdA), remain 

unaffected in DMSO control (E) and IWP-3 (F) treated culture embryos, indicating that 

IWP-3 only affects Wnt signalling and not other patterning genes. In culture, the number 

of mitotic cells is reduced in control embryos (G), compared to wt (C), and are much 

lower in IWP-3 treated embryos (H). Staining with the vital dye DAPI showed similar 

amounts of living cells in control and IWP-3 treated embryos, indicating a healthy GZ. (I) 

Table representing the average number of cells counted undergoing apoptosis (cas3) or 

mitosis (H3P) in the wt and Wnt
RNAi 

embryos. Apoptotic index (J) and mitotic index (K) 

comparisons between DMSO control and IWP-3 cultured embryos. Indices calculated by 

dividing the number of dying (cas3) or proliferating (H3P) cells by the total number of 

cells found in the GZ (DAPI). Statistical analyses determined using a two-tailed T-test. A1 

– first abdominal segment.  
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Figure 3.4 
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Figure 3.5: Pa-cad
RNAi

 and Pa-Wnt1
RNAi

 phenotypes and RT-PCR. (A) Class ‘H’ Pa-

cad
RNAi

 embryo in which only the anterior-most head segments, eyes and antennae, 

develop properly. (B) In Class ‘A’ Pa-cad
RNAi

 embryos the head and thorax develop 

properly, while the abdomen appears normal in the anterior, but tapers into a point at the 

posterior (*). (C) Similarly, Class ‘A’ Pa-Wnt1
RNAi

 phenotypes have a normally developed 

head and thorax with a truncated and tapered abdomen (*). (D) RT-PCR analysis of stage 

9 Class ‘T’ Pa-cad
RNAi

 and Pa-Wnt1
RNAi

 embryos. Pa-Wnt1 expression remains at wild 

type levels in Pa-cad
RNAi

 but is abolished in Pa-Wnt1
RNAi

. Only trace amounts of Pa-cad 

expression can be detected in Pa-cad
RNAi

 and is absent in Pa-Wnt1
RNAi

. Periplaneta 18S 

ribosomal subunit was used as a positive control in each case. These data suggest that the 

different phenotypic RNAi classes correlate with the degree of hypomorphy (RNA loss) 

caused by the RNAi treatment on a single, continuous function required for posterior 

segment development throughout embryogenesis. In the case of Pa-cad if enough 

expression is present during germ band elongation, further segments will develop, if not, 

posterior segment development will be arrested and the animals will display only the head 

and some thoracic segments formed at blastoderm. Thus, Class ‘H’ Pa-cad
RNAi 

embryos 

display a total or very strong loss of Pa-cad RNA whereas in Class ‘A’ Pa-cad can remain 

at near wt levels (not shown). The same holds true for Pa-cad expression in Pa-Wnt1
RNAi

 

embryos. ant – antennae; h – head; t – thorax; a – abdomen.  
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Figure 3.6: Expression of segmental markers in Pa-cad
RNAi 

and Pa-Wnt1
RNAi

 

phenotypic classes. (A) Pa-hairy (Pa-h) expression in wild type embryo (stage 7) 

showing a broad domain at the posterior GZ and in transient segmental stripes (A1 and 

A2) in the anterior GZ. Expression of Pa-h is also observed in the head, CNS midline, and 

somites. (B) In a class ‘H’ Pa-cad
RNAi

 embryo Pa-h expression is in the head and in an 

expanded domain at the posterior but no segmental stripes are observed. (C) Similarly, in 

class ‘T’ Pa-cad
RNAi

 embryo, Pa-h segmental stripes are absent and Pa-h posterior GZ 

domain expanded. (D) Segmental expression of the Pa-en in a wild-type embryo (stage 8) 

reaching the A3 segment. (E) Pa-en expression in a class ‘T’ Pa-cad
RNAi

 embryo shows 

that segment formation proceeds until the thoracic segments. (F) Likewise, in a class ‘T’ 

Pa-Wnt1
RNAi

 embryo Pa-en segmental stripes are observed up to T3 segment. (G) 

Expression pattern of Pa-en in a stage 9 wild type embryo showing expression up to the 

A5 segment. (H) Expression of Pa-en in a class ‘A’ Pa-cad
RNAi

 embryo with a reduced GZ 

shows that only two abdominal segments have been formed. (I) Similarly, in a class ‘A’ 

Pa-Wnt1
RNAi

 embryo the A1 Pa-en segmental stripe has been laid down. Note that the GZ 

is reduced in size. 
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Figure 3.6 
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Figure 3.7: IWP 3 dosage effects on Pa-en, Pa-cad and Pa-Dl expression patterns. (A) 

Pa-cad (green) and Pa-en (red) patterns of expression in a stage 9 wild type embryo prior 

culture. (B) A 16h DMSO control culture embryo labelled as in A. Pa-en is expressed 

segmentally up to the A6 segment and Pa-cad is expressed in the mid-GZ. (C) Pa-en and 

Pa-cad expressions have not been affected in a 16 hour, 20 µM IWP3 culture embryo. (D) 

In a 16 hour, 40 µM IWP3 culture embryo posterior Pa-cad expression is highly reduced 

and no new Pa-en expressing segmental stripes have been added. (E) Pattern of expression 

of Pa-Dl in the posterior tip and segmental stripes reaching the A3 segment in the anterior 

GZ in a stage 8 wild type embryo before culture. (F) In a 16 hour DMSO control culture 

embryo Pa-Dl is strongly expressed in the posterior tip and in segmental stripes reaching 

the A6 segment. (G) Pa-Dl expression in a 16 hour culture embryo with 30 µM IWP3. Pa-

Dl posterior tip domain is reduced and A5 Pa-Dl segmental stripe has been just laid down. 

(H) A 16 hour 40 µM IWP3 culture embryo showing complete absence of Pa-Dl at the 

posterior tip and Pa-Dl segmental expression reaching the A4 segment.  
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Figure 3.8: Co-expression of ‘posterior network’ genes at post-blastoderm (stage 6, 

A-B) and germ band elongation (stage 9, C-F). (A) Pa-Dl is expressed in anterior 

segmental stripes (arrowheads) but not in the posterior (*). (B) Double FISH from Fig. 2, 

showing Pa-Wnt1 (red) and Pa-cad (green) expression. (C-C”) Double FISH showing 

expression of Pa-cad (C’) and Pa-Dl (purple, C”). The wave of Pa-Dl (bracket) emanates 

from the posterior tip (*), travelling through the Pa-cad domain and resolving into stripes 

in the anterior GZ (arrowheads). (D) Pa-Wnt1 expression in segmental stripes (arrow) and 

in a posterior arc (*). (E-E”) Double FISH for Pa-en (blue, E’) and Pa-Dl (E”). Pa-Dl is 

expressed in the posterior tip (*) and the wave of expression has coalesced into a stripe in 

the anterior GZ (arrow) preceding the stripes of Pa-en expression (arrowhead). (F) 

Photomontage of C-E overlaid to show the GZ divided into four distinct posterior gene 

expression domains; from posterior to anterior - PT: posterior tip expressing Pa-Dl; P: 

posterior GZ arc of Pa-Wnt1; M: broad Pa-cad domain in mid-GZ; A: anterior GZ region 

expressing segmental stripes of Pa-Dl, Pa-en, and Pa-Wnt1. 
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Figure 3.9: Notch signalling regulates Pa-Dl in the growth zone. (A-A’) Wild type Pa-

Dl expression in the posterior tip (*, A) and segmental stripes in the anterior GZ 

(arrowheads, A), as well as in isolated neuroblasts in the developing head (arrow, A’) and 

ventral trunk. (B-B’) In N
RNAi

 embryos, Pa-Dl expression reveals a loss of expression in 

the posterior tip (*, B) and a single broad band of expression in the anterior GZ (bracket, 

B) resulting from a failure to form segmental stripes, along with a neurologic phenotype 

revealed by clusters of neuroblast cells in the head and trunk (arrow, B’). (C-C’) Similar to 

wild type, DMSO control cultured embryos express Pa-Dl in the posterior tip (*, C), in 

several stripes in the anterior GZ (arrowheads, C), and in the developing neuroblasts 

(arrow, C’). (D-D’) Pa-Dl expression in DAPT treated embryos is similar to that in N
RNAi

 

embryos; a broad band, but no stripes, of expression in the anterior GZ (bracket, D) and no 

expression in the posterior tip (*, D) with large clusters of neuroblasts in the head and 

trunk (arrows, D’). These results confirm that Notch signalling regulates the stripes and 

cyclic expression of Delta in Periplaneta.  
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Figure 3.10: Pa-Dl posterior tip expression during germ band elongation requires 

Pa-Wnt1 and Pa-cad. (A-B) Stage 6, post-blastoderm Pa-Dl segmental expression (*) in 

wild type (A) remains in Wnt1
RNAi

 (B), despite the GZ being reduced (GZ outlines in A-B 

insets). (C) Stage 9, wild type expression of Pa-Dl during germ band elongation. (D) Loss 

of Pa-Dl at the posterior tip (arrow) and absence of stripes in the anterior GZ (bracket), 

but not in neuroblasts (arrowheads) in Pa-Wnt1
RNAi

 embryos at stage 9. (E-F) Pa-cad 

expression (brackets) is similar in stage 6 post-blastoderm wild type (E) and N
RNAi

 

embryos (F). Stage 8, wild type expression of Pa-Dl (G) is expanded in Pa-cad
RNAi

 

embryos (H) covering the posterior region and does not form stripes (bracket); neural 

expressions remain unaffected (arrowheads). (I-K) Inhibition of Wnt-signalling in culture 

affects Pa-Dl expression. (I) Pa-Dl in the posterior tip (arrow) and in segmental stripes 

(A3) in a 0 hour control embryo. (J) After 16 hours in DMSO control culture Pa-Dl is 

expressed in the posterior tip (arrow) and two additional stripes have been added in the 

anterior GZ (arrowheads). (K) Embryos cultured for 16 hours in the IWP-3 Wnt-inhibitor 

show greatly reduced Pa-Dl expression in the posterior tip (arrow) and only one new 

stripe (arrowhead) has formed. T1: first thoracic segment; A3: third abdominal segment.  
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Figure 3.10 
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Figure 3.11: N-signalling affects Pa-cad and Pa-Wnt1 during germ band elongation. 

(A) Wild type, stage 9, Pa-cad expression (bracket). (B) Stage 9 N
RNAi

 embryos have a 

reduced GZ (outline, inset) devoid Pa-cad expression (*). (C) Wild type Pa-Wnt1 

expression at stage 8. (D) In N
RNAi

 embryos, stage 8, there is no posterior Pa-Wnt1 

expression (arrowhead), while the anterior segmental stripes remain unaffected (arrow; 

compare with C). (E-J) Effects of the N-inhibitor DAPT on posterior gene expression. (E-

G) Pa-cad expression in the 0 hour control embryos (bracket, E) is unaffected in embryos 

cultured for 24 hours in DMSO control (bracket, F), but is reduced after 24 hours in 

DAPT culture (bracket, G). (H-J) Pa-Wnt1 is in segmental stripes (arrowhead) and a 

posterior arc (arrow) in embryos prior to culture (0h control, H) and after 24 hours in 

DMSO control culture, in which a new Pa-Wnt1 stripe forms in the anterior GZ (open 

arrowhead, I). (J) 24 hour DAPT cultured embryos show a reduction of the Pa-Wnt1 

posterior arc from four to two cells in width and the new A4 stripe is only partially formed 

(open arrowhead) (add insets of arc cell width). T2: second thoracic segment; A3: third 

abdominal segment. 
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Figure 3.11 

 

  



  85   

 

 

Figure 3.12: Model depicting the regulatory interactions of the posterior gene 

network in Periplaneta americana. (A) In the posterior region of the post-blastoderm 

embryo there are two clusters of cells expressing Pa-Wnt1 (red). Pa-Wnt1 activates the 

expression of zygotic Pa-cad (green) in the neighbouring cells. This activation is required 

for the posterior organization and establishment of the growth zone (GZ). Pa-Dl has no 

functional role at the posterior end at this stage. (B) During germ band elongation the 

embryo grows from the posterior and new segments are laid down sequentially from the 

GZ. The arc of Pa-Wnt1 at the posterior GZ (P) has two main functions: 1) maintaining 

Pa-cad expression in a broad domain (green) in the mid-GZ (M) and 2) promoting Pa-Dl 

expression (purple) in the posterior tip (PT). Upon activation, Pa-Dl forms a positive 

feedback loop with Pa-Wnt1, thereby maintaining the expression of each other. As germ 

band elongation proceeds, cyclic waves of Pa-Dl expression emerge from the posterior tip 

and pass through the Pa-cad domain (dashed arrow). During this process Pa-cad dampens 

the expression of Pa-Dl, thus inhibiting the formation of segmental stripes but allowing 

the wave of expression to travel through. Pa-Dl stripes form outside the Pa-cad domain in 

the anterior GZ (A) and activate segmental stripes of Pa-en (blue). Pa-en then activates a 

segment polarity gene network involving Pa-Wnt1 eventually leading to segment border 

formation. Thus, the interaction between the posterior gene network and the N-dependent 

oscillator regulates growth and segmentation in Periplaneta during germ band elongation.  
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CHAPTER IV 

Pair-rule gene segmentation in Periplaneta 

ABSTRACT 

The Drosophila segmentation cascade is fairly well understood, involving highly 

complex regulatory interactions between groups of transcription factors: maternal 

coordinate  gap  pair-rule  segment polarity. However, as a derived long germ band 

organism, segmentation occurs simultaneously in a syncytial environment, while most 

other arthropods go through a short germband mode of development where segments are 

added sequentially from the posterior. Activation of the pair-rule genes is a key step in 

long germ band patterning heralding a change from a non-periodic to a periodic pattern of 

metameric organisation. Expression patterns of the pair-rule genes are highly variable 

amongst other arthropods, yet there appears to be conservation in the classification into 

primary and secondary groups. I have examined the expression and function of four pair-

rule gene orthologues in the cockroach, Periplaneta americana: two primary pair-rule 

genes (even-skipped and runt) and two secondary (pairberry and sloppy-paired). Each 

gene is expressed segmentally with no indication of a ‘pair-rule’ pattern of expression in 

alternate segments. Subsequent functional analyses indicate a stronger requirement for the 

pair-rule genes in the anterior, those segments formed in the blastoderm, while their 

functions may be more redundant during posterior segment patterning, a process that may 

be dependent on the Notch-signalling pathway. While homologues of the pair-rule genes 

exist in other segmented bilaterians, such as vertebrates and annelids, they appear to have 

derived a new function in segmentation in the arthropods. Thorough analyses of the pair-

rule and other segmentation genes in ‘lower’ insects and arthropods will help us to reveal 

the original nature of their functions and how they have changed over time, perhaps 

gaining a further understanding of the transition from short to long germ band 

development. 
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INTRODUCTION 

The mechanisms of segmentation in arthropods are not very well understood 

outside of the long germ band insect, Drosophila melanogaster. Here, the “Drosophila 

paradigm” (maternal  gap  pair-rule  segment polarity) illustrates the progressive 

patterning of the embryo into smaller units, or segments, through a series of complex 

regulatory interactions comprising this hierarchic cascade of transcription factors. The 

pair-rule genes were first identified in a mutagenesis screen by Nüsslein-Volhard and 

Wieschaus (1980; 1984) in which Drosophila mutant larvae were missing every other 

segment. Subsequent studies of the mutated genes showed that they are expressed early at 

the blastoderm stage as seven alternating stripes corresponding to the missing larval 

segments (Gergen and Butler, 1988; Grossniklaus et al., 1992; Holmgren, 1984; Kilchherr 

et al., 1986; Macdonald et al., 1986).   

It was observed that some of these pair-rule genes were expressed before the 

others: the primary pair-rule genes even-skipped (eve), runt (run), and hairy (h). These 

genes are actively involved in regulating the downstream secondary pair-rule genes paired 

(prd), sloppy-paired (slp), odd-skipped (odd), fushi tarazu (ftz), and odd-paired (opa) 

(Akam, 1987b; Howard and Ingham, 1986; Ingham, 1988). Each of these genes is initially 

expressed in the ‘classic’ pair-rule pattern of seven stripes in alternating segments before 

their final expression as fourteen segmental stripes, with the additional stripes arising de 

novo between existing ones or forming by the splitting of the initial stripes into two. The 

pair-rule genes regulate the expression of the segment polarity genes, engrailed (en) and 

wingless (wg), leading to parasegmental and segmental boundary formation (Jaynes and 

Fujioka, 2004). This chapter will mainly focus on four of these pair-rule genes: two 

primary (eve, and run) and two secondary (prd and slp), with some attention given to the 

primary pair-rule gene h, previously described by Pueyo et al. (2008).  



  88   

 

Pair-rule patterning in Drosophila 

even-skipped is a homeodomain transcription factor that, in Drosophila, is required 

to pattern the segmental expression of Dm-en, through indirect means, by inhibiting the 

Dm-en repressors Dm-slp and Dm-odd (Jaynes and Fujioka, 2004; Macdonald et al., 

1986). Dm-eve hypomorphic mutants display the ‘classic’ pair-rule phenotype, missing the 

odd numbered segments, while null phenotypes present an asegmental ball of tissue with a 

lawn of denticle belts (Macdonald et al., 1986; Nüsslein-Volhard and Wieschaus, 1980). 

The pattern of eve expression in Drosophila is relatively conserved in other Diptera (Rohr 

et al., 1999) and Hymenopteran species (Binner and Sander, 1997). However, there are 

some differences in other long germ band insects, which may show no secondary stripes 

of eve expression (Rohr et al., 1999) or stripes may appear rapidly with no hint of an 

initial pair-rule pattern of expression (Grbic et al., 1996). These are only a few examples 

of the wide variation of expression patterns seen for eve; results are similar for the other 

pair-rule genes in both long and short germ band arthropods. 

The primary pair-rule gene runt belongs to the Runt family of transcription factors 

that contain a conserved Runt domain capable of dimerisation and DNA binding activity. 

Dm-run interacts with the Groucho co-repressor to inhibit expression of both primary and 

secondary pair-rule genes, leading to the regulation of en and wg expression (Prazak et al., 

2010). Dm-run mutants display a pair-rule phenotype as well as mirror-image duplication 

of the anterior region of each segment (Gergen and Wieschaus, 1985; Nüsslein-Volhard 

and Wieschaus, 1980). The function of Dm-run may be conserved in other long germ band 

insects, but has not yet been examined. 

 Dm-hairy belongs to the Hairy and Enhancer of split (HES) family of basic helix-

loop-helix (bHLH) transcription factors. Dm-h is as a primary pair-rule gene that 

negatively regulates the expression of Dm-ftz (Howard and Ingham, 1986; Jaynes and 
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Fujioka, 2004). Dm-h mutant larvae are missing portions of the posterior odd and anterior 

even-numbered segments (Holmgren, 1984). Except for the conserved pair-rule expression 

of h in the housefly (Sommer and Tautz, 1991), the expression and function(s) of this gene 

have not been well studied in other long germ band insects. 

Members of the Pax group III family of transcription factors are unusual in that 

they contain two DNA binding domains: a conserved Paired domain and a paired-type 

homeodomain (Bopp et al., 1986; Treisman et al., 1991). Members of this family include 

several Drosophila segmentation genes, such as the secondary pair-rule gene paired and 

the segment polarity genes gooseberry and gooseberry-neuro. The latter two possibly 

derived from a duplication event as they are expressed segmentally and function in 

segment polarity and neurogenesis, functions that are combined in many paired 

homologues in other species, hence the name pairberry (pby) in these organisms (Davis et 

al., 2001; Osborne and Dearden, 2005). Dm-prd is expressed in stripes that overlap the 

segmental boundaries (Bertuccioli et al., 1996; DiNardo and O'Farrell, 1987), with the 

subsequent loss of the posterior portion of the odd and anterior part of the even numbered 

segments in Dm-prd mutants (Nüsslein-Volhard and Wieschaus, 1980). This cross-border 

expression allows Dm-prd to regulate both the expression of Dm-wg and Dm-en 

(Baumgartner and Noll, 1990; DiNardo and O'Farrell, 1987).  

The secondary pair-rule gene sloppy-paired is a member of a class of transcription 

factors containing the DNA-binding Forkhead domain and functions to regulate the 

expression of en and wg (Grossniklaus et al., 1992). Loss of expression of Dm-slp results 

in larvae missing the posterior portions of the even-numbered segments (Grossniklaus et 

al., 1992; Nusslein-Volhard et al., 1984). Dm-slp is unique in that it has an additional 

expression in the anterior head segments that arises independent of its later pair-rule stripe 

expression, where it functions as a head gap gene to inhibit the expression of the other 
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pair-rule genes in this region (Andrioli et al., 2004; Grossniklaus et al., 1992). Loss of 

Dm-slp head expression leads to large deletions in the head, including the antennae and 

gnathal segments (Andrioli et al., 2004; Grossniklaus et al., 1992), similar to those 

observed for some of the “head gap” genes that function in patterning the pre-gnathal 

head, such as empty spiracles and buttonhead (Cohen and Jurgens, 1990). Unfortunately, 

the expression and function of slp has not been thoroughly examined in other long germ 

band organisms.  

The long germ band mode Drosophila development is highly derived and cannot 

be used as a general representative of other insects or arthropods. The hierarchy of the 

Drosophila segmentation cascade, namely gap regulation of the pair-rule genes within a 

syncytial environment, is mechanistically sophisticated and seems to have just suddenly 

appeared in evolution, as there is no real counterpart in other animals outside of insects. 

Arthropods undergoing the more common and ancestral mode of segmentation, short germ 

band, only form the anterior-most head, gnathal, and some of the thoracic segments in the 

early blastoderm while the remaining thoracic and abdominal segments are formed 

sequentially from the cellularized posterior growth zone (GZ) (Davis and Patel, 2002; Liu 

and Kaufman, 2005b). By studying elements of the Drosophila paradigm in ‘lower’ 

arthropods, we can gain a better understanding of how these methods work in different 

contexts and elucidate their possible evolutionary functions and origin.  

 

Pair-rule genes in Tribolium 

After Drosophila, the pair-rule genes have probably best been studied in the 

holometabolous, short germ band insect Tribolium castaneum. In Tribolium, eve, run, and 

odd are considered primary pair-rule genes and are expressed in broad domains in the 

posterior GZ from which primary stripes emerge in the mid-anterior before splitting into 
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thinner secondary stripes (Brown et al., 1997; Choe and Brown, 2009; Patel et al., 1994). 

RNAi depletion of any of these genes results in severe truncations (Choe et al., 2006). 

Knock-down of Tc-EVE expression via Chromophore Assisted Laser Inactivation (CALI) 

results in embryos displaying a pair-rule phenotype, missing every other segment 

(Schroder et al., 1999), confirming a function for eve at both the pair-rule and segmental 

level is conserved between Tribolium and Drosophila, assuming that truncations in the 

beetle are equivalent to asegmental mutants in flies. Tc-eve, Tc-run, and Tc-odd form an 

oscillatory gene circuit that regulates segmentation during Tribolium embryogenesis 

(Choe and Brown, 2009; Choe et al., 2006; El-Sherif et al., 2012; Sarrazin et al., 2012), 

coordinated/synchronised through a yet undetermined mechanism. 

Tc-run plays an important role in inhibiting the expression of Tc-prd and Tc-slp in 

alternate segments (Choe and Brown, 2009; Choe et al., 2006). Tc-prd and Tc-slp activate 

Tc-en in their respective segments and loss of function of either leads to a pair-rule 

phenotype in the embryos, unlike the truncations observed for the primary pair-rule genes 

(Choe and Brown, 2007; Choe et al., 2006). Similar to Drosophila, Tc-slp plays an 

important role in anterior head development where RNAi loss-of-function phenotypes 

show deletions of large portions of the head including the antennae and gnathal segments 

(Choe and Brown, 2007), indicating a conserved function in this region.  

Finally, the expression of Tc-hairy is in a pair-rule pattern, but functional analysis 

indicates this gene to have no apparent function during posterior segmentation, being 

required mainly in the anterior gnathal segments (Aranda et al., 2008). While the functions 

of the pair-rule genes in Tribolium are becoming more known, they are not as well 

understood in lower insects and other arthropods where functional analysis is still 

challenging. Expression studies of the pair-rule genes are limited and mainly focus on 

posterior patterning. 



  92   

 

Pair-rule genes in other arthropods 

The best studied of the pair-rule genes is even-skipped, which shows considerable 

variation in expression patterns (Fig. 4.1). The ‘classic’ double-segment pattern of 

expression seen in Drosophila and Tribolium appears to be more common in the 

Holometabola, but less so in hemimetabolous species where single-segmental expression 

in the posterior is more common. The posterior stripes of eve expression in Gryllus are a 

mix of pair-rule and segmental (Mito et al., 2007), while Schistocerca eve is only 

expressed in a broad posterior domain with no stripes forming in the anterior GZ, leading 

one to question its function in this organism (Patel et al., 1992). Many other species 

express single-segment stripes of eve in the GZ as shown for the insect Oncopeltus 

fasciatus (milkweed bug ‑ Liu and Kaufman, 2005a), and phylogenetically basal 

arthropods including spiders (Damen et al., 2005), myriapods (Hughes and Kaufman, 

2002a; Janssen et al., 2011), and crustaceans (Copf et al., 2003). In short germ band 

organisms, eve expression is often dynamic and transient, where a broad posterior GZ 

domain is refined into segmental stripes that fade as they move anteriorly. While a double-

segment expression of eve, and other pair-rule genes, in the centipede Strigamia maritima 

has been observed in the GZ (Chipman and Akam, 2008), it may represent an example of 

convergent evolution, which possibly evolved as a mechanism to handle the rapid 

development of so many body segments (Janssen et al., 2011). 

Functional data, where available, show better conservation of eve in body 

patterning compared to the deviations in expression. Similar to Tribolium-eve
RNAi

, strong 

Oncopeltus-eve
RNAi

 embryos develop a “head only” phenotype (Liu and Kaufman, 2005a). 

Weaker eve
RNAi

 phenotypes in Oncopeltus and Gryllus both display a hypomorphic range 

of segment fusions with the posterior segments affected most, though no pair-rule-like 

phenotypes were observed (Liu and Kaufman, 2005a; Mito et al., 2007). From these 
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results, it is evident that the role of eve in segmentation is conserved in the Arthropoda, 

but the way this goal is achieved can vary based on expression, from pair-rule to 

segmental, or even a mix of the two.  

The primary pair-rule gene runt has been examined in the holometabolous, short 

germ band insect Bombyx mori (Liu et al., 2008) where it is expressed in a double segment 

pattern and loss-of-function leads to an asegmental phenotype (Liu et al., 2008). In non-

insect arthropods, such as the spider Cupiennius salei (Damen et al., 2000; Damen et al., 

2005) and the millipede Glomeris marginata (Janssen et al., 2011), run expression is 

similar to its eve counterpart: a broad posterior domain is refined into a segmental stripe 

that moves into the anterior GZ where it fades as a new segment forms. While homologues 

of runt have been found in many arthropods and other metazoans (Duncan et al., 2008), 

functional studies have not yet been conducted to confirm any evolutionary correlation 

during segmentation processes.  

Homologues of paired/pairberry have been studied in a range of arthropod species 

and were the first to show a pair-rule-type expression in a non-holometabolous insect, 

Schistocerca americana (Orthoptera), during both anterior and posterior patterning (Davis 

et al., 2001). Subsequent studies in several non-insect species showed pair-rule-type 

expression for prd/pby in the spider mite Tetranychus urticae (Dearden et al., 2002) and 

Glomeris (Janssen et al., 2012). In both these instances the pair-rule expression is 

restricted to the anterior segments specified at blastoderm, while prd/pby is segmentally 

expressed during germ band elongation (Dearden et al., 2002; Janssen et al., 2011), an 

expression pattern also observed in other chelicerates and myriapods (Davis et al., 2005; 

Schoppmeier and Damen, 2005a; Schwager et al., 2009). Loss-of-function studies have 

not been carried out in most organisms, so prd/pby function in segmentation can only be 

inferred in lower arthropods by comparison with Drosophila and Tribolium.  
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The secondary pair-rule gene sloppy-paired is expressed in single-segment stripes 

in the anterior GZ of Oncopeltus (Liu and Patel, 2010), Cupiennius (Damen et al., 2005) 

and Glomeris (Janssen et al., 2011). Janssen et al. (2012) recently showed a partial-pair-

rule expression in the blastoderm of Glomeris for slp, as with pby and other pair-rule 

genes, supporting the notion that pair-rule type expression may be ancestral to the 

arthropods, at least those segments specified in the early blastoderm. However, functional 

analysis remains to be conducted in most arthropod species.  

Of particular note, and special importance, is the pair-rule gene hairy, which has 

been shown to be necessary for proper segmentation in more basal organisms, where it is 

part of the Notch-segmentation pathway (Pueyo et al., 2008; Stollewerk et al., 2003). This 

mechanism appears to be conserved in sequentially segmenting animals represented in the 

three major phyla: arthropods, chordates, and annelids. In the basal arthropods Periplaneta 

and Cupiennius, hairy expression is dynamic in the GZ – a broad posterior domain is 

refined into single-segment stripes that move anteriorly until a new segment is formed 

(Damen et al., 2005; Pueyo et al., 2008). Conversely, Glomeris-h is expressed in 

segmental stripes only in the anterior GZ (Janssen et al., 2011), while Strigamia-h is 

expressed in alternating primary and secondary stripes in a pair-rule-like manner 

(Chipman and Akam, 2008). 

The Periplaneta pair-rule gene orthologues Pa-eve, Pa-run, Pa-pby, and Pa-slp are 

expressed segmentally and sequentially during both early (post-blastoderm) and late (germ 

band elongation) embryonic development. There appears to be a stronger requirement for 

these genes in the anterior segments, those patterned in the blastoderm, compared to the 

posterior during germ band elongation where they may have more redundant roles. My 

data, combined with the literature, also confirm conservation in the primary/secondary 

pair-rule gene hierarchy based on spatiotemporal expression patterns. The expression 
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patterns of the pair-rule genes are highly variable (Fig. 4.1), yet the end goal in regulating 

segment polarity genes may be conserved, thus demonstrating the plastic and adaptable 

nature of these genes during segment formation.  
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RESULTS 

Cloning of Periplaneta pair-rule genes orthologues 

 The search for pair-rule gene homologues in Periplaneta each began with an initial 

PCR using degenerate primers designed towards areas of high conservation (i.e. 

homeodomain - HD) of each of the known pair-rule genes. When an initial fragment was 

isolated, gene specific primers were designed and used in 5’ and 3’RLM-RACE in order 

to obtain a full-length cDNA sequence by extending the sequence in the respective 5’ and 

3’ ends. Once attained, the Periplaneta pair-rule gene homology was confirmed by 

phylogenetic analysis by aligning the conserved region of the predicted protein sequence 

with known sequences from other arthropods. In this way, I have successfully isolated and 

cloned four pair-rule gene orthologues in Periplaneta: even-skipped, runt, 

paired/pairberry, and sloppy-paired. An orthologue of Pa-hairy has previously been 

cloned and described by Pueyo et al. (2008). 

 

Pa-even-skipped 

 The initial 113bp of fragment Pa-eve was isolated using degenerate primers 

designed towards the conserved HD (Appendix 2C). Pa-eve specific primers (Appendix 

2C) used in  5’ and 3’RACE resulted in the addition of 274bp in the 5’ end and 602bp in 

the 3’end of the Pa-eve sequence giving a total length of 985bp (Appendix 5A). This 

sequence encodes a 295aa protein that contains the highly conserved 60aa eve-like HD as 

well as a conserved N-terminal domain and a Groucho interaction domain (LFQPYKT) 

near the C-terminus (Kobayashi et al., 2001; Macdonald et al., 1986). There is also a semi-

conserved Alanine/Proline rich region just 3’ to the HD, indicative of a Groucho-

independent repressive function for Pa-eve, and a 5’ region rich in PEST residues, typical 

of proteins with rapid turnover. Protein alignment of the HD with known eve protein 
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sequences from other arthropods revealed that this contig is, indeed, the Periplaneta 

orthologue of even-skipped and phylogenetic analysis reveals that it closely aligns to 

related species (Appendix 5B). 

 

Pa-runt 

 A sequence for Pa-run (Appendix 6A) was assembled after the initial degenerate 

PCR, using primers designed to a highly conserved region of the Runt domain, yielded a 

101bp fragment. The sequence was extended by 842bp and 366bp using Pa-run specific 

primers (Appendix 2D) in 5’ and 3’RACE, respectively. This 1305bp sequence codes for a 

258aa protein (Appendix 6A) that contains the Runt domain, though is missing the 

characteristic Groucho interaction motif (VWRPY) at the C-terminus found in most Runt 

family proteins (Aronson et al., 1997; Duncan et al., 2008). Protein alignment and 

phylogenetic analysis using a highly conserved portion of the Runt domain shows this 

sequence to be the Periplaneta runt orthologue (Appendix 6B).   

 

Pa-pairberry 

The Periplaneta orthologue for paired/pairberry was assembled as described 

above. The initial degenerate primers (Appendix 2E) used were designed towards highly 

conserved regions near the 5’ end of Paired domain and the 3’end of homeodomain 

resulting in an initial 499bp fragment. 5’ and 3’RACE extended this sequence by 141bp 

and 779bp, respectively, using Pa-pby specific primers (Appendix 2E). The resulting 

1413bp sequence (Appendix 7A) encodes a 398aa protein that contains the conserved 96aa 

Paired domain, and a 59aa paired-like HD, including a 16aa extended region at the N-

terminus. Protein alignment of the Paired domain with PaxIII group proteins from other 

arthropods indicates that this sequence is the Periplaneta orthologue of pairberry, as it 
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aligns closely to that of related species (Appendix 7B) and contains the Octapeptide 

(YSVDGILG) that is only found in pairberry, gooseberry, and gooseberry-neuro genes 

that are closely related to paired which, itself, does not contain this octapeptide sequence 

(Bopp et al., 1986; Davis et al., 2001).  

 

Pa-sloppy-paired 

 A 700bp mRNA fragment of Pa-slp (Appendix 8A) was assembled from various 

PCR fragments starting with an initial 275bp fragment that was isolated using degenerate 

PCR primers designed towards the highly conserved Forkhead domain (Appendix 2F). 

5’RACE using a Pa-slp specific primer (Appendix 2F) resulted in the extension of the 

sequence by 425bp but, unfortunately, the sequence could not be extended in the 

3’direction. This Pa-slp sequence contains 91 of the 110aa conserved Forkhead domain as 

well as a Conserved Domain II near the N-terminus that contains a protein motif 

(FSISSIL) likely to be a Groucho co-repressor interaction domain (Andrioli et al., 2004). 

Protein alignment of the Forkhead domain reveals this sequence is the Periplaneta 

orthologue of sloppy-paired aligning closely with slp homologues from related species 

(Appendix 8B). 

 

Embryonic expression patterns of Periplaneta pair-rule genes 

Pa-even-skipped 

 Embryonic Pa-eve mRNA expression was examined via in situ hybridisation using 

a 397bp anti-sense riboprobe that hybridised with a sequence from the 5’ end through the 

middle of the HD. Additionally, the 2B8 antibody was used to detect Pa-Eve protein 

expression (Patel et al., 1994). At stage 4 post-blastoderm, Pa-eve mRNA (Fig. 4.2A) and 

protein (Fig. 4.2B) are already expressed in five stripes in the three presumptive gnathal 
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and the first two thoracic segments, with the weakest expression in the mandibles. By 

early germ band elongation, stage 7, the anterior-most stripes have already begun to fade, 

leaving only the lateral edges of T2 mRNA expression remaining (Fig. 4.2C). In the 

posterior GZ, a faint broad domain is present and a new stripe of expression has formed at 

the presumptive A1 segment (Fig. 4.2C). A similar pattern of expression for Pa-Eve 

protein is observed at stage 7 (Fig. 4.2D), although perdurance of segmental Pa-Eve 

protein expression in more anterior segments indicates that protein expression/decay lags 

behind mRNA by several stripes (Fig. 4.2D). As the segment furrows become evident, Pa-

eve expression is noted in the anterior compartment of each segment (Fig. 4.2D).  

During late germ band elongation, the expression of Pa-eve (mRNA and protein) 

has completely diminished from the forming anterior segments and is now only observed 

in the GZ as a broad posterior domain and one to three stripes of expression in the anterior 

GZ (Figs. 4.2E-H). New stripes of Pa-eve expression emerge from the broad posterior 

domain in a sequential manner and as the stripes move anteriorly they begin to fade from 

the middle out to the lateral edges, completely dissipating before the formation of a new 

segment (Fig. 4.2E-H’). This pattern of expression persists until all of the segments have 

formed. Overall, Pa-eve has a dynamic, transient expression throughout embryogenesis. 

Pa-eve expression can be detected at the earliest post-blastoderm stages, when the germ 

rudiment is forming, as a series of five stripes corresponding to the future gnathal 

(mandible, maxilla, labium) and anterior thoracic (T1, T2) segments. These anterior 

stripes fade as a broad domain is established in the posterior GZ from which new stripes 

of expression will emerge in a sequential manner during germ band elongation and 

posterior segmentation. 
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Pa-runt 

A 440bp riboprobe was synthesized that recognized a sequence from the 3’ end of 

the Runt domain up to the poly-A tail and was used to detect Pa-run expression via in situ 

hybridisation. Similar to Pa-eve, Pa-run is expressed very early in development, by stage 

4 post-blastoderm, as five gnathal and thoracic stripes (Fig. 4.3A). Similar to Pa-eve 

expression at this stage, the mandibular stripe of expression is the weakest (Fig. 4.3A). In 

addition, expression can be detected in the developing head lobes, which will remain 

throughout embryonic development (Fig. 4.3A-G). By stage 5, these initial stripes have 

widened and a posterior GZ domain becomes evident (Fig. 4.3B). During early germ band 

elongation, stage 6, the anterior-most stripes of Pa-run have started to fade from the 

midline out to the lateral edges (Fig. 4.3C) and by stage 7 (Fig. 4.3D) most of the original 

five anterior stripes have gone as new stripes are being added from the posterior domain. 

The segmental furrows begin to form at early germ band elongation and indicate Pa-run 

expression in the anterior of each developing segment (Fig. 4.3C-D). 

As the embryo continues to develop, new stripes emerge sequentially (Figs. 4.3E-

G) from the broad domain of expression in the posterior GZ. The broad posterior 

expression of Pa-run is dynamic, but not as strongly detected as Pa-eve, and is best seen 

with fluorescent in situ hybridisation (FISH; Figs. 4.3H-J). This dynamic expression 

resolves into a stripe in the mid-anterior GZ that moves anteriorly so that 2-3 stripes are 

expressed at any one time. As the stripes move into the more anterior GZ they begin to 

fade from the midline and are absent by the time the new segment takes shape (Figs. 4.3E-

G and H-J). Once a segment has completely formed, expression of Pa-run appears de novo 

in the form of two ventral dots in the CNS on either side of the midline, in the anterior-

ventral region of each segment, that become clusters as the segment matures (Figs. 4.3G 

and 4.3J).  



  101   

 

Double FISH with Pa-en confirms that the early post-blastoderm stripes of Pa-run 

are expressed in the anterior of each segment (Fig. 4.3K) and that the stripes of Pa-en 

expression arise sequentially in an anteroposterior manner, becoming wider and more 

pronounced as the stripes of Pa-run fade in a similar progression. This pattern is observed 

in the GZ during germ band elongation as well (Fig. 4.3L); stripes of Pa-run arise well 

before those of Pa-en in the anterior GZ and their expressions do not overlap, as Pa-run 

expression is already fading when Pa-en expression begins to emerge. This suggests that 

Pa-run may negatively regulate the expression of Pa-en, most likely indirectly through the 

regulation of a secondary pair-rule gene. 

 

Pa-pairberry 

 Pa-pby expression was detected in cockroach embryos using a 511bp riboprobe 

that hybridised to a sequence spanning the 3’ end of the Paired domain to the middle of 

the homeodomain. in situ hybridisation revealed an initial expression of Pa-pby at post-

blastoderm stages 3 and 4  in a small arc within each of the future antennae and a small 

cluster of expression in the developing ocular region of the head lobes (Fig. 4.4A-B). 

Initially, two faint stripes of expression can be detected in the mandible and maxilla at 

stage 3 (Fig. 4.4A). New stripes are added sequentially from anterior to the posterior until 

all five post-blastoderm stripes have formed at stage 5 (Fig. 4.4A-C). At late stage 6, a 

new stripe of expression has developed in the intercalary segment (Fig. 4.4D). These data 

indicate that the expression of Pa-pby lags behind Pa-eve and Pa-run, which at this stage 

are already expressed in 6-7 stripes, and shows that aspects of anterior segment 

specification might occur in a sequential and segmental manner.  

 The temporal delay observed in anterior Pa-pby stripe formation persists during 

germ band elongation. By stage 7, a weak stripe is forming at T3 (Fig. 4.4E), whereas by 
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this stage of embryogenesis stripes of Pa-eve and Pa-run are already expressed in the 

future A1 segment (Fig. 4.2C and 4.3C). In addition, as the segment furrows become 

apparent it is easy to see that Pa-pby is expressed in the posterior of each developing 

segment (Fig. 4.4E). The sequentially appearing stripes of Pa-pby are formed only in the 

anterior GZ (Fig. 4.4E-H) and there is no indication of a broad posterior domain like that 

of Pa-eve and Pa-run. Initially arising as thin, faint stripes in the mid-anterior GZ the 

stripes become stronger and more pronounced as they move anteriorly, remaining 

expressed in the ventral/posterior region of all segments throughout development (Fig. 

4.4I). Lastly, the early expression of Pa-pby in the antennae and head lobes change during 

germ band elongation and are observed as two dots in the inner/proximal fold of these 

developing appendages (Fig. 4.4H). 

Double FISH experiments were conducted in order to determine how the 

expression of Pa-pby in the GZ relates to that of the segment polarity gene Pa-en during 

germ band elongation (Fig. 4.5A), previously shown to arise only in the anterior GZ as 

well (Chapter III – Figure 3.1I) (Marie and Bacon, 2000). Pa-pby expression arises prior 

and anterior to that of Pa-en, and their expressions partially overlap (Fig. 4.5A). Double 

FISH also revealed that the stripes of Pa-pby expression develop after and posterior to Pa-

run and by the time a strong, solid stripe of Pa-pby has formed, that of Pa-run has already 

begun to fade from the midline (Fig. 4.5B). This spatiotemporal pattern was also observed 

for Pa-run and Pa-en double FISH (Fig. 4.3L). Thin stripes of Pa-en appear posterior to, 

but not overlapping, those of Pa-run as they begin to fade from the midline. When the 

expression patterns of Pa-run, Pa-pby, and Pa-en are overlaid (Fig. 4.5C), it becomes 

apparent that as the stripe of Pa-run emerges from the broad posterior domain and moves 

towards the anterior GZ, the expression of first Pa-pby, then Pa-en develop only after that 

of Pa-run has dissipated. In addition, each of these genes is expressed in the developed 
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segments with Pa-pby and Pa-en in wide overlapping bands in the posterior of each 

segment (Fig. 4.5D) and two dots of Pa-run in the anterior, away from the other genes 

(Fig. 4.5E). Altogether, these data indicate that the expression of Pa-pby stripes in the 

anterior GZ may be negatively regulated by Pa-run, whereby the clearance of Pa-run 

expression releases the inhibition of Pa-pby allowing it to activate Pa-en expression.  

Compared to Pa-eve and Pa-run, Pa-pby is expressed later during post-blastoderm 

development, forming sequentially from the anterior to include the five gnathal and 

thoracic segments. There is also a lag in expression during germ band elongation where 

the Pa-pby stripes only form in the anterior GZ after Pa-run (and Pa-eve) has already 

begun to fade. Pa-pby stripes arise posterior to and after Pa-run, but anterior to and before 

Pa-en. Pa-pby and Pa-en stripes partially overlap and this expression pattern remains in 

all segments throughout development. 

 

Pa-sloppy-paired 

 A 428bp riboprobe was synthesized in order to examine Pa-slp expression during 

cockroach embryogenesis. This probe recognizes a region of the Pa-slp sequence spanning 

from the N-terminus through most of the Forkhead domain. At late stage 3 post-

blastoderm, Pa-slp expression is detected in the presumptive antennae and mandibles (Fig. 

4.6A). By stage 5, Pa-slp is expressed in five wide stripes in each segment from 

mandibles to T2 as well as strong expression in the developing antennae (Fig. 4.6B). 

These stripes remain strongly expressed at stage 6, when a faint new stripe is forming at 

T3 (Fig. 4.6C). At this stage, Pa-slp expression seems much more broadly expressed in 

the mandibles, taking up most of the segment (Fig. 4.6C). During germ band elongation, 

new stripes of Pa-slp expression appear in the anterior GZ, becoming stronger as they 

move further anteriorly (Fig. 4.6D’-E’) and remaining in the newly developed segments, 
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although a bit weak, throughout embryogenesis (Fig. 4.6D-E). Similar to Pa-pby, there is 

no broad domain of expression in the posterior-most end of the GZ (Figs. 4.6D-E’) and the 

appearance of Pa-slp segmental stripes of expression are likely to lag behind those of Pa-

eve and Pa-run, although further analysis is required.  

 

Pa-hairy 

 A Periplaneta homologue of the pair-rule gene hairy was previously described by 

Pueyo et al. (2008) in relation to germ band elongation. To examine Pa-h expression at 

earlier stages, a similar riboprobe was used that was available in the lab. The early post-

blastoderm expression of Pa-h, stage 5, is in five stripes in the gnathal and first two 

thoracic segments, as well as in the antennae and developing head lobes (Fig. 4.7A). 

During germ band elongation, new stripes of Pa-h expression develop sequentially in the 

anterior GZ as they emerge from a broad posterior domain (Fig. 4.7B-D; Pueyo et al., 

2008). At stage 6, a strong posterior expression develops (Fig. 4.7B) and by stage 7, when 

the segment furrows are forming, Pa-h appears to be expressed in the posterior of each 

segment (Fig. 4.7C). Also at stage 7, Pa-h expression begins to appear as a line in the 

ventral CNS (Fig. 4.7C), which will remain throughout the rest of embryonic 

development, as the stripes of expression begin to fade from developed segments (Fig. 

4.7D). The broad posterior GZ expression is similar to Pa-eve and Pa-run, and in each 

case this expression is dynamic, resolving into segmental stripes of expression in the 

anterior GZ. These stripes move anteriorly and fade by the time a new segment is 

established. The posterior expression of Pa-h is regulated by the Dl/N pathway, where the 

stripes form anterior and adjacent to those of Pa-en, potentially regulating their expression 

(Pueyo et al., 2008).  
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Function of Periplaneta pair-rule gene orthologues 

Pa-eve 

In order to determine the function of Pa-eve during embryonic development, a 

400bp long dsRNA fragment was injected into virgin female cockroaches from which 

subsequent embryos and nymphs were analysed for phenotypes. Pa-eve
RNAi

 phenotypes 

provided a hypomorphic series in which affected embryos were placed into two classes 

(Table 4.1). Class I phenotypes (60/667; 9%) were typically observed in earlier staged 

embryos and were long and skinny with weakly defined segments (Fig. 4.8B-C), except 

for the mandibles where Pa-eve expression is the weakest (Fig. 4.2A-B), and a normal 

appearing GZ. in situ hybridisation for Pa-en in these Class I Pa-eve
RNAi

 embryos showed 

that the expression of en was very weak and thin (Fig. 4.8B) or completely absent (Fig. 

4.8C) compared to wild type (Fig. 4.8A), indicating a failure to define, or maintain, 

segment boundaries. Pa-eve
RNAi

 Class II phenotypes (179/667; 26.8%) were commonly 

observed in later stages of embryogenesis when the limb buds become apparent (Fig. 

4.8E,G). In these embryos, the mandibles appear unaffected (Fig. 4.8E), while extensive 

fusion occurs between the more posterior gnathal and thoracic segments (Fig. 4.8E,G). 

These phenotypes were somewhat erratic, but typically involved fusion between the 

maxillary and labial segments (Fig. 4.8E) and a varying degree of fusions between the 

thoracic segments, with the most extreme phenotypes displaying a fusion of all three 

segments, as shown in Figs. 4.8E and 4.8G. 

Pa-eve
RNAi

 first nymphs (Table 4.1) display similar fusions of gnathal and thoracic 

segments as Class II embryos, although less frequently observed (14/399 – 3.5%; Fig. 

4.8I-J’). These nymphs displayed a great deal of ventral and dorsal thoracic fusions (Figs. 

4.7I,J), typically between T1/T2 or T2/T3. In one example, all thoracic segments were 

fused both dorsally and ventrally (Figs. 4.7J-J’). Additional, less common phenotypes 
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include fusions of lb/T1, T3/A1, and deletion of the maxillary segment. Very weak defects 

in posterior patterning and segmentation were observed in only two nymphs where two 

abdominal segments were fused at the midline on both dorsal and ventral sclerites (arrow, 

Fig. 4.8I-I’).  

   This functional analysis shows that Pa-eve is important in anterior segmentation, 

except in the mandibles. Pa-eve
RNAi

 resulted in extensive fusion between the remaining 

gnathal and/or thoracic segments, especially in the thorax. Stronger phenotypes were 

observed in the early staged embryos in which segments were only weakly formed, at best, 

with a marked reduction or absence of Pa-en expression. While RNAi may not give a true 

null phenotype, as residual transcript may be enough to be effective, the Class I 

phenotypes indicate that complete knockout of Pa-eve could lead to asegmental embryos 

that may continue growing in the posterior from a normal GZ. Perhaps the reason that no 

Class I nymphs were observed, is that the effects of Pa-eve
RNAi

 proved lethal beyond a 

certain point in development, which could also explain the low penetrance of Class II 

nymphal phenotypes. Altogether, these results show a conserved function for Pa-eve in 

segment patterning and formation with a strong requirement for proper segmentation of 

the anterior segments established at post-blastoderm.  

 

Pa-runt 

 Functional analysis via Pa-run
RNAi

 involved injecting a 615bp dsRNA fragment 

corresponding to part of the 5’UTR through most of the Runt domain. Phenotypic 

variation of Pa-run
RNAi

 embryos allowed them to be placed into either of two classes 

(Table 4.1). Class I embryos (75/334; 22.5%) showed extensive fusions of gnathal and 

thoracic segments and typically displayed a pinched abdomen (Fig. 4.9B-C). In addition, 

partial or total loss of various segments was observed, with the most common being loss 
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of the maxillae (Fig. 4.9B), whereas the mandibles always remained unaffected (Fig. 

4.9B-C). These results may be explained in part as a result of diminished Pa-en expression 

in the anterior segments (Fig. 4.9D) leading to failure of segment boundary formation or 

maintenance, while the expression of Pa-en in the posterior GZ remains relatively 

unaffected. Class II Pa-run
RNAi

 embryos (15/334; 4.5%) showed a unique phenotype of 

mirror image duplications in some segments (Fig. 4.9E-E’), a phenotype also observed in 

Drosophila-run mutant larvae (Gergen and Wieschaus, 1985; Nüsslein-Volhard and 

Wieschaus, 1980). 

Pa-run
RNAi

 phenotypes observed in nymphs (16/135; 11.9%) resembled the Class I 

embryonic phenotypes described above, exhibiting segmentation defects in the anterior, 

but not in the abdominal segments (Fig. 4.9H, J; Table 4.1). The most common first 

nymph phenotypes include fusion of thoracic segments, typically T1/T2 (Fig. 4.9H), and 

reduced or missing maxillae, similar to Pa-eve
RNAi

 embryos. In addition, some nymphal 

phenotypes present with partial loss of labium and/or fusion of lb with T1, as well as a 

loss of one or both T1 legs (Fig. 4.9J).  

Although low in number, embryonic Pa-run
RNAi

 Class II mirror-image segment 

phenotypes indicate an important and conserved role for Pa-run in the regulation of 

segment polarity genes possibly through negative regulation of Pa-pby. As shown in Fig. 

4.5B, the stripes of Pa-pby form in the anterior GZ only after the expression of Pa-run 

begins to fade from the midline. Pa-run
RNAi

 leads to irregular formation of Pa-pby stripes 

in the GZ (Fig. 4.10B-C), sometimes in misaligned diagonal stripes, which may be able to 

explain some Class I Pa-run
RNAi

 phenotypes, where only one half of some segments are 

missing. In addition, knockdown of Pa-run expression resulted in ectopic expression of 

Pa-pby in the anterior segmental compartments (Fig. 4.10B-B’). This ectopic expression 

would explain the development of mirror-image segment phenotypes observed in Pa-
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run
RNAi

. Overall, these results indicate that Pa-run regulates the expression of Pa-pby by 

inhibiting its expression in the anterior compartment of each embryonic segment at both 

early post-blastoderm and later during germ band elongation; a function that is conserved 

in Tribolium (Choe and Brown, 2009; Choe et al., 2006). Similar to Pa-eve, Pa-run 

appears to be more strongly required for proper development of the anterior gnathal and 

thoracic segments formed at the earliest stages of development, likely the indirect 

regulation Pa-en expression through Pa-pby. While some defects were observed in the 

posterior, in the form of a pinched abdomen and misaligned segments, posterior growth 

and segmentation otherwise proceeds as normal. 

 

Pa-pairberry 

 The 405bp dsRNA injected for functional analysis of Pa-pby included a region 

spanning the Paired domain to the 5’ end of the homeodomain, including the extended 

region. Unfortunately, even after several attempts, Pa-pby
RNAi

 did not result in a 

substantial phenotype other than a few embryos (Class II; 16/133; 12%; Table 4.1) which 

were short and wide with a few exhibiting fusions between lb and T1. Only one embryo 

(Class I; 1/133; 0.75%) displayed a significant phenotype, having extensive fusions of all 

segments posterior to the labium (Fig. 4.4J). The abnormal folding of the embryo makes it 

hard to determine if this region is unsegmented. However, as shown previously, loss of 

proper segmentation often leads to fusions that cause abnormal bends and twists in the 

developing embryos, which could be an indication of a function for Pa-pby in segment 

formation. No nymphal phenotypes were observed. While Pa-pby
RNAi

 embryonic 

phenotypes were not totally conclusive, they do suggest a role for Pa-pby in posterior 

patterning in the roach. 
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 One potential reason for such a low penetrance could simply be due to the small 

number of oothecae collected. Pa-pby
RNAi

 was attempted on three separate occasions in 

small groups of 2-4 females per round. In none of these repeats were more than a dozen 

eggs collected, which could potentially indicate a previously undescribed role for Pa-pby 

during oogenesis. Alternatively, the dsRNA synthesised for Pa-pby
RNAi

 may have 

recognised off-target sites of different genes required for proper oogenesis, resulting in the 

low fecundity of these females. However, no such gene was detected in a 1000 gene hits 

from a BLAST search using the Pa-pby dsRNA sequence used for RNAi. 

 

Pa-sloppy-paired  

Of all the pair-rule genes studied, it is with Pa-slp that the strongest and most 

consistent phenotypes were displayed. Pa-slp
RNAi

 was conducted by injecting a 525bp 

dsRNA fragment directed towards a region from the start codon to the middle of the 

Forkhead domain. Class I Pa-slp
RNAi

 embryos (Table 4.1; 12/170; 7.1%) were long and 

skinny with limited observable segmentation, similar to the Pa-eve Class I embryos shown 

in Figs. 4.8B,C. Class II Pa-slp
RNAi

 embryos (54/170; 31.8%) displayed malformed 

mandibles and some segments appeared “lumpy” due to a what may be a mirror-image 

duplication of some segments (Fig. 4.11B), as seen in Pa-run
RNAi

 (Fig. 4.9E’). 

  Pa-slp
RNAi

 first nymphs also displayed a hypomorphic range of phenotypes and 

were placed into two main classes (Table 4.1). Class I nymphs (209/349; 59.9%) were 

variably missing one or both mandibles and one or both antennae, though not always on 

the same side (Figs. 4.11D,G). In some cases the mandibles in Class I nymphs were only 

partially formed, where the molar was missing (Fig. 4.11D1,D2) and sometimes the 

incisors were malformed in a way that they looked split or duplicated (Fig. 4.11D2). Class 

II nymphs invariably died before or just after hatching and displayed large deletions of 
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head and gnathal segments (20/349; 5.7%; Fig. 4.11H). Not only were the mandibles and 

antennae always missing, these Pa-slp
RNAi

 first nymphs also had deletions of maxillae and 

either partial or total loss of the labium as well. Two of the Class II nymphs were also 

missing either one T2 leg or had one severely reduced and malformed T1 leg (Figs 

4.11H,I). However, in none of the Pa-slp nymphs were dorsal thoracic fusions noted, nor 

were there any defects in posterior segmentation (Fig. 4.11I). 

Closer examination of the head morphology in Pa-slp
RNAi

 first nymphs show that 

the results of such large deletions of the mouthparts led to a misshapen head, as can easily 

be seen in the Pa-slp
RNAi

 nymphs in Figs. 4.11D and 4.11G. Although the contribution of 

the antennal and gnathal segments to the dorsal head may be minimal, that of the 

intercalary segment is fairly significant in other species studied (Posnien and Bucher, 

2010; Posnien et al., 2010). The intercalary segment gives rise to the sides of the 

epicranium (the gena or “cheeks”), which is missing in Pa-slp
RNAi

 first nymphs (Fig. 

4.11D, G-H), indicating an early loss of the intercalary segment along with the antennae 

and mandibles. Loss of the gena and, most notably, the mandibles causes the anterior 

portions of the head to bend in along the sides, giving the appearance of a reduced frons, 

clypeus, and labrum, as well as making the dorsal epicranial plates of the vertex look 

expanded (Fig. 4.11D). While no posterior phenotypes were noted in Pa-slp
RNAi

, embryos 

and nymphs show considerable defects in the anterior-most segments – mandibles and 

antennae, indicative of a strong and conserved requirement for Pa-slp for proper 

pregnathal head and anterior gnathal development (Andrioli et al., 2004; Choe and Brown, 

2007; Grossniklaus et al., 1992). 
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Redundancy among Periplaneta pair-rule genes 

Segmental stripes of Periplaneta pair-rule genes arise sequentially in the anterior 

GZ, through a yet undetermined mechanism, so each is expressed at one point or another 

in all developing segments. As posterior segmentation defects were limited in the 

Periplaneta RNAi phenotypes examined, then perhaps the functions of these genes are 

redundant during posterior growth and segmentation. If the pair-rule genes are redundant 

during segmentation, then knocking down their expressions in combination should 

increase the likelihood of creating posterior defects.  

As Pa-eve and Pa-run are primary pair-rule genes in other insects, it is probable 

they have this role in Periplaneta and therefore would have the greatest effects on 

segmentation if both were knocked-down via double RNAi. Resultant Pa-eve/run
RNAi 

embryos displayed two main phenotypes. Class I Pa-eve/run
RNAi

 embryos (6/185; 3.2%) 

had long skinny bodies posterior to the head (Fig. 4.12B). Consequently, staining for Pa-

en showed this gene to be minimally expressed in narrow stripes in each weakly defined 

segment (Fig. 4.12B), whereas in wild type embryos Pa-en expression is in wide stripes in 

the posterior of each segment (Fig. 4.12A). Class II embryos (60/185; 32.4%) had short, 

fat bodies with extensive fusions between segments and a greatly reduced GZ (Fig. 4.12C-

D). Expression of Pa-en in these embryos shows normal development of the mandibles 

and irregular formation of the remaining segments and an eventual absence of stripes in 

the reduced GZ (Fig. 4.12D). No phenotypes were observed in hatched or unhatched first 

nymphs (98/98; 100% wild type). Combined with the RNAi phenotypes described above, 

these data indicate an overall requirement on a single gene basis for proper anterior 

segmentation, while in the posterior these pair-rule genes may act in a redundant manner 

during germ band elongation. 
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DISCUSSION 

Periplaneta pair-rule genes affect anterior segmentation 

In short germ band organisms, the anterior head, gnathal, and thoracic segments 

are specified in the early blastoderm in a way that is highly similar to Drosophila. These 

segments form quite rapidly compared to the sequential addition of the more posterior 

segments during germ band elongation and may utilize an alternate mechanism to do so 

(Dearden et al., 2002; Janssen et al., 2012; Minelli, 2001; Pechmann et al., 2009). In long 

germ band organisms, regulation of the pair-rule genes is a key step as they signal a 

change from an unsegmented to a segmented embryo. The ‘classic’ pair-rule type of 

expression is in alternating segments. In short germ band organisms, this pattern of 

expression is less common, except for the pair-rule genes of Tribolium and some notable 

exceptions in the anterior for Gryllus-eve, Schistocera-pby1, and Tetranychus-pby (Choe 

et al., 2006; Davis et al., 2001; Dearden et al., 2002; Mito et al., 2007). Recently, Janssen 

et al. (2012) showed that most of the pair-rule gene homologues in Glomeris are expressed 

in a pair-rule manner in the anterior segments during the blastoderm and post-blastoderm 

stages. 

In Periplaneta, the pair-rule genes do not show a pair-rule type of expression in the 

anterior during post-blastoderm development (Fig. 4.13A). While it is still possible that 

the earliest blastoderm expressions are in a pair-rule-like manner, analysis at this stage is 

not currently possible in this system, as eggs are laid in an ootheca that cannot be opened 

at such an early stage without destroying them. However, several observations point to the 

fact that these genes are, indeed, expressed in a segmental fashion. First, the pattern of 

expression of Pa-pby is seen to emerge in a sequential and segmental order in an 

anteroposterior direction, which likely reflects the expression of the genes immediately 

preceding and regulating its expression (i.e. Pa-run). Second, in other short germ band 
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insects, the pair-rule pattern of expression is noted for Gryllus-eve (Mito et al., 2007), 

Schistocerca-pby (Davis et al., 2001), and all Tribolium pair-rule homologues (Choe et al., 

2006) during the post-blastoderm stages, not restricted to the blastoderm (see also Table 

4.2). Therefore, it is reasonable to assume one would expect to see a pair-rule pattern of 

expression for Periplaneta pair-rule genes at comparable stages if it existed. Finally, 

RNAi did not result in a “pair-rule” phenotype in the anterior segments for any of the 

Periplaneta pair-rule genes, where they were observed in the anterior for both Tribolium 

and Gryllus embryos subjected to RNAi (Choe et al., 2006; Mito et al., 2007). Support for 

this argument comes from studies in Oncopeltus, where Of-eve is also expressed 

segmentally in the anterior and RNAi did not result in a ‘pair-rule’ phenotype (Liu and 

Kaufman, 2005a). 

However, there does appear to be some regional differences in the effects of the 

pair-rule genes in Periplaneta. Pa-eve and Pa-run both show extensive fusion among the 

gnathal (mx/lb) and thoracic (T1/T2, T2/T3) segments in RNAi embryos and nymphs. 

While both affected the maxilla, deletions of this segment were more common in Pa-

run
RNAi

 where fusions between maxilla and labium were increased in Pa-eve
RNAi

. 

Similarly, while both RNAi treatments caused fusions to occur between T1 and T2, only 

Pa-eve
RNAi

 embryos and nymphs showed fusion between T2/T3 or among all three 

thoracic segments, sometimes also including the gnathal segments. However, in both Pa-

eve
RNAi

 and Pa-run
RNAi

 the mandibles remained unaltered, even in those embryos showing 

very strong fusion in the more posterior gnathal and thoracic segments. Effects on the 

mandibles are mainly observed in Pa-slp
RNAi

. 

Pa-slp
RNAi

 embryos and nymphs often show large deletions of the head segments, 

from antennae to mandibles and up to the labium and thorax. This phenotype is also noted 

in Drosophila and Tribolium larvae when slp expression is depleted (Choe and Brown, 
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2007; Grossniklaus et al., 1994). In these insects, slp expression arises in the anterior head 

before, and independent of, its future expression as a secondary pair-rule gene (Andrioli et 

al., 2004; Choe and Brown, 2007; Fujioka and Jaynes, 2012; Grossniklaus et al., 1992). 

Formation of the mandibles appears to be a special case in many organisms studied, as it 

lies in a region of overlap between two defining head segmentation processes. It is the 

most anterior segment affected by the pair-rule genes and is the posterior-most segment 

specified by the “head gap” genes, such as orthodenticle, buttonhead, and empty spiracles 

(Andrioli et al., 2004). Orthologues of these head gap genes remain to be isolated and 

examined in Periplaneta, but it would be likely that they exist based on the high rate of 

conservation in bilaterians (Ang et al., 1996; Mercier et al., 1995; Pannese et al., 1995).  

The overlapping expressions of Dm-slp and the other head gap genes work to 

differentially regulate the formation of pregnathal head segments, while the remaining 

mouthparts and body are patterned by the pair-rule genes (Grossniklaus et al., 1994). Dm-

slp1 works with the Groucho co-repressor in the pre-gnathal segments in a gap-like 

manner restricting the expression of the other pair-rule genes posterior to the mandibles; 

this repression includes the primary pair-rule genes Dm-eve and Dm-run which regulate 

the secondary expression of Dm-slp in more posterior segments (Andrioli et al., 2004; 

Cadigan et al., 1994). A putative Groucho binding domain has been identified in the 

cockroach slp homologue indicating a potential interaction with Pa-slp and, thus, a 

conserved repressor function for this gene in head patterning. Perhaps Pa-slp plays a role 

in repressing Pa-eve and Pa-run function in the mandibles, which could explain why loss 

of either Pa-eve or Pa-run expression never result in a mandibular phenotype. 

Altogether, the data on Periplaneta pair-rule genes studied here show that while 

they are all expressed segmentally in the anterior, there is some regionalisation to their 

effects. Pa-slp functions primarily in the antennae and mandibles, while Pa-run and Pa-



  115   

 

eve mainly affect the posterior gnathal and thoracic segments, with Pa-run having a 

stronger effect on the maxilla and Pa-eve affecting more of the thoracic segments. 

Conversely, no overt segmentation phenotypes were observed in the anterior of Pa-h
RNAi

 

embryos, although there are minor defects in Pa-en stripes in this location (Pueyo et al., 

2008); however, Pa-h plays a much larger role in posterior patterning. Functions for Pa-

pby in anterior segmentation remain to be fully elucidated and Periplaneta homologues for 

the other pair-rule genes, such as odd-skipped, have yet to be isolated and analysed. 

 

Periplaneta pair-rule genes and posterior patterning  

After the germ anlage condenses and the anterior segments begin to take form at 

the post-blastoderm stage, the remaining posterior segments will emerge during germ 

band elongation from the GZ. Pair-rule gene expression in the GZ can vary depending on 

the organism in question, but are usually segmental or pair-rule. The Periplaneta pair-rule 

gene homologues are expressed segmentally in the GZ and can be separated into two 

groups based on when and where their expression initially arises. Pa-eve, Pa-run, and Pa-

h (Pueyo et al., 2008) are each expressed in a broad posterior domain from which stripes 

of expression emerge in the anterior GZ; whereas Pa-pby and Pa-slp are not expressed in 

the posterior and only form stripes of expression in the anterior GZ (Fig. 4.13B-C). Thus, 

it is now possible to define Pa-eve, Pa-run, and Pa-h as primary pair-rule genes, being 

expressed first and more posterior, and Pa-pby and Pa-slp secondary, as they arise later 

and only in the anterior; a similar spatiotemporal hierarchy has been suggested for spider 

pair-rule genes by Damen et al., (2005). These patterns hold true in the anterior post-

blastoderm, as well, where Pa-eve, Pa-run, and Pa-h are expressed earlier than Pa-pby 

and Pa-slp (Fig. 4.13A). The genetic interaction between Pa-run and Pa-pby confirms this 

relationship, whereby Pa-pby is negatively regulated by Pa-run in such a way that stripes 
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can only form in the anterior GZ when the expression of Pa-run begins to fade (Fig. 

4.5B).  

This designation of primary and secondary has been well established in Drosophila 

where the primary pair-rule genes (eve, run, h) are expressed first and, in turn, regulate the 

downstream secondary pair-rule genes (prd, slp, odd, ftz), thus forming a “mini-hierarchy” 

within the Drosophila segmentation cascade. Applying the spatiotemporal relationship 

described above for Periplaneta to the literature reveals a strong conservation of this pair-

rule gene mini-hierarchy within the Arthropoda (Table 4.2 and references therein). Based 

largely on analysis of expression data in the posterior GZ, several patterns begin to 

emerge. First, the ancestral expression patterns of the pair-rule genes in the posterior GZ 

was most likely segmental in nature, as this is the most common pattern observed in 

phylogenetically basal organisms. While a few examples of pair-rule-like expression have 

been noted, such as several Strigamia genes, this pattern is mainly and almost exclusively 

observed in the holometabolous insects. Second, whether expressed in a segmental or pair-

rule manner, nearly all pair-rule genes studied can be classified as either primary or 

secondary. With this in mind, a third pattern is noted in which eve and run are always 

regarded as primary pair-rule genes (blue box; Table 4.2), while prd/pby and slp are 

secondary (green box; Table 4.2).  

The general classification of pair-rule genes as primary and secondary is conserved 

among the arthropods; however, the posterior expression patterns can be highly variable 

(i.e. eve; Fig. 4.1). In higher insects, these genes are expressed with double-segment 

periodicity, while in more basal insects and arthropods the pair-rule genes tend to be 

expressed segmentally. As most of these inferences rely on expression data only, 

functional analysis and examination of the interplay between these primary and secondary 

pair-rule genes remains to be done in order to reveal the true nature of these potential 
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interactions and the presumed conserved function of these genes in regulating the segment 

polarity genes and segment formation. 

 

Evolution of pair-rule patterning 

RNAi for Periplaneta pair-rule genes has a more profound effect on the anterior 

segments compared to the posterior. Phenotypes commonly involved fusion or deletion of 

the gnathal and thoracic segments, those formed in the early blastoderm, while effects in 

the posterior were limited. These results could indicate that 1) RNAi is less effective in the 

posterior of the cockroach compared to the anterior, or 2) Periplaneta pair-rule genes are 

highly redundant during posterior growth and segmentation. The first option can be ruled 

out as posterior effects are observed in RNAi for several other genes (see Chapters III and 

V) (Pueyo et al., 2008). Therefore, the second alternative may be more explanatory to the 

effects observed in Periplaneta pair-rule gene RNAi, which is supported by the increased 

prevalence of posterior effects upon the loss of both Pa-eve and Pa-run in double 

knockdown RNAi. Additionally, these observations may also be partially explained by the 

differences in the mechanisms involved in segment formation in these two different 

regions. 

Posterior growth and segment formation in the cockroach is under control of 

Notch-signalling, while the anterior segments form in the blastoderm in a N-free 

environment (Chapter III). In Periplaneta, N-signalling regulates the dynamic expression 

of the pair-rule gene Pa-h, which goes on to regulate Pa-en expression and segment 

formation (Pueyo et al., 2008). N-mediated segmentation is conserved in all segmented 

phyla, including annelids and vertebrates, and has been suggested to be ancestral to the 

bilaterians (Pueyo et al., 2008; Stollewerk et al., 2003). However, hairy may present a 

unique case as a pair-rule gene functioning in bilaterian segmentation. While other pair-
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rule gene homologues have been found outside of the arthropods they do not usually have 

a function in segmentation/somitogenesis, instead playing a role in neurogenesis (Bastian 

and Gruss, 1990; Inoue et al., 2002a; Ruiz i Altaba, 1990; Song et al., 2002). This neural 

function remains conserved in the arthropods, indicating an ancient origin for these genes 

and suggesting that the role of these genes in segmentation must have evolved after the 

protostome-deuterostome split. Even within the protostomes, however, the pair-rule genes 

have only been found to function in arthropod segmentation, with the possible exception 

of the polychaete worm Platynereis dumerilii (de Rosa et al., 2005; Seaver et al., 2012). 

Therefore, pair-rule gene expression and function in the arthropods may be a derived state 

having been co-opted into the segmentation mechanisms.  

These results are interesting in light of the fact that in short germ organisms the 

anterior-most segments form in a syncytial blastoderm, reminiscent of long germ band 

segmentation. This Notch-independent manner of segmentation is likely the precursor to 

what exists in higher insects today. As new methods were gained to speed up embryonic 

development, addition of segments from a posterior growth zone became less important as 

more segments were being formed in the syncytial blastoderm. Along with this, the 

requirement for Notch became unnecessary as signalling now occurred in a cell-free 

environment which allowed for the gap genes to take over control of pair-rule gene 

expression and segmentation (Damen, 2007; Peel and Akam, 2003). 

Expression in the double-segment manner allows for faster development, 

especially within the syncytial blastoderm of highly derived insects, such as Drosophila. 

This all-at-once approach to segment patterning may have its roots in short germ band 

arthropods where the anterior segments are pre-patterned in the early blastoderm (Davis 

and Patel, 2002; Liu and Kaufman, 2005b). Several studies have shown initial pair-rule 

patterning at the blastoderm/post-blastoderm stages, when the anterior segments are 
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specified, in basal insects and other arthropods (Davis et al., 2001; Dearden et al., 2002; 

Janssen et al., 2012; Mito et al., 2007). These data suggest a relationship between the 

anterior segmentation mechanisms in short germ organisms and the whole body 

segmentation in long germ band organisms, both occurring within an early blastoderm. 

Perhaps this early patterning of more basal arthropods was expanded during the transition 

from short to long germ band as more and more segments became pre-patterned in the 

blastoderm, until all have been incorporated into this stage (Damen, 2007; Peel and Akam, 

2003). This change may have occurred as the pair-rule genes came under the control of the 

gap genes by gaining cis-regulatory gap response elements (Peel and Akam, 2003). Some 

studies suggest a conserved function of the gap genes in regulating pair-rule genes 

(Bucher and Klingler, 2004; Cerny et al., 2005; Cerny et al., 2008; Liu and Patel, 2010; 

Mito et al., 2006; Mito et al., 2005; Schwager et al., 2009); however, gap gene functions in 

short germ band organisms remain unclear. Other reports suggest that the pair-rule genes 

themselves may act as gap genes that even regulate the expression of other, canonical, gap 

genes (Liu and Kaufman, 2005a; Mito et al., 2007). 

It is imperative to study more phylogenetically basal insects and arthropods, to 

further elucidate and draw stronger conclusions on putative ancestral gene functions. 

Perhaps the best candidates for studying the evolution of developmental mechanisms are 

those organisms lying at the border of major lineages. The cockroach is a prime example 

of an insect with the power of elucidating the functions and evolution of segmentation 

genes, as Periplaneta represents a link between the basal arthropods (Myriapoda and 

Chelicerata) and the derived insects. This is the first study in which a large sample of the 

pair-rule genes have been analysed, both expression and function, in a basal insect species.  

It appears as though the function of the pair-rule genes in segmentation may be 

restricted to the arthropods. Through the course of evolution, the pair-rule genes seem to 



  120   

 

have gained a new function in arthropod body segmentation; however, without proper 

functional analysis in more ancestral arthropods, it is hard to determine the true nature of 

these genes pertaining to segmentation. The results presented here indicate an ancestral 

segmental expression of the pair-rule genes in the posterior, while leaving the question 

remaining as to whether the ancestral anterior expression is pair-rule. My data provide 

additional evidence that a pair-rule hierarchy existed in the arthropod ancestor and further 

demonstrate the highly flexible nature of the pair-rule genes during arthropod 

segmentation. 
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Figure 4.1: Variability in pair-rule gene expression in arthropods. The expression of 

the pair-rule gene even-skipped is one example of the highly variable nature of pair-rule 

gene expression. Expression may be in the ‘classic’ double-segment pattern, as in (1) the 

highly derived, long germ band insect Drosophila melanogaster (Diptera) (Macdonald et 

al., 1986) and in (2) the short germ band, holometabolous insect Tribolium castaneum 

(Coleoptera ‑ Patel et al., 1994). In most short germ band arthropods, such as (3) the 

hemimetabolous insect Oncopeltus fasciatus (Hemiptera ‑ Liu and Kaufman, 2005a) and 

(4) the crustacean Artemia franciscana (Copf et al., 2003), eve is expressed broadly in the 

posterior growth zone (GZ) from which new stripes will emerge with a single-segment 

periodicity. In the Orthoptera, two different patterns emerge. In the cricket Gryllus 

bimaculatus (5) (Mito et al., 2007), stripes of eve emerge in both a single- and a double-

segment manner, while in the grasshopper Schistocerca americana (6) (Patel et al., 1992) 

eve is expressed broadly in the posterior GZ, but no stripes form in the anterior. 

Phylogenetic tree reproduced from Trautwein et al. (2012). 
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Figure 4.1 
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Figure 4.2: Wild type expression of Periplaneta even-skipped. Pa-eve mRNA 

(greyscale) and protein (green) during post-blastoderm (A-B), early germ band (C-D) and 

late germ band (E-H) elongation. At stage 4 post-blastoderm, Pa-eve mRNA (A) and 

protein (B) are similarly expressed as five stripes (arrowheads) from the mandibles to the 

second thoracic segment, with the presumptive mandibular stripe showing the weakest 

expression. (C) At early germ band elongation, stage 7, the initial anterior segmental 

stripes of Pa-eve have faded down to T2 and expression is now detected weakly in a broad 

domain in the posterior GZ (bracket) from which new segmental stripes emerge 

(arrowhead). (D) Pa-Eve protein shows a perdurance of expression in the previously 

established stripes in the anterior portion of each forming segment (outlined T2), and new 

expression develops in the posterior GZ (bracket) and in a stripe in the anterior (white 

arrowhead). (E-H’) During late germ band elongation, Pa-eve expression is dynamic, with 

a broad domain of expression in the posterior GZ (brackets) from which new stripes 

emerge (black arrowheads, E-H) that fade as they move anteriorly (open arrowheads, G-

H). Up to three stripes are visible at any given time, as in F. a – anterior; A1, A3, A4, A5 – 

first, third, fourth, and fifth abdominal segment, respectively; mn – mandibles; p – 

posterior; T2 – second thoracic segment. 
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Figure 4.2 
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Figure 4.3: Wild type expression of Periplaneta runt and co-expression with Pa-

engrailed. Expression of Pa-run mRNA at post-blastoderm (A-B), early germ band (C-D), 

and late germ band elongation (E-J). (A) Pa-run is already expressed as five stripes at 

stage 4 post-blastoderm (arrowheads), with the weakest expression in the mandibles, and 

in the developing head lobes (arrow). (B) At stage 5 post-blastoderm, the stripes of Pa-run 

are wider and a new stripe of expression is beginning to form in the posterior (arrowhead); 

the anterior head expression remains and will continue to be expressed throughout 

embryogenesis (black arrow). (C) At early germ ban elongation, stage 6, the anterior 

stripes of Pa-run expression begin to fade from the ventral midline (arrowhead), while a 

new stripe has formed at A1. At this stage, the segmental furrows begin to form, showing 

that Pa-run expression is in the anterior half of each developing segment (outline). (D) By 

stage 7, most of the previously formed anterior stripes have faded and a new stripe is 

resolving (arrowhead) from the broad posterior GZ domain (bracket). (E-J) New stripes of 

Pa-run are added sequentially (arrowheads) from a broad, dynamic posterior domain that 

is best observed via FISH (H-J). As the stripes move anteriorly they begin to fade from the 

midline and eventually disappear before the new segment forms (* in H-J). In the forming 

segments, two ventral dots appear on either side of the midline (open arrowhead, G, J) that 

become clusters of expression in the developing CNS (open arrow, G). (K-L) Double 

FISH for Pa-run (red) and Pa-en (green). At both post-blastoderm (K) and germ band 

elongation (L), the stripes of Pa-en arise only after the expression of Pa-run begins to fade 

and their expressions do not overlap. A1, A2, A3, A5, A6 – first, second, third, fifth, and 

sixth abdominal segment, respectively; mn – mandible; T2, T3 – second and third thoracic 

segment. 
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Figure 4.3 
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Figure 4.4: Wild type expression of Periplaneta pair-berry and effects of Pa-pby
RNAi

. 

Pa-pby expression at post-blastoderm (A-D) and germ band elongation (E-I). At early 

post-blastoderm, stage 3, Pa-pby is only expressed in two gnathal segments (black 

arrowheads). In addition, expression is detected in the antennal (arrow) and head lobe 

(open arrowhead) primordial, which remains throughout development. (B-D) Segmental 

stripes of expression develop sequentially from the anterior until the full complement of 

five post-blastoderm stripes have formed and, at stage 6, a new stripe forms in the 

presumptive intercalary segment (arrow; D). (E-I) New stripes of Pa-pby expression 

continue to arise sequentially in the anterior GZ; no expression is detected in the posterior 

GZ (H). (I) The stripes of Pa-pby remain in the posterior region of all developed segments 

throughout embryonic development. (J) Pa-pby
RNAi

 can result in extensive fusion of the 

posterior thoracic and abdominal segments (bracket). a – anterior; ant – antennae; A1, A2, 

A3, A5 – first, second, third, fifth abdominal segment, respectively; ic – intercalary 

segment; lb – labium; mn – mandibles; T1, T2, T3 – first, second, third thoracic segment, 

respectively; p – posterior. 
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Figure 4.4 
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Figure 4.5: Co-expression of Pa-pby with Pa-en and Pa-run during germ band 

elongation in wild type embryos. (A) Stage 9 embryo showing expression of Pa-pby 

(red) in the anterior GZ developing before that of Pa-en (green). Stripes of expression 

partially overlap with that of Pa-pby lying anterior to Pa-en. (B) Stage 9 embryo showing 

co-expression of Pa-pby and Pa-run (blue). As the stripes of Pa-run move anteriorly they 

begin to fade from the midline (blue arrow) and at this point a stripe of Pa-pby expression 

begins to emerge (red arrowhead), posterior to Pa-run, expanding out from the midline to 

the lateral edges. (C) An overlay of images in A and B show that the expression of Pa-pby 

and Pa-en develop only after that of Pa-run had faded. (D) Expression of both Pa-pby and 

Pa-en remain in the developing segments, partially overlapping with Pa-pby anterior to 

Pa-en. 
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Figure 4.6: Wild type expression of Pa-sloppy-paired at post-blastoderm (A-C) and 

late germ band elongation (D-E). (A) At late stage 3, Pa-slp is expressed in the 

presumptive antennae (arrow) and mandibles (arrowhead). (B) By stage 5, stripes 

corresponding to the three gnathal and first two thoracic segments can now be detected 

(arrowheads), as well as broad expression in the antennae (arrow). (C) At late stage 6, a 

new stripe is beginning to form at T3. (D-E) During late germ band elongation, new 

stripes of Pa-slp form sequentially in the anterior GZ, starting at the midline (arrow, D-D’) 

and becoming stronger and extending laterally as they move further anterior (arrowhead, 

E-E’). 2-3 stripes can be detected in the anterior GZ at one time and expression remains in 

the posterior half of all developed segments (arrow, E); no expression is observed in the 

posterior (brackets, D-E). A4 – fourth abdominal segment; mn – mandibles; T3 – third 

thoracic segment.  
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Figure 4.7: Wild type expression of Pa-hairy. (A) At post-blastoderm stage 5, Pa-h is 

expressed in five stripes (black arrowheads) corresponding to the three gnathal and first 

two thoracic segments. Expression is also detected in the head lobes and antennal 

primordia (open arrowheads). (B-D) Pa-h expression is dynamic during germ band 

elongation. (B) By stage 6 early germ band elongation, Pa-h expression is in a broad 

domain in the posterior GZ (bracket) and a new stripe has formed in the anterior GZ 

correlating with T3 (black arrowhead). (C) A new stripe has been added at A1 (black 

arrowhead) from the broad posterior domain (bracket). As segment furrows form, Pa-h 

expression is noted in the posterior half of each segment (outlined) and new expression 

emerges in the ventral CNS (arrow). (D) At late germ band elongation, the anterior stripes 

of expression have faded and the CNS expression becomes stronger (arrow). New stripes 

of expression continue to emerge from the broad posterior domain (black arrowheads and 

bracket, respectively) and the head and antennal expression remain strong (open 

arrowheads). A1, A3 – first and third abdominal segment, respectively; T2, T3 – second 

and third thoracic segment, respectively. 

  



  132   

 

 Embryo Nymph 

Gene Class I Class II wt Class I Class II wt 

Pa-eve 
60 

(9.0%) 

179 

(26.8%) 

428 

(64.2%) 

14 

(3.5%) 
n/a 

385 

(96.5%) 

Pa-run 
75 

(22.5%) 

15 

(4.5%) 

244 

(73.1%) 

16 

(11.9%) 
n/a 

119 

(88.1%) 

Pa-prd 
1 

(0.75%) 

16 

(12.0%) 

117 

(88.0%) 
n/a n/a 

182 

(99.5%) 

Pa-slp 
12 

(7.1%) 

54 

(31.8%) 

104 

(61.2%) 

209 

(59.9%) 

20 

(5.7%) 

120 

(34.4%) 

Pa-

eve/run 

6 

(3.2%) 

60 

(32.4%) 

119 

(64.3%) 

0 

(0.0%) 

0 

(0.0%) 

98 

(100%) 

Control 

(H2O) 

0 

(0.0%) 

0 

(0.0%) 

46 

(100%) 

0 

(0.0%) 

0 

(0.0%) 

253 

(99.6%) 

 

 

Table 4.1: Phenotypic series of pair-rule RNAi affected Periplaneta embryos and 

nymphs. Pair-rule RNAi often resulted in a range of hypomorphic embryo phenotypes 

that could be separated into two classes. In general, Class I phenotypes were stronger than 

those of the moderate/weak Class II. Most nymphal RNAi phenotypes could only be 

classified into one Class, which simply separated wild type first nymphs from all others 

showing any phenotype, usually segment fusions. Pa-slp
RNAi

 is the one exception, and 

here Class I are slightly weaker than the rare Class II first nymphs. For a detailed 

description of specific RNAi phenotypes for each pair-rule gene, please refer to the 

appropriate sections of main text.  
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Figure 4.8: Pa-eve
RNAi

 effects anterior segment patterning. (A) Pa-en expression in a 

stage 8 wild type embryo. (B-C) Stage 8, Class I Pa-eve
RNAi

 embryos displaying a skinny 

body phenotype, with a normal GZ. Pa-en expression is either weak and thin (arrowheads, 

B) or may be completely absent (C). Pa-eve
RNAi

 does not affect formation of the 

mandibles (arrow, C). (D) Stage 9 wild type, unstained embryo with mandible (mn) and 

thoracic segments marked with a bracket. (E) Class II Pa-eve
RNAi

 embryos display 

extensive fusion between adjacent segments, such as the maxilla/labium (*) and up to all 

three thoracic segments (bracket), while the mandibles remain unaffected (mn). (F) Stage 

23 wild type embryo showing separation of the three thoracic segments (brackets). (G) In 

this stage 23, Class II Pa-eve
RNAi

 embryo, all thoracic segments are fused dorsally (bracket 

and green outline) and the ventral legs are fused at the base (red outline). (H-H’) Wild 

type first nymph shown in dorsal (H) and lateral (H’) views; maxillary palp indicated with 

an arrowhead. (I-I’) Class II Pa-eve
RNAi

 first nymphs showing partial fusion of dorsal 

thoracic segments (bracket). In rare cases, fusion between two abdominal segments have 

occurred (arrow, I’) and the maxillae are absent (black arrowhead), while the labium 

remains unaffected (open arrowhead). (J-J’) Another Class II Pa-eve
RNAi

 embryo 

displaying extensive fusion of all thoracic segments both dorsally (bracket, J) and 

ventrally, as shown by the fused legs (arrow, M). GZ – growth zone; mn – mandibles; T1, 

T2, T3 – first, second, third thoracic segment, respectively. 
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Figure 4.8 
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Figure 4.9: Pa-run
RNAi

 effects anterior segment patterning. (A) Wild type, stage 11 

embryo showing normal expression of Pa-en. (B-C) Unstained, stage 11 Pa-run
RNAi

 

embryos show extensive fusion between gnathal and thoracic segments (bracket, B) and 

either partial (open arrowheads, C) or complete (arrowhead, C) loss of segments, 

commonly maxilla. In these embryos, the posterior growth zone is unaffected, but there is 

a pinch in the abdomen where segments are forming (*, B-C). (D) Pa-en expression is 

unaffected in the pinched posterior abdomen (open arrowheads), but is lost in the ventral 

area (white arrowhead) of fused segments (bracket). (E-E’) In Class II Pa-run
RNAi

 

embryos, some segments display a ‘mirror-image’ duplication effect (arrowheads and 

magnified image E’). In both Class I and Class II the mandibles remain unaffected (B-E). 

(G) Dorsal view of a wild type first nymph. (H) Dorsal view of a Pa-run
RNAi

 first nymph 

showing fusion of the first and second thoracic segment. (I) Ventral view of a wild type 

first nymph showing normal formation of the three thoracic segments and the maxillary 

palp (arrow). (J) Ventral view of a Pa-run
RNAi

 embryo in which the T1 legs and maxillary 

segment (arrow) did not form. GZ – growth zone; mn – mandibles; T1, T2, T3 – first, 

second, third thoracic segment, respectively. 
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Figure 4.9 
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Figure 4.10: Pa-run regulates expression of Pa-pby. (A) Pa-pby expression in a wild 

type stage 12 embryo is in the posterior half of all segments (arrowhead). (B-C) In Pa-

run
RNAi

 affected embryos at stage 12, Pa-pby stripe expression is in the posterior of most 

developed segments and is occasionally expressed ectopically in the anterior of some 

segmental compartments (arrow, B, and magnified image B’). (C) In the posterior 

abdomen of this similarly staged Pa-run
RNAi

 embryo, stripes of Pa-pby expression are 

misaligned (arrow) or only partially formed (arrowhead). A2 – second abdominal 

segment; T1 – first thoracic segment. 
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Figure 4.11: Effects of Pa-slp
RNAi

 on anterior head segmentation. (A) Unstained, stage 

9 wild type embryo. (A’) Magnification of box in A showing labium and T1 segments. (B-

B’) In Pa-slp
RNAi

 embryos, the mandibles do not form properly (mn, B) and some 

segments exhibit a ‘mirror-image’ duplication in the anterior (arrowheads, B’). (C) 

Anterior view of a dissected head from a wild type first nymph. The insect head is 

separated into several cuticular plates. Of particular note here are, from top to bottom: the 

vertex, followed by the frons, clypeus, and labrum, with the gena forming the sides or 

cheeks. (C’) Dissected mandible from the wild type first nymph represented in C with the 

molar indicated with an arrow. (D) In Class I Pa-slp
RNAi

 affected first nymphs the head 

appears misshapen due to of a failure to form the mandibles, gena, and antennae. The 

frons appears reduced in size due to the inward folding of the clypeus and labrum. (D1-

D2) In some nymphs the mandibles are only partially formed, often missing the molar 

(arrows) and occasionally with split or duplicated incisors (arrowheads, D2). (E) Lateral 

view of wild type first nymph head showing normal formation of antennae and gena. (F) 

Whole body, side view of a wild type first nymph. (G) In Class I Pa-slp
RNAi

 first nymphs, 

the gena and antenna do not form, though the antennal socket may be present (arrow). (H) 

Class II Pa-slp
RNAi

 first nymphs do not hatch from the egg and are missing all gnathal (*) 

and some ventral thoracic segments (arrow). (I) Dorsal thoracic and abdominal segments 

remain relatively unaffected, while the ventral T1 only forms one leg with the other 

growing as unidentifiable tissue (arrow). ant – antenna; cl – clypeus; fr – frons; ge – gena; 

lm – labrum; mn – mandibles; T1, T2, T3 – first, second, third thoracic segment, 

respectively; ve – vertex. 
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Figure 4.11 
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Figure 4.12: Pa-eve and Pa-run act redundantly to pattern the Periplaneta embryo. 

(A) Pa-en expression in a stage 8 wild type embryo. (B-D) Double Pa-eve/run knockdown 

RNAi phenotypes. (B) Stage 8 Class I Pa-eve/run
RNAi

 embryo displaying a thin body and 

a tapering tail ending in a malformed GZ. Pa-en expression is reduced to a weak speckled 

pattern in the posterior of the semi-formed segments (arrowheads). (C) An unstained, 

Class II Pa-eve/run
RNAi

 embryo at stage 8 is truncated in the posterior with only a few 

weak attempts at segment formation (arrowheads). (D) Pa-en expression is mostly normal 

in the mandibular segment (arrowhead) while other stripes are irregularly formed (arrow). 

The embryo is truncated in the posterior with a greatly reduced GZ (bracket).
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Figure 4.13: Primary and secondary classification of Periplaneta pair-rule genes. In 

Periplaneta, the pair-rule genes are expressed in segmental stripes at both post-blastoderm 

(A) and germ band elongation (B-C). (A) During early post-blastoderm development, 

stage 4, segmental stripes of Pa-eve (green), Pa-run (blue), and Pa-h (red) are already 

detected in five stripes, corresponding to the three gnathal and first two thoracic segments. 

Pa-pby (purple) and Pa-slp (orange) expression lag behind and the full complement of 

five stripes is only detected later during post-blastoderm development, stage 6, and are 

displaced just posterior to the other three gene expressions. Pa-en (cyan) is expressed soon 

afterwards. (B) Wild type patterns of expression of the Periplaneta pair-rule genes during 

germ band elongation, stage 9. (C) Cartoon depiction of presumed co-expression of pair-

rule genes shown. Pa-h, Pa-eve, and Pa-run have a dynamic pattern of expression in the 

posterior and mid-GZ, resolving into stripes of expression that move anteriorly. As the 

stripes of the primary pair-rule genes travel anteriorly, they begin to fade from the mid-

line and only then do the stripes of the secondary pair-rule genes become expressed, 

followed shortly after by the expression of Pa-en. In each case, stripes of expression arise 

sequentially, with single segment periodicity. Based on these spatiotemporal expression 

patterns at post-blastoderm and in the GZ during germ band elongation, the Periplaneta 

pair-rule genes can be classified as primary (eve, run, h) or secondary (pby, slp), with 

primary expression developing first and anterior to the secondary pair-rule genes. Those 

segments affected by RNAi are indicated with a * (strong) or a     (weak or moderate). 
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Figure 4.13 
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Table 4.2: Comparison of arthropod pair-rule gene expression. A review of the 

literature compiled in this table shows the evolution of eight of the pair-rule genes: eve, 

run, h, odd-skipped/odd-skipped-related (odd/odd-r), prd/pby, slp, odd-paired (opa), and 

fushi tarazu (ftz) among the arthropods including members of the subphyla: Chelicerata, 

Myriapoda, Crustacea, and many orders of the Insecta. Throughout the course of 

evolution, the pattern of pair-rule gene expression seems to have changed from the more 

common segmental pattern (orange) in basal arthropods to that of the ‘classic’ pair-rule 

pattern (blue) of double-segment periodicity. However, the patterns of expression are 

highly variable and may be expressed in only a broad posterior GZ domain (green), a mix 

of expression patterns (dual-coloured squares) or not expressed at all (red). In some short 

germ band organisms studied, the patterns of expression can differ between the anterior 

segments, those patterned at blastoderm/post-blastoderm, and the remaining posterior 

segments added during germ band elongation. Spatiotemporal analysis in combination 

with existing functional data, where available, reveals a conserved classification for eve 

and run as primary (1º; boxed in blue) while prd/pby and slp are almost always classified 

as secondary (2º; green box) pair-rule genes.  

 

Table References: (1-Akam, 1987a); (2-Benedyk et al., 1994); (3-Sommer and Tautz, 1991); (4-Liu et al., 

2008); (5-Nakao, 2010); (6-Kraft and Jaeckle, 1994); (7-Davis et al., 2001); (8-Choe and Brown, 2007); (9-

Patel et al., 1994); (10-Choe et al., 2006); (11-Binner and Sander, 1997); (12-Osborne and Dearden, 2005); 

(13-Grbic et al., 1996); (14-Keller et al., 2010);  (15-Liu and Kaufman, 2005a);  (16-Liu and Patel, 2010);  
(17-Mito et al., 2007);  (18-Davis et al., 2001);  (19-Dawes et al., 1994);  (20-Patel et al., 1992); (21-this 

work); (22-Copf et al., 2003); (23-Davis et al., 2005); (24-Janssen et al., 2012); (25-Janssen et al., 2011); 

(26-Hughes and Kaufman, 2002a); (27-Hughes and Kaufman, 2002b); (28-Chipman et al., 2004); (29-

Chipman and Akam, 2008); (Dearden et al., 2002); (31-Pechmann et al., 2009); (32-Schwager et al., 2009); 

(33-Damen et al., 2005); (34-Schoppmeier and Damen, 2005a). 
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CHAPTER V 

Expression and functional analysis of the smORF gene  

tarsal-less in Periplaneta 

ABSTRACT 

tarsal-less (tal) is a non-canonical, polycistronic gene encoding fully-functional 

peptide products through small Open Reading Frames (smORFs). These small peptides 

are essential during embryonic and post-embryonic development of Drosophila. RNAi 

studies on the Tribolium tal homologue show this gene to have gap-like properties, 

resulting in truncation of the posterior abdomen and a transformation of the remaining 

segments towards a thoracic identity. tal-like genes have been discovered in other 

organisms, indicating an ancient function for this gene; however, the role(s) of tal have not 

been studied in these organisms. I have cloned and analysed tal expression during 

embryonic development in the cockroach, Periplaneta americana. Pa-tal expression in the 

growth zone is dynamic and cyclic during germ band elongation, suggesting involvement 

with the Notch segmentation clock known to function in Periplaneta.  

The Notch-signalling cascade is a conserved mechanism in leg segmentation (from 

flies to spiders), suggesting that Notch-mediated joint formation could be the phylotypic 

trait of arthropods. Our understanding of leg development in Drosophila is increasingly 

detailed, while our knowledge in other arthropods remains comparatively basic. While 

Drosophila Notch-signalling is activated in all developing segments, “true” joints of the 

proximal leg differ from the joints of the tarsomeres due to changes in gene regulation in 

the respective leg regions. We have explored the mechanisms of joint formation by 

analyzing joint patterning genes including tal, Notch, Delta, and nubbin in the basal insect, 

Periplaneta americana. tal and nub have a complementary role in Drosophila, but may be 

redundant in more basal species, underpinning the existence of variable gene functions 

downstream of a conserved Notch cassette controlling developmental boundaries in a 

variety of contexts. 

 

N.B. Portions of this chapter, pertaining to Pa-nubbin leg expression and function, have 

been published in Developmental Biology: Turchyn N, Chesebro J, Hrycaj S, Couso JP, 

Popadić A. 2011. Evolution of nubbin function in hemimetabolous and holometabolous 

insect appendages. Dev Biol 357(1): 83-95. 
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INTRODUCTION 

Putative proteins, from predicted coding sequences, of less than 100 amino acids 

have widely been ignored in bioinformatic searches and gene annotations under the 

general assumption that they are too small to be relevant. With advancing technology and 

the scientific wherewithal we are now beginning to understand that entire groups of 

functional and biologically important peptides may have been overlooked (Tupy et al., 

2005). One of the best studied of these small Open Reading Frame (smORF) genes is the 

newly discovered, polycistronic gene tarsal-less (tal; also called polished rice). In 

Drosophila melanogaster, tal encodes four 11- to 32-amino-acid-long, functionally 

redundant peptides (three Type-A and one Type-AA), each containing a conserved seven 

amino acid sequence of LDPTGXY (Galindo et al., 2007; Kondo et al., 2007). The Type-

A and Type-AA peptides are essential for the proper formation of ectodermal/epithelial 

structures during both embryonic and post-embryonic development in Drosophila 

(Galindo et al., 2007; Kondo et al., 2007; Pueyo and Couso, 2008). Dm-tal also codes for 

one non-functional/non-translated (Type-B) peptide that does not contain this motif 

(Galindo et al., 2007). 

During embryogenesis, Dm-tal expression is highly dynamic. Initially expressed as 

seven stripes and an anterior cluster of cells in the blastoderm, expression is then restricted 

to the tracheal precursors before becoming segmentally expressed in appearance (Galindo 

et al., 2007; Kondo et al., 2007). Dm-tal is also expressed in the developing trachea, 

posterior spiracles, and cephalopharyngeal skeleton (Galindo et al., 2007; Kondo et al., 

2007; Kondo et al., 2010; Pueyo and Couso, 2011). Dm-tal loss-of-function mutants show 

malformation or absence of these structures, most notably and best studied are the missing 

denticle belts (Galindo et al., 2007; Kondo et al., 2007; Kondo et al., 2010). The role of 

Dm-tal in denticle belt formation is carried out through regulation of the zinc-finger 
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transcription factor shavenbaby (svb), possibly through cleavage of a long repressor form 

into a short, activator form that regulates filamentous actin and the protrusion of the 

ventral denticles (Kondo et al., 2007; Kondo et al., 2010).  

During post-embryonic development, Dm-tal is expressed in leg imaginal discs at 

the location of the future tarsal segments where it plays two important roles: 1) 

intercalation of tarsal segments in third instar larva and 2) tarsal joint formation in the 

pupa. Loss-of-function of Dm-tal at these stages results in adult flies lacking the tarsal 

sub-segments, hence the name. Several studies have shown that Dm-Tal regulates the 

expression of known leg patterning genes, such as rotund (rn) and spineless (ss), leading 

to the intercalation of tarsal segments ta2-ta4 (Galindo et al., 2007; Pueyo and Couso, 

2008; Pueyo and Couso, 2011). This function for Dm-Tal is further associated with 

regulation of the active form of Dm-svb, forming a negative feedback loop leading to the 

inhibition of Dm-Delta expression, thus creating the sharp Dl+/Dl- signalling border 

required for joint formation (Pueyo and Couso, 2011). Dm-tal is not expressed and does 

not function in the other leg segments containing “true” joints (muscle attachments) and 

could be an evolutionary novelty in specifying non-muscle joints of the tarsomeres. While 

the functions of tal in tarsal joint and denticle belt formation involve regulation of svb, this 

is not always the case, as with taenidial folding in the trachea and tarsal intercalation 

(Kondo et al., 2010; Pueyo and Couso, 2008; Pueyo and Couso, 2011), indicating that tal 

can function in alternate ways in differing developmental contexts. On a final note, several 

studies indicate that tal is expressed non-cell-autonomously, suggestive of a possible 

functional role as a signalling factor (Kondo et al., 2007; Pueyo and Couso, 2008; Pueyo 

and Couso, 2011). 

 tarsal-less has been studied in one other holometabolous organism, the short germ 

band insect, Tribolium castaneum. The Tribolium-tal homologue, mille-pattes (mlpt), 
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encodes for three Type-A peptides, each containing the conserved heptapeptide 

LDPTGXY, one Type B, but no Type-AA peptides (Savard et al., 2006). Like 

Drosophila-tal, Tc-mlpt expression is dynamic throughout embryogenesis. Initially 

expressed as a broad domain in the anterior blastoderm (Savard et al., 2006), at post-

blastoderm Tc-mlpt is expressed as a single, wide stripe in the future mandibles and a 

broad posterior domain. During germ band elongation, Tc-mlpt is expressed in a gap-like 

domain covering most of the thorax and the anterior abdomen with an additional domain 

of expression in the posterior growth zone (GZ). Upon completion of segment formation, 

Tc-mlpt is expressed in the tracheal precursors and as several stripes in the legs 

corresponding to all future leg joints, not restricted to the tarsus (Savard et al., 2006).  

RNA-depletion of Tc-mlpt
 
revealed this gene to have differing functions compared 

to Drosophila, being required for proper body segmentation. Tc-mlpt
RNAi

 leads to 

truncation of the posterior-most abdomen with the remaining abdominal segments taking 

on a thoracic identity, complete with ectopic legs (Savard et al., 2006). This phenotype, 

along with the interactions between Tc-mlpt and several of the gap genes, led the authors 

to conclude that Tc-mlpt functions as a gap gene during Tribolium embryogenesis. In 

addition, the thoracic larval legs are underdeveloped, becoming short and stumpy upon 

loss of Tc-mlpt expression (Savard et al., 2006). Finally, it was also noted that partial 

fusions occurred between dorsal abdominal segments, while the head and thoracic tagmata 

were unaffected (Savard et al., 2006). Recently, Schnellhammer (2012) showed a similar 

expression pattern for a Tribolium homologue of svb, in the posterior blastoderm and GZ. 

Tc-svb
RNAi

 embryos and larvae display similar phenotypes to those affected by Tc-tal
RNAi

 

– abdominal truncation, ectopic legs, stumpy thoracic legs with malformed joints 

(Schnellhammer, 2012), indicating a possible conserved interaction between tal and svb 

compared to Drosophila.  As these expression patterns and functions diverge between 
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Drosophila and Tribolium, especially during segmentation processes, I set out to isolate 

and analyse a tal homologue in the basal, hemimetabolous insect Periplaneta americana 

in hopes of ascertaining a conserved mechanism of tal function between these species and 

gaining some evolutionary insight. 

The Pa-tal homologue contains two putative Type-A peptides, each containing the 

conserved LDPTGXY motif. Embryonic expression of Pa-tal is dynamic during both 

body and leg development. During germ band elongation, Pa-tal expression in the 

posterior GZ appears in a cyclic manner similar to that described for N-pathway members 

in Periplaneta (Pueyo and Couso, 2008). Functional analysis via RNA interference shows 

Pa-tal is required for anterior and posterior body segmentation as well as proper leg 

patterning through an apparent interaction with the POU homeodomain gene nubbin. 

Previous studies on nub showed this gene to be important in appendage patterning in 

many arthropod species, though expression and function are variable (Damen et al., 2002; 

Hrycaj et al., 2008; Li and Popadić, 2004; Prpic and Damen, 2005; Turchyn et al., 2011).  

Recently, Turchyn et al. (2011) described this diversity of nub expression and 

function in Acheta domesticus (house cricket), Drosophila, and Periplaneta. Their results 

illustrate that, although expressed in all (crickets and cockroaches) or most (flies) leg 

segments, the major function of nubbin differs in location in the different species. Acheta-

nub
RNAi

 resulted in first nymphs with a reduced trochanter and fusion between the tibia 

and the first tarsal subsegment, whereas in Periplaneta the coxa/trochanter and femur/tibia 

joints are most affected (Turchyn et al., 2011). Drosophila nub mutants also displayed 

heavy fusion between all leg segments where Dm-nub is normally expressed, being the 

true joints of the coxa, trochanter, femur, and tibia, along with a loss of tarsomere-5 and 

the distal claws (Turchyn et al., 2011). It appears as though Pa-nub also works in 

conjunction with Pa-tal in patterning the cockroach leg and in maintaining the limbless 
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abdomen. Similar abdominal functions were noted separately for nub in Oncopeltus 

(Hrycaj et al., 2008), and tal in Tribolium (Savard et al., 2006), indicating possibly 

overlooked functions/interactions for these genes in basal arthropod species. 

Bioinformatic searches for tal homologues in other organisms revealed the 

existence of tal-like genes, containing the conserved LDPTGXY motif, in most insect 

lineages and as distant, phylogenetically, as the crustacean Daphnia pulex (Cladocera). 

Although homologues of tal have been found in numerous insect and crustacean species, it 

has not been well studied. With the results presented below, the expression and functional 

roles for tarsal-less have now been examined in three insect species, including two 

holometabolous insects – the highly derived, long germ band Drosophila (Galindo et al., 

2007; Kondo et al., 2007; Kondo et al., 2010; Pueyo and Couso, 2008; Pueyo and Couso, 

2011) and the short germ band beetle Tribolium (Savard et al., 2006) – and now the 

hemimetabolous, short germ band insect Periplaneta.  
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RESULTS 

Isolation and Cloning of Periplaneta tarsal-less 

Isolation of Pa-tal proved difficult as the Periplaneta genome has not been 

sequenced and it is hard to design quality primers for such a small region of conserved 

sequence (24bp). Initial primers were far too degenerate for practical purposes (~50,000-

150,000) and often resulted in abundant off-target priming. In order to lower the 

degeneracy and to extend the usable region for primer design, homologous tal sequences 

were identified from species closely related to Periplaneta, the Orthopterans Locusta 

migratoria (DY229958) and Gryllus bimaculatus (AK281313), and used to make a 

general consensus sequence for each of the two smORFs. Next, the most commonly used 

codons were examined for Periplaneta by analysing the codon usage bias (Appendix 1) 

(Nakamura et al., 2000), thus allowing the reduction in the number of codon options for 

some of the more degenerate amino acids, such as Leucine that has six codons attributed 

to it. Together, these two steps helped to reduce primer degeneracy to 50-600 for each 

primer. 

Taking advantage of the incomplete second smORF of Gryllus tarsal-less, which 

was missing the last two amino acids and the stop codon, made it possible to be used as an 

experimental control in RACE PCR using the degenerate primers. This step allowed for 

the optimisation of PCR parameters and increased confidence that an isolated sequence 

would be a true tal homologue, if the completed second smORF ended with a stop codon. 

This, indeed, was the case and a completed Gb-tal sequence of 706bp was assembled that 

contained two smORFs, each encoding a 12aa-long peptide with the conserved 

LDPTGXY motif (Appendix 11).  

These degenerate tal primers were then used with Periplaneta cDNA in similar 5’ 

and 3’ RACE PCR conditions to construct a 569bp transcript for Periplaneta-tal 
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(Appendix 9). Pa-tal contains two smORFs, each encoding a putative 12aa-long peptide 

with the conserved LDPTGXY sequence at the C-terminal end. Phylogenetic analysis of 

tal sequences proved challenging with conventional methods, as they vary in length and 

only the heptapeptide sequence is conserved between species. For these and other reasons 

tal homologues were analysed and compared manually, which will be explored further in 

the Discussion: ‘Evolution of tarsal-less peptides’. 

  

Embryonic expression of Pa-tal 

A 397bp riboprobe covering both smORF sequences was synthesised to detect Pa-

tal mRNA expression via in situ hybridisation at several embryonic stages of 

development. At post-blastoderm stage 4, there is a wide band of expression in the 

anterior, just below the protocephalon in the putative mandibles, and a wide stripe near the 

posterior end of the embryo (Fig. 5.1A). At late stage 5, these expression patterns remain 

strong (Fig. 5.1B), while a new domain of expression develops in the very posterior of the 

embryo at early stage 6 (Fig. 5.1C). In late stage 6 embryos, the mandibular stripe of 

expression has almost completely faded and the initial posterior stripe is beginning to fade 

from the midline (Figs. 5.1D). At the same time, the broad posterior domain of Pa-tal is 

being refined into a new stripe of expression in the anterior GZ (Fig. 5.1D).  

This dynamic posterior pattern continues through germ band elongation, where the 

broad GZ expression of Pa-tal develops into a wide stripe in the mid-anterior GZ 

(compare black and red arrowheads, Fig. 5.1E-H). As this new stripe forms, the previously 

established stripe of Pa-tal expression moves anteriorly and fades before the formation of 

a new segment (*, Figs. 5.1E-H). This cyclic pattern of expression continues until all the 

body segments have formed. As terminal segment addition is completed, appendage 

development continues and Pa-tal is expressed as several stripes in the antennae and 
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mouthparts, as well as the anal pads and at the distal ends of the pleuropodia (Fig. 5.1I). 

Several stripes of expression appear throughout leg development, near the future joints 

(Fig. 5.1I), examined in more detail in a later section. Finally, as the embryo begins dorsal 

closure, the stripes of Pa-tal fade from the appendages and expression is now observed in 

clusters in the apodemes at the proximal limbs near the body wall (Fig. 5.1J) and in the 

developing CNS (Fig. 5.1J). Altogether, Pa-tal expression is dynamic during cockroach 

embryogenesis showing some divergent (body) and conserved (leg) patterns compared to 

Drosophila and Tribolium. 

  

Pa-tal affects anterior and posterior body patterning 

Functional analysis in Periplaneta was carried out by injecting virgin females with 

a 556bp Pa-tal dsRNA fragment and analysing the resultant embryonic and first nymph 

phenotypes. The hypomorphic range of embryonic phenotypes were placed into one of 

three categories (Table 5.1). The weak Class I Pa-tal
RNAi

 embryos (224/1316; 17.0%) 

develop normally in the anterior head, gnathal, and thoracic segments, while segmentation 

defects are observed in the abdomen as asymmetric segment fusions, causing a slight bend 

to one side (Fig. 5.2B). Moderate Class II embryos (121/1316; 9.2%) showed stronger 

segment fusions in both the posterior and the anterior, often presented as a bulging out 

(not shown) or ‘bunching up’ (Fig. 5.2C) of the gnathal and thoracic segments in addition 

to lateral abdominal segment fusion (Fig. 5.2C). Strong Class III Pa-tal
RNAi

 embryos 

(115/1316; 8.7%) have an ‘asegmental’ phenotype, as the inter-segmental furrows do not 

appear to form (Fig. 5.2D). Although overt segmentation did not occur, there appear to be 

some weak attempts at either segment or limb bud formation, giving the embryo a ‘wavy’ 

appearance at the lateral edges (Fig. 5.2D). In addition, some Class III embryos are 

extremely small in size compared to wild type embryos of a similar stage (Fig. 5.2E 
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compared to 5.2A). Though small, the embryo in Fig. 5.2E is not simply at an earlier stage 

and can be roughly placed at around stage 11, as it was found in an ootheca containing 

larger embryos of a similar age and this is the stage in which the proctodeal pit begins to 

form in Periplaneta embryogenesis (black arrowhead, Fig. 5.2E) (Lenoir-Rousseaux and 

Lender, 1970). In all classes of Pa-tal
RNAi

, an apparently unaltered posterior GZ and 

normal pre-gnathal head development occurs (Fig. 5.2A-E). 

Pa-tal
RNAi

 nymphal phenotypes were separated into two classes based on the 

degree of abdominal and leg defects. Class I Pa-tal
RNAi

 nymphs (108/534; 20.2%) are 

likely a reflection of Class I embryos as they showed various degrees of segment fusions 

only in the abdomen, while the head and thoracic segments remain wild type in 

appearance (Fig. 5.2G-G’). In these Pa-tal
RNAi

 affected first nymphs, some abdominal 

segments are only partially formed, hemi-segments, missing the left or right half (black 

dots, Fig. 5.2G), or segments may be fused on one side from the midline to the lateral edge 

(*, Fig. 5.2G); whole segment deletions nor fusions along the entire length of adjoining 

segments were not observed. Abdominal segment fusions occur either ventrally or at both 

dorsal and ventral sides, but never in the dorsal tergites only. The dorsal fusion patterns 

closely mimic that ventrally, providing a mirror-image effect when the abdomen is 

dissected and laid flat (Fig. 5.2G’), reflecting the fact that the dorsal tergites develop as 

lateral outgrowths of the ventral tissue during embryogenesis. There is no indication that 

fusions occur more often between certain segments over others, nor is there a penchant for 

left over right side, or vice versa.  

Class II nymphs (43/534; 8.1%) also have strong dorsal and ventral abdominal 

fusions, as described for Class I above, with the addition of variable leg defects – often as 

a slight bend in the first tarsomere (Fig. 5.2I) or less frequently a bend in the tibia (not 

shown). Occasionally, neighbouring legs may be fused together proximally (Fig. 5.2J) or 
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may be severely misshapen (Fig. 5.2K). These leg phenotypes and functions of Pa-tal in 

these appendages will be discussed further in the section on Periplaneta leg patterning.  

Altogether, the RNAi phenotypes correlate well with the patterns of embryonic 

expression, affecting anterior and posterior segment formation and leg patterning. Loss of 

dynamic expression in the posterior GZ leads to asymmetric fusions of the abdominal 

segments, yet the growth zone remains unaffected. In the legs, Pa-tal is expressed in all 

developing podomeres, just proximal to the developing joints. However, Pa-tal
RNAi

 shows 

only a slight effect on nymph leg patterning which could be due to less efficient RNAi in 

the developing legs compared to body patterning or Pa-tal may play a more redundant role 

in this region. 

 

Analysis of Pa-tal
RNAi

 segmentation phenotypes 

Misaligned segment formation 

In order to further analyse the asymmetric fusion phenotypes of Pa-tal
RNAi

 

embryos and nymphs, I examined the expression of the pan-segmental marker Pa-

engrailed. If Pa-tal had a role in segment formation one might expect to see defects in 

segment patterning genes, such as this. In wild type embryos (Figs. 5.3A,C), Pa-en is 

expressed as stripes that span the width of the embryo in the posterior of all developed and 

developing segments. In the Class I Pa-tal
RNAi

 embryos, stripes of Pa-en form normally in 

the gnathal and thoracic segments, but expression is disrupted in the abdomen, forming 

only partially on either the left or right hand side of the body (Fig. 5.3B). As a result, two 

hemi-stripes from either side may become misaligned leading to a cross over between the 

mismatched pairs, such as the matching up of the A2 hemi-stripe on the right with that of 

A3 on the left in the embryo shown in Fig. 5.3B. This mismatched alignment leads to the 
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fusions and partial deletions of body segments observed in Class I and Class II Pa-tal
RNAi

 

first nymphs.  

Class II Pa-tal
RNAi

 phenotypes show extensive fusion in both the posterior and the 

anterior body segments. Pa-en staining in these embryos shows a similar misalignment 

between the left and right hand stripes of expression in the anterior, as evidenced by the 

left-hand mandible stripe connecting to the right-hand labium stripe in the embryo shown 

in Fig. 5.3D. These Pa-en stripes are weak and thin compared to wild type (Fig. 5.3C) or 

even Class I Pa-tal
RNAi

 embryos (Fig. 5.3B). The asegmental Class III Pa-tal
RNAi

 embryos 

show little to no overt signs of segmentation, yet there are still very weak, speckled stripes 

of Pa-en expression where segments might normally form (Fig. 5.3E and inset). As shown 

in Figs. 5.3A-E, there is a graded effect on Pa-en expression in Pa-tal
RNAi

 embryos. It is 

not yet clear if Pa-tal is directly involved in activating Pa-en expression or plays a role 

further upstream in possibly regulating pair-rule gene expression, which may be a more 

likely situation. 

 

Pa-tal and the posterior patterning gene network  

In all classes of Pa-tal
RNAi

 embryos the posterior GZ appeared more or less 

normal. To confirm the unaffected state of the GZ, I examined the expression of Pa-

caudal, a gene whose function is crucial to the establishment and maintenance of the 

posterior GZ (see Chapter III). In wild type cockroach embryos at late germ band 

elongation, Pa-cad is expressed broadly in the mid-GZ but not in the most posterior end 

(Fig. 5.3F). In Pa-tal
RNAi

 embryos, Pa-cad is still expressed in the posterior, complete 

with a characteristic clearing in the posterior tip, even in the strong Class III Pa-tal
RNAi

 

embryos (Fig. 5.3G). Conversely, Pa-tal expression is absent in Class-A Pa-cad
RNAi

 Class 

‘A’ embryos (Fig. 5.3H).  



  157   

 

The cyclic expression of Pa-tal in the GZ resembles the dynamic pattern of 

expression of N-pathway genes in Periplaneta required for proper posterior patterning 

(Pueyo et al., 2008). Therefore, I explored the potential interactions between Pa-tal and 

the N-signalling pathway by examining any changes in expression of Pa-Dl and Pa-h, 

downstream targets of the N-pathway (Pueyo et al., 2008), in Pa-tal
RNAi

 embryos. First 

considered was Pa-h, as similar hemi-stripe formations of Pa-en also occurred in Pa-h
RNAi

 

embryos (Pueyo et al., 2008); although no misaligned stripe connections were noted. In 

Class I Pa-tal
RNAi

 embryos, the broad posterior GZ domain and anterior stripes of Pa-h 

expression remained unaffected (Figs. 5.3I-J). Similarly, the segmental stripes of Pa-Dl 

expression in the anterior GZ were unaffected in Class I and II Pa-tal
RNAi

 embryos (Figs. 

5.3K-M). In the reciprocal experiment, Pa-tal expression was completely absent from the 

posterior GZ in Pa-N
RNAi

 affected embryos (Figs. 5.3N-O). Attempts to analyse Pa-Dl and 

Pa-h in Class III Pa-tal
RNAi

 embryos were unsuccessful, as these embryos were 

uncommon and their fragility and small size made them difficult to manipulate during in 

situ hybridisations.  

Overall, these results indicate that the early post-blastoderm expression of Pa-tal is 

not involved in formation or maintenance of the posterior GZ and the cyclic posterior 

expression during germ band elongation may function downstream of Cad and/or the 

Dl/N-signalling pathway. Alternatively, as RNAi-induced loss of expression of either Pa-

cad or Pa-N results in a reduced and altered GZ (Chapter III) (Pueyo et al., 2008), the loss 

of Pa-tal expression in these backgrounds may be a secondary consequence of growth 

zone collapse. However, as demonstrated in Chapter III, this explanation may be 

circumvented via analysis of Pa-tal in DAPT cultured embryos in order to fully 

understand this loss of expression.  
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Periplaneta leg patterning 

Expression of leg patterning genes: tal, nub, Dl, and N  

In Periplaneta, Pa-tal is expressed in the developing limbs from an early stage. At 

stage 10, as limb buds are emerging, expression is observed at the distal tips of the 

developing legs and gnathal appendages (Fig. 5.4A). By stage 14, Pa-tal is broadly 

expressed in the middle of the leg, between two constricting points (Fig. 5.4B). As the 

limbs extend further and the segment constrictions become stronger, stage 16, Pa-tal 

expression is cleared from the central regions so that expression now appears as two 

medial rings (Fig. 5.4C). By stage 19, when all leg constrictions become evident, Pa-tal is 

expressed at the distal part of all future leg segments, just proximal to the putative joints 

(Fig. 5.4D). Similar patterns of tal expression have been observed in the cricket, Gryllus 

bimaculatus (Appendix 11). 

Expression of other known leg patterning genes nub, N, and Dl were also 

examined in the developing cockroach legs. Previous reports showed that Pa-nub has a 

dynamic expression in the developing cockroach legs (Li and Popadić, 2004; Turchyn et 

al., 2011). Independent analysis using a 450bp riboprobe that recognized the conserved 

POU domain and Homeodomain, showed early Pa-nub is expressed at the distal tips of the 

developing buds of the legs and gnathal appendages (Fig. 5.4E). At early stage 13, Pa-nub 

is expressed broadly in the medial leg and a wide stripe is visible in the proximal region of 

the leg (Fig. 5.4F). At late stage 13, the broad middle stripe splits in two, for a total of 

three rings of expression and a diffuse pattern at the tip of the limbs (Fig. 5.4G). By stage 

17, five stripes of Pa-nub are expressed proximal to each of the constricting leg joints 

(Fig. 5.4H). 

As with Pa-tal and Pa-nub, Pa-Dl is expressed at the distal tip of the protruding 

limb buds, stage 12 (Fig. 5.4I). As the limb buds start to constrict, stage 15, Pa-Dl is 
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expressed broadly in the middle of the leg, between the two constricting points (Figs. 

5.4J). As legs continue to grow, stage 16, Pa-Dl is expressed in two bands in the middle of 

the developing leg (Fig. 5.4K). By stage 21, Pa-Dl is expressed in all leg segments, 

proximal to the constrictions of the future leg joints (Figs. 5.4L), including several bands 

in the developing tarsal sub-segments (Fig. 5.4L). Similarly, expression of Pa-N at stage 

14 is in a broad domain in the medial leg (Fig. 5.4M), which is then refined into two 

stripes medially with a new stripe forming in the proximal leg at stage 16 (Fig. 5.4N). In 

later stages of limb development, stage 19, Pa-N is expressed in the distal portion of all 

podomeres (Fig. 5.4O) 

Considering these data, the patterns of gene expression in the legs, including that 

of Pa-tal, are dynamic and closely resemble one another. Each of these genes is expressed 

at the earliest limb bud formation and the expression changes as the legs develop, 

eventually becoming restricted to the distal end of each leg segment, just proximal to 

where the future joints will form. These similar patterns of expression hint at some level 

of interaction between N-signalling, tarsal-less, and nubbin; interactions that may be 

conserved with Drosophila and other arthropod species. 

 

Effects of Pa-tal and Pa-nub on leg development  

The effects of Pa-tal on nymphal leg patterning, as determined by maternal RNAi, 

were minimal. Pa-tal
RNAi

 Class II nymphs showed only limited effects in leg development, 

often displayed as a bend in the middle of the first tarsomere (ta1), but not associated with 

any loss of joint formation (Fig. 5.2I and Fig. 5.5B’). There were a few examples of 

proximal fusions between several legs (Fig. 5.2J), but this can be attributed to earlier 

misalignment and fusion of ventral segments and may not be an actual representation of 

Pa-tal function in leg patterning. A few legs displayed gross abnormalities, including 
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coxa/trochanter fusion (Fig. 5.2K), sometimes accompanied by a reduced femur, 

malformed tibia, and unformed/missing tarsomeres and claw (Fig. 5.2K). These leg fusion 

phenotypes are quite similar to those observed in Pa-nub
RNAi

 first nymphs (Turchyn et al., 

2011). 

As shown by Turchyn et al. (2011), late stage Pa-nub
RNAi

 embryos and first 

nymphs displayed a range of leg phenotypes including a reduced trochanter, which may be 

fused to the coxa, and fusion between femur and tibia. Seeing that Pa-nub has a profound 

effect on leg development and is expressed in all leg segments, similar to Pa-tal, analysis 

of possible interactions between Pa-tal and Pa-nub was done by performing double RNAi
 

experiments. Diminished expression of both Pa-tal and Pa-nub resulted in first nymphs 

(Class I; 50/153; 32.7%) (Table 5.1) displaying a mixture of the phenotypes displayed by 

single injections, including abdominal segment fusions, crooked antennae, and malformed 

legs (Fig. 5.2 and Turchyn et al., 2011). The most notable of these double Pa-tal/nub
RNAi

 

phenotypes is an increased rate of a severely reduced or unformed trochanter (Fig. 5.5D). 

Where the trochanter is unaltered in single Pa-tal
RNAi

 first nymphs (Fig. 5.5C), it is 

usually reduced in size or fused to the coxa in Pa-nub
RNAi

 first nymphs (Fig. 5.5D and 

Turchyn et al., 2011). Finally, while no effects were observed in tarsal joint formation for 

either Pa-tal or Pa-nub single RNAi (Figs. 5.5B’ and 5.5C’, respectively), loss of 

expression of both of these genes resulted in small defects in the tarsomeres, apparent as 

slight malformations between tarsal sub-segments; however, no major effects were 

observed in tarsal joint formation (Fig. 5.5D’). It must be considered here that RNAi may 

not be effective in completely eliminating expression of all Pa-tal and Pa-nub transcripts, 

whereby, even minimal translation may be enough to allow for complete joint formation. 

On a final note, there is some conservation in leg patterning between Periplaneta 

and other arthropods. As N-signalling seems to be required for proper leg segmentation 
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and joint development in all species studied so far, there is also a conserved requirement 

for Notch in the partial regulation of nub expression (Angelini et al., 2012; Bishop et al., 

1999; Mito et al., 2011; Prpic and Damen, 2009; Rauskolb and Irvine, 1999). This 

requirement is conserved in Periplaneta, where Pa-N
RNAi

 results in reduced intensity and 

size of Pa-nub stripes in the legs (Fig. 5.6A-B) (Turchyn et al., 2011). It is currently 

unknown if Pa-tal is similarly regulated by N-signalling, as in the fly (Pueyo and Couso, 

2011), or how Pa-tal and Pa-nub may be interacting during cockroach leg development.  

 

Pa-tal and Pa-nub help form the limbless abdomen 

Determining the effects of Pa-nub on Periplaneta leg development revealed 

several unexpected results. While Class I Pa-nub
RNAi

 first nymphs (Table 5.1; 44/167; 

26.3%) showed appendage defects such as wavy antennae and fused podomeres, in a small 

fraction of Pa-nub
RNAi

 first nymphs (Class II; 6/167; 3.6%), abdominal fusion phenotypes 

were observed (Fig. 5.7B), similar to those previously described for Pa-tal
RNAi

 (Fig. 5.2G-

G’). As expression of Pa-nub in the GZ has not previously been described, I examined Pa-

nub expression at early germ band elongation. Preliminary results from in situ 

hybridisation revealed a broad expression of Pa-nub in the posterior GZ (Fig. 5.7C); 

however, further analysis is required to determine the full extent of this expression, 

especially whether it is cyclic in a similar manner as Pa-tal and members of the N-

signalling pathway in this location (Pueyo et al., 2008).  

A few scattered cases of ectopic appendage-like structures were noted in Pa-

tal
RNAi

 first nymphs, though these appendages were not restricted to the anterior abdomen 

(Figs. 5.7D-E). Ectopic outgrowths were found on ventral-lateral A5 (Fig. 5.7D) and as a 

lateral outgrowth of the ventrally fused segments A2/A3 (Fig. 5.7E). In all cases, the 

outgrowths were small and usually contain several bristles or hairs. No such outgrowths 
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were noticed in single Pa-nub
RNAi

 nymphs in Periplaneta (Turchyn et al., 2011). 

Surprisingly, several Pa-tal/nub
RNAi

 first nymphs, Class II (27/153; 17.6%; Table 5.1), 

developed ectopic legs on the first and second abdominal segments. In general, the 

appendage on A1 was short and gnarled (Fig. 5.7F-G), while that on A2 was well-formed 

(Fig. 5.7F-G). In a similar regard, ectopic legs formed on the anterior abdominal segments 

in Oncopeltus-nub
RNAi

 first nymphs (Hrycaj et al., 2008) and in the remaining abdominal 

segments in Tribolium-tal
RNAi

 larvae (Savard et al., 2006). The emergence of this 

phenotype in Periplaneta might signify important and possibly conserved roles for Pa-tal 

and Pa-nub in regulating the appendage free abdomen so characteristic of insects.  
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DISCUSSION 

Evolution of tarsal-less peptides 

Homologues of tarsal-less have been identified in a diverse range of insect orders 

as well as a crustacean species (Appendix 12). With the exception of the single open 

reading frame found in a crustacean, most insect tal homologues are polycistronic having 

at least two smORFs. Phylogenetic analysis of the Type-A tal peptides proved difficult, as 

they vary in length, from 9 to 26 aa, and sequence composition with only seven amino 

acids (LDPTGXY) conserved both between and within the same species (Appendix 12A). 

Further complications arise in that there is no conservation in flanking sequences and even 

the spacing between smORFs is inconsistent, ranging from 2 bp between two ORFs in 

Bombyx mori (Lepidoptera) to 314 bp in Apis mellifera (Hymenoptera). On average, ORFs 

are spaced less than 100 nucleotides apart and are often out of frame with each other.  

Moving up the evolutionary scale, from basal to derived, there is a trend towards 

acquiring additional copies of the Type-A Tal peptides (Fig. 5.8; Appendix 12A). While 

only one Type-A smORF has been identified in the crustacean Daphnia pulex (Cladocera) 

up to 11 have been identified in Bombyx, where a gene duplication has also occurred 

(Appendix 12A). Type-B peptides appear with the arrival of the Holometabola (Fig. 5.8) 

and share a semi-conserved sequence of 12aa in the middle of the peptide (Appendix 

12C), though the reasons for this conservation are elusive, as the Type-B peptides have so 

far been shown to be non-functional in Drosophila (Galindo et al., 2007). The functional 

Type-AA Tal peptides occur only in the Diptera (Fig. 5.8) and are longer then Type-A and 

may have arisen through a point deletion or insertion which caused two nearby ORFs to 

become one, as these sequences have the LDPTGXY motif at both the N- and C-terminal 

ends (Appendix 12B).  
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Figure 5.8 shows a generalised phylogenetic tree based largely on Type-A Tal 

peptide consensus sequences generated manually by comparing the most frequently used 

amino acids from representative species within each Order. The tal gene is conserved at 

least from before the split of the insects and crustaceans, 440 million years ago. At the 

base of this pancrustacean tree, the general consensus sequence for the single Type-A Tal 

peptide is MXPKLDPTGLY. Conserved between the Crustacea and most of the 

hemimetabolous insects is a Leucine (L) as the penultimate amino acid (green letters in 

Fig. 5.8) and a two amino acid sequence of Proline (P) and Lysine (K) in the 5’ end (PK; 

blue letters in Fig. 5.8). In most Hemipteran species, the 5’ PK is either lost completely – 

giving rise to some of the shortest Tal peptides (9aa; Hemiptera-1) – or replaced with a 

variable number of amino acid residues (orange letters, Hemiptera-2; Fig. 5.8), providing 

some of the longest Tal peptides, up to 26aa in the pink mealybug, Maconelliococcus 

hirsutus (Appendix 12A). Moving up into the Holometabola, there is an increase in 

number of smORFs to three or more. In these organisms, the 5’ PK is completely lost and 

there is variation in the second to last amino acid, often replaced with a Glutamine (Q) in 

the Hymenoptera and Coleoptera, but remaining highly variable in Lepidoptera and 

Diptera (Fig. 5.8).  

It is easy to see that numerous changes occurred in the tal peptide sequence over a 

relatively short period of evolutionary time. While there are some weak similarities 

between closely related species outside of the conserved heptapeptide motif, the sequence 

is highly variable between orders, even within the same species. Although an amino acid 

change may only require one nucleotide substitution, these differences would often be 

deemed unlikely or uncommon based on their negative similarity scores in the BLOSUM 

and PAM substitution matrices. In addition, there is no apparent conservation of amino 

acid nature, i.e. hydrophobicity or polarity. This suggests that the highly conserved 
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LDPTGXY motif is most likely the functional sequence of this small peptide, though how 

it carries out its role remains uncertain. That it is so small and is expressed non-cell 

autonomously would make it reasonable to believe that tal acts as a signalling molecule 

where the variable N-terminus may be dispensable for its function.  

 

Pa-tal functions in segment patterning and abdominal identity 

Analysis of the Periplaneta tal homologue shows a different pattern of expression 

and functional domains compared to Drosophila and Tribolium. Strong Class III Pa-

tal
RNAi

 embryos display an ‘asegmental’ phenotype and have drastically reduced 

expression of the segment polarity gene Pa-en, indicative of a dysfunctional segmentation 

mechanism. In the weaker Class I and II Pa-tal
RNAi

 embryos, stripes of Pa-en expression 

are misaligned, manifesting in the partially formed and fused segments observed in the 

hatched first nymphs. As a potential downstream target of N-signalling, Pa-tal may act in 

conjunction, or in parallel with other segmentation genes for proper patterning and 

segment formation. 

The patterning defects seen in the Pa-tal
RNAi

 first nymphs are quite similar to the 

trunk anomalies recently illustrated in natural populations of the centipede Stigmatogaster 

subterranean (Lesniewska et al., 2009). Representatives of all arthropod subphyla and 

some annelids have shown this spiral cleavage, or helicomerism, but the genetic causes of 

these ‘monsters’ have not been identified (Cockayne, 1929; Curcic et al., 1983; Mitic et 

al., 2011; Morgan, 1892; Ramsay, 1959; Sobels, 1952). In 1952, Sobels began to study 

helicomerism phenotypes in adult flies and identified a potential genetic constituent, 

Abnormal abdomen (aa or A), associated with the “spiral” segment phenotype (Sobels, 

1952). Dm-aa is X-linked but currently unannotated (FlyBaseID: FBgn0000009) and the 

particulars of its molecular functions are unknown. However, penetrance of the phenotype 
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is increased in Dm-aa heterozygotes when crossed with the transcription factor Dichaete 

(D; also known as fish-hook) (Sobels, 1952), a Sox-B class gene with many important 

developmental functions, including segment patterning (Nambu and Nambu, 1996; 

Russell et al., 1996). In the blastoderm, Dm-D regulates the expression of the primary 

pair-rule genes eve, run, and hairy (Russell et al., 1996) and, surprisingly, Dm-D interacts 

with Dm-nub to specifically regulate the expression of Dm-eve stripes 3-7 (Ma et al., 

1997). Dichaete loss-of-function mutants lead to a range of segmentation defects including 

hemi-segment formation and segment fusions (Russell et al., 1996). These effects were 

amplified in Drosophila-D/nub double mutants (Ma et al., 1998), yet no segmentation 

defects have been noted when Dm-nub was lost on its own (Turchyn et al., 2011).  

It is important to recall at this time that no segmentation defects were observed in 

Dm-tal mutants (Galindo et al., 2007; Kondo et al., 2007); while dorsal segment fusions 

and dorsal closure defects were noted in Tribolium-tal
RNAi

  and Tc-svb
RNAi

 larvae (Savard 

et al., 2006; Schnellhammer, 2012). Conversely, abdominal segment fusions were 

commonly observed in the Periplaneta-tal
RNAi

 first nymphs and occasionally in Pa-

nub
RNAi

 nymphs. It is curious that double Periplaneta-tal/nub
RNAi

 and the Drosophila-

nub/D mutant phenotypes are so similar. Perhaps Pa-tal and Pa-nub interact with a 

cockroach Dichaete homologue, assuming one exists, during embryonic segment 

patterning, which may similarly be involved in regulating pair-rule gene expression in the 

posterior GZ. While a relationship between tal, nub, and the pair-rule genes in Periplaneta 

is not yet known, such an interaction could explain the RNAi phenotypes where loss of 

Pa-tal and/or Pa-nub may result in faulty pair-rule patterning and, thus, misexpression of 

Pa-en stripes leading to segment fusion/deletion. On the other hand, the potential 

interaction between tal and svb in Tribolium during segment formation (Schnellhammer, 

2012) implies a possible conserved role for these genes in Periplaneta. This suggestion is 
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further supported by the similarities in phenotypes between Tribolium-svb
RNAi

 and 

Periplaneta-tal
RNAi

 affected embryos, both of which display a bulging of abdominal 

segments and misalignment of stripes of the segment polarity gene Tc-gooseberry 

(Schnellhammer, 2012) and Pa-en expression, respectively. However, attempts at isolating 

a Periplaneta homologue of svb have so far been unsuccessful.  

Additional phenotypes arose in Pa-tal
RNAi

 in the form of small ectopic 

‘appendages’ on the abdomen, a phenotype not observed upon loss of Pa-nub expression 

alone. However, loss of both Pa-tal and Pa-nub resulted in the formation of nearly fully 

formed legs in the anterior abdominal segments. This result is interesting when taking into 

account that loss of tal in Tribolium (Savard et al., 2006) and loss of nub in Oncopeltus 

(Hrycaj et al., 2008) both resulted in the similar formation of ectopic abdominal legs. 

Tribolium-tal was shown to regulate several gap genes, which likely function upstream of 

the Hox genes Ubx and AbdA, important in maintaining the identity of this appendage-free 

tagma (Hughes and Kaufman, 2002c; Lewis et al., 2000; Savard et al., 2006). In 

Oncopeltus, nub has an important role in regulating expression of the Hox gene AbdA and, 

indirectly, the inhibition of ectopic limbs on the abdomen (Hrycaj et al., 2008). Ectopic leg 

formation was not observed in Drosophila nub or tal mutants (Galindo et al., 2007; Kondo 

et al., 2007; Turchyn et al., 2011), and expression of Dm-Ubx and Dm-Distal-less remain 

unaffected in Dm-tal mutant embryos (Galindo et al., 2007). In Periplaneta, RNAi 

knockdown of Ubx or AbdA results in ectopic abdominal limbs on A1 or on segments A1-

A5, respectively (Chesebro, 2008); however an interaction between the Hox genes and tal 

or nub is not yet known. 

Overall, these data indicate that Periplaneta-tal plays multiple roles in posterior 

segment formation and maintenance of abdominal identity during embryogenesis, 

functions that may be regulated by the N-signalling cascade. In the anterior-most 
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segments, Pa-tal could work outside of the N-pathway, as segmentation in the anterior 

gnathal and thoracic segments is N-independent (Chapter III), indicating that Pa-tal 

expression and function in this location may be influenced by some other, yet 

undetermined mechanism, perhaps maternal and/or anterior gap genes. The synergistic 

effects of Pa-tal and Pa-nub in abdominal patterning in the cockroach highlight several 

divergent mechanisms in the lineage leading to flies. While they may be required together 

to regulate Hox and pair-rule gene expression on Periplaneta, these interactions might 

have been lost or altered during the course of evolution and may function separately in 

Oncopeltus, Tribolium, and Drosophila.  

 

Pa-tal and limb patterning  

Jointed legs are a defining characteristic of arthropods. Our understanding of leg 

development in Drosophila is increasingly detailed while our knowledge in other 

arthropods remains comparatively basic. The Notch-signalling cascade is a conserved 

mechanism in leg segmentation from flies (Bishop et al., 1999; de Celis et al., 1998; 

Rauskolb and Irvine, 1999) to spiders (Prpic and Damen, 2009), suggesting that Notch-

mediated joint formation could be the phylotypic trait of arthropods. I have explored the 

mechanisms of joint formation by analyzing leg-patterning genes in Periplaneta, including 

Notch, Delta, nub, and tal. The data presented here suggest that while nub and tal have 

complementary roles in Drosophila legs, these genes may be redundant in more basal 

species, underpinning the existence of variable gene functions downstream of a conserved 

Notch cassette controlling developmental boundaries in a variety of contexts. 

In Drosophila, Notch is expressed in all leg segments and is required for proper 

growth and joint formation by defining sharp borders between podomeres in slightly 

different ways in the true joints and the tarsal sub-segments (Bishop et al., 1999; de Celis 



  169   

 

et al., 1998; Pueyo and Couso, 2011; Rauskolb and Irvine, 1999). Those making up the 

true joints (coxa, trochanter, femur, and tibia) contain muscle attachments and here N and 

Ser regulate the expression of odd-related (odd-r) and nubbin at the distal end of each leg 

segment. In the tarsal sub-segments, N regulates the expression of tal that, in turn, 

modulates the expression of the active form of svb, leading to the intercalation and 

formation of tarsal joints. The interaction between Dm-tal and Dm-svb is similar to that 

described during denticle belt formation during embryogenesis (Kondo et al., 2010; Pueyo 

and Couso, 2011). Loss of Dm-tal expression leads to loss of tarsomere formation, while 

gain-of-function of Dm-tal leads to the development of ectopic joints, confirming the 

function of tal in joint formation (Galindo et al., 2007; Pueyo and Couso, 2011). In 

Tribolium, tal and svb are expressed in all larval leg segments and both Tc-tal
RNAi

 and Tc-

svb
RNAi

 result in stubby legs with malformed joints (Savard et al., 2006; Schnellhammer, 

2012), perhaps these genes play a role in each leg segment and are not relegated to one 

type of joint over another (true joint vs. tarsal). In Periplaneta, tal is similarly expressed in 

all leg segments, although gene expression knockdown does not result in a strong leg 

phenotype. nubbin, on the other hand, has a more profound effect on leg patterning, where 

loss of expression results in the fusion of adjacent podomeres in Periplaneta, Gryllus, and 

Drosophila (Turchyn et al., 2011). 

The expression of Pa-N and Pa-Dl in all developing leg segments is conserved in 

arthropods (Angelini et al., 2012; Bishop et al., 1999; de Celis et al., 1998; Mito et al., 

2011; Prpic and Damen, 2009; Rauskolb and Irvine, 1999); however, downstream targets 

of the N-pathway differ depending on location. In the true joints, Notch partially regulates 

nub expression and, along with odd-r, this leads to proper joint formation (Rauskolb and 

Irvine, 1999; Turchyn et al., 2011). In the tarsomeres, the initial activation of tal by Notch 

leads to the regulation of an active form of Svb that inhibits expression of Dl, thus forming 
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a negative feedback loop and a sharp Dl+/Dl- border at the location of future joint 

formation (Pueyo and Couso, 2011). Additionally, it has been shown that Notch signalling 

is also partially required for the expression of nub in Periplaneta and Cupiennius (Prpic 

and Damen, 2009; Turchyn et al., 2011). The reduction of the trochanter in Pa-nub
RNAi

 

first nymphs is enhanced when both nub and tal expression are knocked down in double 

RNAi experiments, indicating that these genes work together in proper leg development. 

A similar relationship may play a role in segment patterning of the cockroach body during 

embryogenesis.  

In flies, Dm-nub and Dm-tal have a complementary role in joint formation in the 

true joints or the tarsal segments, respectively (Fig. 5.9A). In phylogenetically basal 

organisms, nub and tal appear to be expressed in all developing leg segments (Fig. 5.9B) 

(Prpic and Damen, 2009; Savard et al., 2006; Turchyn et al., 2011). In Periplaneta, Pa-

nub and Pa-tal appear to work synergistically for proper leg segmentation, hinting at a 

semi-redundant role of these genes in joint formation. These functions vary depending on 

the segment in question, i.e. trochanter. Overall, my studies in Periplaneta indicate that 

additional factors are at play during the growth and formation of leg segments that may or 

may not be dependent on the N-signalling pathway. tal may be downstream of N-

signalling in the legs of both Periplaneta and Drosophila, but only functions in body 

segmentation downstream of N-signalling in the cockroach, while tal plays a significant 

role in Tribolium posterior segmentation through interactions with the gap genes.  

While this non-canonical gene encodes highly conserved peptide sequences, 

expression and function is variable between species, yet in each case it plays a very 

important role in proper development and patterning in several developmental contexts. 

Periplaneta is now the third species in which tal has been examined, after Drosophila and 

Tribolium. Pa-tal could act as a link between patterning and morphogenesis (Galindo et 
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al., 2007), as Dm-tal functions in the morphogenic movements of several ectodermal 

tissues, including tarsomeres, trachea, and denticle belts. Overall, these studies highlight 

the multi-varied role of tarsal-less having very important developmental functions in body 

and leg patterning, even though it is such a small peptide. There is a clear sign that 

numerous smORF genes and gene families are waiting to be discovered, many of which 

may have a limited or subtle role in development, but some, like tarsal-less, may prove to 

be indispensible. 
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dsRNA stage Class I Class II Class III wt 

Pa-tal
RNAi

 

embryo 
224 

(17.0%) 

121 

(9.2%) 

115 

(8.7%) 

856 

(65.1%) 

nymph 
108 

(20.2%) 

43 

(8.1%) 
--- 

383 

(71.7%) 

Pa-nub
RNAi nymph 

44 

(26.3%) 

6 

(3.6%) 
--- 

117 

(70.1%) 

Pa-tal/nub
RNAi

 nymph 
50 

(32.7%) 

27 

(17.6%) 
--- 

76 

(49.7%) 

 

 

Table 5.1: Phenotypic series of Pa-tal
RNAi

, Pa-nub
RNAi

, and Pa-tal/nub
RNAi

 embryos 

and first nymphs. RNAi embryos and nymphs displayed a range of phenotypes, generally 

placed into two or three separate categories based on severity, with Class I being the 

weakest, Class II moderate, and Class III giving the strongest phenotypes. For a detailed 

description of the phenotypes displayed for each RNAi treatment, please refer to the main 

text.  
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Figure 5.1: Wild type expression of tarsal-less in Periplaneta is dynamic. Expression 

analysis of Pa-tal at post-blastoderm (A-D), germ band elongation (E-H), and after 

terminal differentiation (I-J). (A-B) At stage 4 (A) and stage 5 (B) post-blastoderm, Pa-tal 

is expressed in two wide stripes in the presumptive mandibles (*) and near the posterior 

end of the embryo (arrowhead). (C) These initial two bands remain at early stage 6 (* and 

arrowhead), while a new broad domain of expression is detected in the posterior (bracket). 

(D) By late stage 6, the anterior-most mandible stripe has faded (*) and the initial posterior 

stripe (arrowhead in A-C) is beginning to fade from the midline (white arrowhead). In 

addition, the broad posterior domain (bracket) is resolving into a new stripe of expression 

(arrow). (E-H) During germ band elongation, Pa-tal is expressed in a dynamic pattern. 

Initially expressed in a broad domain in the posterior GZ (bracket, A) at stage 8, this 

expression is refined into a wide stripe in the anterior GZ by stage 9 (follow progression 

of red arrowheads compared to black arrowheads). At the same time this new stripe 

emerges, the previously established stripe (*) dissipates as it moves anteriorly and a new 

segment begins to form. (I) After all posterior segments have been added and the terminal 

ends have differentiated, stage 16, Pa-tal is expressed is several new regions, including 

several bands in the developing appendages (black arrowheads), the distal tips of the 

pleuropodia (arrows), and the anal pads (*). (J) Later in development, stage 19, the stripes 

of expression in the appendages disappear and Pa-tal is now expressed in the apodemes at 

the base of the limbs (arrowheads) and new expression arises in the developing CNS 

(arrow). 
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Figure 5.1 
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Figure 5.2: Effects of Pa-tal
RNAi

 on body patterning. (A) Wild type stage 10 embryo, 

unstained. (B) Weak Class I Pa-tal
RNAi

 showing partial fusion of some abdominal 

segments giving the embryo a slight bend to one side (arrow). (C) In moderate Class II 

Pa-tal
RNAi

 embryos, extensive segment fusion often leads to a ‘bunching up’ of adjacent 

segments (bracket). (D) Class III Pa-tal
RNAi

 embryos display an ‘asegmental’ phenotype. 

While posterior growth proceeds normally, there are no clearly defined segment borders 

(*) and weak attempts at limb bud formation give the embryo a wavy appearance 

(arrowheads). (E) Some asegmental Class III Pa-tal
RNAi

 embryos are greatly reduced in 

size compared to wild type and other RNAi affected embryos of a similar stage. The 

embryo shown is at stage 11 as indicated by the presence of the proctodeal pit (arrowhead) 

which forms at this stage. (F) Wild type first nymph showing normal development of 

head, thorax, and abdomen. (F’) Cuticle prep of a dissected wild type first nymph 

abdomen; ventral to the left and anterior at the top. (G) Class I Pa-tal
RNAi

 first nymph with 

normally developed head and thorax, but with hemi-segments (black dots) and fusion 

between segments (*) in the abdomen. (G’) Cuticle prep of a dissected abdomen of the Pa-

tal
RNAi

 affected first nymph in G. Here it is easy to see the half-segment formation of 

abdominal segments A4 and A5, as well as the fusion between segments A4/A6. The 

fusion pattern is reflected in the dorsal (right) and ventral (left) sclerites; anterior is to the 

top. (J) Dissected wild type T2 leg with normal development of the five basic podomeres. 

(K) Dissected T2 leg of a Class II Pa-tal
RNAi

 first nymph showing fusion between the 

coxa/trochanter and a slight bend in the first tarsal subsegment (arrow). (L) In some Class 

II Pa-tal
RNAi

 first nymphs, an affected ventral thorax may result in the fusion at the base of 

neighbouring legs. (K) In an extreme example, loss of Pa-tal may lead to extremely 

malformed legs, including coxa/trochanter fusion, reduced femur and tibia, and absence of 

tarsomeres. A4, A5, A6 – fourth, fifth, sixth abdominal segment, respectively; cx – coxa; 

fe – femur; ta1-ta5 – first through fifth tarsal subsegment; ti – tibia; tr – trochanter. 
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Figure 5.2  
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Figure 5.3: Pa-tal affects and is affected by other segmentation genes during germ 

band elongation. (A) Pa-en expression in a wild type stage 10 embryo. (B) In Class I Pa-

tal
RNAi

 embryos, Pa-en expression is normal in the anterior segments, but the stripes of 

expression in the abdomen are misaligned or only partially formed. (C) Pa-en expression 

in a wild type embryo. (D) In Class II Pa-tal
RNAi

 embryos, a similar misalignment and 

partial formation of Pa-en stripes occurs. (E) Pa-en expression in the ‘asegmental’ Class 

III Pa-tal
RNAi

 embryos is largely reduced to only a speckled pattern (arrowheads). (F) In 

wild type embryos, Pa-cad is expressed in a broad domain in the posterior GZ (bracket), 

except the tip (*). (G) This expression pattern remains unaffected in a Class III Pa-tal
RNAi

 

affected embryo. (H) Posterior expression of Pa-tal
 
is lost (*) in a Class A Pa-cad

RNAi
 

embryo. (I-J) The wild type expression of Pa-h (I) in a broad posterior GZ domain 

(bracket) and several stripes in the anterior (arrowheads) remains unaffected in Pa-tal
RNAi

 

(J). (K-M) Wild type expression of Pa-Dl (K) is in several stripes in the anterior GZ 

(arrowheads). This pattern of expression is unaffected in Class I (L) and Class II (M) Pa-

tal
RNAi

 embryos. (N-O) The wild type expression of Pa-tal in the posterior GZ (*) does not 

form in Pa-N
RNAi

 affected embryos (*). A1, A3, A4, A5 – first, third, fourth, fifth 

abdominal segment, respectively; lb – labium; mn – mandible; mx – maxilla. 
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Figure 5.3 
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Figure 5.4: Wild type expression patterns of Pa-tal and other leg segmentation genes. 

(A-D) Expression of Pa-tal in the developing embryonic legs. (A) At stage 11, Pa-tal is 

diffusely expressed in the distal half of the protruding limb buds (arrowheads). (B) At 

stage 14, Pa-tal is expressed broadly in the medial leg (bracket). (C) By stage 16, the 

future leg segments start to constrict and at this time, Pa-tal begins to clear from the 

middle of the leg (*) so that two bands of expression are observed (arrowheads). (D) At 

stage 19, furrows appear for all future leg segments and Pa-tal is expressed at the distal 

end of each presumptive podomere. (E-H) Pa-nub expression during leg development. (E) 

Pa-nub is expressed broadly in the distal half of the nascent limb buds at stage 10. (F) By 

early stage 13, Pa-nub is expressed as a wide band in the medial leg (bracket) and as a 

ring of expression in the proximal leg. (G) At late stage 13, three stripes of Pa-nub are 

detected (arrowheads) and there is diffuse expression in the distal tip (bracket). (H) At 

stage 17, podomere constrictions are visible showing that Pa-nub is expressed at the distal 

end of each leg segment. (I-L) Pa-Dl leg expression resembles Pa-tal during leg 

development. (I) At stage 12, Pa-Dl is expressed at the distal ends of the early limb buds. 

(J) Pa-Dl expression is expressed broadly in the medial leg, between two constriction 

points (bracket), which is cleared in the middle leaving two rings of expression in the 

middle of the leg (arrowheads, K). (L) As the separate podomeres are distinguished, Pa-Dl 

is detected at the distal ends of each segment, including several bands in the developing 

tarsus (open arrowheads). (M-O) Pa-N is expressed in a broad medial domain at stage 14 

(bracket, M) and as several stripes by stage 16 (arrowheads, N). By stage 20 (O), Pa-N is 

detected at the distal end of all developing podomeres. 
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Figure 5.4 
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Figure 5.5: Pa-tal and Pa-nub affect leg development. All images are of wild type or 

RNAi affected T3 legs of hatched first nymphs. (A) Wild type trochanter. (A’) Wild type 

tarsus. Each tarsomere is a separate unit connected with a joint (arrowhead). (B-B’) Pa-

tal
RNAi

 does not affect development of the trochanter (B), but there is a noticeable bend in 

the first tarsal subsegment (arrow, B’). Tarsal joints do not appear to be affected 

(arrowhead). (C-C’) The trochanter is reduced in Pa-nub
RNAi

 first nymphs (C), while the 

tarsomeres and respective joints (arrowhead, C’) remain normal. (D-D’) Loss of both Pa-

tal and Pa-nub via RNAi result in a greatly reduced or even absent trochanter (D). The 

first tarsal subsegment is bent (arrow, D’), similar to Pa-tal
RNAi

 first nymphs (B’). There 

are mild effects in the formation of the other tarsomeres, but no noticeable defects in joint 

formation (arrowhead, D’). 

 

  



  182   

 

 

Figure 5.5 
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Figure 5.6: Pa-nub expression in the legs requires Notch-signalling. The wild type 

levels of Pa-nub expression at the distal portion of each leg segment (A) is significantly 

reduced, though not completely abolished, upon the depletion of Notch expression (B); 

most notable in the tr, fe, and ti (arrowheads).  

 

Pa-nub expression analysis performed by N. Turchyn and A. Popadić (Wayne State 

University, Detroit, USA); figure reproduced from (Turchyn et al., 2011). 
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Figure 5.7: Pa-nub affects abdominal patterning in conjunction with Pa-tal. (A) Wild 

type first nymph showing normal segment development of the head, thorax, and abdomen. 

(B) In Pa-nub
RNAi

 affected first nymphs, the head and thorax form properly, while some of 

the abdominal segments are fused (arrow) or only partially formed (arrowhead). (C) Wild 

type expression of Pa-nub at stage 8 is in a broad domain in the posterior GZ (bracket) 

and the early limb buds (arrowhead) and antennae (open arrowhead). (D-E) In a few Pa-

tal
RNAi

 first nymphs, ectopic growths (arrows) appear on the ventral (D) and lateral (E) 

abdomen. (F) Double knockdown phenotype of both Pa-tal and Pa-nub results in the 

formation of ectopic legs on the anterior abdomen. (G) Cuticle prep of unhatched nymph 

shown in F, showing the ectopic tissue on A1 (*) and the almost fully formed leg on A2 

(arrow).  
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Figure 5.8: Evolution of tarsal-less in the arthropods. This phylogenetic tree is largely 

based on the presumptive Type-A Tal peptide sequences (Appendix 12) used to manually 

generate a consensus for each insect or crustacean Order. At the base of the tree is a single 

copy of tal (Type-A ORF) with the sequence MXPKLDPTGLY; coloured letters 

representing those amino acids liable to change and featured at the branch nodes of the 

tree. Changes are most common at the penultimate amino acid (green letters); the N-

terminal PK (blue) found in basal hemimetabolous insects; and a variable number of 

amino acid changes, additions, and deletions in the N-terminal end of the peptide (red and 

orange letters). 
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Figure 5.9: Models of leg development in derived versus basal arthropods. N-

mediated joint formation could be a phylotypic trait in arthropods as its expression in all 

putative joints is conserved in organisms studied to date, from flies (Bishop et al., 1999; 

de Celis et al., 1998; Rauskolb and Irvine, 1999) to spiders (Prpic and Damen, 2009).  

However, downstream targets of the N-pathway differ depending on location. (A) In flies, 

nub and tal have a complementary role in joint formation in the true joint or the tarsal 

segments, respectively. (B) In phylogenetically basal organisms nub and tal appear to be 

expressed in all developing leg segments (Prpic and Damen, 2009; Savard et al., 2006; 

Turchyn et al., 2011). In Periplaneta depletion of nub or tal results in a minor shortening 

of leg segments, while in combination Pa-tal/nub
RNAi

 has a synergistic effect on joint 

development, hinting at a partially redundant role of these genes in joint formation. 

Modified from Turchyn et al. (2011). 
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CHAPTER VI 

DISCUSSION 

Results from my work on the cockroach Periplaneta americana helps to shed light 

on the conserved and divergent mechanisms of segmentation between distantly related 

phyla. In the preceding chapters, various mechanisms used during different phases of 

embryonic development have been discussed pertaining to Periplaneta anterior and 

posterior body segmentation, as well as segmentation of the legs. There is a conserved 

mechanism involved in the early establishment of a posterior Wnt-Cad organiser at post-

blastoderm that is important in defining the posterior axis and setting up the GZ from 

which new segments will sequentially emerge during germ band elongation. The genes 

involved in posterior growth and segmentation form an intimately linked network required 

for the proper maintenance and continuation of these coupled processes throughout 

development. At the heart of this network, the core genes (Wnt, caudal, Dl, N, and 

hes/her) are conserved among most segmented bilaterians, while downstream targets are 

variable and divergent, highlighting the flexible nature of this mechanism. There are also 

lineage-specific mechanisms that have developed in each phylum, such as the pair-rule 

genes in arthropods. Although variably expressed, the pair-rule genes are required for 

proper patterning and segmentation in all arthropods examined. Finally, the recently 

discovered smORF gene tarsal-less shows conserved and divergent functions in both body 

and appendage development. In the sections below, I will briefly summarise and discuss 

further the evolutionary implications of the segmentation mechanisms shared between the 

segmented bilaterians. 
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Conservation of posterior patterning mechanisms 

The first step in embryonic patterning is establishing the anterior-posterior (AP) 

axis, which often involves the posterior determinants Wnt and caudal, a mechanism 

common to most metazoans including Porifera and Cnidarians (Adamska et al., 2011; 

Adamska et al., 2007; Martin and Kimelman, 2009; Ryan and Baxevanis, 2007). Most 

organisms exhibiting posterior growth generally do so through a Wnt-controlled organiser, 

involving Wnt regulation of caudal expression, required to establish a functional growth 

zone in the posterior from which sequential segmentation will proceed (Martin and 

Kimelman, 2009; McGregor et al., 2009). Results presented in Chapter III show that 

Periplaneta-Wnt1 activates zygotic Pa-cad expression at the post-blastoderm stage and 

this relationship is maintained throughout germ band elongation, thus sustaining a 

functional GZ. Loss of either Pa-Wnt1 or Pa-cad expression results in a failure to properly 

establish the organiser and GZ, thus leading to severe truncations, similar to what is 

observed in vertebrates (Martin and Kimelman, 2009; Shimizu et al., 2005; van de Ven et 

al., 2011). It is still unclear how these genes function in posterior patterning and 

segmentation in the annelids, though some studies are indicative of a conserved role in 

these processes (Cho et al., 2010; de Rosa et al., 2005). 

Like Wnt, N-signalling also developed very early in animal evolution, coinciding 

with the development of multicellularity, as a necessary means of cell-to-cell 

communication (Gazave et al., 2009; Richards and Degnan, 2012; Richards et al., 2008; 

Technau et al., 2005). Throughout the course of evolution the N-signalling pathway 

increased in complexity and function, including regulating cell proliferation and 

differentiation, and by the dawn of the Bilateria acquired a new role in organising borders 

and segment patterning (Artavanis-Tsakonas et al., 1999; Gazave et al., 2009). N-mediated 

segmentation is the most common method used by posterior segmenting bilaterians, 



  190   

 

including such divergent phyla as vertebrates (reviewed by Dequeant and Pourquie, 2008), 

annelids (Rivera and Weisblat, 2009; Thamm and Seaver, 2008), and arthropods (Kadner 

and Stollewerk, 2004; Mito et al., 2011; Pueyo et al., 2008; Stollewerk et al., 2003; 

Williams et al., 2012). In each of these phyla, dynamic N-signalling involves activation of 

the transcription factor hes/her and waves of expression travel through the posterior 

GZ/PSM, eventually forming stripes in the anterior, demarcating the future 

segment/somite boundaries. In Periplaneta (Chapter III; Pueyo et al., 2008) and other 

segmented organisms (Palmeirim et al., 1997; Rivera and Weisblat, 2009), loss of N or 

hes/her expression leads to disruptions in proper segment formation and/or truncations of 

the developing embryo, indicating a conserved requirement for N-signalling in posterior 

patterning. 

 

Coupling posterior growth and segmentation 

Although recently contested (Kainz et al., 2011; Mito et al., 2011; Williams et al., 

2012), results presented in Chapter III provide clear evidence that the processes of Wnt1-

Cad posterior growth and Dl/N segmentation are intimately linked during Periplaneta 

development. In the cockroach embryo at late post-blastoderm, posterior Pa-Wnt1 

signalling positively regulates the expression of Pa-Dl in the posterior tip, which feeds 

back to maintain Pa-Wnt1 expression, and subsequently that of Pa-cad, thus sustaining a 

functional GZ. Pa-cad expressing cells in the mid-GZ are kept in an undifferentiated state 

by repressing their ability to respond to the travelling waves of Dl/N-signalling until the 

signal is outside of the Pa-cad domain. Indeed, loss of Pa-cad expression results in a 

failure of Pa-Dl stripe and segment formation, possibly leading to premature 

determination of the posterior embryo. The regulatory relationships between Wnt/Cad and 

Dl/N/H, along with the similar phenotypes observed upon loss of expression of any one of 
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these genes, provides support to the coupling of posterior growth and segmentation within 

an intimately linked genetic network in this basal insect. In other short germ band 

arthropods, loss of N-signalling leads to varied phenotypes that generally include loss of 

segment formation either with (Gryllus – Mito et al., 2011; Parhyale – O'Day, 2006; 

Achaearanea – Oda et al., 2007) or without (Cupiennius – Schoppmeier and Damen, 

2005b; Stollewerk et al., 2003; Artemia – Williams et al., 2012) concomitant loss of 

posterior elongation. Furthermore, in Gryllus and Achaearanea N-signalling is required 

for cad expression and in setting up a proper GZ, thus supporting a conserved coupling of 

growth and segmentation in arthropods (Mito et al., 2011; Oda et al., 2007). These data 

illustrate that even between closely related species, the mechanisms of segmentation can 

be divergent.  

In the Arthropoda, posterior expression of cad may play a conserved role in 

regulating the pair-rule genes in both long germ band (Olesnicky et al., 2006; Wilson et 

al., 2010a) and short germ band (Bolognesi et al., 2008; Copf et al., 2004; Shinmyo et al., 

2005) insects. Whether cad is involved in regulating the initial activation or later stripe 

formation, as with Dl and h in Periplaneta, remains to be determined, but either way this 

represents another level of interaction between the growth and segmentation mechanisms. 

In addition, further support comes from Tribolium in which posterior Wnt-signalling is 

involved in regulating Tc-eve expression in the posterior GZ (Bolognesi et al., 2008). 

Functional control of the pair-rule genes in Periplaneta, and other arthropods, remains to 

be elucidated and may be regulated through either Wnt-Cad or N-signalling, or both 

mechanisms. 

In vertebrates, the processes of posterior elongation and segment formation are 

inextricably linked and involve three main signalling pathways: Wnt, N, and FGF 

(Dubrulle and Pourquie, 2004a; Gibb et al., 2010; Goldbeter and Pourquie, 2008). For 
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example, the FGF-signalling pathway has two major roles during somitogenesis: 

maintenance of the posterior PSM and anterior somite positioning. FGF maintains the 

posterior PSM in an undifferentiated state by regulating cellular responses to N-signalling 

(Aulehla and Pourquie, 2010; Dubrulle et al., 2001; Dubrulle and Pourquie, 2004a), thus 

allowing for continued posterior growth. In addition, the posterior-to-anterior gradient of 

FGF aids in proper positioning of the future somites in the anterior PSM by acting as a 

wavefront where the temporal waves of N-signalling are translated into a spatially 

reiterated pattern, leading to somite boundary formation (Dubrulle et al., 2001; Niwa et al., 

2011; Sawada et al., 2001). While the function(s) of FGF-signalling have not been 

extensively studied in arthropod segmentation (Beermann and Schroder, 2008; Huang and 

Stern, 2005), this result is intriguing and suggestive, though still speculatively, that FGF-

signalling could play a similar role in arthropod posterior patterning and segmentation. It 

is curious that in Periplaneta, the Pa-cad expression domain functions in a similar manner 

as vertebrate FGF by repressing the readout of N-signalling in the posterior GZ so that a 

defined group of cells can only respond to form segments when outside of this Pa-cad 

domain. Perhaps in short germ band arthropods, Pa-cad acts as a sort of “wavefront” 

controlling the spatial readout of temporal N-signalling and acting as an integrator 

between posterior growth and segmentation. 

 

Pair-rule patterning 

Broadly studied in Drosophila, the pair-rule genes play a key role in the long germ 

band segmentation paradigm: maternal  gap  pair-rule  segment polarity. In lower 

arthropods, pair-rule gene expressions can be quite variable, and may not fit easily into 

such a hierarchic segmentation paradigm. However, there is conservation of the mini-

hierarchy of pair-rule gene expressions, where the primary pair-rule genes (eve, run) are 
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expressed first and regulate the expression of the secondary pair-rule genes (prd, slp). The 

upstream regulation of the pair-rule genes is still a bit unclear and may depend on when 

and where expression occurs during embryogenesis. In short germ band organisms there 

are two distinct phases of development in which the anterior segments are patterned first 

during the early blastoderm/post-blastoderm stages, while the remaining posterior 

segments are added sequentially from the extending posterior GZ during later stages of 

development (Davis and Patel, 2002; Liu and Kaufman, 2005b). That the patterning of the 

anterior (gnathal, thoracic) and posterior (thoracic, abdominal) segments utilise separate 

mechanisms, highlights the differences between these two environments during 

embryogenesis (Dearden et al., 2002; Schoppmeier and Damen, 2005a). In Periplaneta, 

N-signalling is an essential mechanism for posterior segment patterning, but is not 

required for specification of the more anterior head and thoracic segments. However, one 

method for proper patterning utilised by both anterior and posterior segments in most 

arthropods is the pair-rule genes.  

As discussed in Chapter IV, Periplaneta pair-rule genes have stronger effects on 

the anterior segments and may be regulated upstream by the gap genes present in this area; 

however, further analysis is required as gap genes have not been studied in the cockroach. 

In fact, gap genes are not very well studied in short germ band organisms in general and 

show variable expression and functions that may be equally varied depending on anterior 

or posterior expression (Bucher and Klingler, 2004; Cerny et al., 2005; Liu and Patel, 

2010; Mito et al., 2005; Schwager et al., 2009). Several studies have even revealed a gap-

like function for even-skipped in both Gryllus (Mito et al., 2007) and Oncopeltus (Liu and 

Kaufman, 2005a), including the regulation of other gap genes, stressing the variable and 

flexible nature of these genes during segmentation processes. These studies suggest the 

pair-rule genes may have larger and more varied roles in basal organisms, but in the 
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lineage leading to Drosophila, their functions were restricted when they came under the 

control of the gap genes, as more segments became pre-patterned in the blastoderm 

(Damen, 2007; Peel and Akam, 2003). However, a recent study has revealed an early gap-

like role for Drosophila-runt in regulating bicoid target genes (Chen et al., 2012) and 

previous studies have shown a gap function for sloppy-paired in the pre-gnathal head 

segments (Andrioli et al., 2004; Grossniklaus et al., 1992), signifying that any one gene 

can have multiple functions and may not be so easily relegated into a single category. 

During posterior segmentation, Periplaneta eve and run have apparent redundant 

roles, whereas Pa-hairy plays a major role in proper segment formation. hairy is of 

particular interest as it is the only known pair-rule gene to function during segmentation in 

arthropods, annelids, and vertebrates. In short germ band arthropods, hairy expression is 

regulated by N-signalling and presumably leads to the indirect regulation of en expression 

(O'Day, 2006; Pueyo et al., 2008; Schoppmeier and Damen, 2005b; Stollewerk et al., 

2003). Whether the other pair-rule genes are regulated as part of the N-signalling pathway 

during germ band elongation remains to be determined, but it could be possible. In 

Periplaneta, and other arthropod species (Choe et al., 2006; Damen et al., 2000; El-Sherif 

et al., 2012; Janssen et al., 2011; Liu and Kaufman, 2005a; Mito et al., 2007), the 

expression of eve and run in the posterior GZ is also dynamic and transient, resulting in 

stripes of expression at the anterior. The established interactions between N-signalling and 

h, combined with the similar expression patterns of the other pair-rule genes in the 

posterior GZ, suggests that N-signalling could be involved in regulation of pair-rule gene 

expression in basal arthropods, a function subsequently lost in the lineage leading to the 

holometabolous insects in which gap genes have become the major regulator of the pair-

rule genes (Damen, 2007; Peel, 2004; Peel and Akam, 2003).  
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Even in Tribolium, a short germ band holometabolous insect, Dl/N-signalling does 

not appear to have a function in segmentation (Aranda et al., 2008; Tautz, 2004). Instead 

Tribolium utilizes a primary pair-rule gene circuit (eve  run  odd     | eve) that is 

dynamic and cyclic (Choe et al., 2006; El-Sherif et al., 2012; Sarrazin et al., 2012) and 

could represent an important change in pair-rule gene regulation upon the loss of N-

signalling, yet retaining a still unknown oscillatory/synchronisation mechanism necessary 

for sequential segment patterning in a cellular environment. With this in mind, the 

dynamic expression of the pair-rule genes in basal arthropods could, alternatively, be 

indicative of a conserved pair-rule gene circuit. If this mechanism did exist, perhaps it runs 

in parallel with the N-segmentation pathway, which could explain why posterior 

phenotypes were rarely observed in Periplaneta pair-rule gene RNAi, except Pa-h
RNAi

. 

This would also indicate that the N-segmentation mechanism has more relevance than the 

pair-rule genes, whether in circuit or not, during posterior segment patterning in the 

cockroach. Further work is required to determine if 1) the pair-rule genes are regulated by 

N-signalling, 2) a double-segmental, oscillatory pair-rule gene circuit exists outside of 

Tribolium, and 3) these two mechanisms are linked or run parallel to each other during 

germ band elongation in short germ band arthropods. 

  Orthologues of the arthropod pair-rule gene hairy (hes/her) play a significant role 

in body patterning in most segmented organisms. Orthologues of the other pair-rule genes 

exist as well, but mainly play a conserved and presumed ancestral role in neurogenesis 

(Avaron et al., 2003; de Rosa et al., 2005; Patel et al., 1992; Patel et al., 1989; Seaver et 

al., 2012; Song et al., 2002). Interestingly, the pair-rule gene even-skipped is expressed in 

the posterior GZ/PSM of annelids (de Rosa et al., 2005; Song et al., 2002; Song et al., 

2004) and vertebrates (Bastian and Gruss, 1990; Beck and Slack, 1999; Dush and Martin, 

1992; Joly et al., 1993; Seebald and Szeto, 2011) where it functions as a transcriptional 
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repressor in posterior growth, but not in the actual segmentation mechanism. In Xenopus, 

eve/Xhox3 is downstream of N, Wnt3a, and FGF signalling (Beck and Slack, 1999; 

Pownall et al., 1996), while eve1 in zebrafish is regulated by Wnt and FGF signalling 

where it is a part of the posterior organiser (Cruz et al., 2010). However, in the 

Arthropoda, eve and the other pair-rule genes acquired a new role in the regulation of 

segment patterning and formation.  

Studies on pair-rule genes in other non-model arthropods often focus on posterior 

expression. However, inferring function from expression is not always straightforward. 

For example, expression of Tribolium-hairy in the posterior GZ would clearly suggest a 

pair-rule function in posterior segment patterning (Eckert et al., 2004; Sommer and Tautz, 

1993). Nevertheless, Tc-h
RNAi

 did not reflect this presumed function, as segmentation 

phenotypes were only observed in the anterior (Aranda et al., 2008). Other than a handful 

of examples, the functions of the pair-rule genes have not been fully studied in more basal 

arthropods (tools for which may not yet be available). As technology improves, we will be 

able to fully examine these genes in other non-model species in hopes of determining an 

ancestral mechanism for pair-rule genes in segmentation.  

 

A new segmentation gene: tarsal-less 

To date, putative tal homologues have only been identified in one crustacean and 

numerous hemimetabolous and holometabolous insect species (Appendix 12) (Galindo et 

al., 2007; Savard et al., 2006), but as more genomes become sequenced it will be easier to 

determine the origin and possible ancestral functions of this gene. tal appears to be highly 

evolvable, having been duplicated numerous times during insect evolution with a trend 

towards increased copy number moving up from basal to more derived insect species. 

While the C-terminal LDPTGXY motif remains conserved, the N-terminus is highly 
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variable in length and amino acid composition. tal function is crucial to several 

developmental processes in those organisms in which it has been studied (Galindo et al., 

2007; Kondo et al., 2007; Savard et al., 2006).  

Data from Chapter V shows that Periplaneta-tal has a dynamic pattern of 

expression throughout embryogenesis and functions in both body and appendage 

development, apparently downstream of the N-pathway. Additionally, Pa-tal works in 

conjunction with Pa-nubbin to maintain the limbless abdomen, a function previously 

shown separately for Tribolium-tal (Savard et al., 2006) and Oncopeltus-nubbin (Hrycaj et 

al., 2008). In Periplaneta, Tribolium, and Gryllus, tal is expressed in all putative leg joints 

(Savard et al., 2006); whereas, Drosophila-tal is only expressed in the tarsomeres where it 

is required for proper growth and joint formation (Galindo et al., 2007; Pueyo and Couso, 

2008; Pueyo and Couso, 2011). In Pa-tal
RNAi

 first nymphs, only minor changes in length 

and bending of tarsomere-1 were observed, although there were no effects on joint 

formation. However, the number of leg defects increased upon loss of both Pa-tal and Pa-

nub, suggesting a relationship between Pa-tal and Pa-nub in leg development, as with 

body segmentation.  

Additionally, single Pa-tal
RNAi

 resulted in asymmetric fusions between abdominal 

segments. A similar phenotype has also been noted in Drosophila Dichaete mutants 

(Russell et al., 1996). Dm-D regulates the expression of the pair-rule genes eve, run, and h 

(Russell et al., 1996), a function that may be carried out through an interaction with Dm-

nub (Ma et al., 1998). Perhaps the association between tal and nub in Periplaneta also 

involves interaction with a Dichaete homologue, should it exist, for proper segment 

patterning. Alternatively, as recently shown in Tribolium, an interaction between tal and 

svb may be required for segment formation during germ band elongation (Schnellhammer, 

2012), an interaction also required for proper denticle belt formation in Drosophila 
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((Galindo et al., 2007; Kondo et al., 2010). As tal seems to act downstream of N-

signalling in Periplaneta, either of these options may add a new level of complexity in 

pair-rule gene regulation and the segmentation gene network in short germ band 

organisms. Between the three species in which tal function has been studied there are 

significant similarities and differences in body and leg patterning. Clearly, further 

examination in a range of insects and other arthropods is required in order to determine the 

ancestral role of this gene and when it may have arisen during the course of arthropod 

evolution. 

 

Redundancy, flexibility, and divergence of segmentation mechanisms 

During vertebrate somitogenesis there is considerable redundancy between the 

three major signalling pathways, Wnt/N/FGF, that interact with and regulate the 

expression of one another as well as similar downstream target genes (Cinquin, 2007; 

Gibb et al., 2010; Oates et al., 2012). These three pathways can compensate for each other 

to a certain extent, which may explain why loss of function in one pathway often leads to a 

breakdown of somitogenesis, but not a complete loss of segmentation (Dequeant et al., 

2006; Dequeant and Pourquie, 2008; Ozbudak and Pourquie, 2008; Riedel-Kruse et al., 

2007). Two examples of this redundancy include the regulation of cad/Cdx expression by 

Wnt and FGF signalling (Ikeya and Takada, 2001; Lohnes, 2003; Savory et al., 2009) and 

the regulation of hes/her by both N and FGF signalling, which in turn feeds back to 

regulate each of their expressions as well (Kageyama et al., 2012; Niwa et al., 2011).  

The level of complexity within the vertebrate segmentation clock has not been as 

thoroughly analyzed in other organisms that employ N-mediated segmentation. Thus, 

redundancy at the core has not yet been determined, but there are additional factors to 

consider, such as the pair-rule genes that have gained new roles in arthropod 
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segmentation. For example, in Periplaneta two mechanisms at work during posterior 

patterning, Dl/N and pair-rule, may or may not be intertwined during posterior patterning. 

The primary pair-rule genes Pa-eve and Pa-run seem to act redundantly in the posterior, 

as phenotypes here were only observed upon double Pa-eve/run
RNAi

 compared to either 

gene alone. If Dl/N and pair-rule patterning mechanisms ran concurrently, this would just 

add another level of complex redundancy. 

Along with the various levels of redundancy among the segmentation mechanisms, 

there is also considerable flexibility, even between closely related species, around the core 

conserved genes pertaining to their downstream targets. A study presented by Krol et al. 

(2011) analysed and compared the transcriptomes of three vertebrate species: chicken, 

zebrafish, and mouse. This study identified 40-100 cyclic genes within the three signalling 

pathways, but noted that different genes cycle in different species and between them only 

two hes/her orthologues were conserved, signifying the “evolutionary plasticity” of the 

vertebrate somitogenesis gene network (Krol et al., 2011). Flexibility is also observed in 

expression patterns of the arthropod pair-rule genes, which may be single or double 

segmental, a mix of these two, or even just a broad posterior domain; though still carrying 

out a conserved function in regulating segment polarity gene expression.  

Genes involved in the delineation of segment/somite boundaries and the definition 

of anterior versus posterior (polarity) within each segment also vary between the different 

segmented bilaterians. In arthropods, this takes place through the segment polarity genes 

engrailed and wingless. In the annelids, some studies indicate a conserved mechanism of 

segment polarity and boundary formation via orthologues of en and wg or the NK 

homeobox genes, such as tinman and ladybird (Prud'homme et al., 2003; Saudemont et al., 

2008). However, with the exception of the marine worm Platynereis (Dray et al., 2010; 

Prud'homme et al., 2003; Saudemont et al., 2008), these genes are typically expressed 
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after segment determination and may not play a role in actual segment formation (Patel et 

al., 1989; Seaver and Kaneshige, 2006; Seaver and Shankland, 2001), leaving open the 

question as to how these organisms carry out this function. Vertebrate orthologues of the 

arthropod segment polarity genes are generally not expressed in the developing somites 

(Ekker et al., 1992; Marti et al., 1995; Patel et al., 1989); however, engrailed is expressed 

in a segmental pattern in the invertebrate cephalochordate Amphioxus (Holland et al., 

1997), suggesting some conservation between deuterostomes and protostomes in this 

process that have diverged as the lineages derived. Nevertheless, a mechanism for somite 

boundary and polarity does exist in the vertebrates, via segment polarity-like genes that 

are expressed in the unsegmented anterior region of the PSM before segment formation. 

These include Mesp2 (Morimoto et al., 2005; Oginuma et al., 2008; Saga and Takahashi, 

2008; Takahashi et al., 2000), Delta-like1 (Hrabe de Angelis et al., 1997) and lunatic 

fringe (Evrard et al., 1998; Zhang and Gridley, 1998). These few examples highlight the 

redundant and flexible nature of the conserved segmentation mechanisms, allowing for 

species-specific divergence, but still coming to the same end – segment/somite formation. 

 

Conclusions 

 The mechanisms of segmentation involve highly complex networks of positive and 

negative genetic interactions of which, in some regards, we have a fair amount of 

understanding (i.e. “Drosophila paradigm”; vertebrate “clock and wavefront”). Many 

elements of AP axis determination, posterior growth, and segmentation are shared 

between the segmented bilaterians and at the core of the segmentation network lies the 

conserved expressions of and genetic relationships between Wnt, caudal, Dl/N, and hairy. 

Within and between the segmented phyla, there are surprising levels of redundancy and 
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flexibility around the core members of this intricate gene network, yet the end goal of 

segmentation/somitogenesis is achieved.  

While an ancient origin of the Wnt-Cad posterior organiser for axial growth is 

widely accepted (Martin and Kimelman, 2009; Petersen and Reddien, 2009), the 

Urbilaterian origins of a N-based segmentation mechanism have been hotly contested 

(Figure 1.1). Opponents argue that a single origin would consequently entail numerous 

losses and suggest, at the very least, two separate origins in the Deuterostomes and the 

Protostomes (Chipman, 2010). Other authors suggest convergent evolution of N-mediated 

segmentation that may have developed many times over the course of bilaterian evolution 

and even on a per species basis (Kainz et al., 2011). N-signalling is utilised in numerous 

developmental contexts, having arisen very early in animal evolution as a ubiquitous cell-

cell communication mechanism (Gazave et al., 2009). The N-pathway may have been 

recruited into a new role in segmentation numerous times, having been in ‘the right place 

at the right time’. The recruitment of an established network to a new location, or new 

genes into a pre-existing network, is not unheard of and may be quite common, such as 

body patterning genes employed in arthropod leg development (Beermann et al., 2004; 

Estella et al., 2003; Lemons et al., 2010; Panganiban et al., 1997; Schaeper et al., 2009), 

leg genes used to pattern beetle horns (Wasik and Moczek, 2011), or eye patterning genes 

used in butterfly wing development (Monteiro, 2012; Reed et al., 2011). 

As for posterior segmentation mechanisms, independent recruitment of one 

signalling cascade for similar functions in posterior segmentation/somitogenesis in such 

widely divergent organisms as cockroaches and mice is possible, even plausible (i.e. 

convergent evolution). However, the probability of independently recruiting multiple 

pathways into a posterior segmentation gene network, arranged with similar regulatory 

connections and spatiotemporal expression patterns, may be too low to be coincident. 
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Along with this is an ingrained requirement (some evolutionary constraint) to maintain the 

‘robustness’ of the system (Felix and Wagner, 2008) around the core players, allowing for 

flexibility in downstream targets leading to segment delineation and morphogenesis. That 

N-mediated segmentation exists in the three segmented phyla and is comparably linked to 

the Wnt-Cad posterior organiser, at least in the arthropods and vertebrates, suggests the 

likely involvement of these mechanisms in the last common ancestor shared between these 

organisms. Considering that it only takes a single point mutation to lose function of a gene 

or an entire pathway (Prud'homme et al., 2006; Shashikant et al., 1998; Theron et al., 

2001), multiple loses over 570 million years of evolution are not improbable. As the 

different groups split into their separate lineages, these mechanisms were individually 

refined to suit their needs for body segmentation, such as pair-rule segmentation in the 

arthropods. In fact, the pair-rule genes are essential for proper patterning in arthropods, but 

show great variability in expression between species and even within the same embryo – 

i.e. anterior versus posterior patterning.  

Further evidence of a shared segmentation mechanism with ancestral roots in the 

Urbilateria could be obtained by analysing the third signalling pathway required for 

vertebrate somitogenesis (FGF) in arthropods and annelids. A function for FGF-signalling 

in relation to arthropod segmentation, if found, would likely be intimately tied in with Wnt 

and N-signalling making it even less probable that these pathways could have become 

involved in the same ways at different times in the different segmented animals. Finally, 

investigations into an evolutionarily conserved patterning network could be expanded to 

include dorsoventral (DV) patterning, as this process is also established in the posterior 

during gastrulation. Conservation between vertebrate and insect DV patterning 

mechanisms have already been shown to exist, such as BMP-4/dpp and chordin/short 

gastrulation (De Robertis, 2008a; De Robertis and Sasai, 1996; Nunes da Fonseca et al., 
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2010; van der Zee et al., 2006) and connections between DV (BMP/dpp) and AP (Wnt) 

patterning have already been established (De Robertis, 2008a; Fuentealba et al., 2007). 

Examining the connections between AP and DV patterning in arthropods will provide a 

more comprehensible picture of the ancestral model of this complex posterior patterning 

network. So far, it is apparent that the genes involved in segmentation/somitogenesis in 

the various segmented organisms function in a redundant and flexible manner around a 

conserved core network that was likely present in the Urbilaterian ancestor. As the 

lineages derived and evolved into their present state, downstream targets diverged, but the 

end goal of a segmented body remained. The flexible nature of this process allowed for the 

incredible diversity witnessed among the vertebrates, annelids, and especially the 

arthropods.  
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APPENDIX 1 

Periplaneta americana codon usage bias. The codon usage database 

(http://kazusa.or.jp/codon) was used in order to reduce the high rates of degeneracy for 

some of the primers used to isolate Periplaneta segmentation genes. The database 

analysed 46 coding sequences containing 26,676 codons for Periplaneta americana found 

in GenBank. In each box, the codon triplet is in bold, followed by the single letter amino 

acid code. The remaining numbers represent, from left to right: the fraction of a particular 

codon used compared to other synonymous codons, the frequency of appearance of that 

codon per every thousand codons identified, and the total number of times that codon 

appears in the 21,676 codons analysed. Table reproduced here from Nakamura et al. 

(2000). 



 

 

Fields: [triplet] [amino acid] [fraction] [frequency: per thousand] (number]) 

UUU F 0.29 11.4 (248)  UCU S 0.17 14.0 (303)  UAU Y 0.33 11.2 (243)    UGU C 0.43 08.6 (186) 

UUC F 0.71 28.4 (616)   UCC S 0.18 15.2 (330)   UAC Y 0.67 22.6 (489)  UGC C 0.57 11.4 (248) 

UUA L 0.06 05.4 (116)  UCA S 0.13 11.1 (241)   UAA * 0.39 00.8 (018)    UGA * 0.37 00.8 (017) 

UUG L 0.17 14.2 (307)    UCG S 0.12 10.1 (220)   UAG * 0.24 00.5 (011)  UGG W 1.00 10.6 (229) 

CUU L 0.13 11.1 (240)  CCU P 0.29 14.7 (319)    CAU H 0.39 10.1 (220)    CGU R 0.15 08.6 (186) 

CUC L 0.21 17.7 (383)    CCC P 0.26 13.1 (283)    CAC H 0.61 15.6 (339)    CGC R 0.20 11.5 (249) 

CUA L 0.09 07.3 (158)    CCA P 0.27 13.9 (301)    CAA Q 0.39 14.6 (317)    CGA R 0.13 07.6 (165) 

CUG L 0.33 27.8 (602)    CCG P 0.18 09.1 (198)    CAG Q 0.61 22.6 (489)    CGG R 0.09 05.4 (118) 

AUU I 0.31 15.0 (325)  ACU T 0.27 13.3 (289)    AAU N 0.38 18.5 (400)    AGU S 0.16 13.5 (293) 

AUC I 0.50 24.3 (526)    ACC T 0.24 12.2 (265)    AAC N 0.62 29.7 (643)    AGC S 0.23 18.9 (410) 

AUA I 0.19 09.3 (201)    ACA T 0.27 13.7 (297)    AAA K 0.38 22.1 (478)    AGA R 0.25 14.3 (310) 

AUG M 1.00 24.0 (521)    ACG T 0.22 11.0 (239)    AAG K 0.62 35.5 (770)    AGG R 0.17 09.9 (215) 

GUU V 0.22 15.5 (335)    GCU A 0.27 18.7 (406)    GAU D 0.45 26.8 (581)    GGU G 0.21 13.2 (286) 

GUC V 0.22 15.2 (329)   GCC A 0.31 21.2 (459)    GAC D 0.55 32.1 (696)   GGC G 0.31 19.3 (419) 

GUA V 0.17 11.7 (254)    GCA A 0.26 18.1 (392)    GAA E 0.47 33.0 (715)    GGA G 0.35 21.5 (466) 

GUG V 0.38 26.3 (571)    GCG A 0.16 10.9 (237)    GAG E 0.53 36.8 (798)   GGG G 0.12 07.4 (161) 
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APPENDIX 2 
 

A) Primers for Pa-caudal 

Degenerate 

Pa-cad forward: 5’ GAGCTSGAGAAGGARTT 3’ 

Pa-cad reverse : 5’ RCAGCACCARTGRAABGTRCA 3’ 

 

Specific 

Pa-cad 5’RACE reverse (outer):  5’ TCTTCACCTGTCGTTCTGAGAGTC 3’ 

Pa-cad 5’RACE reverse (inner):  5’ CTTACGCTTGATGGTGATGTACC 3’  

Pa-cad 3’RACE forward (outer): 5’ ACTACAGCCGGTACAT CACCATCA 3’ 

Pa-cad 3’RACE forward (inner): 5’ CTCTCAGAACGACAGGTGAAGATC 3’ 

 

RNAi (T7 polymerase priming sequence underlined) 

Pa-cad RNAi forward: 

5’ TAATACGACTCACTATAGGGACCGGAGTGGACCAGCGCGG 3’ 

Pa-cad RNAi reverse: 

5’ TAATACGACTCACTATAGGGATCCTTCTCCAGTTCTAGTCGC 3’ 

 

 

B) Primers for Pa-Wnt1 

Degenerate 

Pa-Wnt1 forward 1 (outer): 5’ CGNCCGVTGGAACTGYTCNAC 3’ 

Pa-Wnt1 reverse 1 (outer):  5’ RCAGCACCARTGRAABGTRCA 3’  

Pa-Wnt1 forward 2 (inner): 5’ TGGGGYGGHTGCTSBGAYAAAT 3’ 

Pa-Wnt1 reverse 2 (inner):  5’ GCCNCKKCCGSAGCACATVAG 3’ 

 

Specific 

Pa-Wnt1 5’RACE reverse 1 (outer):  5’ TGGAGATTCATCTTCTCGCGGAGGT 3’ 

Pa-Wnt1 5’RACE reverse 1 (inner):  5’ CTTGTCGAGCAGTTCCACCTCCTG 3’ 

Pa-Wnt1 5’RACE reverse 2 (outer):  5’ GAATTCGCGGGAGAACTTGAAGCC 3’ 

Pa-Wnt1 5’RACE reverse 2 (inner):  5’ AACTAGACGTCTCTGCTTCCGCCG 3’ 

Pa-Wnt1 3’RACE forward 1 (outer): 5’ TTCTGCGAGCGCAACCCGAGA 3’ 

Pa-Wnt1 3’RACE forward 1 (inner): 5’ GTCAGTGCAACGATACGTCGATAGGCT3’ 

 

 

C) Primers for Pa-even-skipped 

Degenerate 

Pa-eve forward 1 (outer): 5’ ATMMGNMGVTAYMGVACNGC 3’ 

Pa-eve forward 2 (inner): 5’ CSTTCACBMGSGAVCAGYTG 3’ 

Pa-eve reverse 1 (outer):  5’ ACCTTGATNGTGSWYTCBGG 3’ 

Pa-eve reverse 2 (inner):  5’ GTABGGCTKGAASARCTTSAA 3’ 

 

Specific 

Pa-eve forward 1 (outer): 5’ AGAAGGAGTTCCGCAACTCAACCT 3’ 

Pa-eve forward 2 (inner): 5’ TGCCCGAGTCCACCATCAAG 3’ 

Pa-eve reverse 1 (outer):  5’ TTCTGGAACCACACCTTGATGGTG 3’  

Pa-eve reverse 2 (inner):  5’ TGGACTCGGGACAGGTTGAGTT 3’ 
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RNAi (T7 polymerase priming sequence underlined) 

Pa-eve RNAi forward:  

5’ TAATACGACTCACTATAGGGACAAGCTCCACCTCAAGACCTCG 3’ 

Pa-eve RNAi reverse:  

5’ TAATACGACTCACTATAGGGAGCGGTTCTGGAACCACACCTTG 3’ 

 

D) Primers for Pa-runt 

Degenerate 

Pa-run forward 1 (outer): 5’ RCNRYNATGAARAAYCARGTNGC 3’ 

Pa-run forward 2 (inner): 5’ MRNTTYAAYGAYYTNMGNTTYGTNGG 3’ 

Pa-run reverse 1 (outer):  5’ CKNGGYTCNCKNGGNCCRTC 3’ 

 

Specific 

Pa-run 5’RACE reverse 1 (outer):  5’ AACACACTGTACGCTGCCGTTAGC 3’ 

Pa-run 5’RACE reverse 2 (inner):  5’ TGGTATTCTTCCGCCTGGAGTC 3’ 

Pa-run 3’RACE forward 1 (outer): 5’ TTCTCGCTGACCATCGTCATCAG 3’ 

Pa-run 3’RACE forward 2 (inner): 5’ TCAGTTCGACGCCCTTTCAGATCG 3’ 

 

RNAi (T7 polymerase priming sequence underlined) 

Pa-run RNAi forward: 

5’ TAATACGACTCACTATAGGGAAATGCTAACGGCAGCTACAG 3’ 

Pa-run RNAi reverse: 

5’ TAATACGACTCACTATAGGGACTTCCCTCTGCCACTTCTG 3’ 

 

E) Primers for Pa-pairberry 

Degenerate 

Pa-pby forward 1 (outer): 5’ GGNGGNGTNTTYATHAAYGG 3’ 

Pa-pby forward 2 (inner): 5’ MARATHGTNGARATGGC 3’ 

Pa-pby reverse 1 (outer):  5’ RTTNSWRAACCANACYTG 3’ 

Pa-pby reverse 2 (inner):  5’ RTANACRTCNGGRTAYTG 3’ 

 

Specific 

Pa-pby 5’RACE reverse 1 (outer): 5’ ATGCTGCCGGTCTCCTGGTATCG 3’ 

Pa-pby 5’RACE reverse 2 (inner): 5’ TATCGGTCCAGAATCTTGGACAC 3’ 

 

RNAi (T7 polymerase priming sequence underlined) 

Pa-pby RNAi forward:   

5’ TAATACGACTCACTATAGGGAGGAGTTCGACCATGCGTCATC 3’ 

Pa-pby RNAi reverse:   

5’ TAATACGACTCACTATAGGGAGCGTTGCTTGCGCTTCAG 3’ 
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F) Primers for Pa-sloppy-paired 

Degenerate 

Pa-slp forward 1 (outer): 5’ AARCCNCCNTWYWSNTAYAAYGC 3’ 

Pa-slp forward 2 (inner): 5’ YTNATHATGATGGCNATHMG 3’ 

Pa-slp reverse 1 (outer):  5’ TTNCCNGTNGTNCCNCCDARTAA 3’ 

Pa-slp reverse2 (inner):   5’ TACACCATRTTRCCCNTTYCC 3’ 

 

Specific 

Pa-slp 5’RACE reverse 1 (outer):  5’ ATGCTGAACGAGGACTTGAGG 3’ 

Pa-slp 5’RACE reverse 2 (inner):  5’ ATCTTCACCATGTTGACATGC 3’ 

Pa-slp 3’RACE forward 1 (outer): 5’ ACTACTGGATGCTGGACGCCAG 3’ 

Pa-slp 3’RACE forward 2 (inner): 5’ AGGACGTCTTTATCGGCGGCAC 3’ 

 

RNAi (T7 polymerase priming sequence underlined) 

Pa-slp RNAi forward:   

5’ TAATACGACTCACTATAGGGATGTCAACATGGTGAAGATCGAG 3’ 

Pa-slp RNAi reverse:  

5’ TAATACGACTCACTATAGGGAAGCATCCAGTAGTTGCCCTTG 3’ 

 

G) Primers for tarsal-less 

Degenerate 

tal forward 1.1: 5’ ATGGAYCCHAAGCARYTSGA 3’ 

tal forward 1.2: 5’ ATGGAYCCHAARCARYTSGA 3’ 

tal forward 2.1: 5’ CAYYTSGAYCCHACNGG 3’ 

tal reverse 1.1:  5’ YYTGTASTRKCCNGTDGG 3’ 

tal reverse 1.2:  5’ AYTRTASTRKCCNGTDGG 3’ 

tal reverse 2.1:  5’ DGGRTCSTRNGTCTTDGG 3’ 

tal reverse 2.2:  5’ DGGRTCSTRNGTYTTDGG 3’ 

 

Specific (Periplaneta) 

Pa-tal forward 1 (outer): 5’ CACTGCCAAGTACCTCGCAC 3’ 

Pa-tal forward 2 (inner): 5’ CTCAGCCTTCGACATGGATC 3’ 

Pa-tal reverse 1 (outer):  5’ GATCCATGTCGAAGGCTGAG 3’ 

Pa-tal reverse 2 (inner):  5’ GTGCGAGGTACTTGGACAGTG 3’ 

 

Periplaneta RNAi (T7 polymerase priming sequence underlined) 

Pa-tal RNAi forward:   

5’ TAATACGACTCACTATAGGGAAGTTGCGGGCTAGCCCTCGA 3’ 

Pa-tal RNAi reverse:  

5’ TAATACGACTCACTATAGGGATTCTTCGTATGCCTTGCGTCT 3’ 

 

Specific (Gryllus) 

Gb-tal forward 1 (outer): 5’ CCACTTCAACTCGCAGCC 3’ 

Gb-tal forward 2 (inner): 5’ ATGGGCCCCAAGACTCTG 3’ 

Gb-tal reverse 1 (outer):  5’ GCTGCGGTTGTGCTGCCAC 3’ 

Gb-tal reverse 2 (inner):  5’ GTCCACGAAGGCTGCCGTC 3’ 
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H) Primers for Pa-nub RNAi (T7 polymerase priming sequence underlined) 

Pa-nub RNAi forward:  

5’ TAATACGACTCACTATAGGGAGGAATTCGAGCAATTTG 3’ 

Pa-nub RNAi reverse:  

5’ TAATACGACTCACTATAGGGAGCTCTAGAGGGTTGATG 3’ 

 

I) Primers for Pa-18S rDNA 

Pa-18S forward: 5’ GTACCGGCGACGCATCTTTCA 3’ 

Pa-18S reverse:  5’ CTTTCGGCCAGGCAGGACAC 3’ 
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Nucleotide and protein sequences for Periplaneta caudal and phylogenetic analysis. 

(A) The 1420bp nucleotide sequence of Pa-cad codes for a 290 amino acid protein. 

Double underscore indicates the conserved homeodomain. (B) Phylogenetic analysis of 

the homeodomain protein sequence with other known cad sequences shows that Pa-cad is 

the Periplaneta orthologue and aligns with closely related insect species.  

A) Periplaneta caudal nucleotide and protein sequences. 

1    CGCGGCCGCGTCGACGCGCCGAGTTGTAGCGTGCGGGAGGTGTGCGAGAC   50 

51   AGGATACGAACCCGTGTGCGCGAGCATGGAACCCGCGACTCTGTGACTTG  100  

101  GGAACATGTGTCCGTGCTGACGAGATGTTGAGGAACAGGATGTGTAGTGT  150  

151  CGTCTAGTGTCGGAGTGTGCTGTGCTCGGCTTCCAACAAGGTGGCATTCA  200 

201  GACGAAAAAAGTGGAGGAGGAACTGGGTGCAAAGACAATGGTTTCATACT  250                                                                                                                

1                                          M  V  S  Y      4 

251  ACAACCCCTTAGCGATGTACCGGCACCAGCAGCAGGCCTCGGCTCCGGGG  300 

5    Y  N  P  L  A  M  Y  R  H  Q  Q  Q  A  S  A  P  G    21 

301  GGACCTCCGCAGTTCCACCACCCAACCAGCCCCGCCGCCACTTGGTACGG  350 

22    G  P  P  Q  F  H  H  P  T  S  P  A  A  T  W  Y  G   38 

351  GCCCCCCGGGAGTTACCAGCCCTCGCATCACCACCAGGTGCCTCCACCCC  400 

39     P  P  G  S  Y  Q  P  S  H  H  H  Q  V  P  P  P     54   

401  CGCTGCAACAGTACCCAAATTGCGTGCAGGACGATCAGCAGGGCACCGCG  450 

55   P  L  Q  Q  Y  P  N  C  V  Q  D  D  Q  Q  G  T  A    71  

451  GGGGCATGGCACCATCACCACCACCACATGTTTCAGCCGGAGTGGACCAG  500 

72    G  A  W  H  H  H  H  H  H  M  F  Q  P  E  W  T  S   88 

501  CGCGGGGGCCCCGGATTTTGGGAGTGCACCCGGAATGTCGCAGGGCCATC  550 

89     A  G  A  P  D  F  G  S  A  P  G  M  S  Q  G  H    104   

551  AGCCCTCTTCGGCGGGGCTCGAGGACCCCCAGTTACCGTCCCCGCCTATA  600 

105  Q  P  S  S  A  G  L  E  D  P  Q  L  P  S  P  P  I   121  

601  ACGGTGTCTAGTAGCGAACTGTCGAGTCCCGGCGCCGTTGGGGGTTCCGT  650 

122   T  V  S  S  S  E  L  S  S  P  G  A  V  G  G  S  V  138   

651  GACGCCCCCCCAGCACGCTGGGCGCCCCATTCCCGTCCGGAGCCCCTACG  700 

139    T  P  P  Q  H  A  G  R  P  I  P  V  R  S  P  Y    154  

701  AATGGATGAAGAAGCCGTCCTACCAGAGCCAGCCGAATCCAGTTGGCCCC  750 

155  E  W  M  K  K  P  S  Y  Q  S  Q  P  N  P  V  G  P   171  

751  AATCCCCCGCTTCTAGACCATACACGTGCCGGAATGCAGGAACTGTTGAG  800 

172   N  P  P  L  L  D  H  T  R  A  G  M  Q  E  L  L  S  188  

801  CAAAACGCGGACGAAgGACAAGTACCGAGTGGTATATAGCGATCACCAGC  850 

189    K  T  R  T  K  D  K  Y  R  V  V  Y  S  D  H  Q    204 

851  GACTAGARCTGGAGAAGGAGTTCCACTACAGCCGGTACATCACCATTAGG  900 

205  R  L  E  L  E  K  E  F  H  Y  S  R  Y  I  T  I  R   221  

901  CGTAAGGCGGAACTCGCTGCCAACCTGGGACTCTCAGAACGACAGGTGAA  950 

222   R  K  A  E  L  A  A  N  L  G  L  S  E  R  Q  V  K  238  

951  GATCTGGTTCCAGAACCGTCGCGCCAAGGAGCGCAAGCAGGTCAAGAAGC 1000 

239    I  W  F  Q  N  R  R  A  K  E  R  K  Q  V  K  K    254  

1001 GGGAGGAGCTGCTGCACAAGGGGAAGCTGGAGGCGGTGAGCGCGGCGCAC 1050 

255  R  E  E  L  L  H  K  E  K  L  E  A  V  S  A  A  H   271   
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1051 CACCAGCTGCAGCACGCGCACCAGCAGCCGCAGCAGGCCGCGCAGGACCT 1100 

272   H  Q  L  Q  H  A  H  Q  Q  P  Q  Q  A  A  Q  D  L  288 

1101 GCTTCTGTGACGTCGCAGCGCTGCTACTGCTCATCAGCATTCAGACAATA 1150 

289    L  L  *                                           290 

1151 AACGTGCGAGTCGCGCCATCGTACATGACAACACGGGTTGTTGTCGGTAT 1200 

1201 GGATCTGGCACCACGAGTGCTGCAGTGAACTCGGACACGGAACAAACTTC 1250 

1251 TACAGGTTGCACAATATCCATGGAATCAGACTTTTTCAATTGACACAAAT 1300 

1301 CTGACGACCTCATTCTTTACTGTTATTTATTTTGTCTGTCTTATTTAGCA 1350 

1351 TTGAACATACCGCAGTCTGCTAAGTTATCGTAGCCGCCGTCTAAATTTTC 1400 

1401 TACTTTGTCCAAAAAAAAAA                               1420 

 

B) Alignment and phylogenetic analysis of Pa-Cad protein. NCBI Accession numbers: 

Schistocerca gregaria (AAK56940); Gryllus bimaculatus (BAD51739); Strigamia 

marginata  (AAT35589); Tribolium castaneum  (AJ005421); Apis mellifera 

(AER27701); Nasonia vitripennis (ABI49991); Anopheles gambiae  (AAD27585); 

Drosophila melanogaster  (AAF53923); Mus musculus, Mouse Cdx2 (NP_031699); Mus 

musculus, Mouse Cdx4  (NP_031700). 

Majority          GKTRTKDKYRVVYTDHQRLELEKEFHYSRYITIRRKAELAAXLGLSERQVKIWFQNRRAKERKQVKK 

                  ---------+---------+---------+---------+---------+---------+------- 

                         10        20        30        40        50        60       

                  ---------+---------+---------+---------+---------+---------+------- 

Periplaneta Cad   SKTRTKDKYRVVYSDHQRLELEKEFHYSRYITIRRKAELAANLGLSERQVKIWFQNRRAKERKQVKK 67 

Schistocerca Cad  GKTRTKDKYRVVYSDHQRLELEKEFHYSRYITIRRKAELAANLGLSERQV                  50 

Gryllus Cad       GKTRTKDKYRVVYSDHQRLELEKEFHYSRYITIRRKAELAASLGLSERQVKIWFQNRRAKERKQVKK 67 

Strigamia Cad     GKTRTKDKYRVVYSDIQRLELEKEFHYSRYITIRRKAELAQLLGLSERQVKIWFQNRRAKERKQVKK 67 

Tribolium Cad     GKTRTKDKYRVVYTDHQRVELEKEFYYSRYITIRRKAELANSLGLSERQVKIWFQNRRAKERKQVKK 67 

Nasonia Cad       GKTRTKDKYRVVYTEHQRLELEKEFYSSRYITIRRKAELASSLALSERQVKIWFQNRRAKDRKQSKK 67 

Apis Cad          GKTRTKDKYRVVYTDHQRLELEKEFHYSRYITIRRKAELALSLSLSERQVKIWFQNRRAKERKQMKK 67 

Anopheles Cad     GKTRTKDKYRVVYTDQQRLELEKEFHYTRYITIRRKAELAQNLQLSERQVKIWFQNRRAKDRKQKKK 67 

Drosophila Cad    GKTRTKDKYRVVYTDFQRLELEKEYCTSRYITIRRKSELAQTLSLSERQVKIWFQNRRAKERKQNKK 67 

Mouse Cdx2        VKTRTKDKYRVVYTDHQRLELEKEFHFSRYITIRRKSELAATLGLSERQVKIWFQNRRAKERKIKKK 67 

Mouse Cdx4        GKTRTKEKYRVVYTDHQRLELEKEFHCNRYITIRRKSELAVNLGLSERQVKIWFQNRRAKERKMIKK 67 
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Nucleotide and protein sequences for Periplaneta Wnt1 and phylogenetic analysis. (A) 

The 2360bp nucleotide sequence of Periplaneta Wnt1 codes for a 373 amino acid protein. 

(B) Phylogenetic analysis of a conserved 108aa region of the Pa-Wnt1 protein sequence 

with other known sequences shows that Pa-Wnt1 is the Periplaneta orthologue and aligns 

with closely related insect species. 

A) Periplaneta americana Wnt1 
 

1    GAAGGCCATTGAAATTGTTTAGAAAATGTACTGTAATGTTAGAATGTCTG    50 

51   CGACTAACATACTTCAATATTTTTCCGTGTGAGTGCTTGTTTAAAGTAGA   100 

101  TTTTTATGTACAATTAACTACATTACGTTGGGTGATATTTACTTTACCGT   150 

151  ATAATTTATGTTGAAGTGAATTTGTACAAGAATGGAAACAAATGTAACGT   200 

201  ACAATTATAAGTGATAAAAATATAACCAATGAAACAACGACTTAAGGGAA   250 

251  AATATTGTACTGGAATTAAGGTAAAGAGAAAATAAAATATTTTTGGTCAG   300 

301  CGATAGCTACAGAATGTGAAATAATACAACATAAAAGTCAGAAATTCCGA   350 

351  CGCATCAAAATATATACAAGAAATCTAACAAGAAGAGAATCAAGGGCAAT   400 

401  CAAATGAGAGAACAAATTTGCTGACTAGAATAACAAACAATAGGCCTATA   450 

451  GAATGTGAAGATGACGATTACAGGAAATGTGAAACAATTTAAGAAAAATT   500 

501  GTTCTAAAAATACAAGACGTAAGTTCTTATCACTTACGAATAAAAATAGA   550 

551  AATTAAAACAGACATCGTTGTACGTCACATCGACATCGAATATTCGAGGG   600 

601  AAGACTTCAGAATACTGGTTGTATAATACTATCCGAAGATCGCTGAGGAT   650 

651  TAGCACAAAACTAGACATTGCGGTACAAAACTAAATGCAAGATATTGTGC   700 

1                                       M  Q  D  I  V       5 

701  GCTCAGGAATACCTGTGTGTTTGTTCCAGGGGATTGCGAAAGCCGGCGAG   750 

6    R  S  G  I  P  V  C  L  F  Q  G  I  A  K  A  G  E     22 

751  CCCAACAACTTGCTTCCGCAGACGCCGGGCGCGCTCTACATGGACCCGGC   800 

23    P  N  N  L  L  P  Q  T  P  G  A  L  Y  M  D  P  A    39   

801  CGTGCACGCCATTCTGCGGCGGAAGCAGAGACGTCTAGTTCGGGAGAACC   850 

40     V  H  A  I  L  R  R  K  Q  R  R  L  V  R  E  N      55 

851  CGGGAGTTCTTGTGGCGGTAGCCAAAGGTGCTAACCAGGCCATCGTGGAA   900 

56   P  G  V  L  V  A  V  A  K  G  A  N  Q  A  I  V  E     72 

901  TGCCAGTTCCAGTTTCGAAACAGGAGGTGGAACTGCTCGACAAGAAATTT   950 

73    C  Q  F  Q  F  R  N  R  R  W  N  C  S  T  R  N  F    89 

951  TCTACGAGGCAAAAACCTCTTCGGAAAAATTGTTGACAGAGGTTGTCGGG  1000 

90     L  R  G  K  N  L  F  G  K  I  V  D  R  G  C  R     105 

1001 AGACGGCGTTCATATACGCGATCACAAGTGCGGGCGTGACACACGCTATC  1050 

106  E  T  A  F  I  Y  A  I  T  S  A  G  V  T  H  A  I    122 

1051 GCGCGGGCGCGCAGCGAGGGCAGCATCGAGTCGTGCACGTGTGATTACAG  1100 

123   A  R  A  R  S  E  G  S  I  E  S  C  T  C  D  Y  S   139 

1101 CCACCAGGCGCGGGCGCCGCAGGTGACGTCCGTGCCCGGCCTGCGCGACT  1150 

140    H  Q  A  R  A  P  Q  V  T  S  V  P  G  L  R  D     155 

1151 GGGAGTGGGGCGGCTGCTCCGACAACATCGGCTACGGCTTCAAGTTCTCC  1200 

156  W  E  W  G  G  C  S  D  N  I  G  Y  G  F  K  F  S    172 

1201 CGCGAATTCGTCGATACCGGCGAGCGGGGgCGCAACCTCCGCGAGAAGAT  1250 
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173   R  E  F  V  D  T  G  E  R  G  R  N  L  R  E  K  M   189 

1251 GAATCTCCACAACAATGAGGCCGGCAGAGCGCACGTTTCCTCGGAGATGC  1300 

190    N  L  H  N  N  E  A  G  R  A  H  V  S  S  E  M     205 

1301 GTCAAGAATGTAAGTGCCACGGCATGTCTGGCTCCTGCACGGTCAAGACC  1350 

206  R  Q  E  C  K  C  H  G  M  S  G  S  C  T  V  K  T    222 

1351 TGCTGGATGCGGCTGCCCAGCTTCCGAGTCGTAGGCGACAACCTCAAGGA  1400 

223   C  W  M  R  L  P  S  F  R  V  V  G  D  N  L  K  D   239 

1401 CCGCTTCGACGGCGCCTCCAGAGTGATGGTGAGTAACGCGGGCAGCCTGC  1450 

240    R  F  D  G  A  S  R  V  M  V  S  N  A  G  S  L     255 

1451 GCGGCCAGGGTGGTAGCGGCGGCAGCGGCGTCGGTGGTAAGAAGAACAGA  1500 

256  R  G  Q  G  G  S  G  G  S  G  V  G  G  K  K  N  R    272 

1501 TACAACTTCCAACTGAAACCCTACAACCCGGACCACAAGCCGCCCGGCAC  1550 

273   Y  N  F  Q  L  K  P  Y  N  P  D  H  K  P  P  G  T   289 

1551 CAAAGACCTGGTCTACTTGGAGCCTTCCCCAGGGTTCTGCGAGCGCAACC  1600 

290    K  D  L  V  Y  L  E  P  S  P  G  F  C  E  R  N     305 

1601 CGAGACTCGGTATCCAAGGCACGCACGGACGTCAGTGCAACGATACGTCG  1650 

306  P  R  L  G  I  Q  G  T  H  G  R  Q  C  N  D  T  S    322 

1651 ATAGGCGTGGATGGTTGCGACCTCATGTGTTGTGGGCGAGGATATAGAAC  1700 

323   I  G  V  D  G  C  D  L  M  C  C  G  R  G  Y  R  T   339 

1701 TCATGAGGTGTCCGTGGTGCAGAGGTGTGCGTGCATGTTCCACTGGTGCT  1750 

340    H  E  V  S  V  V  Q  R  C  A  C  M  F  H  W  C     355 

1751 GCGAAGTCAAGTGCAACCTCTGTCGGACAAAGAAAACCATTCACACGTGT  1800 

356  C  E  V  K  C  N  L  C  R  T  K  K  T  I  H  T  C    372 

1801 CTGTGAGTGGTGAAAAAGAAACAATTCACCCATACTTGTGAGTGCTGCAA  1850 

373   L  *                                                373 

1851 AGAAAACCATCCACACGTGTCTGTGAGTGGTGAAAAAGAAACAATTCACC  1900 

1901 CATACTAGTGAGTGCTGCGAAGAAAACCATCCACACGTGTCTGTGAGTGG  1950 

1951 TGAAAAAGAAACCATTCACATTTGCTTGTGAGTGCTGCAAAGAAAAACTT  2000 

2001 CCACACATATCTGTATGATCAGCATAGTGAAACTCGTTAATTGTCTGCGA  2050 

2051 GTGCTTCAAAATCATTCATACATATCGATAAGTATTGGACAAAGAGAAAC  2100 

2101 ATCACACTCGTTGTGATCGTTTCACAATGAAAACCATCCAGATGTGTTGT  2150 

2151 GGGTGGTAGAAGAGTAACGTCACACTTGTATATGTTGCACATGTATGAGC  2200 

2201 GCTGGACAAAGAGAACCACCCAAATGTGTTTACGTTGAGTACGTACTGCA  2250 

2251 CAAACAAATACATTCACACGTCTTTATGAGCATACTGCAGAGATACGTAT  2300 

2301 CTGTGGGTTACGCAAAAATAAAGTCACAACGCGTTTATGGTGAGTGTTAT  2350 

2351 GAAAAAAAAAAAAA                                      2364 
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B) Alignment and phylogenetic analysis of Pa-Wnt1 protein. NCBI Accession 

numbers: Cryptotermes secundus Wnt1 (ACN25142); Gryllus bimaculatus Wnt1 

(BAB19660); Schistocerca americana Wg (AAD37798); Achaearanea (Parasteatoda) 

tepidariorum Wnt1 (BAD12586); Apis mellifera Wnt1 (XP_003251712); Bombyx mori 

Wnt1 (BAA03211); Cupiennius salei Wnt1 (CAC87040); Drosophila melanogaster Wg 

(AAF52501); Mus musculus, Mouse Wnt1/Wingless-related  (EDL04166); Nasonia 

vitripennis Wg (XM_001603338); Tribolium castaneum Wg (EFA04660); Cupiennius 

salei Wnt5 (CAC87041); Tribolium castaneum Wnt5 (XP_974684); Apis mellifera Wnt5 

(XP_397473); Danio rerio Wnt5 (AAA96519); Glomeris marginata Wnt8 (CBL52909); 

Tribolium castaneum Wnt8 (XP_971439); Parasteatoda tepidariorum Wnt8 

(ACH88002); Danio rerio Wnt8 (AAI64176). 

 
Majority            DNIGXGFKFSREFVDTGERGR--------DLREKMNLHNNEAGRAHVSSEMRQECKCHGMSGSCTVKTCWMRL 

                    ---------+---------+---------+---------+---------+---------+---------+--- 

                             10        20        30        40        50        60        70   

                    ---------+---------+---------+---------+---------+---------+---------+--- 

Periplaneta Wnt1    DNIGYGFKFSREFVDTGERGR--------NLREKMNLHNNEAGRAHVSSEMRQECKCHGMSGSCTVKTCWMRL  64 

Cryptotermes Wnt1   DNIGYGFKFSREFVDRASADQ--------PARED-DVHNNEAGRAHVSS----EC                    42 

Gryllus Wnt1        DNIEYGFKFSRDFVDTGERGR--------TLREKMNLHNNEAGRLHVREEMRKECKCHGMSGSCTVKTCWMRL  64 

Schistocerca Wg     -NIDYGFKFSREFVDTGERGR--------SLREKMNLHNNEAGRAHVVSEMRRECKCHGMSGSCTIRTCWMRL  63 

Achaearanea Wnt1    DNIEFGSKFTKQFVGAAERGK--------DLRFTMNLHNNEAGRTHVAAGMRRQCKCHGMSGSCTVQTCWMQL  64 

Apis Wnt            DNIGYGFKFSREFVDTGERGR--------NLREKMNLHNNEAGRAHVSSEMRQECKCHGMSGSCTVKTCWMRL  64 

Bombyx Wnt1         DNIGFGFRFSREFVDTGERGK--------TLREKMNLHNNEAGRRHVQTEMKQECKCHGMSGSCTVKTCWMRL  64 

Cupiennius Wnt1     DNIDFGAKFSRQFVDASERGK--------DLRYIMNLHNNEAGRAHVIGGMRRQCKCHGMSGSCTVQTCWMQL  64 

Drosophila Wg       DNIGFGFKFSREFVDTGERGR--------NLREKMNLHNNEAGRAHVQAEMRQECKCHGMSGSCTVKTCWMRL  64 

Mouse Wg-related    DNIDFGRLFGREFVDSGEKGR--------DLRFLMNLHNNEAGRTTVFSEMRQECKCHGMSGSCTVRTCWMRL  64 

Nasonia Wg          DNIGYGFRFSREFVDTGERGR--------NLREKMNLHNNEAGRTHVSAEMRQECKCHGMSGSCTVKTCWMRL  64 

Tribolium Wg        DNIGFGFTVSREFVDAGERGK--------TIREKMNLHNNEAGRWHVKDQMRQECKCHGMSGSCTIKTCWMRL  64 

Cupiennius Wnt5     ----------------------------------MNLHNNEAGRRAVIRKIKVTCKCHGVSGSCSLVTCWQQL  39 

Tribolium Wnt5      DNLEYGYKFTQNFVDVREKERKFKRGSKEQGRNLMNLHNNEAGRRAVIKKSKVTCKCHGVSGSCSLITCWQQL  73 

Apis Wnt5           DNLEYGYKFTQAFVDVKERERSFKRGSREQGRSLMNLHNNEAGRRAVIKRSKVTCKCHGVSGSCSLITCWQQL  73 

Danio Wnt5          DNVNYGYRFAREFVDAREREKNYPRGSVEHARTLMNLQNNEAGRMAVYNLANVACKCHGVSGSCSLKTCWLQL  73 

Glomeris Wnt8       ENVHFGIDVTKDFLEARESGK--------DARALVNLHNNEAGRVAVSKTMRRLCKCHGVSGSCSIQTCWMQL  73 

Tribolium Wnt8      DDSSFGEELVLKLLEDNEESS--------DAQAFINRHNNRIGREIIREKMLKTCKCHGVSGSCSFQTCWMQM  64 

Parasteatoda Wnt8   DNVKIGNKMAKHYMDSKEHGR--------DIQAMINLHNNRVGRMMVKRNMRRMCKCHGVSGSCEMKTCWMRV  64 

Danio Wnt8          DNVNFGDRIAKLFVDALENGH--------DSRAAVNLHNNEAGRLAVKATLKRTCKCHGLSGSCSIQTCWMQL  64 
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Nucleotide and protein sequences for Periplaneta even-skipped and phylogenetic 

analysis. A) The 985bp nucleotide sequence of Pa-eve codes for a 295 amino acid protein 

containing the conserved regions: 60aa eve-like HD in double underscore, conserved N-

terminal domain (dashed line), and Groucho interaction domain near the C-terminus 

(single underscore). B) Phylogenetic analysis of a conserved 77aa region of the Pa-eve 

HD protein sequence with other known sequences shows that Pa-eve is the Periplaneta 

orthologue and aligns with closely related insect species. 

A) Periplaneta even-skipped nucleotide and protein sequences. 

 

1    AATTAGCGCGCCATGCAGCAGTCGTACCACCAGGACAAGCTCCACCTCAA    50 

1                 M  Q  Q  S  Y  H  Q  D  K  L  H  L  K    13 

51 GACCTCGGCCGCCACCGTCGTCGTGGATCTTCTGCCGCCGGCCTATACAC   100 

14     T  S  A  A  T  V  V  V  D  L  L  P  P  A  Y  T      29 

101  TCGGCACGCACCACCACGCCCCCCCGTCGCCGCCACAGCAGCCACCACAG   150 

30   L  G  T  H  H  H  A  P  P  S  P  P  Q  Q  P  P  Q     46 

151  CCCCCGTCACAGACGGGCAAGCAGCCCGACTCATCTTTGAAAGATGGCGC   200 

47    P  P  S  Q  T  G  K  Q  P  D  S  S  L  K  D  G  A    63 

201  CGGGACGTCCGCGGCCGCCGAGCAGAACATCCGGCGCTACCGAACGGCGT   250 

64     G  T  S  A  A  A  E  Q  N  I  R  R  Y  R  T  A      79 

251  TCACGCGGGAGCAGCTCGCCCGCCTCGAGAAGGAGTTCTACAAGGAGAAC   300 

80   F  T  R  E  Q  L  A  R  L  E  K  E  F  Y  K  E  N     96 

301  TACGTGTCCCGGCCCCGGCGCTGCGAGTTGGCGGCGCAACTCAACCTGCC   350 

97    Y  V  S  R  P  R  R  C  E  L  A  A  Q  L  N  L  P   113 

351  CGAGTCCACCATCAAGGTGTGGTTCCAGAACCGGCGCATGAAGGACAAGC   400 

114    E  S  T  I  K  V  W  F  Q  N  R  R  M  K  D  K     129 

401  GGCAGCGCATGGCGATGGCGTGGCCCTACGCCGTGTACACGGACCCCGCC   450 

130  R  Q  R  M  A  M  A  W  P  Y  A  V  Y  T  D  P  A    146 

451  TTCGCGGCCAGCATCCTGCAGGCGGCGGCGGCGAGCGCGGGCGGGCTACC   500 

147   F  A  A  S  I  L  Q  A  A  A  A  S  A  G  G  L  P   163 

501  CGGCATCGCGGCGGCAGCGGCGGCCGCGGCGTACGGCAGCCCTTACTCGT   550 

164    G  I  A  A  A  A  A  A  A  A  Y  G  S  P  Y  S     179 

551  ACTMCCACCCGCACGCACGCTACGGCCCCTACCCGCCGCCACTGCCGCCC   600 

180  Y  X  H  P  H  A  R  Y  G  P  Y  P  P  P  L  P  P    196 

601  CCGCCACACCGCCCGCAGCCCTACCTGCCGCCGCCCCCGCCCTTCGCCCT   650 

197   P  P  H  R  P  Q  P  Y  L  P  P  P  P  P  F  A  L   213 

651  CCGCACCGGCAGCCCCGCGGGCGCGGGCCACTCGCCCCGCTCGGAAAACA   700 

214    R  T  G  S  P  A  G  A  G  H  S  P  R  S  E  N     229 

701  GCACGCCCACGCTCAGCCCGCCCGCCACCAACAACAACGACGACAACTGC   750 

230  S  T  P  T  L  S  P  P  A  T  N  N  N  D  D  N  C    246 

751  GACGGCTCGCCCAGCTGTCGCTGCGGCATCGTCAACTGCGTCACGGCCTC   800 

247   D  G  S  P  S  C  R  C  G  I  V  N  C  V  T  A  S   263 

801  CACGCCCTCCCTGCTCATGACCACGGCGCTGAAGAGCCCGCACACGGAGC   850 

264    T  P  S  L  L  M  T  T  A  L  K  S  P  H  T  E     279 
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851  CGCCCAAAYTGTTCCAGCCCTACAAGACGGATGTGACGGAGCGCGCGTGA   900 

280  P  P  K  L  F  Q  P  Y  K  T  D  V  T  E  R  A  *    295 

901  GGGACAGAGACGGTCTGCGTTTTGTATTGTGTATAGCCTGTACATAGTTT   950 

951  AGAATATAGTGCTGCCTACCACGAAAAAAAAAAAA         985 

 

B) Alignment and phylogenetic analysis of Pa-eve protein. NCBI Accession numbers: 

Schistocerca americana Eve (CAA77869); Gryllus bimaculatus Eve (BAD12840); 

Bombyx mori Eve (NP_001037327); Cupiennius salei Eve (CAB89492); Drosophila 

melanogaster Eve (AAF58865); Oncopeltus fasciatus Eve (AAW58076). 

 

Majority         XDXSIRRYRTAFTREQLARLEKEFYKENYVSRPRRCELAAQLNLPESTIKVWFQNRRMKDKRQRMAMAWP 

                 ---------+---------+---------+---------+---------+---------+---------+ 

                          10        20        30        40        50        60        70 

                 ---------+---------+---------+---------+---------+---------+---------+ 

Periplaneta Eve  AEQNIRRYRTAFTREQLARLEKEFYKENYVSRPRRCELAAQLNLPESTIKVWFQNRRMKDKRQRMAMAWP  70 

Schistocerca Eve NDQSIRRYRTAFTREQLARLEKEFYKENYVSRPRRCELASQLNLPESTIKVWFQNRRMKDKRQRMAMAWP  70 

Bombyx Eve       PDPNIRRYRTTFTREQLARLEKEFMKENYVSRPRRCELAAQLQLPESTIKVWFQNRRMKDKRQRIAVAWP  70 

Cupiennius Eve   DLSSIRRYRTAFTREQLARLEKEFMRENYVSRPRRCELATALNLPESTIKVWFQNRRMKDKRQRMSLPWP  70 

Drosophila Eve   ADPSVRRYRTAFTRDQLGRLEKEFYKENYVSRPRRCELAAQLNLPESTIKVWFQNRRMKDKRQRIAVAWP  70 

Gryllus Eve      GAGSIRRYRTAFTREQLARLEKEFFKENYVSRPRRCELAAQLSLPESTIKVWFQNRRMKDKQQRMAMAWP  70 

Oncopeltus Eve   NEVNIRRYRTAFTREQLTRLEKEFFKENYVSRPRRCELAAQLGLPESTIKVWFQNRRMKDKRQRMAMAWP  70 
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Nucleotide and protein sequences for Periplaneta runt and phylogenetic analysis. A) 

The 1305 base pair nucleotide sequence of Periplaneta run codes for a 258 amino acid 

protein containing the highly conserved RUNT protein domain (double underscored). B) 

Phylogenetic analysis using 78aa of the RUNT domain aligned with other known 

sequences shows that Pa-run is the Periplaneta orthologue. 

A) Pa-run cDNA and protein sequences. 

 
1    CAGTGCACGGGCTGCGCGCACGGTAGGGACATGTAGAACTATCAGCATTC    50 

51   TTTCCAAAACACCCCCACACACACGACGCTGTGACTTAGCAGAGGAGGGG   100 

101  CGAGCGTTTAGCGACAACGTGCCACAATTTCGATTCCGATTTTCAAAAAA   150 

151  TAGAAGCGAGGGACTCGCACCCGACAGCCACCTGTTCGTCGCGACTCCAG   200 

201  GCGGAAGAATACCACGGCGGCGACTCTTTTCCTGCCGATGAAGAAATGCT   250 

251  AACGGCAGCTACAGTGTGTTCCAGAAGAAGAGAAGAGCAACCTCAAGACG   300 

301  CTCTACGAAATTAGGAGCTCCTGCCTGTCGACCGGGAACCCTTCTTCAGC   350 

351  GGCCACGGAGGAGCCCTCCTTCCTCAATGCATCTACCATCTCCCTACGAC   400 

1                               M  H  L  P  S  P  Y  D      8 

401  TTGGACATCCACCACCAGCACCGCTCGAGTCTGTCACTCGTCCTCAACAG   450 

9     L  D  I  H  H  Q  H  R  S  S  L  S  L  V  L  N  S    25 

451  TAAGAGTAGTGTTAGTGCAAAGTCCGGGGACGGCCACGAATCCTCGCCGG   500 

26     K  S  S  V  S  A  K  S  G  D  G  H  E  S  S  P      41   

501  CGATGTCAGGCTCGGTGCCCGCGAGTTCGGGCGAGCCTTCCCCGGCAACG   550  

42   A  M  S  G  S  V  P  A  S  S  G  E  P  S  P  A  T     58 

551  ACGACCACGGTCCCTGGTACGGACTGGCTGCACGAGGCCTTGCAAGAATA   600 

59    T  T  T  V  P  G  T  D  W  L  H  E  A  L  Q  E  Y    74 

601  CCACGGGGAGCTGGTGCAGACCGGAAGTCCGGCGGTGCTATGCTCGGCGC   650 

75     H  G  E  L  V  Q  T  G  S  P  A  V  L  C  S  A      91 

651  TGCCTACCCACTGGCGCTCCAACAAGTCCCTGCCCGTCGCCTTCAAAGTG   700 

92   L  P  T  H  W  R  S  N  K  S  L  P  V  A  F  K  V    108 

701  GTCGCCCTGGACGATATCATGGACGGCACGCTAGTGACTGTGAAGGCCGG   750 

109   V  A  L  D  D  I  M  D  G  T  L  V  T  V  K  A  G   124 

751  CAACGATGAGAATTTCTGTGGTGAACTAAGGAACTGTACGGCCGTCATGA   800 

125    N  D  E  N  F  C  G  E  L  R  N  C  T  A  V  M     141 

801  AGAACCAAGTGGCCAAGTTCAACGACCTCAGGTTCGTCGGCAGAAGTGGC   850 

142  K  N  Q  V  A  K  F  N  D  L  R  F  V  G  R  S  G    158 

851  AGAGGGAAGAGCTTCTCGCTGACCATCGTCATCAGTTCGACGCCCTTTCA   900 

159   R  G  K  S  F  S  L  T  I  V  I  S  S  T  P  F  Q   174 

901  GATCGCCACGTACAACAAAGCCATCAAAGTGACGGTAGATGGACCCAGAG   950 

175    I  A  T  Y  N  K  A  I  K  V  T  V  D  G  P  R     191   

951  AACCTCGTACAAAATCTAACTTCCATTACCTCCCAGGCCAGCATCCCGGA  1000 

192  E  P  R  T  K  S  N  F  H  Y  L  P  G  Q  H  P  G    208 

1001 TTCGGTCCCTTCGCACTCTTTCCAGCGGCCCAGTGGCTGGACACTGCGGC  1050 

209   F  G  P  F  A  L  F  P  A  A  Q  W  L  D  T  A  A   224 

1051 GTATATGGGCTATCCGTGGCCCGAATACTTCAGGAGGCCTACGACTGCGG  1100 

225    Y  M  G  Y  P  W  P  E  Y  F  R  R  P  T  T  A     241  

1101 AACTCTGTAAGCTACCGAGCACCTGCGGTTCGTCTATTATAAAAAGTAAG  1150  

242  E  L  C  K  L  P  S  T  C  G  S  S  I  I  K  S  K    258 
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1151 TAGAGTTCTGACACTTCATCTGTGCGTTCCGAAACTGTTATTGTGTGAGG  1200 

      * 

1201 GAGAAGGCGTATGAAAGGCAGAAATGGGAGGCTCTGCGCCTGCGTATATC  1250  

1251 AGCCCTCCTGCTACTCTACCGCATTTCCAAAAATATCAGTTGTTAAAAAA  1300 

1301 AAAAA              1305  

 

 

B) Alignment and phylogenetic analysis of Pa-run protein. NCBI Accession numbers: 

Acyrthosiphon pisum Run (XP_001950219); Apis mellifera Run (XP_394014); Bombyx 

mori Run (ABW84373); Cupiennius salei Run1 (CAB89493); Cupiennius salei Run2 

(CAB89494); Drosophila melanogaster Run (AAC27786); Glomeris marginata Run 

(CAK50844) 

Majority          SNKTLPVAFKVVALGXVPDGTLVTIXAGNDENXCAELRNCTAVMKNQVAKFNDLRFVGRSGRGKSFTLTITISTSPPQ 

                  ---------+---------+---------+---------+---------+---------+---------+-------- 

                           10        20        30        40        50        60        70        

                  ---------+---------+---------+---------+---------+---------+---------+-------- 

Periplaneta Run   SNKSLPVAFKVVALDDIMDGTLVTVKAGNDENFCGELRNCTAVMKNQVAKFNDLRFVGRSGRGKSFSLTIVISSTPFQ  78 

Acyrthosiphon Run SNKTLPVAFKVVALGEVPDGTAVTIRAGNDENFCAELRNCTALMKNQVAKFNDLRFVGRSGRGKSFTLTITVSCSPPQ  78 

Apis Run          SNKTLPVAFKVVALGEVGDGTLVTVRAGNDENCCAELRNSTALMKNQVAKFNDLRFVGRSGRGKSFTLTITVSTTPPQ  78 

Bombyx Run        SNKSLPLAFKVVALDDVQDGTLVTIKAGNDENVMAELRNCTAVMKNQVAKFNDLRFVGRSGRGKSFTLTITISSFPSQ  78 

Cupiennius Run1   SNKTLPLPFKVICLGEVADGTMVTIRAGNDENFCGELRNASAVMKNQVAKFNDLRFVGRSGRGKSFSLTISISTSPPH  78 

Cupiennius Run2   SNKTLPVAFRVVSLGEVLDGTVVTIKAGNDDNYCAELRNATAVMKNQVAKFNDLRFVGRSGRGKSFSLTITLSTSPPQ  78 

Drosophila Run    SNKSLPGAFKVIALDDVPDGTLVSIKCGNDENYCGELRNCTTTMKNQVAKFNDLRFVGRSGRGKSFTLTITIATYPVQ  78 

Glomeris Run      SNKTLPVAFKVVALGDINDGTIVTIRAGNDENYCAELRNCTAIMKNQIAKFNDLRFVGRSGRGKSFNLTITVSTNPPQ  78 
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Nucleotide and protein sequences for Periplaneta pairberry and phylogenetic analysis. 

A) The 1413 base pair nucleotide sequence of Periplaneta pby codes for a 398 amino acid 

protein. The conserved Paired domain and paired-like HD are indicated by single and 

double underscore, respectively, and the octapeptide indicated with a dashed line. B) 

Phylogenetic analysis of a conserved 75aa region of the Paired domain with other known 

sequences shows that this sequence is the Periplaneta orthologue of pairberry, as it 

contains the octapeptide, dashed line, and aligns more closely with those orthologues 

found in other insects and not found in paired proteins in this PaxII group of related genes. 

 

A) Pa-pby cDNA and protein sequences. 
 

1    GACTCATGGCGGGGCCTGCAGGATTGAACATTCACCCTCTCTTCACCAGA    50 

1          M  A  G  P  A  G  L  N  I  H  P  L  F  T  R     15 

51   TACTCGTTCCAAGGTCAGGGCAGAGTGAACCAGCTGGGCGGTGTGTTCAT   100 

16    Y  S  F  Q  G  Q  G  R  V  N  Q  L  G  G  V  F  I    32 

101  AAACGGACGTCCTCTGCCGAACCACATCCGCCTCAARATCGTtGaaATGG   150 

33     N  G  R  P  L  P  N  H  I  R  L  K  I  V  E  M      48 

151  CAGCCGCCGGAGTTCGACCATGYGTCATCTCGCGGCAGCTCCGGGTGTCG   200 

49   A  A  A  G  V  R  P  C  V  I  S  R  Q  L  R  V  S     65 

201  CACGGCTGCGTGTCCAAGATTCTGAACCGATACCAGGAGACCGGCAGCAT   250 

66    H  G  C  V  S  K  I  L  N  R  Y  Q  E  T  G  S  I    82 

251  CCGGCCAGGGGTGATCGGCGGCAGCAAGCCGAGGGTGGCCACCCCCGAAG   300  

83     R  P  G  V  I  G  G  S  K  P  R  V  A  T  P  E      98 

301  TGGAGCAGCGCATCGAGGACTACAAGAAGGCCAACCCGGGCATCTTCAGC   350 

99   V  E  Q  R  I  E  D  Y  K  K  A  N  P  G  I  F  S    115 

351  TGGGAGATTCGCGACCGGCTCATCAAGGAGGGCTTATGCGACAGCACCAA   400 

116   W  E  I  R  D  R  L  I  K  E  G  L  C  D  S  T  N   132    

401  CGCTCCCAGCGTGTCTTCAATCAGCCGGCTCCTCAGGGGCGGAAGAAGAG   450 

133    A  P  S  V  S  S  I  S  R  L  L  R  G  G  R  R     148   

451  ATGAGACGGACCTCAAAAAGGACTACAGCGTTGACGGGATTCTCGGAGGT   500 

149  D  E  T  D  L  K  K  D  Y  S  V  D  G  I  L  G  G    165 

501  CGTTGCGGGGACGAGTCGGACACGGAGTCAGAGCCGGGCATCCCGCTGAA   550  

166   R  C  G  D  E  S  D  T  E  S  E  P  G  I  P  L  K   182 

551  GCGCAAGCAACGCCGCAGCCGCACCACGTTCTCGGGGGACCAGCTGGAGG   600 

183    R  K  Q  R  R  S  R  T  T  F  S  G  D  Q  L  E     198 

601  AGCTGGAGCGGGCCTTCCAGAGGACGCAGTACCCCGACGTCTACACGCGC   650 

199  E  L  E  R  A  F  Q  R  T  Q  Y  P  D  V  Y  T  R    215 

651  GAGGAGCTCGCACAACGGACCGGCCTTACGGAGGCCAGGATACAGGTTTG   700 

216   E  E  L  A  Q  R  T  G  L  T  E  A  R  I  Q  V  W   232 

701  GTTCAGTAATCGACGTGCAAGATGGAGAAAACATACCGGTGGTACGTCGT   750  

233    F  S  N  R  R  A  R  W  R  K  H  T  G  G  T  S     248 
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751  TCAACCCATTATCTGCAGTTTCTGGTTACCAGTACCCGACAACGAGCTGT   800 

249  F  N  P  L  S  A  V  S  G  Y  Q  Y  P  T  T  S  C    265 

801  GAAGTCATGGCACTTCATCACAATGCAGGAAACTCCAATTGGCATCGCAC   850 

266   E  V  M  A  L  H  H  N  A  G  N  S  N  W  H  R  T   282 

851  CGGAAGTCAATTAGCCAACTACTCTGCCTTAATGCAACAATCACACGTCA   900 

283    G  S  Q  L  A  N  Y  S  A  L  M  Q  Q  S  H  V     298 
901  CTTCTGCTAGTCTGCAGCAATCGAATTTCGCATTATCGGCATCTCAAATG   950 

299  T  S  A  S  L  Q  Q  S  N  F  A  L  S  A  S  Q  M    315 

951  ATTGAACAAGTGACGACGCCATCTTCCGCAGCGGCTGCCACCACAACGTC  1000 

316   I  E  Q  V  T  T  P  S  S  A  A  A  A  T  T  T  S   332 

1001 ATCTTGTACAAACTCGATTCAGGGAAATGGCAATGTAATGGGATACACAG  1050 

333    S  C  T  N  S  I  Q  G  N  G  N  V  M  G  Y  T     348 

1051 TTCCATCTAGTGGAGTCACTGGAGACTACCAGCACTGCGATGCGGGCGCC  1100 

349  V  P  S  S  G  V  T  G  D  Y  Q  H  C  D  A  G  A    365 

1101 ACTGCAGTCTGGGGGACAAGACTCAATGCCGACTCTAATTGGAGCCATCA  1150 

366   T  A  V  W  G  T  R  L  N  A  D  S  N  W  S  H  H   382 

1151 TGGTTTCCCAACAATTGCAGACAATTTCGGACGTGGCAAAAATAGGTCGT  1200 

383    G  F  P  T  I  A  D  N  F  G  R  G  K  N  R  S     398 

1201 AGAATTTAAAATATAAATTTGAGAAGGAACTCCAGAAGCTCCCTAAGATA  1250  

      * 

1251 CGAAGCGGTTCCGAAGCTCTTGAATCGCTACATCGTTATGGACGTTTTTC  1300 

1301 GACCTGACGATGTTTATGAAGGACGTCGTCCTTTCTGATAGGACTGTAGG  1350 

1351 AAATCTTTCCTTCCAGGAGATCCCATCGACTCCAAACAGTCCTGATTTGG  1400  

1401 GAAAAAAAAAAAA                                       1413 
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B) Alignment and phylogenetic analysis of Pa-pby protein. NCBI Accession numbers: 

Acyrthosiphon pisum Prd (XP_001949018); Cupiennius salei Pby (CAG30843); Glomeris 

marginata Pby1 (CBX36141); Glomeris marginata Pby2 (CBX36142); Parasteatoda 

tepidariorum Pby (CAX11345); Schistocerca americana Pby1 (AAK82936); Schistocerca 

americana Pby2 (AAK82937); Drosophila melanogaster PrdA (AAF53160); Drosophila 

melanogaster PrdB (AAN10801); Drosophila melanogaster Gby (AAF47315); 

Drosophila melanogaster Gby-neuro (AAF47314); Tribolium castaneum Prd 

(EFA05752); Tribolium castaneum Gby (EFA09269); Tribolium castaneum Gby-neuro 

(EFA09140). 

 

Majority              AAGVRPCVISRQLRVSHGCVSKILNRYQETGSIRPGVIGGSKPRVATPEVEKRIEEYKKENPGIFSWEIRDRLIK 

                      ---------+---------+---------+---------+---------+---------+---------+----- 

                               10        20        30        40        50        60        70     

                      ---------+---------+---------+---------+---------+---------+---------+----- 

Periplaneta Pby       AAGVRPCVISRQLRVSHGCVSKILNRYQETGSIRPGVIGGSKPRVATPEVEQRIEDYKKANPGIFSWEIRDRLIK 75 

Acyrthosiphon Prd     AAGVRPCVISRQLRVSHGCVSKILNRYQETGSIRPGVIGGSKPRVATPDVERRIEEYKTENPGIFSWEIRDRLIR 75 

Cupiennius Pby        AAGVRPCVISRKLRVSHGCVSKILNRYQETGSIRPGVIGGSKPRVATPEVEKKIEEYKQDSPGIFSWEIRDRLIN 75 

Glomeris Pby1         AAGVRPCVISRQLRVSHGCVSKILNRYQETGSIRPGVIGGSKPRVATPEVEKKIDDYKKDNPGIFSWEIRDRLIK 75 

Glomeris Pby2         AAVIRPCVISRQLRVSHGCVSKILNRYQETGSIRPGVIGGSKPRVATPEVEKKIEEYKRDNPGIFSWEIRDRLIK 75 

Parasteatoda Pby      AAGVRPCVISRQLRVSHGCVSKILNRYQETGSIRPGVIGGSKPRVATPEVEKKIEEYKRDNPGIFSWEIKDRLVK 75 

Schistocerca Pby1     AAGVRPCVISRQLRVSHGCVSKILNRYQETGSIRPGVIGGSKPRVATPEVEARIDDYKKANPGIFSWEIRDRLIK 75 

Schistocerca Pby2     AAGVRPCVISRQLRVSHGCVSKILNRYQETGSIRPGVIGGSKPRVATPEIEARIEEYKKANPGIFSWEIRDRLIK 75 

Drosophila PrdA       ADGIRPCVISRQLRVSHGCVSKILNRYQETGSIRPGVIGGSKPRIATPEIENRIEEYKRSSPGMFSWEIREKLIR 75 

Drosophila PrdB       ADGIRPCVISRQLRVSHGCVSKILNRYQETGSIRPGVIGGSKPRIATPEIENRIEEYKRSSPGMFSWEIREKLIR 75 

Drosophila Gby        AAGVRPCVISRQLRVSHGCVSKILNRFQETGSIRPGVIGGSKPRVATPDIESRIEELKQSQPGIFSWEIRAKLIE 75 

Drosophila Gby-neuro  ASGVRPCVISRQLRVSHGCVSKILNRYQETGSIRPGVIGGSKPKVTSPEIETRIDELRKENPSIFSWEIREKLIK 75 

Tribolium Prd         ANGIRPCVISRQLRVSHGCVSKILNRYQETGSIRPGVIGGSKPRVATPEVENRIEQYKRENPSIFSWEIRDRLVK 75 

Tribolium Gby         AAGIRPCVISRQLRVSHGCVSKILNRYQETGSIRPGVIGGSKPRVATLEVEARIEQLKKEEPQIFSWEIRDRLIK 75 

Tribolium Gby-neuro   AAGVRPCVISRQLRVSHGCVSKILNRYQETGSIRPGVIGGSKPRVATPEIETRIEQMKKENPTIFSWEIRERLIK 75 
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Nucleotide and protein sequences for Periplaneta sloppy-paired and phylogenetic 

analysis. A) The 700 base pair 5’ fragment sequence of Periplaneta slp codes for a 278 

amino acid protein fragment containing 91aa of the highly conserved Forkhead domain 

(double underscore) and the 15aa Conserved Domain II near the N-terminal end (dashed 

line). B) Phylogenetic analysis of a 69aa region of the forkhead domain other known 

sequences shows that Pa-slp is the Periplaneta orthologue and aligns with closely related 

insect species. 

 

A) Pa-slp nucleotide and protein sequences.  
 

1    AGTGAGACTCGGCCAGCGGGCAGTGACGCGTCAGTCTGTGTCGGAGCAGT    50 

51   GCGGACAGTGCGAGATACCCGACCCGACGTTTCCTCAGGTGAAATTCTCG   100 

101  TCTGCGAGAGGACTGCACCCCGCCCGCGCATGTCAACATGGTGAAGATCG   150 

1                                          M  V  K  I       4 

151  AGGGCCCGCTGCACCCCCTAGTGATGGCCCGAACGCCCCTCAAGTCCTCG   200 

5    E  G  P  L  H  P  L  V  M  A  R  T  P  L  K  S  S     24 

201  TTCAGCATCAGCTCCATCTTGCCGGAAACGGCGGCCGCGTCGCGCGCGCC   250 

25    F  S  I  S  S  I  L  P  E  T  A  A  A  S  R  A  P    39 

251  GAGCCCCCCCGACTTGGGGGCCCCGTGCTCCAGCGGCTCGGACAGCGACA   300 

40     S  P  P  D  L  G  A  P  C  S  S  G  S  D  S  D     55 

301  GCGACCTGGACGTGACGGGGGGCGCCACCCCCCCGCCGCTGGATTGCAGC   350 

56   S  D  L  D  V  T  G  G  A  T  P  P  P  L  D  C  S     72 

351  ACCAACAAGGACGGCAAGCAGGACGGCCCCGCCGCCGCCGCGGACAAGGC   400 

73    T  N  K  D  G  K  Q  D  G  P  A  A  A  A  D  K  A    87 

401  CGAGGGCGAGAAGAAGAAGAACGAGAAGCCGCCGTACAGCTACAACGCGC   450 

88     E  G  E  K  K  K  N  E  K  P  P  Y  S  Y  N  A     203 

451  TCATCATGATGGCCATCCGCCAGAGCCCCGAGAAGCGCCTCACGCTCAAC   500 

204  L  I  M  M  A  I  R  Q  S  P  E  K  R  L  T  L  N    219 

501  GGCATCTACGAGTTCATCATGAAGAACTTCCCCTACTACCGCGAGAACAA   550 

220   G  I  Y  E  F  I  M  K  N  F  P  Y  Y  R  E  N  K   234 

551  GCAGGGCTGGCAGAACTCCATCCGCCACAACCTCTCGCTCAACAAGTGCT   600 

235    Q  G  W  Q  N  S  I  R  H  N  L  S  L  N  K  C     250 

601  TCGTGAAGGTGCCGCGCCACTACGACGACCCGGGCAAGGGCAACTACTGG   650 

251  F  V  K  V  P  R  H  Y  D  D  P  G  K  G  N  Y  W    266 

651  ATGCTGGACGCCAGCAGCGAGGACGTCTTTATCGGCGGCACGACGGGAAA   700 

267   M  L  D  A  S  S  E  D  V  F  I  G  G  T  T  G  K   278 

 

 

 

 

 



  244   

 

APPENDIX 8 

B) Alignment and  phylogenetic analysis of Pa-slp protein. NCBI Accession numbers: 

Glomeris marginata Slp (CBX36143); Cupiennius salei Slp (CAI91293); Oncopeltus 

fasciatus Slp (ACZ94039); Apis mellifera Slp (XP_003251005); Tribolium castaneum Slp 

(ABD63010); Drosophila melanogaster Slp2 (AAF51057); Drosophila melanogaster 

Slp1 (AAF51058). 

Majority         RQSPEKRLTLNGIYEYIMXNFPYYRENKQGWQNSIRHNLSLNKCFVKVPRHYDDPGKGNYWMLDPSSED 

                 ---------+---------+---------+---------+---------+---------+--------- 

                          10        20        30        40        50        60         

                 ---------+---------+---------+---------+---------+---------+--------- 

Periplaneta Slp  RQSPEKRLTLNGIYEFIMKNFPYYRENKQGWQNSIRHNLSLNKCFVKVPRHYDDPGKGNYWMLDASSED   69 

Glomeris Slp     RQSPEKRLTLSGIYEFIMRNFPYYRENKQGWQNSIRHNLSLNKCFVKVPRHYDDPGKGNYWMLDPSSDD   69 

Cupiennius Slp   RQSPEKRLTLNGIYEYIMKNFPYYRENKQGWQNSIRHNLSLNKCFVKVPRHYDDPGKGNYWMLDPSSDD   69 

Oncopeltus Slp   RQSPEKRLTLNGIYEYIMKNFPYYRDNKQGWQNSIRHNLSLNKCFVKVPRHYDDPGKGNYWMLDPSSED   69 

Apis Slp         RQSPEKRLTLNGIYEYIMRHFPYYENNKQGWQNSIRHNLSLNKCFVKVPRHYDDPGKGNYWMLDPSSED   69 

Tribolium Slp    RNSPEKRLTLNGIYEYIMRNFPYYRENKQGWQNSIRHNLSLNKCFVKVPRHYDDPGKGNYWMLDPSAED   69 

Drosophila Slp1  QDSPEQRLTLNGIYQYLINRFPYFKANKRGWQNSIRHNLSLNKCFTKIPRSYDDPGKGNYWILDPSAEE   69 

Drosophila Slp2  RQSSEKRLTLNGIYEYIMTNHPYYRDNKQGWQNSIRHNLSLNKCFVKVPRHYDDPGKGNYWMLDPSAED   69 
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APPENDIX 9 

Nucleotide and protein sequences for Periplaneta tarsal-less. The 569bp sequence of 

Pa-tal contains two small Open Reading Frames that each encode a 12 amino-acid-long 

peptide containing the highly conserved heptapeptide sequence, LDPTGXY 

(underscored). 

 
1    AAGTTGCGGGCTAGCCCTCGAACGGAGAGGTTCTCTGCTTGCCTGGTGCT    50 

51   CGGTTCAATACCGTTGTGACTTGCGTGTTAAGTTCATTGCAGTTCACAAG   100 

101  ACAGGAGGTGACGTTCAACCCAGTCTGCAACGACKGTTACTCAACTCAGG   150 

151  TATACCATCACTGCCAAGTACCTCGCACGTTGCTGCCCGTTTTTCACTTG   200 

201  TTACCTCAGCCTTCGACATGGATCCCAAGACTTTGGATCCCACCGGTCTG   250 

1                                                   M  D  P  K  T  L  D  P  T  G  L     11 
251  TACTAGTCAGACGTCTTCCTGTTCCTGTTGCGGGGAAAGAAAATCGGTGA   300 

12    Y  *                                                 12 

301  CATCGACCTTGTGATTCCGTACTTAGTCACGAGAAGAAAAACAAGAAAGA   350 

351  TGGATCCTACACATCTAGACCCGACCGGCCTGTACTGAGAGCGAGACTRC   400 

1    M  D  P  T  H  L  D  P  T  G  L  Y  *                 12 

401  CGTCRAGACRTCGGCGATGAAGGTATGTTCGCTTTCTTCTGCACGTGACG   450 

451  TTTGAAGTTGAGAGTTCCCTCACACCAGGAAAGGGAACCCTTCAGTAATA   500 

501  TATTCCTGGGAGATGATTCAAACCGGCAAGAAAAAGACGCAAGGCATACG   550 

551  AAGAAAGAAAAAAAAAAAA                                  569 
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Nucleotide and protein sequences for Gryllus tarsal-less. The 706bp sequence of Gb-tal 

contains two small Open Reading Frames that each encode a 12 amino-acid-long peptide 

containing the highly conserved heptapeptide sequence, LDPTGXY (underscored). 

 

1    AGTCGAGTCCCAGGAGCGAGCGAGGCCGTGCACCAGACGCGCAGCAGCTC    50 

51   TCGCCACGCGCGGTCGCTCGCCCTTTGCTTCGCCAGCCGTTCACCGCCCG   100 

101  CTCGCCCGCCCGTGCGCGCGCGTATAAACCGACGCAGCCGCTCCGTGCGC   150 

151  GTTCAGTTGCCCGCTGGCTGCCTTCCGCTTCGGGTCGGTGCTCTCTCTCG   200 

201  CTTCTACGCTCGCTCGTGTTGGACGTGCGACGTCGACCGGACGGGTGTGA   250 

251  CGCCTGTGATCGTGAACTCTACTGTTTTCTACGTTCCGCCACTTCAACTC   300 

301  GCAGCCATGGGCCCCAAGACTCTGGACCCCACCGGCCTGTACTGAAGGAG   350 

1           M  G  P  K  T  L  D  P  T  G  L  Y  *          12 

351  AGAGAGAGAGGTCGCGGTGACAGTCGCCAGCAGTCGAGCCTTGCAACGGG   400 

401  CCCCGCCTGCCTCAGCAGCAGCCACGCCGCTGTTACTTCCTGGTCGAGAG   450 

451  ACGGCAGCCTTCGTGGACAGTGCCAGCACAACCGCAGCCATGGACCCCAA   500 

1                                            M  D  P  K     4 

501  GCAGCTGGACCCCACCGGTCTGTACTAAGGCCCCCGGGCGTGCCTTACCG   550 

5      Q  L  D  P  T  G  L  Y  *                           12 

551  GCGGCAGCAGCAGCAACAGGCTTCACCAGAGCAGCCACCCTGCTATGCAC   600 

601  CCGTGAGCCATGGGACGAGCAGCATCATCATCAGCCCGCGCTTGGTAAGC   650 

651  GGCACATATTTATTTAAAAAACGAAGATATTTTTTATATAGAACAAAAAA   700 

701  AAAAAA                                               706 
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Expression of the Gryllus bimaculatus homologue of tarsal-less. The expression of the 

Gryllus-tal homologue was analysed using a 295bp riboprobe that included both smORF 

sequences. (A) In the stage 7 germ band elongation embryo (according to Niwa et al., 

1997), Gb-tal is diffusely expressed at the tips of the extending gnathal and thoracic limb 

buds (arrows). (B) By stage 8, Gb-tal expression is evident as stripes in the antennae 

(arrowheads) and as two broad bands in the proximal and medial regions of the extending 

leg bud (arrows). (C) As legs continue to grow and constrictions become evident, stage 9, 

Gb-tal expression is refined into stripes in the distal end of all developing leg segments 

(arrows) and, by stage 11 (D), can be detected in the developing tarsomeres (open 

arrowheads). (D) In addition, Gb-tal is expressed in the apodemes of the mouthparts and 

legs (white arrowheads), as well as in the developing CNS (white arrow). Altogether, 

these preliminary studies in Gryllus show a conserved expression in all developing legs 

segments compared to Periplaneta and Tribolium (Savard et al., 2006). 
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List of tarsal-less homologues in arthropod species. (A-C) An expanded list of that by 

Galindo et al. (2007) showing the putative peptide translations of tarsal-less homologues 

in numerous insect species and in one representative of the crustaceans (Daphnia pulex). 

This list was used to create the phylogenetic tree shown in Figure 8. (A) Numerous copies 

of Type-A tal are found in most insect orders and only a single copy in the crustacean. The 

presumed peptides range from 9 to 26 amino acids in length. With few exceptions, all 

peptides contain the conserved LDPTGXY motif (highlighted in red). (B) Type-AA tal 

peptides are only found in the Diptera, are longer then Type-A, and contain the conserved 

LDPTGXY motif at the 5’ and 3’ ends of the peptide (in red). (C) The Type-B tal peptides 

are only found in the holometabolous insects and do not contain the conserved motif of the 

Type-A and Type-AA tal peptides, but have a different motif, loosely ETSSCRRRR 

(highlighted in blue), conserved between them.  
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A) Type-A tal peptides 

DIPTERA 

Drosophila melanogaster            MAAYLDPTGQY       MAAYLDPTGQY       MSHDLDPTGTY 

Drosophila mojavensis              MAAYLDPTGQY       MAAYLDPTGQY       MSLALDPTGTY 

Anopheles gambiae                    MEILDPTGYY       MAKKLDPTGHY       MARKLDPTGHY       MAPEILDPTGYY 

Aedes aegypti                       MEILDPTGYY       MEKKLDPTGHY       MAFKLDPTGHY       MALEILDPTGYY 

Lutzomyia longipalpis     (1)      MTGILDPTEVY       MATELDPTGHY 

                          (2)      MASTLDPTGHY       MERSLDPTGMY 

Teleopsis dalmanni                 MANYLDPTGQY       MDFALDPTGTY 

Cochliomyia hominivorax            MDFALDPTGTY 

Polypedilum vanderplanki          MALKKLDPTGSY   MESSASRRLDPTGHY 

 

LEPIDOPTERA 

Heliconius herato                   MGKVLDPTGIY       MLGLDPTGVY         MFSLDPTGVY         MFVLDPTGVY         

                                    MFVLDPTGVY        MGLDPTNVY        MAIYLDPTEVYYNS 

Helcoverpa armigera               MDIKVLDPTGIY       MFGLDPTGVY         MFVLDPTGVY         MFGLDPTGVY 

                                    MVVLDPTNVY      MALGLDPTGVY 

Bombyx mori  (1) MDIVTLDPTGLY  MELTLDPTGQY   MLKVLDPTGQY         MTGLDPTEVY 

                  (2) MDVKVLDPTGIY   MLGLDPTGVY    MYVLDPTGVY         MLVLDPTGVY 

                                     MGLDPTGVY   MFILDPTNVY   MFRGLDPTGVY 

Bicyclus anynana                    MFVLDPTGVY   MFVLDPTGVY    MDLDPTNVY         MAISLDPTGVY 

Striacosta albicosta                MFVLDPTGVY       MFVLDPTGVY        MFILDPTGV.  

Samia cynthia                     MNIATLDPTGLY      MDSTLDPTGQY       MGKVLDPTGQY          MIGLDPTEIY 

Choristoneura fumiferana          MDIKVLDPTGIY       MFVLDPTGVY        MFVLDPTGVY          MFVLDPTGVY 

                                    MFVLDPTGVY       MIVLDPTNVY 

Heliothis virescens               MDILTLDPTGLY      MDSTLDPTGQY      MDTKVLDPTGQY          MIGLDPTEIY 

                                    MFGLDPTGVY       MFVLDPTGVY        MFGLDPTGVY          MFGLDPTGVY  

                                   MALGLDPTGVY 

COLEOPTERA 

Tribolium castaneum                 MSGLDPTGLY     MDGGKLDPTGQY   MKLNGGKSLDPTGLY 

Diaprepes abbreviates                   ..TGQY  MAKIGGKGLDPTGLY    

Diabrotica virgifera               MFGGLDPTGLY     MDGDKLDPTGQY   MQKTGGKGLDPTGLY 

 

HYMENOPTERA 

Apis mellifera                     MARQLDPTGQY      MATGLDPTGLY        MAGLDPTGQY       MAASTGLDPTGQY 

Bombus terrestris                  MARQLDPTGQY      MAAGLDPTGLY        MAGLDPTGQY       MAASTGLDPTGQY 

Nasonia vitripennis                MAVQLDPTGVY      MAFGLDPTELY        MEILDPTNQY         MAAILDPTNQY 

 

HEMIPTERA 

Homalodisca vitripennis           MFPPTLDPTGLY                      MTSDSILDPTGLY 

Maconellicoccus hirsutus             MDLDPTGLY         MQTDSKSQLKRDPKPGISGLDPTEVY 

Acyrthosiphon pisum     MGLDPTGLY         MCGGGPKLDPTGLY 

Aphis gossypii      MGLDPTGLY          MCGGGPKLDPTGLY 

Nilaparvata lugens                MGPKTLDPTGLY             MTATSSARTAPSVEQLDPTGLY  

Rhopalosiphum padi                   MGLDPTGLY 

Pemphigus spyrothecae                MGLDPTGLY 

 

BLATTODEA 

Periplaneta americana             MDPKTLDPTGLY     MDPTHLDPTGLY 

 

ORTHOPTERA 

Gryllus bimaculatus               MGPKTLDPTGLY     MDPKQLDPTGLY 

Locusta migratoria                MGPKTLDPTGLY    MDTPKQLDPTGLY 

 

CLADOCERA 

Daphnia pulex                      MSPKLDPTGLY            
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Appendix 12 

B) Type-AA tal peptides (Diptera only) 
 

Drosophila melanogaster          MLDPTGTYRRPRDTQDSRQKRRQDC                           LDPTGQY 

Drosophila mojavensis          MFDLDPTGTYRRPRESRDTRHKQRQT                            LDPTGQY 

Anopheles gambiae              MNRKLDPTGMYRRPGSGASSSQRSPFHHHHQQLQNHQRMPHHHQQQQQHQVKCHYLDPTGLY 

Lutzomyia longipalpis      MTSTDDKLDPTGMYVRPKIEIECH                                  LDPTEYY 

Cochliomyia hominivorax    MACTKLILDPTGTYLRPTSSTTTSNASSDRRLANSF                      LDPTGQY 

 

C) Type-B tal peptides (Holometabola only) 
DIPTERA 

Aedes aegypti                        MGQRRNFWLTVRGREETSSCRRRRKLPIRAVGTRWNP 

Anopheles gambiae                 MALRWWTAPQARWVRSREETSSSRRKRKFPAPGTRQRWHRLAATVAERMNPRSGRSRMNLGVIVAYY 

Cochliomyia hominivorax       MLGINKLLKLFEPLWLEVRGREETSSCRKRRKIKMFLKTNLIFFTQII 

Drosophila melanogaster               MIGGARWLRVRGREETSSCRRRRKLGIGASPSDLGEPCDGDFCIYVVFA 

Lutzomyia longipalpis   MDPCDRGAVKDLAIDTTIKAWRSVPGREETSSCRRRRKSPKMCAPTLSPATNILSSSLNK 

 

LEPIDOPTERA 

Bicyclus anynana                    MPGCTHRHKLISATRNEVSSNRKKRKVFHYT 

Bombyx mori                          MCCGRRRICTGSSPAETSSCRKRRFHTDFPLC 

Heliothis virescens                  MCCGRRRIFTGTSPRETSSCRKRRFSSEHH 

Samia cynthia                        MCCGRRRIFTGCSPAETSSCRKRRFAEEFLIKTD 

 

COLEOPTERA 

Tribolium castaneum                     MWHRNRGDGGRPETSSGRRRRLR 

 

HYMENOPTERA 

Nasonia vitripennis                MTGGEGEKSAVVVRGREETSSTNLRRSVWSINIKRGRHRKLPEDEDEAPAAR 

Bombus terrestris                           MEHVRRREETSTSYLRRPEWSIHIRKGRHRPPFSLEETHQ 
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