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SUMMARY  
 

Epstein-Barr virus (EBV) immortalises resting B-lymphocyctes and is associated with a 

diverse range of cancers and establishes a persistent, latent infection in >90% of the 

world-wide population. Epstein-Barr virus nuclear antigen (EBNA) 3C is one of only 

six EBV latent proteins that are crucial for B-cell transformation. EBNA3C is known to 

disrupt cell-cycle control and to progress phase transition at G1/S and G2/M under 

conditions where cells should growth arrest, but the mechanism by which EBNA3C 

does this has not been fully determined. The cell-cycle regulator response gene to 

complement (RGC) 32 was found to be upregulated in EBNA3C-expressing cells in 

microarray experiments carried out previously. RGC-32 is involved in cell-cycle 

activation and also plays a role in G1/S and G2/M transition. I have shown that both 

EBNA3C-expressing cell-lines with upregulated RGC-32 and cell-lines overexpressing 

RGC-32 alone displayed disrupted G2/M checkpoint control indicating that EBNA3C 

may overcome cell-cycle control by upregulation of RGC-32. I also confirmed that 

RGC-32 increases the in vitro kinase activity of CDK1, the key mitotic kinase essential 

for G2/M transition. Surprisingly, my data showed that EBNA3C only activated RGC-

32 transcription in reporter assays at a very low-level, but stabilised the RGC-32 

mRNA. Further studies investigating the differential expression of RGC-32 in EBV-

positive and negative cells demonstrated that RGC-32 is upregulated in LCLs and 

tumour (Burkitt’s lymphoma) cell-lines expressing the full panel of latent genes, but 

intriguingly highly expressed in Burkitt’s lymphoma cell-lines expressing only EBNA 

1. I found that this expression pattern correlated with expression of the RUNX1 

transcription factor. Reporter assays revealed that RUNX1 was able to activate the 

RGC-32 promoter. Together, this data indicates a new mechanism by which EBNA 3C 

can disrupt the G2/M checkpoint and highlights a link between RUNX1 and RGC-32 

expression in B-cells. 
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1 Introduction 

1.1 The Cell Cycle 
The cell cycle describes a process by which the cell grows and divides into two 

genetically identical daughter cells. The cell cycle is divided into four different active 

phases (G1, S, G2, M) and a resting phase called G0. During S (synthesis) phase the 

DNA in the cell is replicated from single chromatids to double (sister) chromatids. The 

M phase (mitosis) is subdivided into five different phases: prophase, prometaphase, 

metaphase, anaphase and telophase. During prophase the chromosomes become 

condensed, the centrioles are duplicated and position themselves at the opposite cell 

poles. Prometaphase describes the transition from prophase to metaphase in which the 

nuclear membrane is degraded and the mitotic spindles start growing. In metaphase the 

chromosomes move to the equatorial plate induced by the mitotic spindles. The single 

chromatids then move towards the cell poles in anaphase before the cell divides into two 

cells during telophase, when also a new nuclear membrane is formed and 

decondensation of the chromosomes occurs. During the gap phases G1 and G2 the cell 

needs to increase in mass in preparation for DNA replication or mitosis, respectively. 

The growth of the cell is affected by limiting growth factors, nutrients or inhibitors. 

The cell cycle is highly regulated by at least four cell cycle checkpoints: G1/S, intra S, 

G2/M and the mitotic spindle checkpoint. The function of the G1/S checkpoint is to 

ensure that the cell has attained the adequate growth requirements to move forward into 

S phase. The S phase checkpoint is responsible for ensuring that the DNA has replicated 

without faults and so that the cell can proceed into G2 phase. The G2/M checkpoint then 

verifies whether all criteria have been met to let the cell progress into mitosis. During 

mitosis the spindle checkpoint ensures that the kinetochores of the sister chromatids 

have been attached correctly to opposite spindle poles for segregation. Cell cycle arrest 

is induced when any of the checkpoints become activated. 

Several cyclin-dependent kinases (CDKs) are sequentially activated throughout the cell 

cycle and are responsible for the control of the transitions of each cell to the next phase 

(Pines, 1995). At least 9 CDKs are involved in the cell cycle, however, the ones 

essential for cell cycle progression are: CDK1, CDK2, CDK4, CDK6 and CDK7. Cell 
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cycle checkpoints regulate CDK activities and ensure that every phase has been 

completed successfully before proceeding to the next phase. Deregulation of this cell 

cycle control leads to uncontrolled growth and can lead to cancer if the cell cannot 

regain the function of the checkpoint. Therefore, these cells become immortalised. 

CDKs are generally abundantly present during the cell cycle and are activated by 

binding their specific cyclin. The cyclins received their name as their expression 

fluctuates throughout the cell cycle; they are expressed only when needed and are 

subsequently degraded by the proteasome (Evans et al., 1983; Morgan, 1997). Cyclins 

contain a cyclin box which is involved in binding the CDK (Pines, 1995). The known 

cyclins essential for cell cycle progression are: cyclin A, cyclin B, cyclin D, cyclin E 

and cyclin H. Each CDK bound to a cyclin forms the holoenzyme which is essential for 

kinase function (Ekholm and Reed, 2000; Johnson and Walker, 1999; Obaya and 

Sedivy, 2002). Cyclin D needs to be upregulated to facilitate the entry of a quiescent 

cell in G0 into the cell cycle. Cyclin D complexes with CDK4 or CDK6 to form the 

active holoenzyme and the complex was found to be present until the cell enters the S 

phase (Blagosklonny and Pardee, 2002) (Figure 1). This complex then induces cyclin E 

expression which associates with CDK2 to promote the G1/S transition. During S phase 

cyclin A binds to CDK2 which may be required for progression through S phase. Cyclin 

A expression is induced by the active cyclin D/CDK4/6 and cyclin E/CDK2 complexes 

(Harbour et al., 1999; Zhang et al., 2000a). Cyclin A can also bind CDK1 in S and G2 

phase. The actual G2/M transition is mediated by the cyclin B/CDK1 complex 

originally called M phase promoting factor or maturation promoting factor (MPF) 

(Brizuela et al., 1989; Nigg, 1995; Obaya and Sedivy, 2002; Pines, 1995). 

CDK activation requires phosphorylation on a conserved threonine residue in the T-loop 

by the CDK-activating kinase CAK (cyclin H/CDK7/Mat1) (Fisher and Morgan, 1994; 

Solomon et al., 1992; Tassan et al., 1995), (reviewed in (Obaya and Sedivy, 2002)). 

This phosphorylation is increased when the cyclin is bound to the CDK suggesting that 

the activating phosphorylation occurs after the complex has formed (Morgan, 1995).  

CDK activity can be negatively regulated by a family of proteins known as cyclin-

dependent kinase inhibitors (CDKIs) (Peter and Herskowitz, 1994). The CDKIs are 

divided in 2 families: the CIP/KIP family (p21WAF1/CIP1, p27KIP1, p57KIP2) and the INK4 
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Figure 1 – Cell Cycle overview 

Cyclin D expression enables the quiescent cells in G0 to enter the cell cycle. The cyclinD/CDK4/6 complex then 

mediates the phosphorylation of Rb during G1 phase. Phosphorylated Rb can no longer bind transcription factor E2F 

which results is the expression of E2F target genes required for progression into S phase, e.g. cyclin E which 

associates with CDK2 to promote the G1/S transition. Cyclin E/CDK2 further phosphorylate Rb which mediates 

transcription of cyclin A and E2F which is essential for DNA replication. The formation of the cyclin A/CDK2 

complex is required for progression through S phase. Cyclin A can also bind CDK1 in S and G2 phase. The actual 

G2/M transition is mediated by the cyclin B/CDK1 complex. During the subsequent M phase, the Rb protein is 

dephosphorylated so that it can once again inhibit E2F. 
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(inhibitors of CDK4) family (p16INK4A, p15INK4B, p18INK4C, p19INK4D) (Morgan, 1997; 

Sherr and Roberts, 1999). The INK4 inhibitors bind CDK4/6 and prevent their 

interaction with cyclin D. The CIP/KIP inhibitors do not prevent cyclin/CDK 

association but inhibit their activity (Sherr and Roberts, 1999). P27KIP1 was shown to 

inhibit diverse cyclin/CDK complexes, cyclin E/CDK2, cyclin A/CDK2, and cyclin D2-

CDK4 (Polyak et al., 1994; Resnitzky et al., 1995). 

1.1.1 Regulation of CDK1 
The activity of CDK1 and CDK2 can also be inhibited by phosphorylation of Thr14 and 

Tyr15 at the N-terminus by the kinases wee1 and myt1 (myelin transcription factor 1) 

during interphase (Krek and Nigg, 1991; Lundgren et al., 1991; McGowan and Russell, 

1993; Mueller et al., 1995; Parker and Piwnica-Worms, 1992). Tyr15 is located at the 

ATP binding site. The presence of phosphorylated Tyr15 still allows binding of ATP 

but inhibits the phosphorylation of a substrate, whereas phosphorylated Thr14 blocks 

ATP binding completely (Atherton-Fessler et al., 1993; Endicott et al., 1994). During S 

and G2 phase the cyclin B/CDK1 complex is kept in the inactive state through Tyr15 

phosphorylation of CDK1 (Gould and Nurse, 1989; Lundgren et al., 1991; Mueller et 

al., 1995; Parker and Piwnica-Worms, 1992) (Figure 2, left panel). During the G2/M 

transition the inhibitory phosphates are removed by the cdc25 phosphatase family 

resulting in CDK activation (Kumagai and Dunphy, 1991; Nilsson and Hoffmann, 2000; 

Russell and Nurse, 1986). Cdc25 is translocated into the nucleus during G2/M transition 

and is activated by Polo-like kinase 1 (Plk1) and may later be phosphorylated by cyclin 

B1/CDK1 (Girard et al., 1992; Heald et al., 1993; Hoffmann et al., 1993; Kumagai and 

Dunphy, 1996). 

1.1.2 Regulation of cyclin B1 
Various vertebrate cyclin B isoforms have been identified: Cyclin B1, B2 and B3 and 

B4 and B5 were discovered in Xenopus (Gallant and Nigg, 1994; Hochegger et al., 

2001). Cyclin B1 and B2 are known to associate with CDK1 to promote progression 

into mitosis. The same function was observed for cyclin B4 and B5 in Xenopus 

(Hochegger et al., 2001). Cyclin B3 was shown to bind CDK1 as well as CDK2 and the 

protein stays in the nucleus throughout the cell cycle (Gallant and Nigg, 1994). Cyclin 

B1 expression is tightly regulated by different mechanisms. Cyclin B1 protein contains  



1-5 

  

Figure 2 – G2/M checkpoint overview 

In absence of cytotoxic stress the phosphatase cdc25 removes the inhibitory phosphates (red) at the Thr14- and 

Tyr15-residues of CDK1 which allows cell cycle progression into mitosis. In the presence of cytotoxic stress 

and therefore DNA damage the kinases ATM and ATR are activated which phosphorylate (green) and thus 

activate the kinases chk2 and chk1 respectively and phosphorylate (red) Cdc25 which is then sequestered and 

degraded. Therefore, Cdc25 can no longer remove the inhibitory phosphates from CDK1 which results in G2 

arrest. 
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a cytoplasmic retention signal (CRS) which signals cyclin B1 to remain in the 

cytoplasm during G2 (Gallant and Nigg, 1992; Hagting et al., 1999; Pines and Hunter, 

1991; Pines and Hunter, 1994). Cyclin B1 only translocates to the nucleus when 

phosphorylated at the CRS (Li et al., 1997). At each mitosis or meiosis, cyclin B1 is 

phosphorylated on 5 serine residues (Ser2, Ser94, Ser96, Ser101 and Ser113) within the 

CRS (Borgne et al., 1999; Izumi and Maller, 1991; Li et al., 1995; Meijer et al., 1989). 

All 5 sites can be autophoshorylated in vitro but it cannot be excluded that other kinases 

e.g. Plk1 could be involved in vivo (Izumi and Maller, 1991). Phosphorylation of cyclin 

B1 is required for translocation into the nucleus but is not required to activate CDK1 

since unphosphorylated cyclin B was found to be able to bind and activate CDK1 to the 

same extent as phosphorylated cyclin B and gets normally degraded during mitosis 

(Hagting et al., 1999; Izumi and Maller, 1991; Li et al., 1995; Li et al., 1997). 

Mimicking permanent CRS phosphorylation by mutation of phosphorylation sites to 

glutamic acid (E) leads to accumulation of cyclin B1 in the nucleus (Hagting et al., 

1999). However, it is not fully understood how phosphorylation of the CRS mediates 

the translocation to the nucleus. Cyclin B1 lacking its amino terminus and therefore the 

CRS was found to be able to directly bind importin β (Moore et al., 1999). 

Phosphorylation of the CRS was shown to generate a nuclear localisation signal (NLS) 

but its nuclear import is likely to be importin β-independent since importin β is not able 

to bind cyclin B1 when the CRS is present (Hagting et al., 1999). Once within the 

nucleus the phosphorylation of serine 113 in the CRS prevents nuclear export (Yang et 

al., 2001a). The CRS was found to have a nuclear export signal (NES) (Hagting et al., 

1998; Toyoshima et al., 1998; Yang et al., 1998) and is likely to use an 

exportin1/CRM1 dependent pathway as exportin1 has been shown to bind cyclin B in 

Xenopus (Yang et al., 1998). 

Synthesis of cyclin B1 occurs from late S phase and the protein is degraded at the 

beginning of mitosis (Piaggio et al., 1995; Pines and Hunter, 1989). Cyclin B mRNA is 

known to be very unstable after DNA damage and in general more stable in G2 than in 

G1 suggesting that the fluctuation of the protein expression is due to mRNA stability 

(Maity et al., 1995; Pines and Hunter, 1989). 
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Cyclin B1/CDK1 also has a putative role as a nuclear lamin kinase which causes nuclear 

envelope disassembly at the end of prophase by phosphorylation (Enoch et al., 1991; 

Peter et al., 1990; Ward and Kirschner, 1990). Although the role of CDK1 is thought to 

be only in the G2/M transition, some evidence suggests that it is also involved in the 

G1/S transition in higher eukaryotes (Badea et al., 2002; Hochegger et al., 2007; Kaldis 

and Aleem, 2005; Rus et al., 1996). It is known that CDK1 is able to associate with 

cyclin A as well as cyclin B. Cyclin A was shown to be able to activate CDK1 shortly 

before S phase begins. Furthermore, CDK1 was reported to be involved in the 

phosphorylation of CDK7 at Thr376 which is also known to play a role in S phase entry 

(Masai et al., 2000). Other reports indicated that cyclin A/CDK1 play a role in late S 

phase to ensure accurate completion of DNA replication rather than S phase entry 

(Obaya and Sedivy, 2002). CDK2 knockout experiments in mice and chicken DT40 

cells revealed that CDK1 can replace the function of CDK2 by binding and activating 

cyclin E and therefore promoting transition from G1 into S phase (Aleem et al., 2005; 

Hochegger et al., 2007; Kaldis and Aleem, 2005). 

1.1.3 The G2/M checkpoint 
In response to DNA damage caused by e.g. ionizing radiation or DNA damaging agents, 

the G2/M checkpoint is activated (Figure 2, right panel). The protein kinases ATM and 

ATM-Rad3-related (ATR) are recruited to the break sites and act as transducers starting 

a cascade to recruit DNA repair proteins. ATR is activated in response to DNA damage 

mainly at the replication fork (single strand breaks) whereas ATM is generally activated 

by other DNA double strand breaks. ATM and ATR phosphorylate and activate chk2 

and chk1, respectively (Matsuoka et al., 1998; Sanchez et al., 1997; Shiloh, 2003). The 

chk kinases phosphorylate Cdc25 at serine-216 resulting in inactivation of Cdc25 and 

therefore preventing the removal of the inhibitory phosphates on CDK1 and its 

activation (Chaturvedi et al., 1999; Matsuoka et al., 1998). Increased levels of inactive 

Tyr15-phosphorylated CDK1 therefore accumulate during G2-arrest following DNA 

damage (Barth et al., 1996; Herzinger et al., 1995; Kharbanda et al., 1994; O'Connor et 

al., 1994). The cell cycle is therefore halted in G2 to allow DNA repair. 
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1.1.4 The role of Rb and p53 in cell cycle regulation 
Cell cycle progression is also regulated by the retinoblastoma protein Rb (p105). 

Together with p107 and p130 it belongs to the pocket protein family of the nuclear 

phosphoproteins. The pocket protein family is known to bind to an LXCXE motif 

(Dyson, 1998; Obaya and Sedivy, 2002). The general function of Rb is to prevent 

quiescent cells from proceeding to S phase by binding to the E2F transcription factors 

E2F1, E2F2 or E2F3 and inhibiting their transcriptional activity by recruiting repressing 

HDACs to the promoters of the E2F-responsive genes (Brehm et al., 1998; Dunaief et 

al., 1994; Magnaghi-Jaulin et al., 1998; Strober et al., 1996). Phosphorylated Rb can no 

longer bind to the E2F transcription factor, which disrupts HDAC repression and allows 

E2F to activate transcription of genes required for progression into S phase e.g. cyclin E 

(Harbour et al., 1999; Zhang et al., 2000a). Phosphorylation of Rb occurs during G1 

phase and is mediated by cyclinD/CDK4/6 (Harbour et al., 1999; Mittnacht, 1998). 

Cyclin E/CDK2 further phosphorylates Rb which mediates transcription of cyclin A and 

E2F which is essential for DNA replication (Bartek and Lukas, 2001; Harbour et al., 

1999; Obaya and Sedivy, 2002; Strobeck et al., 2000; Zhang et al., 2000a). During the 

subsequent M phase, the Rb protein is dephosphorylated so that it can once again inhibit 

E2F (reviewed in (Halaban, 2005)). 

The tumour suppressor and transcription factor p53 which was identified in 1979 is one 

of the first genes to be activated following cellular stress (Lane and Crawford, 1979; 

Linzer and Levine, 1979; Vousden, 2002; Vousden and Lu, 2002). In its inactive state it 

is bound to MDM2 which tags p53 for proteasome-mediated degradation (Kamijo et al., 

1997; Quelle et al., 1995; Zhang et al., 1998) (Figure 3). Its function is to induce cell 

cycle arrest in G1/S and G2/M after DNA damage, but the protein is also involved in 

DNA repair, differentiation, senescence and can initiate apoptosis (Ryan et al., 2001; 

Vousden, 2002; Vousden and Lu, 2002). 

After DNA damage, p53 becomes active by phosphorylation and induces p21WAF1/CIP1 

transcription which then inhibits cyclin E/CDK2 and phosphorylation of Rb (el-Deiry et 

al., 1993; Sherr and Roberts, 1999). The stability as well as the ability to bind DNA is 

regulated by phosphorylation of p53 at serine 15 (Appella and Anderson, 2001; Bode 

and Dong, 2004; Schavolt and Pietenpol, 2007). 
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Figure 3 – p53 pathway 

 p53 is known to associate with MDM2 which tags the protein for ubiquitination which leads to cell cycle 

progression. In case of DNA damage, p53 becomes activated and no longer binds to MDM2. P14ARF was 

shown to stabilise p53 which can then induce transcription of target genes e.g. the CDK-inhibitor 

p21WAF1/CIP1. P21WAF1/CIP1 is known to inhibit the cyclin E/CDK2 complex and therefore prevents cell cycle 

progression. P21WAF1/CIP1 was also shown to inhibit phosphorylation and therefore the activation of the Rb 

protein. The Rb protein remains associated with E2F which cannot induce transcription of its target genes to 

promote cell cycle progression. MDM2 was reported to bind Rb and to promote degradation of the Rb 

protein allowing cell cycle progression. However, it is not fully understood what triggers the association of 

MDM2 and Rb. 
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Interestingly, p53 was found to be mutated in the majority of human tumours proposing 

its essential role in cell cycle regulation. P14ARF is one known regulator of p53 which 

stabilises the protein by preventing MDM2 binding (Kamijo et al., 1997; Quelle et al., 

1995; Sherr and Weber, 2000; Zhang et al., 1998). Further, the MDM2 gene is also 

transcriptionally activated by p53 and when the protein is bound to p53 it initiates the 

translocation of the complex from the nucleus in the cytoplasm which is associated with 

the ubiquitination of p53 (Kubbutat et al., 1997; Michael and Oren, 2003). Therefore, 

MDM2 can abolish p53-mediated arrest and apoptosis (Chen et al., 1993).  

1.2 Epstein-Barr Virus (EBV) 
EBV belongs to the herpesviridae family which share common virion morphology 

consisting of a core containing the linear, double-stranded DNA, a capsid and an 

envelope presenting viral glycoproteins on its surface. The herpesviridae are separated 

into 3 subfamilies: Alphaherpesvirinae, Betaherpesvirinae and Gammaherpesvirinae. 

Alpha herpes viruses can infect a wide range of hosts and have a short reproductive 

cycle, whereas beta herpes viruses have a restricted host range and a long reproductive 

cycle. Gamma herpes viruses also have a limited host range but reproduce at a more 

variable rate. Overall, eight different species of Herpes viruses have been isolated from 

humans: herpes simplex virus 1 (HSV-1), herpes simplex virus 2 (HSV-2), varicella-

zoster virus (VZV), Epstein-Barr virus (EBV), human cytomegalovirus (HCMV), 

Roseoloviruses HHV-6 and HHV-7 and Kaposi’s sarcoma-associated herpesvirus 

(KSHV or HHV-8). 

EBV was isolated from a Burkitt’s lymphoma biopsy in 1964 (Epstein et al., 1964), and 

was the first herpes virus to have its genome completely cloned and sequenced. EBV 

was the first human virus found to play a role in tumourigenesis. The virus causes a 

latent and persistent infection and is the only gamma herpes virus known to be 

associated with several cancers e.g. endemic Burkitt’s lymphoma, undifferentiated 

nasopharyngeal carcinoma, Hodgkin’s disease and AIDS-associated B-lymphoma and 

post-transplant lymphoproliferative disease (PTLD), reviewed in (Crawford, 2001; 

Kieff and Rickinson, 2001). About 90% of the entire population is infected by the virus 

with infection usually occurring during the early years of childhood via salivary contact 

(Niederman et al., 1976). Viral infection during childhood does not often show any 
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symptoms (De Matteo et al., 2003; Henle et al., 1969). Approximately 50% of late EBV 

infections lead to infectious mononucleosis (IM, see section 1.8.1), also known as 

Pfeiffer’s disease or glandular fever, a benign disease of the leucocytes and lymph 

nodes (reviewed in (Kieff and Rickinson, 2001)). The variability of symptoms after 

primary infection with EBV is due to differences in the immune response. Proliferation 

of T lymphocytes followed by a release of cytokines e.g. interferon-γ and interleukin-2 

has been found in patients suffering from infectious mononucleosis, whereas an 

asymptomatic infection does not lead to an expansion of T lymphocytes (Silins et al., 

2001; Williams et al., 2004). It has been observed that in underdeveloped countries, the 

percentage of individuals infected with EBV during childhood is much higher than in 

more developed countries, where therefore a late infection followed by infectious 

mononucleosis is more prevalent (Henle et al., 1969). 

EBV preferentially infects two different human cell types in two different ways (Figure 

4). Primary infection can occur in circulating B lymphocytes or epithelial cells in the 

mouth and upper throat (oropharyngeal) epithelium in vivo. This occurs via direct 

binding of the viral glycoprotein gp350 to the complement receptor 2 (CD21 receptor) 

on the B cell. Interestingly, EBV presents mainly one glycoprotein gp350/220 on the 

outer surface which is different to most other herpesviruses (reviewed in (Kieff and 

Rickinson, 2001)). After the virus has bound to the B cell, the cell and virus membrane 

fuse and endocytosis of the virion occurs. The circularisation of EBV DNA was found 

to occur after uncoating of the virion 12-16 hours after infection when coinciding with 

early latent viral gene expression (Adams and Lindahl, 1975; Hurley and Thorley-

Lawson, 1988). 

EBV establishes a persistent latent infection in B lymphocytes and transforms resting B 

lymphocytes leading to uncontrolled cell proliferation. Outgrowth of these transformed 

cells is controlled by EBV-specific cytotoxic T lymphocytes (Pope et al., 1968b), 

reviewed in (Kieff and Rickinson, 2001). The purpose of the latent phase is to maintain 

the virus in the host and is accompanied by expression of only a small number of genes 

to avoid an immune response. 

Infection of epithelial cells by EBV is thought to occur in a gp350-dependent or gp350- 

independent manner but is also able to use gp25 to bind the host cell surface  
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Figure 4 - Overview of the Epstein-Barr virus infection, which involves two cell types: B 

cells and epithelial cells. After B cells are primary infected, a latent state is established, 

which is controlled by EBV-specific cytotoxic T lymphocytes. Occasionally, a latently 

infected B cell can switch to the lytic state associated by replication of the virus by 

releasing it from these cells directly into the saliva whereby epithelial cells and other B 

cells might be infected. Epithelial cell infection results in replication of the virus followed 

by lysis of the cell (lytic state). 
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(Fingeroth et al., 1999; Maruo et al., 2001). The production and distribution of the virus 

occurs during the lytic phase and epethilial cell infection is usually lytic in nature 

(reviewed in (Schwarzmann et al., 1998)). EBV replication also occurs spontaneously in 

a small fraction of B cell population as the result of viral reactivation. Virions are 

released in the saliva during lytic cycle. 

Following EBV infection, the phenotype of the cell changes; infected cells grow bigger 

and express several B cell activation markers e.g. CD23, CD54, CD11a and cell 

adhesion molecules e.g. ICAM-1 and LFA-1 leading to cell aggregation (Calender et al., 

1987; Wang et al., 1988). 

1.3 EBV gene expression 
The EBV genome consists of a double-stranded DNA (~172 kb), which is linear in the 

virion and circularises post-infection forming a closed circular episome (Hurley and 

Thorley-Lawson, 1988; Lindahl et al., 1976). The genome contains about 90 genes, but 

only 11 genes are expressed when primary B cells are infected and immortalised by 

EBV in culture generating lymphoblastoid cell lines (LCLs). LCLs express the Epstein-

Barr virus nuclear antigens (EBNAs), EBNA 1, 2, 3A, 3B, 3C and leader protein (LP) 

and 3 latent membrane proteins (LMPs), LMP 1, 2A und 2B. The remaining 2 genes 

encode the Epstein-Barr virus encoded RNAs (EBER 1 and 2) which do not contain a 

polyadenylated tail and remain as untranslated RNA. The expression of all 11 latent 

genes is defined as latency III. Five proteins (EBNA 1, 2, 3A, 3C, LMP1) have been 

shown to be essential for transformation of B lymphocytes whereas EBNA LP has been 

shown to be important but not essential for B cell immortalisation by inducing cell 

proliferation (Cohen et al., 1989; Kaye et al., 1993; Lee et al., 1999; Mannick et al., 

1991; Tomkinson et al., 1993a). Therefore, these proteins are highlighted as proteins 

with oncogenic potential. 

The EBV genome contains several promoters which are involved in the expression of 

the latent EBV proteins: the LMP promoters, Qp, Wp and Cp. The C and the W 

promoters are involved in the expression of all EBNAs (Figure 5): Cp, which is located 

within the unique region just upstream of the EBV major internal repeat (IR-1), and Wp, 

which is located within the IR-1 repeat and is present in multiple copies. Following  
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Figure 5 – EBV genome: Latent genes of the Epstein-Barr virus  

Latent genes of the Epstein-Barr virus are demonstrated on the double-stranded DNA. The origin of replication (oriP) 

is coloured orange. The purple arrows indicate the coding exons of the proteins expressed by EBV. Figure 

downloaded from (Murray and Young, 2001). 
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infection, the W promoter is initially turned on by the binding of B cell-specific factors 

to 3 domains upstream of the Wp transcription start site known as UAS1, 2 and 3.  

Activation of the W promoter leads to the expression of EBNA LP and EBNA 2 (Bell et 

al., 1998; Walls and Perricaudet, 1991). 

Cp activation by EBNA 2 triggers the switch from the W to the C promoter leading to 

expression of all EBNA proteins within 36 h post-infection (Puglielli et al., 1996; 

Woisetschlaeger et al., 1990). Other cellular factors play an important role in the Wp to 

Cp switch, e.g. nuclear factor Y (NF-Y) as it activates the C promoter (Borestrom et al., 

2003). EBV does not have its own RNA polymerase, therefore, it uses the cellular RNA 

polymerase II to transcribe genes from all promoters. A very long single precursor RNA 

molecule encoding all 6 EBNAs is generated which is processed by differential splicing 

to mediate protein expression of all EBNAs (Bodescot and Perricaudet, 1986). Each of 

the latent proteins has a specific function in the viral life cycle. 

EBNA 2 also activates the expression of the bidirectional LMP1 and LMP 2B promoter. 

Qp drives expression of EBNA1 in the absence of Cp activity and EBNA 2 expression 

(Nonkwelo et al., 1996a; Schaefer et al., 1995a).  

EBV possesses the ability to persist in the memory B cells of the infected host in 

different latent states characterised by the expression of different patterns of latent 

genes. Latency I, II and III pattern of gene expression are also found in different EBV-

accociated tumours (Table 1). 

1.4 Latent infection in healthy hosts 
More than 90% of the entire human population have been infected by EBV, but it is a 

rare occurence that infected hosts develop an EBV-related tumour. Although EBV gene 

expression is highly restricted in healthy individuals, interestingly, all patterns of 

latency can be detected in B cells. It is therefore likely that the virus life cycle involves 

many different patterns of gene expression (Babcock et al., 1998; Babcock and Thorley-

Lawson, 2000; Joseph et al., 2000; Miyashita et al., 1997). 
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 Latency 0 Latency I Latency II Latency III 
Genes 
expressed 

 EBNA 1 
EBER 1 
EBER 2 

EBNA 1 
LMP 1 
LMP 2A 
LMP 2B 
EBER 1 
EBER 2 

EBNA1 
EBNA 2 
EBNA 3A 
EBNA 3B 
EBNA 3C 
EBNA LP 
LMP 1 
LMP 2A 
LMP 2B 
EBER 1 
EBER 2 

Diseases  BL group I NC, HD, T-cell 
lymphomas 

PTLD 
AIDS-
associated 
lymphomas 

 
 
Table 1 – EBV protein expression pattern during different latencies 

In latency 0, no latent EBV proteins are expressed. EBV latency I expresses EBNA 1 and EBER1 and EBER2. This 

pattern of expression is found in Burkitt’s lymphoma group I. EBV latency II, where EBNA 1, LMP1 and LMP2A 

and LMP2B are expressed, is detected in several malignant diseases, such as undifferentiated nasopharyngeal 

carcinoma (NC), Hodgkin’s disease (HD) and T cell lymphomas. EBV latency III, where all latent EBV proteins are 

expressed, is detected in post-transplant lymphoproliferative disease (PTLD) and AIDS-associated lymphomas. 



1-17 

How EBV infects and persists in its host is not completely understood, but a model has 

been suggested (Thorley-Lawson, 2001; Thorley-Lawson and Gross, 2004). EBV 

infects resting B cells (naïve B cells) and transforms them into B blasts expressing all 

latent EBV proteins (latency III) (Babcock et al., 1999). B blasts differentiate into 

centroblasts followed by centrocytes (germinal centre cells) which display restricted 

expression of EBV latent genes (EBNA 1, LMP1 and LMP2a), (latency II). This may be 

due to the fact that EBNA 2 expression blocks differentiation of B cells into memory 

cells and therefore needs to be silenced (Polack et al., 1996). Centrocytes can then 

further differentiate into memory B cell which generally lack expression of any latent 

EBV genes which is described as the silent state (latency 0). Expression of EBNA 1 

from the Q promoter was also observed in the rarely dividing memory B cells (latency 

I) to ensure that the episome is not lost during cell division (Davenport and Pagano, 

1999; Hochberg et al., 2004). Occasionally, memory B cells could develop into plasma 

cells for viral replication expressing all lytic genes (Altmeyer et al., 1997; Crawford and 

Ando, 1986; Thorley-Lawson and Gross, 2004). 

1.5 Immune response in EBV-infected hosts 
Infection with EBV causes a massive proliferation of cytotoxic T cells which are 

competent to eliminate most of the infected cells (Callan et al., 1996; Callan et al., 

1998). T cells mainly detect EBV-infected cells which express EBNA 2, EBNA 3A, 

EBNA 3B and EBNA 3C but also the LMP proteins. Since the genes expressed in 

latency I are not commonly recognised by T cells, these EBV-infected cells can evade 

the immune response and this allows the virus to persist.  

1.6 Latent EBV gene expression in diseases 
Unlike other herpes viruses, expression of the latent EBV proteins can induce the 

transformation of resting human B cells into immortalised lymphoblastoid cell lines in 

vitro indicating its tumourigenic ability (Pope et al., 1968a). Different patterns of latent 

EBV expression are also found in EBV-related diseases. Latency III is observed in 

EBV-positive tumours from post-transplant and AIDS patients and is regulated as 

mentioned above from the Cp/Wp promoter. In latency I and II the EBNA 1 mRNA is 

transcribed by the Qp promoter (Figure 5), since no other EBNAs are expressed during 

these latency states. The latency II phenotype is typified by the expression of only 
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EBNA 1, all three LMPs and the two EBERs. It was found in undifferentiated 

nasopharyngeal carcinoma, Hodgkin’s disease Reed-Sternberg cells and T cell 

lymphomas (Brink et al., 2000a; Fahraeus et al., 1988; Young et al., 1988). In latency I 

only EBNA 1 and the two EBERs are expressed. This pattern was detected in Burkitt’s 

lymphoma group I (Rowe et al., 1987). Lack of viral protein expression guarantees that 

the infected cell cannot be recognised by the immune response of the host. 

1.7 Latent EBV proteins 

1.7.1 EBNA 1 
EBNA 1 consists of 641 amino acids and displays a size of 76 kD in denaturing 

polyacrylamide gels. It is known to be one of the viral proteins essential for 

transformation of B lymphocytes and was the first EBV protein to be identified in EBV-

immortalised cells (Lee et al., 1999; Reedman and Klein, 1973).  

The protein is known to be able to bind to viral and cellular DNA directly as a 

homodimer via its carboxy-terminus (Ambinder et al., 1990; Petti et al., 1990a). As the 

EBV genome only rarely integrates into the host genome, the episome needs to be 

replicated before mitosis which occurs by EBNA 1 binding to EBNA 1-binding motifs 

in the OriP (origin of replication in EBV) thereby initiating replication (Chittenden et 

al., 1989; Ito et al., 2002; Ito and Yanagi, 2003; Petti et al., 1990b; Rawlins et al., 1985; 

Yates et al., 1985). In addition to playing a role in replication, EBNA 1 also manages 

segregation of the episome during mitosis, maintenance of latency and transcriptional 

activation of latent Epstein-Barr virus genes (Marechal et al., 1999; Reisman and 

Sugden, 1986; Sugden and Warren, 1989). Episomal maintenance is thought to occur 

via tethering of the viral OriP to the host cell chromosomes which ensures that a copy of 

the viral episome is transferred into the daughter cell (Marechal et al., 1999). EBNA 1 

also plays a role as a transcriptional activator and its interaction with OriP can 

transactivate the Cp and the LMP1 promoters (Reisman and Sugden, 1986; Sugden and 

Warren, 1989). Interestingly, the binding of multiple EBNA 1 homodimers at OriP has 

been shown to be required to fully transcriptionally activate Cp (Zetterberg et al., 2004). 

Further, EBNA 1 was found to be able to bind two sites downstream of the Q promoter 

(Nonkwelo et al., 1996b; Schaefer et al., 1995b). EBNA 1 expression was shown to be 

auto-downregulated by interaction with these two downstream sites (Sample et al., 
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1992). However, work published by several authors reported that EBNA 1 binding to 

the Q promoter has an activating effect leading to more EBNA 1 expression. Further, 

the cellular transcription factor E2F1 was able to upregulate Qp by possibly binding the 

E2F-binding site within the EBNA 1-binding element when EBNA 1 was expressed, but 

can also activate Qp in the absence of EBNA 1 (Nonkwelo et al., 1997; Sung et al., 

1994).  

EBNA 1 is known to contain a Gly-Ala repeat domain which can inhibit its degradation 

by the proteasome and thus the presentation of EBNA 1 epitopes to cytotoxic T cells 

(Levitskaya et al., 1995; Levitskaya et al., 1997). Therefore, EBNA 1 is the only EBNA 

not to be detectable by cytotoxic T cells. This could explain why EBNA 1 is the only 

latent protein, which is consistently expressed throughout all different patterns of EBV 

protein expression found in EBV-associated malignancies.  

This Gly-Ala repeat domain was also shown to inhibit mRNA translation of EBNA 1 

both in vitro and in vivo, indicating that this domain plays a more important role in the 

evasion of the immune response than preventing proteasome degradation. Proteasome 

inhibition was therefore suggested to have its role in maintaining the EBNA 1 

expression level (Yin et al., 2003). 

1.7.2 EBNA 2 
EBNA 2 was the first EBV latent protein to be identified as essential for B cell 

transformation (Cohen et al., 1989). However, it was already reported in 1974 that a 

specific region of DNA was deleted from the EBV strain P3HR-1 and that 

immortalisation of B cells could not occur using this strain for EBV infection (Miller et 

al., 1974). This region is now known to encode EBNA 2. When this missing region was 

reconstituted by cloning fragments containing the EBNA 2 gene into the EBV genome, 

P3HR-1 was able to transform primary B cells (Cohen et al., 1989; Hammerschmidt and 

Sugden, 1989). It was also demonstrated by Bettina Kempkes et al. that EBNA 2 is 

required for the ongoing proliferation on infected cells. These authors developed an 

EBNA 2-inducible system using a cell line containing a conditionally active estrogen 

receptor-EBNA 2 fusion protein and demonstrated that this cell line, ER-EB 2-5, 

underwent cell cycle arrest in the absence of estrogen when EBNA 2 was not 

functionally active (Kempkes et al., 1995b). 
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EBNA 2 is a transcriptional activator of cellular and viral genes and can upregulate the 

expression of numerous genes, including CD21, CD23, RUNX3 (AML2), c-myc and c-

fgr and activate the viral Cp as well as the promoters of the LMP1 and LMP2 genes 

(Cohen and Kieff, 1991; Grossman et al., 1994a; Kaiser et al., 1999; Spender et al., 

2001; Wang et al., 1990b).  However, EBNA 2 cannot bind DNA directly but targets the 

promoters via the DNA-binding proteins RPB-J kappa (CBF1) and Spi-1/PU.1 

(Grossman et al., 1994a; Henkel et al., 1994; Johannsen et al., 1995b; Zimber-Strobl et 

al., 1994). EBNA 2 then recruits proteins crucial for transcriptional activation e.g. 

TFIIB, TAF40 and TFIIH (Tong et al., 1995a; Tong et al., 1995b). 

Further, the transcriptional activity of EBNA 2 was shown to require the activity of the 

RNA polymerase II CTD kinase, CDK9, and associates with the SNF-SWI complex, 

p300, CBP and PCAF histone acetyltransferases (HATs) (Bark-Jones et al., 2006; Wang 

et al., 2000; Wu et al., 1996; Wu et al., 2000).  

EBNA 2 mediates the transactivation of the LMP1 promoter via binding to PU.1/Spi-1 

or RBP-J kappa (CBF-1) (Grossman et al., 1994a). The C promoter is activated via 

RPB-J kappa in cooperation with AUF-1 and mutations in the RBP-J kappa binding site 

result in the loss of the transforming ability of EBV (Fuentes-Panana et al., 2000; Sung 

et al., 1991; Yalamanchili et al., 1994). RBP-J kappa is a downstream target in the 

Notch pathway. When the Notch pathway is activated by extracellular ligands bound to 

the Notch receptor, the intracellular domain of Notch, Notch-IC is cleaved which then 

interacts with RBP-J kappa bound to DNA leading to transactivation. It is thought that 

EBNA 2 replaces the function of Notch-IC so that the extracellular stimulation of the 

Notch receptor is redundant (Zimber-Strobl and Strobl, 2001).  

The contribution of EBNA 2 to the B cell transformation process is thought to be due to 

the activation of those cellular and viral promoters which are known to have a major 

effect on cell cycle progression. For example, c-Myc can induce cyclin D, cyclin E and 

CDK4 and downregulate p21WAF1/CIP1 and p27KIP1. Activation of the C promoter by 

EBNA 2 also leads to the expression of the EBNAs LP, 2, 3A, 3B and 3C, which have 

been reported to play a role in cell cycle progression (Gartel et al., 2001; Kaiser et al., 

1999; Santoni-Rugiu et al., 2000; Yang et al., 2001b). 
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1.7.3 EBNA LP 
EBNA LP, also known as EBNA 5, received its name as it is expressed from mRNA 

generated from the leading sequence of the long EBNA transcript. It is coexpressed with 

EBNA 2 as early as 2 hours after transfection. It plays an important role in B cell 

transformation (Hammerschmidt and Sugden, 1989; Mannick et al., 1991). EBNA LP is 

known to activate cyclin D2 expression and can enhance EBNA2-mediated 

transactivation of the Cp and LMP1 promoter in primary B cells (Harada and Kieff, 

1997; Nitsche et al., 1997; Sinclair et al., 1994). However, EBNA LP is not required for 

EBNA 2-mediated transactivation of the cyclin D2 promoter in EREB2.5 cells (Harada 

and Kieff, 1997; Nitsche et al., 1997; Spender et al., 2001). EBNA LP was found to be 

highly phosphorylated in G2/M which might be mediated by CDK1 or by the EBV 

encoded kinase BGLF4 (Kato et al., 2003a; Kitay and Rowe, 1996). It has been reported 

that LP could interact with Rb, p53 and p14ARF which may compromise their tumour 

suppressor function (Inman and Farrell, 1995; Kashuba et al., 2003b). Other suggestions 

were that it might target the p53/Rb pathway by inhibiting p14ARF which can bind 

MDM2 (Kashuba et al., 2003a; Kashuba et al., 2003b). However, it has not been shown 

that p53 function is inhibited in EBV infected cells and the p53 pathway might therefore 

not be affected by EBV at all (Allday et al., 1995b; O'Nions and Allday, 2003). 

1.7.4 EBNA3 family 
The EBNA 3 proteins EBNA 3A, 3B and 3C encode a number of similar motifs: a 

putative leucine zipper motif, an acidic domain, proline and glutamine rich repeats, and 

several arginine and lysine residues potentially important for nuclear localisation. 

Although their homology is relatively low, it is thought that they have duplicated from 

the same gene as they are tandemly arranged in the viral genome (Petti et al., 1988). 

Further, the three genes of the EBNA 3 family are encoded by the same structure: a 

short 5’ exon and a long 3’ exon. Interestingly, a binding site for RBP-J kappa is also 

present and highly conserved in all three genes allowing all three EBNAs to interact 

with this DNA-binding protein (Robertson et al., 1996; Zhao et al., 1996). Therefore, 

EBNA 2 enabled transcriptional activation mediated by RBP-J kappa can be regulated 

by EBNA 3A, 3B and 3C as RBP-J kappa binding to any of these three proteins 

abolishes the EBNA 2 – RBP-J kappa interaction (Johannsen et al., 1996; Waltzer et al., 

1996). As EBNA 2 transactivates the C promoter and therefore EBNA 3 gene 
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transcription, the EBNA 3 proteins form a negative feedback loop which may result in 

abrogation of EBNA 2 upregulation of EBNA 3 transcription. All 3 EBNA 3 proteins 

can also repress EBNA 2-mediated activation of LMP1 and LMP2 (Le Roux et al., 

1994; Waltzer et al., 1996). However, Jiménez-Ramírez et al. demonstrated that EBNA 

3C expression in Raji cells does not downregulate EBNA 2 and has only little or no 

negative effect on EBNA 2-mediated C promoter activation (Jimenez-Ramirez et al., 

2006).  

In spite of their similarities, only EBNA 3A and EBNA 3C were shown to be essential 

for B cell transformation in vitro; EBNA 3B, however, is dispensable (Tomkinson et al., 

1993a).  

1.7.5 EBNA 3A 
EBNA 3A is essential for EBV transformation of B cells and plays an important role in 

LCL proliferation (Kempkes et al., 1995a; Maruo et al., 2003; Tomkinson et al., 1993b). 

EBNA 3A plays a role in transcriptional activation as well as repression and has also 

been shown to regulate protein function by protein-protein interaction. Repression of the 

C promoter occurs via its RBP-J kappa binding site. EBNA 3A interacts with the 

corepressor CtBP and could play a role in repression of transcription. It was reported 

that RBP-J kappa recruits CtBP and mediates repression of the genes regulated by the 

Notch pathway and that mutated CtBP abolishes this repressing effect by RBP-J kappa 

(Hickabottom et al., 2002; Oswald et al., 2005). The interaction of EBNA 3A with CtBP 

also facilitates cooperation with (Ha)-Ras which was observed in the immortalisation 

and transformation of primary rodent fibroblasts (Hickabottom et al., 2002).  

EBNA 3A was also shown to interact with the cell cycle protein chk2 indicating a role 

in disruption of cell cycle control (Chehab et al., 2000; Krauer et al., 2004b; Krauer et 

al., 2004c; Petti et al., 1990a). However, a deregulation of chk2 could not be observed 

in LCLs but G2/M checkpoint deregulation by inhibition of chk2 may still occur in 

tumour cell lines (Falck et al., 2001; O'Nions and Allday, 2003). Overexpression of 

EBNA 3A leads to a prolonged G0/G1 phase which may be due to the fact that 

overexpression downregulates CD21, CD23 and c-myc expression (Cooper et al., 2003). 

The downregulation of these genes may also occur by EBNA 3A binding to the genes 
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via RBP-J kappa since all 3 genes contain a RBP-J kappa binding site (Cooper et al., 

2003).  

EBNA 3A was shown to downregulate the proapoptotic Bcl-2-family member Bim in 

cooperation with EBNA 3C and can therefore mediate cell survival and tumourigenesis 

(Anderton et al., 2008). To support the antiapoptotic role of EBNA 3A, it was reported 

that EBNA 3A, not EBNA 3C, can induce expression of the chaperones Hsp70 and 

Hsp70B/B9 and co-chaperones Bag3 and DNAJA1/Hsp40 (Young et al., 2008). EBNA 

3A was further shown to associate with Hsp70, Hsp70B9 and Hsp40 which may 

mediate stabilisation of the EBNA 3A protein (Young et al., 2008). This interaction of 

EBNA 3A with the chaperones and co-chaperones as well as the induction of their 

promoters did not occur via an association with CtBP (Young et al., 2008). 

1.7.6 EBNA 3B 
EBNA 3B is not essential for B cell transformation in vitro (Chen et al., 2005; 

Tomkinson et al., 1993a). EBNA 3B was found to localise in the nucleus signalled by 

nuclear localization signals (NLS) and to co-localise with EBNA 3A and 3C (Burgess et 

al., 2006). Lymphoblastoid cell lines infected with the B95.8 strain have been described 

that have lost the expression of EBNA 3B; therefore its function may not be necessary 

for cell proliferation (O'Nions and Allday, 2004). The loss of expression might be due 

to the fact that EBNA 3B is immunogenic and thus a target for cytotoxic T cells. 

However, EBNA 3B knockout cells were shown to grow slowly and have reduced 

levels of EBNA 3C indicating that EBNA 3B may be important for efficient 

proliferation (Chen et al., 2006). EBNA 3B was reported to have a downregulating 

effect on CXCR4 as a knockdown of the protein led to increased CXCR4 expression on 

the cell surface (Chen et al., 2006). Interestingly, CXCR4 and its only ligand CXCL12 

are required for B-lymphopoiesis but downregulation of CXCR4 was also reported in 

herpes viruses like HHV6 and HHV7 as well as EBV (Ehlin-Henriksson et al., 2006; 

Ma et al., 1998; Nakayama et al., 2002; Yasukawa et al., 1999). It was suggested that 

EBNA 3B downregulates CXCR4 to allow EBV-infected cells to distribute to the 

periphery as CXCR4-expressing cells remain in the bone marrow (Chen et al., 2006; 

Nie et al., 2004). Further, EBNA 3B was found to downregulate the BL-associated 

antigen (BLA/CD77), to upregulate the cytoskeletal protein vimentin and the surface 
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expression of the activation antigen CD40 when overexpressed in the EBV-negative BL 

cell line DG75 (Silins and Sculley, 1994). EBNA 3B could also prevent serum starved 

DG75 cells from apoptosis probably due to increased levels of the anti-apoptotic Bcl-2 

oncoprotein (Silins and Sculley, 1995). 

1.7.7 EBNA 3C 
EBNA 3C, also known as EBNA 6, is a protein of 992 amino acids with a molecular 

weight of about 155-160 kD on SDS-PAGE (Allday et al., 1988; Petti et al., 1988). 

EBNA 3C functions as a transcriptional activator and repressor and helps to control 

viral gene expression during latency. It contains a number of domains found in many 

transcription factors. This includes a proline-rich and a glutamine-proline-rich domain 

and another which shows homology to a basic leucine zipper domain (Figure 6), 

(Landschulz et al., 1988; Marshall and Sample, 1995). However, this domain is not 

capable of homodimerisation and contains atypical residues which are not normally 

found in zipper domains (West et al., 2004). Therefore, this domain is not likely to be 

functional. Several nuclear localization signals (NLS) were identified, one at the N-

terminal end (aa 72–80), one in the middle (aa 412–418) and one at the C-terminal end 

(aa 939–945) of the EBNA 3C protein which are important for mediating translocation 

of EBNA 3C to the nucleus (Figure 6) (Krauer et al., 2004a). EBNA 3C is located in the 

nucleus throughout the cell cycle and was found to associate with the nuclear matrix 

(Krauer et al., 2004a; Petti et al., 1990a). 

Complementation assays in LCLs showed that most amino acids of EBNA 3C are 

essential for continued LCL growth (Maruo et al., 2009). LCLs expressing EBNA 3C 

containing a mutated RBP-J kappa site could not maintain LCL proliferation indicating 

the importance of the EBNA 3C/RBP-J kappa interaction in LCL growth (Lee et al., 

2009; Maruo et al., 2009). 

1.7.7.1 Regulation of LMP1 expression by EBNA 3C 
EBNA 3C was found to upregulate the expression of the EBV protein LMP1 (Allday et 

al., 1993). EBNA 2 was previously shown to upregulate LMP1 expression (Fahraeus et 

al., 1990). The EBV-positive cell line Raji which has a natural deletion in the EBNA 3C 

gene was observed to arrest in G1 accompanied by a reduction in LMP1 when these  
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Figure 6 –Schematic of basic structure of the EBNA3C protein with the identified motifs. 

This figure shows the domains for interaction with p300, RBP-Jκ and ProTα, the putative 

leucine zipper motif, and proline (PP) -rich and glutamine (QP) –rich domains. 3 nuclear 

localization signals (NLS) were identified. 
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cells were cultured to a high density (Allday and Farrell, 1994). This result indicates 

that LMP1 expression is dependent on the state of the cell cycle. Raji cells stably 

expressing the EBNA 3C gene did not reduce LMP1 expression in growth-arrested cells 

(Allday and Farrell, 1994).  

Therefore, the authors suggested that EBNA 3C influences LMP1 expression either by 

the release of LMP1 repression or by subtle alteration of the cell cycle state of growth 

arrest that allows LMP1 expression (Allday and Farrell, 1994). Furthermore, EBNA 3C 

is able to co-activate the LMP1 promoter in reporter assays in a manner dependent on 

the presence of a DNA element including the Spi-1/Spi-B (PU.1) binding site in the 

LMP1 promoter (Zhao and Sample, 2000). The accurate regulation of LMP1 expression 

in EBV-transformed cells is important since high levels were found to be toxic to the 

cells (Wang et al., 1985). It was previously shown that EBNA 2 binds Spi-1 and EBNA 

3C is also able to interact directly with the ets domain of the transcription factors Spi-1 

and Spi-B in vitro (Johannsen et al., 1995a; Zhao and Sample, 2000). More precisely, a 

region of the EBNA 3C protein including the basic leucine zipper (bZIP) domain was 

shown to interact with this ets domain (Zhao and Sample, 2000). 

1.7.7.2 Effects on cellular genes 
A morphological change of the cells is also observed when EBNA 3C is expressed. 

‘Spiky’ membranous projections were identified on the cell surface, which often 

occurred only on one side whereas the membrane at other side stayed smooth and 

rounded. The changes in phenotype was accompanied by an increase in the cytoskeletal 

protein vimentin and the B cell activation antigen CD23 (Allday et al., 1993; Allday and 

Farrell, 1994; Wang et al., 1990a). EBNA 3C was also shown to induce CD21 

expression, which is a cell-specific receptor on mature B cells that contributes to the 

morphological change (Wang et al., 1990a). The mechanism by which EBNA 3C is able 

to increase gene expression has not been fully determined, but it has been demonstrated 

that the effect of EBNA 3C on CD21 occurs indirectly since no direct activation of the 

CD21 promoter could be detected in transient transfection assays (Radkov et al., 1997). 

Despite the known transcriptional regulatory functions of EBNA 3C, it has not been 

reported to bind directly to DNA but was shown to bind DNA via the DNA-binding 

protein RBP-J kappa (Marshall and Sample, 1995; Robertson et al., 1995). 
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1.7.7.3 Repression activity 
EBNA 3C is able to interact with the transcription factor prothymosin α and together 

they can associate with the co-repressors human histone deacetylases HDAC1 and 

HDAC2 and the corepressors mSin3A and N-CoR (Knight et al., 2003a; O'Nions and 

Allday, 2004; Radkov et al., 1999). Binding to prothymosin α is essential to stabilise the 

complexes and ensures their full activity (Knight et al., 2003a). Further, the complex 

can also associate with the known co-activator histone acetyltransferase p300 and 

Histone H1 in vitro and in vivo (Cotter and Robertson, 2000). Although no reports show 

that these complexes actually bind to the C promoter, it is thought that these complexes 

may play a role in the EBNA 3C-mediated repression of the Cp via RBP-J kappa, 

previously demonstrated by the Allday lab (Cotter and Robertson, 2000; Haritos et al., 

1984; Knight et al., 2003b; Radkov et al., 1999). 

EBNA 3C was also reported to interact with the transcriptional corepressor protein C-

terminal binding protein (CtBP). The mechanism of repression has not been fully 

determined, but it was suggested that CtBP is able to control histone modifications like 

deactylation and lysine methylation and can induce gene silencing (Shi et al., 2003). 

Further, it is known that EBNA 3C interacts with the protein through a PXDLS motif 

(Touitou et al., 2001). This motif is used by many transcription factors to recruit CtBP 

to DNA, e.g. adenovirus E1A, Marek’s disease virus Meq protein and EBNA 3A as 

previously mentioned (Chinnadurai, 2002; Hickabottom et al., 2002). 

The DEAD box protein DP103, an ATP-dependent helicase, was shown to be able to 

interact with the C-terminal end of EBNA 3C. DEAD box family proteins play an 

important role in cell development, differentiation and proliferation. For example, 

DP103 functions as a repressor through binding to transcription factors to repress their 

activities e.g. steroidogenic factor (SF-1), the early growth response factors Egr 1, 2, 3 

and 4 and the spinal muscular neuron protein (SMN) (Charroux et al., 1999; Gillian and 

Svaren, 2004; Grundhoff et al., 1999; Yan et al., 2003). Therefore DP103 may play a 

role transcriptional repression mediated by EBNA 3C. 

EBNA 3C was shown to repress the Notch ligand Jagged1 (Chen et al., 2006). The 

Notch signalling pathway was shown to be important for EBV-induced cell growth. 

Protein expression of Jagged1 was found upregulated when EBNA 3C was not 
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expressed and increased expression of Jagged1 leads to slow cell growth (Chen et al., 

2006). Therefore, it was suggested that EBNA 3C represses Notch signalling (Chen et 

al., 2006). 

1.7.7.4 Regulation of metastasis 
The proline- and glutamine-rich domains of EBNA 3C were shown to be able to bind to 

the cellular protein Nm23-H1, a nucleoside diphosphate (NDP) kinase, which is 

functionally associated with the suppression of metastasis (Murakami et al., 2005; 

Subramanian and Robertson, 2002). Nm23-H1 was the first metastasis suppressor 

identified (Lacombe et al., 2000; Steeg et al., 1988). Reduction of its protein expression 

leads to increased metastasis in many different cancers (Tee et al., 2006). EBNA 3C 

was found to reverse the ability of Nm23-H1 to suppress the migration of Burkitt’s 

lymphoma cells in vitro and in vivo (Kaul et al., 2007; Subramanian and Robertson, 

2002). EBNA 3C was further shown to mediate translocation of Nm23-H1 into the 

nucleus which together may result in the inhibition of the kinase activity of the protein 

(Kaul et al., 2007; Murakami et al., 2009). Interestingly, the HPV protein E7 also 

appears to associate with Nm23-H1 and inhibits its function (Mileo et al., 2006). E7 

expression was reported to downregulate Nm23-H1 at the transcriptional and protein 

level (Mileo et al., 2006). 

1.7.7.5 EBNA 3C and the cell cycle 
EBNA 3C expression has been shown to disrupt the G1/S, G2/M and the mitotic spindle 

checkpoint (Krauer et al., 2004b; Parker et al., 2000).  

EBNA 3C was demonstrated to override the G1/S checkpoint induced by serum 

withdrawal in NIH 3T3 cells. While EBNA 3C-negative cells arrested in G1, the EBNA 

3C-positive cells were still able to enter S phase and continue through G2/M. It was also 

observed that cell division did not necessarily lead to cytokinesis, leading to the 

generation of bi- and multinucleated cells (Parker et al., 2000).  

Different mechanisms have been suggested for how EBNA 3C overrides the G1/S 

checkpoint, including disruption of the Rb and the cyclin A/CDK2 pathway. In initial 

studies EBNA 3C was shown to overcome this checkpoint in cooperation with activated 

Ras in cotransfection assays which resulted in transformation of primary rodent 
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fibroblasts (Parker et al., 1996). The activation of the Ras pathway leads to the 

production and activation of the G1 cyclin D/CDK4 or 6 complexes that catalyse the 

phosphorylation of Rb and promote G1/S transition (Figure 7A). The precise 

mechanism by which EBNA 3C and Ras can cooperate has not been identified.  

It was found that EBNA 3C can relieve the p16INK4A-mediated inhibition of cyclin D-

dependent kinases (CDK4 and 6). P16INK4A is known to provoke growth arrest during 

serum-starvation by binding to the kinases CDK4 and 6 and therefore maintaining the 

hypophosphorylated state of Rb (Sherr and Roberts, 1995). Inhibition of the kinases 

CDK4 and CDK6 by p16INK4A suppresses cell cycle progression (Figure 7A) (Koh et al., 

1995; Lukas et al., 1995; Medema et al., 1995) and (reviewed in (Sherr and Roberts, 

1995)). It was suggested that EBNA 3C can target p16INK4A directly to inhibit its 

function (Parker et al., 1996). However, Rb was shown to be normally regulated by 

phosphorylation and dephosphorylation in LCLs which express all latent EBV proteins 

which implies that deregulation of cyclin/CDK activity mediated by EBNA 3C in the 

context of a latent infection is not evident (Allday and Farrell, 1994; Allday et al., 

1995a; Allday et al., 1995b). 

The cyclin D/CDK4,6 and the cyclin A/CDK2 complex can be inhibited by 

upregulation of the CDK inhibitor p27KIP1 which is an important regulator of the G1/S 

transition and was found to be upregulated at the protein level during cell cycle arrest 

(Figure 8) (Polyak et al., 1994). One study showed that EBNA 3C expression decreased 

p27KIP1 accumulation after serum starvation in human osteosarcoma cells (U2OS) but 

showed Rb hypophosphorylation despite the cells progressing through the checkpoint 

(Parker et al., 2000). Biochemical studies carried out in the Robertson lab then 

demonstrated that EBNA 3C expression was able to abolish the p27KIP1-mediated 

inhibition of the cyclin A/CDK2 complex by degradation of the CDK inhibitor in 

human embryonic kidney (HEK) 293T cells (Knight et al., 2005a). 

Experiments carried out in lymphoblastoid cell lines showed that the repression of the 

effects of p27KIP1 by EBNA 3C occured by decreasing the molecular association 

between cyclin A and the inhibitor in the cells (Figure 8). However, EBNA 3C was 

shown not to be able to interact with p27KIP1 directly. It was suggested that EBNA 3C 

either competes with p27KIP1 for binding to cyclin A/CDK2 or recruitments of other  
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Figure 7 – (A) Cyclin D/CDK4,6 can phosphorylate Rb. Phosphorylated Rb can no longer bind E2F which 

then induces expression of its target genes, e.g. cyclin E which is essential for cell cycle progression. P16 is 

known to bind the cyclin D/CDK4,6 complex and can therefore inhibit its function which results in cell cycle 

arrest. (B) EBNA 3C was reported to be able to bind Rb and to recruit Skp2 which ubiquitinates Rb for 

degradation. E2F can therefore no longer bind Rb and can induce cyclin E expression leading to cell cycle 

progression. 
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Figure 8 – The cyclin A/CDK2 complex is known to be active to promote cell cycle 

progression. However, p27 can bind to the complex and inhibits its function. EBNA 3C was 

shown to be able to bind the complex inhibiting p27 association with the complex. p27 was 

suggested to be degraded after the protein is not able to associate with the cyclin A/CDK2 

complex any longer. 



1-32 

factors, which may modify p27KIP1 by phosphorylation or may influence its stability 

(Knight and Robertson, 2004; Knight et al., 2004). Therefore, it was proposed that 

EBNA 3C disrupts the G1/S checkpoint by binding to cyclin A via its C terminus and 

increasing the activity of the cyclin A/CDK2 complex by inhibiting the interaction of 

p27KIP1 with the complex (Knight and Robertson, 2004). 

Authors from the same research group subsequently showed that EBNA 3C was also 

able to associate with the N-terminus of cyclin A via the cyclin box, a highly conserved 

sequence in cyclins. EBNA 3C is therefore also able to bind cyclin E and D1 in vitro 

even though the binding is much weaker than to cyclin A. Although it was shown that 

EBNA 3C is able to rescue inhibition of p27KIP1 by binding to cyclin A with its C-

terminus, this ability could not be identified for EBNA 3C binding cyclin A with its N-

terminus even though the affinity of this interaction is higher. Therefore, it was 

suggested that the N-terminus functions to recruit cyclin A while the C-terminus plays a 

role in increasing the cyclin A complex kinase activity (Knight and Robertson, 2004; 

Knight et al., 2004). 

In contradiction to previous findings, the abolishment of p27KIP1-mediated inhibition by 

EBNA 3C resulted in hyperphosphorylation of Rb and no hypophosphorylated Rb could 

be detected in Western blotting when EBNA 3C was expressed in U2OS (Knight and 

Robertson, 2004). However, authors from the same research group reported one year 

later that no changes in Rb phosphorylation occur with EBNA 3C expression, but that 

EBNA 3C decreases the Rb level by augmenting the polyubiquitination of the protein 

(Figure 7B). These studies were carried out in HEK293T cells and the BL cell line 

BJAB when EBNA 3C was transiently overexpressed. The degradation of the Rb 

protein was demonstrated to occur via recruiting the SCFSkp2 to the EBNA 3C/Rb 

complex in vitro (Knight et al., 2005a). 

Interestingly, an Rb interaction with EBNA 3C was first demonstrated in vitro and 

mutation of the Rb pocket domain abolished this interaction (Parker et al., 1996). The 

pocket domain of Rb is reported to be targeted by other viral oncoproteins like SV40 T 

antigen, adenovirus E1A or human papillomavirus E7 thus preventing binding to other 

binding partners such as E2F and inducing transcription of genes essential for cell cycle 

progression. The LXCXE motif through which the human papillomavirus protein E7 
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binds to the Rb pocket domain, resembles a motif found in EBNA 3C. Interestingly, it 

lies in the 10 amino acid sequence, which was identified to play a role in the regulation 

of Rb stability by EBNA 3C (Knight et al., 2005a).  

EBNA 3C has also been shown to bind to the transcription factor c-Myc leading to c-

Myc stabilisation in EBNA 3C-expressing HEK293T cells compared to a control cell 

line (Bajaj et al., 2008). This stabilisation then results in an increase of c-Myc-activated 

transcription which is known to encode many genes involved in cell cycle regulation, 

apoptosis and metabolism (Bajaj et al., 2008; Dang et al., 2006). 

In a very recent study the Robertson lab demonstrated that EBNA 3C can interact with 

MDM2 in vitro and in vivo (Saha et al., 2009). MDM2 is known to associate with p53 

to inhibit its function. Further, it initiates the degradation of p53. Binding of EBNA 3C 

to the MDM2 leads to stabilization of protein and prevents degradation of MDM2 by 

deubiqutination suggesting a new role for EBNA 3C as a deubiquitinating enzyme 

(DUB) (Saha et al., 2009). EBNA 3C was found to interact with MDM2 via an N-

terminal domain (aa residues 130-190) which was also shown to interact with c-Myc, 

SCFSkp2, Rb, Cyclin A and RBP-J kappa (Bajaj et al., 2008; Knight et al., 2004; Knight 

et al., 2005a; Knight et al., 2005b; Saha et al., 2009). EBNA 3C was also reported to 

bind p53 in vitro and in vivo via the same domain in the N-terminus and to prevent p53 

from binding to DNA thus inhibiting the induction of p53-target genes paralleling the 

actions of adenovirus E1A and HPV E6 (Lechner et al., 1992; Steegenga et al., 1996; Yi 

et al., 2009). However, no p53 deregulation could be observed in lymphoblastoid cell 

lines (O'Nions and Allday, 2003; Wade and Allday, 2000). Therefore, EBV may not 

disrupt the p53 pathway to overcome cell cycle control in the context of a latent 

infection. 

1.7.7.6 The effects of EBNA 3C on the G2/M checkpoint and mitotic 
checkpoints 

Allday et al. found that EBNA 3C-expressing human osteosarcoma cells (U2OS) cells 

are able to override the mitotic spindle assembly checkpoint after treatment with 

nocodazole (Parker et al., 2000). Further, disruption of the mitotic spindle assembly 

checkpoint by EBNA 3C leads to nuclear division but may not always be followed by 

cytokinesis. As a result, bi- and multinucleated cells accumulate (Parker et al., 2000). 
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Investigations by Krauer et al. showed that EBNA 3A, 3B and 3C expressing LCLs 

could override G2 arrest resulting in continuous cell division and subsequent cell death 

induced by treatment with the histone deacetylase inhibitor azelaic bishydroxamine 

(ABHA) (Krauer et al., 2004b). ABHA caused G2/M arrest in cells with a functional 

G2/M checkpoint, e.g. normal B cells and DG75 cells but was cytotoxic in cell lines 

with a disrupted G2/M checkpoint e.g. many EBV-transformed LCLs (Sculley et al., 

2002). The same research group further reported that the expression of the EBNA 3 

gene family alone disrupts the G2/M checkpoint in response to the genotoxin etoposide, 

ABHA or the S phase inhibitor hydroxyurea (HU) (Krauer et al., 2004b).  

EBNA 3A, 3B and 3C were also shown to reduce accumulation of the inactive form of 

CDK1 (p34cdc2), which is inhibited by phosphorylation at threonine 14 and tyrosine 15 

during G2/M arrest (Figure 2) (Krauer et al., 2004b).  

Further, the authors suggested that the EBNA 3 family can block ATM/ATR signalling 

since EBNA 3A is able to interact with chk2 in coimmunoprecipitation assays in LCLs 

which could not be observed for EBNA 3B (Krauer et al., 2004b). 

However, more recent results of a microarray and real-time PCR analysis revealed that 

chk2 is downregulated in EBNA 3C-expressing BJAB cells (Choudhuri et al., 2007). 

Co-immunoprecipitation assays from the Robertson lab confirmed that EBNA 3C is 

able to directly interact with chk2 and that chk2 mRNA and protein expression was 

reduced in EBNA 3C-expressing cells. It was suggested that EBNA 3C may 

downregulate chk2 protein expression by destabilization of the protein or may inhibit its 

function (Choudhuri et al., 2007). 

Further investigations into the effects of EBNA 3C on the mitotic checkpoint revealed 

that EBNA 3C and EBNA 3A cooperate to promote cell survival following treatment 

with the microtubule inhibitor nocodazole, cisplatin, which crosslinks DNA triggering 

apoptosis, and the CDK inhibitor roscovitine (Anderton et al., 2008). This was 

demonstrated to be mediated by downregulation of the proapoptotic Bcl-2 member Bim 

(Anderton et al., 2008). 
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EBNA 3C has thus been found to be involved in many pathways of cell cycle regulation 

which may all contribute to its ability to disrupt cell cycle control, although many 

suggested target pathways appear to be intact in LCLs, so the relevance and importance 

of many reported effects need further validation. 

1.8 EBV-associated diseases 

EBV was first isolated from a Burkitt’s lymphoma in 1964. Since then the virus has 

been linked to numerous tumours found in B and T lymphocytes as well as epithelial 

cells as has also been shown to be involved in non-malignant diseases (reviewed in 

(Crawford, 2001; Kieff and Rickinson, 2001)). 

1.8.1 Infectious Mononucleosis 
Infectious mononucleosis (IM), also known as glandular fever, is known to develop 

when primary EBV infection occurs during adolescence, but only in 50% of cases 

(Henke et al., 1973). IM was identified as an EBV-related disease in 1968 and is 

characterized by symptoms including fever, pharyngitis, lymphadenopathy, 

splenomegaly and hepatocellular dysfunction but can also cause impending upper-

airway obstruction which in rare cases can be fatal (Niederman et al., 1968). The 

symptoms are mediated by a strong immune response by cytotoxic T cells against EBV 

latent proteins expressed in EBV-infected activated B lymphocytes followed by a 

release of cytokines e.g. interferon-γ and interleukin-2 (Callan et al., 1996; Tierney et 

al., 1994; Williams et al., 2004). 

1.8.2 Burkitt’s lymphoma 
Burkitt’s lymphoma (BL) is an aggressive, monoclonal B cell tumour which can be 

divided in 3 categories: endemic BL (eBL) in equatorial Africa, sporadic BL (non-

African non-Hodgkin lymphoma) and immunodeficiency-associated BL (HIV/AIDS-

associated). eBL usually occurs in children or young adults in tropical Africa and in 

some other equatorial regions. Coinfection with malaria appears to play an important 

role alongside EBV infection (Magrath, 1990a). More than 95% of eBL tumour cells are 

EBV-positive whereas only 15% of sporadic BL and 30-40% of HIV-related BL are 

EBV-positive. Most Burkitt’s lymphoma cells only express EBNA 1 which is 

transcribed from the alternative Q promoter. BL is thought to originate from germinal 
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centre (GC) B cells as BL cells express a GC B cell phenotype but may sometimes 

derive from memory B cells (Gregory et al., 1987; Hochberg et al., 2004). BL is 

characterised by translocation of the c-myc oncogene from chromosome 8 to 14, 2 or 22 

(Magrath, 1990a). After translocation c-myc is constitutively active and promotes cell 

cycle progression (Bhatia et al., 1993; Cesarman et al., 1987; Magrath, 1990b). Malarial 

antigens can cause a chronic activation of B cells which is thought to increase the 

possibility of chromosomal translocation of c-myc (reviewed in (Lenoir and Bornkamm, 

1987)). Further changes have been observed which involve the p14ARF/MDM2/p53 

pathway. Most BL cell lines and more than 30% of BL biopsies show mutations in p53. 

If there is no mutation in the p53 gene then a deletion of p14ARF or methylation or 

overexpression of MDM2 was found (Capoulade et al., 1998; Farrell et al., 1991; 

Gaidano et al., 1991; Lindstrom et al., 2001). Mutations in the p53 gene may be driven 

by a necessity to inhibit p53-dependent apoptosis induced by deregulated c-myc 

(Lindstrom and Wiman, 2002). 

Interestingly, approximately 15% of BL tumours were shown to express EBNA 1 plus 

EBNA 3A, EBNA 3B, EBNA 3C and truncated EBNA LP as a results of transcription 

from the W promoter (Kelly et al., 2002a; Kelly et al., 2006). These tumours were found 

to have a deletion of the EBNA 2 gene and the Y1Y2 exons of EBNA LP similar to the 

P3HR1 strain of EBV (Kelly et al., 2002a). The lack of EBNA 2 expression is thought 

to account for the inactivity of the LMP and C promoters. It may be that the 

development of EBV-associated BL requires the downregulation of EBNA 2 rather than 

restricted latency I gene expression. Further, EBNA 2 and c-myc were shown to have 

antagonistic effects on the expression of several surface markers involved in B cell 

activation (Pajic et al., 2001). Therefore, the deletion of EBNA 2 in BL cells allows less 

limited expression of c-myc induced protein expression in addition to the expression of 

the EBNA 3 family involved in prevention of apoptosis and cell cycle disruption (Kelly 

et al., 2005). 

1.8.3 Hodgkin’s disease 
Hodgkin’s disease (HD) also known as Hodgkin’s lymphoma (HL) is a tumour which 

can occur in the lymph nodes, spleen, liver and bone marrow (Babcock et al., 2000). 30-

50% of HLs were found to be EBV-associated in developed countries (Herbst et al., 
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1991; Pallesen et al., 1991). This tumour was first described in 1832 by Thomas 

Hodgkin and a relationship to EBV was established in 1989 after the identification of 

EBV DNA in the Reed-Sternberg cells isolated from Hodgkin’s disease tumours (Weiss 

et al., 1989). Hodgkin’s disease is diagnosed by the presence (usually only 1 or 2%) of 

Reed-Sternberg cells in the lymphoma which are large and can either be multinucleated 

or have a bilobed nucleus. Reed-Sternberg cells are CD30- and CD15-positive and 

negative for CD20 and CD45. This immunophenotype is typical of classical HD which 

can be EBV-positive, whereas the lymphocyte-predominant Hodgkin’s lymphoma 

shows the opposite immunophenotype for CD30, CD15, CD20 and CD45 and is always 

EBV-negative. HD tumour cells are thought to have developed from post-germinal 

centre cells, possibly centrocytes, which express EBNA1, LMP1, LMP2A and LMP2B. 

EBV is found in almost all AIDS-related HD tumours (Glaser et al., 2003; Glaser et al., 

1997; Uccini et al., 1990). Whether a tumour is EBV-related is also dependent on age, 

sex and ethnicity (reviewed in (Flavell and Murray, 2000)). 

1.8.4 Post-transplant lymphoproliferative disease 
Post-transplant lymphoproliferative disease (PTLD) arises in 10% of transplant 

recipients (Haque et al., 1996). The symptoms begin with an IM-like disease followed 

by tumour development mainly in the gut, brain or the transplanted organ and is fatal in 

more than 50% of the cases (Nalesnik, 1998). The immune system of a transplant 

recipient is usually weakened to reduce the risk of a rejection of the donated organ. 

Donated blood and organs from healthy people can contain EBV-infected B cells which 

can therefore lead to infection of a previously seronegative recipient (Alfieri et al., 

1996; Cen et al., 1991; Gerber et al., 1969). Due to the immune system suppression of 

the recipient, the lower amount of EBV-specific cytotoxic T cells cannot fight the 

infection allowing the B cells to proliferate and the virus to express all latent proteins 

(latency III) (reviewed in (Holmes and Sokol, 2002)).  

1.8.5 Undifferentiated nasopharyngeal carcinoma 
Although the B cell appears to be the site of persistent EBV latent infection, EBV is 

also able to infect epithelial cells. EBV is thought to be able to transform epithelial cells 

which can lead to the development of undifferentiated nasopharyngeal carcinomas 

(UNPC); however, no evidence has been reported. UNPCs consist of undifferentiated 

carcinoma cells together with an infiltration of lymphocytes. UNPC is mainly found in 



1-38 

areas of China and south-east Asia. Interestingly, almost all UNPC tumours are linked 

to EBV (Pathmanathan et al., 1995; Raab-Traub and Flynn, 1986). UNPC cells are 

highly radiosensitive and the chances of survival are generally more than 90% when 

detected during early stages (Ferme et al., 2007). 

1.8.6 Non-Hodgkin’s lymphoma 
80% of all lymphomas are classified as Non-Hodgkin’s lymphomas (NHL), a broad 

definition covering many different types of tumours. These tumours usually occur in 

patients with a compromised immune response, e.g. patients with AIDS. About 20% of 

patients diagnosed with HIV will grow a Non-Hodgkin lymphoma. These tumours 

arising due to AIDS-related immune suppression are called AIDS-related lymphomas. 

All latent viral genes were shown to be expressed in EBV-related NHL. Lymphomas of 

the primary nervous system are nearly 100% EBV-associated (MacMahon et al., 1991).  

1.8.7 T cell lymphomas 
EBV is also thought to be involved in the development of a proportion of T cell 

lymphomas (Brink et al., 2000b). EBV-infected tumour cells may drive the proliferation 

and prevent apoptosis in T cells.  

1.9 RGC-32 
A cDNA microarray experiment was carried out in the West Lab to identify genes, 

whose expression was regulated by EBNA 3C. Besides the already known upregulation 

of CD21, another gene whose expression was found to be upregulated in EBNA 3C-

expressing cells was RGC-32. RGC-32 (C13orf15) is a protein discovered in rat 

oligodendrocytes (OLG) in 1998 (Badea et al., 1998). Badea et al. identified new genes 

whose expression was altered in response to sub-lytic complement treatment with C5b-9 

to mimic complement activation of the cells (Badea et al., 1998; Niculescu et al., 1997). 

The complement system is a part of the innate immune system. Once activated by 

pathogens, a cascade of protein cleavage occurs resulting in the activation of the cell 

killing membrane attack complex, C5b-9, which has a function in cell lysis and 

opsonisation which promotes phagocytosis of particular antigens. 

The new genes identified to be regulated by complement were designated Response 

Genes to Complement (RGC) (Badea et al., 1998). Almost every RGC discovered (32 in 
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total) was found to encode a part of or an entire known protein. One of the unknown 

mRNAs identified to be upregulated by complement activation was RGC-32 which 

encodes a protein of 137 amino acids in rats. Human RGC-32 contains 117 amino acids 

and runs with an apparent molecular weight of 15 kD on SDS-PAGE (Badea et al., 

2002; Badea et al., 1998). Human and mouse RGC-32 was reported to share 92% 

homology with rat RGC-32 (Badea et al., 2002). 

RGC-32 mRNA levels were increased after treatment of oligodendrocytes with normal 

human serum but serum lacking the C5b-9 component C7 could not upregulate RGC-32 

expression indicating that the terminal complement complex (TCC or C5b-9) assembly 

is essential for RGC-32 upregulation (Badea et al., 1998). C5b-9 further includes the 

proteins C5b, C6, C8 and C9. This complex is also known as the membrane attack 

complex of complement and causes cell death by forming pores (Mayer, 1972). This 

complex can also act as a cell cycle activator by increasing the activity of CDK1, CDK2 

and CDK4 by which the complex mediates an increase in DNA synthesis and cell 

proliferation (Badea et al., 2002; Niculescu et al., 1999; Rus et al., 1996). 

In rats, the RGC-32 transcript has a length of approximately 1000 bases and was found 

in several tissues like kidney, heart, brain, lung, skin, spleen and thymuses, but not in 

the testis or liver (Badea et al., 1998). RGC-32 mRNA expression in humans however 

was detected in placenta, liver, skeletal muscle, kidney and pancreas, aortic endothelial 

cells and in the B lymphoblastoid cell line JY25 and was weakly expressed in heart and 

brain and absent in lung tissue. Human RGC-32 protein expression was detected in 

heart, brain and liver tissue (Badea et al., 2002). 

Data base analysis showed that RGC-32 has no homology with any other known 

proteins contains no conserved motifs, signal sequence or transmembrane domain which 

could provide more information about the target organelle or the function of the protein 

(Badea et al., 1998). The protein has been found to be localised in the cytoplasm, 

however, it has been shown that RGC-32 is translocated to the nucleus after sublytic 

complement (C5b-9) treatment of smooth muscle cells (Badea et al., 2002; Badea et al., 

1998). Saigusa et al. have shown that RGC-32 accumulates at centrosomes during 

mitosis (Saigusa et al., 2007). 
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RGC-32 mRNA and protein levels were found to be increased in several tumour tissues 

e.g. kidney, colon, stomach, rectum, ovary and small intestine tumours. MRNA levels 

were upregulated more than 2-fold in comparison to the surrounding normal tissue 

indicating a role for RGC-32 in promoting tumourigenesis (Fosbrink et al., 2005). 

Interestingly, the expression of RGC-32 was shown to lead to cell cycle progression into 

S and M phase in serum-starved cells aortic smooth muscle cells transfected with RGC-

32-expressing plasmids (Badea et al., 2002). During serum-withdrawal the RGC-32-

expressing cells continued cell cycle progression while 90% of the untransfected control 

cells arrested in G0/G1. Furthermore, a significant shifting of cells from the S to G2/M 

phase was observed after the RGC-32-expressing cells were exposed to complement 

activation.  

To investigate the mechanism of the effects of RGC-32 on the cell cycle, binding 

studies were carried out on CDKs. RGC-32 was shown to be able to bind CDK1, but 

not CDK2 and CDK4 and to activate CDK1 (Badea et al., 2002; Badea et al., 1998). 

CDK1 is known to function in mitosis and is the major target for G2/M checkpoint 

control. RGC-32-induced CDK1 activity may therefore increase cell cycle progression 

into mitosis. CDK1 complexes with cyclin A or B during S and M phases, which results 

in higher activity of the kinase, but a further increase of CDK1 activity was also found 

during RGC-32-mediated S phase entry in aortic smooth muscle cells (Badea et al., 

2002). Furthermore, the kinase activity is also increased in primary oligodendrocytes 

during late G1 and G1/S transition upon C5b-9 treatment. Inhibition of CDK1 activity 

was shown to decrease RGC-32-mediated S-phase entry introducing a new role of 

CDK1 besides its known function in the transition into mitosis (Badea et al., 2002; Rus 

et al., 1996). 

RGC-32 was shown to be phosphorylated during an in vitro kinase assay investigating 

the effects of RGC-32 on CDK1 activity. Since the addition of CDK1 inhibitor p27KIP1 

abolished this phosphorylation, it appeared that RGC-32 was phosphorylated by CDK1. 

In the presence of p27KIP1, RGC-32 is unable to enhance CDK1 activity (Badea et al., 

2002). A CDK1 phosphorylation consensus motif, TPQK, was found in human RGC-32 

and mutation of Thr-91 to alanine in this site abolished RGC-32 phosphorylation by 

CDK1 and reduced CDK1 kinase activity. Therefore, this RGC-32 mediated activation 
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is dependent on RGC-32 phosphorylation at threonine 91 by CDK1 (Badea et al., 2002; 

Badea et al., 1998). 

RGC-32 has also been implicated as a mediator of muscle cell differentiation. Li et al. 

showed that RGC-32 expression was induced by up to 50-fold when neural crest cells 

were treated with TGF-β mediating vascular smooth muscle cell differentiation (Li et 

al., 2007). These findings suggest TGF-β as another potential regulator of RGC-32. 

In contradiction to previous findings, Saigusa et al. reported that RGC-32 acts as a 

tumour suppressor gene as regions of the RGC-32 gene were found to be absent in 

glioma cell lines and restoration of RGC-32 expression led to suppression of glioma cell 

growth (Saigusa et al., 2007). Overexpression of the protein also slowed progress 

through mitosis in HeLa cells (Saigusa et al., 2007). Furthermore, RGC-32 expression 

decreased with increasing malignancy grade of primary astrocytomas and 9 of 35 

primary astrocytomas tested showed a p53 mutation which also resulted in a decrease of 

RGC-32 mRNA expression implicating p53 as a regulator of RGC-32 and p53 is known 

to become activated in response to DNA damage (Saigusa et al., 2007). The same 

research group confirmed this result in p53 null U-373 MG cells (Saigusa et al., 2007). 

U-373 MG cells were infected with p53 using adenovirus-mediated transfer and showed 

induction of RGC-32 mRNA expression when p53 was expressed (Saigusa et al., 2007). 

p53 was also shown to bind to the RGC-32 gene in vitro which was confirmed by 

Chromatin immunoprecipitation (ChIP) analysis in vivo (Figure 9) (Saigusa et al., 

2007). 

1.10 RUNX proteins 
During the course of the research described in this thesis, RGC-32 mRNA expression 

was found to be regulated by the runt-related protein RUNX1 (Jo and Curry, 2006). 

Knock-down of RUNX1 expression in rat ovulating follicles resulted in a decrease of 

RGC-32 mRNA levels (Jo and Curry, 2006). The same research group found 3 RUNX1 

binding sites on the RGC-32 gene and a further 3 potential binding sites with 89% 

homology to the known consensus sequence. RUNX1 was shown to bind directly to the 

RGC-32 promoter in ChIP assays using rat periovulatory granulosa cells (Park et al., 

2008). Mutation of one RUNX1-binding site resulted in reduced RGC-32 promoter 
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Figure 9 – In response to DNA damage, p53 becomes activated. 

p53 induces RGC-32 gene expression by binding to the RGC-32 

promoter resulting in RGC-32 expression. 
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activity in rat periovulatory follicles (Park et al., 2008). The RUNX proteins RUNX1 

(AML-1, CBF-α2), RUNX2 (AML-3, CBF-α1) and RUNX3 (AML-2, CBF-α3) belong 

to the family of Runt-related transcription factors, (reviewed in (van Wijnen et al., 

2004)). Runt is a gene expressed in Drosophila melanogaster and is essential for 

segmentation, sex determination and neurogenesis (Daga et al., 1992; Duffy and 

Gergen, 1991; Duffy et al., 1991; Erickson et al., 1992; Gergen and Wieschaus, 1986; 

Kania et al., 1990). All RUNX proteins are known to associate with the core-binding 

factor CBF-β which is not able to bind DNA itself but increases the affinity of RUNX 

proteins for DNA (Ogawa et al., 1993a; Wang et al., 1996b; Wang et al., 1993). The 

Runt domain is involved in association with CBF-β in addition to DNA-binding and 

nuclear localisation (Lenny et al., 1995; Lu et al., 1995; Meyers et al., 1993; Meyers et 

al., 1995; Ogawa et al., 1993b). The RUNX/CBF-β complex is able to bind DNA 

containing a RUNX-binding site identified as the 7 bp consensus sequence 5’-

PyGPyGGTPy-3’ (Melnikova et al., 1993). This sequence is found in a number of 

enhancers and promoters, and can either activate or repress transcription. Repression 

and activation by RUNX family members is cell type-specific and appears to depend on 

associated cofactors. 

Activation of genes by the RUNX family occurs via recruitment of cofactors and other 

DNA-binding transcription factors like C/EBPα, ETS family members, c-Myb, SMADs 

and histone acetyltransferases including p300/CBP (Britos-Bray and Friedman, 1997; 

Hanai et al., 1999; Kim et al., 1999; Kitabayashi et al., 1998; Mao et al., 1999; Pelletier 

et al., 2002; Petrovick et al., 1998; Westendorf et al., 1998; Zhang et al., 1996). The 

recruitment of HDACs appears to be required for RUNX-mediated repression but which 

HDAC is recruited is distinct for each RUNX protein (see below). RUNX proteins have 

been shown to associate with the corepressors TLE1 and TLE2, mSin3A, N-CoR and 

SMRT (Aronson et al., 1997; Imai et al., 1998; Javed et al., 2000; Lutterbach et al., 

2000). A VWRPY motif in the RUNX proteins interacts with TLE1 and TLE2 in yeast 

2-hybrid systems and in vitro assays (Aronson et al., 1997; Imai et al., 1998; Levanon et 

al., 1998). TLE-independent repression has also been described suggesting that 

corepression by TLE may be promoter-specific (Javed et al., 2000). 
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A connection between EBV latent gene expression and RUNX expression was first 

demonstrated by Spender et al. investigating EBNA 2-induced genes in a microarray 

study (Spender et al., 2002b). The authors reported that RUNX3 mRNA and protein 

expression was induced by EBNA 2 (Spender et al., 2002b). RUNX3 expression was 

found to inversely correlate with RUNX1 expression in B cell lines and the same 

authors demonstrated that RUNX3 downregulates RUNX1 transcription via RUNX3-

binding sites in the RUNX1 promoter (Spender et al., 2005a). Therefore, RUNX1 and 

RUNX3 expression correlate with the EBV latency type dependent on EBNA2 

expression (Figure 10). 

1.10.1 RUNX1 

Three transcript variants encoding different isoforms of RUNX1 have been described: 

RUNX1a, 1b and 1c. RUNX 1c is transcribed from the P1 promoter and RUNX1 1a and 

1b from the P2 promoter which is located adjacent to the P1 promoter. Alternative 

splicing of the transcripts results in the 3 isoforms of RUNX1 (Figure 11), (reviewed in 

(Whiteman and Farrell, 2006)). Only RUNX1c was found to be expressed in B cells 

(Spender et al., 2005a).  

 

RUNX1 was found to be involved in the development of definitive haematopoiesis 

(adult) as well as B and T lymphocyte differentiation (Ichikawa et al., 2004; Lacaud et 

al., 2002; Okuda et al., 1996). Further, RUNX1 was found to interact with the B cell-

specific tyrosine kinase (Blk) promoter to activate transcription. Blk is known to bind to 

the B cell receptor (BCR) following B cell activation (Libermann et al., 1999). 

Mouse embryos carrying a mutated RUNX1 gene did not survive beyond 12.5 days. 

Death was found to occur due to lack of fetal liver haematopoiesis and hemorrhaging in 

the central nervous system (CNS) indicating the essential role played by the RUNX1 

gene in development (Okuda et al., 1996; Wang et al., 1996a). 
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Figure 10 - All RUNX proteins form a complex with the same subunit 

CBFbeta which allows DNA binding. EBNA 2 was shown to induce RUNX3 

expression which inhibits RUNX1 expression. 
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Figure 11 – RUNX1 gene overview showing the different exons and promoters. 

Alternativley spliced transcripts results in the 3 isoforms: RUNX1a, 1b and 1c. Figure 

adapted from (Whiteman and Farrell, 2006). 
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1.10.2 Mutations and translocations of the RUNX1 gene 
Interestingly, the RUNX1 gene is often translocated in acute myeloid leukemia (AML), 

especially the M2 subtype of AML but also in autoimmune diseases and in 20% of 

acute lymphocytic leukemia (ALL) (Golub et al., 1995; Look, 1997; Romana et al., 

1995a; Romana et al., 1995b). Common translocation include t(8:21) which fuses the N-

terminus and Runt domain of RUNX1 to the corepressor ETO and t(12;21) that fuses 

the N-terminus of TEL to the Runt and transcription domains of RUNX1 (Erickson et 

al., 1992; Golub et al., 1995; Miyoshi et al., 1991). The fusion proteins RUNX1-ETO 

and RUNX1-TEL recruit corepressors like mSIN3A and HDACs to generate permanent 

repression complexes at the promoters of RUNX1 target genes which is thought to 

contribute to leukemogenesis (Amann et al., 2001; Fenrick et al., 1999; Lutterbach et 

al., 1998; Wang et al., 1998; Wang and Hiebert, 2001). Overexpression of TEL-RUNX1 

could only induce ALL in mice when p16INK4A/p19ARF expression is lost implicating 

further genetic in leukemogenesis (Bernardin et al., 2002). 

1.10.3 RUNX1 as a transcriptional regulator 
RUNX1 can inhibit p21WAF1/CIP1 transcription by binding to its promoter and recruiting 

mSin3A and HDACs (Laherty et al., 1997; Lutterbach et al., 2000). RUNX1 was also 

found to directly and strongly associate with HDACs 1, 3 and 9 and weakly with 

HDACs 2, 5, and 6 (Durst et al., 2003). RUNX1 has been shown to interact with TLE1, 

oncoproteins C-jun and C-Fos, the calcitriol receptor, involved in mineral metabolism, 

and the Histone-lysine N-methyltransferase SUV39H1 (Chakraborty et al., 2003; 

D'Alonzo et al., 2002; Hess et al., 2001; Levanon et al., 1998; Puccetti et al., 2002). 

Association with SUV39H1 was also found to be required for the RUNX1-mediated 

repression of p21WAF1/CIP1 (Reed-Inderbitzin et al., 2006). 

RUNX1c expression was shown to be upregulated in BL group I cell lines compared to 

BL group III and LCLs but varied in EBV-negative B cell lines (Spender et al., 2002b). 

However, no or only low level of RUNX1c could be detected in cell lines expressing 

EBNA 2 which was later reported to be due to transcriptional crossregulation of 

RUNX1c by RUNX3 (Spender et al., 2002b; Spender et al., 2005a). RUNX3 was found 

to bind to the RUNX1c promoter near the transcription start site to repress transcription 

(Spender et al., 2005a). RUNX1c is highly expressed in quiescent B cells but rapidly 
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downregulated after RUNX3 expression induced by EBV infection, PMA or TGF-β 

(Shi and Stavnezer, 1998; Spender et al., 2005a). 

1.10.4 RUNX2 
RUNX2 was found to be required for osteoblastic differentiation and skeletal 

morphogenesis (Fujita et al., 2004; Komori et al., 1997; Yoshida et al., 2004). 

Mutations in RUNX2 are associated with the disease Cleidocranial dysostosis which 

results in the abnormal development of bones in the skull and collar. 

RUNX2 was shown to be able to interact with STUB1, MYST4, C-jun, Mothers against 

decapentaplegic homolog 3 (SMAD3), (SMAD1) and C-Fos, HDAC3 and HDAC6 but 

not HDAC2, 4 and 5 (D'Alonzo et al., 2002; Hanai et al., 1999; Hess et al., 2001; Li et 

al., 2008; Pelletier et al., 2002; Schroeder et al., 2004; Westendorf et al., 2002; Zhang et 

al., 2000b). HDAC6 was found to be required for RUNX2-mediated repression of 

p21WAF1/CIP1 (Westendorf et al., 2002). 

There is also an indication that RUNX2 can downregulate RUNX1 since RUNX2 null 

mice expressed increased levels of RUNX1 (Yamashiro et al., 2004). 

1.10.5 RUNX3 
RUNX3 was found to play an important role in neurogenesis as well as growth 

regulation of gastric epithelial cells (Inoue et al., 2002; Levanon et al., 2002; Li et al., 

2002). Deletions of the RUNX3 gene have been found in hepatocellular carcinoma, 

testicular yolk sac tumours, pancreatic, gastric cancers and lead to hyperplasia in mouse 

gastric mucosa (Guo et al., 2002; Kato et al., 2003b; Li et al., 2002; Wada et al., 2004; 

Xiao and Liu, 2004). 

RUNX3 is a tumour suppressor as it is involved in the TGF-β apoptotic signalling 

pathways but also plays a role in TGF-β-induced B cell antibody class switching to IgA 

in common with RUNX1 (Fainaru et al., 2004; Shi and Stavnezer, 1998). A TGF-β 

response element in the mouse germline (GL) alpha gene, involved in antibody class 

switching, was found to contain 2 RUNX-binding sites required for TGF-β-induced 

promoter activation (Lin and Stavnezer, 1992; Shi and Stavnezer, 1998). TGF-β is able 

to induce expression of CDKIs p15 and p21WAF1/CIP1 and can therefore block 
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progression into S phase and can suppress expression of c-myc, (reviewed in (Hanahan 

and Weinberg, 2000)). Changes in TGF-β expression can therefore induce uncontrolled 

cell cycle progression. 

1.11 Aims of my project 
Microarray studies previously carried out in the West lab demonstrated that RGC-32 

was upregulated in EBNA 3C-expressing BJAB cells. Since RGC-32 was demonstrated 

to activate the cyclin B/CDK1 complex and play a role in cell cycle regulation. This 

project set out to investigate whether some of the effects of EBNA 3C on the G2/M 

checkpoint may be mediated by RGC-32. During the course of these studies, RGC-32 

was shown to be induced by RUNX1 in rat cells so the contribution of RUNX1 to RGC-

32 regulation in EBV-immortalised cells was also examined. 
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2 Materials and Methods 

2.1 Tissue Culture 
Dulbecco Modified Eagles medium (DMEM): with 4.5 g/L glucose, 110 mg/L 

sodium pyruvate and non-essential amino acids and without L-Glutamine (Invitrogen). 

Fetal Bovine Serum (FBS): pre-screened for Mycoplasma and viruses, performance 

tested (Invitrogen). Heat inactivated at 56°C for 1 hour and stored at -20°C in 50 ml 

aliquots. 

Freezing mix: 70% medium (DMEM (for adherent cells) or RPMI (for suspension 

cells)), 20% FBS, 10% DMSO (Dimethyl sulphoxide: Hybri-Max®, sterile filtered 

(Sigma)) and 0.7% Penicillin-Streptomycin-Glutamine. 

Dulbecco’s Phosphate Buffered Saline (PBS): without CaCl2 and MgCl2 (Invitrogen). 

100 x Penicillin-Streptomycin-Glutamine (PSG): containing 10,000 units/ml 

penicillin G sodium, 10 mg/ml streptomycin sulfate, 29.2 mg/ml L-glutamine and 10 

mM sodium citrate in 0.14% NaCl (Invitrogen). It was stored in 5 ml aliquots at -20°C. 

Propidium Iodide Stain: 25 mg of PI powder (Sigma) in 250 ml PBS (100µg/ml) 

containing 0.1% Triton X-100. 

RNase A: 20 mg RNase A/ml in 50 mM Tris-HCl pH 8.0, 10 mM EDTA (Invitrogen) 

RPMI 1640 medium (RPMI): without L-Glutamine (Invitrogen). 

Trypsin: Trypsin-EDTA (1x) in Hanks' Balanced Salt Solution (HBSS), without 

calcium and magnesium (Invitrogen). 
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2.1.1 Adherent cell lines 

2.1.1.1 HeLa 
HeLa cells were derived from a human cervical carcinoma from a 31-year old woman in 

1951. These cells are epithelial cells which were transformed by human papillomavirus 

8 (Scherer et al., 1953). HeLas were grown in DMEM containing 10% FBS and 1% 

PSG at 37°C with 5% CO2 and were passaged by trypsinization 1 in 10 twice weekly. 

2.1.1.2 Suspension cell lines 
All suspension cell lines were cultured in RPMI + 10% FBS + 1% PSG at 37°C with 

5% CO2 and were passaged twice weekly. 

2.1.1.3 BJAB 
The BJAB cell line was originally thought to have derived from an EBV-negative 

African’s Burkitt's lymphoma in 1975 (Klein et al., 1974; Menezes et al., 1975). 

However, this cell line does not have a c-myc translocation characteristic of Burkitt’s 

lymphoma cell lines, so is likely to be of B cell lymphoma origin. 

2.1.1.3.1 BJAB stable cell lines 
The BJAB cell lines E3C-3, E3C-4, E3C-7, pZ1, pZ2 and pZ3, kindly provided by 

Professor Alan Rickinson, were originally transfected with the expression vector 

pZipNEOSV(X) containing the open reading frames for EBNA 3C (E3C-3, E3C-4, 

E3C-7) or the empty vector (pZ1, pZ2, pZ3) and stable cell lines were selected using 2 

mg/ml G-418 (Wang et al., 1990a).  

The cell lines BJAB FRT and BJAB FRT pFLAG RGC-32 were generated by Helen 

Webb using the Flp-In™ System from Invitrogen. Normal BJAB cells were transfected 

with 10 µg linearised pFRT/lacZeo (Invitrogen) via electroporation at 260 V and 950 

µF to create a stable Flp-In™ host cell line. After 48 hours Zeocin was added to a final 

concentration of 400 µg/ml and cells were aliquoted into 96-well plates (200 µl/well). 

Genomic DNA was isolated from Zeocin resistant clones and Southern blot analysis 

was performed to determine the number of integrated FRT sites in each of these clones. 

Cell lines containing single integrants were then screened for beta-galactosidase activity 

and those with the highest expression levels were stably transfected with 1.8 µg pOG44 

(Invitrogen) and 0.2 µg FRT RGC-32 plasmid using the Amaxa kit T (programme T-
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016). 48 hours after transfection cells were diluted in media containing hygromycin 

(200 µg/ml) and hygromycin resistant clones were tested for Zeocin sensitivity, lack of 

beta-galactosidase activity and pFLAG-RGC-32 expression. 

2.1.1.4 DG75 
The B cell line DG75 (gift from M. Rowe) was derived from a human EBV-negative 

Burkitt’s lymphoma from the pleural effusion of a 10-year-old boy with Burkitt’s 

lymphoma in 1975 (Ben-Bassat et al., 1977). 

The cell lines DG75 FRT and DG75 FRT pFLAG RGC-32 were generated by Helen 

Webb using the method described above (see section 2.1.1.3). 

2.1.1.5 Raji 
Raji cells are EBV-positive B lymphocytes and were isolated from the left maxilla of a 

12-year-old African boy who suffered from Burkitt’s lymphoma. The cell line was 

established in 1963 and was therefore the first human lymphoma cell line (Pulvertaft, 

1964). Raji cells carry a virus with a deletion encompassing the EBNA 3C gene (Hatfull 

et al., 1988). The EBNA 3C coding region is known to run from bp 86083 to 86442 

(ORF: BERF3) and from bp 86517 to 89135 (ORF: BERF4) of the EBV genome (Petti 

et al., 1988). The deletion of more than 75% of the EBNA 3C gene in Raji cells runs 

from 86838 to 89830 bp of the EBV genome. 

The Raji cell lines 13.6, 11.2.1, 11.5.8 as well as the cell lines 13.6.4 and 11.2.5 were 

kindly provided by Martin Allday (Allday et al., 1993). The cell lines 11.2.1 and 11.5.8 

were made by stable transfection with an EBNA 3C-expressing plasmid (pSV2E3/4) 

which contains the coding region for EBNA 3C under the control of an SV40 promoter 

as well as the selectable vector pSV2Hyg. The cell lines 13.6 and 13.6.4 were created 

by transfection using only the selectable vector pSV2Hyg and were used as an EBNA 

3C-negative control. The cell line 11.2.5 was also made by transfection with the 

pSV2E3/4 plasmid but does not express EBNA 3C and was therefore also used as an 

EBNA 3C-negative control (Allday et al., 1993). 
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2.1.2 Freezing cells 
A 175 cm2 flask was harvested and pelleted at 1300 rpm in a Sorvall Legend RT 

centrifuge using a Sorvall Legend rotor 75006445 for 10 minutes at 4°C. The pellet was 

then resuspended in 5 ml of freezing mix, aliquoted in 5x 1ml in freezing vials (Nunc) 

and frozen at -80°C in a freezing container (Nalgene). The vials were transferred to 

liquid nitrogen after at least 24 hours at -80°C. 

2.1.3 Thawing cells 
To defrost cells, a freezing vial from liquid nitrogen was thawed rapidly in a 37°C water 

bath. The cells were then transferred to a 25 ml flask containing 10 ml of prewarmed 

37°C supplemented media and then incubated at 37°C with 5% CO2. 

2.1.4 Cell counting 
Cell counting was performed using a Neubauer haemocytometer. The 16 squares of 

each corner were counted separately and then averaged. The average number of cells 

counted provides the number of cells x 104 per ml of the sample. 

2.1.5 Cell harvesting 
Cells were transferred to a centrifuge tube and pelleted at 1300 rpm in a Sorvall Legend 

RT centrifuge for 10 minutes at 4°C. Cell pellets were resuspended in an appropriate 

amount of PBS and counted (see section 2.1.4). 

2.1.6 Whole cell lysate preparation 
For protein analysis, cells were washed in PBS, counted using the Neubauer cytometer 

(see section 2.1.4), then pelleted by centrifugation at 2000 rpm for 5 minutes and lysed 

in 100 µl 1x GSB per 106 cells. Each sample was sonicated 5x for 10 sec with 30% 

amplitude using the Vibra-Cell™ VC 750 (Sonics & Materials, inc.), then heated at 

95°C for 10 minutes, vortexed and briefly spun down before analysing by SDS-PAGE 

(see section 2.2.15).  

2.1.7 Hygromycin kill curve 
IB4 cells were diluted to 5x105/ml and 5 ml aliquots placed in a 6-well plate. Different 

concentrations of hygromycin (0-500 µg/ml) were added the. Samples of cells (200 µl) 
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were taken on day 0 and after 2, 4 and 7 days, pelleted at 2000 rpm in an Eppendorf 

5415 C centrifuge for 5 minutes and resuspended in 200 µl PBS. 10 µl of cells were 

mixed with 10 µl of Trypan blue (Sigma) and counted for cell viability (see Appendix 

8.6). 

2.1.8 Transient Transfection 

2.1.8.1 Electroporation 
DG75 cells were diluted 1:3 24 hours before electroporation. Cells were pelleted at 

1300 rpm in a Sorvall Legend RT centrifuge and the supernatant kept as conditioned 

media. Differences in DNA content were compensated with pFLAG, pSG5 or pCEP4 

empty vector dependent on the experiment. The DNA was prepared in electroporation 

cuvettes (Bio-Rad) in a total volume of 32 – 40 µl. The DNA was then incubated on ice 

for 10 minutes. The cells were resuspended in serum-free media, counted, re-pelleted 

and resuspended at 2x 107/ml in serum-free media. 0.5 ml of cells were added to each 

cuvette and mixed with the DNA. Samples were cooled on ice for 10 minutes and then 

electroporated at 230 V and 950 µF using a BioRad Gene Pulser II. Following 

incubation at 37°C with 5% CO2 for 30 minutes, the cells were transferred into 25 ml 

flasks containing 10 ml warm conditioned media and incubated at 37°C for 24 - 48 

hours. Cells were pelleted, resuspended in PBS and counted. They were then re-pelleted 

and resuspended in 1 ml PBS for transfer into a 1.5 ml tube. The cells were then 

pelleted at 2000 rpm in an Eppendorf 5415 C centrifuge for 5 minutes and the 

supernatant was removed. The cells were either lysed in lysis buffer (Jin et al., 2005) for 

kinase assays (see section 2.2.23), in EBC buffer for immunoprecipitation (see section 

2.2.20 or in 1x Passive Lysis Buffer (Promega) for luciferase assays (see section 

2.1.13). 

2.1.8.2 Amaxa Nucleofection 
BJAB E3C-3 cells were transiently transfected with 2 µg of scrambled control or 

pSilencer 3.0HI plasmids expressing RGC-32 siRNA1-siRNA5 using program O-017 

with an Amaxa nucleofector and the Nucleofector® solution T following the 

manufacturer’s protocol. IB4 cells were stably transfected with 3 µg of RUNX3 

siRNA30, siRNA118 or control plasmid using program A-023 with an Amaxa 

nucleofector and the Nucleofector® solution T following the manufacturer’s protocol. 
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2.1.8.2.1 Silencing of RUNX3 expression 
IB4 cells were transfected as previously described (see section 2.1.8.2) and transferred 

into a total volume of 6 ml complete RPMI media. Hygromycin was added to a final 

concentration of 300 µg/ml 24 hours after transfection. 3 ml of cells were harvested 6, 9 

and 14 days after transfection and 3 ml complete RPMI media containing 300 µg/ml 

hygromycin was added. Cell pellets were used for protein analysis (see sections 2.1.6, 

2.2.15 and 2.2.16) or RNA analysis (see sections 2.2.11, 2.2.13 and 2.2.14). 

2.1.8.3 Fugene 
HeLa cells were counted and plated at a final concentration of 5x104 cells/ml in a 10 cm 

plate (Fisher) 24 hours prior to transfection. 12 µl FuGENE (Roche) was mixed with 

180 µl of unsupplemented DMEM and left at room temperature for 5 minutes. A total of 

4 µg of plasmid was then added, the sample gently mixed and then incubated for 30 

minutes at room temperature. Just before adding the sample dropwise to the plate, the 

cells were washed in PBS which was then replaced with fresh DMEM. The cells were 

incubated at 37°C for 48 hours before harvesting. 

2.1.9 Gamma irradiation 
Exponentially growing cells were pelleted and resuspended in fresh media at a final 

concentration of 4x 105/ml the previous day. The cells were treated with 10 Gy using a 
137Cs source to irradiate the cells and then incubated at 37°C with 5% CO2 for 4, 8 and 

24 hours. The cells were then washed and counted in PBS and divided between 2 tubes. 

One half of the cells was used for FACS analysis and the other half for protein analysis. 

For FACS analysis the cells were pelleted, resuspended in 1 ml of 70% ethanol per 106 

cells, incubated for at least 30 minutes at 4°C and then stained with propidium iodide 

(see section 2.1.10). 

2.1.10 Propidium Iodide staining 
1 ml ethanol containing the fixed cells (1x 106 cells) was transferred to a FACS tube 

(BD Biosciences) and pelleted at 1000 rpm for 5 minutes at 4°C using the Sorvall 

Legend RT centrifuge. The pellet was resuspended and washed in 1 ml PBS. After the 

cells were pelleted again, 500 µl of PI stain (Sigma) and containing 50 µg/ml RNase A 

(Sigma) and the samples incubated at room temperature for 30 minutes. The cell cycle 

distribution was analysed with the BD FACSCanto Flow Cytometer (BD Biosciences). 
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2.1.11 Etoposide treatment 
The cells were set up at a final concentration of 4x 105/ml the previous day as described 

for gamma irradiation (see section 0). The cells were treated with 50, 100, 300 or 500 

nM etoposide using dilutions of a 1 M stock dissolved in DMSO and incubated at 37°C 

with 5% CO2 for 24 or 48 hours. The cells were then washed and counted in PBS. Cells 

were pelleted and one half of the pellet was fixed in 1 ml of 70% ethanol per 106 cells 

for at least 30 minutes at 4°C and then stained with propidium iodide (see section 

2.1.10). The other half was used for whole cell lysate preparation for protein analysis 

(see section 2.1.6 and 2.2.15). 

2.1.12 DNA damage and BrdU incorporation 
The BJAB cell lines pZ1, pZ3, E3C-3 and E3C-4 were diluted to 4x 105/ml 24 hours 

prior treatment. For etoposide treatment, the pZ and E3C lines were treated with 10 µM 

BrdU (Sigma), incubated for 1 hour, washed and resuspended in fresh media containing 

0, 300 or 500 nM etoposide for 24 hours. For FACS analysis, unlabelled control cells 

were fixed cells, stained with PI for 30 minutes (see section 2.1.10) and analysed using 

the BD FACSCanto Flow Cytometer (BD Biosciences) for cell cycle distribution. Cells 

of all other samples were stained with PI for 1 hour, pelleted and resuspended in 0.1% 

PBS-Tween. The appropriate primary antibody was then added (either 40 µl of 1:15-

diluted anti-BrdU antibody (c=0.5mg/ml, Upstate) or 40 µl 1:1.5-diluted anti-IgG2a 

antibody (c=0.05 mg/ml, BD)) (see Table 2).  

Table 2 – showing an overview of what each sample contained. 

Sample BrdU 
Mouse-

anti-BrdU 
(1° ab) 

Mouse-
anti-IgG2 

(1° ab) 

Anti-
mouse-
FITC      

(2° ab) 

PI 

unlabelled control � � � � � 

IgG2 antibody control � � � � � 

DMSO control � � � � � 

300 nM � � � � � 

500 nM � � � � � 
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Cells were incubated at room temperature for 1 hour, pelleted and resuspended in a 1:20 

dilution of a FITC-conjugated, polyclonal rabbit anti-mouse antibody (Dako). 

Following incubation at room temperature for 30 minutes, the cells were washed, 

resuspended in PBS and analysed by FACS.  

2.1.13 Luciferase assay 
48 hours after transfection using the Bio-Rad Gene Pulser® II or FuGENE transfection 

techniques, cells were pelleted at 1300 rpm for 10 minutes at 4°C in a Sorvall Legend 

RT centrifuge and resuspended in 1 ml PBS. Cells were then transferred to an 1.5 ml 

tube and pelleted in an Eppendorf 5415C centrifuge at 2000 rpm in an Eppendorf 5415 

C centrifuge for 5 minutes. The cells were lysed in 100 µl 1x passive lysis buffer 

(Promega) at room temperature for 30 minutes followed by another 30 minute 

incubation on ice. The cell debris was then pelleted at 13000 rpm in a Heraeus Biofuge 

Pico for 5 minutes. The supernatant was transferred to a new 1.5 ml tube. For the 

luciferase assay 2x 10 µl of each sample was added to a 96-well plate. With the 

sequential injection system on a Lucy 2 luminometer (LabTech) 50 µl of LarII followed 

by 50 µl of Stop and Glo solutions (Promega luciferase dual assay kit) were added to the 

samples and the signals from the reporter genes were measured after each step. The 

pCp-1425-GL2 and the RGC-32pLuc plasmids used contain the firefly luciferase gene, 

controlled by the C or RGC-32 promoters respectively. The pRL-CMV plasmid 

contains the Renilla luciferase gene controlled by the CMV promoter and was used as a 

control for transfection efficiency. The values for firefly luciferase activity were 

therefore corrected by dividing them by the values for the Renilla luciferase activity.  

2.1.14 Proteasome inhibition 
The cells were diluted 1:3 24 hours before the experiment. The proteasome inhibitor 

MG132 was added to a final concentration of 50, 100 or 200 µM. Cells were pelleted 

after 1, 2, 8 or 24 hours, washed and counted in PBS. The cells were then pelleted and 

whole cell lysates prepared for SDS-PAGE analysis (see section 2.1.6 and 2.2.15). 

2.1.15 Transcription inhibition 
The BJAB cell lines pZ1, pZ3, E3C-3 and E3C-7 were set up at 2x105/ml in a 6-well 

plate 72 hours prior to treatment. 2 µM of actinomycin D (Sigma) was added to all cell 
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lines and a 0 hour control was harvested at the same time. Further samples were taken 2, 

4, 6 and 8 hours after addition of actinomycin D. Cells were then lysed and RNA 

extracted for real-time PCR (see section 2.2.11, 2.2.14) 

2.1.16 Centrifugal elutriation 
BJAB pZ3 and E3C-3 cells were fractionated using centrifugal elutriation which was 

kindly performed by Aloys Schepers (University of Munich). 
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2.2 Molecular Biology 
ADBI buffer:  20 mM MOPS pH 7.2, 25 mM sodium glycerophosphate, 5mM EGTA, 1 

nM Sodium orthovanadate, 1 mM dithiothreitol (DTT). 

Agar: 5 g agar (Oxoid) in 400 ml L broth before autoclaving.  

Ampicillin: (Sigma): 100 mg/ml in filter-sterilised H2O using a 0.2 µm filter (Nalgene) 

and stored at -20°C in 1 ml aliquots.  

Blotting Buffer:  4 litre dH2O, 1 litre methanol (Fisher), 75 g Glycine (Fisher), 15 g 

Tris(hydroxymethyl)-methylamine (Fisher). 

Buffer A : 300 mM NaCl, 40 mM PO4 buffer pH 7.5, 20 mM Imidazole, 3.5 mM β-

mercaptoethanol, 2 mM benzamidine and protease inhibitor cocktail tablet (Roche). 

Buffer B:  300 mM NaCl, 40 mM PO4 buffer pH 7.5, 20 mM Imidazole, 3.5 mM β-

mercaptoethanol, 2 mM benzamidine, 1% NP40 and protease inhibitor cocktail tablet 

(Roche). 

Buffer C:  1 M NaCl, 40 mM PO4 buffer pH 7.5, 20 mM Imidazole, 3.5 mM β-

mercaptoethanol, 2 mM benzamidine, 1% NP40, protease inhibitor cocktail tablet 

(Roche). 

Buffer X:  50 mM HEPES (KOH) pH 7.5, 10% glycerol, 2 mM benzamidine, 1 M 

GuHCl.  

Buffer Y:  50 mM HEPES (KOH) pH 7.5, 10% glycerol, 2 mM benzamidine, 6 M 

GuHCl. 

CsCl prep solution I: 50 mM glucose, 25 mM Tris-HCl pH 8.0, 10 mM EDTA 

(Sigma). 

CsCl prep solution II: 200 mM NaOH, 1% SDS. 



2-60 

CsCl prep solution III: 300 ml 5 M KAC, 57.5 ml glacial acetic acid, 142.5 ml H2O. 

CsCl-saturated butanol: 100 g Caesium chloride (Invitrogen) in 200 ml H2O and 200 

ml butanol. 

EBC buffer:  50 mM Tris pH 8, 120 mM NaCl, 0.5% nonidet P40 (NP40) and 5 mM 

Dithiothreitol (DTT, Sigma). 

ECL : Solution I: 2.5 mM luminol, 400 µM coumaric acid, 100 mM Tris pH 8.5 in 20 

ml dH2O. Solution II: 0.15% Hydrogen Peroxide (H2O2) and 100 mM Tris pH 8.5 in 20 

ml dH2O. 

Elution Buffer E:  300 mM NaCl , 100 mM EDTA, 40 mM PO4 buffer pH 7.5. 

Fixing buffer (kinase assay): 40% methanol, 10% glacial acetic acid. 

Fixing buffer (gel shift): 20% methanol, 10% glacial acetic acid. 

1x gel sample buffer (GSB):  50 mM Tris, 4% SDS, 5% 2-mercaptoethanol (Sigma), 

10% glycerol, 1 mM EDTA, 0.01% bromophenol blue. 

L broth: 10 g tryptone (Oxoid), 5 g yeast extract (Oxoid), 10 g NaCl, made up to 1 litre 

in distilled H2O followed by autoclaving. 

Lysis buffer (Jin et al., 2005): 100 mM NaCl, 50 mM NaF, 50 mM Tris pH 7.5, 40 

mM Sodium β-glycerophosphate (Fisher), 5 mM EDTA, 1 mM Sodium orthovanadate 

(Fisher), 1% Triton X-100, protease inhibitor tablet. 

Lysis buffer B (Topisirovic et al., 2002): 10 mM Tris pH 8.4, 140 mM NaCl, 1.5 mM 

MgCl2, 0.5% NP40, 1 mM DTT and 200U/ml RNasin (Promega). 

Protease inhibitor: 2 mM phenylmethylsulfonyl fluoride (PMSF) in ethanol. 

Stripping buffer: 100 mM 2-mercaptoethanol (Sigma), 2% SDS, 62.5 mM Tris-HCl 

pH 6.7. 
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10 x TBE: 540 g Tris, 275 g Boric acid and 46.5 g EDTA dissolved in 5 litre H2O. 

4 x TBE loading dye: 5 ml glycerol, 0.1 ml 10% bromophenol blue, 1 ml 1% xylene 

cyanol and 3.9 ml 10 x TBE. 

TE: 10 mM Tris-HCl pH 8.0, 1 mM EDTA in ultra pure H2O. 

Washing Buffer (PBS-T): 10 litre dH2O, 100 PBS tablets (Fisher) and 10 ml Tween 20 

(Fisher). 

2.2.1 Agar plates  
Agar was melted in the microwave and left to cool. Antibiotics were added to the 

following final concentrations: Ampicillin (100 µg/ml), Kanamycin (25 µg/ml), 

Chloramphenicol (42 µg/ml). When the agar was mixed with the antibiotics, the plates 

were poured, left to set and stored at 4°C. 

2.2.2 Plasmids and siRNA-expressing plasmids 
To create the pFLAG RGC-32 plasmid, RGC-32 was amplified from BJAB E3C-4 cell 

cDNA using the RGC-32 primer set (see Appendix 8.3) and cloned into pFLAG-CMV-

2 (Sigma) as an Xba1/BamH1 fragment (Helen Webb). 

FLAG-RGC-32 was cut out of the plasmid as a Sac1/Sma1 fragment and the Sac1 

overhang was blunt-ended using mung bean nuclease and the fragment cloned into 

pcDNA5/FRT (Invitrogen) cut with EcoRV to create pFLAG RGC-32/FRT (Helen 

Webb).  

To create the pET RGC-32 plasmid RGC-32 was cut out of pFLAG-RGC-32 (see 

above) as a Sal I/BamHI fragment and cloned into pET16b (Sigma) digested with Xho 

I/ BamHI (Helen Webb).  

RGC-32-expressing E.coli BL21 plysS (Sigma) were generated by Helen Webb by 

transforming this E. coli strain with pET RGC-32.  
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SiRNA oligonucleotides were designed by Helen Webb using pSilencer Expression 

Vectors Insert Design Tool (Ambion) against the 3’ UTR region of RGC-32 (Table 3). 

These were phosphorylated, annealed and cloned into pSilencer 3.0HI digested with 

BamH1/HindIII. The negative control (Scrambled siRNA) encoding vector was 

obtained from Ambion. 

siRNA Sequence 

siRNA 1 GAT CCG TTT GAA CTG AAC CTC GTG CTT CAA GAG AGC 
ACG AGG TTC AGT TCA AAT TTT TTG GAA A  
 
AGC TTT TCC AAA AAA TTT GAA CTG AAC CTC GTG CTC 
TCT TGA AGC ACG AGG TTC AGT TCA AAC G 

siRNA 2 GAT CCG CAG ACG ATC CAT GCT AAT ATT CAA GAG ATA 
TTA GCA TGG ATC GTC TGT TTT TTG GAA A 
 
AGC TTT TCC AAA AAA CAG ACG ATC CAT GCT AAT ATC 
TCT TGA ATA TTA GCA TGG ATC GTC TGC G 

siRNA 3 GAT CCG TCA GCC CTT GAT CCC ATT TCT CAA GAG AAA 
ATG GGA TCA AGG GCT GAT TTT TTG GAA A 
 
AGC TTT TCC AAA AAA TCA GCC CTT GAT CCC ATT TTC 
TCT TGA GAA ATG GGA TCA AGG GCT GAC G 

siRNA 4 GAT CCA GAC GTG CAC TCA ACC TTC TTC AAG AGA GAA 
GGT TGA GTG CAC GTC TTT TTT TGG AAA 
 
AGC TTT TCC AAA AAA AGA CGT GCA CTC AAC CTT CTC 
TCT TGA AGA AGG TTG AGT GCA CGT CTG 

siRNA 5 GAT CCG CTT CAG AAA GTT CCG AGG TTC AAG AGA CCT 
CGG AAC TTT CTG AAG CTT TTT TGG AAA 
 
AGC TTT TCC AAA AAA GCT TCA GAA AGT TCC GAG GTC 
TCT TGA ACC TCG GAA CTT TCT GAA GCG 

Table 3- Overview of RGC-32 siRNA sequences. 
 

To create the RGC-32pLuc vector a 1.2 kb fragment (approximately –1150 to +62 

relative to predicted transcription start site) of the RGC32 promoter was amplified from 

genomic DNA and cloned into pGL2-Basic (Promega) cut with HindIII/Kpn1 (Helen 

Webb). For some experiments a newer version of the RGC-32pLuc plasmid was used in 

the pGL3-Basic vector background instead of the pGL2-Basic vector background. The 

RGC-32 promoter fragment was cut with HindIII/KpnI and cloned into a pGL3-Basic 

vector (Promega). 
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To mutate the RUNX1-binding site in the RGC-32pLuc plasmid the RGC-32 promoter 

of pGL2 was amplified with primers containing a 3 bp mutation at the RUNX1-binding 

site. The mutated promoter sequence was cut with NheI/KpnI and inserted into the 

pGL3 basic vector together with a NheI/HindIII fragment from the wildtype RGC-

32pLuc plasmid, RGC-32pLuc mut (see section 2.2.3). 

RGC-32pLuc up was created by cutting the original RGC-32pluc (pGL2) was cut with 

KpnI and NdeI. A 1.1 kb upstream RGC-32 promoter region was amplified from 

HEK293 genomic DNA using RGC-32-specific primers containing KpnI and NdeI sites 

and cloned into pRGC-32pLuc (Felicity Poulter). 

The pRL-CMV  vector (Promega) contains the CMV promoter region, which provides 

constitutive expression of Renilla luciferase from the Rluc gene.  

pCp-1425-GL2 contains the EBV C promoter (-1425 to +3) inserted into the the BglII 

site of vector pGL2 basic (Promega) which has a Firefly luciferase reporter gene (gift 

from A. Bell and F. Nitsche) (West et al., 2004). 

The plasmid pSG5 2A contains full length EBNA 2 (EBV type 1) under the control of 

the simian virus 40 (SV40) early promoter within the vector pSG5 (Stratagene) (gift 

from M. Rowe) (Tsang et al., 1991). 

The plasmid pSG5 3C expresses full length EBNA3C which was also inserted in the 

pSG5 vector (Stratagene) (West et al., 2004). 

The pBK-CMV-RUNX1c  plasmid expresses the RUNX1 isoform 1c. The plasmid was 

kindly provided by Paul Farrell. 

The pCEP4-RUNX1c and pCEP4-RUNX3 plasmids express RUNX isoform 1c and 

RUNX3 respectively (Spender et al., 2005a). The plasmids were kindly provided by 

Paul Farrell. 

The siRNA plasmids for RUNX3 (RUNX3 siRNA-30 and -118) and the empty vector 

were made using the pHEBoSUPER plasmid. pHEBoSUPER was created by cutting out 
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the pSUPER BamHI to XhoI fragment containing the H1 promoter which was cloned 

into the pHEBo vector between  BamHI and SalI sites. The siRNA oligonucleotides 

were cloned in between the HindIII and BglII sites (Spender et al., 2005a). These 

plasmids were kindly provided by Paul Farrell. 

2.2.3 Site-directed mutagenesis 

2.2.3.1 Primer design 
Two 39 bp primers (see Appendix 8.3) were designed to bind the original RGC-32pLuc 

plasmid at the RUNX1-binding site but incorporated a 3 bp mutation which would be 

amplified in the PCR reaction. The primers were designed following the Primer Design 

Guidelines of the QuikChange® Site-Directed Mutagenesis Kit recommended by 

Stratagene® and were ordered from Invitrogen. 

2.2.3.2 PCR-based site-directed mutagenesis 
To mutate the RUNX1-binding site in the RGC-32 promoter 50 ng of DNA template 

(RGC-32pLuc plasmid) was mixed with 125 ng of forward and reverse primer (see 

Appendix 8.3), 300 µM dNTP mix, 1 mM MgSO4, 3x PCR enhancer (Invitrogen), 5 µl 

10x Pfx amplification buffer (Invitrogen) and 1 µl (2.5 U) Platinum Pfx (Invitrogen). 

The reactions were made up to a final volume of 50 µl using sterile-filtered water. 

The PCR programme was set up as follows. The extension time was calculated using 1 

min/kb of plasmid length as recommended by Stratagene®: 

Segment Cycles Temperature time 

1 1 95°C 30 sec 

95°C 30 sec 

48°C 1 min 2 16 

55°C 6 min 50 sec 

Table 4 – Overview of PCR program used for site-directed mutagenesis. 

After completed mutagenesis the samples was placed on ice for 2 minutes, 1 µl DpnI 

(10U/µl) was added, mixed and the sample incubated at 37°C for 1 hour. DNA was 
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visualised in an agarose gel (see section 2.2.4), subsequently transformed (see section 

2.2.5), the DNA purified (see section 2.2.6) and sequenced (see section 2.2.7). 

2.2.4 Agarose gel electrophoresis 
A 1% agarose gel was used to visualise DNA. 50 mg of agarose powder (Helena 

BioSciences) was dissolved in 50 ml of 1 x TBE buffer by heating in the microwave. 

0.5 µl of Gel Red (Biotium) was added and the agarose was poured into a BioRad Mini 

sub cell GT tank including a comb to form the wells. After the gel had set, it was 

covered with 1x TBE buffer and the comb was removed. 5 µl of DNA sample were 

mixed with 1.5 µl 4x TBE loading buffer. 6 µl of each plasmid sample and 5 µl of the 

DNA marker (100 base pair ladder (Invitrogen) or Hyperladder II (Bioline)) were 

loaded onto the gel. The gel was run at 75 V for 60 min and DNA bands were then 

visualised with UV light.  

For DNA gel purification 2 teeth of the comb were taped together so that 2 wells formed 

1 large well in the agarose gel and 50 µl of sample were loaded and run as described 

above. 

2.2.5 Transformation of bacterial cells 

0.5 µg of plasmid DNA or 10 µl of mutated or ligated DNA was mixed with 100 µl of 

competent E. coli DH5α cells and incubated on ice for 40 min. The cells were then heat-

shocked at 42°C for 45 seconds and left on ice for 2 minutes. Transformed cells were 

pipetted onto agar plates containing the respective antibiotics and spread using a sterile 

glass spreader. Colonies were grown overnight at 37°C. 

2.2.6 Miniprep 
Several colonies were picked with a sterile toothpick and each was grown in 2 ml LB 

containing 100 µg/ml ampicillin. The transformed bacteria were incubated at 37°C 

overnight with shaking. 1.5 ml of each culture was pelleted by centrifugation at 13000 

rpm for 1 minute. Plasmid DNA was extracted using a QIAprep Spin Miniprep kit 

(Qiagen) according to the manufacturer’s instructions. 
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2.2.7 Sequencing of DNA 

10 µl of miniprep DNA was dried in a Savant DNA110 Speedvac Concentrator vacuum 

centrifuge at medium drying rate for 20 minutes. The dried DNA was sent to Eurofins 

MWG for sequencing (see Appendix 8.7). 

2.2.8 Cloning 

2.2.8.1 Enzyme digest 
In general, 5 µg of plasmid were digested in a 20 µl reaction with 2 µl enzyme (NEB) 

and the appropriate buffer +/- BSA (NEB). The samples were incubated at 37°C for at 

least 1 hour. The linearised DNA fragments were separated on an agarose gel (see 

section 2.2.4) and the DNA purified as required (see section 2.2.8.2). 

2.2.8.2 DNA gel purification 
The DNA of interest was cut out of the gel using a razor blade. DNA was then purified 

using the gel purification kit (Qiagen) following the manufacturer’s instructions. The 

DNA was eluted in 30 µl EB buffer (Qiagen). 

2.2.8.3 Alkaline phosphatase treatment of vector DNA 
To prevent single cut linearised vector from re-ligating, the samples were treated with 

alkaline phosphatase (Roche) to remove the 5’ phosphate group from the cut ends. 20 µl 

of DNA was mixed with 4.3 µl alkaline phosphatase and 2.7 µl of 10x alkaline 

phosphatase buffer in a total volume of 27 µl. The samples were incubated at 37°C for 

30 minutes. 

2.2.8.4 Ligation 
The KpnI/NheI fragment containing the mutated RUNX-binding site sequence was then 

cloned into a pGL3 vector (Promega). To achieve ligation approximately 100 ng of 

vector was mixed with the inserts in molar ratios of 1:1, 1:3, 1:5 and 3:1 in the presence 

of 2 µl of T4 ligase buffer, 1 µl of T4 ligase (Invitrogen) and filter-sterilised water in a 

final volume of 10 µl. The samples were incubated on ice for 1 hour followed by 1 hour 

at room temperature and 1 hour at 37°C. The samples were then used for transformation 

of DH5α (see section 2.2.5). 
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2.2.9 Glycerol stocks 
DH5α cells were transformed with plasmid DNA (see section 2.2.2) and streaked onto 

agar plates containing the appropriate antibiotics. A single colony was restreaked twice 

to ensure the colony contained the desired plasmid. After an overnight incubation at 

37°C, 4 ml of L broth was added to the plate, and the colonies were scraped off the agar. 

The bacteria were transferred into two cryogenic vials and 15% glycerol added. The 

cryogenic vials were then stored at -80°C. These glycerol stocks could be used for long-

term storage and the bacteria can be restreaked to grow colonies containing the desired 

plasmid. 

2.2.10 Caesium chloride (CsCl) DNA preparation 
A colony of DH5α transformed with the plasmid of interest was picked and spread onto 

a new agar plate containing the appropriate antibiotics. The cells were cultured 

overnight at 37°C. A colony was picked on the following day with a sterile toothpick 

and mixed with 2 ml L broth containing the appropriate antibiotics. Cultures were 

incubated at 37°C for 6 hours with shaking. The 1 ml culture was then transferred to 

250 ml L broth, antibiotics added and the culture incubated at 37°C overnight with 

shaking. 

Cells were pelleted by centrifugation at 6000 rpm for 10 minutes at 4°C a JA-10 rotor 

(Beckman) in a Beckman Coulter Avanti J-20 XP centrifuge. The cell pellet was 

resuspended in 7 ml of solution I. To lyse the cells, 14 ml of solution II was added to the 

cell suspension and mixed well. 11 ml of solution III were then added followed by 

thorough mixing and incubation on ice for 5 minutes. The cell debris was pelleted by 

centrifugation at 7000 rpm for 10 minutes at 4°C and the supernatant filtered through a 

tissue. 0.6 volumes of isopropanol was added and the sample incubated at room 

temperature for 10 minutes to precipitate the DNA. The samples were centrifuged at 

4000 rpm for 10 minutes at 4°C in a Sorvall Legend RT centrifuge. The pellets were 

resuspended in 3 ml TE and 2 ml of 5M NH4 acetate was added to precipitate the RNA. 

After 1 hour incubation on ice, the precipitated RNA was pelleted by centrifugation at 

4000 rpm for 10 minutes at 4°C and the supernatant was mixed with 2 volumes of 100% 

ethanol to precipitate DNA. After 10 minutes incubation at room temperature the DNA 
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was pelleted by spinning at 4000 rpm for 10 minutes at 4°C. The DNA was resuspended 

in 4 ml TE and 4.3 g CsCl and 1 mg Ethidium Bromide was added to each sample. The 

solution was transferred to optiseal tubes (Beckman) and placed in Beckman VTi 65.2 

rotor with a spacer and torqued screw seal. The CsCl gradient was used to separate 

plasmid DNA and chromosomal DNA by centrifugation of the samples at 50000 rpm 

overnight at 20°C in a Beckman Optima LE-80K ultracentrifuge. 

A 23G needle was used to extract the plasmid DNA. Ethidium bromide was removed by 

several extractions using an equal volume of CsCl saturated butanol. 4 volumes of TE 

were added and the DNA was precipitated with 3 volumes of ethanol. After a 10 minute 

incubation at room temperature, the DNA was pelleted by centrifugation at 4000 rpm 

for 10 minutes at 4°C, resuspended in 5 ml TE and precipitated with 10 ml ethanol and 

0.1 volumes of 3 M NaAc pH 5.2. After a 10 minute incubation at room temperature, 

the DNA was again pelleted by centrifugation at 4000 rpm for 10 minutes at 4°C, air 

dried for 10 minutes and resuspended in 0.5 ml TE. The concentration of plasmid DNA 

was then determined by spectrophotometry (see section 2.2.12). 

2.2.11 RNA Extraction 
RNA was isolated from cells using TRI Reagent® (Sigma) according to the 

manufacturer’s instructions (1 ml/10x 106 cells). 

The RNA was then purified using the RNeasy Mini Kit from Qiagen according to the 

manufacturer’s instructions and stored at -80°C. 

2.2.12 Spectrophotometric Determination of DNA and RNA 
Concentration 

Plasmid DNA samples were diluted 1:200 (5 µl of DNA in 995 µl TE) in a UV-cuvette 

micro from Plastibrand® and mixed. The amount of DNA was then measured in the 

Eppendorf Biophotometer at 260 nm. The ratio of optical density readings at 260 nm 

and 280 nm provided the purity of the nucleic acid (1.8 for pure double stranded DNA).  

RNA samples were diluted 1:100 (1 µl of RNA in 99 µl distilled H2O) in an UVette 

from Eppendorf and mixed. The absorbance was read using the Eppendorf 
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Biophotometer. The ratio of optical density readings at 260 nm and 280 nm provided 

the purity of the nucleic acid (2.0 for pure RNA). 

The concentration of DNA was calculated using the following formula: DNA 

concentration (µg /ml) = A260 x 50 µg /ml x 200 (dilution factor). The concentration of 

RNA was calculated using the following formula: RNA concentration (µg / ml) = A260 x 

40 µg / ml x 100 (dilution factor). 

2.2.13 cDNA Synthesis 
RNA extraction was followed by cDNA synthesis using the ImProm-II™ Reverse 

Transcription System Kit from Promega. Based on the manufacturer’s instructions 1 µg 

of each RNA was mixed with 1 µl Random Primer and water added to a final volume of 

5 µl. The samples were then incubated at 70ºC for 5 minutes and then placed on ice for 

5 minutes. 15 µl of the Mastermix (containing 4.5 µl nuclease-free H2O, 4.0 µl 

ImProm™ 5x Reaction Buffer, 4.0 µl MgCl2, 1.0 µl dNTP Mix, 0.5 µl ribonuclease 

inhibitor and 1.0 µl reverse transcriptase) was added to the RNA. The samples were 

then incubated for 5 minutes at 25°C, 60 minutes at 42°C and 15 minutes at 70°C and 

finally stored at -80°C. 

2.2.14 Real-Time Polymerase Chain Reaction 
The QuantiTect® SYBR® Green PCR Kit (Qiagen) was used for real-time PCR 

(polymerase chain reaction) reactions. The cDNA samples were diluted either 1:10 or 

1:20 with sterile filtered water. A final volume of 25 µl was added to each well 

(containing 1x QuantiTect® SYBR® Green Mix, 0.15 mmol forward and 0.15 mmol 

reverse primers (see Appendix 8.3) and 5µl diluted cDNA following the instructions 

provided by Qiagen. 

The thermal cycler 7500 Real Time PCR system from Applied Biosystems was used 

with the following cycling conditions: initial denaturation step at 95°C for 10 minutes, 

amplification step of 40 cycles of 15 sec at 95°C and 1 minute at 60°C. A dissociation 

curve was then generated by one cycle of 15 sec at 95°C, 1 minute at 60°C and 15 sec at 

95°C (Figure 12). 
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Stage 1 Stage 2 Stage 3

Cycles: 1 Cycles: 40 Cycles: 1

95°C
10:00 min

95°C
0:15 min

95°C
0:15 min

95°C
0:15 min

60°C
1:00 min

60°C
1:00 min

Stage 1 Stage 2 Stage 3

Cycles: 1 Cycles: 40 Cycles: 1

95°C
10:00 min

95°C
0:15 min

95°C
0:15 min

95°C
0:15 min

60°C
1:00 min

60°C
1:00 min

CDNA from an appropriate cell line was used to generate standard curves for each 

primer set. A 1:10, 1:50, 1:250, 1:1000 and 1:5000 dilution of cDNA corresponded to 

25, 5, 1, 0.25 and 0.05 ng of input RNA. These standard curves were used to convert the 

crossing threshold (Ct) values obtained for all samples into arbitrary RNA quantity 

values. This allows comparison between different cell lines. The results are displayed 

relative to GAPDH to correct for differences in the efficiency of the reverse 

transcriptase reaction and validation between samples. 

2.2.15 SDS – PAGE 
15 µl of lysate were resolved using 12 well 10%, 12% or 4-12% Bis-Tris gels 

(Invitrogen). The gels were run in 1x MES or 1x MOPS running buffer (Invitrogen) 

depending on the separation required. The gels were run at 200V for 35 minutes in MES 

or 50 minutes in MOPS buffer. 5 µl of a marker (SeeBlue® Plus2 pre-stained standard, 

Invitrogen) was used to allow the determination of the molecular weights of the 

proteins. 

2.2.16 Western Blotting 
After separation of the proteins by SDS-PAGE, the proteins were transferred to Protran 

nitrocellulose membranes (Schleicher & Schuell) or ImmobilonTM P (Millipore) by 

Western blotting at 85 V for 90 minutes in blotting buffer using a Transblot apparatus 

(Biorad). The blots were then blocked by shaking with 5% milk powder (Marvel) in 

PBS-T for 1-2 hours. The appropriate primary antibody (see Appendices 8.4 and 8.5) 

diluted in 10 ml PBS-T containing 5% milk was added and the blot incubated overnight 

at 4°C on a rocking platform. The following day the blots were washed 3x 10 minutes 

Figure 12 – Thermal profile of cycling conditions for Real-time PCR. 
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with PBS-T and then incubated with secondary antibody (see Appendices 8.4 and 8.5) 

conjugated to horseradish peroxidase diluted in PBS-T supplemented with 5% milk on a 

rocking platform for 1 hour. The blots were then washed 3x for 10 minutes with PBS-T. 

Each membrane was briefly incubated with 2 ml ECL (enzymatic chemiluminescence) 

solution (1:1 mixture of solution 1 and 2). The blots were then exposed to Fuji medical 

X-ray film (Fisher) for varying times depending on intensity of the signal. The films 

were developed using a Konica SRX-101A film processor. 

2.2.17 Anti-RGC-32 antibody 
Several blood samples before and after immunisation were taken from two rabbits to 

obtain sera containing anti-RGC-32 antibodies (performed by Eurogentec) (see Table 

5). 

Sample Week Bleeding/Immunisation 

1st bleed 1 
Pre-immune bleeding/ 

1st Immunisation 

- 3 2nd Immunisation 

- 5 3rd Immunisation 

2nd bleed 6 Small bleeding 

- 9 4th Immunisation 

3rd bleed 10 Large bleeding 

4th bleed 13 Additional large bleed 

- 14 5th Immunisation 

5th bleed 15 Final bleed 

Table 5 – Bleeding timetable of rabbit 2817 and 2818. 

 

2.2.18 Stripping blots 
Western blot membranes were probed as required after removing the antibodies bound 

to the membrane. This procedure was performed by washing 2x with PBS-Tween for 5 

minutes, incubating with stripping buffer at 50°C for 15 minutes and washing again 2x 

with PBS-Tween for 5 minutes. The blots were then blocked with 5% milk in PBS-

Tween for 1 hour and probed for a second time with a different primary antibody. 
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2.2.19 Coomassie staining 
After completion of SDS-PAGE, the gel was washed in deionised water 3x for 5 

minutes. 10 ml of Bio-SafeTM Coomassie stain (Biorad) was applied to the gel and 

incubated for 1 hour on the shaker. The gel was then washed with deionised water 3x 

for 5 minutes followed by an incubation of 1 hour with deionised water to remove the 

background staining. The gel was then dried onto filter paper using a vacuum gel dryer 

set at 80°C for 45 minutes. 

2.2.20 Immunoprecipitation 
For immunoprecipitation the cells were pelleted at 1300 rpm in a Sorvall Legend RT 

centrifuge. 2 x 107 cells were lysed in 1 ml of EBC buffer and incubated on ice for 30 

minutes. Each sample was sonicated 5x for 10 sec. The lysates were then spun down at 

13000 rpm in a Fisher Scientific accuSpinTM MicroR centrifuge at 4°C for 5 minutes. 

The supernatant was transferred to a new 1.5 ml tube. 40 µl lysate of each sample was 

kept for analysis and mixed with 10 µl 5x GSB for SDS-PAGE. To preclear the lysate, 

it was transferred to a tube containing 40 µl of a 1:1 protein A-sepharose beads/PBS 

slurry. The samples were incubated with rotation for 90 minutes at 4°C. The precleared 

lysates were then spun briefly and transferred to a new 1.5 ml tube. 4 µg of either rabbit 

IgG (negative control), anti-FLAG antibody (positive control) or 10 µl of rabbit 2818 

pre-immune serum or rabbit 2818 serum from 3rd bleed containing the anti-RGC-32 

antibodies was added to the lysates and incubated for 2.5 hours at 4°C with rotation. All 

lysates except the anti-FLAG antibody IP samples were then added to 1.5 ml tubes 

containing 40µl of a 1:1 protein A-sepharose beads/PBS slurry. The lysates incubating 

with the anti-FLAG antibody were added to a slurry of protein G-sepharose beads and 

incubated with rotation at 4°C overnight. 

The following day the beads were washed 3x in 0.5 ml EBC containing 0.03% SDS. 

After each wash step the samples was spun briefly and the supernatant removed. The 

beads were then washed in PBS, spun briefly and the supernatant removed. 15 µl of 2x 

GSB was added and the sample incubated at 95°C for 10 minutes, vortexed briefly, 

spun briefly and loaded onto a SDS-PAGE gel (see section 2.2.15). 
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2.2.21 Cellular fractionation 
3x107 cells were washed twice in ice cold PBS and pelleted at 1300 rpm for 5 minutes. 

The pellet was resuspended with slow pipetting in 1 ml of lysis buffer B so that no 

clumps were visible. The sample was centrifuged at 2500 rpm for 3 minutes at 4°C 

using a Sorvall Legend RT centrifuge. The supernatant was kept as the cytoplasmic 

fraction. The pellet containing the nuclei was resuspended in 1 ml lysis buffer B 

containing 1/10 volume (100 µl) of detergent (3.3% [wt/vol] sodium deoxycholate and 

6.6% [vol/vol] Tween 40) was added under slow vortexing to prevent clumping and the 

sample incubated on ice for 5 minutes. The sample was centrifuged at 2500 rpm for 3 

minutes at 4°C. The nuclear fraction was rinsed with 1 ml of lysis buffer B and 

centrifuged at 2500 rpm for 3 minutes at 4°C. The supernatant was discarded. 1 ml of 

TRI Reagent was added to both nuclear and cytoplasmic fractions for RNA isolation 

(see section 2.2.11). For SDS-PAGE 1 ml of 1x GSB was added to the nuclear fraction 

and 20 µl of the cytoplasmic fraction was mixed with 5 µl 5x GSB. 20 µl of each 

fraction was used for SDS-PAGE. 

2.2.22 Kinase Assay (in vitro) 
2 units of recombinant CDK1/Cyclin B1 (NEB) in a 1:10 dilution of ADBI (Upstate) 

were mixed with different concentrations (0 µM control, 0.6 µM, 1.2 µM, 2.4 µM and 

3.6 µM) of RGC-32 protein in phosphate buffer pH 7.5 (see section 2.2.25 and 2.2.23) 

(Table 6). A kinase assay was performed using the CDK1/cdc2 kinase assay kit from 

Upstate. After a 10 minute incubation at 30°C, 12.5 µl of 5x GSB was added and the 

sample incubated at 95°C for 10 minutes, vortexed, spun briefly, loaded to a 10% Bis-

Tris gel (Invitrogen) and run in 1x MOPS buffer (see section 2.2.15). Following SDS-

PAGE, the gel was fixed by rocking for at least 1 hour in fixing solution (40% 

methanol, 10% glacial acid (acetic acid)) and then dried onto filter paper (Whatman) for 

45 minutes. The dried gel was then exposed to a phosphor screen for various times 

depending on the intensity of the radioactivity to visualise phosphorylated Histone H1. 

The phosphor screen was scanned by a Storm 860 scanner and analysed using 

ImageQuant 5.1 software (Amersham Biosciences). The remaining sample was 

analysed by SDS-PAGE and the amount of CDK1 immunoprecipitated was determined 

by immunoblotting (see section 2.2.15 and 2.2.16). 
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Sample 
Recombinant 

CyclinB1/ 
CDK1 

Histone 
H1 

RGC-
32 

Phosphate 
Buffer  

(20 mM) 

ATP/ 
32P Mg 

ADBI Inhibitor 

no 
CDK1 
control 

- 10 µl - 5 µl 10 µl 
5 µl 

(1:10) 
+10µl 

10 µl 

no 
protein 
control 

5 µl (2 units) 10 µl - 5 µl 10 µl 10 µl 10 µl 

0.8 µM 5 µl (2 units) 10 µl 5 µl - 10 µl 10 µl 10 µl 

1.7 µM 5 µl (2 units) 10 µl 5 µl - 10 µl 10 µl 10 µl 

3.3 µM 5 µl (2 units) 10 µl 5 µl - 10 µl 10 µl 10 µl 

5.0 µM 5 µl (2 units) 10 µl 5 µl - 10 µl 10 µl 10 µl 

Table 6 – showing an overview of what each sample contained. 

2.2.23 Kinase Assay (in vivo) 
Immunoprecipitation prior to the kinase assay was carried out following the protocol 

previously described (see section 2.2.20). Cell pellets were lysed in 1 ml lysis buffer 

(Jin et al., 2005) per 2x107 cells instead of EBC buffer and 2 µg rabbit anti-cyclin B1 or 

rabbit-IgG antibody were used. The following day the beads were washed 3x in 0.5 ml 

lysis buffer (Jin et al., 2005) containing 0.03% SDS. After each wash step the samples 

was spun briefly and the supernatant removed. Then the beads were washed 2x with 

ADBI buffer, spun briefly and the supernatant removed. The CDK1 Kinase Assay was 

performed following the manufacturer’s instructions (Upstate). The beads were then 

incubated at 30°C in a waterbath for 10 minutes. 10 µl of 5x GSB was added and 

samples analysed as described above (see section 2.2.22). 

2.2.24 Gelshift assays 

2.2.24.1 Preparing labelled double-strand DNA probes 
Oligonucleotides (Invitrogen) were labelled by mixing 1 µl of sense oligonucleotide 

(100ng/µl; forward) with 5 µl 5x forward reaction PNK buffer (Invitrogen), 4 µl 32P γ-

ATP (Perkin-Elmer) and 1 µl T4 Polynucleotide Kinase (PNK) (Invitrogen) in a total 
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volume of 25 µl. The samples were then incubated at 37°C for 30 minutes. The kinase 

was then inactivated by heating the samples to 65°C for 20 minutes. After this 

incubation 2 µl (200 ng) of complementary oligonucleotide (anti-sense) (100 ng/ µl) 

was added to create a double-stranded probe. The samples were heated to 95°C for 3 

minutes to denature the DNA and slowly annealed by moving the heat block containing 

the samples to room temperature. This slow cooling ensures in accurate hybridisation of 

the oligonucleotides. 80 µl of TE pH 7.5 was added to dilute the sample and 

unincorporated 32P γ-ATP was removed by spinning through a SPIN-X® column 

(Costar) containing 500 µl of a 50% PBS/Sephadex® G-50 (Sigma) slurry. 

Name Number Sequence (5’-3’) 

Cp RBP-J kappa MW 54 AAA CAC GCC GTG GGA AA A AAT  

Cp RBP-J kappa mut MW 115 AAA CAC GCC GTG GCT AAA AAT 

RGC32p RBP-J kappa MW 123 CCC AGC ACT TTG GGA GGC TGA 

RGC32p RBP-J kappa mut MW 121 CCC AGC ACT TTG GCT GGC TGA 

Table 7 – Oligonucleotides used gel shift. Only the forward oligonucleotides are shown. RBP-J kappa sites are 

shown in bold, mutations of the sequence is highlighted in red. 

2.2.24.2 Preparation of double-strand unlabelled competitor DNA 
12.5 µl (1 µg/µl) of each of the complementary oligonucleotides were mixed with 25 µl 

TE, heated at 95°C for 3 minutes and then left to cool to room temperature in the 

heating block (see above). 200 µl of TE pH 7.5 was added to dilute the sample. 

2.2.24.3 Preparation of the gel shift sample 
For each sample 0.5 µl water, 1 µl probe (2 ng), 5 µl of gel binding buffer, 0.5 µl DTT 

was mixed with TE (negative control) or 3 µl GST-RBP-J kappa protein in the presence 

or absence of 3 µl competitor. The samples were left at room temperature for 30 

minutes. 2.5 µl 4x TBE loading buffer was then added and the entire sample was loaded 

onto a 6% TBE gel. The gel was run at 100 V for 55 minutes in 0.5x TBE buffer, then 

fixed in fixing solution for 1 hour, dried onto filter paper for 45 minutes and then 

exposed to a phosphor screen. 
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2.2.25 RGC-32 protein preparation 
The E. coli strain BL21 pLYS was transformed with pET-RGC-32 (by Helen Webb). 

The bacteria were streaked out on a plate containing 100 µg/ml ampicilin and 42 µg/ml 

chloramphenicol and grown overnight at 37°C. 50 ml of LB containing both antibiotics 

were inoculated with a single colony and grown overnight at 37°C. 4 ml of the growing 

culture were added to 5x flasks containing 400 ml LB. When the OD at 600 nm reached 

0.5, RGC-32 expression was induced by adding 1 mM of IPTG for 4 hours at 37°C. The 

cells were then pelleted at 8000 rpm at 4°C for 10 minutes. The pellets were 

resuspended in a total volume of 80 ml cold Buffer A. To lyse the cells, the bacteria 

were frozen in dry ice and defrosted 3 times. 10 µg/ml DNase I was added, swirled at 

room temperature for 15 minutes and cooled on ice for 15 minutes. The lysates were 

then sonicated 6x 10 sec with 10 sec gaps using the Sonics Vibra Cell. Cell lysates were 

centrifuged at 9800 rpm at 4°C for 20 minutes using a JA-20 rotor (Beckman) in a 

Beckman Coulter Avanti J-20 XP centrifuge and resuspended in 20 ml buffer X. After 

repeating this step, the cells were resuspended in 20 ml buffer Y. A 1:1 slurry of HIS-

Select® Nickel Affinity Gel (Sigma) was added to the supernatant and samples rotated 

for 90 minutes at 4°C. Beads were washed twice with 25 ml buffer A, twice with 25 ml 

buffer B, twice with 25 ml buffer C and twice with 25 ml buffer A. One sample was 

kept for anti-RGC-32 antibody purification. For all other samples the protein was eluted 

by adding 3x 1 ml elution buffer.  

2.2.26 Dialysis 
RGC-32 protein from the RGC-32 protein preparation (see section 2.2.25) was dialysed 

against 20 mM PO4 buffer using a Slide-A-Lyzer® Dialysis Cassette (Thermo 

Scientific) and following manufacturer’s instructions. 

2.2.27 Antibody purification 

2.2.27.1 HIS-Select® Nickel Affinity Gel 
500 µl of HIS-Select® Nickel Affinity Gel (Sigma) containing RGC-32 protein from 

RGC-32 protein preparation (see section 2.2.25) was transferred into a 1.5 ml tube, 

centrifuged at 4000 rpm for 1 minute at 4°C and the supernatant discarded. The beads 

were washed twice by adding 500 µl PBS. The beads were gently mixed, spun down 

and the supernatant removed and again 500 µl of PBS added. 80 µl of DMSO was 
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added to an ampoule of disuccinimidyl suberate (DSS, Piercenet) and the sample 

vortexed for 5-10 minutes to dissolve the powder. 75 µl of DSS/DMSO was added to 

beads containing the RGC-32 protein and incubated at room temperature for 1 hour at 

4°C with rotation. The beads were briefly centrifuged and washed 4x with 500 µl of 10 

mM glycine pH1. A Bradford assay was carried out to ensure that no protein was eluted 

with the glycine. The beads were washed twice with 500 µl of PBS, and then 3 ml of 

rabbit 2818 serum (final bleed) were added and incubated for 1 hour at 4°C with 

rotation. Following the incubation the beads were washed 4x with 10 ml PBS followed 

by one wash in 1:10 diluted PBS. A sample of the supernatant was taken before the first 

wash and kept as flow-through. To elute the antibody, the beads were washed 4x with 

500 µl of 10 mM glycine pH1 by rotating for 5 minutes and keeping the supernatant. 

For each sample the pH and the protein content was measured. 100 µl of 1 M Tris pH 

8.5 was added to increase the pH to 7.5 and to stabilise the antibody. 

2.2.27.2 CH sepharose column 
300 mg CH sepharose was swollen in 25 ml of 1 mM ice cold HCl to activate the resin. 

After a 15 minutes incubation on ice, the beads were spun down and washed twice in 25 

ml 0.1 M NaHCO3 pH 8 mixed with 0.5 M NaCl, vortexed, centrifuged and the 

supernatant discarded. The supernatant was then adjusted to obtain a 1:1 resin. 3 mg of 

RGC-32 protein was added to the beads and incubated at room temperature for 1 hour 

with rotation. After the incubation the beads were centrifuged and a 10 µl aliquot was 

taken to compare the protein content to the original concentration. 200 µl of 50 mM 

glycine pH 8 was added to the beads and incubated at room temperature for 1 hour with 

rotation. The beads were then washed with 25 ml of 20 mM glycine pH 8 mixed with 

0.5 M NaCl and washed twice with 25 ml 10 mM glycine pH1 mixed with 0.5 M NaCl. 

A Bradford assay was carried out to ensure that no protein was eluted. 

2 ml of rabbit 2818 serum (final bleed) was added to the resin and incubated at 4°C for 

1 hour with rotation. The beads were washed 4x with 25 ml of PBS and once with 1:10 

diluted PBS. An aliquot was taken before the first wash and used as flow-through. To 

elute the antibody, the beads were washed 4x with 500 µl of 10 mM glycine pH 1 by 

rotating for 5 minutes and keeping the supernatant. For each sample the pH and the 

protein content was measured. 100 µl of 1 M Tris pH 8.5 was added to increase the pH 

to 7.5 and to stabilise the antibody. 
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2.2.27.3 Montage® Prosep-A® Kit 
10 ml of rabbit serum 2818 (final bleed) was applied to a Montage® Kit Prosep-A® 

column (Millipore). The anti-RGC-32 serum was purified according to manufacturer’s 

instructions. 

2.2.28 Bradford Assay 
10 µl of all 0.5 ml samples obtained from the RGC-32 protein or anti-RGC-32 antibody 

purification were added to 200 µl of a 1:5 dilution of Bradford reagent (Fisher). The 

colour change of the assay reagent was monitored by measuring the absorbance at 595 

nm using an Anthos reader 2001 plate reader. 
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3 The effects of RGC-32 upregulation on the cell cycle 

3.1 Introduction 
The EBV protein EBNA 3C is essential for B cell transformation and disrupts numerous 

cell cycle checkpoints (reviewed in (West, 2006)). Many cell cycle pathways have been 

suggested as EBNA 3C targets, but the entire mechanism by which EBNA 3C 

deregulates the cell cycle has not been fully elucidated. Previous microarray studies in 

the West lab revealed that the expression of the novel cell cycle regulator RGC-32 is 

upregulated in the EBNA 3C-positive BJAB cell line E3C-3 compared to the EBNA 

3C-negative cell line pZ2 (for cell lines see (Wang et al., 1990a)). Real-time PCR 

follow-up studies detected RGC-32 mRNA upregulation of up to 14-fold in additional 

EBNA 3C-expressing BJAB cell lines implicating RGC-32 as a downstream target of 

EBNA 3C (Figure 13A, Helen Webb). Additional experiments also detected RGC-32 

upregulation on stable expression of EBNA 3C in the EBV-positive Burkitt’s 

lymphoma cell line, Akata (Figure 13B, Helen Webb) (for cell lines see review (West, 

2006)). Response Gene to Complement 32 (RGC-32) was originally identified as a gene 

activated by the sublytic complement complex C5b-9 (Badea et al., 1998). RGC-32 

protein was shown to play a role in cell cycle progression into S and M phase and was 

demonstrated to bind and activate the key mitotic kinase, CDK1 (Badea et al., 2002). 

The activation of CDK1 is essential to promote transition into mitosis and its activation 

is prevented when the G2/M checkpoint is triggered. The upregulation of RGC-32 in 

EBNA 3C-expressing cells may therefore contribute to cell cycle checkpoint disruption 

by EBNA 3C by promoting activation of CDK1. This chapter aims to investigate the 

effects of RGC-32 on the cell cycle and its potential role as a downstream target of 

EBNA 3C. 

3.2 EBNA 3C-expressing BJAB cell lines overcome the G2/M 
checkpoint 

EBNA 3C has been shown to disrupt the G2/M checkpoint in response to a variety of 

agents when expressed in the EBV-negative Burkitt’s lymphoma cell line DG75 

(Krauer et al., 2004b). To confirm that EBNA 3C also disrupted this checkpoint in the 

BJAB cells stably expressing EBNA 3C and increased levels of RGC-32, EBNA 3C-

negative BJAB cells were exposed to different concentrations of etoposide. Etoposide is  
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Figure 13 - (A) Real-time PCR of BJAB cells stably expressing the EBNAs showing the 

ratio of RGC-32/GAPDH mRNA levels. EBNA 3C expression was detected by western 

blotting (lower panel). (B) Real-time PCR of the control Akata stable cell-line, neo1, and the 

Akata E3C-2 cell-line stably expressing EBNA 3C showing the ratio of RGC-32/GAPDH 

mRNA levels relative to neo1. Results represent the mean +/- standard deviation for 3 

independent dilutions of cDNA. Experiments were carried out by Helen Webb and Michelle 

West. 

(A) 

(B) 
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a topoisomerase II inhibitor which activates the G2/M checkpoint by causing DNA 

double strand breaks resulting in G2 arrest. PI staining and FACS analysis was carried 

out to visualise the cell cycle distribution of the EBNA 3C-positive BJAB cell line E3C-

3 and the EBNA 3C-negative cell line pZ3 after treatment with 100 and 300 nM of 

etoposide for 24 hours. The representative FACS profile in Figure 14A shows that pZ3 

cells clearly accumulate in G2/M after treatment with 300 nM etoposide indicative of 

G2 arrest. A reduction was found in the G2/M population of E3C-3 cells relative to pZ3 

cells indicating that cell cycle arrest is reduced in the EBNA 3C-expressing cell line 

despite DNA damage. Significantly, a 4.6-fold increase in the percentage of cells in 

G0/G1 was also observed following treatment with 300 nM etoposide indicating that a 

significant proportion of cells overcome the G2/M checkpoint and continue progression 

through the cell cycle into G1 (Figure 14A). 

To further confirm this observation, two more BJAB cell lines, the EBNA 3C-negative 

cell line pZ1 and the EBNA 3C-positive cell line E3C-7, were treated with 300 nM and 

500 nM etoposide. Consistent with the previous observation, FACS analysis revealed 

that the G2/M population of E3C-7 cells was reduced by approximately 11% compared 

to pZ1 cells and the G0/G1 population of the E3C-7 cells was increased by more than 2-

fold in the presence of etoposide (Figure 14B). These data indicate that a significant 

proportion of E3C-7 cells are able to overcome cell cycle arrest. 

Results of three independent experiments demonstrated that the cell population in 

G0/G1 increased by an average of 3.5-fold and 2.3-fold in E3C-3 cells treated with 300 

nM and 500 nM etoposide respectively, compared to control pZ3 cells (Figure 15A+B). 

A similar observation can be made for E3C-7 cells which showed an increase of the 

G0/G1 population of more than 2-fold relative to pZ3 cells (Figure 15A+B). 

To determine whether the increase in the number of cells in G0/G1 in E3C-3 cells 

compared to pZ3 cells after DNA damage was due to transit through the checkpoint 

rather than slower growth of these cells, S phase cells were pulse-labelled with BrdU 

prior to etoposide treatment. Only 2.6% BrdU-positive pZ3 cells were observed in 

G0/G1 after etoposide treatment for 24 h (Figure 16A). However, 12.3% of the EBNA 



3-82 

Figure 14 – Representative FACS profiles after DNA damage showing untreated (Control) 

and cells exposed to etoposide harvested after 24 h. Cells were stained with propidium 

iodide to visualise cell cycle distribution and gated into the cell cycle populations by their 

DNA content (PE-A). Numbers represent the percentage cell population in <2n (apoptotic 

cells), G0/G1, S or G2/M phase.  (A) shows BJAB cell lines pZ3 and E3C-3 after exposure 

to 100 nM & 300 nM etoposide. (B) shows BJAB cell lines pZ1 and E3C-7 after exposure to 

300 nM and 500 nM etoposide. 
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Figure 15 - Fold increase of BJAB control and EBNA 3C-positive cells in G1 phase 

relative to BJAB pZ3 control cells (A) after 24 h exposure to 300 nM etoposide and (B) 

after 24 h exposure to 500 nM etoposide. Results represent the mean of 3 independent 

experiments +/- standard deviation. 
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(A) 

Figure 16 - (A) Representative FACS profile showing the cell cycle distribution of BrdU-positive 

pZ3 and E3C-3 cells following treatment with 500 nM etoposide for 24 hours. Numbers indicate 

the percentage of gated BrdU-positive cells in G0/G1. The PE-A channel was used to visualise PI-

stained DNA content and the FITC-A channel was used to gate for FITC-positive (BrdU-positive) 

cells. (B) Western blot analysis of EBNA 3C-negative pZ3 and EBNA 3C-positive E3C-3 cell 

lysates following etoposide treatment for 24 hours. Whole cell lysates were separated using 10% 

NuPAGE Novex Bis-Tris gels in MOPS running buffer (Invitrogen). Nitrocellulose membranes 

containing the transferred proteins were probed with anti-Cyclin B1 (1:2000, Santa Cruz), anti-

CDK1 antibody (1:1000, Invitrogen), anti-pCDK1 antibody (1:1000, Santa Cruz) which detects 

Tyrosine 15-phosphorylated CDK1 or anti-Actin antibody (1:5000, Sigma) as an internal control. 

Bands were visualised with ECL. 
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3C-positive E3C-3 cells in G0/G1 had incorporated BrdU which verifies the previous 

result that more EBNA 3C-positive BJAB cells were able to progress through the G2/M 

checkpoint despite DNA damage. Western blot analysis was carried out to investigate 

G2/M checkpoint regulation in EBNA 3C-expressing and control BJAB cells. Cyclin 

B1 is known to be highly expressed during G2 phase where it binds and activates CDK1 

to promote cell cycle progression into mitosis. Soon after the transition into mitosis has 

occurred cyclin B1 is degraded. As expected, cyclin B1 levels are higher in the EBNA 

3C-negative control cell line after etoposide treatment which indicates G2 arrest (Figure 

16B). An accumulation of cyclin B1 can also be observed in the EBNA 3C-positive 

E3C-3 cells but the expression is reduced compared to the control cell line indicating 

reduced G2 arrest. 

DNA double strand breaks lead to phosphorylation and degradation of the cdc25 

phosphatases which activate CDK1 by dephosphorylation of threonine 14 and tyrosine 

15 residues (Krek and Nigg, 1991). This dephosphorylation is required for mitotic 

progression. Tyrosine 15-phosporylated CDK1 levels were found to be increased in 

both BJAB cell lines but the accumulation is slightly reduced in EBNA 3C-expressing 

BJAB E3C-3 cells compared to the EBNA 3C-negative control cell line pZ3 after 

treatment with etoposide (Figure 16B). This experiment has been repeated twice with 

the same outcome. This result further indicates that a proportion of EBNA 3C-

expressing BJAB cells continue to progress through the cell cycle after treatment with 

etoposide. 

To confirm that EBNA 3C-positive BJAB cells showed disrupted G2/M checkpoint 

regulation in response to other treatments the cell lines pZ1, pZ3, E3C-3 and E3C-7 

were exposed to gamma radiation. Consistent with the results obtained using etoposide, 

E3C-3 and E3C-7 cells showed a significant decrease in the number of cells in G2/M 

and an increase in the G0/G1 population. FACS analysis reported that only 5.3% of pZ3 

cells could be found in G0/G1 24 h after treatment whereas E3C-3 cells showed 15.4% 

in G0/G1 (Figure 17A). Therefore, an average of a 2.2-fold higher population could be 

observed in G0/G1 phase in the EBNA 3C-positive cell line E3C-3 compared to the 

EBNA 3C-negative cell line pZ3 (Figure 17B). This result further verifies that EBNA 

3C-expressing BJAB cells overcome the G2/M checkpoint despite DNA damage. 
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(B) 

(A) 

Figure 17 - (A) Representative FACS profiles of pZ3 and E3C-3 cells after DNA damage 

showing untreated (Control) and gamma irradiated cells (10 Gy) harvested after 8 and 24 h. 

Cells were stained with propidium iodide to visualise cell cycle distribution. (B) Fold increase 

of control and EBNA 3C-positive cells in G0/G1 phase relative to pZ3 cells 24 h after 

exposure to 10 Gy. This Figure shows the mean of 3 independent experiments +/- standard 

deviation. 
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Similar results could be observed in the BJAB cell lines pZ1 and E3C-7 after exposure 

to gamma radiation (Figure 18). pZ1 cells show a clear arrest in G2/M of 74.1% 

whereas only 33.3% of the E3C-7 cells arrested in G2/M. Interestingly, the G0/G1 

population in the EBNA 3C-positive cell line is increased approximately 3-fold 

compared to the EBNA 3C-negative cell line indicating that more cells are able to 

overcome cell cycle control. It can also be observed that the apoptotic cell population is 

strongly increased in E3C-7 cells after gamma irradiation. This may further indicate that 

gamma irradiated cells were able to overcome the G2/M checkpoint but died after or 

during mitosis due to excessive DNA damage. 

These results clearly demonstrate that EBNA 3C-positive BJAB cells can overcome the 

G2/M checkpoint in response to DNA damage. Since the EBNA 3C-positive cell lines 

E3C-3 and E3C-7 express higher RGC-32 mRNA levels than the EBNA 3C-negative 

cell lines pZ1 and pZ3 and RGC-32 is known to support cell cycle progression into 

mitosis, the higher RGC-32 expression might play an important role in the G2/M 

checkpoint disruption. 

3.3 Investigating the effects of exogenous RGC-32-
overexpression on the G2/M checkpoint 

3.3.1 Introduction 
To determine whether the observed disruption of cell cycle regulation in BJAB cells 

overexpressing EBNA 3C was due to higher RGC-32 expression, stable cell lines 

overexpressing FLAG-tagged RGC-32 were generated in the lab by Helen Webb. These 

cell lines were made using the Flp-in system (Invitrogen) by first generating FRT host 

cell lines in 2 different cell backgrounds: the EBV-negative cell lines, BJAB and DG75.  

Exogenous expression of RGC-32 in both cell backgrounds led to G2/M checkpoint 

disruption in response to etoposide (Figure 19A+B, Helen Webb). BJAB FRT RGC-32 

cells show a reduced proportion of cells in G2/M and an increased cell population in 

G0/G1 in response to etoposide. A representative experiment demonstrated that the cell 

population in G0/G1 increases by 31.3% and 54.1% in BJAB cells stably expressing 

FLAG RGC-32 compared to the control cell line after treatment with 150 and 200 nM 

etoposide respectively (Figure 19A). 
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Figure 18 - Representative FACS profiles of pZ1 and E3C-7 cells after 

DNA damage showing untreated (Control) and gamma irradiated cells (10 

Gy) harvested after 8 and 24 h. Cells were stained with propidium iodide to 

visualise cell cycle distribution. 

<2n:     29.6%
G0/G1: 38.4%
S:         10.4%
G2/M:   21.6%

<2n:     42.4%
G0/G1: 17.1%
S:           7.2%
G2/M:   33.3%

<2n:     23.0%
G0/G1: 39.5%
S:         10.9%
G2/M:   26.6%

<2n:   17.0%
G0/G1: 5.7%
S:         3.1%
G2/M: 74.1%

control 10 Gy

E3C-7

pZ1

<2n:     29.6%
G0/G1: 38.4%
S:         10.4%
G2/M:   21.6%

<2n:     42.4%
G0/G1: 17.1%
S:           7.2%
G2/M:   33.3%

<2n:     23.0%
G0/G1: 39.5%
S:         10.9%
G2/M:   26.6%

<2n:   17.0%
G0/G1: 5.7%
S:         3.1%
G2/M: 74.1%

control 10 Gy

E3C-7

pZ1



3-89 

Figure 19 - Stable expression of FLAG-RGC-32 is sufficient to disrupt the G2/M checkpoint. 

(A) Representative cell cycle profile analysis of DG75 FRT control cells and DG75 FRT/FLAG 

RGC-32 cells treated for 24 hours with etoposide. Control cells (0) were harvested prior to 

etoposide treatment. (B) Representative cell cycle profile analysis of BJAB FRT control cells 

and BJAB FRT/FLAG-RGC-32 cells treated for 48 hours with etoposide. 

(A) 
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DG75 cells stably overexpressing RGC-32 also showed an increase of cells in G0/G1 

and reduced levels of cells in G2/M consistent with transition of cells through the 

checkpoint whereas DG75 FRT control cells accumulated in G2/M displaying G2 arrest 

(Figure 19B). A 2.6 and 3.2-fold increase in the proportion of cells in G0/G1 was 

observed in DG75 FRT/RGC-32 cells compared to control cells in the presence of 400 

nM and 800 nM etoposide, respectively. RGC-32 expressing DG75 cells also displayed 

a decrease of 60% and 52% in the G2/M population at 400 and 800 nM etoposide 

respectively. 

Clear differences were observed in the cell-cycle distribution of BJAB FRT/RGC-32 

and DG75 FRT/RGC-32 cells compared to control FRT cells in response to etoposide, 

with increased numbers of cells in G0/G1 indicating increased passage of cells through 

the G2/M checkpoint.  

3.3.2 Characterisation of stable RGC-32 expressing cell lines 
When follow-up experiments were initiated using the previously established FRT cell 

lines it became apparent that the cell cycle disruption phenotype was reduced (Figure 

20A). Results of three independent experiments demonstrated that the mean cell 

population in G0/G1 increases by 12, 13 and 14% in BJAB cells stably expressing 

FLAG RGC-32 compared to the control cell line after treatment with 50, 100 and 200 

nM etoposide respectively (Figure 20B). This increase in the G0/G1 population was 

consistently observed throughout multiple etoposide experiments. The change in the 

phenotype could have resulted from continued passage in culture allowing the cells to 

compensate for RGC-32 overexpression by alteration of other cell cycle regulatory 

pathways. This hampered further experiments using these cell lines. 

Attempts were made to make additional new stable cell lines overexpressing RGC-32 

by transfecting the previously established BJAB FRT host cell line with the FRT 

FLAG-RGC-32 vector and pOG44 which mediates integration of the FRT vector 

expressing RGC-32 into the genome via Flp Recombination Target (FRT) site. The 

attempts to make new stable BJAB cell lines overexpressing RGC-32 were unsuccessful 

possibly due to overdilution during the early stages of selection. 
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Figure 20 - (A) Representative FACS profiles of BJAB FRT and FRT/RGC-32 cells 

after DNA damage showing untreated (Control) and cells treated with 50 and 100 nM 

etoposide. Cells were harvested before and after 48 h of etoposide treatment. Cells were 

stained with propidium iodide to visualise cell cycle distribution. (B) Percentage change 

of G0/G1 cell population of BJAB FRT RGC-32 compared to the control cell line after 

48 h of etoposide addition. This Figure shows the mean of 3 independent experiments +/- 

standard deviation. 
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3.3.3 The effects of transient RGC-32 overexpression 

Experiments were carried out to investigate whether the effects of RGC-32 on the cell 

cycle could be assayed in transient transfection assays in B cells. Transient expression 

of RGC-32 has previously been shown to override serum-induced G1 arrest in aortic 

smooth muscle cells (Badea et al., 2002).  

DG75 cells were transiently transfected with a FLAG-RGC-32-expressing construct 

using electroporation techniques (Figure 21A). Under the conditions used a transfection 

efficiency of approximately 33% was achieved (Figure 21B). Western blot analysis 

confirmed the overexpression of RGC-32 (Figure 21A). When transiently transfected 

cells were treated with etoposide to induce G2 arrest, we observed no detectable 

difference between control and RGC-32-expressing cells (Figure 22). 

This result may indicate that transient RGC-32 overexpression might not be sufficient to 

disrupt the G2/M checkpoint since a transfection efficiency of only 33% was achieved 

(Figure 21B). 

3.4 RGC-32 knockdown may cause partial G0/G1 arrest 
To determine whether RGC-32 knock-down could resolve the G2/M checkpoint defect 

in BJAB cells overexpressing RGC-32, RNA interference experiments were carried out 

using small interfering RNA (siRNA)-expressing plasmids. BJAB E3C-3 cells were 

transiently transfected with 4 RGC-32-specific siRNA-expressing plasmids (siRNA1, 2, 

4 or 5) or control scrambled siRNA-expressing plasmid. Transfection efficiencies of 

approximately 60% were achieved in these experiments using Amaxa nucleofection. 

The initial experiment showed that siRNA4 reduced RGC-32 mRNA by 5%, siRNA1 

by 24%, siRNA5 by 50% and siRNA2 by 78% (Figure 23A). Since the best RGC-32 

mRNA reduction was achieved by transfection with siRNA2, all further experiments 

were carried out using this siRNA. To investigate the effects of RGC-32 on cell cycle 

disruption, the cells were treated with 300 nM etoposide 24 hours after transfection with 

either the plasmid expressing siRNA2 or the scrambled (control) and harvested after a 

further 24 hours. To confirm that RGC-32 mRNA knockdown was successful, a sample 

of each experiment was analysed using real-time PCR (Figure 23B). The results showed  
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Figure 21 – DG75 cells were transiently transfected with 40 µg of pFLAG empty vector or pFLAG 

RGC-32. (A) DG75 cells were harvested 48 hours post transfection and whole cell lysates were 

separated using 10% NuPAGE Novex Bis-Tris gels in MES running buffer (Invitrogen). Nitrocellulose 

membranes containing the transferred proteins were probed with anti-RGC-32 serum 2818 (1:500). 

Bands were visualised with ECL. (B) Transfection efficiencies were determined in DG75 cells 

transiently transfected with 2 µg of empty FLAG vector (0 µg GFP control) or with 2 µg pmaxGFP® 

were harvested after 24 and 48 hours and the percentage GFP-positive cells determined by flow 

cytometry. 
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Figure 22 - DG75 cells were transiently transfected with 40 µg of pFLAG empty 

vector or pFLAG RGC-32. 24 hours post transfection DMSO, 400 or 800 nM 

etoposide were added. The cells were harvested 48 hours post transfection and cells 

were stained with propidium iodide to visualise cell cycle distribution. 
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Figure 23 – Real-time PCR analysis of RGC-32 mRNA levels normalised to 

GAPDH expression in BJAB E3C-3 cells transfected with 2 µg plasmids expressing 

indicated siRNAs using Amaxa nucleofection. (A) Results show one representative 

experiment to determine the most efficient siRNA. (B) Results show mean expression 

ratios of 5 independent experiments +/- standard deviation. 
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that siRNA2 knocks RGC-32 down consistently by approximately 80% relative to the 

control. 

Surprisingly, FACS analysis revealed that RGC-32 knock-down resulted in an increased 

cell population in G0/G1 (Figure 24A). The representative FACS profile showed that 

the G0/G1 population of the untreated E3C-3 cells transfected with plasmid expressing 

RGC-32 siRNA2 was increased (57%) compared to the scrambled control (51.3%). 

After treatment with etoposide the G0/G1 population of the E3C-3 cells transfected with 

plasmid expressing RGC-32 siRNA2 increased even more (27.7%) relative to the 

scrambled control (21%). Results from 3 independent experiments demonstrated that 

the G0/G1 population was increased and a corresponding decrease in the proportion of 

cells was found in S and G2/M. The G0/G1 population increased by an average of 10% 

when RGC-32 expression was silenced in the untreated cells and by 30% when RGC-32 

expression was silenced and cells were treated with 300 nM etoposide (Figure 24B). 

These results indicated that knock-down of RGC-32 may cause a delay in progress 

through G1 or G1/S transition. 

The FACS analysis of E3C-3 cells transfected with the plasmid expressing siRNA5 

which only achieved a 50% knockdown of RGC-32 also showed an increased G0/G1 

cell population. Interestingly, cells expressing siRNA5 show an intermediate increase in 

the G0/G1 population relative to cells transfected with the scrambled control or siRNA2 

(Figure 25). However, a similar phenotype to siRNA2 can be seen in siRNA5-

expressing cells after treatment with etoposide suggesting that the 50% RGC-32 knock 

down was sufficient to partly cause a G1 or G1/S delay (Figure 25). 

Asynchronous B cell populations usually show a large percentage in G0/G1 when 

analysed by FACS. Since RGC-32 overexpression was shown to override the G1/S 

checkpoint as well as the G2/M checkpoint to promote S and M phase entry (Badea et 

al., 2002), it is possible that the RGC-32 knockdown causes G1 arrest or delayed 

progress into S phase. It was therefore impossible to study the function of RGC-32 at 

the G2/M checkpoint using this method. However, these results further support the 

model that RGC-32 expression promotes progression through the cell cycle. 
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Figure 24 – (A) Representative FACS profiles of EBNA 3C-positive E3C-3 cells 

transfected with 2 µg of either the control siRNA scrambled or siRNA2-expressing 

plasmid. Cells were treated with DMSO (Control) or 300 nM etoposide and harvested after 

24 h. Cells were stained with propidium iodide to visualise cell cycle distribution. (B) 

Percentage change of BJAB E3C-3 cells in each cell cycle phase relative to scrambled 

control cells after 24 h DMSO and after 24 h exposure to 300 nM etoposide. This Figure 

shows the mean of 3 independent experiments +/- standard deviation. 
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Figure 25 – G0/G1 population before and after treatment with 300 nM etoposide. Results from 

a representative experiment showing the percentage increase in the G0/G1 population of BJAB 

E3C-3 cells transiently transfected with plasmids expressing siRNA2 and 5 compared to the 

cells transfected with the scrambled control. 
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3.5 The effects of EBNA 3C-expressing Raji cells on the 
G2/M checkpoint 

Raji cells are EBV-positive B lymphocytes expressing a latency III pattern. However, 

these cells have a natural deletion of more than 75% of the EBNA 3C gene (Hatfull et 

al., 1988). Raji cell lines stably expressing EBNA 3C were previously shown to 

upregulate LMP1 expression and to cause phenotypic changes of the cell membrane 

including expression of the cytoskeletal protein vimentin and CD23 (Allday et al., 

1993). In initial real-time PCR experiments RGC-32 expression was found to be 

upregulated in the EBNA 3C-expressing Raji cell lines 11.2.1 (30-fold) and 11.5.8 (50-

fold) compared to the control cell line 13.6 transfected with empty vector (gift from 

Prof Martin Allday) (Figure 26A). EBNA 3C expression was confirmed by Western 

blotting (Figure 26B). 

When the Raji cell lines were exposed to 1 µM etoposide to activate the G2/M 

checkpoint, FACS analysis revealed that the EBNA 3C-negative Raji 13.6 cells arrested 

in G2/M whereas the EBNA 3C-expressing Raji cell lines show a reduction of cell cycle 

arrest (Figure 27A). To further confirm this result, the Raji cell lines were exposed to 

gamma radiation. Raji 13.6 cells arrested in G2/M after gamma irradiation but a reduced 

population of G2-arrested cells could be observed for the EBNA 3C-expressing Raji cell 

lines (Figure 27B). 

However, different patterns of non-specific background bands observed in Western 

blots carried out on Raji 13.6 cells led us to investigate their origin. When the protein 

expression of EBNA 1 and EBNA 2 expression was examined, we found that the 13.6 

cell lines did not express either protein unlike all other Raji clones used in these 

experiments (Figure 28). These results indicated that the Raji 13.6 cell line we received 

was likely not to be EBV- positive and was therefore not a Raji cell-derived line. A 

further control cell line 13.6.4 was obtained described as a subclone of 13.6. The Raji 

cell line 11.2.5 also served as a EBNA 3C-negative control although the cells were 

transfected with the EBNA 3C-expressing plasmid like 11.2.1 and 11.5.8 they were 

subsequently found to be EBNA 3C-negative (Allday et al., 1993). These additional cell 

lines were found to express EBNA 1 and EBNA 2, but not EBNA 3C, in line with their 

Raji origin (Figure 29A). Surprisingly, these cell lines did not arrest at similar  
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Figure 26 - (A) Real-time PCR analysis of Raji cell lines 13.6, 11.2.1 and 11.5.8. The 

graph shows RGC-32 mRNA levels divided by GAPDH mRNA levels relative to the 

EBNA 3C-negative control Raji 13.6. Error bars represent the results of 3 independent 

experiments. (B) Western blot analysis. Cell lysates of Raji cell lines 13.6, 11.2.1 and 

11.5.8 were separated in a 10% NuPAGE Novex Bis-Tris gel in MES running buffer 

(Invitrogen). Nitrocellulose membranes containing the transferred proteins were probed 

with anti-EBNA 3C antibody (1:300) or anti-Actin antibody (1:5000, Sigma) as an 

internal control. Bands were visualised with ECL. 
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Figure 27 – FACS profile of Raji cell lines. Raji cell lines stably expressing 

EBNA 3C (11.2.1 and 11.5.8) and control Raji cell line (13.6) were exposed to (A) 1 

µM etoposide for 24 and 48 hours or (B) 10 Gy and harvested after 4 and 24 hours. 

Cells were stained with propidium iodide to visualise cell cycle distribution. 
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Figure 28 – Western blot analysis. Proteins of cell lysates of all Raji cell lines were 

separated in a 12% NuPAGE Novex Bis-Tris gel in MOPS running buffer (Invitrogen). 

Nitrocellulose membranes containing the transferred proteins were probed with M. Stacey 

serum (1:200), anti-EBNA2 antibody (1:300) or anti-actin antibody (1:5000, Sigma) as an 

internal control. Bands were visualised with ECL. 
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Figure 29 – (A) Western blot analysis. Proteins of cell lysates of all Raji cell lines were separated in a 12% 

NuPAGE Novex Bis-Tris gel in MOPS running buffer (Invitrogen). Nitrocellulose membranes containing the 

transferred proteins were probed with M. Stacey serum (1:200), anti-EBNA2 antibody (1:300) or anti-actin 

antibody (1:5000, Sigma) as an internal control. Bands were visualised with ECL. (B) FACS profile of Raji cell 

lines. Raji cell lines stably expressing EBNA 3C (11.2.1 and 11.5.8) and control Raji cell lines (13.6, 13.6.4 and 

11.2.5) were exposed to 1 µM etoposide for 24 and 48 hours. Cells were stained with propidium iodide to 

visualise cell cycle distribution. (C) Real-time PCR analysis of Raji cell lines. The graph shows RGC-32 mRNA 

levels divided by GAPDH mRNA levels relative to normal Raji mRNA. Error bars represent the results of 3 

independent experiments. 
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concentrations of etoposide used previously and displayed similar cell cycle arrest 

levels to EBNA 3C-expressing cells (Figure 29B). Moreover, RGC-32 levels were 

similar in this line to the EBNA 3C-expressing Raji cell lines (Figure 29C). 

Taken together, the results indicate that EBNA 3C expression does not contribute to 

higher endogenous RGC-32 levels in Raji cells. This may be due to the fact that this cell 

line has adapted to immortalised cell growth without EBNA 3C expression due to 

deregulation of other genes involved in cell cycle control. Since the expression of 

EBNA 3C in Raji cells cannot overcome cell cycle regulation in response to DNA 

damaging agents, RGC-32 may be required for EBNA 3C-mediated disruption of cell 

cycle control. 

3.6 RGC-32 can increase CDK1 activity in vitro 
EBNA 3C-positive BJAB cells express higher RGC-32 mRNA levels and can disrupt 

cell cycle control of the G2/M checkpoint. RGC-32 was demonstrated to play a role in 

G2/M transition via binding to the cyclin B/CDK1 complex in vitro and increasing 

CDK1 activity in a manner dependent on the phosphorylation of threonine 91 in RGC-

32 by CDK1 (Badea et al., 2002). RGC-32 also coimmunoprecipitates with CDK1 in 

smooth muscle cells. However, Saigusa et al. showed that transiently overexpressed 

Flag or Myc-tagged RGC-32 did not co-precipitate with exogenously expressed cyclin 

B1 in HEK 293-T cells and stated that RGC-32 was not phosphorylated by CDK1 in 

preliminary experiments (Saigusa et al., 2007). To verify whether RGC-32 can increase 

CDK1 activity, in vitro kinase assays were carried out using purified recombinant His-

tagged-RGC-32 protein and recombinant CDK1/cyclin B1. CDK1 activity was 

determined by measuring the phosphorylation of Histone H1 by CDK1 using 32P-

labelled ATP. The result clearly showed that RCG-32 was able to increase CDK1 

activity in vitro (Figure 30A, top panel). Western blot analysis confirmed the different 

levels of RGC-32 protein induced in the kinase assay (Figure 30A, bottom panel). 

Results of 3 independent experiments showed that CDK1 activity was enhanced by up 

to 11.6-fold with the highest RGC-32 protein concentration used (5 µM) (Figure 30B). 

These results confirm that CDK1 activation by RGC-32 could be a potential mechanism 

for the disruption of G2/M checkpoint regulation. 
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Figure 30 – Recombinant CDK1/Cyclin B1 was mixed with His-RGC-32 to a final 

concentration of 0.8, 1.7, 3.3 and 5 µM in the presence of γ-32P ATP and histone H1. 

(A) Samples were separated in a 10% NuPAGE Novex Bis-Tris gel in MES running 

buffer (Invitrogen). The gel was fixed in fixing solution and dried onto filter paper. 

Radioactively phosphorylated histone H1 was measured using a phosphorimager. 

Protein levels were confirmed by Western blotting using the anti-RGC-32 serum 2818 

(1:500). (B) CDK1 activity relative to control (0 µM RGC-32). This Figure shows the 

mean of 3 independent experiments +/- standard deviation. 
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3.7 The effects of RGC-32 on CDK1 activity in EBV-negative 
B cells 

To determine whether RGC-32 is able to increase CDK1 activity in B lymphocytes, 

asynchronous EBV-negative DG75 cells were transiently transfected with different 

amounts of pFLAG RGC-32. The CDK1/cyclin B1 complex was immunoprecipitated 

with an anti-cyclin B1 antibody. The phosphorylation of Histone H1 and therefore 

CDK1 activity was then measured by performing a kinase assay. A significant increase 

in CDK1 activity could not be observed (Figure 31A+B, top panel). Increasing RGC-32 

protein levels were confirmed by Western blotting but RGC-32 did not appear to affect 

CDK1 activity (Figure 31B). Tyrosine15-phosphorylated CDK1 (pCDK1) and CDK1 

levels remained constant (Figure 31B), but a slight increase in cyclin B1 protein levels 

was observed (Figure 31B). CDK1 activity appeared to correlate with the amount of 

cyclin B1 and CDK1 in the immunoprecipitation (Figure 31B, top panel). In addition, 

we had been unable to demonstrate effects of RGC-32 on the G2/M checkpoint in 

transient transfections, possibly because of low transfection efficiency (Figure 22). 

To investigate the CDK1 activating effect further, the kinase assay was repeated using 

BJAB and DG75 cells stably overexpressing RGC-32. An RGC-32-induced increase in 

CDK1 activity could not be confirmed in asynchronous cultures of these EBV-negative 

cell lines. In fact, RGC-32 expression appeared to suppress CDK1 activity (Figure 32A 

and B). However, protein analysis by SDS-PAGE and Western blotting revealed that 

cyclin B1 levels were lower in the RGC-32 overexpressing BJAB and DG75 cell lysates 

and immunoprecipitates (Figure 32C). The decreased CDK1 activity of RGC-32-

overexpressing cells may therefore be due to lower cyclin B1 expression. CDK1 levels 

appear to be constant in BJAB cell lines, although a difference in the immunoprecipitate 

from the DG75 FRT cells can be observed. CDK1 activity changes could therefore be 

caused by differences in the amounts of immunoprecipitated proteins. 

Further investigations are needed to verify the result that long-term expressed RGC-32 

may downregulate cyclin B1 levels but no such effects of RGC-32 on cyclin B1 levels 

have been reported yet. 

 



3-107 

Figure 31 - DG75 cells were transiently transfected with increasing amounts of a FLAG-RGC-32-

expressing plasmid. CDK1/Cyclin B1 complexes were immunoprecipitated with an anti-cyclin B1 

antibody and γ-32P ATP was used to phosphorylate histone H1 in a kinase assay. (A) CDK1 activity 

relative to control cells not expressing FLAG-RGC-32. This Figure shows the mean of 3 independent 

experiments +/- standard deviation. (B) Radioactively phosphorylated histone H1 was measured 

using a phosphorimager. Protein expression in whole cell lysates and immunoprecipitates was 

determined by Western blotting using antibodies against RGC-32, cyclin B1, CDK1, Actin and 

pCDK1. 
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Figure 32 – CDK1/Cyclin B1 complexes were immunoprecipitated with an anti-Cyclin B1 antibody or IgG 

antibody as a negative control in BJAB and DG75 cells stably over-expressing RGC-32. A kinase assay was 

performed measuring γ-32P ATP phosphorylated histone H1. (A) CDK1 activity is shown here relative to the FRT 

host cell lines. This Figure demonstrates the result of 3 independent experiments +/- standard deviation. (B)  

Radioactively phosphorylated histone H1 was measured using a phosphorimager. (C) Protein expression in whole 

cell lysates (WCL) and immunoprecipitates (IP) were determined using antibodies against Cyclin B1 and CDK1.  
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Further investigations into whether RGC-32 expression upregulates CDK1 activity in 

vivo were carried out using the EBNA 3C-negative cell line BJAB pZ1 and pZ3 and the 

EBNA 3C-positive cell lines E3C-3 and E3C-7. Although in some experiments E3C-3 

and E3C-7 cells showed higher CDK1 activity, the results of those experiments were 

highly variable and no conclusions could be drawn from them (Figure 33). 

To investigate whether CDK1 activity was increased in the EBNA 3C-positive BJAB 

cell line E3C-3 compared to the control cell line pZ3 after DNA damage, asynchronous 

cultures of BJAB cells exposed to 0, 300 and 500 nM etoposide were analysed in a 

kinase assay. Results of the kinase assay showed no significant difference between both 

BJAB cell lines after treatment with etoposide (Figure 34A). Both cell lines show an 

unexpected increase of CDK1 activity of approximately 2-fold after exposure to 300 nM 

etoposide and an increase of 1.8-fold after 500 nM etoposide compared to the untreated 

control. G2 arrest should lead to a decrease in CDK1 activity as a result of the 

degradation of the cdc25 phosphatase that normally dephosphorylates Threonine-14 and 

Tyrosine-15 to activate CDK1. Since etoposide causes G2 arrest and cyclin B1 is highly 

expressed during this phase, the higher CDK1 activity might be due to higher cyclin B1 

expression during G2 arrest resulting in the precipitation of more cyclin B1/CDK1. The 

reduction of CDK1 activity with the higher concentration of etoposide compared to the 

lower concentration is probably due to cell death due to more DNA damage. Western 

blot analysis showed that cyclin B1 expression as well as the level of Tyrosine-15-

phosphorylated (pCDK1) expression increased after etoposide treatment in both cell 

lines although pZ3 cells showed higher cyclin B1 and pCDK1 levels compared to E3C-

3 cells as previously seen (Figure 34B). Accumulation of cyclin B1 is reduced in EBNA 

3C-expressing cells indicating less G2 arrest. Again, increased cyclin B1 levels resulted 

in increased CDK1 activity although the accumulation of cyclin B1 and pCDK1 suggest 

cell cycle arrest indicating that CDK1 should be inactive. In fact, inactive pCDK1 was 

efficiently precipitated by the anti-cyclin B1 antibody making it surprising that CDK1 

activity was still detectable. CDK1 levels in the whole cell lysates varied and appeared 

to follow the pattern of CDK1 activity. The only activity difference detected therefore 

appeared to be due to the variation of CDK1/cyclin B1 protein levels. 
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Figure 33 – CDK1/Cyclin B1 complexes of BJAB cells stably 

expressing EBNA 3C and control cell lines were immunoprecipitated 

with an anti-cyclin B1 antibody and γ-32P ATP was used to 

phosphorylate histone H1 in a kinase assay. CDK1 activity is shown 

relative to control cell line pZ3. This Figure shows the mean of 2 

independent experiments +/- standard deviation. 
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Figure 34 - CDK1/cyclin B1 complexes of BJAB cells stably expressing EBNA 3C and 

control cell lines were immunoprecipitated with an anti-cyclin B1 antibody. (A) γ-32P ATP was 

used to phosphorylate histone H1 in a kinase assay. CDK1 activity is shown relative to control 

cell line pZ3. This Figure shows the mean of 2 independent experiments +/- standard deviation. 

(B) Western blot analysis of whole cell lysates (WCL) and immunoprecipitates (IP). Proteins 

were separated in a 10% NuPAGE Novex Bis-Tris gel in MOPS running buffer (Invitrogen). 

Nitrocellulose membranes containing the transferred proteins were probed with anti-cyclin B1 

(1:2000, Santa Cruz), anti-CDK1 (1:1000, Zymed), anti-pCDK1 (Tyr15-phosphorylated CDK1, 

Santa Cruz) or anti-actin antibody (1:5000, Sigma) as an internal control. Bands were visualised 

with ECL. 
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CDK1 was also immunoprecipitated using an anti-CDK1 antibody instead of an anti-

cyclin B1 antibody. Kinase assay results of the BJAB cell lines pZ3 and E3C-3 exposed 

to 300 and 500 nM etoposide showed that no significant difference in CDK1 kinase 

activity can be observed between the two cell lines (Figure 35). Further, 

immunoprecipitation with CDK1 leads to the same profile observed when CDK1 was 

immunoprecipitated using an anti-cyclin B1 antibody (Figure 34A). 

3.8 Discussion 
RGC-32 expression was shown to be upregulated in EBNA 3C-expressing Akata and 

BJAB cell lines. Since RGC-32 is known to promote S and M phase entry, 

investigations aimed to determine whether EBNA 3C may upregulate RGC-32 to 

overcome cell cycle control. 

EBNA 3C has been shown to disrupt the G2/M checkpoint after DNA damage when 

overexpressed in DG75 cells (Krauer et al., 2004b). Exposure of EBNA 3C-expressing 

BJAB cells to gamma radiation or etoposide confirmed that those cell lines also 

displayed this phenotype. The cell cycle disruption phenotype correlated with RGC-32 

upregulation.  

We also confirmed that RGC-32 overexpression alone could overcome the G2/M 

checkpoint in BJAB and DG75 FRT RGC-32 cell lines. To generate these cell lines the 

Flp-In™ System from Invitrogen was used. Host cell lines were generated to aid the 

generation of stable cell lines in a rapid and directed manner. However, the use of these 

cell lines proved problematic. Although in BJAB cells, the RGC-32 expression cassette 

integrated into the FRT sites incorporated into the host BJAB cell line. This was not the 

case for the DG75 cell lines generated. In DG75 FRT RGC-32 cell lines, integration 

occurred at a random site on two separate occasions. For both BJAB and DG75 cells 

stable cell line generation proved to be just as inefficient as conventional strategies and 

the host cell lines showed high levels of apoptosis indicating that the FRT cassette or 

selection was not well tolerated. 

Moreover, these stable cell lines appeared to adapt to RGC-32 overexpression with time 

since the BJAB FRT RGC-32 cells showed a less convincing phenotype in follow-up 

experiments I carried out. 
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Figure 35 - CDK1/cyclin B1 complexes of BJAB cells stably expressing EBNA 3C 

and control cell lines were immunoprecipitated with an anti-CDK1 antibody and γ-

32P ATP was used to phosphorylate histone H1 in a kinase assay. A representative 

experiment is shown where CDK1 activity is expressed relative to control cell line 

pZ3. 
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Therefore, we examined whether transient RGC-32 overexpression could be used to 

examine the effects of RGC-32 on the cell cycle. Although transient transfection of 

DG75 cells could dramatically increase FLAG-RGC-32 protein expression, the 

phenotype observed after etoposide treatment did not show any significant difference to 

the control cell line. This could be due to the relatively low transfection efficiency of 

approximately 33% suggesting that it was not sufficient enough to change the 

phenotype of the cell cycle distribution after exposure to etoposide. However, treatment 

with up to 800 nM etoposide did not fully arrest the cells. It may be that RGC-32 

overexpressing cells exposed to higher doses which could sufficiently arrest the cells 

would show a difference in the cell cycle distribution of RGC-32-overexpressing cells 

compared to the control cell line. 

Knock-down of RGC-32 expression in BJAB E3C-3 cells increased the G0/G1 cell 

population after etoposide treatment but also in untreated cells. RGC-32 was shown to 

induce serum-starved aortic smooth muscle cells to enter S phase and to significantly 

increase DNA synthesis (Badea et al., 2002; Badea et al., 1998). Since RGC-32 is 

known to promote S phase entry as well as M phase entry, knock-down of RGC-32 

expression may therefore result in G0/G1 arrest. 

Surprisingly, despite misleading early analyses due to the receipt of an incorrect cell 

line, EBV-positive Raji cells which have a natural deletion of the EBNA 3C gene, did 

not express upregulated levels of RGC-32 when EBNA 3C was stably expressed. This 

could be due to the fact that all the other latent EBV proteins are expressed which might 

abolish the effect of EBNA 3C on RGC-32 expression. However, it is also possible that 

EBNA 3C has no effect on RGC-32 in Raji cells since this cell line has adapted to their 

EBV expression pattern and does not need EBNA 3C for proliferation. Therefore, Raji 

cells may not be the ideal model to investigate the function of EBNA 3C. 

Although RGC-32 was able to activate CDK1 in vitro, the activation of CDK1 by RGC-

32 could not be confirmed in vivo using EBV-negative B cell lines BJAB and DG75 

overexpressing RGC-32. In addition, EBNA 3C-expressing BJAB cells which have 

high RGC-32 levels compared to control cell lines did not show a significant difference 

in CDK1 activation before or after DNA damage. However, CDK1 is inactive 

throughout interphase and becomes active shortly prior mitosis. Since asynchronous 
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cells were used in all experiments, only a very small percentage of cells would have 

active CDK1 leading to a relatively low activity and high background noise. This may 

have been reflected in the variability observed in these assays and our inability to detect 

a downregulation of CDK1 activity during G2 arrest. Alternatively, it is possible that 

these cell lines arrest in G2 without an accompanying decrease in CDK1 activity, 

despite the increase in Tyrosine-15 phosphorylation. Kinase assays could be repeated 

using mitotic cells obtained by arresting the cells with the spindle poison nocodazole, 

for example.  
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4 Mechanism of RGC-32 upregulation by EBNA 3C 

4.1 Introduction 
Since microarray studies and real-time PCR follow-up experiments had detected 

increased RGC-32 mRNA levels in EBV-negative BJAB cells stably expressing EBNA 

3C, we next investigated the mechanism of this upregulation. EBNA 3C contains a 

region that can mediate transactivation in Gal-4 fusion assays and has been shown to 

upregulate CD21 and LMP1 expression (Marshall and Sample, 1995). We therefore 

initiated these studies by examining the effect of EBNA 3C on RGC-32 transcription. 

4.2 RGC-32 promoter activation by EBNA 3C 
Reporter assays were carried out in EBV-negative DG75 and HeLa cells to investigate 

the effects of EBNA 3C expression on an RGC-32 promoter-reporter construct 

containing the –1150 to +62 region of the RGC-32 promoter relative to predicted 

transcription start site. Our results detected RGC-32 promoter activation with increased 

levels of EBNA 3C expression reaching a maximum of approximately 2-fold in DG75 

cells (Figure 36A). A maximum upregulation of approximately 1.3-fold could be 

detected in HeLa cells (Figure 36B). Western blotting confirmed EBNA 3C protein 

expression (Figure 36A+C, bottom panels). Control experiments were carried out with 

C promoter-reporter constructs and EBNA 2-expressing constructs which confirmed 

that both cell types were competent for gene activation. 

An additional control experiment was carried out using the RGC-32 promoter-reporter 

construct and an EBNA 2-expressing plasmid since EBNA 2 did not affect RGC-32 

expression when stably expressed in BJAB cells (Figure 13A). Surprisingly, the control 

experiment showed that EBNA 2 was able to activate the RGC-32 by more than 6-fold 

in HeLa cells (Figure 37A). To confirm this result the experiment was repeated in DG75 

cells. RGC-32 promoter activation in DG75 cells was highly variable and did not 

support the observation in HeLa cells (Figure 37B). 

The luciferase assay was repeated with EBV-negative BJAB and EBV-positive Raji 

cells. Transfection of BJAB and Raji cells with up to 10 µg of an EBNA 3C-expressing 

plasmid did not show any significant changes in RGC-32 promoter activation 
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Figure 36 – (A+C) DG75 cells were transiently transfected with different amounts of (A) the EBNA 3C-expressing 

plasmid pSG5 3C or (C) the EBNA 2-expressing plasmid pSG5 2A (2.5, 5 and 10 µg), 2 µg of a Renilla luciferase 

plasmid to determine the transfection efficiency and 4 µg of a firefly luciferase reporter plasmid containing (A) the 

RGC-32 promoter or (C) the C promoter. (B+D) HeLa cells were transiently transfected with different amounts of (B) 

the EBNA 3C-expressing plasmid pSG5 3C or (D) the EBNA 2-expressing plasmid pSG5 2A (0.5, 1 and 2 µg), 1 µg of 

a Renilla luciferase plasmid to determine the transfection efficiency and 2 µg of a firefly luciferase reporter plasmid 

containing (B) the RGC-32 promoter or (D) the C promoter. These graphs show the results of 3 independent 

experiments +/- standard deviation in which RGC-32 promoter activation was measured and are displayed relative to 

the EBNA 3C-negative control. The values for firefly luciferase activity (RGC-32 or C promoter reporter) were 

corrected by dividing them by the values for the Renilla luciferase activity (pRL-CMV transfection control). Luciferase 

assay samples were analysed by Western blotting for EBNA 3C expression using an anti-EBNA 3C antibody (1:300). 
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Figure 37 – (A) HeLa cells were transiently transfected with different amounts of the EBNA 2-

expressing plasmid pSG5 2A (0.5, 1 and 2 µg), 1 µg of a Renilla luciferase plasmid to determine the 

transfection efficiency and 2 µg a firefly luciferase reporter plasmid containing the RGC-32 promoter. 

(B) DG75 cells were transiently transfected with different amounts of the EBNA 2-expressing 

plasmid pSG5 2A (2.5, 5 and 10 µg), 2 µg of a Renilla luciferase plasmid to determine the 

transfection efficiency and 4 µg of a firefly luciferase reporter plasmid containing the RGC-32 

promoter. These graphs show the results of 3 independent experiments +/- standard deviation in 

which RGC-32 promoter activation was measured and displayed relative to the EBNA 2-negative 

control. The values for firefly luciferase activity (RGC-32 promoter reporter) were corrected by 

dividing them by the values for the Renilla luciferase activity (pRL-CMV transfection control). 
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(Figure 38A+B). Further, the EBNA 3C-negative BJAB cell lines pZ1 and pZ3 were 

compared to the EBNA 3C-positive cell lines E3C-3 and E3C-7 by transfecting these 

cell lines with RGC-32pluc and pRL-CMV. Luciferase assay results revealed no 

difference between the EBNA 3C-positive and -negative cell lines (Figure 39). 

Together, these data suggest that the RGC-32 promoter activity may not be upregulated 

by EBNA 3C although a 2-fold increase in activation could be observed in DG75 cells. 

4.3 RBP-J kappa is not able to bind a predicted site in the 
RGC-32 promoter 

EBNA 3C does not bind DNA directly but interacts with the cellular DNA-binding 

proteins RBP-J kappa and PU.1 (Marshall and Sample, 1995; Zhao and Sample, 2000). 

RBP-J kappa also targets EBNA 2 to DNA (Grossman et al., 1994b; Henkel et al., 

1994). 

The transcription factor prediction programme MatInspector identified a potential RBP 

J-kappa site in the RGC-32 promoter at (-941 to -935) (Table 8). To investigate whether 

RBP-J kappa can bind the RGC-32 promoter, gel shift experiments were carried out 

using recombinant RBP-J kappa. Although RBP-J kappa was able to bind an 

oligonucleotide encompassing the C promoter RBP-J kappa site, the protein did not 

bind to the predicted RBP-J kappa site in the RGC-32 promoter (Figure 40). These 

results were confirmed by another member of the lab (Lara Boyd, Master’s dissertation, 

data not shown). It is therefore unlikely that EBNA 3C or EBNA 2 bind to the RGC-32 

promoter via this RBP-J kappa binding site. The variation in the RBP-J kappa site 

compared to bona fide RBP-J kappa sites in Cp and LMP1 for example is likely to be 

sufficient to prevent efficient RBP-J kappa binding (Table 8). Interestingly, further 

database searches using Alggen Promo revealed that the RGC-32 promoter contained 

another RBP-J kappa binding site in a region upstream from the promoter region (-1649 

to -1643). This site showed 100% identity with the core consensus sequence known to 

bind RBP-J kappa (Table 8 and Figure 41).  
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Figure 38 – (A) Raji cells and (B) BJAB cells were transiently transfected with different amounts of the 

EBNA 3C-expressing plasmid pSG5 3C (0.25, 0.5 and 1 µg), 1 µg of a Renilla luciferase plasmid to 

determine the transfection efficiency and 2 µg of a firefly luciferase reporter plasmid containing the RGC-

32 promoter. These graphs show the results of 3 independent experiments +/- standard deviation in which 

RGC-32 promoter activation was measured and are displayed relative to the EBNA 3C-negative control. 

The values for firefly luciferase activity (RGC-32 promoter reporter) were corrected by dividing them by 

the values for the Renilla luciferase activity (pRL-CMV transfection control)  
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Figure 39 - BJAB cell lines stably expressing EBNA 3C (E3C-3 and E3C-4) and 

control cell lines (pZ1 and pZ3) were transiently transfected with 1 µg of the EBNA 

3C-expressing plasmid pSG5 3C, 2 µg of a Renilla luciferase plasmid to determine the 

transfection efficiency and 4 µg a firefly luciferase reporter plasmid containing the 

RGC-32 promoter. These graphs show the results of 3 independent experiments +/- 

standard deviation in which RGC-32 promoter activation was measured and are 

displayed relative to the EBNA 3C-negative control pZ1. The values for firefly 

luciferase activity (RGC-32 promoter reporter) were corrected by dividing them by the 

values for the Renilla luciferase activity (pRL-CMV transfection control)  
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Figure 40 – Gel shift assays were performed using 2 ng radiolabelled 

oligonucleotides (probe) from the RGC-32 or C promoter containing the RBP-J 

kappa site or a mutated RBP-J kappa site. The probe was either incubated alone 

(oligo alone) or was mixed with 0.5 µg GST-RBP-J kappa protein in the absence or 

presence of 60x excess of competitor cold oligonucleotide. Samples were resolved 

using a 6% TBE gel. 
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-2247      GAGAGTC ATATCATCCT CTTTCGCTCT  
-2220 GGATATTAGG AACAATATCA CAGGGTTGTG TACTCCCCCT GCGATATTGG  
-2170 GAGTAATATC ATTCTCTCTC CCTGTGGATT TTAGGAAGAG TATTACAGGG  
-2120 CTGTGTACAC CCCCTGCGCT ATTGGGAGTA ATATCATCCT CTCTCCCTCT  
-2070 GGATAGTAGG AAGAGTTTCA TAGGGGTGTG TACACCCCCT GTGATATTGG  
-2020 GAGTAATATC ATCCTGTCGC CCTGAGGAGA GAAGCCATTT CGCTACTGTC  
-1970 TCCTGTCTCT GAAGAGGAGG AGGAAGTAAA AGTTGGAAAA CAACAGGAAT  
-1920 GAAGTCAGTG TCAAGACCAG CCGGTGGCAA TGAGGAGCCG GCCTGAGGTG  
-1870 AAACAATCAA CCCCCGTGAC TCTAAGTACA TGTGCTCTCA ATCCATCAAG  
-1820 ACCCTTTCAC GTGGAACCCC TTAAAGCTGT AAGCCCTTAA ACGGGCCAGG  
-1770 AACTCTGTCT TCCTTCCGGG AGCTCGGCTC TTACGCGAGT CTGCCGAAGC  
-1720 TCCCAGCGGA ATAAAAAAAA CTCTTCCTTC TTTAATCCGC TGTCTGAGGG  
-1670 GTTTTGTCCG CTGCTCATCC ATGCTCCATT TCTTTGTTCC CTGACCGGGA  
-1620 ATCGAACGCA GGCAGCAGCG GTGAGAGCAC CGAATCCTAA GCACTAGACC  
-1570 ACCAGGGGAA CTTAGAACCT TGTGGGAAAT AGATTGCGCA CCATTAGAAG  
-1520 TGGGTTGGCC ATCAGAAGGA AGCCTGGACA GGTCCCTTGT TTCTAAGGCG  
-1470 TGGCACAAGG TAACTGGTAA AGATACCTAG ACCAGTTCCC ATACATAGAC  
-1420 ACTTGGTGAC AGCTGGTGCT AGAACCCCCA CAGTGGCTGA GGGCATGCAG  
-1370 CAGCAATACT AGTAGCAAAG GGACAGATAG CTAAGGAAGG ATCCCGCTCC  
-1320 ACTCACCCAG GGAAATCAAC TCCTGAAGTT CTGTTCGACC CCACATCAGA  
-1270 GGATCCATTG CAGGAGATGG CACCAGAGAT CCCAGTGGTG TCCTCCCCTT  
-1220 AACAGGGAAA GAGGCTCCCC ACTCTTGAGC CCACAGTGCT TGTGCCTCCA  
-1170 CAAGACAAGC ATATCCCTAG GCCACCCAGA GTAGACAAGA GAGGAGGACT  
-1120 ATTCATATGA TTAGTGGTCA TTAACATATA CTCCTTTGTG AGGTGTATGT  
-1070 TTCAATGTTT TGCTCATTTT TAATTTTTAC CAGGTTGTCT ATTTGTGATT  
-1020 ACTTTGTAGA TGGGTCTTTC TATATTCTGA AAACAAATCC TGGCTGGGTG  
-970 CGGTGGCTCA CGCCTGTAAT CCCAGCACTT TGGGAGGCTG AGGTGGGCAG  
-920 ATCACCTGAG GTCGGGAGTT CGAGACCAGC CTGGCCAACA TGGACAAACC  
-870 CCGTCTCTGC TAAAAATACA AAAACTAGCT GGGAGTGGAG GCTGAATGTT  
-820 TCACTCCGTT ACATGTTAAT TGCTCTACAT TTAATTAGCC GTCTGTGGTG  
-770 AGAGGCGAGA GGCTAGCGCC TAGCTCAGCG CACAGTCCAG GGCGTTCGCC  
-720 CCCGCAGGCC GCGGGGCAGG GTGGCTCGTT ACTCCGTGGA CACTGCAAGG  
-670 CGCCCTGTTC GCGCTGCGTC GACGCAGTAG TTTCTTCCCA TAATAAACCC  
-620 CTTCTAGATA AAGTCAGGCT GGCGGGAGCG CCCTGGACCG TAGTTCAGGC  
-570 CCCCGCGCTC CGCGGTGGGA ACAGTTCAGG ACTCCCCCAA CTCCTGCCCC  
-520 TCTCGCCCCG ACCCTCTCCA CTCCGCCCGC CCACCATCTC GGAAGTCCCC  
-470 TTGGGACAAT GCGTAGGGGA CCTCCGCGTC CCCGACACCC GACTGGGACA  
-420 CGGCCGCGGG CTCCTTCGTC CCTCACCGCC AGCCAGGGAG GCTCTGCATG  
-370 CCCACGTCCA CTTCACAGCC GAGGAAGCTG CGGCTCGCGG AGGTGCCTGG  
-320 CACGCGGCGG GAAGCAGCAG AGCTCGCGCC CAGCAGTCAG CTCTGGTGAC  
-270 GCCGAGGACA CCGCGTGGGC CGGGTTGTCA GGGCGCGGGG GCGAGAGGCG  
-220 GGTAAATATT TGGGGCTGTA ACCGGGGCTT CGGCGACTCC TCGTCACCGC  
-170 GGTTCCAGGG CGGGCGCGTG GCGAGGGCGG TGCCTGGGGG CAGGGGCCTC  
-120 CTCGGAGGGC GGCGGGGACA GACCCGTCGC CCCGGCTCCG CAGCCCCGCC  
-70 CCGGCCCCGC CTCCGCTCCG GCCGCCGAAG GCTATAAGAT CTAGGAACCC  
-20 GAGCCGGTGG TAGGGCGGGC GCGGACCGTG CTGGGAGCGG CGCGGCTGGA  
-31 GCGCAGCGCC GAAGGGACTG GCAGGGCTGA AGTGTGCGGG ACAGCAAGCA  
+81 AGCTTGGCAT TCCGGTACTG TTGGTAAAAT GGAAGACGCC AAAAACATAA 
+131 AGAAAGGCCC GGCGCCATTC TATCCTCTAG AGGATGGAAC CGCTGGAGAG 
+181 CAACTGCATA AGGCTATGAA GA  
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Figure 41 – Sequence of the RGC-32 promoter construct pGL2 RGC-32pluc-up. Bases in red and 

blue letters together represent the previously used RGC-32 promoter construct pGL2 RGC-32pluc. 

The blue letters show a part of the sequence which is transcribed into mRNA. The black letters 

represent the additional upstream sequence cloned into the pGL2 RGC-32pluc vector. The yellow 

highlighted sequences indicate the potential binding sites for RBP-J kappa. 
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Therefore, the upstream sequences were cloned into the original pGL2-RGC-32pluc 

vector by another lab member (Felicity Poulter, undergraduate project year 2008/09). 

 

promoter sequence location 

Cp 5’-GTGGGAA-3’  

LMP1 5’-GTGGGAA-3’  

RGC-32 5’-GTGGGAA-3’ -1649 to -1643 

RGC-32 5’-TTGGGAG-3’ -941 to -935 

RGC-32 5’-GTGGGAA-3’ -556 to -550 

 
Table 8 – Overview of RBP-J kappa sites of different gene promoters 

To investigate whether EBNA 3C could increase the RGC-32 promoter activity when 

the additional upstream RBP-J kappa site was present, DG75 cells were transiently 

transfected with an EBNA 3C-expressing plasmid and the RGC-32 promoter construct 

containing the additional upstream sequences. Luciferase assays revealed that the 

activity of the RGC-32 promoter does not significantly increase with the additional 

RBP-J kappa binding site (Figure 42). 

Towards the end of this study, another RBP-J kappa binding site was identified (-556 to 

-550) by manual searching for the known core binding sequence GTGGGAA that was 

not predicted by MatInspector or Alggen Promo as a potential RBP-J kappa binding 

site. Lack of time meant that further investigations into the functionality of this site 

were not possible. 

Together, the data indicate that EBNA 3C does not reproducibly activate the RGC-32 

promoter in reporter assays suggesting that there may be another mechanism by which 

EBNA 3C upregulates RGC-32. 

4.4 RGC-32 mRNA stability is increased in EBNA 3C-
expressing BJAB cells 

Other pathways were considered to further investigate the mechanism of the RGC-32 

mRNA upregulation. To determine whether EBNA 3C could upregulate RGC-32 by 

stabilisation of the RGC-32 mRNA, the EBNA 3C- negative cell lines BJAB pZ1 and  
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Figure 42 - DG75 cells were transiently transfected with different amounts of the EBNA 3C-

expressing plasmid pSG5 3C (2.5, 5 and 10 µg), 4 µg of a Renilla luciferase plasmid to determine 

the transfection efficiency and 8 µg a firefly luciferase reporter plasmid containing the RGC-32 

promoter (RGC-32, black) or containing the RGC-32 promoter including upstream sequences 

(RGC-32 up, purple). This graph shows the mean of 3 independent experiments +/- standard 

deviation in which RGC-32 promoter activation was measured and displayed relative to the 

EBNA 3C-negative control. The values for firefly luciferase activity (RGC-32 promoter reporter) 

were corrected by dividing them by the values for the Renilla luciferase activity (pRL-CMV 

transfection control). 
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pZ3 and the EBNA 3C-positive cell lines BJAB E3C-3 and E3C-7 were treated with 2 

µM actinomycin D to halt transcription and RGC-32 mRNA levels measured at time 

intervals up to 8 hours. Initial experiments established that 2 µM actinomycin was not 

significantly toxic for 8 hours or more. RGC-32 mRNA levels were analysed by real-

time PCR. As shown in Figure 43A and B RGC-32 mRNA levels decreased faster in 

pZ3 cells compared to E3C-3 cells. Non-linear regression estimated an RGC-32 half life 

of about 1 h for the EBNA 3C-negative cell line pZ3 and a half life of more than 10 h 

for the EBNA 3C-positive cell line E3C-3. Similar results were determined for pZ1 an 

E3C-7 for which RGC-32 half lives of 0.3 and 4 h respectively were estimated (data not 

shown). 

These results indicate that stabilisation of RGC-32 mRNA in the BJAB E3C-3 and 

E3C-7 cell lines is likely to mediate the RGC-32 upregulation seen in EBNA 3C-

expressing cells and in fact may be the only mechanism through which the upregulation 

is achieved. These results provide the first demonstration of EBNA 3C-driven RNA 

stabilisation. 

4.5 Discussion 
RGC-32 mRNA is upregulated up to 14-fold in BJAB cells stably expressing EBNA 3C 

compared to control cell lines. We investigated whether the viral protein EBNA 3C was 

able to upregulate the cellular RGC-32 by activating the promoter in a direct or indirect 

manner. Transient transfection using an EBNA 3C-expressing plasmid resulted in a 2-

fold upregulation of the RGC-32 promoter observed in DG75 cells and a 1.3-fold 

upregulation in HeLa cells. However, this activation of the RGC-32 promoter could not 

be confirmed in EBV-negative BJAB cells. Furthermore, transient transfection of EBV-

positive Raji cells and EBV-negative BJAB cells both stably expressing EBNA 3C did 

not result in activation of the RGC-32 promoter indicating that initiation of RGC-32 

gene transcription may not be the mechanism by which EBNA 3C upregulates RGC-32 

mRNA. The DG75 results could be an artefact resulting from non-specific effects of 

EBNA 3C in the cell. 

Surprisingly, a 6-fold induction of the RGC-32 promoter by EBNA 2 could be observed 

in HeLa cells. This was unexpected as real-time PCR experiments showed that BJAB  
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Figure 43 – RGC-32 mRNA half life 

BJAB pZ3 (A) and E3C-3 (B) cells were treated with the transcription inhibitor 

actinomycin D (2 µM) for 2, 4, 6 and 8 hours. RGC-32 mRNA levels were measured 

in duplicate by real-time PCR and divided by GAPDH mRNA levels. Calculated half 

lives using SigmaPlot are displayed on the graphs which show the mean of three   

independent experiments +/- standard deviation. 
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cells overexpressing EBNA 2 did not increase RGC-32 mRNA levels (Figure 13A). The 

observation made in the cervical carcinoma cell line HeLa could not be confirmed in the 

B cell line DG75 and might therefore be cell type-specific and may result from 

interaction with HeLa cell-specific proteins. 

EBNA 3C does not bind DNA directly but may be targeted by the DNA-binding protein 

RBP-J kappa, in a similar manner to EBNA 2. Interestingly, the RGC-32 promoter 

contains a predicted RBP-J kappa-binding site that could potentially mediate the effects 

of EBNA 3C or EBNA 2. However, gel shift assays revealed that RBP-J kappa does not 

bind to the predicted binding site suggesting that RBP-J kappa does not mediate the 

effects of EBNA 3C and EBNA 2. However, this predicted RBP-J kappa site only 

shows approximately 71% identity of the core sequence. Used RBP-J kappa sites seen 

in the LMP1 and C promoter showed 100% identity of the core sequence suggesting 

that the predicted RBP-J kappa site might not be functional. Another RBP-J kappa site 

with 100% identity of the core was found further upstream of the promoter which was 

not part of the original RGC-32pluc plasmid. Transfection with a plasmid containing the 

additional upstream region did not result in increased RGC-32 promoter activation by 

EBNA 3C suggesting that RBP-J kappa does not target EBNA 3C to the RGC-32 

promoter. 

Chromatin immunoprecipitation (ChIP) experiments carried out by Helen Webb and 

Richard Palermo examined RNA polymerase II association with the RGC-32 promoter 

and gene. Chromatin was purified from EBNA 3C-negative BJAB cell lines pZ1 and 

pZ3 as well as from the EBNA 3C-positive cell lines E3C-3 and E3C-7. The EBNA 3C-

expressing BJAB cell lines E3C-3 and E3C-7 did not show increased RNA polymerase 

II association at the transcription start site of the RGC-32 gene as well as upstream 

regions of up to -1000 base pairs and downstream regions of down to +500 base pairs 

compared to the EBNA 3C-negative cell lines pZ1 and pZ3 (data not shown). These 

results further confirm that RGC-32 upregulation in EBNA 3C-expressing cells does not 

result from increased RGC-32 transcription in BJAB cell lines. Taken together, results 

from luciferase assay, gel shift and ChIP analysis indicate that EBNA 3C is not able to 

transactivate the RGC-32 promoter. 
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Investigations into other mechanisms by which EBNA 3C could upregulate RGC-32 

mRNA levels revealed that stabilisation of the RGC-32 mRNA occurred in EBNA 3C-

expressing BJAB cell lines. To examine potential mechanisms for these effects other 

genes differentially regulated by EBNA 3C in the original microarray study were 

screened for involvement in mRNA stability processes when EBNA 3C is expressed. 

Interestingly, expression of the CUG-binding protein 2 (CUGBP2) was found to be 

regulated by EBNA 3C. CUGBP2 is known to regulate pre-mRNA alternative splicing 

and was found to play a role in mRNA editing (Anant et al., 2001; Philips et al., 1998). 

Furthermore, it was shown to be involved in RNA stabilisation and inhibition of 

translation (Mukhopadhyay et al., 2003; Subramaniam et al., 2008). However, CUGBP2 

gene expression was downregulated in EBNA 3C-expressing BJAB cells and can 

therefore not account for the increase in RGC-32 mRNA stabilisation. 

Expression of the RNA binding protein RBM9 (RNA binding motif 9, Fox-2) was also 

found to be upregulated by EBNA 3C. This protein was shown to be involved in 

alternative exon splicing via binding a conserved UGCAUG element found downstream 

of many alternatively spliced exons and promotes inclusion of the alternative exon in 

mature transcripts (Ponthier et al., 2006). RNASE4 was also shown to be regulated by 

EBNA 3C which is another protein involved in alternative splicing (Shapiro et al., 

1986). However, alternative splicing does not necessarily correlate with RNA 

stabilisation. 

Therefore, the mechanism by which EBNA 3C stabilises RGC-32 mRNA could not be 

identified at this stage. 



5-131 

5 Detecting the RGC-32 protein 

5.1 Introduction 
RGC-32 protein was shown to play a role in cell cycle progression into S and M phase 

by increasing the activity of CDK1. Further, RGC-32 was shown to bind CDK1 which 

mediates transition into mitosis (Badea et al., 2002; Badea et al., 1998; Niculescu et al., 

1999; Rus et al., 1996). Interestingly, RGC-32 mRNA and protein expression is 

increased in many tumour tissues indicating a role for RGC-32 in cancer development 

(Fosbrink et al., 2005). All of the studies performed in this thesis this far have relied on 

detection of endogenous RGC-32 mRNA. The next series of experiments described in 

this chapter set out to determine whether RGC-32 was also upregulated at the protein 

level in EBNA 3C-expressing cell lines. 

5.2 Characterisation of an RGC-32 antibody  
To determine whether RGC-32 is upregulated at the protein level in the cell lines 

previously examined, it was necessary to obtain an anti-RGC-32 antibody. After the 

failure of an anti-RGC-32 peptide antibody generated by the West lab to detect 

endogenous RGC-32 protein, polyclonal anti-RGC-32 antibodies were raised against a 

His-tagged full length RGC-32 recombinant protein purified from bacteria by Helen 

Webb. Sera were received from two rabbits (2817 and 2818) following a series of 5 

immunisations. The first experiments carried out using the polyclonal sera aimed to 

determine whether the antibodies were able to detect RGC-32 on Western blots and also 

to identify which serum contained more specific antibodies. Whole cell lysates of EBV-

negative DG75 cells were used which were transiently transfected with either empty 

pFLAG vector or pFLAG RGC-32.  

Figure 44A shows that DG75 cells had been transfected successfully and expressed 

FLAG-RGC-32 which could be detected with the expected molecular weight of 17 kD 

using an anti-FLAG antibody (top panel). The antibodies obtained from rabbit 2817 

(middle panel) could not detect overexpressed RGC-32 protein; however, serum 2818 

antibodies (bottom panel) were able to bind the RGC-32 protein overexpressed in DG75 

cells. However, endogenous RGC-32 protein (predicted molecular weight of 

approximately 14 kD) was not detected in the EBV-negative DG75 cells. For further 

experiments, I then focussed on the serum from rabbit 2818. 
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Figure 44 – Anti-RGC-32 antibody testing - Western blot analysis. Proteins of all cell lysates or 

immunoprecipitations were separated in a 10% NuPAGE Novex Bis-Tris gel in MES running buffer 

(Invitrogen). (A) Lysates of transiently transfected DG75 cells (40 µg of pFLAG-RGC-32 or empty pFLAG 

vector) were probed with an anti-FLAG antibody (1:500) or rabbit serum 2817 or 2818 (1:500 of 4th bleed). (B) 

Western blot analysis of DG75 cells transiently transfected with 40 µg of pFLAG-RGC-32 as positive control 

and BJAB pZ3 and E3C-7. Proteins were detected using rabbit serum 2818 (1:500 final bleed). (C) Lysates of 

DG75 cells transiently transfected with 40 µg of pFLAG-RGC-32 or empty pFLAG were immunoprecipitated 

with either the pre-immune serum or the serum from the 3rd bleed from rabbit 2818. Immunoprecipitated RGC-

32 was detected with a purified anti-FLAG antibody (1:200, Sigma). (D) Lysates of DG75 cells transiently 

transfected with 40 µg of pFLAG-RGC-32 or empty pFLAG were used as a positive and negative control. 

Lysates of BJAB cells stably expressing FLAG RGC-32 and negative control cells were immunoprecipitated 

with either the pre-immune serum or the serum from the 3rd bleed from rabbit 2818. Immunoprecipitated RGC-

32 was detected with 3rd bleed rabbit 2818 serum (1:500). Bands were visualised with ECL. 
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Additional experiments showed that endogenous RGC-32 protein could not be detected 

in the EBV-negative BJAB cell line pZ3 (Figure 44B). Unexpectedly, endogenous 

RGC-32 could not be detected in the BJAB cell line E3C-7 which stably expresses 

EBNA 3C and showed a 6.5-fold upregulation of RGC-32 mRNA compared to pZ3 

(Figure 13A). RGC-32 protein expression was detected reproducibly in DG75 

transiently expressing RGC-32 as previously shown (Figure 44B). To further test and to 

increase the detection level of the anti-RGC-32 serum, immunoprecipitations were 

carried out using lysates of DG75 cells transiently expressing FLAG-RGC-32 and 

BJAB cells stably expressing FLAG-RGC-32 with either preimmune-serum or rabbit 

serum obtained after the 4th immunisation (3rd bleed). Western blot analysis using an 

anti-FLAG antibody revealed that RGC-32 was detectable in DG75 cells transiently 

transfected with pFLAG RGC-32 and immunoprecipitated with anti-RGC-32 serum 

(Figure 44C) indicating that the sera could be used for immunoprecipitations. 

Although FLAG RGC-32 could also be detected in DG75 or BJAB FRT-RGC-32 cells 

which stably overexpress RGC-32 in immunoprecipitations using the anti-RGC-32 

serum (Figure 44D), a non-specific band ran in the same place which restricted a clear 

identification of the RGC-32 band. Further, endogenous RGC-32 protein was not 

detectable in BJAB cells using immunoprecipitation. Since the Western blot showed a 

sizeable amount of non-specific binding and detection of endogenous protein appeared 

to be difficult, the anti-RGC-32 serum 2818 was purified. 

5.3 Anti-RGC-32 antibody purification 

5.3.1 RGC-32 protein preparation 
To purify the anti-RGC-32 serum, recombinant RGC-32 protein was purified from the 

E. coli strain BL21 plysS containing the pET RGC-32 vector. This vector expresses His-

tagged RGC-32 in inclusion bodies upon IPTG induction at 37°C and His-RGC-32 was 

purified using denaturation and renaturation techniques. The purity of the protein 

(elutions 1 to 6) was determined by SDS-PAGE followed by Coomassie staining. Figure 

45 shows that RGC-32 was obtained with a high degree of purity in pooled elutions 1-3 

and that the concentration expectedly decreased in later elutions. The His-tagged RGC-

32 protein has a molecular weight of 16 kD. The band of smaller size is probably a 

degradation product of RGC-32. His- RGC-32 was eluted in 40 mM PO4, 300 mM 
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NaCl and 100 mM EDTA and was then dialysed against 20 mM PO4 buffer (pH 7.5) to 

make the buffer compatible for the following anti-RGC-32 antibody purification. A 

RGC-32 protein concentration of 0.8 mg/ml (60 µM) was obtained. 

5.3.2 Antibody purification and antibody testing 
To increase the specificity of the anti-RGC-32 antibody serum, the antibodies of the 

final bleed of rabbit 2818 were purified using various techniques. In the first attempt 

His-tagged-RGC-32 protein was bound to HIS-Select® Nickel Affinity Gel (Sigma) and 

crosslinked with DSS (Disuccinimidyl suberate). After several washing steps the rabbit 

serum 2818 was added to the resin. A sample of starting material was kept for later 

analysis as well as a sample of the flow through before the first wash. After several 

washing steps the antibody was eluted with 10 mM glycine pH1. Coomassie staining of 

the elutions revealed that a major amount of the antibody came off the resin with the 

first elution but surprisingly RGC-32 was also eluted (Figure 46A). It appears that the 

crosslinking between protein and resin was not very stable. The two elutions with the 

highest protein concentration were pooled and tested for RGC-32 specificity by Western 

blot analysis. 

The unpurified antibody (starting material) was able to detect the transiently 

overexpressed FLAG-RGC-32 protein as expected. The flow-through, which was 

obtained after the serum was first loaded to the column, could not detect the protein 

suggesting that the antibody had bound successfully to the resin. However, none of the 

different dilutions (1:100 - 1:1000) of the purified antibody was able to detect 

overexpressed FLAG-RGC-32 protein (Figure 46B). 

In a second attempt RGC-32 was coupled to a CH sepharose resin (Sigma). 3 mg of 

RGC-32 protein were added to the swollen and washed beads. The input protein was 

compared to the flow-through in a Bradford assay which revealed that 75% of the input 

RGC-32 protein had bound to the beads (data not shown). 1 M Tris pH 8.5 was used to 

wash the resin after the protein was bound which resulted in precipitation of the protein. 

An additional experiment carried out by Helen Webb confirmed that RGC-32 was 

insoluble in Tris buffer. In a repeat of the experiment the beads were washed with 20 

mM glycine pH 8 and 0.5 M NaCl instead of 1 M Tris pH 8.5. Using glycine and NaCl 
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Figure 45 - Different elutions of purified His-RGC-32 protein were loaded to a 

10% NuPAGE Novex Bis-Tris gel and run in MES running buffer (Invitrogen). 

After completion the gel was washed 3x 5 minutes with filter-sterilised water 

followed by 1 hour of Coomassie staining (Bio-Rad). The gel was dried onto filter 

paper. 
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Figure 46 – Cell lysates were loaded to a 10% NuPAGE Novex Bis-Tris gel and run in MES buffer 

(Invitrogen). (A) Different elutions of purified antibody samples as well as purified His-RGC-32 protein 

were loaded to a 10% NuPAGE Novex Bis-Tris gel and run in MES running buffer (Invitrogen). After 

completion the gel was washed 3x 5 minutes with filter-sterilised water followed by 1 hour of 

Coomassie staining (Bio-Rad). The gel was dried onto filter paper. (B) Cell lysates of DG75 cells 

transfected with 40 µg pFLAG empty vector or pFLAG-RGC-32 were separated in a 10% NuPAGE 

Novex Bis-Tris gel in MES running buffer (Invitrogen). Original rabbit serum 2818 (1:500), flow-

through of antibodies after binding to column (1:500) and different dilutions of anti-RGC-32 antibodies 

(1:100, 1:500, 1:1000) purified using Nickel agarose beads were used to detect FLAG RGC-32. Bands 

were visualised with ECL. 
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to wash the resin, the RGC-32 protein remained bound to the beads. The rabbit serum 

was added to allow the antibodies to bind to the protein. After several washing steps the 

antibody was eluted with 10 mM glycine pH 1. The purified antibody was then tested 

for RGC-32 specificity by Western blot analysis. Again, the purified anti-RGC-32 

antibodies could not detect the protein (Figure 47). Bradford Assay results showed a 

very low protein concentration in the eluates which indicated that the antibody might 

not have bound well to the resin or has eluted during washing steps. 

In a third attempt, the rabbit serum was purified using the Prosep-A® Montage® 

Antibody Purification Kit from Millipore. 10 ml of rabbit 2818 final bleed serum was 

added to the Montage spin column. Bradford assay analysis of the applied sample 

compared to the flow through confirmed that 37% of the serum protein content had 

bound to the column. The relatively low binding efficiency was probably due to 

overloading of the column as no maximum binding capacity was recommended by the 

supplier. The column was then washed twice with Binding buffer A (Millipore). 

However, the first wash contained 64% of the protein which was thought to have been 

bound to the column. With the second wash another 7% of the protein came off the 

column. When the remaining protein was finally eluted with Elution Buffer B2 

(Millipore), the eluate only contained 2% of the originally bound protein and only 0.8% 

of the entire protein applied to the column. Coomassie staining showed that protein was 

only visible in the starting material, the flow through and after the first wash (Figure 

48A). Although the protein content was very low, the antibody was tested in a Western 

blot using a dilution of 1:40. The purified antibody could not detect the RGC-32 protein 

(Figure 48B, bottom panel) in cell lines which previously showed detectable levels of 

RGC-32 (Figure 48B, top panel). 

The eluted antibody was then concentrated using an Amicon® Ultra-15 Centrifugal filter 

(30,000 NMWL Ultracel®). Using this filter the volume of the elution containing the 

antibodies could be reduced from 10 ml to 500 µl. Therefore, the antibody concentration 

could be increased by up to 20-fold. 

The concentrated antibody was tested using a titration of 1:100 – 1:5000. Western blot 

analysis revealed that FLAG RGC-32 could be detected in the dilutions 1:100, 1:200,  
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Figure 47 –Transiently transfected DG75 cells as well as BJAB pZ3 and 

E3C-7 were tested for RGC-32 specificity of the anti-RGC-32 antibodies which 

were purified using a CH sepharose column. Cell lysates were loaded to a 10% 

NuPAGE Novex Bis-Tris gel and run in MES buffer (Invitrogen). The purified 

serum was used at 1:100 dilution. Bands were visualised with ECL. 
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Figure 48 – Coomassie and Western blot analysis using purified anti-RGC-32 antibodies. (A) 

Samples taken at different stages of the antibody purification were loaded to a 10% NuPAGE Novex Bis-Tris 

gel and run in MES running buffer (Invitrogen). After completion the gel was washed 3x 5 minutes with 

filter-sterilised water followed by 1 hour of Coomassie staining (Bio-Rad). The gel was dried onto filter 

paper. (B) Transiently tranfected DG75 cells as well as BJAB pZ3 and E3C-3 were tested for RGC-32 

specificity of the anti-RGC-32 antibodies which were purified using the Prosep-A® Montage® antibody 

purification kit. The top panel shows the Western blot probed with the original serum 2818 (1:750) and the 

bottom panel with the purified serum (1:40). Bands were visualised with ECL. 
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1:300 and 1:500 and weakly in 1:1000 (Figure 49A). The purified antibody appeared to 

be much cleaner and background detection was clearly reduced. Therefore, BJAB FRT, 

EBNA 3C-postive BJAB and DG75 cells transiently overexpressing RGC-32 were 

tested for RGC-32 protein expression using a 1:200 dilution of the purified anti-RGC-

32 serum. Western blot analysis demonstrated that the purified antibody was able to 

detect FLAG-RGC-32 overexpressed in DG75 but not in BJAB cells and could not 

visualise endogenous RGC-32 protein of any cell line including E3C-3 cells in which 

RGC-32 mRNA is overexpressed (Figure 49B). 

 

This result indicated that the antibody appeared to give cleaner detection of RGC-32, 

but it also seemed to be weaker. Therefore, it can be concluded that the purified anti-

RGC-32 gives a cleaner result but can only detect protein which is expressed at a 

relatively high level. 

The original anti-RGC-32 serum 2818 was able to detect overexpressing RGC-32 

protein but endogenous RGC-32 could not be detected in EBNA 3C-positive BJAB cell 

lines with either the original or the purified antibody. Therefore, we decided to use the 

original serum for further experiments and investigated the reasons for the difficulties of 

RGC-32 protein detection in BJAB cells. 

5.4 RGC-32 is not actively degraded by the proteasome 
The anti-RGC-32 serum 2818 was able to detect RGC-32 protein in DG75 and BJAB 

cells overexpressing FLAG-RGC-32. However, endogenous RGC-32 could not be 

detected in BJAB E3C-3 showing a 6.5-fold mRNA upregulation compared to EBNA 

3C-negative BJAB pZ3 cells. Therefore, it could be possible that the protein is actively 

degraded by the proteasome in BJAB cells which could occur directly after or during 

protein synthesis, so the protein is only active for a short time in the cell which is 

known to occur with cell cycle regulators such as cyclins. To prevent protein 

degradation by the proteasome, the cells were treated with 50 µM MG132, a proteasome 

inhibitor, for 1, 2, 8 or 24 hours then harvested and lysed. However, Western blotting 

did not confirm the suggestion that RGC-32 was actively degraded in BJAB cells as 

protein levels remained undetectable in the presence of MG132 (Figure 50). In addition, 
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Figure 49 – Western blot analysis of whole cell lysates using the purified anti-RGC-32 

serum. (A) Lysates of DG75 cells transiently transfected with either empty FLAG vector or FLAG 

RGC-32 were loaded to a 10% NuPAGE Novex Bis-Tris gel and run in MES running buffer 

(Invitrogen). The different blots were incubated with several titrations (1:100 – 1:5000) of the Prosep-

A® Montage®-purified anti-RGC-32 serum. (B) Transiently transfected DG75 cells as well as BJAB 

pZ3 and E3C-3 were tested for RGC-32 specificity of the anti-RGC-32 serum 2818 which was purified 

using the Prosep-A® Montage® antibody purification kit. The Western blot was probed with the purified 

serum (1:200). Bands were visualised with ECL. 
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Figure 50 – Western blot analysis of BJAB cells pZ2 and E3C-3 after treatment with 50 

µM MG132 harvested after 2, 8 and 24 h. The blots were probed with rabbit serum 2818 

(1:500, final bleed). Bands were visualised with ECL. 
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higher concentrations (100 or 200 µM) of MG132 did not increase RGC-32 protein 

levels in BJAB cells (data not shown). Therefore, it does not appear that failure to detect 

RGC-32 protein results from rapid degradation of the protein. 

 

5.5 RGC-32 expression in BJAB cells is not dependent on the cell 
cycle phase  

Since RGC-32 was not found to be degraded in BJAB cells and purified anti-RGC-32 

serum 2818 could not detect endogenous RGC-32 in BJAB cells, other approaches were 

considered as to why endogenous RGC-32 protein was undetectable in BJAB E3C-3. 

To investigate whether the protein is expressed in a cell cycle phase-specific manner 

and therefore undetectable in asynchronous cell cultures, BJAB pZ3 and E3C-3 cells 

were fractionated using centrifugal elutriation (kindly performed by Aloys Schepers, 

University of Munich). Cell cycle fractions were analysed by Western blotting and 

probed with rabbit serum 2818 (final bleed). However, no RGC-32 protein band was 

found at the expected endogenous size of approximately 14 kD in any cell cycle phase 

(Figure 51). EBNA 3C protein expression was confirmed using an anti-EBNA 3C 

antibody. The EBNA 3C protein levels appeared to be increasing towards mitosis but 

this might be due to unequal gel loading since the actin control shows an increased 

signal in the E3C-3 G2/M sample. 

Further experiments were carried out to investigate the possibility that RGC-32 was 

degrading or precipitating during sample preparation. However, RGC-32 could not be 

detected in fresh BJAB cell lysates (data not shown). Another attempt was to change the 

ingredients of the lysis buffer (1x GSB, see section 2.2) which was used to lyse cells for 

whole cell lysates. The Tris was replaced by 40 mM phosphate buffer since RGC-32 

precipitated in Tris which was discovered during the RGC-32 antibody purification. 

Western blot analysis of cell samples lysed in 1xGSB without Tris showed that the 

RGC-32 was still undetectable (data not shown). RIPA buffer was also used for initial 

cell lysis followed by addition GSB buffer but with no improvement of RGC-32 protein 

detection (data not shown). 
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Figure 51 – Western blot analysis. Proteins of BJAB cell lysates of cell cycle fractions were 

separated in a 10% NuPAGE Novex Bis-Tris gel in MES running buffer (Invitrogen). Proteins 

were detected using anti-EBNA 3C A10 (1:300), anti-Actin antibody (Sigma) or rabbit serum 2818 

against RGC-32 protein (1:500, final bleed). Bands were visualised with ECL. 
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5.6 Discussion 
To detect the RGC-32 protein a specific antibody needed to be generated. Sera from two 

rabbits (2817 and 2818) were obtained after immunisation with RGC-32 protein since 

no commercial antibody is available to detect the protein. Sera from rabbit 2818 were 

able to detect the RGC-32 protein when it was overexpressed after transient transfection 

of EBV-negative DG75 cells. Sera from rabbit 2817 failed to detect the protein. 

Endogenous RGC-32 protein, however, has not been detectable in BJAB cells with 

upregulated RGC-32 mRNA to date. 

Other approaches carried out to attempt to visualise endogenous RGC-32 protein in 

BJAB cells included analysis of fresh lysates, changes to the lysis buffer and 

immunoprecipitation using the anti-RGC-32 serum. However, all these attempts did not 

result in endogenous RGC-32 detection. Further, analysis of cell cycle fractions did not 

reveal that RGC-32 was expressed in a cell cycle phase-dependent way in BJAB cells. 

Since endogenous RGC-32 protein could not be detected and the anti-RGC-32 serum 

bound many non-specific proteins, the anti-RGC-32 serum 2818 was purified to 

increase the specificity for RGC-32. The recombinant His-tagged RGC-32 protein was 

able to bind to the HIS-Select® Nickel Affinity Gel (Sigma). The binding was increased 

by crosslinking with DSS (disuccinimidyl suberate) which is a bifunctional crosslinker 

and contains two N-hydroxysuccinimide esters. These esters are able to interact with 

primary amines which are present at the N-terminus of each polypeptide chain and in 

the side chain of lysine residues. Therefore, the binding of the His-tag on the N-

terminus of the recombinant RGC-32 to the Nickel beads should be increased by the 

crosslinker. However, as the Coomassie staining showed some of the RGC-32 protein 

was eluted as well as the antibody. Further, in the first elution the pH was not low 

enough to allow the antibody to be eluted through disruption of antibody-protein 

interactions but protein was lost from the column. Increases in pH did not increase the 

protein content in the eluates. The loss of the protein from the column may have 

resulted from overloading or aggregation since protein characterisation for crystalisation 

studies has revealed that RGC-32 forms aggregates of very high molecular weight. 

Therefore, the low binding efficiency could be caused by aggregation of the RGC-32 

protein, thus not all protein molecules could bind to the column and may have been 
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eluted during washing steps. Since Western blot analysis revealed that the purified 

antibodies did not display increased specificity for RGC-32, an alternative purification 

method was attempted. CH sepharose is also known to react with primary amines and 

therefore with the amino terminus of a protein. 90% of the input protein was able to 

bind the resin which confirms the efficiency of the binding. However, the precipitation 

of RGC-32 in Tris buffers may have led to elution of the protein during the washing 

steps. In a repeat of the experiment Tris was replaced with 20 mM glycine and 0.5 M 

NaCl. 75% of the input protein bound to the resin in the second attempt, but 50% of the 

originally bound protein eluted during washing steps probably due to the aggregation 

problem. The loss of protein was most likely crucial, since Western blot analysis 

revealed again that the purification of the RGC-32-specific antibodies failed. Protein 

assays revealed only low protein content could be measured in the final eluate which 

contained the antibodies. 

Since the purification techniques did not improve the result, we decided in a last attempt 

to use an alternative to purify the Ig molecules from the serum rather than RGC-32-

specific antibodies using the Montage® Antibody Purification Kit (Millipore). 37% of 

the protein applied to the column was able to bind, possibly due to overloading of the 

column as the supplier did not specify a maximum loading capacity for serum. Another 

possibility could be that lipids in the serum could have affected the binding efficiency. 

During several washing steps more antibody was unexpectedly eluted which might have 

been again due to the aggregation of the RGC-32 protein resulting in elution of RGC-32 

protein/antibody complexes. Although 2% of the originally bound protein (0.8% of the 

entire protein applied to the column) was finally eluted it could not detect the RGC-32 

protein. Subsequent concentration of the sample produced an antibody preparation that 

was able to detect RGC-32 in overexpressing DG75 cells but not in BJAB. Therefore, it 

can be concluded that the purified anti-RGC-32 gives a cleaner result but can only 

detect protein which is expressed at a relatively high level and may not be efficient 

enough to detect endogenous RGC-32. For all my further experiments, I therefore used 

the original anti-RGC-32 unpurified serum. 

Surprisingly, the EBNA 3C-expressing BJAB cell line E3C-3 which showed a 14-fold 

higher expression of RGC-32 mRNA compared to BJAB pZ2 did not express detectable 
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protein. This observation led to the suggestion that the RGC-32 protein was degraded 

either during or after translation thus hampering detection. However, treatment of the 

BJAB cell lines pZ2 and E3C-3 with the proteasome inhibitor MG132 did not increase 

the RGC-32 protein expression making this possibility unlikely. 
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6 Regulation in B cells - interplay between RUNX and 
RGC-32 

6.1 Introduction 
During the course of this study it was reported that knockdown of the transcription 

factor RUNX1 resulted in reduced RGC-32 mRNA expression in rat periovulatory cells 

(Jo and Curry, 2006). Subsequent studies indentified RUNX binding sites in the rat 

RGC-32 promoter (Park et al., 2008). RUNX family proteins play key roles in B 

lymphogenesis and have been shown to be differentially expressed in different forms of 

EBV latency (Spender et al., 2002a; Spender et al., 2005a). This differential regulation 

results from the upregulation of RUNX3 transcription by EBNA 2 in EBV-positive cells 

exhibiting the latency III phenotype (Spender et al., 2005a). RUNX3 directly represses 

transcription of RUNX1 leading to RUNX1 downregulation in latency III (Spender et 

al., 2005a).  

6.2 RGC-32 and RUNX1 mRNA expression is upregulated in 
latency I compared to latency III 

Initial experiments were carried out to verify differential RUNX1 and RUNX3 

expression in a panel of EBV-negative and EBV-positive B cell lines. Real-time PCR 

results revealed that RUNX1 mRNA expression was variable in EBV-negative cell lines 

but generally expression was increased in Burkitt’s lymphoma group I cell lines and cell 

lines which have a deletion of the EBNA 2 gene compared to cell lines displaying a 

latency III pattern of gene expression (Figure 52A). These results are consistent with 

previously published data and western blot analysis confirmed that RUNX1 protein 

expression was similar to mRNA expression in the cell panel (Figure 52B), (Spender et 

al., 2002a). 

RUNX3 mRNA expression was also found to broadly follow the reported pattern of 

higher expression in latency III cell lines compared to latency I cell lines and was 

expressed in EBV-negative cell lines at a similar level to latency III lines (Figure 53A). 

The RUNX3 mRNA levels for EBNA 2-deleted cell lines varied with Daudi and OKU 

showing expected lower levels but Sal and P3HR1 displaying higher mRNA levels. It is 

important to note  
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Figure 52 – RUNX1 mRNA and protein expression. (A) Real-time PCR analysis 

of cell panel cDNA was carried out in duplicate and normalised to GAPDH expression. 

The graph shows the mean of 3 independent experiments +/- standard deviation. *Raji cells 

have a deletion of the EBNA 3C gene. (B) Western blot analysis. Cell lysates were 

separated using a 10% NuPAGE Novex Bis-Tris gel in MOPS running buffer (Invitrogen). 

Proteins were detected using anti-RUNX1 (1:40, Calbiochem, ab-2) and anti-Actin 

antibody (1:5000, Sigma). Bands were visualised with ECL. 
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Figure 53 – RUNX3 mRNA and protein expression. (A) Real-time PCR analysis of 

cell panel cDNA was carried out in duplicate and normalised to GAPDH expression. The 

graph shows the mean of 3 independent experiments +/- standard deviation. (B) Western blot 

analysis. Proteins of cell lysates were separated using a 10% NuPAGE Novex Bis-Tris gel in 

MOPS running buffer (Invitrogen). Proteins were detected using anti-RUNX3 (1:500, 

Calbiochem) and anti-Actin antibody (1:5000, Sigma). Bands were visualised with ECL. 
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however that RUNX3 real-time results were quite variable reflected in the larger error 

bars for the some cell lines. Western blot analysis showed a much clearer upregulation 

of RUNX3 protein in latency III-expressing cell lines and reduced protein levels in 

latency I-expressing cell lines (Figure 53B). RUNX3 protein expression in EBV-

negative cell lines was similar to latency III-expressing cell lines. 

Significantly when real-time PCR analysis of RGC-32 mRNA expression levels was 

carried out, the results showed that they correlated well with RUNX1 expression levels 

in the cell panel. Thus, RGC-32 was expressed at highest levels in EBV-positive group I 

Burkitt’s lymphoma cell lines and at lowest levels in EBV-negative, latency III-

expressing Burkitt’s lymphoma cells lines and LCLs (Figure 54A). RGC-32 mRNA 

expression for EBNA 2-deleted latency III-expressing cells varied. These results 

indicated that RGC-32 could be regulated by RUNX1 in human B cells. 

6.3 RUNX1 activates the RGC-32 promoter 
Luciferase reporter assays were carried out to investigate the effects of RUNX1c on the 

RGC-32 promoter. DG75 cells were transfected by electroporation with increasing 

amounts of the RUNX1c-expressing plasmid pBK-CMV-RUNX1c, the B cell isoform 

of RUNX1 (Spender et al., 2005b). Figure 55 shows that the RGC-32 promoter is 

activated by up to 2.2-fold with increasing expression of RUNX1c indicating that 

RUNX1c is able to increase RGC-32 transcription in human B cells. 

6.4 Investigations of the RUNX-binding sites of the RGC-32 
promoter 

Since RUNX1 was able to activate RGC-32 transcription, the promoter region used in 

the reporter construct (RGC-32pLuc) was examined for RUNX1-binding sites. RUNX 

family proteins all recognize the consensus sequence TGTGGT. A potential RUNX 

binding site (-777 to -772) was identified which was present in the RGC-32pluc 

promoter construct used for luciferase assays (Figure 56). Using the transcription factor 

binding prediction program MatInspector (http://www.genomatix.de/online_help/ 

help_matinspector/matinspector_help) another RUNX-binding site was found in further 

upstream sequences of the RGC-32 promoter which were not included in the pGL2-

RGC-32pluc construct. Therefore, a plasmid containing the previously cloned sequence  
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Figure 54 – RGC-32 mRNA expression. Real-time PCR analysis of cell panel cDNA was 

carried out in duplicate and normalised to GAPDH expression. The graph shows the mean of 3 

independent experiments +/- standard deviation. 
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Figure 55 – Luciferase assay. DG75 cells were transiently transfected with 

different amounts of RUNX1c-expressing plasmid (pBK-CMV-RUNX1c), (2.5, 5 

and 10 µg), 2 µg of a Renilla luciferase plasmid to determine the transfection 

efficiency and 4 µg of a firefly luciferase reporter plasmid containing the RGC-32 

promoter. (A) This graph shows the results of 3 independent experiments +/- 

standard deviation. The values for firefly luciferase activity (RGC-32 promoter 

activation) were corrected by dividing them by the values for the Renilla luciferase 

activity. RGC-32 promoter activation is displayed relative to the RUNX1-negative 

control. (B) Western blot analysis for RUNX1c (1:40, Calbiochem) expression. 
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  CGGGAGGT ACCGACAAGC ATATCCCTAG GCCACCCAGA GTAGACAAGA 

GAGGAGGACT ATTCATATGA TTAGTGGTCA TTAACATATA CTCCTTTGTG 

AGGTGTATGT TTCAATGTTT TGCTCATTTT TAATTTTTAC CAGGTTGTCT 

ATTTGTGATT ACTTTGTAGA TGGGTCTTTC TATATTCTGA AAACAAATCC 

TGGCTGGGTG CGGTGGCTCA CGCCTGTAAT CCCAGCACTT TGGGAGGCTG 

AGGTGGGCAG ATCACCTGAG GTCGGGAGTT CGAGACCAGC CTGGCCAACA 

TGGACAAACC CCGTCTCTGC TAAAAATACA AAAACTAGCT GGGAGTGGAG 

GCTGAATGTT TCACTCCGTT ACATGTTAAT TGCTCTACAT TTAATTAGCC 

GTCTGTGGTG AGAGGCGAGA GGCTAGCGCC TAGCTCAGCG CACAGTCCAG 

GGCGTTCGCC CCCGCAGGCC GCGGGGCAGG GTGGCTCGTT ACTCCGTGGA 

CACTGCAAGG CGCCCTGTTC GCGCTGCGTC GACGCAGTAG TTTCTTCCCA 

TAATAAACCC CTTCTAGATA AAGTCAGGCT GGCGGGAGCG CCCTGGACCG 

TAGTTCAGGC CCCCGCGCTC CGCGGTGGGA ACAGTTCAGG ACTCCCCCAA 

CTCCTGCCCC TCTCGCCCCG ACCCTCTCCA CTCCGCCCGC CCACCATCTC 

GGAAGTCCCC TTGGGACAAT GCGTAGGGGA CCTCCGCGTC CCCGACACCC 

GACTGGGACA CGGCCGCGGG CTCCTTCGTC CCTCACCGCC AGCCAGGGAG 

GCTCTGCATG CCCACGTCCA CTTCACAGCC GAGGAAGCTG CGGCTCGCGG 

AGGTGCCTGG CACGCGGCGG GAAGCAGCAG AGCTCGCGCC CAGCAGTCAG 

CTCTGGTGAC GCCGAGGACA CCGCGTGGGC CGGGTTGTCA GGGCGCGGGG 

GCGAGAGGCG GGTAAATATT TGGGGCTGTA ACCGGGGCTT CGGCGACTCC 

TCGTCACCGC GGTTCCAGGG CGGGCGCGTG GCGAGGGCGG TGCCTGGGGG 

CAGGGGCCTC CTCGGAGGGC GGCGGGGACA GACCCGTCGC CCCGGCTCCG 

CAGCCCCGCC CCGGCCCCGC CTCCGCTCCG GCCGCCGAAG GCTATAAGAT 

CTAGGAACCC GAGCCGGTGG TAGGGCGGGC GCGGACCGTG CTGGGAGCGG 

CGCGGCTGGA GCGCAGCGCC GAAGGGACTG GCAGGGCTGA AGTGTGCGGG 

ACAGCAAGCA AGCTTGGCAT TCCGGTACTG TTGGTAAAAT GGAAGACGCC 

AAAAACATAA AGAAAGGCCC GGCGCCATTC TATCCTCTAG AGGATGGAAC 

CGCTGGAGAG CAACTGCATA AGGCTATGAA GA 
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Figure 56 – RGC-32 promoter sequences within the RGC-32pluc plasmid. The enzyme restriction 

sites are highlighted in different colours: KpnI (red), HindIII (turquoise), XbaI (light gray), NheI (yellow). The 

RUNX-binding site used for mutation is highlighted in pink, additional RUNX-binding sites are highlighted in dark 

red. The transcription start site is highlighted in dark yellow. The point mutation from C to T is highlighted in dark 

grey. 
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as well as an additional upstream sequence (pGL2-RGC-32pluc-up) was created in the 

lab by Felicity Poulter. Luciferase assay results revealed that the additional RUNX-

binding site did not have an augmenting effect on the RGC-32 promoter activity 

indicating that it may be non-functional (Figure 57A). 

To verify whether RUNX1c binds and activates the RGC-32 promoter via the RUNX-

binding site in the original promoter construct, site-directed mutagenesis was performed 

to mutate the RUNX binding site from TGTGGT to TGCTTT which has been 

previously shown to abrogate RUNX1-binding (Bristow and Shore, 2003). Sequencing 

analysis of the plasmid confirmed the 3 bp mutation of the RUNX-binding site, 

however, a random point mutation further downstream from the RUNX-binding site 

was also detected. An RGC-32 promoter fragment from -1160 to -750 (KpnI/NheI 

fragment) excluding the mutation was therefore subcloned. To update the luciferase 

reporter plasmid from the pGL2 to the pGL3 background, subcloning of this fragment 

was carried out, in conjunction with the downstream promoter region from the original 

RGC-32pLuc plasmid into pGL3 basic. Sequencing results revealed that the subcloning 

was successful, but despite the attempt to revert to the original promoter sequence to 

avoid the point mutation from C to T, this base was again mutated. Since sequencing of 

the original RGC-32pLuc plasmid did not contain this point mutation, the mutation of 

the wild-type plasmid may have occurred during repeated plasmid preparations. 

The pGL3-RGC-32pluc construct containing the RGC-32 promoter was then tested for 

activation by RUNX1c. Luciferase assay results revealed a similar activation of the 

RGC-32 promoter of approximately up to 2.3-fold with increasing RUNX1c expression 

(Figure 57B). Surprisingly, the RGC-32 plasmid containing the mutated RUNX-binding 

site was also activated to the same extent by RUNX1c indicating that RUNX1c may 

activate RGC-32 through an alternative site. 

Together these results suggest that RUNX1 does not bind the RGC-32 promoter directly 

via two of the identified RUNX-binding sites. Three more potential RUNX-binding 

sites present in the original RGC-32pLuc promoter construct need further investigation 

to identify whether RUNX1c targets the RGC-32 promoter via these sites. Another 

possibility may be that RUNX1 activates the RGC-32 promoter in an indirect manner  
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Figure 57 – DG75 cells were transiently transfected with increasing amounts of the RUNX1c-

expressing plasmid (pBK-CMV-RUNX1c), (2.5, 5 and 10 µg), 2 µg of a Renilla luciferase plasmid to 

determine the transfection efficiency and 4 µg a firefly luciferase reporter plasmid containing (A) the 

RGC-32 promoter or the RGC-32 promoter with additional upstream sequences (RGC-32 up) 

containing an additional RUNX-binding site or (B) the RGC-32 promoter or the RGC-32 promoter 

with a mutated RUNX-binding site. The graph shows the results of 3 independent experiments +/- 

standard deviation. The values for firefly luciferase activity (RGC-32 promoter activation) were 

corrected by dividing them by the values for the Renilla luciferase activity. RGC-32 promoter 

activation is displayed relative to the RUNX1-negative control.  
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by upregulation of another transcriptional activator which may be able to bind the RGC-

32 promoter and promote transcription. 

6.5 Investigations of the role of RUNX3 in RGC-32 
upregulation 

Since RUNX family proteins recognise a common site, the other RUNX family member 

expressed in B cells, RUNX3, was examined for its effects on the RGC-32 promoter. 

Surprisingly, luciferase assay results showed that RUNX3 was able to activate the 

RGC-32 promoter to a similar extent as RUNX1c (2.3-fold) (Figure 58A). These results 

indicate that RUNX1c and RUNX3 are individually able to activate the RGC-32 

promoter in transient reporter assays in DG75 cells. Western blotting confirmed the 

increasing amounts of RUNX proteins expressed (Figure 58A). 

6.6 Investigating the effects of RUNX1 upregulation on RGC-
32 in vivo 

RUNX1 expression was shown to be downregulated when RUNX3 is expressed 

(Spender et al., 2005a). In turn, when RUNX3 is knocked down in LCLs, RUNX1c 

mRNA expression increases (Spender et al., 2005a). Interestingly, expression of 

RUNX1c in LCLs results in B cell death. Since RUNX1c was able to activate the RGC-

32 promoter in reporter assays, the effects of increased endogenous RUNX1c 

expression were examined in LCLs. RUNX3 expression was reduced using siRNA-

expressing plasmids (gift from Paul Farrell). The IB4 LCLs were transfected with the 

control empty vector or two different plasmids expressing RUNX3 siRNA (siRNA 30 

and 118) which are hygromycin resistant. 24 hours after transfection hygromycin was 

added to the cells and samples taken after 6, 9 and 14 days. Real-time PCR analysis 

confirmed that the RUNX3 siRNA 30 decreased RUNX3 expression after 6 days and 

both plasmids efficiently reduced RGC-32 expression at 10 and 14 days post-

transfection (Figure 59A). Western blot analysis also confirmed this at the protein level 

(Figure 59B). 
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Figure 58 – DG75 cells were transiently transfected with increasing amounts of a RUNX1c-

expressing plasmid (pCEP4-RUNX1c) or a RUNX3-expressing plasmid (pCEP4-RUNX3), 

(2.5, 5, 10 µg). All samples were also transfected with 2 µg of a Renilla luciferase plasmid to 

determine the transfection efficiency and 4 µg a firefly luciferase reporter plasmid containing 

the RGC-32 promoter (pGL2-RGC-32pluc). (A) This graph shows the mean of 2 independent 

experiments +/- standard deviation. The values for firefly luciferase activity (RGC-32 

promoter activation) were corrected by dividing them by the values for the Renilla luciferase 

activity. RGC-32 promoter activity is displayed relative to the RUNX1/RUNX3-negative 

control. (B) Western blot analysis for RUNX1c (1:40, Calbiochem), RUNX3 (1:300, 

Calbiochem) and actin (1:5000, Sigma) expression. 
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Figure 59 – IB4 cells were transfected with 3 µg of the control vector (pHEBoSUPER), the 

RUNX3 siRNA-expressing plasmid 30 or the RUNX3 siRNA 118 and grown for 14 days in 

the presence of 300 µg/ml hygromycin. (A) Real-time PCR analysis of samples harvested 

after 6, 10 or 14 days was carried out in duplicate. RUNX3 mRNA levels were   normalised 

to GAPDH levels. The graph shows the mean of duplicates +/- standard deviation of a 

representative result from 3 similar experiments. (B) Protein samples were separated in a 

10% NuPAGE Novex Bis-Tris gel in MOPS running buffer (Invitrogen) for Western blot 

analysis. Proteins were detected using anti-RUNX3 (1:500, Calbiochem) and anti-Actin 

antibody (1:5000, Sigma). Bands were visualised with ECL. 
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Consistent with previous findings, RUNX1c mRNA expression increased with time 

when RUNX3 was knocked down (Figure 60). However, RUNX1c protein expression 

could not be detected in IB4 cells (data not shown). 

Interestingly, RGC-32 mRNA expression increased in a similar way to RUNX1c 

mRNA expression suggesting that RGC-32 expression correlates with RUNX1 

expression and that RUNX1c may act as a transcriptional activator of the RGC-32 

promoter (Figure 61A).  

For completeness, attempts were also made to detect RGC-32 expression at the protein 

level using Western blotting with the crude RGC-32 rabbit serum. Surprisingly, the 

RGC-32 serum produced much less background in these later experiments and clearly 

detected a band of the expected molecular weight (14 kD) that was upregulated in line 

with RUNX1 upregulation in these cells (Figure 61B). Importantly, RGC-32 was also 

detected in day 6 control IB4 samples. RGC-32 expression in control samples appeared 

to be reduced to undetectable levels in later samples possibly due to the negative effects 

of RUNX1 on cell growth and may therefore correlate with increased cell death with 

time. 

6.7 RGC-32 protein is differentially expressed in EBV latency 
As a result of the detection of RGC-32 protein by Western blotting in IB4 cells, a panel 

of cell lysates was tested for RGC-32 protein expression. Western blot analysis revealed 

that RGC-32 protein was undetectable in EBV-negative B cell lines (consistent with our 

previous results) and in Burkitt’s lymphoma group I lines and was only expressed in 

EBV-positive latency III cell lines (Figure 54 and Figure 62). This result was 

particularly surprising given that RGC-32 mRNA expression is lowest in EBV-negative 

and latency III cells and higher in latency I cells (Figure 54 and Figure 62). 

Interestingly, two EBNA 2-deleted cell lines do not express RGC-32 protein (P3HR1 

and Daudi). Taken together, these results suggest that high levels of RGC-32 mRNA do 

not drive protein expression in group I latency cell lines. It is possible that RGC-32 

protein expression is blocked in these cell lines leading to mRNA accumulation and that 

efficient RGC-32 translation in group III latency cell lines results in mRNA 

degradation. 
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Figure 60 – IB4 cells were transfected with 3 µg of the control vector 

(pHEBoSUPER), the RUNX3 siRNA-expressing plasmid 30 or the RUNX3 

siRNA 118 and grown for 14 days in the presence of 300 µg/ml hygromycin. Real-

time PCR analysis of samples harvested after 6, 10 or 14 days was carried out in 

duplicate. RUNX3 mRNA levels were normalised to GAPDH levels. The graph 

shows the mean of duplicates +/- standard deviation of a representative result from 

3 similar experiments.  
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(A) 

(B) 

Figure 61 – IB4 cells were transfected with 3 µg of the control vector (pHEBoSUPER), the 

RUNX3 siRNA-expressing plasmid 30 or the RUNX3 siRNA 118 and grown for 14 days in 

the presence of 300 µg/ml hygromycin. (A) Real-time PCR analysis of samples harvested 

after 6, 10 or 14 days was carried out in duplicate. RUNX3 mRNA levels were normalised to 

GAPDH levels. The graph shows the mean of duplicates +/- standard deviation of a 

representative result from 3 similar experiments. (B) Protein samples were separated in a 

10% NuPAGE Novex Bis-Tris gel in MES running buffer (Invitrogen) for Western blot 

analysis. Proteins were detected using anti-RGC-32 serum 2818 (1:750, final bleed) and anti-

actin antibody (1:5000, Sigma). Bands were visualised with ECL. 
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Figure 62 - (A+B+C) Proteins of different cell lines were separated in a 10% NuPAGE Novex Bis-

Tris gel in MES running buffer (Invitrogen). Proteins were detected using anti-RGC-32 serum (1:750, 

final bleed) and anti-actin antibody (1:5000, Sigma). Bands were visualised with ECL. Real-time 

PCR analysis of respective cDNA is shown below each Western blot and was carried out in duplicate 

and normalised to GAPDH expression. The graph shows the mean of 3 independent experiments +/- 

standard deviation. 
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Significantly, despite no obvious effect on RGC-32 mRNA compared to EBV-negative 

cells, RGC-32 protein is generally expressed when EBNA 3C is present suggesting that 

EBNA 3C may play a role in regulating its expression in latency III cell lines. However, 

reanalysis of the BJAB cell lines overexpressing EBNA 3C where RGC-32 mRNA is 

upregulated confirmed our earlier results that RGC-32 protein is not expressed in these 

cells. It is therefore possible that RGC-32 protein expression is also inhibited in EBV-

negative cells, but that our results in BJAB cells uncovered an effect of EBNA 3C on 

RGC-32 gene expression that may be masked by rapid degradation of RGC-32 mRNA 

in LCLs. 

6.8 Investigations into the potential translational inhibition of 
RGC-32 expression 

In the first set of experiments we investigated whether translation of RGC-32 mRNA 

was prevented by a block to nuclear export. Cellular fractionation was carried out to 

obtain total nuclear and cytoplasmic RNA samples for analysis from a number of 

different cell lines using protocols kindly provided by Katherine LB Borden 

(Topisirovic et al., 2002; Topisirovic et al., 2009). Western blot analysis for nuclear 

(SPT16) and cytoplasmic (actin) proteins in samples taken from fractions prior to RNA 

extraction confirmed generally efficient fractionation although some cytoplasmic 

contamination was detected in nuclear samples from HK285 and Mutu III cells (Figure 

63A). Cytoplasmic fractions were however free from nuclear contamination. Real-time 

PCR analysis for RGC-32 and a control for translated and exported mRNA, GAPDH, 

detected both messages in both the nucleus and cytoplasm (Figure 63B). In all cell lines 

examined GAPDH mRNA was present at increased levels in the cytoplasm compared to 

the nucleus. Although RGC-32 mRNA was present in the nucleus, RGC-32 mRNA was 

detectable in the cytoplasm. It is therefore unlikely that a block to nuclear export 

prevents RGC-32 expression. Nonetheless, it is apparent that RGC-32 mRNA is 

exported less efficiently or to a lesser degree than GAPDH mRNA. It is therefore 

possible that specific mechanisms exist to prevent RGC-32 mRNA translation in the 

cytoplasm. 

Interestingly, another family of small CDK activators (Rapid INducer of G2/M 

progression in Oocytes) RINGO have been described that are also subject to regulation  
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Figure 63 – Cellular fractionation. (A) Protein lysates of cytoplasmic (cyt) and nuclear (nuc) 

fractions of BJAB cell lines pZ3 and E3C-3, the LCL HK285 and the Burkitt’s lymphoma cell 

lines Mutu I (group I) and Mutu III (group III) were separated in a 4-12% NuPAGE Novex Bis-

Tris gel in MOPS running buffer (Invitrogen). Proteins were detected using anti-SPT16 antibody 

(1:500, Santa Cruz) or anti-actin antibody (1:5000, Sigma). Bands were visualised with ECL. 

(B) QPCR analysis of cytoplasmic (cyt) and nuclear (nuc) fractions of BJAB cell lines pZ3 and 

E3C-3, the LCL HK285 and the Burkitt’s lymphoma cell lines Mutu I (group I) and Mutu III 

(group III). The graph shows the mean of duplicates +/- standard deviation of RGC-32 mRNA 

levels and GAPDH mRNA levels. 
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at the level of translation. The RINGO/Speedy family encompasses Xenopus RINGO 

(XRINGO/Speedy), human RINGO/Speedy A (spy1, RINGO 3), RINGO/Speedy B 

(RINGO 4), RINGO/Speedy C (RINGO 2), RINGO/Speedy D (RINGO 5) and 

RINGO/Speedy E (RINGO 1) (Cheng et al., 2005; Dinarina et al., 2005). Xenopus 

RINGO/Speedy was shown to share 40% identity with human RINGO/Spy1. RINGO 

has shown similar features to RGC-32 in binding and activating CDK1 (Badea et al., 

2002; Ferby et al., 1999), (reviewed in (Gastwirt et al., 2007)). However, no homologies 

exist between RGC-32 and the RINGO protein family at the amino acid level (Porter et 

al., 2002). RINGO protein expression in Xenopus oocytes is undetectable since binding 

of the RNA-binding protein Pumilio-2 (PUM2) to specific sequences in the 3’UTR 

represses translation (Padmanabhan and Richter, 2006). Pumilio-2 is a translational 

repressor that plays an important role in anterior-posterior patterning and germ cell 

development in Drosophila (Asaoka-Taguchi et al., 1999; Murata and Wharton, 1995; 

Parisi and Lin, 1999; Wharton et al., 1998). Due to the similarities in function between 

the RINGO family and RGC-32, the 3’UTR of RGC-32 was examined for Pumilio-2 

binding sites. Human Pumilio-2 was shown to interact with DAZL (Deleted in 

AZoospermia-L ike proteins) which is known to interact with mRNAs leading to 

recruitment of the translation initiation factors (Moore et al., 2003). Pumilio-2 may 

therefore inhibit initiation factor recruitment. Pumilio-2 binds human PUM2 binding 

element 1 (hPBE1) which contains the sequence UNUUANNUGUA or the human 

PUM2 binding element 2 (hPBE2) which contains the sequence UAUANNUAGU (Fox 

et al., 2005). However, the authors suggest that the length of the random nucleotide 

sequence in the middle of each binding element can vary (Fox et al., 2005). The left part 

of the sequence UNUUA or UAUA is termed Box A and the right part UGUA or 

UAGU is termed Box B.  

A perfect match for the Pumilio-2 binding site hPBE2 (Box A: pink, Box B turquoise) 

and three hPBE1 sites were found in the 3’UTR of the RGC-32 mRNA (Box A: red, 

Box B: green) (Figure 64). However, the spacing between the Box A and Box B of the 

hPBE1 sites is relatively large (10-23 nucleotides) compared to previously reported 

Pumilio-2 binding sites which only showed 1-2 bases between Box A and Box B and 

may therefore not be identified as hPBE1 sites (Fox et al., 2005). However, the Pumilio-

2 binding site on the RINGO mRNA shows spacing of 16 nucleotides between the Box  
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GUGGCGAGGGCGGUGCCUGGGGGCAGGGGCCUCCUCGGAGGGCGGCGGGGACAGACCCG

UCGCCCCGGCUCCGCAGCCCCGCCCCGGCCCCGCCUCCGCUCCGGCCGCCGAAGGCUAU

AAGAUCUAGGAACCCGAGCCGGUGGUAGGGCGGGCGCGGACCGUGCUGGGAGCGGCGCG

GCUGGAGCGCAGCGCCGAAGGGACUGGCAGGGCUGAAGUGUGCGGGACAGCAAGCCCCC

GAAUAGCCCCGGCUGCCACCUCGCAGGACCCAAGGCCACGCGCGCCGGGCCCAGCUGAG

CCGCCUCAUGAAGCCGCCCGCGGCGCAGGGCAGCCCCGCGGCCGCCGCGGCCGCAGCCC

CGGCCCUGGACUCGGCGGCCGCGGAGGACCUGUCGGACGCGCUGUGCGAGUUUGACGCG

GUGCUGGCCGACUUCGCGUCGCCCUUCCACGAGCGCCACUUCCACUACGAGGAGCACCU

GGAGCGCAUGAAGCGGCGCAGCAGCGCCAGUGUCAGCGACAGCAGCGGCUUCAGCGACU

CGGAGAGUGCAGAUUCACUUUAUAGGAACAGCUUCAGCUUCAGUGAUGAAAAACUGAAU

UCUCCAACAGACUCUACCCCAGCUCUUCUCUCUGCCACUGUCACUCCUCAGAAAGCUAA

AUUAGGAGACACAAAAGAGCUAGAAGCCUUCAUUGCUGAUCUUGACAAAACUUUAGCAA

GUAUGUGAAACAAGAAGUUCUGGGUCCUUUCAUCAUAAGGGAGAAGCUUCAGAAAGUUC

CGAGGACCUGCUAAAAUCAGCUACUAGAAUCUGCUGCCAGAGGGGACAAAGACGUGCAC

UCAACCUUCUACCAGGCCACUCUCAGGCUCACCUUAAAAUCAGCCCUUGAUCCCAUUUC

UGGGCAAUUUAGACAGUGAAACUGACUUUGUUUACCUGCUUGCAGCAUAUUAGAACAGA

CGAUCCAUGCUAAUAUUGUAUUUUCUCUUAAAACAUAGCUUUCCUGUAAUUUAAAGUGC

UUUUAUGAAAAUAUUUGUAAUUAAUUAUAUAUAGUUGGAAAUAGCAGUAAGCUUUCCCA

UUAUAAUAUAUUUUUGUAUACAAAUAAAAUUUGAACUGAAGUCUGCAAAAAAAAAAAAA

AAAAA 

 

Figure 64 – Sequence of RGC-32 mRNA (accession number NM_014059 on www.ncbi.nlm.nih.gov) 
Red-coloured letters represent the coding region for protein translation starting with the start codon AUG highlighted 

in yellow and the stop codon UGA highlighted in yellow. The sequence following the stop codon represents the 

3’UTR (untranslated region). The Box A sequence UNUUA highlighted in red is followed by the Box B sequence 

UGUA highlighted in green which together represent human Pumilio binding elements 1 (hPBE1). The Box A 

sequence UAUA highlighted in pink is followed by the Box B sequence UAGU highlighted in turquoise which 

together represent human Pumilio binding elements 2 (hPBE2). 
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A and Box B of the hPBE1 indicating that a hPBE1 site containing large spacing 

between the Box elements is still recognised by Pumilio-2 (Padmanabhan and Richter, 

2006). Further investigations are needed to verify whether Pumilio-2 actually binds the 

hPBE1 and 2 sites in the RGC-32 mRNA sequence and regulates its translation. 

6.9 Discussion 
RGC-32 mRNA was found to be downregulated when the transcription factor RUNX1 

was downregulated in rat periovulatory cells (Jo and Curry, 2006). RUNX1c mRNA 

and protein expression is high in Burkitt’s lymphoma group I cell lines and latency III-

expressing cell lines lacking EBNA 2 expression relative to latency III-expressing cell 

lines and LCLs, where RUNX1c is downregulated by the presence of RUNX3. 

Investigations were therefore carried out to determine whether RGC-32 mRNA 

expression correlated with RUNX1c expression in a panel of EBV-negative and EBV-

positive cell lines. Interestingly, RGC-32 mRNA showed a very similar profile to 

RUNX1c mRNA indicating that RUNX1 may regulate RGC-32 expression in B cells. 

To follow up these observations, reporter assays were carried out to determine whether 

RUNX1c was able to activate a 1.4 kb fragment of the RGC-32 promoter. A 2.2-fold 

upregulation was detected in the EBV-negative cell line DG75 demonstrating a role for 

RUNX1 in controlling RGC-32 expression in human B cells. Mutation of the predicted 

RUNX-binding site in the promoter construct did not result in abrogation of the RGC-

32 promoter activation. An additional RUNX-binding site which was predicted further 

upstream of the originally examined promoter sequences appeared to be non-functional 

since no increase in RGC-32 promoter activation was detected. We showed that 

RUNX3 can also upregulate RGC-32 promoter activation but real-time PCR results do 

not show a correlation between RGC-32 mRNA levels and RUNX3 expression 

indicating that the effects of these proteins may be context-dependent. However, RGC-

32 and RUNX3 protein are co-expressed in LCLs and in a group III Burkitt’s lymphoma 

cell line which may indicate a correlation of protein expression regulation. 

The most surprising aspect of this series of experiments came from the first 

demonstration of endogenous RGC-32 protein expression in B cells. An examination of 

a panel of cell lines revealed that RGC-32 protein was consistently expressed in LCLs 
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and in a group III Burkitt’s lymphoma cell line and some EBNA 2-deleted group III 

Burkitt’s lymphoma cell lines. These results therefore raise the question of why RGC-

32 mRNA expression is high in Burkitt’s lymphoma group I cell lines, but no protein 

can be detected and why RGC-32 protein is not detectable in BJAB cells stably 

expressing 3C despite increased RNA expression. One possibility is that the export of 

mRNA from the nucleus is inhibited. Cellular fractionation was carried out to 

investigate whether the cytoplasmic RNA fraction contained any RGC-32 mRNA or 

whether a block in RNA export resulted in accumulation of mRNA in the nucleus. Real-

time PCR analysis revealed that a proportion of RGC-32 mRNA is present in the 

cytoplasm so would be available for translation. Due to functional similarities between 

RINGO proteins and RGC-32 in CDK1 activation and the fact that the translation of 

Xenopus RINGO is repressed by binding of the translational repressor PUM-2 to the 

3’UTR of RINGO, the 3’UTR of RGC-32 was examined for PUM-2 binding sites. 

Interestingly, a perfect match for the Pumilio-2 binding site hPBE2 was found. These 

results indicate that a similar mechanism may prevent RGC-32 translation in a cell type 

dependent manner. 

Initiation of mRNA translation is often controlled by regulation of the interaction 

between the eukaryotic initiation factors eIF4E, eIF4G and eIF4A and 5’-cap of the 

mRNA (Gebauer and Hentze, 2004). The Poly(A)-binding protein (PABP) was also 

shown to play a role in translation initiation since depletion of PABP from a cell-free 

extract prevents initiation of mRNA translation (Kahvejian et al., 2005). The 3’-poly(A) 

tail is bound by DAZL and PABP which were shown to interact in Xenopus (Figure 

65A) (Collier et al., 2005; Voeltz et al., 2001). PABP in turn interacts with eIF4G and 

circularizes the translating mRNA (Imataka et al., 1998). 

The inhibition of RINGO mRNA translation by PUM2 was suggested to occur via 

interaction with DAZL (Moore et al., 2003). Therefore, PUM2 may interfere with the 

interactions between the 5’cap and eukaryotic translation initiation factor 4E (eIF4E), 

eIF4G or PABP inhibiting the circularisation and therefore translation of the mRNA 

(Figure 65B), (Menon et al., 2004; Padmanabhan and Richter, 2006). It was suggested 

that PUM2 inhibition is released during oocyte maturation when it dissociates from 

RINGO mRNA  
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Figure 65 – Potential mechanism of Pumilio-2 inhibition and RINGO activation. 

(A) DAZL and PABP interact with the mRNA and initiation factors that interact with 

the 5’cap of the mRNA. Circularisation is necessary for mRNA translation (B) 

Pumilio-2 is known to bind a Pumilio-binding element (PBE) located in the 3’UTR of 

RINGO mRNA. Pumilio-2 is thought to inhibit the circularisation of the mRNA by 

binding the mRNA and DAZL. (C) RINGO protein can activate CBEP, which binds to 

the CPE promoting polyadenylation of the cyclin mRNA, which is followed by 

translation. Cyclin expression can then activate its CDK binding partner and induce 

oocyte maturation. 
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(Padmanabhan and Richter, 2006). DAZL and ePAB remained associated with RINGO 

mRNA to promote its translation (Padmanabhan and Richter, 2006). 

Cyclin B mRNA translation was shown to be regulated by RINGO expression via 

activation of the cytoplasmic polyadenylation element binding protein (CPEB) in 

Xenopus oocytes (Figure 65C). CPEB binds to the 3’UTR-residing cytoplasmic 

polyadenylation element (CPE) which mediates polyadenylation together with other 

factors which trigger translation of the mRNA (Hake and Richter, 1994; Paris et al., 

1991; Sheets et al., 1994). It may be that RGC-32 translation is inhibited by Pumilio-2 

in a similar manner to RINGO. It is possible that RGC-32 may be involved in CPEB 

activation supporting translation of target genes involved in cell cycle progression. 
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7 Discussion 

EBV has been causally linked to numerous types of cancer e.g. Burkitt’s lymphoma, 

nasopharyngeal carcinoma, post-transplant lymphoproliferative disease, AIDS-

associated lymphomas as well as Hodgkin’s lymphomas. The virus infects and 

immortalises human B cells through mechanisms that are still not fully understood. 

One of the EBV proteins essential for immortalisation, EBNA 3C, has been shown to 

disrupt many cell cycle checkpoints including the G2/M checkpoint (Krauer et al., 

2004b; Parker et al., 2000). Previous studies have suggested that this may be mediated 

by the ability of EBNA 3C to interact and downregulate chk2 which is activated upon 

DNA damage leading to cell cycle arrest via CDK1 inactivation (Choudhuri et al., 2007; 

Krauer et al., 2004b). The inactive form of CDK1, tyrosine-15 phosphorylated CDK1 

was also shown to accumulate at reduced levels during G2 arrest in EBNA 3C-

expressing cells (Krauer et al., 2004b). It is not known whether EBNA 3C accomplishes 

this in a direct or indirect manner (Krauer et al., 2004b). 

To identify new downstream targets of EBNA 3C, a microarray study was previously 

carried out in the lab. Interestingly, the response gene to complement 32 (RGC-32) was 

found to be upregulated by 6.6-fold in an EBV-negative BJAB cell line stably 

expressing EBNA 3C compared to an EBNA 3C-negative BJAB cell line. The role of 

RGC-32 as a CDK1 activator led us to investigate whether RGC-32 played a role in 

mediating the effects of EBNA 3C on the G2/M checkpoint. We confirmed that BJAB 

cells with upregulated RGC-32 mRNA showed disrupted checkpoint regulation. 

In support of a role for RGC-32 overexpression in checkpoint deregulation, previous 

studies in the lab confirmed that stable expression of RGC-32 alone could lead to partial 

G2/M disruption in B cell lines. Therefore, increased RGC-32 expression could be 

partially responsible for G2/M checkpoint disruption by EBNA 3C. However, this 

observation could not be repeated in transient systems. This may be due to the fact that 

a transfection efficiency of only 30% could be achieved and this proportion of cells may 

not be sufficient enough to display a significant phenotypic change in FACS analysis. 

Further, concentrations of up to 800 nM etoposide did not fully arrest the cells 
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suggesting that a higher concentration was needed to enable proper visualisation of 

G2/M checkpoint disruption. Transiently transfected DG75 cells were harvested 48 

hours after transfection and were exposed to etoposide after only 24 hours. This 

relatively short overexpression of RGC-32 may not be efficient enough to produce a 

similar phenotype seen in BJAB and DG75 cells stably overexpressing RGC-32. 

It is important to note that no endogenous RGC-32 protein could be detected in BJAB 

cell lines stably overexpressing EBNA 3C showing elevated levels of RGC-32 mRNA 

expression whereas stably expressed RGC-32 protein could be detected in BJAB and 

DG75 cells. This could not be resolved by new antibody generation or by antibody 

purification. Unfortunately, we cannot conclude whether cell cycle checkpoint 

disruption observed in BJAB cells stably expressing EBNA 3C is due to RGC-32 

expression or whether it may be caused by a different pathway induced by EBNA 3C.  

It is also possible that RGC-32 activates CDK1 in a similar manner to RINGO by using 

small levels of protein expression which were undetectable by the antibody. It may be 

that the RGC-32 protein has a relatively fast turnover. However, when we investigated 

whether RGC-32 protein was actively degraded by the proteasome in BJAB cell lines, 

we found that treatment with the proteasome inhibitor MG132 did not result in 

increased RGC-32 expression. However, no positive control was used in this 

experiment and we cannot rule out the fact that the experiment may not have worked. 

We confirmed the role of RGC-32 as a CDK1 activator in vitro, but could not show the 

same result in EBNA 3C-expressing BJAB cells, in BJAB and DG75 cells 

overexpressing RGC-32 or transiently overexpressing DG75 cells. Surprisingly, 

decreasing CDK1 activity was found in asynchronous BJAB and DG75 cells stably 

overexpressing RGC-32 in cyclin B1 or CDK1 immunoprecipitations. It is possible that 

the differences in CDK1 activity are due to using asynchronous cells where only a small 

proportion of cells are going through mitosis where CDK1 is active. Comparison of this 

relatively small amount of CDK1 activity may therefore not be sufficient enough to 

detect the effects of RGC-32 on CDK1 activity in vivo. To further examine the effects 

of RGC-32 on CDK1 activation, the experiment could be repeated in nocodazole-

arrested or elutriated cells to obtain mitotic cells. 
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Interestingly, work published during the course of the study showed that RGC-32 

expression correlated with RUNX1 expression (Jo and Curry, 2006). Jo and Curry 

showed that RUNX1 gene silencing decreased RGC-32 mRNA levels in cultured 

granulosa cells obtained from rat periovulatory follicles identifying RUNX1 as a 

regulator of RGC-32 (Jo and Curry, 2006). This group further found several putative 

RUNX-binding sites in the RGC-32 gene and ChIP assays revealed that RUNX1 binds 

to the RGC-32 promoter in vivo (Park et al., 2008). Because of differential expression of 

RUNX1 and RUNX3 in EBV latency, we examined RGC-32 expression and identified 

RGC-32 mRNA levels that correlated with RUNX1 expression (Table 9). Surprisingly 

however, RGC-32 protein was only detected in cells expressing the EBV latency III 

pattern where RUNX1 expression is low. 

 
 
 

RGC-32 
mRNA 

RGC-32 
protein 

RUNX1 
protein 

RUNX3 
protein 

EBV-negative Variable/low none Variable/low Variable/high 

BL group I high none high low 

BL group III and 

LCLs 
low high low high 

 
Table 9 – Overview of RGC-32, RUNX1 and RUNX3 expression in cell lines with different EBV 
latency.  
 
 
 

7.1 Why is RGC-32 protein not expressed in EBV-negative 
and Burkitt’s lymphoma group I cell lines? 

Since EBV-negative and Burkitt’s lymphoma group I cell lines show high levels of 

RGC-32 mRNA but no protein, the nuclear export or translation of RGC-32 mRNA 

may be inhibited in these cells. We showed that a proportion of RGC-32 mRNA is 

present in the cytoplasm and is therefore available for translation. Interestingly, the 

RGC-32 mRNA contains numerous PUM2-binding elements. PUM2 is known to inhibit 

translation by binding to the 3’UTR of XRINGO mRNAs and some genes involved in 

cell cycle regulation e.g. Mos and cyclin B1 (Figure 66) (Padmanabhan and Richter, 

2006).  
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Figure 66 – Pumilio-2 (PUM2) inhibits RINGO and possibly RGC-32 

translation. RINGO can bind and activate CDK1 in the absence of its cyclin 

and induce cell cycle progression. RGC-32 was also shown to bind and activate 

CDK1, however, it is not known whether RGC-32 binds CDK1 in the presence 

or absence of cyclin B to induce cell cycle progression. 
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RINGO/Speedy mRNA was originally discovered in Xenopus oocytes by 2 independent 

groups. Lenormand et al. designated the novel RNA Speedy since it induces release of 

G2-arrested oocytes into meiosis (meiotic maturation) independently of progesterone 

stimulation (Lenormand et al., 1999). Simultaneously, Ferby et al. found the same RNA 

which they designated RINGO (Rapid INducer of G2/M progression in Oocytes) 

(Ferby et al., 1999).  

PUM2 antibody injection in Xenopus oocytes was shown to lead to endogenous 

XRINGO protein detection and Mos and cyclin B1 synthesis (Padmanabhan and 

Richter, 2006). Therefore, RGC-32 mRNA translation may be inhibited like the cell 

cycle regulators XRINGO, cyclin B1 and Mos resulting in accumulation of mRNA 

(Figure 66). 

Although cellular fractionation assays suggested that RGC-32 is being exported from 

the nucleus into the cytoplasm, we do not know whether any RGC-32 mRNA is being 

translated in Burkitt’s lymphoma group I cell lines. Evidence to support low-level RGC-

32 protein expression in EBNA 3C-expressing BJAB cells comes from the observation 

that silencing of RGC-32 gene expression had an effect on the cell cycle. Reduction of 

RGC-32 expression results in accumulation of cells in G0/G1 confirming that RGC-32 

expression may play an important role in G1/S progression. Therefore, small amounts of 

RGC-32 protein may also be translated in Burkitt’s lymphoma group I cell lines. 

To identify whether translation of RGC-32 mRNA is inhibited in EBV-negative and 

Burkitt’s lymphoma group I cell lines, polysome gradient analysis could be carried out 

to determine whether RGC-32 mRNA associates with ribosomes or whether this step is 

inhibited. Further, the role of translation inhibition by PUM2 will be investigated to 

determine whether RGC-32 mRNA is in fact bound and its translation inhibited by 

PUM2 using RNA band shift experiments. Another possibility is to overexpress RGC-

32 3’UTR sequences in cells to determine whether this results in relieve of potential 

translational repression or PUM2. It would also be interesting to examine the PUM2 

expression in a cell panel with different EBV latencies to determine whether differential 

PUM2 expression controls RGC-32 expression. 
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7.2 What is the role of RUNX in regulating RGC-32 
expression? 

Luciferase assays revealed that RUNX1c was able to increase RGC-32 promoter 

activity (Figure 67) but that RUNX1c does not activate the RGC-32 promoter via the 

predicted RUNX-binding site. Although RGC-32 mRNA translation may be inhibited 

by PUM2 in group I Burkitt’s lymphoma (latency I), RGC-32 may still be upregulated 

by RUNX1c. 

Therefore, this RUNX1c-mediated RGC-32 upregulation may not result in RGC-32 

expression in EBV-transformed Burkitt’s lymphoma group I cell lines but may play a 

crucial role in other tumour cell lines. 

Silencing of RUNX3 expression led to upregulation of RUNX1c mRNA and RGC-32 

mRNA and protein confirming a role for RUNX1c in upregulating RGC-32. However, 

RUNX1c protein expression could not be detected in LCLs with silenced RUNX3 

expression, although it is noteworthy that the original publication of RUNX3 

knockdown only displayed RUNX1 mRNA indicating that the RUNX1c protein 

expression may remain below detection limits (Spender et al., 2005a).  

Additional studies are needed to identify the mechanism for RUNX-induced RGC-32 

upregulation. ChIP analysis of a broad range of cell lines using an anti-RUNX1 or anti-

RUNX3 antibody could show whether the RUNX proteins associate with the RGC-32 

promoter and which RUNX-binding sites may be used. However, no appropriate anti-

RUNX1c antibody is commercially available for ChIP analysis. The only anti-RUNX1 

antibody available which detects the RUNX1c isoform does not immunoprecipitate the 

protein. 

7.3 What is the role of EBNA 3C in regulating RGC-32 
expression? 

Luciferase assays revealed a low level increase of RGC-32 promoter activity with 

increasing amounts of EBNA 3C expression in DG75 cells. However, this observation 

could not be confirmed in BJAB or Raji cell lines. Moreover, ChIP analysis 

demonstrated that EBNA 3C-expressing BJAB cell lines do not show increased  
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Figure 67 -.EBNA 2 was shown to induce RUNX3 expression. RUNX3 can inhibit 

RUNX1 expression. Both RUNX1 and RUNX3 can induce RGC-32 gene transcription 

but RGC-32 translation may be inhibited by PUM2 when RUNX1 is expressed. EBNA 

3C stabilises RGC-32 mRNA as a result of translation inhibition or in order to 

synthesise more RGC-32 protein. In B cell lines where RUNX3 is expressed, RGC-32 

protein was detected. RGC-32 protein can bind and activate CDK1. It is not known 

whether the CDK1 activation occurs in the presence or absence of cyclin B. Activation 

of CDK1 leads to cell cycle progression. 
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polymerase II association at the RCG-32 promoter suggesting that the RGC-32 

upregulation by EBNA 3C does not occur by induction of RGC-32 gene transcription 

either directly or indirectly. 

Further investigations of the RGC-32 upregulation by EBNA 3C suggested that there is 

a dramatic increase in the RGC-32 mRNA half life in the EBNA 3C-positive BJAB cell 

lines E3C-3 and E3C-7 compared to EBNA 3C-negative control cells. Since EBNA 3C 

is not known to bind to RNA directly, it is likely that message stabilisation by EBNA 

3C results from effects on the components of a pathway that normally promotes or 

prevents RGC-32 mRNA degradation. Although the microarray study did not identify 

any RNA stabilisation or translation inhibition factors in EBNA 3C-expressing cells, it 

may be possible that BJAB cells in general express these factors, e.g. Pumilio-2, and 

repress translation of RGC-32 mRNA in the presence or absence of EBNA 3C. The 

same phenomenon may be observed in Burkitt’s lymphoma group I cell lines. 

Interestingly, Raji cells which display a deletion of the EBNA 3C gene do not express 

detectable RGC-32 protein but RGC-32 mRNA is not accumulated further suggesting 

that EBNA 3C is involved in upregulation of RGC-32. In addition, since RGC-32 

protein could not be detected in EBV type 2 cell lines P3HR1 and Jijoye, our initial 

studies suggested that type 1 EBNA 3C may be required for RGC-32 upregulation.  

Two EBV types, EBV-1 and EBV-2 have been described. A major difference between 

the two EBV types is found in the EBNA 2 gene with only 64% of the gene and 53% of 

the amino acid sequence conserved between types (Adldinger et al., 1985). Variation in 

the EBNA 3 genes was also subsequently discovered (Rowe et al., 1989; Sample et al., 

1990). EBV type 2 infection only rarely occurs in Western Europe and USA but is 

common in Africa and New Guinea (Rowe et al., 1989; Young et al., 1987; Zimber et 

al., 1986).  

Interestingly, the RGC-32 protein was expressed at detectable levels in EBNA 2-deleted 

Burkitt’s lymphoma cell lines Oku and Sal although their RGC-32 mRNA expression 

resembled the phenotype observed for group I Burkitt’s lymphoma cell lines. However, 

the same observation could not be made for the EBNA 2-deleted Burkitt’s lymphoma 
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cell line Daudi. It is therefore possible that Daudi cells contain changes in the EBNA 3C 

gene or protein. 

In addition, an obvious difference between the cell lines Oku, Sal and Daudi is their 

time of extraction. The Daudi cell line has been established in 1968 whereas the cell 

lines Oku and Sal have been established in 1999 (Habeshaw et al., 1999; Klein et al., 

1968). The differences in RGC-32 protein expression might therefore be due to the fact 

that Daudi has been passaged many times which might have resulted in the change of 

phenotype which has not occurred for the cell lines Oku and Sal which are relatively 

new cell lines. It could also be possible that the mechanism by which EBV immortalises 

cells has slightly changed with time and allowed RGC-32 protein expression. Further 

experiments examining EBNA 2-deleted cell lines are needed to verify this observation. 

It would be interesting to examine another panel of cell lines including cells which only 

differ in EBNA 3C and/or EBNA 2 expression to further investigate the correlation 

between RGC-32, RUNX, EBNA2 and EBNA 3C expression, for example, Martin 

Allday’s virus constructs with deleted EBNA 3C or EBNA 3A in different BL cells 

(Young et al., 2008). However, RGC-32 may also be inhibited in those cell lines.  

Although ChIP analysis showed that EBNA 3C expression in BJAB cell lines does not 

result in activation of RGC-32 transcription, it is possible that EBNA 3C may target the 

RGC-32 promoter via the other two predicted RBP-J kappa sites in cell lines expressing 

detectable RGC-32 protein. Therefore, ChIP analysis using the anti-EBNA 3C antibody 

could be repeated in LCLs and Burkitt’s lymphoma group III cell lines to confirm this. 

7.4 What is the mechanism of CDK1 activation by RGC-32? 
A novel protein family, RINGO/Speedy, has been shown to be functionally similar to 

RGC-32 and can induce cell cycle progression although protein expression could not be 

detected in Xenopus during oogenesis and early embryogenesis, (reviewed in (Gastwirt 

et al., 2007)). 

Like the RINGO family, RGC-32 was found to be able to bind and increase CDK1 

activity in vitro (Badea et al., 2002). Kinase assays using recombinant RGC-32 protein 

could confirm this result. However, Saigusa et al. reported that RGC-32 was not able to 
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interact with CDK1 in vivo (Saigusa et al., 2007). This suggestion was made after they 

immunoprecipitated FLAG-RGC-32 in HEK 293-T cells with an anti-FLAG antibody 

and failed to see cyclin B1 as a co-immunoprecipitate. However, the conclusion of 

Saigusa et al. implies that RGC-32 binds to the CDK1/cyclinB1 complex instead of 

competing with cyclin B1 for CDK1, neither of which has been shown to date. Since 

RGC-32 is also phosphorylated by CDK1 like cyclin B1, it might be able to replace 

cyclin B1 in the cyclin B1/CDK1 complex as observed for RINGO family members 

(Badea et al., 2002), (reviewed in (Gastwirt et al., 2007)). XRINGO can bind cyclin B 

and CDK1 individually but not the CDK1/cyclin B complex further confirming that the 

RINGO family can activate CDK1 in the absence of cyclin B (Ferby et al., 1999). 

Immunoprecipitation assays using an anti-cyclin B1 antibody may therefore not 

immunoprecipitate RGC-32 and it can therefore not be concluded that RGC-32 does not 

bind CDK1. To further investigate the function of RGC-32, kinase assays could be 

carried out to examine whether RGC-32 can activate CDK1 in the absence of cyclin B1. 

Immunoprecipitation assays could also be used to determine whether RGC-32 can bind 

CDK1 and cyclin B1 individually or whether it associates with the complex. 

Interestingly, RINGO family members were shown to override the effects of inhibitory 

CDK1 phosphorylation and that Myt1 expression, which catalyses the inhibitory 

phosphorylation of CDKs, cannot reduce RINGO/CDK1 activity to the same extent as 

cyclin B/CDK1 (Karaiskou et al., 2001). RINGO/CDK1 activity could not be reduced 

due to less inhibitory CDK1 phosphorylation by Myt1 (Karaiskou et al., 2001). RGC-32 

may also able to overcome the inhibitory CDK1 phosphorylation since RGC-32-

overexpressing BJAB cells showed that a proportion of cells continue cell growth 

despite DNA damage and Tyr-15 phosphorylation of CDK1. Therefore, the mechanism 

of CDK1 activation by RGC-32 remains to be fully elucidated. 

Additionally, XRINGO has been shown to induce CDK1 activation independent of Thr-

161 phosphorylation in vitro and in vivo and is required for progesterone-induced 

oocyte maturation (Ferby et al., 1999; Karaiskou et al., 2001). RINGO was further 

shown to bind and activate CDK2 in the absence of its cyclin and independent of Thr-

160 phosphorylation in mammalian cells where RINGO protein is detectable (Karaiskou 

et al., 2001; Porter et al., 2002). Therefore, it would be interesting to determine whether 
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the CDK-activating kinase CAK is needed to mediate RGC-32-induced CDK1 

activation. Transfection assays using a FLAG-tagged vector expressing the T161A 

mutant of CDK1 compared to wild-type CDK1 could be carried out. CDK1 

immunoprecipitates could then be used in kinase assays to examine whether RGC-32 is 

still able to activate CDK1 when Thr-161 is mutated. 

Interestingly, RGC-32 is unable to enhance CDK1 activity in the presence of p27KIP1 

(Badea et al., 2002). In contrast, RINGO-activated CDK1 cannot be inhibited by 

expression of another CDK inhibitor, p21, which was shown to inhibit progesterone 

induced CDK1 activation in oocytes (Barnes et al., 2003; Karaiskou et al., 2001; 

Lenormand et al., 1999; Porter et al., 2002). These observations highlight different 

modes of action of these two CDK1 activators. 

7.5 What is the role of RGC-32 expression in LCLs? 
RGC-32 protein was only detected in Burkitt’s lymphoma group III cells and LCLs 

indicating that RGC-32 may play an important role in cell proliferation in these cell 

lines. Interestingly, preliminary experiments carried out by Andrea Gunnell showed that 

stable expression of RGC-32 siRNA in the LCL IB4 leads to cell death indicating that 

RGC-32 is essential for cell proliferation in LCLs (our unpublished data). 

In support of a tumour promoting role for RGC-32, the expression of the novel CDK1 

activator RGC-32 is deregulated in numerous tumours e.g. ovarian, colon, breast and 

prostate cancers and therefore appears to be involved in tumour development 

(Donninger et al., 2004; Fosbrink et al., 2005; Kang et al., 2003). Furthermore, 

inducible overexpression of testis-specific protein Y (TSPY) in HeLa cells has been 

reported to upregulate RGC-32 and to accelerate progression through G2/M (Oram et 

al., 2006). Interestingly, TSPY has been shown to be upregulated in gonadoblastoma, 

testicular germ-cell tumours, prostate and liver cancers and in melanomas (Gallagher et 

al., 2005; Lau, 1999; Lau et al., 2003; Yin et al., 2005). Its effects on cellular 

proliferation are further supported by the observation that RGC-32 is upregulated during 

tissue regeneration and remodelling (Blaxall et al., 2003; Lim et al., 2002; Strom et al., 

2005). Due to the suggested role of RGC-32 as a CDK1 activator, the protein may play 

an important role in tumour development. Further, RGC-32 protein may also be 
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expressed during early stages of EBV infection but is subsequently downregulated in 

some cell lines, e.g. Burkitt’s lymphoma group I cell lines. 

7.6 RGC-32 – Oncogene or tumour suppressor? 
Despite its role in cell proliferation, RGC-32 has also been described as a potential 

tumour suppressor gene which was shown to be deleted in malignant gliomas. RGC-32 

was shown to suppress growth when re-introduced into 19 glioma cell lines. 

Overexpression of RGC-32 in HeLa cells also affected cell cycle progression by 

delaying the G2/M transition (Saigusa et al., 2007). It is therefore possible that the 

biological effects of RGC-32 may differ between cell and tumour types. 

P53 has also been implicated in the regulation of RGC-32 expression. Both, p53 null U-

373 MG cells and mutation of the p53 gene in primary astrocytomas resulted in a 

decrease of RGC-32 mRNA expression (Saigusa et al., 2007). Expression of p53 in p53 

null U-373 MG cells showed induction of RGC-32 mRNA via p53 binding to a 

regulatory element in the RGC-32 gene (Saigusa et al., 2007).  

P53 is known to become activated upon DNA damage, therefore, it may be possible that 

RGC-32 expression is repressed or activated by p53 (Figure 67). The turnover of normal 

p53 protein occurs rapidly and can only be detected in cell lines with mutated p53 (Lane 

and Benchimol, 1990). It does not appear however that the presence of wild-type versus 

mutant p53 in the cell panel we examined correlates with RGC-32 mRNA or protein 

expression since Ramos, Raji and P3HRI cells display mutated p53 and BJAB, Akata, 

Jijoye and LCLs e.g. IB4 show wild-type p53 (Farrell et al., 1991).  

In summary, these studies have identified another potential mechanism by which EBV 

can override cell cycle control. Cell lines expressing EBNA 3C have shown upregulated 

RGC-32 mRNA expression which could potentially lead to increased CDK1 activity. 

RGC-32 is most likely essential for cell survival in LCLs and its expression may be 

induced by RUNX1c in B cells. Further investigations into transcription control of 

RGC-32 will provide vital information of how and why RGC-32 is expressed 

differentially in EBV latency. Considering the identified functions of RGC-32, it is 

possible that RGC-32 upregulation is vital for EBV-induced tumourigenesis and may be 

a target for tumour therapies.  
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8 Appendices 

8.1 Cell lines 

8.1.1 EBV-negative cell lines 
 

Cell line EBV 
status 

Description Reference 

HeLa Negative 
Human cervical carcinoma from a 31-year 

old woman transformed by HPV-8. 
(Scherer et al., 

1953) 

BJAB Negative 
African lymphoma originally classed as BL 

but lacks c-myc translocation. 
(Menezes et 
al., 1975) 

BJAB 
pZ 

Negative 
BJAB cells stably transfected with 

pZipNEOSV(X) empty vector. 
(Wang et al., 

1990a) 
BJAB 
E3C 

Negative 
BJAB cells stably transfected with 

pZipNEOSV(X) expressing EBNA 3C. 
(Wang et al., 

1990a) 

DG75 Negative 
BL from the pleural effusion of a 10-year-

old boy with Burkitt’s lymphoma. 
(Ben-Bassat 
et al., 1977). 

Ramos Negative American-type BL of a 3-year-old boy. 
(Klein et al., 

1975). 

AK31 Negative An EBV-negative subclone of Akata. 
(Jenkins et al., 

2000) 
 
 

8.1.2 Group I Burkitt’s Lymphoma cell lines 

Cell line EBV 
status 

Description Reference 

Rael Type-1 African BL 
(Klein et al., 

1972) 
Elijah Type-1 BL  

Akata Type-1 Japanese BL with t(8;14) translocation 
(Takada et al., 

1991) 
Mutu I clone 

179 
Type-1 

African BL derived from a 7-year-old 
black male. 

(Gregory et 
al., 1990) 
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8.1.3 Group III Burkitt’s Lymphoma cell lines 
 

Cell line EBV 
status 

Description Reference 

Raji Type-1 
African BL with t(8;14) translocation. Virus 

has deletion of part of EBNA 3C gene. 
(Pulvertaft, 

1964) 
Raji 13.6 

Raji 13.6.4 
Type-1 

Raji cells stably transfected with the empty 
vector pSV2Hyg. 

(Allday et al., 
1993) 

Raji 11.2.1 
Raji 11.2.5 
Raji 11.5.8 

Type-1 
Raji cells stably transfected with the 

pSV2E3/4 plasmid containing the EBNA 
3C gene. 

(Allday et al., 
1993) 

Mutu III 
clone 

48 
Type-1 

African BL derived from a 7-year-old black 
male. Mutu BL drifted in culture to express 

a latency III pattern. 

(Gregory et 
al., 1990) 

Jijoye Type-2 BL 
(Pulvertaft, 

1964) 

P3HR1 Type-2 
BL with deletion of EBNA 2 gene and part 

of LP gene. 
(Henle and 

Henle, 1966) 

Daudi Type-1 
BL from 16-year old African boy with 

deletion of EBNA 2 gene. 
(Klein et al., 

1968) 

Oku-BL Type-1 
East African BL with deletion of EBNA 2 

gene. 

(Habeshaw et 
al., 1999; 

Kelly et al., 
2002b) 

Sal-BL Type-1 
East African BL with deletion of EBNA 2 

gene. 

(Habeshaw et 
al., 1999; 

Kelly et al., 
2002b) 
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8.1.4 Lymphoblastoid cell lines 
 

Cell line EBV 
status 

Description Reference 

spLCL Type-1 spontaneous lymphoblastic cell line    

LCL3 Type-1 B cells transformed with EBV strain B95.8. 
(Sinclair et 
al., 1994) 

IARC 171 Type-1 

B cells from the EBV-negative tumour 
tissue of an 8-year-old Caucasian boy with 

Burkitt’s lymphoma (same patient as 
BL41) were infected with EBV. 

(Lenoir et al., 
1985) 

IB4 Type-1 
Umbilical cord B-lymphocytes infected 

with EBV strain B95-8. 
(King et al., 

1980) 

PER149 Type-1 

B cells were transformed with an EBNA 
3B knockout virus (on a B95.8 

background). This cell line was originally 
called PER142. 

Gift from 
Heather Long 

PER253 Type-1 B cells transformed with EBV strain B95.8. 
Gift from 

Heather Long 

HK285 Type-1 
Hong Kong buffy coat donor B cells and is 

transformed with EBV strain CKL. 
Gift from 

Heather Long 
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8.2 Plasmids 
Plasmid Information Generated by / 

company 

pSG5 Expression vector Stratagene 

pSG5 2A The entire EBNA 2 open reading frame of EBV 
strain W91 under the control of the SV40 early 
promoter in the vector pSG5 

(Tsang et al., 
1991). Gift from 
M. Rowe 

pSG5 3C  pSG5 EBNA 3C contained a deletion in the repeat 
region of EBNA 3C (aa 571 to 610). The 1.5 kb 
BglII fragment of pSG5 EBNA 3C was replaced 
with the corresponding 1.6kb BglII fragment from 
EBNA 3C-pZip-neoSV to repair the deletion. 

(Radkov et al., 
1997; West et 
al., 2004). 
Repaired by H. 
Webb 

pRL-CMV CMV immediate-early enhancer/promoter region, 
which provides strong, constitutive expression of 
Renilla luciferase 

Promega 

pFLAG pFLAG-CMV-2 expression vector with FLAG 
sequence at position 928-951. 

Sigma 

pFLAG RGC-32 RGC-32 was amplified from BJAB E3C-4 (Wang 
et al., 1990a) cDNA using the RGC-32 primer set 
and cloned into pFLAG-CMV-2 as an 
Xba1/BamH1 fragment. 

Created by 
Helen Webb 

FRT pcDNA5/FRT Invitrogen 
FRT pFLAG RGC-32 FLAG-RGC-32 was cut out of the pFLAG-RGC-

32 plasmid as a Sac1/Sma1 fragment and the Sac1 
overhang was blunt ended using mung bean 
nuclease and the fragment cloned into 
pcDNA5/FRT cut with EcoRV. 

Created by 
Helen Webb 

pBK-CMV-RUNX1c The pBK vector expressing the RUNX1 isoform 
1c under control of the CMV promoter. 

Gift from Paul 
Farrell 

RGC-32 pLuc (pGL2) A 1.2 kb fragment (approximately –1150 to +62 
relative to predicted transcription start site) of the 
RGC32 promoter was amplified from genomic 
DNA and cloned into pGL2-Basic cut with 
HindIII/Kpn1. 

Created by 
Helen Webb 

RGC-32pLuc (pGL3) The RGC-32 promoter fragment was cut with 
HindIII/Kpn1 out of RGC-32pLuc (pGL2) and 
cloned into a pGL3-Basic vector. 

Created by S. 
Schlick 

RGC-32pLuc mut 
(pGL3) 

Contains mutated RUNX1-binding site in the 
RGC-32pLuc plasmid. The mutated promoter 
sequence was cut with HindIII/NheI/KpnI and 
inserted into the pGL3 basic vector expressing 
firefly luciferase. 

Created by S. 
Schlick 

pCp-1425-GL2 Contains the SauIIIA fragment of the C promoter 
(EBV nucleotides 9911 to 11340) in the pGL2 
basic vector expressing firefly luciferase. 

Created by       
F. Nitsche 

pmaxGFP Vector expressing fluorescent GFP. Amaxa 
pET RGC-32 RGC-32 was cut out of pFLAG-RGC-32 as a Sal 

I/BamHI fragment and cloned into pET16b 
(Sigma) digested with Xho I/ BamHI. 

Sigma and 
created by 
Helen Webb 

pCEP4 Expression vector Invitrogen 
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pCEP4 RUNX1c Expresses the B cell isoform of RUNX1, 
RUNX1c. 

Gift from P. 
Farrell (Spender 
et al., 2005a) 

pCEP4 RUNX3 Expresses RUNX3. Gift from P. 
Farrell (Spender 
et al., 2005a) 
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8.3 Oligonucleotides 

Gene Sequence 

GAPDH QPCR primer set 
MW 84 (forward primer) 
MW 85 (reverse primer) 
 

 
TCA AGA TCA TCA GCA ATG CC 
CAT GAG TCC TTC CAC GAT ACC 

RGC-32 QPCR primer set 
MW 86 (forward primer) 
MW 87 (reverse primer) 
 

TTA TAG GAA CAG CTT CAG CTT C 
 
CTG AGG AGT GAC AGT GGC AG 

RUNX1C QPCR 1st exon 
primer set 
MW 349 (forward primer) 
MW 350 (reverse primer) 
 

 
 
AAC CAC AGA ACC ACA AGT TGG 
TTG CAT TCA GTG TGA TTC GTC 

RGC-32 for RUNX1 site-
directed mutagenesis 
MW 351 (forward primer) 
 
MW 352 (reverse primer) 

 
 
CTA CAT TTA ATT AGC CGT CTG CTT TGA GAG GCG 
AGA GGC 
GCC TCT CGC CTC TCA AAG CAG ACG GCT AAT TAA 
ATG TAG 

RUNX3 QPCR primer set 
MW 353 (forward primer) 
MW 354 (reverse primer) 

 
ATT GCT CTT CCT ACC CCA TCC CCC 
CGT GCT TCC TAC ATC AGT GTG TTT 
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8.4 Antibodies 

Antibody Host Dilution Information Reference/ 
company 

Anti pFLAG mouse 1:500 monoclonal Sigma 
Anti pFLAG 
purified (M2) 

mouse 1:200 monoclonal Sigma 

Anti RGC-32 rabbit 
1:500 to 
1:1000 

polyclonal Eurogentec 

Anti EBNA 3C 
(A10) 

mouse 1:300 monoclonal 
(Maunders et 

al., 1994) 
Anti EBNA 2 

(PE2) 
mouse 1:300 monoclonal 

(Young et al., 
1989) 

M. Stacey 
serum 

human 1:200 polyclonal 
Gift from M. 

Rowe. 
Cyclin B1 rabbit 1:2000 polyclonal Santa Cruz 
Cyclin B1 mouse 1:2000 monoclonal Santa Cruz 
pCDK1 rabbit 1:1000  Santa Cruz 
CDK1 mouse 1:1000 monoclonal Santa Cruz 

CDK1 mouse 1:1000 monoclonal 
(Zymed) 

Invitrogen 
RUNX 1 rabbit 1:40 polyclonal Calbiochem 
RUNX3 rabbit 1:500 polyclonal Calbiochem 

Anti actin rabbit 1:5000 polyclonal Sigma 
Anti BrdU 
(IgG2a) 

mouse 1:1.5 polyclonal Millipore 

Anti IgG2a mouse 1:15  
Becton-

Dickinson 
Rabbit-anti-

mouse 
rabbit 1:20 

FITC-
conjugated 

Dako 

 
 
 

8.5 HRP-conjugated substances 

Substance Dilution Reference/ 
company 

Goat-anti-
rabbit ab 

1:3000 
Cell Signaling 
Technology 

Rabbit-anti-
mouse ab 

1:1000 Dako 

Protein A 1:1000 Amersham 
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8.6 Hygromycin kill curve for IB4 cells 
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Figure 68 – IB4 cells were set up at 5x105 cells/ml and different concentrations of 

hygromycin were added (100, 200, 300, 400 or 500 µg/ml). Samples were taken 2, 4 and 

7 days after addition of hygromycin. Cells were spun down and resuspended in PBS. 

Cells were stained with trypan blue to visualise dead cells and counted. The graph 

represents the viability of cells after treatment with different concentrations of 

hygromycin against time. 



8-192 

 

8.7 Sequencing result for RGCpLuc mut (RUNX1) vs. 
RGCpLuc (wt) 
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