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The Study of the Growth Mechanism of TiO2 Nanotubes and Their 

Applications 

Summary 
This research project focused on the creation of nanomaterials and their applications. The 

main aim was to control the growth of TiO2 nanotubes with various morphologies and to 

investigate potential applications for controlled drug release and for photocatalytic water 

splitting.  

The electrochemical anodisation process in fluoride-containing organic electrolytes was 

employed to prepare vertically aligned TiO2 nanotubular arrays, with inner diameters of 

individual nanotubes ranging from 50 to 150 nm. A variety of morphologies was created by 

precise control of experimental conditions and parameters. The formation of crystal phases in 

the TiO2 nanotubes was controlled by the annealing temperature (in air) and monitored by 

powder X-ray diffraction (XRD). 

The fundamental anodisation parameters affecting the morphologies, such as anodisation 

voltage, electrolyte composition, stirring and the effect of magnetic fields were investigated. 

Various processing procedures that affect the anodisation process have been studied. The 

influence of hydroxide islands on the growth mechanism was shown by analysis of anodisation 

current-time profiles, contact angle measurements and SEM observations. 

The effect of pre-patterns on the Ti substrate was also studied. The substrate was 

patterned either mechanically or by Electron Beam Lithography (EBL) with 

polymethylmethacrylate (PMMA) as a positive photoresist. Instead of circular nanotubes, 

polygonal TiO2 nanotubes were formed from the mechanically patterned substrate whereas 

rectangular and tube-in-tube TiO2 nanotubes were formed by using EBL. 
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The TiO2 nanotubes were used as photoanodes for photocatalytic water splitting using a 

photoelectrochemical cell for generating hydrogen gas. The effects of nanotube morphology and 

crystal structure on the efficiency of the conversion of photon energy to chemical energy were 

studied on samples annealed at various temperatures, and with a range of organic hole 

scavengers.  

In addition, control of the morphology was realised by surface passivation with organic 

thin films and by the control of the anodisation parameters. With stepwise control, bottle shaped 

nanotubes (nanobottles) were designed and created for their application in controlled drug 

release. 

Scanning and transmission electronic microscopy (SEM and TEM) were used to examine 

the structure and morphology of the nanotubes. The surface composition was studied by X-ray 

Photo-electron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDX). Crystal 

phases were identified by XRD.  
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The wire frames in Figure 1.1 represent the unit cell of the TiO2 phases [5]. In each 

unit cell, there are two, four and eight Ti4+ cations for rutile, anatase, and brookite 

respectively, corresponding to two, four and eight TiO2 formula units. 

When amorphous TiO2 is annealed, anatase is formed at 280 ºC. Rutile is formed 

at 650 ºC. The difference in the formation temperature is reflected in the higher density 

and lower molecular volume of rutile, as seen from Table 1.1. For rutile and anatase the 

Ti-O bond lengths are similar; however anatase has higher range of O-Ti-O bond angles 

than rutile resulting from the distortion of the octahedra in its more open structure [6]. 

Brookite is obtained as a mineral but it can’t be formed under normal laboratory 

conditions. 

Table  1.1 The crystal structures of TiO2 [4, 6]. 

 

The properties of TiO2 determine its applications. For example, the high refractive 

index and bright white colour of titanium dioxide lead to its widespread use as a 

pigment.  

As a wide-band-gap semiconductor, TiO2 nanomaterials have received a great 

deal of attention due to their high chemical stability and photocatalytic activity [7, 8]. 

Structures 
Refractive 

Index Crystal system Band gap(eV) Density(g/m3) 
Volume/molecule    

(Å3) 

O-Ti-O 

Bond angles 

Rutile 2.72 Tetragonal 3.00 4.13 31.2160 81.2◦ - 90.0◦ 

Anatase 2.52 Tetragonal 3.19 3.79 34.0610 77.7◦- 92.6◦ 

Brookite 2.63 Orthorhombic 3.11 3.99 32.1720 77.0◦- 105◦ 
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At room temperature, TiO2 is stable under normal acidic and basic conditions, except in 

HF solutions, and resistant to corrosion by common gases. 

TiO2 nanomaterials present promising opportunities in high efficiency solar 

energy harvesting systems, which are expected to reduce dependence on fossil-fuel 

based energy sources [9]. Both TiO2 nanotubes and nanofibers were developed for solar 

cells which convert solar energy into electrical energy [10, 11]. The nanotube-based dye 

sensitized solar cell(s) (DSSC(s)) are expected to collect the light more efficiently than 

conventional DSSCs, possibly due to stronger light scattering effects, although their use 

is far from optimized [1]. The production of nanostructures and control of the electronic 

structures of the TiO2 can potentially improve the efficiency of photovoltaic devices [1, 

12, 13]. Similarly, TiO2 nanomaterials could also play a crucial role as photoanodes in 

generating energy from hydrogen; the photoexcited electrons and holes are directly used 

to break the H˗O bond in water [14]. TiO2 can also be used as a photocatalyst for 

degradation of pollutants in the environment [3] through formation of oxidant radicals 

on the surface of the photoexcited TiO2.  

Anodised TiO2 nanotubes are vertically aligned on the underlying Ti plate. They 

are interesting nanomaterials with various applications due to their unique structural 

properties [2] including their highly ordered three-dimensional, one-end open tubular 

structure, large surface area, large aspect ratio and excellent biocompatibility. Such 

vertical aligned structures are ideal for high efficiency solar cells [15-22], photocatalysis 

[2, 23, 24] and bioapplications [25]. 
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1.1.1 The Electronic Structure of the Semiconductor 

The electronic structure of TiO2 can be described by the formation of molecular 

orbitals. Molecular orbitals are formed from the linear combination of multiple 

periodically arranged atomic orbitals. When a large number of orbitals overlap they 

form essentially continuous bands with s, p, and d orbital character. The valence band is 

formed from the overlapping of the highest occupied molecular orbitals (HOMOs) 

whilst the higher energy conduction band evolves from the overlap of the lowest 

unoccupied molecular orbitals (LUMOs). The separation between the two is empty of 

energy levels and called the band gap, which defines the minimum energy required for 

an electronic transition in the material. The conduction band (CB) of titanium dioxide is 

derived from the higher energy Ti 3d orbitals while the valence band (VB) originates 

from the 2p orbitals of oxygen [9, 26]. The difference in the crystal structure between 

rutile and anatase affects the periodic arrangement and therefore the overlap of the 

atomic orbitals. The size of the band gap determines the absorption frequency of each 

material. TiO2 is a typical n-type semiconductor that has, depending on its crystal 

structure, a band gap of 3.2 eV (388 nm) for anatase, 3.0 eV (415 nm) for rutile, or 3.2 

to 3.5 eV in its amorphous state [27]. Light is absorbed over the boundary between UV 

and visible wavelengths. This gives a white colour for anatase and slightly yellow 

colour for rutile. 

1.1.2 Fermi Level and Doping 

The Fermi level is the energy at which the probability of an energy level being 

occupied by an electron is exactly one-half. For semiconductors the Fermi level resides 

within the band gap. In case of an intrinsic semiconductor the Fermi level is 
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approximately midway between the minimum energy of its conduction band (Ec) and 

maximum energy of its valence band (Ev). For n-type doping the Fermi level shifts 

towards the conduction band, whereas for p-type doping the Fermi level shifts towards 

the valence band [28, 29]. Figure 1.2 shows the shift of the Fermi level with doping. 

 

 

 

 

 

 

Figure  1.2 Shifts with (a) p-type doping and (b) n-type doping. 

 

With n-type doping the Fermi level shifts towards the lowest edge of the 

conduction band. With, p-type doping the Fermi level shifts towards the highest edge of 

valence band. In both cases, the effective band gap is significantly reduced.  

The activation of neat titanium dioxide is limited to photons of light at 

wavelengths <390 nm. This results from a large band gap and is a major limitation in 

the use of TiO2 in devices using solar radiation, since the majority of solar energy is in 

the visible range. In order to make use of the full spectrum of solar energy, much 

research has focused on the reduction of the band gap [4, 30]. Non-metal doping of 
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TiO2 has been shown to be effective in achieving photocatalysis activated by visible 

light [31]. 

1.1.3 The Fundamentals of Synthesis of TiO2 Nanotubular Arrays 

Nanomaterials with large surface area can take various forms and shapes, 

including particles, fibers, rods, spheres and tubes. My work is focused on TiO2 

nanotubes made by electrochemical anodisation. Production of titania by anodisation is 

simple and reliable and does not require sophisticated synthetic facilities.  

The advantage of anodic films is their ability to direct charge transfer [32] due to 

their orientation and three-dimensional ordering. By controlling the anodisation, it is 

possible to tune the shape and size of nanotubes, including wall thickness, diameter and 

length, to meet the demands of specific applications. The production and processing of 

nanostructured titania has therefore been a focus of study over the past few years. The 

most important methods for the synthesis of nanostructured TiO2 nanotubes are 

anodisation, sol-gel, hydrothermal [7], templating [33] and vapour deposition methods 

[9, 34]. However, most of these have limitations. For instance, the templating technique 

requires high temperature calcination to remove the template, resulting in possible 

collapse of the tubular structure [35]. For hydrothermal methods, the nanostructures are 

not able to assemble into closely packed oriented structures, which limit their use in 

photoelectrochemical applications. Only the anodisation of Ti plate using fluoride-

containing electrolytes creates densely packed vertically aligned TiO2 nanotubular 

arrays, similar to those generated without fluoride on an aluminium surface [1, 36-54]. 

Such closely packed vertically aligned arrays of nanotubes with uniform diameters are 

mechanically strong and suitable as electrodes for applications in 
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photoelectrochemistry. Their one-end open morphology makes them suitable for 

controlled drug release.  

A native oxide layer a few nanometers thick exists on all non-noble metals in 

most oxygen containing environments. Approaches to growing thicker TiO2 layers 

include anodic or thermal oxidation [55]. The general understanding of the anodisation 

of titanium in fluoride electrolytes is that an oxide layer is formed on the anode surface. 

This is called a barrier type (pore free) film. As the oxide film gets thicker it acts as a 

barrier to the flow of ions and electrons, hindering the oxidation process until it stops. 

The electrical field then decreases from the surface of the oxide film to the oxide/metal 

interface. The effective anode bias at the oxide/metal interface is almost zero, so the 

maximum oxide thickness is achieved. The maximum thickness obtainable per volt  is 

only a few hundred nanometers [56]. The almost constant value of thickness per volt 

suggests a linear relationship between the barrier thickness and anode bias. Aqueous 

solutions of sulfuric, phosphoric or acetic acid [57] are some of the electrolytes capable 

of forming barrier type (pore free) TiO2 films. 

The passage of an anodisation current through fluoride-containing electrolytes 

causes the development of nanoporous and nanotubular titania layers perpendicular to 

the titanium metal substrate. In the presence of fluoride ion, a field directed dissolution 

of TiO2 causes thinning of the oxide barrier layer, the oxide layer results in an 

immediate further oxidation and the formation of etching pits, which are then developed 

deeper into nanotubes. Under controlled conditions, these can be formed as self-

organised, closed packed tubular arrays [58].  
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Fluoride anions readily facilitate dissolution of both titanium and titanium dioxide 

to give [TiF6]
 2- anions which are stable in water.  

Solutions containing hydrofluoric acid are particularly effective at dissolving 

titanium and its oxide which can result in very thin porous structure. The dissolution of 

the metal oxide layer at the solid/liquid interface is also directed by the anode bias 

(positive bias) which attracts the F− anions towards the Ti plates and creates porous 

structure. By changing the electrolyte to a chloride-containing solution (fluoride free) 

applying and driving a high voltage across the circuit, bundles of TiO2 nanotubes (i.e. 

not self-organized) have been prepared [50, 55] in a procedure known as rapid 

breakdown anodisation. In such cases, the high voltage is necessary as the complexing 

ability of chloride is lower than that of fluoride.  

The successful generation of TiO2 nanotubes is a direct consequence of the 

competition between the oxidation and dissolution processes. An organic solvent 

(ethylene glycol) based electrolyte containing F− and H2O is typically used for creating 

TiO2 nanotubes in order to balance the kinetics of anodisation and dissolution. The 

purpose of the small amount of water is to form an oxide layer at the TiO2/metal 

interface. Therefore, water molecules have to penetrate through the barrier layer, which 

defines the structure of the pores (diameter and close packing). Thus, higher contents of 

water will lead to faster oxidation and higher fluoride concentrations lead to a faster 

dissolution. So the anodisation rate and tubular structure can be in general controlled by 

changes in the concentration ratio of water and F− and other associated parameters, such 

as solution temperature, anodisation current density and voltage bias. Details of the 

chemistry of the growth process are discussed below.  
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The creation of the anodic oxide layer under an applied electric field (Eqn. 1.1) is 

known as field assisted anodic oxidation, as opposed to the field assisted dissolution of 

oxide, caused by the presence of fluoride anions [59]. Eqn .1.1 illustrates the oxidation 

process. 

	Ti + 2H�O → TiO� + 2H�	………………………………………………….Equation 1.1 

	TiO� + 6F
 + 4H� → TiF��
 + 2H�O …………………………………Equation 1.2 

The formation of fluoro-complexes in the electrolyte is aided by the electric field, 

which moves fluoride anions toward the metal and Ti4+ toward the electrolyte. In order 

to maintain active oxidation ions such as Ti4+ and O2- need to move through the anodic 

film. The presence of fluoride anions in the electrolyte, allows the creation of channels 

through which current can flow freely and keeps the oxidation process active [60]. The 

persistent dissolution (Eqn. 1.2) of the barrier layer continuously reduces its thickness 

but its regeneration by oxidation is just as relentless (Eqn. 1.1). As a result, nanotubes 

grow at maximum rate when the oxidation rate at the metal/oxide interface equals the 

rate of chemical dissolution at the oxide/electrolyte interface. The chemistry behind the 

complex growth of titania nanotubes and the side reactions that influence the final 

morphology will be discussed in a later chapter. Models and mechanisms of titania 

nanotube formation will also be explained.  

Schmuki and co-workers [1, 61] recently proposed a more specific description of 

the growth of porous/tubular titania. They concluded that the growth of the 

porous/tubular oxide is defined by the diffusion of ions within the pores and the 

electrolyte.  
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1.1.4 Study of Anodisation Parameters 

The creation of a TiO2 nanotube is affected by the applied voltage [2], the 

electrolyte concentrations [62] and the anodisation temperature [63]. Both the oxidation 

and dissolution rates are determined by the process parameters. For instance, greater 

resistances in thicker barrier layers can be overcome by increasing the applied 

anodisation voltage or increasing the electric field by reducing the distance between 

electrodes. Water concentration can directly affect the oxidation rate while the flouride 

concentration affects the dissolution rate. At higher dissolution rates, thinner nanotubes 

are formed at a higher rate. The thickness of the barrier layer underneath the pores/tubes 

is constantly eroded by dissolution but also constantly regenerated by oxidation, 

determined respectively, by the applied anodic electric field and water concentration. 

The temperature can also affect the growth rate and tube morphology of the anodised 

nanotubes. The control of the parameters involved in the anodisation is the key to 

achieving highly ordered titanium dioxide nanotubes.  

1.1.4.1 Anodisation Voltage 

The effects of anodisation voltage (V) are related to the growth factor (fg). When a 

valve metal is used as an anode, the barrier layer formed by oxidation impedes the 

current. The thickness (d) of the oxide layer depends on the applied voltage bias. With a 

higher voltage, a thicker layer of oxide can be formed at a higher rate. As a result, for 

anodic growth of oxide nanotubes, the underlying thickness of the oxide layer is 

proportional to the applied voltage [2]. In general, a larger diameter nanotube can be 

created by use of the higher anodisation voltage [1]. This can be quantitatively 

described as shown in eqn. 1.3. 
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VfOD g2= …………………………………………………………………. Equation 1.3 

fg is the growth factor for anodic oxides and OD is outer diameter.  

The parameter fg is a constant for Ti metal which is defined as eqn 1.4. 

Vdf g = …………………………………………………………………… Equation 1.4 

where, d is the maximum oxide thickness at an applied voltage V.  

The OD is equal to the sum of the inner diameter (ID) and twice the wall thickness 

W. Therefore, 

WIDOD 2+= ……………………………………………………………… Equation 1.5 

The experimental results show that fg is 1-5 nm/V for TiO2. Figure 1.3 schematically 

shows tube dimensions, outer and inner diameters, wall thickness and barrier layer 

thickness. The measured nanotube outer diameter is a function of anodisation potential. 

 

 

 

 

 

 

Figure  1.3 Tube dimensions, outer and inner diameters, wall thickness and barrier 
layer thickness of TiO2 nanotubes. 
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Equations (1.3 and 1.5) summarise the relation between these parameters. 

Combining (Equn.1.3 and 1.5) we get: 

WIDVf g 22 += ………………………………………………………………….. Equation 1.6 

From eq.1.4 dVf g = ,  

So, eqn. 1.6 can be transformed as:  

WIDd 22 += …………………………………………………………. Equation 1.7 

Combining 1.7 with 1.4 we get 

2
OD

d = ……………………………………………………………………………… Equation 1.8 

Eqn. 1.8 shows that the outer diameter of the nanotube equals the maximum 

thickness of the oxide barrier layer. A higher voltage creates a thicker barrier layer and 

nanotubes with larger diameter.  

In this project, we use the anodisation voltage to control the diameter of nanotubes 

in two steps to create both double wall nanotubes and nanobottles. 

Together with the thickness of the barrier layer, the applied voltage also affects 

the ionic current, [64, 65] formed by moving ions in the electrolyte. The relationship 

between anodic current density (j) and anodizing potential has been discussed for most 

of the valve metals [50], 
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).( Fej βα ⋅= …………………………………………………………………………. Equation 1.9 

 α and β are constants and F is the field strength across the oxide. 

The field strength F across the oxide film can be estimated from the change in potential 

across the oxide, ∆U and the oxide thickness d [64]: 

dUF ∆= …………………………………………………..……………………… Equation 1.10   

Thus the ionic current at given voltage can be described in Eqn. 1.11 

).(
d

U

ej

∆

⋅=
β

α  ………………………………………………………………………. Equation 1.11  

The electric field linearly decreases with thickness, and from Eqn. 1.11 we see that 

the current decays nonlinearly with film thickness [64, 65].  

While the system is under a constant applied voltage, the increasing oxide 

thickness steadily decreases the electric field strength within the oxide. As a result, the 

anodisation current decreases rapidly and the oxidation process slows down, and 

becomes self-limiting. In other words, the declining field strength leads to the growth of 

a compact oxide layer with a limited thickness that is proportional to the applied 

voltage.  

1.1.4.2 The Distance between the Electrodes 

In an organic electrolyte, the pore diameter (the inner diameter of the tube) is 

affected by the working distance between anode and cathode. With increasing working 

distance, the pore diameter decreases. This is accompanied by a significant drop in the 

current as the resistance of the electrolyte increases. As a result, the drop in the effective 
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potential across the oxide layer is reduced and pore diameter is reduced also [66]. With 

a higher anodisation current at shorter working distance, the temperature of the 

electrolyte increases gradually during the anodisation and so the mobility of ions in 

electrolyte increases, giving a larger pore diameter. 

1.1.4.3 Electrolyte 

The water content of the electrolyte is regulated by use of either aqueous or 

organic-based media. This one parameter plays a crucial role in the growth of anodised 

titiania nanotubes through the management of oxidation and dissolution rates. At higher 

water concentrations, the ion mobility is higher, in comparison with pure organic 

electrolyte, so an improved dissolution rate can be achieved. The nanotube growth rate 

is proportional to the dissolution rate near the bottom of the nanotube. However, fast 

dissolution at the top of the nanotube limits the final tube length. Therefore, it is 

necessary to manage the appropriate water concentration. For ammonium fluoride in 

ethylene glycol [38, 67], the water concentration should be in the range from 1 to 5%. 

With less than 1 vol. % water in the electrolyte compact oxide layers are formed; with 

more than 5 vol. % water tube ripples restrict the homogenous tube walls and regular 

arrangements of the tubes. Moreover, with increasing water content in the electrolyte 

the barrier layer thickness at the bottom of the tube increases and this leads to increases 

in the outer and inner diameters.  

1.1.4.4 Fluoride Concentration 

Fluoride concentration not only affects the pH but regulates the dissolution rate. 

The fluoride concentration should be minimal but it must be high enough to ensure a 

high growth rate and regular ordering of the tubes [62]. In order to maximise the 
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nanotube growth rate, the dissolution rate needs to match the oxidation rate. Increasing 

the fluoride concentration also increases the ionic conductivity of the electrolyte and 

this gives a larger nanotube diameter. The effect of the fluoride concentration on the 

growth of TiO2 nanotubes is shown in chapter 3. 

1.1.4.5 pH 

The dissolution rate of the anodic oxide is increased in an acidic environment and 

so the pH of the reaction solution is extremely important. The use of fluoride salts 

(some of which show basic hydrolysis) instead of hydrofluoric acid lowers the 

dissolution rate of the anodic oxide. Sreekantan et al [68] controlled the rate of 

nanotube formation by controlling electrolyte pH. They reported that at pH 3, the rate of 

formation was 23 nm min−1; at pH 5, 15 nm min−1; and at pH 7, 8 nm min−1. Thus 

electrolytes with lower pH give faster growth rates due to faster dissolution at the oxide-

electrolyte interface. However, the true growth rate at lower pH might due to dissolution 

at the top of the nanotube which affects the final length of the tubes. 

1.1.4.6 Temperature 

Temperature can also affect the morphologies of the titanium oxides during 

anodisation [63]. Low temperatures reduce the rate of dissolution, ion mobility, and 

therefore the diameter of the nanotubes. Lowering the temperature to 2 ◦C appears to 

inhibit the dissolution rate and hence tube growth in aqueous and organic based 

electrolytes [69]. The decrease in the electrolyte conductivity decreases the anodic 

voltage and therefore the nanotube diameter. In this thesis, we report that by use of a 

variable temperature, two step, anodisation, we have successfully created nanobottles 

for controlled drug delivery. 
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1.1.5 The Development of the Anodisation Method for Creating TiO2 

Nanotubes 

The anodisation conditions were developed gradually as understanding of the 

growth mechanism increased. Although quantitative measurements of oxidation and 

dissolution rates are still incomplete, a qualitative understanding of the mechanism is 

well established. Historically, the synthesis of TiO2 nanotubes by electrochemical 

anodisation was developed through four major steps.  

1.1.5.1 The First Generation of TiO2 Nanotubes (using Aqueous Electrolytes) 

Zwilling and co-workers were the first to generate  self-organized porous TiO2 by 

use of a Ti-based alloy in an acidic, fluoride-based aqueous electrolyte [70]. The 

thickness of the oxide layer obtained by this method was limited to approximately 0.5 

µm. Similarly, Gong et al  fabricated self-organized nanotube arrays with a maximum 

nanotube length of 500 nm from an aqueous dilute HF electrolyte [71]. Later, it was 

realised that the length of the first generation of nanotubes was limited by the acidic 

electrolyte, which gives a high dissolution rate at the top of nanotubes and restricts 

further growth [72]. Dissolution of the TiO2 limits the effective thickness of the oxide 

layer.  

1.1.5.2 The Second Generation of TiO2 Nanotubes (using Buffered Solutions) 

In the second generation of TiO2 nanotubes, the length of the tubes was increased 

to 3 µm by controlling the pH of the electrolyte [73, 74]. Hydrofluoric acid was 

replaced by fluoride salts, so the dissolution of TiO2 was reduced and the thickness of 

the film reached up to 3 µm. The use of a buffer solution was explained by Macak et al 

[75]. When the pH at the pore bottom is lower than that at the top of the tube, which is 
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under a protective higher pH due to the use of ammonium fluoride/ammonium sulphate 

as a buffer, longer nanotubes are generated. The lower pH at the bottom of the nanotube 

is a direct consequence of anodic oxidation of Ti by water, which consumes oxygen 

atoms and leaves a H+ rich environment. This accelerates the thinning of the barrier 

layer. The reactions at the bottom of the nanotube make it almost impossible to 

quantitatively measure the pH variation. 

1.1.5.3 The Third Generation of TiO2 Nanotubes (using Polar Organic compounds) 

The third generations of nanotubes comprise smooth tubes with no ripples along 

the walls. The tubes were prepared in water-free, organic electrolytes where the 

dissolution of oxide is minimized [76]. Many organic solvents, for example glycerol 

and ethylene glycol, have been used as electrolytes. [43, 77] and nanotubes as long as 

70 µm with a maximum outer diameter of 180 nm have been made [76]. The key to the 

successful growth of a high aspect ratio nanotube array is to decrease the water content 

in the electrolyte. This results in a decrease in the rate of dissolution of the oxide layer. 

Here, the aspect ratio is defined as the ratio between the tube length and the inner 

diameter, as estimated directly from SEM images. Nanotubes up to 1000 µm have also 

been achieved using ethylene glycol as an electrolyte [59]. Grimes used a polar organic 

electrolyte in order to enhance the extraction of Ti4+ from the metal and inhibited the 

growth of the barrier layer at the metal/oxide interface by use of large cations in the 

fluoride salts [59, 78].  
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1.1.5.4 The Fourth Generation of TiO2 Nanotubes from (Non-Fluoride, Acid Base 

Electrolytes) 

The fourth generation of nanotube array was obtained from non-fluoride based 

electrolytes. The aim was to explore the possibility that fast anodisation would give 

nanotubes with a wide range of aspect ratios and morphologies. Nakayama and co-

workers [79] reported the production of titania nanotubes as bundles rather than regular 

arrays. They used various electrolytes based on acids such as oxalic, formic, 

hydrochloric and sulfuric acid. A significant amount of carbon was detected in the 

nanotubes formed from each of the organic acids. The growth of TiO2 nanotubes by 

fourth generation methods occurred at the edge of the titanium surface, where there was 

usually a higher density of defects to give active reaction centers for the formation of 

the oxide layer. This layer is critical for focusing the electrical field, once dissolution is 

initiated. 

1.2 Titanium Dioxide: A Broad Range of Applications 

Fujishima and Honda [80] discovered the photocatalytic water-splitting ability of 

a titanium dioxide electrodes under UV and visible light and researchers have dedicated 

several papers to the understanding and development of the many promising 

applications in photocatalysis, photovoltaics and water splitting. These are summarised 

below. 
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1.2.1 TiO2 in Photocatalysis 

TiO2 is one of the most efficient photocatalysts for the degradation of both 

organic and inorganic pollutants in water. Under illumination by UV light, organic 

matter can be decomposed through oxidation processes and mineralised into CO2 and 

water. The accepted photocatalysis reaction mechanism is shown in Figure 1.4 [81]. 

 

Figure  1.4 The principle of photocatalysis by TiO2 [81]. The band gap is 3.2 eV. 

 

Upon absorption of photons with energies higher than the band gap, (3.2 eV), 

electrons are excited from the valence band (VB) into the conduction band (CB) and an 

electron-hole pair is created [82]. These photoexcited charge carriers can become 

trapped in metastable states, recombine, or migrate to the surface to react with adsorbed 

molecules. In an aqueous environment, the photogenerated electron-hole pairs 

participate in reactions with adsorbed water molecules, surface hydroxyl groups and 
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dissolved molecular oxygen, to generate hydroxyl and highly-reactive superoxide 

radicals. 

Although the mechanism of photocatalytic oxidation varies from one pollutant to 

another, the superoxide (
·
O2

˗) and, in particular, hydroxyl radicals (
·
OH) are recognized 

as active reagents in the degradation of organic compounds on a TiO2 surface. These 

radicals can be formed by molecular oxygen and water through scavenging of the 

electron-hole pair [83]. The following equations (1.12-1.16) illustrate the formation of 

these radicals.  

	TiO� + ℎ� → e
 + h�………………………………………………Equation 1.12 

	O� + e
 → 	͘	O�
 ……………………………………………………..Equation 1.13 

	H�O + h� → ͘OH + H�……………………………………………   Equation 1.14 

	͘OH + ͘OH → H�O�…………………………………………………  Equation 1.15 

	H�O� + ͘O�
 → ͘OH + OH
 + O�…………………………………… Equation 1.16 

 

The superoxide radical is formed by reduction of adsorbed O2 (Eqn 1.13) and the 

hydroxyl radical is formed by the oxidation of water (Eqn 1.14). The hydroxyl radicals 

may combine to form hydrogen peroxide (Eqn 1.15). The hydrogen peroxide can 

consume the superoxide radical and convert it to the hydroxyl radical (Eqn 1.16). It is 

the oxidative power of superoxide and hydroxyl radicals that breaks the C˗C and C˗O 

bonds in organic molecules. 
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The photocatalytic activity of a semiconductor depends on the properties of light 

absorption and the recombination rates of electron-hole pairs. It also depends on the 

surface reduction and oxidation rates by the excited electron and its positive hole. The 

minimum excitation energy from valence to conduction bands determines the reductive 

power of the excited electron which has to be higher than the 
·
O2/O2

˗ redox potential. 

The potential of valence band maximum has to be lower than the water oxidation 

potential. The difference between the electron-hole potential and the H2O/O2 redox 

potential determines the driving force for reduction and oxidation. The optimum 

condition is achieved when the reduction and oxidation rates are more or less equal.  

Natural TiO2 has three polymorphs; anatase, brookite, and rutile. Anatase and 

rutile show photocatalytic activity whereas brookite does not. Although the anatase 

phase forms at lower temperatures, with slightly higher band gap, it shows a much 

higher photocatalytic activity than rutile [81]. The positive holes produced in both 

phases are sufficiently deep in the VB, to give similar oxidative power; however the 

reducing power of anatase is greater than that of rutile because the bottom of its CB lies 

at lower energy sits closer to the negative position (Figure 1.4). Also, as anatase forms 

at lower temperatures, it usually has higher surface area than rutile. For heterogeneous 

gas/solid reactions, larger surface areas lead to faster reaction rates. The differences in 

band structure along with the increased surface area of anatase are understood to be the 

two main reasons for the greater photocatalytic activity of anatase.  

Li et al. also hypothesized that TiO2-containing a mixture of anatase and rutile 

phases would show even better photocatalytic activity because any kind of solid-solid 
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interface is a key structural feature facilitating charge separation and hindering 

recombination [84]. Mixed-phase TiO2 nanocomposites indeed show enhanced 

photocatalytic efficiency [7].  

Heating to high temperatures generally enhances crystallinity but also induces 

aggregation of small nanoparticles and decreases the surface area [83, 85]. For TiO2 

nanotubes high annealing temperatures decrease the surface area by sintering, and 

forming rutile, which results in a collapse of the tubular film. Evidently, several 

physical properties of TiO2 nanomaterials need to be taken into account in order to 

optimise photocatalytic activity.  

1.2.2 Water Splitting by TiO2 Photocatalysis 

A low-cost photoelectrochemical system would make possible the efficient 

harvesting of solar energy by electrolysis of water to generate hydrogen as an energy 

source, replace fossil fuels, and substantially decrease the release of the greenhouse gas 

carbon dioxide. Because the electrochemical potentials for water oxidation and proton 

reduction lie within the band gap of TiO2, the photogenerated electrons in the 

conduction band can be used to reduce protons and generate hydrogen gas. 

TiO2 nanostructures have been studied as photoelectrodes for water splitting [86-

90], and could have significant economic and environmental advantages [91, 92]. When 

an electron-hole pair is generated by photon excitation, the hole interacts with 

molecules close to the catalyst’s surface and the electron moves to the cathode (Pt 

electrode). This system can be used for the photocatalytic electrolysis of water into 

hydrogen and oxygen. The excitation of electrons across the band gap of TiO2 is 
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activated by only a small fraction of the energy from the sun due to the wide band gap 

of TiO2, although in general, visible light has enough energy to split water into 

hydrogen and oxygen. Therefore, doping of anodised TiO2 nanotubes [93] is required to 

reduce the band gap so that visible light can also be absorbed.  

1.2.2.1 The Mechanism of Hydrogen Production by a Photoelectrochemical Cell 

(PEC)  

The mechanism can be described by 5 steps [94]: 

1- Absorption of light. A semiconductor can absorb light with energy greater than a 

threshold determined by the band gap (Eg). 

2- Excitation of electrons from the valence band to the conduction band, leaving the 

valence band with hole on the photoanode (Eqn. 1.12.) 

TiO� + ℎ� → e
 + h�…………...................................................... Equation 1.12 

Here, h is Planck’s constant and ν is the frequency of the light. 

3- Charge separation and migration. Electrons pass through the photoanode to the 

back-side electrical contact and holes to the interface between the photoanode and 

electrolyte. These electrons and holes can be used to drive redox reactions. The energy 

of the bottom of the conduction band edge measures the reductive strength of the 

electrons in the semiconductor and the energy of the top of the valence band is a 

measure of the oxidative power of holes in the semiconductor [95]. 

4- The oxidation of water can be achieved at the photoanode by holes. 
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							2h� + H�O(��) → 2H(��)
� + 1

2� O�(���)……………………………... Equation 1.17 

5- H+ ions move from the photoanode to the cathode through the electrolyte. 

However electrons move from photoanode to cathode through the external circuit, 

leading to the reduction of H+ ions into dihydrogen gas at the cathode. 

2H� + 2e
 → H�(���)………………………………………………… Equation 1.18 

The overall reaction of the photo-electrochemical cell (PEC) is 

						2ℎ� + H�O(��� �!) → H�(���) + 1
2� O�(���)…………………………... Equation 1.19 

This reaction takes place when the energy of the photon absorbed by the photoanode 

is equal to or larger than the threshold energy Et, 

A

t
N

G
E

2

o∆
=  ……………………………………………………………….... Equation 1.20 

∆G
0 is the standard free energy (per mol) of reaction = 237 kJ/mol (when the 

activity aH+ = 1). 

NA is Avagadro’s number = 6.022 ×  1023 mol-1 

Then we get  

										E = ℎ� = 1.23	eV…………………………………………….... Equation1.21 

According to (Eqn. 1.21), electrochemical decomposition of water is possible when 

the electromotive force of the cell (EMF) is equal to or greater than 1.23 V. But constant 
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electrolysis in general requires 1.5 V to overcome the impedance of the PEC and 

activation potentials at both anode and cathode. 

1.2.2.2 The Efficiency of TiO2 in a PEC: Problems and Solutions  

The energy conversion efficiency from solar to hydrogen by photocatalytic water-

splitting is limited by the recombination rate of electron-hole pairs, the fast backward 

reaction, and the frequency of visible light. 

Upon recombination the excited electron returns to the valence band without 

reaction with adsorbed species. The recombination of photoinduced electron-hole pairs 

therefore reduces the overall quantum efficiency of the photocatalyst [96]. Due to the 

dissipation of energy by recombination, luminescence can be employed to measure the 

release of radiation and rates of recombination. Recombination is mainly at the surface 

where it competes strongly with the photocatalytic process. 

Doping is one of the techniques used to promote electron-pair separation, reduce 

recombination and enhance photocatalytic activity. Hole scavengers, or electron donors, 

[97] have been added to TiO2 to reduce the recombination rate. These react irreversibly 

with the photogenerated VB holes, thus improving the electron-hole separation. 

Because electron donors are consumed in the photocatalytic process, continuous 

replenishment of electron donors is required to maintain hydrogen production.  

Hydrocarbons are widely used as electron donors for photocatalytic hydrogen 

production. They can be oxidized by VB holes and the remaining strongly reducing CB 

electrons can reduce protons to dihydrogen molecules. Ethylenediaminetetraacetic acid 

(EDTA), ethanol, lactic acid, methanol and formaldehyde have been examined and 
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proved to be effective in the enhancement of hydrogen production [98]. A qualitative 

study was carried out by Nada et al  on the effects of various electron donors on the 

production of hydrogen [99]. The order of improvement of hydrogen production was: 

EDTA>methanol>ethanol>lactic acid.  

The low efficiency can be caused by the back reaction between hydrogen and 

oxygen. This problem can be avoided by separating the evolution of hydrogen and 

oxygen. It has been reported that the separate evolution of H2 and O2 can be achieved by 

use of a two-compartment cell equipped with platinum electrodes and a cation exchange 

membrane [100]. 

The band gap of TiO2 is about 3.2 eV, so only 4% of solar radiation energy is 

available for hydrogen production. If the band gap is reduced by doping, about 40% of 

the visible solar spectrum can be harvested [101]. Doping by alkaline earth metals and 

transition metals has been widely investigated. Choi et al [102] carried out a systematic 

study of the photoreactivity of TiO2 doped with 21 different metal ions. They found that 

doping with metal ions could expand the photoresponse of TiO2 into the visible 

spectrum. Since metal ions are incorporated into the TiO2 lattice, impurity energy levels 

in the band gap of TiO2 contribute to the reduction of band gap. In general, the impurity 

energy levels introduced by cations are near to the CB of TiO2.  

Although the fine details are still under discussion, doping by non-metallic 

elements can also improve the activity of TiO2 towards visible light. Carbon and 

nitrogen doping seems to be particularly effective. Substiutional doping with nitrogen is 

believed to exclusively change the valence band structure. The presence of nitrogen 
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could narrow the band gap of the titanium dioxide, and promote photocatalytic activity 

[103]. Alternatively the presence of nitrogen simply stabilises oxygen vacancies and 

this enhances visible light efficiency [104, 105]. In general, such non-metal dopants 

form impurity energy levels near the valence band, due to their electronegtivity so that 

the oxidative power of the photoexcited hole is effectively reduced. 

1.2.3 Photovoltaic Application 

A photovoltaic (PV) cell produces direct-current related to the amount of light it 

receives. TiO2 nanostructures offer opportunities to enhance the efficiency of solar 

energy capture and to reduce the overall cost [23, 80, 106]. Nanocrystalline TiO2 

electrodes are important in photovoltaics, since they offer large surface area with a 

controlled morphology. To enhance the absorption of visible light, an organic dye is 

often used to sensitise the TiO2 electrode. A schematic presentation of the construction 

and the principles of a dye sensitized solar cell (DSSC) is presented in Figure 1.5 [16]. 

 

 

 

 

 

 

Figure  1.5 Principles of a dye-sensitized solar cell containing nanocrystalline TiO2 

[16]. 

 



28 

 

 

The cell core consists of a nanocrystalline TiO2 film coated with a monolayer of 

dye capable of charge transfer. An organic hole conductor, usually in the form of a 

redox electrolyte forms the next key component before the opposite electrode and the 

outer circuit to make electrical power. The nanocrystallinity of the TiO2 semiconductor 

gives a mesoporousity that enables a large amount of dye to be adsorbed over the large 

surface area [9]. Upon exposure to sunlight, electrons are readily released from the 

sensitising dye, into the conduction band of the TiO2. Recombination of the conduction 

band electron with the adsorbed dye is prevented by the redox couple in the electrolyte, 

which re-generates the reduced dye monolayer and allows the injected electron to move 

around the circuit to produce directcurrent electricity. The redox couple iodide/triiodide 

is a popular system for use in DSSCs. The iodide is oxidised by the hole in the dye and 

regenerated by the reduction of triiodide at the counterelectrode. The voltage generated 

under illumination corresponds to the difference between the Fermi level of TiO2 and 

the ground state of the organic dye. Therefore, a dye-senstised solar cell can generate 

electrical power under illumination by light, without any major chemical 

transformations. 

Both commercial nanoparticles and nanotubes have been used in DSSCs but 

higher charge collection efficiencies were achieved from nanotubes rather than 

nanoparticles [107]. This is possibly due to a better charge mobility along the 

nanotubes; for nanoparticles the charge transport is limited to hopping between particles 

[108].  
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1.2.3.1 Solar Energy for photoexcitation 

As solar light passes through the atmosphere, the spectrum is attenuated by the 

absorption of molecules such as oxygen, water, ozone, methane, carbon dioxide etc. The 

absorption increases with the thickness of the atmosphere. The parameter do is the 

thickness of the atmosphere normal to the earth’s surface. The optical path length of 

solar radiation across the atmosphere at an incident angle (α) is given by d = do / cos α . 

The ratio d / do is called the air mass factor (AM) [109]. Therefore, an AM 1.5 means 

that the spectrum is measured for light travelling 1.5 times farther than direct solar light 

before reaching the surface of the earth. For moderate weather an AM of 1.5 may be 

assumed; this corresponds to an incident angle of 48.2◦ relative to the surface normal 

and gives a mean irradiance of 100 mW cm-2 ( = 1.0 sun). Figure 1.6a illustrates the air 

mass model.  

 

Figure  1.6 (a) The air mass factor [109], (b) the xenon Lamb spectra.  

In our experiments, a focused 300 W xenon arc lamp with a parabolic reflector 

was used as excitation light source with a focused illumination spot area of 1 cm2. The 
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spectrum of a xenon lamp Figure 1.6b is very close to that of sunlight and the power 

measurements were calibrated. The power for the xenon lamp was 50 mW. 

1.2.3.2 Current-Voltage (I-V) Classification  

The photoexcitation of TiO2 for water splitting was studied for a PEC with a 

xenon lamp light source. The photocurrent was recorded as a function of 

electrochemical potential relative to the reference electrode. The two most important 

parameters for such current-voltage studies are the open-circuit voltage VOC and the 

short-circuit current ISC. VOC  is the maximum voltage from a PEC at zero current and 

ISC is the current when the voltage across the cell is zero. Figure1.7 shows a typical I-V 

curve showing the short-circuit current and the open-circuit voltage, together with a 

calculated power spectrum. Under both open and short circuit conditions, the output 

power becomes zero, since the power is defined as: 

VIP ×= ……………………………………………………………….…..Equation 1.22 

The maximum power is expected at a voltage between 0 and Voc. 

 

 

 

 

 

Figure  1.7 Short circuit current, open circuit voltage and power from a general 
solar cell. 

ISc, is the short circuit current, it is 

the measurement of the maximum 

current at zero volt through the 

solar cell 
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1.2.3.3 Fill Factor 

The maximum current and voltage from a solar cell are defined as the short-circuit 

current and the open-circuit voltage. However, under both these conditions, the power 

of the solar cell is zero. The fill factor (FF), represents the electrochemical efficiency of 

the PEC. It is defined as the ratio of the maximum power from the solar cell to the 

product of Voc and jsc , jsc = Isc / a 

where a is the area of the electrode. It can be calculated from the curve as shown in 

Figure 1.8  

 

 

 

 

 

 

Figure  1.8 Fill factor; short-circuit current (jsc), open-circuit voltage (Voc) and 
maximum power (Pmax), VMP, is the voltage at maximum power and the jMP is the 
current density at maximum power. 

 

The FF, measured from the area of the largest rectangle which will fit into the 

current-voltage (I˗V) curve, corresponds to the maximum output power. It is always less 

than 1. The closer the FF is 1, the greater the electrochemical efficiency.  
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1.2.3.4 The Efficiency 

The performance of different PECs may be compared by their photoefficiencies. 

The efficiency (η) is the ratio of the energy output from the solar cell to the input energy 

from the source illumination. Global solar cells are measured under AM1.5 conditions 

and at a temperature of 25 ◦C. Solar cells designed for a space use are measured under 

AM0 conditions (i.e. for the solar radiation in space). The efficiency depends on 

parameters such as the absorption spectrum, the temperature of the solar cell and the 

intensity of the incident sunlight. The parameters of efficiency measurements must be 

controlled in order to compare the performance of different solar cells. The solar cell 

efficiency can be calculated as a fraction of the incident power which can be converted 

to electricity and is defined as: 

FFIVP SCOC ××=max  ……………………………………………………………. Equation 1.23 

The efficiency is defined as the ratio of the maximum power output (Pmax) to the 

power input (Pin), so the equation 1.23 becomes: 

in

SCOC

P

FFIV ××
=η  …………………………………………………………….... Equation 1.24 

η is the efficiency; Voc is the open-circuit voltage; Isc is the short-circuit current; and 

FF is the fill factor. The VOC× ISC× FF corresponds to the maximum output power. 

1.2.4 Drug Delivery 

As the anodised nanotube has one open end, it can be used to carry drugs as a 

capsule for drug delivery. Moreover, the tubes may be filled with magnetic particles 

such as magnetite Fe3O4 and guided to desired locations. These tubes can also be coated 
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with proteins that can recognise viruses or cells which result a self-guided drug 

delivery. By use of suitable passivating molecules, the drug delivery can also be guided 

electrically (using voltage induced catalysis) and the drug release can be controlled by 

UV light, or X-ray, radiation for in vivo treatments through living tissue [110]. 

Song et al, [111] proposed the use of amphiphilic tube layers in a payload filling 

and release mechanism. These tubes had a hydrophobic cap to protect nanotubes loaded 

with hydrophilic drugs. The hydrophobic cap could be removed by photocatalytic 

oxidation, allowing aqueous body fluids to enter the tubes and flush out the desired 

drugs. Peng et al measured the kinetics of drug release. They found that the effective 

elution time controlled by the nanotubes varies with the size of the substrate molecules. 

Diffusion of small molecules takes some weeks and diffusion of large molecules 

perhaps a month [112]. 

1.3 Other Applications of TiO2 

In recent years interest in highly sensitive, selective and stable hydrogen sensors 

has increased rapidly [113, 114]. Metal oxide semiconductor-based gas sensors are 

simple and cheap to make [115]. Hydrogen sensors based on TiO2 nanotubes show a 

superior H2 response in air under bias conditions. It is believed that the selectivity 

towards hydrogen is directly related to the nanotube diameter. A smaller tube diameter 

gives higher sensitivity.  

A thin layer of Pd was evaporated on to the surface of the TiO2 film to form a 

device containing three layers; Pd, oxide film, and Ti at the base of the electrode [116]. 

The sensor output was determined by measuring the conductance through the TiO2. This 
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specimen responded to 0.8 % H2 in air or N2 within a temperature range of 25-250 ◦C 

under bias condition. However, in a field application, the sensor can be easily 

contaminated. Nevertheless, after almost complete contamination by substances such as 

motor oil, the sensitivity can be restored by exposure to UV light. The ‘self-cleaning’ is 

due to the oxidation of organic contaminants by photo-generated electron-hole pairs on 

the TiO2 surface. Approximately 2 wt% H2 can be stored in TiO2 nanotubes and 75% of 

the hydrogen stored can be released by reducing the pressure to ambient conditions 

[117]. 

TiO2 is used also in self-cleaning building materials, antiseptic paints and 

coatings, the purification of air, and the decontamination of water from bacteria, organic 

compounds and viruses [118]. In addition, it is used in skin and stomach anticancer 

treatments [119].  

Another important application of TiO2 is in lithium ion batteries (LIB). The charge 

that can be stored, can be increased by reducing the dimensions of the TiO2 from the 

bulk, through nanowires to nanotubes and nanoparticles [120]. A further increase in 

capacity can be achieved by the addition of carbon on TiO2 or by loading the high 

capacity materials like RuO2, SnO2, ZnO and silicon onto the TiO2 matrix to form 

composite materials [121].  

1.4 Thesis Aims 

In this study, the aim was to gain knowledge and understanding of the growth 

mechanism for TiO2 nanotubes in order to achieve two targets: to control the 
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morphology of the nanostructures and to increase the performance of TiO2 nanotubes in 

a range of applications.  

The growth mechanism of TiO2 nanotubes has been studied by time-dependent 

SEM, XPS and transient anodisation current analysis. Models to describe the growth 

process quantitively have been established. Understanding of the growth mechanism 

and precise control of the anodisation process are necessary to manipulate the 

morphology of TiO2 nanotubes. The results of the catalytic behavior of hydroxide 

species on the initial porous growth are presented and the possible mechanism of 

localized anodisation is discussed. In a time-dependent scanning electron microscopy 

(SEM) study, the correlation with the transient current under potentiostatic conditions is 

also quantitatively analysed. This quantitative analysis, which has not previously been 

described improves the understanding of the early stages of the growth of anodic 

titanium oxide.  

Two types of pre-pattern viz mechanical and EBL patterns have been developed 

and used on Ti surfaces in order to generate TiO2 nanotubes with a new morphology.  

The performance of nanotubes as a photocatalysts has been studied in a PEC for 

water splitting. Novel nanotubes have also been created, in order to demonstrate the 

influence of tube morphology on drug release kinetics. 

We demonstrate a range of methods to control the morphology of the TiO2 

nanotubes for use in equipment for photocatalytic water splitting and in manipulation of 

the kinetics of drug release. 
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The challenge in the control of tube morphology through mechanical stirring and 

the magnetic effect is in the control of the shape of the vortex and the ion transportation. 

Nevertheless, we have proved that it is possible to control the morphology of nanotubes 

by direct manipulation of the ion flow direction.  
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Chapter 2 Experimental  
 

2.1 Abstract 

In this chapter the experimental set-up is described. Details of the anodizing unit 

and the material analysis techniques are presented. The general principles of electron 

microscopy (SEM and TEM), powder XRD and EBL are also summarised. Information, 

on the pre-treatment of Ti plates, including polishing and patterning, is given in later 

chapters of this thesis.  

2.2 Sample Preparation 

All chemicals used in this work were from sigma Aldrich. High purity titanium 

plates (0.5mm, 95%) were ultrasonicated in acetone and rinsed in DI water. The 

titanium samples were polished to a mirror-like surface with diamond pastes of 6, 3 and 

finally 1 µm. Between these steps the plates were ultrasonically cleaned in ethanol to 

remove residues. Finally the samples were cleaned by sonicating in acetone, then 

isopropanol, followed by rinsing with deionised water. For reuse the discarded film on 

the sample was removed by dissolution TiO2 in a mixture of 1 wt% H3PO4 and 0.1 wt% 

HF (solution A) in the ultrasonic bath. 

2.3 Anodising Unit  

The anodisation was performed in a home-made electrochemical cell using clean 

Ti plates as cathode and anode. The anodizing voltage and electrode separation were 

kept constant. The surface area exposed to the electrolyte was about 2.0 cm2. The 
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experiments were performed at room temperature or low temperature under aerated 

non-stirred conditions.  

The transient anodisation current was recorded by a USB data logger (U12, 

Labjack).  The experimental setup is shown in Figure 2.1. 

 

Figure  2.1 The anodizing unit with a two-electrode cell and applied voltage 
remotely controlled by a PC. 

 

A power supply capable of operation as a constant voltage or constant current 

source was used for anodisation while the current was monitored by a personal 

computer (PC) through the USB data logger.  

2.4 Characterisation by Electron Microscope Techniques 

Most morphological information of as-prepared and annealed films was obtained 

by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). 

Crystalline phases were characterised by TEM and by X-ray diffraction. Chemical 

information was obtained by X-ray photon spectroscopy (XPS) and energy dispersive 
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X-ray diffraction (EDX). Annealing was in the air to induce crystallisation. The 

following sections provide an overview of these techniques. Electron microscopy is like 

optical microscopy. However, instead of using photons, SEM uses a high-energy beam 

of electrons to interact with the atoms that make up the sample, producing signals, 

which contain information about the sample's surface composition and topography. The 

electron beam displays wave-like properties; a beam of 30 kV corresponds to a 

subnanometer wavelength so it can be used to extend the resolution of an optical 

microscope (~1 µm), which is limited by the wavelength of visible light. SEM and TEM 

are absolutely essential techniques in characterising the morphology and structure of 

nanomaterials. TEM is crucial in the examination of the early formation of the tubes 

during the anodising process, whereas SEM is essential in measuring the diameter and 

length of nanotubes in the later stages. In addition, TEM was used to identify the local 

crystal structures in the anodic film with selected area diffraction (SAED). Both 

techniques have been used extensively throughout this project to better understand all 

aspects of the titanium dioxide specimens. By using high operating voltages (200 kV), 

transmission electron microscopes can achieve a consistent resolution of the order of 

typical interatomic spacing in crystalline solids (0.15-0.5 nm). The TEM at Sussex has a 

limited resolution due to the low acceleration voltage (100 kV).  

2.5 Scanning Electron Microscopy (SEM) 

The development of SEM began in 1935 with the work of Max Knoll at the 

Technical University in Berlin. He placed a specimen within a modified cathode ray 

tube and scanned it with 100 µm electron beam with a diameter between 0.1 and 1 mm. 

Nowadays electron beam diameters of 3-10 nm are used [122]. 
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In 1938 Manfred Von Adrienne, working in his private laboratory in Berlin, 

published an important theoretical paper which clearly explained the principle of SEM. 

Von Adrienne added scan coils to a transmission electron microscope that also 

possessed demagnifying lenses to produce an electron beam of a relatively small 

diameter. The instrument was really a scanning transmission electron microscope. 

However, the principle of scanning a small-diameter electron beam over the specimen 

was established. In Berlin the Second World War resulted in a break in the development 

of the scanning electron microscope [122]. 

In 1942 Zworykinn, Hiller and Snyder in United States developed the first 

scanning electron microscope that could study bulk specimens [122]. They recognised 

that secondary electron emission from the specimen surface illuminated with a high 

energy electron beam could be used to create topographic contrast. They used an 

electron multiplier detector to collect the secondary electrons at a bias of +50 V. An 

electron beam was focused by three electrostatic lenses with a diameter of 50 nm. The 

images that were obtained were noisy by today’s standards, but they did confirm that 

the scanning electron microscope was practicable.  

The modern SEM was developed by Sir Charles W. Oatley [123] and his students 

at Cambridge University in England from 1948 to 1961. The electron beam diameter 

was reduced to 20 nm, thus increasing signal to noise ratio. In 1965, the Cambridge 

Instrument Company was an immediate success and won the Queen’s award for 

technology in that year.  
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In SEM, in contrast to TEM, it is inelastic scattering which provides information 

on the specimen to be analysed (inelastic scattering is dominant when the energy of the 

electron beam is in the range 10-30 kV). As the primary electron beam interacts with the 

sample, electrons lose energy either by scattering or absorption which take place within 

a defined specimen interaction volume that is 100 nm to around 5 µm into the surface, 

depending on the electron beam energy, the density of the specimen, and the atomic 

numbers of the atoms in it. A schematic view of an SEM instrument is shown in Figure 

2.2.  

 

 

 

 

 

 

 

 

Figure  2.2 The scanning electron microscope 

Various signals can be collected after inelastic interactions. Most commonly, 

detectors collect secondary electrons (providing information on the topography of the 
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surface), back-scattered electrons (showing the composition of the surface) and X-rays 

(giving elemental analysis of the sample).  

A high energy electron beam is generated from the electron gun, accelerated at 10-

30 kV and finely focused by a system of condenser lenses and a probe lens, on to the 

sample. The electromagnetic probe lens in SEM fulfils a similar function to the 

objective lens in TEM (its dimensions determine the resolution of the microscope), but, 

being placed above the specimen, it does not participate in the collection of the signal 

from the sample. As the beam is scanned over the sample by the action of scanning coils 

which deflect the beam horizontally and vertically (in the x and y directions), signals 

provided by secondary and back-scattered electrons are collected. This information is 

projected as an image on to a screen.  

A full understanding of the effects of the machine variables is the key to 

producing the best SEM image of a specimen. Some important variables are; 

stigmatism, working distance, accelerating voltage and condenser lens current. 

Adjustments to the image can be made by changing these variables.  

A scanning electron microscope needs to compromise between the need for a fine, 

probing, electron beam and the need to limit scattering, which increases with higher 

voltages. As a result, SEM operates within the range 1-30 kV and is consequently 

restricted to a maximum resolution of approximately 2 nm. In both TEM and SEM 

instruments, an electron gun (source) is used to generate a high energy electron beam by 

either thermionic emission from a W filament or field emission from a LaB6 cathode 
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[124]. The electron beam is accelerated and focused through several electrostatic and 

electromagnetic lenses before reaching the sample. 

In order to prevent the electron beam from being scattered by residual gas, to 

stabilise the electron gun, and to minimise beam-induced contamination of the sample, 

both systems are operated under a vacuum, of between 10-6 and 10-10 torr.  

The electron beam-sample interaction signal is displayed on a viewing screen 

before a final image is produced. Although the principles are the same there are 

differences between SEM and TEM in the method of operation. In TEM the objective 

lens is used to focus the primary interaction signal before the image is enlarged by 

another set of imaging lenses. In contrast, in SEM a focused electron probe is used to 

scan the sample and a detector collects the resultant interaction signal as the electron 

beam moves. These variations allow the two techniques to yield vital information about 

the morphology and structure of the material being investigated. 

2.5.1 Stigmatism and Resolution 

The word stigma derived from Latin, means spot or point. The spot that is scanned 

over the sample needs to be as round as possible and is controlled by the stigmator 

control. A distortion of filament shape, a dirty aperture or contamination in the lenses, 

may cause distortion of the electron beam spot into an oval. Such distortion causes a 

reduction in resolution. An additional electromagnetic field is needed to compensate for 

such distortion [122].  
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2.5.2 Working Distance and Resolution 

The distance between the final condenser lens and the sample to be analysed is 

called the working distance. A spherical aberration of the imaging system may be due to 

the geometry of the electromagnetic lenses but it can also be affected by the working 

distance. The electrons that travel at the inside of the electron beam are refracted less 

than those on the edges. The distance they have to travel exaggerates this difference, 

which creates more than one focal point to give an enlarged spot with unclear edges. A 

shorter working distance reduces adverse effects of spherical aberration, as it shrinks the 

spot striking the sample and improves the final resolution [122].  

2.5.3 Working Distance and Depth of Field  

The depth of field describes the distance within the sample that appears focused. 

The working distance greatly affects the depth of field. At a short working distance the 

depth of field is reduced because the sample is scanned with a wide cone of electrons. 

At a greater working distance the cone of electrons becomes narrower and the depth of 

field is increased. The relationship is illustrated in Figure 2.3. However, use of a longer 

working distance compromises the resolution, as discussed in section 2.5.2.  

The features of a sample dictate the balance between distance and depth of field 

required to create useful images. A sample with large topographical variation may need 

a greater depth of field, achieved through a greater working distance, but may not have 

the optimum resolution. A relatively flat sample on the other hand can give better 

resolution as the depth of field is less important and a shorter working distance can be 

employed [125]. The optimal working distance for the Jeol 820 SEM is between 8 and 

10 mm. 
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Figure  2.3 The effect of working distance on the depth of field and the resolution 
[125]. 

2.5.4 Accelerating Voltage and Resolution 

The high voltage applied to the filament is used to accelerate the electron beam. 

The combination of this high voltage with the heating current causes electrons to leave 

the filament. An accelerating voltage of between 5-30 kV is typically used in SEM 

imaging. The advantage of a higher accelerating voltage is that it decreases the spherical 

aberration of the system and thereby increases resolution. However, a higher 

acceleration voltage increases the beam-sample interaction and can cause charging 

effects for insulating and semi-insulating samples. The greater energy of the electrons 

increases the interaction volume between beam and specimen and reduces the 

resolution, particularly for samples with low atomic number such as biological 

specimens. Figure 2.4 describes the influence of accelerating voltage on the resolution 

of the image [122, 125].  
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Figure  2.4 The influence of accelerating voltage on the image resolution [125]. 

In addition, it is important to consider the probe current setting; Figure 2.5 shows 

the relationship between probe current and image resolution. 

Usually, in order to achieve high resolution, a low probe current with a low probe 

diameter is required. The influence of the probe current on the probe diameter is 

determined by the space charge effects, originating from repulsive interactions between 

electrons. High acceleration voltages reduce space charge effects. In general, it is 

necessary to select a probe current suited to the magnification and observation 

conditions (accelerating voltage, specimen tilt, etc.) as well as the specimen.  
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Figure  2.5 The relationship between the probe current and the resolution [125]. 

2.5.5 Preparation of SEM Specimens of Anodised TiO2  

A voltage between 10 and 30 kV was used for the measurements, with a various 

working distances. For example, for top-view imaging a working distance between 8 

and 10 mm can be used. However, working distances of 15-18 mm can be used for the 

side views (tilted samples). At higher voltages higher resolution can be achieved from 

the reduction of spherical aberration. Nevertheless, the interaction volume is also 

increased at higher voltages; resulting in a loss of resolution. Therefore, a compromise 

has to be made.  

Both conducting and non-conducting specimens can be examined by SEM. The 

final image is affected by the negative charge from the electron beam, which 

accumulates when using nonconductive sample. These effects appear either as abnormal 

contrast or as abnormal lines, which cause shifts within the image. Almost all biological 

samples are nonconductive, so to obtain good images it is necessary to coat them with a 

thin layer of metal (such as gold) or carbon, making the surface conductive. Samples 

like metals and most semiconductors are conductive and can be examined without 
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coatings. For TiO2 samples, no obvious charging effects were observed so no additional 

coatings (for example Au) on titanium nanotubes arrays were required. 

2.5.5.1 The Secondary Electron Image (SEI) 

Various signals are generated within SEM by sample-beam interaction. These 

include secondary electrons, back-scattered electrons, characteristic X-rays, light 

(cathodoluminescence), specimen current, and transmitted electrons. A range of surface 

properties can be extracted by studying these signals.  

The SEI is the most commonly used signal in SEM. Secondary electrons are low 

energy electrons (typically 10-300 eV) which are emitted from less than 10 nm deep 

within the excited surface layer and therefore provide topographic details of the surface. 

A secondary electron is generated through a Auger process. When an atom is 

illuminated by a high energy electron beam, it is ionized by losing an electron at core 

level. The relaxation of an upper level electron causes the emission of another electron. 

This electron is called an Auger electron and it is captured by a scintillator that converts 

the electron beam intensity to fluorescent light that is captured by photomultiplier. A 

detector is kept at a “post acceleration voltage” of 1 kV to collect the secondary 

electrons and to exclude primary elastic electrons. This is the principle of secondary 

electron detection. In a back-scattering process, the elastic electron is scattered by the 

sample. The number of secondary electrons generated depends on the tilt angle of 

specimen and is greater at a greater angle. The image is typical of shadowless 

illumination, as it is created by the collection of electrons emitted in all directions. Also, 

the high depth of field achievable by SEM allows one to obtain three-dimensional 

perspectives of the analyzed specimen.  
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The intensity of the back-scattered electrons is related to the density of the sample 

and the atomic number of the atoms in it. It is therefore gives additional contrast due the 

difference in atomic species.  

The highest resolution in SEM (1-2 nm) is achieved under optimal conditions 

(working distance, accelerating voltage) working in the secondary electron image mode. 

2.6 Energy Dispersive X-ray Spectroscopy (EDX) 

In addition to secondary electron and back scattering electron detection, SEM can 

also be used to identify elements based on X-ray fluorescence. A hole is created at the 

core level in atoms by excitation by the high energy electron beam. The relaxation of an 

electron in a higher level to the hole in the core level causes the emission of X-rays. The 

energy of the emitted X-ray is specific for each atom and can be used to determine 

chemical composition. The intensity of such fluorescence is proportional to the amount 

of the element in the sample. In this project we use a combination of secondary electron 

and X-ray fluorescence to characterize the nanostructured samples.  

2.7 Transmission Electron Microscopy (TEM) 

Morphological investigations have also been carried out by TEM by use of a 

Hitachi-7100 instrument, which is operated with a tungsten filament and a voltage range 

of 40-120 kV. The sample preparation for TEM involves the removal of the anodic 

layer from titanium metal followed by mechanical cracking by a pair of special 

tweezers. Very small sections of material were separated from the anodic film and 

directly mounted in a double-layer 200 mesh copper grid. The sections mounted were 

usually thin enough to permit good quality transmission of the electron beam. The 
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transmission electron microscope forms a true image of the specimen, as does the light 

microscope. The best image is formed when the specimen is illuminated with electrons 

or light photons and with some of the radiation absorbed by the specimen. The 

condenser aperture restricts the size of the beam to reduce unnecessary illumination of 

the specimen, since electron beams damage materials to some extent. The sample itself 

has to be very thin (around 100 nm) so that most of the electrons can pass through it 

without significant inelastic scattering [126]. Figure 2.6 shows how a TEM instrument 

works. 

 

 

 

 

 

 

 

Figure  2.6 The transmission electron microscope. 

2.8 X-Ray Diffraction 

Crystal structures of nanomaterials can be identified by use of an X-ray 

diffractometer. Diffraction techniques depend on the interference between waves 

reflected from the periodic arrangement of atoms within the crystal [127]. For powder 
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diffraction, the spacing between sets of crystal planes is characterised by a specific 

diffraction angle. Figure 2.7 shows the geometry of an X-ray diffractometer. The setting 

of the detector follows the diffraction angle which is determined by the spacing between 

the layers. The Bragg equation (Eqn 2.1), relates the diffraction angle θ at which 

intensity can be observed to the spacing d between the planes for a specific X-ray 

wavelength. 

θλ sin2dn =  …………………………………………………………. Equation 2.1 

where, λ is the wavelength of the X-rays, typically about 100 pm (1 pm = 10-12 m). 

d is the spacing between the planes in the atomic lattice, θ is the angle between the 

incident ray beam and the scattering planes. 

 

 

 

 

 

Figure  2.7 X-ray diffraction by the crystal lattice. 
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incident and detector angles relative to the sample plane are changed simultaneously. In 

a second mode, the incident angle can be fixed while the detection angle is changed. For 

the normal powder sample analysis, we use a θ/2θ scan, and for a thin film sample, we 

fix a small incident angle (θ = 4º) and move the detector. With a small incident angle, 

the X-ray beam samples a shallow depth into the material so the procedure is suitable 

for thin film analysis. For anatase and rutile, the unit cell vectors (a, b and c) and the 

symmetry of the crystal determine the spacing of individual crystal planes. Table 2.1 

lists the Miller indices, d spacing, diffraction angle 2θ and relative diffraction intensities 

of low index crystal planes [128]. The XRD data for anatase and rutile were taken from 

a standard spectrum [129]. This standard data was used to determine the crystal phases 

of TiO2 nanotubes. The typical thickness of the anodised TiO2 was ˃1 µm and both θ/2θ 

and 2θ scans were used. 
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           Table 2.1 Shows anatase and rutile diffraction patterns [128]. 
            Anatase 

 

 

            Rutile 

h k l D 2Ө I 

      
1 1 0 3.2477 27.440 100.0 

1 0 1 2.4875 36.078 46.0 

2 0 0 2.2965 39.196 7.1 

1 1 1 2.1873 41.239 18.0 

2 1 0 2.0541 44.049 6.5 

2 1 1 1.6874 54.323 56.0 

2 2 0 1.6239 56.634 16.5 

0 0 2 1.4795 62.750 7.8 

3 1 0 1.4524 64.057 8.1 

3 0 1 1.3598 69.001 19.6 

1 1 2 1.3464 69.795 9.8 

3 1 1 1.3038 72.425 1.0 

2 0 2 1.2437 76.534 2.2 

2 1 2 1.2005 79.827 1.1 

h k l D 2Ө I 

      
1 0 1 3.5163 25.308 100.0 
1 0 3 2.4307 36.950 6.5 

0 0 4 2.3786 37.790 20.3 

1 1 2 2.3322 38.571 7.4 

2 0 0 1.8921 48.046 28.2 

1 0 5 1.7001 53.884 18.1 

2 1 1 1.6662 55.071 17.8 

2 1 3 1.4931 62.115 3.1 

2 0 4 1.4808 62.690 13.9 

1 1 6 1.3642 68.754 6.2 

2 2 0 1.3379 70.302 6.8 

2 1 5 1.2646 75.051 10.5 

3 0 1 1.2505 76.049 9.8 
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2.9 The photoelectrochemical Cell (PEC) 

Photoelectrolysis is a broad term describing semiconductor-based water splitting 

by the use of a photoelectrochemical cell (PEC) [14, 19, 94, 100, 130-132]. In my 

experiments a 300 W xenon arc lamp was used as a light source. A platinum electrode 

was used as the counter electrode and a saturated Ag/AgCl electrode was used as a 

reference electrode. The 100 ml of 1M KOH solution in DI water acted as the 

electrolyte during water electrolysis. A USB controlled potentiostat (EA163 from 

eDAQ) was used to control the electrochemical potential and to measure the 

photocurrent. The setup of the PEC is illustrated in Figure. 2.8. A lens was inserted 

between the photoanode and the light source to focus the beam size to 1 cm2. Substrates 

formed with TiO2 nanotubes arrays with different morphologies and crystal structures 

were used as a photoanode. In this study two different TiO2 nanotube morphologies, 

circular and polygonal, were investigated to examine their potential applications in the 

PEC water splitting.  

 

 

 

 

Figure  2.8 Water splitting cell with TiO2 nanotubes (polygonal and circular) as a 
photoanode, platinum cathode and Ag/AgCl reference electrode. Hydrogen forms 
at the cathode. Oxygen forms at the anode. The electrolyte is 1M KOH. 
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Upon light illumination, hydrogen ions migrate in the electrolyte and electrons in 

the external circuit [94]. Gaseous oxygen evolves at the photoanode and the hydrogen 

ions move to the cathode through the aqueous electrolyte (internal circuit). 

Simultaneously, electrons, generated as a result of photoexcitation at the anode, are 

transferred over the external circuit to the cathode, resulting in the reduction of protons 

into gaseous hydrogen. Both the anode and cathode are connected to the EA163 

potentiostat through stainless steel crocodile clips. 

2.10 Annealing  

The TiO2 nanotubes prepared by anodisation normally contain some residual 

organic solvent and are generally amorphous. The formation of specific crystal phases is 

critical to improve charge carrier mobility and to reduce recombination. The anodised 

samples were therefore annealed to certain temperature. The residual organics are 

removed at temperatures above 260 ◦C. The annealing of the anodised titania film was 

studied with SEM, TEM and XRD, followed by PEC water splitting measurements. The 

nanotube arrays were annealed in a tube furnace (CARBOLITE PAT 3081) 100 ◦C to 

650 ◦C with heating rate of 20 ◦C/minute for 2 hours and then allowed to cool at 

approximately 20 ◦C/minute.  

2.11 Electron Beam Lithography (EBL) 

In electron beam lithography (EBL) a finely focused high-energy electron beam is 

used to write a defined pattern across a surface covered with a photoresist. Our EBL 

involved the use of the Jeol 820 m SEM instrument, in which the sample can be 

manually moved in both X and Y directions with a readable resolution of 0.5 µm. 
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A modern dedicated EBL system would control the movement of the electron 

beam with automatic PC software. From such systems, researchers have used this 

technique to write patterns with widths of just a few nanometers in a layer of photoresist 

on polished silicon substrates [133]. With our manual control; we were limited to 

simple linear and square patterns, but there were sufficient for our purpose. 

Photoresist materials are organic compounds whose chemical properties change 

when they are exposed to UV light due to breaking of chemical bonds. When the 

exposed region becomes more soluble in the developer, the organic compound is called 

positive resist. In other words, "whatever shows, goes." The mask, therefore, contains 

an exact copy of the pattern which remains on the wafer. For example, 

polymethylmethacrylate (PMMA) is one of the common positive resists [134].  

When the exposed region becomes less soluble in the developer, the compound is 

called a negative resist (for example SU-8). For instance,  polystyrene [135] is used as a 

negative photoresist and all solvents that can dissolve un-exposed polystyrene can be 

used as developers. It is often used in applications where a permanent resist pattern (one 

that is not strippable, and can be used in high temperature and pressure environments) is 

needed for a device [136]. Upon exposure to UV light, negative resists convert into 

polymer that is not easy to break up and remains on the surface after exposure. The 

developer solution removes only the unexposed portions. If a photo mask is used, an 

inversed (or photographic "negative") pattern is transferred.  

The differences between photoresists [136] are summarized in Table 2.2.  
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Table  2.2 Differences between the photoresists [136]. 

 

Our lithographic process involved three steps. First, by the exposure of positive 

resists to the electron beam, two fine-lined patterns were drawn on to PMMA to form a 

grid. Secondly, the resist was developed with a mixture of methyl isobutyl ketone 

(MIBK) and isopropanol (IPA). The anodisation process was then carried out on the 

patterned titanium plates. 

 

 

 

 

 

Characteristic    Positive Negative 

   
       Adhesion to Silicon     Fair                    Excellent 

Relative Cost     More Expensive                    Less  Expensive 

Developer Base     Aqueous                    Organic 

Minimum Feature     0.5 µm and below                    ± 2 µm 

Step Coverage      Better                    Lower 

       Wet Chemical 

       Resistance 
     Fair                    Excellent 
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Chapter 3 A New Approach to the Catalytic Growth of 

Anodised TiO2 Nanotubes 

 

3.1 Abstract 

In the present work a Ti plate was pre-covered with hydroxide islands using acid 

treatment. With time-dependent SEM observations, I was able to show that the initial 

etch pits are exclusively located at the interface between the hydroxide islands and Ti 

substrate. This leads to the postulate that Ti3+ at the interface between hydroxide and the 

Ti substrate plays a significant role at the early stage of anodisation. There is significant 

rearrangement of hydroxide coated islands following the formation of nanotubes. The 

presence of the hydroxide eliminates the release of O2 gas during the anodisation. The 

variation of the current with time shows four distinct stages in the growth process. It 

was found that a cubic equation fits the increase in the current after the initial 

exponential decay. A dissolution process has also been identified towards the end of the 

anodisation. Anodisation parameters such voltage, fluoride concentration, stirring and 

the effect of magnetic fields have been investigated. 

3.2 Introduction 

Titanium dioxide is one of the most widely studied oxide semiconductors due to 

its photocatalytic activity [3, 12, 51], biocompatibility [137] and stability in water [13]. 

Moreover, modifying the microstructures and controlling the electronic structure of the 



59 

 

 

TiO2 can potentially improve the efficiency of its application in photovoltaic devices 

[47, 51, 138-140]. 

TiO2 nanotubes are of great interest among the various known titania nanostructures. To 

date, the most effective way of creating vertically aligned TiO2 nanotubular arrays is by 

anodizing a Ti plate, in a similar manner to the process for fabricating anodic 

aluminium oxide (AAO) [141], but using different electrolytes containing fluoride [2, 

12, 37-39, 51, 142, 143]. Successful attempts have been reported to control the 

geometry, the diameter [143, 144], length [140, 145], wall thickness [146] and even the 

external structures of the aligned nanotubes [147] by manipulating the anodizing 

conditions. More recent efforts have been focused on establishing the growth 

mechanism with the aim of fine tuning the nanotube morphology. Microstructural 

studies of AAO and anodic titanium oxide (ATO) have been performed in order to 

understand this mechanism [147]. 

Qualitative description [143] and quantitative modelling of the electric field 

distribution [148] and growth process [149] have also been established. However, 

knowledge about the early stages of pore growth in AAO and ATO is still very limited 

[150]. 

3.3 Experimental Details  

Samples were prepared as described in chapter 2 section 2.2. Hydroxide islands 

were created by dipping polished Ti plates in an acid solution (solution A), for 5 min, 

followed by sonicating in DI water for 4 min. H3PO4 was used to adjust the pH of the 

solution to 1.5, and F− was added to initiate the formation of a hydroxide layer. A longer 
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dipping time forms a much rougher surface, 4 min contact with the solution was optimal 

to achieve an appropriate density of hydroxide islands. 

The anodisation was performed in a home-made electrochemical cell with a clean 

Ti plate as cathode. The electrolyte contained 0.6 wt% ammonium fluoride (analytical 

grade) and 2 wt% DI water. The anodizing voltage was kept constant at 60 V DC with 

an electrode separation of 65 mm. The surface area exposed to the electrolyte was about 

2.0 cm2. The experiments were performed at room temperature under aerated non-

stirred conditions.  

The current-time profile was recorded using a USB data logger (U12, Labjack). 

The formation of a hydroxide catalytic layer and the evolution of TiO2 nanotubes were 

monitored by SEM (JSM 820M, Jeol) and TEM (Hitachi-7100), operating at 100 kV. 

X-ray photoelectron spectroscopic data were recorded with a 12 keV bias and 10 mA 

emission current. The 2p signals from the clean Ti sample were used to calibrate the 

equipment. 

3.4 Results and Discussion 

Figure 3.1 shows the typical morphology of anodized Ti in electrolytes containing 

fluoride. The SEM images show the circular cross sections of the nanotubular arrays (a) 

from the top, (b) from the bottom and (c) from the side. The nanotubes are open at the 

top (Figure 3.1a) and closed at the bottom with an average outer diameter of 120 nm. In 

Figure 3.1b a dark region is visible in the middle of each nanotube probably reflecting 

the hollow tubular structure. Similar images were observed by Chen et al, recently 

[151]. The profile view (Figure 3.1c) shows that the straight nanotubes have almost 
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equal length of approximately 2.5 µm. The TEM image, (Figure 3.1d) gives the detailed 

morphology of the individual nanotubes with a smooth wall structure. 

 

 

 

 

 

 

Figure  3.1 SEM images of the (a) top view (b) the bottom view and (c) side view of 
TiO2 nanotubular arrays. The layer was grown on a Ti substrate pre-treated with 
an acid (solution A) in water for 5 min followed by 45 min anodisation in water for 
5 min followed by 45 min anodisation in ethylene glycol containing 0.6 wt% 
ammonium fluoride and 2 wt% water. The TEM image (d) shows the internal 
structural details of the same nanotubes. 

 

In the following sections, we focus on the mechanism of the early growth of TiO2 

nanotubes. 

3.4.1 Creating the Catalytic Hydroxide Layer 

After fine mechanical polishing of the Ti plate with 100 nm diamond paste, the 

surface has a mirror finish. Ultrasonic cleaning of the polished sample with isopropanol 

and water has no effect on the surface. At this stage, the sample is extremely 

hydrophobic. The SEM image in Figure 3.2a shows a typical example of such a surface, 
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which is very smooth with a low density of defects. The defects are dominated by 

polishing grooves with a width of 100 nm.  

When the polished sample is dipped into the acidic solution (solution A) gas 

bubbles are formed on the surface. These are attributed to H2; its evolution is 

accompanied by the oxidation of the Ti. SEM images in Figure 3.2b and 3.2c show the 

evolution of the surface morphology, recorded after 30 sec and 90 sec in contact with 

the acidic solution. The acid-induced Ti corrosion and the formation of hydroxide 

island, on the smooth surface can be clearly identified. After 90 sec, the surface became 

extremely rough. The sample was then rinsed with DI water and cleaned in water in the 

ultrasonic bath for 5 min. The morphology of the surface at this stage is shown in Figure 

3.2d.  

 

 

 

 

 

 

 

Figure  3.2 (a) The polished Ti sample, (b) the surface after 30 s acid treatment, (c) 
after 90 s acid treatment and (d) after acid treatment for 90 s followed by 
ultrasonic cleaning in water. 
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Many smooth discrete islands are formed with regular size and shape, possibly in 

the form of titanoic acid [TiOx (OH)4-2x]. The XPS study, shown in Figure 3.3, shows 

two components in the O 1s peak with binding energy at 531.5 and 530.1 eV, attributed 

to from hydroxide and oxide respectively. No significant fluorine 1s XPS signal is 

found at 584.8 eV. The spectra have been fitted to a linear background and a linear 

combination of Gaussian and Lorentzian peak shapes, similar analysis have been made 

by of these TiO2 nanotubes [152]. However, we have noticed that the relative intensity 

of the hydroxide against the oxide is much higher on our acid-treated surface than that 

found on other TiO2 nanotubes [152]. 

 

Figure  3.3 O 1s XPS spectrum of the acid-treated Ti sample. 

During the anodisation, a photoimage was taken of a Ti anode containing both 

acid treated and polished parts, as seen in Figure 3.4. It seemed that the polished part in 
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general was very shiny compared with the grey part that had been dipped in acid. 

During the anodisation, O2 bubbles were visible on the polished sample (right side) but 

the acid-treated part had no O2 bubbles. Instead a rapid colour change was observed. 

This colour change indicates the immediate formation of a thin oxide film which has a 

thickness similar to the wavelength of visible light (400~1000 nm). The rapid growth 

suggests that the preformed hydroxide island from acid treatment catalytically 

accelerate the anodisation. 

 

Figure  3.4 The photoimage of polished and acid-treated parts of a Ti sample. Half 
the sample was dipped into the electrolyte. 

 

3.4.2 Contact Angle Measurements  

The acid treatment was also monitored by contact angle measurements shown in 

Figure 3.5 as a function of time in the acid solution at room temperature. A low contact 
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angle indicates a highly hydrophilic surface. A polished titanium plate was dipped in 

solution A and the water contact angle was measured after each dip after 15 s. The 

experimental part of the contact angle measurement will be described in detail in 

chapter six. The polished Ti plate has the highest contact angle of 62˚. The measured 

water contact angle decreases rapidly in the first 20 sec of dipping and reaches its 

minimum after 3 min of dipping. By then, a complete covering of the surface with Ti 

hydroxide has been formed.  

 

 

 

 

 

 

Figure  3.5 The effect of the dip time in acid solution on water contact angle. 

Dipping in the acid solution forms hydroxide layers which are hydrophilic. A 

schematic diagram of this phenomenon is shown in Figure 3.6. The hydroxide on the 

titanium surface; changes the surface properties from hydrophobic to hydrophilic, so the 

contact angle decreases.  
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Figure  3.6 The suggested mechanism of the titanium surface wetting. 

3.4.3 Time Dependent SEM Study at Different Stages of Anodisation 

In order to understand the effect of preformed hydroxide islands on the growth of 

nanotubes, we monitored the evolution of the sample morphology at each stage of the 

anodisation. Figure 3.7 shows a sequence of SEM images taken from acid treated plates 

anodized for different lengths of time. Each sample was prepared individually but under 

identical conditions. As shown in Figure 3.7a, fine etch pits were formed as early as 45 

s into the anodisation. The etch pits were exclusively located at the boundaries between 

the preformed hydroxide nano-islands and the thin metal oxide film formed in the 

anodisation. This suggests that the activation energy for creation of the etching pits is 

low. The shapes of some etch pits follow the profile of the islands rather than being 

perfectly circular. The oxidation of Ti and dissolution of oxide are faster than on the 

clean metal surface. 
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Figure  3.7 SEM images from an acid-treated Ti plate anodized for different times. 

One of the possible mechanisms for this pattern of etching is that subvalent 

cations such as Ti3+ associated with oxygen vacancies are concentrated at the interfaces 

between metal and metal hydroxide. The oxidation of Ti3+ to Ti4+ has a low polarization 

potential so it is kinetically favourable. The oxidation of Ti3+ to Ti4+ requires oxygen 

species from dissociation of water, as in equation 3.1. 

	Ti�O' + H�O																																			2TiO� + 2H�…………………. Equation 3.1 

Such oxidation increases the local concentration of H+ which promotes the 

dissolution of formed TiO2. Alternatively, the presence of hydroxide islands gives an 

inhomogeneous distribution of the electric field. The field at such interfaces is much 
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stronger than that on the flat surface and drives the initiation of the etch pits. Such a 

focused field could attract F− anions moving towards the hydroxide island on the anode. 

In contrast on a polished Ti plate, there is no such hydroxide island and electrochemical 

potential is directly applied across the metal/electrolyte interfaces. The electrochemical 

process is dominated by the electrolysis of water and the formation of O2 gas on the 

anode surface. The anodisation efficiency is much lower than that on acid-treated 

surfaces.  

The ability of F− to form soluble species, such as TiF6
-2, leads to permanent 

chemical attack on TiO2 (dissolution) and prevents passivation by titanoic acid 

TiOx(OH)4−2x precipitation. Figure 3.7b shows the SEM image of the surface after 90 s 

anodisation. The density and diameter of the etching pits have increased while some 

etching pits start to develop in the areas between the hydroxide islands. At this stage, 

the average pore diameter is about 30 ± 8 nm (averaged over 65 pores). Nevertheless, 

the shape of the pore is still irregular. Further anodizing creates more etch pits with 

slightly increased diameter, 40 ± 8 nm, as shown in Figure 3.7c. More significantly, as 

the dimension of the nanopore increases, the number of such pores decreases between 

200 and 500 s. This suggests that there is a merging of nearest pores as they become 

bigger. At 1400 s, an almost perfect distribution of nanotubes can be observed on some 

parts of the image (middle bottom). To further understanding of the growth behavior of 

the TiO2 nanotubes, the diameter and number of pores, together with the oxide film 

thickness as a function of anodisation time were also measured from the SEM images, 

shown in Figure 3.8a and b. 
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It is clear that, in the early stage of anodisation, both the film thickness and the 

pore diameter increase linearly with time, and the number of pores reaches its maximum 

value of 180 µm−2 at 250 s, as shown in Figure 3.8a. This gives quantitative evidence of 

the merging of the pore structures. After 1200 s, nanotubes with the maximum diameter 

are achieved, which indicates the transition from nanopores to nanotubes. Combining 

this profile for the number of pores together with that for the pore diameter, one can 

slow that the maximum surface area is achieved around 250 s. The oxide film thickness 

was measured from the cross sectional view of the SEM image. Here, we are only able 

to identify the overall thickness rather than detailed information, such as oxide barrier 

layer thickness and nanotube length. Nevertheless, it is worth mentioning that the 

thickness of the oxide film increases almost linearly for 1200 s from the beginning of 

the anodisation, after that the growth rate gradually decreases, shown in Figure. 3.8b. 

This could be due to the slowing of the oxidation rate at the bottom of the nanotubes or 

increasing dissolution at the top. Since the anodisation current does not show a 

significant decrease, we can conclude that the decrease in the growth rate is likely to be 

the result of dissolution. 
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Figure  3.8 (a) The number of pores (green, crossed line) and diameter of pores 
(red, dotted line) as a function of anodisation time; (b) the oxide film thickness as a 
function of anodisation time. 

 

The growth of nanotubes is illustrated in the schematic diagram Figure 3.9. 

Formation of etch pits started after 45 s after anodisation began. The number of pits 
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increased as they increased in size. SEM showed (Figure 3.7b and c) that these etch pits 

increased in size after 90 s of anodisation. At 500 s, the etch pits and hydroxide islands 

start to merge into a larger islands (Figure 3.7d). 

 

 

 

 

Figure  3.9 Rearrangement of the etch pits by the rearrangement of hydroxide 
islands. 

 

3.4.4 Change of Current during Anodisation 

With a constant DC voltage of 60 V the current was recorded as a function of 

time. Curve A in Figure 3.10a shows a typical current profile during anodisation of a 

freshly polished sample (sample A, without acid treatment). Curve B corresponds to the 

current profile for a sample covered with hydroxide islands (sample B). For sample A, 

at the beginning of the anodisation, a large current accompanied by evolution of O2 

bubbles on the anode was observed (also shown in the photo in Figure 3.4). The current 

dropped sharply within 9 s, then remained steady at about 35.0 mA, and decreased to 

20.0 mA at 450 s. The release of O2 gas bubbles was diminished by then. Therefore, it is 

reasonable to assume that electrolysis of H2O makes significant contribution to the 

initial anodisation current. The initial evolution of O2 gas indicates that direct oxidation 

of the metallic Ti is not very effective because of the overpotential for H2O electrolysis. 
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Similar field enhanced water dissociation during formation of anodic aluminium oxide 

(AAO) has been studied by a computational chemical method [153]. 

 

Figure  3.10 Anodisation current as a function of time. (a) Curve A (blue) from 
polished Ti; curve B (red) from acid-treated Ti. Anodizing regions are also 
indicated. The current behavior from the acid treated sample is analyzed in (b) 
with the exponential decay (curve C, brown) fitted at the leading edge of the 
current drop (curve B, red) and the residual current (curve D, black). (c) The 
increased current (black dot) is fitted with a cubic function (D2, solid, green). (d) 
The residual current decay (red) is fitted with two linear functions (D3 and D4, 
black). (e) Summary of four best fitting independent functions. (f) Overall curve 
fitting (blue) overlapped on the experimental current curve (red). 

 

The process is more important in formation of anodic titanium oxide ATO, 

because the OH− can stay in the nanotubes for a longer time and even form a double-
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dependent behavior. During the first 450 s, an oxide layer is gradually developed and 

the anodic voltage drops within this oxide layer. This leaves a much lower anodic bias 

for H2O electrolysis at the oxide/electrolyte interface. Meanwhile, the oxide layer 

allows migration of oxide anions so the ionic conductivity increases. The overall current 

becomes stable at this stage. In this region, the nature of conductivity changes from 

electronic to ionic. 

The O2 gas evolution is completely eliminated on the acid-treated sample B, as 

can be seen in Figure 3.4. Thus, the contribution of water electrolysis in the anodisation 

current is minimized. Sample B gives a current-time plot that is very different from that 

of sample A as, shown as curve B in Figure 3.10a. The typical transient current curve 

can be separated into three regions. In the first part, the current shows an exponential 

decay within 68 s down to 11.2 mA, as a compact oxide layer is formed. In the second 

part, the decay is followed by a short up-turn of the current to 15.5 mA, which can be 

generally described as the result of the growth of pores with increasing surface area. 

Finally, the current shows a steady decrease to 11.6 mA at 2800 s, indicating the growth 

of nanotubes. Although similar current profiles have been reported previously by 

several groups [154, 155], to the best of our knowledge, this is the first time that the 

catalytic role of hydroxide islands has been identified. More importantly, without the 

interference of water hydrolysis, the anodisation current is dominated by the migration 

of oxide anions associated with the formation of nanostructures. Only under such 

controlled conditions does it become possible to model the anodisation process.  

For a quantitative understanding of the three regions of the current behavior 

recorded from sample B, the current curve was fitted by three independent functions, 
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with defined physical parameters. The three regions have been identified as involving 

the initial formation of an oxide barrier layer (0 s < t < 68 s), the formation of a porous 

structure (68 s < t < 250 s) and the elongation of the nanotubes (250 s < t < 2800 s). The 

behavior of the initial current (I1) can be described by an exponential decay function, 

equation 3.2: 

)exp(.1 btaI −=  ………………………………………………………...................... Equation 3.2 

where t is the anodisation time and the parameter a corresponds to the initial 

anodisation current and b defines the curvature of the decay process. Both a and b are 

related to the electrolyte concentration, surface area, working temperature, anodizing 

voltage, electrode separation and more importantly, the growth rate of the oxide layer. 

Specifically, the initial anodisation current, a, is determined by the ionic conductance of 

the electrolyte solution and should be linearly proportional to the electrode surface area 

and anodisation voltage but inversely proportional to the electrode separation. The rapid 

decay of anodisation current is due to the increase in the barrier thickness. Parameter b 

represents the rate constant for the growth of the oxide barrier layer. The quantity a/b 

defines the area under the current exponential decay curve, which corresponds to the 

total charge, Q, used during the formation of the initial oxide layer. The surface area of 

the Ti electrode, S, the oxide layer thickness, T, and the measured parameters a and b 

from the current time curve are related by: 

cVeTSbadtIQ 41 ××=== ∫  ……………………………………………..….Equation 3.3 

where e is the electron charge and Vc is the volume of each TiO2 molecule, about 

31.2 Å3. The quantity S × T × 4e/Vc represents the charge used for creation of an oxide 
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layer with a volume of S × T. The best matching of the exponential decay is shown in 

curve C in Figure 3.10(b) with parameters a = 35.15 mA and b = 0.0196 s−1. The 

surface area (S) of this sample is about 5 cm2 (both sides). Using equation (3.3), we can 

estimate the maximum thickness of the metal oxide as about 175 nm, which gives a 

growth factor of 2.9, higher than that previously reported by Schmuki [156]. The 

difference may be attributed to the fact that the maximum oxide thickness could be 

achieved only at the equilibrium condition at which the anodisation current is reduced to 

zero. With previous experimental data and observation methods [156] such an 

equilibrium could not be physically achieved. In conclusion, by quantitatively analysis 

of the exponential decay of the initial anodisation process we have been able to extract 

the true growth factor without the limitation of achieving an equilibrium condition.  

The creation of the pore structure at a very early stage increases the anodisation 

current by increasing the surface area. By assuming that the pores are hemispherical, the 

surface area, S (t), as a function of time is described in equation 3.4: 

		(()) = ((0) − ,π.� + /4 2� 0,π.� ………………………………………….……..Equation 3.4 

where S(0) is the initial flat surface area, N and r represent the number and the 

radius of the pores at time t, Nπr2 corresponds to the loss of the flat circular area and 

(4/2)Nπr2 corresponds to the addition of the hemispherical pore surface area. It is 

statistically reasonable to assume that both the number of pores (N) and the radius of the 

pores (r) increase linearly with time (t). In other words, N = nt and r = mt, where n and 

m are proportionality constants dependent on the growth behavior. The assumption 
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satisfies the initial condition that at t = 0 s, N = 0 and r = 0 nm and allows equation (3.4) 

to be rewritten as a function of time: 

S(t) = S(0) − ntπ(mt)� + (4 2⁄ )ntπ(mt)� = S(0) + ntπ(mt)� = S(0) + Lt' ……………. 

………………………………………………………………………………Equation 3.5 

where L = nπm2.  

The increase in surface area shows a cubic dependence on the anodisation time. 

and reaches a maximum value when the porous cross sectional area Nπr2 is approaches 

the initial flat surface area, S(0). This leads to a simple conclusion that the maximum 

anodisation surface area equals 2S(0), double the initial surface area. To reflect the 

cubic dependence at the initial stage, as well as the maximum surface area, we propose 

a three-parameter saturated cubic formula, equation (3.6), to describe the increase in the 

anodisation current, based on the assumption that the anodisation current is proportional 

to the effective surface area at the electrolyte/oxide interface: 

7� = 8)' ()' + 9) + e⁄ ………………………………………………… Equation 3.6 

The factor d is introduced into the above equation so that when t3 << d, the curve 

follows the cubic behavior, signifying the growth of porous structure, but for t3 >> d, 

the current becomes flat with a saturated value of (c + e) indicating that the maximum 

current, which is related to the maximum surface area is achieved. Here, e represents the 

initial current before the formation of the porous structure and c represents the 

maximum anodic current contributed by the increase in surface area. At the initial stage 

of increasing porous structure, I2 ≈ ct
3
/d + e. Compared with equation (3.5), it is clear 

that the combined parameter c/d is proportional to nπm2, corresponding to the increase 
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in surface area. The time d1/3 represents a critical time after which the rate of increasing 

of surface area decreases. In Figure 3.10b, the residual current, curve D, is calculated by 

subtracting the curve C from the measured curve B. The best fitting of this part of the 

process (curve D2, region 2) is shown in Figure 3.10c, with parameters c = 19.72 mA, d 

= 915 624 (sec)3 and e = −3.07 mA. With a similar saturated formula, instead of t3, we 

have also tested the best curve fitting as a function of various powers of t. The standard 

deviations were 0.38, 0.25, 0.09 and 0.18 mA for least-squares fitting of functions of t, 

t
2, t

3 and t
4 respectively, so the cubic equation gives the best overall result. If the 

increase in surface area is dominated by the increase in the number of pores, the current 

will follow a linear relationship. Alternatively, if the process is dominated by the 

increase in pore diameter, it will follow a quadratic relationship. Under the experimental 

conditions described in this thesis the current vs time curve follows a cubic relationship, 

which suggests that both the number and the size of the pores increase in the 

anodisation, as shown also in the SEM observations (Figure 3.8). The curve D2 (region 

2) passes 0.0 mA at about 55 ± 10 s, indicating the true starting point of pore formation 

Figure 3.10c.  

While the effective anodisation area is increasing, the lengths of the nanotubes 

also start to grow. However, the influence on anodisation current is too small to be 

noticed at this early stage of growth. Once the surface area reaches a maximum, a slow 

decay of anodisation current is observed, as shown in Figure 3.10d (red). Careful 

examination of the curvature reveals subtle changes in the decay rate during the rest of 

the anodisation. We fit the current profile with an exponential decay curve as 

)exp(103 gtffI −+= , with f0 = 9.5 mA, f1 = 6.2 mA and g = 3.6 × 10−4 s−1.  
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The parameter f0 represents the steady (minimum) anodisation current. This 

gradual decay of the anodisation current was previously attributed to the effect of the 

limited ion diffusion and the concentration gradient within the nanotubes [1]. Here, the 

major error comes from the difficulty in identifying the leading edge of the linear decay 

of current, which might contain residual contributions from the initial exponential decay 

and continuous increasing of the surface area. The details of the growth mechanism that 

contribute to this exponential decay have been discussed with quantitative SEM analysis 

in section 3.4.3. It is clear that, although the diameter of the nanotubes increases 

gradually, the number of nanotubes reaches a maximum at about 200 s, so the total 

surface area is maximized at this time. This corresponds to the end of region 2 where 

the anodisation current peaks. Also, the length of the nanotubes increases almost 

linearly until about 1500 s. This causes the slow decay of anodisation current in region 

3 to a steady current towards the end of the anodisation.  

Figure 3.10e summarizes the three functions used to fit the three distinct regions 

of the anodisation process. The overall fitting of the experimental results (thick blue 

curve) is shown in Figure 3.10f with a standard deviation of 0.14 mA. For individual 

regions, C, D2 and D3, the standard deviations are 0.96, 0.09, and 4.0 mA respectively. 

The analytical error originates mainly from the D3 region, due to some extended 

contributions from region 2.  

Comprehensive analysis of the time-current profile has allowed us to establish 

quantitative models based on growth mechanisms for each stage of the anodisation. This 

understanding enables us to control and optimize the anodisation to obtain specific 

nanotube morphology. For instance, nanotubes of larger diameter may be achieved by 
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current ramping in region 2. The analysis helps us to understand how the parameters, 

such as pH, fluoride concentration and temperature, are correlated with current density 

and the nanotube dimensions. 

3.5 The Effect of Processing Parameters on Nanotube Morphology  

The effect of various anodisation parameters, such as voltage, fluoride 

concentration, magnetic field and stirring, on tube morphology are presented here. The 

wetting behaviour of TiO2 nanotube arrays (hydrophilic and hydrophobic) was 

examined by the measurement of the water contact angle. These parameters need to be 

controlled in order to manipulate the morphology of anodised titania nanotubes. 

3.5.1 Influence of Anodisation Voltage on Tube Length 

Figure 3.11 shows the effect of the variation of voltage on the tube length with 

fixed anodisation parameters including anodisation time, electrolyte fluoride 

concentration and working distance between the electrodes.  

 

 

 

Figure  3.11 The effect of anodisation voltage on the length of the TiO2 nanotubes at 
a fixed anodisation time of 1 hour. 
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A slow increase in the tube length was shown in the voltage range 20-60 V and a 

more rapid increase from 80-120 V. The increase at high voltages is attributed to 

formation of a thicker oxide layer. At lower voltages the oxide layer is thinner, so that 

the pores instead of tubes are formed. At high voltage fluoride anions are driven 

strongly towards the anode and this increases the etching process. Both oxidation and 

dissolution are maintained during anodisation. A higher anodisation current is also 

observed for higher applied voltages. This increases the electrolyte temperature from 25 

ºC to 30 ºC, which significantly increases the ion mobility, anodisation rate and 

dissolution rate, and therefore the overall growth rate. The combination of these effects 

means that the growth rate is a non-linear function of anodisation voltage, as observed 

in Figure 3.11. 

3.5.2 Influence of Anodisation Voltage on the Tube Diameter  

The effect of voltage on the diameter has been studied by other groups [39, 157]. 

Their studies indicate that increasing the anodisation voltage increases the tube 

diameter. A linear relation between the voltage and diameter has been established, as 

described by VfD g2=  [1], where ƒg is the growth factor for anodic oxides (fg = 1~5 

nm/V for TiO2). This relationship was given in 1.2.4.1 in this thesis. The high voltage 

drives an increase in etching by increasing the ion movement under the electric field. A 

study of the effect of voltage was carried out in the range 20-120 V (Figure 3.12). 
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Figure  3.12 The effect of applied voltage on tube diameter at fixed anodisation 
time (1 hour.). 

 

A linear increase in the diameter is achieved. The line passes through the point (0, 

0) with a slope of 1.24 nm/V. Therefore, under our experimental conditions, the growth 

factor is 0.62 nm/V. The growth factor in our experiments is lower than those observed 

previously possibly reflecting the low electrolyte ion conductance (low NH4F and 

water) and the choice of organic solvent (ethylene glycol). 

3.5.3 Influence of the Fluoride Concentration on the Film Morphology 

The study of fluoride concentration was carried out by using various 

concentrations of fluoride between 0.2˗0.6 wt % in ethylene glycol and 2% DI water. 
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Figure  3.13 The effect of fluoride concentration on the tube length with 
anodisation voltage 60 V and anodisation time 1 hour. 

 

The formation of pore or tube structures predominantly depends on the fluoride 

concentration at this fixed anodisation voltage and time. Electrolytes with 0.3 wt. % of 

ammonium fluoride give the longest tubes for a given anodisation duration. Increasing 

the fluoride concentration to 0.6 wt. % decreases the length of the nanotubes as more 

oxide dissolves at high F− concentrations. Two examples of SEM images are shown in 

Figure 3.14. 
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Figure  3.14 SEM images 
concentrations.  

 

For 30 min anodisation, only a porous structure was achieved with 0.3% 

ammonium fluoride, but good

fluoride. Faster oxidation/dissolution is expected for higher electrolyte concentration

Similar results have 

of fluoride into nanotubes 

concentration of F− has two effects: 1) 

quality nanotubes. The first is determined by the dissolution rate in 

near the openings of the tube

nanotubes which increases

3.5.4 Control of Nanotube 

In previous work s

by use of a magnetic stirrer in the electrolyte during anodisation 
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SEM images of TiO2 nanotubes obtained with

For 30 min anodisation, only a porous structure was achieved with 0.3% 

ammonium fluoride, but good-quality nanotubes were formed with

aster oxidation/dissolution is expected for higher electrolyte concentration

 been achieved by other researchers, who concluded that diffusion 

of fluoride into nanotubes was the rate-determining step [67, 143

has two effects: 1) it limits the length of nanotubes;

quality nanotubes. The first is determined by the dissolution rate in 

of the tubes. The second effect affects the dissolution inside 

increases the tube inner diameter. 

Nanotube Morphology by Mechanical Stirring 

In previous work stirring has been by the rotation of the anodic electrodes 

a magnetic stirrer in the electrolyte during anodisation [143

with different fluoride 

For 30 min anodisation, only a porous structure was achieved with 0.3% 

with 0.6% ammonium 

aster oxidation/dissolution is expected for higher electrolyte concentrations. 

concluded that diffusion 

143]. Overall, the high 

nanotubes; 2) it gives good 

quality nanotubes. The first is determined by the dissolution rate in a vertical direction 

he second effect affects the dissolution inside the 

Mechanical Stirring  

the rotation of the anodic electrodes [158] or 

143]. The formation of 
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Anode 

Cathode 
Stirrer 

TiO2 nanotubes by a sonoelectrochemical method was  found to be almost twice as fast 

as that from magnetic stirring [159]. 

We studied tube morphology by using a stirrer during anodisation. The electrodes 

(anode and cathode) were arranged vertically. The cathode was positioned below the 

anode and a magnetic bar placed above the cathode. The rotation of the bar was 

controlled by a magnetic stirrer underneath the electrolyte. The configuration is shown 

in Figure 3.15.  

The purpose of adding a horizontal stirrer is to control the movement of 

electrolyte and ions. In a normal anodisation process, the F− flow direction determines 

the orientation of the nanotubes. Therefore, we postulated that if the F− anions could be 

controlled to move in a vortex by mechanical stirring, it should be possible to form 

nanotubes with spiral morphology. In such an inhomogeneous etching process, the flux 

of ions would follow the vortex towards the titanium electrodes. 

 

 

 

 

 

 

Figure  3.15 The anodisation unit used for studying the influence of stirring on 
nanotube morphology. 
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Figure 3.16 shows the vortex in the electrolyte during mechanical stirring. The 

movement of ions follows the movement of the electrolyte which controlled by the 

stirrer. 

 

 

 

 

 

 

Figure  3.16 Vortex between parallel electrodes during anodisation. 

 

Figure 3.17 shows the morphology of titania nanotubes produced by stirring for 1 

hour, with applied voltage 50 V, a 6 cm gap between electrodes, and electrolyte with 0.6 

% wt. fluoride. A stable vortex was achieved with a spin rate of 400 rpm. The distance 

between cathode and anode had to be adjusted to achieve a stable vortex. If the distance 

was too short, the vortex became unstable, and for longer distances, the vortex became 

less obvious.  

TiO2 nanotubes have smooth surfaces if they are anodised under steady 

conditions. With mechanical stirring, tubes with ripples on the wall can be made. These 

ripples are spaced evenly along the nanotubes. It is evident that there are large gaps 

between nanotubes. The creation of rippled nanotubes is a direct effect of the movement 
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of electrolytes and ions. In addition to the dissolution directed by the electrical field 

along the vertical direction, the dissolution in the direction perpendicular to the tube 

length is controlled by the mechanical stirring. The instability of the vortex is 

responsible for the creation of the ripples. 

 

 

 

  

 

 

 

Figure  3.17 SEM image of TiO2 nanotubes made with stirring during the 
anodisation. 

 

The use of different stirring speeds alters the space between the rings on the tubes. 

Stirring facilitates the dissolution of the oxide layer by enhancing the diffusion paths so 

that the growth becomes faster as the force of the vortex pushes the ions into shorter 

diffusion paths. The strong vortex created during high speed stirring gives high density 

rings with small spaces between them, as shown in Figure 3.17.  

With slower stirring, the vortex is more stable and the separation between rings 

larger. A typical example is shown in Figure 3.18 for a stir speed of 250 rpm. This gives 

1 µm1 µm



 

 

a separation between the rings of 

identified in Figure 3.18, but with densely packed rings it becomes difficult to identify 

the spiral shape of the nanotubes.

 

 

 

 

 

 

 

 

Figure  3.18 SEM image
distance between the 

The use of an electrolyte vortex not only creates spiral nanotubes, but also 

changes the overall morphology of the nanotube film. In unstirred electrolytes, a smooth 

layer of vertically aligned nanotubes is formed, but with mechanical 

nanotubes as shown in Figure 3.19 are usually formed. Therefore, the large scale 

morphology of the nanotube film can be affected by the moving electrolyte. Such 

effects of stirring are observed only for the area directly above the magnetic s

Normal straight nanotubes are formed in other areas.
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a separation between the rings of ca. 0.4 µm. Spiral shaped nanotubes can also be 

3.18, but with densely packed rings it becomes difficult to identify 

the spiral shape of the nanotubes. 

SEM image of TiO2 nanotubes formed at slow stirring speeds
the rings is 0.4 µm. 

The use of an electrolyte vortex not only creates spiral nanotubes, but also 

changes the overall morphology of the nanotube film. In unstirred electrolytes, a smooth 

layer of vertically aligned nanotubes is formed, but with mechanical 

nanotubes as shown in Figure 3.19 are usually formed. Therefore, the large scale 

morphology of the nanotube film can be affected by the moving electrolyte. Such 

effects of stirring are observed only for the area directly above the magnetic s

Normal straight nanotubes are formed in other areas. 

. 0.4 µm. Spiral shaped nanotubes can also be 

3.18, but with densely packed rings it becomes difficult to identify 

at slow stirring speeds. The 

The use of an electrolyte vortex not only creates spiral nanotubes, but also 

changes the overall morphology of the nanotube film. In unstirred electrolytes, a smooth 

layer of vertically aligned nanotubes is formed, but with mechanical stirring, bent 

nanotubes as shown in Figure 3.19 are usually formed. Therefore, the large scale 

morphology of the nanotube film can be affected by the moving electrolyte. Such 

effects of stirring are observed only for the area directly above the magnetic stirrer. 
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Figure  3.19 (a, b and c) SEM images showing TiO2 nanotubes bent as a result of 
stirring during anodisation. 

 

Stirring between the anode and the cathode (arranged vertically) results in a 

vortex in the electrolyte and the ions in this vortex move in the stirring direction. Bent 

tubes are produced. In other parts of the surface normal tubes are seen. The bending is 

increased when the speed of the stirring is increased. 

3.5.5 Control of Nanotube Morphology by Magnetic Fields 

An alternative to mechanical stirring is to use a magnetic field to manipulate the 

ion flow. A magnetic field was also used to control the formation of spiral nanotubes. 
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With a uniform magnetic field at an angle to the plate, the charged particles have a 

helical rather than circular motion. The helical motion of charged particles, such as F− 

anions, can be derived from the classic Lorentz magnetic force.  

According to classical mechanics, charged particles entering a uniform magnetic 

field at an angle θ undergo helical motion as described by equations (3.7) and (3.8). The 

pitch, P, and radius, R, for the helical motion of a particle of mass m and charge q, 

entering a uniform magnetic field of strength B, at an angle θ with velocity v are given 

by: 

qB

mv
R

θsin
=  ………………………………………………………………………Equation 3.7 

qB

mv
P

θπ cos2
=  ……………………………………………………………………Equation 3.8  

When θ = 0, the radius of the spiral path of the charged particle is zero. Thus the 

field has to be non-parallel to the entry velocity, in order to create an effective helical 

pathway. In anodisation, it is believed that the applied anodic voltage on the Ti plate 

drives the fluoride anions moving perpendicular to the plate. Therefore the applied 

magnetic field has to be inclined to the Ti plate [160]. The morphology of the nanotube 

is determined by the dissolution of the TiO2 barrier layer by reaction with F− anions to 

give TiF6
2-. We postulated that the morphology of the created TiO2 nanotubes would 

reflect the helical motion of the F− anion and that spiral nanotubes would be formed. 

Figure 3.20 is illustrates the system used for anodisation with a field from a 

permanent magnet. The nanotubes were made by the standard anodisation process as 



90 

 

 

described in chapter 1. Polished Ti plates were used as both cathode and anode. They 

were immersed at 60 mm apart in an electrolyte comprising ethylene glycol (97.4 %wt), 

deionised water (2 %wt) and ammonium fluoride (0.2 %wt). A constant voltage (70 V) 

was applied between the electrodes for a period of 1 hour in order to allow the 

formation of TiO2 nanotubes by anodisation. A series of permanent magnets (Nd, 2000-

4000 Gauss, measured on the surface of the magnets by a Unilab magnetic flux density 

unit) at an angle θ behind the anode as shown in Figure 3.20.  

 

 

 

 

 

Figure  3.20 Anodisation with a magnetic field. 

With SEM imaging, it was possible to analyse the effects of a magnetic field 

during the formation of TiO2 nanotubes. Two main observations were made. First the 

morphology of the TiO2 nanotube surface was changed upon application of the 

magnetic field as can be seen in Figure 3.21. As the angle between the magnetic field 

and the normal to the electrode surface increased, there was a shift from a well-aligned, 

ordered nanotube array, to a rougher surface structure with bundle-like clusters of 

nanotubes. The presence of the magnet field affects the trajectory of the F− anions so 

that the TiO2 nanotubes show extreme etching at the top, leading to tube thinning, 
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disorder and a bundled structure. It is suggested that helical nanotubes are formed 

initially but these are highly fragile due to their loosely packed nature. The erosion by 

fluoride of the fragile structures as well as the washing of the plate during preparation 

for SEM imaging cause the large amount of surface damage observed in Figure 3.21.  

 

Figure  3.21 SEM image of TiO2 nanotubes showing the bundle structure formed in 
the presence of a magnetic field.  

 

The second important morphological effect of the magnetic field was to change 

the longitudinal structure of individual tubes. Figure 3.22 show that the application of 

the magnetic field caused a change from the usual ordered parallel packing to a 

fractured helical structure. An increase in magnetic field angle, θ, was accompanied by 

an increase in the density of the individual helical tubes with a reduced spiral pitch, as 

shown in Figure 3.22b. The tilting of the magnet for this experiment was about 60° from 

the surface normal. 
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Figure  3.22 SEM images
individual tubes and 
60° from the surface normal

At a tilting angle

in Figure 3.23.  

 

Figure  3.23 SEM images
from the application 

This non-linear nanotube morphology shows that the 

were more important at high values of 
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SEM images of TiO2 nanotubes showing (a) the helical morphology of 
and (b) the reduced spiral pitch when the magnet

° from the surface normal. 

At a tilting angle of 80°, bent tubes with the upper part helical

SEM images (a and b) of TiO2 nanotubes showing
from the application of a magnetic field at the titanium anode.

linear nanotube morphology shows that the effects of the 

were more important at high values of θ. Such bent titania nanotubular arrays were 
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created by both by use of mechanical stirring and by application of a static magnetic 

field. This suggests that the F− anion trajectory is more important than the movement of 

the bulk electrolyte. 

3.6 Conclusion 

We have grown vertically aligned TiO2 nanotubular arrays by anodisation of 

titanium in an electrolyte consisting of water, ethylene glycol and ammonium fluoride. 

Hydroxide islands were formed by dipping Ti plates into acid solutions and 

measurement of contact angles has confirmed that the acid-treated surface is 

hydrophilic. We have compared the anodisation current profiles of clean Ti and 

hydroxide-covered Ti, and shown the contribution of water dissociation in the 

anodisation current. The current-time profile shows four distinct stages. It was found 

that a cubic equation is appropriate to fit the current increase after an initial exponential 

decay. The dissolution process has been characterised. With hydroxide-covered Ti, the 

initial formation of etching pores was found to be exclusively at the interfaces between 

the hydroxide islands and the Ti substrate. Further anodisation increases both the 

diameter and the number of etching pits. The detailed influence of processing 

parameters, including anodisation voltage and solution concentration, on the nanotube 

morphology has been quantitatively studied.  

Further manipulation of the morphology of TiO2 nanotubes was achieved by use 

of mechanical stirring or by application of an external magnetic field. Separated 

nanotubes with rings and ripples were formed by mechanical stirring and spiral and bent 

nanotubes upon application of a magnetic field. Mechanism of these modified 
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anodisation processes have been discussed. Tubes with rings and gaps (voids) between 

tubes and bent tubular arrays were formed with both modifications. A bundle structure 

was formed upon application of a magnetic field.  
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Chapter 4 Formation of polygonal TiO2 Nanotubes 

 

4.1 Abstract 

TiO2 nanotubes with polygonal cross-section were formed on a prepatterned of Ti 

surface with scratches made mechanically by a ruler and sand paper. Rectangular 

patterns on a titanium plate were mechanically molded. Structural details were observed 

by close inspection of the cross section of the nanotubes and top-view by SEM and 

TEM. The tube length was slightly greater on prepatterned Ti surfaces than on non-

patterned surfaces indicating that growth was enhanced by the pattern. This suggests 

that prepatterned grooves provide sites at which the activation energy is reduced so that 

the growth proceeds faster. 

4.2 Introduction 

Recently, titanium dioxide nanotubes on semiconducting surfaces have attracted 

much attention because of potential applications in photocatalysis. In fact, TiO2 is now 

one of the most widely studied metal oxide semiconductors due to its superior 

photocatalytic activity; [1, 2] and its stability in water [3]. The properties of TiO2 

nanotubes depend on their shape, and size and the phases of the crystallites structure. 

Control of the morphology could improve efficiency and affect the electrical properties 

of devices. There are many reports focusing on the synthesis of TiO2 nanostructures, 

such as rod [161], bullet [162], wire [163], diamond [162], cube [164], sphere [165] and 

needle [166]. Various TiO2 nanotube shapes have been observed, eg. tapered rutile TiO2 

nanotubes with rectangular cross-sections made by hydrothermal methods [167]. 
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However, to the best of our knowledge, the direct synthesis of TiO2 nanotubes with 

polygonal shape by normal anodisation has not been reported. Compared with circular 

nanotubes, there three potential advantages of polygonal nanotubes that might lead to 

higher photo efficiency. First, the discontinuities in the tube wall could encourage 

formation of crystallised facets at low temperature. Secondly, in comparison with 

circular nanotubes, the void between polygonal nanotubes can be diminished with much 

better face-to-face contact. Thirdly, the inner diameter of a nanotube with polygonal 

cross-section is usually larger than that of a circular nanotube prepared under the same 

conditions. The first two of these characteristics of the polygonal nanotube can directly 

improve the charge mobility with better charge separation, while the third property can 

improve the transport of electrolyte in and out of the nanotube, with improved ion 

conductance.  

Modern methods, such as photoelectron beam lithography [168], focused ion 

beam [169], self-assembled mono layers [170], channel stamping [171] and atomic 

layer deposition [172] can be used for forming patterns on metal surfaces. Many of 

these methods are expensive, complicated and might be restricted to samples of a 

particular size. Therefore there is a need for a low-cost method for formation of large 

patterns on TiO2 surfaces. Herein, we demonstrate a facile mechanical patterning 

method and the effects on the morphology of anodised TiO2 nanotubes. 
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4.3 Experimental Details 

After samples were polished with diamond paste (as described in chapter 2 section 

2.2), the plates were mechanically patterned. Rectangular patterns were created on the 

surface by gently gliding silicon carbide abrasive (1200 grit) paper in perpendicular 

directions. The patterned plate was cleaned ultrasonically in DI water. Anodisation was 

performed in an electrochemical cell using a clean titanium plate as the cathode. The 

electrolyte contained 0.6 % wt. of ammonium fluoride (analytical grade) and 2 % wt. 

water in ethylene glycol. The voltage was kept constant at 100 V with an electrode 

separation of 65 mm. The surface area exposed to the electrolyte was approximately 2 

cm2 at each electrode. The experiments were performed at room temperature under 

atmospheric conditions without stirring. The time-dependent current was recorded using 

a USB data logger (U12, Labjack). The same anodisation conditions were used to 

prepared circular nanotubes but without patterning of the Ti plate before anodisation. 

Titanium dioxide nanotubes were imaged using a scanning electron microscope (JSM 

820M, Jeol) operating at 30 kV and a transmission electron microscope (Hitachi- 7100) 

operating at 100 kV. 

4.4 Results and Discussion 

Figure 4.1 shows SEM images of a mechanically patterned TiO2 sample before 

and after anodisation. Figure 4.1a shows that the sample is smooth with some polish 

marks left by the diamond paste. A rectangular pattern is formed on the Ti surface by 

grinding it in perpendicular directions. Although the size of the rectangles is not 

controlled, the rectangular shapes are clearly visible from the trenches formed by the 

grinding, as seen in Figure 4.1b. The rectangular pattern influences the morphology of 



 

 

anodised TiO2 nanotubes, as the local electric field that controls th

follows the shape and size of the pattern. Figure 4.1c shows that the pattern

preserved during anodisation 

trench. A larger scale SEM image reveals that the majority of the nanotubes

formed with polygonal cross

that a mixture of hexagonal, pentagonal and some irregular quadrilateral nanotubes 

formed after anodisation for

 

 

 

 

 

 

 

Figure  4.1 SEM images 
polished clean Ti surface, b) 
area of prepatterned sample after anodisation
of polygonal TiO2 nanotubes

 

From a flat, non

void between the adjacent nanotubes. However, on the surface with

pattern, the flat tube walls are shared between adjacent tubes without voids.
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nanotubes, as the local electric field that controls th

follows the shape and size of the pattern. Figure 4.1c shows that the pattern

preserved during anodisation as bundles of nanotubes have formed on and off the 

trench. A larger scale SEM image reveals that the majority of the nanotubes

formed with polygonal cross-sections. The high resolution image in Figure 4.1d shows 

that a mixture of hexagonal, pentagonal and some irregular quadrilateral nanotubes 

anodisation for 2700 s. 

SEM images of a Ti sample before and after anodisation
polished clean Ti surface, b) the rectangular prepatterned Ti sample c)

patterned sample after anodisation and d) a high resolution SEM i
nanotubes after 2700 min anodisation. 

From a flat, non-patterned surface, circular nanotubes are normally formed with a 

void between the adjacent nanotubes. However, on the surface with

pattern, the flat tube walls are shared between adjacent tubes without voids.

nanotubes, as the local electric field that controls the tube morphology 

follows the shape and size of the pattern. Figure 4.1c shows that the patterned is 

undles of nanotubes have formed on and off the 

trench. A larger scale SEM image reveals that the majority of the nanotubes have 

resolution image in Figure 4.1d shows 

that a mixture of hexagonal, pentagonal and some irregular quadrilateral nanotubes had 

sample before and after anodisation showing a) a 
patterned Ti sample c) a large 

high resolution SEM image 

patterned surface, circular nanotubes are normally formed with a 

void between the adjacent nanotubes. However, on the surface with a rectangular 

pattern, the flat tube walls are shared between adjacent tubes without voids. 
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4.4.1 Morphology Evolution during the Anodisation 

The patterns created by the mechanical moulding can influence the tube 

morphology significantly at the early stage of the anodisation. To understand this, the 

shape of the tubes was monitored as a function of anodisation time. At an early stage, 

after 2700 sec of anodisation, the cross-sections of the tubes were nearly rectangular, as 

shown in Figure 4.2a. At this stage, the nanotube follows the morphology of the 

patterning on the surface, which is primary rectangular. Further anodisation, however, 

converts the rectangular nanotubes into the pentagonal and hexagonal shapes shown in 

Figure 4.2b. We assume that two factors affect the morphology: 1) the shape of the 

prepattern and 2) the distribution of the anodisation electrical field. Although the 

prepattern drives the formation of rectangular nanotubes, the field distribution of the 

bottom of the nanotube prefers to be circular nanotubes. Thus, initially rectangular 

nanotubes are formed and these gradually evolve through tubes of polygonal cross-

section into circular nanotubes as the tube length increases.  

 

 

 



 

 

 

Figure  4.2 SEM images of TiO
shape from (a) square

 

After anodisation for 

hexagonal tubes reached 120

polygonal TiO2 nanotubes 

length for a circular nanotube after 1 hour is about 

surfaces a polygonal 

the rapid formation 

tubes. This suggests that both vertical and horizontal growth rates for prepatterned

surfaces are faster than 

attributed to either a focused electrical field on the edge of the patterns and 

tube diameter that facilitates

beginning of the anodisation, it is the focused electrical field 

whereas towards the end of the anodisation,

factor. Quantitative analysi
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SEM images of TiO2 nanotubes showing the conversion of the tube 
) square to (b) polygonal during anodisation. 

anodisation for one hour under 100 V applied voltage, the diameter 

hexagonal tubes reached 120-140 nm with an average length of 11 µm. 

nanotubes is faster than that of circular nanotubes

circular nanotube after 1 hour is about 10 µm, wh

tube 11 µm long is achieved. The faster growth is also indicated by 

 of nanotubes the porous structures connected with 

tubes. This suggests that both vertical and horizontal growth rates for prepatterned

surfaces are faster than those on non-patterned surfaces. The faster growth rate can be 

either a focused electrical field on the edge of the patterns and 

that facilitates mass transport of the electrolyte. We belie

beginning of the anodisation, it is the focused electrical field that caus

he end of the anodisation, the large diameter becomes 

. Quantitative analysis of these effects is difficult. 

he conversion of the tube 

one hour under 100 V applied voltage, the diameter of 

140 nm with an average length of 11 µm. The growth of 

than that of circular nanotubes. The typical tube 

m, whereas for prepatterned 

is achieved. The faster growth is also indicated by 

the porous structures connected with neighbouring 

tubes. This suggests that both vertical and horizontal growth rates for prepatterned 

patterned surfaces. The faster growth rate can be 

either a focused electrical field on the edge of the patterns and to the large 

mass transport of the electrolyte. We believe that at the 

causes the fast growth, 

the large diameter becomes the dominant 
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4.4.2 The Effect of Initial Surface Texture on the Growth Mechanism 

When an oxide layer is formed on the titanium plate, the current rapidly decreases 

exponentially because the oxide layer prevents electronic charge from reaching the 

substrate underneath, as shown in Eqn 3.2. As can be seen from current-time curves 

(Figure 4.3) the initial anodisation current of a prepatterned plate is slightly greater than 

that of a non-prepatterned plate which gives circular tubes due to the larger surface area 

of the patterned surface. Both prepatterned and none prepatterned plates were polished 

thoroughly before anodisation. Oxygen bubbles on the titanium anode were associated 

with the initial high anodisation current. 

 

Figure  4.3 Current-time curves for prepatterned and non-patterned Ti plates. 

 

4.4.3 Crystallinity of TiO2 Nanotubes: Circular vs Polygonal 

It was reported that after anodisation TiO2, contains very small crystals of anatase 

[143]. The charge mobility within the nanotube is associated with the crystallinity of the 

TiO2 phase. High photoefficiency is usually related to polygonal nanotube with 

crystallinity.  
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TEM has been used to determine the crystal phase of the titanium dioxide. The 

polygonal nanotube was annealed in air at 300 ◦C for 1 hour. A diffraction pattern from 

the wall of the nanotube is, shown in Figure 4.4b. The rectangular pattern is associated 

with the (101) face of the anatase phase and the bright diffraction pattern indicates a 

good-quality crystal structure. 

The TEM image in Figure 4.4a also shows the folding edge along the walls of the 

polygonal nanotube. Both SEM and TEM images show no obvious voids or separation 

between adjacent nanotubes, so it can be concluded that the crystallised polygonal 

nanotubes share side walls, although they are only about 20 nm thick.  
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Figure  4.4 Polygonal TiO2 nanotubes annealed at 300 ◦C (a) side view (b) selected 
area electron diffraction (SAED) taken by TEM and (c) cross-section taken by 
SEM. 

 

4.5 Conclusion 

In this study we used a prepatterned Ti surface to create polygonal nanotubes. At 

the early stage of anodisation, rectangular nanotubes are formed. These evolve into 

polygonal nanotubes after further anodisation. TEM and SEM observations have proved 

that the high quality polygonal nanotubes are formed at room temperature and SAED 

has proved that on the side wall of the nanotube can be observed by annealing the 

a b

TEM
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sample at 300 °C. In contrast to circular nanotubes, the polygonal tubes share their side-

walls with adjacent nanotubes. 
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Chapter 5 Control of the Morphology of TiO2 Nanotubes by 

Patterning with Electron Beam Lithography 
 

5.1 Abstract 

The synthesis of rectangular nanotubes was achieved by patterning the surface by 

electron beam lithography (EBL) followed by anodisation. The EBL pattern plays a key 

role in achieving various TiO2 nanotube shapes. Two-step anodisation on the line 

pattern with different electrolyte compositions gave tube-in-tube TiO2 multiwall 

nanotubes. 

5.2 Introduction 

The shape of TiO2 nanoparticles depends on how they are formed. For instance, 

by both alumina template and atomic layer deposition, nanotubes with wall thickness 

less than 3 nm have shown a wall-thickness-dependent blue-shift in optical absorption 

spectra [173]. 

A titania sol gel precursor with PMMA moulds gave thin films of titania with 

pores 35-65 nm diameter [174]. The PMMA mould was prepared by thermally 

infiltrating PMMA into anodic alumina templates. Both pore dimensions and depths 

were modifiable by control of the anodisation conditions. The limitation of this method 

was associated with the wet etching used for mould release from the master. 

Control of the shape of nanopores and nanotubes has been reported by Masuda et 

al. [175]. They used a prepatterned silicon chip to transfer the patterns on to aluminium 
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which was anodised to create nanopores. By using hexagonal, triangular and square 

patterns, they successfully created hexagonal, triangular and square Al2O3 nanopores. 

Their work demonstrated the principle that prepatterning on a substrate could have a 

significant effect on the shape of the nanostructures formed during anodisation. On a Ti 

substrate, our mechanical patterned surface has also been shown to give polygonal and 

square TiO2 nanotubes, as described in the previous chapter. However, the simplicity of 

the mechanical moulding method meant that control of the surface texture was very 

limited and the quantity and density of the square TiO2 nanotubes was low. We 

therefore, decided to use electron beam lithography to try to grow square nanotubes 

over a large area.  

For patterning small numbers of experimental devices, electron beam lithography 

has two attractive features. First, the mask fabrication is easy. Secondly, high resolution 

can be achieved by good control of process parameters, such as beam energy, current 

density and exposure time. The disadvantages of the EBL technique are that it is 

expensive and it is not suitable for large surface areas. In this work, we used EBL to 

prepattern Ti substrates to create titanium dioxide nanotubes of various shapes by 

controlling the parameters for both the EBL and anodisation processes. The patterns 

made possible the fabrication of TiO2 nanotube arrays with rectangular shapes. These 

cannot be made without patterning. Self-ordering and the formation of double wall 

nanotubes were also observed. The guided anodisation process and the control of 

anodisation conditions are also discussed. 
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5.3 Experimental Details 

Titanium plates were prepared following the method in chapter 2 section 2.2. The 

plates were then spin-coated with a solution of polymethylmethacrylate. Surface 

roughness is important to achieve adhesion between the plate and PMMA-coated layer 

and the desired roughness was created by etching the Ti with HF solution. Such etching 

in acid creates an appropriate density of isolated hydroxide islands as shown in section 

3.4.  

The PMMA solution was prepared by dissolving 5 wt % of PMMA in anisole. 

The preparation of a PMMA positive photoresist involved stirring the PMMA solution 

for at least 24 hours. The resist film was made by spin coating on to a Ti plate at a fixed 

speed of 1500 rpm for 40 s, to give a layer of PMMA with a thickness of 0.62 mm. The 

plate was then baked on a hotplate at 160 ◦C for 60 s in order to remove solvent.  

EBL uses a focused beam of electrons that can be controlled by the probe current, 

voltage and working distance to achieve the appropriate beam size. The pattern was 

formed by moving the sample (controlled by the X-Y sample stage) and the PMMA 

film was exposed to the electron beam. The exposed PMMA film was developed by 

dipping the sample into a mixture of methyl isobutyl ketone (MIBK) and isopropanol 

(IPA) for 2 min, followed by post baking at 60 ºC for 3 min on a hotplate in the air. This 

step removed residual developer, created a fixed film on the titanium surface and 

enabled the further anodisation of the specimen without loss of the polymer. If the 

baking temperature is too high, the PMMA melts (M.P. 120 ºC) and the pattern is 

distorted. After this stage, a pattern was formed on the titanium with the area exposed to 
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the electron beam free of PMMA and the sample was ready for anodisation to create 

TiO2 nanotubes.  

5.4 Results and Discussion 

The concept behind using EBL to control nanotube morphology is that the small 

area in the pattern restricts the electric field distribution during the anodisation so the 

etching ions are forced to etch the titanium oxide according to the pattern. The parallel 

edges of the line pattern give rectangular or square-shaped nanotubes on the substrate.  

In our work, we showed that rectangular TiO2 nanotubes could be made in two 

anodisation steps. The first stage of the anodisation process on the line patterns was in 

an ice bath for 1 hour and the second at 22 ºC for 1 hour. After lengthening during 

anodisation, the tubes were converted into different shapes and finished with a 

polygonal shape, making time an important factor. In the following sections the 

parameters that affect the overall processes are discussed. 

5.4.1The Thickness of the Resist 

A thin polymer coating produces a narrow line. However, a thick layer of polymer is 

required in order to repeatedly anodise the same surface without removal of the coating. 

The thickness of the polymer determines the minimum electron beam exposure. In order 

to obtain the thinnest lines it is crucial to minimize the beam size by reducing the probe 

current. Taking this into consideration, the plate was spun twice with the PMMA 

solution (5%wt) to produce a layer thickness of about 0.62 mm. The plate was then 

baked on a hotplate at 160 ºC for 60 s in order to dry the sample before EBL. 
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5.4.2 EBL Parameters 

EBL is a focused beam of electrons that can be controlled to form patterns with 

very small diameter pattern. The probe current was optimised at 2 × 10-9 A (2 nA) at an 

accelerating voltage of 30 kV. The focused beam of electrons was scanned over a 

polymer surface in parallel lines to form the desired pattern. The magnification was set 

to 100,000 X and the working distance was 7 mm. These parameters were those used to 

achieve the highest resolution on our Jeol 820M SEM. Because the sample stage was 

moved manually to form patterns, we were only able to produce grid patterns based on 

straight lines. The schematic diagram in Figure 5.1 illustrates the EBL process on a Ti 

substrate, which has been precoated with PMMA. Then after EBL the anodisation was 

carried out on the Ti substrate to create the TiO2 nanotubes.  

 

 

 

 

 

 

Figure  5.1 Schematic diagram showing the steps in the formation of a grid pattern 
by use of electron beam lithography followed by the anodisation of the patterned 
sample. 
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5.4.3 Development of Patterns  

Exposure of PMMA to a high energy electron beam induces the scission of the 

chain of methacryliate monomers that constitute the resist material. It is generally 

accepted that the main process consists of the breaking of the main polymer chain, but 

other scission possibilities may also occur as seen in Figure 5.2 from [134]. For a 

positive photoresist like PMMA, the developing process selectively removes the 

exposed regions of the resist. 

 

 

 

 

 

Figure  5.2 Developing process and chain scission of methacrylic polymer [134]. 

The general developer for PMMA is a mixture of MIBK and IPA [168]. However, 

because MIBK is a good solvent for PMMA it dissolves both the exposed (patterned) 

and unexposed (non-patterned) regions (at a much lower rate). Therefore there is 

significant thickness loss in the unexposed regions. In order to improve the lithography 

it is necessary to increase the dissolution selectivity between exposed and unexposed 

regions.  
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In this work, two types of developer solutions were tested. A mixture of MIBK 

and IPA, 1:3), and a mixture of isopropyl alcohol and deionised water (IPA: H2O 7:3) 

were both found to be suitable for thick polymer layers. The role of IPA is to decrease 

the overall ‘‘development strength’’ of the developer. A solution of MIBK:IPA in 1:1 

ratio causes significant loss of polymer thickness in the unexposed area. A mixture with 

MIBK:IPA 1:3 gives almost negligible thickness loss in the unexposed regions with 

moderate sensitivity and achieves high contrast and high resolution on the substrate 

surface. The MIBK: IPA solution gave sharper lines than IPA: H2O so it was selected 

for use in this experiment. The developing time was 30 s followed by rinsing in IPA and 

deionised water. 

5.4.4 Fixing the Polymer Film 

Good adhesion between the titanium plate and the polymer is critical if a stable 

pattern is to be achieved during anodisation. This gives tubes on the plate carrying the 

EBL pattern whilst the parts of the surface covered with PMMA remain unchanged. If the 

polymer film detaches from the surface during the anodisation, the definition of the 

patterns is lost and titanium dioxide nanotubes form on both patterned and non-patterned 

surfaces.  
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Two procedures were adopted to improve the polymer film adhesion. First, the 

roughness of the titanium surface was increased by acid treatment with solution A as 

described in chapter 3 [176]. Secondly, by baking the plates in air at 60 ◦C for 3 min on a 

hotplate residual developer was removed and the coating was securely fixed to the 

titanium surface. 

 

Figure  5.3 SEM images of (a) grid and (b) line patterns created by EBL on a 
polymer-coated titanium surface. 

 

With the polymer firmly in place, grid and line patterns were made by EBL, as 

shown in Figure 5.3 (a and b) respectively. In Figure 5.3a the separation between lines 

is 60 µm and the line width is about 5 µm. Some defects can be observed due to the 

uneven development of the pattern. Figure 5.3b shows line patterns obtained by moving 

the sample horizontally. The overall length of the lines can be as long as 12 cm. The 

separation between lines is about 50 µm and the line width 5 µm.  
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5.4.5 The Effect of Line Width on 

Anodisation naturally produces 

ever, occur. With pattern

patterns so different tube shapes may be achieved
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magnification, SEM showed that 

Figure 5.4. 

 

 

 

 

 

 

Figure  5.4 SEM image 
wide. 

In our method, the optimal line width of the pattern 

nanotubes have diameter of 150 nm 

one line. 

Figure 5.5a shows the pore structures 

on part of a line pattern with a width of 4.77 
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The Effect of Line Width on Tube Shapes 

Anodisation naturally produces circular nanotubes; other geometries 

. With patterned plates, the anodisation is restricted by the shape of the 

so different tube shapes may be achieved. By investigati

ent line widths with a standardized anodisation procedure we concluded that the 

widths the less the effect on the morphology of the nanotubes. 

SEM showed that lines 10 µm wide gave circular nanotubes, 

SEM image of circular TiO2 nanotubes on a pattern

In our method, the optimal line width of the pattern was

nanotubes have diameter of 150 nm or so, 30 nanotubes may be accommodate

Figure 5.5a shows the pore structures formed in the initial stage of the anodisation 

line pattern with a width of 4.77 µm. It seems that elong

other geometries rarely, if 

restricted by the shape of the 

. By investigation of plates having 

anodisation procedure we concluded that the 

morphology of the nanotubes. With low 

circular nanotubes, as shown in 

pattern with lines 10 µm 

was about 5 µm. If the 

may be accommodated across 

formed in the initial stage of the anodisation 

. It seems that elongated etch pits were 
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formed. Rectangular TiO2 nanotubes were obtained after 2 hours anodisation, as shown 

in Figures 5.6b and c. 

The PMMA protected area can also be observed in Figure 5.5b, in which the line 

patterns are aligned horizontally. Both the outer and the inner boundaries of the TiO2 

nanotubes, shown in Figure 5.5c appear to be rectangular, instead of circular. There is 

no clear correlation between the direction of the line patterns and the orientation of the 

rectangular nanotubes, but such rectangular nanotubes can be produced only on 

prepatterned Ti samples.  

 



 

 

 

Figure  5.5 SEM images 
rectangular nanotub
first then 2 hours at
which the inside is rectangular.

 

The inner cross

cross-sections are a mix

In this image, the average wall thickness is about 60 nm and the inner rectangular 

pores have dimension

randomly oriented. The 

formation of the initial elongated etch pits.
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SEM images of (a) elongated pores produced on the line pattern
nanotubes formed on the line pattern after 2 hours

at room temperature (c) top view of rectangular 
rectangular. 

cross-sections of the nanotubes are mainly rectangular while the outer

sections are a mixture of polygonal and rectangular. 

In this image, the average wall thickness is about 60 nm and the inner rectangular 

dimensions 60 nm ×  120 nm. The inner rectangular shape seems to be 

ted. The formation of such rectangular nanotube

initial elongated etch pits. 

on the line pattern (b) 
after 2 hours anodisation in ice 

top view of rectangular nanotubes in 

rectangular while the outer 

In this image, the average wall thickness is about 60 nm and the inner rectangular 

he inner rectangular shape seems to be 

of such rectangular nanotubes is related to the 
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5.4.6 Changes in Titania Nanotube Shape during Anodisation 

In order to further understand the effects of patterning on the morphology of TiO2 

nanotubes, a rectangular grid was generated by EBL with PMMA as photoresist. The 

grid pattern is shown in Figure 5.6. In the initial stage of the anodisation, pores of 30 

nm diameter were formed within the lines of the grid pattern. In contrast to the parallel 

line patterns showed in section 5.4.4 some alignment of the pores can be clearly 

identified. The pores are aligned along a diagonal, at 45◦ to the line edges as shown in 

Figure 5.6. This pore structure was observed after anodisation for 1 hour in an acidic 

electrolyte containing 10 ml H3PO4, 1 ml of 4% HF and 100 ml of EG. The anodisation 

was carried out at low temperature (0˗5 ˚C) to reduce the rate and to avoid widening of 

the nanopores. 
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Figure  5.6 SEM images of TiO2 nanotubes showing (a) the grid pattern (b) the self-
ordered pores on the line pattern (c) the alignment of pores on the line pattern. 

 

A comprehensive explanation for the 45◦ arrangement of the self-ordered tubes is 

not yet available in the literature. However, such ordering must be related to the 

interaction between pores and line edges of the pattern. One possible explanation is that 

there are weak repulsive interactions between the pores and line edges, as well as 

between the pores themselves. A maximum distance between pores is achieved with a 

diagonal alignment relative to the line edges. Further anodisation adds pores between 

and along these specific directions. The overall density of the pores is determined by the 
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anodisation voltage. Such repulsive interactions could be driven by the space charge 

interactions between F- ions in the electrolyte, which are also responsible for the final 

ordering of the nanotubes. On a non-patterned surface with a large area, no edge effect 

exists and close packed hexagonal nanotube arrays are readily achieved. For patterned 

samples, the edge effect plays a significant role in control of the alignment and ordering 

of the nanotubes.  

With further anodisation in the same acid electrolyte but at higher temperature the 

pores develop into nanotubes. As shown in Figure 5.7 highly ordered nanotube 

structures were formed on the pattern lines after further 1 or 2 hours anodisation at room 

temperature. As seen in the left panel in Figure 5.7, rectangular nanotubes are formed 

with thick walls after 1 hour at room temperature. Both the inside and the outside of the 

tube are rectangular. The location and distribution of the nanotubes are determined by 

the initial anodisation at low temperature shown in Figure. 5.6. After a further 2 hours 

anodisation, square nanotubes with large inner diameters are obtained while the outer 

diameter remains constant. It can be concluded that during anodisation, the outside tube 

morphology is formed first and this is followed by widening inside the nanotube. The 

most important observation is that the square nanotube morphology is preserved with a 

prepatterned sample. In contrast to the circular nanotubes, the walls between adjacent 

square nanotubes are shared and there is very little void in between the nanotubes. This 

can be clearly recognised from the image in the right panel of Figure 5.7. The 

anodisation rate on prepatterned surface is much less than that on non-patterned surface 

due to the lower effective exposed area, which reduces the anodisation current. With 
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high anodisation current, the electrolyte temperature increases and this accelerates the 

anodisation. The acidic electrolyte compensates for the reduced anodisation rate.  

 

Figure  5.7 SEM images showing the change from (a) square to (b) polygonal TiO2 
nanotubes during the anodisation process. 

 

In summary, the shape of the tubes could be controlled by surface patterning with 

EBL. The ordered nanopores observed at the initial stage of anodisation could be 

developed into square nanotubes. Further anodisation enlarged the inner diameter and 

reduced the wall thickness while the square morphology of the initial of the tube was 

retained. 

5.4.7 The Formation of Multiwall TiO2 Nanotubes 

The diameters of the anodised nanotubes are determined by the anodisation 

voltages; the higher the voltage the larger the nanotubes. The voltage dependence is 

shown in Figure 3.12 in section 3.5.2 and is related to the thickness of the barrier layer. 

Thus by changing the voltage bias from low to high stratified layers have been 

generated [2]. Alternatively, the inner diameter of the nanotubes can be controlled by 
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altering the electrolyte temperature. The key problem for the two-step creation of 

multiwall nanotubes is that by increasing the voltage bias or electrolyte temperature in 

the second step, the nanotubes generated in the first step might suffer significant 

deformation, including enlargement of the inner diameter and breakdown by 

dissolution. Such deformation can be suppressed by either a reduction in the dissolving 

power of the electrolyte or by a protective organic layer coating.  

In this study, we used a prepatterned Ti sample for two-step anodisation. On a 

prepatterned surface, the anodisation current was greatly reduced and the dissolution in 

the second step anodisation was reduced. In the two step process the first anodisation 

was with an electrolyte comprising 10 ml H3PO4, 1 ml of 4% HF and 100 ml of EG in 

ice (0-5 ˚C) and the second anodisation with an electrolyte comprising (0.6 wt% 

ammonium fluoride and 2 wt% (DI) water in 100 ml EG) at 22 ˚C. The low temperature 

anodisation created nanopores on the surface. The dissolution rate was maintained at 

low temperature by use of an acidic electrolyte. At low temperature, the ion mobility in 

the electrolyte is reduced and so is the electrolyte conductance. The effective voltage 

applied to the Ti sample is much less than the voltage bias, so that nanotubes with small 

diameters were achieved. 

The second anodisation was carried out at room temperature with a neutral 

electrolyte. Multiwall tubes were formed within the line pattern. The SEM image in 

Figure 5.8a shows their morphology after 1 hour anodisation. Measured from the SEM 

image, the inner nanotube has an ID of 40 nm with a wall thickness of 35 nm, while the 

outer nanotube has an ID of 125 nm and a wall thickness of 30 nm. In many areas, the 

outer nanotubes are higher than the inner nanotubes. The difference is a direct result of 
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dissolution during the second anodisation. A gap between the inner and outer nanotubes 

is clearly observed.  

 

Figure  5.8 SEM images of TiO2 nanotubes showing (a) multiwall nanotubes on a 4 
µm wide line pattern. The top view of multiwall TiO2 nanotubes shows the gaps 
between the tubes. In (b) the inner tube has grown, leaving the outer one as a 
shoulder. 

 

With continuous anodisation for another hour, the height of the outer nanotube 

became lower than that of the inner nanotube, as shown in Figure 5.8b. The lip of the 

outer nanotube was lowered, the gap between the inner and outer nanotubes was 

diminished and the outer tube was left as a shoulder. This observation inspired us to 

create nanobottles with higher inner nanotubes as described in the next chapter. 

The outer nanotubes in Figure 5.7a keep the polygonal and, in some cases square 

morphology. The alignment of tubes also remains the same as that of the initial pores in 

Figure 5.6. Such features directly reflect the influence of the prepatterning. 
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The current-time behavior was recorded (Figure 5.9) in order to understand the 

growth kinetics of multiwall TiO2 tubes at different stages of anodisation. The current 

measured during the second anodisation was much higher than that in the first 

anodisation due to the temperature difference in the electrolyte. In the first step at low 

temperature, a rapid decay of current was observed at the beginning reflects the 

formation of an oxide barrier layer. The small anodisation current at low temperature is 

due to the low growth rate limited by dissolution. For the second anodisation at room 

temperature, a much higher current was observed, although there was no significant 

increase in surface area initially. Towards the end of the anodisation, the current 

increased, probably due to the combination of increased surface area as multiwall 

nanotubes were formed and increased dissolution rate at higher temperature. After the 

second anodisation the PMMA coating was intact. 

 

Figure  5.9 The transient current densities during the two-step anodisation for 
formation of multiwall nanotubes. 
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5.5 Conclusion 

By use of a grid pattern obtained by EBL and a two step anodisation process both 

rectangular TiO2 nanotubes and multiwall TiO2 nanotubes can be obtained depending on 

the electrolyte composition in the second step. For an acidic electrolyte, the fast 

dissolution rate results in fast growth of square nanotubes. With a neutral electrolyte, 

slow dissolution results in slow growth and multiwall nanotubes are formed. The slower 

dissolution helps to preserve the inner nanotubes created by the first anodisation. The 

effects of the EBL patterning are two-fold. First, the area of exposed Ti surface is 

significantly reduced, which offers a better control of the anodisation process. Secondly 

the pattern influences the alignment and ordering of the final nanotubes. 
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Chapter 6 Production of Self-Ordered TiO2 Nanobottles for 

Drug Release 

 

6.1 Abstract 

We report the preparation of TiO2 nanobottles in which the inner and outer 

diameters vary from the tube mouth to the tube base. A two step anodisation was used 

to create the bottle neck and base separately by control of the anodisation temperature 

and voltage. We used a covalently bonded organic molecular monolayer coating to 

protect the neck. The experimental conditions for the formation of TiO2 nanobottles are 

discussed. The potential application in drug release was suggested by a comparison 

between TiO2 nanobottles and TiO2 nanotubes. A biocompatible polymer, polyvinyl 

alcohol, was also used to control the release kinetics in aqueous media. Methylene blue 

was used to simulate the drug. The results show possibility of using nanobottle 

morphology to give longer times for the drug release than are possible from normal 

circular tubes. 

6.2 Introduction 

Titanium dioxide nanotubes show good biocompatibility, making them 

appropriate materials for use in drug release. However, their use as drug carriers is 

limited by uncontrolled release. The geometry of TiO2 nanotubes as membranes makes 

them suitable for use as injected capsules or biomedical implants [177]. 

Xiao and his workers [178] showed the excellent biocompatibility of both TiO2 

nanotube arrays prepared by anodisation and annealed in a carbon atmosphere. 
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One of the objectives of the work described in this thesis was to control the 

morphology of titanium dioxide nanotubes in order to develop their applications in 

controlled drug release. According to Popat and co-workers [25] TiO2 nanotube array 

were used for local delivery of antibiotics at the site of implantation. This demonstrated 

the prevention of bacterial adhesion while the osseointegration properties of the 

nanostructured surfaces were maintained. Precise control of the nanotube length and 

diameter enabled different amounts of drugs to be eluted at different rates at the implant 

site. However, in their work, only straight, normal circular TiO2 nanotubes were 

investigated. Recently Song and co workers created amphiphilic TiO2 nanotubes with a 

hydrophobic monolayer modification after the first step in the anodisation. These tubes 

could be used for biomolecules carriers, in which the outer hydrophobic barrier provides 

an efficient cap against drug release to the environment. By use of the photocatalytic 

ability of TiO2, a precisely controlled removal of the cap and a highly controlled release 

of the hydrophilic drug payload was achieved under UV illumination [111].  

Here, we have designed bottle-shaped nanotubes for control of drug release. The 

long neck with small diameter affects the rate of drug release, limited by mass transfer. 

In order to achieve effective control, the neck diameter should be less than 100 nm. We 

used two-step anodisation to create the neck and base in sequence. In order to protect 

the morphology of the neck, an organic hydrophobic monolayer coating was applied 

after the first step in the anodisation. The diameters of the neck and base were 

controlled by the combination of anodisation temperature and voltage. The effects of 

anodisation voltage and electrolyte temperature have been discussed in section 1.2.4.6 



126 

 

 

and section 1.2.4.1. Our measurements confirmed that an increase in the voltage bias led 

to an increase in the diameter of TiO2 nanotubes, as shown in section 3.5.2.  

In order to study the release of the drug from nanobottles further, we chose 

biocompatible and water soluble polymers to cover the nanobottles loaded with drug. 

Polymers for use in drug release must be biodegradable, i.e. they must be broken down 

to non toxic monomers inside the body. They must also be biocompatible they i.e. must 

be remain biologically inert during implantation. The rate of drug release is controlled 

by dissolution of the polymer, which depends on its solubility and thickness.  

Herein, the control of drug release was managed by two methods. First the release 

was controlled by the thickness of the polymer layer. TiO2 nanotubes alone give only 

limited control of release rate. A polymer coating delays the initial release depending on 

its thickness. This was quantitatively studied. Secondly, nanobottles with a long narrow 

neck at the top and wide base at the bottom were developed. The loading capacity is 

controlled by the volume of the base and the release kinetics are determined by the inner 

diameter and length of the neck. 

6.3 Preparation of TiO2 Nanobottles 

To create the appropriate nanobottle morphology, a titanium plate was prepared 

by the method described in section 2.2 and anodised in a homemade electrochemical 

cell with a second titanium plate as the cathode. The electrolyte was prepared from 10 

ml H3PO4, 1 ml HF and 100 ml ethylene glycol. The electrode separation was 60 mm. 

and the surface area exposed to the electrolyte was approx 2.0 cm2. Anodisation was 

carried out in two steps with controlled anodisation duration, voltage and electrolyte 
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temperature. The first anodisation was made with the temperature of the electrolyte 

between 0 ◦C and 5 ◦C. Then a hydrophobic layer was deposited by refluxing the sample 

in 2 mM octadecylphosphonic acid (ODPA) in toluene at 70 ◦C for at least 10 hours. 

The phosphonate formed a self-assembled monolayer (SAM) on the surface of the TiO2 

nanotubes. In order to confirm the attachment of ODPA, water contact angle 

measurements were carried out as function of the reflux duration. Each measured 

contact angle was an average of 10 measurements. The contact angle was measured by 

Image J software as the angle between the drop of water and the surface of the 

amorphous TiO2 nanotubes. The phosphorus was also monitored by energy dispersive 

X-ray spectroscopy (EDX).  

The base of the TiO2 nanobottle was created by the second anodisation at 22 ± 2 

◦C the higher the temperature, the grater the diameter of the base. The ODPA coating 

protected the bottle neck created in the first anodisation process. The morphology of the 

titanium film made by two step anodisation was monitored by scanning electron 

microscopy (SEM (JSM 820M, Jeol) operating at 30 kV) and a transmission electron 

microscopy (TEM (Hitachi-7100) operating at 100 kV). 

For comparison, titania nanotubes were also fabricated by anodizing a titanium 

plate in a single step with an electrolyte composed of 0.6 wt% ammonium fluoride and 

2 vol% deionised water in ethylene glycol. The pore size was controlled by the applied 

potential and the tube thickness by the anodisation duration. 
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6.4 Results and Discussion 

The synthesis of TiO2 nanobottles involved three stages: the preparation of the 

TiO2 bottle neck, surface modification with an organic attachment, and a second 

anodisation to create the base of the nanobottle. In the following sections, we discuss 

the technical details of the creation of nanobottles and the parameters that affect their 

morphology. 

6.4.1 Synthesis of the Neck of the TiO2 Nanobottle 

The neck of the nanobottle is characterised by a small inner diameter. Anodisation 

of a polished titanium plate in an acidic fluoride-containing electrolyte at 0-5 ◦C resulted 

in the production of self-organised nanopores. A typical sample is shown in Figure 6.1. 

Here, the anodisation time was 1 hour with bias of 60 V. With a lower bias, nanopores 

with smaller diameter could be formed. 

The measured inner diameter (ID) of the pore is about 40 nm and outer diameter 

is about 200 nm. Strictly speaking, only nanopores, not nanotubes were formed. In one 

of the studies conducted by Enachi et al these pores were shown to be but their 

morphology might have been dependent on the particular electrolyte used, and the 

interconnected is not present in nanopores made in other electrolytes [179]. 

 

 

 

 



 

 

 

 

 

 

 

Figure  6.1 SEM image of TiO
by anodisation of a titanium sample in an acidic electrolyte at low temperature (0
°C) for 1 hour at 60 V bias.

 

In our case, we found that 

spite of the fact that the pores were converted into tubes, til

anodisation. 

6.4.2 Modification of TiO

The initial nanotube array 

the necks from etching during the second anodisation, 

deposited on the surface of the porous structure formed in the first anodisation. The self

assembled monolayer of ODPA consists of vertically aligned ODPA molecules in 

which the phosphonate

and the long hydrocarbon chain gives a hydrophobic surface. The attachment typically 

occurs at hydroxide-terminated surface sites by condensation with phosphonate, 

covalent bonds between substrate oxygen and the anchor group. In this experiment, the 

sample was heated under
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SEM image of TiO2 nanopores with ID = 40 nm, OD = 200 nm prepared 
by anodisation of a titanium sample in an acidic electrolyte at low temperature (0
°C) for 1 hour at 60 V bias. 

In our case, we found that the walls of the pores remained connected 

fact that the pores were converted into tubes, til

Modification of TiO2 Nanotube Surfaces with ODPA

The initial nanotube array formed the necks of the nanobottles. In order to protect 

from etching during the second anodisation, an ODPA monolayer was 

deposited on the surface of the porous structure formed in the first anodisation. The self

assembled monolayer of ODPA consists of vertically aligned ODPA molecules in 

nate head group is covalently bonded to the surface of the nanopores

and the long hydrocarbon chain gives a hydrophobic surface. The attachment typically 

terminated surface sites by condensation with phosphonate, 

een substrate oxygen and the anchor group. In this experiment, the 

under reflux with 10 mM ODPA solution for 10 hours at 70

nanopores with ID = 40 nm, OD = 200 nm prepared 
by anodisation of a titanium sample in an acidic electrolyte at low temperature (0-5 

the walls of the pores remained connected intact in 

fact that the pores were converted into tubes, till the end of second 

with ODPA 

of the nanobottles. In order to protect 

ODPA monolayer was 

deposited on the surface of the porous structure formed in the first anodisation. The self-

assembled monolayer of ODPA consists of vertically aligned ODPA molecules in 

head group is covalently bonded to the surface of the nanopores 

and the long hydrocarbon chain gives a hydrophobic surface. The attachment typically 

terminated surface sites by condensation with phosphonate, to give 

een substrate oxygen and the anchor group. In this experiment, the 

mM ODPA solution for 10 hours at 70 °C. 
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The surface of the TiO2 nanopores prepared by anodisation has good wetting 

properties. After coating with an ODPA monolayer, the surface becomes hydrophobic. 

The wetting was characterised by the contact angle between drops of water and the TiO2 

nanotube surface [180]. If the contact angle between the drop of liquid and the titanium 

surface is less than 90 degrees, the liquid is said to wet the solid. If it is greater than 90 

degrees, it is said to be non-wetting. A zero contact angle represents total wetting.  

Contact angle measurements were made for TiO2 arrays that had been treated for 

various reflux durations in an ODPA toluene solution. Figure 6.2 shows the contact 

angle as a function of reflux time. The water contact angle increases rapidly in the first 

hour, then slowly approaches saturation after 10 hours. 
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Figure  6.2 Variation of contact angle (Red line), and EDX analysis of % P relative 
to Ti (blue line) with reflux time. 

 

We also used EDX to monitor the P/Ti ratio Figure 6.2. Surprisingly, the 

phosphorus concentration increases almost linearly as a function of reflux time. After 10 

hours, the phosphorus concentration reaches saturation and there is no further up take of 

ODPA. The measured contact angle is contributed by the topmost surface and the inner 

wall surface of the nanotube.  
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Figure  6.3 The formation of monolayer of ODPA on the surface of the tubes after 1 
hour of reflux in ODPA solution. Further refluxing will forms an ODPA coating on 
the inside walls of nanopores shown by the approach of the water contact angle to 
its maximum. 

 

We propose that after the first hour, a monolayer of ODPA is formed on the 

topmost surface of the nanopores resulting in a rapid increase of the contact angle. 

Further reflux results in the penetration of ODPA into the nanotubes to give an organic 

monolayer on the inside walls. In this process, the contact angle increases at a slower 

rate, due to the limited mass transport through the 40 nm pore. In EDX measurements, 

the beam can penetrate about 1 µm under the surface, so that. Phosphorus signals from 

Phosphate head group is bonded to the 
substrate and the end of the long chain 
hydrocarbon tail gives a hydrophobic 
surface. 
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both the topmost and inside wall surface are measured simultaneously. Thus a smooth 

linear increase in the phosphorus signal was observed. After 10 hours, both the inside 

and the outside of the nanopores are covered with ODPA and there is no further 

increase of contact angle and phosphorus signal. The proposed ODPA deposition 

process is illustrated in Figure 6.3.  

The purpose of the ODPA coating is to reduce the dissolution rate of the TiO2 

nanotubes and prevent enlargement of the inner diameter of the bottle neck during the 

second anodisation. The ODPA coating is crucial in forming the tube neck. Our 

experiment demonstrated that even with a high voltage (120 V) in the second 

anodisation, the tube mouth was not enlarged, and that tubes with a narrow inner 

diameter were retained after the first anodisation, even though, with the high voltage in 

the second anodisation, there was partial oxidation of ODPA. 

6.5 Anodisation Parameters to Control the Shape of the Tubes 

The control of anodisation parameters is essential for control of the tube 

morphologies. Here, various anodisation parameters were studied in order to create 

TiO2 nanobottle shapes. Parameters such as electrolyte temperature, anodisation voltage 

and anodisation time were tailored in order to control the bottle morphology. 

6.5.1 Temperature 

Anodisation at various electrolyte temperatures has been used to control nanotube 

dimensions. Figure 6.4a and b show the current-time behavior for both first (low 

temperature) and second (room temperature) anodisation environments. In the first 

anodisation at 0-5 ºC the initial current is low due to limited mobility of fluoride anions 
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at low temperature and as a result only a slow etch is achieved. Although the applied 

potential is 100 V the inner diameter does not exceed 40 nm. The initial increase in the 

current is due to the oxidation of water, similar to that at room temperature reported in 

section 3.3.4. During the second anodisation, a much higher current was observed due 

to the increased dissolution rate at 22 ± 2 ˚C. The small inner diameter obtained at low 

temperature is ideal for a bottle neck. 

 

Figure  6.4 Current-time behavior at (a) 0-5 ◦C and (b) room temperature (22 ˚C). 

 

6.5.2 Voltage 

Here, we study the control of nanobottle morphology by changing both the 

anodisation voltage and the electrolyte temperature in a two-step anodisation. The 

increased voltage during the second anodisation drives the ions inside the preformed 

tubes and through the ODPA monolayer coating added after the first anodisation. The 

tube walls are, to a certain extent, protected against the etching effect of soluble 
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fluorides. The parameters chosen for the preparation of the titanium dioxide nanobottles 

are listed in Table 6.1. 

Table  6.1 Parameters for formation of nanobottles. 

 

To investigate the effect of temperature only, the anodisation voltage was kept at 

100 V during both anodisation stages. Figure 6.5a and b show the morphology of the 

nanobottles after two step anodisation. The neck of the nanotube formed from the first 

step anodisation at low temperature is narrower than the base of the nanobottle anodised 

at room temperature. Although the differences in diameter between the neck and base 

are not very great, the morphology may be classified as tube with neck. 

Exp. 
number 

Initial 
voltage 

(V) 

Initial 
temperature              

(◦C) 

Duration 
(min) 

Voltage 
at 2nd 

stage (V) 

Final 
temperature 

(◦C) 

Duration 
(min) 

The final 
tube shape 

        

1 
10

0 
0 60 100 25 60 

Tube with 
neck 

2 
10

0 
0 60 120 25 20 

Conical 
shape 

3 60 0 60 120 25 20 Nanobottle 

4 60 0 90 120 25 20 Nanobottle 
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Figure  6.5 SEM images showing (a) formation of the neck (narrow diameter), (b) 
individual TiO2 nanotubes with clear formation of the neck. 

 

A good nanobottle should have a narrow neck and a wide base. In our attempt to 

achieve a better bottle morphology, a long anodisation time for the first anodisation step 

to form the neck, together with an increased voltage for the second anodisation to give 

wide tube base, was tried. Figure 6.6 displays the results of Exp 2.  

 

Figure  6.6 SEM images of TiO2 nanotubes (a) side view and (b) conical shape of a 
TiO2 individual nanotube.  
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Instead of nanobottle, a conical shaped nanotube was formed. Changing the 

voltage had produced a wider bottom.  

From the results of Exp. 1 and 2, it is clear that the increase of the anodisation 

voltage from the first to the second step is important for the formation of a wide base 

and that the ODPA coating is effective in protecting the neck. In Exp 3 and 4, we 

reduced the voltage to 60 V in the first anodisation, and 120 V was used in the second 

step. Figures 6.7a and b show SEM images of nanobottles achieved under the conditions 

in Exp 3 and 4 respectively. In Exp 3, the time of first anodisation was 60 min and in 

Exp 4, the anodisation time was 90 min. The successful creation of good nanobottles is 

demonstrated by the very narrow diameter (30 nm) of the neck between the tube top and 

tube base observed in both Figures 6.7a and b. 

 

 

 

 

 

Figure  6.7 (a) SEM images of TiO2 nanobottles from exp 3 and 4 respectively. In 
(a) the bottle neck length was controlled by the time of the first anodisation step. In 
(b) the nanobottles show the long necks from lengthening the time in the first 
anodisation step. 
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The base, formed in the second anodisation at high voltage and high temperature, 

is significantly wider than the neck. For individual nanotubes, the inner tube diameter 

measured from the tube mouth from the first anodisation stays constant throughout the 

second anodisation. Thus the protection by ODPA was effective. The lengths of the 

necks in Figure 6.7a are 850 nm, shorter than those in Figure 6.7b (1300 nm). The 

difference is a direct result of the difference of the anodisation time in the first step (60 

min vs 90 min). However, the base lengths and diameters for the nanobottles are almost 

identical. The length of the neck seems to have no significant effect on the anodisation 

in the second step.  

Figure 6.8 summarises the morphology of nanotube and nanobottles created under 

the conditions listed in Table 6.1. When the difference in anodisation voltage between 

the first and second step is not large enough, only conical nanotubes are formed. The 

duration of the first anodisation affects the length of the neck; the longer the 

anodisation, the longer the neck. 

 

 

 

 

Figure  6.8 Schematic representation of tubes formed with experimental 
parameters as shown in table 6.1. 

 

Exp.1 Exp.2 Exp.3 Exp.4Exp.1 Exp.2 Exp.3 Exp.4



 

 

The accurate dimension

bottle, shown in Figure 6.9a. 

length was 221 nm. 

measured neck length is less than 

6.7a possibly because of some of neck was broken 

confirmed the dimension of nanobottles a

 

Figure  6.9 (a) SEM image 
showing side view of TiO

 

The same experiment without 

shorter neck, as shown in Figure 6.10. Figure 6

nanobottles. Some bottles are formed with broken necks as a result of significant 

dissolution in the second anodisation at ro
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ccurate dimensions of a nanobottle were measured on a separated single 

bottle, shown in Figure 6.9a. The neck had an ID of 40 nm, an OD of 

 The base had a width of 330 nm and a length of 410 nm. The 

measured neck length is less than that observed from the side-on 

because of some of neck was broken off from the bulk. 

confirmed the dimension of nanobottles as seen in Figure 6.9b and c

SEM image of an individual TiO2 nanobottle (b and c) 
of TiO2 nanobottles. 

he same experiment without an ODPA coating yielded nanobottle

neck, as shown in Figure 6.10. Figure 6.10b shows a magnified side view of the 

nanobottles. Some bottles are formed with broken necks as a result of significant 

dissolution in the second anodisation at room temperature and high voltage. Therefore, 

measured on a separated single 

an OD of 124 nm and the 

a width of 330 nm and a length of 410 nm. The 

 SEM image in Figure 

off from the bulk. TEM images also 

and c. 

(b and c) TEM images 

ODPA coating yielded nanobottles with much 

b shows a magnified side view of the 

nanobottles. Some bottles are formed with broken necks as a result of significant 

om temperature and high voltage. Therefore, 
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in order to create a well shaped nanobottle, it is essential to protect the bottle neck with 

a coating of ODPA.  

 

Figure  6.10 (a and b) SEM images of TiO2 nanobottles produced by two-step 
anodisation without ODPA protection. 

 

6.6 Application in Drug Release  

Here, the aim of my study was to use the morphology of nanostructures, including 

nanotubes and nanobottles to control drug release. The bottle shape makes it possible to 

control the maximum loading and the release kinetics independently.  

6.6.1 Methylene Blue Loading 

Standard open TiO2 nanotubes have been studied as possible drug delivery 

vehicles filled with antibiotics [178]. The purpose of developing nanobottles for drug 

release is to increase the drug loading and to slow the drug release kinetics. The ability 

to manage these properties gives significant opportunities for clinical applications. In 

this study, methylene blue (MB) was used as a convenient drug because it is a 
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monoamine oxidase inhibitor (MAOI). Its molecular structure is similar to those of 

chlorpromazine and typical antipsychotics, which are infused intravenously at doses 

exceeding 5 mg/kg. It is the basic compound from which chlorpromazine and many 

other antipsychotics are made [181]. The concentration of released MB can be easily 

monitored by its absorbance at 663 nm [182] with a standard UV-Vis spectrometer.  

Various methods are used for loading chemicals into nanotubes. For example, the 

drug may be pipetted on to the TiO2 nanotube surface in order to cover the surface with 

the drug solution gently [178]. A careful flushing with appropriate solvent is necessary 

to remove excess chemicals on the surface without causing chemical loss inside the 

nanotubes. Chemicals can also be introduced to by soaking the nanotubes in solution 

under vacuum condition followed by flushing, under vacuum condition, the gas trapped 

in the nanotube can be released and allowing a more efficient chemical loading 

achieved [183]. In either method, the sample has to be completely dried before kinetic 

measurements. 

In our experiments samples of titanium dioxide nanotubes and nanobottles were 

immersed for several days in 500 ppm aqueous methylene blue solution, prepared from 

0.02 g of MB in 40 ml water. The loaded TiO2 nanotube arrays were then rinsed with 

water on a rotating spinner in order to remove the dye from the surface. After filling and 

rinsing, the TiO2 nanotubes arrays were left to dry in the air or under vacuum. All 

operations were carried out at room temperature. 
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6.6.2 Polyvinyl Alcohol (PVA) Coating 

As a biocompatible polymer, PVA was used to coat the surface of the loaded TiO2 

nanotubes, in order to develop additional control of the chemical release kinetics. The 

PVA polymer solution (1% w/v) was made up in a mixture of water and ethanol (1:1) 

and then stirred for 4 hours. The addition of ethanol accelerates the drying of the PVA 

coating. After filling the TiO2 nanotubes with MB, PVA was coated on to the nanotube 

surface with a spin coater. An aliquot of PVA solution was applied to the surface and 

spun for 5 min at 300 rpm. The thickness was controlled by the solution concentration 

and spin rate. With a fixed solution concentration and spin rate, we could control the 

thickness by the number of coats. The release kinetics of MB were studied as a function 

of PVA film thickness. 

6.6.3 The Release kinetics of Methylene Blue  

Standard drug release measurements, are usually made in media such as water, or 

saline or other buffered aqueous solutions [184]. In our experiments, the methylene blue 

release kinetics were measured in 20 ml deionised water at 22 ºC. The concentrations of 

released MB were measured by UV-Vis spectrometry at 663 nm where the MB has 

maximum absorbance. Under controlled conditions, MB elution was measured at 

various times up to 4 weeks, after which the MB concentration reached a plateau and 

release finished. The MB was released quickly during the first hour and completely 

within 4 weeks. The absorbance of the released MB solution was stable for more than 

three months. This indicates that methylene blue dye did not degrade in aqueous 

solution. We found that drug elution was most profoundly determined by parameters 

such as tube diameter, tube length and loading time. The release involved diffusion of 
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the MB entrapped in the nanotubes through the polymer coating. The parameters that 

affect the release rate are discussed in the following paragraphs. 

6.6.3.1 The Layer Thickness  

Concentrated PVA solutions have high viscosity and give thick films, which 

require long drying times. In addition, the films may not be sufficiently homogeneous. 

For these reasons dilute PVA aqueous solutions (1 w/v %) were used to give good 

quality spin coating. The thickness of the PVA film was controlled by multi-step 

coating-drying cycles, and was measured by SEM. The results, presented in Figure 6.11, 

show the thickness of the PVA coating as a function of the number of coats applied.  

 

 

 

 

 

Figure  6.11 Plot of the thickness of the PVA layer against number of coatings with 
1 % w/v solution. 

  

The data shows a linear dependence of PVA thickness on the number of coats. 

Each layer of coating increases the thickness by 1.0 µm. The linear relationship gives 

excellent control of the film thickness.  
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The thickness of these PVA layers on the mouth of the TiO2 nanotubes can be 

used to control the release of MB. Figure 6.12 shows the release of MB as a function of 

PVA thicknesses ranging from 1 to 3 µm. On each elution curve, the release kinetics 

can be defined by three linear stages. Within a very short initial period (less than 1 min), 

there is rapid release of a small amount of MB attributed to uncoated areas at the edge 

of the Ti plates. There is then slower release of MB within 20 min of submerging the 

sample in water. The release rate at this stage depends on the thickness of the PVA 

coatings; thicker coatings result in slower release. The MB release is related to the 

dissolution of the PVA film. Due to the hydrophilic nature of MB, there is always some 

leaching of MB from the top of the nanotubes into the PVA films. Once the PVA films 

are dissolved, the release rate become independent of the polymer film thickness, and is 

controlled only by the diameter and length of the nanotubes. This can be clearly 

observed in Figure 6.12.  

 

  

 

 

 

 

Figure  6.12 The release kinetics of MB from TiO2 nanotubes with PVA coatings of 
different thicknesses. 
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The function of the PVA coating is to delay the release of MB in the third stage. 

In our experiments, with the PVA thicknesses we used the delay was small because of 

the high solubility of PVA. The delay would be expected to be greater with less soluble 

biocompatible polymer coatings with lower solubility. 

6.6.3.2 Tube Length 

One of the advantages of using anodised TiO2 nanotubes for controlled drug 

release is that both the diameter and length of the nanotubes can be independently 

controlled by the anodisation procedure. For a fixed anodisation time and voltage, the 

longer the anodisation time, the longer the nanotubes. The kinetics are affected by both 

the diameter and length of the nanotube. With a fixed diameter, shorter nanotubes give 

faster release. The dimensions of the nanotubes may be measured from SEM images.  

The MB release kinetics from TiO2 nanotubes with different lengths are shown in 

Figure 6.13. The nanotubes were created by anodisation in NH4F/EG solution with a 

bias of 100 V at room temperature. After 30, 60 and 90 min nanotubes with lengths of 

5.5, 11.1 and 18.5 µm, respectively were obtained.  

As the release follows a diffusion mechanism which is proportional to the 

concentration of the loaded drug, it is reasonable to assume that the MB release follows 

first order kinetics. Under such conditions, the release kinetics can be fitted by the 

equation: I = A0 [1- exp (-Kt)], in which I is the absorbance elution, A0 is the saturated 

absorbance (maximum loading), t is the release time and K is the release rate constant. 

The drug release can also be normalised against the maximum drug release A0. Figure 

6.13 shows kinetic measurements of the normalised drug release. After fitting to the 
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first order kinetics, the rate constants (in units hour ‒1) of 11.1, 6.3 and 1.25 were found 

for nanotubes with lengths of 5.5, 11.1 and 18.5 µm respectively. These confirm that the 

release rate is faster for shorter nanotubes. The kinetic behavior shows that drugs 

diffusing into the solvent from shorter nanotubes have less distance to travel. 

 

 

 

 

 

 

Figure  6.13 Release patterns from tubes of different lengths anodised at 100 V. 

The curves in Figure 6.13, show that longer nanotubes have higher loadings of 

MB, defined by the area under the curve. This offers the possibility of controlling the 

loading capacity of the nanotubes in addition to the release kinetics. 

6.6.3.3 Tube Length and Diameter  

For a fixed anodisation time, higher voltages give nanotubes of greater diameter 

and length. The diameter increases linearly with the applied voltage. However, that is 

not true for tube length, as explained in chapter 3. The dimensions of the nanotubes 

were measured from SEM images. We used of voltages of 40, 60 and 100 V. With a 

bias of 40 V for 1 hour anodisation, nanotubes with inner diameter of 55 nm and total 
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length of 1.2 µm were observed. For anodisation at 60 V for 1 hour, the ID was 70 nm 

and the length 2.2 µm. With 100 V anodisation, the tube ID increased to 110 nm and the 

length to 10 µm. For a valve metal, the increase in the tube diameter is directly related 

to the thickness of the barrier layer, which is proportional to the anodisation voltage.   

Normally, at higher voltage, the rates of oxidation and dissolution at the bottom of the 

nanotube are also higher, giving a higher anodisation current. This in turn increases the 

electrolyte temperature and anodisation rate. Figure 6.14 shows the MB release kinetics 

from nanotubes with different diameters and lengths. 

 

 

 

 

 

 

Figure  6.14 Release patterns from tubes with different diameters. The tubes were 
anodised at different voltages for an anodisation time of 1 hour. 
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observed and it implies that the effect of tube length overrides that of tube diameter 

under our experimental conditions. 

6.6.4 Comparison between Nanobottles and Nanotubes  

With two step anodisation and use of an organic coating, we were able to create 

bottle shaped nanostructures, which offer additional means for control of drug release 

kinetics. In Figure 6.15, we show a schematic diagram of a complete sequence 

including synthesis of nanobottles, drug loading, encapsulating nanobottles with 

polymer coating and release of MB.  

 

Figure  6.15 Schematic diagram showing the synthesis of TiO2 nanobottles, loading 
with MB, coating with polymer and the drug release process. 
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The release of MB from both nanotubes and nanobottles is shown in Figure 6.16. 

The nanotubes were created by anodisation for 1 hour at 60 V in an electrolyte of 0.6% 

ammonium fluoride, 2% water in EG. These nanotubes have IDs of 80 nm and are 3.5 

µm long. The nanobottles were created by two-step anodisation and had necks of 40 nm 

ID and lengths of 350 nm. The base was formed with a wider ID of 350 nm and length 

of 815 nm. In both cases, a layer of PVA 1 mm thick was spin-coated on to the surface 

after the loading of the MB. The release of MB was measured during a period of 2 

weeks. 

 

 

 

 

 

 

 

 

 

 

Figure  6.16 (a) Release of MB from nanobottles and nanotubes; (b) comparison of 
% release of MB between nanobottles and nanotubes. 
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Figure 6.16a shows the initial MB release from both nanotubes and nanobottles. A 

much slower MB release was observed for the nanobottles; for the nanotubes, the 

release was complete within 10 min in contact with water. This is also clearly 

demonstrated in Figure 6.16b which displays measurements shown over 3 days. For 

nanobottles, a gradual release of MB was observed over 3000 min (2 days). Thus, the 

release of MB is much slower from nanobottles than from nanotubes, indicating that the 

narrow neck of the nanobottle controls the drug release. From the first order drug 

release kinetics we estimate the release rate constant for nanotubes as 12 h-1 and for 

nanobottles of 0.27 h-1. These rate constants suggest that the time for release of 50% of 

MB (half life) is 3.5 min for nanotubes and 154 min for nanobottles. 

MB release with and without the PVA coating, is shown in Figure 6.17. The 

release of MB from TiO2 nanobottles is extended by the use of a PVA coating. The 

release rate constant from the nanobottles without PVA coating is about 10 h-1 which 

suggests an even slower release than that from the PVA coated nanotubes (12 h-1).  

 

Figure  6.17 % Release of MB by using various nanobottle arrays, coated and 
uncoated with PVA. 

 1.0

0.8

0.6

0.4

0.2

0.0

R
e

le
a

s
e

%

40003000200010000

Release time (min)

 nanobottles with PVA coated,K=0.27/h
 nanobottles without PVA  Coated,K=10.0/h
 fit nanobottles with PVA
 fit nanobottles without PVA



151 

 

 

This delay in MB release is clearly related to the dimensions of the bottleneck 

which is very important for control of the kinetics of the release. We expect that a 

narrower ID and longer neck will reduce the overall MB release rate and that the 

volume of the base of the nanobottles will determine the total loading of the drug within 

the nanostructures. 

6.7 Conclusions  

We have shown that it is possible to make TiO2 nanobottles by use of two-step 

anodisation. To the best of our knowledge, this is the first time that the synthesis of 

TiO2 nanobottles has been described. The application of nanobottles in drug release 

confirms that the nanobottle shape effectively delays the drug elution compared with 

nanotubes of uniform diameter. In addition, the release of drugs from both nanotubes 

and nanobottles can be controlled by use of PVA coatings.  

The bottle shaped nanotubes were created by initial anodisation at low 

temperature and low voltage. The narrow neck was protected by a coating of ODPA. 

The base of the nanobottle was created by a second anodisation at room temperature and 

higher voltage. By a combination of electrolyte temperature and voltage the overall 

shape of the nanobottles can be precisely controlled. Further investigations are 

underway to discover how the shape of the nanobottles can affect the drug loading and 

release kinetics.  

PVA polymer coatings can also be used to slow down the overall release from 

both TiO2 nanobottles and nanotubes. Such effects are directly related to the water 
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solubility of the polymer coating. In further experiments various other polymers will be 

investigated to evaluate their influence on the kinetics of drug release.  
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Chapter 7 Applications of TiO2 Nanotubes in Water Splitting 

and Degradation of Organic Compounds 
 

7.1 Abstract 

TiO2 nanotubes with two different morphologies, polygonal and circular, were 

chosen for investigation as photoanodes in a photoelectrolysis cell (PEC) for water 

splitting. The photoenergy was converted into, and stored as, chemical energy in the 

form of hydrogen and oxygen gas. The efficiency of hydrogen generation by the 

addition of organic compounds as electron donors was also investigated. These donors 

react irreversibly with the photogenerated holes in the valence band and enhance the 

photocatalytic activity by reducing the electron-hole recombination rate.  

7.2 Introduction 

The development of renewable energy sources helps to reduce CO2 emissions and 

to reduce the dependence on limited reserves of fossil fuels. Hydrogen produced from 

water using solar light is a clean, renewable, and sustainable source of energy and its 

use could provide a critical breakthrough in efforts to reduce environmental pollution 

caused by the use of fossil fuels. Burning hydrogen results in the generation of water, 

which neither results in air pollution nor leads to the emission of greenhouse gases [94].  

A system for photocatalytic hydrogen production [185] by splitting water must 

not only absorb solar light but also efficiently convert photon energy into chemical 

energy. Many efforts have been focused on the creation of nanostructured 
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photocatalysts in order to increase the efficiency for hydrogen production from solar 

energy.  

By exposing a TiO2 nanotube photoanode to UV light, electron (e-) and hole (h+) 

pairs are generated in the conduction and valence bands respectively of the 

semiconductor. The excited electron moves from the CB moves to the external circuit 

and reaches the cathode (in this case Pt). Meanwhile, the corresponding positively 

charged hole comes out from the nanotube surface to the electrolyte solution (in this 

case, 1M KOH in water) and oxidizes water to generate a proton H+. Gaseous oxygen 

O2 is produced at the anode. The external potential (applied through the potentiostat to 

the cell) helps the proton to reach the surface of the cathode, where it combines with the 

liberated electron to form hydrogen H2. The H2 generation efficiency has also been 

investigated by the use of organic hole scavengers. Liu and co-workers [131] found that 

ethylene glycol enhanced the rate of hydrogen generation. A wide range of organic 

compounds such as carbon, sugar, alcohols, cellulose, hydrocarbons and fatty acids can 

be used as reducing agents. These compounds are oxidized to give hydrogen gas and at 

the same time, water is reduced. Various tube morphologies have been used for 

generating hydrogen such as multiwall nanotubes [53]. 
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Figure  7.1 The mechanism of hydrogen generation [186]. 

The principle of TiO2 nanotube photocatalysis and the experimental arrangement 

are shown in Figure 7.1 adapted from Morhapatra’s work [186]. A three-electrode 

configuration is used, with a saturated Ag/AgCl reference electrode and Pt foil as a 

cathode. Under light illumination, holes from the valence band move towards the 

electrolyte and react with the organic compounds and electrons from the conduction 

band move towards the Ti plate and through the external circuit to the cathode. 

We investigated the influence of crystallite and tube morphology on the efficiency 

of hydrogen generation. We compared the photocurrent from circular and polygonal 

nanotubes and monitored the effects of the annealing temperature on the 

photoelectrolysis efficiency. The second part of this chapter is focused on the 

enhancement of H2 generation by use of organic hole scavengers. The efficiency is 

normally restricted by the oxidation at the anode as two holes are required 

simultaneously to oxidize a molecule of water. Upon addition of hole scavengers, holes 

oxidize the organic additives instead of water, and this normally requires a lower 

oxidation potential.  

 

PtPt
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7.3 Preparation of TiO2 Nanotubular Photoanodes for Water Splitting 

Samples were prepared as described in chapter 2 section 2.2. A TiO2 nanotube 

array was formed by anodisation under an applied voltage 100 V. The anodisation time 

was 1 hour and the distance between the electrodes was 6.0 cm. The electrolyte was 0.6 

wt. % of ammonium fluoride and 2 wt. % of DI water in EG. After anodisation, the 

TiO2 nanotubular array was ultrasonicated in DI water for 10 min then left to dry, and 

annealed at a specific temperature for a specific time. Experiments were carried out in a 

glass cell with a three-electrode configuration, as described previously in chapter 2 

(section 2.9). The area of the anode was 1 cm2. A potentiostat was used to control the 

PEC voltage and to measure the photocurrent. A solution of 100 ml of 1 M KOH was 

used as electrolyte. 

To study the effects of organic hole-scavengers, organic compounds, such as EG, 

methanol and mixtures of the two were added to the electrolyte by a microsyringe. The 

measurement of photocurrent density was made after stirring for 3 min. In order to 

optimise the crystal structure, the titania arrays were annealed at 550 ◦C, chosen 

because it gave the maximum photocurrent for TiO2 nanotubes in KOH solution 

without organic additives. 

7.4 Results and Discussion 

We studied the effects of nanotube length, diameter and annealing temperature. 

Phase transitions were monitored with powder XRD, and correlated with the 

photocurrent. The effects of tube morphology, such as whether the nanotubes were 

polygonal or circular nanotubes were also studied. 
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7.4.1 The Effect of Tube Length on the Photocurrent Density 

The length and area of the nanotube are must be optimised. An optimal length and 

large area is very important for the absorption of the incident photon, to prevent the 

recombination of photogenerated electron-hole pairs. The light absorption is generally 

increased when the thickness of the TiO2 film or the length of the vertically aligned 

nanotubes is increased. If the nanotubes are too short, the light is not effectively 

absorbed. Short nanotubes have less surface area accessible to the electrolyte so the 

photocurrent density is restricted. With short anodisation times, the initial nanotubes are 

normally irregular [43] so the transportation of ions in and out of the bulk nanomaterial 

is restricted. For a one dimensional nanotube with length longer than needed for full 

light absorption the probability of the charge transportation is reduced as the 

photogenerated electron hole-pair can recombine. Therefore the size and shape of the 

tubes should be optimised to maximise light absorption, surface area and charge 

transportation.  

In our experiments, the tube length was controlled by changing the anodisation 

parameters such the anodisation time [66]. As shown in Figure 7.2, the tube length 

increased non-linearly with the anodisation time. With 20 min anodisation, short TiO2 

nanotubes with length about 2.5 µm were formed; after 240 minutes the tube length was 

25 µm. 
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Figure  7.2 The effect of anodisation time on TiO2 nanotube thickness. 

The light blue curve in Figure 7.3a shows the photocurrent as a function of 

electrochemical potential relative to the saturated Ag/AgCl electrode. The TiO2 

nanotubes were 5.5 µm thick and were annealed at 500 ˚C for 30 min before they were 

used as photoanodes. The red curve shows the photocurrent with the xenon light source 

alternating on and off. The dark current is shown by the dark blue curve. It is clear that, 

without light, the current was almost zero for an electrochemical potential between ‒1.0 

and +1.5 V. In contrast, with illumination, the photocurrent gradually increases and 

reaches maximum of 6.3 mA/cm2. 

The effect of tube length on the photocurrent density in the PEC is shown in 

Figure 7.3b. The length of the nanotubes was measured by SEM and the photocurrent 

density was measured at an electrochemical potential of 0 V relative to Ag/AgCl. As the 

length of the nanotubes increased, the photocurrent density gradually increased. When 
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the thickness was about 11 µm, obtained by 60 min anodisation, the highest 

photocurrent density was achieved. Longer nanotubes gave slightly smaller 

photocurrent density. 

  

 

 

 

 

 

 

 

 

 

Figure  7.3 (a) The photocurrent from nanotubes 5.5 µm long anodised for 30 min 
and annealed at 500 °C (b) the effect of tube length on the photocurrent density of 
TiO2 nanotubes annealed at 500 °C. 
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nanotube diameter increases the electrolyte mobility and enhances the reaction at the 

liquid-solid interface. An increase of the tube length improves the light absorption. 

The photocurrent density was studied for both crystallised (annealed) and 

amorphous (as synthesised) TiO2 nanotube arrays. Figure 7.4 shows the photocurrent 

density measured at 0 V relative to Ag/AgCl as a function of anodisation voltage, with 

tubes having diameters from 30-160 nm. For amorphous TiO2 nanotubes, the effect of 

anodisation voltage is not obvious; there is only a slow increase in photocurrent density 

as the voltage is increased. However, for samples annealed at 500 ˚C, the photocurrent 

density increases dramatically as a function of anodisation voltage. For example, with 

20 V anodisation, the photocurrent density reached 1.7 mA/cm2 and with 120 V 

anodisation the photocurrent density reached 10.5 mA/cm2. This represents a six-fold 

increase in the power conversion. It is clear that annealing the sample to give crystalline 

nanotubes increases the photocurrent. This increase is directly related to the charge 

mobility, which can be greatly increased in crystalline samples that have fewer defects 

as charge traps. In the next section, we focus on the effect of annealing temperature on 

the efficiency of water splitting.  

Increases in both tube length and tube diameter can contribute to the increase in 

photocurrent density, but we are not able to clearly distinguish their individual 

contributions experimentally. It is very difficult to control the nanotube diameter 

without affecting the nanotube length.  

For annealed nanotubes, the photocurrent density gradually approaches a 

maximum value at an anodisation bias of 120 V. We expect the photocurrent density to 
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decrease if the anodisation voltage is increased further. This behavior may be compared 

with the effect of tube length on the photocurrent discussed in a previous section; it is 

probably the length of the nanotube which limits charge transfer to the back metallic 

electrode. The measured nanotube diameter increases from 80 to 120 nm when the 

anodisation voltage increases from 60 to 120 V. We expect therefore that in this voltage 

range, the tube diameter will have little effect on the photocurrent, since the effect of 

improved electrolyte transportation in and out of the nanotube is balanced by the 

reduction in surface area. 

 

 

 

 

 

 

 

Figure  7.4 The effect of anodisation voltage on the photocurrent density from 
amorphous and crystalline titania nanotubes. 
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7.4.3 The Effect of Thermal Treatment on the Photocurrent Density 

TiO2 nanotubes are initially obtained with an amorphous structure. They can be 

converted into anatase at temperatures higher than 280 ◦C [48, 187]. However, 

according to Macak et al [143] anatase can also be directly formed during anodisation 

and may be converted into rutile on heating by the rearrangement of Ti-O octahedra 

following the breakage of two Ti-O bonds. The process is accelerated by oxygen 

vacancies in the anatase lattice and can be further affected by thermal treatments, 

addition of dopants and the method of synthesis. The transition from anatase to rutile 

which occurs at an annealing temperature above 700 ◦C, is an important factor to be 

considered in optimizing the response of a material in a given application. Our 

experimental evidence has confirmed that the photoefficiency is maximised when the 

dominant phase is anatase with a small amount of rutile. 

In addition to the crystal phase transition, the morphology of the nanotubes changes 

during annealing at high temperature. Nanotubes are reported to be stable up to 580 ◦C 

in air [187]. At higher temperatures the tubular structure collapses. Regonini et al. 

observed rutile protrusions at temperatures of 500 ◦C or higher and identified these 

protrusions as the main cause of the collapse of the nanotubes [188].  

In our work the measured photocurrent density is shown in Figure 7.5a with light 

alternately on and off. For electrochemical potentials between _1.0 and +1.2 V, the dark 

current is almost zero. However, with the light on, the photocurrent gradually increases 

as the electrode potential increases from _ 0.5 V to +1.2 V. It is clear that the maximum 

photocurrent density from the polygonal nanotubes (20.0 mA/cm2, green curve) is much 

higher than that from circular nanotubes (15.3 mA/cm2, red curve).  
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The typical morphologies of polygonal and circular nanotubes are shown in the 

insert in Figure 7.5b. Details have been discussed in chapter 4 section 4.4.1. After 

annealing at 550 ˚C in air, the photocurrent density was measured in a glass PEC with 

1M KOH as electrolyte and illumination from a 300 W xenon lamp. A comprehensive 

study of the effect of annealing temperature is shown in Figure 7.5b from 22 ◦C to 750 

◦C. 

 

Figure  7.5 (a) The voltammograms of polygonal and circular TiO2 nanotubes 
annealed at 550 ˚C under illumination (light on) and without illumination (light 
off). (b) Photocurrent density of polygonal and circular nanotubes annealed at 
various temperatures from 22-750 ˚C.  

 

(
)

(
)
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For both circular and polygonal nanotubes, the photocurrent densities are low when 

the samples are annealed below 300 ˚C. For samples annealed above this temperature, 

the photocurrent density increases and reaches a maximum for samples annealed at 550 

◦C. For samples annealed at high temperature the photocurrent density decreases almost 

linearly as a function of temperature.  

It is also clear, that whatever the annealing temperature, the photocurrent density 

is higher from polygonal than from circular nanotubes. The maximum difference in 

photocurrent was observed at 550 ◦C when the photocurrent density was maximum. We 

believe this is related to our assumption that for polygonal nanotubes, crystals form 

most readily along the line where the flat tube walls intersect.  

A similar temperature-dependent photocurrent density manner has been observed. 

Hardcastle and co-workers [189] found a decrease of photocurrent density when a TiO2 

anode was annealed between 500 ˚C and 600 ˚C and they that suggested this was due to 

the phase transition from anatase to rutile. Similar results were found for WO3 

semiconductor photoanodes [190]. In the next section, we describe the use of XRD to 

investigate the phase transition and to correlate it with the photoresponse described 

here.  
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Figure  7.6 SEM images of TiO2 nanotubes annealed at 550 ◦C for circular 
nanotubes (a) top-view, (b) side view and polygonal nanotubes (c) top-view and (d) 
side view. 

 

The morphology of both polygonal and circular tubes was affected by the 

annealing process. The tube dimensions such as diameter and length are slightly 

different before and after annealing. After annealing a reduction in porosity and surface 

area occurs due to the nucleation of crystalline structure [191, 192], Figures 7.6 shows 

the morphology of both circular (Figure 7.6a and b) and polygonal (Figure 7.6c and d) 

nanotubes after annealing at 550 ◦C. Although the tubular structures are maintained, the 

ID of the nanotubes is reduced by 10% on average during annealing. The lengths of the 

annealed nanotubes are measured from the SEM images shown in Figure 7.6 b and d. 

The length of the nanotubes was reduced to 8 µm (the original lengths for polygonal and 

circular tubes were 11 and 10 µm, respectively) and the overall surface area was 

reduced, during annealing. 
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The morphological transition at higher temperature is shown in Figure 7.7 with 

the top view of the circular nanotubes annealed at 600 ◦C (Figure 7.7a) and 650 ◦C 

(Figure 7.7b). 

 

Figure  7.7 SEM images of TiO2 nanotube arrays annealed at (a) 600 ◦C and (b) 650 
◦C showing (a) collapse and (b) cracking after sintering. 

 

The images show that the original structure of the nanotubes collapses at 600 ˚C 

and that there is serious cracking at 650 ˚C. The collapse and sintering of the nanotube 

structures gives a significant reduction in effective surface area and reduced contact 

between the TiO2 and electrolyte. Thus the photocurrent density is also reduced. 

7.4.4 The Effect of Thermal Treatment on the Crystal phase Transition 

Powder XRD measurements have been made on polygonal and circular TiO2 

nanotube arrays in order to study the phase transition as a function of annealing 

temperature. The annealing temperatures varied from 22 ◦C to 750 ◦C.  

A typical powder XRD pattern of a sample annealed at 650 ◦C is shown in Figure 

7.8. The diffraction data show three phases: anatase, rutile and Ti metal. In general, 
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samples annealed at low temperature show only the presence of anatase with the 101 

peak at 2θ = 25.3º. As the annealing temperature increases the signal at 2θ = 27.5º, 

corresponding to rutile, appears.  

All anatase and rutile peaks were calibrated by standard patterns [129]. The tables 

of peaks are shown in Chapter 2 (section 2.8). In Figure 7.8, the Miller indices of the 

peaks are labelled and the anatase and rutile phases are indicated by A and R. As the 

thin TiO2 nanotube layers were grown on Ti plates, the diffraction peaks from the Ti 

substrate can also be observed.  

 

Figure  7.8 A typical XRD pattern of a TiO2 nanotube thin film showing anatase 
(A) and rutile (R) on titanium (Ti). 
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Here, we correlate the photocurrent density measurements reported in last section 

with the XRD results. Thin films are usually, prepared on a substrate. In X-ray 

diffraction patterns the peaks from the substrate can sometimes overshadow those from 

the thin film. The contribution of the substrate can be minimized by reducing the angle 

of incidence of the X-ray beam. This technique is called glancing angle X-ray 

diffraction (GAXRD). In order to compare polygonal and circular films we used 

GAXRD analysis with an angle of incidence 4º on samples obtained by thermal 

treatment in air at 100, 200, 300, 400 and 500 ˚C. The results are shown in Figure 7.9 

(a-e). 

 

 

 

 

 

 

 

 

 

Figure  7.9 4º GAXRD patterns for polygonal (green curve) and circular (red 
curve) nanotubular arrays annealed at various temperatures (a) 100 ºC, (b) 200 ºC, 
(c) 300 ºC, (d) 400 ºC and (e) 500 ºC, for 2 hours. 
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When the sample is annealed below 300 ˚C, there is no obvious crystallisation. 

However, the anatase structure starts to form at 300 ˚C, the temperature, at which the 

photocurrent densities start to increase. The XRD patterns of polygonal and circular 

TiO2 nanotubes confirmed the presence of anatase. At this stage, there is no significant 

difference in the crystallinity between the polygonal and circular nanotubes.  

Further annealing at higher temperatures improves the crystal structure 

dramatically. Figure 7.10 shows the XRD data from polygonal and circular nanotubes 

annealed at 550 ˚C. At this stage, the dominant phase is anatase with small contribution 

of rutile. A significant increase in the photocurrent density was observed for samples 

annealed at this temperature, without significant change of the tubular morphology. 

Therefore, we can conclude that the improvement of the crystallinity is essential for the 

improvement of the photoefficiency. Annealing in ambient oxygen is found to be an 

important post-treatment process to transform titania nanotubes from amorphous to 

crystalline. A high annealing temperature produces better crystallinity as shown by 

XRD traces. 
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Figure  7.10 Typical XRD traces of polygonal and circular TiO2 nanotubes 
annealed at 550 ˚C. 

 

Further annealing at higher temperature decreases the photo efficiency, although 

the diffraction data shown in Figure 7.11 show a further improvement of the crystal 

quality. Polygonal TiO2 nanotubes show increased amounts of rutile. For the nanotubes 

annealed at 650 ˚C, the intensity of the rutile 110 (r) peak from polygonal nanotubes 

(859 counts) is almost the double that from circular nanotubes (424 counts). The 

intensity of the Ti substrate remains constant, which suggests no significant reduction of 

film thickness. 
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Figure  7.11 Typical XRD traces for TiO2 polygonal and circular nanotubes 
annealed at 650 ˚C. 

 

The increase in the proportion of rutile becomes more obvious for a sample 

annealed at 750 ˚C, as shown in Figure 7.12. The most intense rutile peak from (110) 

plane has a high intensity for both polygonal and circular nanotubes. However, its 

intensity increases more significantly for the polygonal nanotubes.  

 

 

4000

3000

2000

1000

0

In
te

n
s
it
y
(c

o
u
n
t)

80706050403020

2θ (Value)

 circular
 polygonal

XRD analysis of polygonal and circular nanotubes annealed at 650 °C
101(a)

1
1
0
(r

)

Ti

1
0
3
(a

)
0
0
4
(a

)

Ti

2
0
0
(a

)

Ti

1
0
5
(a

)
2
1
1
(a

)

2
0
4
(a

)

1
1
6
(a

)

Ti

2
1
5
(a

)
3
0
1
(a

)
2
0
2
(r

)



172 

 

 

 

Figure  7.12 Typical XRD patterns for TiO2 polygonal and circular nanotubes 
annealed at 750 ˚C. 
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annealed at 300 ˚C and 500 ˚C for various durations (2-7 h) in a tube furnace in air. The 

photocurrent density was measured after annealing.  

Figure 7.13a shows the enhancement in the photocurrent density of TiO2 

nanotubes (measured at 0 V vs. Ag/AgCl) with increased annealing time and Figure 

7.13b shows examples for various annealing times. The photocurrent density gradually 

increases from 0.85 mA/cm2 for a sample annealed for 2 h to 3.4 mA/cm2 for a sample 

annealed for 7 h, corresponding to a factor of 4 improvements. The XRD study showed 

that anatase is formed at 300 ˚C. But as anatase formation might be restricted by the 

crystallinity kinetics an increase in annealing time could improve the crystallinity and 

the photoefficiency. Annealing times longer than 7 h gave no improvement in 

photocurrent density. 

 

 

 

 

 

 

 

Figure  7.13 (a) The influence of annealing duration on the photocurrent density of 
TiO2 nanotubes annealed in air at 300 ◦C, (b) voltammetric measurements, for 
TiO2 nanotubes annealed for different times. 
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For samples annealed at 500 ˚C, the photocurrent density also increases with 

increased annealing duration as shown in Figure 7.14a. However, the leveling off of the 

photocurrent density was achieved in a shorter time (3 hours) than for samples annealed 

at 300 ˚C. This observation suggests that 1) the formation of crystallites is responsible 

for the improvement of the photocurrent density; 2) the crystallisation rate is higher at 

500 ˚C than at 300 ◦C. These conclusions are confirmed by the XRD patterns shown in, 

Figure 7.14b for TiO2 nanotubes annealed at 550 ˚C for 2 and 4 h. The anatase peak at 

25.3º is clearly higher in the sample annealed for 4 hours. 

 

 

 

 

 

 

 

 

 

 

Figure  7.14 (a) The influence of annealing duration on the photocurrent density of 
TiO2 nanotubes annealed in air at 500 ◦C, (b) XRD patterns for TiO2 nanotubes 
annealed at 500 ◦C for different annealing times. 
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7.4.6 Addition of Organic Compounds 

Organic compounds can be used as hole scavengers to improve the 

photoefficiency. The presence of organic compounds in the electrolyte suppresses 

generation of oxygen gas at the photoanode; instead organic compounds are oxidized. A 

significant increase in the photocurrent following the addition of organic compounds, 

suggests that the oxidation of H2O at the anode is the rate limiting process in their 

absence.  

In our experiments we used methanol and ethylene glycol as organic additives as 

they contain hydroxide groups which facilitate adsorption on to metal oxide surfaces. 

The addition of 0.05 to 5 ml vol % of methanol or EG to 100 ml 1M KOH leads to a 

gradual increase in the photocurrent density for both polygonal and circular nanotubes 

as shown in Figure 7.15. However, the increase in photocurrent density is much higher 

for polygonal nanotubes than for circular nanotubes. For a photoanode with polygonal 

nanotubes, the photocurrent was increased from 13 mA/cm2 to 20.5 mA/cm2 or 18.5 

mA/cm2 when, respectively, 1.6 ml methanol or 1.6 ml EG was added. For circular 

nanotubes the photocurrent was increased from 11 mA/cm2 to 17.5 mA/cm2 or 16.0 

mA/cm2 when 1.6 ml of methanol or EG was added. Addition of methanol or EG 

improved the photocurrent density by at least 50%. 

The addition of more organic compound does not necessarily increase the 

photocurrent further. At this stage, the photoefficiency is limited by other factors, such 

as photon absorption, charge mobility and reduction of H2O. For polygonal and circular 

nanotubes, the addition of methanol and EG has similar effects, although the initial 
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photocurrent density is higher for polygonal nanotubes. However, it seems that 

methanol is a better choice than EG as hole scavenger in this application. 

 

 

 

 

 

 

Figure  7.15 The effect of the addition of organic compounds on the photocurrent 
density using polygonal and circular nanotubes as photoanodes. 
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recombination losses depends on their redox potential and reactivity in a particular 

solution [186]. The chemical potential of the electrons in a solution is determined by 

redox potentials of all substance present, including the redox potential of the solvent 

itself.  

The splitting of water with the addition of methanol and EG as organic additives 

can be described as follows: 

		CH'OH + H�O + 6h� → CO�(���) + 6H(��)
� ……………………. Equation 7.1 
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					6H� + 6e
 → 3H�(���)…………………………………………   Equation 7.2 

 

					HOCH�CH�OH + 2H�O + 10h → 10H� + 2CO�……………….. Equation 7.3 

 

				10H� + 10e
 → 5H�………………………………………..……. Equation 7.4 

 

Hence, 1 mol of methanol generates 3 mol of hydrogen and 1 mol of EG generates 

5 mol of hydrogen.  

Better enhancements of photocurrent were achieved for polygonal nanotubes than 

for circular nanotubes and slightly better enhancements for methanol than for EG. The 

reason photocurrent enhancement with methanol is greater might be related to the 

diffusion rates of the organic compounds into the nanotubes, which is determined by the 

diameter of nanotubes and the size of molecules of organic compounds.  

7.4.7 Addition of the Mixture of EG and Methanol  

As we have demonstrated that addition of methanol or EG improves the 

photocurrent density to 20.5 and 17 mA/cm2 for polygonal and circular nanotubes 

respectively, we decided to examine the possibility of obtaining a further increase in the 

photocurrent density by use of mixtures of methanol and EG. Mixtures with the volume 

ratios, of 1:1 and 2:1 of EG and methanol were added to 100 ml of 1M KOH electrolyte. 

The experimental results show only slight enhancement of photocurrent density by 

addition of methanol-EG mixtures.  

Figure 7.16 shows the gradual increase in the photocurrent density of polygonal 

and circular TiO2 nanotubes by increasing volumes of 1:1 mixtures of EG and 
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methanol. The current densities were sampled at an electrochemical potential of 0 V vs 

Ag/AgCl. The maximum photocurrent density was achieved by the addition of 0.65 ml 

of a 1:1 mixture of methanol and EG (0.325 ml of methanol plus 0.325 ml of EG), 

which is much lower than the volume of methanol or EG alone (1.6 ml) to achieve the 

same effect. The achieved photocurrent density was 21.0 mA/cm2 and 17.5 mA/cm2 for 

polygonal and circular nanotubes respectively. Thus, for polygonal nanotubes, the 

addition of a mixture of organic compounds increases the photocurrent density slightly, 

while for circular nanotubes, there is almost no increase of the photocurrent density.  

Typical voltammetric measurements with light on and off, for polygonal and 

circular nanotubes, are shown in Figure 7.16b. In this experiment, the total volume of 

added organic compounds was 0.8 ml (0.4 ml of methanol + 0.4 ml of EG). The 

maximum photocurrent densities were achieved at a potential of + 0.8 V with a value of 

29 mA/cm2 for the polygonal nanotubes. However for circular nanotubes, the maximum 

photocurrent density was achieved at a potential of + 0.2 V with a value of 17 mA/cm2. 
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Figure  7.16 (a) Photocurrent density for a TiO2 photoanode in 1 M KOH 
containing various amounts of 1:1 mixtures of EG and methanol, (b) Voltammetric 
measurements of polygonal and circular tubes in 1 M KOH with the addition of a 
mixture of 0.4 ml of methanol and 0.4 ml of EG. 

 

The addition of various volumes of organic compounds was also investigated. 

Figure 7.17a shows the increase in the photocurrent density (measured at 0 V vs 

Ag/AgCl) when the volume % of a 2:1 EG/methanol mixture was increased. The 

maximum photocurrent densities of 23.0 mA/cm2 and 17.5 mA/cm2 at 0 V potential 

were achieved for polygonal and circular photoanode arrays respectively. Figure 7.17b 

shows the voltammetric measurement for polygonal nanotubes used as photoanodes in a 

PEC with addition of a 2:1 methanol/EG mixture (0.4 ml EG + 0.2 ml methanol).  
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Figure  7.17 (a) Photocurrent density for TiO2 photoanode in 1 M KOH containing 
various volumes of a 2:1 mixture of EG and methanol. (b) Voltammetric 
measurements of polygonal and circular tubes in 1 M KOH with addition 0.4 ml of 
EG + 0.2 ml of methanol. 

 

The addition of a 1:1 EG/methanol mixture has a small effect on the photocurrent 

density for the circular nanotubes, and gives small increase in photocurrent density from 

20.5 to 21.0 mA/cm2 for polygonal nanotubes. With a 2:1 ratio EG: methanol mixture, 

the photocurrent density increases further from 21 to 23 mA/cm2. Thus the enhancement 

of photocurrent density by the organic scavenger appears to be related to the nanotube 

morphology. The polygonal and circular nanotubes differ in three aspects. First, the 

polygonal nanotube has a flat wall shared with neighbouring nanotubes, while the 
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circular nanotube has a curved wall. Secondly, the circular nanotube array has two types 

of accessible channels for the organic electrolyte. One is the channel inside the tube; the 

other is the void between neighbouring nanotubes. Thirdly, due to the absence of voids 

between nanotubes, the ID of polygonal nanotubes is normally larger than that of 

circular nanotubes by 10%. Using organic scavengers, the molecules are oxidized on the 

surface of the nanotubes and the efficiency could be affected by the diffusion and 

adsorption of the molecules. The effective enhancement of photocurrent density from 

polygonal nanotubes with both methanol and EG, or mixtures of these compounds is 

directly related to the large ID of the nanotubes. For circular nanotubes, methanol, the 

smaller molecule, is more effective than EG. A mixture of methanol and EG does not 

improve the efficiency, compared with methanol alone.  

7.5 The Photoconversion Efficiency of TiO2 Nanotubes 

The efficiency of photoenergy conversion through the photoelectrochemical process 

is defined by the ratio of the electrochemical energy to the input photoenergy it can be 

calculated by the following equation [193]. 

�(%) = [	>?/@ABC∘ − @E??0 7FGHIJ	� ] × 100……………...……Equation 7.5 

where η  is the photoconversion efficiency, Jp is the photocurrent density 

(mA/cm2), Ilight is the incident light irradiance, Erev is the standard reversible potential 

for water splitting which is 1.23 vs standard hydrogen electrode VRHE, and Eapp is the 

applied potential which is Eapp = (Emeas ‒Eoc), where Emeas is the electrode potential (vs. 

Ag/AgCl) of the working electrode and Eoc is the electrode potential (vs. Ag/AgCl) of 

the same working electrode under open circuit and under illumination. The 
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photoelectrochemical power is defined by the product of the effective voltage and the 

corresponding current density. The true energy conversion power is defined as the 

energy stored in the form of hydrogen, related to the free energy of the hydrogen 

combustion. From equation 7.5, the output power and photoconversion efficiency 

become zero under open and short circuit conditions. At open circuit, the effective 

potential becomes maximum of 1.23 V, but the current density, Jp, is 0 mA/cm2. At 

short circuit, the effective potential becomes zero when a maximum photo current is 

achieved.  

In our experiment, a focused 300 W xenon lamp was used as the light source. This 

gives a UV power (200 nm-400 nm) of 50 mW, measured with a laser power meter. As 

TiO2 has a band gap of 3.2 eV, only the UV part of the light was utilised. The 

measurements were taken with and without the addition of organic compounds. 

7.5.1 The Photoconversion Efficiency without Addition of Organic 

Compounds 

Figure 7.18a shows the photocurrent densities of polygonal and circular nanotubes 

annealed at 550 ˚C with 1M KOH solution without the addition of organic compounds, 

as electrolyte. The measured photocurrent densities at 0 V vs Ag/AgCl are 12.5 and 11.0 

mA/cm2 and the open circuit voltages are ‒ 0.69 and ‒ 0.59 V for polygonal and circular 

nanotubes respectively. The short circuit potential can be calculated as (1.23 + Eoc) with 

values of 0.54 (polygonal nanotubes) and 0.64 V (circular nanotubes). The output 

photocurrents from polygonal nanotubes are always higher than the circular nanotubes.  
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The calculated photoelectrochemical power and the corresponding energy 

conversion efficiencies are shown in Figure 7.18b. The maximum power, as well as 

maximum efficiency were achieved at electrochemical potentials of ‒1.5 and +0.5 V vs 

Ag/AgCl for polygonal and circular nanotubes, respectively. 
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Figure  7.18 (a) Photocurrent density of polygonal and circular nanotubes in 1 M 
KOH without addition of organic compounds and (b) the corresponding power 
and photoconversion efficiency of polygonal and circular TiO2 nanotube arrays 
annealed at 550 ˚C with a power input of 50 mW. 

The polygonal nanotube photoanode achieves higher output power with a 

maximum UV efficiency of 13.5%, and the circular nanotube photoanode achieves a 

maximum efficiency of 10.8 %. The output power and conversion efficiency are all zero 

at open and short circuit voltages. The higher efficiency for polygonal nanotubes is 

related to its higher photocurrent density. The higher performance in photoenergy 

conversion with polygonal nanotube electrodes is possibly related to their higher 

crystallinity and to the shared tube wall structure. Such structural features could 
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improve the charge mobility within the TiO2 allowing photogenerated electrons to be 

harvested and transferred to the cathode through the external circuit. 

7.5.2 The Photoconversion Efficiency with Addition of Organic Compounds 

With addition of organic compounds, the photocurrent density and 

photoconversion efficiency were studied as shown in Figure 7.19a and b. Equal 

volumes of 0.1 ml of EG and methanol were added to the 1M KOH electrolyte. The 

maximum photocurrent density increased from 17 to 30 mA/cm2 for polygonal 

nanotubes. For circular nanotubes, the maximum photocurrent density increased from 

14.5 to 16 mA/cm2. Using equation 7.5, the calculated output power and 

photoconversion efficiencies are plotted in Figure 7.19b. The maximum output powers 

are 6.6 and 5.4 mW (at a potential of ‒0.5 V vs Ag/AgCl), which gives maximum 

efficiencies of 13.2 and 10.8% for polygonal and circular nanotubes. Such efficiencies 

are actually less than or similar to those without addition of organic compounds, 

although the maximum photocurrent was increased significantly for polygonal 

nanotubes. For both polygonal and circular nanotubes, the open circuit potentials were 

shifted from ˗ 1.2 V to ˗ 0.6 V by addition of organic compounds as were the potential 

for maximum output power and the photoconversion efficiency. 
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Figure  7.19 (a) Photocurrent density of polygonal and circular nanotubes in 1 M 
KOH with addition of a 1:1 mixture of EG and methanol and (b) the 
corresponding power and photoconversion efficiency of polygonal and circular 
TiO2 nanotube arrays for the same mixture. 

 

7.6 Conclusion  

In this chapter, the application of polygonal and circular TiO2 nanotubes in water 

splitting was investigated. We studied the influence of the crystal structure and sample 

morphologies on the efficiency of the process. Improvements in the crystallinity of the 

nanotubes significantly increased the photocurrent. Under most conditions, polygonal 
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nanotubes performed better than circular nanotubes as photoanodes. The formation of 

anatase and rutile phases within the walls of the TiO2 nanotubes was identified by 

powder XRD.  

Although the addition of organic hole scavengers does not improve the 

photoconversion efficiency, the maximum photocurrent does increase from that 

measured without organics. This increase in photocurrent is more obvious for polygonal 

nanotubes than for circular nanotubes. This might be due to the larger inner diameter of 

polygonal nanotubes giving better molecular transport.  
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