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Chaotic Exploration and Learning of Locomotor

Behaviours

Yoonsik Shim

Summary

Recent developments in the embodied approach to understanding the generation of

adaptive behaviour, suggests that the design of adaptive neural circuits for rhythmic

motor patterns should not be done in isolation from an appreciation, and indeed

exploitation, of neural-body-environment interactions. Utilising spontaneous mu-

tual entrainment between neural systems and physical bodies provides a useful pas-

sage to the regions of phase space which are naturally structured by the neural-

body-environmental interactions. A growing body of work has provided evidence

that chaotic dynamics can be useful in allowing embodied systems to spontan-

eously explore potentially useful motor patterns. However, up until now there has

been no general integrated neural system that allows goal-directed, online, realtime

exploration and capture of motor patterns without recourse to external monitor-

ing,evaluation or training methods. For the first time, we introduce such a system

in the form of a fully dynamic neural system, exploiting intrinsic chaotic dynamics,

for the exploration and learning of the possible locomotion patterns of an articu-

lated robot of an arbitrary morphology in an unknown environment. The controller

is modelled as a network of neural oscillators which are coupled only through phys-

ical embodiment, and goal directed exploration of coordinated motor patterns is

achieved by a chaotic search using adaptive bifurcation. The phase space of the

indirectly coupled neural-body-environment system contains multiple transient or

permanent self-organised dynamics each of which is a candidate for a locomotion

behaviour. The adaptive bifurcation enables the system orbit to wander through

various phase-coordinated states using its intrinsic chaotic dynamics as a driving

force and stabilises the system on to one of the states matching the given goal

criteria. In order to improve the sustainability of useful transient patterns, sensory



homeostasis has been introduced which results in an increased diversity of motor out-

puts, thus achieving multi-scale exploration. A rhythmic pattern discovered by this

process is memorised and sustained by changing the wiring between initially discon-

nected oscillators using an adaptive synchronisation method. The dynamical nature

of the weak coupling through physical embodiment allows this adaptive weight learn-

ing to be easily integrated, thus forming a continuous exploration-learning system.

Our result shows that the novel neuro-robotic system is able to create and learn a

number of emergent locomotion behaviours for a wide range of body configurations

and physical environment, and can re-adapt after sustaining damage. The implica-

tions and analyses of these results for investigating the generality and limitations of

the proposed system are discussed.
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Chapter 1

Introduction

1.1 Genesis

Properly coordinated rhythmic movements for locomotion are ubiquitous in anim-

als. From insects to humans, locomotive ability is one of the basic requirements for

survival. Biological locomotor systems (usually involving coordinated limb move-

ments) evolved to be highly adaptable, dexterous and energy efficient. Consequently

they are a major source of inspiration when designing robot locomotor systems. In-

deed, there has been a major effort in autonomous robotics for finding ways to

design neural controllers to produce coordinated rhythmic movements. Most biolo-

gical locomotor systems involve neural networks acting as central pattern generators

(CPGs) which are responsible for producing the basic rhythmic patterns for the os-

cillatory movement of limbs (Cohen et al., 1988; Stein et al., 1997). Understanding

the subtleties of operation of such networks, and how to design artificial versions

for robotic applications are ongoing challenges (Ekeberg, 1993; Kimura et al., 1999;

Ijspeert, 2001; Ijspeert et al., 2007).

The majority of approaches to design CPG-based robotic locomotor systems have

relied on optimisation and search methods, including evolutionary algorithms and

other stochastic methods (Gallagher et al., 1996; Ijspeert, 2001; Kamimura et al.,

2003; Itoh et al., 2004; Floreano et al., 2008), to find a suitable configuration of

system parameters. These methods are usually very computationally expensive and

often require a priori knowledge of the robot body and environment. Besides it is

often very difficult to devise evaluation methods and metrics that can adequately

1



Chapter 1. Introduction

cover the enormous number of unexpected situations that a robot can encounter

during its lifetime, such as environmental change or body defects. Hence there are

many open issues in how to deal with unknown environments and adaptation to

arbitrary or changed (e.g. damaged) body conditions.

This naturally led to efforts to develop methods for the on-line generation of

motor control for the lifetime maintenance of locomotor functions. Among these,

reinforcement learning (RL) (Matsubara et al., 2006; Nakamura et al., 2007; Endo

et al., 2008) has been successfully applied to produce locomotion controllers. Heur-

istic optimisation algorithms such as conjugate direction methods (Sproewitz et al.,

2008) have been adopted for faster on-line optimisation of motor behaviours. More

systematic approaches such as continuous self-modelling (Bongard et al., 2006) used

a number of stochastically optimised internal models to predict the robot’s mor-

phological changes using data collected from sensory-actuation causal relationship.

Although these are powerful methods which utilise stochastic search algorithms in

a more efficient way for on-line adaptation, they are still not free from the inherent

difficulties of building-from-scratch and often need to incorporate a priori knowledge

or to make use of a biased learning strategy in order to simplify and speed up the

learning process.

An important consideration in understanding, and drawing inspiration from,

biological motor behaviors, is the appreciation that studying the underlying neural

circuitry in isolation ignores the considerable advantage that can be obtained from

incorporating the physical body and its environment - i.e. exploiting the embodied

nature of such behavior. In studies of animal development including human infant,

many evidences support that sensory-motor information from motor activity has

important effects on brain development (Rakic, 1988; Thelen and Smith, 1994; Crair,

1999; Johnson, 2005). From this perspective, much attention has been paid to the

recent research paradigm called Embodied Artificial Intelligence, which puts a strong

emphasis on the dynamical and reciprocal interaction across multiple time scales

between and the brain, body, and environment of an agent (Brooks, 1999; Wheeler,

2005; Pfeifer and Bongard, 2007). In robotics this has led to efforts to exploit ready-

made functionality provided by the physical properties of an embodied system by

concentrating on brain-body-environment interactions.

Meanwhile, the great potential in exploiting intrinsic chaotic dynamics has at-

tracted the attention of neurobiologists interested in how animals learn to coordin-

2



Chapter 1. Introduction

ate their limbs (Mpitsos et al., 1988; Kelso, 1995; Korn and Faure, 2003). Also a

strand of topics in developmental robotics has been studied based on the growing

body of observations of intrinsic chaotic dynamics in nervous systems (Rapp et al.,

1985; Freeman and Viana Di Prisco, 1986; Terman and Rubin, 2007) to suggest

that such dynamics can underpin crucial periods in animal development. Being

joined with the concept of embodiment, roboticists strived to develop better and

more life-like locomotion systems for articulated autonomous robots. Particularly,

the movement patterns of the robots were generated by exploiting the mechanisms

of self-organisation where the brain-body-environment dynamics are explored in a

spontaneous way as part of the process of acquiring motor skills (Taga et al., 1999;

Lungarella and Berthouze, 2002; Pfeifer and Bongard, 2007; Pfeifer et al., 2007).

Together with these idea, a line of robotics studies have demonstrated that chaotic

neural networks can indeed power the self-exploration of brain-body-environment

dynamics in an embodied system, discovering stable patterns that can be incorpor-

ated into motor behaviors (Kuniyoshi and Suzuki, 2004; Pitti et al., 2005; Kuniyoshi

and Sangawa, 2006; Pitti et al., 2010; Steingrube et al., 2010).

However, to date it has not been clear how to harness chaos in embodied robotic

systems in an integrative way such that desired adaptive sensorimotor behaviors can

be explored, captured and learnt. In this work we build on the essential concepts

of the prior work outlined above, extending and generalising it as we attempt to

develop a generally applicable methodology based around self-organisation through

chaotic dynamics for neural-body-environment coupled systems. We present a pro-

totypic study on the goal-directed on-line exploration of rhythmic motor patterns in

an oscillator system coupled through physical embodiment, specifically generating

forward locomotion behaviours without prior knowledge of the body morphology or

its physical environment. In an important departure from the previous work outlined

above, we employ the concept of Chaotic Mode Transition with External Feedback

(Davis, 1990, 1998), which exploits the intrinsic chaoticity of a system orbit as a per-

turbation force to explore multiple synchronised states of the system, and stabilises

the orbit by decreasing its chaoticity according to a feedback signal that evaluates

the behaviour. This enabled the system to perform a ‘deterministic search’ guided

by a global feedback signal from the physical system, which facilitates an active ex-

ploration toward a desired behaviour. Based on the initial idea, we further enhance

our system by providing a coherent integration of a series of dynamic learning pro-

3



Chapter 1. Introduction

cesses, which attempts to build a realtime self-driven exploration-capture-learning

system.

1.2 Thesis Organisation

The remainder of the thesis is structured as follows. Chapter 2 describes general

background topics necessary for carrying out later simulations and experiments. The

first section starts with the organisation of biological locomotor systems, putting

emphasis on rhythmic pattern generation by central pattern generators. Next, there

is a very brief description of optimisation based methods which have been widely

used for designing robot locomotion controllers. Following that, two branches of

previous research in which this work is deeply-rooted are introduced. The first

one is about the spontaneous emergence of motor patterns from coupling through

physical embodiment and the second work describes the method of chaotic search

through adaptive bifurcation.

Chapter 3 describes the models and methods for the proposed exploration sys-

tem. The general architecture of the exploration system for locomotor behaviours is

outlined, followed by the brief description of each sub-component. The subsequent

sections describe each component in more detail which include the CPG model, eval-

uation strategy, and neuromuscular system. Dynamical properties of both single and

coupled CPG models are examined in terms of the applicability to the limbed robot

movement, followed by how these CPGs are encapsulated as a unit module for a

single joint. Then there is an explanation of how the CPGs are coupled indirectly

through physical embodiment by local sensory information. After that, the robotic

simulation model is addressed by describing the basic neuromuscular model which

is used as the common component for building arbitrary bodies, as well as the simu-

lation models of physical environments. Finally, the analysis method for the system

behaviours are presented.

In chapter 4, the basic behaviour of the proposed exploration system is invest-

igated. The analyses of the system behaviours are presented using a simple 4-fin

aquatic swimmer placed in a simulated 2D hydrodynamic environment. Firstly, the

system behaviours in its chaotic regime is investigated with different global sensor

gains which determines the strength of functional coupling between neural elements
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for the system to exhibit a well-structured dynamics from stable to chaotic patterns.

To draw insights into the chaotic behaviour of the system, a Lyapunov analysis is

performed for different sensor gains. Secondly, the stable movement behaviours of

the robot which exist in the stable regime of the system are identified and cat-

egorised, and the result of the chaotic exploration for those patterns is presented

together with the statistics of the appearance of each pattern. Also a report on the

unwanted system deficiencies arising from the deterministic nature of the system are

addressed.

Chapter 5 improves the basic framework of the system in the previous chapter

by extending the system using two fully dynamic processes which are smoothly

integrated with the basic system. Firstly, a biologically inspired process for calib-

rating incoming sensor signals is introduced, for which the neural system receives

refined afferent input to deal with an unknown variety of sensor signals from an

arbitrary robotic system, and to maintain an appropriate embodimental coupling

between neural elements in realtime and continuous manner. Secondly the system

is again extended by employing a fully dynamic learning method for CPGs in order

to automatically wire initially disconnected neural elements, which is guided by the

evaluation signal, so that the system can dynamically capture and memorise a loco-

motor pattern discovered by exploration process. In order to show the generality of

the fully integrated system, it is tested using a 3D quadruped robot, which is mod-

elled as a representative of terrestrial walking robots. A brief discussion about the

comparative effect of the system on the two different robotic systems is presented.

Finally, in the last chapter we summarise the result and discuss the generality and

limitations of the system, as well as its biological relevance, all of which naturally

lead to a series of future directions.

1.3 Contributions

A summary of the main achievements of this thesis are provided as follows:

• We significantly generalise and extend the two seemingly distinct previous

concepts of the pattern emergence from embodiment and chaotic dynamics,

and introduce a prototype of an integrated framework for robot locomotion,

which is constructed as a single continuous dynamical system.
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• We demonstrate that the presented system can exhibit reversible transitions

between the stable regime where multiple stable states coexist and the unstable

regime where the system orbit wanders quasiperiodically or chaotically by

varying a single system parameter, and attempt to provide a quantitative

analysis of system dynamics and its complexity over a range of dynamical

regimes.

• We model a continuous self-evaluation strategy for robotic system and har-

ness it to the bifurcation parameter of the system, achieving the selective

entrainment of the system dynamics to one of the patterns by imposing goal

directedness toward a higher performing behaviours.

• We provide homeostatic sensory adaptation for the system to generate flexible

yet correlated activities to maintain a certain level of information exchange.

This enhances the generality of control system to deal with an arbitrary ro-

botic system and an arbitrary type of sensors, and also results in an increased

diversity of limb motions by achieving multi-scale exploration.

• The system is further improved by incorporating an oscillator learning al-

gorithm to capture and sustain useful transient patterns by rewiring the CPGs

dynamically using an adaptive synchronisation process.

• The system is successfully demonstrated on a number of simulated robots,

showing its generality and effectiveness in exploring, capturing and learning

locomotion patterns and adapting in real time to damage and other radical

changes.

1.4 Relation to Previous Publications

Parts of this thesis are based on previously published work. Particularly, Chapter 4

is based on Shim and Husbands (2010), with deeper analyses of underlying system

dynamics as well as a few modifications on the neuromuscular model which is com-

monly used for robotic system. Due to the sensitivity of this work to the changes in

models, a large part of the results in Chapter 4 has been newly generated. The de-

scription of the robotic simulation model and its environmental forces in Chapter 3
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has been extracted and re-arranged from a number of sources (Shim and Kim, 2003;

Shim et al., 2004b,a; Shim and Kim, 2006; Shim and Husbands, 2007b,a). Chapter

5 is based on Shim and Husbands (2012) with a few expansions of the results to

emphasise the generality of this work.
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Chapter 2

General Background

This chapter provides a general background on related work and theoretical concepts

relevant to this work. A brief review is provided for each subject; the intention is

not to give an exhaustive survey.

2.1 Vertebrate Locomotor System and CPGs

The vertebrate locomotor system in general can be functionally categorised into

four components, which are for selection, initiation, maintenance, and execution of

the motor task (Grillner et al., 2000; Grillner, 2003). Selecting a motor program is

performed in the region in forebrain called the basal ganglia, involving multimodal

sensory integration. The information of the selected motor task is communicated

to the brainstem, which is responsible for initiating and maintaining locomotion.

The brainstem system is organised serially from the mesencephalic locomotor region

(MLR) and diencephalic locomotor region (DLR) to reticulospinal neurons in the

hindbrain, which in turn project to locomotor neurons in the spinal cord (Figure

2.1). The basal ganglia determines when the motor program should be active. Non-

selected motor programs in the brainstem are subject to a powerful tonic inhibition,

such that locomotion is initiated only when the MLR is disinhibited (Grillner et al.,

2005).

Locomotion is executed by the specialised neural circuits within the spinal cord

called the Central Pattern Generators (CPG), which are responsible for generating

rhythmic motor output. These circuits are located at the spinal level, and they
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Figure 2.1: Organisation of the locomotor system in vertebrates. Basal ganglia (BG)

receives inputs from the cortex and the thalamus, which performs the selection of a

motor task. BG inhibits command centres in the DLR and the MLR during resting

conditions. The visual, sensory, and vestibular information are integrated in the

brainstem to control both steering and posture. The spinal CPGs are activated via

reticulospinal neurons, and they are modulated by local sensory feedback. Images

were arranged and reproduced from (Grillner et al., 2008; Goulding, 2009).

coordinate the basic propulsive movement synergy such as swimming, walking, and

flying by sequentially activating the different motoneuron-muscle groups (Grillner

and Wallen, 1985; Grillner, 2003; Rossignol et al., 2006). The spinal CPG is nor-

mally activated by brainstem reticulospinal cells that provide excitation along the

spinal cord to the different spinal neurons and the motoneurons. The level of CPG

activity is determined by the brainstem locomotor command (Orlovsky et al., 1999).

Different levels of MLR stimulation can modulate the speed of locomotion by indu-

cing the transition between completely different gait patterns. The walking, trotting

or galloping in tetrapods such as cats arise from the different stimulation level (Shik
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et al., 1966). Stimulation of the same region in a bird gives rise to walking and at

higher strengths flapping movements of the wings, and finally in a fish or a lamprey

swimming is initiated at progressively higher speeds (Stein et al., 1997). Although

receiving only simple input signals, CPGs are capable of generating complex loco-

motor behaviors involving the switch between radically different gait patterns.

While the various descending inputs from the supraspinal level play a crucial

role in initiating and shaping the rhythmic pattern of CPG, it can produce co-

ordinated patterns of rhythmic activity without any rhythmic inputs from sensory

feedback or from higher control centers. This has been demonstrated by decereb-

rating or spinalising an animal using a neuromuscular blockade or deafferentation

of sensory feedback. When activated by a simple electrical or pharmaceutical stim-

ulation, several vertebrates are able to produce patterns of activity (which is called

fictive locomotion) after the isolation of spinal cord, which are very similar to nor-

mal locomotion (Grillner and Wallen, 1985; Cohen et al., 1988; Stein et al., 1997).

Therefore it is evident that the CPG is the source of rhythmic activity. However,

sensory feedback plays a very important role both in shaping and coordinating the

rhythmic patterns of CPG. Many studies have shown that a decerebrated cat is able

to restore locomotor function under treadmill training (Shik et al., 1966; Whelan,

1996; Rossignol, 2000). It is even possible to recover some locomotor activity in

human patients suffering from a spinal cord injury through an intense training on a

treadmill (Barbeau and Rossignol, 1994; Dietz et al., 1995).

The notable locomotor ability of decerebrated animals under the presence of local

sensory feedback suggests that the CPG function is tightly coupled to the fast local

sensory information to form a basic low-level circuit for rhythmic activity, which

can be flexibly modulated by a few gradual supraspinal controls. This distributed

nature of the vertebrate locomotor system provides advantages for designing machine

locomotor systems; less time delays in coordinated rhythmic control and the reduced

dimensionality of the descending control signals (Ijspeert, 2008).

It is widely accepted that the spinal motor circuitry is genetically hardwired.

However, some biological evidences suggest that activity-dependent events can shape

the locomotor network during development. A group of neural circuits and the mo-

tor neurons in the spinal cord are spontaneously active during embryonic develop-

ment (Jean-Xavier et al., 2007). In rat experiments, the spontaneous motoneuronal

activity can be mediated by the inhibitory neurotransmitter pathways in embryonic
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neurons (Nishimura et al., 1996). The activity-dependent patterns are necessary for

motor axon guidance (Hanson and Landmesser, 2004) or for shaping the topology of

cutaneous sensory inputs (Schouenberg, 2004). Also, activity-dependent events can

influence the modulation of neurotransmitter expression by the homeostatic mech-

anisms that maintain network excitability in the spinal cord at appropriate levels

during development (Goulding, 2004). All these findings suggest that the spinal mo-

tor circuitry is not strictly hard-wired but can undergo activity-dependant changes

during its lifetime.

2.2 Designing Robot Locomotor System

2.2.1 Mathematical Models of CPGs

Almost a century ago, a basic structure for the CPG network was first proposed

by Brown (1914), which is called the half-centre model. It is comprised of two

coupled neural populations (half-centres) with mutual inhibition, which produce

the alternating rhythmic activity induced by a fatigue mechanism. The two half-

centres can represent the flexors and extensors for a single limb, or any opposing

motor pairs. This central concept became the core of modern CPG models, and

a level of neurobiological details have been filled in for specific vertebrate systems

of interest. To date, there are a number of CPG models in use from simple phase

equations to detailed biophysical models. An excellent review about the various

aspects of CPGs for designing robotic locomotion is available at Ijspeert (2008).

Among a variety of CPG models for designing robot locomotor system, the

most detailed biophysical models of CPG are constructed using the Hodgkin-Huxley

(HH) type neurons (Hodgkin and Huxley, 1952), a model developed by Alan Lloyd

Hodgkin and Andrew Huxley in 1952 to explain the ionic mechanisms underlying

the initiation and propagation of action potentials in the squid giant axon. The

model is governed by the four dimensional differential equations based on the idea

that the electrical properties of a segment of nerve membrane can be modelled by an

equivalent electric circuit, which expresses the flows of current across the membrane

associated with charging the membrane capacitance and the movement of specific

types of ions. The ionic current is subdivided into three components, which are

sodium current, a potassium current, and a small leakage current primarily carried
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by chloride ions. Although HH model provides biologically valid neuronal dynam-

ics, there are several parameters to be estimated for an accurate behaviour and is

computationally intensive to simulate a large network of neurons.

One of the models that captures the core aspects of the dynamics with less

equations is the FitzHugh-Nagumo (FN) model (Fitzhugh, 1961; Nagumo et al.,

1962). It is also called Bonhoeffer-van der Pol (BVP, by Richard FitzHugh himself)

oscillators, because it is reduced from the van der Pol equation for self-sustained

oscillation whose behavior resembles that of the iron nitric acid model proposed

by (Bonhoeffer, 1948). The FN model is a two-dimensional simplification of the

Hodgkin-Huxley model, which can reproduce the behavior of pacemaker neurons

qualitatively well. The model has been widely studied as models of pacemaking

cells and interlimb coordination (Collins and Richmond, 1994; Golubitsky et al.,

1999; Asai et al., 2000, 2003a,b; Sproewitz and Berthouze, 2005; Ohgane et al.,

2009).

There are other kinds of approximated versions of the HH model which combine

multiple models for compromising between computational complexity and biolo-

gical plausibility, or being specialised for specific interests. The Morris-Lecar model

(Morris and Lecar, 1981) combines HH and FN models into a voltage-gated calcium

channel model with a delayed-rectifier potassium channel by using two dimensional

differential equations. It is used to design quadruped (Buono, 2001) and biped (Pinto

and Santos, 2011) robots. The Hindmarsh-Rose model (Hindmarsh and Rose, 1981)

is based on the FN model but uses three coupled equations to allow a wider vari-

ety of dynamic behaviors including chaotic dynamics. For a comprehensive survey

of more popular CPG models especially for designing robot locomotor system, see

(Ijspeert, 2008).

2.2.2 Popular Design Methods for Robot Locomotion

2.2.2.1 Evolutionary robotics

The field of evolutionary robotics applies the techniques of evolutionary algorithms

(EAs) to the design of robot controllers (Husbands and Harvey, 1992; Cliff et al.,

1993; Husbands and Meyer, 1998; Nolfi and Floreano, 2001). Evolutionary al-

gorithms are a group of techniques for automatic design which is inspired by natural

evolutionary processes. They have been applied in a variety of domains including
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combinatorial optimisation, adaptive control, and machine learning.

The algorithm operates on a population of individuals, each of which is ex-

pressed as a sequence of data that encodes the properties of the individual. This

encoded data is called genotype (the set of genes that an organism carries). The EA

procedure starts by generating initial population of random or seeded genotypes.

The individuals are generated from genotype data and their fitness is evaluated by

predesigned metric (fitness function). A new population is created by performing

genetic operation such as crossover and mutation in such a way that individuals with

higher fitness are more likely to pass genotype data to the next generation. This

procedure is repeated until the fitness of the best individual (or of entire population)

meets specified criteria. Designing a fitness function is crucial for the success of EA,

which is often a hard problem.

Robots using EA have normally evolved the parameters of neural controller

(Gallagher et al., 1996; Beer, 2003; Shim and Husbands, 2007b,a; Floreano et al.,

2008), popularly using a connectionist model of neural system consists of continuous-

time recurrent neural networks (Beer, 1995b). Also the robots have been generated

by evolving both its controller and body simultaneously (Cliff et al., 1993; Sims,

1994; Shim and Kim, 2006; Bongard, 2010, 2011). In this case, more than merely a

tool for optimisation, EA provides an interesting possibility that the extent of pos-

sible robot architectures produced by search can show the architecture beyond the

human imagination, which can even possibly provide some insight back to biology.

Although EAs have been successfully applied to various robotic designs, there

are several challenges to be addressed. Similar to other combinatoric optimisation

methods, EA demands intensive computation power and is time consuming, and

often require a priori knowledge of specific robotic system. Also they suffer from

the difficulty of designing fitness functions that can cover the enormous number

of unexpected situations that a robot can encounter during its lifetime, such as

environmental change or body defects. Since EA normally uses computer simulations

to deal with numerous individuals, an accurate simulation of physical system (which

is often very difficult) is crucial to ensure a satisfactory level of reliability when the

generated controller is applied to a real robot. This gap between the simulation and

the real system raises the problem of ‘transfer into reality’, that the gap will widen

as the complexity of robot system grows (Mataric and Cliff, 1996).
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2.2.2.2 Reinforcement Learning

The reinforcement learning (RL) method (Barto et al., 1990; Sutton and Barto,

1998) is a general machine learning paradigm whereby an agent learns how to act

to maximise the reward given as a consequence of its action. RL is suitable to solve

sequential decision tasks such as Markov Decision Processes (MDPs) through trial

and error interactions with the environment. The term reinforcement defines the

desirability of a state of agent which is expressed in terms of rewards and punish-

ments. RL is very general and highly extensible to a variety of problems, and it can

be operated in on-line situations.

The RL agent interacts with its environment and receives a scalar reward signal

for each action taken, and its goal is to learn the ‘action policy’ so as to maximise the

cumulative reward it receives over time. The general RL process is modelled using

a set of states (S), actions (A), and rewards. At each time t, an agent perceives its

state st∈S and the set of currently available actions A(st). Then the agent selects

one of possible actions at∈A(st) and receives a new state st+1 and a scalar reward

rt+1. The goal of an agent is to maximise the total reward over time (R =
∑

rt),

by developing optimal action selection policy π:S→A. The stochasticity intervines

in the selection of action according to the learnt policy.

Concerning robotics, although RL was initially designed for discrete-step pro-

cesses, a continuous version of the algorithm has been introduced and successfully

applied to the learning of optimal control policies for simple mechanical systems

such as pendulum and cart-pole swing-up tasks (Doya, 1996, 2000). For CPG based

controllers, a line of studies has developed a hybrid RL architecture called the CPG-

actor-critic model to control a CPG driven biped robot (Matsubara et al., 2006; Na-

kamura et al., 2007; Endo et al., 2008). The model basically uses hard-wired CPGs

controlled by the descending commands from the higher center which is represented

as a simple feed-forward neural network, and its parameter is subject to learning.

The major drawback of RL is the large number of runtime trials required, and

it often requires a careful representation of states and actions. The combinatorial

explosion problem is also an issue when the complexity of search space of possible

actions increases.
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2.3 Intrinsic Chaos in Neural Systems

A key influence on the current work is the growing body of observations of intrinsic

chaotic dynamics in nervous systems (Guevara et al., 1983; Babloyantz and Salazar,

1985; Rapp et al., 1985; Freeman and Viana Di Prisco, 1986; Wright and Liley, 1996;

Terman and Rubin, 2007). Freeman and colleagues were among the first to provide

empirical evidence of chaotic brain dynamics in their analysis of multi-channel EEG

recordings from the rabbit olfactory bulb (Freeman and Viana Di Prisco, 1986;

Skarda and Freeman, 1987), showing that background neural activity in the area

appears to be chaotic. These observations were backed up by mathematical models

of the bulb that were able to replicate the electroencephalography (EEG) measured

from living brain. Various authors have observed chaotic dynamics (low dimensional

chaotic attractors) in human EEGs in various stages of sleep and wakefulness (e.g.

(Babloyantz and Salazar, 1985)), in epileptic seizures and other disorders (Guevara

et al., 1983; Babloyantz and Destexhe, 1986), as well as in other animal systems

(Aihara, 2003). These observations of chaotic dynamics in both normal and patho-

logical brain states, and at both global and microscopic scales (Wright and Liley,

1996), support the idea that chaotic dynamics, rather than being pathological, often

plays a fundamental role in neural mechanisms (Freeman et al., 2001).

In addition to the examples cited above, many of which refer to perceptual states,

there are also a number of studies indicating intrinsic chaotic dynamics in animal

motor behaviours, both at the neural level (Rapp et al., 1985; Venaille et al., 2005;

Terman and Rubin, 2007) and at the level of body and limb movement (Cordier

et al., 1996; Riley and Turvey, 2002). These seem particularly prevalent during

developmental and learning phases (e.g. when learning to coordinate limbs) (Ohgi

et al., 2008).

Although the functional roles of chaotic dynamics in the nervous system are far

from understood, a number of intriguing proposals have been put forward. Freeman

and colleagues have hypothesised that chaotic background states in the rabbit ol-

factory system provides the system with “continued open-endedness and readiness

to respond to completely novel as well as familiar input, without the requirements

for an exhaustive memory search” (Skarda and Freeman, 1987). They postulate

that such mechanisms underlie much of perception and play an important role in

cognition in general (Freeman and Skarda, 1960; Freeman et al., 2001). A number
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of neurobiological studies (Rakic, 1988; Thelen and Smith, 1994; Crair, 1999; John-

son, 2005) make the important suggestion that chaotic dynamics underpin crucial

periods in the development of animal brains.

A growing number of computational models have demonstrated that the above

kinds of functions do arise in chaotic neural networks. Many studies have shown in-

teresting learning and self-organisation dynamics are possible in such networks, with

the kind of open-ended properties postulated by Freeman and colleagues (Aihara

et al., 1990; Hansel and Sompolinsky, 1992; Adachi and Aihara, 1997; Aihara,

2003; Huang and Cao, 2006; Andras and Lycett, 2007). Robotics studies also have

demonstrated that chaotic networks can power the self-exploration of brain-body-

environment dynamics in an embodied system, discovering spontaneously emerged

patterns that can be incorporated into motor behaviours (Kuniyoshi and Suzuki,

2004; Pitti et al., 2005; Kinjo et al., 2008; Pitti et al., 2010).

2.4 Embodiment and Locomotion

2.4.1 Minimal Control by Exploiting Physical Embodiment

As has been increasingly pointed out over the past few years (Pfeifer and Iida, 2004;

Pfeifer and Bongard, 2007; Pfeifer et al., 2007), studying neural circuitry underlying

the generation of rhythmic motor behaviour in isolation ignores the considerable

advantage that can be obtained from incorporating the physical body and its envir-

onment - i.e. exploiting the embodied nature of such behaviour. From a macroscopic

perspective, even high-level cognition is inseparable from body-environment inter-

actions (Wheeler, 2005) and any attempt to dissociate such interactions will destroy

their natural function afforded by the information structure innately provided by

physical embodiment (Kuniyoshi et al., 2007).

In robotics this has led to efforts to exploit ready-made functionality provided by

the given physical properties of an embodied system for the automatic generation

of motor movement. One such line of enquiry involves using a frequency adaptive

oscillator whose frequency can be tuned to the resonant frequency of the mechanical

system (Buchli et al., 2006; Righetti et al., 2006), and a systematic analysis of

the importance of frequency scaling and its existence in the chaotic regime of a

neuromechanical model have been presented in this context (Raftery et al., 2008).
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Figure 2.2: The photograph and schematic diagram of the quadruped robot

“Puppy”. Only four of eight joints are actuated, which are shown as the circles

with a cross inside (right image). Images were taken from (Iida et al., 2005).

Pfeifer and his colleagues take a more active approach by using the concept ‘mor-

phological computation’, where a considerable portion of the control or computation

can be taken over by the dynamic interaction from morphological properties which

include passive leg swing in walking, muscle compliance, and weight distribution. A

realisation of this idea had been shown using a simple dog-like robot (Figure 2.2)

(Iida et al., 2005), which could run robustly only with a purely feedforward control-

ler using sinusoidal functions, although the parameters for the controller were found

heuristically and set by hand.

2.4.2 Pattern emergence from Coupling through Physical

Embodiment

One of the seminal works from the previously mentioned perspective is the explor-

ation and acquisition of motor primitives, for a simple robot, using a mechanism

which is embodied as a coupled chaotic field (Kuniyoshi and Suzuki, 2004; Pitti

et al., 2005). Those groups modelled an extreme version of embodied coupling that

had no electrical connection between neural units, with all neural coupling act-

ing indirectly through body-environment dynamics. Therefore the neural circuit is

‘embodimentally coupled’ through the physical system as the agent interacts with

the environment (we will use the term ‘embodimental coupling’ with this meaning
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Figure 2.3: The schematic diagram of cortico-spinal-musculo-skeletal system (left)

for the 1-joint link model (right) proposed by Kuniyoshi and Sangawa (2006). The

model consists of, sensor map (S1), motor map (M1), α motor neuron (α), γ motor

neuron (γ), and afferent interneuron (S0). Arrow and filled circles represent excit-

atory and inhibitory connections respectively, and thick broken lines represent all to

all connections with plasticity. The physical body consists of two cylindrical rigid

links connected with a ball-socket joint, actuated by 12 muscle fibers (red lines).

Images were taken from (Kuniyoshi and Sangawa, 2006)

throughout the text). For instance, take the example of an insect walking, where the

local neural circuits at the legs are coupled through the embodiment of the insect

body and the interaction with the environment, as it pushes back with a leg. The

neural element was implemented using a simple logistic map showing chaotic dy-

namics, such that the output of each element drives the muscle activation level and

the sensor value from each actuator site is fed to the corresponding neural element.

The system dynamics rapidly developed to a stable, coherent rhythmic motion by

using mutual entrainment between the neural circuit and the body-environment in-

teractions. The process was completely deterministic, not making use of any random

search method.

More tractable systems (Pitti et al., 2009, 2010) have shown that a simple 2D
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simulated biped controlled by indirectly coupled chaotic maps can generate stable

locomotion when the coupling strength between controller and body was set in the

specific regime of phase synchronisation. Phase synchronisation between chaotic

controller and physical system allows the flexible self-assembly of motor patterns

and adaptive frequency matching to the resonant frequency of the body. However,

the motor patterns that emerge through phase synchronisation do not necessarily

produce sustained locomotion behaviours unless the coupling strengths are properly

set for a given neuromechanical system.

Another branch of work (Kuniyoshi and Sangawa, 2006) dealt with a more bio-

logically plausible system in which a realistic musculo-skeletal model was employed

and the neural control circuit consisted of a model CPG (Figure 2.3). This was

embedded within a larger system involving cortical maps with interactions between

the various components. The biomechanical system was modelled as a series of re-

dundant muscles acting on a joint, and the information of the muscle combinations

for any discovered coherent motor patterns were engraved on the model cortices

as a sensorimotor representation. Later work (Kinjo et al., 2008) demonstrated

the learning and replay of a motor pattern by adding a simple perceptron with a

back-propagation learning on top of the previously learnt sensorimotor maps. The

learning pattern was manually fed to the system during learning, and a simple 3-

layer perceptron could acquire the movement by learning the relation between sensor

and motor cortices. They showed that the representative power of the self-organised

sensorimotor maps can greatly simplify the nontrivial sensorimotor learning problem

into a simple mapping between the sensor and motor maps.

While these studies have developed detailed biological models that have signi-

ficant implications for the understanding of motor development, concrete general

methodologies for applying such techniques to the automatic generation of desired

motor patterns for autonomous robots remains a challenge.

2.5 Chaos as a Source of Perturbation

2.5.1 Chaoticity as an External Perturbation

Conventional optimisation strategies generally use (external) stochastic perturba-

tions on system parameters for search space exploration. However, a few studies
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address the effectiveness of chaotic dynamics as behaving like a stochastic source

(Parker and Chua, 1989; Ott et al., 1994). A number of studies have found that a

deterministic chaos generator (usually using logistic map) outperforms a stochastic

random explorer both in evolutionary algorithms (Determan and Foster, 1999; Zhang

and Shao, 2001; Caponetto et al., 2003) and reinforcement learning (Morihiro et al.,

2005, 2008). In these cases, the chaotic dynamics acts as an external module gener-

ating perturbations that cause system parameters to wander in parameter space.

2.5.2 Chaotic Search Using Adaptive Bifurcation

The adaptive chaotic search method presented here, using bifurcation to chaos, can

directly drive the phase orbit of a embodied system for exploration because of the

endogenous existence of chaotic dynamics in the system itself. The intrinsic chaotic

dynamics of the system naturally power the search process without the need for

external sources of noise. The general idea of applying a chaotic search method

using adaptive parametric feedback control had been previously presented in the

field of optical sciences (Aida and Davis, 1994; Davis, 1990, 1998; Liu and Davis,

1998) and for memory search (Nara and Davis, 1992). The idea couples the fitness

response to the multimode system in such a way that bad response result in mode

transitions, whereas good response suppress them.

It has been argued that this method should be generally applicable when the

target device is capable of supporting a variety of stable modes, between which there

exist chaotic transitions, which interacts with its environment and gives a feedback

signal evaluating whether the mode is suitable or not. Chaotic transitions allow the

system to try each of the modes sequentially, and the mode which is evaluated as

suitable is selected and stabilised by changing a device parameter to take it into a

multistable regime. The whole process can be thought as a controlled version of the

concept of chaotic itinerancy (Kaneko, 2003), where the system wanders from one

quasi-attractor to another, getting entrained in each of them for a while.

An indirectly coupled neural-body-environmental system, such as the one used

in this paper, has the required characteristics of such a device, including multiple

coordinated oscillation modes. It is known that a properly designed oscillator net-

work can have multiple synchronised states which exhibit stable oscillations for both

discrete (Feudel et al., 1996; Feudel and Grebogi, 1997) and continuous (Vadivasova
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Figure 2.4: A conceptual illustration of chaotic exploration. (A) The state space

of a neural-body-environment system coupled through physical embodiment, which

consists of three basins of attraction (A,B,C) with different performances. (B) An

exploration process to find the desired attractor, C, by varying the complexity of

the state space landscape. Lump spaces and narrow passages in the landscapes of

higher complexities represent quasi-attractors and itinerant pathways respectively.

et al., 1999; Olusola et al., 2010) systems, and the structure of emergent behaviour

in these systems often reflects the spatial distribution of coupling strengths (Kaneko,

1994). Accordingly, a network of oscillators coupled through physical embodiment

forms multiple synchronised states that reflect the body schema and its interac-

tions with the environment, and each of them represents a potential candidate for

‘meaningful’ locomotion behaviour.

A conceptual description of the chaotic search process is briefly illustrated in

Figure 2.4. The goal of the system can be regarded as finding and becoming en-

trained in the basin of a particular attractor which has high performance (denoted

by C) while escaping from the low performing attractors (A and B) regardless of
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the initial point in the state space. The idea is to ‘open’ a new pathway which

connects those isolated basins through the use of an additional dimension afforded

by changing the system dynamics through tuning the chaoticity according to the

evaluation signal. The orbit will visit and evaluate each of the attractors (A,B,C)

systematically yet chaotically by adaptively varying the bifurcation parameter of

the system according to a feedback signal until it reaches the basin of the desired

attractor. The method has some conceptual similarities with Ashby’s idea of the

ultrastable system (Ashby, 1952), although, not surprisingly given how long ago

he conceived it, Ashby only envisaged simple stochastic perturbations. The process

can be interpreted as a continuous and deterministic version of trial-and-error search

which exploits the intrinsic chaotic behaviour of the system.

2.5.3 Chaotic Search of Embodied Rhythmic Movement

Inspired by the existence of the multistable solutions of rhythmic movements which

spontaneously emerge in embodimentally coupled neuro-physical systems, our prior

work (Shim and Husbands, 2010) has demonstrated how chaotic search can be ap-

plied to a neuro-robotic system for the goal-directed exploration of emergent move-

ment patterns. Although the general purpose of our system is the same as that

of the conventional parameter optimisation of robot controllers, there are radical

differences between them. While parameter optimisation searches the parameters

of the target system (e.g. connection weights of a neural network), chaotic search

directly deals with the phase orbit of the dynamical system without altering the

system parameters. It should be distinguished from chaotic optimisation, a sub-

category of parameter optimisation methods which uses a chaotic number generator

(ex. logistic map) to power the search space exploration. The system for chaotic

search should exhibit multistability to be eligible for the method.

From the perspective of explorability of possible solutions, the parameter op-

timisation methods would generally be superior to chaotic search when the target

system complexity is low or moderate. In the case of a highly complex embodied dy-

namical system, as used in this work, where there are many stable states in the phase

space, the solution diversity would be equal or even higher than that of parameter

optimisation. If the systems for both methods have rich enough sets of solutions,

chaotic search has the advantage in that it does not need multiple trials and resets
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and can be run continuously in realtime. Also the support of internal simulations

to deal with the real world as in Bongard et al. (2006) is unnecessary. Assuming the

final solution is a good stable rhythmic movement which is expressed in the globally

stable attractor in state space, parameter optimisation changes (morphs) the land-

scape of the state space by optimising the parameters of the dynamical system (i.e.

neural weights) to find the best state space landscape that satisfies the evaluator.

The chaotic search method deals with a state space containing multiple attract-

ors and this multistability stems from the embodimental coupling (no connection

between neural elements) whose effective coupling strengths are time varying and

nonlinear. The embodiment can be thought of as a coupling field for neural elements

providing inherent flexibility against changes of the physical system.

From the viewpoint of developmental biology, it has been suggested that early

motor development is influenced by the emergent patterns from the neuro-physical

interaction, which is crucial for the organisation of neural circuitry (Granmo et al.,

2008; Blankenship and Feller, 2010). This implies that the evolution of biological

locomotion is deeply related to the body and the surrounding environment in which

the specimen lives. Such movement patterns naturally reflect the information struc-

ture formed by the physical embodiment which is advantageous in terms of energy

efficiency. In the case of generating biologically plausible locomotion behaviour of a

robot with a given physical body and environment using a stochastic optimisation

method, it is likely to be expected that the parameter set which represents the motor

patterns similar to those that emerge from the embodimentally coupled system will

lie in the neighbourhood around the highest peaks in the search space.

Previous works of the Kuniyoshi group on emergent movement from embodi-

ment proposed a novel framework that serves as a base model for constructing a

robotic system which can fully exploit information structures inherently formed by

the body-environment interaction. Although this study builds on the previous idea,

it differs from the previous works in a number of important aspects. Firstly, this

work develops a goal-directed system which performs an active search of desired lo-

comotion behaviour by adopting a chaotic search method using adaptive bifurcation,

particularly for stable forward locomotion behaviours. The previous work did not

focused on the directed search for long lasting forward locomotion. Rather, they fo-

cus on the embodied interaction between chaotic units (e.g. logistic maps), showing

the possibility of emergent ordered patterns (including an example of locomotion
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behaviour) with specifically pre-specified controller parameters which determine the

controller chaoticity and feedback coupling strength (Kuniyoshi and Suzuki, 2004).

Another work also dealt with transient systems by setting the neural controller to

behave chaotically, promoting the system to explore possible temporal coordina-

tions of multiple muscles acting on a joint, which are then stored in cortical maps

as sensorimotor representation (but did not focus on the active search of interlimb

coordination for locomotion) (Kuniyoshi and Sangawa, 2006). Although more recent

works (Yamada et al., 2011a,b) were devoted to generating quadruped locomotion

using non-chaotic controllers, the emergent movement of the robot spontaneously

changed among forward/backward walking and jumping, and none of them dealt

with the active search driven by external feedback to foster better performance.

We also provide a novel homeostatic sensory adaptation which can adaptively

regulate incoming sensor signals. This enhances the generality of the control system

enabling it to deal with arbitrary sensor types by ensuring the control units maintain

a certain level of information exchange ensuring the system always generates flexible

yet correlated activities even if the robotic system has a range of different types of

sensors which give a variety of waveforms. The homeostatic process controls the

slow variables for the amplitudes and offsets of incoming sensor signals, which are

diversified in the chaotic phase of the search process. As a result, limb motions with

different waveforms can give similar sensor signals to neural elements, achieving

multi-scale exploration by the fast and slow dynamics of the system.

Finally, the system is further improved and differentiated from previous work

by hybridising it with an oscillator learning algorithm to capture and sustain high

performing transient patterns which are discovered during the search process by

dynamically rewiring the neural elements using an adaptive synchronisation process.

The learning process is integrated with the chaotic search into a single continuous

dynamical system, which achieves a realisation of a fully dynamic resilient robotic

agent. Such a system also provides a meaningful instance for embodied cognitive

science, particularly being incorporated with dynamical systems theory, which is

theorised as the situated, embodied, dynamical (SED) framework (Beer, 2011).
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2.6 Concepts in Dynamical Systems Theory

A dynamical system is a mathematical abstraction that describes how the state

of some system evolves over time. It is commonly expressed by a set of ordin-

ary differential equations or iterated maps, but many other kinds of mathematical

descriptions are available. Dynamical systems theory provides the appropriate the-

oretical language and tools for analysing autonomous agents such as our system.

Using the language of dynamical systems theory, the behavior of the system can

be qualitatively understood by identifying its invariant sets and the dependence on

system parameters. Although dynamical systems theory is one of many hypotheses

to explain the natural world, it provides the concepts, intuitions, and metaphors for

the design of the systems we want, as well as for the interpretation of their results.

This stance, called the dynamical perspective (Beer, 2011), is widely accepted in

cognitive science, and it is one that this study also advocates. Since our system

was designed and analysed from the dynamical systems perspective, let us briefly

go over some of the concepts in dynamical systems theory for the terms which are

used in this work. For a comprehensive introduction to dynamical systems theory

see (Hirsch et al., 2012).

Autonomous/non-autonomous dynamical system

A dynamical system whose evolution depends only on its internal state is called

autonomous, while one whose evolution also depends on external inputs is called non-

autonomous. Characterising a dynamical system as autonomous or non-autonomous

depends on how we define the boundary of the system of interest. Usually an agent

and its environment are considered as two interacting non-autonomous systems. On

the other hand, we can view the two coupled non-autonomous systems and their

interaction as a single autonomous dynamical system whose state variables are the

union of the state variables of the two non-autonomous systems (Beer, 1995a, 2000,

2008), which is the approach we take in this thesis.

Phase space

Phase space is an abstract mathematical space in which all possible states of a dy-

namical system are represented. Each possible state of the system is represented as

a unique point in the phase space. The trace of state point evolving over time is
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called an orbit or a trajectory.

Attractor

A set of points or a subspace in phase space toward which the orbit of dynamical

system evolves over time. It is an attracting invariant set (a set in phase space is

invariant if a trajectory that starts on the set remains on it forever). An attractor

has its own geometry in phase space, which can be a point, a set of points, a curve,

or a complicated fractal structure. In practice, classical attractors are equilibrium

points, limit cycles, quasiperiodic or chaotic attractors. A dynamical system often

has more than one attractor. In a phase space where multiple attractors coexist,

each attractor has its basin of attraction which is a set of initial points from which

all trajectories eventually approach that attractor.

Periodic orbit

A type of solution for a dynamical system whose orbit exhibits a periodic motion.

A stable periodic orbit appears as an attractor in the phase space, whose shape is a

closed curve. A periodic orbit on a two-dimensional manifold (on a plane) is called

a limit cycle.

Quasiperiodicity

An oscillating solution consisting of two or more incommensurate frequencies (Two

frequencies are said to be incommensurate if their ratio is irrational). A well-known

instance of a quasiperiodic attractor is a torus, an invariant set which forms a sur-

face of a doughnut in a three dimensional phase space. The circular motion of the

orbit on the attractor is the sum of two oscillatory motions whose frequencies are

incommensurate, one around the small radius and the other around the large radius.

Accordingly, a hypertorus can exist in the phase space of higher dimensions, where

the periodic motion has more than two frequency components.

Chaos

A type of motion that is sensitive to changes in initial conditions. A motion for

which trajectories starting from infinitesimally close initial conditions diverge ex-

ponentially with time. It is usually identified by the motion exhibiting a positive

Lyapunov exponent, a quantity of a dynamical system that characterises the rate of

separation of slightly different initial points.
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Bifurcation

A qualitative change in the dynamics or a change in the topological structure of a

dynamical system by varying the system parameters. One of the most frequently

covered types of bifurcation in the field of robot locomotion is the Hopf bifurcation,

in which a stable fixed point of a dynamical system loses its stability and a stable

periodic orbit arises.

Chaotic itinerancy

A type of transitory dynamics in which the system state wanders from one quasi-

attractor to another through a high dimensional chaotic trajectory, getting entrained

in each of them for a while. A quasi-attractor is a local region to which flows con-

verge to an ordered periodic activity, while the flows diverge between the regions

with disordered and chaotic activity. In chaotic itinerancy, an orbit successively

itinerates over different ordered motions of small effective degrees of freedom, which

are specifically called attractor ruins. The attractor ruin can be thought as having

both stable and unstable subspaces, where the orbit is attracted through the stable

trajectory and stays there for a while until it eventually leaves through the unstable

trajectory.

2.7 Analysis Methods for Oscillation and Chaos

Understanding the behaviour of the exploration system as a whole might be best

done by visual observation of the movement of the robot. Deeper understanding of

the system which is unable to be captured by a simple visual observation requires a

series of mathematical processes for analysing the accessible variables of the system.

Although the neuro-robotic system has relatively small numbers of degrees of free-

dom, there is a lack of accessability to the internal variables of the physics engine

used to simulate the articulated robots. Therefore, the analyses of system beha-

viours should be done using as many variables as possible which are observable from

the outside of system. These observed (measured) data are generally the subject of

time series analysis.

Time series is a sequence of measurements which follow non-random orders.

Unlike the analyses of random samples of observations that are discussed in the

context of most other statistics, the analysis of time series is based on the assumption
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that successive values in the data file represent consecutive measurements taken

at equally spaced time intervals. Often, many of the results produced by time

series analysis methods are presented as an image whose data points for the whole

time span are superposed to show qualitative or statistical features of the system

behaviour. Since our system operates in realtime, the majority of our interest lies

in how the system behaviour changes in time. In order to understand the system

behaviour more intuitively, we prefer that the analysed time series data are presented

and visualised as a function of time wherever it is possible.

Mainly a couple of aspects are considered for our system to investigate its time

varying behaviour, namely the phase relationship of limbs and the chaoticity of the

system. The interlimb coordination of multi-legged locomotion is often characterised

by the phase relationship of the oscillating limbs or corresponding neural signals. In

order to look over how the interlimb coordination changes over time, the instantan-

eous phase differences are calculated and plotted through time flow. The instant-

aneous phase of periodic time series data x(t) can be obtained by calculating its

Hilbert transformation x̂(t) which generates a 90 degrees phase-shifted signal of the

original data. Hence the instantaneous (wrapped) phase becomes arctan( ˆx(t)/x(t)).

For measuring the chaoticity of a time series data, we use a characteristic quantity

of dynamical systems called the maximum Lyapunov exponent, which is the rate

of separation of initially close trajectories in the mostly separating direction. It

can be analytically calculated from the differential equations describing the system

dynamics, but if the complete set of the governing equations are unknown as in our

system, it has to be numerically obtained from the observable time series data. In

order to do this, a technique called state space reconstruction is employed to unfold

the multidimensional structure of the system orbit with appropriately chosen em-

bedding delay and embedding dimension. The following sections will present each

method in brief detail.

2.7.1 Instantaneous Phase Relationship

Phase difference (phase shift) between two oscillating signals is the most frequently

used method for describing the movement pattern of limbed robot. Phase difference

is expressed in degrees or radian, between two waves having the same frequency and

referenced to the same point in time. However, in order to observe how the phase
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relationship between robot limbs varies throughout the exploration process, the time

course of phase differences should be presented. The phase at a time instant can be

expressed using instantaneous phase. Then we can obtain the instantaneous phase

differences by subtracting one from another at a specific time.

The instantaneous phase of a two dimensional limit cycle orbit (x, y) can be cal-

culated by θ = arctan(y/x). When θ is constrained to an interval such as (−π, π)
or (0, 2π) it is called the wrapped phase. Otherwise it is called unwrapped phase,

which is seen as a continuous function of time. For the visualisation of phase differ-

ences vs. time, the unwrapped instantaneous phase is appropriate because wrapped

phase difference exhibits discrete jumps. In case of relaxation oscillators, the speed

of orbit on the limit cycle varies in time so the evolution of unwrapped instantaneous

phase does not show linear increase, which results the oscillation in phase difference

plot. This can be linearised by expressing the phase as the elapsed time normalised

by the intrinsic period.

When only a single oscillatory signal is available, we need to generate the 90◦

shifted signal to calculate instantaneous phase. A simple method might work where

the shifted signal is generated by the derivative of the original signal, but the derived

signal often shows a highly distorted waveform compared to the original, which is

inappropriate for our purpose. Instead, the Hilbert transformation (Bracewell, 1999;

King, 2009) is frequently used for generating the shifted signal. Hilbert transform has

been introduced by the German scientist David Hilbert (1862-1943) in the beginning

of the 20th century. The Hilbert transform H [f(t)] of a signal f(t) is defined as

H [f(t)] =
1

π

∫ ∞

−∞

f(τ)

t− τ
dτ. (2.1)

We can see that H [f(t)] is the convolution of f(t) with the signal 1/πt. However

this integral is improper in that the integrand has a singularity and the limits of

integration are infinite. Although the Hilbert transform is properly defined as the

Cauchy principal value of the integral whenever this value exists, alternatively, the

principal value integral can be written explicitly by changing variables as

H [f(t)] = −1

π
lim
ε→∞

∫ ∞

ε

f(t+ τ)− f(t− τ)

τ
dτ. (2.2)

An original function f(t) and its Hilbert transform H [f(t)] are orthogonal to each

other, hence the basic property of the Hilbert transform is π/2 phase-shift oper-
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ator. The Hilbert transformation of signal f(t) is written as f̂(t) as the common

mathematical notation.

2.7.2 Hilbert-Huang Method

If the oscillating centre of a periodic signal deviates from zero, the centre of rotation

of the two dimensional orbit (f(t), f̂(t)) also deviates from the origin, which results

in inaccurate or oscillating instantaneous phase. Therefore the time series data

should be modified so that its centre of oscillation is aligned near zero. Often the

measured data are nonstationary and nonlinear and they hardly show zero-offset

oscillation. To address this problem, the Hilbert-Huang transformation (HHT) is

used (Huang et al., 1998).

The fundamental part of the HHT is the empirical mode decomposition (EMD)

method. EMD decomposes any complicated data set into a finite number of compon-

ents, which is a collection of intrinsic mode functions (IMF). An IMF represents a

generally simple oscillatory mode as a counterpart to the simple harmonic function.

An IMF must satisfy the definition that it has the same number of extrema and

zero crossings and its envelopes are symmetric with respect to zero. This definition

guarantees a well-behaved Hilbert transform of the IMF. Since the decomposition is

based on the local characteristic time scale of the data, it can be applied to nonlinear

and nonstationary processes.

The extracting procedure of an IMF is called sifting. The sifting process is as

follows:

0. Copy the original data set and name as I.

1. Identify all the local extrema in I.

2. Generate the upper envelope by connecting all the local maxima using a cubic

spline.

3. Generate lower envelope by repeating the procedure 2 for the local minima.

4. Obtain a new data set IN by subtracting the local mean values of upper and

lower envelopes from I.
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Figure 2.5: An example of iterations of the EMD procedure and the resulting residua

after each iteration; (A) iteration 0, (A) iteration 1, (A) iteration 3, (A) iteration 8.

Images were taken from Tolwinski (2007).
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Figure 2.6: Decomposed signals by EMD procedure and the final residue. Images

were taken from Tolwinski (2007).

5. If IN has negligible local mean then terminate sifting, otherwise set I = IN

and repeat 1 to 4.

An example of sifting process is shown in Figure 2.5. After the first IMF is

produced by above loop it is subtracted from the original signal. This difference

between the original data and the IMF is called residue. The construction of an

IMF is now repeated for the residual signal as an outer loop. This EMD procedure

is repeated until the residue is either constant or monotone. As a result, we have a

series of IMF data and the final residue. The original signal can be reconstructed

by summing up these decomposed data.

s(t) =
∑
i

IMFi + residue (2.3)

Figure 2.6 shows the decomposed data. The remaining residue reveals any trend

that exists in the data.
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In this work, the periodic data measured from the robot movement is not de-

composed into multiple components which have different frequencies. Instead, only

sifting process is used for the purpose of well-behaving Hilbert transformation by

generating the first satisfactory IMF of the original time series which is aligned

around zero. This is because we want to preserve all the frequency components in

order to generate instantaneous phase vs. time plot. However, generating IMF for

highly variable periodic data such as chaotic signals often exhibit large fluctuation

during the enveloping of extrema using cubic splines. This can be greatly relieved

by slightly pre-smoothing the original data using low-pass filter, which removes the

components out of our resolution of interest where the frequency is too high and the

amplitude is too small.

2.7.3 Lyapunov Exponent from Time Series

Variable system dynamics of the chaotic exploration process can be quantitatively

measured using the Lyapunov characteristic exponent (Lyapunov exponent). The

Lyapunov exponent of a dynamical system is a quantity that characterises the rate of

separation of infinitesimally close trajectories. In state space, two dynamical system

are similar if two system orbits are close together. While the two infinitesimally

close points change similarly when the systems are linear, those of nonlinear system

may exhibit significant separation after being evolved through time. The rate of

separation of neighbouring orbits usually increases exponentially, and this exponent

is defined as Lyapunov exponent. Lyapunov exponents exist as many number as

the system dimension, and estimation of the maximum Lyapunov exponent (MLE,

usually denoted as λ1) is often used in diagnosing chaos. The maximal Lyapunov

exponent λ1 can be defined using the relationship,

d(t) = d(0)eλt (2.4)

where d(0) is the initial separation of two neighbouring points and d(t) is the diver-

gence at time t.

Directly computing the Lyapunov exponent from the conventional mathematical

definition is inappropriate for a finite experimental time series. Lyapunov exponents

are only truly defined in the limit of infinite time which is impractical for real world

problems. Using numerical simulation, inaccuracies from small numerical error will
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accumulate over time until small perturbations in contracting direction eventually

realign themselves along exponentially expanding directions. Besides, the math-

ematical definitions of lyapunov exponent can only be applied when the governing

differential or difference equations are known. In many real world applications, these

equations are either unknown or extremely difficult to derive, as in the case of our

system.

2.7.4 State space reconstruction

The algorithms estimating maximum lyapunov exponent from experimental time

series data are generally based on state space reconstruction procedures. From

Taken’s embedding theorem (Takens, 1981), one can reconstruct an appropriate

state space from a single original time series and its time-delayed copies as:

x(t) = [x(t), x(t + τ), x(t + 2τ), ...., x(t + (m− 1)τ)]T (2.5)

where x(t) is the m dimensional state vector, and x(t) is the original data. τ is the

time delay, and m is the embedding dimension.

2.7.4.1 Choosing embedding delay

Choosing a good time delay is to find a delay large enough such that the information

we get from measuring the value of variable x(t) variable at time x(t+ τ) is relevant

and significantly different from the information we already have. At the same time, it

should not be so large that they are completely independent statistically, not letting

the system loose ‘memory’ of the previous state. The most widely used method to

select proper time delay is to choose τ by taking the first minimum of the average

mutual information (AMI) (Fraser and Swinney, 1986), which evaluates the amount

of information shared between two datasets over a range of time delays. Given a

time series of the form (x0, x1, x2, ..., xt, ..., xT ), the difference between the maximum

(xmax) and the minimum (xmin) of the sequence (|xmax−xmin|) is partitioned into j

equally sized intervals, where the bin size j should be a large enough integer number.

Then the mutual information is expressed as:

I(τ) =

j∑
h=1

j∑
k=1

Ph,klnPh,k(τ)− 2

j∑
h=1

PhlnPh (2.6)
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Figure 2.7: Mutual information and FNN calculated from the time series of Lorentz

system. Embedding delay is chosen to τ = 17 (bits) from the first minimum of

mutual information. FNN graph shows the fraction of false nearest neighbour drops

to zero at the embedding dimension m = 3.

where Ph and Pk are the probabilities each of which assumes a value inside the h-th

and k-th bin. Ph,k(τ) is the joint probability that xt is in bin h and xt+τ is in bin

k. This metric evaluates the amount of information shared between two datasets

over a range of time delays. Choosing the first minimum of the mutual information

provides adjacent delay coordinates with a minimum of redundancy. While it has

been empirically shown that the first minimum of I(τ) often yields the optimal

embedding delay, there is lack of a formal mathematical proof on this, and even

it has been pointed out that there is no theoretical reason why a minimum of the

mutual information exists (Kantz and Schreiber, 1997). Although it has often been

proved reliable and has shown well performance for the given purpose, giving full

credit to the determined embedding delay should be avoided if the reconstructed

system shows somewhat doubtful results.

2.7.4.2 Choosing embedding dimension

A valid state space must include a sufficient number of coordinates (m) in order to

fully resolve the complex structure of the attractor. While Takens’ embedding the-

orem guarantees a proper embedding for all sufficiently large m > 2n (where n is the
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Figure 2.8: Reconstructed phase space (x(t) versus x(t+ τ)) using different embed-

ding delays and embedding dimensions. (A) τ = 3, m = 2. (B) τ = 17, m = 3. (C)

τ = 100, m = 4.

actual attractor dimension), it has been proven that attractors reconstructed using

smaller values of m often yield reliable Lyapunov exponents, which suggests that

the minimum number of dimension to describe the attractor is sufficient. Therefore

the problem of finding good embedding dimension can be seen as an optimisation

procedure yielding just the minimal required m.

The most widely used method to determine optimal embedding dimension is

False Nearest Neighbors (FNN) algorithm (Kennel et al., 1992). The FNN assumes

that the orbit of a deterministic system evolves smoothly with no sudden irregu-

larities in the attractor structure. Two neighbouring points on the reconstructed

embedding space have to stay sufficiently close during forward iteration of system.

FNN algorithm compares the distances between neighboring trajectories at success-

ively higher dimensions. ‘False neighbors’ occur when the points apparently lying

close together due to projection are separated in higher embedding dimensions.

A natural criterion for catching embedding errors is that the increase in distance

between two neighboured points is large when going from dimension d to d+ 1.

When we denote the distance between two neighbouring points in the d-dimensional

embedding space at time t as Rd(t), the normalised distance Ri is calculated as:

Ri =

(
R2

d+1(t)−R2
d(t)

R2
d(t)

) 1
2

=
|xi+dτ − xt+dτ |
‖p(i)− p(t)‖ (2.7)

where τ is embedding delay, and p(t) and p(i) are a reference point in the d-

dimensional embedding space and its nearest neighbour respectively. p(i) is chosen
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so that ‖p(i)− p(i))‖ < ε, where ε is a small constant. p(i) is designated as a false

nearest neighbour of p(t) if Ri is larger than a given threshold Rth. This calculation

is performed for the entire time series (for all t) for increasing d until the total

percentage of false neighbors declines to near 0%. Kennel et al. (1992) suggested

that Rth = 10 works well for most cases, although other values should be explored if

the reconstructed system does not show convincing result since there is no concrete

mathematical proof for choosing optimal Rth.

Figure 2.7 shows the mutual information and FNN calculated from the time

series data obtained from Lorentz system whose differential equations,

ẋ = σ(y − x) (2.8)

ẏ = rx− y − xz (2.9)

ż = xy − bz (2.10)

with the parameters σ = 10, r = 25, b = 8/3, which exhibits chaotic behaviour.

By solving the above equations, the time series data was obtained from the variable

x sampled at a time interval of 0.01s for 400 seconds. The ‘optimal’ embedding

parameters were estimated as τ = 17 for embedding delay and m = 3 for embedding

dimension. The reconstructed attractors with different embedding parameters are

shown in Figure 2.8, suggesting that the shape of reconstructed attractor using

optimal embedding parameters seems to make good agreement with the original

system.

2.7.5 Wolf’s Method

As the maximum Lyapunov exponent is often of greatest interest in diagnosing

chaos and because of the inherent computational difficulties in estimating the full

Lyapunov spectrum from a single time series data, a number of methods have been

proposed to compute just the maximum Lyapunov exponent. Perhaps the most

well-known method is Wolf’s algorithm (Wolf et al., 1985) which is conceptually

simple and implements the theory in a direct fashion.

The algorithm monitors the long-term evolution of a single pair of initially nearby

orbits. Given some initial point p(t) in reconstructed state space and its nearest

neighbor p(i) which is not on the same trajectory, the initial Euclidean distance

between the two points is denoted εt = ‖p(i) − p(t)‖. After iterating both points
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forward in time for a fixed evolution time h, the initial length will have evolved to

length εt+h = ‖p(i+ h)− p(t + h)‖.
Assuming that the system is chaotic, the distance after the evolved time εt+h will

be larger than εt. After each forward evolution, the replacement step is performed

that a new nearest neighbor point to the original reference trajectory is selected

that minimises both the replacement length and the orientation change between the

reference and neighboring points. At each replacement step, a new neighbouring

point p(j) is selected so that both the distance to the evolved point p(t + h) and

the angular separation between the line segments which is formed by the points

(p(t + h),p(i + h)) and (p(t + h),p(j)) are minimised. This procedure is repeated

until the original reference trajectory has traversed the entire dataset. Then the

maximal Lyapunov exponent λ1 is calculated as

λ1 =
1

Mh

M∑
i=1

ln
εt+h

εt
(2.11)

where M is the total number of replacement steps. The result of Wolf’s algorithm

for the Lorentz system with optimal embedding parameters is shown in Figure 2.9

(left). Practical implementation of the algorithm must carefully choose parameters

for the replacement step. Maximum allowed replacement distance and orientation

errors should be minimised while one can still find a neighbouring point within that

limits. The fixed evolution time (h) also have to be tuned so that it is maximised in

order to save computation cost and to reduce the number of replacement step which

cause the length and orientation errors to be accumulated. Also the reconstructed

attractor should be densely populated with a sufficient number of data points in

order to achieve successful replacement steps. Although the algorithm implements

the theoretical concept of Lyapunov exponent straightforwardly, it is generally ac-

cepted that the algorithm suffers from the unreliability for small datasets as well as

the sensitivity of result to the parameter choice.

2.7.6 Rosenstein’s Method

The alternative approaches which are more robust for small datasets were proposed

by Rosenstein (Rosenstein et al., 1993) and Kantz (Kantz and Schreiber, 1997). Both

algorithms are based on the basic definition of the maximum Lyapunov exponent
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Figure 2.9: Maximal Lyapunov exponents calculated from the time series of Lorentz

system with τ = 17 and m = 3. Dashed lines indicate the maximal Lyapunov

exponent calculated using the differential equations of Lorentz system (λ1 = 0.82).

(Left) Result using Wolf’s method. (Right) Result using Rosenstein’s method.

from the equation 2.4. Since both methods are very similar (differs in that using

a single neighbour or a cluster of neighbours) we use Rosenstein’s method in this

work. From the definition, the jth pair of nearest neighbors in the reconstructed

system diverge approximately at a rate given by the maximal Lyapunov exponent:

dj(i)≈dj(0)eλ1(i�t), (2.12)

where dj(i) is the mean Euclidean distance between the jth pair of nearest neighbors

after i discrete time steps i�t seconds), and dj(0) is the initial separation. By taking

the logarithm of both sides of above equation,

ln[dj(i)]≈ln[dj(0)] + λ1i�t, (2.13)

The above equation yields a set of approximately parallel lines (for each j), each

of slope roughly proportional to λ1. Then the maximal Lyapunov exponent can be

robustly estimated from the slope of a least-squares fit to the ‘average’ log divergence

curve defined by:

S(i) =
1

�t
〈ln[dj(i)]〉 (2.14)
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where 〈 · 〉 represents the average over all values of j. Figure 2.9 (right) shows the

divergence vs. time curve generated from the Lorentz system data. We can see that

the slope of the linear region of the curve agrees well with the expected value (the

slope of dashed line: 0.82).
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Models and Methods

This chapter describes the models and methods for the proposed exploration system.

The chapter includes the model of the neural part for limb control, the simulation

model of the common parts for articulated bodies, and its interaction with the

physical environments for 2D aquatic and 3D terrestrial robots. Before going into

the detailed description of simulation models, we start with outlining the general

architecture of the exploration system for locomotor behaviours, followed by brief

explanation of each sub-component. The subsequent sections describe each com-

ponent in more detail which include central pattern generator (CPG) model and

simulated neuromuscular system. Dynamical properties of both single and coupled

CPG models are examined in terms of the applicability to the limbed robot move-

ment, particularly choosing appropriate common fixed parameters of CPGs which

are suitable for the chaotic exploration process. After that, the CPG equations are

incorporated with local sensory information and encapsulated as a unit module in or-

der to be applied to the robot with arbitrary degrees of freedom. Finally the robotic

model is addressed by describing the basic neuromuscular model for the joint-motor

of a limb which is used as the common component independent of the body shape

and the physical environment. Integration of mechanical and neural parts is also

presented by modelling a simple reflex loop using muscle proprioceptors. Finally,

some methods for analysing the system behaviours are presented.
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Figure 3.1: Schematic diagram of the general exploration system. (A) A motor unit

for a single degree of freedom in the muscle-joint system. A unit consists of two

electrically disconnected oscillators, which receive integrated information of other

oscillators in the system from the sensor (S), via body-environment interactions,

and give a control signal to the muscle (M) via an α motor neuron. (B) Schematic

diagram of the exploration system whose body has N degrees of freedom. The

chaoticities of all units are altered according to the global control signal from the

evaluator.

3.1 General Scheme

The basic architecture of the neural part of the system developed in this study is

based on Kuniyoshi and Sangawa’s (Kuniyoshi and Sangawa, 2006) Medulla Oblong-

ata inspired model, but with a more compact and modular configuration for each

joint of the limbed robot. It is intended to be applicable to a wide range of robotic

systems. The architecture consists of a number of identical control modules connec-

ted to each of the body parts in their environment. Each neuromuscular system for a

joint which receives afferent sensory input and gives motor output to a antagonistic

muscle pair can be encapsulated as a single motor unit, and the whole system con-

sists of identical motor units whose number is the same as the number of degrees of

freedom of the robot (Fig. 3.1). This configuration eliminates muscle redundancies

by constraining joint-motors to be operated only by an antagonistic muscle pair,

thus giving more weight to interlimb interactions. Although it is expected that our

system will likely be able to deal with multiple muscles acting on a single joint, we
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constrain the system complexity to a pair of muscles per joint in order to focus on

the interlimb coordination. The signal from the sensors of a motor unit (in most

case the mechanosensory information from haptic sensors or muscle afferent) is fed

to the corresponding oscillators that each motor unit contains. A muscle is activated

by an efferent (α) motoneuron and the motoneuron has an afferent connection from

the homonymous muscle spindle, forming a simple stretch reflex loop.

The overall architecture of the system is illustrated in the Figure 3.1A. The neural

architecture generalises and extends that presented in (Kuniyoshi and Sangawa,

2006). The CPG neurons are all disconnected to each other but they form func-

tional coupling through physical embodiment. The CPG neurons receive sensory

signals that integrate information from the body-environment interaction dynamics

experienced by the system. Hence, while the direct connections are absent, any

coupling between the oscillators will be indirect via bodily and environmental in-

teractions. The network of oscillators, coupled through physical embodiment, has

multiple synchronised states (modes) in the state space of neuro-body-environment

dynamics that reflect the body schema and its interactions with the environment,

each of which can be regarded as a potential candidate for ‘meaningful’ motor beha-

vior. The exploration process, powered by adaptive bifurcation through the feedback

evaluation signal, allows the system to become entrained in these modes, one at a

time, until one is found that is sufficiently stable and high performing for the bifurc-

ation parameter to reduce to zero and the system to fully stabilise. In the following

sections, each component will be described in more detail.

3.2 CPG Model

The control signals for the basic motor patterns are generated by central pattern

generators (CPGs), which are composed of a collection of neurons that produce an

oscillatory signal for various locomotor patterns by synchronisation with the move-

ment of the physical systems. The model consists of a coupled Bonhoeffer-van der

Pol (BVP, or Fitzhugh-Nagumo) oscillators (Fitzhugh, 1961; Nagumo et al., 1962),

which are widely studied as models of pacemaking cells and interlimb coordination.

BVP model is a two-dimensional simplification of the Hodgkin-Huxley model of

spike generation in squid giant axons (Hodgkin and Huxley, 1952), and it repro-
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duces the behavior of pacemaker neurons qualitatively well. The model is called

Bonhoeffer-van der Pol (by Fitzhugh) because it is reduced from the van der Pol

equation for self-sustained oscillation and its behavior resembles that of the iron

nitric acid model proposed by (Bonhoeffer, 1948).

A particularly interesting feature of coupled BVP equations, that allows adjust-

ment of the complexity of the system orbit, had been presented by (Asai et al., 2000,

2003a,b). A pair of coupled BVP oscillators generates a stable limit cycle when the

two control inputs are the same, but a quasiperiodic/chaotic orbit otherwise. An-

other interesting feature of the BVP model is flexible phase locking (Sproewitz and

Berthouze, 2005; Ohgane et al., 2009), where the phase relationship between CPG

activity and body motion can be flexibly locked according to a loop delay. This

is a beneficial feature for covering a range of sensorimotor delays originating from

different body-environment configurations.

3.2.1 Bonhoeffer-van der Pol Oscillator

Before going into the detailed application of the BVP model to the chaotic explor-

ation system, some dynamical properties of the basic model of BVP equations are

addressed. The model consists of a voltage-like variable (u) having cubic nonlinear-

ity that allows regenerative self-excitation via a positive feedback, and a recovery

variable (v) having a linear dynamics that provides a slower negative feedback. The

equations of a single BVP oscillator are:

u̇ = c(u− u3

3
− v + z) (3.1)

v̇ =
1

c
(u− bv + a), (3.2)

where a, b, and c are the fixed parameters of the oscillator. z is the control parameter

from the higher centre. The solution of equations 3.1 and 3.2 mimics neuronal

activity if parameters a, b, and c are set as following criteria.

1− 2b

3
< a < 1, 0 < b < 1, b < c2 (3.3)

In this range of parameters, the equation 3.1 and 3.2 exhibit Hopf bifurcation as the

bifurcation parameter z varies. The analytically derived critical values of z (Nomura
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Figure 3.2: Nullclines and limit cycle of BVP model of the equations 3.1 and 3.2.

et al., 1993) where Hopf bifurcations take place are

z± =
a

b
±

√
1− b

c2

(
1

b
− 2

3
− b

3c2

)
. (3.4)

Between these values, i.e., z− < z < z+ there exist an unstable equilibrium point

(uo, vo) and an asymptotically stable limit cycle.

The fixed parameters of BVP model were set a = 0.7, b = 0.675, and c = 1.75

throughout this work, which were chosen based on the previous work (Asai et al.,

2003a) whose parameter setting was rigorously studied in terms of exhibiting various

dynamical regime from stable to chaos which meets the purpose of our work. They

were also verified by later studies using robotic platform (Kuniyoshi and Sangawa,

2006; Kinjo et al., 2008). Therefore, the critical values of z are z− = 0.38247 and

z+ = 1.6916, where subcritical bifurcations take place. The asymptotically stable

limit cycle rotates counterclockwise around the equilibrium point, and the model

acts as a pacemaker neuron. The magnitudes of vector fields (the right-hand sides

of the equations 3.1 and 3.2) near the right and left branch of the N-shaped nullcline

(i.e., u̇ = 0, blue line in Figure 3.2) are small, so the state variables move slowly
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there. In contrast, vector fields in the horizontal direction along the bottom or the

top of the limit cycle are large, and the state point moves quickly.

3.2.2 Variable Chaoticity of Coupled BVP Oscillators

Let us consider two coupled oscillators of equation 3.1 and 3.2. By denoting the

state variables of each oscillator as (x1, y1) and (x2, y2), they are mutually coupled

by excitatory-to-all connections to form the CPG model as follows (Asai et al., 2000,

2003b):

ẋ1 = c(x1 − x3
1

3
− y1 + z1) + δ(x2 − x1) (3.5)

ẏ1 =
1

c
(x1 − by1 + a) + εx2 (3.6)

ẋ2 = c(x2 − x3
2

3
− y2 + z2) + δ(x1 − x2) (3.7)

ẏ2 =
1

c
(x2 − by2 + a) + εx1 (3.8)

where two coupling constants are δ = 0.013 and ε = 0.022 respectively. Since the

refractoriness variable yi (i = 1, 2) inhibits activity of xi, the connection by ε from

contralateral output (xj , where j 	= i) to yi may result in inhibition of xi, resulting

in the above CPG model becoming a half-centre model with reciprocal inhibition.

This model originates from clinical experiments to evaluate severity of symptoms

in Parkinson’s Disease (PD) patients by looking at coordination between lower limbs

during pedaling exercise (Abe et al., 2002). Subjects were instructed to pedal a

special kind of pedalling machine that allows its left and right pedals to rotate

independently. Coordination between lower limbs during the pedaling exercise was

characterised by the velocity and relative phase profiles to see whether the symptoms

on one side of the body are severer than that of the other side. The velocity profile

in normal subjects was periodic with almost constant amplitude for every cycle with

the relative phase locked at about 180 degree. Experiment in PD patients exhibited

disordered coordination that shows the amplitude modulation of the velocity profiles

and/or drift of the relative phase. This left-right asymmetries could be reproduced

using a coupled BVP equations by giving different control inputs which models a

flow of descending signals from higher motor centres down to each half-centre of

the CPG. When these two control inputs are identical (z1 = z2), the model has
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Figure 3.3: Coupled BVP oscillators and the classification of its dynamics. (A)

Schematic diagram of coupled BVP oscillators as coupled half-centre system. (B)

Classification of the dynamics of coupled BVP system which is reproduced from

(Asai et al., 2003a). Numbered regions indicate qualitatively different dynamics

of the system which exhibit limit cycle, quasiperiodic, and chaotic orbits. Their

brief behaviours correspond to those of figure 3.4. For instance, the region 5 and

6 correspond to A and B, region 4 to C and D, and region 3 to F and G (Refer

(Asai et al., 2003a) for more details). The bistable phase-locking of both in-phase

and anti-phase occurs in region 7, which is suitable parameter range to promote the

diversity of emergent behaviours for the exploration system.

left-right symmetry. If two control inputs unbalance (z1 	=z2), the model’s symmetry

is broken.

Figure 3.3B describes the bifurcation map of the qualitative dynamics of two

coupled oscillators reproduced from (Asai et al., 2003a). Each numbered region

indicates the range of two parameters z2 and �z = z1 − z2 where the coupled

system exhibits distinct qualitative behaviour. In region 1, the system shows no

oscillatory dynamics. In region 2, x1 and x2 oscillates with different amplitude even

when the system is driven by the identical tonic signals (�z = 0). The relative

phases in 2 are locked at some value between 0◦ and 180◦. However, the amplitude

of the oscillator receiving smaller control input (x1) is usually too small, which may
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Figure 3.4: Behaviour of two coupled BVP equations. Two upper graphs show the

lyapunov exponents (λ1: black, λ2: red, λ3: blue, λ4: green) of coupled system,

where μ is the difference between control inputs (μ = z2 − z1) with z2 = 0.73. The

region around the chaotic dynamics of system is shown as an enlarged graph on

the right side. Lower eight images depict the evolution of the state variable (x2

vs. x1) with different μ; A:0.0, B:0.01, C:0.02, D:0.15, E:0.305, F:0.335, G:0.37,

and H:0.39. Superposed plots in A and B show two different phase-locked dynamics

from different initial states, which indicates the bi-stability of system in its stable

regime. C and D show slow and fast drift of relative phases in quasiperiodic regime.

E shows the oscillation with multiple period. In F, chaotic oscillation occurs. As

the control input of the first oscillator (z1) crosses its critical value (G and H) the

amplitude of x1 slowly decreases.
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not be suitable for the purpose of robot control where the limb is commanded by an

antagonistic oscillator outputs, because the movement of limb will depend mostly

on one side of motor output. In region 5, the oscillation is locked nearly anti-phase,

and the amplitudes of x1 and x2 are almost or completely identical. In region 6,

the oscillation is almost in-phase, with almost or completely identical amplitudes

of both outputs. Region 7 shows the bi-stability in phase-locked oscillation, which

exhibits either the dynamics of region 5 or those of region 6, depending on the

initial condition. Above mentioned parameter regions 2, 5, and 6 exhibit periodic

oscillations of period one. In case of region 3, the model exhibits periodic oscillations

with multiple periods, or chaotic oscillations via a sequence of bifurcations. In the

largest region 4, the model shows quasi-periodic oscillations in which the relative

phases drift from 0◦ to 360◦.

Some examples of the above qualitative dynamics are described in Figure 3.4.

Let us denote the difference between two control inputs�z = z2−z1 as μ, which will

act as the control parameter of coupled BVP system. Upper images in Figure 3.4

depict full Lyapunov spectrum according to the control parameter μ with z2 = 0.73

where the system shows bi-stability. The orbits of A and B clearly show the bi-stable

solution of the system which corresponds to the region 7 in Figure 3.3. Slight increase

of control parameter in B results in the deformation of orbits, which indicates the

variation of relative phases between x1 and x2. When the control parameter enters

into quasiperiodic regime, the relative phases of x1 and x2 drift from 0◦ to 360◦

as seen in C and D where the orbit eventually covers the whole rectangular region

in the x2 − x1 plane. In E, the orbit loses its quasiperiodicity and exhibits stable

oscillations with finite period. The parameter region in upper right graph where the

second lyapunov exponent (red line) drops just before chaotic regime indicates this

stage. F shows the chaotic orbits which occupies most part of the region 3 in Figure

3.3. In G and H, the control input (z1) of the first oscillator is below its critical

value, entering into the region 2 in Figure 3.3.
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3.3 Bodily Coupled CPGs through Local Sensory

Information

We have looked at the dynamical properties of the basic CPG model and could

draw the proper range of some of its parameters in terms of generating oscillatory

dynamics for robot limb control as well as the applicability to the chaotic exploration

process. Given the previously described CPG model and its parameters, we build a

motor unit as an encapsulated modular component for robot control.

For practical use of the oscillators for the activation of muscles and to deal with

the oscillator learning which will be addressed in later sections, we locate its centre

of rotation at near the origin in the phase space such that x←(x + 0.2138) and

y←(y − 0.7202). The centre of rotation was determined by averaging each pair of

variables of a limit cycle for a sufficiently long duration. By introducing the sensory

input and the coupling from other oscillators, a pair of oscillators in a motor unit

m is expressed as follows:

τ ẋl = c(xl − x3
l

3
− yl + z1) + δFx(sl, xl) (3.9)

τ ẏl =
1

c
(xl − byl + a) + εFy(sl, xl) (3.10)

τ ẋr = c(xr − x3
r

3
− yr + z2) + δFx(sr, xr) (3.11)

τ ẏr =
1

c
(xr − byr + a) + εFy(sr, xr) (3.12)

where l = 2m−1 and r = 2m, which indicates each consecutive pair in the set of 2N

oscillators are sequentially allocated to each motor unit (we will also use expressions

such as mxl and
mxr to refer to the mth motor unit where it avoids confusion).

To adjust the chaoticity of the motor unit, the difference of control parameters

(μ = z2 − z1) changes identically in all motor units as a function of the evaluation

signal, which will act as the global bifurcation parameter for the chaotic search

with adaptive feedback. The two constants δ=0.013 and ε=0.022 are the coupling

strengths for afferent input functions F (s, x). The input functions Fx and Fy are

normally a linear function of the raw sensor signal s and the oscillator output x. Note

that we need to preserve the topology of indirect couplings between oscillators close

to that of a coupled BVP model (Figure 3.5) in equations 3.5-3.8, so their equations
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Figure 3.5: Coupling through physical embodiment. Indirect coupling via local

sensor should have the same structure of information flow as that of direct coupling.

Red and blue arrows show the equivalent information flow of direct and indirect

coupling between two oscillators.
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Figure 3.6: Conceptual illustration of the scale-free equivalence between a pair of

coupled oscillators and the embodimentally coupled system of arbitrary size. Re-

gardless of the system size, any oscillator can be seen as the first oscillator which

receives the afferent input from (and gives output to) another (imaginary) oscillator

whose output reflects the composite effect of neuro-body-environmental interaction.
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may show slight variance according to sensor designs, which will be shown in later

chapters. When the oscillators are coupled through physical embodiment via local

sensory information, the whole system can be viewed as a pair of coupled oscillators,

that is, any oscillator can be thought of as interacting with another imaginary oscil-

lator which is a complex of the interaction among body, environment, and the rest of

oscillators (Figure 3.6). This is useful for both determining the appropriate sensor

function F (s, x) and applying global bifurcation control to adjust the chaoticity of

system by which an arbitrary neuro-body-environment system can be treated as two

coupled oscillators whose parameters and dynamics are well-understood.

From the analyses of qualitative categorisation of two coupled BVP equations in

the previous section, the stable regime of a pair of weakly coupled BVP oscillators

where the two control parameters are symmetric exhibit bistable phase locking of

their oscillations in a parameter range of 0.6 < z1 = z2 < 0.88 (region 7 in Fig-

ure 3.3). In this range, observation of a number of experiments on the oscillator

dynamics suggests that its medium point z2 = 0.73 ensures a higher probability

of multistability of the system in its stable regime. Although multiple strategies

are possible to design the moving trajectory for z1 and z2 on the �z − z space in

Figure 3.3, we will fix z2 = 0.73 and vary z1 using the global bifurcation parameter

μ = z2 − z1 throughout this work.

3.4 Evaluation and Feedback

The coherent integration of a performance evaluation signal that is able to control

the chaoticity of the system is an essential feature of the exploration process. Dur-

ing exploration, the bifurcation parameter continuously drives the system between

stable and chaotic regimes as a function of the evaluation signal. The evaluation sig-

nal is determined by a ratio of the actual performance (for instance, forward speed)

to the desired performance. The desired performance can be set explicitly, or it can

adaptively vary according to the actual performance. When the actual performance

is low compared to the desired performance, the global bifurcation parameter in-

creases to destabilise the system that the orbit wanders chaotically to escape from

the low performing state. If the performance reaches the desired performance, the

bifurcation parameter decreases to zero and the system stabilises.
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3.4.1 Locomotion Performance and Feedback Bifurcation

In the experiments to be described throughout this work, the performance evaluation

signal E is measured by the forward speed of the robot. Since the system has no prior

knowledge of the body morphology of the robot, it does not have direct access to the

direction of movement nor of information on body orientation. In order to facilitate

steady movement in one direction without gyrating in a small radius, a temporal

integration of the velocity of the centre of mass is formulated as an evaluation

function. The centre of mass velocity of a robot is continuously averaged over a

certain time window and its magnitude was used as the performance of the system.

The performance signal E at any time instance can be calculated by applying a

leaky integrator equation to the velocity vector as

E(t) = ‖v̄‖, τE
dv̄

dt
= −v̄+ v. (3.13)

τE is the time scale of integration which is larger than that of an oscillator, but

typically not exceeding it by more than an order of magnitude.

A global feedback signal determines the degree of chaoticity of motor units. The

bifurcation parameter for feedback control is continuously modified by an amount

governed by the evaluation signal. If the current entrained state is not satisfactory,

parameter μ is increased to where the orbit will follow quasiperiodic or chaotic

dynamics, and when the performance increases, μ is decreased so that the system

attempts to stabilise the orbit at the vicinity of the satisfactory mode. The time

course of the bifurcation parameter μ (= z2 − z1) is given as follows:

τμ
dμ

dt
= −μ+ μcG(

E

Ed

) (3.14)

G(x) = 1/(1 + e16x−8) (3.15)

As described in the last section, z2 (Equation 3.11) is fixed, hence z1 (Equation 3.9)

varies as μ changes. G(x) is a function of the ratio of the actual performance E to the

desired performance Ed (Figure 3.7). The function implements a decreasing sigmoid

function which maps monotonically from (0,1) to (1,0). 16x− 8 shapes the sigmoid

function so that the boundary value at x = 1 and its derivative ([dG(x)/dx]x=1) be-

come almost 0 so as to make the function smoothly vanish to zero. We automatically

set μ to zero when it falls below a small threshold (≈0.0001) since the bifurcation
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Figure 3.7: Sigmoid function G(x).

parameter μ should be zero in order to make the system completely stable. This

also allows some margin for the system to stay in the stable regime (μ = 0) despite

the small oscillation of E/Ed near unity.

τμ determines the time scale of the change of μ and is normally set faster (τμ < T )

than the oscillation period (T ) of the controller. If its value is too high, stabilisation

of the system dynamics is significantly delayed which results in a partition mismatch

(Aida and Davis, 1994). If it is too low, μ fluctuates too much according to the

undulation of the robot movement which acts as a disturbance for stabilisation,

or the system can become locked in a ring of undesirable patterns in a regime of

intermediate chaoticity.

The level of chaoticity is adjusted by varying μ as a sigmoid function of E/Ed

in the range [0,μc] where μc is the maximum level of chaoticity of the system. Mo-

mentum was given by using a first order differential equation to reduce the fast

oscillation of μ due to the gyration of the robot body. Using the sigmoidal func-

tion not only provides a smooth boundary for the variation of μ but also has a

uniformalising effect on the area occupied by the different dynamical regimes of the

system (stable, quasiperiodic, and chaotic) which are defined by the level of μ. As

illustrated by region 4 of Figure 3.3, the range of μ (= �z where z2 = 0.73 in this

work) exhibiting a quasiperiodic regime is much wider than those of other regimes.

Operating μ linearly will diminish the performance of exploration by ensuring the

system stays mostly in the quasiperiodic regime during the exploration process. The

sigmoidal control enables μ to move fast in the middle (quasiperiodic) region and

54



Chapter 3. Models and Methods

slow in both the saturated regions (stable and chaotic) of the sigmoid function, so

that the system can generate each type of dynamical regime in a less biased way.

From the analysis of a single BVP oscillator in Section 3.2 where the Hopf bi-

furcation occurs with an increase of the parameter z, it can be known that an

analytically estimated critical (minimum) value of z is zc≈0.38247, which indicates

that the maximum possible value of μc is μc,max = 0.73− 0.38247 = 0.34753. How-

ever, because the situation is different from the dynamics of a single oscillator, the

actual experiments on the robotic systems with indirectly coupled multiple oscillat-

ors reveal that the actual behavioural criticality of z in the integrated system varies

slightly among different body and environmental settings. Determining the exact

range of the variance of zc in the general case requires testing for all possible robotic

bodies. Even in the same robot body it also varies over different initial conditions.

One way to determine the system specific criticality of the control parameter is to

simply observe the dynamics of the system with fixed μ = μc. If the system is

beyond its critical state, one of the oscillators in the motor unit will generate near

zero amplitude by crossing the Hopf bifurcation point. Normally we chose μc to be

slightly less than its maximum observed value, taking into consideration the satur-

ating region of the sigmoidal function G(x), so that it does not stay near the critical

value for an unnecessarily long time when the oscillation amplitude becomes small.

3.4.2 Adaptive Goal Setting Strategy

Ed indicates the desired locomotion performance of a given robot. Since the robotic

system is arbitrary, we do not have prior knowledge of what level of performance

it can achieve. Hence Ed is modelled as another dependent variable which varies

adaptively according to the system performance. Using the concepts of a goal setting

strategy (Barlas and Yasarcan, 2006) and the Rescorla-Wagner model (Rescorla and

Wagner, 1972), the dynamics of the desired performance are modelled as a temporal

average of the actual performance, such that the expectation of a desired goal is

influenced by the history of the actual performance experienced in the past. We can

express this strategy in terms of simple continuous dynamics for Ed, which slowly

decays toward the current performance:

τd
dEd

dt
= −Ed + E (3.16)

55



Chapter 3. Models and Methods

where τd is set sufficiently large so that Ed does not follow E too fast. Since Ed

continuously decays toward E, the changing speed of control parameter μ depends

both on τμ and τd.

Although this evaluation strategy does not explicitly impose a bias for continu-

ously striving for higher performing behaviours (because of the dynamics of Ed),

an implicit bias towards better performing behaviours is partially imposed on the

system by the way in which the bifurcation parameter μ behaves as a function of

E/Ed (Equation 3.14). Once the system has been stabilised to some behaviour,

the speed of system destabilisation, for a given amount of behaviour degeneration,

depends on the performance level of the initially stabilised behaviour. In the qua-

siperiodic regime which occupies a large portion of the entire system dynamics (μ in

the lower saturation part near zero and middle part of the sigmoid function, G(x))

the phase relationships of ongoing patterns shifts slowly, while fast and catastrophic

change occurs in the chaotic regime where μ is located around the upper saturation

part (near μc) of G(x). When the actual performance E of a stabilised behaviour

decreases by a given amount, a low performing behaviour is destroyed more quickly,

because Ed will be relatively small, while a high performing behaviour is smoothly

degenerated, giving it much more chance of being sustained or re-entrained to it-

self. In this way, in practice, the system fully stabilises onto behaviours that exhibit

stable relatively high performance.

3.5 Robot Simulation

This section describes physically simulated limbed robots and their environmental

forces. The following sections start with a brief description of the articulated rigid

body simulation and its basic settings, followed by a general framework for a neur-

omuscular system which incorporates a simple spinal reflex. Detailed description of

its subcomponents including muscle and proprioceptor models are described. In or-

der to investigate the generality of the exploration system coping with an arbitrary

morphology under unknown physical environment, two kinds of robotic simulation

models for different environment are developed; a 2D aquatic swimmer and a 3D ter-

restrial walker. Generic simulation models for robotic systems in each environment

are presented.
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3.5.1 Articulated Robot Simulation

A robot is simulated using an articulated rigid body dynamics. The problem of

simulating articulated rigid bodies is a long-standing problem in its own right in

that a good simulation algorithms need to meet multiple conflicting demands such

as speed, stability and accuracy. There are several commercial/free application pro-

gram interfaces (APIs) for physics simulation which are used for a variety of purposes

from computer animation to industrial use. Because it exhibits a good compromise

between accuracy and speed, this work has chosen Open Dynamics Engine (ODE)

developed by Russell Smith (Smith, 1998), an open source middleware physics sim-

ulation library. It is platform independent and relatively stable compared to other

simulators. The numerical integrator used in ODE is a first order semi-implicit in-

tegrator (Stewart and Trinkle, 1996), where the constraint forces are implicit, and

the external forces are explicit. A medium speed (O(n3), where n is the number

of links) Lagrange multiplier method (Anitescu and Potra, 1997) is used to calcu-

late the articulated body dynamics. Refer http://ode.org/ode.html for more detail.

While the joint constraints for linking limbs of robot and the ground contact with

friction are provided by physics engine, the actuation of limbs by simulated muscles

and the hydrodynamic forces exerted on the robot should be explicitly modelled as

will be presented later.

3.5.2 Neuromuscular System

The neuromuscular model for a single joint controlled by the corresponding motor

unit comprises a pair of nonlinear torsional muscles and a neural reflex loop (Figure

3.8). The neural reflex loop includes an α motor neuron and muscle proprioceptors

which are a muscle spindle and tension sensor.

3.5.2.1 Muscle Model

A muscle is activated by the (α) motoneuron and produces forces that cause move-

ments of the body. We employed a simple yet biologically relevant actuation model

proposed by (Ekeberg, 1993; Wadden and Ekeberg, 1998). In this model the muscles

are located on the two (opposite) sides of the linked bodies with their axes of con-

traction being mainly perpendicular to the joint axis. It is assumed that the length

57



Chapter 3. Models and Methods

CPG

S

CPG

S

Unit

M

M

angular spring-damper muscle

limb

Figure 3.8: Neuromuscular system with motor unit. A pair of torsional muscle is

modelled as an angular damped spring and controlled by each α motor neuron from

the corresponding motor unit (M). Each muscle gives a proprioceptive feedback to

the homonymous motor neuron. Sensor input (S) to CPGs is not necessarily a

proprioceptive feedback, but it rather depends on the sensor design (for example,

angle sensor or touch sensor).

of the muscle fibers varies linearly with the local curvature of the body. Therefore,

this model can be regarded as a torsional muscle whose stretch length is expressed

as bending angle as described in Figure 3.8. Accordingly, the force produced by

muscle corresponds to the torque on the relevant joint. These muscles are modelled

by including both an elastic and a viscous component. The elastic component can

be viewed as an angular spring where the spring constant is used to set the torque

produced in a steady-state condition (in its resting angle). The viscous component

of the force is proportional to the angular speed of the movement.

The motoneuron output linearly controls the forces generated by the muscles,

and this corresponds to a linear relationship between motoneuronal activity and the

muscular spring constant. The linear relationships were preserved by modelling a
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muscle as a damped torsional spring making it possible to express the torque acting

at a particular joint as a linear function of the two motoneuronal activities in motor

unit. The torque exerted on a joint by a pair of symmetric muscles is

T = α(σl − σr)− β(σl + σr + γ)θ − δθ̇, (3.17)

where σl and σr are the output signals from the two motoneurons and θ is the

joint angle. α is the muscle activation gain, β is the stiffness gain, γ is the tonic

stiffness, and δ is the damping coefficient. Although they can be chosen arbitrarily

from a range of values, we set those parameters in order that the musculo-skeletal

system at rest behaves close to a critically damped system. The above arrangement

enables the neural signal not only to control the muscle torque but also to control

the stiffness of the joint.

3.5.2.2 Reflex Loop

Each motoneuronal output σ is contributed by CPG ouput (x) and a simplified

muscle stretch reflex (sm) according to the following canonical formulae based on

the literature (Prochazka, 1999; Yakovenko et al., 2004).

σ = tanh(x+ kmsm) (3.18)

sm = θ/Φ+R(θ̇/Φ) (3.19)

R(v) = sgn(v)
√
|v| (3.20)

km = 0.2 is a constant, and Φ is a denominator which normalises the angle and the

angular velocity of torsional muscle by the unit of its resting angle, and it is set

to the maximum available range of the muscle, by assuming that the angle of the

torsional muscle is stretched twice as much as its resting angle when the joint is at

its neutral position.

Although several types of proprioceptive feedback mechanisms including Group

Ia, Ib, II, and cutaneous afferents operate on the spinal reflex system and their col-

lective interaction accounts for the regulation of ongoing locomotor activities (Grill-

ner and Wallen, 1985; Hiebert and Pearson, 1999; Pearson et al., 2006; Rossignol

et al., 2006), it would be sufficient to support the mechanical stability of musculo-

skeletal system using a minimal model for a basic reflex loop (only with muscle

spindle) since the Group Ia pathway is the most sensitive of all. From the viewpoint
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of the global system, even the muscular-motoneuronal reflex loop can be broadly

considered as a part of intact anatomical properties that may vary across the differ-

ent robotic designs which should be covered by the exploration process.

The next sections will introduce two class of robot architectures both of which

are controlled by the above basic neuromuscular system. Class specific modelling

of the mechanical system and the interaction with environment will be presented in

detail.

3.5.3 2D Aquatic Swimmers

This section describes the general model of an aquatic swimmer robot moving on

a 2D hydrodynamic environment. The swimmer robot consists of a central body

(trunk) and multiple limbs attached to it. The actual model was constructed using

a 3D rigid body simulator, but it was constrained to move only on the x-y plane, so

that it effectively undergoes 2D dynamics (Figure 3.9). Each limb has a rectangular-

shaped rigid ‘fin’ which is located at its end in order to interact with hydrodynamic

environment. Fins are joined by a nonlinear torsional spring with damper and the

hydrodynamic forces are exerted exclusively on them, making the robot generate

propulsion by beating its limbs. The use of passive fins under a fluidic environment

is intended to produce smooth and continual reaction forces in order to provide

continuous sinusoidal sensor signals to the neural system, which is advantageous

both for the neural synchrony through embodimental coupling and the tractability

of model analysis.

With this basic architecture one can build a 2D swimmer with an arbitrary

number of limbs. The preferred shape of a swimmer robot in the context of the ex-

ploration system is radially symmetric. The radially symmetric shape in a 2D under-

water environment is interesting because it makes generating continuous asymmetric

propulsion forces challenging; in other words forward locomotion is non-trivial. The

agent will not be able to move in a single direction unless the movements of all four

arms are successfully synchronised with appropriate phase differences.

3.5.3.1 Passive Fin Model

A nonlinear damped torsional spring for passive fin bending is simulated using a

second order differential equation. The spring is tuned to be critically damped so
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frictionless surface

Figure 3.9: An example of 2D aquatic swimmer which is implemented using 3D

physical simulator.

that the bend angle smoothly moves toward the equilibrium position between the

hydrodynamic torque and the spring torque. At each time step, the bend angle and

the angular speed of the fin receiving hydrodynamic force (Figure 3.10A) can be

calculated by the relationships:

T = r×FN (3.21)

T = |T| = Iφ̈+ cφ̇+ kφ. (3.22)

FN is the component of net hydrodynamic force in the direction of fin surface normal.

Thus the torque exerted to the fin joint can be calculated by the cross product of the

vector r and FN . The relationship between damping constant c, spring constant k,

and the moment of inertia of the fin is set to c = 2
√
Ik so that the free fin movement

(when not driven by T ) shows critical damped motion.

The net hydrodynamic force exerted on the centre of mass of the fin are then

calculated from the velocity of the centre of mass of the moving fin. Figure 3.10B

shows the linear and angular velocities of the limb-fin movement. Given that the

linear and angular velocity of the limb at any time instance is vl and ωl and the

rate of the bending angle of fin is ωf , the velocity of the centre of mass of fin (v)

can be written as:

v = vu − vf (3.23)

vu = −{vl + (ωl×R)} (3.24)

vf = ωf×r (3.25)

61



Chapter 3. Models and Methods

f

r

fv

fv

uv

limb

v

NF

r

l

lv

R

fT

A B

Figure 3.10: Passive fin dynamics. (A) The fin is attached at the end of a limb

joined by a damped angular spring. The bending angle of fin depends on the torque

exerted to the spring which is produced by the hydrodynamic force. (B) At each

time step, the velocity vector of fluid stream (v) is calculated from the linear and

angular velocities of the limb and fin (see text for details).

where R is the vector from the centre of mass of limb to the centre of mass of fin,

and r is the vector pointing the centre of mass of fin from the fin joint. With the

incoming stream velocity v is known, we can calculate resultant hydrodynamic force

on the fin using the equations which will be described in next section. The new bend

angle and its angular speed from previous bending torque are used again as the parts

of a parameter set for calculating new hydrodynamic forces and bending torque in

a circular manner.

3.5.3.2 Hydrodynamic Forces

Each fin of the swimmer robot receives hydrodynamic forces which are calculated

by simplified aerodynamics. The forces acting on a fin surface depend on its area

and the angle of attack with respect to the velocity of the stream of fluid. Assuming

that the flow is laminar which has low Reynolds number, it is reasonable to use

a conventional aerodynamics to derive hydrodynamic forces acting on an immersed

flat plate. The calculation of forces is based on the blade element theory (BET) with

a quasi-steady assumption (Weis-Fogh and Jensen, 1956) as used in the simplified
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Figure 3.11: Hydrodynamic forces on a surface. All forces act on the centre of

pressure (cp) of the surface. The direction of drag (FD) is colinear with the incoming

stream velocity (v), while the lift (FL) direction is perpendicular to that of drag.

aerodynamics. The calculated forces are considered to be exerted on the centre

of mass of each fin surface. The stream velocity for each surface is calculated by

inverting the sign of the vector representing the velocity of the centre of mass of the

surface.

The lift and drag forces can then be calculated using the lift coefficient CL and

the drag coefficient CD. The lift coefficient is proportional to the angle of incidence

(α) of the surface and, from thin airfoil theory (Goldstein, 1942), its slope is 2π for

a 2D wing of infinite span. However, Prandtl’s lifting-line theory (Prandtl, 1918a,b)

shows that for a finite-span, the slope depends on the aspect ratio of the wing

because of the effect of induced velocity. In Prandtl’s model, the drag coefficient

CD is composed of induced and parasite components, and yields an airfoil polar

equation of the form

CD = CD0 +
C2

L

πε(AR)
(3.26)

where the lift coefficient is expressed as

CL = 2π

(
AR

AR + 2

)
α. (3.27)

CD0 is the parasite drag coefficient due to viscosity, and is assumed to be 0.05, ε is

the Munk span efficiency, which is normally slightly less than 1 (this work set it to

1), and AR is the aspect ratio of surface.
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Figure 3.12: Hydrodynamic coefficients. Lift (CL) and drag (CD) coefficients are

depicted as a function of angle of attack (α).

However, the lift cannot be very large because flow separates and the wing stalls

at high angles of attack. In reality, if the angle of attack increases and passes the

stall angle of attack (approximately at the angle somewhere between 15◦ and 17◦),

at one point all lift will be lost while the drag continues to increase. However this

discontinuity may cause the numerical simulation to become unstable. In order to

avoid sudden change, the shape of the lift coefficients is modelled as shown in Figure

3.12, by synthesising functions to return lift coefficients for any given angle (Shim

and Kim, 2006). The drag coefficient is generated over the ‘active’ range (±40◦) of
the lift coefficient, and gradually flattened near ±90 by quadratic functions.

Drag acts in the direction of the airstream velocity. The direction of lift is

perpendicular to that of the drag, so a patch produces not only lift but also thrust

tangential to its surface (Figure 3.11). As the lift and drag coefficient for a surface

at a specified angle of attack is known, the lift and drag forces produced for specific

flow conditions can be determined using the following vector equation (Anderson,

2004):

FL =
1

2
ρCL(α)A|v|2eL (3.28)

FD =
1

2
ρCD(α)A|v|2eD (3.29)

where A is the area of surface, and ρ is the density of the fluid. v is the stream

64



Chapter 3. Models and Methods

surface with 
Coulomb friction

Figure 3.13: An example of 3D terrestrial walker.

velocity calculated from Equation 3.23. eL and eD are the unit vectors in the

direction of the lift and the drag respectively. After the forces on each fin have

been calculated, they are transformed to the force and the torque acting on the

corresponding arms of the swimmer robot and are sent to the simulator as the

environmental forces.

3.5.4 3D Terrestrial Walkers

Walking robots are placed in 3D terrestrial environment. Ground friction is simu-

lated by the Coulomb friction model provided by the ODE engine. The Coulomb

friction model defines a simple relationship between the normal and tangential forces

present at a contact point.

|FT |≤μ|FN | (3.30)

FN and FT are the normal and tangential force vectors respectively, and μ is the

friction coefficient. This relationship defines a ‘friction cone’; a cone with FT as

the axis and the contact point as the vertex. If the total friction force vector is

within the cone then the contact point is influenced by static friction force, where

the friction force is enough to prevent the contacting surfaces from moving with

respect to each other. If the force vector is on the surface of the cone then the

contact is in dynamic (kinetic) friction mode, and the friction force is typically not

large enough to prevent the contacting surfaces from sliding. The parameter mu

thus specifies the maximum ratio of tangential to normal force.
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ODE approximates the friction cone by a friction pyramid aligned with the first

and second friction directions which are automatically calculated by the simulator at

every timestep. First it computes the normal forces assuming that all the contacts

are frictionless. Then it computes the maximum limits Fm for the tangential forces

from Fm = μ|FN | and then applies the force to the contact point within this limit.

A leg of robot may have various shapes, but for less simulation time, the capped

cylinder shape was used in all legs (Figure 3.13). A capped cylinder is like a normal

cylinder except it has half-sphere caps at its ends. This feature makes the internal

collision detection code particularly fast and accurate because the leg of this shape

produces only a single contact point at a time.
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Experiments with the Basic

Exploration System

4.1 Introduction

In this chapter, we apply the previously described methods to a simulated robot and

investigate the behaviour of our exploration system. The initial experiment involves

integrating the previously modelled exploration system with a simple 4-fin aquatic

swimmer placed in a simulated 2D hydrodynamic environment, and the analyses

of the system behaviours are presented mainly in this setting. Firstly, the beha-

viours of a fully embodied system in its chaotic regime is investigated with different

global coupling parameter which determines the strength of embodimental coupling

between neural elements. It is essential for the system dynamics to have a well-

structured dynamical range from stable to chaotic patterns. Since the chaoticity of

system should be strong enough to satisfactorily destabilise the ongoing synchron-

isation between subparts, Lyapunov analysis is performed to characterise the chaotic

dynamics of the system. Secondly, the permanently stable movement patterns (be-

haviours) existing in the stable regime of the system are identified and categorised.

These existing stable behaviours are the targets to be searched by the exploration

process, each of which is a possible candidate for efficient locomotion behaviour.

Based on those target behaviours, the chaotic exploration is tested, and the stat-

istics of the appearance of each pattern is investigated, followed by a report on the

exploration deficiencies which are unwanted system behaviours to be addressed.
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Figure 4.1: 4-Fin Swimmer robot in 2D hydrodynamic environment. Four body

orientations are shown as direction 1-4.

4.2 4-Fin Swimmer Preparation

Initial experiments with the framework described in the previous chapter used the

4-Fin Swimmer (Figure 4.1) which has four fins, each at the end of a separate arm,

placed in a simulated hydrodynamic planar (2D) environment. Each arm is attached

to the torso by a hinge joint and a pair of torsional muscles actuates the arm as the

neuromuscular system presented in section 3.5.2. The detailed physical parameters

of 4-Fin Swimmer are presented in Table A.1 Each muscle pair is controlled by

a motor unit, so there are four motor units (eight CPGs in total). The robot’s

radially symmetric shape in a 2D underwater environment is interesting because

it makes generating continuous asymmetric propulsion forces challenging; forward

locomotion is non-trivial. The agent will not be able to move in a single direction

unless the movements of all four arms are successfully coordinated with appropriate

phase differences.

The functional structure of embodimental coupling between motor units is formed

by the transmission of hydraulic reaction forces from one arm to the others through

articulation of the body. Since the information transfer between CPGs is mediated

by sensory information, the information structure of physical embodiment is consid-

erably influenced by the design and choice of sensory systems. While it is possible

to use composite sensory information from multiple sensors (e.g. the linear com-

bination of the input from fin sensor and muscle receptor), we use only a single fin
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angle sensor for a motor unit for simplicity. The reaction forces are sensed by the

fin bending angle (φ) and each sensor signal is fed to the corresponding motor unit.

The fin angle implements the stretch receptor at each side of fin, so the afferent

input s in Equations 3.9 and 3.11 were defined as: sl = kφ and sr = −kφ where k

is sensor gain.

This results in only a single sensor signal with opposite sign provided for a

couple of CPGs in a motor unit. Assuming that a fin angle sensor reflects the

output difference of the oscillator pair in the corresponding motor unit (i.e. sl,r =

f(xr,l−xl,r) where sr = −sl), let us take the simplest form of the sensor functions Fx

and Fy in equations 3.9 and 3.10. From equations 3.5 and 3.6 we mimic the functional

coupling structure of a pair of coupled BVP model by denoting sl,r = xr,l−xl,r. Then

the sensor functions are written as

Fx(sl,r, xl,r) = sl,r (4.1)

Fy(sl,r, xl,r) = sl,r + xl,r, (4.2)

which is equivalent of replacing the coupling terms in equations 3.5 and 3.6 by

δ(x2 − x1) = δs and εx2 = ε(s + x1). Thus, together with the global bifurcation

parameter μ, the reformulated CPG equations for a motor unit of 4-Fin Swimmer

can be written as:

τ ẋl = c(xl − x3
l

3
− yl + z − μ) + δsl (4.3)

τ ẏl =
1

c
(xl − byl + a) + ε(sl + xl) (4.4)

τ ẋr = c(xr − x3
r

3
− yr + z) + δsr (4.5)

τ ẏr =
1

c
(xr − byr + a) + ε(sr + xr). (4.6)

The time constant used was τ = 0.8 and all other CPG parameters are as defined

in section 3.2. The control input parameter z was set to 0.73. For convenience, we

will use the notation ixl and
ixr to express the anogist (left: l) or the antagonist

(right: r) CPG output of the ith motor unit. In the 4-Fin swimmer robot we have

four motor units; i = 1, 2, 3, 4.
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4.3 Global Strength of Embodimental Coupling

While the sensory coupling constants δ and ε in equations 4.3-4.6 are presented, these

parameters originate from the model of directly connected oscillators. In our neuro-

robotic system where the CPGs are indirectly coupled by local sensory information,

these parameters only define the ratio of input strengths for the first and second

variables of an oscillator (as shown in Figure 3.5). Since the robotic system and its

physical environment are arbitrary, the actual intensity of afferent input is highly

non-stationary and it depends on the overall effect from the body-environmental

interaction. With the parameters preliminarily given from the previous chapter, let

us investigate how the sensory input strength affects the overall system behaviour.

The sensory input signal is typically scaled by an appropriate gain before it is fed

to the controller. This sensor gain determines the overall strength of the coupling

through physical embodiment, which is analogous to the global coupling strength in

the coupled oscillator network model.

4.3.1 Effect of Global Coupling Parameter in the Chaotic

Regime

One of the key issues of the behaviour of the embodimentally coupled oscillator net-

work in our exploration system is whether the system is able to exhibit satisfactory

behaviour spanning from stable to chaotic dynamics. The neuro-body-environment

system should realise a weakly coupled interaction between CPGs where its mode of

dynamics is sufficiently flexible while not losing coherency among individual parts.

In fact, this is already the case in the previously introduced two coupled BVP model,

which will be the reference for our system. As it is previously presented in section

3.3 (Figure 3.6), the neuro-body-environment system having arbitrary degrees of

freedom can be equivalently treated as a pair of coupled oscillators such that every

single oscillator views the rest of system as another (imaginary) oscillator. Thus the

proper intensity of sensor signals for a CPG is expected to be same as that of the

output of a single BVP oscillator.

In order to investigate how the system behaves in its chaotic regime, a test was

performed by setting the global bifurcation parameter μ to be fixed at some value

in the chaotic regime. The bifurcation parameter was set to μ = 0.335 where the
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Figure 4.2: Neural output vs. time (oscillation cycle) for different global coupling

parameters (g=[1.5,2.2]). The agonist signals of three motor units (2xl:red,
3xl:blue,

4xl:green) are plotted whenever 1xl crosses its singular point (i.e. unstable equilib-

rium point, shown as black line) of the periodic orbit of CPG.
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Figure 4.3: Time plot of neural output for different global coupling parameters

(g=[2.3,2.9]).
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two coupled BVP models exhibits the highest chaoticity (the highest maximal lya-

punov exponent) as presented in Figure 3.4, and the system behaviour was observed

for different sensor gain k. As it will be described later in this chapter, we will

address the processing of raw sensor signal by an adaptive sensor mechanism. The

adaptive sensor mechanism is designed to give continuously varying output values

in an unknown range (which can have both positive and negative signs) by numer-

ically integrating a set of ordinary differential equations, which will determine the

sensor gain. In order to make sure that the gain always has positive sign and varies

smoothly, let us denote the sensor gain as k = eg where g is the output from the

adaptive sensor mechanism. We will use g as the global coupling parameter. Initial

investigation was made by visually observing the complicatedness of the neural sig-

nal of embodied system for different coupling parameter g. Figure 4.2 and 4.3 depict

the realtime plot of Poincare-like map. The graph was generated by plotting the

output of selected CPGs at particular instant of time so as to best visualise the time

varying dynamics of the system. The agonist signals of three motor units (2xl,
3xl,

4xl) are plotted whenever 1xl crosses its singular point (i.e. unstable equilibrium

point) of the periodic orbit of CPG. The coupling parameter g was increased by

0.1 in the range 1.5≤g≤2.9. Each behaviour was depicted approximately for 1200

oscillator cycles.

In our neuro-body-environment system, observation suggests that the result can

be roughly classified into three consecutive stages that show qualitatively distinct

behaviours. Different from the globally coupled map (GCM) model whose individual

elements exhibit chaotic dynamics regardless of the existence of coupling, our em-

bodied system consists of limit cycle oscillators, that generate chaoticity only when

connected to each other with appropriate coupling strength. For the weak coupling

strength (small gain; 1.5≤g<1.7 in Figure 4.2) the system exhibits synchronised

movement instead of chaotic motion. The output of CPGs initially fluctuates in

the early stage of simulation, then eventually all elements are synchronised with a

certain phase relationship which is guided by the given neuro-body-environmental

interaction. The stabilised motion exhibits the stable oscillation of multiple periods.

As the coupling strength increases in this regime, the duration of initial fluctu-

ations increases, which indicates that ‘coupled chaoticity’ starts to take effect. In the

range of 1.7≤g<2.7 (Figure 4.2 and 4.3), both chaotic and synchronised motions are

observed together. While weak or moderate chaotic dynamics dominates throughout
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the range of gain parameter, some parameter regime showed a few distinct synchron-

ised patterns intermittently. Because the presented body-environmental interaction

is formed by the symmetric body shape emersed in the dense hydrodynamic force

field, most of the synchronised patterns commonly exhibits strong coherence between

the diagonal CPGs, that is, 1xl and
1x3 tend to move nearly in-phase and 1xl and the

rest move anti-phase. This tendency is dominant in the weak chaotic regime, and

the frequency of escaping from this tendency increases in more chaotic regime. This

can be observed in Figure 4.4, where the phase relationships between agonist (ixl)

CPG ouputs (red plots of the graphs in first column) show occasional or frequent

changes between 0 and 180 degrees (Figure 4.4B,C). However, the stability of this

tendency was so strong that the escaped state quickly re-attracted to it within a hun-

dred cycles. Phase differences between antagonistic (ixr, blue) CPGs rarely exhibit

significant exchange of phase relationship while the fluctuation of phase differences

increases with increased chaoticity. It is because they have identical control input

z, indicating the change of phase relationship between arm movements is mostly

influenced by agonist CPGs.

If coupling strength increases beyond g = 2.7, the dynamics begins to syn-

chronise again into another multi-period oscillation. In contrast to to the regime of

weak coupling strength, the duration of initial fluctuation decreases as the coupling

strength increases. Finally, when g is over 2.9, the dynamics are tightly locked to

the periodic orbit of period one which is a completely stable form of the diagonal in-

phase motion, that we call ‘bound antiphase’ (BA), which is the most stable pattern

emerged from the 4-Fin swimmer system.

4.3.2 Analysis with Lyapunov Exponents

Quantification of the above observation was performed by calculating the maximal

Lyapunov exponent which is the indication of chaos. The analysis was done by

estimating the maximal Lyapunov exponents from two time series corresponding to

arm-1 of the robot, which are the neural output (1xl) and the arm movement angle.

For both time series, 105 data points are sampled at 40Hz (�t=0.025 sec), and these

time series data were generated for different g. The state space reconstruction was

done by obtaining appropriate embedding delay and embedding dimension using the

average mutual information (AMI) and the false nearest neighbours (FNN) methods.
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Figure 4.5: Lyapunov analysis of system in chaotic regime. (A1,A2) False nearest
neighbours analysis. (B1,B2) Logarithmic divergence curves iterated for 25 sec.
(C1,C2) Long range curves iterated for 250 sec. Three distinct groups are plotted
as: blue (g =1.6, 2.1, 2.2, 2.4, 2.8), green (g =2.5, 2.6), and red (g =1.7, 1.8, 1.9, 2.0,
2.3). The rest values of g (= 1.5, 2.7, 2.85, 2.9) which are easily distinguished from
others by observing the plots in Figure 4.2 and 4.3, are omitted for convenience.
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For all data, the first minimum of the AMI ranged from 56 to 66 bits, which is

approximately τ=60 bits (1.5 sec) in average. By assuming that they share the

same dynamical system, τ = 60 was used throughout the analysis.

Figure 4.5A shows the analyses of FNN and the logarithmic divergence curves

generated using Rosenstein’s algorithm. The graphs show clear distinction which

is analogous to the previously observed neural dynamics shown in Figure 4.2 and

4.3. FNN plots for the gains whose patterns exhibit stable oscillation (blue) show

relatively fast convergence of FNN fraction to zero, which indicates the low effect-

ive dimension caused by tight synchronisation between elements. The non-stable

patterns (red and green) resulted in slower convergence of FNN, and it reached min-

imum plateau values (indication of an appropriate minimum required embedding

dimension) at around m=8 for 1xl and m=6 for arm angle.

The lyapunov analysis was done using m=8 and d=1.5 sec for all data. The

divergence curve generated by Rosenstein’s method tells us that the time series

data is chaotic if there exists reasonably linear region over relatively long time scales.

From Figure 4.5B, the estimated maximal lyapunov exponents of red neural group

ranged approximately 0.13 < λ1 < 0.18. The same group for arm movement showed

smaller value. Although all data are generated by the simulation, the divergence

curve did not show clear linear lines while the curves are positively diverging. This

could be from a multiple reasons that the number of data point does not fulfil

the Eckmann-Ruelle requirement (Eckmann and Ruelle, 1992), which suggests the

minimum required data size is N > 10D (for our case 108 points) where D is the

dimension of attractor. Another possibility is that the true system dimension is

far larger than 8, and the hidden variables in higher dimensions act as a stochastic

noise to the reconstructed attractor. The sampled data set is the result of complex

calculation including physics simulation. The physics simulation uses a number of

discrete processes which cannot be expressed by a smooth differential equations,

which might invalidate the assumption of the determinism of system. Despite all

the possible glitches, we are able to generally understand the sensitivity of orbit to

initial conditions by determining the divergence curves. The curves in the figure also

show similar differences to the FNN analysis. The long term divergence curves in

Figure 4.5C show that the group showing synchronised motions (blue) exhibit flat

or fluctuating curves, which is the typical behaviour of n-torus system (Rosenstein

et al., 1993). The non-synchronising groups normally result positive curves that
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show initial steep rising followed by gentle slopes.

In all images, the two green lines are the data analysed for g=2.5 and 2.6 which

show somewhat distinguished results. They show the most complex looking motion

in the observation of the plots in Figure 4.2 and 4.3, and also their FNN analyses

converge slower than others and result in slightly higher minimal embedding dimen-

sions. Estimated λ1 for neural output were similar to other chaotic data, but those

for arm motion indicate they are less chaotic than others. Long term divergence

curves (especially the data from arm movement) also show slight deviation from

others in that the slope of the curves are flat most of the time. It can be thought

that although there are frequent changes of phase relationships between subparts,

the actual movement of the robot may exhibit less variability, or there may exist

some periodicity in this variability.

4.4 Movement Patterns in the Stable Regime

The observation of the system dynamics in the chaotic regime has provided us with

insights into how to provide the system with an appropriate degree of embodimental

coupling represented by the global coupling parameter that has to be pre-assigned

before running the exploration process. Now let us investigate the emergent patterns

of the system in its stable regime which are the candidates for high-performing

locomotion behaviours to be searched. The global bifurcation parameter μ was

fixed to zero, and the stable patterns which spontaneously emerge from the system

were observed and categorised. The sensor gain was chosen as k = e1.8≈6 from

previous experiments.

An ‘existing stable pattern’ was designated by observing the movement behaviour

of the robot for a reasonably long duration (200-300 oscillation cycles). The num-

ber and stability of stable patterns greatly varies over different body-environment

systems, each of which will form different ‘landscape’ of the state space of neuro-

body-environment dynamical system. The state space might have a small number

of strongly attracting states if its landscape has a few ‘deep’ basins of attraction.

Gently undulating landscape may result in a stream of slowly degenerating patterns

which might be misinterpreted as stable patterns. In the case of 4-Fin aquatic swim-

mer, it is anticipated that there will be a few highly stable movement patterns for
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Table 4.1: Categorised emergent behaviours existing in the stable regime. The aver-

age locomotion performance Avrg E was measured by calculating running average

of actual performance using a leaky integrator equation with the time constant of

5τE , where τE is the time constant of performance evaluation (as shown in Equation

3.13).

Pattern # of variations Avrg E

1. straight (ST) 4 (each dir) 0.48

2. circular (STC) 8 (4×(CW,CCW)) 0.4

3. rotate slow (R-slow) 8 (4×(CW,CCW)) 0.052

4. rotate fast (R-fast) 2 (CW,CCW) 0.046

5. vibration (VB) 2 (dir 1-3 & 2-4) 0.034

6. bound antiphase (BA) 1 0.0

which is easy to determine whether or not the pattern is stable.

4.4.1 Categorised Emergent Behaviours

After running a reasonably large number of simulation (more than 500 trials), the

stable movement behaviours in the stable regime of the system were identified. If

a robot behaviour was observed as being permanently sustaining, it was identified

as an individual behaviour. Basic movement behaviours of the swimmer were cat-

egorised into motion in four directions (along the body axes dir1, dir2, dir3 and

dir4 as shown in Figure 4.1) which met expectations given the symmetric shape

of the swimmer. Taking the directional symmetry into account, six different basic

behaviours were observed and classified according to the locomotion performance as

shown in Table 4.1. The shape of the 4-Fin Swimmer robot is radially symmetric,

so different synchronised pairs of joints (variations) can exist for a single behaviour.

For example, the straight swimming behaviour has four different combinations of

synchronised joint pairs, all of which show the same frog-like swimming behaviour.

As shown in Table 4.1 there are a total of 25 different arm coordinations when in-

cluding all variations. Careful viewing reveals that the circling movement (STC)

can show slightly different circling radii resulting from small differences in passive

fin tilting, but these are too small to be considered as separate distinguishable beha-
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Figure 4.6: (Upper) Snapshots of the straight swimming (ST-dir3) behaviour of 4-

Fin Swimmer. Images were taken every 1/10 gait cycle. The tip trajectories of the

fore (black) and rear (grey) fins are shown. (Lower) (A) Joint angles and (B) fin

bending angles of the behaviour. Each segment along the vertical axis indicates the

range [-1,1] rad.

viours. In order to keep the analysis clearer these kinds of variations are not counted

as different behaviours.

Figure 4.7 shows the instantaneous phase differences vs. time of each behaviour

as well as the agonist neural patterns. Because of the strong tendency of the anti-

phase synchronisation between four radially symmetric arms, most of the movement

patterns of robot arms are similar each other, which is basically the variations of the

frog-like swimming. However, the slight asymmetry of the hydrodynamic forces on

the contralateral arms, or improper phase locking between ipsilateral arms resulted

in significant differences in forward locomotion performance.

The forward locomotion behaviour involves straight movements (ST), or moving

in circles (STC). Straight locomotion is a frog-like swimming action which has the

highest performance (Figure 4.6). Since the robot shape is symmetric, the straight

swimming has four variations into the body directions 1-4. Circular swimming

(STC) moves on a circle by a slight asymmetry between contralateral arms, and their

movements can be either clockwise or counterclockwise, having total eight variations.

Non-locomotion behaviours were categorised into bound antiphase (BA), vibration

(VB) and rotation (R-slow/fast) (Figure 4.9). BA results in no net movement of
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Figure 4.7: Existing behaviours of the 4-Fin Swimmer selected from Table 4.1. For

each behaviour, the left plot depicts the instantaneous phase differences vs. time

(oscillator cycle), and the right plot shows the agonist neural output of arm2, arm3,

arm4 vs. arm1. Each colour of the phase difference plot indicates the phase difference

between arm1-arm2 (black), arm1-arm3 (red), and arm1-arm4 (blue). Colours of

the neural output plots are the same as the phase difference plots.
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Figure 4.8: Phase relationships and neural outputs of all eight variations of Rotation

behaviours. The variations of patterns reflect the radial symmetry of robot shape.
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Figure 4.9: The uppermost image shows the continuous trajectories of fin tips of

Rotation motions. The lower three images show the movements of R-slow-CW, VB,

and BA as presented in Figure 4.6. The snapshots of BA was captured every 1/5

oscillation cycle.
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the robot due to anti-phase locking between adjacent pairs of arms. The phase

relationship of VB is qualitatively the same as BA with different arm combination.

The arm movements of VB are contralaterally antiphase and ipsilaterally in-phase

based on the vibrating axis, and it has two variations for the vibrating directions 1-3

and 2-4. It is a failed version of straight swimming whose ipsilateral arms move out

of phase with an appropriate phase difference. Rotation behaviours show that the

robot rotates clockwise or counterclockwise without moving forward. It is essentially

another version of circular swimming, which moves on a circle with very small radius.

There were slow and fast rotations. The slow rotation has eight variations just

like STC motion (Figure 4.8), whereas the moving radius of fast rotation becomes

negligible and regarded as having only two (CW,CCW) variations.

4.4.2 Statistics of Stable Behaviours

Now let us investigate the statistics of the stable patterns that appear when the sys-

tem is in its stable regime. The system is run until a stable behaviour is observed,

and the statistics of the appearance of behaviours are done by a number of trials.

Before going into the test, a simple strategy in order to evenly designate the initial

conditions of the system was considered. Since the system is completely determin-

istic, and is run by a numerical simulation, the final pattern depends solely on the

initial condition. Therefore, in order to check all possible patterns of the system, the

initial conditions should be evenly and densely distributed in the state space of the

system. However, due to limited computational power, it is impossible to explore all

possible initial conditions. Although the presented neuro-robotic system has a relat-

ively small number of degrees of freedom, the number of actual independent variables

of the entire neuro-body-environment system far exceeds that of the robotic body.

If we consider the neural part only, the 8 oscillators have 16 variables, which will

result n16 initial conditions when the initial point for each variable is picked from

the discretised n equally spaced regions. Even if we pick only a single initial value

located in one of the quadrants in an 2D oscillator space (n = 2; two values for

one variable with different signs), the number of total initial points becomes 65536,

which still requires an enormous amount of time for running the simulations. This

means that only a limited (much less) number of trials compared to the number of

all possible combinations of initial conditions are available, so running the system
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Figure 4.10: (Upper) Initial point of an oscillator for each simulation trial is selected

in one of the regions (A or B). (Lower) The regions for choosing initial points of all

8 oscillators (shaded regions) for 279th simulation trial.
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from purely randomly generated initial conditions may result in biased statistics

when the initial conditions are not evenly distributed in the state space.

Instead of running the system from randomly generated initial conditions, we

tried to run the simulation with some rules so that the initial conditions are distrib-

uted as evenly as possible in the state space. As an ad hoc heuristic, we divided the

state space of a single oscillator into only two regions according to the direction of

sensor perturbation. Since the direction of the input vector in 2D oscillator space

is fixed to v = ±(δ, ε) (0.013,0.022) and the centre of rotation of the oscillator limit

cycle is aligned at the origin, the limit cycle can be divided into two approximately

‘symmetric’ orbits which tend to receive decelerating input forces when stabilised

by neuro-body-environmental interaction. With this in mind, the two regions in the

2nd and 4th quadrants were assigned to each oscillator space for choosing initial

conditions, and the initial point for each oscillator was selected randomly within

one of the two specified regions (Figure 4.10). Therefore, total 28 = 256 simulations

were run to investigate the statistics of stable patterns.

For each oscillator, the initial point was randomly chosen either in region A or

region B. Each simulation was indexed by generating initial points from the region

A or B according to the binary number converted from the trial number. The ith

bit (from the left) of the binary number indicates one of the two regions of the

space of oscillator i, that is, 0 for region A and 1 for region B. For example, 179th

simulation trial chooses initial conditions from its binary number 10110011, such

that the oscillators 1-8 choose their initial points in the regions A-B-A-A-B-B-A-A

respectively. In this way, total 256 simulations were run and the stable patterns

emerged from the system were categorised.

Figure 4.11 shows the visiting count of each behaviour. We can see that the

appearance of the BA pattern is dominant, which indicates that it has the largest

basin of attraction in the state space of 4-Fin swimmer. The appearance of other

higher performing behaviours were nearly the same, occupying only a small fraction

compared to that of BA. Among them, the lowest performing behaviours such as

VB were more frequent than the others, that is, the low performing behaviours are

more stable. This is because the shape of robot is symmetric, so the symmetric

arm movement patterns are more stable, resulting in no forward locomotion. Figure

4.12A shows the distribution of behaviours according to the initial conditions which

are ordered by the sequence of trials. When the appearances are grouped as a
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Figure 4.11: Visiting counts of stable behaviours without search (with g = 1.8).

(Left) Graph excluding BA. (Right) Graph including BA.
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Figure 4.12: Appearance of stable behaviours without search according to the ini-

tial conditions. (A) Behaviour appearance vs. trial number. The trial number

encodes the initial conditions. (B) Behaviour appearance were shown according to

the Hamming distance of initial conditions from 00000000.
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function of binary Hamming distances (Figure 4.12B) of initial conditions from

zeroth initial point (00000000), the appearance of non-BA behaviours are distributed

around the middle, which indicates that the initial conditions whose initial points

for eight oscillators are aggregated in similar location (the initial points of most

oscillators are in the same region) are almost always entrained to the BA pattern.

4.5 Turning on Chaotic Exploration

We have seen that multiple movement behaviours coexist in the stable regime of

the embodied system, while the low-performing behaviours take up most of the

state space. Now we will use the chaotic exploration process and see how the sys-

tem explores and stabilises its state onto good performing behaviours. The chaotic

exploration is expected to escape from those undesired behaviours (i.e. Rotation,

Vibration, Bound Antiphase) and to be stabilised to one of the swimming-like be-

haviours.

The exploration process was run by the method described in section 3.4.1. The

time constant for measuring locomotion performance in Equation 3.13 was set to

τE = 5T , where T = 6.4 (≈8τ , where τ = 0.8 is the time constant of oscillator) is

the period of a single oscillator. The time constant (τμ) for the global bifurcation

parameter μ in Equation 3.14 was set to T , while the previous work of chaotic search

(Aida and Davis, 1994) suggests that their experiment has shown the best search

performance with τμ in the range of [0.3T < τμ < 1T ]. The maximum value of the

bifurcation parameter was set to μc = 0.35 after observing a few simulations not to

shut down one of the oscillators in the motor unit. The time scale for the desired

performance (τd in Equation 3.16) was set to τd = 25T .

4.5.1 Exploration Failure (Dead-End) by Weak Chaoticity

The first experiment was done using the sensor gain parameter g = 1.8 as in the

previous section. Although the previous investigation of the chaoticity of the system

in its maximum chaotic regime revealed that the system produced chaotic dynamics

with the sensor gain g = 1.8, the exploration process did not show the expected

result. In most trials, after the system orbit was entrained to the BA pattern, the

orbit could not escape from there.
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Figure 4.13: Visiting counts of stable behaviours with chaotic search (with g = 1.8).

(Left) Graph excluding Dead End. (Right) Graph including Dead End.
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Figure 4.14: Appearance of stable behaviours vs. initial conditions with chaotic

search for g = 1.8. (A) Behaviours vs. trial number. (B) Behaviours vs. Hamming

distance.
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Figure 4.15: Dead end of exploration process with g = 1.8. (A) Phase differences

between neural outputs. Colours of plots are the same as that of Figure 4.4. (B)

Phase relationship of arm movements. (C) The change of actual performance (E),

desired performance (Ed), and bifurcation parameter (μ). (D) Arm movements after

synchronisation in chaotic regime (Dead End state).
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This failure, which we call dead-end, is due to the fact that the chaoticity of the

destabilised system was simply not strong enough to make the orbit escape from low

performing states. The orbit which tries to escape from BA by system destabilisation

is quickly re-injected to BA, and the system was virtually stabilised in its chaotic

regime by the phase synchronisation between system variables. The re-injection

dynamics is repeated regularly, which becomes a part of system synchronisation.

Although the time course of phase relationships of neural and robotic parts (Figure

4.15A and B) exhibit the regular pulse-like escaping trials, they are mostly for the

phase difference between the agonist and antagonist muscles. This means that only

the amplitude of arm movement regularly fluctuates, but there is no significant

change in the interlimb phase relationships. The short lasting pulse-like changes of

interlimb phase relationships are seen in arm movements (Figure 4.15B), but their

occurrences are synchronised with the amplitude fluctuation, that all the phase

differences quickly drift by 2π to be returned to their original states. As the result,

the actual performance E stays low and the desired performance Ed decays close to

E (Figure 4.15C). The final arm movements show the phase relationship similar to

BA pattern with the periodic change in their amplitudes as shown in Figure 4.15D.

The statistics of the exploration process (Figure 4.13 and 4.14) reveals that most

of the trials yielded to dead-end except that a few number of runs were stabilised to

high performing behaviours. Although there are a few seemingly successful results

which are stabilised to high performing behaviours, they were not the result of suc-

cessful escape from low performing behaviour but by being started from ‘good’ initial

conditions which would eventually lead the system to one of the high performing

behaviours without encountering low performing behaviours.

4.5.2 Test using Higher Chaoticity

Since the system has failed to have satisfactory explorability when the chaoticity is

not strong enough, another test was done using the sensory gain of g = 2.5 which

has shown the highest chaoticity in section 4.3.2 (green group in Figure 4.5). In

this case, most of the trials successfully avoided low-performing patterns and are

stabilised to one of the locomotion behaviours. Figure 4.16 shows an example of

successful exploration process which stabilises onto STC pattern.

During the search process all variables and control parameters vary continu-
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Figure 4.16: Successful exploration of high performing behaviour with g = 2.5

(STC-dir4-CCW).

ously as parts of the neuro-body-environment system, and the time evolution plots

of phase relationship, performance, and control parameter (Figure 4.16) show that

there is no clear distinction between the stabilisation and destabilisation of system.

Rather, the change of system behaviour shows a continuous mixture of chaotic and

smooth drift of phase relationships until a high performing pattern suddenly emerges

within a few tens of oscillation cycles. Since the stable locomotion behaviours have

similar performances which are segregated in a certain range of values without any

intermediate performing behaviours, the system shows relatively sudden changes

between locomotion and non-locomotion behaviours. The system dynamics stays

in its chaotic regime usually with some irregular fluctuation around BA pattern

(having low E), while initially high desired performance (Ed) decays toward low E

(Figure 4.16C). As Ed is decreased to a certain level which is close to E, the bifurc-
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Figure 4.18: The number of appearance of each behaviour vs. 3D visualisation of

Hamming distance (g = 2.5).
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ation parameter μ varies sensitively according to the small changes in locomotion

performance, resulting the system to actively try some intermediate patterns in or-

der to be stabilised to a behaviour whose performance is higher than the desired

performance (E≥Ed).

The statistics of behaviours (Figure 4.17 and 4.18) shows that the explorability

of the system has been improved, and the frequency of the appearance of dead-

end was greatly reduced. Note that there was no straight swimming patterns (ST)

observed in this experiment. The higher sensor gain strengthened the global coupling

between neural elements, and it slightly changed the phase relationship between

arm movements as well as the course of exploration process. Most of exploration

process in this test exhibited the rotation (R) behaviours as an intermediate stage

before being stabilised to the final behaviour, so the asymmetry between passive fin

dynamics of contralateral arms was amplified and sustained after the stabilisation

of arm movements, resulting only STC motions were stabilised.

4.5.3 Exploration Deficiencies: Bad-Lock and Deep-Path

Although the system exploits chaotic dynamics for the exploration of motor pat-

terns, unwanted synchronisation between system variables in a quasiperiodic regime

of the system, resulting in low performance, can arise from some initial conditions.

This we call bad-lock, where the dynamics of all system variables are locked in a

narrow range of phase differences while the precise values of variables vary chaotic-

ally (Figure 4.19). The system was locked onto non-locomotion patterns (Rotation

and Vibration) where the bifurcation parameter μ does not reach zero but oscil-

lates near zero being phase-locked with other system variables. Although this is

undesirable for the purpose of this work, it should be noted that this phenomenon

is observed in real biological systems (e.g. in walking and heartbeat rhythms). The

bad-lock phenomena occurred more frequently if we set the maximum available bi-

furcation parameter μc below the onset of chaos, indicating that the system has less

exploratory ‘perturbation force’ when using low chaoticity.

Also another deficiency, so called deep-path was sometimes observed. It is a

similar phenomenon to the exploration dead-end phenomena which was previously

seen in section 4.5.1. This involves the orbit becoming entrained in some periodic

state for a long time before it eventually reaches the desired state (Figure 4.20).
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Figure 4.19: Bad-lock.
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Figure 4.20: Deep-path.
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Similar to dead-end, due to the strong attraction of the BA pattern, the orbit which

tries to escape from BA by system destabilisation is re-injected to BA and stays there

for a long time. The chaoticity of orbit in the chaotic regime of the system is stronger

than the previous case, so the system does not stall to dead-end but maintains weak

irregular fluctuation of variables. Prolonged stay of the actual performance E in

low value makes the desired performance Ed decay close to E so that the sensitivity

of μ increases, resulting in increased number of stabilising trials. However, those

stabilising trials re-encounter BA pattern repeatedly for a long time before escape.

The escape orbit is often stabilised to STC patterns, which indicates that the STC

patterns are located in the vicinity of BA in the phase space.

As shown in Figure 4.17 (right), there were a few number of deep-path dynamics

which might have become the dead-end of exploration in the previous system using

g = 1.8. Even so, the total number of dead-end and deep-path occupies much smaller

fraction of entire emergent behaviours than previous experiments. The possibilities

of bad-lock and deep-path always exist because the system is fully deterministic

without stochastic sources, but it should be possible to reduce them by introducing

additional adaptive factors as will be presented later. It could be possible to alleviate

these defieciencies by introducing a stochastic perturbation such as the random noise

when the system stagnation is perceived. However, distinguishing those deficiencies

from normal exploration process in an automatic and systematic way is difficult,

because there is no clear criteria to identify the occurrence of deficiencies in realtime

by tracking the dynamics of system variables. Another option would be to present

stochastic perturbation indifferently throughout the exploration process, but it will

enigmatise the contribution of chaotic dynamics to the system, which will go against

the aim of this work as well.

4.6 Summary

This chapter has presented the initial implementation of the idea of the exploration-

stabilisation framework for dynamically searching useful locomotor behaviours among

the existing stable behaviours that emerged from the neuro-body-environment sys-

tem. As a body-environment system, a simple 4-Fin Swimmer model moving in a

2D hydrodynamic environment was combined with the neural part, which consists
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of a series of identical motor units, via local sensory feedback. The sensor informa-

tion was fed to the neural parts by properly designed input equations to form the

structure of indirect coupling between CPGs similar to that of the excitatory-to-all

connection architecture of coupled BVP oscillators as shown in Figure 3.5. The

importance of the global sensor gain was highlighted as it determines the overall

strength of embodimental coupling between neural parts, and we investigated how

the system behaves using different gains.

Although all CPGs are physically disconnected, the information from one part

was transferred through physical embodiment to the others, resulting in multiple

synchronised patterns that emerged in the stable regime of system, some of which ex-

hibited biologically plausible locomotor behaviours. The exploration process showed

that the system orbit could chaotically wander and be stabilised to one of the high-

performing stable patterns. While the emergence of patterns in the stable regime

was reliable over a wide range of sensor gain, the system lost exploration capab-

ility when the gain was not high enough to generate enough chaoticity. Even if

the system showed well-looking exploration process by giving enough chaoticity,

there were other unwanted system deficiencies according to some initial conditions,

which it seems inevitably arise from the deterministic nature of system. The initial

framework will be extended and improved in the next chapter in order to improve

performance and alleviate the deficiencies highlighted in the previous section.
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Chapter 5

Exploration with Sensor

Adaptation and Oscillator

Learning

5.1 Introduction

In this chapter we improve the basic framework of chaotic exploration in order to

achieve more adaptive system for various kinds of physical embodiment. Since the

main direction of our work is to build an integrated neuro-body-environmental sys-

tem which is essentially a single high dimensional continuous dynamical system, the

improvement of the system should be considered within these conceptual bound-

aries. The basic exploration system is extended by employing two fully dynamic

processes which are smoothly integrated with the basic system to form an expanded

continuous dynamical system. The first method is inspired by biological processes,

and it deals with the preprocessing of the sensor inputs coming from an arbitrary

robotic system, so that it is able to maintain an appropriate functional coupling

between neural elements in a realtime and continuous manner. The second im-

provement is to combine a fully dynamic learning method in order to automatically

wire initially disconnected neural elements, so that the system can dynamically cap-

ture and memorise an emergent locomotor pattern discovered by the exploration

process. The following sections will describe each method and their application to

the basic system, and the performance of the integrated system will be investigated
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by presenting some experimental results.1

5.2 Incorporating Sensory Homeostasis

A growing body of literature suggests that the activity levels of biological neurons

and networks are homeostatically regulated in order to maintain physiologically

proper and stable network performance in the face of growth, channel turnover, and

modification of either synaptic or intrinsic parameters or both (Turrigiano et al.,

1994; Liu et al., 1998; Turrigiano and Nelson, 2000, 2004; Turrigiano, 2007; Zhang

and Golowasch, 2007; Turrigiano, 2008; Wilhelm and Wenner, 2008; Wilhelm et al.,

2009; Zhang et al., 2009; Gunay and Prinz, 2010). In biological neural networks,

there exist the saturation effects such as hyperexcitation and quiescence. They

are not easily observed in living neural systems, because the homeostatic plasticity

serves to regulate neural activity. The concrete mechanism of the regulation of

neural activity is not known but it is clear that neural activity tends towards a

constant level in the long term. Various mechanisms have been revealed about

how this homeostasis is accomplished, amongst which are mechanisms affecting the

strength of synaptic connections (Turrigiano, 1999; Abbott and Nelson, 2000) and

the intrinsic excitability of individual neurons (Desai et al., 1999; Zhang and Linden,

2003).

These findings have greatly inspired both computational biologists and AI re-

searchers serving as a conceptual basis for a simple and powerful adaptive mechan-

isms. Particularly in the field of neuro-robotics, they have been adapted for use in

Continuous-Time Recurrent Neural Networks (CTRNNs) (Beer, 1995b, 2003) and

have been shown to make CTRNNs more sensitive and give rise to more interesting

behaviours in the control of autonomous agents (Williams, 2004). Homeostatic plas-

ticity has been incorporated into the artificial evolution of CTRNNs for a wheeled

robot navigation task while trying to maintain a certain range for the firing rates

of neurons (Di Paolo, 2000). The evolved robots were able to adapt to nontrivial

1The flash streaming (FLV) as well as downloadable AVI files of the movies in this work are avail-

able at: http://www.informatics.sussex.ac.uk/research/groups/ccnr/movies/yssmovie.

html (Shim, 2012). Where available, the indices of movies (ex. Video 1,2...) in above URL

will be indicated using footnotes throughout the text.
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Figure 5.1: Modified motor unit with homeostatic sensor adaptation.

sensorimotor disruptions such as sensor inversions for which they have not been

evolved.

As investigated in the previous chapter, the global coupling strength of indir-

ectly coupled neuro-body-environment system significantly influences overall system

behaviour. Self-structured coupling of embodied system requires to maintain proper

strength in order to provide a range of dynamics from stable to chaotic patterns.

Since our goal is to build an exploration system for an arbitrary body-environmental

configuration, the sensor signal should be adjusted adaptively to operate in an appro-

priate range. Using the measurable properties of the CPG output signals of motor

units as reference for the homeostatic adaptation of sensor signals, the incoming sig-

nals for indirectly coupled CPGs can be regulated to have similar waveforms as in

the case of electrically coupled CPG network. Based on the equivalence concept of

two coupled BVP models, the sensor input to one CPG is regarded as the incoming

signal from the antagonistic CPG via coupling between them. Therefore the input

signal is adjusted to have similar amplitude and offset with that of the antagonistic

CPG output.

5.2.1 Homeostatic Regulation of Sensor Signals

In order to implement sensor adjustment, a sensor adaptation module (SAM) is

added to the motor unit (Figure 5.1). The sensor adaptation module performs

homeostatic adaptation for sensor input by calibrating the raw sensor signal using

a linear transformation, which continuously adjusts the amplitude and offset of
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the periodic sensor signal in order to closely match its waveform to that of an

antagonistic oscillator output. The sensory signal (in most cases mechanosensory

information from haptic sensors or muscle afferents) may vary according to the

choice of sensors and the different body-environment interaction conditions. If the

incoming signal is too large the chaoticity of the system will be lost, if too small the

neural signals will be uncorrelated. The regulation of sensory activation ensures that

the oscillator pair in a motor unit maintains a certain level of information exchange

close to that of a weakly coupled oscillator pair so that the network dynamics are

regulated within an appropriate range to generate flexible yet correlated activities.

This also ensures that the chaoticity of a motor unit is controlled in a systematic

and collective way by the feedback signal regardless of the physical properties of the

robotic system and the type of sensors.

As the properties of the reference signal for which the sensory adjustment should

follow, the energy and average of the periodic signal were used. Both values can

be measured in a realtime and dynamical way and they effectively represent the

amplitude and offset of the reference neural output to be compared to the actual

sensor signal. Let us recall the equations for a pair of CPGs in a motor unit (from

Equations 3.9-3.12) in a reduced form,

τ ẋl,r = c(xl,r −
x3
l,r

3
− yl,r + z1,2) + δFx(sl,r, xl,r) (5.1)

τ ẏl,r =
1

c
(xl,r − byl,r + a) + εFy(sl,r, xl,r) (5.2)

where Fx(sl,r, xl,r) and Fy(sl,r, xl,r) are sensor input functions in order to form a

proper coupling topology based on the equivalence concept of two coupled BVP mod-

els (as described in section 3.3). With sensor adaptation these functions are denoted

by manipulating raw sensor input as; Fx(Hl,r(sl,r, t), xl,r) and Fy(Hl,r(sl,r, t), xl,r),

where Hl,r(·) are the sensor adaptation functions for each CPG in a motor unit

which varies in time. The function H takes the form of a time varying linear trans-

formation such as H(s, t) = P (t)s+Q(t), so at each time instance, every individual

CPG is subject to its own different sensor transformation.

Given a raw sensor signal s and its reference neural signal n whose amplitude

and offset should be followed by H(s, t) (usually an antagonistic oscillator output

in the corresponding motor unit), the common form of sensor adaptation function
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is written as:

H(s, t) = (s− s)eA(t) + (s+B(t)) (5.3)

τh
dA(t)

dt
=

√
(n− n)2 −

√
(H(s, t)−H(s, t))2 (5.4)

τh
dB(t)

dt
= n−H(s, t) (5.5)

where x represents the continuous running average of x as calculated from τhdx/dt =

−x + x. The raw sensor signal s is linearly transformed by a multiplicative factor

eA(t) and an additive factor B(t). The function A(t) is updated by comparing the

difference of the root mean square of the temporal average of the squares of the

antagonistic neural output n and the transformed incoming signal H(s, t), which

is analogous to the signal energy that reflects the strength or amplitude. B(t) is

used as part of the scheme to remove the offset bias: each signal is subtracted by

its average offset (n and H(s, t)) before calculating the energy difference. B(t) is

updated by the offset difference between two signals. The time scale of adaptation

should be set longer than that of the oscillator, and we used τh as the time scale of

performance evaluation (τE) throughout this work, as described in the next section.

5.2.2 Movement Patterns in the Stable Regime

By applying sensory homeostasis to the previously introduced 4-Fin Swimmer robot,

another set of experiments was performed to investigate the newly extended system.

The fin bending angle φ was used as the raw sensor signal for a corresponding motor

unit as before, but the raw sensor variables are now put through the adaptation

function without using the fixed gain just by setting sl = φ and sl = −φ. Then the

full equations describing a motor unit for the 4-Fin Swimmer are written from the

previous equations (Equations 4.3-4.6) as:

τ ẋl = c(xl − x3
l

3
− yl + z − μ) + δH(sl, t) (5.6)

τ ẏl =
1

c
(xl − byl + a) + ε(H(sl, t) + xl) (5.7)

τ ẋr = c(xr − x3
r

3
− yr + z) + δH(sr, t) (5.8)

τ ẏr =
1

c
(xr − byr + a) + ε(H(sr, t) + xr). (5.9)
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Table 5.1: Categorised emergent behaviours of 4-Fin Swimmer with sensory homeo-

stasis existing in the stable regime.

Pattern # of variations Avrg E

1. straight (ST) 4 (each dir) 0.7

2. circular (STC) 8 (4×(CW,CCW)) 0.6

3. rotate (R) 2 (CW,CCW) 0.06

4. peg-leg (PL) 4 (each arm) 0.04

5. vibration (VB) 2 (dir 1-3 & 2-4) 0.03

6. bound antiphase (BA) 1 0.0

Since the fin sensor reflects the output difference of the oscillator pair in the cor-

responding motor unit as previously defined (i.e. sl,r = f(xr,l − xl,r)), the reference

neural signals for sensory adaptation in Equations 5.4 and 5.5 should also be changed

to nl = −nr = xr − xl. All other parameters were same as previous experiment.

Since H(s, t) is operated for each CPG, a motor unit includes a pair of H(s, t) each

of which has its own adaptation variables A(t) and B(t) for agonist and antagonist

CPGs. Because the 4-Fin Swimmer has only a single sensor for a motor unit as

previously described, there is a relation; Al(t) = Ar(t) and Bl(t) = −Br(t).

Again, we fixed the bifurcation control parameter to the stable regime (μ = 0)

and ran the simulation to see the existing behaviours emerged from various initial

states. More than 1000 simulations were run in order to observe and categorise the

behaviours. Basic movement behaviours of the Swimmer were categorised into mo-

tion in the four directions of swimmer. The result was categorised into six different

behaviours which is almost the same as the previous system without using sensory

adaptation. The representative behaviours existing in the stable regime were clas-

sified according to the locomotion performance and are listed in Table 5.1. The

time courses of the phase relationships and the sensor adaptation variables for each

pattern were depicted in Figure 5.2.

The list of emergent behaviours was similar to that of non-adaptive case, that the

straight movements (ST), moving in circles (STC), Rotation (R), Vibration (VB),

and Bound Antiphase (BA) exhibited similar or almost same movement patterns to
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Figure 5.3: (Upper) Snapshots of the Peg-leg behaviour (PL-arm3) behaviour of 4-

Fin Swimmer. Images were taken every 1/10 gait cycle. The tip trajectories of the

fore (black) and rear (grey) fins are shown. The graphs show joint angles (upper)

and fin bending angles (lower). Each segment along the vertical axis indicates the

range [-1,1] rad.

those of previous case.2 While the identical categorisation and naming were drawn

for the behaviours of both cases, the precise motions show slight differences in that

the sensor adaptation actively participates in the overall dynamics, resulting in the

final interlimb coordination which converges to a certain state whose dynamics is

dynamically balanced with that of sensor adaptation. The interlimb coordination

can fluctuate (Figure 5.2D) or even show continuous shift (Figure 5.2C), however

their qualitative behaviours are maintained by the body-environmental coupling.

Among these stable behaviours, the forward locomotion involves straight move-

ments (ST), moving in circles (STC), and peg-leg (PL) motions. PL motions involve

one of the arms moving with a small amplitude while the other three arms all use the

same large amplitude. The phase relationship of the PL pattern is essentially similar

to that of BA except that the amplitude of one arm is smaller than the others and

its phase continuously shifts (with an irregular fluctuation) compared to the others,

2Video 1-5 at Shim (2012).
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Figure 5.5: Synchronised behaviours emerged from the same μ as those of Figure

5.4B and D, but run from different initial conditions. (A) μ = 0.33, (B) μ = 0.37.

which achieves a slow forward locomotion by asymmetric propulsion forces. The

sensor adaptation makes the lame arm synchronise with the corresponding motor

unit with a small amplitude, resulting in the partial loss of the phase correlation

with the other arms. This results in the motion of the other three arms being co-

ordinated in such a way that the inertial/hydrodynamic forces are transferred less

strongly to the remaining arm through physical embodiment.

The movements of arms in the rotation motion are out of phase with each other

and fluctuate irregularly with relatively large amplitude. The fluctuation and shift-

ing of phase relationship suggests that an emergent behaviour does not necessarily

exhibit concrete phase locking between subsystems in the neuro-body-environment

system when it is incorporated by dynamic sensor adaptation. Note that the PL pat-

terns only appear when sensory homeostasis is present. Therefore, the homeostatic
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Figure 5.6: Visiting ratio of each patterns. Appearance of behaviours with (A) no

control (μ = 0) and (B) chaotic search. The ST (number 1) and STC (number

2) movements are depicted as a single bar. Although PL movements have low

performances, they were frequently searched because of their high stability.

regulation of sensory signal results in an opposite effect which is the diversification

of limb motion, that is, the multiple combinations of the amplitudes and offsets of

limb motions can be explored and stabilised by sending the standardised sensory

input signals to the neural controller. In turn, different limb-wise oscillations may

cause different interlimb coordination as well.

5.2.3 Exploration of Stable Locomotor Patterns

Observation of the system behaviour at different fixed values of μ revealed that the

stable dynamics of the system begin to fluctuate as the global bifurcation parameter

μ increases, exhibiting a series of transient dynamics from quasiperiodicity to chaos

(Figure 5.4). In the higher chaotic regime complex transitory dynamics similar to

chaotic itinerancy occurs which drives the system to briskly explore the phase space.

The behaviour of the system in the chaotic regime with sensor adaptation allowed

a slightly wider range of μ, such that the system did not stall at higher values of μ up

to μmax≈0.45, where some of the system CPGs without sensor adaptation lost active

oscillation at μmax≈0.4. Different from the non-adaptive case, multiple isolated

‘attractors’ were observed in some of the chaotic regime of the system according to

different initial conditions, that the chaotic (Figure 5.4B,D) and non-chaotic (Figure
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Figure 5.7: Final behaviours and their exploration time (oscillation cycles) until

stabilisation without (A) and with (B) sensory adaptation. For each case 100 sim-

ulations were run and each behaviour was ordered by the time taken to stabilise.

5.5) behaviours coexist.

Like the preceding experiment, the distributions of visits to each of the beha-

viours identified in Table 5.1 were investigated under the presence and absence of

chaotic search to see the effect. 100 simulations were performed for each case and

the visiting counts of six major behaviours were recorded by observation. Figure

5.6 shows a clear difference between the visiting ratios of the two cases, suggest-

ing the effectiveness of chaotic search which tended to settle on dynamically stable

locomotion. During the search process all variables and control parameters vary con-

tinuously as parts of the neuro-body-environment system, and the time evolution

plots of phase differences, performances, and bifurcation parameter (Figure 5.8A,B)

show that the stabilisation and destabilisation of the system occurs repeatedly in a

trial-and-error manner until it settles on an effective form of locomotion. The sensor

parameters (Figure 5.8C,D) also change continuously and settle to different values

via homeostatic adaptation.

It has been revealed that the use of sensory adaptation has helped to signific-
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Figure 5.8: An example of exploration and stabilisation on to straight (ST2) loco-

motion. (A) Time plot of instantaneous phase differences between the arms 1-2, 1-3

and 1-4. (B) Performance (E), desired performance (Ed), and control parameter

(μ). (C,D) Sensory adaptation parameters A(t) and B(t) in equation 7.

antly alleviate the issue of exploration deficiencies such as dead-end, bad-lock, and

deep-path that the non-adaptive system have encountered in previous experiments.

Although the deep-path motion appeared in a few tests, no appearance of dead-end

and bad-lock was observed with the use of sensory adaptation. Figure 5.7 shows

an example of the exploration time taken for stabilisation of the systems with and

without adaptation. The fixed sensor gain of the non-adaptive system was chosen

to produce a similar behaviour category to the adaptive case. While the adaptive

system was stabilised within 1000 cycles in general, a number of runs of the non-

adaptive system showed it could take up to ten times as long to stabilise compared

to the adaptive system. The escape orbit is often stabilised to the PL patterns,
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which indicates that the PL patterns are located in the vicinity of BA in the phase

space.

5.3 Merging with a Dynamic Learning System

As the final building block for the system to achieve a continuous exploration-

learning procedure, a fully dynamic oscillator learning algorithm is employed and

integrated with the exploration process. Often, there are high performing loco-

motion patterns which are not completely stable and only appear for a while during

the exploration process. These transient target behaviours can be captured and

memorised by the oscillator learning process.

Figure 5.9 illustrates the final version of the integrated exploration and learn-

ing scheme, which has been progressively improved from Figures 3.1 and 5.1. The

overall procedure of the exploration-learning process is explained as follows. As pre-

viously described, each robot joint has a dedicated motor unit (right side of figure)

comprising oscillator-based central pattern generator neurons (CPG) with sensory

input (S) and motor output (M). Sensory input undergoes homeostatic adaptation

as it passes through a sensor adaptation module (SAM). This enhances the syn-

chronicity between the neural and physical system thus allowing the neural system

to cope with an arbitrary robotic system. An evaluation feedback signal controls a

global bifurcation parameter that alters the chaoticity of the CPGs. Connections

between the oscillators (expressed by broken lines) are initially inactive by setting

their weights to zero. The chaotic dynamics of the neural-body-environment system

drives a search process that finds motor patterns that perform well according to

the evaluation criteria. As the system stabilises on a high performing pattern the

bifurcation parameter reduces to zero and the connections between the oscillators

become active, their weights being set by a learning procedure that is smoothly

linked to the chaotic exploration process. In this way the learning process further

stabilises, captures and memorises the motor patterns.

5.3.1 Learning by Adaptive Synchronisation

Since the wiring of oscillator coupling has to be dynamically modified in realtime

in parallel with the exploration and discovery of useful patterns, we adapted a fast
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Figure 5.9: An overview of the integrated exploration and learning scheme.

and fully dynamic learning model developed by Doya and Yoshizawa (1992). The

learning algorithm decomposes the problem of weight learning between oscillators

into a collection of cellular-wise processes by adjusting the input connection weights

(also called the phase-lock matrix) of individual neurons to maintain a given phase

relationship between the cellular activity and incoming signals. This is available

only when the phase relationship between the neuronal activity and input signals

are presented in advance, which provides a suitable interface for our exploration

system.

The learning algorithm for a network of identical oscillator was derived from the

original work of Doya and Yoshizawa (1992). Let us consider n oscillators which are

fully connected to each other. We denote the state j of the oscillator i as xj
i and

write a compact expression with the coupling term C which is the total input from

other oscillator variables,

τ
dxj

i

dt
= f j(xi, t) + Cj

i , j = 1, 2, ..., m (5.10)

where xi = (x1
i , x

2
i , ..., x

m
i )

T is the state vector. Assuming that the oscillators pro-

duce sinusoidal waveforms which can be approximated by sine waves (ex. Asin(ωt+
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φ)), the phase-locked solution of the state vector of oscillator i and those of the

other oscillators can be expressed as a linear relationship,

xi =
n∑

k=1

Pikxk, i	=k (5.11)

where Pik is the m×m phase-lock matrix for the oscillators i and k. Suppose we

already have a certain phase relationship between xi and other oscillators, then we

can drive xi in order to satisfy the equality in Equation 5.11 by using a simple error

feedback to the oscillator using the gradient of an objective function Ei such that:

Ei =
1

2
‖xi −

n∑
k=1

Pikxk‖2 = 1

2

m∑
j=1

{xj
i −

n∑
k=1

m∑
l=1

pjlikx
l
k}2 (5.12)

Cj
i = −g∂Ei

∂xj
i

= g(

n∑
k=1

m∑
l=1

pjlikx
l
k − xj

i ) (5.13)

pjlik represents the (j,l)th element of the matrix and g is a feedback gain which should

be set small enough so that the ongoing oscillation is not distorted. Thus we can

rewrite the above state Equation 5.10 by neglecting the small decay term gxj
i in

Equation 5.13 as

τ
dxj

i

dt
= f j(xi, t) + g

n∑
k=1

m∑
l=1

pjlikx
l
k i	=k (5.14)

We can see that the feedback term actually represents the coupling term from other

oscillators in that gpjlik is the coupling connection strength from xl
k to xj

i . The

coupling matrix Pik can be obtained using the same gradient descent learning with

regard to pjlik. In order to eliminate any bias effect, the deviation of signal from its

temporal average (τv
dx̄
dt

= −x̄+ x) was used for learning,

dpjlik
dt

= −γ ∂Ei

∂pjlik
= γ{(xj

i − xj
i )−

n∑
r=1

m∑
s=1

pjsir (x
s
r − xs

r)}(xl
k − xl

k) (5.15)

where γ is the learning rate.

5.3.2 Integrated Exploration-Learning System

As the exploration process stabilises the system by discovering a high performing

locomotor behaviour, the synaptic connections between oscillators are dynamically
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wired using an adaptive synchronisation learning scheme. The coupling strengths are

continually adjusted to follow the emergent patterns in parallel with the exploration

process until the system is stabilised by discovering a desired pattern.

Since the learning is performed by adjusting the connection weights between

individual CPGs, let us consider the equations for a single CPG i in compact form

with the coupling term,

τ
dxi

dt
= fx(xi, yi, t) + Cx

i (5.16)

τ
dyi
dt

= f y(xi, yi, t) + Cy
i (5.17)

fx(xi, yi, t) = c(xi − x3
i

3
− yi + zb) + δFx(H(si, t), xi) (5.18)

f y(xi, yi, t) =
1

c
(xi − byi + a) + εFy(H(si, t), xi) (5.19)

The subscription for zb becomes b = ((i + 1) mod 2) + 1. The sensory input term

was regarded as a part of the oscillator dynamics to promote sensory influence in

the global coordination of the learnt oscillator network. In order to improve the

readability of the following equations, let us denote the states x and y of oscillator

i as x1
i and x2

i and rewrite above equations in more reduced expression,

τ
dxj

i

dt
= f j(xi, t) + Cj

i , j = 1, 2 (5.20)

where xi = (x1
i , x

2
i )

T is the state vector for the CPG i. Considering M (=2N , where

N is the number of degrees of freedom of the robot) fully connected oscillators, the

coupling term C for state j of oscillator i (xj
i ) can be written as:

Cj
i = g

M∑
k=1

2∑
l=1

pjlikx
l
k i	=k (5.21)

dpjlik
dt

= γ{(xj
i − xj

i )−
M∑
r=1

2∑
s=1

pjsir (x
s
r − xs

r)}(xl
k − xl

k). (5.22)

where g is a small feedback gain term and gpjlik represents the adaptive connection

strength coupling from xl
k to xj

i , which forms a covariance-like learning rule. x is

the continuous running average of x calculated by τE
dx̄
dt

= −x̄ + x, where the time

constant was set as same as that of the performance evaluation.

114



Chapter 5. Exploration with Sensor Adaptation and Oscillator Learning

During the exploration process, the feedback gain g and the weight learning rate

γ are adaptively adjusted according to the global control parameter μ so that the

couplings between oscillators are gradually activated around the onset of system

stabilisation. g and γ are controlled according to:

g = α(1− η), γ = βη (5.23)

τη
dη

dt
= −η +D(μ− ε) (5.24)

where α and β are constants, and D(x) is the heaviside function with very small

ε = 0.0001. As the incoming weights are learned in order to match the sum of afferent

signals close to the oscillator’s signal, it is sufficient to use α =
√
δ2 + ε2 (input

weights for sensor), which has similar intensity to the sensory input. β = 1/τE was

set for Equation 5.22 to have the same time scale as the evaluator. η is the smooth

activation signal which controls both the learning rate of connection weights and

feedback gain according to the value of μ. It acts as a switching signal determined

by the global bifurcation parameter. When η is triggered around the onset of system

stabilisation, the decrease of the learning rate of the phase-lock matrix and the

activation of oscillator couplings simultaneously takes effect.

The learning signal gradually activates the functionally connected network rather

than suddenly switching it on, thus preventing the destruction of stable patterns

while allowing unstable ones to be filtered out. Since the coupling is not strong

and is activated gradually, highly unstable patterns which show short-lived high

performance are naturally filtered by the instability of the pattern itself during the

activation period (the system destabilises and returns to the exploration phase).

The learning rules are set up such that during the exploration phase the coup-

lings effectively remain functionally inactive. As dictated by Equations 5.23 and

5.24 the coupling gain g is turned on when the bifurcation parameter μ goes to zero

which means learning is activated when the system is stabilised to some discovered

pattern. Otherwise (μ 	=0), the system is in an exploration phase and g is set to zero

which turns off the learning. Thus, exploration and learning are merged as a con-

tinuous dynamical process such that the desired locomotion pattern is spontaneously

explored, discovered, and memorised in a coherent way.
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Figure 5.10: Exploration and capture of transient locomotor behaviour in damaged-

fin swimmer by oscillator learning. The oscillator wiring is triggered (η in Eq.(13),

1:off, 0:on) at each stabilising trial and attempts to sustain the performance of

the discovered pattern. The sensor parameters A(t) and B(t) cooperate with the

exploration-learning for a given physical embodiment (see text).

5.3.3 Stabilising Transient Patterns by Oscillator Learning

First, the integrated exploration-learning system was tested using a ‘damaged’ ver-

sion of the Swimmer robot by reducing the length of one of its fins (damaged fin) or

removing one of its arms (3-armed), such that there are few or no stable patterns

in the stable regime but there exist a series of useful transient patterns.

Figure 5.10 shows the exploration and learning of the robot with a damaged

fin where the length of the fin on arm 4 was reduced by 90%. It had only one

stable pattern whose phase relationship is the same as that of the BA pattern in the

undamaged robot, which has almost zero performance. With learning, it captured
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Figure 5.11: Alternating behaviour of 3-Arm Swimmer.

one of the high performing transient patterns after a few trials. The approximate

direction of locomotion is toward dir-3. Figure 5.10C,D show that the sensor gain

(A(t)) of the damaged fin (fin 4) was increased to amplify its signal, and the fact

that fin 1 has the smallest gain tells us that arm 1 is the main source of propulsion.

The salient deviation of the offset (B(t)) of the fin 1 sensor (opposite side of fin

2 and 3) indicates that the discovered transient pattern involves the oscillation

of fin 1 in a tilted position, granted by its mechanical compliance; consequently it

compensated the asymmetric hydrodynamic forces and achieved forward locomotion.

The homeostatic sensory regulation participates in the exploration process as the

slow variables diversify the course of transient patterns during search and slows them

down at the onset of discovery, which is beneficial to the realtime pattern capture

by oscillator learning.

Figure 5.11 shows a particular case of an alternative 3-armed robot (formed by
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Figure 5.12: Realtime recovery after a radical change to the body (damage). Dashed

lines and arrows indicates the time of damage, when the length of fin 4 is decreased

to 1/10 of its original length. The sensor gain of (damaged) fin 4 (A(t) ≈ 5.0) in

(C) was truncated for a better view of the other gain plots.

removing arm 4) where two different locomotion patterns are periodically exchanged

while not losing the overall stability of the whole behaviour.3 The robot alternates

its moving direction between dir-3 and dir-4 by exchanging two unstable undulating

motions. The periodicity of this conjoined behaviour also exhibits a small degree

of irregular fluctuation as in the case of loosely coordinated behaviours previously

shown in Figure 5.2. However, being captured by oscillator coupling, it is sustained

by global coordination between subsystems which include adaptive sensor dynamics.

Since the oscillator learning process is automatically regulated by a control

3Video 6 at Shim (2012).
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Figure 5.13: Uppermost images show the snapshots of the movement of 4-Fin Swim-

mer after re-adaptation (the movement before damage is virtually same as ST mo-

tion), which is continued from Figure 5.12. 24 images were taken every 1/10 gait

cycle. The tip trajectories of the fore (black) and rear (grey) fins are shown. (A)

and (B) show the joint angles and the fin angles respectively, where the undamaged

motion (blue) and the readapted motion (red) are superposed. The fiducial point for

the superposed plots was set to the starting point of arm angle 1 in (A). (C,D,E,F)

illustrate the 2D plots of neural outputs before (C,D) and after (E,F) re-adaptation.

(C) and (E) depict the relationships between agonist CPGs, where x-axis shows
1xl and y-axis is for 2xl (black),

3xl (red), and
4xl (blue). (D) and (F) show each

output pair of the antagonistic CPGs (ixr vs.
ixl for each motor unit): arm1:black,

arm2:red, arm3:blue, and arm4:green.
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parameter (η) it is possible to operate the exploration-learning system continually

without reset. Figure 5.12 shows a typical successful example of the realtime recov-

ery of locomotion behaviour after body damage of an unknown variety, i.e. with no a

priori knowledge.4 During an initially learnt stable behaviour (similar to STC-dir3-

CCW), the same damage as in Figure 5.10 was sustained. The performance of the

robot immediately dropped below Ed and the system entered into the search phase.

After a few hundreds of cycles the system found a new locomotion behaviour for

the changed body (undulating movement similar to Figure 5.10). The superposed

graphs of two behaviours (Figure 5.12E,F) show a slight frequency increase in arm

movements after recovery due to the change of mechanical impedance of the robot.

5.4 Experiment with Terrestrial Walker

In order to investigate the generality of the approach, the system was applied to an-

other body-environment system totally different from the previous swimmer model,

which is a legged robot walking in a 3D terrestrial environment. For the convenient

configuration of various body morphologies for simulation, the legs of walking robots

were modelled by assembling multiple capped cylinders all of which have identical

dimensions. In the following sections, the experiments using a quadruped robot is

presented as a representative walking machine. More results of the quadruped and

other terrestrial robots are presented in Appendix B (with corresponding movies in

above URL).

5.4.1 Preparing Quadruped Robot

The quadruped body was configured as bilaterally symmetric as shown in Figure

5.14, and the Coulomb friction model with a coefficient of 1.0 was used. It has 8

motor units (16 oscillators) which is as many as the number of degrees of freedom.

The sprawl posture of the legs and the proper setting of joint ranges ensures that

the robot will not overturn during exploration.

Inspired by the vertebrate muscle proprioceptors in biology, the stretching force

experienced by a torsional muscle was used as the sensory signal and fed to the

4Video 7 at Shim (2012).

120



Chapter 5. Exploration with Sensor Adaptation and Oscillator Learning

4

3

2

1

8

7

6

5
2.5 rad

Figure 5.14: Quadruped model in 3D terrestrial environment which has 8 degrees

of freedom. Arrows represent the axis of each joint, and the indices of limbs are

marked as numbers. The index of each joint is assigned as the same as its child

limb. The lower limbs (limb 5-8) are tilted down by a same angle, and all the joints

in above posture are set to the neutral position (zero angle).

CPG in the relevant motor unit. The stretching force that a muscle experiences

(the collective effect not only of the antagonistic muscle but also the whole-body

motion) was chosen as the appropriate sensory signal which contains well-blended

neural-body-environmental information. Neurobiological studies on the spinal or

decerebrate cat (Conway et al., 1987; Pearson et al., 1992; Pearson and Collins, 1993;

Pearson, 2008) suggest that a major component of sensory signals from the ankle

extensor muscle receptors, which influence the central rhythm generating network,

is related to the force in the muscles, which primarily arises from the Golgi tendon

organs (Group Ib afferent), while the Group Ia afferent from muscle spindles has a

lesser effect.

The muscle stretching force can be considered equivalently as the pulling torque

of torsional muscle model. At any given time instance, if a torsional muscle is

‘stretched’ from its resting angle, the pulling torque that the muscle receives is

proportional to the product of the muscle activation level (which linearly controls

the muscle spring constant) and the stretched angle. Since the actual sensor value

is processed by the sensory adaptation before it is fed to the CPG, it is sufficient

to use a simple formulation which implements this relationship. Given the muscle
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activation level σ and the joint angle θ, the pulling torque can be written in a

processed form as

σl = tanh(xl + kmsm,l) (5.25)

σr = tanh(xr + kmsm,r) (5.26)

sl = (σl + 1)(1− θ

Φ
)− 2 (5.27)

sr = (σr + 1)(1 +
θ

Φ
)− 2 (5.28)

where km = 0.1 and sm are the stretch reflex from the muscle spindle which is

described in Equation 3.18-3.20. The equation was centered around zero to have a

range [-2,2] and fed to the relevant SAM. The denominator Φ (as in Equation 3.19)

normalises the angle and the angular velocity of torsional muscle by the unit of its

resting angle, and it is set to the maximum available joint angle (refer to the joint

range in Table A.1).

Because there are two separate sensor signals for a motor unit coming from

each muscle, the sensor design matches the forms of original equations for a pair of

coupled CPGs. The coupling functions F (s, x) in Equations 3.9-3.12 becomes;

Fx(sl,r, xl,r) = H(sl,r, t)− xl,r (5.29)

Fy(sl,r, xl,r) = H(sl,r, t). (5.30)

Therefore, the CPG equations of a motor unit for quadruped are written as:

τ ẋl = c(xl − x3
l

3
− yl + z1) + δ(H(sl, t)− xl) (5.31)

τ ẏl =
1

c
(xl − byl + a) + εH(sl, t) (5.32)

τ ẋr = c(xr − x3
r

3
− yr + z2) + δ(H(sr, t)− xr) (5.33)

τ ẏr =
1

c
(xr − byr + a) + εH(sr, t) (5.34)

where the time constant was set to τ = 0.4 and the maximum available value of

the global bifurcation parameter μc = 0.32 was used for the quadruped. All other

parameters were the same as the previous experiment.
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Figure 5.15: Time plot of the neural output of the quadruped system with different

μ fixed to: (A) 0.0, (B) 0.2, (C) 0.3 and (D) 0.32. The agonist signals of seven motor

units (from 2xl to
8xl) are plotted when 1xl crosses its singular point of the periodic

orbit. Colour codes are ordered by the index of motor units: 1-black, 2-red, 3-blue,

4-green, 5-magenta, 6-dark yellow, 7-orange, and 8-purple.

5.4.2 Experiment Result

Under conditions where static stability against gravitational force is guaranteed both

in the 2D swimmer (balancing against gravity does not need to be considered) and

3D quadruped, the walking machine has fewer behavioural constraints for producing

forward locomotion since the resistance force is not always present in the 3D ter-

restrial environment (for instance, there is no friction on a leg as it moves through

the air during a swing phase). The neural-body-environmental phase space of the

quadruped can be envisaged as an undulating landscape of rolling hills, while the 2D

Swimmer case has a few deep basins of attraction. While this increased the number

of candidate patterns for forward locomotion in the quadruped, there existed latent

instabilities such as slipping due to dynamic friction or the spontaneous occurrence
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Figure 5.16: An example of a movement which is similar to the quadruped walking

gait captured by the exploration-learning process. Snapshots were taken every 1/10

gait cycle. (A,B) The joint angles of limbs. (C) The horizontal speeds of each foot

(the tips of limbs 5-8) in the direction of locomotion. (D) The height of each foot

from the ground. The two rear feet (V7,V8,H7,H8) show stick-and-slip movements

on the ground under Coulomb friction. The range of each plot is as follows; J1-J8:

[-1.0,1.0]rad, V5-V8: [0.0,2.0]m/s, H5-H8: [0.0,0.08]m.

of sharp-amplitude, high-frequency perturbation stemming from the ground contact,

all of which caused slow degeneration of the ongoing locomotor pattern.

In practice, the movement patterns of the quadruped which are observed in the

stable regime of the system exhibited no ultimately permanently sustained beha-

viour (Figure 5.15A), this was also true in tests on other walking robots. However,

the transient patterns which were observed in the stable and quasiperiodic regimes

exhibited several working locomotor behaviours. Among them, interestingly, loco-

motor patterns which are similar to the quadruped walking gait frequently emerged

during exploration (Figure 5.16). Other kinds of as-it-could-be gait patterns and

their variations which exploit given body compliance also emerged, which are diffi-

cult to categorise qualitatively.
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Chapter 5. Exploration with Sensor Adaptation and Oscillator Learning
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Figure 5.18: Long-term periodicity of quadruped behaviour observed in a small

number of cases. The coordinated pattern (straight walking) slowly shifts over a

period of hundreds of cycles, followed by a short catastrophic transition (circling

motion by asymmetric gait) and then re-entrained to the same walking pattern.

The degeneracy of locomotor behaviour could be greatly improved by using

homeostatic sensory adaptation and then completely stabilised by oscillator learn-

ing. Figure 5.17A and 5.17B show the system behaviours for quadrupeds with and

without sensor adaptation. All experiments were started from the same initial con-

dition. In Figure 5.17A the sensor adaptation was turned off when the system was

stabilised to the first discovered pattern. The performance of the emergent pattern

in the adaptive system (Figure 5.17B) degenerate much slower than in the non-

adaptive case. Sensor adaptation prevented abrupt changes in phase relationships

by buffering sudden changes of incoming sensor signals, so the initial movement

pattern slowly changed, giving it a greater probability of being maintained. In the

case of terrestrial walking on flat ground, the sharp noise-like signals arises from the

discrete nature of the ground friction environment. In simulation this can occur due

to numerical inaccuracy in ground contact calculations, and in the real world it may

come from small irregularities in surface friction or the slight ruggedness of a flat

surface, or both. These sharp signals are regarded as undesirable for the purpose of

stabilising and learning the emergent behaviours since it slowly destroys them.

The patterns could be completely stabilised by introducing oscillator learning
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Figure 5.19: Realtime recovery after a radical change to the body (damage). Dashed

arrows indicates the time of damage, that the limb 8 is removed. (A) depict the phase

differences between the limbs 1-2:black, 1-3:red, 1-4:blue, 1-5:green, 1-6:magenta, 1-

7:dark yellow, 1-8:orange. (B) Performance plot. (C,D) The solid and dashed lines in

(C) and (D) represent the parameters (A(t), B(t)) of the sensor functions Hl(sl) and

Hr(sr) respectively. Colours are for joint: 1:black, 2:red, 3:blue, 4:green, 5:magenta,

6:dark yellow, 7:orange, and 8:purple.
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Figure 5.20: Uppermost images show the snapshots of the movement of Quadruped

after re-adaptation (the movement before damage is virtually same as quadruped

walking gait), which is continued from Figure 5.19. 12 images were taken every 1/10

gait cycle. Joint angles (A) and the raw sensor values of agonist (B) and antagonist

(C) muscles are depicted, where the undamaged motion (blue) and the readapted

motion (red) are superposed. The fiducial point for the superposed plots was set to

the starting point of joint angle 4 in (A). (D,E,F,G) illustrate the 2D plots of neural

outputs before (D,E) and after (F,G) re-adaptation, which represent the output of

CPGs as same as that of Figure 5.12. Colours for (D) and (F) are: 2xl:black,
3xl:red,

4xl:blue,
5xl:green,

6xl:magenta, 7xl:dark yellow, and 8xl:orange. Colours for (E) and

(G) are for joint: 1:black, 2:red, 3:blue, 4:green, 5:magenta, 6:dark yellow, 7:orange,

and 8:purple.
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(Figure 5.17C). However, if oscillator learning was presented without sensory ad-

aptation (Figure 5.17D) the pattern could not be sustained completely because

the oscillator coupling was not strong enough to maintain the coordinated pattern

against the degeneracy. In a few cases, the speed of degeneracy under the control

of the learnt oscillators after adaptation is so slow that the locomotor behaviour,

which appears stable, is eventually destroyed after a very long period of simulation,

which triggers a period of re-adaptation. This appears in the form of a long-term

behavioural periodicity (Figure 5.18), which is analogous to a slow version of altern-

ating pattern observed in the 4-Fin Swimmer experiment as shown in Figure 5.11.

The realtime recovery of locomotion behaviour after body change was also tested

in Figure 5.19 and 5.20.5 During an initially learnt stable behaviour (quadruped

walking gait), limb 8 was suddenly detached from the rest of body. The system

found and stabilised to a new locomotion behaviour for the changed body within

200 cycles. The new locomotion was deviated from the human expectation (for ex-

ample, limped version of quadruped walking gait), in that it crawled sideways by

reversing the phase relationships between ipsilateral legs.

5.5 Summary

This chapter has presented two dynamic methods for improving the basic explora-

tion system which are the homeostatic sensory adaptation and the oscillator learn-

ing. Each method was implemented as a realtime dynamical process, and they were

integrated with the exploration system to be upgraded into a larger system. The

sensor adaptation dynamically adjusted incoming sensor signals in order that each

CPG receive a regulated input of a proper intensity and offset to deal with an arbit-

rary robotic system. The oscillator learning was able to capture and sustain useful

transient patterns by rewiring the CPGs dynamically using adaptive synchronisation

process. To investigate the generality of the improved system, the system was tested

using a quadruped robot which is a new body-environment system totally different

from 4-Fin Swimmer. Both robotic systems were able to simultaneously explore,

capture, and maintain a useful transient pattern. The sensor adaptation actively

participated the exploration process as a part of the whole dynamics and contributed

5Video 7,8 at Shim (2012).
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to the emergence of new stable patterns as well as slowing the speed of degeneration

of ongoing transient patterns. The learning was cooperated by sensor adaptation

to make the capturing of transient pattern easier by increasing the sustainability of

the pattern.

Comparative observation of the two different robotic system revealed that the

role of homeostatic sensory adaptation becomes more prominent in the case of ter-

restrial behaviours. The experiments with the 2D swimmer have shown little vari-

ance of sensor parameters after convergence, and pattern degeneracy was hardly

observed, which indicates that the transient patterns of the swimmer are strongly

attracted to a small number of stable patterns. This is because the swimmer robot is

fully surrounded by hydraulic resistance and continually influenced by counteracting

forces, what we call a ‘densely structured’ physical environment, which results in the

phase differences between the arms of a symmetric shape yielding only a few highly

symmetric configurations. While the case of the Swimmer robot has shown a relat-

ively limited variety of patterns due to its strong embodied coupling resulting from

the densely structured physical environment it inhabits, the environmental forces in

the case of terrestrial robots are relatively discrete and intermittently exerted, which

allowed more diverse coordinated limb motions. It was seen that the adaptation of

the sensor parameters of the quadruped yielded more diverse values, where the offset

parameter (B(t)) of lower leg muscles (leg 5-8) typically showed notable deviation

under the effect of constant body weight.

More results of the quadruped and other terrestrial robots are presented in Ap-

pendix B with the URL for their movies. All the cylinder-shaped limbs used in the

robots have the same dimensions and weights. The parameters of non-cylindrical

body parts were separately specified with images. All robots used the same muscle

parameters for all joints.
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Discussion

6.1 Summary

We have presented an integrated system which can explore and learn the emergent

behaviours of a neuro-body-environment system coupled through physical embodi-

ment by applying a chaotic search method. The overall neural architecture gener-

alised and extended that presented in (Kuniyoshi and Sangawa, 2006). Each joint

in an articulated robot was connected to a motor unit comprising a pair of central

pattern generator (CPG) neurons which receive sensory input. The neurons pro-

duced motor outputs for an antagonistic muscle pair that control the movement of

the joint. The CPG neurons were all connected to each other but these connec-

tions were initially made inactive. The CPG neurons received sensory signals that

integrate information from the body-environment interaction dynamics experienced

by the system (e.g. from force and position/angle sensors). Hence, while the direct

connections are inactive, any coupling between the oscillators are indirect via bodily

and environmental interactions. The network of oscillators, coupled through phys-

ical embodiment, had multiple synchronised states (modes) that reflect the body

schema and its interactions with the environment, each of which can be regarded as

a potential candidate for meaningful motor behavior. The whole system was treated

as a single high dimensional dynamical system containing intrinsic chaotic dynamics

as a necessary driving force for the exploration of its own emergent patterns.

The exploration process, powered by adaptive bifurcation through the feedback

evaluation signal, allowed the system to be continuously driven between stable and
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unstable regime, until a pattern if found that is sufficiently stable and high perform-

ing for the bifurcation parameter to reduce to zero and the system to fully stabilise.

The evaluation signal was determined by the ratio of the actual performance (e.g.

forward speed) to the desired performance. Since the method is intended for use in

the most general case, where the robotic system is arbitrary, we do not have prior

knowledge of what level of performance it can achieve. Thus the dynamics of the

desired performance were modelled as a temporal average of the actual performance,

such that the expectation of a desired goal is influenced by the history of the ac-

tual performance experienced, resulting in a simple adaptive evaluation signal. The

search process was completely deterministic, and was able to selectively entrain the

system orbit to one of the patterns by imposing goal directedness toward a desired

behaviour.

The adaptive calibration of incoming sensor signals was established by using

homeostatic sensory regulation. The sensor signal fed to a CPG neuron underwent

homeostatic adaptation as it passes through a sensor adaptation module (SAM)

before reaching the neuron. The SAMs were introduced because by adjusting the

waveforms of input signals to be close to those of the neural activities, the synchron-

icity between the neural and physical system was enhanced thus allowing the neural

system to cope with an arbitrary robotic system. This regulation also resulted in a

diversification of output behaviors, increasing the scale of the search process, in that

the same neuro-sensory coordination could be achieved by different limb movements,

accomplishing multi-scale exploration.

The discovered rhythmic pattern is memorised and sustained by wiring initially

disconnected oscillators using an adaptive synchronisation method. As the system

stabilises, the connections between oscillators were dynamically activated using an

adaptive synchronisation learning scheme. The learning rule was controlled by the

bifurcation parameter and was set up such that the connections between the os-

cillators are effectively zero (inactive) during the exploration process but gradually

adjusted (become active) as the system nears stability. The learning system was able

to capture and maintain the high performing locomotor pattern by using the pattern

itself as a supervising signal. Thus, exploration and learning has been merged as a

continuous dynamical process such that the desired motor behavior is spontaneously

explored, discovered, and memorised in a coherent way.

The system was evaluated by using it to control a range of realistically simulated
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articulated robots that were required to locomote in an effective way. The generality

of system was demonstrated by a series of experiments with a swimming robot and

a variety of walking robots of differing morphologies. In each case a range of stable

locomotion behaviors were discovered and learnt. It was also shown that the robots

can readily readapt after radical body change.

6.2 Chaos as Source of Creativity?

Chaos is often referred to as a source of creativity which provides a steady and

controllable source of noise (Skarda and Freeman, 1987, 1990). The overall process

from the perspective of creating a new behaviour can be briefly sketched as follows.

The mutual entrainment between neural system and physical embodiment initially

creates a phase space that contains several stable and transient patterns. If the

current entrained state is not satisfactory, the system bifurcates to a chaotic state in

order to escape from that state and restabilises when a system performance meets the

criteria. However, the phase space of the restabilised system differs from the previous

one because some of the system parameters (sensor parameters: let us consider them

as parameters, not variables, although both interpretations are possible) have also

been changed by the chaotic drive. If we define the onset of stabilisation (at the

time μ becomes 0) as the time of returning, whenever the state orbit returns to

the target space, it never experiences exactly the same phase space as before. This

process is what we call multi-scale exploration, and its eventual behaviour after the

onset of stabilisation varies over the different physical embodiments.

The final dynamics of sensor adaptation after returning involves each sensor

parameter being locked around a particular value (potentially different for each

parameter) with small oscillations. This diversity of sensor parameter convergence

can be regarded as the ‘neutral stability’ of the system since different motor move-

ments can cause the same sensory input to CPGs. Conversely, it can be thought

that the same coordinated pattern of CPGs can result in different limb motions.

However, for the case of the 2D swimmer, which has a small number of strong

basins of attraction, the sensor parameters tend to converge to one of the previous

distributions although their precise values may differ. The neutrality in the conver-

gence of sensor parameters has a wider range in the case of the quadruped, hence
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more diverse stabilised behaviours are exhibited. Even in the case where the sensor

parameters eventually converge to the same set of distributions, the intermediate

trajectories before convergence can take various routes, which can be captured by

oscillator learning, resulting in the ‘creation’ of a new behaviour. Therefore, this

process differs from a simple action selection mechanism where predetermined stable

patterns are selected by a chaotic jump. Rather, it creates various streams of transi-

ent patterns by driving both the state orbit and the system parameters using chaotic

dynamics.

6.3 Biological Relevance

As Kuniyoshi and Sangawa (2006) have stated, completely decoupled CPGs are an

extreme model which might deviate from biological reality. However, a few studies

point out the biological evidence for the functional decoupling of neural system and

its importance in the emergence of new behaviour. It has been hypothesised that

decoupling of locomotor CPGs serves as a potential mechanism for the evolution

of novel behaviors (Dubbeldam, 2001). Motion analysis of Great Siren (Siren la-

certina), an eel-like amphibian (Azizi and Horton, 2004) has found strong evidence

that the axial and appendicular CPGs are decoupled during ‘aquatic walking’ (the

pattern somewhere between aquatic and terrestrial locomotion), which supports the

hypothesis that the decoupling of CPGs has led to the evolution of this novel lo-

comotor behavior. In a broader perspective, Rosslenbroich (2009) pointed out that

the locomotor neural processes of more evolved vertebrates are uncoupled from one

another so that these parts can act in more differentiated and partly independent

ways, which may contribute to the increase in organismic autonomy necessary for

evolutionary innovation.

These emergent patterns may be refined and selected at the supraspinal level by

reward based reinforcement, which is thought to be one of the primary functions of

the Basal Ganglia (BG) (Redgrave et al., 1999; Schultz, 2006; Chakravarthy et al.,

2010). Recent modelling studies on BG (Sridharan et al., 2006; Magdoom et al.,

2011) hypothesise that the indirect striato-pallidal pathway through the subthalamic

nucleus subserves exploratory behaviour for goal-directed learning, gated by the

dopamine signal from the substantia nigra which serves as the global learning signal
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for reward prediction. We hypothesize that goal-directed chaotic exploration may

possibly take a role in such mechanisms in connection with self-organised behaviours.

In this context, it might be possible to our system to draw some implications about

the previously mentioned optimal parameters in relation to the metalearning and

neuromodulation centered around the BG (Doya, 2002).

6.4 Future Directions

6.4.1 Predefined System Parameters

Predetermined parameters primarily lie in the control part of the system. The CPG

model and its parameters in this work were adopted from previous work (Asai et al.,

2003a) whose parameter setting was rigorously studied in terms of exhibiting various

dynamical regime from stable to chaos which meets the purpose of our work, and

they were also verified by later studies using robotic platform as in (Kuniyoshi and

Sangawa, 2006; Kinjo et al., 2008). Although our system has demonstrated a good

degree of generality and an ability to automatically adapt to unknown bodies and

environments, further analysis is necessary in order to determine the optimum values

of fixed parameters used in the search process. One of the future directions would

be to determine the effect of fixed parameters, such as time scale of each adaptive

sub-processes.

The precise determination of the optimal parameters for evaluation and feedback

bifurcation requires a massive number of simulation experiments together with for-

mulating a proper definition of the system performance related to those parameters.

For instance, the problem of measuring the ‘performance’ of overall system dynamics

in terms of explorability is vague. One possible solution would be to investigate how

frequently the system orbit visits each patterns in the stable regime of the system

during the exploration phase. In the previous studies on chaotic search (Nara and

Davis, 1992; Aida and Davis, 1994), they have provided a partial solution to this

problem by observing the system orbit wandering through the basin of attractors

which are identified by roughly dividing the state space of the system. This is a

very complicated task but was possible because the target system implemented the

discrete state memory patterns using binary neural elements, and the degrees of free-

dom of the system was exactly known in advance. However, our system is expressed
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as a continuous dynamical system, and the complete set of variables is not known.

Moreover, different from previous work, our system is not supposed to search a spe-

cific pattern which has a certain evaluation value, but to deal with the open-ended

search in a way that the system tries to maximise the performance, which makes it

more difficult to quantify the goodness of system over different robotic systems.

However, a few qualitative insights about the role of some parameters can be

sketched. For example, the time scales of slow dynamics such as evaluation (τE),

goal seeking (τd), and feedback bifurcation (τμ) impact the search dynamics. Pre-

liminary results of investigating the effect of different time scales revealed that the

ratio between the time scales for evaluation, goal seeking, and feedback bifurcation

determines the balance between the ‘memorising’ and ‘forgetting’ of patterns during

the search process (Aida and Davis, 1994), implying there might be an optimal ratio

which allows the system to stay in the chaotic regime for an optimal duration (just

enough to be uncorrelated with the previously visited pattern) enabling fast search

with a very small probability of being trapped in a bad state for a long time.

The time scale of the sensor adaptation (determined by τh) can influence the

landscape of phase space as well as the neutrality of convergence. For example,

a test using the 2D swimmer showed that when τh was decreased by 1/2 (double

the speed of adaptation), STC and VB pattern disappeared in the stable regime

of system. When decreased to 1/4, a new stable pattern appeared where the two

diagonal arms moved with large amplitudes whereas the movements of the other two

were small and fluctuating, and the phase differences between neighbouring arms

drifted continually (reminiscent of the PL motion with two fluctuating arms). If

the time constant was doubled (half the adaptation speed), PL motion disappeared.

Generally, too slow adaptation caused the long-term fluctuation of seemingly stable

behaviours by eventually collapsing them toward more stable behaviours, too fast

time scale caused large fluctuations in sensor parameters, being synchronised with

the fast state dynamics, which tended to diminish the diversity of behaviours.

While this work has concentrated mainly on the interlimb coordination between

the identical neuromuscular modules, the frequency of CPGs is an important factor.

The future direction would be to investigate the effect of different CPG frequencies.

Since we use an arbitrary robotic system, one of the interesting options would be to

adopt the concept of the adaptive frequency oscillator whose frequency can be tuned

to the resonant frequency of the mechanical system (Buchli et al., 2006; Righetti
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et al., 2006).

6.4.2 Influence of Physical System

Another factor which influences the system is the amount of bandwidth resulting

from the design of body-environment interactions. In the case of the 4-fin swimmer

presented here, the functional coupling strength between motor units varies with

the ratio of body inertia to environmental forces (similar concept to the Reynolds

number in fluid mechanics). Increased body mass will result in an increased moment

of inertia which causes less transmission of the hydraulic force from one leg to the

others, and vice versa. A similar effect will be caused by decreasing the density of

the surrounding fluid or by increasing fin joint stiffness.

One possible future direction would definitely be to investigate the effect of

increased body compliance by e.g. using flexible limbs. For legged movement, the

flexible limbs will soften the sharp discreteness of ground reaction forces in the

surface normal direction at the time of swing-stance transition. On the other hand,

the elastic limb may cause unexpected snap out in the tangential direction. It

could also be possible to get richer behaviours by using flexible limbs for the planar

swimmer. However, the current model provides the sensory information available

in every compliant body part. Therefore, without incorporating proper sensors for

the newly added body compliance, whether there would be considerable effect is

questionable in some cases. For instance, the flexibility of the limb of the 4-Fin

swimmer may function as merely another physical property of passive fin bending.

Introducing additional sensors raises a new problem of sensor fusion, where the local

sensorimotor circuit needs to deal with multiple sensor signals being fed to a single

CPG.

6.4.3 Experiment with Real Robot

Transfer to robotic hardware is one of the prerequisites for the validation of system

performance. The most influential factor in dealing with a real robot would be the

presence of noise. In the chaotic regime of the system, the noise will prevent the

system from being trapped in the undesirable states such as bad-lock and deep-

path. However, it will disturb the system in stabilising the desired locomotion
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behaviours. The disturbance in stabilisation could be overridden by the oscillator

learning process, which strengthen the asymptotic stability of ongoing motor pattern

by wiring neural elements. However, the actual formation of the desired locomotor

pattern usually begins before the triggering of the oscillator learning process, which

means that the emerged pattern has to be sustained until the learning takes place.

The noise might increase the possibility of the destruction of the locomotor pattern

in its early stage of formation, but the counter-possibility also exist that the noise

can push the system orbit to better patterns. Although the noise can be viewed as

a participant of system, at least it is necessary that a mechanism exists to maintain

the ongoing patterns during the intermediate stage of the exploration process. Also,

the wiring of the neural controller by oscillator learning should be strong enough to

maintain the ongoing locomotion behaviour under the presence of noise.

Another minor issue which arises from the practical implementation (although it

is termed minor, it becomes a major problem when the robot is built using limited

resource) include the measurement of locomotion performance. Self-awareness of

the position and speed of a legged robot is a nontrivial problem. One of the most

popular methods for self positioning is the global positioning system (GPS) using

an external module such as camera or satellite. Apart from the problems of resource

and implementation, GPS systems usually have low resolution and sparse sampling

of measurement which will impact on the overall exploration process. Embedded

device such as an inertial measurement unit (IMU) is another option, but even the

state-of-the-art IMU system cannot satisfactorily cope with the drift error by sensor

noise unless incorporated by GPS support. Since the noisiness and inconsistency of

real world system will make the exploration process discrete and non-deterministic,

future work should deal with not only the practical implementation but also the

theoretical aspect of the system in this regard.

6.5 Closing Remarks

The neuro-robotic system presented in this work has been shown to be sufficiently

general and effective. The seamless interaction between the exploration and learning

processes results in a system that can be thought of as continually self-monitoring

in order to maintain an appropriate level of motor function. As well as being an
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effective means of developing robotic controllers, the method has more general im-

plications for truly autonomous artificial systems which must maintain their integrity

on several levels, including behavioral. This work provides a few possible biological

inspirations and thus it is expected that it can also serve as an indication of the

kinds of processes that may be operating in natural systems.

Although the movement patterns produced by our work are by no means poor,

they may deviate from perfectly optimised patterns for highly adaptive locomotion.

However, we believe our system can make an important contribution as both a

stand-alone control architecture, and as a powerful and general exploratory-learning

element in a more complex robotic system which may involve further adaptive mech-

anisms to refine and switch between locomotion patterns.
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Robot Parameters

Table A.1: Robot simulation parameters.

4-Fin Swimmer
torso dimension (m) 0.2×0.2×0.2
arm dimension (m) 0.075×0.075

×0.15
torso weight (Kg) 1.6
arm weight (Kg) 0.34 (×4)
joint range (rad) ±0.25π
fin dimension (m) 0.2×0.2
fin weight (Kg) 0.375
fin stiffness (Nm) 0.1
fin damping (Nms) 0.045
fluid density (Kg/m3) 1000.0

muscle param
α (Nm) 1.076
β (Nm) 0.108
γ (Nm) 20.0
δ (Nms) 0.152

Quadruped
torso dimension (m) R: 0.05, L:0.9
leg dimension (m) R: 0.05, L:0.3
torso weight (Kg) 7.6
leg weight (Kg) 1.44 (×8)
joint range (rad) upper: ±0.15π

lower: ±0.1π
friction coefficient 1.0

muscle param
α (Nm) 7.935
β (Nm) 1.684
γ (Nm) 20.0
δ (Nms) 1.156
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Extra Walking Robots

Some selected results using other types of terrestrial robots are shown. Their movie

clips can be found in the URL:

http://www.informatics.sussex.ac.uk/research/groups/ccnr/movies/yssmovie.html.
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Figure B.1: Quadruped Type-I (the same as Figure 5.14) bounding-like gait. Upper

two images are neural outputs, and the lower graphs are joint angles (θ) and raw

sensor signals (sl and sr). The range of each segment in the graphs are shown

respectively.
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Figure B.2: Quadruped Type-I with different limb dimensions. The radius (m),

length (m), and weight (kg) of limbs are: limb-1 (0.05, 0.3, 0.288), limb-2 (0.07 ,0.2,

0.451), limb-3 (0.04, 0.4, 0.228), limb-4 (0.05, 0.5, 0.445), limb-5 (0.03, 0.43, 0.133),

limb-6 (0.05, 0.6, 0.523), limb-7 (0.07, 0.5, 0.913), and limb-8 (0.04, 0.4, 0.228).

Other settings are the same as the original quadruped.
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Figure B.3: An example of the locomotion of Quadruped Type-II.
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Appendix B. Extra Walking Robots
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Figure B.4: An example of the locomotion of Quadruped Type-III.
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Appendix B. Extra Walking Robots

rad 5.25.2 ls 5.25.2 rs5.05.0
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Figure B.5: An example of the locomotion of Hexapod. It is a simple extension of

Quadruped Type-I to a six-legged body.
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Appendix B. Extra Walking Robots
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Figure B.6: An example of the locomotion of Cross-shaped Articulation.
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