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Summary

We present a study of the clustering of galaxies in the local Universe (z < 0.4) using
the SDSS and GAMA galaxy surveys. Using GAMA spectroscopic redshift we construct
a large photometric redshift catalogue from the SDSS imaging data. We then measure
the two-point angular correlation function as a function of photometric redshift, absolute
magnitude and colour. For all our samples, we estimate the underlying redshift and
absolute magnitude distributions using Monte-Carlo resampling. A linear relation between
relative bias and L/L∗ is found to hold down to luminosities L ∼ 0.03L∗. We find that
the redshift dependence of the bias of the L∗ population can be described by the passive
evolution model of linear bias. We confirm an increase in clustering strength for sub-L∗

red galaxies compared with ∼ L∗ red galaxies at small scales in all redshift bins, whereas
for the blue population the correlation length is almost independent of luminosity for ∼ L∗

galaxies and fainter. We proceed by studying the redshift space correlation function from
GAMA as functions of luminosity and redshift. For L & L∗ galaxies we obtain an almost
constant pairwise velocity dispersion σ12 ≈ 400 km s−1, whereas for L < L∗ galaxies
the pairwise velocity dispersion increases as we go fainter. When measured in different
redshift slices the pairwise velocity dispersion as a function of luminosity shows no signs
of evolution, however it does present some scale dependence. Our measurements of the
growth rate parameter are consistent with the standard ΛCDM+GR cosmological model.
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Imagine a vast sheet of paper on which straight Lines, Triangles, Squares,
Pentagons, Hexagons, and other figures, instead of remaining fixed in their
places, move freely about, on or in the surface, but without the power of
rising above or sinking below it, very much like shadows - only hard and with
luminous edges - and you will then have a pretty correct notion of my country
and countrymen. Alas, a few years ago, I should have said “my universe”: but
now my mind has been opened to higher views of things.

Edwin A. Abbott, Flatland



v

Acknowledgements

First and foremost I would like to thank my supervisor Jon Loveday, for giving me the

chance to work within the GAMA survey, for suggesting the projects undertaken in this

thesis and for his valuable guidance. I would also like to thank my second supervisor

Andrew Liddle whom, although we did not directly work together, has given me many

a kind advice and feedback, regarding the direction of this thesis and of my studies in

general. I am very thankful to my collaborator at Durham University Peder Norberg who,

despite being based in another institution, has worked closely with me during the last two

years of my thesis and who has helped me shape and clarify many of the results that are

presented herein.

It is a pleasure to thank the other members of the GAMA survey: Ivan Baldry, Andrew

Hopkins, Simon Driver, John Peacock, Aaron Robotham, Sarah Brough, Joss Bland-

Hawthorn have all provided valuable feedback and stimulating discussions.

I would like to thank the members of the Astronomy Centre for making my time there

most memorable. I would like to thank Seb Oliver, Isaac Roseboom, David Parkinson

as well as the other postgraduate students and members of staff whom we share offices

and many hours working or at the pub or both: Leon Baruah, Mafalda Dias, Kevin Falls,

Ippocratis Saltas, Donough Regan, Gemma Anderson, Albert Asawaroengchai, Antony

Lewis, Marisa March, Owain Young, Bruno Henriques, Mark Frost, Matt Thomson, Naomi

Dubois, Charlotte Clarke, Sorour Shamshiri, Will Watson, Peter Hurley and Antonio

Vazquez. Special thanks to Nicola Mehrtens for her encouragement and support.

I acknowledge financial support from the Greek State Scholarship Foundation trustee

of the Nik. D. Chrysovergis legacy. I would like to thank Elefteria Tsaousi for her help

with my scholarship’s official documentation and Nektarios Vlahakis for his reports.

On a more personal level, even after four years I still miss my grandmother Maria and

my dear friend Pavlos. They both had a deep and sincere interest in my physics studies.

Many thanks to Kyriakos for his interest and encouragement, although I have always been

unwilling to elaborate. I would like to thank Vicky for sharing with me the ups and downs

of our lives and for making me a better person that I would have been, had I never met her.



vi

Last but not least, I owe everything to my family in Cyprus who has patiently supported

me throughout the years: My parents Andreas and Despina, my sister Louiza, my aunt

Isabella, my uncle Michalis and my grandmother Eleni. I would especially like to thank

my parents for always encouraging me to look for what makes me whole as a person, even

when I failed to understand and take heed of their advices. Everything that I have learnt

from them has been my guide during my postgraduate studies and it will continue to be

my guide in the future.



Official acknowledgements

While working on my thesis I was financially supported by the Greek State Scholarship

Foundation, trustee of the Nik. D. Chrysovergis legacy.

GAMA is a joint European-Australasian project based around a spectroscopic cam-

paign using the Anglo-Australian Telescope. The GAMA input catalogue is based on

data taken from the Sloan Digital Sky Survey and the UKIRT Infrared Deep Sky Survey.

Complementary imaging of the GAMA regions is being obtained by a number of inde-

pendent survey programs including GALEX MIS, VST KIDS, VISTA VIKING, WISE,

Herschel-ATLAS, GMRT and ASKAP providing UV to radio coverage. GAMA is funded

by the STFC (UK), the ARC (Australia), the AAO, and the participating institutions.

The GAMA website is http://www.gama-survey.org/ .

Funding for the SDSS has been provided by the Alfred P. Sloan Foundation, the Partic-

ipating Institutions, the National Science Foundation, the US Department of Energy, the

National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max

Planck Society, and the Higher Education Funding Council for England. The SDSS Web

site is http://www.sdss.org. The SDSS is managed by the Astrophysical Research Consor-

tium for the Participating Institutions. The Participating Institutions are the American

Museum of Natural History, the Astrophysical Institute Potsdam, the University of Basel,

Cambridge University, Case Western Reserve University, the University of Chicago, Drexel

University, Fermilab, the Institute for Advanced Study, the Japan Participation Group,

Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Insti-

tute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese

Academy of Sciences, Los Alamos National Laboratory, the Max Planck Institute for As-

tronomy, the Max Planck Institute for Astrophysics, New Mexico State University, Ohio

State University, the University of Pittsburgh, the University of Portsmouth, Princeton

University, the US Naval Observatory, and the University of Washington.

This research has made use of NASA’s Astrophysics Data System.



viii

To my parents



ix

Contents

List of Tables xii

List of Figures xiv

1 Introduction 1

1.1 Observing the universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The status of cosmology today and an incomplete list of open problems . . 3

1.3 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theory 7

2.1 The homogeneous and isotropic Universe . . . . . . . . . . . . . . . . . . . . 7

2.2 The cosmological redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Distances in cosmology and the age of the Universe . . . . . . . . . . . . . . 12

2.4 Linear perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Statistical description of cosmological density fields . . . . . . . . . . . . . . 18

2.5.1 The fair sample hypothesis . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2 Spatial correlation function . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.3 Power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.4 Angular correlation function . . . . . . . . . . . . . . . . . . . . . . 24

2.5.5 Measuring the angular correlation function . . . . . . . . . . . . . . 26

2.5.6 Uncertainty estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Halo modeling of large-scale structure . . . . . . . . . . . . . . . . . . . . . 28

2.7 Cosmological parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Data 34

3.1 The Sloan Digital Sky Survey . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Galaxy And Mass Assembly survey . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 GAMA mock catalogues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



x

3.4 Overview of some of the first GAMA scientific results . . . . . . . . . . . . 42

4 Constructing a photometric redshift catalogue 44

4.1 Prelude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Overview of photometric redshift methods . . . . . . . . . . . . . . . . . . . 46

4.2.1 Template methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.2 Empirical Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 A new SDSS photometric redshift catalogue . . . . . . . . . . . . . . . . . . 47

4.3.1 Photometric redshifts . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 Colour cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.3 Photometric redshift errors . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.4 Colour and magnitude selections . . . . . . . . . . . . . . . . . . . . 56

4.3.5 Redshift distribution(s) . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Tests for systematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 Scaling test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.2 Cross correlation of photometric redshift cells . . . . . . . . . . . . . 65

4.4.3 Angular clustering in GAMA area . . . . . . . . . . . . . . . . . . . 65

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Results for the two-point correlation function 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Sample Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Masking, pixelisation scheme and jackknife resampling . . . . . . . . . . . . 73

5.4 Luminosity and redshift dependence . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Luminosity, redshift and colour dependence . . . . . . . . . . . . . . . . . . 82

5.6 Clustering of faint blue galaxies . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.7 Quality of fits and the HOD formalism . . . . . . . . . . . . . . . . . . . . . 87

5.8 Bias measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.8.1 Relative bias and comparison with previous studies . . . . . . . . . . 88

5.8.2 The evolution of absolute bias for L∗ galaxies . . . . . . . . . . . . . 90

5.9 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Galaxy clustering and redshift space distortions from GAMA 96

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 Real to redshift-space mapping . . . . . . . . . . . . . . . . . . . . . 99



xi

6.2.2 A model for two point statistics in redshift-space . . . . . . . . . . . 100

6.2.3 Observing galaxies and the scale-dependent bias . . . . . . . . . . . 103

6.3 Measuring the galaxy anisotropic correlation function . . . . . . . . . . . . 104

6.3.1 Correlation function estimator and binning issues . . . . . . . . . . . 104

6.3.2 Anisotropic correlation function for luminosity bins . . . . . . . . . . 105

6.3.3 Anisotropic correlation function for luminosity thresholds . . . . . . 110

6.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4.1 Underlying ξ(r) and scale-dependent bias . . . . . . . . . . . . . . . 112

6.4.2 Optimal parameter space for σ12 and its likelihood surface . . . . . . 114

6.4.3 Results for the “Kaiser plus Lorentzian” model . . . . . . . . . . . . 118

6.4.4 Scale dependent pairwise velocity dispersion . . . . . . . . . . . . . . 121

6.5 Comparison with previous studies . . . . . . . . . . . . . . . . . . . . . . . . 124

6.6 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Conclusions 130

7.1 Galaxy clustering using calibrated photometric redshifts . . . . . . . . . . . 130

7.2 Redshift space clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.3.1 Photometric redshifts . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.3.2 Redshift space distortions . . . . . . . . . . . . . . . . . . . . . . . . 134

Bibliography 135



xii

List of Tables

2.1 Equation of state for cosmological fluids . . . . . . . . . . . . . . . . . . . . 10

2.2 Cosmological parameter constraints . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Colour cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Cuts on our galaxy sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Clustering properties for samples selected in apparent magnitude . . . . . . 64

5.1 Clustering properties of luminosity-selected samples . . . . . . . . . . . . . 78

5.2 Clustering properties of luminosity-selected red galaxies . . . . . . . . . . . 80

5.3 Clustering properties of luminosity-selected blue galaxies . . . . . . . . . . . 82

5.4 Bias-luminosity parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 Measurements of rsd parameters for luminosity bin samples . . . . . . . . . 120

6.2 Measurements of rsd parameters for luminosity threshold samples . . . . . . 121

6.3 Measurements of σ12(s⊥ = 1.5 h−1Mpc) for luminosity bin samples . . . . . 124

6.4 Measurements of σ12(s⊥ = 1.5 h−1Mpc) for luminosity threshold samples . 125



xiii

List of Figures

2.1 Cosmological distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Expansion and growth rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Dark matter two point correlation function at z = 0 . . . . . . . . . . . . . 22

2.4 Cosmological parameters constraints . . . . . . . . . . . . . . . . . . . . . . 32

3.1 The SDSS galaxies footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Overview of spectroscopic galaxy surveys . . . . . . . . . . . . . . . . . . . 38

3.3 GAMA survey redshift cone diagram . . . . . . . . . . . . . . . . . . . . . . 39

4.1 True spectroscopic redshift against photo-z . . . . . . . . . . . . . . . . . . 51

4.2 Photo-z error against photo-z . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Distribution of photo-z errors . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Correlation between the photo-z error and photometric noise . . . . . . . . 56

4.5 Absolute magnitude against photo-z . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Photo-z derived absolute magnitude against photo-z derived colour . . . . . 58

4.7 Photo-z error in photo-z bins . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 Photo-z distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.9 Absolute magnitude distributions . . . . . . . . . . . . . . . . . . . . . . . . 61

4.10 Scaling test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.11 Cross-correlations between different photo-z bins . . . . . . . . . . . . . . . 66

4.12 Angular correlation parameters in GAMA . . . . . . . . . . . . . . . . . . . 68

5.1 Pixelization scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Angular correlation function as a function of luminosity . . . . . . . . . . . 77

5.3 Correlation length and slope as a function of luminosity . . . . . . . . . . . 79

5.4 Angular correlation function as a function of colour and luminosity . . . . . 81

5.5 Histogram of spurious objects in SDSS catalogue . . . . . . . . . . . . . . . 84

5.6 Angular correlation function faintest galaxy sample . . . . . . . . . . . . . . 85



xiv

5.7 Low-z angular w(θ) for galaxies splint in luminosity . . . . . . . . . . . . . 86

5.8 Relative bias of all galaxy samples split in luminosity . . . . . . . . . . . . . 89

5.9 Relative bias of all galaxy samples split in colour and luminosity . . . . . . 91

5.10 The evolution of clustering of L∗ galaxies . . . . . . . . . . . . . . . . . . . 92

6.1 GAMA magnitude-redshift plot and volume limited samples . . . . . . . . . 106

6.2 Anisotropic correlation function for galaxies with L & L∗ . . . . . . . . . . 107

6.3 Anisotropic correlation function for galaxy samples with L < L∗ . . . . . . 108

6.4 Signal-to-noise ratio for luminosity bin volume limited samples . . . . . . . 109

6.5 Signal-to-noise ratio for luminosity threshold volume limited samples . . . . 111

6.6 Non-parametric estimates of the galaxy bias as function of scale . . . . . . . 113

6.7 The parameter space used for studying the pairwise velocity dispersion . . . 115

6.8 Test for the recovery of the growth rate parameter . . . . . . . . . . . . . . 117

6.9 Pairwise velocity dispersion as function of redshift and luminosity . . . . . . 119

6.10 Growth rate of structure as a function of redshift . . . . . . . . . . . . . . . 120

6.11 Scale-dependent pairwise velocity dispersion . . . . . . . . . . . . . . . . . . 122

6.12 Scale-dependent pairwise velocity dispersion for z < 0.22 . . . . . . . . . . . 122

6.13 Comparison of pairwise velocity dispersion measurements . . . . . . . . . . 126



1

Chapter 1

Introduction

1.1 Observing the universe

It is one of the most humbling quests to contemplate the nature of the cosmos. Remarkably

the last 100 years, after the publication of Einstein’s general theory of relativity, this

quest has undoubtedly become part of natural science. This scientific enterprise is called

cosmology, famously derived from the greek word κòσµoς which means “world” and has

the same root as the word gem, and it aims to understand the origin and evolution of the

Universe as a whole.

Cosmology can be formally studied using a theory of gravity and thus the beginning of

modern cosmology coincides with the publication of Einstein’s general theory of relativity.

Along with Einstein’s efforts to apply general relativity in order to describe the universe

one of the most important scientific discoveries of all times came from Hubble (1929), who

found the proportional relation of the recessional velocity υ, of galaxies and their distance

d, from us

υ = H0d, (1.1)

where the constant of proportionality H0 is rightly called the “Hubble constant”. Thus,

galaxies are receding from us and the Universe is expanding. It is worth mentioning

that Lemâıtre (1927, 1931a) made a somewhat similar observation, backed up by the first

derivation of the Hubble law using general relativity. It was thereby established that

the universe wasn’t static. Nevertheless considerable intellectual effort was undertaken in

order to establish whether the Universe was in an eternal steady state or it has started

from a different, condensed state and then evolved into what we see today. Observations

came to answer conclusively this question. An unavoidable conclusion for an expanding

Universe described by Hubble’s law is that it must have been hotter and denser in the
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past and that radiation in the past was in thermal equilibrium. This cosmic radiation

and its black body spectrum was discovered accidentally by Penzias and Wilson (1965)

while the construction of a dedicated radiometer was in the works (this story is detailed

in Peebles, 1993). It was thereby established that the Universe had a definite beginning

which nowdays is known as the “Big Bang”1. Ever since, the cosmic microwave background

(CMB) radiation has become the most important cosmological probe.

Compared with other natural sciences cosmology is subject to a major limitation al-

ready known from earlier astronomical studies. We are only able to observe the Universe,

strictly speaking only our past light-cone, instead of performing controlled experiments.

However, using simulations we can effectively create extensive reruns of the evolution of

the Universe and thus assess the significance of our findings, under carefully chosen con-

straints (Springel et al., 2005). Notwithstanding this obstacle, extragalactic astronomy

has delivered some of the most exciting results in the history of physics.

Firstly, it offers a stage for applying (and testing) general relativity on the largest

possible scales. By combining CMB experiments and large-scale structure measurements

(e.g. Tegmark et al., 2006) it has been established that the Universe is almost spatially

flat and its constituents are approximately 25% of baryonic and dark matter and 75% of

dark energy, a smooth fluid with negative pressure. Out of the entire matter budget only

5% consists of normal baryonic matter responsible for everything that emits light in the

Universe. Although in the standard cold dark matter scenario dark matter gravitates like

normal matter, it is pressureless and collisionless and it can only create virialized structures

once it undergoes gravitational collapse. On the other hand, dark energy behaves very

similarly to Einstein’s cosmological constant and it is therefore expected to eventually

dominate completely the Universe. Notwithstanding the unknown to us origin and exact

nature of these dark fluids, their energy densities and in particular their ∼ 1 ratio, pose

another serious challenge for physicists. Dark energy and its relation with particle physics

seems to be the most important and to this day a vast literature on the subject of dark

energy exists, nicely summarized in various review articles (Weinberg, 1989; Carroll, 2001;

Peebles and Ratra, 2003; Padmanabhan, 2008).

Secondly, there is now substantial understanding of how structures are formed in the

Universe (Padmanabhan, 1993). Aside from observationally deducing the expansion of

the universe Edwin Hubble also made the important observation that the distribution of

galaxies appears to be homogeneous down to an increasing faint magnitude limit (Hubble,

1Coincidentally, Lemâıtre (1931b) also proposed the possibility of the beginning of the Universe from a

primeval fireball.
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1926, 1934). This raises the question why the Universe is distinctively inhomogeneous on

small scales and what governs the transition between the two regimes. The explanation

is gravitational instability, where small perturbations in an otherwise homogeneous field,

get amplified by gravity and subsequently create the observed structures that we observe

today like galaxies and clusters of galaxies.

In this picture galaxies act as point particle tracers, albeit biased ones, of the cosmic

density field, which is dominated by dark matter. Furthermore, if the Universe has started

from a smooth state and evolved into the complex network of structures that we observe

today, then clearly by studying these structures and understanding the interplay between

cosmology and extragalactic astronomy, one is able to make valuable cosmological infer-

ences. This is the aim of this thesis as we pursue a study of the clustering of galaxies in the

local Universe (z < 0.4)2. It was transparently shown by Peebles (1980) that the statistics

of galaxy clustering can used as a probe of the constituents of the Universe, as well as an

experimental test of its physical properties. In order to achieve this we take advantage

of the most recent galaxy redshift surveys and we use sophisticated statistical methods

to analyze the available data. Chapters 4, 5 and 6 present our results. In the rest of

this Chapter we present an overview of the open problems in cosmology and extragalactic

astronomy (Section 1.2) and we briefly describe structure of the thesis (Section 1.3).

Cosmology has traveled a long road since Hubble’s discovery. It has not only the

legitimate status of physical science today, but has also taught us an important lesson,

namely that there is more to the Universe than meets the eye.

1.2 The status of cosmology today and an incomplete list

of open problems

One of the biggest strengths of cosmology today is the large suite of cosmological obser-

vations which all point towards the same “concordance” ΛCDM model. Remarkably, a

variety of experiments using different wavelengths, parts of the sky, with different sys-

tematics primarily agree on the value of the matter density today, giving Ωm,today ≈ 0.3

(Peebles and Ratra, 2003; Peebles, 2012). Despite of these achievements, some of the

ΛCDM pillars, like dark matter and dark energy, imply poorly understood physics or even

2For standard cosmology and H0 = 70 km s−1Mpc−1 this corresponds to a distance of 1543 Mpc or

5 × 109 light years.
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modifications of general relativity on cosmological scales3 (Peebles, 2003; Amendola and Tsujikawa,

2010). The challenge now is to take advantage of the present and forthcoming galaxy sur-

veys and CMB experiments to sharpen the constraints on the cosmological parameters

and hunt for indications of new physics.

In order to use galaxies for measuring background cosmological parameters, we have

to understand the precise way galaxies trace the cosmological dark matter density field

(Tegmark et al., 2004). Much of this thesis is building on previous work for measuring the

bias of galaxies in a systematic way as a function of redshift, colour and luminosity. It is

also crucial to reveal the scales for which galaxies can be reliably used for cosmological

parameter constraints.

Extragalactic astronomy holds the promise of testing general relativity at scales many

orders of magnitude larger than it has hitherto been tested before (Guzzo et al., 2008). The

issue however is plagued with systematics and cumbersome uncertainty estimations. This

is a large ongoing project for many groups working in the field and this thesis presents some

work towards that direction. It goes without saying that the implications of any result fa-

voring a modification of the gravity theory will be colossal and hence considerable effort has

been put into devising appropriate experimental tests (Linder, 2005; McDonald and Seljak,

2009; White et al., 2009; Simpson and Peacock, 2010; Amendola et al., 2012).

Moving on to the galaxy formation and evolution front, we notice that it is currently

dominated by the low redshift statistically powerful results coming from large wide-field

surveys, with much sparser intermediate and high redshift results. Yet, it is important to

extend these studies in order to capture more phenomena and understand evolutionary

processes. We note that much of the input that goes into large dark matter simulations

comes from observations and therefore improved observational constraints will help us

create more “realistic” simulations. A particular example of such parameter is the galaxy

velocity bias in dark matter haloes (Tinker, 2007).

1.3 Structure of this thesis

In Chapter 2 we introduce the theoretical framework of this work. We discus the Coper-

nican principle (Section 2.1) and the constraints it imposes on the space-time metric.

We then introduce the Friedmann equations and the cosmological redshift (Section 2.2).

Cosmological distances and the age of the Universe are introduced in Section 2.3. Going

3Barrow (2005) described the situation as follows: “Ironically the less we know about a particular part

of the Universe’s make up, the more abundant it seems to be!”



5

beyond the background level we present a short introduction of the linear perturbation

theory in Section 2.4. Statistical quantities, namely two-point functions are presented

in Section 2.5. The very important halo model of large-scale structure is discussed next

(Section 2.6) and the Chapter ends with a description of the cosmological parameters that

are most relevant to this work (Section 2.7).

Chapter 3 presents the datasets that we use in this work, with particular attention

to the GAMA survey. We begin with the description of SDSS in Section 3.1 and the

description of GAMA, which consists of galaxies selected from the much larger SDSS

sample, follows in Section 3.2. GAMA mock catalogues are presented in Section 3.3 and

a short presentation of some of the first GAMA scientific results is given in Section 3.4.

In Chapter 4 we present a new large photometric redshift catalogue for large-scale

structure studies. We begin by introducing the concept of a photometric redshift in Sec-

tions 4.1 and 4.2. The construction of the new catalogue where we used GAMA data as a

training set is described step by step in Section 4.3. As photometric redshifts come with

a variety of systematics we explore some of those we feel are most relevant, as well as the

impact they may have in on out clustering analysis in Section 4.4. Section 4.5 presents

our conclusions.

Chapter 5 presents the clustering study undertaken using the photometric redshifts

from Chapter 4. After a short introduction of the physical problems we wish to tackle

(Section 5.1), we outline the sample selection in Section 5.2. We discuss technical issues

like masking and jackknife errors in Section 5.3. Results for the luminosity and redshift

dependence of galaxy clustering are presented in Section 5.4 and colour, luminosity and

redshift dependent clustering follows in Section 5.5. Our analysis also aims for a statis-

tical description of the faint blue galaxy population, whereof spectroscopy is inefficient,

presented in Section 5.6. Although we don’t fit explicit halo models to our data, we in-

clude a discussion (Section 5.7) where we interpret our results using the more physically

motivated halo modeling. Finally, we find that our results become more transparent and

easy to interpret if use the relative bias instead of the correlation length and thus Sec-

tion 5.8 presents some more quantitative clustering results. We conclude the Chapter in

Section 5.9.

In Chapter 6 we present a different type of clustering analysis, namely an analysis in

redshift space, where we solely use GAMA data. After a brief introduction of the aims of

the Chapter in Section 6.1, we discuss the theory of redshift space distortions in Section 6.2.

Our correlation function measurements in redshift space are presented in Section 6.3 and
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the analysis follows in Section 6.4. In Section 6.5 we compare our results with previous

results from the literature and finally, our conclusions are given in Section 6.6.

The main conclusions of the thesis are reiterated in Chapter 7. We split them in

the photometric redshift and angular clustering part (Section 7.1) and the redshift space

distortion part (Section 7.2). We close in Section 7.3 with a small, but important in our

view, presentation of the possible future directions that this thesis has hereby uncovered.

For the remainder of this thesis we attempt to understand using theory and observa-

tions how galaxies can be related to dark matter and what can we learn from that. From a

long point view, this thesis is just another steeping stone to the observational programme

laid out in detail by Peebles (1980) which comprises of using large-scale structure in order

to understand the physical properties our Universe. One cannot easily overstate the out-

standing success of that programme so far. For on the one hand, it has changed forever

our ideas about the Universe, its material content and our place within it, and on the

other, more than 30 years since it’s publication, it is still timely and a most promising

route for even more progress in physical cosmology.
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Chapter 2

Theory

This Chapter presents the theoretical framework of observational cosmology. Section

2.1 introduces the main results from applying general relativity to cosmology and the

fundamental Friedmann equations, Section 2.2 relates these results with the cosmological

redshift and subsequently Section 2.3 shows the translation from redshifts to cosmological

distances. Linear cosmological perturbation theory is briefly introduced in Section 2.4.

Section 2.5 introduces the statistical measures of clustering. The phenomenological non-

linear halo modeling is presented in Section 2.6. The Chapter ends with a discussion

(Section 2.7) on the values of the cosmological parameters that are most relevant for this

thesis.

2.1 The homogeneous and isotropic Universe

The central assumption of cosmology is that all places in the Universe are equally privi-

leged. This is a generalization of the age-old idea suggested by Copernicus that we should

not expect the Earth to be the center of the Solar System. Almost every scientific infer-

ence in the field of cosmology is based on this assumption, which of course can only hold

on sufficiently large (cosmological) scales, and consequently bears the well-deserved name

Copernican Principle.

The Copernican principle asserts that the metric which describes the expanding Uni-

verse should be invariant under translations and rotations and therefore homogeneous and

isotropic in space (Carroll, 2004). These symmetries put strong constraints on the func-

tional form of the global spacetime metric, which eventually takes the following form in
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spherical coordinates (t, r, θ, φ) (Carroll, 2004)

ds2 = gµνdxµdxν = −dt2 + a2(t)

[

dr2

1 − kr2
+ r2(dθ2 + sin2θdφ2)

]

. (2.1)

This is the Friedmann - Lemâıtre - Robertson - Walker (FLRW) metric (after the names

of the people who developed it) and it is used to describe the background evolution of

the Universe, which is believed to respect these symmetries. In equation 2.1 a is the

scale factor, the quantity that describes the expansion of the Universe and k is the global

curvature of spacetime. Possible k values are −1, 0 and 1 for open, flat and closed Universe

respectively. Once curvature is determined the evolution of the Universe as a whole is

described only by the functional form of a. For astrophysical purposes it is convenient to

rescale a to unity today, so that a(t = t0) = a0 = 1. This rescaling removes the freedom to

use the set {−1, 0, 1} as the only possible curvature values; k now is a continuous variable.

The metric signuture convention is (−,+,+,+). For this Chapter we also assume c = 1.

We drop that convention in later Chapters, where we deal with observations.

In order to compute cosmological distances it is more convenient to change the radial

coordinate r, to a new one χ via the following transformation

dχ =
dr√

1 − kr2
, (2.2)

so that

r = Sk(χ) (2.3)

and

Sk(χ) =



















1√
k
sin(χ), if k > 0

χ, if k = 0

1√
k
sinh(χ), if k < 0.

(2.4)

Equation 2.4 can be compactly written as (Amendola and Tsujikawa, 2010)

Sk(χ) =
1√
−k

sinh
(√

−kχ
)

. (2.5)

In equation 2.5 Sk(χ) = χ at the limit k →− 0.

The energy-momentum tensor in the FLRW spacetime also has to be isotropic and can

be given as follows

T µ
ν = (ρ + p)uµuν + pδµ

ν , (2.6)

where u = (−1, 0, 0, 0) is the four-velovity for comoving observers, ρ is the density of

the fluid and p its pressure. Note that this particular form of the metric (equation 2.1)



9

and the energy-momentum tensor (equation 2.6) apply only for a special set of observers,

called comoving or fundamental observes. These are the observers who are at rest with

the expansion of the Universe. Observers not satisfying that property need not describe

the Universe with the FLRW metric or they should apply the respective coordinate trans-

formations to the smooth background.

Equipped with a metric and an energy-momentum tensor, we can plug equations 2.1

and 2.6 into Einstein’s equations

Rµν − 1

2
gµνR = 8πTµν , (2.7)

in order to obtain the evolution of a. In equation 2.7 Rµν is the Ricci curvature tensor and

R is the Ricci scalar, both obtained from contractions of the Riemann tensor. By solving

equation 2.7 one obtains the Friedmann equations (Carroll, 2004)

H2 =

(

ȧ

a

)2

=
8πG

3
ρ − k

a2
(2.8)

ä

a
−
(

ȧ

a

)2

= 4πG (ρ + p) +
k

a2
. (2.9)

Equation 2.8 introduces the important quantity H ≡ ȧ/a which is called the Hubble pa-

rameter and is the observable that describes the expansion (or contraction) of the Universe.

The value of the Hubble parameter today in known as the Hubble constant and its value

is found to be H0 = 72±8 km s−1Mpc−1 (Freedman et al., 2001). Since the exact value of

H0 usually appears as a constant multiplication or additive factor in calculations it is cus-

tomary to present results in an “H0 independent fashion” where H0 = 100h km s−1Mpc−1

and h incorporates the uncertainty in the value of Hubble’s constant.

From the two equations 2.8 and 2.9 it is possible to derive a third one called the

conservation equation,

ρ̇ + 3H(ρ + p) = 0, (2.10)

which of course is not independent from the two Friedmann equations. Note that equation

2.10 can be directly derived from the Bianchi identities (Carroll, 2004). Therefore there

are three unknowns, namely a(t), ρ(t) and p(t) in the two Friedmann equations. In order

to solve this system we introduce the equation of state w = p(t)/ρ(t) of the ideal fluid,

which relates its density with its pressure. The equation of state for each cosmic fluid

describes its behavior, which doesn’t have to be monotonic.

We now recast equation 2.8 in the following form, very useful for observational analyses

Ωm + Ωk = 1, (2.11)
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Table 2.1: The equation of state (w = p/ρ) and power law dependence on the scale factor

(ρ = ρ0a
q) for the most important matter and energy sources in Universe.

Source w q

matter 0 −3

radiation 1/3 −4

vacuum −1 0

curvature −1/3 −2

where Ωm ≡ 8πGρ/3H2 and Ωk ≡ −k/a2H2. For a flat Universe (Ωk = 0) one obtains

the critical density required to achieve that,

ρcrit ≡
3H2

8πG
= 1.88h2 × 10−29 g cm−3. (2.12)

As mentioned in Chapter 1 it is now believed that there is a component in the Universe

that behaves very much like the cosmological constant Λ (Carroll, 2001). Including Λ in

the Einstein’s equations, results of the following Friedmann equation

H2 =
8πG

3
ρ − k

a2
+

Λ

3
(2.13)

and subsequently equation 2.11 generalizes as

Ωm + Ωk + ΩΛ = 1, (2.14)

where the density parameter for the cosmological constant is given by ΩΛ = Λ/3H2. In

equation 2.13 H, a and ρ are the only time-dependent quantities, whereas in equation 2.14

time-dependence has moved to energy densities. The Universe that we live has a non-zero

cosmological constant or some other component enters Einstein’s field equations with very

similar behavior (various alternatives are discussed in Amendola and Tsujikawa, 2010).

Similarly it is possible to add a radiation component in the total energy-density of the

Universe. Radiation has an equation of state of the form prad = 1/3ρrad.

The evolution of the scale factor depends on how the various matter components scale

with time. Pressureless matter (pm = 0) and radiation dilute as the Universe expands

so their densities scale as a−3 and a−4 respectively. The cosmological constant has by

definition a constant density at all times, whereas curvature scales as a−2 (from Friedmann

equation). We summarize the physical properties of all the popular components that enter

the energy-momentum tensor in Table 2.1. Substituting the present values for energy
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density sources equation 2.14 becomes

H2 = H2
0

(

ΩΛ + Ωma−3 + Ωra
−4 + Ωka

−2
)

, (2.15)

where H0 is the present value of the Hubble parameter.

2.2 The cosmological redshift

As the expansion proceeds, the proper distance l, between two positions is modified by

the scale factor, l(t) = l0a(t). Taking the time derivative of that expression we recover

Hubble’s law:

v = l̇ = l0ȧ(t) = l
ȧ

a
≡ Hl. (2.16)

The expansion of the Universe implies that photons lose energy as they traverse it and

therefore when absorbed have larger wavelengths than when emmitted. Formally this can

be shown as follows. Firstly for nearby objects (v/c ≪ 1), their wavelength changes as

λ0

λ
= 1 +

v

c
= 1 + z (2.17)

and so v = cz.

For larger distances it is necessary to use the metric (equation 2.1) in order to derive

the redshift relation, as curvature effects become important (Liddle, 2003). In fact, the

cosmological redshift is an outcome of the FLRW metric itself (Carroll, 2004). This is

shown as follows. First, photons travel along null paths and therefore in equation 2.1 we

have ds2 = 0. Second, we assume that two photons have been emitted from a distant

galaxy at the instances t1 and t1 +dt1 and received on our detector at t0 and t0 +dt0 then

the distances that they travel are

∫ t0

t1

dt

a(t)
=

∫ r1

0

dr√
1 − kr2

(2.18)

∫ t0+dt0

t1+dt1

dt

a(t)
=

∫ r1

0

dr√
1 − kr2

. (2.19)

Between t1 and t1 + dt1 the galaxy positions haven’t change much and therefore we can

equate the two left hand sides, which gives

∫ t0

t1

dt

a(t)
=

∫ t0+dt0

t1+dt1

dt

a(t)
. (2.20)
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Rearranging the limits of the integral from t0 to t0 + dt0 and from t1 to t1 + dt1 equation

2.20 becomes
∫ t0+dt0

t0

dt

a(t)
=

∫ t1+dt1

t1

dt

a(t)
, (2.21)

which to a zeroth order approximation yields

dt0
1

a(t0)
= dt1

1

a(t1)
⇒ dt0

dt1
=

a(t0)

a(t1)
. (2.22)

For electromagnetic radiation dt ∝ λ1, therefore

λ0

λ1
=

a(t0)

a(t1)
. (2.23)

For an expanding Universe a(t0) > a(t1) and therefore the photon’s wavelength has been

stretched because of the expansion. Note that the position of the galaxy emitting the

photon hasn’t change much between t1 and t1 + dt1.

The cosmological redshift is a fundamental quantity in observational cosmology and

considerable effort is put towards measuring redshifts of galaxies. It is however rather

expensive to obtain using spectra. In Chapter 4 we make use of a small but representa-

tive spectroscopic galaxy catalogue, to calibrate photometric redshifts for a much larger

imaging galaxy catalogue.

2.3 Distances in cosmology and the age of the Universe

The concept of distance in an expanding Universe is considerably more involved than

distances in static spacetimes. Nevertheless, apart from the Hubble parameter, distances

provide another set of observable quantities, that can determine the properties of the

Universe on the background level. In this section we assume c = 2.998 × 105 km s−1.

For z ≪ 1, where Hubble’s law applies, the natural Hubble distance is given by

DH ≡ c

H0
= 2998h−1Mpc, (2.24)

where h as usual parametrizes our uncertainty on the actual value of Hubble’s constant.

DH is the characteristic distance scale of the expanding Universe.

Using the metric and setting again ds = 0 we get dt2 = a2(t)dr2, we can define the

comoving distance, as

dC =

∫

cdt

a(t)
=

∫ z

0

cdz̃

H(z̃)
= DH

∫ z

0

dz̃

E(z̃)
, (2.25)

1c = λf ∝ λ/dt ⇒ λ ∝ dt



13

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

redshift z

D
is

ta
nc

e 
(D

H
)

 

 

ΩΛ = 0.75,Ω
m

 = 0.25

Comoving distance
Angular diameter distance
Luminosity distance

Figure 2.1: The comoving, angular diameter and luminosity distance for typical values

of the cosmological parameters (Equations 2.15 and 2.25). Distances are depicted dimen-

sionless, but can be transformed to astronomical units using DH = 2998h−1Mpc. The

physical meaning of the turnover of the angular diameter distance is that objects with

fixed physical size were apparently larger in past, when the Universe was smaller.

where E(z) ≡ H(z)/H0. For non-flat Universes the comoving distance expression is more

involved. Again, using only the radial part of the metric we get the following relation
∫ dC

0

dr√
1 ± kr2

=

∫ z

0

cdz̃

H(z̃)
. (2.26)

Performing the integrals yields

dC =
1√
k
Sk

[√
kDH

∫ z

0

dz̃

E(z̃)

]

, (2.27)

which is usually expressed in terms of the curvature parameter Ωk, therefore

dC = DH
1√
Ωk

Sk

[

√

Ωk

∫ z

0

dz̃

E(z̃)

]

. (2.28)

Throughout, the redshifts that we use for the analysis of observational data are always

converted to comoving distances. There exist however other convenient distance measures,

most notably the luminosity distance dL (useful for objects with known absolute luminosity

and for the apparent - absolute magnitude relation) and the angular diameter distance dA

(useful for objects with known angular extent). These are directly related to comoving

distance dC , via (Carroll, 2004)

dL = (1 + z)dC = (1 + z)2dA. (2.29)



14

All three distance measures as a function of redshift for concordance cosmology are shown

in Fig. 2.1. We note that fits on luminosity distance obtained from distant supernovae

gave the first conclusive evidence of the late time cosmic acceleration (Riess et al., 1998;

Perlmutter et al., 1999).

Lastly, one can also define the lookback time simply as the time elapsed as a photon

was emitted at redshit z and observed today. Using the metric

to − te =

∫ te

to

dt =

∫ 1

ae

da

aH(a)
= H−1

0

∫ z

0

dz̃

(1 + z̃)E(z̃)
. (2.30)

Thus, for the values of the cosmological parameters that we measure today t0 ∼ H0. By

plugging in the values for the cosmological parameters given in Section 2.7, equation 2.30

yields that the time elapsed since the Big Bang is 13.7 billion years.

2.4 Linear perturbation theory

Going beyond the background level, which is solely described by the FLRW metric (equa-

tion 2.1), it is also interesting for a number of reasons to study the clumpy Universe. First,

galaxies are believed to form inside dark matter haloes which are the result of the pri-

mordial inhomogeneities of the dark matter density field. Thus understanding the physics

of galaxy formation and evolution depends crucially on understanding the evolution of

perturbations in the Universe and vice versa, since we use galaxies to make inferences

about the dark matter density field. Second, inhomogeneities are related to the primor-

dial density fluctuations which in turn are likely to be related to inflationary models for

the early Universe and the fundamental theories of physics. Third, the cosmological pa-

rameters that we measure depend on inhomogeneities and their evolution, for example the

larger the matter density in the Universe then the higher the amplitude of the two point

correlation function, the statistic that is commonly used to describe the perturbed matter

field.

Hot Big Bang cosmology asserts that perturbations are very small at high-z and there-

fore can they be studied with linear theory. Since structure is seeded from these small

perturbations it is reasonable to expect that at sufficiently large scales linear theory pro-

vides a good description for our observations today. Cosmological perturbation theory is

generally involved because of the gauge invariance (Padmanabhan, 1993). Nevertheless,

for analyzing current observations it is sufficient to work in the Newtonian gauge where

observers are moving with the Hubble flow and subsequently observe peculiar velocities

due to matter falling into structures.
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This section aims for the derivation of the relevant cosmological quantities, mainly the

linear growth of structure and its time derivative, which are going to be compared with

observations in Chapters 5 and 6. It follows closely the discussion from Peebles (1980, §
6, 7, 8, 10).

The Newtonian gauge allows us to use the weak field approximation of general relativ-

ity. The 00 component of the perturbed metric gives the Poisson equation and it is given

by

g00 = 1 + 2Φ, (2.31)

where Φ is a small perturbation over the smooth background. The discussion is valid for

scales below the Hubble scale cH−1
0 ∼ 1028 cm, but it does implicitly assume that general

relativity is valid up to these scales. Then, for an ideal fluid the Poisson equation is given

by

∇2
rΦ = 4πG(ρ + 3p) − Λ. (2.32)

Since we are working with observers that move with the Hubble flow it is useful to rewrite

equation 2.32 in expanding coordinates. The proper separation r, between two objects is

given by

r = a(t)x (2.33)

and their proper velocity u, comes from the time derivative of the previous equation

u = xȧ(t) + a(t)ẋ. (2.34)

In equation 2.34 the two components of cosmic velocity u emerge, as the first term on

right hand side describes the Hubble expansion2 and the second term describes the peculiar

velocity field. The derivative of the peculiar velocity component of equation 2.34 gives the

peculiar acceleration

g(x) =
du

dt
+ u

ȧ

a
= −∇φ

a
. (2.35)

One can then define the new potential, in comoving coordinates, φ given by φ =

Φ + 1/2aäx2 and after this transformation the Poisson equation reads (Peebles, 1980)

∇2
xφ = 4πGρa2 + 3aä. (2.36)

Hereafter we drop the subscript x, as the derivative will always be understood with respect

to comoving separations. For this discussion we also assume that p = 0 and Λ = 0.

2Setting ẋ = 0 we get v = ȧx = (ȧ/a) r = H0r, i.e. Hubble’s law.
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Equation 2.32 can be easily solved in spherical coordinates for a pressureless ideal fluid

and zero cosmological constant

Φb =
2

3
πGρb(t)r

2 =
2

3
πGρb(t)a

2(t)x2. (2.37)

In comoving coordinates the equation of motion of a is

d2a

dt2
= −4

3
πGρb(t)a, (2.38)

where the subscript b refers to background quantities. Equations 2.36, 2.37 and 2.38 give

the following expression

∇2φ = 4πGa2 [ρ(x, t) − ρb(t)] . (2.39)

It is also easier to work with the dimensionless density contrast of the matter field δ,

defined as

δ(x, t) =
ρ(x, t) − ρb(t)

ρb(t)
. (2.40)

Thus, the perturbed background is the source of the gravitational potential φ given by the

equation

∇2φ = 4πGa2ρb(t)δ. (2.41)

We now need a model for the behaviour of matter in the Universe. A very good guess

is an ideal fluid which is governed by the energy conservation equation

(

∂ρ

∂t

)

r

+ ∇r · ρu = 0, (2.42)

where the time derivative is taken at a fixed point r, and the Euler equation

ρ

[(

∂u

∂t

)

r

+ (u · ∇r)u

]

= −∇rp − ρ∇rΦ, (2.43)

where Φ is given from the Poisson equation 2.32. Before we perturb equations 2.42 and 2.43

it is convenient to write them in comoving coordinates. The mass conservation equation

in comoving coordinates reads as (Peebles, 1980)3

∂ρ

∂t
+ 3

ȧ

a
ρ +

1

a
∇ · ρv = 0, (2.44)

where v = aẋ. In the absence of peculiar velocities (v = 0) equation 2.44 reduces to

equation 2.10. Equation 2.44 describes the conservation of matter in comoving coordinates

x, but it is however non-relativistic. For small perturbations around the mean background

density ρb, we use δ from equation 2.40, so equation 2.44 becomes

∂δ

∂t
+

1

a
∇ · [(1 + δ)v] = 0. (2.45)

3In the following we use the transformation
`

∂ρ

∂t

´

r

= ∂ρ

∂t
−

ȧ
a
x · ∇ρ.
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Applying the same procedure to the Euler equation (2.43) we obtain

∂v

∂t
+

ȧ

a
v +

1

a
(v · ∇)v = −1

a
∇φ. (2.46)

The last step is to combine equations 2.45 and 2.46. This can be achieved by taking

the time derivative of the former, the divergence of the latter and then subtract them.

The third term on the left hand side of equation 2.46 is a second order term and it can be

omitted. The result is
∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
= 4πGρbδ, (2.47)

where we also made use of the Poisson equation 2.32. Linearizing equation 2.45 by setting

vδ ≈ 0 we obtain the important equation

∂δ

∂t
+

1

a
∇ · v = 0. (2.48)

Equations 2.48 and 2.46 are the final results and they describe the linear evolution of

matter δ and velocity fields4 ∇ · v, as well as their relation in the linear regime. These

relations generally hold for small density perturbations δ ≪ 1 and for length scales d that

satisfy (υH−1
0 /d)2 ≪ δ.

The solutions of equation 2.47 are of considerable importance as they will eventually

relate the aforementioned theoretical approach with observations. Moreover, they are cos-

mology dependent so equation 2.47 can also be used to constrain cosmological parameters.

The simplest case arises for the Einstein-de Sitter Universe for which

Ωtot = Ωm = 1. (2.49)

In this case a ∝ t2/3 and the solution of equation 2.47 is (Peebles, 1993)

δ = At2/3 + Bt−1, (2.50)

where A and B are constants and perturbation δ has two independent modes, one growing

and one decaying mode. The growing mode evolves simply as D ∝ 1/1 + z. For different

cosmologies than Einstein-de Sitter equation 2.50 becomes

δ = A(x)D1(t) + B(x)D2(t), (2.51)

where D1(t) and D2(t) are again linearly independent. Generically there will be a fast

growing mode and a slow growing mode. Equation 2.48 suggests that the time derivative

4Technically this is the divergence of the velocity field but it is common to refer it as velocity field since

this is the quantity that is directly related with the velocity power spectrum.
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of D is of considerable importance, since it relates matter and velocity fields. It is usual

to work with the dimensionless quantity

fg =
a

ȧ

Ḋ

D
=

dlnD

dlna
, (2.52)

known as the growth rate of structure.

Solutions of equation 2.51 are of course cosmology dependent. For a wide range of

cosmologies the approximation fg ≈ Ω0.6
m is sufficient as the growth rate depends primarily

on the matter density. A more accurate approximation is given by Carroll et al. (1992)

and a fortran package for numerical integration of equation 2.51 is provided by Hamilton

(2001). The growth of structure D(t) is studied in Chapter 5 along with the time evolution

of the linear bias, whereas measurements of the growth rate are presented in Chapter 6.

The growth rate of structure fg(Ωm) is a fundamental quantity to test alternative

theories of gravity. As shown by Wang (2008) dark energy models with identical expansion

history H(z) can be distinguished from measurements of the growth rate as a function of

redshift f(Ωm, z). This phenomenon is shown in Fig. 2.2, although it should be noted

that it is possible to come up with modified gravity models that are also degenerate with

general relativity with respect to the growth rate. Since general relativity has only been

tested in the Solar system it is important to justify with the best possible evidence its use

on cosmological scales. Note that assuming the correctness of GR on cosmological scales

it is possible to perform null tests on ΛCDM using the growth rate as shown from the

green and black line of Fig. 2.2. Such cross-checks are important because they test the

model with a different methodology, as well as different set of assumptions.

Finally, it is worth mentioning that the density field δ can be decomposed into Fourier

modes such that δ =
∑

δke−ik·x. In the linear approximation, there is no coupling between

different Fourier modes and therefore each k−mode in equation 2.47 evolves independently.

This is a strong advantage for the use of the power spectrum, instead of the real space

correlation function, but only in the linear regime (Hamilton, 2000).

2.5 Statistical description of cosmological density fields

2.5.1 The fair sample hypothesis

Current observations favour a Universe that is infinite5; either spatially flat or open. Yet

it is only possible to draw conclusions about the small portion of the Universe which we

can observe, i.e. sources whose light had enough time to arrive at our telescopes. The

5Assuming a trivial topology
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(a)

(b)

Figure 2.2: The importance of growth rate measurements in cosmology. The above plot

shows how the degeneracy in the expansion rate H(z) between different dark energy models

(upper panel) is broken using the growth rate f(z) (lower panel). [Figure credit: Wang

(2008).]
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assumption that the observable Universe is a representative sample of the whole and thus

suitable for scientific inferences is known as the fair sample hypothesis (Peebles, 1980,

§ 30).

The fair sample hypothesis has profound consequences on the way that we study inho-

mogeneities in the Universe as well as their meaning, because of the averaged quantities

that are introduced for their description (Peacock, 1999) e.g. the average density con-

trast. Observationally we are faced with the matter density field described at each point

with the quantity δ(x), but this is only one realization thereof. Yet if we hypothetically

average over all realizations of the density field of the Universe (which can be done using

simulations) we will eventually get 〈δ(x)〉 = 0. As it is impossible to do so, we simply

assume that all density perturbations average to zero. A stronger assumption is that the

Universe is ergodic and therefore averaging over sufficiently far away regions is equivalent

to the ensemble average.

We now proceed with the mathematical definitions of the two point correlation func-

tion, the power spectrum and related quantities of interest in cosmology.

2.5.2 Spatial correlation function

The important statistic known as the two point spatial correlation is defined as

ξ(r) = 〈δ(x)δ(x + r)〉, (2.53)

where δ(x) is defined in equation 2.40. Alternatively, ξ(r) can be defined as the excess

probability, over the Poisson distribution, of finding a pair of galaxies at a separation r12

(Peebles, 1980)

dP = n2 [1 + ξ(r12)] dV1dV2, (2.54)

where dV1 and dV2 are the volume elements in which the two galaxies lie and n is the

mean density of galaxies. Homogeneity and isotropy implies that the separation between

the two galaxies is described by a scalar quantity, so equation 2.54 becomes

dP = n2 [1 + ξ(r12)] dV1dV2. (2.55)

The definition for the two point correlation function easily generalizes to higher or-

der statistics, such as the three point correlation function and the four point correlation

function (Peebles, 1980). However, for a Gaussian field all odd correlation functions van-

ish and all higher order even correlation functions can be derived from combinations of

the two point function. Note that even if the initial conditions of the early Universe
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were indeed Gaussian, gravitational clustering would make odd correlation functions non-

zero and since we are observing the evolved density field today, we expect to observe a

measurable signal of the galaxy three point correlation function (Bernardeau et al., 2002;

Gaztañaga et al., 2009). Notwithstanding this caveat, the two point correlation function

is clearly fundamental for our understanding of the statistics of the matter density field.

What does the two point correlation function of galaxies look like? To a good approx-

imation it can be parametrized by a power law of the form

ξ(r) =

(

r

r0

)−γ

, (2.56)

where r0 is the clustering length which describes the strength of the observed clustering

(the larger the r0 the more clustered the galaxies). Alternatively one can use the fact

that the shape of the linear dark matter P (k) is known at any redshift from linear theory

using either analytical approximations (Eisenstein and Hu, 1998) or numerical calculations

(Lewis et al., 2000). One then obtains the configuration space quantity ξ(r) by Fourier

transforming P (k) as explained in the next Section. Of course galaxies will be biased and

therefore wouldn’t follow the exact shape of the the matter correlation function but it is

reasonable to expect that on large scales biasing is linear and deterministic. On the other

hand on small scales non-linear effects will alter the shape of the linear power spectrum.

This effect can be studied by simulations which can provide corrections to the linear power

spectrum (Smith et al., 2003).

In Fig. 2.3 we show the linear ξlin(r) and the non-linear ξnl(r) with added non-linear

corrections on small scales (Smith et al., 2003) for standard cosmology. Overlaid is a

fiducial power law approximation, with r0 = 5 h−1Mpc and γ = 1.8 (Peebles, 1980). An

important feature of the matter correlation function is the baryon acoustic peak which

can be observed at comoving separations of ∼ 100 h−1Mpc. It presents the sound horizon

at the epoch of recombination. Once CMB photons decoupled from the baryons the

sound horizon remained frozen and its signal is observed in CMB and large-scale structure

measurements (Eisenstein et al., 2005).

The normalization of the two point correlation function, which fixes its amplitude, is

usually defined as the density variation in spheres of radius of 8 h−1Mpc when smoothed

with a top-hat window function

σ2
r =

3

r3

∫ r

0
r̃2ξ(r̃)dr̃, (2.57)

where ξ(r) is the linearly extrapolated correlation function at z = 0. A traditional value

for r in equation 2.57 is r = 8 h−1Mpc and the density variation is denoted as σ8. It
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Figure 2.3: Real space dark matter two point correlation function at z = 0. Solid line is

the non-linear correlation function (Smith et al., 2003), dashed line is the linear correlation

function and dotted dashed line a power law obtained from observations. On scales r >

20 h−1Mpc the linear and non-linear correlation functions agree as expected, whereas

on smaller scale the fiducial power law provides a good phenomenological description of

ξ(r). Linear and non-linear correlation functions were obtained using CAMB (Lewis et al.,

2000). For a discussion about the baryon acoustic oscillation peak at r ∼ 100 h−1Mpc see

text.
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follows then that ξ(r) ∝ σ2
8 . Note that in its simplest form galaxy bias is a constant

modification of the amplitude of the matter correlation function since δ(g)(x) = bδ(x) and

therefore ξ(g)(r) ∝ b2. Therefore, in the linear regime the galaxy two point correlation

function amplitude depends on both the bias and σ8. There exist various ways to break this

degeneracy. In this thesis we choose to work with the relative bias, the bias of one galaxy

population with respect to another, which automatically cancels σ8, since all co-spatial

galaxies trace the same dark matter density field (Chapter 5) or to present constraints on

the bσ8 combination (Chapter 6).

2.5.3 Power spectrum

The density field can be decomposed in harmonic waves using Fourier analysis as follows

δ =
∑

δke−ik·x. (2.58)

If we plug equation 2.58 into equation 2.53 we obtain the following relation between ξ(r)

and δk

ξ(r) =
V

(2π)3

∫

|δk|2e−ik·rd3k (2.59)

and therefore the power spectrum P (k) = 〈|δk|2〉 is the Fourier pair of the two point

correlation function. Once again, isotropy allows us to use spherical symmetry and reduce

the three integrals of equation 2.59 to the following one

ξ(r) =
V

(2π)3

∫

P (k)j0(kr)2πkdk, (2.60)

where j0(kr) = sin(kr)/kr is the zeroth order Bessel function.

We mention in Section 2.4 that in the linear regime different δk modes evolve indepen-

dently. Fitting codes are provided (Eisenstein and Hu, 1998) to evolve the matter power

spectrum from high redshift to today. However, operationally it is sometimes easier to

analyze observations in configuration space. Since measurements of ξ(r) span over many

orders of magnitude and r is also expressed with logarithmic spacing, Fourier transforming

ξ(r) is cumbersome, as it requires vast numbers of data points 6. Yet it is necessary to

do so for comparing data with theory. Fortunately, Hamilton (2000) has presented an

analytical solution to this problem and has implemented it in a publicly available code

that we use extensively throughout.

6Usual FFT methods require set of data with evenly space points (Press et al., 1992), whereas the

correlation function and power spectrum span over several orders of magnitude making the problem im-

practical.
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2.5.4 Angular correlation function

In an analogous way with the spatial correlation function one can define the angular

correlation function. The excess of clustering for objects that lie on the surface of a sphere

is given by the two dimensional analogue of equation 2.55

dP = n̄2 [1 + w(θ12)] dΩ1dΩ2, (2.61)

where dΩ1 and dΩ2 are the the solid angle elements enclosing the two galaxies respectively

and n is the mean surface density of galaxies, such that n̄ = N/Ω.

The angular correlation function is just the projection of the spatial correlation function

on a sphere. Thus, if we know radial distribution of sources dn/dr, we can project ξ(r) to

w(θ) as follows

w(θ) =

∫ ∞

0

dn1

dr1
dr1

∫ ∞

0

dn2

dr2
ξ

(

R,
r1 + r2

2

)

dr2, (2.62)

where R =
√

r2
1 + r2

2 − 2r1r2cos(θ), is the cosine rule. Written in this form, equation 2.62

gives the angular correlation between two populations with different radial selection func-

tions and it also makes the implicit assumption that ξ(r) doesn’t evolve in the overlapping

volume of dn1/dr2 and dn2/dr2. At low-z, it is rare to have a situation where the spatial

correlation function evolves considerably to violate that assumption.

In fact, it is possible to simplify the considerably involved double integral of equation

2.62 if we introduce some further assumptions (Limber, 1953; Simon, 2007). The first

assumption is that dn/dr is only a function of r̄ = (r1 + r2)/2. The second assumption is

that ξ(r) varies significantly only across the separations ∆r = r2−r1. Finally the third as-

sumption is a geometrical one and implements the well-known small angle approximations

sinθ ≈ θ and cosθ ≈ 1. The result is known as Limber’s equation

w(θ) =

∫ 2r̄

−2r̄

dn1

dr̄

dn2

dr̄
dr̄

∫ ∞

0
ξ
(

√

r̄θ2 + ∆r2, r̄
)

d∆r. (2.63)

Equation 2.63 can be used for any ξ(r). In most conceivable cases, the second integral is

over all pair separations and a sensible upper limit is of order of 100 Mpc, nevertheless

it can also be defined from −∞ to ∞ since in any case the weight functions dn/dr will

fall rapidly outside the survey limits. Changing the limits does have some mathematical

advantages for analytically evaluating the inner integral of equation 2.63 for a power law

ξ(r) given by equation 2.56 (Peebles, 1980, § 52). Switching to the r̄ and ∆r pair of

variables and making use of the distance-redshift relation dr̄ = DHdz/E(z) (equation

2.25) to facilitate with observational radial selection functions which are expressed in
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cosmological redshift, equation 2.63 becomes

w(θ) =
Γ
(

1
2

)

Γ
(

γ−1
2

)

Γ
(γ

2

)

∫ (

dN
dz

)2 dz
dr̄ r̄1−γ(z)F [r̄(z)]rγ

0 (z)dz
[∫ (

dN
dz

)

dz
]2 θ1−γ , (2.64)

where F (x) = 1−kx2 and we assumed that the galaxy pairs come from the same selection

function dN/dz. Note that in equations 2.63 and 2.64 r̄ is the comoving distance at a

given redshift.

In conclusion, if the spatial correlation function is a power law, then the angular

correlation function is also a power law with a shallower slope and is given by the equation

w(θ) = Awθ1−γ , (2.65)

where Aw is a constant, given from the long pre-factor of the θ1−γ term in equation 2.64

and γ the same parameter that appears in equation equation 2.56. In practice, the angular

correlation function in the form of equation 2.63 is the observable and we are interested in

extracting the real space correlation function in the form of equation 2.56. From equation

2.64 we can extract the correlation length immediately, under the assumption that it

doesn’t vary significantly within the dN/dz redshift range, such that r0(zeff) = r0(z). In

Chapter 5 we make use of this assumption to invert our angular clustering signal to spatial.

The full inverted equation can be obtained if we solve equation 2.64 with respect to r0(zeff)

r0(zeff) = A
1
γ
w





Γ
(

1
2

)

Γ
(

γ−1
2

)

Γ
(γ

2

)

∫ (

dN
dz

)2 dz
dr̄ r̄1−γ(z)F [r̄(z)]dz
[∫ (

dN
dz

)

dz
]2





− 1
γ

. (2.66)

The Limber (1953) approximations are only valid under the previous stated assump-

tions. Once these breakdown the clustering results are biased as shown by Simon (2007)

and Crocce et al. (2011). However, for the study presented in Chapter 5 these assump-

tions are still valid and any potential biases are well below our statistical and systematic

uncertainties.

Historically, the angular correlation function was the only way of analyzing data from

galaxy surveys and an early account of the work done in this area is given by Peebles (1980).

With advent of automated spectrographs it became easier to work with the spatial cor-

relation function. Nevertheless, the need for statistical power in cosmological studies has

not been eliminated yet and combined with the continually increased use of photometric

redshifts, which come with significant uncertainties (Chapter 4), the angular correlation

function statistic is still a necessary tool for extragalactic astronomy.
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2.5.5 Measuring the angular correlation function

We now describe how we measure the angular correlation function in galaxy surveys.

Although the discussion is limited to angular clustering it can be easily generalized to

spatial clustering as well. From the definition of the angular correlation function (equation

2.61) we are interested in the number of coherent pairs that are separated by a given

angular separation θ → θ + δθ. Operationally this is given from the relation

θ = 2sin−1
(r

2

)

, (2.67)

where r is the cartesian distance between the two objects on the unit sphere. We then

compare that number with the expected number of pairs in the absence of any clustering.

As survey areas are typically complicated it is significantly easier to find the expected

number of pairs by Monte-Carlo integration: We generate random realizations of the data,

which cover the exact survey area, but do not have any clustering signal. Then we simply

divide the number of data pairs with the number of unclustered points, appropriately

normalized for the expected number of pairs, in order to get an estimate for the angular

correlation function

1 + w(θ) =
NDD(θ)

NRR(θ)

nR(nR − 1)

nD(nD − 1)
=

DD(θ)

RR(θ)
. (2.68)

It is important to note that random points should have the exact angular coverage of the

real data. The effects on any areas in the sky obscured by stars, or affected by bad seeing

conditions should be reflected accurately in the random points catalogue. These issues

are carefully addressed, when we present our angular correlation function measurements

in Chapter 5.

Alternative versions of equation 2.68 have been proposed which improve its perfor-

mance. Davis and Peebles (1983) proposed the following estimator

1 + w(θ) =
NDD(θ)

NDR(θ)

2nDnR

nD(nD − 1)
=

DD(θ)

DR(θ)
, (2.69)

and Hamilton (1993) introduced another one which carefully cancels the uncertainty of

the mean galaxy density at first order

1 + w(θ) =
NDD(θ)NRR(θ)

N2
DR(θ)

=
DD(θ)RR(θ)

DR2(θ)
. (2.70)

Finally Landy and Szalay (1993) proposed the following estimator, which they showed

presents minimum variance compared to the others and account better for the survey

edge effects

w(θ) =
NDD(θ)

NRR(θ)

nR(nR − 1)

nD(nD − 1)
− 2

NDR(θ)

NRR(θ)

nR(nR − 1)

2nDnR
+ 1 =

DD(θ)

RR(θ)
− 2

DR(θ)

RR(θ)
+ 1. (2.71)
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In practice, the differences between the Hamilton (1993) and the Landy and Szalay (1993)

estimators are almost unnoticeable (Chapter 5.)

As calculating the correlation function is an N2 algorithmic process, big samples can

make estimates of the correlation function very time consuming. In Chapter 5 we overcome

this problem by binning galaxies before the pair-counting, such that we only consider

galaxies in the same or neighbouring bins in every iteration. This makes the number of

calculations to scale approximately as N logN .

Finally, measurements of the angular correlation function statistic are strongly corre-

lated (Tegmark et al., 2002; Cabré et al., 2007; Norberg et al., 2009), despite the fact that

they have by construction perfect angular window functions. In Chapter 5 we construct

robust covariance matrices which we use for the power law fits that we perform.

2.5.6 Uncertainty estimation

There are generally two methods for estimating uncertainty on clustering measurements

and the discussion is somewhat related with the fair sample hypothesis. The fundamental

problem in uncertainty estimations in clustering measurements in cosmology is that we

are able to observe only one realization of the density field. The best way to overcome this

is the use of simulations, which require knowledge of the initial conditions and a rough

estimate of the cosmological parameters. Therefore, by creating many realizations of some

volume of the Universe we are in a position to quantify statistically the likelihood of the

observed parameters. Of course simulations can never include all elements of reality and

this issue is even more pressing for galaxy formation and evolution. The alternative method

is to use the data itself to construct repeating measurements. Two popular methods which

exploit the data for uncertainty estimations are bootstrap and jackknife. For the bootstrap

method one splits the data in equal subsets and then randomly removes a subset and then

substitutes it with another one from the data. By repeating this process one creates many

quasi-indepent realizations of the data. The second method is jackknife, where the data is

split again in N equal subsets but now one removes a part and simply treats the remaining

N − 1 subsets as a new realization.

The question of which method is more reliable for uncertainty estimation inevitably

depends on the data at hand and the nature of the problem. Thus for the two main datasets

that we use in this thesis we follow different approaches: jackknife for the studying the

clustering from SDSS and mocks for the studying the clustering from GAMA. Nevertheless,

there have also been systematic tests of the uncertainty estimation methods themselves
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which serve as guides at the beginning of the scientific analysis, as well as warnings for

the limitations of the uncertainty method used (Cabré et al., 2007; Norberg et al., 2009).

2.6 Halo modeling of large-scale structure

There exist various approaches to model the matter and galaxy correlation function beyond

the linear regime. They are broadly divided into two categories; the perturbation theory

approach (Bernardeau et al., 2002), which is more useful for cosmological applications (e.g.

Sánchez et al., 2009) and the halo modeling approach (Cooray and Sheth, 2002), which

is more useful from a galaxy evolution point of view (Zehavi et al., 2011, and references

therein). Although halo modeling is a more phenomenological approach, it is superior in

describing small to intermediate scale clustering, which is the regime where most galaxy

surveys can probe robustly. The data presented and analyzed in this thesis are more

relevant to the halo modeling of large scale structure, but our comparisons with specific

models are mostly qualitative. In this Section we introduce the characteristic features of

the halo modeling of large-scale structure, known as halo occupational distribution (HOD).

Since theory suggests that galaxies are formed inside dark matter haloes the first

quantity to introduce is the differential comoving number density of gravitationally bound

objects dn(M,z)/dM given their virialized mass M , known as the halo mass function

(HMF). A classic result is the Press and Schechter (1974) formalism which reads

dn(M,z)

dM
=

ρ̄

M
f(ν)

dlnσ−1(M)

dM
, (2.72)

where ρ̄ is the background density of the Universe and ν ≡ δsc(z)/σ(M). For Einstein-

deSitter cosmology δsc(z = 0) = 1.686 and it is weakly Λ-dependent (Cooray and Sheth,

2002). σ2(M) is the variance in spheres given by equation 2.57 by substituting the virial

radius corresponding to halo of mass M , usually evaluated when the halo is ≈ 200 times

denser than the background (Cooray and Sheth, 2002)

Rvir =

(

3M

4π200ρ̄

)1/3

. (2.73)

In the Press-Schechter model f(ν) in equation 2.72 is given by

f(ν) =

√

1

2π
e−

ν2

2 . (2.74)

The Press and Schechter (1974) formalism doesn’t agree well with simulations at the high

and low end of the HMF (Jenkins et al., 2001). In the literature there have been proposed
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more accurate analytical mass functions (Sheth and Tormen, 1999), as well as mass func-

tions calibrated from simulations (Tinker et al., 2008) which have been shown to cover a

wide range of cosmologies and redshifts.

The second ingredient of the halo formalism is the density profile of dark matter

haloes. Again this quantity is usually calibrated from simulations and it is therefore a

prediction of CDM. A functional form, obtained from CDM simulations has been provided

by Navarro et al. (1996)

ρ(r|M) ∝ 1
(

r
rs

)(

1 + r
rs

)2 , (2.75)

where rs = rvir/c and c is the concentration parameter, which depends only on the mass

of the halo. Equation 2.75 is known as the NFW profile.

Lastly, one needs a recipe to populate dark matter halos with galaxies. It is natural

to expect that the brightest and most massive galaxy will reside at the center of its halo

and that less massive satellite galaxies will live in the outskirts. Moreover, the mass of

the halo will determine how bright the central galaxy can possibly be. On the other hand

the satellites are usually taken to have a power law dependence on the mass of the halo.

Combined these two terms define the halo occupational distribution number

〈N〉M = 〈Ncen〉M + 〈Nsat〉M , (2.76)

which is the expected number of galaxies for a halo of a given mass M .

To sum up, the HOD formalism is described by three main quantities. The HMF, the

NFW profile and the galaxy halo occupation number. One then constructs appropriate

convolutions to describe various statistical quantities, like the two- and higher order corre-

lation functions (Cooray and Sheth, 2002). Due to these convolutions the HOD formalism

is usually expressed in Fourier space. However, Berlind and Weinberg (2002) provided use-

ful empirical (phenomenological) relations of the HOD formalism in configuration space.

The galaxy correlation function has two components, the intra-halo galaxy pairs and the

pairs of galaxies which reside in different haloes

ξ = 1 + ξ1h + ξ2h. (2.77)

The extra unity arises from the fact that all terms in equation 2.77 are proportional

to the total number of galaxy pairs that they describe (see equation 2.54). In the

Berlind and Weinberg (2002) model the HOD number weighted with the HMF enters

in the one halo term

1 + ξ1h(r) =
1

2πr2n̄g

∫

dn

dM

〈N(N − 1)〉M
2

F (r|M)dM, (2.78)
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where n̄g is the mean density of galaxies and F (r|M) is the distribution of separations of

the galaxy pairs in the halo, which usually follows the density run of the NFW profile.

Halo modeling provides formulae for the deterministic bias, which connect the two-halo

term with the underlying dark matter density film. However, the two-halo term can be

approximated reasonably well by the biased linear correlation function (Fig. 2.3)

ξ2h(r) ≃ b2
effξlin(r), (2.79)

where beff is an effective bias term which consists of the dark matter halo deterministic

bias (Cooray and Sheth, 2002) and the galaxy bias with respect to dark matter.

2.7 Cosmological parameters

Despite some warnings in the past that the FLRW metric doesn’t provide any characteris-

tic quantities (Peebles, 1980, § 5) or too few as in Sandage’s two numbers (h,Ωm, Sandage,

1961) quest, it is now widely accepted that observational cosmology can constrain a wide

range of physical parameters, as well as objectively selecting between different cosmological

models (Lewis and Bridle, 2002; Tegmark et al., 2006). Moreover, cosmological parame-

ters whose presence wasn’t suspected in past, like the densities of dark energy and dark

matter, have been discovered and are now extremely relevant. In this Section we sum-

marize the status of the cosmological parameters and its relation with galaxy evolution

models and this work in particular.

The simplest inflationary, hot big bang, cosmological model has the following free

parameters set θ (Tegmark et al., 2006; Lahav and Liddle, 2010),

θ ≡ (h,Ωtot,ΩΛ,Ωm,Ωb,Ων , w, ns, r, α,As, τ, b). (2.80)

First is the hubble parameter h, usually measured from distance measurements in the local

Universe. Ωtot is the total energy and matter budget of the Universe. Spatial curvature

in FLRW Universes can be found from the relation Ωk = 1 − Ωtot. ΩΛ and Ωm give

the energy density of dark energy and dark matter. Ordinary, baryonic matter is given

from Ωb and neutrino density from Ων . For a constant dark energy equation of state the

relevant parameter is w = pΛ/ρΛ. For the possibility of a time-varying dark energy a

popular (but not necessarily the only) parametrization adds one more parameter wa, via

the equation w(a) = w0 + wa(1− a). The parameters which describe the initial spectrum

of fluctuations, associated with the inflationary era of the Universe are the spectral index

ns, the tensor to scalar ratio r and the amplitude of fluctuations As (which fixes σ8). τ
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is the reionazation optical depth. The last parameter in equation 2.80 is the galaxy bias

b, which describes the different clustering between different galaxy populations and dark

matter. We present detailed measurements of this parameter as a function of galaxy type

and redshift in Chapter 5.

The progress on the measurements of the parameters of equation 2.80 in the last 20

years has been remarkable. WMAP and SDSS along with other extragalactic observational

campaigns placed precise values on the cosmological parameters. However the issue is

complicated due to the degeneracies between them, which requires one either to open the

parameter space, beyond what one can constrain or to make extra assumptions about

their properties. Fortunately CMB two-point statistics, along with two-point large-scale

structure statistics7 and supernovae distance measurements suffice to break most of these

degeneracies (Tegmark et al., 2006; Spergel et al., 2007). The result is the emergence of a

standard cosmological model known as flat ΛCDM.

For galaxy clustering in the local Universe the most interesting cosmological parameters

are those which define the background expansion, namely ΩΛ, Ωm and h. Of particular

interest is also σ8 which sets the amplitude of fluctuations and therefore the amplitude of

the power spectrum which also correlates with Ωm. Due to the fact that not all baryonic

mass has turned into galaxies Ωb is not of particular interest in galaxy clustering, with

the exception of baryon acoustic oscillations which have their amplitude modulated by

the baryon density before the galaxy formation epoch (Eisenstein et al., 2005). For flat

ΛCDM we have by definition Ωtot = 1 and w = −1. In table 2.2 we quote the observed

values from Reid et al. (2010) that are most relevant for this thesis. In Fig. 2.4 (adopted

from Reid et al., 2010) we show the joint constraints on ΩΛ, w and Ωm. Throughout, we

keep the dependance on h and σ8 explicit, unless otherwise stated.

The quest for measuring the cosmological parameters has now reached an interesting

point. In extragalactic astronomy, for all practical purposes, there is no need for more ac-

curate values of θ, apart perhaps from the bias. As an example, changing Ωm from 0.25 to

0.3, in concordance cosmology, changes distances at z = 0.4 (the outer limit for our galaxy

samples) by 1.4 percent, which is a tolerable error for most extragalactic applications.

This distance error translates into 0.06 magnitude error, which is also acceptable. On the

other hand, models of the early Universe, as well as models of the late time acceleration

of the Universe, require even more precise measurements, as well as understanding of the

systematics, to discriminate the best available model. Nevertheless, one can already notice

7Usually this is just BAO measurements, which have less dependance on non-linear physics

(Eisenstein et al., 2005; Percival et al., 2010)
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Figure 2.4: Upper panel: Joint constraints on ΩΛ and Ωm, from CMB (WMAP), su-

pernovae (Union data set) and large-scale structure measurements (SDSS DR7, LRG’s),

assuming the concordance ΛCDM model. Lower panel: Joint constraints on w and Ωm us-

ing the same data. Note the consistency between the three contours in both plots, evident

from their common intersection. [Figure credit: Reid et al. (2010).]
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Table 2.2: Cosmological parameter values from combining measurements from CMB

(WMAP), supernovae (Union data set) and large-scale structure measurements (SDSS

DR7, LRG’s), assuming the concordance ΛCDM model. For a description of the parame-

ters see text. The values are taken from Reid et al. (2010).

Parameter

h 69.4 ± 1.6

Ωm 0.289 ± 0.019

ΩΛ 0.711 ± 0.019

Ωbh
2 0.02272 ± 0.00058

σ8 0.824 ± 0.025

Age (Gyr) 13.73 ± 0.13

from Fig. 2.4 that in both panels the three likelihood contours have a common intersecting

point, which is powerful consistency check for the standard ΛCDM model.

Whilst the enterprise of measuring the cosmological parameters is blooming and its

results are very likely to shape the future of cosmology it is important to check our results

and their consistency with a variety of methods. A cautionary article by Croft and Dailey

(2011) noted that there are fewer measurements of ΩΛ that are 2σ away from the “fidu-

cial” WMAP results, than we would statistically expect. If there aren’t any unknown

correlations in the various datasets, an assumption that is nonetheless very likely to be

invalid, then this ought to be a cause of some concern.

Lev Landau famously once said that “cosmologists are often in error but never in

doubt”. The transition from precision (number of significant figures) cosmology to accu-

rate (take hold of the systematics) cosmology is cosmologists’s new mission as described

by Peebles (2002). The potential danger if we neglect the latter is clear: 1 per cent bias

in a distance measure such as BAO at z = 1 translates to 4 per cent error in the value

of w (Angulo et al., 2008). A similar situation might apply for supernovae measurements

(White, 2007). Therefore ruling out ΛCDM might prove to be a much more difficult task

than its establishment, but one can be optimistic that this new route that we may travel

will be beneficial for science in general.
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Chapter 3

Data

In this Chapter we describe the datasets used in this thesis. Firstly, we describe the

public Data Release 7 from the SDSS collaboration (Section 3.1), which we use to study

galaxy clustering with photometric redshifts. We then describe the proprietary data from

the GAMA collaboration (Section 3.2), which is selected from a previous SDSS release.

In Section 3.3 we introduce the first GAMA mocks catalogues, which are used for error

analyses. We finish with an overview of some of GAMA scientific results so far (Section

3.4).

3.1 The Sloan Digital Sky Survey

The Sloan Digital Sky Survey II (SDSS, York et al., 2000; Abazajian et al., 2009) is a

spectroscopic and multi-band imaging survey which covers over a quarter of the sky. As

such, it is the biggest astronomical survey ever accomplished with a variety of successful

scientific results ranging from the discovery of new asteroids in the solar system to distant

quasars at redshift z ∼ 5 and from a detailed statistical description of the large-scale

structure at redshift z ∼ 0.4 to a systematic classification of galaxies and their correlations

in the local universe.

Data is taken in five photometric bands, known as u, g, r, i and z. In each band

the detected flux f , is then transformed into the corresponding apparent magnitude m,

through the relation (Lupton et al., 1999)

m = − 2.5

ln10

[

sinh−1

(

f/f0

2b

)

+ lnb

]

, (3.1)

where f0 is the zero point magnitude (m = 0) and b is a softening parameter, approximately

one standard deviation noise of the sky. Equation 3.1 has the nice property of reducing to

the traditional magnitude relation m = −2.5log10(f/f0), for large values of f/f0, whereas
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it is linear in f/f0 for f/f0 . 1. The linearity for low values of f/f0 allows for well defined

error distributions on noise-dominated measurements, whereas the sinh−1 function allows

for formally negative values of flux. Photometric calibration for SDSS data releases prior

to the seventh data release (DR7) was uniform to a 3 percent level (Stoughton et al.,

2002) and then shrunk to 1 percent with the implementation of the übercal photometry

(Padmanabhan et al., 2008), which we use in this work.

SDSS uses a variety of photometric flux calibration techniques and provides various

magnitudes1 for galaxies and stars. Along with the so called model magnitudes (corre-

sponding to whichever of a de Vaucouleurs or exponential profile provides a better fit to

the observed galaxy light profile), SDSS also provides slightly modified Petrosian mag-

nitudes (Petrosian, 1976), which are more appropriate to characterize extended objects

like galaxies. As galaxies are extended objects without sharp edges, galaxy samples are

selected on Petrosian magnitudes. Colours on the other hand, are usually defined using

model magnitudes. SDSS photometry is described in detail in Stoughton et al. (2002).

As an input in the photo-z software we also use the Petrosian radii of objects which are

defined as the radii that enclose 50% and 90% of the total Petrosian flux. As such, Pet-

rosian radii are a proxy of the distance of the galaxies. The SDSS database also provides

corrections for dust attenuation, known as reddening corrections (Schlegel et al., 1998).

These are particularly important for photo-z studies. We include these corrections when

we extract our sample from the database.

Magnitudes are being used to define objects as galaxies. For the spectroscopic follow

up used for the construction of its main galaxy sample, SDSS implements the following

main criterion for all objects with r < 17.77 (Strauss et al., 2002)

mPSF,r − mmodel,r > 0.3. (3.2)

Note that this criterion was loosened up to 0.24 in SDSS DR2 (Abazajian et al., 2004).

For the photometric galaxy sample, which we use in this work, the star-galaxy separation

criterion is (Stoughton et al., 2002)

∑

i

mPSF,i −
∑

i

mmodel,i > 0.145, (3.3)

where i runs over the 5 SDSS bands and the sum is actually performed using the fluxes.

All magnitudes are de-reddened according to Schlegel et al. (1998).

SDSS’s detailed mapping of local galaxies has also revealed the biggest structure ever

observed in the universe. It’s a supercluster at redshift z ∼ 0.1 and it was given the

1http://www.sdss.org/dr7/algorithms/photometry.html

http://www.sdss.org/dr7/algorithms/photometry.html
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Figure 3.1: The SDSS galaxies footprint. Plotting galaxies as function of their angular

and radial position reveals the rich large-scale structure of the low redshift universe. The

Sloan Great Wall, the biggest observed so far can be seen at 12h and at a distance of

about ∼ 300Mpc from us. [Figure credit: Gott et al. (2005).]
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name The Great Sloan Wall (Gott et al., 2005) and its position is shown in Fig. 3.1.

Notwithstanding their scientific value as such, superstructures also introduce complications

in error estimates using internal error estimation methods like jackknife (Norberg et al.,

2009, 2011). We address this issue with respect to our clustering measurements from SDSS

in Chapter 5.

At the end of its campaign SDSS II has accumulated more than 1 million galaxy spec-

tra with r < 17.7 and ∼ 5 million galaxies in its photometric catalogue with r < 19.4

(henceforth r without a subscript will denote the Petrosian magnitude of a galaxy). Con-

veniently, a data repository website2 is provided by the SDSS collaboration for querying

and downloading desired datasets, as well as performing appropriate computations and

selection cuts. We take advantage of this vast amount information to study galaxy clus-

tering with photometric redshifts aiming to improve and extend the work that has been

done by the SDSS team.

3.2 Galaxy And Mass Assembly survey

Galaxy And Mass Assembly3 (GAMA) is one of the first new generation of galaxy surveys,

strategically designed to tackle cutting edge problems in extragalactic astronomy that have

the potential to revolutionize physics.

GAMA’s main science goal is to provide measurements of the halo mass function

(HMF) for the redshifts range 0 < z < 0.5. The HMF,described in Section 2.6 is a funda-

mental quantity for dark matter physics and it is therefore crucial for our understanding

of structure formation and evolution in the universe. Furthermore, as by the design of the

survey galaxies will directly be allocated in their parental dark matter haloes, GAMA will

provide invaluable information on galaxy formation as a function of environment.

Other associated science goals of GAMA are to study galaxy evolution, using available

multiwavelength observations from other surveys which cover the GAMA fields and to

measure the merger rate of galaxies as a function of galaxy type. Also, more relevant

to this thesis, GAMA aims to provide measurements of the anisotropic galaxy clustering,

which is a promising route for testing models of modified gravity and will provide improved

photometric redshift estimates, using its unique galaxy catalogue as a training set.

By virtue of its design, GAMA lies right in between wide-field low redshift surveys and

deep high redshift surveys (Fig. 3.2). This will primarily allow GAMA to probe groups of

2http://casjobs.sdss.org/CasJobs/
3http://www.gama-survey.org

http://casjobs.sdss.org/CasJobs/
http://www.gama-survey.org
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Figure 3.2: Graphic overview of spectroscopic galaxy surveys. Each survey is shown as a

function of area coverage and density of spectra. Lying at the middle of the graph, GAMA

fills an important gap. [Figure credit: Baldry et al. (2010).]

mass similar to or less than that of the local group (M ∼ 1012M⊙), something which no

other survey has been able to achieve so far.

In this thesis we use data from the completed GAMA I, whilst observations for GAMA

II are on their way. GAMA I fields consist of three 4×12 deg2 regions, named G09, G12 and

G15, all of which lie almost on the equator. G09 and G15 magnitude limit is rpet < 19.4,

whereas G12 is rpet < 19.8. The redshift cone diagram of GAMA I is shown in Fig 3.3.

Technical papers which describe the survey, include Baldry et al. (2010) for the target

selection, Robotham et al. (2010) for the tiling algorithm and Driver et al. (2011) for the

first data release. GAMA targets, have been selected according to SDSS DR6 photometry

(Adelman-McCarthy et al., 2008). Throughout we use SDSS Petrosian r-band magnitudes

to calculate absolute magnitudes and model magnitudes to calculate colours.

Star-galaxy separation for GAMA builds on the SDSS one, with additional infrared
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Figure 3.3: Redshift cone diagram of GAMA Phase I galaxies, split in the three GAMA

fields. The diagram shows the rich structure up to z = 0.4, which we aim to describe using

galaxy clustering statistics. (Figure credit: Jon Loveday.)
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information from the UKIRT Infrared Deep Sky Survey (UKIDSS, Dye et al., 2006). An

object in the GAMA catalogue is classified as a galaxy if it satisfies one of the following

three criteria (Baldry et al., 2010):

mPSF,r − mmodel,r > 0.25 OR

mPSF,r − mmodel,r > 0.05 AND JAB − KAB − flocus(g − i) > 0.2 OR

mPSF,r − mmodel,r > fsg(mmodel,r)

(3.4)

where flocus(x) is the stellar locus and has the following functional form

flocus(x) =



















−0.7172 if x < 0.3

−0.89 + 0.615x − 0.13x2 if 0.3 < x < 2.3

−0.1632 if x > 2.3

whereas, for objects without J − K measurements, fsg is given by

fsg(x) =



















0.25 if x < 19.0

0.25 − 1
15(x − 19) if 19.0 < x < 20.5

0.15 if x > 20.5

As shown by Baldry et al. (2010) (see their Fig. 6) infrared colour J−K greately improves

the selection at low redshifts. Finally, all GAMA targets have been visually inspected as

well.

For the extraction of the photometric catalogue, we cannot use UKIDSS information,

because it does not cover the whole SDSS area, which we use for this study. We thus

simply use the criterion mPSF,r −mmodel,r > 0.25 along with appropriate flags. In Chapter

5 we find that these criteria are not adequate for low redshift, intrinsically faint galaxies

and we show how this issue severely limits clustering studies.

Aside from its unique combination of breath and depth, GAMA is also almost 98

percent spectroscopically complete down to r < 19.4 and 97 percent down to r < 19.8 for

G12, which makes it ideal for using it as training set for empirical methods of estimating

photometric redshifts. Redshifts were measured by the GAMA team and their quality

is characterized by the variable nQ defined in Driver et al. (2011). As also described by

Driver et al. (2011), significant effort has been taken by the team to assess objectively

the quality of the redshifting process. Since GAMA builds on the legacy of other surveys

the final redshift catalogue includes additional external redshifts. In line with all GAMA

science papers we only use galaxies for which their redshift quality is nQ > 2. Angular

masking for GAMA is derived from the SDSS imaging mask along with detailed redshift

completeness as function of position and is described in (Driver et al., 2011)
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A number of technicalities however, do differ between this work and other GAMA

papers. The most important are the k-correction (Hogg et al., 2002) and evolutionary

correction (Lin et al., 1999). In this study we use k-corrections for individual objects using

KCORRECT version 4.1.4 (Blanton and Roweis, 2007) and evolutionary corrections using

the passive evolution parameters of Loveday et al. (2012), whereas e.g. Robotham et al.

(2011) used global k + e-corrections. r-band Petrosian magnitudes for every object are

k + e-corrected using the correction obtained from model magnitudes.

3.3 GAMA mock catalogues

GAMA benefits state of the art mock galaxy catalogues, specifically designed to match the

global clustering and luminosity properties of the survey. We use in total 9 mock galaxy

catalogue and we address below the resulting constraints in our analysis imposed by their

limited number. The same set of mock catalogues was used by Robotham et al. (2011)

and a detailed descriptions can be found in that work and in Merson et al. (in prep.).

Mock catalogues were constructed using lightcone outputs from the Millenium simulation

(Springel et al., 2005), whereof dark matter haloes were populated using the semi-analytic

galaxy formation model GALFORM (Bower et al., 2006). GAMA mocks match the sur-

vey selection and luminosity function in the r-band as given by the measurements of

Loveday et al. (2012).

Complicated effects like luminosity dependent clustering and peculiar velocities are

not accounted as realistically as desired in this first set of mocks (Robotham et al., 2011).

Our tests for redshift space clustering showed that discrepancies between GAMA data and

the mocks are limited and arise only at small scales. Nevertheless, we only make use of

GAMA mocks to assess statistical and systematic errors in our analysis of the anisotropic

clustering signal. Thus, we are interested in the relative clustering errors, instead of

comparing absolute deviations on the two point correlation function. A further limitation

is their statistical independence as all mocks are derived from one simulation output. As

the different mocks have separations of ∼ 500 h−1Mpc we do not expect possible long

wavelength repetitions to have an effect on our correlation function uncertainty estimates

which are limited to scales < 20 h−1Mpc.
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3.4 Overview of some of the first GAMA scientific results

The GAMA survey has been acquiring data since February 2008 and it’s first data re-

lease paper was Driver et al. (2011). In the meantime there have been many interest-

ing scientific results produced by the GAMA team. Amongst them are the construction

of a galaxy group catalogue (Robotham et al., 2011), luminosity function measurements

(Loveday et al., 2012) and an on-going project on local group analogues4.

The first step towards the measurement of the HMF has been made with the construc-

tion of GAMA galaxy group catalogue (G3Cv1, Robotham et al., 2011). In contrast with

the construction of a galaxy group from simulations, observations have to take into account

redshift space distortions (a subject discussed in detail in Section 6.2). In order to over-

come these complications one has to rely on mock catalogues, which are used to calibrate

free parameters of the group finding algorithm. The main result of Robotham et al. (2011)

is 14, 388 galaxy groups, along with estimates of their dynamical mass. The similarities

of the present work and the galaxy group catalogue of Robotham et al. (2011) include

the use of the same GAMA data release (although we work solely with rpetro < 19.4), as

well as same mock catalogues for assessing uncertainties and test the performance of the

estimators used.

The breath and depth of the GAMA survey allows one to probe efficiently the faint

end of the galaxy luminosity function. Loveday et al. (2012) have studied the galaxy lu-

minosity functions and their evolution in the SDSS ugriz bands. Using the parametric

Schechter function they provided measurements of the evolution of galaxy number density

and luminosity for red and blue galaxies. The evolutionary parameter Q for the r-band

absolute magnitude from Loveday et al. (2012) will be used for our e−corrections in Chap-

ter 4 and 6. We also use the magnitude dependent colour cut proposed by Loveday et al.

(2012) for our colour split in Chapter 5.

One of the most serious challenges of the ΛCDM paradigm is the Milky Way’s subhalo

structure (Boylan-Kolchin et al., 2012). The problem consists of the disagreement of the

CDM predicted number of subhaloes in a Milky Way type halo (Mvir,MW ∼ 1012M⊙) and

the actual number (as well as their respective luminosities) of the Milky Way satellite

galaxies. Since this problem is at the moment linked with the Milky Way it would be

informative to put it in a more cosmological perspective and check whether the Milky

Way is a representative group with respect to other galaxy groups. G3Cv1 is ideal for this

exercise as it contains galaxy groups with similar mass to the Milky Way out to z ∼ 0.1,

4A complete list of GAMA publications can be found at http://www.gama-survey.org/pubs/

http://www.gama-survey.org/pubs/
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i.e. a cosmologically representative volume. In Robotham et al. (2012) it is shown that at

least one more galaxy group with similar properties exists in G3Cv1, whereas ongoing work

(Robotham et al., 2012b, In prep.) is addressing in considerable detail the similarities of

the physical properties of the Milky Way group with the global ones of G3Cv1.

The main focus of this thesis is studying large-scale structure in local Universe using

the GAMA. Due to its relatively small volume GAMA cannot be used for placing strong

constraints on cosmological parameters. Yet GAMA is ∼ 98% complete and therefore

it can be used for testing systematic errors in the datasets as well as in the theoretical

modelling. Throughout the rest of the thesis we will turn to these issues repeatedly.
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Chapter 4

Constructing a photometric

redshift catalogue

Parts of this Chapter have been previously published in Christodoulou et al. (2012)

4.1 Prelude

The cosmological redshift is a fundamental quantity in extragalactic astronomy. It is

necessary for robustly estimating distances as well as absolute magnitudes. It is however

very costly to obtain in abundance for statistical studies and it becomes inefficient for very

faint galaxies, the majority of galaxies in the universe, for which too much exposure time

is needed in order to get the spectra.

It is however possible to obtain information about the redshift of a galaxy without

the use of spectroscopy. This is the concept of a photometric redshift which consists of

using easy to obtain observables like broadband photometric information and imaging

to get an estimate of the true (spectroscopic) redshift. One can then use the resulting

photo-z in clustering studies. The motivation for doing this is twofold. First, we can get

large numbers of intrinsically faint galaxies, for which spectroscopy is difficult to obtain

en masse. Thus we are able to study the clustering properties of galaxy populations,

which are numerous in the universe but rare in flux limited surveys. Second, by increasing

the number of galaxies in our sample the statistical errors are reduced and thus more

complicated models can be tested1.

1This is not exactly true in the case of cosmological parameter estimation where the effective volume

of a survey is the quantity that characterizes the usefulness of the sample (Tegmark et al., 2006). The

inevitable degradation of the redshift quality in future multi-imaging photometric redshift surveys will

result in a reduction of the effective volume of the survey (Seo and Eisenstein, 2003; Blake and Bridle,
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Many ongoing and future galaxy surveys (e.g. DES2, LSST3, PanSTARRS4 and Pau5)

will rely entirely on photometric redshifts for their science. Unlike SDSS and GAMA for

which photo-z’s are a byproduct they are designed solely as photo-z surveys. Therefore,

beyond the new results presented here, the analysis of this Chapter acts as a prototype

for future photo-z studies.

Unfortunately, photometric redshifts come with large errors relative to the true red-

shifts, which are Gaussian only to a first order approximation and therefore need to be

studied carefully. In some cases the estimation is catastrophic (we define catastrophic

redshift estimates as those which satisfy |zphot − zspec| > 3σ) or inherently problematic

(e.g. at low redshifts where we may have z ≃ σz, even though the photo-z error is well

constrained). Therefore there is an advent of systematics which can also be understood

as the result of the significant reduction of the statistical errors. As this is an extremely

important issue, bound to be very relevant in extragalactic astronomy for the foreseeable

future, we study it in some detail in this Chapter, in a somewhat different manner than

what has already been done in the literature so far.

Once photometric redshifts have been estimated the next task is to model the radial

selection function dN/dz, which describes how the galaxies were selected according to their

true redshifts. This is another major complication that we have to consider and a potential

cause of systematic error. It is relatively straight-forward to get a photometric redshift

estimate and use this as a proxy of the galaxy radial position or any other redshift derived

quantity, but it is nontrivial to quantify the effect that the errors have on the way galaxies

were selected. Almost every scientific result which uses photometric redshifts depends

crucially on the recovery of the true redshift distribution. Then one has to model the

photo-z derived quantities. We do so for the absolute magnitude Mr, as we are interested

in studying the luminosity dependence of galaxy clustering. Lastly, as shown in Chapter 5

and in particular Section ??, one has to be critical of the scientific results per se, as there

can be unsuspected and systematic contamination in large imaging galaxy catalogues.

In the next Section we briefly introduce the techniques for obtaining photometric

redshifts. In Section 4.3 we describe step by step the process of building a large photometric

redshift catalogue, which we are going to use in Chapter 5 for the clustering study of

galaxies as functions of our derived observables, photometric redshift and photometric

2005).
2http://www.darkenergysurvey.org
3http://www.lsst.org
4http://pan-starrs.ifa.hawaii.edu/public/
5http://www.pausurvey.org/home-PAU.html

http://www.darkenergysurvey.org
http://www.lsst.org
http://pan-starrs.ifa.hawaii.edu/public/
http://www.pausurvey.org/home-PAU.html
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redshift derived absolute luminosity and colour. We conclude in Section 4.5.

4.2 Overview of photometric redshift methods

4.2.1 Template methods

Template methods were the first photo-z estimators, mainly due to their direct corre-

spondence with a galaxy’s spectral energy distribution (SED). Since the direct observable

is broadband photometry, the template method relies on the fit of a galaxy’s apparent

magnitude and SED to a set of template SED’s, themselves associated with redshifts

(Abdalla et al., 2008). In this scheme, according to the quality of the match with the

templates at a given redshift, usually quantified with the χ2 statistic, the galaxy is as-

signed a redshift. One advantage of this method is the possibility of extrapolating to

galaxy population for which spectroscopic redshifts are not available, with the caveat of

being model-dependent. Due to the uniformity of the data that we use in this work, we do

not use template fitting in our photo-z estimations, but we rely on empirical techniques

instead.

4.2.2 Empirical Techniques

Under the assumption that the redshift of the galaxy is some empirical, necessarily non-

injective, function of its photometric properties (usually magnitudes or colours) we can

follow some empirical technique to estimate it. The simplest method is to fit a polynomial

function which gives the redshift as a function of the observable fluxes (Connolly et al.,

1995; Brunner et al., 2000). One then uses that polynomial with the fitted coefficients to

derive unknown redshifts. This method can be extended to Artificial Neural Networks

(ANN) which use any arbitrary sigmoid functions, chosen by optimization, as shown by

Collister and Lahav (2004).

Collister and Lahav (2004) developed the ANNz package to estimate photometric red-

shifts. It consists of an input layer, a series of hidden layers and the photo-z output.

Each hidden layer has a number of nodes and these nodes are connected with each other

according to some weighting scheme. The training set then is used to assign the optimal

weights for the training set at hand. ANNz is trained using a set of spectroscopic redshifts

with similar photometry to the galaxy sample we wish to obtain photo-z’s for. Ideally

then, the training set is a subset of the initial galaxy sample.

The input layer of ANNz usually consists of galaxy colours or magnitudes. The reason
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for that is that they are the direct observables, with usually a well defined photometric

noise component, which can be accounted for by the neural network. It is however possible

to use more inputs than just magnitudes and colours in ANNz. A sensible choice is

Petrosian radii which clearly distinguish between low redshift and high redshift objects

because of the angular size on the sky. We find that this addition increases the accuracy

of ANNz.

Another empirical method for estimating photometric redshifts that we use in this

thesis is the nearest neighbor (NN) method. As its name suggests instead of fitting a

function of photometric observables in order to make a redshift estimation, it requires

one to calculate the number of neighbours in the multidimensional magnitude space that

each object has and use that information to construct redshift probability distributions

according to the position of each object in magnitude space. We test the results of this

method extensively in Section 4.4.3, where we also describe it in more detail, but we note

that it primarily aims for constructing redshift distributions of galaxy samples.

Lastly, it should be noted that template methods and empirical methods, are not nec-

essarily antagonistic. It is possible to use both methods simultaneously for better photo-z

estimations (Budavári, 2009) or use their different advantages to choose the best method

for a given dataset (Hildebrandt et al., 2010; Roseboom et al., 2012; Christodoulou et al.,

2012).

4.3 A new SDSS photometric redshift catalogue

Our goal is to obtain a photometric redshift catalogue going fainter in apparent magni-

tude than the Sloan Digital Sky Survey (SDSS). SDSS targets spectroscopically all objects

identified as galaxies with rpetro < 17.7 whereas our aim is for a catalogue for galaxies

with rpetro < 19.4. As a training set, which is a set of galaxies with rpetro < 19.4, sim-

ilar photometry and spectroscopically confirmed redshifts, we use GAMA Phase I data

(Driver et al., 2011). There are several advantages of going deeper in apparent magni-

tude. Firstly, we increase the effective volume of our survey, since zmean = 0.1 increases

to zmean = 0.19. Secondly, we have larger numbers of different galaxy populations and

therefore we can improve the statistics. As a consequence, we can study the clustering

of intrinsically faint galaxies, which are often very difficult to target in wide-field spectro-

scopic surveys. In this thesis (Chapter 5) we present a two point clustering analysis of

these underrepresented galaxy populations.

The photometric redshift estimation is done using the ANNz package (Collister and Lahav,
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2004). Then we use GAMA to assess the quality of the performance of ANNz on the various

quantities that we derive, like photo-z, absolute magnitudes and redshift distributions. We

use these quantities to select galaxy samples in order to study low redshift galaxy cluster-

ing in Chapter 5. Traditional photo-z tests are carried out for the whole sample. However,

in the following we perform those tests for the individual galaxy samples for which we

wish to study clustering, as this way we can directly assess the quality of each sample we

construct (see also discussion in Section 5.6).

4.3.1 Photometric redshifts

For the clustering measurements presented in this Chapter, all distance information comes

from photometric redshifts. Photo-zs are the basis for estimating redshift distributions

to be used in equation 2.66 and distance moduli to calculate absolute magnitudes and

colours. For this study we have a truly representative subset of SDSS galaxies down to

rpetro < 19.4 and we therefore use the artificial neural network package ANNz developed

by Collister and Lahav (2004) to obtain photo-z estimations.

It is important that the training set and the final galaxy sample from SDSS are built

using the same selection criteria. We present below the SQL query used to extract the

galaxy sample from the SDSS database6. We select galaxies which have “clean” photom-

etry according to the instructions given on the SDSS website7. The SQL query used to

extract our sample from the SDSS DR7 database is the following

SELECT

objid, g.ra, g.dec, flags, petror50_r,

petror50Err_r, petror90_r, petror90Err_r,

petroMag_r - extinction_r as petroMagCor_r,

petroMagErr_r,

modelMag_u - extinction_u as modelMagCor_u,

modelMag_g - extinction_g as modelMagCor_g,

modelMag_r - extinction_r as modelMagCor_r,

modelMag_i - extinction_i as modelMagCor_i,

modelMag_z - extinction_z as modelMagCor_z,

modelMagErr_u, modelMagErr_g, modelMagErr_r,

modelMagErr_i,

6http://casjobs.sdss.org/CasJobs/
7http://www.sdss.org/dr7/products/catalogs/flags.html

http://casjobs.sdss.org/CasJobs/
http://www.sdss.org/dr7/products/catalogs/flags.html
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modelMagErr_z

FROM galaxy g

JOIN Frame f on g.fieldID = f.fieldID

WHERE

zoom = 0 and stripe between 9 and 44

and psfmag_r - modelmag_r > 0.25 and

petromag_r - extinction_r < 19.4

AND ((flags_r & 0x10000000) != 0)

AND ((flags_r & 0x8100000c00a0) = 0)

PSF_FLUX_INTERP, SATURATED,

AND (((flags_r & 0x400000000000) = 0) or

(psfmagerr_r <= 0.2))

AND (((flags_r & 0x100000000000) = 0) or

(flags_r & 0x1000) = 0)

Note that we used the GAMA criterion mPSF,r − mmodel,r > 0.25 (equation 3.4) in con-

junction with the SDSS criterion for an object from the imaging catalogue to be classified

as a galaxy (equation 3.3), although we expect the former to dominate the selection.

The ANNz input parameters are the following: übercal, extinction-corrected model

magnitudes in ugriz bands, the radii enclosing 50 per cent and 90 per cent of the Petrosian

r-band flux of the galaxy, and their respective uncertainties. The architecture of the

network is 7:11:11:1, where 7 gives the input parameters described above, 2 the number of

hidden layers, 11 is number of nodes for each layler and 1 is the photo-z output. We use a

committee of 5 networks to predict the photo-z’s and their uncertainties (see Section 4.3.3).

4.3.2 Colour cuts

Before we build our final sample from ANNz, we remove galaxies with outlier u− g, g− r,

r − i, i − z colours both in the SDSS imaging sample and in the training set, because

photometric redshift estimates are based primarily on these colours. The complete colour

and magnitude cuts are given in Table 4.1. Less than 1 per cent of the galaxies are

affected by the colour cuts. These colour cuts in principle could affect the mask that we

use for correlation function calculations. To estimate the extent of this effect we study the

distribution on the sky of the colour outliers as well as their angular correlation function.

This exercise reveals that colour outliers have a spurious correlation an order of magnitude
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Table 4.1: Colour and apparent magnitude cuts for the optimization of ANNz. All colours

use SDSS model magnitudes.

12.0 < rpetro < 19.4

−2 < u − g < 7

−2 < g − r < 5

−2 < r − i < 5

−2 < i − z < 5

larger on all angular scales than the correlation function of our final sample. However,

since the number of these objects is almost three orders of magnitude less than the total,

they would have a negligible effect on w(θ) measurements if included.

4.3.3 Photometric redshift errors

Before we proceed with the photo-z derived quantities that we use in this study, we

investigate the possible biases and errors that ANNz introduces, using the known redshifts

from GAMA. Following standard practice we split our data into three distinct sets: the

training set, the validation set and the test set. Half of the objects constitute the test set

and the other two quarters the training and validation set. This investigation is insensitive

to the exact numbers in these three sets. The training and validation sets are used for

training the network, whereas the test set is treated as unknown. Once ANNz predicts

photo-zs for the test set, we are in position to quantify the redshift error

δz ≡ zspec − zphot. (4.1)

δz is the primary quantity of interest as far as true redshift errors are concerned. It

can depend on apparent magnitude, colours, the output zphot, the intrinsic scatter zerr of

ANNz committees, as well as the position of an object on the sky. We investigate some of

these potential sources of error below. The dispersion σz, of δz is given by the equation

σ2
z =

〈

(δz)2
〉

− 〈(δz)〉2 (4.2)

and is found to be σz = 0.039.

The fidelity of the overall photometric redshift estimation is shown in Fig. 4.1, where

we plot the true spectroscopic redshifts for GAMA objects against the ANNz photo-z

estimation. In Fig. 4.1 we also plot the mean photo-z and its standard deviation in photo-
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Figure 4.1: Density-scatter plot of the true spectroscopic redshift against the predicted

photo-zs from this work. The colour coding is such that the densest area (black contour)

is 5 times denser than the white contour. The red squares and error bars represent the

mean photo-z values and their respective standard deviation in photo-z bins of width

∆zphot = 0.05. The dashed line shows the diagonal zspec = zphot and the solid lines show

the quantity zphot ± σ0(1 + zphot), where σ0 is defined in equation 4.3.
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Figure 4.2: Density-scatter plot of the redshift error against the predicted photo-zs from

this work (top panel) and SDSS (middle and bottom panel). The colour coding is such

that the densest area (black contour) is 5 times denser than the white contour. The

red squares and error bars represent the mean redshift error values and their respective

standard deviation in photo-z bins of width ∆zphot = 0.05. The improvement of the

photometric redshift estimations due to the implementation of the representative GAMA

data set is evident.
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z bins of zphot = 0.05 and along with the redshifted dispersion (equation 4.3). Equation

4.3) is a good description of the photo-z errors.

In Fig. 4.2 we compare our photo-z estimates with the publicly available photo-z’s

from the SDSS website. For this comparison we plot the redshift error as a function of

photo-z. We then calculate the mean and the standard deviation of δz for photo-z bins

of width ∆zphot = 0.05. We work in fixed photo-z bins, because all our derived quantities

are based on the photo-z estimate and this way it’s straightforward to see any biases that

the photo-z results have with respect to the true redshifts. We note that if we work in

fixed spectroscopic redshift bins, this analysis is unclear, since we cannot use the σz(zspec)

information for our imaging data. Our photo-z estimates based on the GAMA training

set outperformed the SDSS results: For the redshift range 0.01 < zphot < 0.4 ANNz gives

almost unbiased redshift estimates (relative to the standard deviation). We note however

that some SDSS photo-z estimations are designed to perform much better in recovering the

total redshift probability distribution function of every galaxy. Since it still not clear how

to directly relate a redshift pdf with absolute magnitude and colour for a given galaxy, our

approach for the study of luminosity and colour dependent clustering is easier to interpret.

As expected, the error increases with redshift in the range 0.05 < zphot < 0.5, it is

acceptable however for zphot < 0.4. In Section 4.4.2 we quantify the photo-z error and

possible contamination between redshift bins, in a different way by cross-correlating photo-

z bins which are more than 2σrms apart. We find that the residual cross-correlation of the

different photo-z bins is negligible compared to the respective auto-correlations.

The distribution of the redshift error is in general non-Gaussian and asymmetric

(Fig. 4.3). It is also well-known that the redshift error is more significant at low-z and

thus a photo-z analysis is more tolerant to redshift errors at high-z. For that reason it

is common practice to scale the redshift error with the quantity 8 1/(1 + zphot). This

is shown in Fig. 4.3 along with a reference Gaussian with width σ = 0.032. As seen in

Fig. 4.3 even after the inclusion of the 1/(1 + zphot) factor, the error distribution is not

strictly a Gaussian, with larger deviations at the tails (|δz| > 0.08). Besides the width

of the distribution of δz, the mode is presents a small bias as it’s not exactly zero as we

would have expected. Yet, the 1/(1 + zphot) factor shifts the mode closer to zero. Taking

into account the redshift stretch, σ0 can be defined as

σ2
0 =

〈

(

δz

1 + zphot

)2
〉

−
〈(

δz

1 + zphot

)〉2

. (4.3)

8Note that other studies use the scaling 1/(1 + zspec) (Collister et al., 2007) and therefore confine the

applicability of the redshift errors study to the training set only.
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Figure 4.3: The distribution of photometric redshift error δz (solid line, equation 4.1), the

scaled δz/(1+zphot) (dotted line) and a reference Gaussian (dashed line). The distribution

of the true redshift errors is not Gaussian, especially on its tails. However, the inclusion

of the 1 + zphot factor renders the redshift distribution “more Gaussian”.
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Table 4.2: The change in the total number of galaxies as a result of various cuts applied.

For the masking see Section 5.3.

Cut description Number of galaxies remaining

None 4, 914, 434

Colour cuts (Table 4.1) 4, 890, 965

Masking 4, 511, 011

z
(ANNz)
err < 0.05 & 4, 289, 223

0.002 < zphot < 0.4

The redshifted dispersion is σ0 = 0.032. ANNz gives σrms = 0.039 which in the case of

known redshifts is the rms deviation between the network results and the data. Finally,

the standard deviation for the redshift range 0 < zphot < 0.4, which is the redshift range

with which we choose to work, is σz = 0.035.

We do not include in our analysis galaxies with zphot < 0.002 and zphot > 0.4. We also

apply a cut on the output parameter zerr of ANNz at zerr < 0.05. These cuts eliminate ∼ 4

per cent of the galaxies. Cross-checks show that the correlation function measurements

do not change if we use a less strict cut. The final number of galaxies after this cut is

4,289,223. We summarize the changes in the number of galaxies in our sample in Table 4.2.

We use Petrosian magnitudes to divide galaxies by luminosity and model magnitudes to

calculate galaxy colours.

In the absence of spectroscopic redshifts, ANNz provides a photo-z error estimation

zerr, based on the photometric uncertainty (Collister and Lahav, 2004). Naturally it is

expected to correlate with the true redshift error (δz, equation 4.1) as bad photometry

obscures photo-z estimation. However, our tests (shown in Fig. 4.4) show that this is an

underestimation of the true error. Moreover, in Fig. 4.4 it is evident that the distribution

of ANNz’s output parameter zerr does not follow the distribution of the true redshift error.

Therefore, for our Monte-Carlo resamplings, described in Section 4.3.5 we only use the

true error δz, obtained from GAMA.

The photo-z work presented here is similar, but not identical, to that of Parkinson

(2012). The latter is appropriate for even fainter SDSS magnitudes as it uses, in its

training and validation, all GAMA galaxies with rpetro < 19.8 and fainter zCOSMOS

galaxies (Lilly et al., 2007) matched to SDSS DR7 imaging. Minor differences in the

two photo-z pipelines, such as the inclusion of different light profile measurements, do
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Figure 4.4: Density-scatter plot of the correlation between true redshift errors (equation

4.1) and the output parameter zerr from ANNz. Red dashed line shows the desired diagonal

correlation. The correlation of the data points is therefore weak and biased towards low

zerr. If ANNz uses only photometric noise to estimate photo-z errors then it generally

underestimates them.

not significantly affect the estimated photo-z, which present a similar scatter around the

underlying spectroscopic distribution. Our photo-z agree with those of Parkinson (2012)

within the estimated errors.

4.3.4 Colour and magnitude selections

Galaxy magnitudes are k + e-corrected to zphot = 0.1, using KCORRECT version 4.1.4

Blanton and Roweis (2007) and the passive evolution parameter Q = 1.62 of Blanton et al.

(2003). In this simple model, the evolution-corrected absolute magnitude is given by

Mcorr = M−Q(z−z0), where z0 = 0.1 is the reference redshift. We note that Loveday et al.

(2012) using GAMA found Q = 0.7, which would change evolution-corrected magnitudes

by ≈ 0.3 mag at z = 0.4. Approximately equal deviations in absolute magnitude will

be induced in our high-z blue galaxy samples, if we use a colour-dependent Q (e.g.

Loveday et al., 2012). Assuming a global value for Q however allows for a more direct

comparison with the SDSS-based clustering studies of Zehavi et al. (2005, 2011). Galaxy

colours, derived from SDSS model magnitudes, are referred to as 0.1(g − r), while abso-

lute magnitude are derived using the r-band Petrosian magnitude (to match the GAMA

redshift survey selection). Fig. 4.5 shows that the r-band absolute magnitude extends to
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Figure 4.5: r-band absolute magnitude against photo-z in our photometric sample. Solid

red lines show the boundaries of our samples in photo-z and absolute magnitude and

dashed lines the further split in absolute magnitude bins. Due to the individual k + e-

corrections the flux cut of the survey is not sharp. Only 1 percent of the galaxies are

shown.

Mr − 5 log h = −16 mag with a few galaxies reaching as faint as Mr − 5 log h = −14 mag.

We split our galaxy sample in photo-z as well as luminosity bins. Our samples are

shown in Fig 4.5. Initially we define four photo-z bins in the redshift range 0 < zphot < 0.4

and then we further split each photo-z defined sample in six absolute magnitude bins in the

range −24 < Mr − 5 log h < −14. Thus, the photo-z catalogue that we constructed, offers

the opportunity for a clustering analysis over the luminosity range of 0.03L∗ . L . 8L∗,

spanning almost three orders of magnitude in L/L∗.

Fig. 4.6 shows colour-magnitude diagrams for our sample split in photo-z bins. The

colour bimodality is evident at 0.1(g − r) ≃ 0.8 for all photo-z bins. As there is some

correlation with absolute magnitude, we use the tilted colour cut defined by Loveday et al.

(2012),

Mr − 5 log h = 5 − 33.3 ×0.1 (g − r)model, (4.4)

which is a slightly modified version of the colour cut used by Zehavi et al. (2011), also

shown in Fig. 4.6.

In Fig. 4.7 we plot the photo-z error against photo-z for galaxies subdivided into sub-

samples, where we again have used photometric redshifts to estimate galaxy luminosities

and colours. It is encouraging that there are no obvious systematic biases of zphot − zspec
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Figure 4.6: r-band absolute magnitude against 0.1(g − r) colour (both k-corrected and

passively evolved to z = 0.1) for galaxies split in photo-z bins. Solid red line shows the

colour cut for red and blue populations, suggested by Loveday et al. (2012), used in this

work and dashed red line the colour cut used by Zehavi et al. (2011).
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Figure 4.7: δz against photo-z for our luminosity and colour-selected GAMA subsamples.

The mean redshift error and standard deviation per photo-z bin for each sample is shown

by the coloured data points, while the root mean square standard deviation, σrms, is listed

in each panel.
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Figure 4.8: Estimates of the underlying redshift distribution as required by the Limber

inversion given in equation (2.66) for the luminosity samples that are used in the clustering

analysis.

for any of the subsamples, although we do note that the most luminous (faintest) bin

contains very few blue (red) galaxies.

The relatively good photo-zs notwithstanding, our analysis does not eliminate com-

pletely the main systematic error of neural network derived photo-z, which is the over-

estimation of low redshifts and the underestimation of high redshifts (see e.g. Fig. 7 of

Collister et al., 2007) . As a result a number of faint galaxies have their redshift overes-

timated and hence appear brighter in our sample. We note that there is a discrepancy

between the fraction of faint red objects in the luminosity bin −19 < Mr − 5 log h < −17

between this work and Zehavi et al. (2011), which most probably is caused by this sys-

tematic shift (see Table 5.1).



61

0.1

0.2

0.3

0.4

N
(M

r−
5l

og
10

h)

−24<M
r
 − 5log

10
h < −22

−22<M
r
 − 5log

10
h < −21

−21<M
r
 − 5log

10
h < −20

 

 

0.3<z
phot

<0.4

0.2<z
phot

<0.3

−22−20−18−16−14
0

0.1

0.2

0.3

0.4

N
(M

r−
5l

og
10

h)

M
r
 − 5log

10
h

0.1<z
phot

<0.2

−22−20−18−16−14
M

r
 − 5log

10
h

−20<M
r
 − 5log

10
h < −19

−19<M
r
 − 5log

10
h < −17

−17<M
r
 − 5log

10
h < −14

0.0<z
phot

<0.1

N(M
r
(z

phot
))

N(M
r
(z

spec
))

N(M
r
(z

MC
))

Figure 4.9: The r-band absolute magnitude distribution for GAMA galaxies with rpetro <

19.4 and split into photo-z and photo-z derived absolute magnitude slices. Dashed lines

show the raw photo-z derived Mr − 5log10h distribution, thin lines the underlying spec-z

derived Mr −5log10h distribution and the thick lines the Monte-Carlo derived Mr − log10h

distribution respectively. The latter one reproduces rather well the true underlying spec-z

inferred Mr−log10h distribution, however for a few samples there is a discrepancy between

the spec-z derived and the Monte-Carlo derived distributions.
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4.3.5 Redshift distribution(s)

Despite the fact that ANNz gives fairly accurate and unbiased photo-zs for calculations in

broad absolute magnitude bins or photo-z bins, in order to translate the two dimensional

clustering signal to the three dimensional one using equation 2.66, the underlying true

dN/dz is needed. In this work we loosely follow the approach given in Parkinson (2012)

(see also e.g. Driver et al., 2011). The GAMA spectroscopic sample is highly representative

and it allows us to calculate the true redshift errors as a function of photo-z for all objects

in GAMA with rpetro < 19.4. Then, under the assumption of a Gaussian photometric

error distribution in each photo-z bin, we perform a Monte-Carlo resampling of the ANNz

predictions for photo-zs. This is equivalent to replacing each photo-z derived from ANNz

with the quantity zMC drawn from a Gaussian distribution, using a photo-z dependent

standard deviation, σ(z
(bin)
phot ) = δz

(bin)
phot :

zMC = G[µ = zphot, σ = σphot(1 + zphot)]. (4.5)

Note that convolving the imprecise photo-z with additional scatter improves the N(z)

redshift distribution: in other words the photo-z process deconvolves the N(z) and makes

it artificially narrow.

All our sample selections in Fig. 4.5 have been made using the photo-z derived absolute

magnitude Mr−5logh. We then use the accurate spectroscopic information from GAMA to

assess how well Monte-Carlo resampling compare to the underlying true dN/dz (Fig. 4.8).

Since the GAMA area is much smaller than the SDSS area, we are not interested in

recovering the exact spectroscopic redshift distribution, merely in matching a smoothed

version thereof. Our test shows that MC resampling performs rather well in recovering the

true dN/dz. This method performs even better with a larger number of objects, which

indicates that we are still dominated by statistical errors and therefore there is room

for improvement in future where larger data sets will be available. Nevertheless, as an

incorrect redshift distribution can cause a systematic error on r0, we test in Section 4.4.3

the sensitivity of our results to the assumed dN/dz.

Fig. 4.9 shows, for all samples split by photo-z and photo-z-derived absolute mag-

nitude, the photo-z-derived, the true underlying and the Monte-Carlo inferred absolute

magnitude distributions (as dashed, thin and thick solid lines respectively). We note that

the photo-z derived absolute magnitude estimates in Fig. 4.9 are obtained from the resam-

pled redshifts and not by resampling the absolute magnitudes per se. We then k+e-correct

every Monte-Carlo absolute magnitude realization using the procedure described in Sec-

tion 4.3.4. As expected, the true underlying distribution extends well beyond the photo-z
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inferred luminosity bins, but is yet again rather well described by the Monte-Carlo inferred

distribution.

It is crucial that we have a good understanding of the true underlying absolute mag-

nitude for all our samples. For galaxy clustering studies with spectroscopic redshifts it

is desirable to work with volume-limited samples. Using photometric redshifts, however,

one can form only approximately volume-limited samples, since photo-z uncertainties will

propagate into absolute magnitude estimates. Essentially, any tophat absolute magnitude

distribution, as selected using photo-z, corresponds to a wider true absolute magnitude

distribution, as shown in Fig. 4.9. This is rather similar to selecting galaxies from a pho-

tometric redshift bin and then convolving the initial tophat distribution with the photo-z

error distribution in order to obtain the true N(z). However, using the w(θ) statistic and

an accurate dN/dz for that particular galaxy sample we can extract its respective spatial

clustering signal, which would then correspond to the zMC derived absolute magnitude.

Direct comparisons with other studies can then be made, modulo the extent of the overlap

between the two absolute magnitude distributions.

4.4 Tests for systematics

Clustering studies using photometric redshifts are subject to systematic errors which be-

come more pressing as the statistical errors are significantly decreased. In this Section we

study the most relevant sources of systematic errors that can affect our results. A similar

study, for a brighter sample of galaxies at higher redshifts (0.4 < z < 0.7) was recently

presented by Ross et al. (2011a).

Here we present tests that we believe are more likely to affect the results shown in

this paper. We start in Section 4.4.1 with the scaling test, which is mostly tests the

reliability of the whole sample for clustering studies. In Section 4.4.2 we quantify the

possible systematics in the clustering signal, due to spurious cross-correlations of different

photometric redshift bins. Lastly, in Section 4.4.3 we test the possible systematics in the

spatial correlation function that are being introduced by the redshift distributions that we

use in Limber’s equation.

4.4.1 Scaling test

With a photometric sample of this size it is prudent to perform a scaling test in order to

uncover any dependence of clustering on apparent magnitude. In order to do this we split

our sample in apparent magnitude bins and then calculate the angular correlation function.
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Figure 4.10: Angular correlation functions of the r-band apparent magnitude bins defined

in Table 4.3.

Table 4.3: Clustering properties in apparent magnitude bins defined by r-band Petrosian

magnitude. Column 1 lists magnitude range, column 2 the number of galaxies, columns 3

and 4 give the values of γ and r0, defined in equation 2.56. Column 5 lists the quality of

the power law fits. Errors were calculated using the full covariance matrix, but we don’t

include the N(z) uncertainty.

r-bin (mags) Ng γ r0 χ2
ν

12.0 < r < 16.0 79543 1.81 ± 0.03 5.01 ± 0.48 1.01

16.0 < r < 17.0 201805 1.72 ± 0.02 5.76 ± 0.31 3.1

17.0 < r < 18.0 671315 1.73 ± 0.01 5.62 ± 0.2 3.38

18.0 < r < 18.5 768620 1.74 ± 0.01 5.58 ± 0.17 2.28

18.5 < r < 19.0 1336411 1.73 ± 0.01 5.5 ± 0.12 2.55

19.0 < r < 19.4 1720930 1.71 ± 0.01 5.2 ± 0.12 3.48
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The apparent magnitude ranges are given in Table 4.3. The angular correlation functions

are shown in Fig. 4.10. For all apparent magnitude bins the slope is approximately equal,

but the amplitude varies as expected, shifting from high to low values as we go fainter.

Then we use equation 2.66 to calculate the correlation length for each magnitude range,

using a smoothed version of the underlying N(zspec). The scales over which we fit are

0.01 < θ < 2 degrees (0.02 < θ < 1.2 degrees for the 12 < r < 16 sample). The correlation

length for each magnitude bin is found to be equal within the error bars and in agreement

with the earlier study of Budavári et al. (2003). Thus, for all well populated apparent

magnitude bins we recover the fiducial power law (Peebles, 1980)

ξ(r) ≃
(

r

5 h−1Mpc

)−1.7

. (4.6)

4.4.2 Cross correlation of photometric redshift cells

A crucial consistency check that is necessary for the validation of our results, is the study

of the induced cross correlations between redshift shells defined by photo-zs from our

sample. Since we have established that σz ≈ 0.04 we start from zphoto = 0 and use five

continuous slices with ∆z = 0.08, in order to allow all galaxies with photo-z error of . 2σ

to be included in the correct redshift bin. We then cross-correlate slices which are more

than one ∆z apart.

If a Gaussian with σ = 0.04 provides good approximation of the error σz, then we can

estimate what fraction of galaxies should lie outside the width of each photo-z slice. A

galaxy which is outside its redshift slice with width ∆z = 0.08 will have an error greater

than 2σ. For a Gaussian distribution ∼ 5 per cent of all galaxies should lie outside their

redshift boundaries. Therefore their residual contribution to the cross correlation should

be ∼ 10 per cent of their auto-correlation9. In Fig. 4.11 we present three auto-correlation

functions and their respective cross-correlations. The cross-correlation functions from

Fig. 4.11 are not entirely consistent with zero, but on all scales the residual signal is of

the expected order of magnitude. Fig. 4.11 demonstrates that ANNz does not produce

spurious correlations between physically disjoint galaxies.

4.4.3 Angular clustering in GAMA area

In this Section we perform a study of the angular clustering in the GAMA area. Since we

have precise knowledge of the spectroscopic redshift distributions in the GAMA area, we

9Assuming that the two auto-correlations are equal and the number of galaxies in each sample is equal

as well. For a detailed treatment of these effects see Benjamin et al. (2010).
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Figure 4.11: Auto-correlation (diamonds and circles) and cross-correlation (squares) func-

tions for photo-z bins. On small angular scales, the cross-correlation signal has negligible

magnitude and for angular separations ≥ 0.01 degrees is consistent with zero. The errors

are calculated using JK resampling as explained in Section 5.3.
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use these angular clustering measurements to test how robust are our spatial clustering

results using different methods of recovering dN/dz. The methods that we test against

the given GAMA spectroscopic redshift distributions, are the Monte-Carlo realizations of

the photo-z distributions, assuming Gaussian errors (equation 4.5), which has been used

for all the results in this paper and the weighting method of Cunha et al. (2009) (also

known as nearest neighbour method).

The latter method can be summed up in three distinct steps. First, one estimates the

distance in apparent magnitude space to the 200th nearest neighbour of each object in the

spectroscopic set, using a euclidean metric. The exact ordinal number of the neighbouring

object should not change the result significantly. For the GAMA number density N=200

is the best trade-off between smoothing out the large scale structure while at the same

time preserving the locality of the photometric information. Second, one calculates the

number of objects in the photometric set that are within the hypervolume defined by this

distance and then one calculates the weight of each object in the spectroscopic set at the

point mi according to the equation

wi =
1

Nphot,tot

N(mi)phot

N(mi)spec
, (4.7)

where N(mi)spec = 200. In the third step, the already known spectroscopic distribution is

weighted to match the distribution of the photometric sample. The weighting is done by

summing the weights wi of each object in the spectroscopic sample for all redshift ranges:

N(z)wei =

Nspec,tot
∑

i=1

wiN(z1 < zi < z2)spec. (4.8)

Cunha et al. (2009) show that their method is superior in recovering the true dN/dz to

other methods using photo-zs, but they do not include the Monte-Carlo resampling in

their comparisons.

The comparison of the different methods is depicted in Fig. 4.12, where all the cluster-

ing measurements are confined to the GAMA area. The errors for the angular clustering

measurements are assumed to be Poisson, which is just a lower bound, and the errors on

the redshift distributions are obtained from the scatter of Monte-Carlo simulations. This

test is performed for the same luminosity bins as in Section 4.3.4, apart from the brightest

and faintest bin which have a very small number of galaxies and hence large statistical

errors on w(θ).

The (a priori required) agreement between the r0 measurements from the different

methods of recovering dN/dz is not perfect. The r0 measurements are not significantly

affected by the differences between the redshift distributions of Fig. 4.8. In conclusion,
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Figure 4.12: Upper panel: Slope residual of the correlation function measurements in the

GAMA area, using the measurement of the GAMA sample with spectroscopic redshifts

as a reference (∆γ = γ(SDSS) − γ(GAMA)). Bottom panel: Comparison of the effect of

the various redshift distributions (as shown in Fig. 4.8) on r0 measurements again using

the GAMA sample as a reference (∆r0 = r0(i)− r0(GAMA)). Following the discussion in

Sec. 5.4 the error bars are the combined effect of the power law fit uncertainties (assumed

to be Poisson) which are independent of the underlying dN/dz and the scatter in r0 due

to 100 Monte-Carlo simulations of each dN/dz (only (dN/dz)spec is known precisely).
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Fig. 4.12, for the three intermediate and well populated luminosity bins, implies that the

reconstruction of the underlying redshift distribution is not introducing any systematic

errors in the r0 measurements.

This comparison does have limitations. Samples with small numbers of objects are

sensitive to number variations due to the different selections of the two surveys (mainly

the more conservative star-galaxy separation that we use in this paper). Moreover, it is

very difficult to get realistic error bars for samples with a small number of galaxies and

for which the survey’s angular extent is comparable with the angular scales used for the

w(θ) measurements. The difficulty in getting the exact angular clustering signal is shown

in the upper panel of Fig. 4.12 which shows the residuals of the measured slopes for the

GAMA and SDSS samples. In spite of these, Monte-Carlo resampling seems to recover

the true r0 slightly better than the weighting method.

4.5 Conclusions

This Chapter set the stage to proceed with the clustering analysis of SDSS imaging data.

We described the methodology behind the construction of our photometric redshift cat-

alogue and then we proceeded with a careful error analysis. The training set has been

constructed with as much clean photometry as possible, with additional colour cuts, which

optimized the performance of ANNz. The derived photo-z’s using the GAMA data set,

are shown to be less biased, than other available photo-z’s from SDSS data repository.

As photometric redshifts come with significant systematic errors we also studied those

in some detail. The tests that we performed were the scaling test, the cross-correlation

between different photo-z bins and finally the angular clustering in the GAMA area, were

true spectroscopic redshift are known. We found that, although systematic errors cannot

be ignored, we are in position to account for those in our clustering study that follows.

Subsequently we selected our desired galaxy samples and taking advantage of the

complete GAMA spectroscopic data down to our apparent magnitude limit, we calcu-

lated their true redshift and absolute magnitude distributions using MC resampling. Our

photo-z catalogue is sufficient for extracting redshift-derived galaxy properties like lumi-

nosities and colour. Moreover, we stressed the fact that a selection in absolute magnitude

derived using photo-z cannot be directly compared with a selection in spec-z derived abso-

lute magnitude. For that reason we constructed the true underlying absolute magnitude

distributions, along with the recovered radial selection functions dN/dz, which will help

us with comparison with other studies. Another curious point of that method is that
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an apparent convolution of the photo-z distribution with a Gaussian results in a decon-

volution of the photo-z distribution and the recovery of the true spectroscopic redshift

distribution. Thus, we have placed ourselves in a position with galaxy samples that have

well-defined selection functions for the clustering analysis as a function of photometric

redshift, luminosity and colour to which we now proceed.
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Chapter 5

Results for the two-point

correlation function

This Chapter have been previously published in Christodoulou et al. (2012)

5.1 Introduction

Galaxy properties are the fundamental observables for inferences and tests of galaxy for-

mation and evolution models. The dependence of galaxy clustering on properties such as

morphology, colour, luminosity or spectral type has been established over many decades.

Elliptical galaxies or galaxies with red colours, which both trace an old stellar population,

are known to be more clustered than spiral galaxies (e.g. Davis and Geller 1976; Dressler

1980; Postman and Geller 1984; Loveday et al. 1995; Guzzo et al. 1997; Goto et al. 2003).

Recent large galaxy surveys have allowed the investigation of galaxy clustering as a func-

tion of both colour and luminosity (Norberg et al. 2002; Budavári et al. 2003; Zehavi et al.

2005; Wang et al. 2007; McCracken et al. 2008; Zehavi et al. 2011). Among the red popu-

lation, a strong luminosity dependence has been observed whereby luminous galaxies are

more clustered, because they reside in denser environments.

The galaxy luminosity function shows an increasing faint-end density to at least as faint

as Mr − 5 log h = −12 mag (Blanton et al. 2005a; Loveday et al. 2012), thus intrinsically

faint galaxies represent the majority of the galaxies in the universe. These galaxies with

luminosity L ≪ L∗ have low stellar mass and are mostly dwarf galaxies with ongoing

star formation. However, because most wide-field spectroscopic surveys can only probe

luminous galaxies over large volumes, this population is often under-represented, an effect

known as Malmquist bias (Peebles, 1993).
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Systematic study of faint red galaxies (Mr − 5 log h > −19) from large contempo-

rary galaxy surveys has elevated their status as one of the most intriguing galaxy pop-

ulations due to their large clustering length (Norberg et al., 2001, 2002; Zehavi et al.,

2002; Hogg et al., 2003; Zehavi et al., 2005; Swanson et al., 2008a; Zehavi et al., 2011;

Ross et al., 2011b). Nevertheless the case for the clustering of faint res galaxies is not

considered closed. Recently, Ross et al. (2011b) compiled from the literature bias mea-

surements for red galaxies over a wide range of luminosities for both spectroscopic and

photometric data. They showed that the bias measurements of the faint red population

are strongly affected by non-linear effects and thus on the physical scales over which they

are measured. They conclude that red galaxies with Mr > −19 mag are similarly or less

biased than red galaxies of intermediate luminosity.

Small-scale (r < 0.1 h−1Mpc) galaxy clustering provides additional tests of the funda-

mental problem of how galaxies trace dark matter. Previous studies have used SDSS data

and the projected correlation function to study the clustering of galaxies at the smallest

scales possible (Masjedi et al., 2006), using however extensive modeling to account for

the fibre constraint in SDSS spectroscopic data. The interpretation of these results offers

unique tests about how galaxies trace dark matter and the inner structure of dark matter

halos (Watson et al., 2012). Motivated by these studies we present measurements of the

angular correlation function down to scales of θ ≈ 0.005 degrees. We work solely with the

angular correlation function and we pay particular attention to systematics errors and the

quality of the data.

On the other hand, on sufficiently large scales (r > 60 h−1Mpc), it is expected that

the galaxy density field evolves linearly following the evolution of the dark matter density

field (Tegmark et al., 2006). However, it is less clear if this assumption holds on smaller

scales, where complicated physics of galaxy formation and evolution dominate. In the ab-

sence of sufficient spectroscopic data to comprehensively study the evolution of clustering,

Ross et al. (2010) used SDSS photometric redshifts to extract a volume-limited sample

with Mr < −21.2 and zphot < 0.4. Their analysis revealed significant deviations from

the passive evolution model of Tegmark and Peebles (1998). Here we perform a similar

analysis, again using photometric redshifts, for the L∗ population.

This Chapter is organised as follows. In Section 5.2 we present our data for this study

and the method for estimating the clustering errors. The galaxy clustering results are

presented in Sections 5.3, 5.4, 5.5, 5.6 and 5.7 . In Section 5.8 we present bias measurements

as functions of colour, luminosity and redshift. Our findings are summarised in Section 5.9.
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5.2 Sample Selection

The galaxy samples that we consider for this clustering analysis are those defined in Section

4.3.4. In Section 4.3.5 we presented extensive tests on the robustness of the recovery of

the true redshift and absolute magnitude distributions and postulated that this is an

important task for galaxy clustering studies which are using photometric redshifts.

To sum up, we divide our sample into four photometric redshift bins 0.3 < zphot < 0.4,

0.2 < zphot < 0.3, 0.1 < zphot < 0.2 and 0 < zphot < 0.1. We then split each photo-z bin

in six absolute magnitude defined as: Mr − 5 log h = (−24,−22], (−22,−21], (−21,−20],

(−20,−19], (−19,−17], (−17,−14]. For colour, luminosity and photo-z dependent clus-

tering we further split all our samples in colour as defined by equation 4.4. These samples

are not volume limited, yet they have well defined radial selection functions and absolute

magnitude distributions as shown in Section 4.3.5.

5.3 Masking, pixelisation scheme and jackknife resampling

For the clustering analysis we use the SDSS angular masks, obtained from the NYU Value-

Added Catalogue1. These masks are provided in the mangle format (Hamilton and Tegmark,

2004; Swanson et al., 2008b) a standard astronomical tool for angular masking. We use the

file lss_combmask.dr72.ply in the NYU Value-Added Catalogue (Blanton et al., 2005b).

This mask, gives the exact geometry of the survey, with areas around bright star excluded.

Approximately 8% of the galaxies in our sample are affected by masking (see Table 4.2).

Once we have constructed the angular mask, we use mangle to create random points with

the exact geometry of the survey for our clustering estimator (equation. 2.71). The upper

panel of Fig. 5.1 shows the boundaries of the final mask for SDSS DR7 that we use for cre-

ating random catalogues. Our random catalogues consist of ∼ 107 objects, approximately

ten times larger than the number of galaxies in each luminosity and colour bin. Consis-

tency checks have shown that our clustering results are not sensitive to any particular

realization of the random catalogue. Note that the scaling test presented in Section 4.4.1

also checks the accuracy of the survey mask, as well as the photometric uniformity of the

sample, by studying the angular clustering of our sample as a function of r-band apparent

magnitude.

Throughout, we use the Landy and Szalay (1993) estimator for calculating the galaxy

correlation function. Due to the size of our samples we pre-grid our data and random points

1http://sdss.physics.nyu.edu/vagc/

http://sdss.physics.nyu.edu/vagc/
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Figure 5.1: The upper panel shows the jackknife regions used for the error estimation of

our correlation function measurements. After modifying the SDSSPix scheme, there are

80 jackknife regions which contain approximately equal numbers of random points. The

lower panel reports the normalized area of each pixel, based on a random catalogue. The

deviations from uniformity show that differences in the areas of the JK regions are limited

to ±30 per cent at most.
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so that the code only considers pairs inside the same pixels and pairs in neigbouring pixels

only. We take advantage of the SDSSPix2 routines, which define pixels on the sky using

the SDSS η and λ spherical coordinates (see Section 3.2.2 of Stoughton et al., 2002) and

then assign a pixel number on all galaxies and randoms. For that exercise we use the

“basic” resolution which divides the sky in 468 pixels of size ∼ 9.4 × 9.4 deg. Thus, at

all times, each pixel and its 8 direct neighbouring pixels include all coherent galaxy and

random pairs within angular separations up to 9.4 degrees, the largest angular separation

we consider (see Section 5.4).

With a galaxy sample of this size and depth which covers almost a quarter of the sky we

aim for a robust way to estimate our statistical uncertainties. We also use this pixelisation

scheme to define the Jackknife (JK) regions for the error analysis. In order to minimize

the variation in the number of objects in each JK region, some neighbouring pixels that

contain the survey boundary are merged in order that they contain a more nearly equal

number of random points. This modification of the SDSSPix pixelisation yields 80 JK

regions, as shown in the upper panel of Fig. 5.1. The lower panel of Fig. 5.1 presents the

relative variation in area of each region, as measured by the relative number of randoms

each one contains. Hereafter, errors on w(θ) are determined from 80 JK resamplings, by

calculating w(θ) omitting each region in turn. We have checked that our results are not

significantly affected by using either 104 or 40 Jackknife regions. The elements of the

covariance matrix, C, are given by:

Cij =
N − 1

N

N
∑

k=1

(log(wk
i ) − log(w̄i))(log(wk

j ) − log(w̄j)), (5.1)

where wk
i is the angular correlation function of the kth JK resampling on scale θi, w̄i the

mean angular correlation function and N the total number of JK resamplings. In practice,

w̄i is identical to the angular correlation function measurement from the whole survey area.

The N − 1 factor in the numerator of equation (5.1) accounts for correlations inherent in

the jackknife procedure (Miller, 1974).

Jackknife is a method of calculating uncertainties on a quantity that that we measure

from the data itself. In wide-field galaxy surveys, more often than not, large superstruc-

tures appear to significantly influence clustering measurements. The best known example

is the SDSS Great Wall (Gott et al., 2005). The presence of such structures makes it

tempting to present the results with and without the JK region that encloses them, as

done in the clustering studies of Zehavi et al. (2005, 2011). Better still, Norberg et al.

2http://dls.physics.ucdavis.edu/~scranton/SDSSPix/

http://dls.physics.ucdavis.edu/~scranton/SDSSPix/
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(2011) devise a more objective method to consistently remove outlier JK regions, from the

distribution of all JK measurements that one has at hand. We follow that method in the

present analysis, and find that for all samples considered, the number of JK regions that

are outliers, and therefore removed, is mostly two or three and no more than five.

5.4 Luminosity and redshift dependence

We first calculate the angular correlation function w(θ) for our samples selected on absolute

magnitude and photometric redshift over angular scales from 0.005 to 9.4 degrees, in 15

equally spaced bins in log(θ)3. In a flux-limited survey like SDSS, intrinsically bright

galaxies dominate at high redshifts and intrinsically faint objects dominate at low redshifts

(see Fig. 4.5). For that reason, we calculate w(θ) for the 17 well-populated samples given

in Table 5.1. Errors are estimated using the jackknife technique, with the covariance

matrix given by equation 5.1. Even if the validity of a given error method based on

data alone is still widely debated, it is commonly accepted that the jackknife method is

adequate for angular clustering studies (see e.g. Cabré et al., 2007), while for 3-D clustering

measurements, Norberg et al. (2009) have shown that the jackknife method suffers from

some limitations, in particular on small scales.

Our angular correlation function measurements are broad and probe both highly non-

linear and quasi-linear scales. Fig. 5.2 presents galaxy angular correlation functions for six

photo-z selected absolute magnitude bins. We show the angular scale (lower x-axis), used

for the correlation function estimation, and the corresponding comoving scale estimated

at the mean redshift of the sample (upper x-axis).

Over the range of angular scales fitted, chosen to correspond to approximately 0.1–20

h−1 Mpc comoving separation according to the mean redshift of each sample, the angular

correlation function can be reasonably well approximated by a power law, equation 2.65.

We perform power law fits, both with the full covariance matrix and with the diagonal

elements only. The power law fits for our L∗ sample are shown in Fig. 5.2. Dotted lines

in Fig. 5.2 show the extension of the power laws beyond the scales over which they were

fitted. The resulting correlation lengths, r0, slopes, γ, and quality of the fits as given by

the reduced χ2, χ2
ν , for all samples are listed in Table 5.1.

The luminosity dependence of galaxy clustering is present in all photo-z shells: the

shape and the amplitude of the angular correlation function differ for galaxies with dif-

3Initially our analysis was done down to θ = 0.001 degrees. However, as shown in Section 5.6, the data

is not reliable enough on such small scales.
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Figure 5.2: Two-point angular correlation functions w(θ) of our samples split into photo-z

bins and six photo-z-inferred absolute magnitude bins, as indicated in each panel, with

jackknife errors. The solid lines show power law fits estimated using the full covariance

matrix for the L∗ sample. Dotted lines show the extension of the power law fits on scales

< 0.1h−1Mpc and > 20h−1Mpc.
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Table 5.1: Clustering properties of luminosity-selected samples. Col. 1 lists the photo-z

based absolute magnitude ranges, col. 2 the median absolute magnitude and the associated

16th and 84th percentiles from the Monte-Carlo resampling (Fig. 4.9) and col. 3 the number

of galaxies in each sample. Cols. 4, 5 and 6 list respectively the slope, γ, the correlation

length, r0, and the reduced χ2, χ2
ν , of the power law fit as defined in Section 2.5.4. Cols. 7,

8 and 9 show the same information but for power law fits using only the diagonal elements

of the covariance matrix. All power law fits are approximately over the comoving scales

0.1 < r < 20 h−1 Mpc. Finally col. 10 presents the relative bias at 5 h−1 Mpc measured

using equation 5.2.

Sample Magnitude(MC) Ngal γ r0 χ2
ν γ(d) r

(d)
0 χ(d)2

ν b/b∗

Mr − 5 log h Mr − 5 log h [h−1Mpc] [h−1Mpc]

All colours 0.3 < zphot < 0.4

[−24,−22) −22.0−0.2
+0.2 13257 2.01 ± 0.15 14.08 ± 2.09 3.41 2.02 ± 0.09 13.68 ± 1.22 2.6 2.13 ± 0.30

[−22,−21) −21.2−0.3
+0.3 339834 1.94 ± 0.11 8.23 ± 1.54 28.08 1.91 ± 0.09 8.46 ± 1.06 13.0 1.22 ± 0.22

[−21,−20) −20.8−0.2
+0.2 158860 1.75 ± 0.06 6.96 ± 0.56 3.76 1.78 ± 0.05 6.80 ± 0.33 1.8 1.00 ± 0.01

All colours 0.2 < zphot < 0.3

[−24,−22) −22.0−0.3
+0.3 12294 2.02 ± 0.11 13.29 ± 2.01 2.37 2.01 ± 0.07 13.17 ± 1.13 1.7 2.02 ± 0.32

[−22,−21) −21.2−0.4
+0.3 284969 1.92 ± 0.09 7.92 ± 1.13 10.91 1.90 ± 0.06 8.12 ± 0.70 5.5 1.17 ± 0.17

[−21,−20) −20.4−0.3
+0.4 930539 1.75 ± 0.05 6.94 ± 0.76 7.96 1.77 ± 0.05 6.74 ± 0.36 3.3 1.00 ± 0.03

[−20,−19) −19.8−0.3
+0.3 122870 1.75 ± 0.08 5.84 ± 0.57 2.44 1.76 ± 0.06 5.84 ± 0.29 1.5 0.86 ± 0.10

All colours 0.1 < zphot < 0.2

[−24,−22) −22.0−0.4
+0.3 4311 1.96 ± 0.09 12.58 ± 1.35 0.59 1.95 ± 0.08 12.57 ± 1.13 0.4 2.10 ± 0.35

[−22,−21) −21.2−0.4
+0.5 106728 1.92 ± 0.05 7.31 ± 0.60 3.56 1.92 ± 0.04 7.40 ± 0.32 1.7 1.22 ± 0.18

[−21,−20) −20.3−0.5
+0.5 604181 1.75 ± 0.05 6.03 ± 0.77 7.16 1.78 ± 0.06 5.85 ± 0.43 3.9 1.00 ± 0.05

[−20,−19) −19.5−0.4
+0.5 916563 1.63 ± 0.11 6.36 ± 2.42 42.40 1.71 ± 0.10 5.81 ± 0.75 11.7 1.03 ± 0.30

[−19,−17) −18.6−0.4
+0.6 211336 1.55 ± 0.08 5.17 ± 0.83 4.41 1.58 ± 0.07 4.89 ± 0.34 1.6 0.87 ± 0.16

All colours 0.0 < zphot < 0.1

[−22,−21) −21.1−0.7
+0.8 19218 1.89 ± 0.13 8.21 ± 2.32 6.36 1.88 ± 0.07 8.09 ± 0.80 1.6 1.15 ± 0.43

[−21,−20) −20.3−0.7
+0.9 122787 1.68 ± 0.09 7.31 ± 1.40 9.00 1.75 ± 0.05 6.84 ± 0.50 2.1 0.99 ± 0.23

[−20,−19) −19.4−0.6
+0.8 155147 1.60 ± 0.08 6.23 ± 1.06 9.08 1.65 ± 0.08 6.10 ± 0.64 4.5 0.86 ± 0.20

[−19,−17) −18.1−0.8
+1.0 271389 1.54 ± 0.06 4.33 ± 0.58 6.20 1.58 ± 0.09 3.97 ± 0.24 2.9 0.65 ± 0.18

[−17,−14) −16.6−0.9
+1.4 14659 2.03 ± 0.25 4.28 ± 1.56 5.82 2.00 ± 0.28 4.41 ± 1.03 2.1 0.62 ± 0.25
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Figure 5.3: Left: Power law slope, γ, as a function of absolute magnitude and redshift.

Right: Real space correlation length, r0, as a function of absolute magnitude and redshift.

Absolute magnitude ranges for which r0 and γ measurements are valid are given in Table

5.1.

ferent luminosity. The amplitude of the angular correlation function decreases as we go

from bright to faint galaxies for all photo-z bins. The slope of the correlation function

also decreases with decreasing luminosity, very much in line with the change in the frac-

tion of red and blue galaxies. As observed in Section 5.5, red (blue) galaxies dominate

the brightest (faintest) luminosity bins, with red galaxies preferentially having a steeper

correlation function slope than blue galaxies.

For each sample, we estimate the correlation length r0 via equation 2.66 using the

Monte-Carlo inferred redshift distribution described in Section 4.3.5. The redshift distri-

bution dN/dz is calculated separately for each sample, as shown in Fig 4.8. In Section 4.4.3

we investigated the effects of the assumed dN/dz on the recovered correlation length r0,

and showed that the adopted dN/dz recovery method compares favourably with the true

underlying dN/dz, as obtained from the smoothed dN/dzspec.

For our luminosity bins in the redshift range 0 < z < 0.1, the correlation length

is found to decrease as we go to fainter absolute magnitudes, from 8.21 ± 2.32 h−1Mpc

(−22 < Mr − 5 log h < −21) to 4.28 ± 1.56 h−1Mpc (−19 < Mr − 5 log h < −17). This

is very much in line with the recent results of Zehavi et al. (2011). Moreover, we do

not observe strong evolution with redshift for samples of fixed luminosity. All r0 and γ

measurements are shown in Fig. 5.3.
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Table 5.2: Clustering properties of luminosity-selected red galaxies. Columns are the same

as in Table 5.1.

Sample Magnitude(MC) Ngal γ r0 χ2
ν γ(d) r

(d)
0 χ(d)2

ν b/b∗

Mr − 5 log h Mr − 5 log h [h−1Mpc] [h−1Mpc]

Red 0.3 < zphot < 0.4

[−24,−22) −22.0−0.2
+0.2 13095 2.02 ± 0.15 13.91 ± 2.22 3.01 2.03 ± 0.11 13.65 ± 1.86 2.4 1.78 ± 0.26

[−22,−21) −21.2−0.3
+0.3 287622 1.98 ± 0.10 8.40 ± 1.64 24.60 1.94 ± 0.10 8.71 ± 1.17 13.7 1.06 ± 0.20

[−21,−20) −20.7−0.2
+0.2 79073 1.86 ± 0.05 8.19 ± 0.54 1.33 1.88 ± 0.05 8.08 ± 0.40 1.2 1.00 ± 0.01

Red 0.2 < zphot < 0.3

[−24,−22) −22.0−0.3
+0.3 12200 2.02 ± 0.11 13.33 ± 1.95 1.89 2.01 ± 0.07 13.24 ± 1.11 1.8 1.73 ± 0.41

[−22,−21) −21.2−0.4
+0.3 242452 1.95 ± 0.10 8.26 ± 1.31 11.23 1.92 ± 0.06 8.41 ± 0.72 6.0 1.05 ± 0.25

[−21,−20) −20.5−0.3
+0.4 597678 1.81 ± 0.06 8.01 ± 1.20 17.10 1.84 ± 0.06 7.69 ± 0.52 6.5 0.98 ± 0.04

[−20,−19) −19.8−0.3
+0.3 44588 1.95 ± 0.09 8.53 ± 1.30 5.59 1.91 ± 0.08 8.57 ± 0.43 2.8 1.07 ± 0.21

Red 0.1 < zphot < 0.2

[−24,−22) −22.0−0.4
+0.3 4271 1.96 ± 0.08 12.61 ± 1.26 0.47 1.95 ± 0.08 12.57 ± 1.13 0.4 1.87 ± 0.48

[−22,−21) −21.2−0.4
+0.5 93975 1.94 ± 0.05 7.56 ± 0.71 2.52 1.93 ± 0.04 7.65 ± 0.36 1.6 1.13 ± 0.28

[−21,−20) −20.3−0.5
+0.5 393344 1.78 ± 0.11 7.07 ± 1.81 17.30 1.84 ± 0.08 6.68 ± 0.64 6.3 1.03 ± 0.10

[−20,−19) −19.5−0.4
+0.5 344815 1.71 ± 0.20 9.69 ± 5.98 82.81 1.85 ± 0.12 8.19 ± 1.26 16.9 1.33 ± 0.66

[−19,−17) −18.7−0.4
+0.5 12942 1.86 ± 0.18 17.86 ± 4.26 9.69 1.84 ± 0.14 17.72 ± 2.88 4.6 2.46 ± 0.83

Red 0.0 < zphot < 0.1

[−22,−21) −21.1−0.7
+0.9 18631 1.90 ± 0.14 8.20 ± 2.62 5.97 1.88 ± 0.07 8.14 ± 0.78 1.7 0.96 ± 0.47

[−21,−20) −20.4−0.7
+0.9 83541 1.71 ± 0.11 8.82 ± 2.34 10.98 1.79 ± 0.07 7.90 ± 0.76 3.2 0.97 ± 0.29

[−20,−19) −19.5−0.6
+0.8 45541 1.77 ± 0.16 10.41 ± 3.89 19.29 1.85 ± 0.14 10.39 ± 1.66 8.1 1.15 ± 0.46

[−19,−17) −18.7−0.5
+0.7 6690 1.88 ± 0.13 11.59 ± 2.82 2.65 1.90 ± 0.09 11.77 ± 1.32 1.0 1.43 ± 0.51

There are two main sources of error in the r0 estimates: (a) the correlated uncertainties

on the power law parameters γ and Aw which propagate through equation 2.66 to r0;

(b) statistical and systematic uncertainties in the modelling of the underlying redshift

distribution. The w(θ) uncertainties and the induced error on r0 and γ are obtained

using the standard deviation from the distribution of JK resampling estimates (Section

5.3). As in the case of the covariance matrix, these uncertainties are multiplied by a

factor of N − 1 (Norberg et al., 2009). The dN/dz uncertainties are investigated in great

detail in Section 4.4.3, where we show that the Monte-Carlo inferred dN/dz performs best,

while still returning a residual systematic uncertainty of ±0.2 h−1Mpc on r0 that depends

on the sample considered. We find that both sources of uncertainty have a comparable

contribution to the errors. In Table 5.1 we quote the total error on the correlation length

after adding the two (independent) errors in quadrature.
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Figure 5.4: Two-point angular correlation functions w(θ) split by absolute magnitude and

colour, with red circles (blue squares) showing the red (blue) sample. Colour gradients

indicate the transition from bright (darker shade) to faint (lighter shade) luminosities.

Lines are as in Fig. 5.2. The faintest (brightest) sample does not contain enough red

(blue) galaxies to robustly estimate w(θ).
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Table 5.3: Clustering properties of luminosity-selected blue galaxies. Columns are the

same as in Table 5.1.

Sample Magnitude(MC) Ngal γ r0 χ2
ν γ(d) r

(d)
0 χ(d)2

ν b/b∗

Mr − 5 log h Mr − 5 log h [h−1Mpc] [h−1Mpc]

Blue 0.3 < zphot < 0.4

[−22,−21) −21.2−0.3
+0.3 52212 1.71 ± 0.07 6.88 ± 0.47 0.78 1.72 ± 0.07 6.87 ± 0.38 0.6 1.14 ± 0.12

[−21,−20) −20.8−0.2
+0.3 79787 1.75 ± 0.06 5.86 ± 0.49 1.52 1.75 ± 0.10 5.83 ± 0.44 1.3 1.00 ± 0.01

Blue 0.2 < zphot < 0.3

[−22,−21) −21.2−0.3
+0.3 42517 1.74 ± 0.11 6.42 ± 0.81 3.05 1.75 ± 0.12 6.46 ± 0.57 1.5 1.17 ± 0.14

[−21,−20) −20.4−0.4
+0.4 332861 1.63 ± 0.06 5.35 ± 0.48 4.08 1.66 ± 0.05 5.23 ± 0.23 2.6 0.99 ± 0.01

[−20,−19) −19.8−0.3
+0.3 78282 1.72 ± 0.09 5.08 ± 0.47 1.69 1.72 ± 0.09 4.88 ± 0.34 1.2 0.95 ± 0.11

Blue 0.1 < zphot < 0.2

[−22,−21) −21.1−0.4
+0.4 12753 1.85 ± 0.13 5.70 ± 0.83 0.86 1.85 ± 0.16 5.67 ± 0.64 0.6 1.22 ± 0.17

[−21,−20) −20.3−0.5
+0.5 210837 1.67 ± 0.07 4.43 ± 0.32 3.54 1.70 ± 0.06 4.44 ± 0.25 2.6 0.98 ± 0.35

[−20,−19) −19.4−0.5
+0.5 571748 1.57 ± 0.08 4.75 ± 0.73 11.72 1.62 ± 0.09 4.45 ± 0.42 6.9 1.04 ± 0.14

[−19,−17) −18.6−0.4
+0.6 198394 1.53 ± 0.06 4.50 ± 0.49 2.26 1.56 ± 0.06 4.31 ± 0.23 1.2 1.00 ± 0.10

Blue 0.0 < zphot < 0.1

[−21,−20) −20.3−0.7
+0.9 39246 1.61 ± 0.14 4.84 ± 0.82 6.52 1.65 ± 0.13 4.66 ± 0.31 3.2 0.97 ± 0.10

[−20,−19) −19.3−0.7
+0.9 109606 1.53 ± 0.06 4.63 ± 0.45 2.42 1.57 ± 0.07 4.45 ± 0.40 2.4 0.94 ± 0.21

[−19,−17) −18.1−0.8
+1.0 264699 1.54 ± 0.08 4.16 ± 0.63 7.29 1.58 ± 0.11 3.85 ± 0.30 4.4 0.86 ± 0.22

[−17,−14) −16.6−0.9
+1.3 14305 2.02 ± 0.23 4.17 ± 1.41 5.05 1.99 ± 0.28 4.34 ± 1.00 2.1 0.82 ± 0.33

5.5 Luminosity, redshift and colour dependence

We repeat the clustering analysis splitting the samples into red and blue colour using

equation 4.4. For each new sample we re-estimate the underlying redshift distribution used

in the inversion of Limbers equation. The corresponding 50th, 16th and 84th percentiles of

the underlying absolute magnitude distributions are given in Tables 5.2 and 5.3. We also

repeat the procedure outlined in Section 5.4 for the error estimation.

In Fig. 5.4 we present the angular correlation functions in each luminosity and photo-

z bin, for red and blue galaxies. The power law fits over approximately fixed comoving

scales, their corresponding errors as well as the quality of the fits and the correlation length

are estimated as in Section 5.4 and summarized in Tables 5.2 and 5.3. As noted earlier,

the power law fits describe the clustering measurements quite well in a qualitative sense,

although certainly not well enough in a quantitative sense, with most samples presenting

a typically too large reduced χ2 (see Tables 5.2 and 5.3).

For all absolute magnitude ranges, the red population displays a steeper correlation

function slope than the blue one. Blue galaxies have a much shallower slope which grad-

ually decreases with luminosity until a sudden increase in the slope for the faintest lumi-

nosity range probed (Table 5.3).
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The correlation length of red galaxies for all redshift bins presents a minimum value

around M∗, with increasing values both faintwards and brightwards (Table 5.2). We note

however, that this result comes with large uncertainties. For red galaxies the correlation

lengths of the brightest and faintest bin are comparable and faint red objects are more

strongly clustered than red objects with intermediate luminosities. For the blue population

r0 behaves more regularly (like the overall population), gradually decreasing with luminos-

ity and redshift. Blue galaxies generally have smaller uncertainties as well. Our measure-

ment of the correlation length for the faintest luminosity bin (r0 = 4.17 ± 1.41 h−1Mpc)

indicates that these galaxies are similarly clustered to blue galaxies of intermediate lumi-

nosity. The robustness of this result and some caveats are discussed in Section 5.6.

Due to the complicated way that the slope and the correlation length, as well as their

respective uncertainties, change between colour selected samples, we chose to study more

quantitatively the clustering of these samples using the relative bias, i.e. their clustering

with respect to the L∗ sample. Our relative bias results for all samples, selected by

photometric redshift, absolute luminosity and colour, are presented in Section 5.8.1.

5.6 Clustering of faint blue galaxies

One of the aims of this Chapter is to study the clustering of intrinsically faint galaxies for

which only photometric redshifts are available in sufficient numbers to reliably calculate

w(θ). The GAMA depth and the extensive SDSS sky coverage allow us to measure the

auto-correlation function of the faintest optically selected galaxies, i.e. with photo-z esti-

mated absolute magnitudes in the −17 < Mr −5 log h < −14 range and zphot < 0.08. This

faint sample contains a total of 14,659 galaxies, which are mostly star-forming (as evident

by their colours). From the subset with spectroscopic redshifts, the 68-central percentile of

the actual absolute magnitude distribution covers the range −18 < Mr − 5 log h < −12.7.

The correlation function of the faintest sample [−17, −14) exhibits a seemingly un-

natural clustering amplitude at small scales. This increase in the clustering signal is not

hinted in the −19 < Mr − 5 log h < −17 luminosity bin and for that reason we firstly

investigate whether there is some sort of contamination in the data set.

We randomly select ∼ 10 per cent of the objects in the faintest luminosity bin and we

visually inspect them to see if they are genuine galaxies. The fraction of spurious objects

is shown in the left panel of Fig. 5.5 and we observe that it is significant at the very faint

end, where the actual number of galaxies is low (red line in the same figure), and ∼ 40 per

cent at the bright end of that luminosity bin. From our visual inspection most spurious
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Figure 5.5: Left panel: Black symbols show the fraction of spurious objects for the faintest

luminosity bin as a function of absolute luminosity. These fractions are estimated by vi-

sually inspecting ∼ 10 per cent of the total number of objects in that bin. Red symbols

show the overall distribution of objects as a function of absolute magnitude. Right panel:

Fraction of spurious objects as function of absolute luminosity, obtained by visually in-

specting a small subset of all objects in the luminosity bins defined in Sec. 4.3.4. In both

panels the error bars are obtained assuming Poisson errors.

objects are local, deblended, spiral galaxies and a few of them are merging systems or

just sky noise. Evidently as we go fainter the contamination level is increasing and this

presents a serious drawback for clustering studies using photo-zs.

The right panel of Fig. 5.5 shows the fraction of spurious objects in the other five

absolute magnitude bins. We visually inspected ∼ 100 objects from each of those bins and

we found that the contamination level is much lower, with an expected increase for the

brightest bin. The detailed study of the correlation function of the faintest bin showed

that it is not affected by contamination on the scales of primary interest, something which

we expect to hold true for the brightest bin, which has a significantly smaller fraction of

spurious objects.

The contamination in the −17 < Mr − 5 log h < −14 luminosity bin is going to affect

the two point correlation function differently at different angular scales. We address this

issue by counting the number of pairs of genuine galaxies in the visually inspected subset.

The results are shown in Fig. 5.6. Due to the fact that the subset has a weakened signal

at very small scales we can only draw conclusions for angular scales > 0.1 degrees. From

Fig. 5.6 we see that at these scales the contamination doesn’t affect the correlation function

and the γ and r0 measurements. For this reason we present our results, limited to the

angular scales that we trust, using the total sample, which has smaller statistical errors.

We also tried repeating the calculations and masking out the areas in the sky covered
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Figure 5.6: Two point correlation function of the faintest luminosity bin. Black circles

show the total correlation function, blue squares show the correlation function of the ∼ 10

per cent subset of objects that we visually inspected, green stars show the correlation

function of the “clean” part of the previously mentioned subset and finally red diamonds

show the total correlation function corrected to account for the spurious pairs on scales

& 0.1 degrees. Errors bars for the total sample are calculated using the JK method.

by RC3 galaxies (de Vaucouleurs et al., 1991; Corwin et al., 1994) to test whether that

would decrease the contamination level. We did not observe any qualitative differences in

the power law parameters estimated and more importantly, the amplitude of w(θ) at small

scales did not reduce, indicating that the RC3 catalogue doesn’t capture all over-deblended

galaxies in the SDSS galaxy catalogue.

The upper panel of Fig. 5.7 shows the correlation functions of all galaxies in our sample

with zphot < 0.08 split into finer luminosity bins than used previously. There exists a

seemingly artificial steepening of w(θ) on scales θ < 0.1◦ for galaxies with Mr − 5 log h >

−17. In the bottom panel of Fig. 5.7, we further split the −17.9 < Mr − 5 log h < −14

range into two finer luminosity bins, and again we find that for fainter samples, source

contamination affects larger angular scales.

Having established the angular scales over which we trust our w(θ) measurements, we

proceed to the clustering analysis. Using only the diagonal elements of the covariance

matrix4, we note that a power law describes the clustering signal rather well, even though

there is a hint of an increase in the clustering strength at ∼ 1 h−1Mpc. It is possible

that this increase is due to blue galaxies that are satellites in small dark matter halos.

4Use of diagonal covariance elements only is appropriate for this faint sample, as it covers a rather small

volume for which JK resampling is unable to provide an accurate description of the full covariance matrix.
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Figure 5.7: Angular correlation functions for the low redshift galaxies in our sample split

in luminosity bins. The finer luminosity binning allows one to track the scales where

contamination effects are significant. Error bars have been omitted for clarity.

These halos should not be dense enough to stop star formation and thus we observe

only blue galaxies in this luminosity range (Eminian, 2008). A recent detailed study of

the star formation history of Hα -selected faint blue galaxies in GAMA can be found in

Brough et al. (2011).

In conclusion, the angular clustering for the faintest sample has a spurious amplitude

at small angular scales, unless one takes into account the sample contamination. We visu-

ally inspected ∼ 10 per cent of the objects in this sample and we found that a significant

fraction of them are spurious, mainly due to poorly deblended sources. We quantified the

effect of this contamination for all luminosity bins. This investigation revealed that the

angular clustering results on scales . 0.1 degrees are not trustworthy enough to be con-

sidered reliable. We note that the power law fits are performed on larger scales, which we

show are unaffected by this contamination. However, much more detailed investigation of

the data is required to robustly confirm the observed increase in the slope of the correlation

function. Finally, we note that we have repeated the analysis presented in this Section

for objects selected from the most recent SDSS release, DR8 (Aihara et al., 2011), and

we observe no differences in the results. The contamination from over-deblended spiral

galaxies is still present in DR8 for the low luminosity bin.

Finally, it is important to note (and caution) that the source contamination due to

over-deblending only became apparent when interpreting Figs. 5.7. Had we completely
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trusted the results of the scaling test (Section 4.4.1) or only used the data point around L∗

in Fig. 5.5 (since that population dominates), we would have significantly underestimated

the number of spurious objects.

5.7 Quality of fits and the HOD formalism

The power law fits presented in Table 5.1 are not all satisfactory in a quantitative sense.

The angular correlation function is only to first order well-described by a power law. The

rather high reduced χ2 for some samples are either due to underestimated errors or due to

the power law model being inadequate in describing the angular correlation function over

a large range of scales. From the test of Section 5.3, we conclude that the JK method gives

consistent errors irrespective of the way we define the jackknife regions, and therefore it

is most likely that the large reduced χ2 values are more due to a limitation in the power

law model rather than in the error estimates themselves.

A more sophisticated model, like the halo occupation distribution (HOD) model (for

a review see Cooray and Sheth, 2002), would provide a more physically motivated de-

scription of the full correlation function shape, both as a function of colour and luminos-

ity (Zehavi et al., 2004; Zheng et al., 2005; Zehavi et al., 2005, 2011). In this formalism

galaxies are formed in virialized dark matter halos and thus the mass and the angular mo-

mentum of the parent halo determine the properties of the galaxies residing in the halo.

Red galaxies which have their star formation suppressed tend to reside in dense environ-

ments, whereas blue galaxies with ongoing star formation live in less dense environments.

In a similar manner, luminous galaxies reside in more massive halos and thus are more

strongly clustered, since massive halos are more strongly clustered themselves. The HOD

framework, as shown by Zehavi et al. (2005), explains the increase of clustering in the

faint red population. Bright red galaxies are central galaxies in massive halos, whereas

faint red galaxies are satellite galaxies in massive halos. The issue of actual fraction of

faint red galaxies that are satellites in their halos has not yet been conclusively settled

(Zehavi et al., 2011; Ross et al., 2011b). Our measurements suggest that both bright and

faint red galaxies are more strongly clustered than red galaxies with intermediate lumi-

nosity. We also observe a bump in the angular correlation function of red galaxies at

separations ∼ 1 h−1Mpc which signals the transition (change in slope) between the one-

halo and two-halo term in the correlation function. On the contrary, such a change in

slope is not evident for the blue population, hence they have a smaller χ2
ν . This is also

in agreement with HOD predictions, which predict a simple power law for blue galaxies
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with luminosities Mr − 5 log h < −21 (Zehavi et al., 2005). A complete HOD modelling

of these angular clustering results with photometric redshifts is beyond the scope of the

present work, as this would require photo-z dedicated HOD tools to be developed as the

standard threshold samples cannot be defined.

5.8 Bias measurements

5.8.1 Relative bias and comparison with previous studies

In this Chapter we parametrize the real space correlation function with a power law, and

infer ξ(r) from angular clustering measurements via a Limber inversion. To ease com-

parison with samples using similar, but not identical, selection, we follow Norberg et al.

(2002) and define the relative bias of a class of galaxies i with respect to our L∗ (−21 <

Mr − 5 log h < −20) sample as

bi

b∗
(r) =

√

(ri
0)

γi

rγ
0

rγ−γi . (5.2)

Equation 5.2 preserves any scale dependence for samples with different slopes and we

choose here to estimate the relative bias at r = 5 h−1 Mpc. The advantage of using

this definition of relative bias instead of the raw correlation length to compare with other

studies is twofold. First, the former uses the slope as well as the correlation length, which

as we know from equation 2.66 are strongly correlated. Second, if the sample selections

are just slightly different, the relative bias is a much more robust way of comparing them

as it measures deviations from a series of appropriate reference samples. In this study this

is particularly important, as photo-z inferred properties are not straightforwardly related

to the underlying ones, as shown in Section 4.3.5. Our results are shown in Fig. 5.8.

Previous studies from both 2dFGRS (Norberg et al., 2001, 2002) and SDSS (Zehavi et al.,

2002, 2005, 2011) have established that the relative bias, b/b∗, as a function of relative

luminosity, L/L∗, is well described by an affine relation. We compare our results with

these studies in Fig. 5.8. For all luminosity bins given in Table 5.1 we fit the equation

b/b∗ = a0 + a1L/L∗, (5.3)

where a0 and a1 are free parameters. Our best fit values for samples selected on luminosity,

colour and photo-z, using the corresponding L∗ for each sample, are given in Table 5.4.

The high redshift bin only provides three data points and thus we do not include it in this

exercise (black squares in Fig. 5.8). In this Table we also compare with the bias relation of

Norberg et al. (2001) who found (a0, a1) = (0.85, 0.15). The ∆χ2 between our best fit and
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Figure 5.8: The relative bias, defined in equation 5.2, at separations r = 5 h−1 Mpc,

of all the absolute magnitude selected samples used in this study. Data points show the

mean and errors of b/b∗ obtained from the distribution of 80 JK measurements (Sec. 5.3)

appropriately scaled to account for the jackknife correlations. Cyan and magenta lines

show our fits over the redshift ranges 0.2 < zphot < 0.3 and 0.1 < zphot < 0.2 respectively.

The solid black line shows the fit of Norberg et al. (2001) and the dotted line the fit of

Zehavi et al. (2011).
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that of Norberg et al. is 1.2 to 2.3, which makes the fits statistically compatible, as the

68% confidence interval for 2 degrees of freedom corresponds to ∆χ2 = 2.31 (Press et al.,

1992). Zehavi et al. (2011) measured the bias relative to dark matter, and in Fig. 5.8 we

rescale their relation with respect to L∗. They also observed a steeper rise in relative bias

at high luminosities. Including a power of (L/L∗) in our fit, we also obtain a steeper slope

whilst χ2 remains unchanged, despite the additional degree of freedom.

For samples selected by colour as well as luminosity, it is more difficult to fit equa-

tion 5.3 in each redshift bin. For most photo-z bins we have four or fewer data points.

Moreover, using finer luminosity bins would worsen the statistical errors on N(z) and

N(Mr) and thus make any fit more difficult to interpret. Fig. 5.9 shows that the blue

population follows a similar trend to the full sample but the relative bias changes more

smoothly as a function of luminosity. Table 5.4 gives the values of a0 and a1 for the

colour selected samples. We fit the same linear relation for red galaxies as well, despite

the fact that a quadratic function would seem more appropriate. χ2 values for the lin-

ear fit are also shown in Tabel 5.4 and from a purely statistical point of view, a linear

relation between b/b∗ and L/L∗ is still acceptable. Fig. 5.9 shows that the statistical

uncertainty for the two faint red samples is quite large. This is due to the small number

of objects in the −19 < Mr − 5 log h < −17 sample and due to the poor quality of fit for

the −20 < Mr − 5 log h < −19 sample.

5.8.2 The evolution of absolute bias for L∗ galaxies

In Section 5.8.1 we calculated the relative galaxy bias using the L∗ sample (−21 < Mr −
5 log h < −20) as our reference sample. In this Section we calculate the absolute bias of

the L∗ population defined as the mean ratio of the observed galaxy correlation function,

parametrized with a power law, over the non-linear dark matter theoretical correlation

function

b∗(r) =

√

ξGG(r)

ξDM (r)
=

√

(r∗0)
γ∗

rγ∗ξDM (r)
, (5.4)

where 5 h−1Mpc < r < 20 h−1Mpc. The theoretical power spectrum P (k), was obtained

using CAMB (Lewis et al., 2000) and the halo correction recipe of Smith et al. (2003). We

then Fourier transform the non-linear P (k) to obtain the real space ξDM(r) using the

FFTLog package provided by Hamilton (2000).

Since we have correlation function measurements of the L∗ population for a range of

redshifts we can answer the question of whether the evolution of the bias can be described
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Figure 5.9: The relative bias, defined in equation 5.2, at separations r = 5 h−1 Mpc, of

all the samples used in this study split by colour (equation 4.4). Data points show the

mean and errors of b/b∗ obtained from the distribution of 80 jackknife measurements (Sec.

5.3) appropriately scaled to account for the jackknife correlations. Colour coding is as in

Fig. 5.4.
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Figure 5.10: The evolution of clustering of L∗ galaxies in the local universe: Upper panel

shows the correlation length r0; lower panel shows the bias bL∗(z), as a function of redshift.

The dashed line in the lower panel shows the linear theory prediction from equation 5.5.

Across the redshift range 0.07 < z < 0.32 the bias of L∗ galaxies agrees rather well with

the linear theory model.
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Table 5.4: Fitted values of a0 and a1 in the bias–luminosity relation (equation 5.3) in three

photo-z ranges. Column 1 lists the redshift bin limits, columns 2, 3 and 4 the fitted values

and the quality of fit (reduced χ2) and column 5 lists ∆χ2 between our best fit values and

the fit by Norberg et al. (2001).

Redshift range a0 a1 χ2
ν ∆χ2

All colours

0.2 < zphot < 0.3 0.71 ± 0.04 0.25 ± 0.02 1.10 2.32

0.1 < zphot < 0.2 0.82 ± 0.06 0.24 ± 0.03 0.14 1.79

0.0 < zphot < 0.1 0.65 ± 0.05 0.27 ± 0.06 0.12 1.18

Red

0.2 < zphot < 0.3 0.92 ± 0.17 0.12 ± 0.07 0.36 0.29

0.1 < zphot < 0.2 1.28 ± 0.43 0.03 ± 0.17 2.33 1.76

Blue

0.2 < zphot < 0.3 0.84 ± 0.08 0.15 ± 0.06 0.29 0.77

0.1 < zphot < 0.2 0.98 ± 0.07 0.08 ± 0.06 0.23 4.22

0.0 < zphot < 0.1 0.86 ± 0.02 0.08 ± 0.02 0.07 0.02

by the passive evolution model introduced by Tegmark and Peebles (1998):

[b(z1) − 1]D(z1) = [b(z2) − 1]D(z2), (5.5)

where D is the growth of structure (Peebles, 1980) which we calculate accurately using

the growl package by Hamilton (2001), which includes corrections to D(z) due to the

presence of the cosmological constant. The model described by equation 5.5 assumes that

the galaxy density field linearly traces the dark matter density field and all clustering

evolution comes from the growth of structure in the linear regime, i.e. no merging. It is

believed that L∗ galaxies have undergone very little merging since z ≈ 1 (Conselice et al.,

2009; Lotz et al., 2011).

In the upper panel of Fig. 5.10 we plot the correlation length as a function of redshift.

r0 is observed to change very little since z ≈ 0.32. The lowest redshift point has larger

errors due to the limited volume sampled. For comparisons with theory, it is more lucid

to use the bias instead of the correlation length. In the lower panel of Fig. 5.10 we plot

the evolution of the absolute bias, as defined in equation 5.4, along with the theoretical

prediction of Tegmark and Peebles (1998) for passive clustering evolution (dashed line).

In practice, we fix the high-z value of b(z) and then solve equation 5.5 over the redshift
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range 0.07 < z < 0.32. We find that the evolution of clustering of L∗ galaxies is consistent

with the model of Tegmark and Peebles (1998).

This agreement between the clustering of L∗ galaxies and the passive evolution model

was not observed by Ross et al. (2010) who used SDSS photo-z’s. The sample selection

and the modeling of w(θ) and bias between this study and the one by Ross et al. (2010)

are very different, as we use GAMA calibrated photo-z and model the correlation function

with a power law, whereas they used SDSS calibrated photo-z down to r < 21 and use

halo modelling for the correlation function. Ideally one would expect that the two studies

should give consistent results, but it might be that the aforementioned differences in the

theoretical modelling and the sample selection influence the results significantly.

5.9 Discussion and conclusions

Despite their inherent limitations, photometric redshifts offer the opportunity to study

the clustering of various galaxy populations using large numbers of objects over a wide

range of angular scales with improved statistics, with the caveat that their systematic

uncertainties are significantly more complex to deal with. In this section we summarize

and discuss the main implications of our results.

Using GAMA spectroscopic redshifts as a training set, we have compiled a photometric

redshift catalogue for the SDSS DR7 imaging catalogue with rpetro < 19.4. We carried

out extensive tests to check the robustness of the photo-z estimates and use them for

calculating r-band absolute luminosities. We split our sample of 4,289,223 galaxies into

samples selected on photometric redshift, colour and luminosity and estimate their two

point angular correlation functions. Redshift distributions for the Limber inversion are

calculated using Monte-Carlo resampling, which we show are very reliable.

Our clustering results are in agreement with other clustering studies such as Norberg et al.

(2002) and Zehavi et al. (2011) who used spectroscopic redshifts. We extend the analysis

to faint galaxies where photo-zs allow us to obtain representative numbers for cluster-

ing statistics. We find that the correlation length decreases almost monotonically toward

fainter absolute magnitudes and that the linear relation between b/b∗ and L/L∗ holds

down to luminosities L ∼ 0.03L∗. For the L∗ population we observe a bias evolution

consistent with the passive evolution model proposed by Tegmark and Peebles (1998).

As shown by others (Norberg et al., 2002; Hogg et al., 2003; Zehavi et al., 2005; Swanson et al.,

2008a; Zehavi et al., 2011) and confirmed here, the colour dependence is more intriguing

because faint red galaxies exhibit a larger correlation length than red galaxies at inter-
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mediate luminosities. This trend is explained by HOD models, as shown by Zehavi et al.

(2005). Clustering for blue galaxies depends much more weakly on luminosity. We find

that at faint magnitudes the SDSS imaging catalogue is badly contaminated by shreds of

over-deblended spiral galaxies, which makes the interpretation of the clustering measure-

ments difficult. We determine an angular scale beyond which our results are not affected by

this contamination, and test this by modelling the scale-dependance of the contamination

as well as studying its luminosity dependence.

The use of photometric redshifts is likely to dominate galaxy clustering studies in

the future. A number of assumptions made in this work might need to be reviewed

when we have even better imaging data and training sets. In particular, for cosmology,

the non-Gaussianity of photo-z and robust reconstruction of redshift distributions will

become a very pressing issue. For galaxy evolution studies, it is essential to study the

mapping between a photo-z derived luminosity range and the true underlying one, as

HOD modelling of the galaxy two point correlation function relies heavily on the luminosity

range considered. In this Chapter, we report only qualitative agreement and leave any

HOD study using these photometric redshift inferred clustering results to future work.
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Chapter 6

Galaxy clustering and redshift

space distortions from GAMA

6.1 Introduction

Galaxy clustering analysis in redshift space provides a complementary set of observables to

the projected two-point functions for galaxy evolution and cosmology. These observables

are dynamical quantities that depend on key properties of the cosmological model like

the matter budget of the Universe, the density fluctuation amplitude and the growth rate

of structure. They also depend on fundamental properties of cold dark matter, like the

structure of bound objects (dark matter haloes) and galaxy evolution, like the velocity

distribution of objects within their parental haloes. A systematic way to study these

effects is to use the peculiar motions of galaxies outside the Hubble flow. Redshift-based

distance measurements contaminated by peculiar velocities break the clustering isotropy

observed in real space, a phenomenon known as redshift-space distortions (rsd). Thus

redshift space observations require a special interpretation, as it appears that we cannot

observe directly the background universe as described by the perturbed FLRW metric,

yet despite of these complications, redshift-based distance measurements come with some

advantages as well. Redshift-space distortions are caused directly by the inhomogeneities

in the universe and studying them it is possible to extract information about the growth

rate of structure and the dynamics that affect the small scale clustering of dark matter

haloes.

The linear theory of rsd is been known for some time (Kaiser, 1987; see Hamilton,

1998, for a an extensive review) and its main aspects are introduced in Section 6.2. It’s

also well-known that peculiar velocities are a direct probe of the mass density of the
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universe (Peebles, 1980, § 76; Hamilton, 1992). Indeed, some of the first indications for a

low-Ωm universe, which were in apparent disagreement with the Ωtot = 1 prediction from

inflation, came from direct peculiar velocity estimations (Davis and Peebles, 1983) and

the study of the anisotropic correlation function, through the linear redshift distortion

parameter β (see Section 8 of Hamilton, 1998 and references therein). In this picture

matter tracers (galaxies) that exist as correlated pairs coherently fall into large structures,

or equivalently empty voids. Since redshift determines the line of sight distance (LOS) of

objects, clustering in redshift space along the LOS is seemingly enhanced by these motions.

Thus, the isotropy of the real space correlation function is broken.

Small scale anisotropic galaxy clustering is more difficult to model, due to the combi-

nation of the non-linearities in the real space correlation function and the added redshift

distortion. A phenomenological approach that has proven very useful is adding a disper-

sion function on small scales, where galaxies are bound by gravity. Formally, the Kaiser

(1987) model cannot describe rsd effects of these pairs of galaxies as it is only valid in the

linear regime. However, adding a dispersion function with a small coherent length to the

Kaiser (1987) model disentangles the different contributing scales to rsd. In this simple

model there exist two free parameters. The growth rate of structure, which dominates on

large scales and the pairwise velocity dispersion which dominates on small scales. Both

quantities are important dynamical observables which can constrain cosmological models

and provide insights into galaxy formation and evolution (Berlind and Weinberg, 2002;

Zheng and Weinberg, 2007; Tinker et al., 2007).

In this Chapter we are interested in studying the small to intermediate scales of the

anisotropic galaxy correlation function. In particular, we measure the pairwise velocity

dispersion (pvd) as a function of scale and luminosity using the GAMA data described in

Section 3.2. A handfull of studies have exploited recent large galaxy surveys (2dFGRS and

SDSS) to explicitly study the galaxy pvd (Hawkins et al., 2003; Jing and Börner, 2004;

Li et al., 2006, 2007; Tinker et al., 2007; Cabré and Gaztañaga, 2009b). Albeit the growth

rate is extremely interesting to study as well, GAMA data is superior for constraining the

pvd and here we aim to produce measurements of pvd as a function of luminosity and

redshift.

Observations in redshift-space introduce a preferable direction along the line of sight

and therefore two-point statistics are now functions of the angle that separates the two

objects, as well as their distance. From the binning of pairs as function of distances s and

angles µ one can recover the multipoles of the correlation function by integrating over all
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angular separations

ξℓ(s) =
2ℓ + 1

2

∫ +1

−1
ξ(s, µ)Pℓ(µ)dµ, (6.1)

where Pℓ(µ) are the well-known Legendre polynomials. Setting ℓ = 0 one can recover the

monopole of the spatial correlation function, also known as the angle-averaged redshift-

space correlation function, which is the quantity closer to the real space correlation func-

tion (see Scoccimarro, 2004, for theoretical limitations of this method). Switching from

angles to distances only one can define the parallel (s‖) and transverse (s⊥) separations

as follows (Fisher et al., 1994)

s‖ =
s · rlos

|rlos|
(6.2)

s⊥ =
√

s · s − s‖2, (6.3)

where rlos = 1/2(s1 + s2) and s = s1 − s2. Note that equation 6.1 holds on for the

anisotropic power spectrum as well, where µ = kz/k.

In contrast with the wide application of the monopole of the correlation function

in cosmology and extragalactic astronomy via well-established techniques, there is no

blueprint for the use of the full two-dimensional correlation function in the literature.

Two main issues cause some concern here. Firstly, which model one should fit to the data

and whether that is exact or just the first few terms of the multipole expansion. As we

discuss in Section 6.2.2 relative to the published studies exploiting available data, there is

a disproportional amount of theoretical models most of which are strictly valid on large-

scales. Secondly is the issue of the covariance matrix of the two-dimensional correlation

function. The correlation function is strongly covariant and uncertainties are significantly

underestimated if covariance is not taken into account. However, the construction of

covariance matrix is almost prohibited for practical reasons: The number of data points

used in the fits are usually ∼ 1000 and therefore one has to construct a covariance matrix

with ∼ 1000 × 1000 elements. Yet, this covariance matrix must be inverted thousands of

times during the parameter fitting and such a procedure is clearly not practical. On the

other hand, working solely with one-dimension observables such as the second multipole of

the redshift-space correlation function, requires extra manipulation of the (usually noisy)

data (since one has to integrate over angular separations to compute it; see equation 6.1).

Furthermore it is not clear up to which multipole one should expand in order to to capture

fully non-linear effects like the pairwise velocity dispersion.

In spite of the modeling and uncertainty issues a consensus also does not appear to exist

on the fitting method of the anisotropic correlation function ξ(s⊥, s‖), specifically on the
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scales over which one is fitting and in the chosen parameters to fit. E.g. Guzzo et al. (2008)

used the whole ξ(s⊥, s‖) plane to fit simultaneously the pairwise velocity dispersion and

the β parameter, whereas Cabré and Gaztañaga (2009a) fitted β on sufficiently large scales

and away from small line of sight angles and then used that measurement to conditionalize

their fits on σ12 (Cabré and Gaztañaga, 2009b). Blake et al. (2011) used only large scales

(kmax =
√

k2
⊥ + k2

‖ < 0.3 hMpc−1) but fitted both parameters simultaneously. In principle,

a correct model on all scales for the rsd and the underlying ξ(r) should be immune to such

manipulations, but a lacking a definitive model and noisy data, compromise parameter

estimations using rsd.

To overcome these obstacles, we use a tailored approach for the specific problem of

measuring the pvd and its uncertainties as a function of luminosity. We make use of the

information from the real space correlation function in order to avoid biases in the fitting

process and we take advantage of the first set of GAMA mocks to study the covariances of

the measurements. We fit over the entire ξ(s⊥, s‖) plane and carry tests on mock catalogues

to establish the optimized scales for unbiased parameter fitting. We then interpret our

results in the context of halo models of large-scale structure.

In Section 6.2 the theory behind rsd is introduced as well as the motivation for im-

plementing a specific model. Measurements of the anisotropic correlation function from

GAMA are presented in Section 6.3 and the analysis of the results in Section 6.4. In Sec-

tion 6.5 we compare our results with previous studies and finally in Section 6.6 we present

a discussion and our conclusions.

In this Chapter cosmological parameters primarily enter through the construction of

the real space correlation function. h parametrizes the effect of the Hubble constant

uncertainty on distances, distance moduli and comoving volumes through the relation

H0 = 100h km s−1Mpc−1. In accord with the standard model we use flat ΛCDM cosmology

with Ωm,0 = 0.25, Ωb,0 = 0.05, ns = 0.96 and σ8 = 0.8. Unless otherwise stated we use

the term pairwise velocity dispersion as the width of an exponential function.

6.2 Theory

6.2.1 Real to redshift-space mapping

In the previous Chapters we have assumed that the redshift for an object that we use for

deriving its comoving distance is purely cosmological, yet generically this is not the case.

Instead, all observed redshifts have a non-cosmological component which arises from the
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peculiar motions induced by structure formation in the universe. Thus, measuring the

correlation function from galaxy redshift surveys removes its isotropy, since redshift space

observations yield a modified comoving distance s, due to peculiar velocity υ, contaminat-

ing the cosmological redshift

s = r +
υ(r)

H(z)
(1 + z), (6.4)

where z is the cosmological redshift and r is its respective comoving distance1. A direct

consequence of rsd is to modify the observed cosmological density fields (Hamilton, 1998)

and the therefore the frequently used two point clustering statistics. Mass is necessarily

conserved and therefore

[1 + δ(s)]ds = [1 + δ(r)]dr. (6.5)

Two-point statistics are affected by the modified distance that separates each galaxy

pair and therefore one should estimate the distribution of the pairwise velocities υ12(r) =

υ2(r)−υ1(r) from equation 6.4. The distribution of υ12(r) gives the pairwise velocity PDF

P(υ, r), which maps pairs from real to redshift space (Scoccimarro, 2004)

1 + ξ(s⊥, s‖) =

∫

[1 + ξ(r)]P(r‖ − s‖, r)dr‖. (6.6)

Equation 6.6 utilizes the flat sky approximation, where all rsd effects operate only on the

radial direction.

In reality, P(υ, r) is a complicated function resulting from the convolution of the pair-

wise PDF’s of all pair configurations r (Scoccimarro, 2004). Scoccimarro (2004) shows

how the Kaiser (1987) infall (“squashing”) term emerges through the pairwise velocity

PDF, but also criticizes the implicit assumption of a symmetric pairwise velocity PDF.

6.2.2 A model for two point statistics in redshift-space

In linear perturbation theory the observed redshift space power spectrum P (k) has the

following form (Kaiser, 1987)

P (k, µ) = (1 + fgµ
2)2P (k), (6.7)

where µ is the cosine of the angle between k and k‖ and fg is the logarithmic derivative of

the growth of structure (Peebles, 1980). A useful approximation for fg is given by Peebles

(1980) (see also Linder, 2005.)

fg = Ω0.55
m . (6.8)

1Hereafter, r will denote distances based on the true redshift and s distances based on the observed,

contaminated with peculiar velocities redshift.
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The growth rate of structure primarily depends on the matter budget of the universe and

has only a weak dependence on dark energy (Carroll et al., 1992; Amendola and Tsujikawa,

2010).

These results can be translated in the configuration space either by directly Fourier

transforming in 2 dimensions equation 6.7 (using the cylindrical symmetry of the problem,

see equation 6 of Jing and Börner, 2004) or by expanding P (k, µ) in Legendre polynomials

(in linear theory only the first 4 even Legendre polynomials are non-zero) and then Fourier

transforming each term (Hamilton, 1992). The multipole expansion of ξ(s⊥, s‖) has the

following form

ξ(s⊥, s‖) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ), (6.9)

where Pℓ’s are Legendre polynomials and ξℓ(s) the first multipoles of ξ(s⊥, s‖) given by

the following relations

ξ0(s) =

(

1 +
2fg

3
+

f2
g

5

)

ξ(r) (6.10)

ξ2(s) =

(

4fg

3
+

4f2
g

7

)

[

ξ(r) − ξ̄(r)
]

(6.11)

ξ4(s) =
8

35
f2

g

[

ξ(r) +
5

2
ξ̄(r) − 7

2
¯̄ξ(r)

]

, (6.12)

where

ξ̄(r) =
3

r3

∫ r

0
ξ(r̃)r̃2dr̃ (6.13)

¯̄ξ(r) =
5

r5

∫ r

0
ξ(r̃)r̃4dr̃. (6.14)

At small non-linear scales we expect part of the clustering signal to be wiped out due to

the random motions of galaxies inside the halos. This indicates that the model P (k, µ) has

to be convoluted with a damping function. It was first found by Davis and Peebles (1983)

and then confirmed by subsequent observational studies (Landy et al., 1998; Landy, 2002;

Hawkins et al., 2003; Jing and Börner, 2004; Li et al., 2006; Guzzo et al., 2008; Cabré and Gaztañaga,

2009b; Blake et al., 2011), as well as theoretical considerations (Sheth, 1996; Sheth and Diaferio,

2001; Cooray and Sheth, 2002) that the form of the damping function is Lorentzian, so a

model of the redshift space power spectrum on all scales is given by

P (k, µ) = (1 + fgµ
2)2P (k)

1

1 + k2σ2
12µ

2/2
(6.15)

and σ12 is the pairwise velocity dispersion. In configuration space the convolution of
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equation 6.15 from a multiplication in Fourier space, becomes an integration

ξ(s⊥, s‖) =
1√
2σ12

∫ ∞

−∞
ξ

(

s⊥, s‖ −
υ

(1 + z)H(z)

)

e
−

√
2|υ|

σ12 dυ, (6.16)

where we took into account equation 6.4 and ξ(s⊥, s‖) comes from equation 6.9. Despite

the fact the integral is symmetric and the correlation function is defined only for positive

separations, for numerical reasons it is better to perform it along its whole domain of

integration. Eqs 6.6 and 6.16 are similar, but they differ with respect to the quantity

that is convolved. In equation 6.6 the term 1 + ξ is convolved with a pairwise velocity

PDF that applies on all scales (and the total number of pairs is proportional to 1 +

ξ), whereas equation 6.16 applies only on strictly non-linear scales that have already

undergone gravitational collapse.

Physically the two effects (Kaiser and damping) act to alter the shape of the two-

dimensional correlation function as follows. On large scales and for all angles galaxies

fall into groups and clusters and thus dense regions are enhanced and voids are becoming

more underdense. As a consequence of this, correlated pairs appear to be closer in redshift

space and thus decreasing the amplitude of the correlation function along the line of sight

compared to the transverse direction. On small scales the opposite effect occurs. Random,

virial motions of galaxies inside the halo make the pairs to be seemingly separated by

larger distances and thus increasing the amplitude of the line of sight component of the

correlation function with respect to the transverse direction which remains unaffected at

all times. This effect is known as finger-of-god (FOG) due to the fact that the anisotropic

correlation function appears elongated towards the origin.

Despite its success over the years the “Kaiser+damping” model suffers from some

shortcomings (Scoccimarro, 2004; Tinker, 2007). The most important are the lack of

a direct physical interpretation of the pairwise velocity dispersion and the absence of

modeling of the quasi-linear regime to describe the transition between the linear squashing

of ξ(s⊥, s‖) and FOG. Nevertheless, the “Kaiser+damping” model is the simplest possible

one that can be applied over a wide range of scales. Moreover, a significant improvement

for fitting data is achieved if one uses the non-linear corrections (Smith et al., 2003) of the

matter power spectrum as an input in equation 6.15 (Blake et al., 2011).

Another shortcoming of the “Kaiser+damping” model is its inability to take explicitly

into account non-linearities. As shown mathematically by Scoccimarro (2004) the very

mapping from real space to redshift space is non-linear on all scales and therefore it

cannot be described using linear theory, even on scales k < 0.1h Mpc−1. Physically these

problems arise because pairs from linear scales get shifted to seemingly non-linear scales



103

in redshift space as shown by equations 6.6 and 6.16.

There exist a wealth of other proposed models for the redshift space P (k, µ) in the lit-

erature, either based on analytical considerations (Scoccimarro, 2004; Percival and White,

2009; Taruya et al., 2010; Reid and White, 2011) or calibrated from simulations (Jennings et al.,

2011; Kwan et al., 2012) or combinations thereof (Tinker et al., 2006; Tinker, 2007). All

these approaches have provided valuable insights into a complex problem. However, they

all start from the linear theory power spectrum in real space (sometimes including a linear

bias term) and then try to predict the evolved redshift space result and inevitably these

models have a limited regime of validity and are possibly cosmology dependent via the

Alcock and Paczynski (1979) effect.

Nonetheless, one can avoid modeling directly redshift space quantities and note that

the real space galaxy correlation function is a direct observable and one can take advantage

of it. The first step to achieve this is to integrate ξ(s⊥, s‖) along the line of sight, in order

to negate the redshift distortion effects on projected galaxy pairs

w(r⊥) = 2

∫ ∞

0
ξ(r⊥, s‖)ds‖ = 2

∫ ∞

r⊥

rξ(r)
√

r2 − r2
⊥

dr, (6.17)

where the second step is a change of integration variable using the relation r2 = r2
⊥ + r2

‖.

The second relation in equation 6.17 gives the real space correlation function (Lilje and Efstathiou,

1988; Saunders et al., 1992)

ξ(r) = − 1

π

∫ ∞

r

w(r⊥)

dr⊥

(

r2
⊥ − r2

)−1/2
dr⊥. (6.18)

Therefore the galaxy ξ(r) is an observable and one can “distort” it in order to induce the

rsd effects (Tinker, 2007; Guzzo et al., 2008; de la Torre and Guzzo, 2012, Peacock et al.

2012, in Prep.). The rsd model given in equation 6.16 has two free, purely dynamical

parameters, namely fg and σ12.

There is, however, one last obstacle. The inversion of equation 6.18 is not perfect on

large scales as shown by Norberg et al. (2009). Realistically, we cannot expect to integrate

equations 6.17 and 6.18 to infinity and therefore recovering ξ(r) will be biased to some

extent and valid only on limited scales.

6.2.3 Observing galaxies and the scale-dependent bias

The discussion so far is valid for any pressureless density field in the universe. Nonetheless,

we observe galaxies which are generically biased tracers of the dark matter density field,

which drives the dynamical matter effects such as rsd. Galaxies are formed inside virialized
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dark matter haloes and complicated astrophysical effects bias the relation between galaxies

and dark matter (Cooray and Sheth, 2002). At large scales all the pair contributions to

the galaxy correlation function come from galaxies residing in different haloes which trace

the dark matter field up to a constant, scale-indepedent bias factor.

In this work we rely heavily on having the correct model ξgg(r) on small scales. We

thus modify the theoretical form of the dark matter correlation function ξδδ(r) by allowing

bias to have both a scale-independent and scale-dependent component in order to obtain

a realistic model for the galaxy correlation function (de la Torre and Guzzo, 2012)

ξgg(r) = b2
eff(r)ξδδ(r) = b2

Lb2
NL(r)ξδδ(r). (6.19)

In equation 6.19, bL modifies the overall amplitude of ξδδ(r) and scales ∝ σ8, whereas bNL

modifies the shape of ξδδ(r). In Section 6.4.1 we test the effect of the scale-dependent term

on our parameter fits. The model of ξgg(r) given in equation 6.19 will be used as input to

equation 6.16 for the construction of the model ξ(s⊥, s‖).

6.3 Measuring the galaxy anisotropic correlation function

6.3.1 Correlation function estimator and binning issues

We calculate the 2-dimensional correlation function using the the Landy and Szalay (1993)

estimator generalized for galaxy separations along the line of sight (LOS) s‖ and transverse

to the line of sight s⊥,

ξ(s⊥, s‖) =
DD(s⊥, s‖) − 2DR(s⊥, s‖) + RR(s⊥, s‖)

RR(s⊥, s‖)
, (6.20)

where DD is the normalized number of data pairs separated by a given (s⊥, s‖) bin,

DR is the respective normalized number of data-random pairs and RR is the respective

normalized number of random-random pairs. For this calculation we use the “flat sky”

approximation which assumes that galaxy separations can be disentangled as purely radial

(difference in comoving distance only) and purely transverse. For wide field surveys this

approximation clearly breaks down (Matsubara, 2000; Raccanelli et al., 2010), but for a

relatively narrow survey like GAMA (due to the three distinct GAMA regions maximum

angular separation is ≈ 12 degrees and most correlated pairs belong in the same region), it

is valid to a first order approximation. GAMA is a moderately deep survey with zmedian ≈
0.2 and therefore the LOS component dominates pair separations.

We use equation 6.20 to calculate ξ(s⊥, s‖) for linearly spaced (s⊥, s‖) bins as well as

logarithmically spaced. Linearly spaced ξ(s⊥, s‖) is used for the parameter fitting of model



105

anisotropic ξ(s⊥, s‖), whereas logarithmically spaced ξ(s⊥, s‖) is used for the calculation of

the projected correlation function (equation 6.17). Large (s⊥, s‖) separations yield much

more noisy measurements of ξ(s⊥, s‖) and therefore one might be tempted to use bins

of varying size, which in principle would remove the noise from large scales. We tested

this proposition against the mocks and we found that the results on the fitted parameters

were significantly biased. We conclude that for the data at hand 2-dimensional fitting to

linearly spaced (s⊥, s‖) grid is optimal, whereas for the reconstruction of the real space

correlation function using the Saunders et al. (1992) technique we use logarithmic spacing

instead (see Section 6.4.1).

6.3.2 Anisotropic correlation function for luminosity bins

We measure the redshift space correlation function ξ(s⊥, s‖) in linear bins in s⊥ and s‖ of

0.5 h−1Mpc and up to separations of 20 h−1Mpc for six volume limited galaxy samples split

in luminosity bins and redshift. Initially, we define four bins with the following limits in

Mr−5logh: (−22,−21), (−21,−20), (−20,−19), (−19−17). We then further split the two

bright luminosity bins in redshift so that the two redshift bins have approximately equal

number of galaxies. These volume limited samples are shown in Fig. 6.1. All absolute

magnitudes have been k + e-corrected at z0 = 0 using KCORRECT (Blanton and Roweis,

2007) and using the passive evolution parameter Q = 0.7 (described in Section 4.3.4) of

Loveday et al. (2012).

For this analysis we need to account for the GAMA angular and the radial selection

function. The GAMA angular selection function is described in Section 5.1 of Driver et al.

(2011). For the random catalogues we first use the MANGLE software (Hamilton and Tegmark,

2004; Swanson et al., 2008b) to create random objects in the GAMA area (without the flat

sky approximation) and then apply the GAMA imaging mask. GAMA is approximately

98% spectroscopically complete, however we do weight each data and random point ac-

cording to its actual completeness at the part of the sky where it belongs (see Section 5.2

of Driver et al., 2011).

Fig. 6.2 depicts the quantity ln[1 + ξ(s⊥, s‖)] for our L & L∗ samples, in order to

capture the features of ξ(s⊥, s‖) on all scales. Note that anisotropic correlation function

measurements are by definition confined in the first quadrant, however we follow the

usual practice to mirror ξ(s⊥, s‖) in the other three quadrants in order to easily reveal

the deviations from spherical symmetry. The main characteristics of the redshift space

correlation function, the large-scale squashing along the LOS and the FOG are clearly
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Figure 6.1: Absolute magnitude-redshift plot for GAMA data with r < 19.4. Overplotted

are the volume limited samples we use in this study. Samples are defined in magnitude bins

(solid lines) and magnitude thresholds (dashed lines). GAMA depth allows to split the

two brightest samples in redshift and construct volume limited samples of faint galaxies

over a substantial redshift range.
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Figure 6.2: The redshift space correlation function ξ(s⊥, s‖) for galaxy samples with

L & L∗. Due to the dynamical range of ξ(s⊥, s‖) the colour coding of the plots show

the quantity ln[1 + ξ(s⊥, s‖)], which we also use for the parameter fitting. GAMA’s high

completeness provides a very high signal to noise measurement of the anisotropic correla-

tion function on small scales where the finger of god effect dominates. Whilst distinctively

present, coherent infall on large scales has smaller signal to noise making it difficult to use

these samples for robust measurements of the growth rate of structure.
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Figure 6.3: The redshift space correlation function ξ(s⊥, s‖) for low redshift galaxy samples

with L < L∗. As in Fig. 6.2 the quantity plotted is ln[1 + ξ(s⊥, s‖)]. The FOG effect is

present with a high signal to noise, however coherent large scale infall appears more noisy,

especially for the faintest sample (right panel).

present in all samples. Moreover, there are clear differences between the shape of ξ(s⊥, s‖)

on large scales for the two luminosity bins, but there almost no visible differences between

same luminosity bins in different redshift ranges. The shape of ξ(s⊥, s‖) is affected by the

bias and therefore is expected to differ between galaxy samples with different bias.

Fig. 6.3 depicts ln[1 + ξ(s⊥, s‖)] for our two L < L∗ samples. These samples have fewer

galaxies and are not split in redshift. In contrast with the L & L∗ samples, the signal

of ξ(s⊥, s‖) appears to be more noisy on large scales. This is due to fact that the vast

majority of these galaxies are satellites and therefore poor tracers of the large scale matter

distribution. However, once again the large-scale squashing along the LOS (albeit noisy)

and the FOG are present.

For the uncertainty estimation we repeat the analysis for the 9 mock samples described

in Section 3.3. Despite the fact that there exist deviations between the clustering observed

in GAMA and in the mocks, the overall characteristics described above are also evident in

the mocks. We stress that the relative uncertainty (i.e. the one obtained from the mean

of the mocks) is sufficient for the parameter fitting of the correlation function, with the

caveat of the neglecting of covariances. We address this deficiency in Section 6.4.2, where

we test the recovery of the parameters of the model using the mocks. Strictly speaking,

one should use the fluctuations in the number counts and then estimate the uncertainty on

ξ(s⊥, s‖), however we found no difference in the results if we simply use scatter of ξ(s⊥, s‖)

directly.
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Figure 6.4: Signal-to-noise ratio for all our luminosity bin volume limited samples. At each

(s⊥, s‖) pixel the colour coding shows the value of ξ(s⊥, s‖) divided by its corresponding

uncertainty obtained from the mocks. Dark red pixels show data points with S/N ≥ 10.
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Fig. 6.4 shows the signal-to-noise ratio (S/N) of the ξ(s⊥, s‖), where for the noise

estimate we use the standard deviation, obtained from the 9 GAMA mocks, for each

(s⊥, s‖) bin, i.e. the diagonal elements of the covariance matrix. These plots have the

advantage of presenting the clustering information with its respective uncertainty. Fig. 6.4

confirms that the L < L∗ samples have significantly lower signal-to-noise ratio, especially

on large scales. Moreover, the low-z −22 < Mr−5logh < −21 sample has higher S/N than

its high-z counterpart. For all samples in Fig. 6.4, the S/N value is less than 1 on scales

∼ 20 h−1Mpc. This is the largest scale for which we can use our ξ(s⊥, s‖) measurements

for parameter estimation. We further test this conjecture in Section 6.4.2.

6.3.3 Anisotropic correlation function for luminosity thresholds

We repeat the analysis with volume limited samples defined with luminosity thresh-

olds. Fig. 6.5 depicts the S/N ratio of anisotropic correlation function measurements

for six samples with the same redshift limits as before and with absolute magnitude limits

Mr − 5logh < −21,−20,−19,−18, where the two brightest ones are also split in redshift.

Due to the fact that they include more galaxies than the luminosity bins samples these

measurements are less noisy. This is shown in Fig. 6.5 where for the respective scales of

Fig. 6.4, the S/N is systematically higher.

The luminosity threshold samples are complimentary to the luminosity bin samples

presented above. Luminosity threshold samples have a more transparent interpretation in

the context of halo modeling. For similar low-z samples a complete clustering analysis has

been performed recently by Zehavi et al. (2011), which we use for the interpretation of

our results. In order to do this we perform a consistency test. We calculate the projected

correlation function (equation 6.17) for our low-z Mr−5logh < −20 sample and check that

it is in agreement with the tabulated measurements of the same galaxy sample provided by

Zehavi et al. (2011). This is an important consistency test, despite the 1.8 mag difference

in the flux cut (which extends our volume limited Mr − 5logh < −20 sample to a higher

redshift limit), the significantly smaller number of galaxies in GAMA and the different

cosmological and k + e-correction parameters we adopted in this work.
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Figure 6.5: Signal-to-noise ratio for all our luminosity threshold volume limited samples.

At each (s⊥, s‖) pixel the colour coding shows the value of ξ(s⊥, s‖) divided by its cor-

responding uncertainty obtained from the mocks. Dark red pixels show data points with

S/N ≥ 10.
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6.4 Analysis

6.4.1 Underlying ξ(r) and scale-dependent bias

Although ξ(s‖, s⊥) is the most direct measurement from the data, in order to use it

in the simple model of equation 6.16 we need a model for the underlying ξ(r), i.e. the

quantity that is seemingly distorted and loses its isotropy in redshift space. The most direct

solution is to use the non-parametric inverted ξ(r) following the interpolation method of

Saunders et al. (1992). The advantage of the direct reconstruction of ξ(r) from the data

is that all uncertainties on small scales from the modeling of the real space correlation

function (scale-dependent bias) are minimized. However, direct reconstruction of ξ(r) has

its own implicit assumptions (Norberg et al., 2009) and is only valid on limited scales

even when one is using relatively large galaxy samples (Cabré and Gaztañaga, 2009a,b).

Furthermore, the reconstructed ξ(r) from eqs 6.17 and 6.18 is an experimental quantity

and it is difficult to accurately calculate the numerical integrals by interpolating noisy

data. Thus using only the reconstructed ξ(r) is insufficient because we also need a model

of ξ(r) on large scales as mentioned in Section 2.

On the other hand, linear theory, assisted by simulations, provides another model

(Smith et al., 2003) for the real space two point correlation function, valid on scales r &

5 h−1Mpc, that has been shown to stand the comparisons with data to a certain extend.

A number of studies used this model, with the addition of a linear bias term, either in

Fourier space (equation 6.7, Blake et al., 2011) or in configuration space (equation 6.16,

Cabré and Gaztañaga, 2009a) and found it an acceptable fit for the data.

Since galaxies are believed to follow the theoretical power spectrum on large scales

up to some multiplication factor, we use the information from the data-inferred ξ(r) to

get a non-parametric model of the scale-dependent bias which we then use to modify

the shape of the theoretical ξ(r) on small scales. This approach avoids any unnecessary

assumptions about the form of the bias, apart from the scale for which bias becomes scale-

independent. In Fig. 6.6 we show the reconstruction of the smoothed scale-dependent bias

for all galaxy samples. Due to the fact that we cannot reliably estimate the form of the

bias on separations r > 5 h−1Mpc, we assume that at these scales the bias is constant.

In practice, the reconstruction of bNL(r) for each sample has the following schema.

• We alculate the real space ξgg(r) from the observed ξ(s⊥, s‖) using equations 6.17

and 6.18.

• We get an estimate of Pδδ(k) from CAMB (Lewis et al., 2000) and Fourier transform
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Figure 6.6: Non-parametric estimates of the galaxy bias as function of scale (see equa-

tion 6.21). Filled squares show the square root of the ration of the observed ξgg(r) over

the theoretical ξδδ(r). Open circles show the smooth estimate of bNL(r). Notably the bias

for separations 5 . r . 10 h−1Mpc is approximately constant.

it to ξδδ(r) using the code FFTLog (Hamilton, 2000).

• We calculate the average bias given by

b(r) =
√

ξgg(r)/ξδδ(r), (6.21)

for approximately every two ξgg(r) data points, in order to get a smooth estimate of

b(r), over separations 0.5 . r . 5 h−1Mpc.

• We get an estimate of the linear bias bN , which we assume to be the average value

of bias b(r), over separations 5 . r . 10 h−1Mpc.

• We divide b(r) by our linear bias estimation in order to get bNL, which gives the

bias value as a function of r, scaled with bL(r).

As the linear bias becomes a free parameter for the samplings in Section 6.4.2 it is not

necessary to know its exact value. However, the choice of scales for the onset of the linear

bias is very important. Here we chose that scale to be at roughly 5 h−1Mpc merely because

up to these scales the bNL(r) can be estimated robustly from our data. Still, from Fig. 6.6

we note that there is plateau on scales 5 . r . 10 h−1Mpc, which is expected as the
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halo bias becomes constant at these scales. At scales r > 10 h−1Mpc the inversion of the

correlation function becomes noisy and these data points are not reliable anymore for bias

estimations.

Equipped with the observed b(r) we modify the Smith et al. (2003) correlation function

accordingly for each sample. The crucial advantage of this procedure is that the motivation

behind the final form of ξ(r) is not as important as matching it accurately on all scales.

The reason for this is that the rsd observables are degenerate with the bias (and σ8) and

therefore any inaccuracies on the bias modeling (e.g. using halo bias) will cause biases in

our results.

6.4.2 Optimal parameter space for σ12 and its likelihood surface

Equation 6.16 gives our final model to fit the ξ(s⊥, s‖) data and obtain measurements of

the pairwise velocity dispersion. We chose to fit on the entire ξ(s⊥, s‖) plane because the

pairwise velocity disperion is highly a non-linear effect and thus cannot be captured only

by the first few multipole expansions of the correlation function.

We sample the parameter space of equation 6.16 which comprises the set

p1 ≡ (fg, σ8, b, σ12). (6.22)

For this analysis we assume that the cosmological parameters and the scale-dependent bias

of equation 6.21 are known with perfect accuracy. Under these assumptions the growth rate

is technically known for a ΛCDM Universe (Linder, 2005), but here we allowed it to vary, so

that we consistently fit all dynamical quantities simultaneously. We also assume no large

scales velocity bias so that large scale coherent galaxy infalls follow exactly the respective

dark matter one. Other studies have used similar approaches. Guzzo et al. (2008) used

a limited two-parameter set comprised only by (β ≡ fg/b, σ12) and they further assumed

that the posterior is a bivariate Gaussian, with widths given from the scatter of the

parameters from simulations. One can also obtain fits on the linear bias parameter as this

is an independent overall multiplication factor (Cabré and Gaztañaga, 2009a). However, it

was pointed by Percival and White (2009) that both fg and b are exactly degenerate with

σ8 and therefore in the linear regime one can constrain only combinations of this three-

parameter set. Our sampling tests, shown in Fig. 6.7 for the low-z L∗ sample confirmed

this. Fig. 6.7 shows that the probability distributions for the joint fits of fg, σ8, b, σ12 are

banana shaped and degenerate. On the other hand the distribution for the combinations

of fgσ8 and bσ8 and σ12 are Gaussian-like and well constrained. We tried the same test of
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Figure 6.7: The parameter space used for studying the pairwise velocity dispersion. The

figure shows the constraints on the parameters of the “Kaiser plus Lorentzian” model for

redshift space distortions (equation 6.22) for the low-z, −21 < Mr − 5log10 < −20 sample

(our L∗ sample). Colour contours and dotted lines show the likelihood from the sampling

and solid lines the marginalized posterior distributions. Due to the fact that the linear-

regime parameters (fg, b, σ8) are degenerate their joint constraints have a banana shape.

On the other hand the parameter combinations fgσ8 and bσ8 are well-described by the data

with the caveat that the width of their respective posterior distributions is much narrower

that the one would expect from a survey like GAMA (See text for further discussion).

The posterior distribution of the parameter set (fgσ8, bσ8, σ12) can be approximated by a

trivariate gaussian.
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all our samples and the results are identical. Consequently we use the parameter set

p2 ≡ (fgσ8, bσ8, σ12) (6.23)

for our inferences. Since we are primarily interested in the pairwise velocity dispersion we

don’t have to break the degeneracy using external datasets, instead we marginalize over

the combinations fgσ8 and bσ8 instead. A similar parameter set was used by Tojeiro et al.

(2012) who then broke the σ8−fg degeneracy using the linear prediction for the evolution

of the linear, scale-indepent bias.

We perform our samplings using the publicly available package Multinest (Feroz and Hobson,

2008; Feroz et al., 2009)2. Multinest produces MCMC-type outputs (albeit being a nested

sampling algorithm) which can be analyzed using the GetDist routine of the CosmoMC

package Lewis and Bridle (2002) 3. Our ξ(s⊥, s‖) uncertainties come from the scatter of

the 9 GAMA mocks. When we run Multinest, we minimize the quantity (Hawkins et al.,

2003; Guzzo et al., 2008)

−2lnL = χ2 =
∑

i

∑

j

ln(1 + ξij) − ln(1 + ξ̄ij)

σ2
ij

, (6.24)

where σij = σξij
/(1 + ξ̄ij). Only pixels which satisfy the criterion

√

s2
i + s2

j < 20 h−1Mpc

are included in the fitting; we fit on a quarter of a disk of radius s on the ξ(s⊥, s‖) plane (see

Figs 6.2, 6.3, 6.4 and 6.5). We discuss the choice of 20 h−1Mpc as our upper limit for the

fits below (see also Fig. 6.8). One issue of utmost importance to address for our parameter

fitting is the covariance matrix of ξ(s⊥, s‖) (Norberg et al., 2009). It’s now established that

uncertainty covariance matrices are important for clustering measurements since correla-

tion function measurements are strongly correlated (see e.g. Christodoulou et al., 2012)

and recent studies have raised the issue again for rsd measurements (Bianchi et al., 2012).

However, the small number of available mocks doesn’t allow the construction of stable

covariance matrices for our samples due to the number of data points that we have (the

fits are done using ∼ 40 × 40 bins). We can test the assumption of zero or very small

covariances using the mocks. If the uncertainties are not underestimated then the scatter

between the measurements from the different mocks should agree with the width of the

posterior distributions from the nested samplings. We used the maximum likelihood mea-

surements of fgσ8 for this exercise, as it’s an easier parameter to interpret and we know

its exact value in the simulations a priori. We found that the parameter uncertainties

are severely underestimated. In Fig. 6.8 the different fgσ8 fits from the 9 GAMA mocks

2http://ccpforge.cse.rl.ac.uk/gf/project/multinest/
3http://cosmologist.info/cosmomc/
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Figure 6.8: Test for the recovery of the growth rate parameter fg from the 9 GAMA mocks,

using the “Kaiser plus Lorentzian” model for redshift space distortions (equation 6.16).

Open data points show the 6 volume limited samples (Fig. 6.1) for each of the 9 mocks

described in Section 3.3, whereas filled data points show their mean and standard devi-

ation. Solid line shows the fiducial ΛCDM + GR prediction, fg = Ω0.55
m , multiplied by

σ8 = 0.9, the corresponding value used for the mocks. Right panel shows the results

using the scales 0 < s < 20 h−1Mpc for the fit; Left panel the results using the scales

0 < s < 40 h−1Mpc for the fit. Limiting our fits to scales s < 20 h−1Mpc improves the

estimates of fg, as well as the distribution of the results from the different mocks around

their mean. However in both panels the scatter from the mocks is much wider than what

the marginalized distribution of fgσ8 suggests in Fig. 6.7.

are shown along with their mean and standard deviation fit over two different scales:

0 < s < 40 h−1Mpc (left panel) and 0 < s < 20 h−1Mpc (right panel). The comparison

between the width of the posterior distribution of Fig. 6.7 and the spread of the fits around

their mean, clearly shows that uncertainties are underestimated.

In order to obtain more realistic uncertainties we use the covariances of the parameters.

Using the 9 different estimations of the parameter set p2 for each mock galaxy volume

limited sample, we construct their respective covariance matrix and then approximate

their likelihood surface with a trivariate Gaussian, whose widths come from the scatter

of the parameter fits of our mocks. Our investigation of the likelihood surface of p2

(Fig. 6.7) showed that in general a trivariate Gaussian is a reasonable approximation. We

then obtain the uncertainties of each parameter in the set p2 after we marginalize over

the remaining two parameters and their correlations (Sivia and Skilling, 2006).

Fig. 6.8 also tests the the scales over which the model ξ(s⊥, s‖) is fit. The left panel of



118

Fig. 6.8 shows the fits over the scales 0 < s < 40 h−1Mpc and the right panel the fits over

scales 0 < s < 20 h−1Mpc. Choosing smax < 20 h−1Mpc improves the distribution of the

different fgσ8 measurements which are spread more uniformly around their mean, whereas

the means themselves are less biased with respect to the fiducial value fg(z) = Ω0.55
m

(Peebles, 1980). Thus, including only the most appropriate scales of ξ(s⊥, s‖) improves

the Gaussianity of the distribution of the fitted parameters as well as the parameter fits.

This corroborates with our approximation of the posterior distribution with a trivariate

Gaussian. We conclude that our ξ(s⊥, s‖) measurements are noise dominated on scales

s > 20 h−1Mpc. Fig. 6.8 also shows that as we go to fainter samples the fgσ8 estimations

cluster in a biased fashion from their respective mean. This is clearly obvious from the

low-z −21 < Mr − 5logh < −20 sample, as well as the −20 < Mr − 5logh < −19 sample.

This is in accord with studies using dark matter simulations with HOD galaxy modeling

which also showed that the “Kaiser plus Lorentzian” model is not accurate for L < L∗

samples (de la Torre and Guzzo, 2012). On the other hand scale-dependent bias, doesn’t

affect measurements of fgσ8 significantly, but since studies using simulations showed that

it does affect measurements of σ12 (Cabré and Gaztañaga, 2009b; de la Torre and Guzzo,

2012) we include it in the calculations.

Finally we note that more sophistigated models for ξ(s⊥, s‖), which could be used to

fit to our data (e.g. the models of Scoccimarro, 2004; Taruya et al., 2010; Jennings et al.,

2011), are aiming to model much larger pair separations than the ones we consider here.

These studies have as their primary aim is to overcome biases on fg measurements, whereas

in this Chapter we are mostly interested in the non-linear regime and the pvd. Yet, in the

recent comprehensive test of a manifold of rsd models by the WiggleZ team (Blake et al.,

2011), the model of equation 6.15 was found to perform almost as well as the more sophis-

ticated fitting functions from simulations. Clearly the available data at the moment is not

good enough to distinguish between different estimators of fg. For the analysis presented

here as long as the bias on our fg estimations is below our statistical uncertainty then this

should not significantly affect our measurements of the pairwise velocity dispersion since

we marginalize over it.

6.4.3 Results for the “Kaiser plus Lorentzian” model

We now sample the parameter space p1 (equation 6.22) for all our galaxy samples. Fol-

lowing the discussion in Section 6.4.2 we approximate the posterior distribution of the

parameter set p2 (equation 6.23) with a trivariate Gaussian and we quote the maximum
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Figure 6.9: Pairwise velocity dispersion as function of redshift and luminosity (symbols)

for volume limited magnitude bins (left panel) and volume limited magnitude threshold

(right panel) samples. Error bars are 1σ derived from marginalizing a trivariate Gaussian

distribution of the parameter set p2 (equation 6.23). The pvd is roughly constant (≈
400 kms−1) for all samples apart from the faintest luminosity bin sample.

likelihood parameter values. The uncertainties are 1σ and they come from the marginal-

ized Gaussian distributions obtained from the mocks.

The left panel of Fig. 6.9 shows the pairwise velocity dispersion as a function of redshift

and absolute magnitude in four absolute magnitude bins. The pvd is roughly constant for

the first three magnitude bins and is found to be σ12 ≈ 400 kms−1. However it increases

steeply for the faintest one reaching an almost double value σ12 = 824 ± 146 kms−1. The

rapid increase of σ12 for faint galaxies shows the strong effect of satellite galaxies on pvd.

In general virial motions inside a halo dominate halo-halo motions (Cooray and Sheth,

2002) and since the vast majority of galaxies with magnitude −19 < Mr − 5logh <

−18 are expected to be satellites in large haloes (Zehavi et al., 2011) their pvd is much

greater than brighter galaxies. Contrary to the absolute magnitude bin samples, the

absolute magnitude threshold samples have approximately the same pvd for all magnitude

thresholds. This is something to be expected since even for the faintest absolute magnitude

range (Mr − 5logh < −18) only ∼ 32% of the galaxies are satellites (Zehavi et al., 2011).

In Fig. 6.9 we also test possible evolution of pvd of the two brightest samples, which are

split in redshift. Neither for the absolute magnitude bins, nor for the absolute magnitude

thresholds, we observe any hints of redshift evolution of the pvd. All our σ12 measurements

are given in Tables 6.1 and 6.2.

Although our samples are not designed for cosmology, we can test the consistency of

our growth rate values with the fiducial ΛCDM prediction (Linder, 2005). In Fig. 6.10
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Figure 6.10: Growth rate of structure as a function of redshift. Data points show the

measurements from the five brightest volume limited samples corresponding to the lu-

minosity thresholds shown in the legend. Solid line shows the ΛCDM + GR prediction,

Ω0.55
m (z)σ8(z), where Ωm(z = 0) = 0.25 and σ8(z = 0) = 0.8.

Table 6.1: Redshift space distortion measurements of the dynamical parameters

σ12, fgσ8, bσ8 for volume limited samples defined in absolute magnitude bins. See Sec-

tion 6.4.2 for a description of the inferred parameters. Uncertainties are assumed to be

Gaussian 1σ and are obtained from a marginalized trivariate Gaussian. Mr should be

understood as Mr − 5logh.

Redshift range zmedian Magnitude limit Ng fgσ8 bσ8 σ12 (km s−1)

0.26 < z < 0.32 0.29 −22 < Mr < −21 10582 0.20 ± 0.08 1.05 ± 0.02 380 ± 34

0.05 < z < 0.26 0.19 −22 < Mr < −21 10323 0.46 ± 0.12 1.11 ± 0.04 361 ± 36

0.17 < z < 0.22 0.20 −21 < Mr < −20 11006 0.38 ± 0.40 0.95 ± 0.11 390 ± 133

0.02 < z < 0.17 0.13 −21 < Mr < −20 10525 0.45 ± 0.28 0.94 ± 0.09 390 ± 82

0.005 < z < 0.14 0.11 −20 < Mr < −19 9594 0.48 ± 0.36 1.00 ± 0.08 423 ± 88

0.005 < z < 0.09 0.07 −19 < Mr < −18 3202 1.69 ± 0.71 0.57 ± 0.12 824 ± 146
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Table 6.2: Redshift space distortion measurements of the dynamical parameters

σ12, fgσ8, bσ8 for volume limited samples defined in absolute magnitude thresholds. See

Section 6.4.2 for a description of the inferred parameters. Uncertainties are assumed to

be Gaussian 1σ and are obtained from a marginalized trivariate Gaussian. Mr should be

understood as Mr − 5logh.

Redshift range zmedian Magnitude limit Ng fgσ8 bσ8 σ12 (km s−1)

0.26 < z < 0.32 0.29 Mr < −21 11642 0.20 ± 0.11 1.09 ± 0.02 381 ± 37

0.05 < z < 0.26 0.19 Mr < −21 11118 0.52 ± 0.12 1.11 ± 0.04 375 ± 37

0.17 < z < 0.22 0.20 Mr < −20 14880 0.42 ± 0.41 0.98 ± 0.11 406 ± 129

0.02 < z < 0.17 0.13 Mr < −20 13873 0.42 ± 0.27 1.00 ± 0.09 390 ± 80

0.005 < z < 0.14 0.11 Mr < −19 17447 0.42 ± 0.41 1.05 ± 0.09 374 ± 89

0.005 < z < 0.09 0.07 Mr < −18 7547 1.38 ± 0.68 0.76 ± 0.11 442 ± 129

we plot our fgσ8 measurements for the 5 brightest luminosity threshold samples, with the

standard ΛCDM + GR, Ω0.55
m σ8(z) prediction. Due to the size of GAMA and the way our

samples were constructed, the error bars in Fig. 6.10 are big and from that figure we can

only conclude that our data is generally consistent with ΛCDM + GR. Recent studies

using much larger samples of galaxies showed that ΛCDM + GR is a good description of

the data (Reid et al., 2012; Samushia et al., 2012).

6.4.4 Scale dependent pairwise velocity dispersion

We extend the analysis by splitting the ξ(s⊥, s‖) plane along the transverse direction in

order to study the scale dependence of the pairwise velocity dispersion. The methodology

is the same as the one we followed in Section 6.4.3, with the exception of the scales on which

we perform the fits. Observationally the scale dependence of the pvd can be expressed

as a function of the transverse separation, which is unaffected by peculiar velocities. We

therefore perform the parameter fits in stripes of constant s⊥ intervals. We also impose

the upper limit s‖ < 20 h−1Mpc.

As expected from the smaller area of the ξ(s⊥, s‖) plane that we use for these fits,

the uncertainties on σ12 are much larger for all samples. For this exercise, we have not

investigated the likelihood surface. Furthermore, contrary to the methodology of Section

6.4.2, we choose not to approximate the likelihood surface of each parameter set with a
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Figure 6.11: Pairwise velocity dispersion as a function of the projected separation s⊥ in

absolute magnitude bins (left panel) and absolute magnitude thresholds (right panel). The

model given by equation 6.16 has been used for these measurements and error bars come

from the scatter of the parameter fits from the 9 mocks.
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Figure 6.12: Pairwise velocity dispersion as a function of the projected separation s⊥ for

a larger volume limited sample defined as z < 0.22 and Mr − 5logh < −20. The model

given by equation 6.16 has been used for these measurements and error bars come from

the scatter of the parameter fits from the 9 mocks.



123

Gaussian. Thus we report only the uncertainties from the scatter of parameter fits of the

mocks, without marginalization. We note that this is most likely an underestimation of

the true uncertainties. For the particular case for transverse separations s⊥ ≈ 1.5 h−1Mpc,

where S/N is larger, we report our measurements in Tables 6.3 and 6.4.

The pvd as a function of separation for volume limited luminosity bins and luminosity

thresholds is shown in Fig 6.11. The pvd presents a scale dependence and it decreases

with increasing s⊥ for all samples. For the faintest samples −19 < Mr − 5logh < −18

and Mr − 5logh < −18 the pvd shows a rapid increase at separation s⊥ > 10 h−1Mpc,

however it is very likely that these values are biased due to the lack of sufficient ξ(s⊥, s‖)

signal at these scales (see Fig. 6.4 and Fig. 6.5). Note that the model of equation 6.16

assumes a constant coherent infall component of peculiar velocities, which is an assumption

that might not hold for the samples that we analyze here, due to their size. On scales

s⊥ < 0.5 h−1Mpc our ξ(s⊥, s‖) measurements are limited by shot noise and therefore at

these scales we cannot provide reliable measurements of the pvd.

Theoretical predictions for the scale-dependence of the pvd suggest that it should

exhibit a maximum at separations of s ≈ 1 h−1Mpc, which defines the regime of the largest

collapsed structures (Sheth et al., 2001). Although we do observe hints of this effect (e.g.

the Mr − 5logh < −20 sample in the right panel of Fig. 6.11), the error bars are still quite

large. One more complication arises due the fact that the pvd is model-dependent with

respect to the particular form of the damping function that one uses (Zehavi et al., 2002),

presumably a result of the weak ξ(s⊥, s‖) signal at large transverse separations. Moreover,

at very large scales the measured pairwise velocity dispersion should match the respective

quantity from linear theory

σ2
υ =

1

3

∫

1

2π2
Pθθ(k)dk (6.25)

where συ is the one-dimensional linear velocity dispersion. As usual, dividing equation

6.25 with H2(z)(1 + z)2 will give συ in km/s and the damping function is now a Gaussian

(Scoccimarro, 2004). Percival and White (2009) using simulations found that a Gaussian

function is a better fit at large scales, although the study they performed was primarily

aiming to get the best estimates of the growth rate.

In order to see more clearly how these theoretical predictions of the scale-depencence

of the pvd can be tested, we define a much larger volume limited sample with the following

redshift and absolute magnitude limits z < 0.22 and Mr − 5logh < −20 respectively. This

would allow for reduced error bars on σ12(s⊥). We repeat the same procedure described

in Section 6.4.3 in order to measure the pvd from the anisotropic correlation function of
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Table 6.3: Redshift space distortion measurements at transverse separations σ12(s⊥ =

1.5 h−1Mpc) for volume limited samples defined in absolute magnitude bins. Uncertainties

come from the scatter of the fitted parameters from the 9 mocks.

Redshift range zmedian Magnitude limit Ng fgσ8 bσ8 σ12 (km s−1)

0.26 < z < 0.32 0.29 −22 < Mr < −21 10582 0.24 ± 0.52 1.09 ± 0.06 450 ± 140

0.05 < z < 0.26 0.19 −22 < Mr < −21 10323 1.09 ± 0.39 1.07 ± 0.06 518 ± 51

0.17 < z < 0.22 0.20 −21 < Mr < −20 11006 0.33 ± 0.31 1.00 ± 0.11 412 ± 162

0.02 < z < 0.17 0.13 −21 < Mr < −20 10525 0.42 ± 0.23 1.00 ± 0.12 492 ± 109

0.005 < z < 0.14 0.11 −20 < Mr < −19 9594 0.65 ± 0.34 1.00 ± 0.09 409 ± 139

0.005 < z < 0.09 0.07 −19 < Mr < −18 3202 1.52 ± 0.36 0.62 ± 0.18 755 ± 224

this L & L∗ galaxy sample, but again without marginalizing over the fgσ8 and bσ8. There

are 28 258 galaxies in this sample. The pvd as a function of transverse separation for this

sample is shown in Fig. 6.12, where the theoretically expected scale-dependence of pvd is

more evident, something which suggests that the current data as shown in Fig. 6.11 (i.e.

splitting the main sample to very fine luminosity bins) is not good enough to capture all

information about pvd for small samples.

Fig. 6.12 presents our best estimates for the pairwise velocity dispersion as a func-

tion of separation for L & L∗ galaxies. For small, intra-halo scales we have σ12(s⊥ =

1.5 h−1Mpc) = 551 ± 71 km/s, which as we go larger separations rises to σ12(s⊥ =

1.5 h−1Mpc) = 608 ± 96 km/s. After this peak σ12(s⊥) decreases and remains approxi-

mately constant with a large-scale value of σ12(s⊥ = 1.5 h−1Mpc) ≈ 400 lm/s.

6.5 Comparison with previous studies

We now seek to compare our results of the pairwise velocity dispersion as a function

of luminosity with previous studies. As we mentioned before, the process of fitting the

anisotropic correlation function is involved and therefore it is not surprising that different

groups follow different approaches to it. In Sections 6.4.3 and 6.4.4 we showed that our

main results consist of the luminosity dependence of a constant as well as a function of

scale pairwise velocity dispersion.

Our results of the scale-independent pairwise velocity dispersion favor a constant value

of σ12 ≈ 400 km s−1 across all luminosity ranges, apart from the faintest luminosity bin, for
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Table 6.4: Redshift space distortion measurements at transverse separations σ12(s⊥ =

1.5 h−1Mpc) for volume limited samples defined in absolute magnitude thresholds. Un-

certainties come from the scatter of the fitted parameters from the 9 mocks.

Redshift range zmedian Magnitude limit Ng fgσ8 bσ8 σ12 (km s−1)

0.26 < z < 0.32 0.29 Mr < −21 11642 0.46 ± 0.35 1.11 ± 0.04 506 ± 115

0.05 < z < 0.26 0.19 Mr < −21 11118 0.87 ± 0.49 1.14 ± 0.06 460 ± 85

0.17 < z < 0.22 0.20 Mr < −20 14880 0.35 ± 0.33 1.04 ± 0.11 379 ± 193

0.02 < z < 0.17 0.13 Mr < −20 13873 0.77 ± 0.21 1.05 ± 0.11 576 ± 119

0.005 < z < 0.14 0.11 Mr < −19 17447 0.55 ± 0.24 1.07 ± 0.09 387 ± 105

0.005 < z < 0.09 0.07 Mr < −18 7547 1.66 ± 0.39 0.81 ± 0.18 559 ± 183

which we have limited statistics. This value (obtained assuming an exponential form of the

pairwise velocity dispersion function) is consistent with the results of Landy (2002) who

analyzed both SDSS and 2dFGRS data. Note that their fitting method is very different

from ours as they do not fit the ξ(s⊥, s‖) but they deconvolve it in order to extract

directly the pairwise velocity dispersion function. Our results are also in agreement with

the more recent 2dFGRS analysis of Hawkins et al. (2003) (σ12 = 506 ± 52 km s−1), as

well as the higher redshift result of Guzzo et al. (2008) who found σ12 = 412 km s−1.

Finally, we note that Fisher et al. (1994) also found similar values for σ12 using infrared-

selected galaxies. On the other hand Zehavi et al. (2002) found a somewhat higher value

of σ12 ≈ 600 km s−1, a measurement for which they show that is dominated by the

respective one obtained only from red galaxies. In conclusion the galaxy pairwise velocity

dispersion can be very well fitted by an exponential with σ12 ≈ 400 km s−1, with very little

dependence on luminosity for L & L∗ galaxies. This result, aside from being an important

result for galaxy evolution per se, is also a very useful information for cosmology, since the

pairwise velocity dispersion enters in some form in all growth rate estimations. We expect

this result to be also useful for measurements of fg using the multiple galaxy populations

technique of McDonald and Seljak (2009).

Next, we compare our results with literature results for the scale-dependent pairwise

velocity dispersion. Two main studies (by the same group) precede the present GAMA

one, namely Jing and Börner (2004) (2dFGRS) and Li et al. (2006) (SDSS). We note that

GAMA data adds redshift information, as well due to its depth. In Fig 6.13 we compare
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Figure 6.13: Comparison of pairwise velocity dispersion measurements between this work

(circles) and Li et al. (2006) (squares). Data points show the pairwise velocity dispersion

as function of r-band absolute magnitude, where we use the median magnitude of each

luminosity bin. For the two bright samples we present the low-z measurement of σ12

to facilitate comparisons. Despite the differences between the two studies, the luminosity

dependence of the pairwise velocity dispersion at separations of ∼ 1h−1Mpc is comparable.

For the differences between the two methods of estimating σ12 see text.
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the low-z results of this work at transverse scales of approximately 1.5 h−1Mpc with

Li et al. (2006) who worked in k-space and quote their main results at k = 1 hMpc−1.

Li et al. (2006) used SDSS data and therefore their study is more convenient for comparing

luminosity ranges as GAMA also used SDSS r-band selections, albeit we utilize different k-

corrections. It is argued in Li et al. (2006) that the differences between σ12(r) and σ12(k)

are less than 15 per cent if one uses r = 1/k (as opposed to r = π/k) and we further

assume that σ12(s⊥) ≈ σ12(r) (see Cabré and Gaztañaga, 2009b, for a systematic study of

this assumption using simulations). From Fig. 6.13 we observe that our results are in good

agreement for L & L∗ galaxies and deviate for L < L∗ galaxies. Fig. 6.13 also shows that

at separations of ∼ 1 h−1Mpc the pairwise velocity dispersion increases as we go fainter.

We expect that the differences between working either in Fourier space or configuration

space to be minimal. However, the main difference between our study and Li et al. (2006)

is that we explicitly take into account in our parameter fits the correlation between σ12

and the growth rate fg. Thus, our results are bound to be less biased, although they will

have larger uncertainties. Li et al. (2006) show that their results are generally insensitive

to luminosity dependent bias (see Section 5.8.1) however they alway keep fg fixed to its

fiducial value (fg ≈ 0.5). The situation is somewhat similar with the case of cosmological

parameter constraints using the two-point correlation function, where one first assumes

some fiducial cosmology to construct ξ(r) and then one varies the cosmological parameters

of the model to in order to obtain joint constraints.

6.6 Discussion and conclusions

In this Chapter we have demonstrated how GAMA can reliably constrain crucial dynamical

quantities like the growth rate of structure and pairwise velocity dispersion over the non-

linear and quasi-linear regime (0.25 < s < 20 h−1Mpc). For the parameter fitting we use

the observed 2-dimensional correlation function, the most direct measurement from the

data. The pairwise velocity dispersion is a highly non-linear effect and therefore we perform

the fits on the parameters using the entire plane instead of using the multipole expansion

of ξ(s⊥, s‖). We also fit in the configuration space, which is preferable as observational

data tends to be noisy for Fourier transformations. Furthermore, we were able to split

the ξ(s⊥, s‖) plane along the LOS in order to measure the pairwise velocity dispersion

as a function of the transverse separation, again providing the most direct measurement

from the data. We imposed no limits on the ξ(s⊥, s‖) scales used in the fits, other than

r < 20 h−1Mpc, the limit where we showed that our ξ(s⊥, s‖) measurements are dominated
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by noise which biases the results.

The two main complications that we faced is the fact that the redshift space galaxy

correlation function is strongly covariant and that there exist degeneracies between the

parameters we fit (σ12, fg, σ8, b). For the case of σ12, which nonetheless introduces a certain

scale dependence, we break the degeneracies using combinations of the aforementioned

parameters, whereas to account for the covariances we use mock catalogues and then

calculate the correlations between the parameter fits from different mocks.

We note that our approach for fitting the “Kaiser plus Lorentzian” model to the data,

differs from previous studies (Jing and Börner, 2004; Li et al., 2006; Cabré and Gaztañaga,

2009b) in the sense that we do not make any assumptions about the parameters of the

model, i.e. the value and the form of the bias, the growth rate and σ8. We also investi-

gated the shape of the likelihood space, assisted by theoretical studies (Percival and White,

2009), finding evidence for a Gaussian likelihood of the parameter set (fgσ8, bLσ8, σ12).

Approximating the likelihood with a trivariate Gaussian and then using parameter esti-

mations from the GAMA mocks, we efficiently marginalize over fgσ8 and bLσ8 in order to

obtain the final uncertainties of the scale independent pairwise velocity dispersion.

Our results are as follows. For volume limited samples defined in luminosity bins

and for a model with pvd independent of separation and taken to have the form of an

exponential function, we find σ12 ≈ 400 km s−1 for galaxies with L & L∗. The value

of the pvd doubles for L < L∗ galaxies,compared with L & L∗ galaxies, whereof we

find σ12 = 824 ± 146 km s−1. This is a strong indication that these galaxies are almost

exclusively satellites in dense and hot haloes. The values of σ12 are very similar for volume

limited samples defined in luminosity bins and luminosity thresholds. However, σ12 values

differ significantly for samples with Mr − 5logh < −18. In sharp contrast with the sample

defined by −19 < Mr − 5logh < −18 galaxies with Mr − 5logh < −18 have approximately

the same σ12 as any other sample. We believe this is due to the mixture of satellites and

central galaxies in this luminosity threshold sample (fsat ∼ 33%, Zehavi et al., 2011).

We also measured the pairwise velocity dispersion as a function of transverse sepa-

ration. For the same volume limited samples the statistical uncertainties were too large

to clearly observe possible scale-dependence. However, when we repeated the analysis

with a much larger volume limited sample we observed a scale-depedence of the pvd for

L & L∗ galaxies. The observed scale-dependence is in accord with theoretical expectations

(Sheth et al., 2001).

We also observed a lack of substantial (> 10% uncertainties) constraining power on
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fgσ8 when fitting each volume limited sample independently. In principle be compen-

sated by rsd measurements for multiple galaxy populations (McDonald and Seljak, 2009;

White et al., 2009), using their auto- and cross-correlations. Although our sample selec-

tion and corresponding analysis is not designed for competitive measurements of cos-

mological parameters, we presented fgσ8 measurements for 5 volume limited samples

with Mr − 5logh < −19 which are generally consistent with the fiducial ΛCDM value

(fg = Ω0.55
m , σ8 = 0.8). This consistency check, demonstrates that potential biases on the

estimation of σ12 due to galaxy coherent flows in the linear regime are minimized.

Some of the concerns raised by this study are likely to be valid for further applications

of rsd in cosmology, especially when trying to measure cosmological parameters and to

test general relativity via the growth rate of structure. We highlighted two major com-

plications for redshift space distortions analyses. First, real to redshift space mapping is

non-linear and detailed knowledge of the galaxy power spectrum on all scales is needed in

order to use redshift space distortions in cosmology. Thus, the assumption that cosmologi-

cal parameters can be measured using only large scales and consequently an effective linear

bias, is no longer valid if we want to extract information from redshift space distortions.

Secondly one needs to construct robust covariance matrices which will subsequently give

realistic posterior distributions. Only then can one efficiently marginalize over nuisance

parameters such as the bias. Ultimately it is not surprising that measurements of the

growth rate of structure are more compelling than measurements of the expansion rate.

As we enter the era of high precision measurements of observables from first order pertur-

bations in cosmology (Tegmark, 2002), we should not be surprised of being challenged to

work on the borderline between extragalactic astronomy and astrophysics.



130

Chapter 7

Conclusions

It’s been shown that the clustering of galaxies can offer important insights into our under-

standing of the universe (Peebles, 1980). In this thesis we explored some of the aspects

of that programme using data from two of the most recent galaxy surveys. The analy-

sis presented here has been done using public data provided by the SDSS collaboration

(Abazajian et al., 2009) and proprietary data from the GAMA survey (Driver et al., 2011).

The detailed description of the data that we used is presented in Chapter 3. In Chapter 5

we studied the clustering of galaxies in the SDSS footprint using the angular correlation

function statistic. In order to do this, we used the spectroscopic data from the GAMA

survey to calibrate photometric redshifts for SDSS galaxies. This work is presented in

Chapter 4. Lastly, in Chapter 6 we studied the clustering of galaxies in redshift space

again using GAMA data. We now summarize our main findings.

7.1 Galaxy clustering using calibrated photometric redshifts

We obtained our photometric redshifts using an empirical technique, in particular the

software package ANNz (Collister and Lahav, 2004). In the ideal case where the training

set for ANNz is complete, that is we have spectroscopic redshifts for a subset of galaxies

going as deep as our imaging sample, the performance of ANNz is optimized. We observed

a very competitive recovery of the true spectroscopic redshift with a dispersion σz = 0.039

(σz = 0.035 for limit zphot < 0.4 which we use for this work) for a sample of 4289 223 SDSS

galaxies with rpetro < 19.4 mag. Subsequently using our accurate photo-z’s we derived

distance moduli, absolute magnitudes and colours and then constructed galaxy samples

split in photo-z, absolute magnitude and colour in order to study the dependence of galaxy

clustering on these properties.
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The fact that we worked with a complete training set allowed us to construct robust

redshift and absolute and magnitude distributions for all our samples. We achieved this

assuming a Gaussian distribution of the photo-z uncertainties and then calculating the

standard deviation in narrow photo-z bins for each sample. Thus, our results have a direct

correspondence with other clustering studied using spectroscopic redshifts (Zehavi et al.,

2011).

We then use our redshift distributions for the Limber (1953) inversion of angular

clustering measurements. A major advantage of photo-z analyses is their ability to study

efficiently faint galaxies. In the sample presented in this thesis there are galaxies as faint

as Mr −5logh = −14 mag. Since our bright limit is Mr −5logh = −24 mag, our clustering

study spans almost three orders of magnitude in L/L∗. We find that the best way to

compare photo-z clustering studies with other studies that use spectroscopic redshifts is

by the relative bias (Norberg et al., 2001). Moreover, we showed that the linear relation

between the relative bias and L/L∗ (Norberg et al., 2001; Zehavi et al., 2011) holds down

to luminosities ∼ 0.03L∗.

For samples selected in luminosity and colour, we confirmed the increase of the clus-

tering length for sub-L∗ red galaxies compared to with L∗ galaxies at small scales. As we

go brighter the correlation length for red galaxies with L > L∗ also increases. However,

our large uncertainties on b/b∗, makes it difficult for constructing a robust relation with

L/L∗ for red galaxies. For blue galaxies the luminosity-bias relation is very similar with

galaxies selected in luminosity only. Yet, compared to brighter blue samples the slope of

the −17 < Mr − 5logh < −14 sample is found to be steeper at the 2σ level.

For faint blue galaxies we found a significant contamination due to over-deblendend

galaxies. This contamination significantly affects our small-scale clustering results and we

accounted for it in our analysis. A preliminary visual inspection of a small fraction of

galaxies in our sample, allowed us to quantify the effect of contamination as a function of

pair separation and thus present robust measurements of w(θ).

We also studied the redshift dependence of the absolute bias of L∗ galaxies in photo-z

bins. We use 4 photo-z bins of width δz = 0.1 up to redshift zphot = 0.4. We found

that the observed bias for L∗ galaxies is consistent with the passive evolution model of

Tegmark and Peebles (1998).
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7.2 Redshift space clustering

Using the proprietary data from the GAMA survey, we studied the dependence of the

galaxy pairwise velocity dispersion as functions of luminosity and redshift. The depth of

GAMA allowed us to create volume limited samples for galaxies with L & L∗, defined by

luminosity bins and luminosity thresholds, in two different redshift bins. For galaxies with

L < L∗ we did not split the samples in redshift, as they cover a smaller volume. On the

other hand the breadth of GAMA is such that we can work using the “flat sky” approxima-

tion. We worked with what is arguably the simplest model for redshift space distortions on

all scales, the model known as “Kaiser+Lorentzian”, where at small scales the correlation

function is exponentially damped. We found that this model provides a satisfactory fit for

all our galaxy samples in accord with other recent rsd studies (Blake et al., 2011).

Although necessary for clustering analyses the construction of the covariance matrix of

the anisotropic correlation function is cumbersome. Notwithstanding, we found that using

only the 9 available mocks and their respective scatter severely underestimates the uncer-

tainties on σ12 and fgσ8. We circumvented this obstacle by constructing the covariance

matrix of the derived parameters from the mocks. Furthermore, by approximating the

posterior distribution of the parameter set (σ12, fgσ8, bσ8) with a trivariate Gaussian, we

were able to marginalize over the other two parameters, when quoting the uncertainties.

This approach, although not ideal, provides more realistic uncertainties.

For galaxies with L & L∗ we found that the scale-independent pvd is approximately

constant with luminosity and redshift with σ12 ≈ 400 km s−1. Galaxies with L < L∗

exhibit a more complex behaviour. For the volume limited sample defined in the absolute

magnitude range −19 < Mr − 5log < −18 we found σ12 = 824 ± 146 km s−1, whereas for

the volume limited sample defined an the absolute magnitude threshold Mr−5logh < −18

we found σ12 = 442±129 km s−1. This difference is explained from the fraction of satellite

galaxies in each sample, which generally increases as we go fainter.

In order to test the scale-dependence of the pvd, we define stripes of constant transverse

separation on the ξ(s⊥, s‖) plane. Although we performed fits for all our previously de-

fined samples, we observe large uncertainties, which made the interpretation of the results

difficult. Thus, we defined a much larger volume limited sample with Mr − 5log < −20

and z < 0.22 and repeated the analysis. The pvd increased with increasing transverse

separation up to scales of s⊥ ≈ 1.5 h−1Mpc and then decreased monotonically for larger

s⊥.

Our constraints on fgσ8 derived with the approach described above are generally con-
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sistent with the concordant ΛCDM+GR cosmological model. There is however, much

room for improvement on this front. At the moment measurements of the growth rate of

structure are severely limited by sample variance, which explains why we obtained small

uncertainties for each estimation of each individual fgσ8 estimation from the mocks, yet

large scatter on the quantity 〈fgσ8〉. A recipe to avoid sample variance has been derived

by McDonald and Seljak (2009) (see also White et al., 2009), which takes advantage of

the fact that different galaxy populations, with different biases trace the same underlying

dark matter field. Application of this method would result in significantly smaller error

bars in Fig. 6.10.

7.3 Future work

Both photometric redshifts and redshift space distortions are likely to be important obser-

vational probes for the study of the most important open problems in cosmology today:

dark energy, gravity theory, dark matter and the relation between light and mass. The

study presented in this thesis left some open problems, as well as suggestions how to

overcome these problems in future work. We summarize these below.

7.3.1 Photometric redshifts

• Gaussianity of photo-z uncertainties. In this thesis we model the photo-z dependent

uncertainty with a Gaussian function, which is likely to be a simplification. It

would be important to use more realistic modeling for the photo-z uncertainties,

maybe as a sum of Gaussian functions (Ma and Bernstein, 2008), which would also

automatically account for multimodal redshift distributions.

• In reality galaxy samples split in photo-z bins will be overlapping. Thus it would be

necessary to account for the covariances between different photo-z redshift bins for

measurements of the cosmological parameters. Recent work on this subject, which

is more pressing if one is interested in measurements of the sound horizon can be

found in Sánchez et al. (2011) and Crocce et al. (2011).

• Absolute magnitude distributions for HOD modeling. We showed in Chapter 5

that our results can be interpreted within the halo models of large-scale structure.

However, halo models are constructed for volume limited samples and it is almost

impossible to do so for photo-z derived absolute magnitude, as we showed in Section
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4.3.5. A possible remedy is to convolve the HOD numbers with the observed N(M)

in order to directly compare data and theory.

• Strictly speaking, in photo-z clustering studies galaxies are not localized points in

space, but are described by probability distributions in redshift and absolute mag-

nitude instead. Ideally we would like to make use of all the available information

[i.e. the entire N(z) and N(M)] for every galaxy instead of just the (possibly in

systematic error) values z and M .

• Photometric redshift catalogues rely on the quality of the imaging data. In this

thesis we observe some contamination inssues which primarily affect our faintest

galaxy sample. In the future advanced data reduction techniques might be necessary

for the construction of even largest (∼ 107) galaxy catalogues, required by e.g. the

DES, PanSTARRS and EUCLID projects.

7.3.2 Redshift space distortions

• It is highly non-trivial to obtain the covariances of ξ(s⊥, s‖) measurements, com-

pared to an one dimensional statistic like w(θ) (Chapter 5), due to the requirement

to create numerous mock catalogues and subsequently invert very large matrices.

The required number of mocks is even more amplified by the fact that mocks with

different clustering properties are needed in flux-limited surveys like GAMA. The

use of the covariances of the fitted parameters yields more realistic uncertainties,

however we would like to have more understanding of the parameter space, than a

simple multivariate Gaussian approximation.

• The HOD is a very successful model for the small-scale galaxy correlation function

(see e.g. Zehavi et al., 2011). Although it has been translated to redshift space by

Tinker (2007) it has yet not been applied to data. Application of HOD modeling in

rsd will not only provide measurements of new dynamical parameters like the velocity

bias of galaxies, but it will also reduce potential biases on growth rate measurements

originating from incomplete modeling of the small-scale correlation function.

• Application of the McDonald and Seljak (2009) method to reduce the effects of cos-

mic variance on measurements of fg, despite the difficulties outlines above. This

requires simultaneous fit of the correlation functions (or power spectra) of two or

more galaxy populations. GAMA is suited for such a clustering analysis.
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A. Cabré, P. Fosalba, E. Gaztañaga, and M. Manera (2007). Error analysis in cross-

correlation of sky maps: application to the Integrated Sachs-Wolfe detection. MNRAS,

381:1347–1368, arXiv:astro-ph/0701393. Cited on 27, 28, 76
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