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Abstract

This thesis explores the geometric description of animal colour vision. It examines the

relationship of colour spaces to behavior and to physiology. I provide a derivation of, and

explore the limits of, geometric spaces derived from the notion of risk and uncertainty

aversion as well as the geometric objects that enumerate the variety of achievable colours.

Using these principles I go on to explore evolutionary questions concerning colourfulness,

such as aposematism, mimicry and the idea of aesthetic preference.
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Technical Terms

Throughout this thesis I have tried to avoid specialist technical terms as much as possible,

and to define them when I do use them. However, sometimes the definitions lie a long

way from a given usage. It is also fairly difficult to avoid technical terms in mathematics.

The following is a table of terms which I feel might aid the reading of this document. It

is not complete, but I hope that it helps.
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Term Definition

Geometrising Transform (coined) A transformation of a divergence to make it

obey geometric axioms

n-chromat (coined) An organism with n functioning photorecep-

tor cell classes i.e. the number cone cell types in day-

light or rod cell types at night.

Colourfulness (re-appropriated) A property of a colour similar to its

saturation but defined in terms of the colour solid.

This is different to the existing formal interpretation

of the term. Colour science has formal meanings for all

terms that might well describe this dimension making

it necessary to ‘overload’ some or other term. This

one is chosen as the existing meaning is least relevant

for this work.

Monochromat An organism that has only one functioning photore-

ceptor cell class.

Dichromat An organism with two functioning photoreceptor cell

classes.

Achromatic Vector A vector that points in the direction from black to

white

Metamer Something that has the same colour as something else

but a different visible spectrum.

Quantum Catch The number or rate of photoisomerisation events

within a photoreceptor cell.

Aposematism Colours whose purpose is to warn an organisms preda-

tors of its toxicity.

Structural Colour Colours formed by the microscopic structure of a sur-

face, not directly by absorbance of light.
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Preface

This thesis is about the geometry of colour, how it arises, what it means and what its

consequences are. Specifically, it concerns an animal’s colour vision as a factor in its

behaviour and the evolution of their species.

Geometry is a tool for intuiting abstract concepts and structures.1 But it is not merely

a tool for providing intuition; it is also a tool for description which provides a methodology

that can be used to provide concrete results. It is a practical and quantitative narrative.

This thesis is split into three parts. In the first part I look at traditional ideas of

colour. First focusing on the history of colour theory then moving on to a generalisation

of some well established concepts in colour theory. In the second part I examine the

idea of perceptual spaces - of which colour spaces are a particular example. I develop a

behaviourally justified information theoretic approach to colour space and use it to both

examine existing spaces and derive my own. In the last part I consider evolutionary

scenarios, firstly I ask why the signals found in the animal kingdom should be strongly

coloured, and secondly, I enquire into the effect of structural colours on the evolution of

warning signals.

Along with the geometric theme that runs though this thesis, there is also a focus

on judgement. Here I take the attitude that this is something we are forced to consider

when we ask questions concerning the behaviour of animals, and, that considering the

basis of our judgements allows us to better understand what it is that we are discussing,

illuminating the foundations upon which our theories stand.

1In the present case, the structures defined by information theory and physics.
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P.1 Colour and Geometry

The first part of this thesis focuses on establishing the basic ideas of colour theory and on

the large scale structure of colour spaces.

P.1.1 A Brief History of Colour Space

In this first chapter I outline the history of colour theory. I use this chapter to introduce

the concepts of colour spaces and psychophysics.

P.1.2 The Shape of Colour Spaces

Much of what people consider to be the defining properties of colour spaces is their shape.

The overall shape of a colour space is defined by the overlap of photoreceptor responses

(making some signals impossible) and by the constraints of the class of spectra that we

choose to consider. This chapter explores the properties of this shape.

P.2 Colour and Measurement

In the second major part I take the notion of behaviour as a goal directed process as

the basis of a formal derivation of models describing experiments in colour. This part is

focused on behaviour, neurophysiology, discrimination and judgement.

P.2.1 Measuring Living Things

In this chapter I aim to elucidate the meaning of information measures in terms of goal

directed action. I provide a basis upon which we can ground beliefs, goals and actions

in physical measurements. Eventually, this allows us to examine existing information

theoretic quantities and decide upon their relevance to the understanding of behaviour

and perception.

P.2.2 Geometry from Information

Beginning with the notion of a binary risk as a quantified representation of an agents

goal I derive the general form of colour distances to which any particular colour based

choice depends. These represent optimal2 decision making processes under uncertainty.

The resulting distances are information divergences and have some general properties that

2The optimality does not mean that they cannot be representative of heuristic processes. Indeed, in

some cases they definitely are.

13



distinguish them from distances as usually conceived, this makes them a much broader

class of measurement. I outline the various sub classes of these distances and note that

when it is definable they all induce the same local metric on the colour space up to a

multiplicative constant - this metric is the Fisher metric. From this we can see that the

same metric occurs in all behavioural experiments for which the goal can be expressed

as a binary risk. However, where finite colour distances are desired there is no uniquely

defined measure of distance. But, even without knowing this, something can be said

about what properties these distances should have and new behavioural predictions about

generalisations can be made.

P.2.3 Local Models of Colour Vision

This chapter focuses on the correspondence between the model I propose in the previous

section and those that currently exist. In a number of cases maximum entropy distributions

can be used to show the correspondence between the theory and existing models (such

as Chittka, 1992; Maxwell, 1860; Schrödinger, 1920; Vorobyev and Osorio, 1998). I also

examine a case where uncertainty is removed (a deterministic limit) showing that the

topology of the space induced by the metric is not what we would require from a colour

space that matches either our notions of colour or physical plausibility. I claim that

non-statistical spaces such as the Honeybee-Hexagon space of Chittka (1992) either make

implicit assumptions or are otherwise unfounded. To remedy this I calculate the metric

corresponding to a saturating photoreceptor from basic statistical principles. To finish

with, I examine some general properties of the models discussed and observe that all have

minimum discrimination information around the achromatic point. I also classify colour

spaces by their ability to saturate, noting that most existing models do not have this

property and that of those who do, excepting the model I provide, none are based on

physical properties.

P.3 Colour in Nature

The last part of this thesis is about colour as a factor in evolution, particularly in animal

communication.

P.3.1 The Colourfulness of Signals in Animal Communication

In this chapter I discuss the reasons why animal signals should be colourful. I argue that

colourfulness should be valued in a similar way by all organisms on the basis of its ability

14



to inform. I argue that the degree of colourfulness allows us to judge the affordance of

a given object. I present a number of cases where this is important, and argue that this

kind of judgement – one that is made by all organisms in the same way – is a reason why

we should think that Darwin is justified in using the word beauty in his works.

P.3.2 Structural Colours in Batesian Mimicry

The physical basis of structural colours is rather different to that of pigments. Humans

observe this difference as the physical parameters affecting only the hue of a colour. This

property serves as a source of non-linearity in evolutionary processes. Here, I visualise

this in a simple model of structural colours and discuss the implications for mimicry and

the formation of waring colours.
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Part I

Colour and Geometry

16



Chapter 1

A Brief History of Colour Space

“Theres logic of colour, damn it all! The painter owes allegiance to that alone.

Never to the logic of the brain.”

Paul Cézanne

(Cézanne: a memoir with conversations, Joachim Gasquet)

1.1 Aristotle

Probably the most general definition of a colour space is “a geometric representation of

colour”. In this sense, colour spaces have a long history, dating back at least as far as

ancient Greece. Aristotle provides us with one of the earliest examples by describing an

ordering relationship for colours:1

[...] colour has specific differences: therefore blackening and whitening differ specifi-

cally; but at all events every whitening will be specifically the same with every other

whitening and every blackening with every other blackening. But white is not further

subdivided by specific differences: hence any whitening is specifically one with any

other whitening. Where it happens that the genus is at the same time a species,

it is clear that the motion will then in a sense be one specifically though not in an

unqualified sense [...]

Aristotle

Physics (∼350BC)

Book V, Part IV

See: Hardie and Gaye (1994)

1Although an ordering may be considered pre-geometric, he then goes on to associate colours with

rational and irrational numbers.
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He considered there to be a scale of colours, with a unique white at one end and one

unique black at the other. These being related by processes which have been translated

as “blackening” and “whitening”. The exact nature of these processes were a matter of

debate during his time, as was the nature of colour itself.

The notion of a colour space was not explicitly discussed by Aristotle, but he did

approach the subject of colour in a manner which allows one to be defined.

This being the true nature of mixture, it is plain that when bodies are mixed their

colours also are necessarily mixed at the same time.

Aristotle

On Sense and Sensible Objects (∼350BC)

Part 4

See: Beare (1994)

Here he mentions what we now may consider to be the defining property of colour spaces

(and psychophysical spaces in general) - a relationship between something physical and

something perceived. Aristotle uses the physical processes of mixing to provide a process

that changes objects in some quantifiable way2 and then states that colours change in way

which reflects this. The exploration of a physical parameter with an apparent quantity

is explicit, therefore it seems reasonable to interpret Aristotle’s “On Sense and Sensible

Objects” as an investigation into the nature and consequence of this relationship, making

him a very early pioneer of colour spaces.

1.2 The Renaissance

From the end of Classical Greece3 to the beginning of the modern period there are few

known descriptions of colour spaces.4 Though there are exceptions, such as the space of

2Mixing is thoroughly explored by Aristotle. In his philosophy, in which all things are constituted by a

finite number of atoms, mixable things may be mixed in integer ratios of their constituent parts. Degrees of

mixing may be quantified by a rational number between zero and one. This approach to mixing is evident

throughout “On Sense and Sensible Objects” (Beare, 1994). It is not unreasonable then, given that he

describes elsewhere that certain colours correspond to irrational numbers, that we could construct a colour

space with axes corresponding to the rational contributions of each fundamental (irrational) colour i.e. a

space isomorphic to {1...ni}m :
∑
i ni = N for some number of unique colours m. This is contrary to the

popular belief that he thought colours to be a ‘product’ of black and white.
3Alexander the Great, whose death is often taken to be the end of the Greek Classical period, died in

323 BC and Aristotle in 322 BC.
4Whether this is due to a general bias in scholarship towards the classical and modern periods, or

genuinely reflects the evolution of colour theory is for someone more versed in history to decide.
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Robert Grosseteste (ca. 1170-1253) which has recently drawn attention (Smithson et al.,

2012).

Although geometry as a tool for understanding nature had existed since early Classical

Greece, in the Renaissance it found a new role in perspective theory. Using geometrical

theory the objective laws of the three dimensional space that people inhabit and can

measure were transformed into egocentric laws on a two dimensional plane.5 The laws of

perspective found a central role in the painting of the time (Ackerman, 1980) and formed

the basis for (at least one) architectural theory (Argan and Robb, 1946; Wittkower, 1953).

It is probably not unfair to cite perspective as the oldest example of a geometric and

psychophysical law.

It was in the mid 15th century Leon Battista Alberti published his well known colour

system.67 This system used four highly saturated ‘primaries’ whose combination was

desaturated either with black or white depending on whether the current portion of a

paintings subject was in light or shade (Bomford, 1995). The dislike that the Quattro-

centos8 had of dull painting lead Alberti to design this system in such a way to optimise

the vividness of colour: “we all by nature love things that are open and bright; so we

must the more firmly block the way in which it is easier to go wrong” (Ackerman, 1980).

White and black were known to make colours less vivid, so they were added at the latest

possible point. This leads us to naturally identify the first mixing (before addition of

black or white) with the plane that in modern colour spaces that we would now describe

as containing the colours of highest saturation. This system allows identification with

features of many of the reflectance based colour spaces that are used today: a (hyper)

plane consisting of the colours formed by the optimally saturated primaries provides a

base for a bipyramid with the unique black and white points lying at the tips - the colours

desaturating, and their variety decreasing, the nearer one moves to them.

The system of Alberti was still procedural, retaining in many ways the ‘blackening’

and ‘whitening’ of Aristotelian tradition (as Aristotle was the only work available at the

5It has been theorised that the subjective laws of perspective were favoured as a basis for architecture

and painting, as it was thought that æsthetic value is bought about by the subject and that ‘simulating’

the subject, or at least, drafting or painting in a way that reflects qualities of subjective experience, results

in a work of greater value (Argan and Robb, 1946).
6I use ‘system’ in the original sense of a method by which one adds coloured paint to a canvas, as

opposed to the more scientific interpretation as a systematic arrangement of colour.
7He was, of course, not the only one to publish a colour system, but for the sake of brevity it will be

the only system I discuss here.
815th century Italian artists.
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Mixing of
Primaries Desaturation

Figure 1.1: The colour system of Alberti. This shows the mixing of a lilac type colour (the star).

First, the purest possible colour was mixed from four primaries, represented here in a tetrahedron.

This colour is then desaturated by mixing black or white (white in this example). The tetrahedron

from the first mixing is shown projected onto a line bisecting pure white and pure black with the

body of the bipyramid containing all mixable colours being projected onto a diamond.

time Ackerman, 1980). It is not until after the Renaissance that we begin to see explicitly

geometric colour spaces. However, it is good to remember that it was this period that

saw the first use of geometry as a means to understand visual perception as well as the

accurate documentation of gross features of colour spaces (in the form of colour systems).

1.3 The Enlightenment and Industrial Revolution

1.3.1 Newton and Goethe

Issac Newton is well known for his studies on light and a large part of his work was

the study of the colour formed by thin films and prisms. Newton described light as a

continuum of vibrations, using his study of the phenomena of thin film interference and

dispersion to describe the visible part of the electromagnetic spectrum (Newton, 1665).

This physical understanding of light proves an indispensable tool for the description of

colour. One can even consider the representation of the electromagnetic spectrum in figure

1.2 to be a colour space of kinds - in the sense that it maps a physical parameter to colour.

Of course, this space does not pretend to represent the entirety of the colours which can be

seen. Any light reflected from or transmitted through an object has a spectral composition
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(an intensity value at every wavelength) which is determined by its physical properties and

the spectral composition of the light incident upon it.

Dispersion, the phenomenon that Newton is most well known for investigating, provides

a way of spatially separating wavelengths of light so that the intensity of each wavelength

can be seen in isolation, the wavelength dependent nature of the intensity can then be

observed spatially, for example in the thin dark (absorbance) bands seen in a sufficiently

resolved spectrum of solar radiation. Colour is represented in space.

Wavelength

Figure 1.2: The visible spectrum. This representation can be seen as a mapping from the physical

parameter (wavelength) to colours.

In a story about colour one cannot talk about the work of Newton without dis-

cussing the work of his ‘opponent’ Johann Wolfgang Von Goethe (although Goethe lived

much later). Whereas Newton’s understanding was physical and (arguably) reductionist,

Goethe’s understanding was at the phenomenological level; for example, where Newton

considered darkness to be simply an absence of light, Goethe considered darkness to be a

phenomenon of equal stature to - and with the same primacy as - lightness (Duck, 1988),

see figures 1.3 and 1.4. Whilst this ‘reification’ of darkness was a major point of contention,

what really separated the two was their modes of explanation. Goethe described many

qualities of colour where on its own the Newtonian understanding of light was insufficient

and a more holistic approach must be taken (such as phosphenes and the reddening of

the visual field in hypoxic conditions; Theory of Colours, Eastlake trans. 1967). In many

ways, the two were interested in very different things.

Unlike in the Renaissance, where the scientific understanding of perspective provided

a harmony to the relationship between nature and personal experience (Argan and Robb,

1946), the conflict between the ideas of Newton and Goethe reflects as dissonance be-

tween the physical and the mental. Goethe’s attack on Newton’s ideas stemmed from his

awareness of the phenomenological complexity of colour - a complexity that we are far

from explaining even today. Nonetheless it is Newton’s work, not Goethe’s, that forms

the basis of the modern scientific understanding of colour. The work of Goethe simply
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Dark

Dark

Dark

Dark

Figure 1.3: A representation of Goethe’s argument against Newton’s theory of colour. Here I

have represented the dispersion of three light sources illuminating a prism from the right: short

wavelength (blue), long wavelength (red) and a mixture of the two (purple). In the case of the

mixture, pure red and pure blue are only seen in the areas which are not illuminated by the other

wavelength. When considering a white light source, such as daylight, this has the consequence

that colour is only observed in the ‘dark fringes’ of the transmitted beam. It is because of this

that colour can be seen to occur where light and dark interact, see figure 1.4.

Fig. 1. PLATE IV

Figure 1.4: Figure from Theory of Colours (Eastlake, 1967) showing how colour occurs in the

dark fringes of a transmitted beam. This is similar figure 1.3 but applied refraction of sunlight.

[public domain image]

stands as a reminder that our scientific understanding of colour accounts for only a small

part of our experience of it.

During the 17th and 18th there were a number of geometric conceptualisations of colour

(see Shmid, 1948, for a concise account of the spaces of this period). Both Newton and
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Goethe created colour spaces where hues were arranged in a circle, and a number of other

geometric orderings of colours arose at this time. All of these were orderings of colour by

empirical or procedural9 similarity, rather than being based specifically on physiological

knowledge. It is not until the development of trichromacy do we begin to see any significant

physiological contributions to the geometry of colour spaces.

1.3.2 Trichromacy

In the 19th century, Thomas Young, and later Hermann von Helmholtz developed what

is now known as the Young-Helmholtz theory of trichromacy. In this theory a colour is

described by a triple of numbers determined by the relative intensity of light in different

parts of the visual spectrum. After discussing Newton’s theory of resonating particles

in the retina10, Young explained colour as the resonance of three types of particles with

greater or lesser tendency to resonate with light of particular frequencies:

[As] it is almost impossible to conceive each sensitive point of the retina to contain

an infinite number of particles, each capable of vibrating in perfect unison with every

possible undulation, it becomes necessary to consider the number limited, for instance,

to three principal colours, red, yellow and blue, of which the number of undulations

are related in magnitude nearly as the numbers 8,7,6; and that each of the particles

is capable of being put in motion less or more forcibly [...]

The Bakerian Lecture: On the Theory of Light and Colours

See: Young (1802)

von Helmholtz (1896) took this idea further and provided a description of the sensitivity

of each class of particle (now known to be opsin molecules) as a function of wavelength.

The currently favoured choice of these functions are shown in figure 1.5. These functions

correspond to the classes of cone cells within the human retina each of which contain only

a single type of opsin. The degree to which each cell is activated for a given spectrum is

9Such as the process of pigment mixing used in the tetrahedral space (Farben-Pyramide) of Lambert

(1772).
10My terminology. Newton originally conceived of rays of light as inducing superluminal vibrations

in the æther. He then abandoned the vibrations of the æther in favour of vibrations of the medium in

which they were travelling, i.e. light caused vibrations in whatever it was passing through. Newtons final

understanding of light, however, was that instead of the vibration of the medium that it - or the medium

in which it was travelling in - fell into ‘fits’ (periodic tendencies named after recurring fevers - paroxysma

- of certain diseases especially malaria) which determined the ease of reflection or transmission (Shapiro,

1993, chap 3).
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given by the summation of the intensity of light at each wavelength after multiplication

by the sensitivity of each cell type to that wavelength. Formally, we write this as:

qi =

∫
Λ
wi(λ)s(λ)dλ (1.3.1)

where i indexes the cone type (for humans long, medium or short). The triple of numbers

(vector) q is known as the quantum catch and can be thought of as a physical description of

the colour. w is a weighting function (cone fundamental, see figure 1.5), s is the spectral

composition (or just “spectrum”: a positive real number at each value of λ). λ is a

particular wavelength and Λ is the set of all wavelengths where the functions w and s

are defined. This can also be written in terms of wavenumber, or frequency by change of

the measure dλ. Generally, it is expedient to take wi to be dimensionless and s to be in

units of photons per time per wavelength. With a vector representing colour, we have the

necessary starting point for a physiologically based geometric account of colour.

Equation 1.3.1 is fundamental to any relationship between physical parameters and

colour. It is minimal. It relates the most physical thing that one might reasonably accept

as colour (the quantum catches) and the most colour like thing that one might reasonably

accept as purely physical (spectra)11.

Towards the end of the 19th century we have a theory of colour which is defined

in terms of the physical and physiological understanding of the day. With this, we see

the continuation of a trend that began with Newton. As the physical basis of colour

became more and more understood, theories of colour became theories of physics, and the

representations of colours became the representations favoured by physicists.

The colour space of James Clerk Maxwell sums up the progress made by 19th century

understanding of colour. He maps colour to plane by normalising quantum catches by the

sum of quantum catches (Maxwell, 1860), visualised in 1.6:

ci =
qi∑
i
qi

(1.3.2)

This projects all colours onto a triangle, which can then be viewed in two dimensions.

In the colour space of Maxwell the spectrum (which can be thought of as a one-

dimensional colour space) is a one dimensional locus - known as the spectral line, or,

monochromatic locus. This defines a boundary in which all colours lie12.

11Of course, the physics/colour dichotomy is not well defined, I use these terms more descriptively than

with any rigour. If pushed I would have to admit that this is not, in the sense described, as minimal as
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Figure 1.5: Modern functions used to determine the long wavelength (red), mid wavelength

(green) and short wavelength (blue) coordinates of certain human colour spaces. These curves are

psychophysically determined and thus do no correspond directly to quantum catch other than as

a rough approximation. Shown here are the 2o cone fundamentals of Stockman and Sharpe (2000)

in units of photons per wavelength.

1.3.3 The Rise of Psychophysical Theory

Around the same time as Helmholtz, Ernst Heinrich Weber and Gustav Fechner were start-

ing a new branch of psychology: psychophysics. Their goal of was to measure perceived

difference as it relates to physical difference. The most well known results are Weber’s and

Fechner’s laws13, which have been shown to occur in multiple modalities and tasks. The

general form of both their laws, the Weber-Fechner law has been implicated in everything

one might hope.
12All spectra can be thought of as convex combinations of monochromatic lights. As all quantum

catches are linear projections of spectra, colours are convex combinations of the colours corresponding to
monochromatic lights. Before projection, all colours lie within a “cone” with a boundary of monochromatic

lights at various intensities. When further projected using a perspective transform, they are found to lie

within the the convex hull of the monochromatic locus (spectral line). See chapter 2 for a derivation
13Often just called the Weber-Fechner law
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Figure 1.6: Illustration of the formation of Maxwell’s triangle. The normalisation by the sum of

quantum catches (q) moves them onto a (subset of a) triangle with corners at (1, 0, 0), (0, 1, 0) and

(0, 0, 1). The points in this triangle corresponding to a particular q are labelled c. They are also

given by the intersection of the triangle with a line from q to the origin.

from numerical cognition (Dehaene, 2007) to cell signalling (Cope, 1976). It has even been

suggested that it is a general property of neurons14(Deco and Rolls, 2006). One can state

Weber’s law as “the ability to discriminate stimuli is proportional to their magnitude”

and Fechner’s law as “the perceptual distance between two stimuli is proportional to their

magnitude”. They both admit the same formal representation, differing only in the as-

sertions made about the domain of its applicability. A common form of the Weber and

Fechner laws is:

∆x = kx (1.3.3)

Where ∆x is a physical difference between any equally discriminable (or perceptually dif-

ferent) quantities with (mean) magnitude x and where k is a constant of proportionality.

Although both Weber’s and Fechner’s laws are very similar, they are none the less very

different in their application, one is about discrimination - the ability to tell two things

apart - the other is about perceptual distance - a judgement of difference. Discrimination

can be used to great effect and its description with Weber’s law is rather robust. Contrary

to this, Fechner’s law is more difficult to find or apply. In the theory of colour, there has

14There is obviously no reason to believe this.
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Figure 1.7: Maxwell’s triangle. The large triangle represents all possible positive quantum catches,

not restricted by what is achievable by actual spectra. The curve with marked wavelengths is

the spectral line, this contains all colours made by monochromatic lights - some wavelengths are

marked. The line shown in purple is known as the purple line (as it bounds the area containing

pinks and purples), this is a boundary too, but no monochromatic light corresponds to it - it is

defined by the convex combinations of the two points flanking the concavity in the spectral line

between the short and long loci.

been much success in the application of discrimination based measures, but, little success

in finding long distance measures. The subject of chapters 3, 4 and 5 is the characteri-

sation, formalisation and application of both discriminative (Weberian) and judgemental

(Fechnerian) psychophysical theory by applying information theory to a general model of

agency.

1.4 20th (and 21st) Century - Differential Geometry

Beginning with von Helmholtz (1896) and Schrödinger (1920) colour was described using

the mathematics of differential geometry, specifically Riemannian geometry - a framework
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which at the same time found central importance in the field theories of physics (a famous

example of which is Einstein). Using Riemannian geometry, a fairly general (but not

completely general!) relationship between a physical parameter and the perception of

colour is described. This found a niche when describing perceptual distance: one could

get some data about discrimination and then transform a space so that instead of the

physical parameter being uniformly spaced, the perceptual space is uniform; euclidean;

flat15. Doing this may or may not lead to a closed form equation that allows one to

express the psychological space in terms of the physical space, but regardless of whether

it can be easily written down, such a relationship will always exist.

The Riemannian approach has been the basis for many modern models of colour, most

notably the empirical CIE L*u*v*colour space (industry standard: referenced as CIE,

1976) and has (fairly) recently been used outside of human colour vision by Vorobyev and

Osorio (1998). However, there are still some problems with these spaces. Riemannian

geometry is especially good at describing small changes in colour, but when it comes

to larger changes such models are found lacking - optimal long range metrics are non-

Riemannian (see Backhaus et al. (1984) or even Von der Emde and Ronacher (1994)).

Distance between colours are not the standard geodesics of Riemannian geometry, even

though geodesics seems to have some relevance (Schrödinger, 1920; Wyszecki and Stiles,

2000).

Yet, Riemannian geometry is only one of many geometries and its use up to now has

been more of an empirically tested postulate than theory driven application. It is the

purpose of chapter 4 to show where Riemannian geometry is, and is not, a natural form

for colour spaces to have.

15Flat meaning affine, not meaning without intrinsic curvature. Colour spaces are usually flat in the

intrinsic sense
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Chapter 2

The Shape of Colour Spaces

“Would it be conceivable for someone to see as black everything that we see as

white, and vice versa?”

Ludwig Wittgenstein

Remarks on Colour, McAlister and Schättle trans.

The purpose of this chapter is twofold. First of all, this chapter is intended to give

a background to the mathematics that will be used in the later chapters. Colour science

has various formalisations for many of the quantities that it uses, being explicit about the

formalisation is used is a necessity, especially as the formalisation here is non-standard

in some places. Research in colour vision has a human bias, not surprisingly: The impli-

cations for cognitive psychology and philosophy of mind are of great concern and Homo

sapien is the ‘model species’ in these fields. Here I define quantities that avoid this human

bias. The aim here is to provide geometric models without reliance upon any particular

photoreceptor absorbances or their number. Some of the work here is part of the day

to day business of colour scientists and has been thoroughly studied in humans. The

generalisations of these concepts, whilst fairly simple, is either ignored or mistaken.

The second purpose of this chapter is to investigate the similarity between the colour

vision of various organisms. This of course relies on the existence of measures which can

be equally applied to all organisms. I wish to highlight one similarity in particular – the

similarity between ‘colourfulness’ in various organisms. This concept will be of use later

on in this thesis.

The focus here is the large scale geometry of colour spaces. Because the spectral

sensitivities of photoreceptors overlap the locus of possible signals is non-trivial - we cannot

excite one type of photoreceptor without exciting another, making some values of responses
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are impossible to achieve. This chapter explores the geometry of the possible signals and

problems related to this geometry.

2.1 Definitions

This section outlines some notation, C for the convex closure of a set (elsewhere called the

hull) and H for the minimal set of points which when closed is equal to a given convex set

(which, in line with usage in computer science, I will call the convex hull). It also explains

the inner product notation 〈·, ·〉, which is completely conventional and can be found in

many places (e.g. Amari and Nagaoka, 2000). Those familiar with these may wish to skip

to section 2.2.

2.1.1 Convexity

The concept of convexity is fundamental to the proceeding chapter. A subset of a vector

space is said to be convex if for any two points (vectors) in the set that are chosen every

point in between them is also in the set. More formally, a convex set S has the property:

x,y ∈ S =⇒ (1− k)x + ky ∈ S (∀x,y ∈ Rn, ∀k ∈ [0, 1]) (2.1.1)

The use of convexity in this chapter is of a set (in a vector space) and different to the

convexity of a function used in chapter 41. A convex function is simply a one-to-one

function where the set of points above the curve is convex.

Figure 2.1: Convex constructions: a) A set in R
2 b) The minimal convex covering of the set c)

The points in the convex hull.

The definition of convexity naturally leads to the idea of a (minimal) convex covering,

also known as the convex closure of a set of vectors. The convex covering can be defined

1Formally, f is a convex function iff for some domain X, ∀x, y ∈ X, k ∈ [0, 1] : f(kx + (1 − k)y) ≤

kf(x) + (1− k)f(y), it is said to be strictly convex if the inequality is strict (< instead of ≤)
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for all sets of points. This is created by the inclusion of all the convex combinations of

points that were not in the original set. The convex covering of S, C(S), can be written

as

C(S) =

{∑
x∈S

kix :
∑
i

ki = 1, ki ∈ [0, 1]

}
(2.1.2)

In mathematics, this is often called the convex hull, however, in computer science where

one must use effecient representations there is another meaning of this term, which is the

one I will use here. The convex hull of a set is the set of all points in the convex covering

of that set which are not convex combinations of other points. My usage here differs from

the usual usage, where the convex closure and the hull are one and the same; here I use

‘hull’ and ‘closure’ or ‘covering’ to make the distinction between the set of points needed to

describe a convex set and that set itself. The points of the convex hull are the ‘extremities’

of the set. The convex hull H(S) of a set S (in the computer science sense of a minimal

representation) is therefore defined as

H(S) = {x ∈ C (S) : x 6∈ C (S \ {x})} (2.1.3)

it is possible to show, though I shall not do so here, that

C(S) = C(H(S)) (2.1.4)

and that:

H(S) = H(C(S)) (2.1.5)

H(S) = H(H(S)) (2.1.6)

C(S) = C(C(S)) (2.1.7)

With equations 2.1.4 though 2.1.7 we can see that any composition of the functions C and

H is equal to the outermost function.

2.1.2 Inner Products

There are two intimately connected mathematical representations of the spectra of light.

One is as a function of wavelength, the other is as a vector containing the intensity at

particular wavelengths. If the vector were infinite then the two would be (at least infor-

mally) the same. In this spirit, we say that spectra belong to the positive half of an infinite

dimensional vector space, informally [0,∞)∞ = R∞+ .

The two representations are valid because they are both inner product spaces. It is

the inner product that really matters. For this reason I shall only use notation for the
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inner product, and avoid specific sum/integral representation whenever possible. The

inner product between two vectors is given by:

〈A,B〉 =
∑
i

AiBi (2.1.8)

There is an integral equivalent. Spectra can be described as functions of wavelength, more

specifically, they are densities with respect to a Lebesgue measure dλ. All the functions of

wavelength discussed here are, in this sense, spectra. For this reason we define the inner

product as:

〈a, b〉 = 〈a(λ), b(λ)〉 =

∫
Λ
a(λ)b(λ)dλ (2.1.9)

In this form, the quantum catches [qi] for a particular incident spectrum are given by

qi =
〈
wi, s

〉
(2.1.10)

can be thought of a linear projection from the infinite dimensional space of spectra to the

lower dimensional quantum catch space. This projection is not in general orthogonal as

the response functions wi are not (they overlap to some extent):

kij =
〈
wi, wj

〉
6= 0 (2.1.11)

For this reason, quantum catches for an n-chromat inhabit a subspace of Rn+. This subspace

is cone-like with its apex lying on the origin (the ‘black point’).

2.2 The Spectral Line and Chromaticity Spaces

Before I move on to the main topic of this chapter – the properties of colour solids – I will

briefly describe the properties of the more standard notion of chromaticity spaces, and

their formulation for a general observer with n photoreceptor classes.

The spectral line is a fundamental object in the study of colour. If we are treating

the space of spectra as a vector space it is formed from the projection of basis vectors

corresponding to Dirac deltas. Here, I shall write it as the parametric curve (γ(λ), λ ∈ Λ)

given by the inner product:

γi(λ′) =
〈
wi(λ), δ(λ′ − λ)

〉
= wi(λ′) (2.2.1)

where δ is the Dirac delta. I include this step to show the trivial relationship between

the spectral line and the response functions, which are equal formally, but have different

meanings.
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Figure 2.2: The relationship between the quantum catch space and the chromaticity space.

The spectral line can be thought of as the locus of all monochromatic spectra with

unit intensity2. If we allow arbitrary intensity then the surface:

ui(λ, µ) = µγi(λ), µ ∈ R+ (2.2.2)

contains all such spectra. Further, we can demonstrate that convex closure of this surface

is equivalent to the set of quantum catches associated with every possible spectrum. The

quantum catch of a convex combination of the monochromatic spectra of unit integrated

intensity3 can be written:

qi =
〈
γi(λ), s̄(λ)

〉
(2.2.3)

with s̄ being a member of the collection of normalised spectra, i.e. spectra such that

〈s̄(λ), 1(λ)〉 = 1 (2.2.4)

Now, if we let spectrum s, of arbitrary intensity, be given by:

s(λ) = νs̄(λ) (2.2.5)

2Though, like the Dirac delta, a completely monochromatic light is only an idealisation
3i.e.

∫
Λ
s̄(λ) = 1.
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it will have a quantum catch of:

qi =
〈
wi(λ), s(λ)

〉
(2.2.6)

which we decompose into ‘intensity’ ν and a normalised spectrum s̄

=
〈
wi(λ), νs̄(λ)

〉
(2.2.7)

which is trivially related to the spectral line through equation 2.2.1:

=
〈
γi(λ), νs̄(λ)

〉
=
〈
νγi(λ), s̄(λ)

〉
(2.2.8)

which allows us to define a vector valued function u of wavelength and intensity. u defines

the cone in 2.2.

=
〈
ui(λ, ν), s̄(λ)

〉
(2.2.9)

Now, the operation 〈·, s̄〉 denotes a convex combination in the sense that each value in s̄

can be thought of as a weight in a weighted sum of the values of u and where
∑
s̄ = 1. In

other words in set notation we have

{q} =

 ∑
x∈{u}

six :
∑

si = 1, s ∈ [0, 1]

 (2.2.10)

corresponding to the definition of a convex covering of the set of all values of u (equation

2.1.1). So, we see the quantum catch for every spectrum can be written as a convex

combination of points on the surface u (as required).

2.2.1 Chromaticity Space Projection

The cone given by u(λ, ν) is a fundamental object in colour spaces, the projection of it

through it’s apex gives a class of spaces that describe chromaticity (colour in directions

other than its intensity).

Instead of normalising with respect to a uniform spectrum (1). We can uniquely write

a spectrum in the form normalised with respect to any spectrum l(λ) > 0:

s(λ) = νs̄(λ), 〈s̄(λ), l(λ)〉 = 1 (2.2.11)

. Which implies that

〈s, l〉 = ν (2.2.12)

We can then consider l(λ) to be a generalised measure of luminance. We can also, given

the photoreceptor responses, relate l(λ) as a luminance vector in quantum catch space
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(i.e. as a vector of ‘colours’, not respresenting a spectrum), b = [bi], so that b is a solution

to

〈w(λ), b〉 = l(λ) (2.2.13)

Note that b does not uniquely define a given l. A corollary of this is that

ν = 〈s, l〉 = 〈s, 〈b, w〉〉 = 〈〈s, w〉 , b〉 = 〈q, b〉 (2.2.14)

so:

〈s̄, l〉 =
〈 s
ν
, l
〉

=
〈 s
ν
, 〈b, w〉

〉
=
〈〈 s

ν
, wi
〉
, bi

〉
=
〈 q
ν
, b
〉

=

〈
q

〈q, b〉 , b
〉

(2.2.15)

The coordinates
[
qi

〈q,b〉

]
found on the left hand side of the last inner product are what I

will call embedded chromaticity coordinates,4 these have the property that:〈
q

〈q, b〉 , b
〉

=
〈q, b〉
〈q, b〉 = 1 (2.2.16)

Which implies that they describe points within a plane in the quantum catch space. Given

that all quantum catches are positive, we can say that not only are they in a plane, but

in a simplex of dimension n − 1. In the case where b = 1 this is the unit simplex. The

representation of all colours fall within this simplex, in fact they lie within the subset of

the simplex

q

〈q, b〉 ∈ C
({〈γ(λ), w〉
〈γ(λ), b〉 : λ ∈ Λ

})
⊆ C

({[
biδij

]
: j = 1, 2 . . . n− 1

})
= Simplex (b) (2.2.17)

This states, importantly, that all points in the chromaticity space lie within the convex

closure of the chromaticities of the spectral line.

2.2.2 Reducing the Dimension

The embedded chromaticity coordinates are usually projected into a (n− 1)-dimensional

space for efficiency of representation.

I shall call the new coordinates c = [ci]. So we have

c = 〈Pn, q〉 (2.2.18)

4I use the term embedded chromaticity coordinates as at this point we are still working in an n dimen-

sional space for an n-chromat. We have projected into a plane so have a redundant dimension which is yet

to be removed.
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where Pn is a n-by-(n − 1) projection matrix. In the commonly used CIE xy space, this

is not an isometric projection. The projection is the 2-by-3 matrix:

P3 =


1 0

0 1

0 0

 (2.2.19)

When comparing different visual systems an isometric transformation is better. Distances

and angles are important and isometric projections are well behaved and simply defined for

all dimensionalities. This is not a necessity, but ‘good practice’. Such transformations are

uniquely defined up to rotation. For this, we can choose any matrix that can be expressed

as:

P = PnK (2.2.20)

where K is a orthogonal transformation which transforms the luminance vector b to the

last basis vector, en, so:

1K = en (2.2.21)

and Pn is a n-by-(n− 1) projection matrix:

Pn =

 Id

0

 (2.2.22)

so that Pnen = 0. In other words, we transform quantum catch coordinates so that the

luminance is only in a particular direction and then ignore the corresponding dimension.

2.2.3 The Interpretation of Chromaticity Spaces

Chromaticity spaces are commonplace in colour science and as such are often used as a

basis for comparative arguments. It is an unfortunate property of geometric representa-

tions of colour that their provision of an intuitive visualisation is also a means by which

one may forget that ultimately we require a justification beyond the geometry, and, that

the power of a geometric representation is exactly that of the motivation used to produce

it.

I mention this because of a widespread misconception in comparative colour vision.

This concerns spectral and non spectral colours. We know (very) approximately, that the

spectral line traverses the corners of an (n − 1)-simplex, for example, in human colour

vision, it travels approximately from red to blue via green (see figure 1.6), leaving one
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edge (red-blue) mostly unvisited. We see similar features in a a tetrachomatic space; in

which case there are three unvisited edges, a pentachromatic space where there are six

and in an n-chromatic space there are 1
2(n − 1)(n − 2) unvisited lines. The spectral line

would follow these edges of a tetrahedron perfectly if the photoreceptor response functions

overlapped only with those neighbouring them in the wavelength domain.
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Figure 2.3: Photoreceptor response curves used to make the chromaticity space in figure 2.4.

This quality has lead to an unusual mythology concerning colour spaces, an example

of which is found in Thompson (1995, chap 4.) and the references therein. In particular I

take issue with numerological statements such as:

While in a man’s chromaticity diagram there is only one intermediate colour [...]

namely purple, in tetrachomatic vision there would be three.

Burkhardt and Maier (1989)

See: Thompson (1995)

A clarification of ‘how many’ non spectral colours there are on the outside of a colour

space is needed.
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Figure 2.4: The chromaticity space corresponding to the curves in figure 2.3. The green area

corresponds to a two dimensional surface of the chromaticity space, just as the curves and lines do

in figure 1.6.

The spectral line is always a one dimensional line. The dimensionality of the surface

of the n-chromat chromaticity space is always n − 2 as it is the surface of a bounded,

convex volume within a n− 1 dimensional simplex. It is pretty clear from this that there

will be, informally, no non-spectral colours for and dichromats, the same ordinality for

trichromats (n − 2 = 1), and infinitely more non-spectral colours than spectral lying on

the surface when n ≥ 4. Also, we can see in figure 2.3, that there is no reason to assume

that the spectral line will lie on the surface of the chromaticity space in its entirety -

the line between blue and purple is non-spectral. The distinction between spectral and

non-spectral colours is rather artificial, and is only made so that we can calculate the form

of the chromaticity space so that later we can look at where within it spectra lie.

The attraction to thinking about spectral an non-spectral colours is motivated by
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human colour vision, where the purple line (the non-spectral locus for trichromats) has

special significance - there is a qualitative similarity5 between it and the spectral line.

However, this similarity does not exist for non-trichromatic organisms. I will not use

chromaticity spaces in the rest of this thesis, I include them here as they are the most

widespread representation of colour and the geometry of their construction reflects much

of the geometry in this chapter.

2.3 Colour Solids

The colour solid, or object colour solid, is the collection of quantum catch vectors possible

under a constant observer and illumination (Wyszecki and Stiles, 2000).6

The quantum catch for a surface with reflectance7 r(λ) under illumination l(λ) is given

by:

qi = ki
〈
wi, rl

〉
= ki

〈
r, wil

〉
=
〈
r, kiwil

〉
(2.3.1)

where each ki is a normalisation constant equal to 1/
〈
wi, l

〉
.

The definition of the colour solid is then given by:

S (w)
def
=
{〈
r, kiwil

〉
: r ∈ R

}
(2.3.2)

where R = [0, 1]∞ is the space of all reflectance spectra. This is effectively the

linear projection of a hypercube of infinite dimension. It is possible to write R as convex

combinations of points in {0, 1}∞ = T. In other words, T is the set of all spectra with

either complete or zero reflectance at any given wavelength, from which all reflectances

can be produced by convex combination (a weighted and normalised sum). T can be

interpreted as the set of all vertices of the infinite dimensional hypercube containing all

reflectances, R. The geometric interpretation of R and T should make it clear that R is

the convex covering of T:

R = C (T) (2.3.3)

and that T is the convex hull of the reflectances:

T = H (R) (2.3.4)

5We can use the same Lebesgue measure.
6Here, for simplicity, the colour solid of an n-chromat is normalised to lie within the unit n-cube.
7Reflectance spectra are bounded above and below, so r ∈ [0, 1]∞.
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Figure 2.5: Various views of the honeybee colour solid. It is coloured according to the direc-

tion of vectors normal to the surface, not by actual colour, although there is some qualitative

correspondence. Here, like in the rest of this section, I assume that the illumination spectrum is

uniform.

Before I continue, I need to mention the action of projections upon convexity. As men-

tioned above, a point b is convex combination of a and c iff b = ka + (1− k)c, k ∈ [0, 1].

Now, if we take the linear projection under P of b we see that:

Pb = P (ka + (1− k)c) = k(Pa) + (1− k)(Pc) (2.3.5)

in other words, the projections of convex combinations of points are the convex combina-

tion of their projections. This means that we have the following relations for the convex
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n = 2 n = 3 n = 4

n = 5 n = 6 n = 7

Figure 2.6: Projections of hypercubes of increasing dimension. With the appropriate projection,

the outer boundary forms a colour solid. n is the dimensionality of the hypercube. As we in-

crease the dimension of the cube our projection becomes increasingly similar to a colour solid in

appearance.

covering and hull:

{Py : y ∈ C (X )} = C ({Px : x ∈ X}) (2.3.6)

{Py : y ∈ H (X )} = H ({Px : x ∈ X}) (2.3.7)

From the definition in equation 2.3.2 we see that this implies that the colour solid for a

given set of photoreceptor responses w and illumination S (w, l):

S (w, l) =
{〈
r, kiwil

〉
: r ∈ C (T)

}
= C

({〈
t, kiwil

〉
: t ∈ T

})
= C

(
H
({〈

t, kiwil
〉

: t ∈ T
}))

(2.3.8)

so also

H (S (w)) = H
({〈

t, kiwil
〉

: t ∈ T
})

(2.3.9)
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The latter is better to work with as H (S (w)) is approximated numerically as a finite

collection of points, whereas the corresponding solid (S (w)) is, except from some patho-

logical cases8, infinite – even when its hull is finite. We work with the hull of the colour

solid, as it is a unique representation of the solid which is numerically tractable.

2.3.1 Extreme Spectra

Often the colour solid is calculated using a set of so called ‘extreme spectra’ (Logvinenko,

2009; Vorobyev, 2003). I shall call the set of these spectra X(n). A particular extreme

spectrum is parametrised by n − 1 real values, which I will call λi and a binary value

κ ∈ {−1, 1}.

η(λ;λ1 . . . λn−1, κ)
def
= 1

2 + κ
2

n−1∏
i=1

Φ
(
λ− λi

)
(2.3.10)

where Φ(x) = 1− 2Θ (x) and Θ (·) is the step function defined by:

Θ (x)
def
=

 0, x < 0

1, otherwise
(2.3.11)

The entire set of these is:

X(n)
def
=
{
η(λ;λ1 . . . λn−1, κ) : λi ∈ Λ, λi > λi+1, κ ∈ {−1, 1}

}
(2.3.12)

λ0 λ1 λ2

λ

0

1

η(
λ
;λ
i
,κ

)

Figure 2.7: An example of an extreme spectrum for a tetrachromat. In this case there are three

step changes, at λ1, λ2 and λ3. Changing κ has the result of reflecting the spectrum through the

line where η = 0.5.

The colour solid for humans can be calculated from the extreme spectra. The two

values of κ define two (n−1)-dimensional surfaces. Such calculations are correct when the

8Only when the hull is a single point is the convex covering finite
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spectral line in the chromaticity space belongs entirely to its convex hull (Luther, 1927;

Nyberg, 1928). When this is not the case, other techniques must be used.
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Figure 2.8: Examples of colour solids calculated with three different methods. The extreme

spectrum method produces a concave shape. Taking the convex hull remedies this somewhat, but

still does not calculate the exact result.

We can see the deficiency of the extreme spectra method in figure 2.8. In this simple

case, the actual colour solid extends far beyond the boundary as calculated using the ex-

treme spectra. This can be problematic in two ways, firstly the resulting solid formed by

extreme spectra calculations may not be convex, leading to problems for any result that

requires convexity. Secondly, the extreme spectrum method works best when the sensitiv-

ity functions are uni-modal, so if this method is used to compare uni-modal sensitivities

with non-uni-modal sensitivities a distorted comparison is made. This is a problem in the

comparative work, such as Vorobyev (2003), where the presence of pigmented oil droplets

causes the spectra to narrow, causing an increase in the volume of the colour solid (used

as a measure of the ‘number of colours that can be distinguished’), but also an accom-

panying decrease in the underestimate of made by the extreme spectrum method. It is a

systematic error which overestimates the value of filtering. Thus, we can be certain that

the numerical results of Vorobyev (2003) are an overestimate of the benefit (in terms of

discrimination) of coloured oil droplets.

The numerical calculation of the full colour solid without resorting to extreme spectra

or linear programming can be found in appendix E.3.
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2.3.2 Symmetry

The colour solid has a point of reflectional symmetry at (1
2 ,

1
2 · · · ). This is due to the

symmetry of the set of reflectances it projects from. We can see this by first noting that

the set of reflectance spectra R has the following property:9

∀s ∈ R∞ : 1
2 + s ∈ R ⇐⇒ 1

2 − s ∈ R (2.3.13)

i.e. if we conceptualise a hypercube representing R, it is centrally symmetric around

(1
2 ,

1
2 ,

1
2 · · · ).

The symmetry of the colour solid motivates a parametrisation of it in which the sym-

metry is easily represented.

2.3.3 Metamers Sets and Their Volumes

Because of the projective nature of colour spaces, it is possible for spectra to be different

and be projected onto the same point of a given colour solid. This phenomenon is called

metamerism and has been well studied (see e.g. Wyszecki and Stiles, 2000). Usually

the set of spectra under consideration are reflectance spectra and the colour space is the

colour solid. I wish now to briefly mention a few properties of the colour solid and its

corresponding metameric spectra. I shall consider the properties of [0, 1]n, which is equal

to R in the limit of n→∞.

I would like to introduce some notation. First of all I shall call the (not necessarily

infinite) space of spectra sampled at m points: R = [0, 1]m. The number of cone classes

possessed by an organism is denoted n. The set of all spectra which can produce a colour

q – i.e. the metamer set of R at q – is defined as:

M (w, q) = {s ∈ R : 〈s, w〉 = q} (2.3.14)

This can be related to an intuitive notion of an (m − n)-dimensional volume, V (M). I

take this volume to be given by the Lebesgue measure on Rm−n. Informally, if there are

more spectra in M1 than M2, then V (M1) > V (M2).

Let’s now concentrate on a line, γ, that passes through the centre of symmetry of the

colour solid in the direction of a unit vector v, parametrised by k:

γi(k) = kvi + 1
2 (2.3.15)

9For each wavelength, if the reflectance takes a value of x ∈ [0, 1] then there is another in R that for

that wavelength has the value 1− x. i.e. x ∈ [0, 1] =⇒ 1− x ∈ [0, 1]
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From the symmetry of the colour solid we have:

M (w, γ(k)) =
{

1
2 −m : m ∈M (w, γ(−k))

}
(2.3.16)

a corollary of which is

V (M (w, γ(k))) = V (M (w, γ(−k))) (2.3.17)

At the centre of symmetry the volume of the metamer set is nonzero:

V (M (w, γ(0))) > 0 (2.3.18)

and at some value of k we go beyond the boundary of the solid and M = ∅. This means

that the volume of metamer set is zero:

∃k : V (M (w, γ(k))) = 0 (2.3.19)

Now, considering three points along the line, where k is equal to −k1, k2 or k1. so that

−k1 ≤ k2 ≤ k1, we define the convex combination

N =

(k2 − k1)m0 + (k1 − k2)m2

2k1
:
∀m0 ∈M (w, γ(−k1))

∀m2 ∈M (w, γ(k1))

 (2.3.20)

which is the same or greater in volume as the two sets it is derived from. We can see this

by considering only a single metamer from one of the sets, say m ∈M (w, γ(k1)), so:

N ′ =
{

(k2 − k1)m0 + (k1 − k2)m

2k1
: ∀m0 ∈M (w, γ(k1))

}
(2.3.21)

and V (N ′) = V (M) as this kind of linear combination of spectra cannot transform unique

spectra to identical ones. However, some convex combinations of spectra in M (w, γ(k1))

and M (w, γ(−k1)) may be the same, but there will always be at least the spectra in N ′.
N must be an improper subset of the ‘actual’ metamer set at k2:

N ⊆M (w, γ(k2)) (2.3.22)

and therefore:

V (N ) ≤ V (M (w, γ(k2)) (2.3.23)

We can restate this in words: given a point in the solid, there is a set N made constructed

from the metamer sets at opposite sides of the solid, which is definitely not bigger than

the metamer set at that point. The set is definitely not bigger than those it is constructed
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from either. The metamer volume is then bigger than that of N and thus bigger than the

two metamer sets from which N was constructed. So,

V (w, γ(k2)) ≥ V (w, γ(k1)) (2.3.24)

Remembering the symmetry of the colour solid around the centre, (1
2 ,

1
2 ,

1
2 . . .), we can

infer that the centre is the point where the volume is largest. This is true no matter what

the functions wi happen to be.

This result can be easily generalised to any linear projection of any set of points that

is closed under convexity, but I will not go down that route here.
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Figure 2.9: Monte-Carlo Sampling of R for a dichromat with A1 type pigments (Stavenga et al.,

1993) under spectrally uniform illumination. λmax values for SWS and LWS sensitive cones are

450nm and 580nm respectively.

2.3.4 The Interpretation of Metamer Set Volumes

Clearly, not every spectrum in [0, 1]∞, or indeed [0, 1]m, exists in the real world. This

would seem to be a problem for the application of the theory above. I will go into the

details of this in chapter 6. For now though, let us consider what it is that was shown

in the previous section. The proof works by taking a process - convex combination - and

showing how the geometric structure is induced by it. Although it is possible to think of

the spectra existing as actual spectra, a more useful conception is of them as possibilities.

Let me unpack this a little. If I am presented with a colour from the middle of the colour

solid, there are many possible ways of using the process of mixing (convex combination)

to achieve that colour. If I choose a colour exactly at the edge of the colour solid, then
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there is no way I can mix other colours to achieve it. In other words, I do not claim

that the volumes of metamer sets of [0, 1]m should be interpreted as statistical features of

natural scenes (though there is some correspondence which can be seen in Nascimento et al.

2002), but as a model that corresponds, at least qualitatively, to the number of physical

explanations for a given colour. As I have indicated, I will present a fuller argument in

chapter 6.

2.4 Comparative Colour Solids

Using the geometry of colour solids it is possible to analyse the relationship between the

perceptual spaces of different organisms. This allows us to come up with general rules

about comparative colour vision and motivates a class of coordinate systems that are

particularly relevant to such studies. With the argument here, for any point in the colour

solid of one organism we can find a convex volume in the other organisms colour solid that

must contain the colour of the underlying spectrum. The concepts I use here are formally

the same as those used in the study of metamerism. However, the study of metamerism

is usually concerned with the occurrence of spectra in nature that don’t produce the

same colours to humans under different illuminations (Alsam and Finlayson, 2007; Feng

and Foster, 2012; Finlayson and Morovic, 2004; Ohta and Wyszecki, 1975; Trussell, 1991),

whereas here I am concerned with the a priori relationship between observers with different

photoreceptor classes.

The question I ask here is “what does the colour for one organism tell me about the

colour for another”.

2.4.1 The Monochromatic Case

I will begin with the comparison of two monochromats. As we find with many multidi-

mensional problems it is easier to begin with the one dimensional case and work up. For

this problem, it is the only case that it is simple to visualise.

We begin by noting that for two monochromats we can construct a two dimensional

colour solid as if the observer’s individual photoreceptor types belonged to the same ob-

server. This is perfectly a valid thing to do as a colour solid is, essentially, a diagram that

shows where there is a spectrum that fulfils the constraints of yielding a given quantum

catch in each photoreceptor class. Similarly, we can ask if

Let us call the quantum catch for one observer a and the other b. Then for a colour a,

we can find an interval in [b1, b2] where there is spectrum that corresponds to both a and
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Figure 2.10: The ability to predict the colour for one (green) organism from that of another (red)

is related to the colourfulness and the similarity of the photoreceptor functions. Similarity between

photoreceptors (the inner product between the two would be a suitable measure for this) narrows

the colour solid, which is always broadest at 1
2 .

b ∈ [b1, b2], this is shown in in figure 2.10. The size of the interval is a measure of how well

we can predict b from a. As the colour solid is convex, with reflection symmetry about

the point (1
2 ,

1
2) and contains the points (0, 0) and (1, 1) we can show that it is broadest

at a = 1
2 . If, for the two dimensional solid we take a = f(b) to be the upper bounding

curve (where a ≥ b) then the width, w(a), of the interval [b1, b2] at a is given by:

b1 = f(a)

b2 = 1− f(1− a)

w(a) = b2 − b1 = f(a) + f(1− a)− 1 (2.4.1)

We can express the convexity of the solid as

kf(x) + (1− k)f(y) ≤ f(kx+ (1− k)y) (2.4.2)

Taking k = 1
2 we have

1
2(f(x) + f(y)) ≤ f

(
1
2(x+ y)

)
(2.4.3)

48



and looking at the points where x = a and y = 1− a we get:

f(a) + f(1− a) ≤ 2f
(

1
2

)
w(a) + 1 ≤ w

(
1
2

)
+ 1

w(a) ≤ w
(

1
2

)
(2.4.4)

demonstrating the interval is indeed widest at a = 1
2 .

More generally, we can take a new parametrisation where a = β + 1
2 for a ≥ 1

2 and

show that for ∆β ≥ 0 that:

w
(

1
2 + β + ∆β

)
≤ w

(
1
2 + β

)
(2.4.5)

Firstly we note that 1
2 +β and 1

2−β are convex combinations of 1
2 +β+∆β and 1

2−β−∆β.

So we can write:

1
2 − β = k1

(
1
2 + β + ∆β

)
+ (1− k1)

(
1
2 − β −∆β

)
k1 =

β + 1
2∆β

β + ∆β
(2.4.6)

1
2 + β = k2

(
1
2 + β + ∆β

)
+ (1− k2)

(
1
2 − β −∆β

)
k2 =

1
2∆β

β + ∆β
(2.4.7)

this relies on the positivity of ∆β. Then from equation 2.4.2 we can write:

w
(

1
2 + β

)
+ 1 = f

(
1
2 + β

)
+ f

(
1
2 − β

)
≥ k1f

(
1
2 + β + ∆β

)
+ (1− k1)f

(
1
2 − β −∆β

)
+ k2f

(
1
2 + β + ∆β

)
+ (1− k2)f

(
1
2 − β −∆β

)
(2.4.8)

It is easy to see that k1 + k2 = 1 so:

w
(

1
2 + β

)
+ 1 ≥ f

(
1
2 + β + ∆β

)
+ f

(
1
2 − β −∆β

)
= w

(
1
2 + β + ∆β

)
+ 1 (2.4.9)

and

w
(

1
2 + β

)
≥ w

(
1
2 + β + ∆β

)
(2.4.10)

as required. So, for one monochromat, the ability to predict the colour for a different

monochromat increases with distance from 1
2 .
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2.4.2 Polychromatic Cases

We have a very similar situation for dichromats, trichromats and n-chromats in general.

We simply make a 2n-dimensional colour solid, and cut it with an n dimensional hyperplane

the corresponds to a fixed colour for one observer, leaving a n-volume in the solid of the

other. Indeed, there is no reason why we cannot use observers with different numbers of

photoreceptor classes.

300 500 700
Wavelength /nm

0

0.5

1

Figure 2.11: The relationship between the colour solids of two dichromats. The curves at the

top correspond to the response curve of each photoreceptor class, with the set of red curves cor-

responding to one organism and green to another. The colour solids at the bottom are coloured

correspondingly. We see that in this case each point in one space corresponds to an area in the

other. I have chosen to display three points, one which is almost black, one which is grey and one

which is very colourful. Like in figure 2.10, it is clear that the distance from the centre of a point

in one solid is an indication of the size of the area to which it corresponds in the other.

We can see in figure 2.11 that again, that colours lying in the centre of the colour solid

of one observer are the worst at predicting the colour for another.10 Generally, the further

10I do not provide a proof of this like in the monochromatic case, the proof should be basically the same

but more lengthy.
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one gets to the edge of the solid, the more sure we can be about the location of the colour

in another observers colour solid. If we had not demonstrated that the extreme colours,

X(n), did not necessarily lie on the surface of the colour solid, then one might be led to

believe that there was a bijective mapping from all the points on the surface of one colour

solid, to those on another. This is not true, the only determined mapping points that we

can be completely sure of without knowing the details of the photoreceptor responses are

those of black and white.

2.4.3 Summary of Comparing Colour Solids

Essentially, the size of the metamer set places a restriction on the predictive power from

one observer’s colour to another’s. When the metamer set is big, it is difficult to make

predictions, when it is small, it is easy. As there are ‘more’ metamers near the center of

the colour solid, the colours near the middle of the solid provide less predictive power.

As I have said before, there are no direct biological consequences of this. However, if

we view this in terms of the number of processes that can provide mixtures (instead of

spectra that can be combined) we do obtain something biologically relevant. Indeed, I

have phrased this section in terms of prediction in an idealised system, this only serves

to highlight the stucture of the solid and it’s relationship with convexity – namely, that

convex combinations provide a means to establish a natural notion of colourfulness, as a

distance from the centre of the colour solid.

2.5 Colourfulness

The discussion so far motivates a coordinate system for the object colour system. In the

human case it is equivalent to that of Logvinenko (2009), although his motivations are

very different.11

2.5.1 Definition

There are four quantification of colourfulness that I would like to define here. They are all

simple geometric distances, all of them very similar to each other. They differ in whether

they a distances measured from the centre of symmetry or from the line between the black

and white points, and, whether or not they are corrected so that they are unity at the

boundary of the colour solid.

11His aim was to use extreme spectra for a spectral description of colours, something which is impossible

in the general (i.e. not human) case, as I have discussed.
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They have the general form (I use bold type to denote vectors):

J(q)
def
=
‖ q− g(q) ‖

f(q)
(2.5.1)

where f and g are specific to the particular quantity (see table 2.1).

Colourfulness Symbol f(q) g(q)

Spherical JR 1 1
2

Cylindrical JC 1 1 〈1,q〉
Corrected Spherical J̄R h(q− 1

2 ,
1
2) 1

2

Corrected Cylindrical J̄C h(1 〈1,q〉 − q, 1 〈1,q〉) 1 〈1,q〉

Table 2.1: The functions f and g for different quantifications of colourfulness. Here I assume that

the one vector is normalised, i.e. ‖ 1 ‖ = 1.

I define the function h so that for an n chromat:

h(a,b)
def
= sup

{
k : a +

k(b− a)

‖ b− a ‖ ∈ S(w)

}
(2.5.2)

In words, h(a, b) finds the distance to the furthest point on the colour solid in direction of

a from point b.

The two uncorrected quantities are simply the euclidean distance from the centre of

the colour solid, in the case of the spherical colourfulness JR, and the euclidean distance

in the null space of the one-vector in the case of cylindrical colourfulness JC .

Details of Figure 2.12

The colour solid is formed by the n− 1 dimensional surfaces (in 2D – curves) labelled Ψ

and Ω. It lies within the unit n-cube (a square) �OSWL. O, the black point and origin,

lies at one tip of the solid and W , the white point, at the other. G, the grey point and

centre of symmetry lies half way between O and W and is the centre of the (n− 1)-sphere

(circle) circumscribing O, S, W , L and I. This sphere is the locus of all points with

spherical colourfulness equal to the maximum (whether physically achievable or not). An

(n−1), 1-cylinder (square) shown as �wxyz inscribes the sphere (circle) so that the black

and white points are at the the centre of the capping (n − 2)-spheres (line segments wx

and yz). The sides of the cylinder lie on the locus of points with cylindrical colourfulness

equal to the maximum for any visual system. These sides (in 2D, line segments xy and

zw) are tangent to the sphere halfway between the cylinders caps (here, at L and S).

The spherical colourfulness of the point Q is given by the length of the line GQ – The
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Figure 2.12: Schematic of the calculation of various quanifications of colourfulness for a quantum

catch specified by Q for a dichromat (n = 2). See text body for details.

euclidean distance from the centre to Q. The corrected spherical colourfulness is calculated

by finding the intersection of the spherical ray that passes through Q (GI) with the colour

solids boundaries. In this case it is the intersection of GI with Ω at H. To correct the

colourfulness we simply divide by the length of GH to get J̄R =
∣∣GI∣∣/∣∣GH∣∣. Similarly, we

calculate the cylindrical colourfulness as the length of the line through Q, which also passes

through the line OW perpendicularly. This happens at A, so the spherical colourfulness is

given by the length of the line AH – the correction factor is 1/
∣∣AB∣∣. The function h(a, b)

in the text is defined to find points lying on the colour solid. In terms of this function we

calculate H as h(
−−→
GH,

−−→
OG) and B as h(

−−→
AH,

−→
OA). Note: High dimensional cylinders are
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classified by dimension of their capping spheres and the dimension of their sides, formally

the unit a,b-cylinder is given by the Cartesian product Sa × [0, 1]b – a is the number of

sphere like dimensions and b is the number of cube like dimensions.

2.5.2 Hue, Saturation and Lightness

Colourfulness (in both the cylindrical and spherical systems) can be naturally identified

with the more established notion of ‘saturation’. Saturation, when taken as a proxy for

colourfulness, has an interpretation in terms of the number of spectra12 that can produce

a colour, and for similar reasons, the ability to predict the location of colours for one

observer from another.

For value, we naturally have an axis lying between black and white, similar to the

‘lightness’ axis of RGB devices. Such an axis exists for all observers. The spectra given

by s(λ) = k, k ∈ [0, 1] always lie along this line. However, when we are talking about the

world an animal experiences, we would like to not have to refer to spectra at all. Probably

the best interpretation of this axis is as the convex combinations of black and white.

For human colour vision this just leaves the hue. The remaining dimensions of colour

solids have no easy generalisation. It seems it is just the remaining coordinate that ‘falls

out’ when we identify lightness and saturation. The properties I have discussed so far,

then, provide the basis for a naturalisation of the hue, saturation and value axes used in

many human colour systems (they are defined e.g. CIE, 1931, 1976), although, as I have

already indicated, this naturalisation is not complete until a behavioural role is explicated.

I will do this in later chapters.

2.6 Summary

The discussion in this chapter has been about the gross geometry of colour spaces –

which colours are next to others and which ones are not next others – which colours are

possible and which are not. We know for example, that black or white objects will fall

in exactly the same relation to other colours for all observers. We also know our ability

to perceive relationships between other colours as seen by other animals is dependant on

how colourful we perceive that colour to be. I am often asked about whether some bright

coloured biological signal can be seen by other animals - clearly the answer is almost

certainly yes. Nonetheless, it seems that people still consider it reasonable to think that

12or physical processes.
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we need strong evidence to assert that a signal is obvious to another animal (Penney et al.,

2012), but the chances are, if a signal is colourful to us it is colourful to the animal too.

Colour spaces display the relationship between different colours in geometric form and

it is always the relationship between colours we care about. But, in this chapter I have

not really discussed how we measure distances between colours. It is quite reasonable

to say that I have only discussed which colours are allowed to exist given physical and

physiological constraints. The involved subject of measuring distances between colours,

from it’s philosophical basis to application, will be covered in chapters 3, 4 and 5.

55



Part II

Colour and Measurement
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Chapter 3

Measuring Living Things

“Man is the measure of all things”

Protagoras, 420 BC

The purpose of this chapter is to establish the philosophical grounding for the models

which I develop later in this thesis. The argument I present is founded on the idea that to

identify an organism to identify a agent - an subject that we consider justified in treating

as animate: one for which beliefs and desires lead to actions. I will go on from this

premise to discuss information theoretic measures in this context, with the ultimate goal

of elucidating the foundations upon which the application of information theory to colour

is, or at least should be, based.

The argument I am about to present is aimed at justifying the more formal theories

in later chapters. Without a grounding in a more general theory, the decisions made

in the derivation would be rather arbitrary. Importantly, the aim of this chapter is to

lay the foundation for the theory of risk, and emphasise the importance of using relative

measures (divergences) as opposed to ‘absolute’ measures such as entropy. This requires

us to discuss the meaning of these terms, and for that, we must first discuss measurement.

Measurement is dependant on the methodology of measurement, and the choice of

methodology is far from uniquely defined. Importantly, in probability theory, the set of

possibilities, the ontology or the support, is a limitation on our objectivity as it can only

be obtained by a judgement that can be at best held up to empirical observation, but

never truly specified.
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3.1 Perception, Behaviour and Purpose

Phrases like ‘perceptually uniform’ and ‘perceptual space’ are commonplace in psychophys-

ical discourse, and the idea that a colour space is a perceptual model (in the sense of

describing ‘internal’ appearance or psychological phenomena) is widespread. However, my

concern here is not with perception, but behaviour – or more precisely, perception only

to the extent that it is behaviourally observable within the constraints of a well defined

experiment.

Though there are common limits to behaviour and to perception, the two are not the

same. Perception contains objects and qualities which can never, in their totality, manifest

as quantifiable behaviour. My perception of some detail may never have behaviourally

observable consequences, at least not to the point of deduction, by another, of the entirety

of that perception. I might be placed in a situation where I have a choice of doing one thing

or another based on a judgement about something’s appearance, but given the datum of

my choice (or any data that one cares to measure), using it to reconstruct my perceptions

over the duration of my judgement would be impossible. Similarly, there can be behaviours

that are not fully part of perception. I may behave in some way that I am not aware of -

tapping a foot or stroking my beard: I might perceive a consequence of this or that action,

or deduce post hoc some aspect of it from my current perception, but this is not the same

as being directly aware of it. In any case, even were it necessary for my action to enter my

perception partially, it is certainly possible (if not necessary) for it not to in its totality.

This hints at how I wish to differentiate between perception and behaviour; the former

is a first-person view, the latter a third-person view. Theories of perception concern what

is immediately present to me or to others, but theories of behaviour are concerned with

how others appear to me or to others.

A behavioural theory relies on our ability to identify agents and their actions, it does

not tell us how to do so. Indeed, the field of ethology has proceeded without any great

need to define what an organism is (Queller and Strassmann, 2009, for a recent attempt)

– agents and their actions are apparent to us and it is from this ‘given’ that organisms

are identified and behavioural theory is formed. A behavioural theory relies on perception

and the ‘standing out’1 of organisms against the rest of the world. Whatever the criteria

or mechanism for this judgement is deemed to be, the meaning of doing so is clear: By

recognising something as an organism we are recognising that it acts with its own goals

1or ek-stace as used by Merleau-Ponty (1945, p100).
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and with its own understanding of the world.

It is action for a purpose, be it teleological or teleonomical2 in nature, that separates

organisms from non-organisms and behaving from mere happening. A behavioural model

then, treats organisms as agents with goals and beliefs, where actions are decided by the

expectations of costs or benefits as shaped by an understanding of how outcomes may be

achieved.

3.1.1 A Technical Note on Agency, Organisms and Genes

At this point I should clarify one aspect of my stance on the nature of the goals and beliefs

of the organisms. For the purposes here, beliefs and desires need not be considered as more

than things that we impose upon the world around us, be it voluntarily or otherwise.

However, I am not agnostic towards the general use of agency. Far from it. When faced

with even the simplest of cells, a physical-chemical approach becomes impossible as a

living cell, like the ship of Theseus, is in a constant state of flux. The cell is not defined

by atoms, or by chemical interactions, but by macroscopic properties; namely those that

correspond to our judgement of it as a freely acting entity. Indeed, this principle lies in

the origin of the word ‘organism’ itself: cognate with ‘organ’, it stems from the concept

of a (usually) physical entity that communicates on behalf of another physical or non-

physical entity (e.g. A pipe organ is the physical means by by which the non-physical

component of music is communicated). As such, an organism is the physical counterpart,

the “material structure”, of a biological agency (OED, 2012). It is also worth noting

that none of these words are cognate with ‘order’, despite the similarities of their modern

interpretation (ibid.).

It is all well and good to say that what I’m describing here is a concept of the organism

that follows the spirit of the original term, but this is no argument for its correctness. For

now, I will simply say that the description I have given is sufficient to define an organism

for the purposes of this thesis, and, that I will be happy to resign my argument when or

if someone provides me with a physical, mechanistic description of an organism.

Organisms as described here share some common ground with those of Dawkins (1976,

1982) in the sense that when we see an organism, we are seeing it as, or resulting from,

goal directed action. For Dawkins, the only viable goal is maximising inclusive fitness as

described by natural selection. I approach this more ecumenically, the goal may be what-

ever one chooses as long as it can be justified. A gene centred justification can be perfectly

2Teleology is purpose in reality, teleonomy is ‘as if’ for a purpose - see Bedau (1991); Weber and Varela

(2002) for a pro-teleological accounts, or Reese (1994) for the contrary
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fine, but so can those justifications that do not mention genes at all. Fundamentally, the

difference lies in an approach to science, a strict gene centred approach suggests that one

can and should eliminate this kind of judgement from scientific enquiry, where as I think

that such an endeavour is impossible.

3.2 Introducing the Formal Tools

Now I shall proceed by describing the formal tools that I am using, as well as providing

justification for using them. To mathematicians this may seem to be an overly verbose

description of a fairly simple formal theory that would be found in a sufficiently detailed

book on probability theory. For those more verbally inclined it may seem like long and

overly formal description of some common sense principles. However, seen as intended it

is a description of the correspondence between the mathematical formalisms of probability

theory and some very general concepts that underlie all of scientific investigation. This

understanding is necessary if we are to be clear about exactly what is measured and

predicted.

3.2.1 Identity and Equivalence

The notions of identity and equivalence a fundamental to probabilist and informational

measurements, as these will eventually become part of the theory, these foundational

notion requires some attention. The famous Gibbs paradox highlights how calculation

thermodynamic entropy is dependent on what we consider to be the same or different (in

thermodynamic terms, indistinguishable) a problem which is far more profound when the

idea of entropy is taken away from its original context. Furthermore, concepts pertaining

sameness and difference are fundamental to the concept of number (Husserl, 1891) and

thus, are present in the very tools foundation of measurement. The formal languages of

mathematics are abstractions from based upon these ideas (ibid.). I shall start with the

concept of identity - the idea that two things are exactly the same.

It is tempting to think that it is possible for two objects to be identical, at least in

theory, for it happens in mathematics all the time. For example, one might consider two

hypothetical apples, both internally identical so that for every molecule in one there is a

corresponding molecule in the other. The two are chemically identical; each constituent

molecule them standing in the same relation with every other constituent molecule. Thus,

one may wish claim that there is no difference between the two. Of course you would

be right if position and orientation in space were ignored. But being able to reference
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their spatial location relative to each other allows us to distinguish them, indeed, it does

distinguish them. If it was impossible to do even this, then one could not reasonably

claim that the apples were different things, nor could one claim that there were two of

them in the first place. This highlights the difference between equivalence and identity:

equivalence is the claim that there are two different things but we are unable to distinguish

them by some or other measurement, and identity is the claim that actually there is just

one thing. In the case of the two apples, they are equivalent if we ignore spatial difference

and are aware that we are ignoring it, they are equal if either they exist in the same

position space, or, if we ignore, consciously or otherwise, the possibility that they may

differ in their location.

Let us make this more concrete with an example from the history of science. Before

the 1820s, it was thought that all molecules could be completely described by the number

and type of atoms within them, chemical species were identical when they had the same

constitution as determined by quantitative techniques such as titration3 and gravimetry4.

In the 1820s a German chemist named Friedrich Wöhler synthesised a compound known

as silver cyanate, on analysis of this he discovered it had the same formula as another

molecule, silver fulminate, which had been synthesised by another German chemist, Jus-

tus Liebig. As the understanding at this time was that species with the same chemical

composition were equal, so, when it was observed that these two substances behaved dif-

ferently (unlike silver cyanate, silver fulminate explodes) there was confusion and hostility

between the two chemists (Esteban et al., 2008). The situation was resolved with Jöns

Jacob Berzelius’ concept of isomers (literally same-parts-ers), in which he suggested that

the atoms could be joined up in different orders (ibid.). Through this development, what

was once an identity became an equivalence - conceptually, every molecular species differ-

entiated into the permutations of its atoms, the unity of the chemical composition became

manifold.

This happens again and again in science. With new measurements comes new differ-

ences, and it is not surprising that isomers were not the end of the story. Now, in the days

of structural biology, it is not even the order that the atoms within the molecule that are

of greatest concern, but their overall shape. But of course, this is just a newer way for

something to be different, an there are yet new ways of finding finer differences still.

All I wish you to take away from this is that equivalence is just an identity that has

been shown to be false, and that in all likelihood, equivalence is the fate of all equalities.

3Analysis of volumes and concentrations.
4Analysis of mass.
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Silver
Cyanate

Silver
Fulminate

Figure 3.1: No longer equal, but compositionally equivalent. Left: Silver fulminate (AgCNO).

Right: Silver cyanate (AgOCN). Red – oxygen, Blue – nitrogen, Grey – carbon, Silver – silver. The

molecular bond lengths and angles are calculated with a molecular dynamics energy minimisation

(universal force field) and may not completely correlate with those determined crystalographically

or using more detailed simulations

3.2.2 Pragmatism

But we cannot work in a world where everything is differentiated into an infinity of possi-

bilities, nor do we want to. Even knowing that a coiled spring can be described in terms

of subatomic particles doesn’t mean that this is the correct way of thinking about it. And

it’s certainly not the most practical mode of description: it wouldn’t help me design a

car’s suspension system! For this, its possible that Hooke’s law will suffice, failing that a

non-linear model, or continuum mechanics, etc. Practical application requires parsimony,

but moreover, it’s quite possible that parsimony is as good as it will ever get.

If we do not (or cannot) choose to describe the infinite variety of the world, at what

point should we draw the line with our finite one. Which formalism should we choose?
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Should it come from principles, or from intuition?

Indeed, what I am expressing is a central thesis in pragmatism, often stated as Peirce’s

Pragmatic Maxim (Peirce, 1878):

Consider what effects, that might conceivably have practical bearings, we conceive the

object of our conception to have. Then, our conception of these effects is the whole of

our conception of the object.

Not only are we required to make assumptions about the latent composition of things

to make sense of our measurements (Lewis, 1952) but we should embrace, or at least be

conscious of, this need when approaching study of them.

Any quantitative theory has at its core a set of atomic components that are not identical

by definition. In the example above, before the theory of isomers chemists worked with a

set of components that could be enumerated as ratios of elements, each of these element

ratios were not only bound by equivalence but identity – at the time they were considered

to be all there was to know about the composition of a chemical species. Any chemical

species could be represented by a member of the set {XYaZb . . . ; a, b . . . ∈ Q0/+} where

each X,Y, Z . . . was some known or unknown element. At that time, if I synthesised some

chemical, it was assumed to be exactly one of these. This kind of set – a set that contains

all the different allowable possibilities for something to be – I shall call ‘the ontology’

for now. Later on I shall give it the more conventional name of ‘the support’.5 It is the

enumeration of the ways of being (Greek: ὄντος, ontos). In physics, in particular statistical

mechanics, a way something can be is called a ‘state’. Using my wording, in the example

above we would say: after discovering the possibility of isomers, a new ontology emerged

– one that accounted for the new observed differences.

5It seems that this term has some root in the philosophy of Leibniz, where the support is similar to the

Aristotelian concept of substance: something that exists and has properties (Broackes, 2006).
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Formalisation

The formalisation begins with a set of atomic possibilities X , the support, or

ontology. This set may be finite or infinitea. Each element of the set is mutually

exclusive, or, in other words, different and distinct.

We also require a way of addressing these possibilities. To do this, we introduce

coordinates and/or indexing. I will use xi to denote a continuous coordinate

belonging to a coordinate system X = (x1 . . . xn), so that each point in the

coordinate system corresponds to a different mutually exclusive possibility. If

there are discrete possibilities I will just use labels, although I will use indices

such as i, j or k when it is efficient to do so (such as describing a set of N discrete

possibilities by {xi | i ∈ {1 . . . N}}).
aBut it must be measurable – more on this later.

The Ontology and Measurement

The question arises of why we should need to decide on an ontology at all, especially given

the vanishing chance that it is absolutely correct.

In a sense we do not. We can always acknowledge the fact that our picture is incomplete

and doing so does not by necessity affect our understanding. However, it does affect one

thing that is of utmost importance to scientific understanding: quantification. I will

demonstrate this by comparing two chemical theories, one is very well established and

practical, the other is designed for this explanation and of little practical value beyond it.

Later, we will see this phenomenon is a stumbling block in the measurement of entropy.

The 19th century chemistry was a time before the widespread acceptance of the con-

cept of atomic mass. Often, all that was considered was the ratios of elements. For

example, ethene and cyclobutane have the same elemental ratio, two hydrogen atoms for

each carbon – written using the empirical formula CH2. These days, we would describe

these two chemicals with different molecular formulae, C2H4 and C4H8 respectively (or

even represent them schematically). We would know that in one gram of ethene there is

twice as many molecules than in one gram of cyclobutane. Once we establish a constant

(Avogadro’s constant, NA) and choose weights for each type of atom, we can put an actual

number on it6- there is approximately 2× 1022 molecules in a gram of ethene and 1× 1022

6The calculation is N = mNA
nHmH+nC+mC

, where N is the number of atoms in mass m, NA is a constant

equal to 6.022× 1023, nH and nC are respectively the number of hydrogen or carbon atoms in a molecule
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in a gram of cyclobutane.

But let us imagine that we didn’t know how to do this and simply thought the empirical

formula was sufficient. This doesn’t prevent us from making some kind of molecular theory.

Let us do this now. Instead of molecules, lets say that a mass of chemical is composed of

something else: polecules. Each polecule has an integer numbers of each type of component

atom, but unlike molecules, polecules contain the only minimal number of atoms required

to achieve this, thus C2H4 and C4H8 refer to the same type of polecule: CH2. We can

say how many polecules are are in a given mass of a given chemical, just as we can

with molecules. There is some physical significance to polecules too, we could identify

individual polecules within a mass to the same extent that we can molecules. Ethene is

a pair of polecules and cyclobutane a quartet. The molecular and polecular descriptions

are both valid within certain constraints; in a world where only the relative proportion of

elements matters there is no difference between them at all. Outside of this domain of the

experimental techniques of pre-19th century chemists the two are of course very different7,

indeed, despite a physical correspondence, polecules have proven far less useful, far less

illuminating, providing far less resolution of the world the attempt to explain.

More formally, every molecular formula of the form XnYanZbn . . . (for integer n) is

mapped to an empirical (polecular) formula of the form XYaZb . . .. Effectively, we are

still measuring the same physical thing, only we are choosing to multiply the empirical

formula by n. The mapping from molecules to polecules is many-to-one, reflected in the

limited applicability of empirical formulae when compared to molecular formula. These

two measures of a pure substance are exactly the same except for a difference in the on-

tology, to find the number of molecules/polecules we perform exactly the same procedure.

Firstly we find relative mass corresponding to the formula, then we divide our mass by

this number and multiply it by Avogadro’s constant. There is no difference in how we

measure, nor in the physical substance that we are measuring, the only difference to be

found is in what we are measuring it in terms of.

In this case it is fairly obvious the polecules and molecules are different things, but as

we will see, such differences become obfuscated in the language of information theory. The

difference between molecules and polecules is easy to keep in mind – they have different

names – but in information theory, everything is measured in bits.8 The word bit hides a

and mH and mC the relative atomic masses of one of those atoms (a mass per NA atoms quantity).
7They may be different, but they can be related to each other: the number of polecules in a pure

substance is always a strictly positive integer multiple of the number of molecules.
8Bits, or multiples thereof: e.g. nats (or decibels Jaynes, 1994).
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gross difference between informational measures and provides a false sense of generality.

To observe consequences of our choice of ontology, we must show how it results in a

measurement that can correspond to some real world phenomenon. In the hypothetical

case I just described, the physical meaning of either molecules or polecules requires adding

a way of getting a measurement from the ontology – in this case in the form of amount

of molecules/polecules. We could then go on to test this against some other, physical,

measurement of the number of molecules/polecules, such as reactions that only proceed

on a single molecule. If we had an ontology that corresponded to the collection of points

found along the edge of a ruler we would need to define how to take one of those points

and turn it into a distance. Informally, a sensible way of doing so might be ‘counting’ how

many points there were between that one and which ever one we call zero.

So, not only do we need to state those things that we are considering, but also we need

to state how those things should determine or relate to the measured, observable world.

Before we define a way of measuring things our ontology is intangible – we merely have a

collection of things without meaning. The (abstract) measurement of the members of the

ontology enables (physical) measurement and defines the mode by which any ontology is

validated or invalidated.

66



Formalisation

Sigma Algebras. Before talking about belief and knowledge, I will quickly ex-

plain the established underlying formalism. The use of σ-algebras allows us to

talk about events – not just the different elements of the ontology, but combina-

tions that might not be mutually exclusive.

Measure theory begins with the ontology (support) and on top of adds a list of

the combinations of those things about which a measurement can be made, the

measurement may be something tangible, like a volume, or something else, like a

probability. This is called the σ-algebra, Σ (see footnotea). We generally require

the sigma algebra to reflect valid statements in a reduced classical logic (again, see

footnote) – one where we do not have implication as such. Σ contains only subsets

of X , ∀E ∈ Σ : E ⊆ X . Then we define, when it is possible, a function µ that

assigns a positive real number: µ : Σ→ R0/+. This happens quite naturally (but

not uniquely) for the ruler example, in such a case, µ is known as the Lebesgue

measure, and corresponds to our usual notions of distance (as well as area and

volume in higher dimensions). This kind of formulation will be needed if we wish

to consider ontologies which are described using continuous variables.

In the next section I will describe how beliefs are usually formalized in this frame-

work.

aOften we can assume that the σ-algebra is the power set of X : Σ = 2X , but this is not

true by necessity. Allowable σ algebras are given by the axioms: (a) Non-emptiness: Σ 6= ∅,

(b) Closure under (countable) union: E1, E2...En ∈ Σ =⇒
(⋃i=n

i=1 Ei
)
∈ Σ (c) Closure under

complement: E ∈ Σ =⇒ (X \E) ∈ Σ. In probability theory, these correspond (approximately)

to: (a) A requirement for at least one possibility and it’s negation. (b) The necessary validity

of asking ‘p OR q’ for any valid p and q. (c) The necessary validity of ‘NOT p’ for any valid p

3.2.3 Belief and Knowledge

Knowledge endows its possessor with the ability to act with finesse. For this reason it is

a tangible subject of scientific enquiry. One would be hard pushed to say that given the

observation of someone riding a bike, that they do not know how to ride a bike. But,

we cannot talk about knowledge without talking about the related concept of belief and

drawing a distinction between the two.

One of the earliest distinctions was made by Plato (Jowett, 1871), often translated as
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“knowledge is true belief”.9 Explicating the general meaning of ‘true’ is far too difficult an

exercise for the purposes here, so I shall not use Plato’s statement “as is”. Nonetheless,

it’s a good starting point – knowledge is indeed a type of belief that can be shown to be

‘correct’ according some chosen criteria. I shall make no claims as to whether one should

consider this correctness as truth in any sense.

The concept of an agent provides us with a good platform for investigating this. If

we are consider something as an agent on the basis of rational action towards – or as if

towards10 – some goal, then we already have a good candidate for what could be taken to

be meant by truth in Plato’s canon. Knowledge can be measured by the ability to achieve

a goal, as long as that goal is desirable; On being given a desired goal we are able to judge

the efficacy of a belief to that end, and in doing so we are treating that belief as knowledge

about achieving it. Plato’s canon should perhaps be “knowledge is useful belief”.

Without the assumption of some goal, belief would be without behavioural consequence

and it would be impossible to quantify it. For example, one would not trust someone to be

honest if it was clear that they had either motivation not to be, or lacked such motivation

entirely. Effective communication of belief requires the person being informed of it to

recognise in the one informing them a motivation that would reveal their true belief. It is

probably worth noting that it is exceedingly rare for us to consider any organism as having

a complete lack of motivation towards some goal or other – such a lack is incongruous with

our intuitions about agency.

Given what I have said so far, we might consider modifying Plato’s cannon further to

refer to measurable belief.

This all presupposes that we may correctly judge what is and what is not a goal that

the organism desires, a difficulty that all such arguments come up against. This is well

known in biology as it proves to be a major difficulty when discussing adaption (Gould

and Lewontin, 1979) but it is a necessity that stems from our decision to consider agents

as the subject of enquiry (Weber and Varela, 2002). Some goals are more reasonable than

others, for example, staying alive11 is in most cases fairly easy to justify, but the further

away from fundamental needs one moves the more difficult such justification becomes. No

doubt this is reflected by the many varied schools of psychoanalysis. On the other hand,

if we choose to throw out the purposefulness of behaviour we should also throw out the

9Generally it is now stated as “knowledge is justified true belief”, this is completely consistent with

what I will say in the following pages as they describe a way in which a belief can be justified.
10If one chooses to acknowledge this distinction.
11Compare with ‘replicating’ (Dawkins, 1982).
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concepts of agents and organisms and with them biology, social science, economics and

the entirety of the arts.

To develop our understanding of belief we must first consider the ontology about which

any belief is held. This is probably the most difficult part, as it is very easy to conflate an

agent’s ontology with our own. There are two ways in which one can make this mistake.

First, there is the obvious mistake of assuming that some object that we understand

to exist also exists for some other agent. For example, thinking that cups of coffee, as

such, exist in the world of an ant.

The second way is far more surreptitious and is only usually realised when we recognise

that we have ended up asserting that our knowledge of an organism is accessible to that

organism itself, or in the extreme, that it has direct access to its own physiological state

in its entirety. It is obvious that a person does not have a direct awareness of, or present

behavior that can illuminate, the entire state of neuronal potentials or concentrations

of neuromodulatory molecules, but avoiding such implications proves difficult if we are

going to talk about organisms both as agents and as physical entities, in part comprised

of neurons and neuromodulatory molecules. If we cannot say that an organism makes

decisions directly on the basis of its physiological state we must instead say how we can

use physiology to inform our understanding of goal directed action. If physiological and

behavioural descriptions are not automatically compatible, and we wish to integrate them,

we must say how we can make them compatible.

In the proceeding chapters I will discuss the limitations upon action as informed by

physiology. For example, it is very useful to consider the limitations of discrimination

caused by the indeterminacy of the state of photoreceptor cells (Buchsbaum and Goldstein,

1979a,b; Vorobyev and Osorio, 1998). As the state of a photoreceptor determines the

ability to perform particular tasks it is very tempting to say that an organism holds some

kind of belief about that state. There is a problem with this, but it is not that the

organism does not hold such beliefs! It may or may not. We cannot know beyond what

we choose to test. The problem is instead that, as third person observers of the organism,

the interrogation of these beliefs requires that we measure them against some goal. Unless

the goal the organism desires is to report the exact degree of photoreceptor excitation it

would be an error to take it to be the object of the organisms belief12.

12We should none the less remember that this does not directly exclude the possibility of beliefs being

held about it
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Ratifying Behaviour with Physiology

So how then do we ratify the behavioral with physiological? I shall approach this by

explaining how we do it in practice and argue why this approach is justified.

The first step (of three) is to only consider behaviours in such a way that allows

a comprehensive description: we select aspects of behaviour to be the only things that

matter for our purpose - choosing a collection of behaviours which are reasonably assumed

to be complete. An example of doing this is in two alternative forced choice paradigm

(2AFC), where the organism is only considered as doing one of two things. In this case, it

is not that the experimenter is unaware that the organism behaves with infinite subtlety,

but they are choosing to look at behaviour in a way so that every action of the organism

during a trial must belong to one of two classes.13

We can phrase this step in another way: As scientists we wish to treat the system

as causally determined, but for some reason we have chosen to study something that

we consider not to be – something with freedom to act on its own behalf – something

autonomous. To make this thing something that we can study scientifically we must rid

the thing of it’s autonomy.14 We do this in two ways as, firstly by putting it in a situation

where its actions are physically constrained, i.e. put it in a laboratory setting, secondly,

we course grain the behaviour; choosing to look at it as something with no other actions

than the ones we select. In effect we redefine the rat in a maze so that it is identical to a

‘left-right turning machine’ or a ‘getting-lost-not-getting-lost machine’.

Of course, as I have indicated before, the validity doing this rests on a judgement that

the constrained behaviour in the lab reflects the non-constrained behaviour in the world

at large.

The second step is to control the goals of the agent by either providing sufficient

motivation towards a goal we choose, or by identifying a goal that the organism already

has. I have already discussed the relationship between goals and beliefs above, but I should

once again say that we must make a judgement about whether we can rightly claim that

we know the goal of the organism. We must coerce it.

The third and last step is the one which has important consequences for information

13I should probably point out that when we generalise to situations outside of such paradigms, we are

making the assumption that the goals of the organism in the new situation are suitably aligned with the

goals of the organism in the experimental paradigm.
14Put like this it is hard to ignore the potential for ethical implications of performing even non-invasive

behavioural experiments.
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theoretic interpretations. This step is the constraint of the ontology. Concisely, we must

choose a collection of physiological properties that we take to detail every relevant physical

parameter. We can write this another way:

Assumption: our ontology is sufficient to resolve the beliefs of the organism to

the degree that is observable using our class of behaviours.

This can be seen as simply an application of the the pragmatic maxim.

Under this assumption there are two ways that the ontology of organisms belief may

differ from ours as observers that have no consequence: (a) The organism’s ontology may

be ‘coarser’ than ours; there is a many to one mapping from the states of affairs in our

ontology to that of the organism. In this case we would discover that there are aspects of

our ontology of no consequence for behaviour and we do not need to do anything, except

perhaps reduce our ontology for the sake of parsimony. (b) The subject may hold beliefs

about extraneous states of affairs; about things which we (the experimenters) neither

represent in our ontology nor play a role in determination of the experimental result. This

clearly does not matter.

The making of the above assumption is further justified as it leads to testable conse-

quences in the sense that it is possible to demonstrate that it was used incorrectly. We

can do this by simply extending our ontology and looking at whether it allows us to better

predict behaviour. In other words, we can consider more and more factors, and look in

more and more detail, until we have confidence that we have sufficiently resolved the states

of affairs that lead to a particular behaviour. The limit, where for a particular behaviour

we have assured or assumed that our ontology is sufficiently detailed so that our ability

to predict the behaviour bottoms out, is the psychophysical limit.

It is not just the ontology that we must be careful about projecting onto the organism,

but our beliefs too. In fact, taking a subjective view of probabilities as we must to discuss

beliefs, it is not obvious how we may talk about another agents beliefs at all. Indeed,

we cannot if we take “agents beliefs” in the sense of some objective fact that we are

determining. We must remember that the beliefs we consider the agent to have relate to

the goals and actions we consider it to have. To treat this correctly, we must take the

beliefs of the agent to be anything sufficient action towards the goals with the degree of

skill that we observe. We should then, of course, measure them in a way that corresponds

to this.

By definition, in specifying a non-deterministic relationship between a physical and

another (probably physiological) physical property we are saying that no-one who has

access to only one can have complete knowledge of the other without additional data
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about it. Thus, when we consider an organisms physiological state that is is specified in

this way we are saying that the organism cannot have complete knowledge of some physical

property. This means, that although we are not forbidden to make claims about what an

organism cannot know, they must be justified by a argument for why it is reasonable to

assume the organism cannot obtain data that allows it to know more.

A simple example of such a justification is this. I put a black ball and a white ball

into an opaque bag and shake it around. The colour of the next ball I pull out will be

underdetermined for me. It is then easy to justify that it should be underdetermined for

others too: unless they are in a position to see into the bag and judge which ball I will lay

my hand on first, or track where each ball lies within it, they have the same information

that I do about which ball I will draw. Their knowledge, as judged against their accuracy

of prediction, will be the same as mine.

The same applies to cases such as the modelling of photoreceptors, in this case a

justification can be made based on the greater investigatory power that scientific instru-

mentation provides us with.

To reiterate what I have said:

We know what the organism wants to do and we know what it has done, and, although

we don’t know all the details of the process by which it has chosen a given action we

know all the data that it could have used to make that decision.

Summary of this Section

What I have said so far has an interpretation that I have been avoiding up to now, but

one that is central to this thesis. The interpretation is information theoretic, and what I

have said above can be re-expressed as:

1. Make the organisms behaviour well defined so that it can be measured.

2. Make the physiological parameters well defined so that they can be measured.

3. Define a goal so that we have a clear understanding of what information is required

to achieve it i.e. the information required for particular beliefs to be rationally held.

4. Investigate the physiological limitations of achieving that goal i.e. the information

present to the organism from the physiology.

Expressed in this form, I hope that it is fairly clear. Once the formalisations are

complete I shall explain why this is relevent to information theory and perceptual theory

more generally.
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Formalisation

Belief can be adequately formalised by probability theory. Whilst there are other

formalisations (e.g. fuzzy logic as popularised by Zadeh, 1968), probability theory

has the benefit of fitting with classical conceptions of rational thought. I shall

not argue this here, as the argument has been made by many times before (Cox,

1946, 1961; Jaynes, 1994). Here I review the widely accepted formalisation of

Kolmogorov (1956), which differs to the foundations favoured by some subjective

probabilists, but it is still the most popular and fits with the rest of the formalism

here.

Probability is a particular kind of measure, so, we have already laid down much

of the groundwork. Indeed, we already have a space of things to be measured X
and a list of the combinations of which we can measure Σ. Probability is then

formalised by defining a function µ that takes some measurable combination

of things from Σ and assigns it a number in [0, 1]. So µ : Σ → [0, 1] with

the constraint that the probability of the system not being in any state is zero

µ(∅) = 0, the probability that it is in some state is one µ(X ) = 1 and that for

any disjoint subset of Σ: {Ei} that µ (
⋃
iEi) =

∑
i µ (Ei). This last requirement

is a refined version of requiring that the measure of a set from the σ-algebra, E, is

the sum of the measure of its elements, µ (E) =
∑

xi∈E µ({xi}). We are required

to use a more nuanced definition than this as it does not work when the measure

of the individual elements, µ({xi}), is vanishingly small (as it is when X is used

to represent a continuous variable).

If we assign logical statements to the elements of Σ then we can find correspond-

ing probability statements. For example the probability of A and B, Pr(a, b)

corresponds to µ(A ∩ B); not A, Pr(¬a), to µ(X \ A); A or B, Pr(a ∨ b) to

µ(A ∪B); etc.

Conditionals are slightly more difficult so I shall ignore some details here, specif-

ically the problems concerning conditioning on set x where µ(x) = 0 (see e.g.

Jaynes, 1994, chap 15.7). Essentially though, we simply define the probability of

A given B, Pr(a | b) by using the law of conditional probabilities (Pr(a | b) Pr(b) =

Pr(a, b)) leading to a correspondence of Pr(a | b) with µ(A∩B)/µ(B). Difficulties

associated with µ(B) being zero can be avoided by assuring that in such cases

we are explicitly take some well specified limit (ibid.).
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Now that we have a formalisation of belief. We only need to show the formalism of their

connection to behaviour. This is done using the apparatus of risk. To apply it, we take it

to be true that the organism has the knowledge of how to rationally act in a contingent

manner upon their beliefs about the world. The type of rationality to which I refer is

began with the work of von Neumann and Morgenstern (1944) but is now best identified

with the notion of generalised rational expectations. In this case, formally, the problem

becomes a general maximisation problem. We expect that an agent uses some kind of rule

to compare the relative benefits of the various contingent behaviours. This is known as a

decision procedure.

The formal decision procedure is the expression of a goal as an objective (target)

function conditioned on the belief of the agent. This is then maximised according to some

criteria (which can be also thought of as a part of the goal).

The assumption of a well defined goal is nescessary, and can been see as a problem for

this theory. I will discuss this more fully in the later chapters, but there is one sense that

a poorly defined goal can enter the formalism – by having a risk that depends on certainty.

This can be thought of a way of catching the problems associated with ill defined goals –

and as I will discuss in the next chapter, the seed of information theoretic measures.
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Formalisation

Risk: Most generally, we say that a behaviour b from a set of behaviours B = {bi}
is assigned a value the corresponds to how well a goal is achieved, vb. The

behaviour that is enacted is then the one which has the largest vb. There are many

ways of assigning it, generally, it will involve (a) an ontology enumerating the

contingent factors in making the decision X (and Σ) (b) a probability representing

a belief about which state of affairs is correct, µ(x), (c) a function that assigns

a the benefit to each one −Rb (x) (d) A function that dictates how these are

integrated to judge each behaviour f . So we have vb = f(X , µ,Rb). Often we

can can write this as
∫
X Sb(x)dµ(x) for some Sb. In the case of the Bayes risk

based decision S = R. In the case where the decision is based on minimising

the worst possible outcome (as measured by R, known as minimax) we have

vb = maxxRb (x), in which case we cannot write it in integral form. However

in this case we observe that if we assume for simplicity that R is positive then∫
X Ra (x)n−Rb (x)n dµ(x) diverges to positive infinity if the largest risk belongs

to behaviour a and negative infinity if it belongs to behaviour b, allowing us to

rank the behaviours in the same way as the non-integral form. Although, the

integral form is very general and many choices of f can be written as an integral

of some S so that they give the same ranking of behaviours, it is not completely

general.

3.3 Measures of Information

Now we are in a position to see how this relates to information theory. As the first part of

this, I would like to identify four different types of measurement involved in information

theory. It is good to make this explicit as it will allow me to both explain the motivation

behind the approach used in later chapters and how information theory fits with what I

have described so far. I will attempt to go through them in a natural way.

3.3.1 Geometric Measures

The class of measurements that I call geometric measurements are the kind of measurement

that we make with rules, scales and stopwatches. They are when we measure the distance

between two points in space or time, or the mass or volume of an object, or even the
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fractal dimension of a coastline (Mandelbrot, 1982). They concern the ‘world out there’

(the word geometry, after all, stems from the Greek meaning ‘measurement of the land’,

OED 2012).

Geometric measurements require method. For example, if I draw a number of different

right angled triangles on a page and measured them using a standard ruler, I would find

that the square of my measurements of the two shorter sides was equal to the square of

my measurement of the longest side. If instead, I use a slide rule to measure exactly the

same triangles, I will not observe the Pythagorean relationship between the squares of the

numbers I read off.15

Geometric measurement has a normative character, there is no reason to choose a linear

rule over the logarithmic slide rule other than convention and the ease of applying certain

laws. The apparent arbitrariness of geometric axioms concerned many great thinkers

of the 19th and 20th century, including von Helmholtz (1876) and the logician Alfred

Tarski (Tarski and Woodger, 1938, paper II)16. This is before we even consider field of

mathematics proper.

To make measurements of things in the world, we need a method - an agreed protocol

by which we measurements are taken - so that we know exactly what it is we are measuring

which rules apply to the measurements that we make. It is in such protocols, and their

interpretation, that we find the role of judgement calls.17

3.3.2 Entropic Measures

Entropy is the earliest information measure. It was originally developed as part of

Boltzmann-Gibbs statistical physics to describe thermodynamic entropy. It is usually

expressed, for discrete supports (ontologies) as:

H = −
∑
i

pi log pi (3.3.1)

15Say we have a right angled triangle with sides a, b and c, and we measure it with a normal ruler making

measurements, Ra, Rb and Rc then we would observe that R2
a +R2

b = R2
c , however, if we used a slide rule,

getting measurements Sa, Sb and Sc, we would instead see the rule e2Sa + e2Sb = e2Sc .
16Tarski was, like many logicians, about what was part of a particular formal system, and what we

impose upon it.
17In the case of the Pythagorean relation, I expect it is so ingrained most people would make the same

judgement about how to measure the lines to which it applies - but it is quite possible they might make

mistake of judging it to be applicable where it is not, on the surface of a sphere, for example.
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An Example of Bit Accounting

The appeal of the application of information theory comes from examples such as those

found in Jaynes (1994). In certain cases it is possible to use information measures to say

what number of statements about a state of affairs is enough to deduce exactly what is

going on. This relies on the entropy being zero in complete certainty and maximal in

complete ignorance.

Lets take the example of two people playing a very simple game with two different

fair coins - one £1 coin and one £2 coin. The first person (Alice) tosses both of them

keeping them hidden from the second person (Bob). We can measure what Bob knows

about these coins by the entropy - there are four possible states: (£1,£2) is one of

(H,H), (H,T ), (T,H) and (T, T ). The (maximum18) entropy, in bits, is then given by

assigning the probability of 1
4 to all states, so −∑ p log2 p = −41

4 log2
1
4 = log2 4 = 2bits.

Doing this gives us an upper bound on the ignorance of Bob. Being able to do this is

essential.

Now, Bob is allowed to ask yes or no questions to Alice so as to determine the state of

the two coins. There are a large number of questions he could possibly ask her, some of

which are better than others. For example, he could ask “does the £1 coin show a head?”,

this would determine exactly the state of the £1 coin, meaning that the state of affairs,

(£1,£2), is given by (H,H) or (H,T ) if the answer is yes or (T,H) or (T, T ) if the answer

is no. This question reduces the number of possible states to two, the expected change in

entropy is the mean of −21
2 log2

1
2 = 1bit (answer is yes) and −1

2 log2
1
2 = 1bit (answer is

no), which, of course, is 1bit . Bob’s entropy with respect to the coins changes from 2bits

to 1bit . This binary question gives him 1bit of information.

If however the question was “does at least one coin show a head?” the possible states

that the coins could be in are: (H,H), (H,T ) and (T,H) if the answer is yes, or (T, T )

if the answer is no. The first outcome is expected to happen 3
4 of the time, the second

1
4 of the time. So the expected entropy of Bob’s knowledge after getting an answer to

this question is 3
4(−31

3 log2
1
3) + 1

4(− log2 1) = 3
4 log2 3 ≈ 1.189bits - asking this question

is suboptimal as it provides19 only 0.811bits of information about the state of the coins.

Three quarters of the time Bob potentially needs another two questions to know exactly

what the state of both coins are.

18We take the maximum entropy as the coins, and their tossing by Alice, are at least thought to be

unbiased by Bob
19I use ‘provides information’ in the sense that the ignorance of Bob as measured by the entropy of his

subjective probabilities is reduced.
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The maximum information from a yes or no question is one bit - which happens when

the answer evenly partitions the number of states (assuming each one is equally likely).

The proof of this is not hard, but the result is intuitive enough for me to omit it. Of

course, there are other questions that could be asked which would be optimal, such as “do

both the coins show the same face?” Naturally, succeeding questions must chosen so as

to reflect the first question (and sometimes its answer). In the example here, we see that

Bob can gain complete knowledge about the state of the two coins by asking two of the

right binary questions.

Given the possible states a system (here, the faces shown by some coins) and the nature

of the questions (in the case above, yes or no questions), we can say how many questions

are needed to exactly determine the state of the system.

However, there is a difficulty here. We are required to state what exactly the beliefs

are about. This may be acceptable when an agreement between people can be made, but

it is not when we talk of animals, or people, whose ontology is unknown to us.

An Thought Experiment Demonstrating a Problem with of Entropy

It is very clear that entropy is problematic in the case of continuous distributions, which

may be easily demonstrated by a change of coordinates (see Shannon, 1948, Part IV). In

the discrete case it is often claimed that problems concerning the ontology (or measures

of it) have no bearing.

Carol, an excellent musician with perfect pitch, is the subject of an experiment about

the confidence in which she can identify certain pieces of music. Carol is not formally

trained and never concerns herself with classical music – indeed she could not name a

single composer. The experimenter, Dave, tells her that he is going to play short excerpts

from Johan Sebastian Bach’s Das wohltemperierte Klavier and that it contains a one piece

of music in each key. Dave plays a two second excerpt from one of Bach’s preludes and

fugues as establishes what probability Carol assigns to each20. He then calculates the

entropy of her knowledge:

HCarol = −
∑
k

pk log pk , k ∈ {Cmaj , C#maj . . . B[min, Bmin} (3.3.2)

Claire is just like Carol, in fact, she is a perfect copy of Carol up to the point where the

experiment begins. Dave repeats the experiment, only afterwards, he tells Claire that Das

wohltemperierte Klavier contains both preludes and fugues. Not knowing what a prelude

20Somehow. Methods exist for this, such as De Finetti’s game, though in this example I shall just assume

it is possible to do so whilst maintaining the procedure I describe.
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or fugue is, the probability that it is a prelude or a fugue is one half. The probabilities for

Claire are halved, but there are twice as many things to have the knowledge about. Dave

now assigns an entropy to Claire’s knowledge, as:

HClaire = −
∑
k

1
2pk log 1

2pk︸ ︷︷ ︸
Preludes

−
∑
k

1
2pk log 1

2pk︸ ︷︷ ︸
Fugues

so that k ∈ {Cmaj , C#maj , Dmaj . . . B[min, Bmin}

= −
∑
k

pk log 1
2pk = log 2−

∑
k

pk log pk (3.3.3)

= HCarol + log 2 (3.3.4)

which is a difference of one bit of uncertainty (no knowledge about whether it is prelude

or fugue). An interpretation of this in the spirit of Jaynes (1994) would be that it is in

fact the entropy about Dave’s beliefs, based upon Dave’s ontology, when Dave does the

calculation and that Dave, who is clear about what the ontology is used in each case,

should understand the difference between the two. This is all well and good, but such an

interpretation does not tell us about Carol and Claire’s beliefs. Carol and Claire’s beliefs

are clearly the same in both cases, and really, we should expect to get an answer to that

effect. The entropy here is sensitive to the ontology, really, what we require is a measure

that is not sensitive in this way (measure invariant). No entropic measure that is of the

form:

H(f) = E [f(x)] =
∑

p(x)f(p(x)) (3.3.5)

avoids this.21 One way to avoid this problem is to make a measurement that uses our

understanding of the ontology to cancel out its effects, or, in a more Jaynesian spirit, get

Dave to report a quantity that takes this effect into account.

There are two ways to do this, using enumeratory measurements such as the channel

capacity, or diversional measurements, such as the KL-divergence (Kullback and Leibler,

1951). I cover these in the next two section.

21Consider the transformation so that the ontology changes scale uniformly so that its size changes

with n → m and the probabilities change under the maximum entropy rule such that pi → qi = n
m
pi.

Say that the entropy is changed as Hn → Hm, then for invariance we require Hn = Hm so we have∑
i pif(pi) = m

n

∑
i qif(qi) = m

n

∑
i
n
m
pif( n

m
pi) =

∑
i pif( n

m
pi) and therefore we need f(p) = f(kp).

The only solution to this is where f is a constant, meaning that the entropy it measures would also be

constant and therefore rather pointless. Indeed, we cannot reasonably call a number that does not vary

with anything a measurement.
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3.3.3 Enumeratory Measures

Enumeratory measurements are, roughly, those that count something. Trivial examples

may be counting the number of eggs in a basket, or the number of needles on a spruce

tree. But also, lengths, volumes and areas can be thought of in this sense too. In essence,

a given area can be thought of as being formed of multiple, infinitely small areas joined

together. Notions such as length or area can be thought of as counting something that is

infinite by giving each of those things an infinitesimal value.

Shannon’s channel capacity (Shannon, 1948) can be thought of as an enumeratory

measurement too. It, in a manner very much like counting the questions in the coin

example, counts a number of distinguishable states that a communications channel can

be in during a given time period. In this sense, it measures the number of elements an

ontology must have to completely describe an set of given things and is geared to the

in the case where there is noise that hinders doing so with the degree of accuracy of a

deterministic scenario.

Let’s say Carol was asked to communicate her best guess at the identity of the music

to Dave, to do so well, she would need to use a channel with at least the capacity of

CCarol = log2 24 = 4.58bits, whereas Claire, who is in addition required to specify whether

it is a prelude or a fugue, would require the ability to transmit at least CClaire = log2(24×
2) = 5.58bits.22 The channel capacity, like the entropy is dependant on the ontology, in

fact, it is not just dependant on it, it is what it measures. By talking about channel

capacity we are in effect postulating an object, the channel, the number of properties of

which are either known or unknown. By measuring a channel capacity in a system, we

are putting a lower bound on the number of properties this object has – the size of the

ontology. If for example, we say the channel capacity is 10bits we are in effect saying there

is 1024 different states in our ontology.

3.3.4 Diversional Measures

Diversional measurements, in a sense, are the opposite of Shannon’s channel capacity.

They do not seek to measure the part of the entropy which is dependant on the ontology,

but the part which isn’t. They are concerned with information in the truest sense - how

different are two beliefs. We can measure how much ‘information’ is required to change an

22The channel capacity can be written supp(x) MI(X,Y ) and in the case of a discrete noiseless channel

and a single message we can show that it is equal to logn where n is the number of different messages that

we may wish to send.
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agents belief from this to that, with minimal thought about how that belief is represented

to that agent.23 Formally, divergences compare two probability measures in a way that

does not depend on the ontology. Using one of the principles that state that complete

ignorance can be thought of as a probability distribution with equal probabilities24 (in

this case 1
24) we can write a measure of the magnitude of difference between Carol’s actual

belief and complete ignorance as:

dCarol = DCarol

( (
1
24 ,

1
24 . . .

1
24

) ∣∣∣∣∣∣ (pCmaj , pC#maj . . . pB[min , pBmin)
)

(3.3.6)

A special case of which would be where D refers to the KL-divergence25 I will define the

KL-divergence properly later, but for now, I will just write it’s value for the case above:

dCarol =
∑
k

pk log

(
1
24

)
pk

= log 24−
∑
k

pk log pk (3.3.7)

and for Clair we have

dClair = 2
∑
k

1
2pk log

(
1
48

)
1
2pk

= log 24−
∑
k

pk log pk (3.3.8)

so

dCarol = dClair (3.3.9)

which is what we would sensibly expect from an information measure. Divergences mea-

sure only the ‘knowledge part’ of entropy, whereas channel capacities only measure the

‘existence part’ of the entropy. This comes at the cost only being able to compare two

beliefs, where in entropy we have a way of describing a single belief. However, this is

not so strange. The absolute position of points in space are really points relative to an-

other point: the origin – there is no reason to expect it should be different in the case of

diversional measures.

I should probably point out, that one can obtain a similar invariance by subtracting

channel capacities from the entropies. In an informal sense, the entropies are measures

which combine channel capacities with divergences.

23Though we do require that there is sufficient capacity to do so. This idea is formalised by Fisher

Sufficiency.
24Such as the Principle of Maximum Entropy, or the Principle of Indifference etc.- they’re all the same

in practice.
25The KL-divergence has an interpretation in the spirit of Shannon, as how many bits of data would I

need to transmit to change the receivers belief from the distribution on the left (right) to the distribution on

the right (left) assuming I am using an encoding optimal for transmitting data according to the distribution

on the left (right). But I wish to avoid using such interpretations in general.
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3.4 The Logarithm in Information Theory

The logarithm is a reoccurring function in information theory, the examples above have

used nothing else. I would like to take some time describing where they occur, why they

occurred where they did and when and when not they are essential. It is good to make

this explicit as it will allow me to both explain the motivation behind the approach used

in later chapters and how information theory fits with what I have described so far.

Traditionally, logarithms occur throughout information theory, for example the Shan-

non entropy (Shannon, 1948) can be written as the expectation of the surprisal (− log p(x)):

H(X) = E [− log p(x)] (3.4.1)

The most widespread divergence, the KL-divergence (Kullback and Leibler, 1951) is also

the expectation of a logarithm (see appendices A.1 and A.3 or chapter 4 for an explication

of the notation):

D(KL) ( ξ || ρ ) = Eξ

[
log

p(x; ξ)

p(x; ρ)

]
(3.4.2)

The Fisher score and Fisher information are defined as :

Si =
∂

∂ξi
log p(x; ξ) (3.4.3)

and

gFisherij = Eξ

[
∂

∂ξi
log p(x; ξ)

∂

∂ξj
log p(x; ξ)

]
(3.4.4)

respectively, and the channel capacity also contains a logarithm (note the base):

C =

∫ ∞
0

log2

(
1 +

S(f)

N(f)

)
df (3.4.5)

In all these, the original motivation was because the quantities under consideration change

geometrically. In the case of the channel capacity, entropy and the KL-divergence, it is

because the number of different messages that one can represent with a sequence of symbols

increases geometrically with the sequences length (Shannon, 1948). In the case of Fisher,

it was motivated (at least in part) by the geometric increase in population sizes (Fisher,

1930).

Whilst the logarithm is traditional and has many nice properties, it is by no means

necessary. For example, there are a number of alternatives for the entropy, such as those

suggested by Rényi (1960) or Tsallis (2002). The class of divergences is also incredibly
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large (Amari and Nagaoka, 2000), after all, all we really need is a way of comparing

probability distributions with each other in a sensible way.

In contrast to the use of probability theory itself, where there is good reason to claim

a correspondence to rational beliefs, there is no requirement to use logarithms (with one

exception which I will discuss shortly). The bulk of chapter 4 explores other ways of

measuring probabilities in a way so that they justified in the terms of rational goal-oriented

behaviour.

In appendix C.1 we see that a logarithmic quantity arises naturally in the case of the

Fisher metric. In many ways it is quite a natural choice. Indeed, the Fisher metric is

the second derivative (curvature) of the Shannon entropy and the covariance matrix of

the Fisher score. In terms of the justifications here, not their original justifications, they

are natural because they ultimately come from local approximations of non-logarithmic

divergences. With the philosophical grounding I have provided here, it is only the Fisher

metric that has any real need for a logarithm.26

3.5 Summary: The Application of Information Measures

The focus of the first part has been on how we can justify using our own beliefs about the

states of physiological components of an organism to discuss the organisms beliefs. The

second part has been a review of various information theoretic measures. I will briefly

review what I have said in the first part and show how it relates to the second.

From an information theoretic point of view, the biggest problem is the ontology.

Firstly, our ontology should be sufficiently detailed to encapsulate the knowledge of the

organism. As we do not know what the knowledge of the organism is about, we must

make sure that our ontology contains the ability to represent all the situations which the

organism’s behaviour could be contingent on. This is the pragmatic maxim. A way of

determining the size of ontology we need might be to measure channel capacity between

some low level components. For example, if the channel capacity of the optic nerve is,

say, 1Gbit/s, then we know that we can represent the organism’s belief concerning a given

second of optical data with an ontology of any size greater than 21,000,000,000 states.

We must also choose information measures that are prejudiced by the ontology. This,

in addition to their natural occurrence in chapter 4, is where we find a need for divergences.

As the size of the organisms ontology is not determined, we must choose something that is

26...and even that is simply a consequence of choosing a geometry that is locally Euclidean! i.e. consid-

ering the covariance matrix of the fisher score, rather than some other statistic.
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not affected by it. This comes at the cost of only being able to compare different beliefs,

not giving them absolute numbers.

In addition, how we use our assessment of probabilities to describe the beliefs of other

organisms is also dangerous. We must be very careful to ensure we are justified in doing

so. We do this by arguing that our knowledge is equal to or greater than that of the

organism so that the organism cannot possibly know anything more than we are aware of.

3.5.1 The Model Used in the Following Chapters

I have summarised the approach I will use in chapter 4 in figure 3.2. This figure should

be approached cautiously as it is only a rough schematic, with labels chosen for brevity

rather than exactitude.
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World
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Figure 3.2: An informal diagram representing psychophysical relationships and quantification.

The diagram shows physical measurements on the left in red. These are geometric

and measure the world as conceived of by modern physics. We use specific tools and

methodologies to define geometric relationships between its components. On the right in

green, we have beliefs (mental world), these can also be measured geometrically someone

with access to a goal of the organism by judgements of the consequences in achieving that

goal. We formalise these measurements using information geometry. The arrows between

red and green are a possible way, but not the only way, we can relate the two domains. The

labels used here are the formal tools that I will use frequently throughout the remaining
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chapters.

The symmetry of this diagram is important. It shows the reason why I have made this

case precisely. In physics we have method which allows us to understand exactly which

measures to be making, but in information theory, there is presently not explicit rationale

for choosing any one measure above another. I suggest, that it is the goals of the organism

that provide us with exactly that. It is interesting to note that it could be said that the

stance of some positivists is that the green side should just be a copy of the red side, and

also, that it could also be said that it the stance of constructivist epistemology is that the

red side should really just be another copy of the green side. In this sense, the diagram

shows my stance as ratifying the two to some extent.27

To my knowledge there are no treatments of perceptual metrics that use this as a

basis, though there is some similarity with signal detection theory. As we discover more

and more about information theory we understand our motivations better: in the next

chapter I will use the concepts above to explain the rationale behind colour metrics.

27Although, I would probably take the side of the constructivists if I had to make a stand.
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Chapter 4

Geometry from Information

“The perception of what a thing is and the perception of what it means are not

separate”

James J. Gibson, 1971

(Reed and Jones, Reasons for Realism)

This section outlines the origin of a Riemannian geometry as a description of colour.

The derivation uses recent advances in theoretical machine learning and the relationship

between information and geometry.

The derivation proceeds from a description of optimal classification - firstly providing

a metric (the variational distance) which corresponds directly to the correctness of a

classification. This distance measure is shown to correspond to a particular risk function -

the 0-1 risk. From here I use results from machine learning as described by Bartlett et al.

(2004); Nguyen et al. (2009) (and similar work in operations research by Jose et al. 2008)

to describe a set of risk functions whose optimisation yields the same classification, and

with them, the set of distance-like measures which correspond to their optimised value.

This set of distance like measures (f -divergences) can all be thought of as sensible ways

of judging long range colour differences. Indeed, it is by connecting the statistical theory

with risk that we have a description of action, and thus, perceptually relevant quantities

(O’Regan and Noë, 2001; Philipona and O’Regan, 2006; Rachlin, 1992).

From here, I use the information geometric techniques developed by Amari and Na-

gaoka (2000) and others to derive the appropriate Riemannian metric associated with

these distance measures. Then in the next chapter I will show how this is equivalent to

the spaces used in colour science.
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Sketch of the Derivation

As I have suggested above, the following is a synthesis of three quite developed notions,

behaviour, risk and information geometry. It is unlikely that the average reader will be

well versed in all of these, so I have attempted to avoid an account that requires a lot of

technical knowledge. For similar reasons, before I continue I will bullet point the derivation

for reference:

1. Establish a standard behavioural experiment (2AFC) and standard error probabili-

ties.

2. Show how this can be interpreted in terms of risk.

3. Show that a whole class of risk measurements give the same behaviour in the exper-

iment.

4. Find corresponding information measures (divergences) - noting that they are sym-

metric.

5. Find their associated geometric quantities, showing that symmetry is preserved.

6. Observe that divergences do not necessarily lead to a Riemannian geometry.

7. Show that a standard Riemannian geometry is none the less generated from the risk

based information measures as defined above (from symmetry).

The rest of the chapter will focus on the formal relationships to the general principles

used in standard colour theory and extensions to more complex cases involving asymmetric

risks and unequal prior probabilities.

Notation and Technicalities

Because this chapter is effectively the integration of two existing theories, there are two

sets of notation which we will need to keep track of. The general set up of the probability

distributions in the chapter is represented graphically in figure 4.1.

Throughout, I will use x ∈ X to describe some observed variable. I will take it that

the distribution of the random variate X, on X , is the marginal distribution of paired

variables from another distribution on X × Y where Y = {−1, 1}.
I take these distributions to be parametrisable with parameters belonging to Ξ. I

will then associate the point in parameter space (ξ1, . . . , ξi) with the class where y = 1
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Figure 4.1: The structure of the probability spaces used in this chapter. The joint probability

density p(x, y) is composed of two densities, one for each y ∈ {−1, 1}. These are the two curves

shown here. These two densities are parametrised by two variables [ξ] and [ρ], these are considered

do define points within a statistical manifold.

and (ρ1, . . . , ρi) with y = −1. I denote the probability densities of the parametrised

distributions by p(x; ξ) and p(x; ρ). This means that the following holds:

Pr(x ∈ E | y = 1) =

∫
E
p(x; ξ)dµ(x)

Pr(x ∈ E | y = −1) =

∫
E
p(x; ρ)dµ(x)

Pr(y = 1) = τξ

Pr(y = −1) = τρ

Pr(x ∈ E, y = 1) = τξ

∫
E
p(x; ξ)dµ(x)

Pr(x ∈ E, y = −1) = τρ

∫
E
p(x; ρ)dµ(x) (4.0.1)

where µ is a measure continuous with the probability measure induced on X by condition-

ing the joint probability on X × Y upon members of Y.1

1As long as we are careful with sets of measure zero this is perfectly fine. See Kullback and Leibler

(1951) for more details.
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There is also the matter of risk functions. In the case of loss and risk functions more

generality can be achieved by extending their domain to the extended real line (R∪{∞}).
I will not need to invoke this myself at any point, but it is co-domain used in work on

which I expand (specifically Nguyen et al., 2009).

4.1 2AFC and the Variational Distance

Before introducing the information geometric method upon which this chapter is based, I

will first introduce the standard signal detection framework in a manner which is consistent

with the rest of this chapter.

Consider a subject of an experiment who is forced to make a choice between two

alternatives (a and b). The two alternatives have properties (x|a and x|b, the physiological

state given an alternative) which are drawn from two distributions (p(x|a) and p(x|b)).
Let’s assume that the subject’s motivation and ability to correctly assign x to either a or

b is ample. Then the subjects best strategy in terms of minimising the probability of error

is to assign a whenever the inequality p(x, a) > p(x, b) holds. Here we take the maximum

entropy distribution for the prior distribution of alternatives a and b (Jaynes, 1994):

p(a) = arg max
p
{p log p+ (1− p) log(1− p)} (4.1.1)

= 1
2 = 1− p(a) = p(b) (4.1.2)

so

p(x, a) = 1
2p(x|a) and p(x, b) = 1

2p(x|b) (4.1.3)

Given this, we can then write an equation for the expected error:

ε =

∫
X
f(x)dµ(x) (4.1.4)

where

f(x) =

 p(x, b), p(x, a) > p(x, b)

p(x, a), otherwise
(4.1.5)

which can also be written:

f(x) = 1
2 (p(x, a) + p(x, b)− |p(x, a)− p(x, b)|) (4.1.6)
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and thus

ε = 1
2

∫
X
p(x, a) + p(x, b)dµ(x)− 1

2

∫
X
|p(x, a)− p(x, b)| dµ(x)

= 1
2 − 1

2

∫
X
|p(x, a)− p(x, b)| dµ(x)

= 1
2 − 1

4

∫
X
|p(x|a)− p(x|b)|dµ(x)

= 1
2 − 1

4V (p(x|a), p(x|b)) (4.1.7)

and the probability of success, s, is simply equal to:

s = 1− ε = 1
2 + 1

4V (p(x|a), p(x|b)) (4.1.8)

V (·, ·) is known as the (total) variational distance. It should be noted that the quantity:∫
X
|p(x, a)− p(x, b)| dµ(x) (4.1.9)

is also known by this name, being more general in the sense that it accounts for any prior

probabilities p(a) and p(b). A generalisation for asymmetric error weightings as well as

prior probabilities is given in appendix B, this generalisation is of some relevance to the

extension in section 4.7.1.

The variational distance plays an important role in information theory and its relation-

ship with informational quantities such as the Kullback-Leibler Divergences are numerous

(e.g. Lin, 1991; Topsœ, 2000). The variational distance takes a value in [0, 2] and is a

metric on the space of probability distributions. It is immediately obvious from this that

the success takes a value in [1
2 , 1] as one would hope.

This distance corresponds very well to the standard psychometric curve, for good

reason - the standard psychometric curve can be thought of as the variational distance

(or an approximation to it) under particular assumptions. The sigmoid shape is a general

feature of signal detection problems.

Expression in Terms of Bayes Risk

The formulation above can be thought of in terms of the binary case of Bayes risk. Bayes

risk is related to the variational distance - it is almost the same. However, how one arrives

at the Bayes risk is slightly different. Importantly, the usual set up for Bayes risk includes

a functions known as the discriminant function, γ, and the loss function φ. The derivation,

in the spirit of (Nguyen et al., 2009) is as follows:

Similar to above, we begin with a distribution (X ,Y) of observed properties X and

corresponding classes Y, one can think the pair (x, y) ∈ (X ,Y) as a pair of observed values
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Figure 4.2: The “success” for Gaussian variables as used in ROC analysis, compared to a psycho-

metric curve (1/(1 + exp(−x))) which would be obtained using logistic regression.

(x) with the correct class to assign it (y). To make things easier, we assume that the labels

of y ∈ Y are either −1 and 1 (instead of a and b above). Next, we define a discriminant

function γ which assigns a real number to each possible x ∈ X . The sign of this function

is used to predict the correct value of y from x, so that we have an estimation of y, called

ŷ:

ŷ(x) = sgn γ(x) (4.1.10)

so that ŷ almost surely2 belongs to {−1, 1}. As both y and ŷ(x) take values of either -1

or 1 it is obvious that:

yŷ(x) =

 1, y = ŷ(x)

−1, otherwise
(4.1.11)

and that (almost surely):

y = ŷ(x) =⇒ yγ(x) > 0 (4.1.12)

y 6= ŷ(x) =⇒ yγ(x) < 0 (4.1.13)

2The difficulty of sgn 0 = 0 is often remedied by letting sgn 0 = 1 or sgn 0 = −1. However, this problem

can usually be ignored.
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From, here it is easy to write a function that gives us the probability of an error, which I

shall call the Bayes risk.3 Letting I (ϕ) be the indicator function for a proposition ϕ:

I (ϕ) =

 1, ϕ is true

0, otherwise
(4.1.14)

This is used to define the quantity known as 0-1 loss (φ0-1). It’s expectation is the Bayes

risk.

φ0-1(β) = I (β < 0) (4.1.15)

then we have:

RBayes (γ) = E [φ0-1(yγ(x))] (4.1.16)

= E [I (yγ(x) < 0)] (4.1.17)

=

∫
(X ,Y)

I (yγ(x) < 0) p(x, y)dµ(x, y) (4.1.18)

in words, this is the probability of making a mistake - the chance that γ has the wrong

sign.

We are now positioned to relate the Bayes risk to the variational distance. It should be

clear that with the probabilities of y values being equal, we get the following relationship

with the variational distance:

inf
γ
RBayes (γ) = ε = 1

2 − 1
4V (p(x|a), p(x|b)) (4.1.19)

This relationship will be generalised in the next section to eventually yield information

geometric quantities.

4.2 Bayes Consistent Risk Functions

In the expression of risk I have discussed, there is the scope to describe the risk associated

with uncertainty. The value in reducing uncertainty is the major determinent of the results

here. This is known in economics as uncertainty aversion. Standard information theoretic

quantities can be thought of as describing uncertainty aversion where the risk is linear

with message length or some similar quantity.

Since we are only concerned with the sign of γ there is an uncountable infinity of

definitions of γ(x) which yield the same classification ŷ(x), i.e. the mapping γ → sgn γ is

many to one.

3Though often Bayes risk is considered to be the general formulation of risk involving the expectation

of a loss function.
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Figure 4.3: Plot of the 0-1 loss (φ0-1) with respect to the output of the discriminant function.

There are two things to note: Firstly, the magnitude of the discriminant function does not influence

the result, only it’s sign. Secondly, the function is not convex.

This section focuses on risk other than the Bayes risk, with the ultimate aim of de-

scribing risk measures which yield the same ŷ. In other words, what other ways are there

defining risk which yield the same classification as the Bayes risk. This question has been

answered by Bartlett et al. (2004) in the general case and by Lugosi and Vayatis (2004)

for the specific case of boosting.

The Bayes risk used the function I (α < 0) (where α = γ(x)) to map the discriminant

function to a contribution to risk, but there are numerous (infinite) ways of doing so,

represented in general by φ. I shall focus on a collection of functions often called surrogate

loss functions, so named because they are used in machine learning as tractable surrogates

for the 0-1 loss of the Bayes risk. These are not the complete repertoire of possible loss

functions, but they constitute a large class of well behaved functions that is sufficient to

demonstrate the the major points of this section. Surrogate loss functions are convex

upper bounds on the 0-1 loss - they, by definition, must be convex4 and satisfy φ(w) > 1

when w ≤ 0 and φ(w) ≥ 0 when w > 0. Whilst any loss function that satisfies this could

4Allowing us to use convex analysis. This is what makes them tractable surrogates!
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rightly be called a surrogate loss function, one would be missing a trick not replacing the

two inequalities with the requirement that φ(0) = 1 (and φ(x) ≥ 0). This assures that

φ bounds φ0-1 as tightly as possible. First of all, these functions are functions only of

yγ(x), a class of functions referred to as marginal loss functions (yγ(x) is known as the

margin). The φ-risk is then defined as:

Rφ (γ) = E [φ(yγ(x))] (4.2.1)

Also, we define the optimal φ-risk. This is the minimal risk that can be obtained given

free choice of the discriminant γ.

R∗φ = inf
γ
Rφ (γ) (4.2.2)

A theorem of (Nguyen et al., 2009) is that, with some conditions on the nature of φ:

Rφ (γ)→ R∗φ =⇒ RBayes (γ)→ R∗Bayes (4.2.3)

As the φ-risk associated with a discriminant tends to its minimum value, so does its Bayes

risk. Or, more to the point, a φ-optimal discriminant function is Bayes optimal. The

conditions alluded to above are simple for the convex φ losses, and can be summarised as:

φ′(0) < 0 (4.2.4)

which has the simple interpretation when taken along with the convexity: any possible

error is always punished more than any correct choice.

4.2.1 Risk and Distance

Now that we know that the optimal φ-risk corresponds to a γ that is Bayes optimal we

can move on to asking how this relates to what might be considered a colour-distance.

The following is a summary of the results of Nguyen et al. (2009) in the slightly

narrower context of equal prior class probabilities, i.e. p(y = −1) = p(y = 1) = 1
2 .

This makes it easy to speak of conditional probabilities. Relaxation of this constraint is

straight forwards once we have established the information geometric formulation and will

be described in section 4.7.2. For now, I shall proceed with the maximum entropy prior.

Here I will make use of the following notation, this is to aid the transition to the

descriptions used in information geometry. Letting y1 and y2 represent the cases where

y = −1 and y = 1 respectively:

p(x, y1) = p(y1)p(x|y1) = 1
2p(x; ξ) (4.2.5)
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p(x, y2) = p(y2)p(x|y2) = 1
2p(x; ρ) (4.2.6)

This change of notation corresponds to adopting a new way of looking at the probabilities.

Conceptually, we consider the probabilities p(x; ξ) to belong to a statistical manifold.

A statistical manifold is a space of probability distributions, parametrised by some set

of parameters (coordinates) (ξ1 . . . ξN ) ∈ Ξ. Each point on the manifold, p(x; ξ), is a

distribution with support χ = {x} which is parametrised by ξ. Example in footnote5.

The equation for φ-risk can be written in terms of this new notation.

Rφ (γ) = E [φ (yγ(x))] (4.2.7)

= 1
2

∫
χ

(φ (γ(x)) p(x; ξ) + φ (γ(x)) p(x; ρ)) dµ(x) (4.2.8)

Letting us minimise in terms of γ(x). To do this we must note that minimising each of

the individual elements of the integral minimises the integral itself. Letting γ(x) = β for

clarity:

R∗φ = 1
2

∫
χ

inf
β

[φ(β)p(x; ξ) + φ(−β)p(x; ρ)] dµ(x) (4.2.9)

= 1
2

∫
χ
p(x; ξ) inf

β

[
φ(β) + φ(−β)

p(x; ρ)

p(x; ξ)

]
dµ(x) (4.2.10)

Letting u = p(x;ρ)
p(x;ξ) and:

f(u) = − inf
β

[φ(β) + φ(−β)u] (4.2.11)

the optimal risk can be written as:

R∗φ = 1
2

∫
χ
p(x; ξ)f

(
p(x; ρ)

p(x; ξ)

)
dµ(x) (4.2.12)

The class of quantities described by this equation are known as f divergences.6 The class

of f -divergences contains all quantities that corresponds to:∫
χ
p(x; ξ)f

(
p(x; ρ)

p(x; ξ)

)
dµ(x) (4.2.13)

These are often written as D(f) ( ξ || ρ ) (Amari and Nagaoka, 2000), in this notation we

have:

R∗φ = −1
2D

(f) ( ξ || ρ ) (4.2.14)

5For example, if we have a one dimensional manifold of Poisson distributions parametrised by their

rate, then we have a manifold (Ξ, χ, P ) such that P = p(x; ξ) = ξxe−ξ

x!
, Ξ = R+,χ = N

6There is usually a convexity requirement, but I will get to this later.

95



−1 0 1
0

1

2

3

4 e−α

eα

e−α + eα

−1 0 1
α

0

1

2

3

4

u
eα

−0.5 0.0 0.5
α

0 1 2 3 4
u

f (u)

Figure 4.4: Example of the relationship between the φ loss and the convex function f of f -

divergences. In this case I show the relationship in the case of the exponential loss: φ(β) = e−β .

Beginning on the top left - the functions uφ(−β) for various u, the value of u in this case is found

where β = 0. On the bottom left - the three functions φ(β), φ(−β) and φ(β)+uφ(−β) for u = 1 (i.e.

φ(β)+φ(−β)). The centre panel shows φ(β)+uφ(−β) for evenly spaced u (u = {0.2, 0.6, 1, 1.2...}).

Here I mark the minima (given by inf {φ(β) + uφ(−β)}), the height of the minimum is the value

of the divergence of a given u. The grey lines at each minimum continue on into the right panel,

where the function f(u) relates u to those heights. In this case f(u) = 2
√
u.

4.3 f-Divergences and h-Divergences

In the f -divergences, we have a broad class of functions that could be sensibly thought of

as general measures of difference. All of these correspond to how well two stimuli can be

distinguished. There are of course other functions, but the fact that there is more than

one is of great significance. All of them correspond to making the same classification, so

from the point of view of making the best possible choice they are the same. No one of

them, when considering the classification to which it corresponds, is better than any other.

All of them measure difference is a sensible way - how well can the best classifier do, given

some way of quantifying of how well it is doing.

I should be noted that the general class of f -divergences is actually broader than those

that correspond to a φ-risk as defined above. The f -divergences corresponding to a φ-risk

are symmetric (Bartlett et al., 2004):

D(f) ( ξ || ρ ) = D(f) ( ρ || ξ ) (4.3.1)
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which does not hold for f -divergences in general. This will not be a problem as much

of what follows will apply in general to any f -divergence, symmetric or not (I will be

explicit when symmetry is used). However, I will impose a different constraint to these

divergences. Namely, that the divergences considered will be zero for two points that are

the same. Often this does not hold for divergences derived from φ-risks, but can simply

be corrected by the addition of a quantity. This is in a sense a geometrising transform: it

changes an f -divergence that does not obey certain axioms of metrics to one that does.

Doing this makes it easier to apply the formalisms of Amari and Nagaoka (2000). Letting

h correspond to the convex function defining the corrected divergence, we have:

h(u) = f(u) + (1− u)f ′(1)− f(1) (4.3.2)

in which h can easily be shown to be a convex function. The reason for the constant term is

twofold: From the psychometric perspective, choosing a measurement where the “distance”

between a point and itself is zero corresponds to our intuitive notion of distance. If we were

to compare distances, asking is one bigger than another a additive constant would have

little impact. Adding a constant does not affect the fact that larger f -divergences mean

a better classification, moreover, it grounds them by stating that the difference between

stimuli indistinguishable to a sufficiently able experimenter will always measure as zero.

The other reason - from a mathematical perspective - is that not having zero distance

from a point to itself does not produce anything that resembles what one would like to

call a geometry. The term first order in u assures that the divergence is always positive.

Importantly, this operation preserves the symmetry of the divergence - this is demon-

strated in the general case in appendix C.2. Another important property of this is that it

does not affect the connection coefficient corresponding to the geodesics that connect two

points (which I shall discuss soon). The geometrising transform adds a constant that is

dependant on f and the prior probability of the two classes at each point, most generally

we can write:

D(h) ( ξ || ρ ) = D(f) ( ξ || ρ ) + (πξ − πρ)f ′(1)− πξf(1) (4.3.3)

where πξ = p(y1) and πρ = p(y2).

In the current case with equal prior probabilities (and where divergences are in a sense

doubled) the geometrising transform is simply:

D(h) ( ξ || ρ ) = D(f) ( ξ || ρ )− f(1) (4.3.4)

More formally, the correction above assures the following axioms of metrics: the iden-
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tity of indiscernibles

D(h) ( p || p ) = 0↔ h(1) = 0 (4.3.5)

and non-negativity

D(h) ( p || q ) ≥ 0↔ h′(1) = 0 (4.3.6)

the exact form of this term can be derived from Taylor’s expansion of the divergence (see

appendix C.1). Symmetry of the divergence can also be written as a property of the

divergence defining function, h:

D(h) ( p || q ) = D(h) ( q || p )↔ h(u) = uh( 1
u) (4.3.7)

Specific Cases

The variational distance is itself an h-divergence with f(u) = |1− u|. However, impor-

tantly, it is not differentiable at u = 1. It is not differentiable exactly where we will need it

to be when we want to differential geometry. Table 4.1 shows some common f -divergences,

their common names and common corresponding φ-risks.

Divergence Class f(u) Loss Name φ(α)

Variational Distance |1− u| 0-1 Loss I (α < 0)

Hinge Loss max{0, 1− α}
Hellinger Distance (1−√u)2 Exponential Loss e−α

Fisher-Rao Distance

Triangular Distance −4u
u+1 Least Squares Loss (1− α)2

Table 4.1: Some definitions of common f -divergences with some common φ-risks

4.4 Differential Manifolds

This chapter requires a basic understanding of differential geometry. The geometry used

here is not the standard Riemannian (or pseudo-Riemannian) geometry that will be fa-

miliar to physicists, but a minor generalisation of it.

The most important object in differential geometry is the manifold. A manifold, M ,

is a continuum of points, here they are determined by some coordinates ξ = (ξ1 . . . ξN ).7

7Not that any coordinate system is required at all.
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The power of differential geometry lies in the fact that the manifold M is assumed to

be the same no matter what coordinates are used, say ρ = (ρ1 . . . ρN ) - it is coordinate

invariant.

But what do I mean by “the same”. The thing that needs to be the same is a particular

notion of distance between points, not one as measured by some difference in coordinates,

as this will change if we choose different coordinates, but by some other measure of dis-

tance, defined in addition to the coordinates - distances intrinsic to the manifold. This

function (F ) is a function of two points, but importantly only those pairs of points that

are “next to” each other on the manifold. Making some assumptions about the continuity

of the coordinates and the manifold, we can say that a point at ξ is “next to” a point at

ξ + dξ, where dξ is some infinitesimally small displacement in the coordinates. This is

true for any coordinate system.

Then at each point on the manifold we define a the infinitesimal distance between

neighbouring points, ds, to be given by:

ds = F
(
ξ1, . . . , ξN ,dξ1, . . . ,dξN

)
(4.4.1)

Is is this distance, ds, which is the intrinsic property that is kept the same. There are

numerous sensible ways of defining F . Generally, as long as F (ξ, kdξ) = kF (ξ,dξ) one gets

something sensible. There is, however, a particular case which is widely used - popularised

by Bernhard Riemann:

ds = F (ξ,dξ) =

√∑
i

∑
j

gij(ξ)dξidξj =
√
gij(ξ)dξidξj (4.4.2)

The last equality uses notation that will be used throughout: when there are quantities

with upper and lower indices next to each other summation is assumed (see appendix A.3

for a summary of the notation used throughout). The quantity gij(ξ), usually just written

gij is a function of the coordinate ξ. Objects like g defined over coordinates are known as

tensor fields or just tensors8. In the case of g - which basically defines ds - it is known as

the metric tensor.

4.4.1 Transformation of Coordinates

To maintain the same geometry in coordinates ξ and coordinates ρ is the same as requiring

ds to be the same in both coordinates. This means that the metric tensor has a different

8usually, objects are only called tensors if they behave in a particular way under change of coordinates,

see equations 4.4.3 and 4.4.4
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representation in the two coordinate systems. The transformation between ξ and ρ should

obey:

gij(ξ)dξ
idξj = ds2 = gab(ρ)dρadρb (4.4.3)

and noting that dξi = ∂ξi

∂ρadρa then

gij(ξ)
∂ξi

∂ρa
∂ξj

∂ρb
= gab(ρ) (4.4.4)

4.4.2 Geodesics and Long Distances

The distance between points, which do not neighbour each other requires integrating along

a curve. A curve between points a and b has coordinates γ(t) = (γ1(t)...γN (t)) and it is

usually parametrised by a variable t such that γ(0) = a and γ(1) = b. The length of the

curve is then:

s(γ) =

∫ b

a
ds =

∫ t=1

t=0

√
gij(γ(t))

(
∂

∂t
γi(t)

)(
∂

∂t
γj(t)

)
dt (4.4.5)

Of course there is more than one curve between two points. Often we want the shortest

curve, which is uniquely defined in Riemannian geometry as well as the extension here

- we want to calculate infγ s(γ) for all gammas with γ(0) = a, γ(1) = b. These shortest

curves are geodesics and are usually given by9(Postnikov, 1998):

d2

dt2
ξi(t) + Γijk(ξ(t))

dξj(t)

dt

dξk(t)

dt
= 0 (4.4.6)

where Γijk are the (affine) connection coefficients.

Up to this point the geometry outlined is bog-standard. But with the geodesic equation

we come across the assumption which will be relaxed. The most intuitive way of looking

at how the geometry used here is to look at how we arrive at the geodesics. Usually, the

calculation of the geodesics uses an energy functional of the form:

E(γ) = 1
2

∫ t=1

t=0
gij(γ(t))

∂γi(t)

∂t

∂γj(t)

∂t
dt (4.4.7)

whose minimisation ensures minimisation of s as

s(γ)2 ≤ 2E(γ) (4.4.8)

which is obtained quite directly from the Cauchy-Schwartz inequality.

Now, when E is some other quantity, like one of the many derived from risk functions,

these rules change – the arc-length may no longer minimise E. Yet, as we will see, the

local geometry remains the same.

9This only applies locally. It is the shortest in the sense that there no shorter curves formed by changing

it slightly. There may shorter curves if a big change to the curve is made.
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4.4.3 Other Measures of Distance

In this chapter we are interested in other distance like measures than s. For the case of E

and s there is a particular choice of Γkij for which equation 4.4.6 yields the correct curve.

The values of Γkij are known as the Levi-Civita, or Riemannian, connection coefficients

and are given by:

Γij,k = glkΓ
l
ij = 1

2

(
∂

∂ξi
gkj +

∂

∂ξj
gik −

∂

∂ξk
gij

)
(4.4.9)

When not using E or s the connection coefficients Γkij are not necessarily these - indeed,

there is a different connection for every real number (denoted α). I will explain what they

are in the following sections.

Some of these choices yield f -divergences exactly, such as α = ±1, (Amari and Na-

gaoka, 2000) in this case it is the Kullback leibler divergence for which we can roughly

consider the risk to be linear with a reaction time (this follows from arguments similar to

Shannon, 1948).

4.5 h-divergence to Fisher Information

With a class of distance measures defined, we can now look at the differential geometry that

corresponds to them. To do this, we begin with the Taylor’s expansion of h-divergences

to the third order (this of course assumes the appropriate differentiability at u = 1):

D(h) ( ξ || ξ + ∆ξ ) = D(h) ( ξ || ρ )
∣∣∣
ρ=ξ

+

∂

∂ρi
D(h) ( ξ || ρ )

∣∣∣
ρ=ξ

∆ξi +

1

2

∂

∂ρi
∂

∂ρj
D(h) ( ξ || ρ )

∣∣∣
ρ=ξ

∆ξi∆ξj +

1

6

∂

∂ρi
∂

∂ρj
∂

∂ρk
D(h) ( ξ || ρ )

∣∣∣
ρ=ξ

∆ξi∆ξj∆ξk +

o(∆ξ4) (4.5.1)

The expansion is worked through in appendix C.1. Firstly, we consider the expansion

up to and including ∆ξ2. This is simply:

D(h) ( ξ || ξ + ∆ξ ) = f ′′(1)

∫
χ

1

pξ

∂

∂ξi
pξ

∂

∂ξi
pξdµ(x)∆ξi∆ξj + o(∆ξ3) (4.5.2)

where pξ = p(x; ξ). The integral in this can be written as:∫
χ

(
∂

∂ξi
`ξ

)(
∂

∂ξj
`ξ

)
pξdµ(x) (4.5.3)

101



which is usually written as an expectation10. Here ∂i = ∂
∂ξi

and `ξ = log p(x; ξ) - a notation

which will be used throughout this chapter:

gij = Eξ [∂i`ξ∂j`ξ] (4.5.4)

This is known as the Fisher metric, or, Fisher information. At small enough ∆ξ we see

that any divergence is proportional to the Fisher metric based arc-length squared.

4.5.1 The Fisher Metric

The Fisher metric (or information) is symbolised as gFisherij - or when its identity is appar-

ent from the context gij - is a central quantity as it provides a link between information

theory and geometry. The fisher metric is defined on a statistical manifold of parametrised

probability distributions p(x; ξ). It usually written in one of two standard forms (Amari

and Nagaoka, 2000):

gFisherij = Eξ [∂i`ξ∂j`ξ] = −Eξ [∂i∂j`ξ] (4.5.5)

where ∂i = ∂
∂ξi

and `ξ = log p(x; ξ). The second form is only correct when the pξ is

normalised11.

The Fisher metric is a Riemannian metric tensor. It is the general form metric that I

will use in later sections to derive specific colour spaces.

Importantly, it was shown by Chenstov (1982) that the Fisher metric is the unique

Riemannian metric that is invariant under (Fisher) sufficient statistics (see footnote12).

Therefore the Fisher information is special: it is neither dependant on the specific coor-

dinates used to parametrise it (it’s Riemannian), nor is it dependant on any particular

representation of probabilities (it’s Fisher sufficient).

Every (smooth) h-divergence has, as it’s second order term, some multiple of the Fisher

information. So no matter what h-divergence one chooses, it is determined by the Fisher

information at small distances. We have a quantity that is common to all risk based

measures of colour difference.

10when one does not have a normalised probability distribution, one must multiply this by τ =∫
χ
pξdµ(x).

11For the same reasons as the other form requires multiplication by τ .
12A sufficient statistic has a rather technical definition which can be easily found in a good statistics

book. It is hard to describe in words without making the rather tautological claim that it is an information

preserving transformation of a probability distribution. An important example, however, would be a

deterministic transformation. A sufficient statistic is any transformation of a probability distribution that

does not, in effect, add noise.
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The Fisher Metric and the Variational Distance

The variational distance is not smooth at u = 1: we cannot derive the Fisher information

by using a Taylor expansion. This problem can be overlooked by noting that all of the

Bayes consistent loss functions (as discussed in section 4.2) that yield smooth h-divergences

do lead to a multiple of the Fisher information. The Fisher information is common to

all smooth h-divergences that are equivalent to the variational distance - this is in the

sense that they lead to the same optimal classification. Put another way, where a metric

tensor can be defined by an h-divergence, it is proportional to the Fisher information.

All optimal, Bayes consistent classifications correspond to the Fisher metric, or leave a

metric undefined. Or, in other words, where a metric is defined at all the Fisher metric is

common to the entire class decision rules that optimally reduce the error probability.

4.5.2 Connection Coefficients

As well as demonstrating the uniqueness of the Fisher metric, Chenstov (1982) shows that

invariance to sufficient statistics also lead to a definition of the connection coefficients.

The connection he describes is known as the α-connection and has coefficients defined by:

Γ
(α)
ij,k = Eξ

[(
∂i∂j`ξ +

1− α
2

∂i`ξ∂j`ξ

)
(∂k`ξ)

]
(4.5.6)

The α here is the parameter the defines a particular geodesic (as in 4.4.2). Each set of

connection coefficients, of which there is one set for each α, describes a different way of

drawing the optimal line between two points. To calculate them we take the observation

of Amari and Nagaoka (2000) that the coefficients can be identified in the third order

expansion of the divergence (see Appendix C.1) where we see that as a consequence

−α = 3 + 2
f ′′′(1)

f ′′(1)
(4.5.7)

This does not mean, however, that integrating along such a curve yields the h-divergence.

Indeed, it only leads to it approximately (fourth order in ∆ξ).

4.5.3 Riemannian Connections

As the h-divergences are symmetric, they behave in a nicer way than f -divergences in

general. Their symmetry can be expressed as:

D(h) ( ξ || ρ ) = D(h) ( ρ || ξ ) (4.5.8)
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meaning that we can write (remembering u =
pρ
pξ

):

∀pξ, pρ :

∫
χ
pξf(u)dµ(x) =

∫
χ
pξuf

(
1
u

)
dµ(x)

f(u) = uf
(

1
u

)
(4.5.9)

Taking the third order derivative we can see that α = 0:

f ′′′(u) = −3
f ′′
(

1
u

)
u4

− f ′′′
(

1
u

)
u5

2f ′′′(1) = −3f ′′(1)

α = −3− 2
f ′′′(1)

f ′′(1)
= 0 (4.5.10)

This means that the affine connection coefficients associated with h-divergences are the

Riemannian connection coefficients, α-geodesics with α = 0:

Γ
(0)
ij,k = Eξ

[(
∂i∂j`ξ + 1

2∂i`ξ∂j`ξ
)

(∂k`ξ)
]

(4.5.11)

which can be seen to be the Riemannian connection by taking equation 4.4.9 and letting

gij = Eξ [∂i`ξ∂j`ξ] (this is a standard result, see Amari and Nagaoka, 2000, p33). Firstly:

∂kEξ [∂i`ξ∂j`ξ] = Eξ [∂i∂k`ξ∂j`ξ] + Eξ [∂i`ξ∂j∂k`ξ] + Eξ [∂i`ξ∂j`ξ∂k`ξ]

the last term of which is due to the expectation being taken over a distribution parametrised

by ξ. We now have:

Γ
(Levi-Citiva)
ij,k = 1

2 (∂iEξ [∂k`ξ∂j`ξ] + ∂jEξ [∂i`ξ∂k`ξ]− ∂kEξ [∂i`ξ∂j`ξ])

= Eξ [∂i∂j`ξ∂k`ξ] + 1
2Eξ [∂i`ξ∂j`ξ∂k`ξ]

= Γ
(0)
ij,k (4.5.12)

This symmetry leads to a zero third order term in the expansion of the divergence

in terms of ∆ξ, meaning that the euclidian distance approximates h-divergences an oder

better than non-symmetric divergences.

4.5.4 Variational Distance and Other Divergences

As I mentioned above, the variational distance, which directly yields the probability of

classification error, cannot be directly related to the Riemannian arc-length by geometric

considerations due to the non-differentiability of f(u) = |1−u| at u = 1. And, to do so in

any other way requires knowing more than the value of the divergence.
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Although there is not (necessarily13) a bijective relationship between the variational

and smooth h-divergences, there are a number inequalities that relate the two (Kullback,

1966; Topsœ, 2000).

The most well known inequality is Pinsker’s14 inequality, refined by Fedotov et al.

(2003) which relates variational distance V and the Kullback-Leibler divergence DKL
15

(an f , but not h, -divergence).

DKL(P ||Q) ≥ 1
2V (P,Q)2 (4.5.13)

In many applications assumptions can be made that allow one to uniquely define a

one-to-one relationship between the variational distance. For example, there is a sizable

section of Wyszecki and Stiles (2000, p682) devoted to, in effect, making such a calculation

assuming Gaussian variables (though this is never made explicit).

4.6 Proof of Concept

Before looking at how this theory can be put in a general setting, it is good to see an

example that shows that it works. Here, I take a basis for a colour space as described

in Vorobyev and Osorio (1998) as a starting point. The space is based upon Poisson

statistics, so the example here uses Poisson distributions and their statistics also. This

example also demonstrates a potentially useful trick. We need not calculate a metric

directly, we can instead use small differences in parameters as measured by a divergence

as an approximation to the metric.

Here I have formulated a model of spectral sensitivity (more specifically a ∆λ curve)

using the KL-Divergence as a divergence that approximates the metric. This curve rep-

resents the ability for an observer to discriminate two monochromatic lights, with wave-

lengths λ and λ + ∆λ: the value of ∆λ being that required for a particular adeptness in

discrimination (in this case set to c). The definition of the quantities here follows exactly

the same method as I will outline in part 5.4, except the calculation of KL-Divergence is

used instead of the Fisher metric.

13It is clear that when two divergences share a geodesics that one will be representable as a function of

the other, as they are both functions of the arc-length. When the geodesics are undefined, as in the case

of the variational distance, it is difficult to formally make such comparisons. There is still a gap in the

information theory literature with regard to this problem.
14Originally reported in Russian: M. S. Pinsker, Information and Information Stability of Random

Variables and Processes. Moscow, U.S.S.R.: Izv. Akad. Nauk, 1960.
15The KL-divergence is defined by f(u) = − log(u) or f(u) = u log(u). In the original paper by Kullback

and Leibler it is defined as (1− u) log u which is an h-divergence (Kullback and Leibler, 1951)
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Figure 4.5: An example of the relationship between the Kullback-Leibler Divergence and the

Variational Distance: The red area is forbidden for any distribution by Pinskers inequality. Pinskers

inequality can be refined making the red area larger. For many model families, such as the one

here: p(x; ξ) = e−(x−ξ)
2/2/
√

2π, the relationship between DKL and V is bijective. Note: the green

line is the same for both DKL(P ||Q) and DKL(Q||P ).

The approximation can be expressed as:

D(KL) (λ || λ+ ∆λ ) ≈ gij(ξ)
∂ξ

∂λ

∂ξ

∂λ
(∆λ)2 = g(λ)(∆λ)2 (4.6.1)

and setting this to a constant discriminability (c) we have:

D(KL) (λ || λ+ ∆λ ) = c (4.6.2)

which is then solved numerically for small, constant c to produce the ∆λ curves.

A comparison is shown in figure 4.6. The two curves differ very slightly in their loci

in quantum-catch space, in Vorobyev and Osorio (1998) the spectral locus is taken with

equal spectral power, then the luminance contribution is discarded, in the calculation I

present here, the quantum catches of the monochromatic stimuli are forced to be within

the same isoluminant plane by adjusting their power. Even given this difference, it is

easy to see that approximations using divergences do agree well with a standard model in

animal colour vision.
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Figure 4.6: Comparison of the Vorobyev-OsorioVorobyev and Osorio (1998) model with the equiv-

alent model based on the KL-divergence (a non approximate form of 5.4). The graphs show pre-

dicted wavelength discrimination (∆λ), assumed to be inversely proportional to the measure of

discriminability between two neighbouring monochromatic spectra (delta functions centred at λ).

The values of k(i) in the KL-divergence model are 0 for photic and 1000 for scoptic vision. The

two models agree very well, considering the differences outlined in the body text - the difference

between the extremities of the graphs is because of the difference in normalisation described. The

grey lines describe the spectral dependence of each of the photoreceptor classes.

4.7 Extensions

I will now consider a number of extensions to the framework presented so far.

4.7.1 Asymmetric Loss and Non-Riemannian Geodesics

The theory presented so far is explicitly related to symmetric loss functions, as such losses

are need for Bayes consistency. The measure of loss from erring with y = 1 has been the

same as where y = −1. Indeed, this is why it was possible to write these losses as φ(yγ(x)).

However, in many settings, we may be interested in losses that are not symmetric. To

use a well known example from colour theory: the loss associated with a train driver

misidentifying a red light as green is much greater than the loss associated with mistaking
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a green light for a red one.

Relaxing the symmetry condition requires us to write the risk function as a combination

of two functions φ+ and φ− which have the same constraints as the symmetric φ-losses

(convexity etc.):

φ(γ(x), y) =

 φ+(β), y = 1

φ−(−β), y = −1
(4.7.1)

This risk, like before, is given by - letting π(x) = p(x, y = 1) and ψ(x) = p(x, y = −1):

Rφ (γ) = E [φ(γ(x), y)]

=

∫
χ

{
φ+(γ(x))π(x) + φ−(−γ(x))ψ(x)

}
dµ(x)

=

∫
χ
π(x)

{
φ+(γ(x)) + φ−(−γ(x))

ψ(x)

π(x)

}
dµ(x) (4.7.2)

and the optimisation with respect to γ yields an f -divergence:

R∗φ = inf
β

∫
χ
π(x)

{
φ+(β) + φ−(−β)

ψ(x)

π(x)

}
dµ(x)

=

∫
χ
π(x) inf

β

{
φ+(β) + φ−(−β)

ψ(x)

π(x)

}
dµ(x)

= −
∫
χ
π(x)f(u)dµ(x) (4.7.3)

so

f(u) = − inf
β

{
φ+(β) + uφ−(−β)

}
(4.7.4)

No longer does f(u) = uf(1/u) and this means that the relationships that ensured the

Riemannian connection no longer holds: α = 0 is not by necessity true. Asymmetric losses

imply asymmetric divergences and non-Riemannian connection coefficients.

Example of Asymmetric Divergence from Asymmetric Loss

If we take the exponential loss functions φ(β) = e−β as a starting point, using it to define

an asymmetric loss so that:

φ+(β) = φ(β) (4.7.5)(
φ−(β)

)k
= φ(β) (4.7.6)

k (which is ≥ 0) can be thought of as putting complete emphasis on φ+ when it tends to

zero and complete emphasis on φ− as it tends to infinity; at 1 it is symmetric and Bayes

consistent. This defines a divergence such that:

f(u) = (ku)
1
k+1 + u(ku)

−k
k+1 (4.7.7)
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which is geometrised so that:

h(u) =
1

k

(
(1 + k)(ku)

1
1+k − k 1

1+k (k + u)
)

gij =
k

1
k+1

k + 1
gFisherij

α =
k − 1

k + 1
(4.7.8)

When k = 1 this is the Hellinger distance. The geodesics that are defined by this divergence

with other values of k range between α = ±1 in the limits of k → ∞ and k → 0. At

these limits, the geodesics are the same as those given by the Kullback-Leibler divergence

(though such limits are behaviourally irrelevant, as it corresponds to infinite risk for one

alternative).

A Testable Hypothesis

The difference in geodesics has testable outcomes. Take the following generalisation ex-

periment; As conditioning, we use two colours for which rewards are given upon being

selected - this is used to train the subject so that they develop a preference for these

two colours.16 Unconditioned stimuli of different colours lying on a line half way between

the two conditioning stimuli as measured by the various α-geodesic distances are then

presented and the preference for each recorded.

The theory presented here would suggest that in the case of equal rewards the preferred

colour would, approximately, lie on the geodesic for which α = 0, whereas, in the case

of unequal rewards (or punishments) a different geodesic would be expected. Let us now

look in more detail at a simple experimental paradigm that has the potential to illuminate

this phenomenon.

The first step is to select a diamond in colour space, ABCD, so that each vertex corre-

sponds to a colour that will be used in the experiment. The lengths of the edges are chosen

so that some information measure with α = 0 is equal for all edges - this corresponds to a

euclidean diamond in a ‘perceptually uniform’ space. Furthermore, we also require that un-

der other divergences, where α 6= 0, that D(f) (B || A ) = D(f) (B || C ), D(f) (A || B ) =

D(f) (C || B ), D(f) (D || A ) = D(f) (D || C ) and D(f) (A || D ) = D(f) (C || D ). In

other words, A and C should be both the same distance from B and both the same

distance from D. This need not be exact, but the closer we get to this, the better the

result.
16Though we could do the reverse and choose colours that are preferred.

109



The variation in risk must in some sense relate to the uncertainty. A simple way of

doing this, would to be to put different limits to the response time for different stimuli.

Even if there are prior (i.e. non-equal) risks associated with each stimulus, we can account

for their contribution by exaggerating the difference.

As an example, I have chosen a simple space which is determined by Poisson statistics

(and uniform prior probabilities) so that the metric determining statistics are given by

Poisson distributions with a rate parameters given by the quantum catch (see section 5.4).

To do this I take a standard euclidean square in the coordinate system with coordinates

ξi =
√
qi, where qi is the quantum catch. I choose a square such that

∑
i ξ
i = 1, so as to

mimic chromaticity space. This example uses trichromatic colour space.

Point ξ1 ξ2 ξ3 q1 q2 q3

A 0.663953 0.663953 0.404145 0.440833 0.440833 0.163333

B 0.727350 0.427350 0.577350 0.529038 0.182628 0.333333

C 0.490748 0.490748 0.750555 0.240833 0.240833 0.563333

D 0.427350 0.727350 0.577350 0.182628 0.529038 0.333333

Table 4.2: Coordinates for colours in this example experimental setup.

Figure 4.7: Diagram of the choice of points in section 4.7.1, representing to those in table 4.2.

The triangle represents a chromaticity type space in ξ.

For the experiment, using an unbiased or unbiased set of rewards we train the subject

to colours specified by B and D, then as a test we look at the preference for the colours A

or C. When the rewards are equal we should expect no preference for either A or C, when
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they differ, we should expect a bias. We can see this in table 4.3. The exact quantification

of the distances is impossible as we do not know exactly which risk function is appropriate,

but we can look at the qualitative change. We can think of the different f -divergences as all

being monotonic functions of some natural α-geodesic distance (such as the α-divergences

of Amari and Nagaoka (2000)), thus, if for some divergence with a given α, one distance

is greater than another, this will also be the case for any other divergence with the same

α. The changing of α in this experiment, is in effect moving the two training points closer

or further away from one of the two test points (and a such requires a corresponding

asymmetry to exist in the relationship between the squares coordinates and geometric

structure of the statistical manifold). This is represented diagrammatically in figure 4.8.

Figure 4.8: The ‘apparent’ geometry of the stimuli for different α (and thus, relative rewards in

the training scenario). The divergences are measured either rightwards (
−−→
AD,

−−→
BA,

−−→
BC and

−−→
CD)

or leftwards (
−−→
AB,

−−→
CB,

−−→
DA and

−−→
DC), or equivalently in one direction with ±α (see Amari and

Nagaoka, 2000, 3.1 - The Duality of Connections). Assuming that we are measuring divergences

in a chosen direction, as we change |α|, B and D move closer to either A or C, measuring in the

other direction, the converse happens.

4.7.2 Different Prior Probabilities

I shall end the substantive part of this section by showing how the theory presented above

can be extended to non-normalised probabilities. Up to now I have mostly considered mea-

surements on conditional probabilities by assuming a maximum entropy prior distribution

over the actual class Y. The theory can be easily extended to prior class distributions

that are not maximum entropy; it has been left to the end as it makes no difference

to the previous arguments except for making formulae much harder to read. This is an

application of the quite general procedure of denormalisation as outlined by Amari and
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Choice α = −1 α = 0 α = 1

A 0.47498 0.50000 0.52495

C 0.52495 0.50000 0.47498

Table 4.3: Relative distances of A and C from B and D. The values in the table are given by

D(f)(B || X )
D(f)(B || X )+D(f)(X || D )

, where X is either A or C. I have used the canonical divergences of Amari

and Nagaoka (2000) as D(f) ( · || · ), these are the two Kullback-Leibler divergences for α = ±1,

and the Hellinger distance for α = 0. Different choices would give different values but the trend

would remain; the fraction either increasing or decreasing with α (depending on the choice of A or

C) and with it staying constant at 0.5 for all α = 0.

Nagaoka (2000). Denormalisation allows us to not only consider a manifold of probability

distributions such that∫
X
p(x)dµ(x) = 1 (4.7.9)

but any value τ > 0:∫
X
p(x)dµ(x) = τ (4.7.10)

Using the same definition as equation 4.3.3, one can write a general f -divergence as:

D(f) ( y1 || y2 ) =

∫
X
p(x, y1)f

(
p(x, y2)

p(x, y1)

)
dµ(x) (4.7.11)

=

∫
X
p(x|y1)p(y1)f

(
p(x|y2)p(y2)

p(x|y1)p(y1)

)
dµ(x) (4.7.12)

From here, we make the identifications:

p(x|y1) = p(x; ξ1) (4.7.13)

p(x|y2) = p(x; ξ2) (4.7.14)

p(y1) = τ (4.7.15)

p(y2) = 1− τ (4.7.16)

but consider the more general case of divergences between (ξ1, τ1) and (ξ2, τ2) with the

above special case being where τ1 = τ and τ2 = 1 − τ . This means that we have, letting

ρi = (ξi, τi):

p(x, y1) = τ1p(x; ξ1) = p(x; ρ1) (4.7.17)

p(x, y2) = (1− τ1)p(x; ξ2) = p(x; ρ2) (4.7.18)
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so that in general we have f -divergences of the form:

D(f) ( ρ1 || ρ2 ) =

∫
X
p(x; ρ1)f

(
p(x; ρ2)

p(x; ρ1)

)
(4.7.19)

Defining the a new index τ which corresponds to partial derivatives as:

∂τ =
∂

∂τ
(4.7.20)

The Fisher metric is extended to g̃ by:

g̃ij = τgij , g̃iτ = 0, g̃ττ =
1

τ
(4.7.21)

or more graphically, for a parameter vector (ξ1 · · · ξN , τ):

g̃ =



...
...

. . . τgij . . . 0N

...
...

. . . 0N . . . τ−1

 (4.7.22)

Often we are concerned with a space with fixed prior probabilities - the sub-manifold with

τ = q(ξ). i.e. where q(ξ) is the prior probability at any ξ. This corresponds to cases where

q(ξ) is determined natural scene statistics or, if one wishes, other more contextualised

distributions. It is fairly straight forward to calculate the metric on this sub-manifold, it

is simply the value of ḡ which yields a solution to:

ḡijdξ
idξj =

(
τgij +

1

τ
(∂iτ)(∂jτ)

)
dξidξj (4.7.23)

ḡij = τ (gij + (∂i log τ)(∂j log τ)) (4.7.24)

I shall not go into any more details here, except to show that not using prior probabilities

(instead, just normalised and parametrised distributions) is equivalent to the uniform

(maximum entropy) prior over all ξ. If we want a prior distribution that yields the same

geometry as the conditional geometry (up to a multiplicative constant: kḡ = g for some

k > 0), then we have the requirement:

kgij = τ (gij + (∂i log τ)(∂j log τ)) (4.7.25)

The easiest way of solving this is realising the second part of the sum must be zero:

∂i log τ = 0 (4.7.26)

τ = constant (4.7.27)

which is clearly a solution to the equation in general and corresponds to a uniform prior.
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4.8 Summary of Framework

The theoretical framework presented above shows how colour spaces can be generated

from the starting point of risk as found in machine learning literature. It will be seen in

the next chapter that this theory leads to familiar colour spaces.

I have shown how a requirement for Bayes consistency of the binary classifier responsi-

ble for discriminating colours yields a whole class of distance measures - the h-divergences.

These are symmetric. When it is possible to define a Riemannian metric from them, it is a

multiple of the Fisher metric. All of them yield the same geometry. Whilst it is true that

divergences in general do not give Riemannian geodesics, the class of h-divergences does.

The curves along which h-divergences are minimised are all Riemannian geodesics. If we

relax the constraint of symmetric loss functions the geodesics are potentially different.

Non-Riemannian α-geodesics correspond to non-Bayes-consistent binary classifiers and we

see that the weighting of the classifier towards a particular choice changes the geodesic

and that the effect of this can potentially be observed experimentally.

For all risks I have mentioned there is a corresponding divergence, and as demonstrated

in appendix C.1 and by the theorem of Chenstov (1982) this means that the Fisher metric

is the only Riemannian metric to use for colour theory (and perceptual theory in general!)

if one requires consistency with this model of risk. Such measures constitute a large class

of global metrics that can all be justified as measures of long range colour difference - this

reflects the difficulties that exist in deriving such quantities, in fact, to my knowledge no

other theoretically justified derivations of such measures exist.

With the addition of the α-connection to the geometry of colour we also have a gener-

alised notion of perceptual uniformity, with a different type of uniformity for each value

of |α|. The transformation of coordinates so that divergences become straight (euclidean)

lines is not uniquely defined, but connected to the value of α. Making a space perceptually

uniform in this sense applies to non-infinitesimal distances must therefore take this into

account (using α-affinity, see Amari and Nagaoka, 2000). In biological systems the risks

and rewards involved with making a decision are rarely symmetric. The results here are

of great importance in such cases. However, in the contrived situation of an experiment

where there is no bias in the risks or rewards involved, we can expect α to be zero and

the transformation to perceptual uniformity to be the one that makes the Fisher metric

proportional to the identity matrix.
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Chapter 5

Local Models of Colour Vision

“In nature we never see anything isolated, but everything in connection with

something else which is before it, beside it, under it and over it.”

Johann Wolfgang von Goethe, 1749-1832

In this section I will review some existing models of colour that use differential geo-

metric methods, formulating them in the framework of the previous section so that I may

highlight some of the theoretical assumptions that they suggest.

Although under certain regimes photoreceptor responses are linear (de Ruyter van

Steveninick and Laughlin, 1996), this is not always the case (Alleysson and Hérault, 1997;

French et al., 1993). A commonly cited example of photoreceptor non-linearity is the

Bezold-Brücke effect, where lights that are bright relative to the state of adaptation de-

saturate (Backhaus, 1992). There is a less obvious, but ubiquitous source of non-linearity:

where there is non-Gaussian noise. This is so because in general we can find a non-linear

transformation of the support such that the noise becomes Gaussian. Similarly, we can do

the inverse; turn Gaussian noise on a non-linear coordinate1 into non-Gaussian noise on a

linear coordinate. This is where the coordinate invariant information geometric measures

find their true place.

Here I investigate non-linearities arising from various non-Gaussian noise regimes and

the connection between various existing colour spaces from the perspective of the frame-

work I developed. I will provide the Fisher metric and (where possible) a transformation

of the quantum catch coordinates that makes the space ‘perceptually uniform’.2

Perceptually uniform in this case does not describe the experience of the subject, but

simply to the affine nature of the geometry. Such correspondance could only be achieved

1By this I mean a coordinate non-linearly related to the transmitted signal - such as in Shannon (1948).
2The transformation ρ(ξ) makes the space perceptually uniform if gij(ρ) = kδij .
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if the model were perfect and the risk was entirely captured by the Euclidean distance.

Perceptual uniformity in this case is simply a short hand to describe a cannonical form of a

coordinate system which if derived from a good model would have rotationally symmetric

and equal sized ellipsoids describing the ability to descriminate.

Notation

For this section I will adopt the convention that the coordinates ξ ∈ Ξ refer to those of

the quantum catch space - previously written q in 1.3.1. I use ρ ∈ R to represent other

coordinates systems. The support coordinates x ∈ X , as before, parametrise the space

whose elements are used to produce a classification.

5.1 Gaussian Noise

The most immediately apparent application of information theoretic approaches is the

case where Gaussian noise is ‘added to a signal’, much like the cases used by (Shannon,

1948) to derive information measures based on signal to noise ratios. This simple model

is the point of departure for the rest of the chapter, in which the models will become

increasing detailed. However, it can be shown that this situation is broadly applicable and

that a similar result holds for all members of the exponential family whose parametrisation

define only the mean and leave all other moments constant3. Although this model is rather

simplistic, it is important as the Gaussian distribution plays a central role in information

theory and the metric space it induces is affine. From now on I will make use of some the

notational devices in appendices A.3.1, A.3.2 and A.3.3.

The model of the colour system of an n-chromat is simply taken to be the statistical

manifold described by the probability density functions representing independent Gaussian

noise around a mean value of ξ:

p(x; ξ) =

n∏
k=1

1

σk
√

2π
exp

(
−(ξk − xk)2/2(σk)2

)
(5.1.1)

Each variate in X is independent so we can immediately see that gij(ξ) = 0 when i 6= j.

For the same reason it is possible to treat each case where i = j separately - letting us

3See Amari and Nagaoka (2000)
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drop the indices for now. I will use ∂ to denote ∂
∂ξ .

`(x; ξ) = −(ξ − x)2

2σ2
+ constant

∂`(x; ξ) = −(ξ − x)

σ2

E [∂`(x; ξ)∂`(x; ξ)] =

∫ ∞
−∞

(ξ − x)2

σ4

1

σ
√

2π
e
−(ξ−x)2

2σ2 dx (5.1.2)

which can be evaluated (using parts) to:

E [∂`(x; ξ)∂`(x; ξ)] =
1

σ2
=⇒ gii =

1

σ2
(i)

(5.1.3)

so

gij =
δkij

(σk)
2 (5.1.4)

The metric in this case is equal to the inverse of the covariance matrix of that would

describe the multivariate Gaussian in equation 5.1.1 - as the coordinates of X are inde-

pendent such a covariance matrix would be diagonal. It is not particularly hard to derive

the case where Gaussian noise is correlated between the photoreceptors, in which case,

the metric is given by the inverse of a non-diagonal covariance matrix. This justifies the

commonly used covariance matrix derivation (Vorobyev and Osorio, 1998; Wyszecki and

Stiles, 2000), but also shows that it can only be taken to be realistic when the assumption

of independent additive Gaussian (up to change in measure) noise is applicable.

5.2 Weber’s Law: Helmholtz’s and Stiles’ Spaces

The colour model of von Helmholtz (1896)4 represents the earliest non-trivial colour space

model. This space has many justifications, I wish to use it here as a means of idealising two

extremes of explanation - one where the metric arises deterministically, the other where it

arises statistically. The examination of this space provides an entry point to a discussion

about the correct derivation of colour space metrics.

The Helmholtz space has the metric:

gij =
δklij

(τ lξk)
2 (5.2.1)

which is often justified as the application of Weber’s law to each photoreceptor channel.

This can be seen by choosing a straight line γ(t):

γ(t) = tzi + ci (5.2.2)

4See also Wyszecki and Stiles (2000, p658)
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for zi ∈ R+ with the constraint that z is a unit vector (ziz
i = 1). Then:

ds2 = gij
∂γi(t)

∂t

∂γj(t)

∂t
dt2

= δkij
zizj(
τ(k)ξk

)2 dt2 (5.2.3)

so that when a line which only changes in one photoreceptor coordinate, m, i.e. zi = zm =

1 for some i = m then:

ds =
dt

τ(m)ξm
(5.2.4)

To get Weber’s law, we consider a linear approximation:

∆s = δijm
∆t

τ iξj
(5.2.5)

If we identify ∆t
∆s the apparent change with respect to the actual change - i.e. a small

change in the coordinates: ∆ξ we get, after dropping the indices:

∆ξ

ξ
= τ (= ω) (5.2.6)

where ω is known as the Weber fraction. We say ‘the discriminability is proportional to

the intensity’. We should note that this doesn’t apply to changes in any directions other

than along the coordinate axes i.e. z = (1, 0, 0, ...), (0, 1, 0, ...) etc. Weber’s law cannot be

taken to apply both at the photoreceptor level and in the colour space at large.

But how is this justified mechanistically? Is it justified at all? There have been many

attempts to justify Weber’s law mechanistically (Cope, 1976; Deco and Rolls, 2006; Masin

et al., 2009; Shen and Jung, 2006), the problem it seems, is not that it’s hard to derive,

but the complete opposite - it is too easy - there are so many different ways that it can

arise that it is impossible to say that it is any particular one without further argument.

I will now provide two interpretations of this metric, one statistical, the other deter-

ministic.

5.2.1 Derivation as a Statistical Phenomenon

The firing of sensory neurons can often be described as a Poisson processes, neurons that

can be described like this are known as Poisson neurons. One could consider a population

of N Poisson neurons whose mean inter-spike interval5 is proportional to signal intensity

as defined by the quantum catch ξ (spike time encoding, see e.g. Sanderson et al., 1973).

5The inter-spike interval is the time between action potentials. The distribution is typical of sensory

neurons.
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This situation implies that each of the population’s inter-spike intervals, xi, are distributed

according to a gamma distribution.

Pr(xi = xiα) =
(xiα)N+1e−x

i
α/τξ

i

Γ(N)(τξi)N
(5.2.7)

With some work it is possible to derive equation 5.2.1 as the Fisher metric for this distri-

bution (see Appendix D.2). It results in an equation of the form:

gij =
Nδkij

(τξk)2
(5.2.8)

which is the Helmholtz metric.

5.2.2 Interpretation as a Deterministic Phenomenon

It is possible to assume that photoreceptors respond logarithmically to the amount of

light incident upon them (see e.g. Koshitaka et al., 2008). Using this we can calculate the

transformation from the quantum catch type space (parametrised by ξ) to a photoreceptor

type space (parametrised by ρ = [ρa]). As the channels are independent we can do the

calculations without indices, as in the first section:

ρ = log ξ so
∂ξ

∂ρ
= ξ (5.2.9)

We now get the metric in this coordinate system that corresponds to the Helmholtz metric

in the quantum catch coordinates (this is to show that when we use this parametrisation

the metric is affine).

gab(ρ) = gij (ξ)
∂ξi

∂ρa
∂ξj

∂ρb
=

δkij
τ2

(k)(ξ
k)2

(δiaξ
i)(δjbξ

j) =
δkab
τ2

(k)

(5.2.10)

We see that when parametrised by the logarithm of the quantum catch the Helmholtz

space is affine. The affine (Gaussian based) metric on logarithmic quantum catch space is

the same as the Helmholtz metric on (linear) quantum catch space.6

5.2.3 Two Explanations, One Result

It seems that without any extra argument neither of these is justified more than the other.

Indeed, attempting to reverse engineer a single result to find a complex mechanism is not

very sensible in the first place. However, there may be additional reasons to accept or

reject a given way of arriving at a particular result when many alternatives exist. The

6The original coordinate system in which Helmholtz defined the metric was this (linear in quantum

catch).
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following section argues that when addressing psychophysical metrics we should reject a

deterministic model in favour of a statistical model. More precisely, I argue that deter-

ministic models such as the one above are actually statistical models in disguise.

5.3 The Fallacy of Metrics Based on Noiseless Physiological

Transformations

I have described two potential explanations for the Helmholtz metric that seem to be at

odds with each other. One is based on a physiologically motivated, deterministic trans-

formation, the other on the addition of physiologically motivated, non-Gaussian noise. I

would like to briefly discuss how deterministic transformations should be applied and how

noise based spaces are related. I will then argue that in actuality a physiological space is

a noise based space with tacit assumptions about the nature of the noise. To illustrate

this I will begin by beating on a straw man - the claim that “you can have a colour metric

without noise”.

Consider a one dimensional system completely without noise. The value of a signal s

is transformed by a one-to-one function f into a probability distribution p on support X
with elements x and parametrised by s. This is completely general, it captures all possible

(continuous) deterministic relationships between the ‘input’ s and the ‘output’ x:

p(x; s) = δ(x− f(s)) (5.3.1)

where δ, unlike elsewhere in this document, is the Dirac delta7. As the Dirac delta is

discontinuous, let us instead consider the distribution:

p̄(x; s) =
exp

(
− (x−f(s))2

2k2

)
k
√

2π
(5.3.2)

which converges to the distribution in equation 5.3.1 in the limit k → 0:

lim
k→0

p̄(x; s) = p(x; s) (5.3.3)

To calculate the Fisher metric we need to assume that it can take values in the extended

real numbers R̄ with their usual algebraic definitions8. The Fisher metric for the p̄ system

7This is defined so that δ(x) = 0 if x 6= 0 and
∫
X δ(x) = 1.

8The extend reals (R̄) are the real numbers with the addition of points at ±∞ so that R̄ = R∪{−∞,+∞}

In this case these additional numbers obey, for all x ∈ R̄, y ∈ R: −(+∞) = −∞; +∞ > −∞; +∞ > y;

−∞ < y; x + (+∞) = +∞, for x 6= −∞; x − (+∞) = −∞ for x 6= +∞; x × (±∞) = ±∞ for x > 0;

x× (±∞) = ∓∞ for x < 0; y/±∞ = 0; ±∞/y = ±∞ for y > 0 and ±∞/y = ∓∞ for y < 0.
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is:

gij =
δij
k2

(5.3.4)

so that in the limit where p̄→ p we have:

lim
k→0

gij = lim
k→0

δij
1

k2
=

 +∞, i = j

0, otherwise
(5.3.5)

and similarly for the linearised distance between two points arc-length ∆s we have:

∆s2 = gij∆ξ
i∆ξj =

|∆ξ|2
k2

so ∆s =
|∆ξ|
k

(5.3.6)

then

lim
k→0

∆s =

 limk→0
|∆ξ|
k , |∆ξ| > 0

0, |∆ξ| = 0

=

 +∞, |∆ξ| > 0

0, |∆ξ| = 0
(5.3.7)

Here, every signal is perfectly discriminable from every other. By it, everything is either

exactly the same or completely different. There is in fact a metric which has this property,

it is called the discrete metric (Sutherland, 1975) and the distance between two stimuli x

and y is given by:

d(x, y) =

 0, x = y

k, otherwise
where k is a strictly positive constant (5.3.8)

This metric could be described as categorical. Each point is a unique in every possible

way. There are no degrees of sameness, just ‘identical’ and ‘different’. In fact, the topology

it induces is completely different from the other metrics I have considered (Sutherland,

1975) - it is so perverse that the (topological) dimension of the colour space is no longer

the number of photoreceptor classes, but is instead 0. The space is a sea of isolated points;

there is no concept of a point being ‘near’ another; there is no geometry at all!.

While we have got a metric from this transformation, it is not Riemannian, nor does

it even correspond to a more general differential manifold.9 On this basis we can quickly

see that it does not correspond to any known colour model. Nor does it correspond to our

sensibilities about biological systems. A sensory system with perfect fidelity is unheard of.

9Such as those described by multidimensional scaling. This technique is widely applied, in domains

including colour (Backhaus et al., 1984), sound (Amézquita et al., 2011) and electrosensation (Von der

Emde and Ronacher, 1994).

121



Nor does there exist an organism capable of a myriad of contingent actions. This would

require an oracle of a scale that only exists in works of fiction (Borges, 1941).

A noiseless system is both unintuitive and leads to unrealistic metrics. Conversely,

as the discrete metric of equation 5.3.8 is a consequence of all deterministic mappings10,

when there is geometry other than the discrete one we must infer there is indeterminacy

underlying it.

A physiological result that suggests an input is deterministically transformed

in some way tells us absolutely nothing about perceptual metrics without the

addition of further assumptions!

Later in this chapter I will give an example of a case where this was not recognised

and then go on to derive a similar result in the correct way. But for now I will continue

my review of established colour metrics as they lead to this space incrementally.

5.4 Schrödinger’s, and Vos and Walveren’s Spaces

Spaces such as that of Schrödinger (1920) and Vos and Walraven (1972a,b), as well as

that of Vorobyev and Osorio (1998) can be thought of as being based on Poisson statistics

and in their simplest form upon the Poisson distribution parametrised by a linear function

of the quantum catch. This has so far been calculated by substituting the variance of a

Poisson distribution into the euclidean metric equivalent to the inverse covariance matrix.

In this case this method does not yield a different result from the Fisher metric (though

this does not hold more generally). To derive these three Poisson based spaces we calculate

a metric based on two Poisson processes:

1. Photon noise: the number of photoisomerisation events happens at rate ξ.

2. Dark noise: the photopigment molecules spontaneously isomerise at rate k. This is

a constant parameter for these models.

In the case of (Schrödinger, 1920), k is set to zero. Explicitly, in the space of Vorobyev

and Osorio (1998), and implicitly in the Stiles space, photoreceptor density is taken into

account: the incident light is summed over a given area of the retina and is thus dependent

on the photoreceptor density d. For a particular area, A we have11:

X ∼ Poisson (dA(ξ + k)) (5.4.1)

10The methodology here only applies to continuous mappings, but a derivation for discontinuous f should

be possible using the foundation provided by Lebanon (2005).
11We can consider multiple photoreceptors by the rate additivity of the Poisson distribution.
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so that, more generally in the case of multiple receptor types the Fisher metric is given

by (see Appendix D.1):

gij =
δlij

Ad(l)(ξl + k(l))
(5.4.2)

In the case of scotopic (night-time) vision, k(l) � ξl and:

gij ≈
δlij

Ad(l)k(l)
(5.4.3)

which defines a euclidean space: The metric has constant diagonal elements, much as in

the Gaussian case presented earlier.

In photopic (day-time) conditions k(l) � ξl:

gij ≈
δlij

Ad(l)ξl
(5.4.4)

which, unlike the scotopic space is not affine in the quantum catch coordinates - it is not

automatically perceptually uniform. When this is taken as an equality is equivalent to the

space of Schrödinger (1920) at fixed luminance. It is also interesting to note that if ∆s2 is

taken to be an apparent distance, then this space obeys Fechner’s law in a non-coordinate

determinant manner (unlike the Helmholtz space). As I described in chapter 4, divergences

can be thought of as squared arc-lengths as D(f) ( ξ || ξ + ∆ξ ) ≈ ∆ξi∆ξ
i = ∆s2 and are

the best candidates for long range perceptual measures.

In the space of Vorobyev and Osorio (1998) the photopic and scotopic cases are treated

individually and not shown as a continuum of k/ξ between 1 and 0 - unlike here. Further-

more, in their model the space I have so far described is further elaborated upon. This is

the subject of the following section. Before doing this, I will specify the transformation of

the quantum catch space to the perceptually uniform space. This is simply a solution to:

gij (ξ)dξ
idξj =

δlijdξ
idξj

Ad(l)(ξl + k(l))
= δabdρ

adρb (5.4.5)

noting that the metric has no cross terms we have for each coordinate:

dρ2 =
dξ2

Ad(ξ + k)

so

∂ρ

∂ξ
=

1√
Ad(ξ + k)

and (after reintroducing the indices)

ρi =

∫
dξi√

Ad(ξi + k)
=

√
4
(
ξi + k(i)

)
Ad(i)

(5.4.6)
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5.5 Projective Models of Colour Vision

The class of projective colour spaces are used to model chromatic-opponent processes -

processes where comparisons are made between the excitations of photoreceptors. These,

in their most näıve (and common) form are produced by a linear projection of coordinates

into a space orthogonal to a ‘luminance vector’. This vector is often assumed to be the

‘one vector’ (1), i.e. the vector whose components in the quantum catch space are all

equal to 1. This is fairly trivial in affine spaces, but when the projection is made from

a coordinate system where the metric depends on the coordinates, extra considerations

must be made.

In an affine space, it suffices to simply consider the null space12 of the luminance vector.

Here, the null space is identical no matter what value the luminance takes. However, as

we will see when the metric changes as we move in direction of the luminance vector we

have to use a more specific projection, such as the one used by Maxwell (1860), see figures

1.6 and 1.7.

5.5.1 Chromatic Opponency

The most straight forward way of modelling chromatic opponency is by simply considering

the vectors spanning the null space of the luminance vector. We simply say that:

ρi = Sijξ
j (5.5.1)

where [Sij ] is a matrix that spans the null space of the achromatic vector. For example, in

human colour vision, it is usually a red-green and a yellow-blue opponency channel, so if:

[ξi] =


Red

Green

Blue

 =


R

G

B

 (5.5.2)

then we have

[Sij ] =

 1 −1 0

1
2

1
2 −1

 (5.5.3)

meaning that the opponent mechanisms can be expressed in their usual form (Wyszecki

and Stiles, 2000) of:

ρ1 = R−G and ρ2 = 1
2(R+G)−B (5.5.4)

12Let A be the m-by-n matrix formed by the n-vectors, {v1 · · ·vm} = V , then the null space of V (and

also of A) is the set of all n-vectors {x} which are solutions to Ax = 0
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The general linear transformation of coordinates in equation 5.5.1 could equally be written

:

∂ρi

∂ξj
= Sij (5.5.5)

There are many possible values for [Sij ], each one corresponding to a particular set of

linear chromatic opponency mechanisms. Here, I consider these mechanisms in general.

Applying [Sij ] gives a new metric tensor ḡ:

ḡab(ρ) = gij (ξ)
∂ρi

∂ξa
∂ρj

∂ξb
= gijS

i
aS

j
b (5.5.6)

to get the form used by Vorobyev and Osorio, ḡ is expressed as a function of the original

coordinates ξ as opposed to the chromaticity coordinates ρ. This has the advantage of the

resulting expression being insensitive to the particular choice of [Sij ] (but not the choice

of achromatic vector).

5.5.2 Vorobyev-Osorio Model

Now we are in a position to write an expression for the Vorobyev-Osorio space. It is simply

the application of the projection above to the general Poisson space:

gij(ξ) =
δlabS

a
i S

b
j

Ad(l)(ξl + k(l))
(5.5.7)

This works very well in practice, and is theoretically sound when ξi � k(i) and we can

approximate it as affine. However, there is a minor problem in photopic vision. The

problem occurs when looking at geodesics, and thus long range colour difference measures.

We know that by definition of [Sji ] as the null space of an achromatic vector [ai], that:

Sji a
i = 0 (5.5.8)

This means that the geodesic distance d between pairs of points that differ only in the

achromatic direction in colour space should always be the same. In other words, there

is no cost (in terms of distance between points) for moving either of them in a direction

parallel to the achromatic axis. More formally for a metric d, points p and q and scalar

constants k and k′:

d(p, q) = d(p+ ka, q) = d(p, q + ka) = d(p+ ka, q + ka) (5.5.9)

We know that as we move a point away from the origin in the achromatic direction we

necessarily increase all of ξi and therefore decrease gij . Restricting the measurement of
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distances to within the space perpendicular to a we see that for any ε > 0 that we can

find a value of k such that:

d(p+ ka, q + ka) < ε (5.5.10)

as the metric g becomes arbitrarily small as we increase k. Thus, as the geodesic is the

minimum possible distance under certain constraints, and those constraints do not exclude

the method of choosing a path that goes in the direction of achromatic vector to a point

arbitrarily far away in terms of coordinates (yet adding no distance), through the null

space (adding an arbitrarily small distance) and back in the opposite direction to the

achromatic vector to the second point (again adding no distance), then, for any ε > 0 we

have:

d(p, q) < ε (5.5.11)

In other words, the geodesic distance between any two points is arbitrary small. In practice

this problem is avoided by restricting the choice of colours to an isoluminant plane13,

removing the possibility of points which differ only in the achromatic direction. The model,

as it stands, is nonetheless problematic for the methods used in the previous chapter - it

is unsuitable for the consideration of long range colour distances.

5.5.3 Honeybee Hexagon Space

We now come to the Honeybee Hexagon space of Chittka (1992): the space I discussed

in section 5.3. I must emphasise that Chittka is not the only person to use this kind

of methodology, I use his space here firstly because it is a colour space14 and secondly

because he made his assumptions very explicit.

The Honeybee Hexagon Space defines a perceptually uniform coordinate system for

the honeybee. The space uses the physiological transform of Backhaus (1992), mapping

the quantum catch space to the unit cube (honeybees are trichromats):

ρi =

(
ξi

k(i) + ξi

)d
(5.5.12)

where d is taken to be 1. It is then assumed, as in Vorobyev and Osorio (1998) to create

a uniform space so that the colour distance ∆s is given in a projected space by:

∆s2 = δijS
i
aS

j
b∆ρ

a∆ρb (5.5.13)

13An isoluminant plane is defined with respect to a particular achromatic vector a (usually taken to be

1). It is the locus of quantum catches such that 〈a, ξ〉 = a · ξ = constant .
14The misconception that it is how a signal that gets transformed, not how a signal and noise gets

transformed, is very common in neuroscience.
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where [Sia] spans the null space of 1. This projects the unit cube into the eponymous

hexagon.

To get the associated metric we first find the the Jacobian of the coordinate transform:

∂ρa

∂ξi
=

δami
(k(m) + ξm)2

(5.5.14)

meaning that the metric in quantum catch space is simply:

gij (ξ) = δαβS
α
a S

β
b

∂ρa

∂ξi
∂ρb

∂ξj
=

Sai S
b
jδ
l
ab

(k(l) + ξl)4
(5.5.15)

Whilst it differs from the Osorio-Vorobyev model by some constants and a power, the

two are pretty similar. Both of them have a projective part and a part of with the form

1/(Aξ+B)C . This is a feature common to all the spaces in this chapter (with the exception

of the one to follow, which differs very slightly). This is an important informational feature

which I will return to.

However, as I have stated before, we cannot base a colour metric on physiology alone,

there must have been some assumptions made. Post hoc we can see that this corresponds

to Gaussian noise with unit variance centred around the ρ coordinate (up to invariances

of the Fisher metric). But, the space was not based on such a theoretical construct, it was

simply an application of the transform of Backhaus (1992) with an empirical justification.

However, we can arrive at a very similar result on a (comparatively) rigorous basis.

The next section describes how we can get a space that describes photoreceptors that

saturate in accordance with the phenomenology of the Bezold-Brüker effect through purely

statistical considerations. I will show that the coordinate transform that such an exercise

yields is similar, but not equivalent to that used in the Honeybee Hexagon space. The

noise based model I will describe is the most detailed in this chapter, so in a sense the

following work justifies the less rigorously grounded animal colour space of Chittka (1992)

using the principles of more theoretically justified animal colour space of Vorobyev and

Osorio (1998).

5.6 A Statistical Saturating Photoreceptor Model

Using the framework I have described it is possible to generate colour space metrics for

a saturating photoreceptor from first principles. The space developed by Vos and Wal-

raven (1972a,b) is similar in being based on Poisson processes and exhibiting saturation,

it is based on fairly arbitrary assumptions (leading to their exact words being quoted in

Wyszecki and Stiles, 2000, p676.). The following is a simplified model of the phototrans-

duction processes in a photoreceptor cell. The simplest model is that described in section
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5.4, where the metric is simply determined by shot noise from photons. For a single pho-

toreceptor this yields15 gij = g = 1
ξ+k where ξ is the quantum catch and k is dark noise

arising from spontaneous isomerisations of photopigment molecules.

It is well known that G-protein signalling is a fundamental part of the signal trans-

duction pathway. I will proceed from the general form of signal transduction as described

by Hao et al. (2007) (but see also Bao et al., 2010; Heitzler et al., 2009; Linderman, 2009,

for a comparison of approaches). The models used by Hao et al. (2007) to model yeast

osmosensation have a common structure - each amplification stage can be written as an

equilibrium catalysed by the catalytic product of the previous step.

∅ −→ A
C↓−−⇀↽−− B −→ ∅ (5.6.1)

Which is a general adapting molecular sensor. The equilibrium between A and B is

catalysed by C. Adaptation is achieved by the constant creation of A and the concentration

proportionate flow of B out of the system. For the purposes of the model, here I will

assume there is just a single stage, or that the first stage dominates the statistics of the

later stages. Explicitly labelling the rates we have:

∅ kcreation−−−−−→ A
kforwards−−−−−⇀↽−−−−−
kreverse

B
kdecay−−−−→ ∅ (5.6.2)

Before continuing I will make a further approximation - that the system is adapted. This

can be either expressed as the constraint that16 kcreation = kdecay[B] where the number

of molecules in the system is constant up to Poisson noise or that kcreation, [B]kdecay �
kreverse[B], kforwards[A] and the number of molecules is exactly constant. Both of these

assumptions allow us to isolate the catalysed equilibrium, so that we can write it as:

A
kb−⇀↽−
kr
B (5.6.3)

The two approximations imply that we should treat the relationship between kr, kb and

kcreation, kdecay, kreverse, kforwards differently. In the first, kb should depend on kreverse and

kforwards, in the second it shouldn’t. Also, in the first approximation we know the expected

number of A and B molecules is constant, in the second, we know the exact number is

constant. I will take the latter approximation as the basis for this model, noting that we

may make it more like the first by including the creation and decay rates in the parameters

which I will call λ and µ.

With this in place, this model becomes a type of queueing problem, the statistics of

which were developed by Agner Krarup Erlang (a gentle but thorough introduction can

15We can drop the indices now we are only talking about one photoreceptor class
16I use square brackets to mean ‘concentration of’
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be found here: Iverson, 2010). We can arrive at a probability distribution for the number

of isomerised photopigment molecules in the membrane by considering a process where

photopigments molecules are photoisomerised according to a Poisson process with rate λ

per active molecule and then recycled with at rate of µ = 1/τ where τ is the half-life of

the photoisomerised molecule. This assumes the recovery to exponentially distributed, as

would be expected from reaction kinetics which are first order in bleached pigment. We

begin with a state diagram that looks like figure 5.1.

0

nλ

μ

1

(n-1)λ

2μ

(n-k+1)λ

kμ

k

(n-k)λ

(k+1)μ

k+1

(n-k-1)λ

(k+2)μ

2λ

(N-1)μ

n-1

λ

nμ

n. . . . . . . . . . . .

Figure 5.1: State diagram of the number of active photopigment molecules in a photoreceptor

membrane.

In this diagram we have states corresponding to each of the possible numbers of active

molecules in the membrane - i.e. states numbered as k from 0 to n, where n is the

maximum number of isomerised molecules. The number of molecules transitions from a

state k to a state k + 1 proportionally to n − k - the number of active molecules. This

is also proportional to the rate of photons hitting the cell: λ. So in total we have a rate

of transition for k to k + 1 of λ(n − k). Similarly, we have a recovery process with rate

proportional to the number of inactive (bleached) molecules.

From this state diagram we find the probabilities of each state as found in statistical

equilibrium. We do this by solving equations for zero net flux between the states, for

example, for the state k = 0 we have the equation (where pk is the probability of finding

state k):

µp1 − nλp0 = 0 (5.6.4)

and for k = 1:

2µp2 + nλp0 − (n− 1)λp1 − µp1 = 0 (5.6.5)

similarly for all other pk. We also wish to assure that the probabilities add to one, so:

∑
k

pk = 1 (5.6.6)
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It is fairly straight-forwards to verify that this system of equations is satisfied by:

pk =

n
k

 λkµn−k

(λ+ µ)n
(5.6.7)

where

n
k

 is the standard representation of the binomial coefficient. This implies that

k is distributed binomially such that:

k ∼ Binomial

(
n,

λ

λ+ µ

)
(5.6.8)

The Fisher metric for this is derived for a general binomial distribution in appendix section

D.3. It is given in terms of the coordinate p as:

g(p) =
n

p(1− p) (5.6.9)

so

g(λ) =

(
∂p

∂λ

)2

g(p) =

(
∂p

∂λ

)2

n
(λ+ µ)2

λµ
=

nµ

λ(λ+ µ)2
(5.6.10)

Now we are in a position to introduce more reasonable physical parameters, first we

can let µ = 1/τ as above, and second we can express λ as the sum of photo-induced

isomerisations, ξ, and spontaneous isomerisations ζ, i.e. λ = ξ + ζ. So that the metric is

now17:

g(ξ) = g(λ− ζ) =
nτ

(ξ + ζ)(1 + τ(ξ + ζ))
(5.6.11)

and letting E = τ(ξ + ζ) we have

g(E) =

(
∂ξ

∂E

)2

g(ξ) =

(
1

τ

)2 nτ2

E(1 + E)2
=

n

E(1 + E)2
(5.6.12)

In telecommunications theory quantities such as E - a product of a “use rate” and a

“recovery rate” is known as the offered traffic - it describes the demand that is put upon

a system. In the case of telecommunications this is the rate that calls are made multiplied

by how long they last, similarly, here it is how many isomerisations multiplied by how long

it takes them to recover. E is a dimensionless characterisation of the system measured in

Erlangs. It is necessarily positive. A graph of the sensitivity in this coordinate system can

be seen in figure 5.2.

This model shows that there is an optimal region for the rate of photopigment re-

placement for any given isomerisation rate. This is given by τζ = 1 (see figures 5.3 and

5.4).
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Figure 5.2: The photoreceptor sensitivity with respect to the offered traffic E. In this coordinate

system, the sensitivity decreases with increased traffic.

We can go on from here to find the transformation to an affine coordinate system with

coordinate ρ. We wish for a metric g(ρ) so that g(ρ) = 1:

1 = g(ρ) =

(
∂E

∂ρ

)2

g(E) (5.6.13)

so

∂ρ

∂E
=
√
g(E) =

√
n

(1 + E)
√
E

(5.6.14)

and:

ρ =
√
n

∫
dE

(1 + E)
√
E

(5.6.15)

solving the integral by letting y =
√
E so that dE = 2

√
Edy:

1
2

∫
dE

(1 + E)
√
E

=

∫
dy

1 + E
=

∫
dy

1 + y2
(5.6.16)

= arctan y = arctan
√
E (5.6.17)

17Here I use the fact that the metric is unchanged on addition of a constant to a coordinate variable: If

y = x+ c for some constant c then ∂x
∂y

= 1 and thus as g(x) =
(
∂y
∂x

)2
g(y) then g(y) = g(x+ c)
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Figure 5.3: Graph of the sensitivity of the saturating photoreceptor model in coordinates nor-

malised by the rate of spontaneous isomerisation. The redness of the lines increases with 1/τ : the

rate of photopigment recovery. We see at rates faster than where τ = 1 (see figure 5.4) there is a

trade off between sensitivity at low photon counts and high photon counts.

So we have an affine coordinate system in ρ as expressed by:

ρ = 2
√
n arctan

√
E (5.6.18)

or in terms of the physiological parameters:

ρ = 2
√
n arctan

√
τ(ξ + ζ) (5.6.19)

This principled transformation is qualitatively similar to that given by Chittka (1992), but

it is not equivalent. It should be expected to behave the same at high luminance values,

but in addition it is a noise based metric - grounded in basic physiology.

5.7 General Properties and Classification of Colour Spaces

I will end this chapter with a categorisation of colour spaces by two properties. First

by how they behave at high luminosities and second where the point of minimal Fisher
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Figure 5.4: Graph of the sensitivity of the saturating photoreceptor model in coordinates nor-

malised by the rate of spontaneous isomerisation. We see there is an optimally sensitive recovery

rate where τ = 1/ξ - i.e. the rate constant of recovery of photopigment is equal to the rate constant

for it being destroyed by spontaneous isomerisation. This can be seen in rod and cone photorecep-

tor cells where the rod cells, with their low spontaneous isomerisation rates, recover from bleaching

slowly in comparison with the more noisy cone cells.

information is within any given cross section of the achievable quantum catches.

5.7.1 Saturating or Non-Saturating

It is possible to obtain a very general criterion for whether a colour space describes satu-

rating neurons. Obviously, any colour space that claims to be truly realistic should fulfil

these criteria or else imply that our visual pathways have infinite capacity for information

transmission.

We can arrive at a fairly natural definition of saturation by considering the mapping

of quantum catch coordinates ξi to a perceptually uniform coordinate ρi. When the

intensity of the incident light increases we should expect the information about the light
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to decrease due to physiological limitations. The Bezold-Brücker effect implies that the

ability to distinguish colour should decrease.

At first it may seem that all we should require is that limξ→∞
∂ρ
∂ξ = 0, but this is

insufficient. Here is why: consider a dichromat with quantum catch coordinates ξ =

(ξ1, ξ2), choosing two colours α and β we have ξα = (ξ1
α, ξ

2
α) and ξβ = (ξ1

β, ξ
2
β). Increasing

the intensity of the incident light by a factor of k yields the coordinates (kξ1
α, kξ

2
α) and

(kξ1
β, kξ

2
β) (preserving the ratio of the quantum catches). Now, the euclidean distance

between α and β is

k
√

(ξ1
α − ξ2

α)2 + (ξ1
β − ξ2

β)2 (5.7.1)

so we see that the distance between points in the euclidean metric is multiplicatively

increased with intensity. Thus, if we require the distance between these points to tend to

zero, not only must the metric decrease with intensity, it must decrease faster than log k

increases, as I will show now.18

As we know that gij(ρ) = δij for a perceptually uniform space, we have:

gij(ξ)dξ
idξj = gab(ρ)dρadρb = δabdρ

adρb (5.7.2)

so that for a diagonal metric

ρa =

∫ ξa

0

√
gii(ξ)dξ

i +A(a) (5.7.3)

for constants A.19 The criterion for saturation is then:

∀ρa : lim
ξa→∞

ρa(ξ)→ B(a) (5.7.4)

for a different set of constants B.20 In words, as we increase the brightness towards

infinity, the point in a perceptually uniform colour space to which it corresponds should

stop moving. We can write this another way using big-O notation21:

∀ρa : O (ρa(ξ)) � O(1) (5.7.5)

18Exactly the same argument holds for infinitesimal colour distances (which is in a sense more appro-

priate).
19I have not used the integration constant explicitly until now as it has been of little consequence.
20This definition is different to that where we require limξ→∞

∂ρ
∂ξ

= 0 as we cannot assume that the

operation limξ→∞
∂
∂ξ

is the same as ∂
∂ξ

limξ→∞. This should be fairly clear as a limit for ξ is never a

function of ξ.
21In big-O notation O(f(x)) = O(g(x)) ⇐⇒ limx→∞

f(x)
g(x)

6= ±∞ and limx→∞
g(x)
f(x)

6= ±∞. The

relationship signifying symbol ‘�’ is ‘≤’ for big-O and should be read as “is lower than or equal to” where

O(x) is read “the order of x”.
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Now, let us take a rather general form for the metric that will cover all those discussed

above and more besides. Let [gij(ξ)] be a diagonal matrix of rational functions ri of ξi so

that gii(ξ) = ri(ξ
i) > 0. A rational function is a quotient formed of two polynomial

functions. Here, let us let P (ξ) be an order n polynomial and Q(ξ) be an order m

polynomial. If the rational function r(ξ) is the ratio P (ξ)
Q(ξ) , then the order of r is n −m.

This lets us consider each dimension independently, so that we can drop the indices and

write equation 5.7.2 as:

P (ξ)

Q(ξ)
dξ2 = dρ2 (5.7.6)

so that the coordinate ρ can be written as:

ρ =

∫ ξ

0

√
P (ξ)

Q(ξ)
dξ +A (5.7.7)

Now, it is known that such rational functions are real analytic. It is also true that
√
x is

real analytic when x ≥ 0. Thus, the composition
√

P (ξ)
Q(ξ) is also a real analytic function.

If a function f(x) is real analytic, it can be represented as a convergent Taylor series and

we can consider its integral to be that of a polynomial. It is then safe to say that if:

lim
x→∞

f(x)

xD
6= 0,±∞ (5.7.8)

then it is implied that

lim
x→∞

∫ x
0 f(y)dy

I(x,D)
6= 0,±∞ (5.7.9)

where

I(x,D) =

 xD+1, D 6= −1

log x, otherwise
(5.7.10)

As the order of
√

P (ξ)
Q(ξ) is n−m

2 then from equation 5.7.8 we have:

lim
ξ→∞

√
g(ξ)

ξ
n−m

2

= C (5.7.11)

For C > 0 (as g is positive) and C 6=∞ (from 5.7.8). This then implies that from equation

5.7.9

lim
ξ→∞

∫ ξ
0

√
g(ξ′)dξ′

I
(
ξ, n−m+2

2

) = lim
ξ→∞

ρ

I
(
ξ, n−m+2

2

) = C (5.7.12)

and thus

O(ρ(ξ)) = O

(
I

(
ξ,
n−m+ 2

2

))
(5.7.13)
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This means that the requirement of equation 5.7.4 can be written for a single ρ as:

O

(
I

(
ξ,
n−m+ 2

2

))
� O(1) = O

(
ξ0
)
≺ O(log ξ)

n−m+ 2

2
< 0

m− n > 2 (5.7.14)

and when all ρas are considered, the assigning of indices to n and m allows equation 5.7.4

to be written in full as either:

∀ρa : ma − na > 2 or min
a
{ma − na} > 2 (5.7.15)

I shall apply this to the spaces discussed so far once I have discussed another property.

Then, with that property defined in addition to the one above, I will summarise all22 the

colour spaces I have discussed in this chapter as well as a number of others that I have

not yet mentioned.

5.7.2 Relative Information at the Achromatic Point

Now I shall consider a slightly less general class of colour spaces to which most the spaces

I have described belong. It is possible to perform the same calculation for the ones that

do not fit into this class, but I shall not do so here as this case is sufficiently general for

our purposes. Throughout this section I will reintroduce explicit summation in place of

the implicit summation of Einstein notation.

This class of models has metrics given by:

gij =

 Bi
(
ξi +Ai

)µ
, i = j

0, otherwise
(5.7.16)

where {Ai}, {Bi} and µ are parameters. The parameter µ can be identified with n −m
in the previous section.

Here I consider is the infinitesimal volume of Fisher information at points in the colour

space. This volume is related to, but not equivalent to, the entropy. It is given at a point

ξ by

dV (ξ) =
√

det [gij (ξ)]dξ = v(ξ)dξ (5.7.17)

Where dξ is the volume element at point ξ.23 Using this we can find the points of maximum

and minimum information. The volume factor v(ξ) for this class of models is simple to

22though I will ignore projections
23The volume element is the outer product of the infinitesimals, i.e. dξ = dξ1 ∧ dξ2 ∧ ... ∧ dξN .
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calculate as the determinant of a diagonal matrix is the product of its diagonal components:

v(ξ) =
∏
k

Bk
(
ξk +Ak

)µ
2

(5.7.18)

Let us now find the stationary points of the Fisher information volume when constrained

to an isoluminant plane. This gives us a way of looking at how information varies with

respect to colourfulness and also has the side effect of making the result applicable to the

two projective projective models previously mentioned. In this case we take the luminance

(achromatic) vector to be the [ak], yielding a constraint of the form:∑
k

akξk = b (5.7.19)

and which yields the system of Lagrange multipliers

L (ξ, λ) = v(ξ) + λΛ(ξ) (5.7.20)

Λ(ξ) = b−
∑
k

akξk (5.7.21)

the stationary points are then given by the constraint (∂L
∂λ = Λ(ξ) = 0) and by:

∂iL =
µ

2(ξi +Ai)

∏
k

Bk
(
ξk −Ak

)µ
2 − λai = 0 (5.7.22)

so

µ

2λ

∏
k

Bk
(
ξk +Ak

)µ
2

= ai(ξi +Ai) (5.7.23)

As the left hand side is the same for every i, though still not a constant. It is possible to

simply replace the whole left hand side with another variable, t:

t = ai(ξi +Ai) (5.7.24)

which can be written as a vector equation defining a line:

ξ = Xt+ Y (5.7.25)

with X =
[
1/ai

]
and Y =

[
−Ai

]
. Notice that this line - upon which the stationary points

lie - only coincides with the luminance vector it is equal to the vector of ones, 1 (and

Ai are negligibly small). The one vector therefore has a special place in colour theory:

Projections based upon the one vector are justified in the sense that the achromatic point

corresponds to an information extremum in (hyper)planes spanning the one vectors null

space. The previous equation gives:

ξi =
t

ai
−Ai (5.7.26)
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combining it with the constraint in equation 5.7.19:

b =
∑
i

(
t− aiAi

)
so t =

b+
∑

i a
iAi

dim ξ
(5.7.27)

where dim ξ is the dimensionality of the parameter space (we are modelling a dim ξ-

chromat). This gives the coordinates for the stationary points as:

ξi =
b+

∑
i a
iAi

ai dim ξ
−Ai (5.7.28)

Let us now look more closely at the stationary point. To determine its nature we calculate

the Hessian matrix [∂i∂jL ]. Remembering that ∂iv(ξ) = µ
2(ξi+Ai)

v(ξ), component wise we

have:

∂i∂jL = ∂j

(
µ

2(ξi +Ai)
v(ξ)

)
− ∂jλai

=

(
∂j

µ

2(ξi +Ai)

)
v(ξ) +

µ

2(ξi +Ai)
∂jv(ξ)

=

(
−µ

2

δij
(ξj +Aj)(ξi +Ai)

)
v(ξ) +

µ

2(ξi +Ai)

µ

2(ξj +Aj)
v(ξ)

=
1

4

µ(µ− 2δij)

(ξi +Ai)(ξj +Aj)
v(ξ) (5.7.29)

Reintroducing t for simplicity and evaluating ∂i∂jL at the stationary point we have:

∂i∂jL =
1

4

µ(µ− 2δij)

(t/ai)(t/aj)

∏
k

Bk

(
t

ak

)µ
2

= Caiajµ(µ− 2δij)
∏
k

(Dk)
µ
2 (5.7.30)

where C and {Di} are positive constants. We can then write:

∂i∂jL = aiajµ(µ− 2δij)f(µ) (5.7.31)

Here f(µ) > 0 which means we can ignore it for the purposes of calculating the nature of

the stationary point, only looking at the matrix:

M = [aiajµ(µ− 2δij)] (5.7.32)

Also, we only need consider the curvature of the Lagrangian in directions other than the

chromatic vector. Projecting this into the null space of the vector (a1, a2...a3) (spanned

by T ) we have:

Q = T TMT

= [−2µ(1 + δij)a
iaj ]i,j=1...N−1 (5.7.33)

with the indices covering one less dimension. We can now indirectly look at the eigenvalues.

We can show that this fulfils Sylvester’s criterion for positive (negative) definiteness, and
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therefore all of the eigenvalues are positive (negative). The determinant of the upper

m-by-m square matrices is given by:

det [−Qij ]i,j=1...m = (m− 1)2m−2µm
k=m∏
k=1

(ak)2 (5.7.34)

Which is always positive when µ > 0, so Q is negative definite in this case, conversely, as

changing the sign of µ changes the sign of Q, when µ < 0 the matrix is positive definite.

For simplicity, consider the case when µ < 0 (knowing that the opposite will apply for

µ > 0). Negative µ means that the Lagrangian curvature matrix is positive definite in

directions within the particular isoluminant plane we are considering. This means that we

have a minimum in terms of the infinitesimal volume of Fisher information. This volume

is similar to a negative entropy, so minimising it is reducing the information content

at that point. The stationary point that is found here is, in a certain sense, the least

informative point. Empirically, the necessity for µ to be less than zero can be thought of

in terms of terms of discrimination, the sign of µ must be negative if it is to make the

correct predictions about spectral sensitivity curves – peaks would become troughs and

vice versa.

5.7.3 Comparison of Colour Spaces

We now have two qualities that we can use to classify colour space: Whether the achro-

matic point is an information minimum or an information maximum, and whether they

exhibit a Bezold-Brüker type saturation phenomenon. Both of these can be considered

on a single axis, µ = n − m. As the model used to investigate information minima is

not as general as the one used in the investigation of saturation, to find the position of

information minima we must perform some extra calculations for some spaces that do

not correspond to the general model. Table 5.1 is a summary of the two global proper-

ties. Curvature corresponds to whether the space has a minimum or maximum near the

achromatic point - positive when there is a minimum, negative when there is a maximum.

Saturating refers to the exhibition of the Bezold-Brüker effect.

139



Space µ Curvature Saturating

Gaussian Noise Based 0 None No

Vorobyev and Osorio (1998) (Scotopic)

CIE (1931) - XYZ

CIE (1976) - L∗u∗v∗

Schrödinger (1920) 1 Positive No

Vorobyev and Osorio (1998) (Photopic)

Stiles (Wyszecki and Stiles, 2000) 2 Positive No

CIE (1976) - L∗u∗v∗ - Y coordinate

Space described in section 5.6 3 Positive Yes

Chittka (1992) 4 Positive Yes

Chittka (1992) (d 6= 1)

Vos and Walraven (1972a,b)

Table 5.1: This table summarises the colour spaces discussed in this chapter. All spaces have

either have even information content across the quantum catch coordinates (µ=0) or there is

an information minimum at the achromatic point (positive signed embedding curvature in the

isoluminant plane). Only a few of the spaces here exhibit saturating effect (µ > 2). For the CIE

(1976) entries, the value of µ was assessed by using the order of the coordinate axis in the volume

element, it differs between the Y and X,Z coordinates. CIE (1976) is given a value of 0 by equation

5.7.15 but if we consider only the Y value (related to both the green channel and luminance), we

have a value of 2.

When considered in quantum catch coordinates all the spaces I have discussed are

either flat (Gaussian, Scotopic Vorobyev and Osorio, 1998 and CIE, 1976), or have an

information minimum at (or around) the achromatic point. This would seem to be a

universal property.

Only a few spaces exhibit a saturating effect (Chittka, 1992; Vos and Walraven, 1972a,b,

and mine). These spaces, where µ > 2, are the only ones that would be expected to behave

correctly at high luminance values.

5.8 Summary

Using the Fisher metric yields many of the well known colour spaces as specific examples.

This correspondence confirms the correctness of its use. During this identification between
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the theory of the previous chapter and established colour theory, I have made a number

of points that I will reiterate now.

The identification of the metric of colour spaces with the Fisher metric is consonant

with the conceptualisation of colour difference as a statistical phenomenon. Indeed, I have

shown that when we treat colour as a deterministic phenomenon we obtain a result that

neither corresponds to our intuition or to empirical evidence. I have highlighted a case

where this has been ignored.

Photoreceptors saturate. A proper model of colour spaces should have perceptually

uniform coordinates that tend towards a finite value with respect to the quantum catch

coordinates. I have described a model based upon the statistics of molecular interactions

which exhibits this behaviour.

All colour spaces have an information minimum in quantum catch coordinates, this

is at, or near to, the achromatic point (as I have defined it). It may even be a natural

definition of it!

In addition to these points, I would like to add another. When studying animal colour

vision to find uniform colour coordinates we should apply the function:

ρ(ξ) = k1 arctan
√
k2(ξ + k3) (5.8.1)

to find perceptually uniform spaces for animals. Here k1 is the fraction of photoreceptors of

a particular type and the constants k2 and k3 are physiologically determinable parameters

(see above). The number of constants can be reduced by using appropriate approximations,

such as k3 = 0 in photic conditions. This would result in space that is is based on solid

principles like (Vorobyev and Osorio, 1998) but nonetheless qualitatively similar to that

of Chittka (1992). This model is fairly minimal and thus easily applied to all animals.
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Part III

Colour in Nature
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Chapter 6

The Colourfulness of Signals in

Animal Communication

“ ‘Must a name mean something?’ Alice asked doubtfully.

‘Of course it must,’ Humpty Dumpty said with a short laugh: ‘my name means the

shape I am – and a good handsome shape it is, too. With a name like yours, you

might be any shape, almost.’ ”

Lewis Carroll

Through the Looking Glass, 1871

In The Descent of Man, and Selection in Relation to Sex Darwin talks of organisms

being selected for according to judgements of beauty (Darwin, 1871) – an idea which

fitted well with his more general investigation into the similarities between man and other

animals.

Whilst the notion of æsthetic preference and use of the word ‘beauty’ in discussions of

animal behaviour are now uncommon (excepting Burley and Symanski, 1998; Welsh, 2004),

the current study of sexual selection still investigates the same phenomena that concerned

Darwin.1 In modern evolutionary theory Darwin’s ‘beauty’ has become a broad collection

of differentiated theoretical constructs (see Endler and Basolo, 1998, for a comprehensive

list). But within this pool of theories, the Darwinian principle of female preference for

‘attractive’ males is still considered to be of wide importance - even if its exact role and

meaning is frequently disputed (see e.g. Faivre et al., 2003; Hamilton and Zuk, 1982; Pape

1The decline of the word beauty in evolutionary theory most likely stems from neglect of sexual selection

arising from the arguments of Wallace (Gayon, 2010) followed by the positivist attitude taken when it was

revisited by Fisher (1930).
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et al., 1996; Roughgarden et al., 2006; Takahashi et al., 2008; Zahavi et al., 1999, for a

broad range of opinions).

Investigating sexual selection as communication necessarily involves the integrated

study of psychology, genetics and ecology. Since the emergence of psychology as a science,

the consideration of sensory systems has been the most immediately fruitful means of

relating the physical domain to the psychological (see e.g. Masin et al., 2009). This too is

seen in the investigation of female mate choice and a number of sense-based explanations

of evolutionary scenarios have arisen. These include: exploitation of specific or general

sensations, such as the use of forced perspective to increase apparent size in bowerbirds

(e.g. Endler et al., 2010; Madden, 2003; Schaefer and Ruxton, 2009); exploitation of pre-

existing biases, such as signalling using a colour which is innately preferred (e.g. Bravery

and Goldizen, 2007; Endler and Day, 2006; Uy, 2004); and the need to form distinct

‘channels’ of communication in complex sensory environments, such as the differentiation

of calls found in Dendrobate frogs (Amézquita et al., 2011; Ryan, 1990).2

6.1 Beauty and Judgement

The rejection of the term ‘beauty’ in the sexual selection literature might at first seem to

be because beauty relies on a subject for which a thing is to be beautiful. We can dismiss

this explanation pretty quickly, as biology (especially natural history) takes things that

should rightly be called subjects as its foundation.

The real difficulty that the notion of beauty has faced, is not the need for a subject, but

the need to choose a particular æsthetic theory in which one can judge the æsthetic value

of an object to another organism. It seems then, that it is not because anyone thinks that

the idea of a subject is silly,3 but because of the difficulties that we encounter when we ask

“What exactly do you mean, Darwin, when you say ‘beauty’?” After all, science does not

proceed by engaging in philosophy; in its struggle for definitive explanations it replaces

difficult concepts such as beauty with more concrete objects of enquiry. Beauty therefore,

I hope, has not been thrown away, but has fallen down the cracks between mechanistic

explanations.

2The formation of preferences for and signals within distinct parts of signal space was preempted in

sensory ecology and neuroethology with the concept of Matched Filtering (Franz and Krapp, 2000; Wehner,

1987, 1989) and has been somewhat formalised as a semantic theory by Donaldson-Matasci et al. (2007)

(Donaldson-Matasci, 2008, also)).
3Although I’m sure some do!
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6.1.1 In the Eye of All Beholders

A quality of æsthetic judgements is their normativity. That is, when we find something in

good taste we are tacitly or otherwise expecting that others will too (“a claim to validity

for all men”, Kant 1790, p51). For example, if I tell you that a particular brand of

Camembert is the best, I am doing so to help you choose a cheese that is to your liking

also. I expect us to share a similar appreciation for cheese. This means that the idea of

animals making an æsthetic judgement faces a challenge: that of anthropic bias. Who are

we to say what an animal finds beautiful? It seems that talking about a sense of beauty

in animals is either very close to, or is, committing the pathetic fallacy.4

The Descent of Man does not exist in fear of anthropic bias - it is about demonstrating

that man and animals are not so different after all. Indeed, it would not be unfair to say

that its business is to claim that certain human norms extend into the animal kingdom.

More specifically, when it comes to æsthetic judgements, there are many cases where it is

made clear that Darwin uses beauty to mean a judgement that can be shared by both man

and animal; for example, he speaks of the good taste of female birds, whom he considers

to be more adept in this regard than some humans (Darwin, 1871, p64). I take the stance

that Darwin was right in his observations, but I take it upon myself here to give reasons

why he should be.

Most generally: if we have an evolutionary advantage in finding pleasure in something

in the natural world, why shouldn’t the members of species. After all, their lineage has

faced the same struggle to exist, they have sensory organs not unlike our own, and they

act in the same world that we do. They have the same imperative to learn5 and they too

live in a world too complex to be understood in all its detail. By virtue of just being alive

we all must share certain norms.

But the question that we really want an answer for is this: Why would nature conspire

to produce something that I find appealing?

This is exactly the right question to ask. If we avoid asking it we risk finding ourselves

asking why a general principle should apply to everything except ourselves. Norms held

by all living things should be held by us, and vice versa, we should entertain the possibility

that our norms are held by animals, especially when it seems that they act upon them.

This said, the answer to this question has implications beyond that of understanding

4Also known as the anthropomorphic, or sentimental fallacy.
5Our sense of pleasure and ability to learn are tightly linked. As evidenced at the behavioural level

by classical conditioning experiments and at the neural level by studies, in particular, of dopamine neuro-

modulation (Arias-Carrión et al., 2010; Bressan and Crippa, 2005).
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of æsthetic values. The identification and justification of psychological principles that

transcends the boundaries between species is of value no matter what label is put on it.

6.2 Signals

The reason that I have taken some time to discuss æsthetic judgement is because there

is a step in the discussion of biological signals that relies upon it. When we consider a

peacock’s train as a signal and claim that its length or the number of eyespots6 has some

kind of significance as a signal we are appealing to the normativity of judgement – we

are saying that length or spottiness is something about which peacocks make judgements,

and further, that their valuation7 is in line with our own. We take it as a given that

our perception of the world resembles a peahen’s in some way; that, for example, their

view of the world is not some jumbled up, kaleidoscopic funhouse inhabited by gnomes.

One might call it parsimony.8 But here I discuss it in terms of the normativity of our

judgements. When it comes to discussing signals we need to describe things in a way

which seems reasonable to us as well as having validity for organism we are describing.

6.2.1 The Handicap Principle

The catch-all justification in biology is adaptation and the Handicap Principle of Zahavi

et al. (1999) uses it as is. Briefly, it states that sexual signals honestly advertise their

bearers fitness by requiring them to pay a cost to produce a signal.

Using this explanation, the peahen has a very direct evolutionary reason to make a

particular evaluation - we do not need to know the mechanism by which it does so - only

that those peahens whose judgement is calibrated in a direction consonant with natural

selection have, in general, a greater progeny. The handicap principle then, like all adaptive

explanations, is a direct appeal to natural selection as a norm setter to which living things

may benefit from being aligned to. Those who know the ins and outs of natural selection

can make a similar judgement; not in the capacity of a peahen, but in the capacity of a

biologist who understands what is deemed good and what is deemed bad by nature. One

might say that the handicap principle relies on an acquired taste.

But when we first identified the peacock’s train as a potential signal we did not use

the handicap principle. The handicap principle is effectively agnostic to the mechanism

6A ‘substantive æsthetic judgement’.
7I mean this in the sense of degree, not meaning.
8Parsimony is, in fact, completely wrong, as it is a principle that applies to situations which presuppose

particular norms.
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of the peahen’s judgement and we clearly do not share the need to pick a good peacock

to mate with. We cannot use it to explain why the train should be something we pick

out as a signal in the first place. The best that we can hope to achieve is saying that

it is either a massive energetic cost because of its encumbrance, or that it is obvious

to predators (invoking normativity with them!) thus costly and an honest signal of the

peacock’s fitness. The latter isn’t good enough. This said, judgement that the peacock’s

tail is conspicuous is clearly very reasonable, but why is it reasonable?

6.2.2 Conspicuousness

In many cases it is possible to rank the appearance of organisms from cryptic (camouflaged)

to conspicuous (the opposite). Usually this scale is taken to be based upon the ability for

a member of some relevant species to be aware of the existence the organism in question

(Bradbury and Vehrencamp, 1998). But, we can get a little further towards a satisfactory

explanation by considering the ecological psychology of Gibson (1986). To Gibson, objects

of perception are defined by their affordance - a jug isn’t a jug because of its specific

geometry, but because it affords us the ability to store and pour liquids.

Using this idea we can rephrase the distinction between the cryptic and the conspicuous

as a distinction between things that apparently have low affordance and those whose

affordance is greater. Judgements of the degree of ‘objectness’ of something is the same as

a judgement about value of a thing in terms of what it can afford, this idea is very similar

to conspicuousness.

We are now led to the newly phrased question: “On what basis do we (living things)

make judgements of the degree of affordance, and what is it that validates them?”

Like the rest of this thesis, I shall concentrate on the specific case of colour.

6.3 The Purpose of Colour

The distinction between grey and colourful is very intuitive to us, as are the associations

we make with it. Grey means uninteresting, colourful means interesting. We all knew

what it meant when John Major’s puppet in Spitting Image was painted grey, and we

naturally expect the festival of Holi to be a lot of fun. For us, this normative judgement

is so primal that most of the time we can survive without ever needing to question it.

Indeed, it is only when we begin to use it as a judgement that may be shared with other

organisms are we forced to enquire into its basis.

Anything that needs to act in a complex world needs to judge what things are important
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and what things are not and the thing to note about colour is that when something is

colourful (in the sense of JR in chapter 2) then there is an associated predictive power.

This section attempts to justify this claim.

6.3.1 Colourfulness and Sensory Fidelity

At the sensory level colourfulness tells us two things. I have outlined these in chapter 2.

Firstly, it tells us, to some extent, how well we can judge the spectrum that produced

a given colour. If something is a very strong red, there are relatively few spectra that

correspond to it. Secondly, but for similar reasons, it tells roughly how well we can

know how it is seen by other observers. Thus colourfulness helps us predict whether

other observers will make a similar judgement about a given colour. It is a measure of

informativeness, and it is normative to some degree.

What is it that it informs us about? This is the subject of this section, although I

have hinted at it in the sections above. So that you may have some idea of where I am

going with the proceeding argument, I will simply say: “colourfulness doesn’t happen by

accident”.9

Adaptedness

I begin this section with an assertion: If a colour is to be strong there needs to be a force

or pressure towards making it so. This pressure can have varying degrees of directness.10

The green of a leaf relates directly to its function as an organ which harnesses the

energy of photons. The spectrum of chlorophyll is matched to the light which it uses.

This is probably as direct an adaptive significance as there is. Nonetheless, there are

other cases where physiological role and colour are connected, for example the very direct

significance that colour has with respect to the photoprotective role played by melanins

(e.g. Kaidbey et al., 1975) and the fluorescent pigments found in coral reefs (Salih et al.,

1997, 2000). With less direct significance, there is the colour of various oxygen carriers.

The intense colour of blood derives from the sheer mass of oxygen carrier, whose hue is

necessitated by the metal complexes that make oxygen binding possible.11 On the other

end of the scale, there is the colouration of tree bark, which seems to have very little direct

9Or, at least, it is very unlikely to.
10I think I should make it clear at this point that I am not only talking here about the colour of things

being an adaptation in itself, but also as the indirect result of some other adaptation.
11It seems that the use of metal ions is a universal solution, whether it is haemoglobin, haemocyanin (Hal-

liburton, 1885) or otherwise (Basolo et al., 1975), (with the notable exception of synthetic perflurocarbons

Castro and Briceno, 2010).
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adaptive significance. With even less significance we have the colour of sedimentary rocks.

Then with no relation to biological processes whatsoever we have the colours of igneous

rocks, the sky, the moon, and so on. I have deliberately excluded colouration which can

be considered as a signal or as camouflage from these examples.

It is in fact rather rare for an organism’s colour to not be associated with any adap-

tation whatsoever. As a corollary: we tend to explain colour in one of three ways, either

something is colourful and we see it as a signal or as the indirect result of some extraneous

function, or it is not colourful and we see it as camouflage. After all, there are costs and

benefits to having any given appearance and every configuration of an organism can be

ascribed some utility (Gould and Lewontin, 1979).

At this point we have the beginning of a theory that can explain why it is the strongly

coloured animals that are the ones that are signalling. In the examples I have given

(barring, possibly, the sky), strong colours are formed when the bearer has some kind of

evolutionary function, the stronger the colour the more singular the function. Things that

are strongly coloured are because they are affording something.

As it stands the evidence I have presented so far constitutes a fairly weak argument,

luckily we can shore it up a little. In colour there are a number of physical constraints

that affect our ability to make judgements about what something affords.

Judging what something affords in many ways is the same as judging what something

is. We could, if we wanted, use probability theory to make estimates of the affordance of

something, just like we could make estimates about any other property. Affordances are,

in any case, the properties that define the objects of our perception.

Physical Mixing

When a colour can be a mixture of two colours it is less colourful than the two original

colours (see chapter 1) and we can be less certain about what it is too; is it a mixture

of these two colours or those two? Should it be thought of as a mixture or as a singular

colour in itself?

There are many sources of (convex) mixing of colours and it is often used by animals.

A remarkable example is the tiger beetle Cicindela repanda (Seago et al., 2009) which

appears to be a grey that matches the rocks where it lives, but when its skin is viewed

with a microscope, we see that the grey is formed by an array of structurally coloured

dots, it is an additive mixture. In this case, the grey colour is actually a mixture of other

colours. This case of mixing is only one of many (Seago et al., 2009; Welch and Vigneron,
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2007, see e.g.). When we mix colours in this way, we expect less colourfulness, to have

a strong colour nature must avoid having to mix - in a metaphorical sense, it must go

against entropy.

In a similar way to the spatial mixing I have described, a mixture of pigments is

generally less colourful. This is known by anyone who has tried to mix paints in an

attempt to recover a colour of the original quality. This is exactly the motivation behind

the colour system of Alberti mentioned in chapter 1. When biochemical networks do not

work to the singular goal of a particular pigment based colour, we should expect less

colourfulness.

In appendix E I present a simulation in which in one instance spectra are, in effect,

free to mix randomly without any selective pressure. Unsurprisingly, in this simulation

neutral drift works towards the species being less colourful.12

Back to the case of the tiger beetle. The predator looking at a grey patch of rock does

not know if a tiger beetle is there, the converse would not be true were the tiger beetle,

for example, bright magenta. The magenta beetle provides certainty. Of course, were it

living on magenta rocks, this would not be true. But there is very little physical force or

evolutionary pressure in the direction of magenta rocks.

Mixing by Poor Resolution

The geometry of the colour solid described in chapter 1 is a result of poor spectral reso-

lution. When the set of photoreceptors is insufficient to resolve necessary spectral details

we see different colours projected onto the same part of the colour space. Whilst it seems

that this does not happen very often there is another case related to the additive mixing

above - that of poor spatial resolution. Simply put, when the eye is incapable of spatially

(or temporally) resolving two colours, they are seen as a single colour which is closer to

grey by virtue of being an additive mixture. This is why when discussing metamerism in

1 I was careful not to imply that the presence of convex mixtures was about the spectra

of objects. Here, we see that the significance comes from the relative probability that

some patch of colour is formed from two other distinct colours, this was partly covered

in the previous subsection. This is a very general reason why we should find grey things

uninteresting. We just cannot resolve their identity. It is often quite remarkable just how

much grey there is in the world, histograms of natural images often have far more grey

than one would expect, the explanation must be that it is ignored by us before it can even

12This appendix also shows how colourfulness can be occur as a result of needing to be generally different

in a world with many organisms that are without selective pressure upon their colour.
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enter our awareness.

Given what I have said, it easy to see why contrast is useful if one wants to be recog-

nised. The higher the contrast with the background, the lesser the greying effect caused

by poor spatial resolution and the more one establishes ones existence as something with

unique affordance. For grey organisms, by not having a given affordance with any signifi-

cant probability, the grey organism asserts that it may as well not exist.

6.3.2 Neutrality

The semiotician and critic Roland Barthes was concerned with exactly the same principle

as me, but from a different angle. He took the distinction between colourfulness and

greyness as a given that we can all understand so that he could then use it at a metaphor

in a number of social commentaries. He was fascinated by the idea of the neutral – a

stance that does not take sides. Neutrality, which he associates with a lack of colour,13

is for him about the lack of signification (Krauss, 2005). Here, I take an interest in the

difference between the grey and the colourful for the same reasons.

And now, I am going to give you the official name of the spilled color, a name printed

on the small bottle (as on the others vermilion, turquoise, etc.): it was the color called

Neutral [...] Well, I was both punished and disappointed: punished because Neutral

spatters and stains (its a type of dull gray-black); disappointed because Neutral is a

color like the others, and for sale: [...] the unclassifiable is classified [...]

Roland Barthes: The Neutral

See: Krauss (2005)

This should clarify my intentions in this chapter, as well as pinpointing a problem that

discussions of colourfulness must face. If lack of colourfulness is to be taken as a lack of

signification, then we run into difficulties when, upon recognising this, lack of signification

becomes a signified at a meta level. We see this phenomenon in discussing camouflage.

Things that are not colourful are cryptic in two senses, first, in the passive sense that

their rôle is unclear, and second, when crypsis is taken as an adaptation it takes an active

sense: being cryptic now signifies an ‘unwillingness’ to disclose one’s rôle. Or, taking the

Gibsonian perspective where signified affordances are the object - at the first level the

cryptic organism does not exist, and at another level it exists as something that makes a

claim not to.

13It is unfair to say that he associated it with ‘grey’, which is in fact a colour.
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6.3.3 Summary

As a rough summary of this section, on one level we can say that colourfulness signifies a

singular affordance, and greyness none in particular, but at a meta level, where existence

is asserted, colourfulness is an honest claim to existence and greyness, on the other had, is

a dishonest claim to non-existence (by having any given affordance with low probability).

6.4 Some Relevant Cases

There are a number of cases where the theory I have discussed is relevant to discussions

within the field of animal colour vision. Here I present two that I feel, in particular, give

weight to my stance.

6.4.1 The Colour Vision of Bees

It has been observed that the colour of space honey bees, who are trichromats whose

photopigments lie in the UV, Blue and Green regions of the electromagnetic spectrum, is

arranged so that the green leaves falls in the same area as grey objects (Chittka, 1992).

This is not to say that it is impossible for bees to distinguish green and grey objects, it has

been shown that they can (Vorobyev et al., 1999). It is simply that, where green leaves

lie on the edge of our colour space, they lie in the centre of the space of bees.

Using the preceding theory it is possible to speculate about why this should be so.

If, as I have argued, the uncolourful centre of colour spaces signifies something of little

affordance, then it seems right to suggest that there is an evolutionary advantage in putting

the colour of leaves into this area, along with everything else which has lesser value to the

bee. By making green similar to grey, the bee is free to spend its time investigating more

important things like flowers and other bees.

6.4.2 Bowerbirds

Bowerbirds like many corvids display remarkable cognitive abilities, particularly so when

it comes to constructing the elaborate structures by which they are named. The male

bowerbird produces his bower14 as part of a mating ritual in which the female enters the

bower from one end to see the male displaying at the other. The display takes place atop

a collection of stones (or other items) which the male has chosen to enhance his display

(Bravery and Goldizen, 2007; Endler et al., 2010; McManus and Weatherby, 1997).

14A tunnel made of grass and twigs.
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Endler and Day (2006) have performed an experiment testing the colour preference that

male bowerbirds have towards the stones they use for constructing their bowers. Whilst

they display some preference for greens, the background colour of their environment, their

greater preference was towards grey.

The explanation for this, in the terms I have been using, is that they are making a

judgement about the stones which deems them to have no clear affordance. They deem the

stones they choose uninteresting, be it consciously or otherwise. For the male, who is far

from grey, putting themselves in front of such a background is a way of making the females

more aware of them. It is well known that such contrast effects are used by bowerbirds

in the other modalities, as exemplified by their use of forced perspective (Endler et al.,

2010). This is in contrast to other, more well known species of bowerbird, that collect

colourful coloured objects, but do not stand over them.

6.5 Conclusion

Colourfulness is a pre-existing preference, and it is sensory exploitation. It both relates

directly to the limitations that the sensory system places upon judgements of affordance

as well as taking advantage of the very same faculties that are needed to perform any task

in a complex world.

The primary role of the colourfulness of a signal is not to carry any specific meaning,

but to assert the bearer’s existence as something that should not be overlooked. It is not

a standing out from the background by contrasting with it, but a standing out by a claim

to being the bearer of utility. Conspicuousness may well be a very good word for this, but

I feel it must come with a warning. If taken in the sense I have just described, we may

find it very difficult to say what it is in terms of physical properties.

Going back to the idea of normativity. Like the members of any other species we share

a need to comprehend the world around us. But our worlds are complex and so few things

in them are relevant to us. We have the need to make a judgement about how useful some

object is, and we need to do so before we really understand what that thing is. We, and

our animal kin alike, must be careful to spend time with only those things that afford us

the most. We share this norm.

We also share physiology, in particular we (usually) have eyes. Though there are many

designs of eye, all of them are constrained to but a few types of photopigment. We share

uncertainty about the meaning of things that are grey, in part because of this common

physiology. But also because grey is a colour favoured by processes without a direction -
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by “entropic forces”.

So we should expect other organisms to prefer strong colours and we should expect

man to find them worthy of comment for precisely the same reason: colourfulness signifies

a singular purpose.

So perhaps animals can rightly be said to have a sense of beauty, or at least of taste.

Not in the sense of high-minded appreciation for classical music or portraits by old masters,

but in the sense that we all share a basic need to give similar values to the world around

us. Maybe Darwin’s use of the word beauty is more exacting than it may seem at first

glance.
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Chapter 7

Structural Colours in Batesian

Mimicry

“We live in a rainbow of chaos.”

Paul Cézanne

Up to now this thesis has been mostly concerned with brightness and saturation. There

is however, a common natural scenario where colour changes with a physical parameter

in a way that is better approximated by a hue-like dimension in colour space, rather than

brightness or saturation. This is structural colouration.

Structural colouration describes the phenomenon whereby the physical structure of a

surface at the microscopic level causes colour through wave interference. There are a large

number of specific physical mechanisms, which I will briefly review later. For now though,

to get a feel of how it is different from pigments and their properties, consider how the

hue of a rainbow changes with the angle relative to the anti-solar point - the hue changes

dramatically but the brightness and saturation remain approximately the same. This kind

of feature, a change only in hue, makes structural colour noteworthy.

The calculation of structural colours at the physical level is computationally expen-

sive and repeating these computations across ranges of different parameters is impossible

in reality. I tackle the complexity of this problem by making a number of simplifying

assumptions to produce a model that retains certain important qualitative properties of

colour forming structures. I then use this model to investigate what happens in a well

known evolutionary scenario - Batesian mimicry. This scenario involves the formation

of strong warning colours (aposematic colours) by an indirect pressure from a mimicking

species (Franks et al. 2009; Holmgren and Enquist 1999 and implied by Franks and Noble
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2004). Batesian mimicry is one of many possible mechanisms by which warning colours

can become stronger. Although I focus on Batesian mimicry here, the qualitative differ-

ence between the colour forming mechanisms of pigments and structures is no doubt an

important part of many evolutionary scenarios.

7.1 Introduction

The study of the evolution of coloured traits is frequently focused on one of two major

scenarios: sexual selection - where colour is used in the communication between females

and males of the same species; and aposematism - where the colour serves as a warning

to predators that eating the colour bearing organism will be costly. This chapter focuses

on aposematism (warning colouration) and the related phenomenon of mimicry.

7.1.1 Aposematism

Aposematism is a communication between a prey and predator species. The prey are toxic

and they advertise this to the predator. There are numerous examples of aposematism

within the specific domain of colour: the strong yellow stripes of the common wasp Vespa

vulgaris (e.g. Hauglund, 2006), the variously coloured and patterned poison arrow frogs of

the Dendrobatoidea superfamily (e.g Summers and Clough, 2001), numerous butterflies,

notably those in the family Heliconius (e.g. Naisbit et al., 2007b) and many Meloidae

or blister beetles (Nikbakhtzaseh and Tirgari, 2002, e.g.) to name a few well studied

examples.

We can say a feature of a prey species is aposematic with varying degrees of confidence.

Most minimally, we can assert aposematism when both the prey is toxic and it is reasonable

to claim that the predator can identify the feature with which the toxicity is correlated. We

can be more confident in our assertion when in addition we can show that the predator’s

behaviour is aversive and contingent upon the presence of the feature.

7.1.2 Mimicry

Mimicry is often classified into two types: Batesian and Müllerian, which are exploitative

and cooperative respectively. However, the classification is a little complex. First of

all, mimicry is discussed in terms of a mimic and a model, the model by definition, is

less palatable to predators than the mimic. The model is always unpalatable, in the

sense that the predators will on average learn to avoid it. This definition of palatability

leads quite naturally to the identification of a surface in ‘palatability space’ to which the
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predator is indifferent. In other words, there is a set of attributes of the prey that upon

being discovered during predation do not effect the subsequent attack/avoid decision of

the predator. This is a natural point to call zero in the palatability scale. The simplest

distinction between Müllerian and Batesian mimicry is on this basis: Batesian when the

mimic’s palatability is less than zero; Müllerian when the palatability is greater than zero.

Figure 7.1: Diagram of the palatability scale with Müllerian and Batesian mimicry shown. This

is a simplification of figure 7.2

But this simple picture is complicated by a number of factors, such as population

size and the details of the learning mechanism of the predator. This leads to the current

classification amongst biologists in terms of both palatability and model survival rate (or

some similar parameters) (Balogh et al., 2008).

Whilst, the complexities alluded to in figure 7.2 are important for understanding of

mimicry. The discussion here assumes a priori a Batesian or quasi-Batesian scenario.

7.2 Evolutionary Pursuit in a Colour Solid

An evolutionary chase is exactly what it sounds like: One species is trying to catch up

with a second species and the second species is trying to get away from the first.

In the case of Batesian mimicry there is a pressure for the first species (the chaser, the

mimic) to resemble the second (the chasee, the model). Likewise, there is an evolutionary

pressure for the model to be unlike the mimic. In the case of mimicry, it is assumed that

the chase takes place in a perceptual space defined by a third party: the predatory species.

Within this feature space, the trajectories of the species is controlled by a multitude of

factors including the details of the evolutionary scenario (reproduction, variation), the

mapping from genotype to phenotype including environmental factors. All these factors

combine to produce a topologically complex network embedded in the predators perceptual
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Figure 7.2: A more in depth classification of mimicry (a modification of the diagram in Balogh

et al., 2008). Here, both the palatability and the survival rate of the model are are used to produce

the diagram. The palatability falls into two sections like in figure 7.1. The survival rate is naturally

trichotomous: At the bottom, there is a section where the survival rate is less than it would be

were the mimic not present. At the top, there is a section where the survival of the model is

greater than it would be if the mimic was exactly as palatable as the model. Then there is the

area between these two. The super- and quasi- mimicry zones are those that are not covered by

the original theories of Müller and Bates, they are however, at least theoretically possible given

the appropriate learning mechanisms and population sizes.

space.

When modelling the evolution of coloured signals one may be tempted to assume that

some colour space coordinates (RGB for example Holmgren and Enquist, 1999) correspond

to continuous traits. This has the effect of removing the complexity of the phenotypic

network.1 The evolutionary landscape becomes featureless, except for the boundary of

the colour space.

In the cases where this assumption is made, the boundary of the colour space deter-

mines the limiting behaviour of the evolutionary chase. There is a tendency for species

to get stuck in the corners. We can explain this with the idea of momentum. The idea is

1Instead there is just the standard topology on R
n generated by the euclidean metric.
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simple: the best way for the mimic species to get closer to the model species is by moving

directly towards it, the best way for the model species to evade the mimicking species is

to move directly away from it. Thus, all things being equal, in a given period of time both

species will move the same amount in the same direction. Or more precisely, it is very

unlikely that the mimic will move further than its distance to model plus the distance the

model moved, thus the direction of the vector from mimic to model is preserved. So, with

the direction from mimic to model is staying the same during the next time step they both

move in the same direction again. Of course, the actual direction and speed of mutation is

influenced by many factors. But as a rule of thumb, the evolutionary chase has momentum

because once the two species start moving in a given direction in perceptual space they

will continue to do so to the degree that physical constraints allow.

7.3 Not Just a Colour Cube

Now that I have discussed the qualitative aspects of how the model and mimic species

move though a feature space we can move on to look at the structure of the space itself. To

do this I use a model of reflectance spectra as determined by physical parameters. This is

intended to highlight the complexities that structural colours might add to the dynamics

of mimicry scenarios.

7.3.1 Modelling Reflectance Spectra

There are three components to the model of reflectance spectra. The totality of a re-

flectance is modelled as a structural reflectance, an absorption due to pigmentation and

a potentially imperfect, uniform reflection from a backing layer. This model is only ap-

proximate, a full ray based model would include repeated reflections and would still not

be as accurate as a full solution to Maxwell’s equations. A solution to Maxwell’s equation

would account for interference effects more realistically, as would be necessary when such

small structures are considered. In addition, there would be dependencies on the angle of

viewing (iridescence) which will only add complications to the basic point I wish to argue.

In total, the reflectance spectrum r(λ) is given by the equation:

r(λ) = s(λ) + b (1− s(λ)) t(λ) (7.3.1)

Let me break this down a bit.

The first term defining r(λ) is a structural reflectance s(λ). This reflects light to the

observer in a wavelength dependant manner, leaving the transmitted light with a spectrum
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Structural

Pigment

Backing

Figure 7.3: Diagram of the physical model used in calculating reflectance spectra. The light

incident to the surface is partially reflected by the structural layer. The remaining light then

passes through the pigment layer where it absorbed by the medium. It is partially reflected by a

backing layer and then passes through the pigment layer again.

given by (1− s(λ)). This remaining light passes though an absorbing pigment layer and is

partially reflected back (with fraction b), adding to the light reflected by structural layer.

At this point in the model we can see that we need the term bt(λ) to be different from

unity for any of structural colours to make a difference (this reflects the observations of

Shawkey and Hill, 2005).

This, as I have indicated above, is a fairly heavy handed simplification of the actual

optical phenomenon. For this reason, I will spend some time justifying the simplifications

that I have used.

Structural Reflectances

There are a number of features that I have omitted from the model presented here. Struc-

tural colours are formed using one of three broad classes of mechanism. Firstly, there

are thin films, like in the reflectance from oil on water - a surface can be covered by a

thin layer of refractive index different to that of air and the layer beneath - producing an

optical cavity that selectively reflects light of different wavelengths. An example of this

is the a giant tropical wasp Megascolia procer javanensis. It wings appear blue due to a
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chitin-melanin2 backed chitin monolayer of approximately 300nm (Sarrazin et al., 2008).

Photonic crystals have a similar mechanism, but their structure does not have the

planar symmetry of a film. The three dimensional periodic structure of the material

causes a wavelength dependant reflectance - where the period of the structure is a integer

multiple of the crystals unit cell size light will be preferably reflected. This is the most

common form of structural colouration, it can be see throughout the animal kingdom (see

e.g. Welch and Vigneron, 2007, for a brief review).

The bird of paradise Lawes’ parotia, (Parotia lawesii) uses both a thin film and crys-

talline photonic structure to produce a startling angle dependant reflectance (Stavenga

et al., 2010). Which brings me to the first omission in this model: structural colouration

usually appears iridescent - the reflected spectrum is angle dependant. Such effects are

impossible to model without providing a the physical relationship between the observer,

the observed and the illumination - for this reason I will take it that the spectrum that

is modelled is an averaged effect. I also consider the structural layer to be non-absorbing

(real refractive indices), all absorbance happens after the initial structural reflection. This

single initial reflection is also only an approximation to the real physical scenario.

This means that the structural colours can be removed by taking the maximal wave-

length to an extreme on the real line, in effect, becoming a very thick or very thin mono-

layer. Similarly, it can be thought of as varying the period of the lattice of a photonic

crystal (we see this mechanism in peacock feathers for example Zi et al., 2003). This aspect

of the model is of vital importance, the inability to modulate the amount of transmittance

independently from the reflectance of the structural layer without radically changing a

physical property is a constraint that necessitates non-linearity in the evolutionary land-

scape. Although it is not considered here, this would remain true if the degree of reflection

was allowed to change as long as it cannot be completely removed and replaced - I as-

sume here that such a case is unlikely as structural colours are intimately related to other

physical properties of the surfaces they colour.

I have taken structural reflectances to be given by a Gaussian of unit height centred

on µ with constant width (set by σ).

s(λ) = e
−1

2

(
λ−µi
σ

)2

(7.3.2)

Clearly this lacks formally derived and exacting quantitative realism, but it does have the

qualitative features I have mentioned above. This said, they do nonetheless bear some

2A structure formed of a composite of chitin and melanin has a broad absorption spectrum as well as

differing in (real) refractive index to pure chitin.
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resemblance to recorded reflectance spectra - the major difference being the lack of extra

peaks. Were they included, these extra peaks only make the evolutionary landscape more

complex.

Pigment Absorptions

The general fractional transmittance of an absorbing medium is given by the Beer-Lambert

law (Atkins and de Paula, 2001):

t(λ) = e−ca(λ) (7.3.3)

where c is proportional to the number of absorbing particles found along the path of a

given ray. c is therefor proportional to the thickness of, and the concentration of pigment

within, the absorbing layer. a(λ) is an absorbance spectrum given in appropriate units

to render the term ca(λ) dimensionless. Here I take the absorption spectrum a(λ) to

be representative carotenoid pigments. These pigments are ubiquitous in nature (see for

example Faivre et al. 2003; Kodric-Brown 1985 for carotenoids in animals; Armstrong and

Hearst 1996 for bacteria; Grotewold 2006 for plants). These pigments generally feature a

high absorbance in the short wavelengths and a low absorbance in the long wavelengths.

A simple curve with this feature is 1+tanh(x). If we allow it to be ‘stretched’ and ‘moved’

relative to wavelength, λ, we can write it in the form:

c(λ) =
(

1 + e−kg(λ−kc)
)−1

(7.3.4)

where kg and kc are parameters that control the gradient at the inflection point and the

wavelength of the inflection point respectively. For the purposes here, I keep kg constant.

Backing Layer

I take the final layer of figure 7.3 to have a spectrally uniform reflectance between zero

and one. This corresponds, I argue, to melanin based backing layer (see Mundy, 2005, for

a comprehensive review). Though the spectra of melanins are not technically uniform, the

approximation as such is not far from the truth for eumelanin - which appears black or deep

brown, but it less so for pheomelanin which appears red or orange. However, the backing

constant b also represents a reflectivity - in general the amount of light that manages to

get reflected back from the internal structure independently of pigment absorption and

structural reflectance.
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Constant Inflection Point
Constant Optical Density

Constant 'Backing' Reflectance
Constant Structural Colour

Figure 7.4: A set of colours formed by different physical parameters. The left hand side shows the

colours of the pigment over a range of parameters. The right hand shows the structural colour and

backing reflectance. The right hand diagram is folded over on itself showing how the structural

colours lead to a complex relationship between physical parameters and colour.

Pigment and Backing Layer Features

The pigment and backing layer produce a geometry with nice properties: the space of

parameters is projected such that were one to choose a point in colour space, the way one

would change the parameters to move in a particular direction in colour space would be

well defined. This is not the case with the model stuctural colours. The direction that

one moves in colour space given a parameter depends on the value of the parameters to

the point where we may need to change a given parameter one way in one case and in the

opposite way in another. The parameter for the stuctural colour changes its orientation

with respect to the colour space at the edges of the cone in the right hand side of figure

7.4.

As I have discussed in chapter 6, the effect of changing pigment concentration is ap-

proximately linear. But more importantly, when considered on their own, their parameters

keep their orientation with respect to colour.

This means that if we have pigments alone, it is possible to move in a line from any
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colour to any other colour - moving locally in the right direction is moving globally in the

right direction. The structural colours in this model prevent this property from holding; to

get from one colour to another, one may have to begin by going in the opposite direction.

7.4 Continuous Traits

To make any sense of this model as describing part of an evolutionary scenario we are

required to make certain assumptions about the relationship between an organisms genes

and the colours it displays. Here I assume that the physical parameters of the pigments

are continuous traits. We cannot be assured that the physical parameters vary smoothly

and mutate linearly in the parameter space, but we could not say this in the case of colour

either.

However, with a physical relationship established we can say one thing which depends

only on the assumption that the change in physical parameters proceeds via small incre-

ments: We can say that in the scenario above, when given only the information about the

local increase in fitness it is impossible for a species to ‘know’ whether it is going in the

right direction to find a global maximum in fitness. This aspect will be essential for the

argument that I will make.

7.5 Analysis of the Genotype-Phenotype Mapping

The mapping from genotype to phenotype in this model, whilst a great simplification of the

real physical situation, is still complicated and non-linear. The best way of understanding

these systems is through visualisation. This allows important features to be observed and

explained intuitively. Before I talk about the space, I will explain how I have produced

the visualisations so as to provide you with an understanding of their meaning and scope.

7.5.1 Visualising the Genotype-Phenotype Mapping

With the aim of making the features of the geometry clearer I have used a model of a

dichromat with Gaussian photoreceptor response functions. The same functions are used

for all the visualisations herein. Although different predators will have different types and

numbers of visual pigment classes this should not change the gross features of the model.
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Figure 7.5: Spectra and components used in visualising the evolutionary landscape. The simpli-

fied photoreceptor functions are shown on the left. Treating these as vectors, we can find their

corresponding null space - i.e. a set of vectors which do not affect the colour - called metameric

blacks in colour theory. After uniformly sampling the genetic space and getting the corresponding

spectra as n = 501 dimensional vectors, projection into the n − 2 dimensional null space gives

a distribution of the components that leave colour unchanged. The principal components of this

space are then used to visualise neutral mutations/metameric changes. To visualise the principal

components in the spectrum space the inverse of the transformation into the null space is used,

setting the photoreceptor values to zero. See text.

Initial Transformations

The first task is to separate the colour data from the rest of the data present in the spectra.

To do this, we take the matrix of the form:

MT =


...

...
...

...
...

Null W W
...

...
...

...
...

 (7.5.1)

where W is 2-by-n matrix representing the two photoreceptor spectral sensitivities, Null

represents an operator providing a matrix of vectors that span the null space of a matrix.

This means that this operation on a spectrum S gives a n-vector whose first n− 2 compo-
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nents do not have any role in determining their corresponding colour (metameric blacks)

and whose last two components of the vector are the two colour components, q1 and q2.

That is to say:

MS =
[

Metameric Black | q1 q2
]T

= [B|Q]T (7.5.2)

The two colour components were used to make the histogram in figure 7.6 and the

two photoreceptor components of 7.8, F.1, F.2 and F.3. To look at the structure of

the part of the space which is not involved in determining the colours I have taken the

first two principal components of the spectra generated by a small 3 uniform sampling

of the parameter space (P). The spectra are transformed according to equation 7.5.2 to

yield values in the space with basis vectors given by B. It is in B that the principal

components are calculated. Because of the procedure used here, the principal components

of B are guaranteed to be orthogonal to the photoreceptor vectors in W, providing an

efficient representation of the spectrum space. The principal component matrix is then

used to reduce Null W to a 2-dimensional matrix which was used to calculate the values

in histograms 7.7 as well as one component of 7.8, F.1, F.2 and F.3. The visualisations

herein summarise these principal components p1, p2 and quantum catch values q1 and q2:


p1

p2

q1

q2

 =


(Null W) ·P

W




...

S
...

 (7.5.3)

Technicalities of Histogram Production

The two dimensional histograms were calculated using a grid of 640-by-640 bins over the

rectangle [0, 1]× [0, 1] in the case of the quantum catches (figure 7.6) and [−6, 11]× [−10, 4]

in the case of the principal components (figure 7.7). These histograms are a result of 2×107

simulated spectra. The histogram values are mapped to the luminance channel of an 8-bit

image after contrast enhancement using a quadratic weighting (L→ L2).

The three dimensional histograms of 7.8, F.1, F.2 and F.3 use the two colour channels

and the first principal component p1. A similar method on a grid of 100-by-100-by-100 bins

3The size of this sample is limited by computer memory. We must keep all the spectra in all their detail

to perform a principal component analysis.
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spanning the [0, 1]× [0, 1]× [−6, 11] rectangle in (q1, q2, p1) was used to make a histogram

of 6× 107 spectra. The histograms were then converted into a surface by placing a point

in between the centres of any two histogram cells for which the value of one was zero and

the other non-zero. These points were then triangulated using the alpha hull procedure of

MeshLab4 with a radius of just greater than
√

3 unit cells. The surface was then simplified

to less than 35000 faces using MeshLab’s quadric edge collapse decimation algorithm and

duplicated faces culled (there are many of them).

7.5.2 Visualising the Physiology-Colour Mapping

I have already spoken briefly about the features of the mapping from physiology to colour.

But now we have a means of visualising this mapping it is easier to make a few points

concerning this space.

Figure 7.6 shows the colour space of the predator as sampled uniformly in the parameter

space. Here we see two important features, we see both the triangle on the left hand side

of figure 7.4, and the cone on the right. In this histogram it is difficult to resolve the

relationship between the two surfaces, but we can see that colours in the bottom left of

the image in figure 7.6 can be produced by both pigments and structural colours. Figure

7.7 shows the complexity of the dimensions that have been omitted in figure 7.7.

When we render this in a three dimensional plot, such as 7.8, F.1, F.2 and F.3, we can

see two distinct zones (a font zone mostly obscuring a back zone) giving the same colour,

but for radically different parameters. The parameter space is embedded in colour space

such that there are no possible values for the parameters for areas between the two zones.

This means that the colour is not free to change directly from the front zone to the back

zone. Figure 7.9 shows two metameric spectra the correspond to each of these zones.

7.6 The Implication for Mimicry and Aposematism

As I discussed earlier, in Batesian mimicry the evolutionary chase between species causes

them to have a kind of momentum in colour space (or, more generally, feature space). The

consequence of momentum is that both species will, in general, head in a given direction in

colour space until they reach the edge of the gamut of possible colours. By this mechanism

the aposematic colouration of the model is driven to higher colourfullnesses (see 2). This

has been reported in other theoretical studies (Franks et al., 2009; Holmgren and Enquist,

4MeshLab is a collection of routines for computations involving triangulated surfaces and is “a tool

developed with the support of the 3D-CoForm project”.
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Figure 7.6: A histogram of the quantum catch of the predator’s photoreceptors when the genetic

space is uniformly sampled. This fits exactly into the unit square [0, 1] × [0, 1]. The values of

long wavelength sensitive photoreceptor (red in figure 7.5) span the horizontal axis and short

wavelength sensitive (blue in 7.5) the vertical. Here we can see evidence of a complex structure in

the genotype-phenotype mapping. It can be seen in figure 7.6 that this corresponds to the folded

embedding of the genetic space into it.

1999, e.g.).

However, in the case I present here, the change physiological parameters leading to a

particular colour are underdetermined. This means that it is possible for a model species

to be similar in appearance to a mimicking species but have rather different underlying

physiology (though the possibility for them to be the same is allowed). Indeed, there is
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Figure 7.7: The space of neutral mutations - axes are the two principal components described

in section 7.5.1. Like before (figure 7.6) we see a complex pattern. Also, we see what appears to

be an intersection of two surfaces which forms a concave shape. This concavity will be important

later on when we discuss the mechanisms of aposematic colour formation in this model.

neutral drift between all parameters that give the same colour. Because the physiologies

may be very different, the change in one physiological parameter that corresponds to a

given change in colour may be very different for the two prey species, even if they have

the same colour to the predator. Thus, as the model chases the mimic is it very possible

that their physiologically diverges instead of converging. As the chase reaches the edge of

the colour space the exaggerated difference in physiologies force slightly different extremal

colours. The only way of escaping this trap is to make it possible to have large mutations
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Figure 7.8: Rendering showing the evolutionary trap where one species may be on the front ‘leaf’

and one on the rear. See appendix F for more renderings.

Figure 7.9: Two spectra which have approximately the same colour to the predator. We can see

the speak for the structural colour on the left for the red spectrum and on the right for the green

spectrum. For the red spectrum to become the same as the green spectrum we would have to move

via a desaturated colour and thus, locally, further away from the colour of the green spectrum.

in the physical parameters.
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7.7 Discussion

The diversity of physical mechanisms responsible for structural colour is great (Welch and

Vigneron, 2007), even before we start combining structural colours (as in Birò et al., 2007;

Seago et al., 2009). When this is considered along with the potential complexity of the

evolutionary landscapes they create, it is not surprising that where we find structural

colouration we find great diversity in colouration. Navigating the landscape of structural

colours is necessarily difficult. When it comes to the complexities of the physical basis of

colour formation the model presented here is only the tip of the iceberg. The varied visual

pigments of different predators, the vast biochemical networks and ecological parameters

that affect pigments and high number of possible photonic structures means that there is

likely far more potential for finding stable imperfect mimicry.

But as we allow more and more mechanisms, the gamut of colours that can be achieved

broadens. With increased mechanistic diversity it becomes easier and easier to produce

colours that lie near the middle of the colour solid. The places where models can escape

their mimics are pushed further and further to the edges of the colour space.

The difficulty of moving from one part of a colour space to a near by part of the colour

space provides a role for “supergenes” (Joron and Mallet, 1998; Mallet, 1989; Mallet and

Joron, 1999; Naisbit et al., 2007a) - genetic units that produce a simultaneous change in a

large number of physical properties. Although the situation described by these authors is

a little different from the one here, the ability to radically switch from one set of physical

parameters to others would be expected in a mimic that has evolved to be efficient in

modelling other species.

The additive mixing scheme found in tiger beetles (Seago et al., 2009) and butterflies

(Birò et al., 2007; Welch and Vigneron, 2007) can be considered as an adaptation to avoid

these complexities - an evolution of evolvability (see e.g. Wagner and Altenberg, 1996).

By varying the size of mesoscopic zones of structural colours these organisms can linearise

the relationship between physiology and colour.
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“It never got weird enough for me.”

Hunter S. Thomson
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Gábor Lugosi and Nicolas Vayatis. On the Bayes Consistency of Regular Boosting Meth-

ods. Annals of Statistics, 32(1):30–55, 2004.

R. Luther. Aus dem Gebiet der Farbreizmetric. Ztschr. Techn. Phys., 8:997 – 1012, 1927.

J Madden. Preferences for coloured bower decorations can be explained in a nonsex-

ual context. Animal Behaviour, 65(6):1077–1083, June 2003. ISSN 00033472. doi:

10.1006/anbe.2003.2126.

B Y J Mallet. The genetics of warning colour in Peruvian hybrid zones of Heliconius erato

and H . melpomene. Genetics, L(236):163–185, 1989.

James Mallet and Mathieu Joron. Evolution of Diversity in Warning Colour and Mimicry:

Polymorphisms, Shifting Balance, and Speciation. Annu. Rev. Ecol. Syst., 200X(30):

201 – 233, 1999.

Benoit B. Mandelbrot. The Fractal Geometry of Nature. W.H.Freeman & Co Ltd, 1982.

Sergio Cesare Masin, Verina Zudini, and Mauro Antonelli. Early alternative derivations

of fechners law. Journal of the History of the Behavioral Sciences, 45(1):56–65, 2009.

doi: 10.1002/jhbs.

181



James Clerk Maxwell. Theory of Compound Colours, and the Relation of Colours of

Spectrum. Philosophical Transactions of the Royal Society (London), 150:57–84, 1860.

C. McManus and I. P. Weatherby. the Golden Section and the Aesthetics of Form and

Composition: a Cognitive Model. Empirical Studies of the Arts, 15(2):1–1, July 1997.

ISSN 0276-2374. doi: 10.2190/WWCR-VWHV-2Y2W-91EE.

Maurice Merleau-Ponty. Phenomenology of Perception. Routledge, 1945.

Nicholas I Mundy. A window on the genetics of evolution: MC1R and plumage colouration

in birds. Proceedings of The Royal Society B., 272(1573):1633–40, August 2005. ISSN

0962-8452. doi: 10.1098/rspb.2005.3107.

Russell E Naisbit, Chris D Jiggins, and James Mallet. Mimicry: developmental genes

that contribute to speciation. Evolution & development, 5(3):269–80, 2007a. ISSN

1520-541X.

Russell E Naisbit, Chris D Jiggins, and James Mallet. Mimicry: developmental genes

that contribute to speciation. Evolution & development, 5(3):269–80, 2007b. ISSN

1520-541X.

Sérgio M. C. Nascimento, Flávio P. Ferreira, and David H Foster. Statistics of spatial

cone-excitation ratios in natural scenes. Journal of the Optical Society of America, 19

(8):1484–1490, 2002.

Issac Newton. Of Colours, 1665.

XuanLong Nguyen, Martin J. Wainwright, and Michael I. Jordan. On surrogate loss

functions and f -divergences. The Annals of Statistics, 37(2):876–904, April 2009. ISSN

0090-5364. doi: 10.1214/08-AOS595.

M. R. Nikbakhtzaseh and S Tirgari. Blister Beetles (Coleoptera: Meloidae) in Naha-

vand County (Hamedan Province , Iran) and Their Ecological Relationship to Other

Coleopteran Families. Iranian J. Publ. Health, 31(1-2):55–62, 2002.

N Nyberg. Zum Aufbau des Farbenkoerpes im Raume aller Lichtempfindumgen. Ztschr.

Phys., 28:406–419, 1928.

OED. Online Historical and Etymological Dictionary, 2012.

182



N Ohta and G Wyszecki. Theoretical chromaticity-mismatch limits of metamers viewed

under different illuminants. Journal of the Optical Society of America, 65(3):327 – 333,

1975.
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Appendix A

Notation

A.1 Notation and Conventions

There are a number of specific symbols as well a some conventions for the notation in this

document.

A.2 Specific Objects

The following are symbols that have a specific meaning, although they may be overload

in some contexts:
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Symbol Meaning

H(·) Entropy

D(KL) ( · || · ) Asymmetric Kullback-Leibler Divergence

D(α) ( · || · ) α-divergence

D(f) ( · || · ) f -divergence

Rφ (·) Risk

R∗φ Optimal Risk

λ Wavelength

w Spectral Sensitivity Function

gij Indexed Metric Tensor

Γijk Cristoffel Symbol

∂i (subscript index) Equivalent to ∂
∂ξi

∂ Equivalent to ∂
∂ξ

∂τ (subscript coordinate) Equivalent to ∂
∂τ

[·] Matrix of...

Eξ [·] Expectation of ... at point ξ

` Log probability density

Table A.1: Special Symbols

A.2.1 Common objects

There are a number of conventions that I have tried to stick to throughout, it is not always

possible, so the following is in effect a set of ‘guidelines’ which I have done my best to stick

to. I use Latin letters f, g, h for general functions, c, k, A,B,C . . . are used for constants.

Sets

I write sets in calligraphic script, such as:

A,B, C,X (A.2.1)

I will often describe them using set builder notation:

{ elements : condition } (A.2.2)

and ∅ denotes the empty set.
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Probability Theory

I use Pr(·) to represent probabilities and p(·) or q(·) to represent probability densities. I

will use Latin letters for the elements of the support, with the preference:

x, y, z, a, b, c . . . (A.2.3)

The corresponding supports are sets with the same letters

X ,Y,Z,A,B, C . . . (A.2.4)

I use σ for standard deviations and avoid using µ for the mean.

Measures

I use Σ to denote a σ-algebra, E and element of it (event), and µ and λ as measures.

Coordinates on a Differential Manifold

I use Greek letters for specific coordinates on a differential manifold, with preference left

to right:

ξ, ρ, ζ . . . τ, σ, µ, γ (A.2.5)

and the upper case version for the set of all possible coordinates:

Ξ, P, Z, . . . T,Σ,M (A.2.6)

I use γ for curves (but also for discriminant functions). I use the following letters as indices

(in order of preference):

i, j, k, l, a, b, c, d, α, β . . . (A.2.7)

A.3 Einstein Notation

Einstein notation is used throughout this thesis. Often we wish to sum products of a

number of variables, for example, we might wish to calculate an inner product between

vectors X and Y , which would be:

X1Y1 +X2Y2 +X3Y3 . . . (A.3.1)

or ∑
i

XiYi (A.3.2)
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The power of linear algebra lies in the ability to write this succinctly:

XY T (A.3.3)

however, linear algebra becomes problematic. It only works with vectors or matrices: We

can have at most two dimensional arrays of objects.

In Einstein’s notation there are two types of index: covariant, as in the i in xi and

contravariant, as in the i in xi. The distinction usually reflects certain geometric proper-

ties, but also gives a simple way of writing summations. This notation is centred around

inner products, and makes such things very easy to write - when working in the geometric

setting for which it is intended, it works very well.

Applying it is pretty simple, when terms with the same index in different locations are

multiplied together - assume a sum. Some examples:

xiyi → xiyi (A.3.4)

xiyi →
∑
i

xiyi (A.3.5)

aibjcij →
∑
i

∑
j

aibicij (A.3.6)

aibjckdijk →
∑
i

∑
j

∑
k

aibjckdijk (A.3.7)

aibjckd
k
ij →

∑
i

∑
j

∑
k

aibjckd
k
ij (A.3.8)

aijbij →
∑
i

∑
j

aijbij (A.3.9)

A.3.1 Bracketed Indices

When an index is bracketed, as in x(i) this is to be treated like either upper or lower index

in as much as summation should be assumed no matter what its relation is (in terms of

upper and lower) to the corresponding indices.

A.3.2 Special Vector Constants

There a number of special objects that will be used throughout, firstly there are two

‘constants’ 1 and 0. Which are defined as 1 or 0 respectively, for whatever choice of

indexing used. Often it will be used as shorthand for:

1ix
i =

∑
i

xi (A.3.10)
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A.3.3 Generalised Delta

I will also use a generalisation of the Kronecker delta function δ. This is defined as:

δb1b2...;d1d2...;f1f2...;...
a1a2...;c1c2...;e1e2...;... =


1,



∀aibj : ai = bj and

∀cidj : ci = dj and

∀eifj : ei = fj and

etc

0, otherwise

(A.3.11)

The use of the semicolon distinguishes between the logical form1 ((i = j) ∧ (k = l))

represented by ij; kl and (i = j = k = l) represented by ijkl. In the former it does not

necessarily hold that, for example j = k.

For this δ, the following two identities hold. Firstly we can concatenate indices (sepa-

rating by “;”) when two δs are multiplied(
δb1b2...;d1d2...;...
a1a2...;c1c2...;...

)(
δf1f2...;h1h2...;...
e1e2...;g1g2...;...

)
= δb1b2...;d1d2...;f1f2...;h1h2...;...

a1a2...;c1c2...;e1e2...;g1g2...;... (A.3.12)

and, we can remove a “;” by contracting across it, here the contracting index is x.

δb1b2...; xd1d2...;...
xa1a2...; c1c2...;... = δb1b2...d1d2...;...

a1a2...c1c2...;... (A.3.13)

An example application of these identities:

δalij δ
b
kl = δal; bij; kl (A.3.14)

= δabijk (A.3.15)

A common use of this delta function is in situations like:

δabcx
aybzc =

∑
i

xiyizi (A.3.16)

1∧ represents logical conjunction - “AND”
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Appendix B

Binary Choice and Linear

Discriminants

We have a score for behaviours (ω) and (α): s(α, ω). We wish to show that maximising the

expectation (over a Borel set) of this score given two probability distributions (Pr(x, α) =

Pr(α) Pr(x |α), α = α1, α2) gives a choice function where:

ω =

 ω1, Pr(x, α1) > kPr(x, α2)

ω2, otherwise
(B.0.1)

where

k =
s(2, 2)− s(2, 1)

s(1, 1)− s(1, 2)
(B.0.2)

The total score for a choice (determined by a proposition φ) can be written as

S(φ) =

∫
s̄φ(x)dx (B.0.3)

= s(1, 1)

∫
Φ

Pr(x, α1)dx

+s(1, 2)

∫
Ψ

Pr(x, α1)dx

+s(2, 1)

∫
Φ

Pr(x, α2)dx

+s(2, 1)

∫
Ψ

Pr(x, α2)dx (B.0.4)

where φ(x) = ¬ψ(x) are propositions about x, which go on to define the disjoint sets

Φ = {x : φ(x)} and Ψ = {x : ψ(x)} (B.0.5)
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A corollary of which is that x ∈ Φ =⇒ ω = ω1 and x ∈ Ψ =⇒ ω = ω2. We can

maximise S in a point-wise manner, by considering the two possibilities for a particular x:

φ(x) = true : s̄φ(x) = s(1, 1) Pr(x, α1) + s(2, 1) Pr(x, α2)

φ(x) = false : s̄φ(x) = s(1, 2) Pr(x, α1) + s(2, 2) Pr(x, α2)

So, one just chooses the bigger one if we want to maximise S or the smaller if one wants

to minimise. For maximisation:

φ(x) = Js(1, 1) Pr(x, α1) + s(2, 1) Pr(x, α2)

> s(1, 2) Pr(x, α1) + s(2, 2) Pr(x, α2)K (B.0.6)

= J(s(1, 1)− s(1, 2)) Pr(x, α1)

> (s(2, 2)− s(2, 1)) Pr(x, α2)K (B.0.7)

and assuming s(1, 1) > s(1, 2):

φ(x) = JPr(x, α1) >
s(2, 2)− s(2, 1)

s(1, 1)− s(1, 2)
Pr(x, α2)K (B.0.8)

as required.
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Appendix C

Divergences

This appendix contains the supplementary material associated with calculations involving

divergences.

C.1 Expansion of f-divergences

The following is a straight forwards Taylor expansion of f -divergences. Due to it’s length

and triviality it has not been reported in the literature. Performing the expansion and

checking the results for errors does however require a significant amount of work - even

with infernal newfangled contraptions capable of advanced symbolic manipulation. For

this reason it is included here. The f -divergence:

D(f) ( ξ || ρ ) =

∫
χ
pξf

(
pρ
pξ

)
dµ(x) (C.1.1)

will be expanded as (see 4.5.1):

D(h) ( ξ || ξ + ∆ξ ) = D(h) ( ξ || ρ )
∣∣∣
ρ=ξ

+

∂

∂ρi
D(h) ( ξ || ρ )

∣∣∣
ρ=ξ

∆ξi +

1

2

∂

∂ρi
∂

∂ρj
D(h) ( ξ || ρ )

∣∣∣
ρ=ξ

∆ξi∆ξj +

1

6

∂

∂ρi
∂

∂ρj
∂

∂ρk
D(h) ( ξ || ρ )

∣∣∣
ρ=ξ

∆ξi∆ξj∆ξk +

o(∆ξ4) (C.1.2)

assuming continuity (to third order) of f(u) at u = 1. Here there is no other assumption

about the nature of f . The following uses non-normalised probabilities, with∫
χ
pξdµ(x) = τ (C.1.3)
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which allows for a more general result. We also need to recognise that:

∂

∂ρi
f

(
pρ
pξ

)
=

∂

∂ρi
f(u)

=
∂u

∂ρi
f ′ (u)

=

(
1

pξ

)(
∂

∂ρi
pρ

)
f ′ (u) (C.1.4)

which is used throughout. As usual, I will use the notation of `ξ = log pξ and ∂i = ∂
∂ξi

.

From here I will take each term of the expansion shown in C.1.2 in order.

Zeroth order in ∆ξ

D(f) ( ξ || ρ )
∣∣∣
ρ=ξ

=

∫
χ
pξf

(
pξ
pξ

)
dµ(x) (C.1.5)

= f(1)

∫
χ
pξdµ(x) (C.1.6)

= τf(1) (C.1.7)

First order in ∆ξ

First the differential, beginning with the product rule and noting ∂
∂ρi
pξ = 0:

∂

∂ρi
D(f) ( ξ || ρ ) =

∫
χ

(
∂

∂ρi
pξ

)
f

(
pρ
pξ

)
dµ(x) +∫

χ
pξ

∂

∂ρi
f

(
pρ
pξ

)
dµ(x) (C.1.8)

=

∫
χ

(
∂

∂ρi
pρ

)
f ′
(
pρ
pξ

)
dµ(x) (C.1.9)

evaluating at ρ = ξ:

∂

∂ρi
D(f) ( ξ || ρ )

∣∣∣
ρ=ξ

=

∫
χ

(
∂

∂ξi
pξ

)
f ′ (1) dµ(x) (C.1.10)

= f ′(1)

∫
χ

∂

∂ξi
pξdµ(x) (C.1.11)

= f ′(1)∂iτ (C.1.12)

Second order in ∆ξ

Beginning with equation C.1.9:

∂

∂ρi
∂

∂ρj
D(f) ( ξ || ρ ) =

∂

∂ρj

∫
χ

(
∂

∂ρi
pρ

)
f ′
(
pρ
pξ

)
dµ(x)

=

∫
χ

(
∂

∂ρi
∂

∂ρj
pρ

)
f ′
(
pρ
pξ

)
dµ(x) +∫

χ

(
∂

∂ρi
pρ

)
∂

∂ρj
f ′
(
pρ
pξ

)
dµ(x)

(C.1.13)

196



=

∫
χ

(
∂

∂ρi
∂

∂ρj
pρ

)
f ′
(
pρ
pξ

)
dµ(x) +∫

χ

1

pξ

(
∂

∂ρi
pρ

)(
∂

∂ρj
pρ

)
f ′′
(
pρ
pξ

)
dµ(x)

(C.1.14)

evaluating at ρ = ξ:

∂

∂ρi
∂

∂ρj
D(f) ( ξ || ρ )

∣∣∣
ρ=ξ

= f ′(1)

∫
χ

∂

∂ξi
∂

∂ξj
pξdµ(x)

+ f ′′(1)

∫
χ

(
1

pξ

∂

∂ξi
pξ

)(
1

pξ

∂

∂ξj
pξ

)
pξdµ(x)

= f ′(1)∂i∂jτ + f ′′(1)

∫
χ

(
∂

∂ξi
`ξ

)(
∂

∂ξj
`ξ

)
pξdµ(x)

= f ′(1)∂i∂jτ + f ′′(1)τgij (C.1.15)

where gij is the Fisher metric (we must remember that expectations are taken over nor-

malised distributions):

gij = Eξ [∂i`ξ∂j`ξ] dµ(x)

=

∫
χ

(
∂

∂ξi
`ξ

)(
∂

∂ξj
`ξ

)
pξ∫

χ pξdµ(x)
dµ(x)

=
1

τ

∫
χ

(
∂

∂ξi
`ξ

)(
∂

∂ξj
`ξ

)
pξdµ(x)

Third order in ∆ξ

Beginning with equation C.1.14:

∂

∂ρi
∂

∂ρj
∂

∂ρk
D(f) ( ξ || ρ ) =

∂

∂ρk

∫
χ

(
∂

∂ρi
∂

∂ρj
pρ

)
f ′
(
pρ
pξ

)
dµ(x)

+
∂

∂ρk

∫
χ

1

pξ

(
∂

∂ρi
pρ

)(
∂

∂ρj
pρ

)
f ′′
(
pρ
pξ

)
dµ(x)

(C.1.16)

Taking each part of the sum separately gives for the left hand summand:

∂

∂ρk

∫
χ

(
∂

∂ρi
∂

∂ρj
pρ

)
f ′
(
pρ
pξ

)
dµ(x) =

∫
χ

(
∂

∂ρi
∂

∂ρj
∂

∂ρk
pρ

)
f ′
(
pρ
pξ

)
dµ(x)

+

∫
χ

1

pξ

(
∂

∂ρi
∂

∂ρj
pρ

)(
∂

∂ρk
pρ

)
f ′′
(
pρ
pξ

)
dµ(x)

(C.1.17)

197



evaluating at ρ = ξ:

LH = f ′(1)∂i∂j∂kτ + f ′′(1)

∫
χ

(
∂

∂ξi
∂

∂ξj
pξ

)(
∂

∂ξk
`ξ

)
dµ(x) (C.1.18)

Now, it is possible to write:∫
χ

(
∂

∂ξa
∂

∂ξb
pξ

)(
∂

∂ξc
`ξ

)
dµ(x)

as ∫
χ
pξ

(
1

pξ

∂

∂ξa
∂

∂ξb
pξ

)(
∂

∂ξc
`ξ

)
dµ(x)

and also, we can see that:

∂

∂ξa
∂

∂ξb
`ξ =

∂

∂ξa

(
1

pξ

∂

∂ξb
pξ

)
=
−1

p2
ξ

∂

∂ξa
pξ

∂

∂ξb
pξ +

1

pξ

∂

∂ξa
∂

∂ξb
pξ

= − ∂

∂ξa
`ξ

∂

∂ξb
`ξ +

1

pξ

∂

∂ξa
∂

∂ξb
pξ

(C.1.19)

so

1

pξ

∂

∂ξa
∂

∂ξb
pξ =

∂

∂ξa
∂

∂ξb
`ξ +

∂

∂ξa
`ξ

∂

∂ξb
`ξ (C.1.20)

and ∫
χ
pξ

(
1

pξ

∂

∂ξa
∂

∂ξb
pξ

)(
∂

∂ξc
`ξ

)
dµ(x)

becomes ∫
χ
pξ

∂

∂ξa
∂

∂ξb
`ξ

∂

∂ξc
`ξdµ(x)

+

∫
χ
pξ

∂

∂ξa
`ξ

∂

∂ξb
`ξ

∂

∂ξc
`ξdµ(x) (C.1.21)

which can be written as the sum of expectations:

τEξ [∂a∂b`ξ∂c`ξ] + τEξ [∂a`ξ∂b`ξ∂c`ξ] (C.1.22)

This means equation C.1.18 can be written:

LH = f ′(1)∂i∂j∂kτ +

τf ′′(1)Eξ [∂i∂j`ξ∂k`ξ] +

τf ′′(1)Eξ [∂i`ξ∂j`ξ∂k`ξ] (C.1.23)
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Now, Taking the right hand part of the sum in C.1.16:

∂

∂ρk

∫
χ

1

pξ

(
∂

∂ρi
pρ

)(
∂

∂ρj
pρ

)
f ′′
(
pρ
pξ

)
dµ(x) =

∫
χ

1

pξ

(
∂

∂ρi
∂

∂ρk
pρ

)(
∂

∂ρj
pρ

)
f ′′
(
pρ
pξ

)
dµ(x)

+

∫
χ

1

pξ

(
∂

∂ρi
pρ

)(
∂

∂ρj
∂

∂ρk
pρ

)
f ′′
(
pρ
pξ

)
dµ(x)

+

∫
χ

1

p2
ξ

(
∂

∂ρi
pρ

)(
∂

∂ρj
pρ

)(
∂

∂ρk
pρ

)
f ′′′
(
pρ
pξ

)
dµ(x)

(C.1.24)

evaluating at ρ = ξ:

RH = f ′′(1)

∫
χ

(
∂

∂ξj
∂

∂ξk
pξ

)(
∂

∂ξi
`ξ

)
dµ(x) + (C.1.25)

f ′′(1)

∫
χ

(
∂

∂ξi
∂

∂ξk
pξ

)(
∂

∂ξj
`ξ

)
dµ(x) + (C.1.26)

τf ′′′(1)Eξ [∂i`ξ∂j`ξ∂k`ξ] (C.1.27)

which can also be completely written in terms of expectations:

RH = τf ′′(1)Eξ [∂j∂k`ξ∂i`ξ] +

τf ′′(1)Eξ [∂i∂k`ξ∂j`ξ] +

2τf ′′(1)Eξ [∂i`ξ∂j`ξ∂k`ξ] +

τf ′′′(1)Eξ [∂i`ξ∂j`ξ∂k`ξ] (C.1.28)

adding the left and right sides gives:

LH +RH = f ′(1)∂i∂j∂kτ +

τf ′′(1)Eξ [∂i∂j`ξ∂k`ξ] +

τf ′′(1)Eξ [∂j∂k`ξ∂i`ξ] +

τf ′′(1)Eξ [∂i∂k`ξ∂j`ξ] +

3τf ′′(1)Eξ [∂i`ξ∂j`ξ∂k`ξ] +

τf ′′′(1)Eξ [∂i`ξ∂j`ξ∂k`ξ] (C.1.29)

Next, we note that:

∂kgij = ∂kEξ [∂i`ξ∂j`ξ]

= Eξ [∂i∂k`ξ∂j`ξ] +

= Eξ [∂j∂k`ξ∂i`ξ] +

= Eξ [∂i`ξ∂j`ξ∂k`ξ] (C.1.30)
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so

LH +RH = f ′(1)∂i∂j∂kτ + τf ′′(1)∂kgij +

τf ′′(1)Eξ [∂i∂j`ξ∂k`ξ] +

τ(2f ′′(1) + f ′′′(1))Eξ [∂i`ξ∂j`ξ∂k`ξ]

= f ′(1)∂i∂j∂kτ + τf ′′(1)∂kgij +

τf ′′(1)

(
Eξ [∂i∂j`ξ∂k`ξ] +(

2 +
f ′′′(1)

f ′′(1)

)
Eξ [∂i`ξ∂j`ξ∂k`ξ]

)

= f ′(1)∂i∂j∂kτ + τf ′′(1)∂kgij +

τf ′′(1)Eξ

[(
∂i∂j`ξ +

(
2 +

f ′′′(1)

f ′′(1)

)
∂i`ξ∂j`ξ

)
(∂k`ξ)

]
(C.1.31)

remembering that the definition of the Cristoffel symbols of the α-connection are given

by:

Γ
(α)
ij,k = Eξ

[(
∂i∂j`ξ +

1− α
2

∂i`ξ∂j`ξ

)
(∂k`ξ)

]
(C.1.32)

we see that if we let −α = 3 + 2f ′′′(1)/f ′′(1) then:

LH +RH = f ′(1)∂i∂j∂kτ + τf ′′(1)∂kgij + τf ′′(1)Γ
−(3+2f ′′′(1)/f ′′(1))
ij,k (C.1.33)

Final Expansion

D(f) ( ξ || ξ + ∆ξ ) = τf(1) +

f ′(1)∂iτ∆ξi +

1
2f
′(1)∂i∂jτ∆ξi∆ξj +

1
2τf

′′(1)gij∆ξ
i∆ξj +

1
6f
′(1)∂i∂j∂kτ∆ξi∆ξj∆ξk +

1
6τf

′′(1)∂kgij∆ξ
i∆ξj∆ξk +

1
6τf

′′(1)Γ
−(3+2f ′′′(1)/f ′′(1))
ij,k ∆ξi∆ξj∆ξk +

o(∆ξ4) (C.1.34)

This can be cleaned up by subtracting f ′(1)τ(ξ + ∆ξ) from the expanded function:

D(f) ( ξ || ξ + ∆ξ )− f ′(1)τ(ξ + ∆ξ) =
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τf(1) +

1
2τf

′′(1)gij∆ξ
i∆ξj +

1
6τf

′′(1)∂kgij∆ξ
i∆ξj∆ξk +

1
6τf

′′(1)Γ
−(3+2f ′′′(1)/f ′′(1))
ij,k ∆ξi∆ξj∆ξk +

o(∆ξ4) (C.1.35)

h-divergences

For an h-divergence we have f(1) = f ′(1) = 0 so:

D(h) ( ξ || ξ + ∆ξ ) = 1
2τf

′′(1)gij∆ξ
i∆ξj +

1
6τf

′′(1)
(
∂kgij + Γ

−(3+2f ′′′(1)/f ′′(1))
ij,k

)
∆ξi∆ξj∆ξk +

o(∆ξ4) (C.1.36)

C.2 Preservation of Symmetry under the Geometrising Trans-

form

This appendix demonstrates that the geometrising transform

f(u)→ f(u) + (1− u)f ′(1)− f(1) (C.2.1)

preserves the relationship (symmetry)

D(f) ( ξ || ρ ) = D(f) ( ρ || ξ ) (C.2.2)

in the general case of different prior probabilities.

Let us consider two possibilities ξ and ρ with prior probabilities πξ = Pr(ξ) and

πρ = Pr(ρ) and distributions conditional on them, ηξ = Pr(x | ξ) and ηρ = Pr(x | ρ). The f -

divergences corresponding to the difference between the two outcomes - prior probabilities

considered - is given by:

D(f) ( ξ || ρ ) =

∫
X
πρηρf

(
πξηξ

πρηρ

)
dµ(x) (C.2.3)
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Letting h be the transformed function h(u) = f(u) + (1− u)f ′(1)− f(1) then:

D(h) ( ξ || ρ )

=

∫
X
πρηρ

(
f

(
πξηξ

πρηρ

)
+

(
1− πξηξ

πρηρ

)
f ′(1)− f(1)

)
dµ(x)

=

∫
X
πρηρf

(
πξηξ

πρηρ

)
+ (πρηρ − πξηξ)f ′(1)− πρηρf(1) dµ(x)

= D(f) ( ξ || ρ ) + f ′(1)πξ
∫
X
ηξdµ(x)

−f ′(1)πξ
∫
X
ηξdµ(x) + f(1)πρ

∫
X
ηρdµ(x)

noting that
∫
X η

ξdµ(x) =
∫
X η

ρdµ(x) = 1 we have:

D(h) ( ξ || ρ ) = D(f) ( ξ || ρ ) + (πρ − πξ)f ′(1)− πρf(1) (C.2.4)

Imposing the symmetry constraint in equation C.2.2 onto this transformed divergence

gives:

0 = D(h) ( ξ || ρ )−D(h) ( ξ || ρ )

= D(f) ( ξ || ρ )−D(f) ( ξ || ρ ) +
(
πξ − πρ

)
(2f ′(1)− f(1)) (C.2.5)

Now, since we know that the relationship holds for D(f) ( ξ || ρ ) then we have the require-

ment that:(
πξ − πρ

) (
2f ′(1)− f(1)

)
= 0 (C.2.6)

we also know that this symmetry implies that the following relationship holds for f :

f(u) = uf (1/u) (C.2.7)

Differentiating this:

f ′(u) = f(1/u)− f ′(1/u)

u
(C.2.8)

and evaluating at u = 1:

2f ′(1)− f(1) = 0 (C.2.9)

leads to a condition where by necessity equation C.2.6 holds, therefor the geometrising

transform preserves this symmetry.
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Appendix D

Specific Values of the Fisher

Metric

The following is the derivation of the Fisher metric for some of the distributions used

in this thesis. I will show them for the one dimensional case, as generalisation to the

multidimensional case is trivial.

D.1 Poisson Distribution

If

X ∼ Poisson (λ) (D.1.1)

then

Pr(X = x) =
λxe−λ

x!
(D.1.2)

The log probability is:

`(x;λ) = −λ+ x log λ− log x! (D.1.3)

and

∂

∂λ
`(x;λ) =

x

λ
− 1 (D.1.4)

(
∂

∂λ
`(x;λ)

)2

=
(x
λ
− 1
)2

(D.1.5)

So the Fisher information g is given by:

g =

∞∑
x=0

(x
λ
− 1
)2 λxe−λ

x!
=

1

λ
(D.1.6)
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D.2 Gamma Distribution

Here I only consider the case of a fixed population size, where k is a constant.

If

X ∼ Gamma (k, θ) (D.2.1)

then

Pr(X = x) = γ(x, k, θ) =
xk−1e−x/θ

Γ(k)θk
(D.2.2)

where Γ : C→ C is the gamma function:

Γ(z) =

∫ ∞
0

tz−1e−tdt (D.2.3)

for n ∈ N we have the relation:

Γ(n) = (n− 1)! (D.2.4)

and similarly:

Γ(x+ 1) = xΓ(x) (D.2.5)

which holds for all x ∈ R+. Now, we have a statistical manifold with log probability given

by:

`(x; k, θ) = (k − 1) log x− x/θ − log Γ(k)− k log θ (D.2.6)

so

∂

∂θ
`(x; k, θ) =

x

θ2
− k

θ
(D.2.7)

(
∂

∂θ
`(x; k, θ)

)2

=
1

θ2

(x
θ
− k
)2

(D.2.8)

and the Fisher information g is:

g =

∫ ∞
−∞

1

θ2

(x
θ
− k
)2 xk−1e−x/θ

Γ(k)θk
dx (D.2.9)

=
1

θ2

∫ ∞
−∞

(x
θ
− k
)2 xk−1e−x/θ

Γ(k)θk
dx (D.2.10)

=
1

θ2

∫ ∞
−∞

(
x2

θ2
− 2

kx

θ
+ k2

)
xk−1e−x/θ

Γ(k)θk
dx (D.2.11)

=
1

θ2
(A− 2B + C) (D.2.12)
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where, as
∫∞
−∞ γ(x, k, θ)dx = 1:

A =

∫ ∞
−∞

x2

θ2

xk−1e−x/θ

Γ(k)θk
(D.2.13)

=

∫ ∞
−∞

k(k + 1)γ(x, k, θ)dx = k(k + 1) (D.2.14)

B =

∫ ∞
−∞

kx

θ

xk−1e−x/θ

Γ(k)θk
=

∫ ∞
−∞

k2γ(x, k, θ)dx = k2 (D.2.15)

C =

∫ ∞
−∞

k2x
k−1e−x/θ

Γ(k)θk
=

∫ ∞
−∞

k2γ(x, k, θ)dx = k2 (D.2.16)

so

A− 2B + C = k(k + 1)− 2k2 + k2 = k (D.2.17)

thus:

g =
k

θ2
(D.2.18)

D.3 Binomial Distribution

Here I only consider the case of a fixed population size, where n is a constant.

If

X ∼ Binomial (n, p) (D.3.1)

then

Pr(X = x) =

n
x

 px(1− p)n−x (D.3.2)

so the log probability is:

`(x;n, p) = log

n
x

+ x log p− (n− x) log(1− p) (D.3.3)

and

∂

∂p
`(x;n, p) =

x− np
p(1− p) (D.3.4)
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so that the Fisher information is given by the sum:

g =
n∑
x=0

n
x

 (x− np)2

p2(1− p)2
px(1− p)n−x (D.3.5)

=

n∑
x=0

n
x

 (x− np)2px−2(1− p)n−x−2 (D.3.6)

=
n∑
x=0

n
x

x2px−2(1− p)n−x−2 (D.3.7)

−
n∑
x=0

n
x

 2nppx−2(1− p)n−x−2 (D.3.8)

+

n∑
x=0

n
x

n2p2px−2(1− p)n−x−2 (D.3.9)

which can be written as expectations of powers of x, then in terms of the mean and

variance:

g =
1

p2(1− p)2)

(
Ep
[
x2
]
− 2npEp [x] + n2p2)

)
(D.3.10)

=
1

p2(1− p)2)

(
σ2 + (µ− np)2

)
(D.3.11)

and it is known that the mean of a binomial distribution is np and the variance is np(1−p)
so we have:

µ− np = 0 (D.3.12)

so

g =
σ2

p2(1− p)2
(D.3.13)

and finally

g =
np(1− p)
p2(1− p)2

=
n

p(1− p) (D.3.14)
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Appendix E

Sexual Selection Simulation

E.1 Model

The model of signal production though sexual selection consists of two collections of

species, the ‘signallers’ and the ‘drifters’, labelled S and D respectively. They contain

nS and nD species so that:

S = {s1, s2 . . . snS}, D = {d1, d2 . . . dnD} (E.1.1)

Each species si or di contains nO organisms which have variables corresponding to pigments

that define their appearance A and their visual systems V and the colour of their preferred

mate T . In addition there is an integer identifier for the organism I, and its species S. The

members of each species are each then defined by a tuple (A, V, T, I, S). The appearance,

A, is a vector with np elements (where np is the number of samples that the spectrum

is recorded at) and the visual pigment genes V is a ne vector which defines an ne-by-np

matrix M (where ne is the number of visual pigment types), so that the colour of an

organism a as seen by an organism b (cb(a)) is given by the usual inner product:

cb(a) = M(Vb) ·Aa (E.1.2)

where subscripts denote the organism to which the variables are associated. The function

M is given by

Mij(V ) =
1 + sin(π(1

2 i+ 2Vj))

2 + 1
2

∑
i sin(π(1

2 i+ 2Vj))
(E.1.3)

Though it is rather arbitrary, it is chosen to have a single peak and symmetry, as well as

being normalised (the normalising factor leading to the complexities of the denominator).

Members of both classes of species produce recombinant offspring by randomly choos-

ing a parent for each gene (in this case, a gene is a single double precision floating point
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number found in A, V or T ). These are used to produce a new organism x, along with

a new target mate appearance - its own colour, cx(x) - it is assigned a new unique ID.

The inherited values also gain mutations in the form of the addition of a normally dis-

tributed random number with standard deviation σSV , σSA or σDV , σDA, depending on

the class and variable type. Resultant values outside of the interval [0, 1] are brought back

into range by applying either f : x > 1 → 1, x < 0 → 0, x ∈ [0, 1] → x or f : x → x

mod 1 1. Mutations are applied with frequencies mD and mS to the drifters and signallers

respectively.

E.1.1 Selection Rules

The species in each class have different selection rules, the ‘drifters’ D merely drift, their

visual pigments and target colours are largely irrelevant. The populations of each drifter

species are modified at each generation by applying the following rules a given number

(rD) of times:

1: Select a random member of the population for a drifter species

2: Select a random mate from the same population

3: Recombine their genes and mutate

4: Replace a random member of the population with the new offspring

The ‘signallers’, S are evolved by rules chosen to mimic sexual selection. Instead of

knowing the species to mate with, they are required to judge it by their appearance from

all of S ∪D. To do this they use a psychometric function tanh(kd), where k is a constant

and d is the euclidean distance between the colour (c) of their potential mate and their

target mate (T ). This function fits into the following evolutionary schema, which is applied

to rS organisms each time step:

1: Select a random member from the population of a signaller species

2: Choose a potential mate from any species

3: Find the value of the psychometric function

4: Choose a uniform random variable from [0,1]

5: If the random variable is greater than value from the

psychometric function, go back to 2

6: If the mate is not of the same species, do nothing, otherwise

1 mod 1 is the floating point modulo operation in base 1, setting the value before the decimal place to

zero.
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7: Recombine genes and mutate

8: Replace a random member of the population with the new offspring

E.1.2 Establishing Convergence

The convergence of the simulation was judged by means of a perceiver independent proxy

for colourfulness, H. This is fast to calculate and allows a simulations progress to be

tracked. It is the sum of a log a over all elements of the appearance for each organism in

each species:

H =
∑

s∈S∪D

∑
x∈s

∑
a∈Ax

ai log ai (E.1.4)

The fixation of this value to within an interval the size of 5% of its deviation from the

start, over a period of 100 generations, was taken to be sufficient for the simulation to be

ended. Though generally simulations continued beyond this point.

E.1.3 Analysis

The appearance of the species was summarised in terms of colourfulness (see chapter 2), the

fractional distance of a point from the centre to the edge of the colour space. The frequency

of colourfulness was summarised by taking the colourfulness of each organism within S
(or D) as judged by every organism in S (or D), producing n2

S (or n2
D) values which are

then used to create histograms. The histograms are then corrected so that they would be

uniform were the organisms uniformly distributed across the colour space, the histogram

thus represents the organisms density on the colour space. To perform this correction we

note that the locus of equal colourfulness is the boundary of the colour space scaled by

the colourfulness, the volume (area) with colourfulness less than a c is proportional to

cne , in the case of the dichromatic species in this simulation ne = 2. So the volume of

colour space corresponding to a histogram bin corresponding to the colourfulness interval

[c, c+ ∆c] is k∆c(c+ ∆c), where k is equal to the total volume (area) of the colour space.

The normalised histogram is invariant with respect to the value of k, and determination

of its value is not required. Because of this we only need to multiply each bin by c+ ∆c.

E.2 Behaviour of the Model

The first thing to consider in the model is the behaviour of the species that are not under

selective pressure for appearance. The lack of pressure on appearance causes the species to

distribute uniformly across the space of spectra. When these are projected to form colours
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Figure E.1: Data from the sexual simulation model with 42 species (plus 42 drifting species

when present). These plots show the frequency that a part of the colour space with colourfulness

of a particular value is contains a member of a species of a given type. The data is corrected

for the increased sampling of colourfulness values at higher colourfullnesses (e.g. there is more

area for a colourfulness of 0.1 than 0.9). In both graphs the lines represent median values for

ten simulations and the filled area indicates the full range of the simulated results. The red lines

show the colourfulness under selective pressure from drifting species; green, the colourfulness of the

drifting species themselves; and blue is the sexually selected species but without the presence of the

drifters. The simulation was performed with a psychometric constant of 4, spectral dimensionality

of 4, 2 visual pigments, standard deviations of Gaussian mutation sizes of 0.1. The probabilities

of mutation is 0.05 for spectra, 0 for visual pigments (these generally fixate within 100 generations

to a pair of fairly orthogonal pigments). There are 30 organisms per species and 5 are potentially

replaced per generation.
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we see that more of them project to the centre of the space. This then presents itself as

a net movement towards the centre of the colour space. This can be seen in figure E.1 as

the high probability density for low colourfullnesses in the green curve. It is represented

in figure E.2 parts a and b.

a

b

c

Figure E.2: A caricatured representation of the causal mechanism of strong colour formation in

the sexual selection model. Multicoloured dots represent the species under sexual selection, i.e.

those required to identify their conspecifics using colour cues. The white dots represent species

with no selective pressure upon their appearance. (a) The species begin at random points in colour

space. (b) The species that are not under selective pressure for colour show a net drift towards

the centre of the colour space. (c) in response to the increased number of competing signals in the

centre of the space the species required to communicate using colour move towards the outskirts

of the colour space. In reality the two processes happen near simultaneously, the arrows represent

the causal relationship only.

The response of the organisms under sexual selection is a net movement away from

high species density (see red curves in figure E.1), which is towards the colourful edges

of the colour space. There are a couple of other features that can be seen in the data.
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There is a slight tendency towards the edges of the colour space due to the bias induced

from truncating the reflectance genes when a mutation takes it outside of the range [0, 1],

this can be seen in the blue curve in figure E.1. In addition there is also a bump induced

from the regularity of what is effectively an approximate packing of species from the

edge inwards. Some species move right to up to the edge of the space, then there is an

area of lower density. Following this there is then a higher density again. This is just a

manifestation of requiring a particular separation between species and aligning them with

the edge of the space.

This behaviour happens across a range of parameters. Whilst it is clearly unreason-

able to expect to find a real word situation where there are a large number of species only

differing by their colour, it is useful to consider such a system for the purposes of demon-

strating the selective pressure from the the non-selected organisms. When the physiology

responsible for colour formation is not closely modelled (like it is in chapter 7) and a di-

rect Gaussian mutation scheme with truncated boundaries is used, there is a tendency for

species to ‘stick’ to the edge. The probability of being exactly at the edge is greater than at

any other position2 biasing the results with magnitude negatively correlated with species

number. The addition of extra sexually selected species allows this effect to be diluted

to the point of making reasonable comparisons, and in addition, easing the production of

good quality histograms.

E.3 Algorithmic Calculation of the Object Colour Solid

The following algorithm is a ‘fast’ way of performing the accurate calculation of the colour

solid without any constraint relating to the convexity of the spectral line (unlike the

extreme spectrum method). The direct calculation of the convex hull of the spectrum

space is intractable for highly resolved spectra, as the number of extreme points to consider

#T grows exponentially with the number of samples of the spectrum, m:

#T = 2m (E.3.1)

So, even for a 2D colour solid being calculated on a PC with 4GB of free memory, rep-

resenting each point as a pair of double precision floating point numbers, we are limited

2All the positions beyond the edge map exactly to the edge. i.e. the probability moving onto the

edge (of one spectral dimension) from position x is erf(−|x− 1|/σ) + erf(−|x|/σ), all other positions have

infinitesimal probabilities.
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to 28 samples, simply by what we can represent in memory.3. This says nothing about

how long it will take to run; there is no convex hull algorithm with complexity less than

n log n, so this näıve method is clearly at least4 exponential time in number of samples.

Often, this kind of problem is solved using quadratic programming methods (Ohta and

Wyszecki, 1975; Wyszecki and Stiles, 2000), but here I propose a different solution, whose

accuracy is limited by how accurately we represent the photoreceptor sensitivities, not by

how many points we calculate.

It works by calculating the projection of the reflectance spectrum hypercube directly,

at every step increasing the number of points twofold. However, at each step a convex hull

algorithm is used to prune as many points as possible, preventing what would otherwise

be a combinatorial explosion. An optimisation is also possible at line 6: in addition to the

black point (the origin), the starting set can be made to include the white point (1). This

significantly enhances the efficiency of the pruning.

1 function solidCalculator(photoreceptor_response_vectors)

2 # Create a matrix of photoreceptor responses

3 let columns of response_matrix = photoreceptor_response_vectors

4

5 # Create a starting hypercube

6 let point_list = [point at origin]

7 let i = 1

8 while i <= number of photoreceptors

9 translated_points = point_list + ith row of response_matrix

10 point_list = point_list union translated_points

11 increment i

12

13 # Iteratively apply convex hull algorithm

14 while i <= number of elements in response vector

15 translated_points = point_list + ith row of response_matrix

16 point_list = point_list union translated_points

17 point_list = convex_hull(point_list)

18 increment i

3A pair of double precision floating point numbers requires 16 = 24 bytes of memory. 4GB = 232 bytes.

So solve 2m · 24 = 2m+4 = 232.
4A rough calculation suggests that it is greater than exponential time, limn→∞

n2n

2n
= ∞, but slower

than factorial time limn→∞
n2n

n!
= 0.
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Figure E.3: Data based on A1 pigment templates (Stavenga et al., 1993) used in the calculation

in figure E.4. Each curve represents a vector of seven elements with values of each element given

by the y-axis.

How can we be sure this works? To assure this algorithm is correct we need only to

argue that it will necessarily visit every point on the hull, as the convex hull algorithm can

never remove a point that is actually on the final hull. Let us denote the solid represented

in the calculation at step i by si, and the value of the photoreceptor sensitivities at step

i by vi. With some calculation5 it can be shown that:

si+1 = C (si ∪ {x+ vi : x ∈ si}) = C
(
H
(
H(si) ∪ {x+ vi : x ∈ H(si)}

))
(E.3.2)

implying that we do not ‘loose’ any points by iterating using the hulls, H(si), rather than

the full set si. So at each stage of the iteration, even though we are removing points that

were on the hull in previous steps, we are still keeping a full representation of the full

colour solid up to that point.

5This can be achieved by writing the convex coverings and hulls explicitly in their summation form.
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Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Step 7 Step 8 Result

Figure E.4: Calculating a 2D colour solid. We begin with a single point (Step 1) then create a

projected m-cube (a square) by successively duplicating the number of points by making a copy

and adding a vector (arrows). After the shape has the same dimensionally as the space it lies in,

we begin pruning points after each duplication (Steps 4-8 inclusive). Points that will be removed

are shown in red. This makes the algorithm possible. The dotted lines show the coordinates of

the ‘extreme spectra’. We can see that one branch of algorithm follows the same path as these,

however, this path does not lie on the convex hull, so some of the points on it get pruned away

(all of them that do are removed are red in step 5). The light black lines are all the edges of the

hypercube, most of which do not get traversed due to the pruning.
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Appendix F

More Renderings of the

Phenotypic Space
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Figure F.1: Rendering showing some of the complexities of the relationship between the physical

parameters, the colour, and the hidden space.
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Figure F.2: A rendering showing the two different zones that can achieve the same colour.
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Figure F.3: Another rendering showing how non-linear the space is.

218


	Coversheet
	Wilkins, Lucas

