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Abstract

This thesis concerns the physicochemical understanding of radiation damage in

graphite. It is structured in two parts, the first being a foundation of elastic

and bonding properties in graphite and its intercalation compound with Bromine.

The second builds on this with dislocation theory to analyse dimensional change

and stored elastic energy. Part 1: Density functional theory (DFT) in the local

density approximation (LDA) has been used to study the elastic properties of

hexagonal graphite and of Bromine intercalated graphite. The second and third

order elastic constants of graphite have been calculated ab initio. The internal

strain has been considered and the results include partial and total elastic constant

results. The nature of the interlayer binding energy has been studied using DFT

with LDA. The London dispersion forces have been applied to the DFT results

using a simple Lennard-Jones type model. The results of this study are in good

agreement with other theoretical and experimental studies. The zero point energy

has also been calculated and its effects applied to the interlayer energy and the

related elastic constant C33 . This constant has also been calculated for stage-1 and

stage-2 Bromine-intercalated graphite in order to aid interpretation of intercalation

experiments which try to emulate with Br intercalation, the c-axis dimensional

change that occurs from radiation damage. Part 2: A two dimensional dislocation

model has been written based on both basal and prismatic dislocations. The

model elucidates the stress fields arising from irradiation damage in graphite in

either the standard damage model based on prismatic loops or the newly proposed

model based on basal dislocations. It illustrates the different physical processes

underlying dimensional change and should enable it to be quantified. The energy

of the stress fields is calculated and found to be comparable to stored energies

measured for graphite irradiated below 250oC.
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Chapter 1

Introduction

In the UK approximately 1
6

of the electricity consumed is generated using nuclear

power. There are 16 nuclear reactors currently operating. These are located at nine

sites. The most common type of reactor in the UK is advanced gas cooled (AGR).

There are 14 AGRs, one Magnox and one pressurised water reactor (PWR).

Thermal reactors play a crucial role in the generation of energy from nuclear

power plants. Fast fission neutrons within the reactor must be slowed to down or

’moderated’ to allow interactions to take place with the nuclear fuel to sustain the

nuclear chain reaction. The neutrons are slowed by multiply colliding with atoms

thereby lowering their kinetic energy. There are two types of moderator species

commonly used. Water cooled reactors rely on collisions with hydrogen atoms to

moderate the neutrons while graphite reactors use carbon atoms.

The last remaining Magnox reactor is currently operating at Wylfa nuclear

power station and operated by Magnox Ltd. Magnox reactors are carbon dioxide

cooled and graphite moderated. The power station is due to be decommissioned

in 2014.

PWRs are the most common type of reactor used throughout the rest of the

world. The coolant water is used as a moderator. The only PWR in the UK is

Sizewell B run by EDF Energy.

All of the AGRs are operated by EDF Energy. These are Dungeness B,

Hinkley Point B, Hunterston B, Hartlepool, Heysham 1, Heysham 2, Torness and

1
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Sizewell B.

The AGRs currently in use throughout the UK have operating temperatures

of ∼ 650oC. Low temperature reactors were in operation during the 1950s with

operating temperatures of ∼ 250oC. The effects of stored energy or “Wigner

energy” in irradiated graphite were not well known at this time. Strong releases

of Wigner energy at ∼ 250oC and ∼ 1400oC are now well documented.

The effects of this energy release can lead to dangerous runaway temperatures

in the reactor. This was highlighted in the 1957 Windscale accident attributed to

the 250oC energy release. This problem has now been eliminated with the current

running temperatures of the reactors.

The Windscale accident triggered a period of study into the effects of irradiated

graphite. Experimental studies have been carried out using various techniques such

as X-ray diffraction, transmission electron microscopy (TEM), high resolution

TEM (HRTEM), scanning transmission electron microscopy (STEM), atomic force

microscopy (AFM) and scanning electron microscopy (SEM) to shed light on the

underlying physics and chemistry of irradiated graphite. The expansion of graphite

in the c-direction with a complementary shrinkage in the basal plane is observed

as a result of irradiation. This can lead to cracking which is a lifetime limiting

type of damage for a reactor. Accompanying this is a complicated energy structure

varying with dose and temperature.

Theories have been put forward to explain the results of such experimental

observations. A point defect model has been proposed to explain some of these

results for low and high temperature regimes based on interstitial and vacancy

defects. In this model the interstitial atoms account for the observed c expansion.

The model describes relatively immobile interstitial atoms at low temperature.

With increased temperature the interstitials are believed to become mobile, joining

together to form interstitial dislocation loops. The model accounts for dilation of

the basal plane by the healing of vacancy lines at low temperature. The vacancies

are considered to be mobile at higher temperatures and migrate to the edge of
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the basal planes causing shrinkage on leaving the structure. The shortcomings of

this model are discussed later in the thesis.

Graphite is a suitable material for use in the construction of nuclear reactors.

It can be manufactured at an industrial scale while maintaining a high degree

of purity. The mechanical properties of graphite hold up well under the high

temperature environment and neutron fluence experienced in an operating reactor.

Pure hexagonal graphite is one of the most highly anisotropic materials.

Manufactured graphite for use in nuclear reactor components must however be

highly isotropic to maintain structural strength. The manufacture of suitable

graphite begins with the raw material in the form of coke from coal or crude oil

refining. The coke is then crushed or milled and mixed with a binder, usually

pitch. The resulting product is referred to as a green article which is relatively

solid and can be formed to the required shape. The green article is subsequently

baked resulting in a solid carbonaceous material. The resulting material is then

impregnated with pitch to fill porosity and usually rebaked to carbonise the

impregnant. This is repeated until the correct density has been attained. The

material is then graphetised at a temperature between 2000oC and 3500oC to

convert the carbon material into a graphite material. The product is finally

treated once again at high temperature to remove further impurities. The final

product is highly isotropic with a high crystalline order and low impurity levels.

Outside of the nuclear industry graphite is well known for its anisotropic

properties. “Graphein” is the ancient Greek word meaning “to write” and its use is

well known in pencils. Graphite has a related use in industry as a lubricant. Other

important applications are in lithium-ion batteries suitable for electric vehicles and

as brake linings for heavy vehicles. Graphene is a single layer of graphite. It has

many potential applications in the electrical industry for example in ultracapicitors,

integrated circuits and transistor devices. Graphene is also closely related to nano

tubes which consist of relatively long very narrow cylinders of graphene. These

also have extraordinary electrical and mechanical properties.
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The anisotropic nature of graphite is seen in the weak interlayer binding

compared to the very strong intralayer binding. These properties make it a good

material for intercalation with other species. The weak interlayer binding offers

little resistance to expansion perpendicular to the graphite layers. Other species

of atom or molecular layers can be inserted between the layers of the “expanded

graphite” creating compounds. The intercalation can occur in a regular periodic

manner over many layers. This regular arrangement of the intercalants is known

as staging.

Intercalation leads to a wide variety of electrical, thermal and magnetic

properties of the compound by adjusting the free carrier concentration of the

graphite host. These properties can be controlled by varying the density or staging

of the intercalant. Intercalated graphite is not used as widely in industry as graphite

is. It does however have many potential applications including supercapacitors,

display panels and hydrogen storage. Intercallated graphite also provides a route

to large scale graphene production.

The structure of the thesis from this point is as follows. The following chapter

covers the theoretical background with reference to the content of chapters three,

four and five.

In chapter three I will discuss work carried out on the elastic properties of

graphite. This includes calculating the 2nd and 3rd order elastic constants using

DFT with LDA. Similar calculations have been carried out previously but it has

been useful to revisit these calculations for two reasons. Firstly, for the first time

the calculations for geometry optimisation and single point energies have been

carried out using the pdddp basis set throughout. This is believed to offer the

best results for the elastic constant values of hexagonal graphite using the AIMPRO

code. Secondly, it is the first time that the second and third order elastic constants

have been calculated using DFT with LDA while taking into consideration the

phenomenon of internal strain. It is believed that the calculations provide bench

mark figures for hexagonal graphite elastic constants using DFT with LDA.
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The zero point energy of hexagonal graphite has also been calculated in this

chapter. This calculation has been performed using vibrational mode results

calculated by Haffenden [1] along with DFT with LDA calculations from this

work.

The final section of chapter three considers the interlayer binding in hexagonal

graphite. Calculating the interlayer binding for hexagonal graphite using DFT is

known to be problematic. The theory does not account for the London dispersion

forces commonly thought to be important to the interlayer binding. A calculation

has been performed combining results from DFT with LDA calculations with a

simple Lennard-Jones type model used to simulate the dispersion interaction.

Chapter four is concerned with bromine intercalated graphite. The elastic

constants C33, C44 and C55 have been calculated using DFT with LDA. Work

carried out by Luyken et al. [2] has prompted this investigation. It is possible

that intercalated graphite may show some of the properties of irradiated graphite

with respect to expansion in the c-direction. This could prove useful in research

as an alternative to taking irradiated graphite samples from the core of a nuclear

reactor.

The fifth chapter proposes a two dimensional model to study the damage in

irradiated graphite. The model is based on the dislocation theory. The introduction

of the model is an attempt to bridge the gap between microscopic and macroscopic

models currently in use. It is hoped that the simple model will be developed and

illuminate damage processes in graphite that currently cannot be investigated using

current theories.



Chapter 2

Background Theory

2.1 Density Functional Theory and the AIMPRO

code

2.1.1 Introduction

The calculations to be described in Chapter 3 were performed using the AIMPRO

code [3, 4, 5]. This code is based on Density Functional Theory (DFT). It is applied

to calculations in the following chapters using the local density approximation

(LDA).

The general background of DFT, as applied to the calculations reported, is

outlined in the following sections. A more detailed description of DFT can be

found in, for example, Jensen [6].

2.1.2 Quantum Computational Calculations

Computational methods of quantum mechanical theory are based around solving

the Schrödinger equation. The time–independent Schrödinger equation can be

written as

ĤΨ = EΨ (2.1)

6
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for the energy E and the wavefunction Ψ. The Hamilton operator Ĥ is the sum

of the kinetic (T ) and potential (V ) energies of the nucleus (N) and the electrons

(e) and their interactions with each other,

Ĥ = TN + Te + VNN + VNe + Vee (2.2)

Solving the Schrödinger equation gives the total energy and wave function of the

system. From these it is possible to calculate other physical properties such as

the geometry of the system, binding energies, vibrational frequencies and so on.

The Schrödinger equation cannot be solved analytically except in a few simple

cases. To proceed it is necessary to make approximations to the equation that allow

it to be solved computationally. The first approximation that will be discussed is

the Born–Oppenheimer approximation.

2.1.2.1 The Born–Oppenheimer Approximation

The difference in mass of nuclei and electrons mean that the electrons move much

more quickly than the nuclei. The Born–Oppenheimer approximation considers

the nuclei to be stationary when compared to the electrons in the system. This

allows the nuclei to be treated classically and as a result the kinetic energy of the

nuclei is TN = 0 and the potential of the nuclei VNN constant. The position of

the nuclei is then considered at a later stage of the computation when the forces

on the nuclei can be calculated from the electronic wave functions.

The term Vee describes the electron–electron interactions. These many body

interactions cannot be decomposed into solvable equations so further approximation

is required.

There are two popular techniques used for dealing with this problem. One is

based on Hartree–Fock theory and the other on Density Functional Theory (DFT).

DFT is best suited to describing solid state systems and is used in the AIMPRO

code.
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2.1.2.2 Density Functional Theory

In 1964 Hohenberg and Kohn [7] proved that the electron charge density, n((r)),

completely describes the ground state electronic energy of a system. The theory

was developed further in the following year by Kohn and Sham [8].

The potential Vee is replaced by an effective potential represented by a functional

of the electron density. It was shown [7] that for a non-degenerate ground state

the energy and wave function are uniquely defined by the electron density. This

means that the Schrödinger equation can be solved using the electron density.

A variational method is used to find the ground state energy of the system.

The energy includes the kinetic energy of the electrons Te and the interaction

between the nuclei and the electrons. The previous electron–electron interaction

term Vee is broken into two parts: Ec for the Coulomb interaction and Exc for the

exchange–correlation. The Schrödinger equation now takes the form,

(Te + [VNe + EC + Exc]) = εiψi (r) (2.3)

n (r) =
∑

i occupied |ψi (r)|2

The equations in [8] are known as the Kohn–Sham equations. They are effectively

one electron equations for non-interacting particles interacting with the averaged

field of the other electrons. The solution leads to a charge density n (r). This is

in turn expanded into wave functions ψi (r). Although the wave functions of these

artificial non-interacting particles do not have an exact physical interpretation it

can be shown that they give the minimum energy for the system.

To use DFT all energy terms should be expressed as functionals of the electron

density. The exchange correlation term Exc [n] can most simply be expressed as a

function of the electron density for the homogeneous electron gas. This leads to the

requirement for further approximation, this time the local density approximation

(LDA).
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2.1.2.3 Local Density Approximation

Using the local density approximation the exchange correlation energy Exc can be

expressed as,

Exc [n] =

∫
n(r)εxc[n(r)]dr (2.4)

where εxc is the exchange correlation energy density of the equivalent homogeneous

electron gas of electron density n(r). LDA makes the approximation that Exc for

any region within the electronic system has a value equal to a homogeneous electron

gas having the same density.

Although LDA works well even with rapidly varying electron density it tends

to give low ground state energies and overestimates ionisation energies. The

generalised gradient approximation (GGA) can be used to try to correct for these

errors in the AIMPRO code. The results shown in this paper have been produced

using LDA. The exchange correlation energy used in the code comes from work

carried out by Perdew and Wang [9] who parametrised quantum Monte Carlo

calculations carried out by Ceperley and Alder [10].

The next approximation that will be considered with respect to the AIMPRO

calculations is the use of pseudopotentials.

2.1.2.4 Pseudopotentials

The use of pseudopotentials is another approximation built into the AIMPRO

code. The electrons closest to the nuclei are strongly bound to it and do not

play a noticeable role in chemical bonding. These electrons are classified as

the core electrons as opposed to the valence electrons that do play a significant

role in bonding. With this approximation the core electrons and nuclei are

replaced by a core potential known as the pseudo potential. This replaces the

extra KE that valence electrons have in order for their wave functions to be

orthogonal to those of the core electrons, with a repulsive potential added to the

nuclear potential. The pseudopotential gives the same valence energies and pseudo

wavefunctions as the real atomic potentials and wavefunctions outside of the core
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region. Inside the core the pseudopotential gives a smoothed out function. To

model the core energy accurately involves many fitting functions because of the

rapidly oscillating wavefunctions of the real atom. The pseudopotential gives an

accurate representation of the energy in the area of interest outside of the core

region and reduces the computational expense.

The electrons that are considered to be outside of the core region can be

specified. For example the valence electrons do not give an accurate representation

of transition metals in the pseudopotential so the electrons from the next shell

can also be included in the calculation [6].

The construction of pseudopotentials involves first generating a reasonable all

electron wavefunction for the particular atom. The valence orbitals are then

replaced by a set of pseudo orbitals and the electron potential is replaced by a

trial pseudo potential. These are then “tweaked” to give the correct energy levels

and wavefunctions in the area outside of the core region. The pseudo potential is

then fitted to analytical functions such as Gaussian functions.

There are three options of pseudopotential available in AIMPRO. These are

Hartwigsen, Goedecker and Hutter (HGH) [11] type, Bachelet, Hamann and

Schluter (BHS) [12] type and Troullier and Martins (TM) [13] type. The pseudopotentials

used for the calculations in this thesis are the HGH type.

The core electron contribution to the energy calculation comes from the pseudo

potentials. The wavefunctions to be calculated depend only on the valence

electrons. These wavefunctions are expanded in terms of a basis set.

2.1.2.5 Basis Sets

The wavefunctions from the valence electrons ψλ(r) are expanded in terms of a

basis set φi(r) with expansion coefficients cλi ,

ψλ(r) =
∑
i

cλi φi(r) (2.5)
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The basis set functions can be plane waves, Wannier functions, Slater type orbitals

or Gaussian type orbitals. Gaussian type orbitals have been used throughout.

The basis set expansion used by AIMPRO is of the form

φi(r) = (x−Rix)
n1(y −Riy)

n2(z −Riz)
n3e−αi(r−Ri)

2

(2.6)

where Ri are the nuclear positions. Here the choice made for the ni control the

type of orbitals used in the calculation.

Using Gaussian orbitals rather than, say, plane waves has the advantage that

a relatively small number of basis set functions is required. For the calculations

reported in chapter 3 various combinations of orbital types were used. Another

advantage is that the integration of Gaussian orbitals can be carried out analytically

within the code.

2.1.2.6 k-point sampling

The Kohn–Sham equations are normally solved in k space or reciprocal space. In

k space the reciprocal lattice is described by a set of vectors b1, b2, b3. These

vectors are related to the real space lattice vectors a1, a2, a3 in the following

manner

b1 = 2π
a2 × a3

a1 · a2 × a3

,b2 = 2π
a3 × a1

a1 · a2 × a3

,b3 = 2π
a1 × a2

a1 · a2 × a3

(2.7)

The reciprocal lattice vector b1 has the magnitude of 2π
|a1| and is in the direction

perpendicular to the plane described by a2× a3. Similar relationships hold for b2

and b3.

Any point in reciprocal space can be described by the wave vector k. The

area of greatest interest within reciprocal space is the first Brillouin zone (BZ).

All electron eigenstates are represented within the BZ. The energy as a function of

wave vector, E(k), is often plotted against k and represented as a ‘band structure’

plot. There can be degeneracy of the energy bands at various points. The bands
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are labelled with an index m.

The wavefunction within the crystal must reflect the periodicity of the structure.

It takes the Bloch form,

ψk(r) = uk(r) · eik·r (2.8)

The function uk contains the periodicity of the crystal structure.

In DFT supercell calculations the Kohn–Sham equations are solved for k points

in the Brillouin zone,

n(r) =
∑
mk

fmk |ψmk(r)|2 (2.9)

The term fmk takes into account the occupancy of band m at the point k.

When calculating the charge density at a point r it is not practical to integrate

over all possible k-points in the BZ. Instead, a sum over selected grid of points

is used. The calculations presented here have been performed using a k-points

selection technique developed by Monkhorst and Pack [14].

The accuracy of the calculation is dependent on the density of k-points in

reciprocal space. There is a linear increase in computational time with respect to

the number of k-points used.The increase in computational time with the number

of atoms specified is approximately n3
atoms. For this reason it is usually preferable

to increase the number of k-points used whilst minimising the number of atoms

when finding a suitable accuracy in calculations.

In some cases the use of a high number of atoms is unavoidable. For example

a complicated structure without much symmetry. Another situation might be a

defect that needs to be isolated from its repeated images in adjacent cells to

minimise unwanted interactions. With high symmetry it can be much faster to

use a small unit cell with fewer atoms. A higher number of k-points can then be

used to give equivalent accuracy to a calculation to that given by a cell containing

a larger number of atoms.
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2.1.2.7 Structural Optimisation and Total Energy

The total energy and structural optimisation of a supercell can be calculated using

AIMPRO with DFT. The technique is based on an iterative procedure.

The process begins with an initial charge density matrix based on that of

the atoms contained within the supercell being in isolation. The wave function

expansion coefficients cj are then calculated by solving the Kohn–Sham equations

∑
j

(Hij − EλSij) cλj = 0 (2.10)

where Hij is the Hamiltonian matrix and Sij the overlap matrix. A charge density

is calculated and compared to the previous charge density. If convergence to

predefined criteria is not found then this process is repeated starting with an

admixture of old and new charge densities. A common criterion to be met is a

certain energy change between iterations. The iterative process is called the self

consistent cycle. The cycle is repeated until the criteria are met. The minimum

self consistent energy for a certain initial geometry of atoms is found in this way.

The self consistent energy can be used to find the forces felt by the atoms in

the supercell. The force

Fαl = − ∂E

∂Rαl

(2.11)

describes the force felt by atom α in the direction l. This force, given by the

Hellman–Feynman theorem, can be used directly in plane wave calculations. For

the Gaussian orbital based calculations used in AIMPRO Pulay corrections are

required for incomplete bases [15].

Atom positions within the supercell are optimised using a conjugate gradient

method. The atoms are moved along the chosen direction to a point giving

minimum energy. Forces are recalculated to give a new direction. Ininitially the

direction is the same as the force (‘steepest descent’) but subsequent directions

are chosen to be orthogonal to all previous directions. The procedure is repeated

until forces drop below a user defined tolerance. This method is certain to find a
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local minimum but cannot guarantee a global minimum.

2.2 Interlayer Binding

The interlayer binding of graphite is believed by many to arise in the main part

from dispersion forces [16]. Dispersion forces describe interactions between remote

charge distributions. This type of interaction has no overlap of wave functions.

Heggie [17] believes that although the dispersion forces play a role in interlayer

binding the majority of binding at small strains is due to covalent-like binding

from the overlap of pz orbitals at symmetric points between graphene layers as

described by DFT in LDA. This type of binding has also been mentioned by

Charlier et al. [18].

In quantum mechanics the square of an electron wave function |Ψe(x, y, z)|2

describes the probability of finding the particular electron at a position (x, y, z).

Analogous to classical waves the quantum mechanical waves can interfere with one

another. For two wave functions Ψ1 and Ψ2 this can occur constructively when

the wave functions are in phase

Ψ+ =
1√
2

(Ψ1 + Ψ2) (2.12)

This leads to an increased probability or electron density compared to the isolated

systems. The interaction can be destructive when the wave functions have opposite

phase

Ψ− =
1√
2

(Ψ1 −Ψ2) (2.13)

In this case probability and electron density are lowered. The third case is that

no interaction occurs if the wave functions are orthogonal and out of phase.

In terms of molecular orbital theory if the electrons are considered to be

valence electrons of two bound nuclei the constructive interference describes a

bonding orbital. In this case the wave functions have equivalent phases and add.
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The binding coming from a reduced energy resulting from the increased electron

density between the two nuclei when compared to two isolated nuclei.

The destructive interference is described by an antibonding orbital. In this case

the phases of the wave function are opposite. This results in an energy greater

than that of the isolated nuclei. For the simple case of two bound nuclei with one

valence electron each this would lead to the electrons, one with spin up and the

other spin down, occupying the energy level described by the combined bonding

orbital.

For a carbon atom in graphite three of the four valence electrons are trigonally

directed σ bonds in the sp2 hybrid. The final electron lies in a pz orbital normal

to the plane. They interact with adjacent pz orbitals from π bonds. Heggie states

that overlap of the pz orbitals belonging to α atoms of adjacent planes play the

major role in interlayer binding in graphite from DFT calculations with LDA.

Figure 2.1: (a)Graphene electron bands at K (b)Graphene bilayer bands at K for AB

The idea of the interlayer binding through this mechanism is illustrated in

Figure 2.1. The π bands at K for graphene and the π bands at K for bilayer

graphene are displayed. The electron bands are degenerate at the point K in

graphene. However for bilayer graphene the interaction between the layers can be

seen. Bonding arises from the sublattice alignment. The π band electrons belonging

to atoms that align along the c direction are described by wave functions α1 for

one layer and α2 for the other layer. The phases add or subtract thereby lowering

or increasing the electron density. The atoms that are aligned with the centre
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of a hexagonal ring do not interact as they are out of phase. The relevant wave

functions are labelled β1 and β2. The energy ∆E is a measure of the interlayer

binding that arises from DFT with LDA calculations.

The term is weak compared to the intralayer binding. This is because it only

occurs for Bloch functions around the high symmetry point K in the Brillouin zone.

Davison [19] has studied bilayer graphene around K for bilayer graphene. The

images in Fig 2.2 have been produced using AIMVIEW and give a visualisation

of the wave functions with iso–surfaces. The in phase binding wave function

Figure 2.2: Basal direction view (top row) and c-axis view (bottom row) of wave
functions at K for graphene bilayer.[19]
Iso–surfaces of positive phase wavefunctions are shown in red while negative phase
iso–surfaces are shown in blue.
(a) (α1 + α2) In phase wavefunctions leading to interlayer binding
(b) and (c) Non interacting, out of phase wavefunctions
(d) (α1 + α2) Opposite phase, anti binding wavefunctions

combinations (α1 +α2) are shown in Fig 2.2(a). The non interacting out of phase

wave functions are shown in Fig 2.2(b) and Fig 2.2(c). The opposite phase anti

binding wave functions (α1 − α2) are shown in Fig 2.2(d).

2.3 Lattice Vibrations and Zero Point Energy

Quantum mechanics predicts a residual energy at zero temperature known as the

zero point energy. This is a result of the Heisenberg uncertainty principle which

describes how certain measurements of a particle cannot yield a result above
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a certain accuracy. The reason for this is that an exact result does not exist

according to quantum mechanics. The best description that can be given is that

the measurement lies within a range of values with a lower limit.

For example how well a moving electron’s position can be known is inversely

proportional to the momentum of the electron. The relationship between the two

measurements can be described by the inequality

σxσp ≥
h̄

2
(2.14)

where σx and σp are the standard deviation of the position of the electron and

momentum respectively. The constant h̄ is plank’s constant h divided by 2π.

Various similar relationships hold for other “conjugate variables” in quantum

mechanics. Energy and time are conjugate.

The small vibratory motions of atoms within a crystal can be modelled by

independent simple harmonic oscillators with frequencies νi. The energy levels

are equivalent in both cases. The energy levels of a simple quantum harmonic

oscillator are

1

2
hνi,

3

2
hνi,

5

2
hνi, ... (2.15)

The thermodynamical functions of a system can be determined by the energy

levels of a system according to statistical mechanics [20]. The Helmholtz free

energy

F = E − TS (2.16)

where E is internal energy, T is temperature and S is entropy can be written as

F = −kT lnZ (2.17)

The term Z in Eq 2.17 is the partition function. The partition function is the

sum of Boltzmann factors

Z =
∑
i

exp

(
−εi
kT

)
(2.18)
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where k is Boltzmann’s constant and εi are the eigenvalues of the energy. Using

the energies of the quantum harmonic oscillator in Eq 2.15 the partition function

Zi and free energy Fi due to vibrational motion can be calculated.

For an arbitrary unit cell of hexagonal crystal the free energy at temperature

T can be written as [21]

F = U0 +
∑
i

(
hνi
2

+ kT ln

[
1− exp

(
−hνi
kT

)])
(2.19)

Summation is taken over all vibrational modes in the unit cell. The term U0 is

the potential energy of the unit cell arising from interatomic interactions. This is

sometimes referred to as the static energy. For any deformation of the unit cell

the static energy and the frequencies νi change.

At zero temperature Eq 2.19 becomes

F = U0 +
∑
i

hνi
2

(2.20)

Here the term
∑

i
hνi
2

is referred to as the zero point energy. Partially differentiating

Eq 2.20 with respect to ε3 and equating to zero leads to

∂F

∂ε3
=
∂U0

∂ε3
+
h

2

∑
i

∂νi
∂ε3

= 0 (2.21)

Equation 2.21 can be solved to find the interlayer separation at zero temperature

with zero point energy. The second partial differentiation of Eq 2.20 leads directly

to the elastic constant term C33 at zero temperature with the inclusion of the zero

point energy

C33 =
∂2F

∂ε23
=
∂2U0

∂ε23
+
h

2

∑
i

∂2νi
∂ε23

(2.22)

At non zero temperatures the temperature constituent of Eq 2.19 is non zero.

This term is referred to as the anharmonic term. The second partial derivative
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leads to the term

Can
33 = h

∑
i

[
exp (−hνi/kT )

1− exp (−hνi/kT )

(
∂2νi
∂ε23

)
− h

kT

exp (−hνi/kT )

(1− exp (−hνi/kT ))2

(
∂νi
∂ε3

)2
]

(2.23)

2.4 Elasticity

2.4.1 Introduction

In this section the theory of elasticity is discussed. Detailed accounts of elasticity

theory can be found in many books including those by the following authors:

Love [22], Landau and Lifshitz [23] and Timoshenko [24].

2.4.2 Tensors

The various physical properties of interest in elastic theory are described by tensors.

For example, the expressions for stress and strain are tensors of rank two. There

is a fourth rank tensor relating the stress tensor to that of the strain. Tensors

represent physical quantities related to a set of axes and can be defined by the

way that they transform between different sets of axes.

2.4.3 Transformations

A vector is a tensor of rank one. To transform a vector from an initial set of axes to

a new set of axes with the same origin a transformation matrix can be constructed.

The coordinate systems considered are always cartesian so there is no distinction

between covariant and contravariant forms. The axes are all perpendicular and

the units of length along each axis are equivalent.

A relationship between the axes can be built up by taking direction cosines

of each axis in the first coordinate system with respect to each of the three axes

in the transformed coordinate system. The nine cosines aij can be represented as
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Figure 2.3: Transformation of axes [22]

shown in the following matrix

aij =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 (2.24)

The entry a11 represents the value given by the cosine of the angle between axis

x′1 and axis x1. Whereas entry a12 represents the cosine of the angle between axis

x′1 and axis x2. The first index in aij represents the original coordinate system

and the second index the coordinate system after the transformation.

Once this relationship is known an arbitrary vector can be transformed from

one system to another using Eq 2.24. For example the vector P with entries pi,

shown in Fig. 2.3, can be transformed to the new system, with entries p′i by matrix

multiplication

p′i = aij pj (2.25)

The Einstein summation convention has been used in Eqn 2.25 and throughout

the thesis. Summation over repeated indices contained in a term, such as the j

indices in the right hand term of Eqn 2.25, is implied. To highlight the utility of

using the Einstein convention the equation is written out in full

p
′

1 = a11p1 + a12p2 + a13p3

p
′

2 = a21p1 + a22p2 + a23p3

p
′

3 = a31p1 + a32p3 + a33p3 (2.26)
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Eqn 2.25 works by taking each of the projections of vector P onto the original

axes x1, x2, x3 and rewriting them as projections onto the new axes x′1, x
′
2, x

′
3.

Written out in full the first entry in P′, as shown in Fig 2.24, is

p′1 = a11p1 + a12p2 + a13p3 (2.27)

Similar entries for p′2 and p′3 complete the representation of vector P′ in the new

coordinate system x′i in terms of the original xi.

A vector represented in the coordinates of x′i can be transformed to one in xi

using the inverse of the matrix aij. For an orthogonal matrix the inverse is equal

to the transpose. So the transformation can be written

pi = aji p
′
j (2.28)

The expressions in 2.25 can be used to define a vector. If a vector representing

some physical object can be transformed between rotated coordinate systems in

this way it is a vector. As already mentioned a vector is a rank one tensor. The

rank can be obtained from the number of indices of the particular tensor. This

definition of a tensor generalises to all ranks of tensor. For a second rank tensor,

such as the strain tensor, two transformation matrices are required to transform

the tensor from one coordinate system to another. If the tensor is transformed as

ε′ij = aikajlεkl (2.29)

then it is a rank two tensor. A similar relationship holds for the transformation

of the stress tensor

σ′ij = aikajlσkl (2.30)

The highest rank of tensor considered for rotation will be the elastic constant
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tensor which is rank four. This requires four transformation matrices for rotation

C ′ijkl = aimajnakoalpCmnop (2.31)

For systems with orthogonal axes of equal length the transformation shown in

Eq 2.31 can be performed using matrix multiplication [25]. A 9× 9 entry matrix

Qijkl can be created from the relevant rotation matrices

Qmnkl = akmaln (2.32)

An expression for the rotation of the elastic constant tensor can be put into the

form of matrix multiplication using the transpose Q̃ of Q

C
′

ijkl = Q̃ijghCghmnQmnkl (2.33)

The number of entries contained within a tensor of rank n is related to the number

of coordinates in the coordinate system it is being represented in. The relationship

for a three coordinate system is 3n. For the elastic tensor of rank four there are

34 = 81 possible entries. However, the number of entries is greatly reduced by

various symmetries.

2.4.4 Stress, Strain and Displacement

The displacement vector,

u = (u1, u2, u3) (2.34)

describes the displacement of a strained point inside a body of material relative

to the point when the body is unstrained. It has the dimension of length. The

displacement vector is related to the second order strain tensor ε in the following

way,

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.35)
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The strain tensor has nine entries and is dimensionless. It contains values for

the shear strains and the normal strains. The normal strains εii measure the

fractional change in length along the normal axes. The shear strains, εij where

i 6= j, measure the amount of shear as shown in Fig. 2.4. The partial differential

∂uy
∂x

gives the angle between the undeformed line AB and the deformed AB′ for

small strains. This is similar for ∂ux
∂y

and the lines AD and AD′. The lines AB′

and D′C ′ are parallel. The same is true for AD′ and B′C ′ so shearing leaves the

volume unchanged.

Figure 2.4: Shear on an area element [26]

In Cartesian coordinates the second order stress tensor σij represents the forces

applied to the faces of an infinitesimal cube as shown in Fig. 2.5. The dimensions

are force per area or pressure. The j component of stress refers to the outward

normal direction of a particular face while the i component refers to the direction

of the force along the face.

2.4.5 Hooke’s Law

Hooke’s law can be used to relate the stress tensor to the strain tensor. It is valid

when strains are small. According to Hooke’s law strain is proportional to stress

for small deformations. The two tensors are related linearly with the constants

of proportionality contained in a fourth rank tensor with 81 entries. Writing the

stresses as linear functions of the strains the relationship can be represented as,

σij = Cijklεkl (2.36)
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Figure 2.5: Stress on an infinitesimal cube [25]

Here C is the elastic stiffness tensor containing the elastic stiffness constants,

commonly referred to as the elastic constants. The dimensions of the elastic

constants are force per area or energy per volume.

The relationship between stress and strain can also be written as,

εij = Sijklσkl (2.37)

In this case the tensor S is made up of the elastic compliance constants. The

constants in S have the dimensions of area per force or volume per energy, the

inverse units of the elastic constants.

In chapter 3 the elastic constants are calculated, so the version of Hooke’s law

that is appropriate is that of Eq 2.36. The relationship can be displayed in matrix

form with 9× 1 matrices for the stress and strain components and a 9× 9 matrix



25

for the elastic constants



σ11

σ22

σ33

σ23

σ31

σ12

σ32

σ13

σ21



=



C1111 C1122 C1133 C1123 C1131 C1112 C1132 C1113 C1121

C2211 C2222 C2233 C2223 C2231 C2212 C2232 C2213 C2221

C3311 C3322 C3333 C3323 C3331 C3312 C3332 C3313 C3321

C2311 C2322 C2333 C2323 C2331 C2312 C2332 C2313 C2321

C3111 C3122 C3133 C3123 C3131 C3112 C3132 C3113 C3121

C1211 C1222 C1233 C1223 C1231 C1212 C1232 C1213 C1221

C3211 C3222 C3233 C3223 C3231 C3212 C3232 C3213 C3221

C1311 C1322 C1333 C1323 C1331 C1312 C1332 C1313 C1321

C2111 C2122 C2133 C2123 C2131 C2112 C2132 C2113 C2121





ε11

ε22

ε33

ε23

ε31

ε12

ε32

ε13

ε21


(2.38)

This matrix equation can be simplified. If the solid is considered to be in

equilibrium, free from external and internal torque then there can be no net

shear stress

σij = σji (2.39)

This equation means that the stress and strain can be represented by 6×1 matrices

while the elastic constant tensor can be represented as a 6× 6 matrix containing

36 independent entries. The indices for the matrix representation of these tensors

is usually simplified using the following contraction scheme (Voigt contraction) for

stresses, strains and elastic constants

σij → σm, εij → εm, Cijkl → Cmn

uncontracted ij or kl 11 22 33 23 13 12

contracted m or n 1 2 3 4 5 6
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The equations now take the form



σ1

σ2

σ3

σ4

σ5

σ6



=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





ε1

ε2

ε3

2ε4

2ε5

2ε6



(2.40)

2.4.6 Elastic Energy

In the limit of small deformations the elastic energy density is quadratic. It can

be thought of as a generalisation of the one dimensional potential energy for a

spring, E = 1
2
kx2, where k is the spring constant and x the displacement of the

spring. In three dimensions the change in elastic energy from deformation is given

as the work done by the stresses on a unit element,

dw = σidεi (2.41)

using contracted notation. This is equivalent, by the generalised Hooke’s law,

Eq 2.36, to

dw = Cijεjdεi (2.42)

Partially differentiating Eq 2.42 with respect to the two strain terms leads to an

expression of the elastic constant in terms of the energy density

Cij =
∂2w

∂εi∂εj
(2.43)

The order of differentiation does not change the result so

Cji =
∂2w

∂εj∂εi
(2.44)
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is equivalent to Eq 2.43 and

Cij = Cji (2.45)

The independent elastic constants are now reduced to 21 entries. This is the

maximum number of independent elastic constants allowed for a crystal. This

number is usually reduced by the symmetries of the particular crystal structure

being investigated.

An expression for the elastic strain energy density is given by integrating

Eq. 2.42,

w =
E

V0
=

1

2
Cijεiεj (2.46)

where E is the strain energy and V0 is the unstrained unit volume.

2.4.7 Crystal Symmetry

The symmetry of perfect crystal structures can highlight further dependent or zero

valued elastic constants. The study of internal crystal symmetry was carried out

independently by Federov, Schoenflies and Barlow in the nineteenth century. It

was found that crystals could be arranged into 32 different classes built up from

different symmetry elements. If an operation can be performed on the crystal

geometry which changes the position of any of its points but leaves it coincident

with itself it is said to be a symmetry operation.

There are three types of symmetry operation used to describe the crystal

classes:

1) Reflection through a mirror plane. A plane of reflection symmetry that converts

a point to its mirror image through a mirror plane. For a mirror plane x1 x2 a

point (x1, x2, x3) will be transformed to the point (x1, x2,−x3). This is similar for

any other mirror plane. The Hermann–Mauguin symbol for a mirror plane is m.

2) Rotation about an axis. A rotation through an angle of 2π
n

about an axis,

where n is a number 1, 2, 3, 4 or 6 and the axis is known as an n–fold axis. The

Hermann–Mauguin symbol used for a n–fold axis of symmetry is the number n.
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3) Rotation followed by inversion. For an n–fold axis of rotatory inversion there

is first a rotation through an angle 2π
n

. This is followed by inversion through

a centre where inversion is described as transforming a point (x1, x2, x3) into

(−x1,−x2,−x3). The Hermann–Mauguin symbol used for a rotatory inversion

axis is 1̄, 2̄, 3̄, 4̄ or 6̄.

The Hermann–Mauguin symbols are commonly used to identify the symmetry

operations. The first symbol identifies the principal axis. For graphite this is the

x3 axis which is a 6–fold axis of rotation. For a mirror plane normal to a n–fold

rotation axis this is labelled n/m. There are three mirror axes normal to the

six–fold rotation axis in graphite and the Hermann–Mauguin symbol is usually

written as 6/mmm.

This information can be used in conjunction with the transformation rules of

tensors described in section 2.4.3 and the generalised Hooke’s law 2.36 to show

dependent or zero valued elastic constants. Any of the three symmetry operations

allowed for a certain crystal class must leave the elastic constants unchanged.

By the rules of tensor transformation Hooke’s law must hold for an arbitrary

transformation. By comparing these two the relationships between the transformed

and untransformed elastic constants can be compared and the independent elastic

constants can be found.

For graphite a rotation around the x3 axis by an angle π
3

must leave the elastic

constants unchanged by symmetry. In terms of the transformation matrix Eq 2.24

this takes the form

{a} =


1
2

√
3
2

0

−
√
3
2

1
2

0

0 0 1

 (2.47)
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Using this matrix the strain tensor can be transformed using Eq 2.29

ε
′

11 =
1

4
ε11 +

3

4
ε22 +

√
3

4
ε12

ε
′

22 =
3

4
ε11 +

1

4
ε22 −

√
3

4
ε12

ε
′

33 = ε33

ε
′

23 =
1

2
ε23 −

√
3

2
ε31

ε
′

31 =

√
3

2
ε23 +

1

2
ε31

ε
′

12 = −
√

3

2
ε11 +

√
3

2
ε22 −

1

2
ε12 (2.48)

Sets of equations for the transformed elastic constants can be written out using

Eq 2.31 for the constants: C11, C22, C12, C66, C16 and C26. Adding the first four

expressions results in the following equations [22]

C11 − C22 = −1

2
(C11 − C22)−

√
3(C16 + C26)

C16 + C26 =

√
3

4
(C11 − C22)−

1

2
(C16 + C26) (2.49)

From these expressions it follows that C11 = C22 and C26 = −C16. Although it can

also be shown that C16 and C26 are equal to zero. The rest of the symmetries can

be found using similar expressions. The results lead to five independent elastic

constants: C11, C12, C13, C33 and C44. These are displayed in matrix form

{C} =



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66


(2.50)
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2.4.8 Third Order Elastic Constants

The elastic strain energy density for the second order terms, Eq 2.46, can be

extended to accomodate the third order terms [23],

w =
1

2!
Cijεiεj +

1

3!
Cijkεiεjεk (2.51)

Differentiating the energy density with respect to the three strain terms gives an

expression for the third order elastic constant analogous to Eq 2.43

Cijk =
∂3w

∂εi∂εj∂εk
(2.52)

Symmetry can be applied to the third order elastic constant tensor Cijk in a similar

way to that outlined in the previous section [27]. In the third order there are 10

independent elastic constants. The symmetry properties of the second and third

order hexagonal graphite elastic constants are summarised in table 2.1.

C11 C11 = C22

C12 C13 = C23

C13 C55 = C44

C33 C66 = 1
2
C11 − C12

C44

C111 C112 = C111 − C166 − 3C266

C113 C122 = C111 − 2C166 − 2C266

C133 C222 = C111 + C166 − C266

C333 C123 = C113 − 2C366

C144 C223 = C113

C244 C233 = C133

C344 C155 = C244

C166 C255 = C144

C266 C355 = C344

C366 C456 = 1
2
(C244 − C144)

Table 2.1: Symmetry of the Second and Third Order Elastic Constants of Hexagonal
Graphite
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2.4.9 Internal Strain

In a crystal each lattice point is associated with one or more atoms or other

physical units. The lattice may be reduced to sublattices representing part of

the whole lattice. The different sublattices may have their own symmetry. The

symmetry class of a crystal cannot be used to infer the symmetry of the sublattices.

This is illustrated by considering hexagonal diamond and hexagonal graphite

which share the same space group P63/mmc (number 194 in the International

Tables for Crystallography [28]) but have different sublattice point symmetries 3m

and 6̄m2 respectively [29]. A full formal treatment of the symmetries found in

four allotropes of carbon, including hexagonal graphite, has been carried out by

Cousins [30, 31, 29, 27]

The effect of differing sublattice and crystal symmetry can be observed when

certain strains are applied to the crystal. Under homogeneous lattice strain the

internal strains arrange in such a way as to minimise the Helmholtz free energy [32].

The atoms will find a lower energy geometry than the positions they would occupy

under homogeneous strain of the lattice and sublattice. This relative displacement

of the atoms cannot be described under the usual macroscopic version of strain.

Internal strain is used to describe the sublattice strains.

Two necessary conditions for this type of relative displacement are:

1) there are more than one sublattice per lattice point

2) at least one of the sublattices does not contain inversion symmetry

Fig 2.6 illustrates the relative displacements of two sublattices Lα and Lβ. To

describe the general displacement between a point on Lα and one on Lβ a vector

rαβ is used. In the unstrained state the vector rαβ0 describes the displacement as

shown in Fig 2.6(a). For a strain J applied to the lattice the sublattice vector

can be described as

rαβ = Jrαβ0 + δαβ (2.53)

Fig 2.6(b) illustrates the case of a strain applied to the lattice resulting in zero

relative internal strain. The interlattice vector rαβ0 becomes Jrαβ0 . The vector
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δαβ, describing the internal displacement relative to the homogeneously strained

lattice points, is zero. Fig 2.6(c) shows the case when asymmetrical displacement

of the sublattices with respect to the applied strain of the lattice does occur. For

this case δαβ has magnitude and direction equal to the displacement of the points

relative to the homogeneous strain positions Jrαβ0 . Graphite is made up of four

Figure 2.6: The relative displacement of two sublattices: Lα and Lβ
(a) Interlattice vector rαβ0 in the undeformed state
(b) Homogeneous strain J causes no internal strain
(c) δαβ has magnitude and direction equal to the displacement of the points

relative to the homogeneous strain positions Jrαβ0
[30]

atoms per lattice point and has the necessary sublattice symmetry for relative

displacement of the atoms to take place under certain strains.

2.4.10 Total, Partial and Internal Elastic Constants

The second and third order elastic constants contained in Eq 2.51 are also known

as the total elastic constants [29] or the macroscopic elastic constants [32]. They

describe the sum of the contributions to the energy per initial unit volume from the

homogeneously strained lattice and the internally strained sublattices. The strain

energy density, Eq 2.45, can be expressed in a way that displays the contributions

from the lattice strain, the internal strain and combinations of the two [27].

w(ζλ, η) =
1

2
C0
IJηIηJ +Dλ

iJζ
λ
i ηJ +

1

2
Eλµ
ij ζ

λ
i ζ

µ
j +

1

6
C0
IJKηIηJηK

+
1

2
Dλ
iJKζ

λ
i ηJηK +

1

2
Eλµ
ijKζ

λ
i ζ

µ
j ηK +

1

6
F λµν
ijk ζ

λ
i ζ

µ
j ζ

ν
k (2.54)
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The indices I, J , K are used for lattice strain and i, j, k for sub–lattice strain

while λ, µ and ν denote the particular sublattice atom. In the above expression

the Lagrangian strain has been used which makes the expression for the energy

density thermodynamically rigorous. These have been replaced by the infinitesimal

strain 2.35 for the calculations presented in Chapter 3. The Lagrangian strain

ηij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂ui
∂xj

∂uj
∂xi

)
(2.55)

contains the extra term ∂ui
∂xj

∂uj
∂xi

. For the calculations of the elastic constants the

strains used are between ε = −0.008 and ε = 0.008 resulting in a negligible value

for this extra term.

The terms C0
IJ and C0

IJK are partial elastic constants. These have values equal

to the total elastic constants (the term used to differentiate the elastic constants

as discussed up until now) when there are no contributions to the energy from

internal strain.

The terms in D, E and F describe interactions solely from the internal strain

or as combinations of the internal and external strain. The measure of the internal

strain is given by ζλ terms.

The total elastic constants can be written in the form

CIJ = C0
ij + ∆ij

CIJK = C0
ijk + ∆ijk (2.56)

The terms in ∆IJ and ∆IJK contain the terms from resulting from non–zero

contributions from the internal strains to the energy density. This is the form

that is used to calculate the hexagonal graphite elastic constants in Chapter 3.

For hexagonal graphite there is only one indepent ∆ij term and seven ∆ijk

terms. These are summarised in Table 2.2.
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∆ij ∆ijk

∆11 ∆111

∆12 = −∆11 ∆113

∆144

∆244 = −∆144

∆166

∆266

∆366 = ∆113

Table 2.2: ∆ij and ∆ijk terms for hexagonal graphite

2.5 Dislocation Theory

2.5.1 Introduction

This section concerns the theory of dislocations. An introductory text on dislocations

has been written by Hull and Bacon [26]. Other more advanced texts have

been written by Nabarro [33] and Cottrell [34] amongst others. The classic text

describing dislocation theory is considered to be by Hirth and Lothe [25].

When considering deformation of crystalline materials such as graphite there

are two types of process that can occur. The first is an elastic process. A stress is

applied to some material making it deform. When the source of stress is removed

the material returns to the unstressed state. This is a purely elastic process.The

second process once again begins with stress applied to some material resulting in

deformation. When the stress is removed, however, the material does not return

completely to its unstrained state. The material in the second case has undergone

some plastic deformation. Dislocation theory describes plastic deformation.

A dislocation is a form of line defect in a crystal solid. A perfect crystal,

therefore, is dislocation free. In reality there are almost certainly no perfect

crystalline structures. There will always be more or less defects made up of point,

line, surface and volume types contained within a crystal.

The first observations of regions of plastic deformation by slip in metals were

from Mugge [35] and Ewing and Rosenhain [36] towards the end of the 19th

Century. The interpretation of the observations was obscure at a time when the
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Figure 2.7: Frenkel model used to calculate the required shear stress σ for moving
one atomic later over another [26]
a interlayer spacing
b intralayer spacing

crystalline structure of metals had not been discovered. After the discovery it

was accepted that the regions of the crystals had slipped relative to non slipped

regions by a shearing process.

In the early 20th Century Volterra [37] applied elastic theory to homogeneous

isotropic materials cutting and deforming hollow cylinders in various ways. Some

of the applied deformations can be recognised as dislocations. This work was

extended by Love [22] and others.

The development of dislocation theory as applied to crystalline structures

came about as a way of reconciling theory with experimental evidence. Plastic

deformation via shearing of a single perfect crystal without dislocations would

involve moving one layer of crystal rigidly over another. Frenkel [38] used a simple

model, Fig 2.7, to calculate the required stress σapp for this type of operation to

occur

σ =
µb

2πa
sin

2πx

b
(2.57)

where µ is the shear modulus, b is the atomic intralayer spacing, a the interlayer

spacing and x the displacement of the layers from equilibrium. The sine term

takes into account the atomic periodicity along the plane. Taking the small angle

approximation sin (2πx/b) ≈ 2πx/b. With this approximation the maximum value
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Figure 2.8: Edge dislocation moving by glide along a slip plane [26]

of σ results in a theoretical shear stress to move one layer over another

σth =
µb

2πa
(2.58)

This formula is very approximate but it shows that σth should be a reasonable

fraction of the shear modulus µ. Experimental work carried out, for example by

Tinder [39] on bulk copper, showed that plastic deformation begins with applied

shear stress of σapp = 10−9µ. Such a large difference between σapp and σth rules

out rigid displacement as a mechanism for plastic deformation.

A solution to the discrepency between the theoretical stress and the experimental

stress was given by Orowan [40], Polanyi [41] and Taylor [42] in 1934. They

described dislocations as a mechanism to describe plastic deformation under small

shear stresses. It is far easier for a dislocation to affect plastic slip by passing

through material than for a layer to be displaced rigidly.

2.5.2 Dislocation glide

The way in which the dislocation glides along a glide plane is shown in Fig 2.8.

This is the case for a perfect edge dislocation as described in Sec (2.5.8). In

Fig 2.8(a) a half plane is terminated with the atom labelled (2). The section of

crystal is under shear in the direction shown by the arrows at top and bottom of
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the figures. As the dislocation glides to the right in Fig 2.8(b) atom (3) denotes

the termination of a half plane while atom (1) bonds to atom (2) completing a full

plane. A similar operation occurs until the dislocation leaves the crystal section

Fig 2.8(d) leaving a slip step.

In the above example the direction taken by the dislocation is dependent

on the extra material introduced. In this case the extra material between the

planes is in the form of an extra half plane inserted above the glide plane. This

formulation is known as a positive edge dislocation. For a situation where the half

plane is inserted below the glide plane the dislocation would move in the opposite

direction i.e. towards the left. A dislocation of this type is known as a negative

edge dislocation.

2.5.3 Dislocation Line

Figure 2.9: (adapted from[25])
(a) Shear applied to perfect crystal
(b) Dislocation moves from left to right leaving slip step to left
(c) Dislocation leaves slip step to right on leaving crystal

A perfect crystal is under stress σ as shown in Fig 2.9(a). It is cut along an

xy plane at half its height and displaced in the direction of applied stress 2.9(b)

then rejoined leaving a step. The material is conserved and slips over the material

below under the influence of the stress. The dislocation line lies between the two

inverted “T” symbols and marks the boundary between the slipped and unslipped

region in the crystal. The dislocation has left the crystal in Fig 2.9(c) leaving a

slip step. No internal strain remains in the crystal after the dislocation has exited
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but plastic deformation has occurred.

The movement of a dislocation by shear in this way is known as glide. Its

movement is described as conservative with the number of atoms being the physical

property being conserved. The xy plane that the dislocation swept across in the

above example is known as a glide plane. Shear displacement by a number of

dislocations is more commomly referred to as slip.

2.5.4 Burgers Vector

One of the most fundamental properties of a dislocation is the dislocation displacement

vector known as the Burgers vector. To calculate the Burgers vector of a dislocation

a path from atom to atom can be taken around the defect as shown in Fig 2.10.

This is known as a Burgers circuit. There are two alternative ways to calculating

the Burgers vector using this method as described by Bilby et al. [43]. For both

cases the line vector ξ of the dislocation is taken to be pointing into the page. The

Burgers circuit is then taken in a right handed sense relative to the line vector.

A path in Fig 2.10(a) beginning at (S)tart in the dislocated crystal continues

to (F)inish via points 1, 2 and 3. A similar path is then repeated in a defect free

crystal of the same material as shown in Fig 2.10(b). The vector that closes the

circuit in the perfect crystal is chosen to begin at F and end at S. This is the

Burgers vector as defined by the FS/RH (finish to start/right hand) convention.

The second approach to defining the Burgers vector is to use a Burgers circuit

taken from S to F firstly in a perfect crystal as shown in Fig 2.10(c). The S

and F coincide in this case. This path is repeated in Fig 2.10(d) enclosing the

dislocation in the second crystal. The vector closing the circuit is this time taken

from S to F in the dislocated crystal. This convention is known as SF/RH (start

to finish/right hand). The vector defined in this way is known as the local Burgers

vector [43].

As the closure vectors for the two different methods of calculating the Burgers

and local Burgers vectors are in the perfect and strained crystals respectively they
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Figure 2.10: Burgers circuit [25]
(a), (b) begin by creating a path around the deformation (a). This is then repeated in
the perfect crystal (b). The Burgers vector is the vector closing the circuit from finish
(F) to start (S)
(c), (d) a path is drawn inside the perfect crystal (a). This path is then taken around
the crystal containing the deformation (b). The Burgers vector, in this case, is the
vector pointing from start (S) to finish (F).
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are not identical. For a dislocation in an otherwise perfect crystal the two methods

tend towards equality for large Burgers circuits [43]. The Burgers vector method

was used by Burgers [44] and others while the local Burgers vector method was

used by Peach and Koehler [45], Bilby [43] and others. The Burgers vector as

opposed to the local Burgers vector is used in this thesis.

2.5.5 Types of Dislocation

The two fundamental dislocation types are screw and edge. Dislocations that are

not pure edge or screw can be described as a combination of these two. A pure

edge dislocation has a Burgers vector b perpendicular to the line vector ξ where

as a screw dislocation has a Burgers vector parallel to the line vector. The stress,

strain and displacements for the case of the screw dislocation are straight forward

to calculate. The edge dislocation is more complicated.

2.5.6 Isotropy

The simplest lattice to describe is the simple cubic lattice. Three elastic constants

are required to describe this system: C11, C12 and C44. For the case of a simple

cubic lattice with elastic isotropy only two of the three elastic constants are

independent. These two elastic constants are often referred to using the symbols

λ and µ. Here λ is known as the Lamé constant and λ = C12. The shear modulus

C44 is represented by µ. These two constants are related by the expression,

µ = C44 =
1

2
(C11 − C12) (2.59)

It can be seen from this relationship that C11 = λ+ 2µ.

From these expressions Hooke’s law Eq 2.36 can be written for the isotropic

case

σii = (λ+ 2µ) εii + λ (εjj + εkk) (2.60)
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for i 6= j 6= k and for the remaining terms

σij = 2µεij (2.61)

where i 6= j. Also, the components of the elastic constant tensor can be represented

as,

Cijkl = µ (δikδjl + δilδjk) + λδijδkl (2.62)

where the Kronecker delta function is used, δij = 1 for i = j and δij = 0 for i 6= j.

2.5.7 Screw Dislocation

Figure 2.11: Screw dislocation with radius R perpendicular and Burgers vector b
horizontal to the line vector ξ [25]

A pure screw dislocation in a semi–infinite isotropic elastic material is modelled

in Fig 2.11. The cylinder has been cut radially along the z–axis and displaced

leaving a slip step equal to the magnitude of the Burgers vector |b| = b parallel

to the line of the dislocation ξ. The displacement is in uz only with ux = uy = 0.

For an isotropic material it can be expected that the displacement in uz occurs

smoothly. The radius is followed, starting at one edge of the discontinuity and

ending at the other, along the path perpindicular to b. Using polar coordinates,
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as θ increases from 0 to 2π, uz increases from 0 to b,

uz =
bθ

2π
(2.63)

The expression can be represented in the cartesian system as,

uz =
b

2π
arctan

(y
x

)
(2.64)

From these expressions the strains can be found using (2.35). The non–zero terms

are,

εxz = εzx = − b

4π
arctan

(
y

x2 + y2

)
= − b

4π

sin θ

r

εyz = εzy =
b

4π
arctan

(
x

x2 + y2

)
=

b

4π

cos θ

r
(2.65)

Using Eq 2.61 and Eq 2.65 the non zero stresses are

σxz = σzx = −µb
2π

y

x2 + y2
= −µb

2π

sin θ

r

σyz = σzy =
µb

2π

x

x2 + y2
=
µb

2π

cos θ

r
(2.66)

2.5.8 Edge Dislocation

The isotropic pure edge dislocation is considered for the special case where the

dislocation line is straight. The edge dislocation is modelled using a semi–infinite

cylinder of elastic material (Fig 2.12). All of the forces are applied perpendicular

to the z axis so that the stresses are only functions of x and y independent of

z. For this situation solutions for plane stress and strain can be used to describe

the dislocation. The method for calculating the stress, strain and displacement

of the straight edge dislocation is summarised following the outlines in Hirth and

Lothe [25] and Timoshenko [24].
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Figure 2.12: Edge dislocation with radius r and Burgers vector b perpendicular to
the line vector ξ [25]

For the case of plane strain the displacement in one direction is zero and there

is no dependence on this direction from the remaining displacements. Taking

displacement in the z direction to be zero the two remaining displacements ux and

uy are dependent on x and y

ux = ux(x, y) uy = uy(x, y)

uz = 0
∂

∂z
= 0 (2.67)

The equilibrium equations of elasticity describe the situation when no net forces

act on a volume element

∂σij
∂xj

+ fi = 0 (2.68)

The term fi is the component of body force per unit volume. This term can be set

to zero as body forces are not being considered. Combining Eq 2.67 and Eq 2.68

gives

∂σxx
∂x

+
∂σxy
∂y

= 0

∂σxy
∂x

+
∂σyy
∂y

= 0 (2.69)

For the case of plane strain the equations in Eq 2.69 can be solved if the Airy
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function ψ can be found where

σxx =
∂2ψ

∂y2
σyy =

∂2ψ

∂x2
σxy = − ∂2ψ

∂x∂y
(2.70)

The relationship between the three stress components can be expressed using the

relation of compatibility [24]. This is in general a set of six partial differential

equations that assure the displacement ui is single valued and continuous. For the

case of plane strain there is only one equation

∂2εxx
∂y2

+
∂2εyy
∂x2

= 2
∂2εxy
∂x∂y

(2.71)

The inverse of Eqs 2.66 and 2.61

εii =
1

E
σii − ν (σjj + σkk) εij =

1

2µ
σij (2.72)

can be used, along with Eqs 2.70 and 2.71 to restate the equation to be solved in

terms of Airy functions

∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4
= 0 (2.73)

Using polar coordinates Eq 2.73 becomes

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)2

ψ = 0 (2.74)

Equation 2.73 can be restated in the form of a Laplace equation

∇2φ =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
φ = 0 (2.75)

with the relationship

φ = ∇2ψ (2.76)
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The Laplace equation is separable and a particular solution is [25]

ψe =
β1
2
r sin(θ) ln r (2.77)

where β1 is a constant. This solution characterises the edge dislocation for regions

far from the core.

The dislocation is modelled as a half plane with width equal to the Burgers

vector inserted into the material. The difference in passing from one side of a slip

plane to the other containing the extra material must reflect this. An expression

for the Burgers vector can therefore be written as

b = −
∫ ∞
−∞

εxx(x, η)− εxx(x,−η) dx (2.78)

where η represents a small positive real number. The integral approaches the slip

plane from either side depending on the sign of η in Eq 2.78.

Using the particular solution Eq 2.77 the stresses can be calculated using

Eq 2.70. The strains related to these stresses can then be expressed using Eqs 2.72.

The strains can then be used to find b in Eq 2.78

b = −2π(1− ν)β1
2µ

(2.79)

This gives the solution to β1

β1 = − µb

π(1− ν)
(2.80)

which can be used to give the explicit term for the stress function

ψe = − µby

4π(1− ν)
ln(x2 + y2) (2.81)
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The terms for the stresses of the edge dislocation can now be given by Eqs 2.70

σxx = − µb

2π(1− ν)

y(3x2 + y2)

(x2 + y2)2

σyy =
µb

2π(1− ν)

y(x2 − y2)
(x2 + y2)2

σxy =
µb

2π(1− ν)

x(x2 − y2)
(x2 + y2)2

(2.82)

The displacements can be found by integrating Eqs 2.35 as described in [24]

ux =
b

2π

(
arctan

y

x
+

xy

2(1− ν)(x2 + y2)

)

uy = − b

2π

(
1− 2ν

4(1− ν)
ln (x2 + y2) +

x2 − y2

4(1− ν)(x2 + y2)

)
(2.83)

The solutions to the stresses and displacements given above are for the case of

edge dislocations in infinite isotropic material. In the integration of ux in Eq 2.83

the constant of integration is calculated using the conditions ux = 0 at y = 0. For

uy the constant of integration is chosen to make the solution symmetric in x and

y.

For different dislocation models boundary conditions must be taken into consideration.

For example a common model for an edge dislocation is a hollow cylinder with

internal radius rc and external radius R. Boundary conditions at the surfaces

must be satisfied such as the condition that no forces can act on a free surface

σijnj = 0 (2.84)

where nj is the component of normal force to the surface. The solution leading

to the calculation of the stress terms etc. when considering the boundary

conditions come from additional stress functions. These cancel the fictitious stresses

introduced at the surfaces.
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2.5.9 Strain energy of the edge dislocation

The energy per unit length is calculated for the model of an infinite cylinder with

outer radius Ra and core radius r0. The material is cut along the plane y = 0

and displaced to form a dislocation. The work done in making this displacement

is calculated by

Eself
L

= −1

2

∫ RA

r0

σi2bidxi (2.85)

The solution to Eq 2.85 is[25]

Eself
L

=
µb2

4π(1− ν)
ln
RA

r0
(2.86)

The above model is commonly adjusted so that the cylinder has a hollow core and

a free outer surface. Allowing for the relaxation of the outer and core surfaces

results in a lowering of the energy. The expression becomes [25]

Eself
L

=
µb2

4π(1− ν)
ln

(
RA

r0
− 1

)
(2.87)

This energy term describes the self energy of an edge dislocation disregarding

the core region. The contribution from this term is always positive. For the case

when there are two or more dislocations interacting with one another in a crystal

the interaction energy must also be considered.

2.5.10 Interaction energy

A useful equation for the interaction between two parallel straight dislocations has

been given by Nabarro [33]

E12

L
= − µ

2π
(b1 · ξ) (b2 · ξ) ln

R

Ra

− µ

2π (1− ν)
[(b1 × ξ) · (b2 × ξ)] ln

R

Ra

− µ

2π (1− ν)R2
[(b1 × ξ) ·R] [(b2 × ξ) ·R] (2.88)
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The separation of the two dislocations is given by R.The first term on the right

hand side of Eq 2.88 refers to any screw component of the two dislocations. The

final two terms refer to the edge components.

For the case of plain strain with straight edge dislocation lines Eq 2.88 can be

simplified to

E12

L
=

µb1b2
2π(1− ν)

[
ln

R

Ra

− cos2θ
]

(2.89)

Where θ is the angle between the dislocations. Unlike the self energy of Eq 2.87,

which is always a positive contribution to the total energy, the interaction energy

can be positive or negative. The sign of the resulting energy is dependent on

the position of the dislocations, represented by the cos term, and the sign of the

Burgers vectors.

2.5.11 Dislocation Loops

The dislocations discussed so far are of the type screw and edge with infinite

straight line vectors. In general the dislocation line is not straight. The line cannot

terminate in a section of perfect material [25]. It can join another dislocation at

a node, conserving the Burgers vector. suitable defect, terminate at the surface

of the crystal or be in the form of a dislocation loop.

A dislocation loop is a region of slipped material enclosed within a continuous

dislocation line as shown in Fig 2.13. In an otherwise perfect crystal the material

outside the dislocation loop will remain perfect.

The loop can move conservatively or shrink or expand by glide in the direction

of the Burgers vector. The Burgers vector is invariant at all positions around the

loop while the line vector direction changes according to the tangent of a specific

point around the loop. This means that the dislocation is of different character

around the loop. The dislocation is in general made of a combination of edge and

screw character. The Burgers vector component of screw can be calculated as

bs = (b · ξ)ξ (2.90)
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Figure 2.13: A dislocation loop within a crystal

and the edge component as

be = ξ × (b× ξ) (2.91)

2.5.12 Anisotropy

Graphite is a highly anisotropic material. This can be seen by comparing the

stiffness within the graphite layers [46], C11 = 1060 GPa, to that of the stiffness

in the direction perpendicular to the layers [46], C33 = 36.5 GPa. For an isotropic

crystal these values would be equivalent. To represent dislocations in an anisotropic

framework is more complicated than for the isotropic theory.

In 1953 Eshelby et al. [47] published a paper outlining a theory for anisotropic

elasticity in three dimensions to be applied to dislocation theory. This is known as

the classical sextic anisotropic elasticity theory of straight dislocations. The case

considered was for stress independent of one Cartesian coordinate. This is the case

for straight dislocations where the dislocation line is along the direction of one of

the coordinate axes. This work was developed further by Foreman [48] to consider

the anisotropic elastic energies of straight dislocations. Further development to

the theory has come from Stroh [49], Spence [50], Chou [51], Hirth and Lothe [25]

and others. The sextic theory is most useful for cases of high symmetry where

simplifications allow for analytical solutions. Teutonico [52] published a paper in
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1961 outlining a method for numerical solutions to the sextic theory for the general

case of straight dislocations. The technique for finding solutions within the sextic

theory is summarised below. The first property considered is the displacement.

2.5.13 Anisotropy: Displacement

Following Eshelby [47] and Hirth and Lothe [25] the axes are oriented so the line

of the dislocation is parallel to the z axis. The displacement strains and stresses

are independent of the z direction so that ∂/∂x3 ≡ 0. The equilibrium condition

for the stress under plane strain is

∂σiα
∂xα

= 0 (2.92)

Where Greek letters such as α run over 1 and 2 and Roman letters such as i run

over 1, 2 and 3. Using the expressions Eq 2.36 and Eq 2.35 the stress σiα can be

written as

σiα = Ciαkβ
∂uk
∂xβ

(2.93)

By substituting Eq 2.93 into Eq 2.92 a partial differential equation can be produced

Ciαkβ
∂2uk
∂xα∂xβ

= 0 (2.94)

With summation over the indices α, k and β Eq 2.94 results in three simultaneous

equations to be solved. The solutions of the equations give the displacements uk.

The form of the solution to each equation is

uk = Akf(x1 + px2) (2.95)

The expression for uk in Eq 2.95 can be substituted into Eq 2.94. After cancelling

the term ∂2f/∂(x1 + px2)
2 the equations can be summarised as

aikAk = 0 (2.96)



51

where

aik = Ci1k1 + (Ci1k2 + Ci2k1)p+ Ci2k2p
2 (2.97)

To find non zero solutions to theAk in Eq 2.95 the determinant of the matrix

{aik} must be equal to zero

|{aij}| = 0 (2.98)

This leads to a sixth order equation in terms of p with six roots pn with n =

1, 2, 3, 4, 5, 6. To satisfy Eq 2.96 a set of values can be found for Ak(n) to

correspond with each root pn. This can be calculated using subdeterminants of

aij(n) as detailed in Hirth and Lothe[25]. Eshelby et al. [47] showed that the roots

pn are never real. The roots are always complex conjugates since uk must be real.

This means that only three of the six roots need to be considered p1, p2 and p3,

along with Ak(1), Ak(2) and Ak(3).

The function f(x1+pnx2) in Eq 2.95 needs to reflect the properties of dislocations

with respect to displacement. It must be single valued outside of the dislocation

core and discontinuous across the region of dislocation. The function is made of

two parts

f(x1 + pnx2) = − D

2πi
ln (x1 + pnx2) +

∞∑
n=−∞

an(x1 + pnx2)
n (2.99)

The first, − D
2πi

ln (x1 + pnx2), deals with the discontinuity arising from the dislocation

and the second, an(x1 + pnx2)
n summed over n = −∞...∞, is a power series that

does not contribute to the discontinuity. D(n) is related to the components of the

Burgers vector bn by [25]

Re

(
3∑

n=1

±Ak(n) D(n)

)
= bk (2.100)

for k = 1, 2, 3. The plus sign is used when the imaginary part of p is positive

and minus when negative. Using Eq 2.100 accompanied with the requirement that
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there be no net force on the dislocation core

∮
(σi1dx2 − σi2dx1) = 0 (2.101)

allows D(n) to be solved. The details are outlined in Hirth and Lothe [25].

The expression for uk can now be written

uk = Re

(
−1

2πi

3∑
n=1

Ak(n) D(n) ln (x1 + pnx2)

)
(2.102)

2.5.14 Anisotropic displacement in hexagonal graphite

For the case of displacements in the x and y directions being independent of the

z direction the sixth order polynomial in p is reduced to the fourth order. The

matrices are reduced from 3 × 3 to 2 × 2. For the z direction the polynomial is

second order and the matrices 1× 1. This is identical to having solutions to the

edge and screw components independent of one another.

Figure 2.14: Coordinate system for hexagonal graphite with line direction ξ parallel
to z

The coordinate system for hexagonal graphite with the line direction ξ parallel

with the −z direction is shown in Fig 2.14. In this geometry the basal plane is

xz. The elastic constants must be rotated to align with this coordinate system



53

relative to the standard coordinate directions with the basal plane xy. Applying

a rotation of π/2 about the x axis to the elastic constant tensor using Eq 2.33

and representing as a 6× 6 matrix the elastic constants of Eq 2.50 become

{C} =



C
′
11 C

′
12 C

′
13 0 0 0

C
′
12 C

′
22 C

′
12 0 0 0

C
′
13 C

′
12 C

′
11 0 0 0

0 0 0 C
′
44 0 0

0 0 0 0 C
′
55 0

0 0 0 0 0 C
′
44


(2.103)

The values of the elastic constants for hexagonal graphite under standard orientation

are [46]

C11 = 1060GPa, C12 = 180GPa, C13 = 7.9GPa, C33 = 36.5GPa, C44 = 5.05GPa

(2.104)

The rotated values of the elastic constants are related to the standard orientation

as follows

C ′11 = C11, C ′12 = C13, C ′13 = C12, C ′44 = C44, C ′22 = C33 (2.105)

A term C̄ ′11 is also used where

C̄ ′11 = (C ′11C
′
22)

1/2
(2.106)

The determinant of matrix {aij} in Eq 2.98 becomes

|{aij}| =

∣∣∣∣∣∣∣∣∣∣
C

′
11 + C

′
44p

2 (C
′
12 + C

′
44)p 0

(C
′
12 + C

′
44)p C

′
44 + C

′
22p

2 0

0 0 C
′
55 + C

′
44p

2

∣∣∣∣∣∣∣∣∣∣
(2.107)
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The subdeterminant relating to the edge dislocation is

C
′

22C
′

44p
4 + (C

′

11C
′

22 − 2C
′

12C
′

44 − C
′2
12)p

2 + C
′

11C
′

44 = 0 (2.108)

The solutions to the roots of Eq 2.108 are of the form [25]

p2 = λeiφ p5 = λe−iφ p3 = −λeiφ p6 = −λe−iφ (2.109)

with the solutions

λ =

(
C

′
11

C
′
22

)1/4

(2.110)

and

φ =
1

2
cos−1

C
′2
12 + 2C

′
12C

′
44 − C

′2
11

2C̄
′
11C

′
44

(2.111)

For the case of λ and φ being real p2 and p3 can be chosen as the fundamentally

different roots with their respective conjugates p5 and p6 respectively. The non

zero results from Eq 2.96 for this case are

A1(2) = 1 A2(2) = −λC
′
44e

iφ + C̄
′
11e
−iφ

C
′
12 + C

′
44

= A

A1(3) = 1 A2(3) = −A2(2) = −A (2.112)

ux = − bx
4π

(
tan−1

2xyλ sinφ

x2 − λ2y2
+

c̄′211 − c′212
2c̄′11c

′
44sin2φ

ln
q

t

)
− by

4πλc̄′11 sin 2φ

[
(c̄′11 − c′12) cosφ ln qt

− (c̄′11 + c′12) sinφ tan−1
x2 sin 2φ

λ2y2 − x2 cos 2φ

]
(2.113)
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The resulting expressions for the displacements in x and y are

uy =
λbx

4πc̄′11 sin 2φ

[
(c̄′11 − c′12) cosφ ln qt

− (c̄′11 + c′12) sinφ tan−1
y2λ2 sin 2φ

x2 − λ2y2 cos 2φ

]
− by

4π

(
tan−1

2xyλ sinφ

x2 − λ2y2
− c̄′211 − c′212

2c̄′11c
′
44sin2φ

ln
q

t

)
(2.114)

2.5.15 Solutions for complex φ

For the case of φ in Eq 2.110 being imaginary the particular roots of the polynomial

resulting from Eq 2.107 must be chosen differently than for real φ. This situation

has been considered by Malen [53].

For hexagonal graphite, using the elastic constant values in Eq 2.104, the value

of φ is

φ =
1

2
cos−1

C
′2
12 + 2C

′
12C

′
44 − C

′2
11

2C̄
′
11C

′
44

=
(π

2
− 3.51i

)
(2.115)

So φ is of the form π
2
− δi. This leads to the expressions

cos 2φ = − cosh 2δ sin 2φ = i sinh 2δ

cosφ = i sinh δ sinφ = cosh δ (2.116)

For this case p2 and p3 cannot be chosen as the fundamental roots. The pairs of

complex conjugate roots are now (p2, p3) and (p6, p5) with p2 and p6 chosen as

the fundamental roots. With these choice of roots Malen [53] reports that the

solutions for the case of real φ are equivalent to those shown above with respect

to the calculation of displacement and stress.

To get the solutions to the displacements for complex angle φ involves a

different set of intermediate steps to that outlined above. However substituting
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the expressions in Eq 2.116 along with the following substitutions

q2 = x2 + y2λ2 + i2xyλ sinh δ

t2 = x2 + y2λ2 − i2xyλ sinh δ

ln q
t

= i tan−1
2xyλ sinh δ

x2 + λ2y2

tan−1 ia =
1

2i
ln

1− a
1 + a

(2.117)

into equations 2.113 and 2.114 give equivalent results [53] for ux and uy

ux = − bx
4π

(
tan−1

2xyλ cosh δ

x2 − λ2y2
+

(c11c33)− c213
2 (c11c33)

1/2 c44 sinh 2δ
tan−1

2xyλ sinh δ

x2 + λ2y2

)

− by

4πλ (c11c33)
1/2 sinh 2δ

[(
(c11c33)

1/2 − c13
)

sinh δ ln

[
(x2 + λ2y2)2

+4x2y2λ2 sinh2 δ

]1/2
(2.118)

+
(

(c11c33)
1/2 + c13

)
cosh δ

1

2
ln

1− (x2 sinh 2δ) / (λ2y2 + x2 cosh 2δ)

1 + (x2 sinh 2δ) / (λ2y2 + x2 cosh 2δ)

]

uy =
λbx

4π (c11c33)
1/2 sinh 2δ

[(
(c11c33)

1/2 − c13
)

sinh δ ln

[
(x2 + λ2y2)2

+4x2y2λ2 sinh2 δ

]1/2
(2.119)

+
(

(c11c33)
1/2 + c13

)
cosh δ

1

2
ln

1− (y2λ2 sinh 2δ) / (x2 + λ2y2 cosh 2δ)

1 + (y2λ2 sinh 2δ) / (x2 + λ2y2 cosh 2δ)

]

− by
4π

(
tan−1

2xyλ cosh δ

x2 − λ2y2
− (c11c33)− c213

2 (c11c33)
1/2 c44 sinh 2δ

tan−1
2xyλ sinh δ

x2 + λ2y2

)

2.5.16 Anisotropy: Stress and Energy

The stresses can be calculated from Eqs 2.35 and 2.36 with Eq 2.102.

The energy terms for isotropic theory can be used in the anisotropic theory.

This can be achieved by exchanging the term µ
1−ν of Eq 2.87 with the relevant
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energy coefficient K for edge dislocation energies. For screw dislocations the terms

in µ are exchanged for the appropriate energy coefficient. This results in the

anisotropic self energy for an edge dislocation of

E

L
=
Kb2

4π
ln

(
R

r0
− 1

)
(2.120)

With K referring to the energy coefficient relating to the dislocation.

The energy coefficient itself is defined by

Kb2 = biIm

[
3∑

n=1

Bi2kAk(n)D(n)

]
(2.121)

It can be noted that the greatest effect of the anisotropic theory on the energy

term in Eq 2.120 arises from the energy factor.

The energy factor terms for the plane strain edge dislocation can be solved

exactly for bx and by using equation 2.121

Kex = (c̄′11 + c′12)

[
c′44 (c̄′11 − c′12)

(c̄′11 + c′12 + 2c′44 ) c′22

]1/2
(2.122)

Key = (c̄′11 + c′12)

[
c′44 (c̄′11 − c′12)

(c̄′11 + c′12 + 2c′44 ) c′11

]1/2
(2.123)

2.5.17 Interaction energy

In the same way that the energy coefficients were introduced to the self energy

expression Eq 2.120 the expressions for the isotropic interaction energy can be

altered to give anisotropic expressions. Equation 2.89 becomes

E12

L
=
Kb1b2

2π

[
ln

R

Ra

− cos2θ
]

(2.124)

Where the energy factor K has been substituted into the expression.



Chapter 3

Elastic Properties of Graphite

3.1 Elastic Constants

3.1.1 Introduction

Figure 3.1: Hexagonal graphite primitive unit cell

Graphite is formed of layers of carbon atoms arranged in hexagonal networks.

Carbon has the atomic number 6 and electronic structure 1s22s22p2. The strong

bonding between atoms within the layers comes from the overlap of sp2 hybridised

orbitals forming σ bonds between nearest neighbour atoms. The weaker bonding

between layers comes, in part, from the overlap of pz orbitals [54]. London

dispersion forces also play a role in the interlayer bonding.

58
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The lowest energy stacking of the layers in perfect graphite is AB. This was

the structure determined by Bernal [55] in 1924. It is usually refered to as Bernal

graphite or hexagonal graphite. The primitive unit cell is shown in Fig 3.1.

This describes a system of layering with two alternating layer geometries. A

layer with one type of geometry is labelled A. This is sandwiched between layers

of the alternate geometry B and vice versa. Alpha atoms in A and B layers are

directly above and below one another (see Fig 3.2 (a)). Beta atoms are situated

directly above and below the centres of the hexagon formations in adjacent layers.

Two other graphite allotropes have layering systems with AA and ABC

stacking [56]. ABC stacked graphite is known as rhombohedral graphite. This

[57]

Figure 3.2: The stacking formation of three allotropes
of graphite [57] (a) Hexagonal (Bernal) AB stacking
(b) Rhombohedral ABC stacking (c) AA stacking

stacking has recently been found in isolated rhombohedral crystallites within

graphite blocks during a HRTEM study [58].

AA is a high energy stacking of the graphite layers. This arrangement can

be favourable for graphite intercalated with other species. For example stage-1

bromine intercalated graphite [59].

Another type of layer stacking is also found in nature. It is common to find

a situation where the graphite layers are randomly oriented having no regular

stacking pattern. Each layer can be translated and/or rotated with respect to

its surrounding layers. This leads to slightly differing interlayer separations found
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throughout the system. This is known as turbostratic stacking.

Natural single crystal graphite flakes are sometimes used in experimental work

although they commonly contain a high density of defects. It is often preferable

to use a high purity treated graphite. Highly Oriented Pyrolitic Graphite (HOPG)

is prepared by the pyrolysis of hydrocarbons at high temperature, above 2000oC.

The resulting pyrolytic carbon is subsequently heat treated to higher temperature

30000C improving its crystalline order. The material has a very well aligned c

axis, typically within a few tenths of a degree. The resulting material has the

thermal and mechanical properties similar to a perfect crystal of graphite although

it is still polycrystalline.

The second and third order elastic constants of AB stacked graphite are

calculated in Sec 3.1.4. The AIMPRO code uses DFT with LDA. The results are

compared to other theoretical results and to experimental results.

Blakslee et al. [60] published a paper in 1970 giving experimental values for

the five elastic constants of HOPG. These results were from experiments using

ultrasonic, sonic resonance and static test methods. Two of the results, C13 and

C44, have since been revised as reviewed by Cousins and Heggie [46].

Highly mobile basal dislocations were believed to have affected the measurement

of C44 using transverse ultrasonic wave experiments. Experiments of this type have

been carried out by Soule and Nezbeda [61], Blakslee et al. [60] and Seldin and

Nezbeda [62]. The values obtained were very low, between 0.25 and 1.2 GPa.

For the case of an ideal perfect crystal these dislocations would not be present.

With light neutron irradiation Seldin and Nezbeda [62] reported a higher value of

C44 ≥ 4.0 GPa. It is believed that the dislocations were pinned as a result of the

irradiation.

Grimsditch [63, 64] used Brillouin scattering from surface waves to calculate

C44 = 5.05±0.35 GPa. A neutron scattering study from Nicklow et al. [65] reports

a value of C44 = 4.6± 0.2 GPa. It is believed that a realistic value is amongst the

higher measurements reported for C44. Kelly’s review [66] stated that the higher
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results were consistent with specific heat data.

The value of C13 = 15 ± 5 GPa calculated by Blackslee et al. [60] was called

into question by Zhao and Spain [67]. They proffered a correction using their

calculated linear modulus Ba combined with the values of C11 and C12. This lead

to a value of C13 = 22± 2 GPa. However this correction was shown to be in error

by Cousins and Heggie [46]. The planar modulus had been used in place of the

linear modulus. Following the correction with the linear modulus value in place

they reported a corrected value of C13 = 7.9± 3.5 GPa.

An inelastic x–ray scattering study was carried out in 2007 by Bosak and

Krisch [68]. Kish graphite samples made up of large single grains, ∼ 0.8 mm in

the lateral direction and ∼ 0.1 mm in the c direction, were used in the study.

Small grain regions of the crystal could be examined because of the small beam

dimension. The lattice parameters were reported to be very close to that of

previous neutron diffraction results [69].

In 2008 Michel and Verbeck [70] used a force constant model to calculate the

elastic properties of graphite. The model was based on a fifth-nearest-neighbour

force-constant model fitted to inelastic x-ray scattering data by Mohr et al. [71].

Born’s long wave method [20] was used to calculate some elastic properties of

graphene. The model was subsequently extended to consider graphite. The

interlayer forces were modelled using Lennard–Jones type potentials.

The most accurate ab initio theoretical calculations of the mechanical properties

of graphite come from DFT calculations. Theoretical calculations of the elastic

constants of hexagonal graphite have been undertaken by Mounet and Marzari [16]

using the ν–ESPRESSO package. DFT was used with plane wave basis sets and

ultra soft pseudo potentials. The exchange correlation functional used was the

Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA). The

calculations for the elastic constants were also repeated using LDA.

The Mounet and Marzari calculations were based on the total energy of the

system under various strains of lattice parameters. The lattice parameters used
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for the calculations were taken from the optimised unit cells using GGA and

LDA. The GGA calculations were repeated using experimental a and c lattice

parameter values. A large difference was seen between the GGA calculated

interlayer parameter when compared to the experimental value. The use of

experimental values for GGA calculations was shown to give good agreement

with experimental elastic constants.

Theoretical studies using the AIMPRO code were undertaken by Savini et

al. [72, 73, 74]. In the 2011 paper [72] the ABINIT code [75] was also used. The

elastic constant results calculated using the two different packages were reported

to agree within 3%. In both cases DFT with LDA were used along with norm

conserving pseudopotentials. A cut off energy of 150 Ryd was given for the ABINIT

calculations. The k point mesh used in the ABINIT calculations was reported to

be 32× 32× 16. The basis set functions were expanded using plane waves.

For the AIMPRO calculations the charge density represented by a plane wave

basis was used with an energy cutoff of 600 Ryd for the elastic constant calculations

and up to 2000 Ryd for the optimisation of the unit cell. The k point mesh was

reported as 16 × 16 × 6 with those used for optimisation up to 128 × 128 × 16.

The basis set functions were expanded using gaussian type orbitals. The basis set

used for the elastic constant calculations was reported to be pdpp with pdddp

used for the optimisation.

The third order elastic constants of hexagonal graphite were studied by Savini [73]

using DFT with LDA. Another study was carried out by Cousins and Heggie [46].

They applied a fit to a modified anharmonic Keating model to calculate up to

third order elastic constants. The model used parameters from fits to the second

order elastic constants, optic mode frequencies and pressure derivatives of the

second order elastic constants.

There are currently no direct third order experimental measurements available

for the third order elastic constants of hexagonal graphite. This may well be

because of the difficulty involved in taking measurements. The second order
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elastic constants are isotropic in the basal plane making measurements much more

straight forward because of the wide availability of highly aligned c-axis samples.

This is not the case in the third order.

3.1.2 Optimisation

Before calculating the energy density of hexagonal graphite the unit cell must

be optimised as outlined in section 2.1.2.7. The AIMPRO code was used for all

calculations with DFT using the LDA with the exchange-correlation functional as

parametrized by Perdew and Wang [76]. The norm conserving pseudopotentials

used were based on the Hartiwigsen-Goedecker-Hutter scheme [11]. A plane wave

basis represented the charge density in reciprocal space. The Brillouin zone

integrations were performed with a Monkhorst-Pack scheme.

For the optimisation calculations of hexagonal graphite a pdddp basis set of

Gaussian orbital functions was used. A pdpp basis set was also tested. This led

to a slightly smaller interlayer separation with an accompanying increase in C33

value when compared to the pdddp basis set. It was believed that the fuller pdddp

basis set would give the more useful result.

The integrations over the Brillouin zone were carried out with a Monkhorst–Pack [14]

scheme and a k–point mesh of 72 × 72 × 26. Various other k–point mesh values

were tested. Some variation in the energy and geometry results from optimising

the unit cell were seen when using lower combinations of values of k–point mesh.

The results were seen to be well converged at 72× 72× 26.

The unit cell used in the AIMPRO calculations (see Fig 3.1) is made up of

the hexagonal lattice vectors a, b, c


a

b

c

 =


1
2
a0 −

√
3
2
a0 0

1
2
a0

√
3
2
a0 0

0 0 c0

 (3.1)

The lattice parameters and energy are optimised to a satisfactory level of convergence.
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Various parameters can be adjusted between runs of the AIMPRO code by altering

input data files, known as “dat files”. A full description of the parameters that

may be altered is available on the AIMPRO website [77].

When the unit cell is optimised the lattice and subattices are unstrained. The

lowest energy lattice parameter magnitudes, a0 and c0 in the case of graphite, are

found. Using the parameters described the values are shown in Table 3.1.

a0 (Å) c0 (Å)
Present Work 2.444 6.641
Experimental(295K)[67] 2.462± 0.002 6.707± 0.001

Table 3.1: Lattice Parameters of Hexagonal Graphite

As expected for DFT with LDA calculations the intralayer parameter a0 is

very close to experiment. The interlayer paramater c0 is also seen to be close to

the experimental value. It is likely that the interlayer separation will be slightly

lowered by the London dispersion forces missing from the DFT. Also, there will

be a slight expansion to both terms if the effects of temperature are taken into

consideration; the LDA calculations do not account for temperature so can be

considered zero temperature results.

3.1.3 Elastic Constants of Graphite

As noted in Chapter 2.4.7 there are five independent second order and 10 third order

elastic constants required to describe graphite. Using the symmetry relationships

shown in Table 2.1 and Eqn 2.45 the elastic strain energy per unit volume in
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terms of the second and third order elastic constants can be written as

w =
1

2
C11(ε

2
1 + ε22 +

1

2
ε26) +

1

2
C33ε

2
3 + C12(ε1ε2 −

1

4
ε26) + C13(ε1ε3 + ε2ε3) +

1

2
C44(ε

2
4 + ε25)

+
1

6
C111(ε

3
1 + 3ε21ε2 + 3ε1ε

2
2 + ε32) +

1

6
C333ε

3
3 +

1

2
C113(ε

2
1ε3 + 2ε1ε2ε3 + ε22ε3)

+
1

2
C133(ε1ε

2
3 + ε2ε

2
3) +

1

2
C144(ε1ε

2
4 + ε2ε

2
5 − ε4ε5ε6) +

1

2
C244(ε2ε

2
4 + ε1ε

2
5 + ε4ε5ε6)

+
1

2
C344(ε3ε

2
4 + ε4ε

2
5) +

1

6
C166(3ε1ε

2
6 − 3ε21ε2 − 6ε1ε

2
2 + ε32)

+
1

6
C266(3ε2ε

2
6 − 9ε21ε2 − 6ε1ε

2
2 − ε32) +

1

2
C366(ε3ε

2
6 − 4ε1ε2ε3) (3.2)

The strain components in Eqn 3.2 are those of the 6× 1 strain matrix shown in

Eqn 2.40.

Equally spaced increments of strain are applied to the optimised unstrained

lattice in order to extract the various elastic constants. A total energy is calculated

for each geometry. The energy as a function of strain is then fitted to a least squares

fit polynomial. This fitting technique is equivalent to taking partial differentials of

the energy with repect to the strain or strains applied in the energy calculation.

The second and third order elastic constants are then compared to the similar

coefficients of the polynomial.

Depending on the strain applied to the lattice for the energy calculation, a

combination of elastic constant values may make up the equivalent second or third

order polynomial in the fit. A single strain or a combination of two or three are

used as required. The strains used and the make up of the resulting energies

calculated are summarised in Table 3.2.

To find the contributions to the internal elasticity, represented by ∆ij and

∆ijk as listed in Table 2.2, involves two different types of energy calculation. The

energy of the lattice is calculated with strains applied equally to the lattice and

sublattices. The elastic constants calculated in this way are the partial elastic

constants, C0
ij and C0

ijk. The calculation is then rerun allowing the sublattice to

optimise to the geometry with the lowest energy. This calculation results in the

total elastic constants made up of the partial and internal contributions. The
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εi εj εk Energy density term

1 w = 1
2
C11ε

2
1 + 1

6
C111ε

3
1

1 2 w = C11(ε
2
1 + ε22) + C12ε1ε2 + 1

6
C111ε

3
1 + 1

6
C222ε

3
2 + 1

2
C112ε

2
1ε2 + 1

2
C122ε1ε

2
2

1 3 w = 1
2
C11ε

2
1 + C13ε1ε3 + 1

2
C33ε

2
3 + 1

6
C111ε

3
1 + 1

6
C333ε

3
3 + 1

2
C113ε

2
1ε3 + 1

2
C133ε1ε

2
3

1 4 w = 1
2
C11ε

2
1 + 1

2
C44ε

2
4 + 1

6
C111ε

3
1 + 1

2
C144ε1ε

2
4

1 6 w = 1
4
C11(2ε

2
1 + ε26) + 1

6
C111ε

3
1 + 1

2
C166ε1ε

2
6

1 2 3 w = C11(ε
2
1 + ε22) + C12ε1ε2 + C13ε1ε3 + 1

2
C33ε

2
3 + 1

6
C111ε

3
1 + 1

6
C222ε

3
2+

1
6
C333ε

3
3 + 1

2
C112ε

2
1ε2 + 1

2
C122ε1ε

2
2 + 1

2
C113ε

2
1ε3 + 1

2
C133ε1ε

2
3 + C123ε1ε2ε3

2 4 w = 1
2
C11ε

2
2 + 1

2
C44ε

2
4 + 1

6
C222ε

3
2 + 1

2
C244ε2ε

2
4

2 6 w = 1
4
C11(2ε

2
2 + ε26) + 1

6
C222ε

3
2 + 1

2
C266ε2ε

2
6

3 w = C33ε
2
3 + 1

6
C333ε

3
3

3 4 w = 1
2
C33ε

2
3 + 1

2
C44ε

2
4 + 1

6
C333ε

3
3 + 1

2
C344ε3ε

2
4

3 6 w = 1
2
C33ε

2
3 + 1

4
(C11 − C12)ε

2
6 + 1

6
C333ε

3
3 + 1

2
C366ε3ε

2
6

4 w = C44ε
2
4

Table 3.2: Combinations of second and third order elastic constants for various strains

relationship between the total, partial and inner elastic constants is shown in

Eq.2.56.

The plot shown in Fig 3.3 displays the energy density points used to calculate

the total elastic constants C11 and C111. The energy for the lattice at each strain,

ε1 = { −0.008, −0.006, −0.004, −0.002, 0.000, 0.002, 0.004, 0.006, 0.008 } ,

along the lower axis has been divided by the volume of the unstrained lattice.

Once the polynomial has been fitted using a least squares fit alogorithm, such as

that offered by the open source Octave software, the results are shown simply by

rearranging the energy equation as listed in Table 3.2. For the example of strain

ε1 this gives

C11 = 2
∂2w

∂ε21
(3.3)

and

C111 = 6
∂3w

∂ε31
(3.4)
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Figure 3.3: Energy per unit cell volume vs strain

Calculations are similar for the remaining terms.

3.1.4 Results

The results for the calculated second order elastic constants are shown in Table 3.3.

The results are compared to various experimental and theoretical results. The

values are in general agreement with those of the Cousins and Heggie review [46].

The value of C13 is the most obvious difference as it is negative implying a

negative poisson ratio between the c axis and a direction in the ab plane. This

negative result for C13 is the case for the other two DFT studies. As can be seen

in Table 3.2 the energy per volume term from which C13 is calculated contains

three second order terms

w =
1

2
C11ε

2
1 + C13ε1ε3 +

1

2
C33ε

2
3 (3.5)

The difference of large values may be responsible for the negative value.

Another issue that may be responsible is the interlayer interactions as represented

in DFT. This is most obvious in GGA calulations such as those by Mounet and

Marzari [16] where the c parameter is 8.94 Å compared to 6.68 Å for LDA. There
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is a difference of ∼ 22% between LDA and experimental results for C33, the elastic

constant recording the measure of interlayer stiffness. This difference is believed

to arise from van der Waals dispersion forces that are missing from the DFT.

Elastic Current pdddp Savini(a) Michel/ Bosak(c) Mounet / Cousins(e)

Constant DFT/LDA DFT/LDA Verbeck(b) Marzari(d) exp review

C11 1092 1109 1211 1109 1118 1060± 20(f)

C0
11 1119 1064

∆11 −27 −3.85

C12 202 175 276 139 235 180± 20(f)

C0
12 175 176

∆12 27 3.85

C13 −2.9 −2.5 0.6 0 −2.8 7.9± 3.5

C33 30 29 36.8 38.7 29 36.5± 1.0(f)

C44 4.7 4.5 4.2 4.95 4.5 5.05± 0.35(g)

Table 3.3: Hexagonal Graphite: 2nd order elastic constants [GPa]
(Cxx denotes total elastic constant, C0

xx partial elastic constant, ∆xx internal contribution
to the elastic constant)
(a) Savini et al. [72]
(b) Michel and Verbeck [70]
(c) Bosak et al. [68]
(d) Mounet and Marzari [16]
(e) Cousins and Heggie [46]
(f) Blackslee et al. [60]
(g) Grimsditch [64]

The only study available for comparison with the third order elastic constant

terms is that of Cousins and Heggie. The results presented in that study were

calculated using a modified Keating model. This involved the fitting of experimental

data as well as certain assumptions being made concerning the internal strain.

The results, therefore, must be considered to contain large uncertainties. Having

said that, many of the results are seen to be similar.

The results presented in the thesis are believed to be the best obtainable for

the current theory, DFT with LDA, and the most complete. The calculations have
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Elastic Current pdddp Cousins [46] Elastic Current pdddp Cousins [46]
Constant DFT/LDA Constant DFT/LDA

C111 -5950 −11690.5 C244 279.5 −4.8

C0
111 -7139 −8641.4 C0

244 289.9 −9.0

∆111 1189 −3049.5 ∆244 -10.4 4.2

C113 -12.0 −7.4 C166 -814.3 −6786.8

C0
113 12.0 −14.1 C0

166 -1579.0 −899.7

∆113 -16.8 6.7 ∆166 -2393 −5887.1

C133 54.0 −120.0 C266 2296 972.0

C333 -473.1 −572.0 C0
266 -1403.9 2046.7

C144 34.1 −8.6 ∆266 3699 −1074.7

C0
144 29.7 −4.4 C366 38.2 3.4

∆144 4.4 −4.2 C0
366 65.4 −3.4

C344 -65.4 −74.7 ∆366 -27.2 6.8

Table 3.4: Hexagonal Graphite: 3rd order elastic constants [GPa]
Cousins’ results are from a modified Keating model.
(Cxxx denotes total elastic constant, C0

xxx partial elastic constant, ∆xxx internal
contribution to the elastic constant)

been carried through, for optimisation and single point energy, using consistent

parameters for basis set and k–point grid. Internal strain has been considered

throughout the second and third order terms for the first time and the results

recorded for total and partial elastic constants as well as the internal contributions.
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3.2 Zero Point Energy

In 1974, a study by Kelly and Eslick [21] was published calculating the effects of

zero point lattice vibrations from the out of plane modes in hexagonal graphite.

A model of the lattice vibration spectrum by Komatsu [78] was used in the Kelly

study. Kelly [79] had shown that the the strain ε3 was only affected by the out

of plane modes in this model.

From the results of this study it was reported that the interlayer spacing was

increased by ∼ 0.5%. It was also shown that the model predicted a contribution

from the zero point energy to the elastic constant C33 of ∼ 2.4 GPa approximately

6% of the experimental value.

3.2.1 Method

The free energy at zero temperature Eq 2.20 can be calculated ab initio under the

AIMPRO code using DFT with LDA. The free energy contributions

U0 and
h

2

∑
i

νi

are calculated separately.

The potential energy arising from the interatomic interactions is calculated in

a similar manner to the elastic constants described above. The calculation is made

with respect to the separation of the layer planes therefore ε3 is the only strain

required. The layers are strained in the same way as for the C33 calculations but

over a larger range of strains (ε3 = −0.16 . . . 3.0).

For the vibrational mode calculations a set of results calculated by Haffenden [1]

have been used. The AIMPRO code was used to calculate the vibrational modes

with DFT under LDA. The calculations were performed using a 64 atom unit

cell. Haffenden reported a “negligible difference” between the results using this

size unit cell compared to a much larger 100 atom unit cell. A pdpp basis set was

used for the calculations.



71

In the Haffenden study the vibrational modes were calculated over a range of

interlayer strains

ε3 = {−0.06,−0.04,−0.02, 0.10, 0.15, 0.20, 0.25} (3.6)

In this thesis a polynomial fit, Fig 3.4, has been applied to these results yielding

the numerical second order differential of the vibrational terms with respect to

the strain ε3 ∑
i

∂2νi
∂ε23

(3.7)

For T = 0 C33 can be expressed as

Figure 3.4: Anharmonic contribution to C33 vs strain

C33 =
∂2F

∂ε23
=
∂2U0

∂ε23
+
h

2

∑
i

∂2νi
∂ε23

(3.8)

The anharmonic term arising from the temperature contributions to Eq 2.19

can also be calculated using the vibrational mode results. This allows a polynomial

fit of the energy and the second differential to be calculated numerically. The

results can be used to find anharmonic contributions to the elastic constant C33
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as described in Eq 2.23.

The results from the vibrational mode calculations described above and two

Lennard-Jones models, to be discussed further in section 3.3, have been used in

combination to calculate interlayer separations. A target value of CLJ
33 = 4.4GPa

was used for the LJ models. Combining the resulting energies with the energy

values given for ZPE and 300 K temperature corrections a value for the interlayer

separation was found for both of the LJ models [5− 10] and [6− 12].

3.2.2 Results

The result for the zero point energy contribution to C33 from Eq 3.8 is

CZPE
33 =

h

2

∑
i

∂2νi
∂ε23

= 1.6 GPa (3.9)

The fit to the vibrational mode calculations was taken over large strain increments

and not in detail around the energy minimum. Because of this the effect of the

zero point energy contribution cannot be calculated with high accuracy.

The plot of Can
33 versus temperature in Fig 3.5 shows the temperature contributions

to C33. At room temperature ∼ 300 K the contribution is

Can
33 = 0.4 GPa (3.10)

The correction to the elastic constant from zero point energy and the anharmonic

effects at 300 K account for ∼ 2 GPa. This result, combined with the LDA single

point energy calculations, reveal a shortfall of ∼ 4.4 GPa when compared to the

experimental value of C33 = 36.5 GPa.

The effects to the interlayer separation resulting from the ZPE and 300 K

temperature contribution combined with the LDA SPE and LJ models are summarised

in Table 3.5. The 0 K interlayer separation results for LDA SPE with the LJ

models are also listed along with an experimental value for reference. The interlayer
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Figure 3.5: Anharmonic contribution to C33 in hex graphite vs temperature

separation recorded for LDA SPE, ZPE with the LJ [6 − 12] model at 300 K,

D = 3.37 Å, is in excellent agreement with the experimental value D = 3.35 Å [80].

3.3 Interlayer Binding

The binding energy calculated in this section is the energy required to separate

all layers to infinity of a layered material such as graphite. This is most closely

Method Interlayer separation (Å)

LDA SPE, ZPE, LJ [5− 10] at 300 K (this work) 3.27

LDA SPE, LJ [5− 10] at 0 K (this work) 3.24

LDA SPE, ZPE, LJ [6− 12] at 300 K (this work) 3.37

LDA SPE, LJ [6− 12] at 0 K (this work) 3.32

Experimental (300K)(1) 3.35

Table 3.5: Interlayer separation
LDA SPE with ZPE using LJ [5− 10] and [6− 12] models at 300 K
and LDA SPE with LJ [5− 10] and [6− 12] models at 0 K

(1) Donohue [80]
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related to the exfoliation energy which involves removing a surface layer from

a bulk material. The exfoliation energy is not to be confused with the cleavage

energy which is the energy required to separate two layers within a bulk of material

to infinity. An early paper by Girifalco and Lad [81] calculated the exfoliation

energy of graphite to be approximately 18% smaller than the cleavage energy.

The exfoliation energy of graphite was measured by Girifalco and Lad using heat

of wetting experiments. The result was reported to be Eex = 43 ± 5 meV/atom.

Unfortunately there is no information available for the type of graphite used in

the experiments. This makes the uncertainties inherent in the experiment difficult

to calculate.

Benedict et al.[82] inferred the cohesive energy of graphite by studying collapsed

multiwall carbon nanotubes. The experimental procedure was based on the

measurement of the diameter of hollow “bulbs” adjacent to three different collapsed

carbon nanotubes. The precision of measurement was believed to be within 1−2 Å.

The results published in the report were Eex = 35+15
−10 meV/atom

A third study was undertaken by Zacharia et al. [83]. They studied the

interaction of polyaromatic hydrocarbons (PAH) with the basal plane of graphite

using thermal desorption spectroscopy. They reported a binding energy per carbon

atom of the PAH of 52±5 meV which can be identified with the interlayer cohesive

energy of graphite. This study was carried out with particular emphasis on clearly

defined experimental conditions with “a well characterized model system”.

A 2012 experimental study was carried out by Liu et al. [84]. They use a

new technique based around the discovery of a “self-retraction phenomenon” in

graphite flakes reported in a previous paper [85] by the group.

A graphite flake and a graphite step are created with smooth surfaces. The top

surface of each graphite flake is then coated with a SiO2 thin film. The energy,

related to the binding energy, is a combination of elastic deformation energy of the

top graphite/SiO2 flake and of the energy of the exposed graphite surfaces between

the top flake and bottom mesa. A combination of atomic force energy (AFM) and
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finite energy analysis is used to determine the binding energy of 31± 2meV/atom.

The interlayer interactions in graphite were modelled theoretically by Kelly [86]

in 1970. Kelly used Lennard–Jones potentials between atoms in different layers.

It was found that this type of potential was unsuitable for modelling interlayer

interactions in graphite. The most obvious problem noted was the failure to

describe the shearing motion of layers. The elastic constant C44 describing the

shearing stiffness was calculated as 0.23 GPa using this model.

Since that time different theoretical techniques have been applied to the

interlayer binding. Quantum Monte Carlo (QMC) methods have been used [87]

also random phase approximation (RPA) [88, 89]. DFT with LDA [16, 72] and

GGA [16] have been used. London dispersion force models have been developed

to integrate with DFT with LDA [90, 91, 92, 93, 94].

In 2009 Spanu et al. [87] performed an ab initio study of the interlayer binding

energies of graphite. Both variational QMC and lattice regularized diffusion

Monte Carlo calculations were performed using the TURBORVB code [95]. These

techniques inherently account for dispersion forces. A binding energy of 56 ±

5 meV/atom was reported after adding zero point energy and lattice vibration

contributions at 300 K. It was noted that the calculation of the binding energy

is more closely related to the cleavage energy than the exfoliation energy.

Spanu also noted that between 4 and 8 Åinterlayer separation the energy

curve follows a D−4.2 behaviour, where D is the interlayer separation. This is

a similar result to that found by Lebegue et al. [89] using adiabatic-connection

fluctuation-dissipation theorem (ACFDT) for the random phase approximation

(RPA) to the correlation energy. They reported a similar power law behaviour

between 3 and 9 Åinterlayer separation. The result calculated for the interlayer

binding was 48 meV/atom.

DFT with GGA calculations of the interlayer interactions of graphite have

been carried out by Savinini et al. [72]. The ab initio calculations result in an

unacceptable interlayer separation of 4.2 Å. This led to Savini dismissing GGA
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and using LDA alone. The resulting exfoliation energy for the LDA calculation

was 24 meV/atom. The value was raised to 80 meV/atom when the dispersion

forces and weak out of plane interactions were included in the calculation. The

FIREBALL code [96] was used to implement these interactions.

A recent study by Graziano et al. [94] reports interlayer binding energies

using various density functionals. These include the optimized Becke88 van der

Waals (optB88-vdW) and the optimized PBE van der Waals [97]. Zero point

energy contributions were also incorporated into the results. They found the zero

point energy results to be similar for different functionals with a value less than

5 meV/atom.

3.3.1 Method

The method used for the DFT with LDA calculations used for the elastic constant

C33 was applied to the inter layer interactions. The parameters for the previous

C33 calculations were used as described in Section 3.1.2.

To calculate the exfoliation energy the ε3 strain was increased until the energy

levelled off implying no further interlayer binding interactions. The difference in

the minimum and maximum calculated energies gives the binding energy from this

method.

Dispersion interactions have been modelled using Lennard–Jones [5–10] Eq 3.11

and Lennard–Jones [6− 12] Eq 3.12 type potentials.

VLJ(r) = 4ε

[
−
(σ
r

)5
+
(σ
r

)10]
(3.11)

VLJ(r) = 4ε

[
−
(σ
r

)6
+
(σ
r

)12]
(3.12)

Here r is the distance between atoms, σ is the interlayer separation for the DFT

calculated energy minimum and ε is a coefficient with units of energy.

Other variations of the Lennard–Jones model were tested, for example LJ

[4 − 8], but discarded. The LJ [5 − 10] model was found to give a similar long
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range gradient to that reported by Spanu et al. [87]. The LJ [6 − 12] model

was seen to give the closest binding energy and interlayer separation values to

experimental results.

A short Octave program (see Appendix A) was written to run the calculation

with the following structure. An α and a β atom were used as reference carbon

atoms within a reference graphite layer. The carbon atom positions were taken

from the AIMPRO hexagonal graphite unit cell optimisation. The interaction

between atoms in layers above the reference layer were calculated using both

Eq 3.11 and Eq 3.12 for the α and β atoms separately. A cut off radius rc from

the reference atoms was used within the layers to limit the horizontal distance for

atom-atom calculations.

The coefficient ε used in Eq 3.11 and Eq 3.12 was adjusted to give a combined

LDA SPE with LJ result of C33 = 36.5 GPa. A layer cut off was used above the

reference atom layer to limit vertical atom-atom calculations. The energies were

found to converge for a horizontal cut off radius of 400 Å and a layer cut off of

40 layers above the reference atoms.

3.3.2 Results

Having calculated the energies, in the manner described above, the combined

AIMPRO DFT with LDA single point energies, ZPE, anharmonic temperature

contributions at 300 K and LJ [5− 10] and LJ [6− 12] result in binding energies

of: BE[5− 10] = −117.3 meV/atom and BE[6− 12] = −50.6 meV/atom. This is

compared to −29 meV/atom for the DFT with LDA SPE calculations alone.

Fig 3.6(a) shows the LDA SPE binding energy versus separation. A plot of

the binding energy for the LDA SPE combined with Lennard-Jones energies for

[5 − 10] and [6 − 12] are presented in Fig 3.6(b). The plot shown in Fig 3.6(c)

illustrates the QMC results from Spanu et al. [87] for comparison. It may be

noted, when comparing the LDA SPE and LDA SPE + LJ plots, that the LDA

SPE energy asymptotes to zero more rapidly than the combined results. This is
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Method Energy (meV/atom)

LDA SPE and LJ [5− 10] (this work) −117

LDA SPE and LJ [6− 12] (this work) −51

Heat of wetting (expt)(1) −43± 5

PAH (expt)(2) −52± 5

Self retraction (expt)(3) −31± 2

Quantum Monte Carlo(4) −56± 5

ACFD theorem with DRA(5) −48

LDA optB88-vdW(6) −60

LDA optPBE-vdW(6) −56

Table 3.6: Binding energy results from experiment (expt) and theory

(1) Girifalco [81]
(2) Zacharia et al. [83]
(3) Liu et al. [84]
(4) Spanu et al. [87]
(5) Lebegue et al. [89]
(6) Graziano et al. [94]

as expected knowing that the LDA SPE calculations only model the close range

interlayer binding arising from the pz orbital overlap.

The addition of the LJ terms apply a long range, weakly attractive force

between the layers when added to the DFT LDA results. This extended range

of interlayer interaction can be observed as the LDA SPE + LJ energy gradient

gradually tends towards zero. Spanu et al. [87] reported that their best fit was

given by the LRDMC using a 2× 2× 2 super cell. This can be seen in Fig 3.6(c).

It should be noted that the method used for the Spanu calculations produced

a result comparable to the cleavage energy rather than the exfoliation energy. As

mentioned above the cleavage energy has been estimated to be ∼ 18% greater

than the exfoliation energy. Assuming that this were true the adjusted figure for

the Spanu calculation would become BE = 46 ± 4 meV/atom. It should also be

noted that the Spanu result includes contributions from zero point energy.

The DFT with LDA SPE and Lennard Jones results shown in this work

are most closely related to the exfoliation energy experiments as summarised in
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Table 3.6. The result presented for LDA SPE and LJ [6 − 12] is equal to the

Liu [84] experimental result within the error bars given. It must be remembered,

however, that the results for the binding energy presented in this work do not

include the contributions from the ZPE or temperature effects.
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Figure 3.6: Binding energy vs interlayer separation
(a) DFT with LDA Single Point Energy (SPE)
(b) DFT with LDA SPE, ZPE and LJ [5–10] and LJ [6–12] (current work)
(c) Spanu [87] using Quantum Monte Carlo



Chapter 4

Bromine intercalated graphite

4.1 Elastic Constants of Brominated Graphite

4.1.1 Introduction

Graphite is a host material that readily accepts intercalation compounds. This

arises from the highly anisotropic nature of graphite with very strong intralayer

bonding compared to the weak interlayer bonding. Molecular layers of a certain

species are inserted between the layers of graphite. The amount of intercalation

is measured by the number of intercalated layers compared to the host layers.

The number of host layers lying between the intercalant layers is classified by a

stage index n. The staging can exist in a regular pattern over a range of many

layers [59].

Eeles and Turnbull [98] studied graphite-bromine compounds in 1965 using

electron and x-ray diffraction and electron microscopy. They noted the ease with

which graphite can be brominated “at room temperature merely on immersion of

the graphite in bromine liquid or vapour”. They reported that the most stable

compound in the lower half of the concentration range was C8Br with quasi stable

states of C16Br and C24Br.

Heald and Stern [99] carried out an extended-x-ray-absorption-fine-structure

(EXAFS) study on intercalated graphite in 1978. They found a very small

81
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separation between graphite layer and intercalated bromine of 2.12 Å. However

Eeles and Turnbull [98] reported a larger separation of 3.5 Å.

Sasa et al. [100] identified 2nd, 3rd, 4th and 5th stage structures of intercalated

bromine in graphite using x-ray diffraction. For C8Br in stage-2 they found a

graphite interlayer spacing of 7.03 Å between layers sandwiching the bromine.

In 1986 Simon et al.[101] published inelastic neutron scattering results for the

elastic constants C44 and C55 for stage-2 brominated graphite. They reported very

weak elastic constants of C44 = 0.02± 0.03 GPa and C55 = 0.18± 0.04 GPa.

A DFT with LDA study of brominated graphene and stage one and stage two

bromine intercalated graphite was carried out in 2011 by Yaya et al. [102]. For

graphite they found a minimum Br2 concentration for exothermic intercalation of

C16nBr2 where n is the number of stages.

4.1.2 Method

The study of the stage-1 and stage-2 bromine intercalated graphite elastic constants

was carried out with the AIMPRO code using DFT with LDA. The same stage-1

and stage-2 structures used in the Yaya study were used here along with similar

parameters. The stage-1 structure is made of 18 carbon atoms in a graphene

sheet with a dimer of two bromine atoms as shown in Fig 4.1 (a). The structure

is repeated as a super cell in three dimensions resulting in AA stacking of the

graphene layers. The stage-2 structure, shown in Fig 4.1 (b), is formed of 36

carbon atoms in two graphene layers with the bromine dimer intercalated between

the layers. The layers in the stage-2 case are AB stacked.

Two different wave function basis sets were used to match the two species

involved in the calculations. For the graphene layers the wave function basis

set used was pdpp and for the bromine dimers an fddd basis set was used.

To aid convergence of the structure a finite temperature electron level filling of

kT = 0.04 eV was used. Hartwigsen, Goedecker, and Hutter [11] norm conserving

pseudopotentials were used to model the core electrons. The Brillouin zone
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Figure 4.1: (a) C18Br2 unit cell (b) C36 −Br2 unit cell

integrations were carried out with a mesh of 6× 6× 4 k-points.

The method used to extract the elastic constant data for the stage-1 and stage-2

bromine intercalated graphite was similar to that applied to finding the C33 elastic

constants of hexagonal graphite as described in Chapter 3. The interlayer strain

ε3 was increased in equal increments 0f 0.002, from −0.006 to 0.006, and the single

point energy results fitted to a polynomial. The elastic constants could then be

found as the coefficients of the polynomial fit multiplied by the relevant coefficient.

4.1.3 Results

After optimising stage-1 and stage-2 the unit cell lattice parameters were found.

For the stage-1 optimised cell a = 7.33 Å and c = 6.56 Å and for the stage-2 unit

cell a = 7.33 Å and c = 9.80 Å. The Br − Br bond length was calculated to be

2.35 Å for stage-1 calculations and 2.36 Å for the stage-2 calculations.

The total elastic constant C33 for Stage-1 was calculated to be C33 = 12.5 GPa.

For Stage-2 a result of C33 = 21.4 GPa was found for the total elastic constant.

There is no internal strain contribution to the values of C33.

The strength of the elastic constant C33 is seen to decrease with staging as the

ratio of graphite to bromine increases. Linearly fitting the C33 values found for
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Stage-1 and Stage-2 intercalation with the ratios of graphene layers to bromine

layers leads to an extrapolated value, for infinite staging (i.e. pure graphite), of

C33 = 39.3 GPa. This is compared to the calculated value of C33 = 39.5 GPa.

The total elastic constant values for C44 and C55 have also been calculated

for Stage-1 and Stage-2. The values are summarised, along with those for C33 in

table 4.1.

Stage C33 C44 C55

1 12.5 1.2 0.9
2 21.4 5.3 4.5

Table 4.1: Elastic constant values (GPa) for Br2 intercalated graphite

It has been noted [103] after these calculations were completed that a lower

energy layer stacking may exist for the Stage-2 intercalated graphite. This is a

job that could be undertaken in the future. The stacking alluded to is that of

the form AB −Br2 −BA in place of the AB −Br2 −AB presented in this work.

Other ideas for future work may include the use of higher k-points in calculations

of a similar type as the 6× 6× 4 used in this work is rather low. Higher staging

could also be attempted to show the value of fitting linearly to predict higher

staging values of C33.



Chapter 5

Modelling Graphite Under

Irradiation

5.1 Introduction

The UK nuclear industry has been generating power using graphite moderated

carbon dioxide cooled reactors since the 1950s. The working life of the reactor

is directly linked to the graphite used in the moderators. Under the normal

running operation of the generator the graphite is continually bombarded by

particle radiation. When the graphite becomes so damaged that it is deemed no

longer safe for use in the reactor the entire plant must be decommissioned. This

has led to a large number of experiments being carried out and the resulting data

concerning irradiated graphite.

The two main areas of interest are the dimensional changes experienced by the

graphite under irradiation and the accompanying changes in energy stored within

the material. Large scale measurable changes in structure can be broken down to

interactions between smaller scales. In this section a two dimensional model at

the macroscopic scale (∼ 1µm) is proposed to explain the dimensional and energy

changes seen in crystallites of graphite.

Under irradiation graphite is seen to expand along the c–direction, perpendicular

85
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to the graphene layers and contract along the a direction, parallel to the graphene

planes[104, 105]. The currently accepted model [106] used to explain the dimensional

changes is based on interstitial dislocation loops causing expansion in the c–direction.

The contraction of the layers is thought to come from the annealing of vacancy

lines resulting from the interstitial atoms removed from the lattice.

The validity of this model, often referred to as the ’standard model’, has been

called into question [107]. The model describes the aggregation of interstitial

atoms forming new graphene sheets. This has not been seen experimentally.

Studies of irradiated graphite using high resolution transmission electron microscopy

(HRTEM) have been carried out [108, 109, 110, 111]. Images showing the layered

sheets give evidence of bending and breaking of the layers rather than interstitial

clusters. This can be seen in Fig 5.1. The images are not of neutron irradiation but

electron beam irradiation. The HRTEM images were created at low temperature

(∼ 100oC). The authors stated that the images were “quite similar” to the images

of irradiated graphite presented in their study [111]. They stressed that care must

be taken when interpreting the HRTEM images as they are not a direct image of

the real lattice.

The way that energy is stored and released by graphite under irradiation is

controlled by different mechanisms depending on temperature. At temperatures up

to 6000C point defect annihilation releases formation energy stored in the system.

This type of stored energy is commonly referred to as Wigner energy. A large

peak in energy release is seen at ∼200oC. The release of energy is so large that it

can lead to dangerous runaway temperature rises in the reactor. An example of

this type of behaviour was witnessed in 1957 at Windscale Pile 1 accident [112].

The model presented in this chapter tackles the problems of dimensional change

and energy storage in irradiated graphite using dislocation theory. Within a

two-dimensional crystal basal dislocations are responsible for transporting material

by glide along the layers. Pileups of basal dislocations occurring in a simulation

represent different damage scenarios. It is postulated that these dislocation
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Figure 5.1: Bending, breaking and cross connecting of the graphene planes[110]. Left
hand images are basal plane traces of right hand images

arrangements created by basal glide can be represented using prismatic dislocations.

The prismatic dislocations create the required expansion in the c–direction. They

are also responsible for introducing energy into the crystal. The internal energy

is seen to peak for a certain density of dislocations.

5.1.1 Irradiation damage in graphite

The aim of the model is to explore the c–direction expansion of graphite and the

change in stored energy, both as a function of fluence. Graphite is used as a

nuclear moderator in high temperature reactors. This has created a great interest

in its material behaviour under such conditions. Many studies have been carried

out from the 1950s up until present times.

The first X-Ray measurements of irradiated graphite showing prismatic expansion

and basal contraction are thought to have been carried out by Zachariasen[113] in

1945. Transmission electron microscope (TEM) studies have given the most useful

observations of irradiated graphite. The first transmission electron microscope
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images of irradiated graphite were published in 1958 by Grennall [114] and 1960

by Bollman [115]. Lattice scale imaging became possible using techniques such as

scanning-tunnelling microscopy (STM), atomic-force microscopy (AFM) and high

resolution TEM.

Under irradiation the atoms in the lattice can be displaced by incident high

energy particles. These particles can be charged, such as ions or electrons, or

uncharged neutrons. Wigner[116] was the first to estimate the number of carbon

atoms displaced from their lattice sites under neutron irradiation in graphite.

This work was carried out in 1942. In 1949 Seitz[117] calculated a value of 1870

displacements for a 2 MeV neutron being slowed to thermal energies in graphite.

The most commonly accepted theory put forward to describe the dimensional

change in graphite is referred to as the standard model. Under fast neutron

irradiation the displaced atoms are thought to be displaced as self interstitial

atoms between the graphene layers. The interstitial atoms are believed to be highly

mobile and aggregate into prismatic loops which grow to form new layers. It is this

arrangement that is thought to account for the c expansion [118, 119, 120, 121].

The contraction of the graphene sheets was proposed by Kelly [120] and others.

At temperatures where the vacancies left from the self interstitial atoms were

believed to be relatively immobile there was thought to be “collapse parallel

to the basal plane” thereby removing the vacancy. At temperatures where the

vacancies were believed to be mobile they were thought to “diffuse to crystal

boundaries” with the same net affect of basal contraction.

Bollmann’s [115] study of irradiated graphite compared his TEM data to x-ray

data from Woods et al. [122]. The study was carried out on extruded grade A

reactor graphite. Samples were irradiated to 1020 n/cm2 and 8 × 1020 n/cm2 at

temperatures of 30oC and 50oC respectively.

The image in Fig 5.2 (a), for a dose of 1020 n/cm2 at room temperature,

shows light and dark dots with dimensions up to ∼ 60 Å diameter. The defects

at this dose are mostly separated. Bollmann refers to a “transition dose” at
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∼ 6 × 1020 n/cm2 where the defects interact to a much greater extent. This is

shown by the increase in overlapping in Fig 5.2 (b) for a dose of 8× 1020 n/cm2.

Figure 5.2: (a) Graphite irradiated to 1020 n/cm2 at 30oC
(b) Graphite irradiated to 8× 1020 n/cm2 at 50oC [115]

This can be compared to the Woods x-ray data of Fig 5.3. The narrow peaks

seen for unirradiated and 4.39 × 1020 NV T suggest an interlayer expansion for

material with similar periodicity. An increased broadening in the 0002 x-ray line

shown above these doses indicates the breakdown in periodicity of the lattice. This

shows agreement with the TEM images in Fig 5.2.

Figure 5.3: Changes of the 0002 x-ray line with increasing dose [122]
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5.1.2 2–D Dislocation Models

5.1.3 Background

Two dimensional dislocation dynamic simulations have been found in the literature

for some time. During the latter 1980s the first simulations were undertaken

by Ghoniem and Amodeo [123] and Lepinoux and Kubin [124, 125]. The two

dimensional models were developed by Guluoglu et al. [126], Ghoniem and Amodeo [127,

128], Lubarda et al. [129] and others in subsequent years.

With increasing computer power it became viable to produce three dimensional

dislocation models. The models for three dimensional simulations vary in the

treatment of the dislocation line. A group of simulations for pure edge or screw

with straight line segments were produced by Kubin et al. [130], Devincre et

al. [131] and Moulin et al. [132] and similar for mixed edge and screw Zbibet

al. [133]. Another model was developed for curved dislocation line segments. This

was seen in the work of Kukta and Freund [134] and Ghoniem and Sun [135].

The introduction of these three dimensional dislocation models has not ended

the usefulness of the two dimensional model. Studies by Buehler et al. [136],

Espinosa et al. [137] and others have been carried out on small scale plasticity.

Various applications to crack tips have been undertaken by Deshpande et al. [138],

Broedling et al. [139], Bhandakkar et al. [140] and others. A study of void growth

has been carried out by Hussein et al. [141] and Segurado and Llorca [142],

delamination by ODay [143] and size effects in single crystals by Guruprasad and

Benzerga [144]. Mechanical response under load for single and polycrystalline

materials has been simulated by Biner and Morris [145], Lefebvre et al. [146],

Chakravarthy and Curtin [147], Ahmed and Hartmaier [148] and others.

Boundary conditions are normally applied to the dislocation models. The two

main groups of boundary condition are periodic and non periodic. A method for

non periodic boundary condition can be found in the paper by Mura [149]. A

periodic boundary solution can be found in Pang [150].
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A paper by Ahmed [148] published in 2010 uses a two dimensional dislocation

dynamics model to study the stress–strain relationship of a material.

5.1.4 DD2D Model

The dislocation program is referred to as DD2D standing for dislocation dynamics

in two dimensions. I have developed the program during my thesis. It has been

written using the C++ language compiled under the QT [151] platform. In this

section the workings of the DD2D model will be discussed.

The model was originally created using isotropic theory and applied solely to

basal dislocations. The dislocations were allowed to glide under the influence of the

Peierls forces generated between the dislocations. Oppositely signed dislocations

that came within a critical radius would annihilate with one another and release

their energies from the system. Basal dislocations in graphite can glide along

planes very easily if unobstructed.

The overarching idea was to combine basal and prismatic dislocations into

one model. The prismatic dislocations provide a mechanism for expansion in

the c-direction while the basal dislocations provide a mechanism for transport of

material along the graphene layers. The combination of these two mechanisms

could provide a simple theory for c-expansion in irradiated graphite. The basal

dislocations would be used to model material displacements within the two-dimensional

crystal caused by neutron irradiation while the prismatic dislocations would model

the various types of deformation that may occur such as ruck and tuck, wrinkling

of the layers or prismatic loops from displaced material situated between layers.

This is discussed further in Section 5.1.6.

The results shown in this thesis have come from adapting the model to use only

prismatic dislocations. These are used to simulate the deformations as described

above. The transport of material that would come about by basal dislocation glide

has not yet been included. The idea of the model in this form is to show that it

is suitable to describe c-axis expansion in a layered material such as graphite and
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that it can be used to study energy behaviour in graphite.

During the final year of my PhD studies I have been assisted by Pippa Young

a DPhil student studying under the supervision of Professor Malcolm Heggie. She

has been especially helpful in advancing the graphical output of the program.

5.1.5 Dislocation Types

According to Fujita and Izui [152] there are four fundamental dislocation types in

graphite:

1. Burgers vector parallel and dislocation line perpendicular to the basal plane.

2. Burgers vector and line perpendicular to the basal plane.

3. Burgers vector parallel to the basal plane and line lying within the basal

plane.

4. Burgers vector perpendicular to the basal plane and dislocation line within

the basal plane.

Figure 5.4: The four fundamental dislocation types of graphite.
Adapted from [152]

Two of these dislocations are considered in this thesis. Both types will be considered

to have inifinite straight line vectors perpendicular to a plane containing the

dislocation’s Burgers vectors. Type 3. is a basal edge dislocation. This type of

dislocation has very low resistance to glide within the basal plane. This is a

result of the low shear stiffness of graphite represented by the elastic constant C44.

Graphite samples from material irradiated in nuclear reactors are known to have
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large turbostratic regions. The layers randomly oriented around the c axis have

been studied [153] and shown to have C44 close to zero. This implies the basal

edge dislocations have almost no resistance to glide.

The second is type 4. a prismatic edge dislocation. Prismatic edge dislocations

have Burgers vector perpendicular to the basal plane. The prismatic dislocations

considered are used to represent either a group of interstitial prismatic atoms or

some another source of deformation that results in c axis dilation.

The dislocations are always formed as pairs of oppositely signed dislocation

dipoles in the model. A prismatic dislocation dipole is considered to be sessile

with respect to glide in the prismatic direction i.e. along the direction of layer

stacking. It is possible, however, for the prismatic dislocations to move by climb

in the glide direction of the basal dislocations.

The movement by climb of an interstitial dislocation has a different mechanism

to the shear stress responsible for the basal dislocation glide. The climb comes

about from the interlayer stresses. The material enclosed between the dipoles

is sandwiched between layers of material so does not interact with other atoms

during climb in the way that a basal dislocation does when moving through a

layer of atoms. The movement depends on a stress gradient across the width of

the dipole. A relative compression of layers one side of the dipole compared to

the other of sufficient magnitude will cause climb.

In the model any climb of prismatic dipoles takes place conservatively. No

atoms are added or removed and the dipole representing the section of material

is moved with constant separation between the dipoles.

5.1.6 Representation by prismatic dipoles

The effect of a prismatic dipole introduced into a continuum using the displacement

equations Eq 2.119 is to cause an area of dilation in the c axis above and below

the width of the dislocation pair. This can be used to represent other possible

defects in the structure. Heggie [107] has proposed a Ruck and Tuck structure that
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Figure 5.5:
(a) Ruck and tuck (b) Wrinkle

dislocations shown in red
dislocation dipole separation d

can be modelled by either a pile up of basal dislocations or prismatic dislocation

dipoles [154]. A schematic of the Ruck and Tuck defect is shown in Fig 5.5 (a).

Another possible defect is the wrinkling of a layer or layers as shown in Fig 5.5 (b).

The details of this deformation have not been worked out completely but a

suggested representation using prismatic dislocations is shown in the figure.

In the DD2D runs two different values of Burgers vector were used, b =

3.32 Å and b = 6.64 Å. The smaller value corresponds to material trapped between

layers in the form of prismatic loops. This type of defect can be considered to be a

single partial layer with a Burgers vector equal to the separation of one interlayer

spacing. The larger value is used to model the Ruck and Tuck defect. For this

case the folded structure must be represented by a Burgers vector with magnitude

equal to two layer separations. The selected output produced below is for Burgers

vector b = 6.64 Å.

The horizontal separation d of the dislocation dipoles is a measure of the size

of the deformation. This is highlighted in Fig 5.5 (a). The value of d also relates

to the amount of extra material being placed into the crystal, for example in the

extra material in the folds of the Ruck and Tuck.

Two different values of d were used in the DD2D runs, d = 30 Å and d = 60 Å.

These are arbitrary values used to check the uniform increase in c-expansion with
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increase in dipole width.

5.1.7 User input and graphical output

The QT platform has been developed by Nokia corporation with the aim of

facilitating the creation of mobile phone and desktop applications. It has been

used here to allow for animation of the dislocation model. The platform also offers

straightforward integration of interactive buttons, sliders etc. This makes it easy

to allow user interaction at runtime. ImageMagick [155] libraries have been called

from within the program to save output of plots and images for use after the

application has been closed.

It is possible to alter runtime parameters during the operation of the program.

A choice to use isotropic or anisotropic elasticity theory can be made, the Burgers

vector magnitude can be altered and the initial number of dislocation dipoles can

be chosen.

Parameters that can be set for the running of the program include the number

of iterations to be executed and for each iteration the number of new dislocation

dipoles to be entered into the model. Also, if there is to be relaxation of the

dislocation energies for each iteration, the number of time steps can be chosen.

This controls the number of time steps for which the dislocations will be allowed

to relax before the introduction of any new dislocations with the next iteration.

A Dislocation positions option can be used for testing purposes. The normal

option is to use the Randomise positions option. This introduces the new

dislocations into the system at random x and y positions rather then in a predefined

order.

The size of the plane can be chosen in the x and y directions. The values input

are in units of Angstrom. The two dimensional plane containing the dislocations

can be seen in, for example, the upper half of Fig 5.6. A single prismatic dislocation

dipole is shown. The effect on the edge of the plane, caused by strain from the

introduction of dislocation dipoles, is indicated by the black dashed line. This is
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Figure 5.6: Example sequence of outputs from DD2D run for 800× 600 cell
1) First iteration showing single prismatic dislocation dipole

Upper image displays geometry of dislocations within the 2-D crystal
red/black outline describes unstrained/strained crystal boundary

Lower image displays plotted points of the energy and c-axis expansion vs
iteration
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Figure 5.7: Example sequence of outputs from DD2D run for 800× 600 cell
2) Iteration 10 showing 10 prismatic dislocation dipoles

Upper image displays geometry of dislocations within the 2-D crystal
red/black outline describes unstrained/strained crystal boundary

Lower image displays plotted points of the energy and c-axis expansion vs
iteration
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Figure 5.8: Example sequence of outputs from DD2D run for 800× 600 cell
3) Iteration 40 showing 40 prismatic dislocation dipoles

Upper image displays geometry of dislocations within the 2-D crystal
red/black outline describes unstrained/strained crystal boundary

Lower image displays plotted points of the energy and c-axis expansion vs
iteration
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compared to the dashed red line showing the demarcation of the unstrained cell.

An option Calculate energy can be used to calculate and display the current

energy after each iteration. The values are displayed on the same plot as that of

the c-expansion as shown in, for example, the lower half of Fig 5.6.

A sequence of three outputs taken at arbitrary points during a DD2D run

are displayed in Figs 5.6-5.8. The first of these images shows a dislocation dipole

introduced into the plane. The following images show the effects of the expansion of

the plane in the vertical direction, representing c-axis expansion, and the increase

in energy with the introduction of greater numbers of dislocation dipoles. The

c-axis expansion is seen to increase linearly while the energy increases in a more

complicated manor.

5.1.8 Boundary Conditions

The DD2D model has been implemented using boundary conditions of repeated

cells. The repeated cells are along the horizontal direction when looking at the

visualisation of the model i.e. perpendicular to the prismatic direction. An

identical copy of the dislocation types and positions contained in the particular

model is repeated equally in each direction by an amount specified. The first

repeat cells for a single prismatic dislocation dipole are shown in Fig 5.9.

Figure 5.9: Prismatic dipole with repeat images

The two measurements of displacement and energy are shown to converge in the

model when the number of repeat cells is increased sufficiently. The displacement
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for prismatic dislocations only affects the prismatic direction. Convergence to a

result published by Lehto and Öberg [156] is found.

The Lehto paper is a study of the effects of dislocation strain fields when

periodic boundary conditions are used in supercell calculations. The aim of the

paper is to develop “a general and self-consistent method to construct unit cells

containing dislocations”. This requires translational invariance of the unit cell so

that the structure can be multiplied out in all directions for a three dimensional

model.

The translational vectors ci for the three spatial directions are the dimensions

of a dislocation free unit cell. The translational vectors for the unit cell containing

dislocations is related to the dislocation free vectors by c
′
i = ci + ∆ci where

∆ci = −b

∫
A

ci · dA
|c1 · (c2 × c3)|

(5.1)

In Eq 5.1 b is the Burgers vector and the term dA is an infinitesimal of surface

area terminated by dislocation line with direction vector normal to the surface .

For the case of the DD2D model the prismatic translational vector represented

by c3 is the only applicable calculation. In the two dimensional model with infinite

straight dislocation lines the Equation 5.1 can be written simply as the magnitude

of the Burgers vector multiplied by the fraction of the length of the material by

the width of the cell

∆c3 =
bW

L
(5.2)

where W is the length of material terminated by the prismatic dislocation dipole

lines and L the width of the cell. Figure 5.9 shows W and L for a prismatic

dislocation dipole.

The plots in Fig 5.10 show the effects of increasing the number of image cells

for a prismatic dislocation dipole. The plot in Fig 5.10 (a) shows the convergence

of energy/volume. The increase by percentage in the c direction compared to the

dislocation free cell is shown in Fig 5.10 (b).
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Taking values of b = 6.64 Å, W = 80 Å and L = 1200 Å for the Lehto

expression of Eq 5.2 gives a value ∆c3 = 0.443. The results from the DD2D

model are seen to converge to this value in Fig 5.10 (b).

5.1.9 Displacement and energy

The displacement and energy as used in the model have been described in

Chapter 2.5. Both anisotropic and isotropic versions have been implemented.

The anisotropic theory more accurately describes the expansion of a material

which is highly anisotropic. The model implements two-dimensional plane strain

for which exact solutions are known describing both displacements and energies

in the anisotropic and isotropic theories.

For both cases, isotropic and anisotropic, the energies are made up of a

contribution from interaction energy and a contribution from self energy. The

isotropic displacements used in the code are from Eq 2.83. The isotropic energy is

from the hollow core and free surface model Eq 2.87. The anisotropic displacements

used in the program are from Eq 2.119. These are coupled with the expressions

for the anisotropic self energy from Eq 2.120 and interaction energy of Eq 2.124.

The self energy increases at a constant rate with increase of dislocations to a

system. This is not the case for the interaction energies. Each dislocation interacts

with any other dislocations in the model. The strength of the interaction energies

change as a function of the position of other dislocations. There is an increase

in internal energy for similar Burgers vectors or decrease for opposite Burgers

vectors. As the density of dislocations increases the interaction energy combined

with the self energy increases. At a certain density the total internal energy can

be seen to level off or even begin to decrease in magnitude. At this point the

interaction energy is reducing the total energy of the system. This cannot happen

to the energy provided by the self energy as it is always positive. This feature

can be seen as a saturation level of dislocations and as an indication of melting,

see for example [157, 158].
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Figure 5.10: (a) Energy/volume for increasing image cells
(b) Percentage increase in c direction for increasing image cells
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5.1.10 Method

Once the initial starting conditions for the model have been specified by the user

input options as described in Section 5.1.7 the program can be executed. Prismatic

dislocation dipoles are introduced one pair at a time into the predefined area being

modelled. The location of a pair is chosen using a randomly generated x position

for one of the dislocations. The y position is randomly chosen from a position

representing a horizontally aligned layer. The dislocation Burgers vector sign is

also chosen randomly. To create the dipole an oppositely signed dislocation will be

introduced at a set horizontal distance along the plane from its pair. Depending

on the sign of the first dislocations Burgers vector its pair will be placed to either

the left or right.

If the situation occurs that the dislocation should be placed outside of the limit

defined by the boundary the second dislocation will be placed at the appropriate

distance from the opposite boundary. This is equivalent to the dislocation passing

through one boundary of a cell and reentering the cell smoothly at the opposite

boundary. This is a result of the boundary conditions applied to the model.

Another consideration built into the program is that the placement of the

dislocations cannot occur within an exclusion zone denoted by a specified distance

from the dislocation coordinates. This value has been set to the magnitude of

1 Burgers vector |b| = 6.64 Å. This is so as not to allow the dislocations to be

created coincidentally with another. If random dislocation coordinates for a new

dislocation are coincident with one already existing a new random position will be

found. This operation is repeated if the following position is also occupied within

the bounds of the exclusion zone until an unoccupied position has been located.

For each dislocation introduced into the model an identical dislocation is placed

into any repeat cell horizontally aligned either side of the original cell. The number

of repeat cells is currently defined within the program. The size of the repeat cell

used is 8 to both the left and right of the initial cell.

The model is filled with the required number of dislocations for one iteration
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in the manner described above. Having completed this step the displacement

is calculated. The displacement calculation is the same for each dislocation as

described in Section 5.1.9. The sum of all displacements gives the expansion

resulting from one iteration. The total displacement for the particular iteration is

then plotted.

Following the displacement routines the energy is calculated. The energy is

calculated as described in Section 5.1.9. The energy is plotted and copies of the

displacement/energy plot and the visualisation of the positions of the model are

saved in two separate files. This procedure is repeated at the end of each iteration.

The process of dislocations being introduced and displacements and energies

being calculated as described above occurs until the number of chosen iterations

have been completed.

5.1.11 Results

A selection of output images showing the results from a group of runs using the

DD2D program will be shown in this section. The runs were executed using various

different parameters and scales as discussed below.

All runs were undertaken using eight image cells either side of the primary

cell. The size of the exclusion zone was held constant at 6.64 Å.

For each particular set of parameters, as listed below, the code was run using

three model sizes,

1. a single line modelling one graphene layer 1200 Å wide

2. a two dimensional model 500× 500 Å2

3. a two dimensional model 600× 800 Å2

In addition a larger cell size of 1200× 1600 Å2 was used for one run.

The single line model was run at a rate of 2 dislocations/iteration, i.e.

one dipole per iteration. The remaining area sizes were run using a rate of

200 dislocations/iteration.
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The parameters that have been altered for subsequent runs include the magnitude

of the Burgers vector b. The size of the initial cell along each side in units

of Å i.e. area a = (x×y) Å2. The horizontal distance between dislocation dipoles,

d, measured in units of Å.

The results displayed in Fig 5.11 were from a DD2D run using a Burgers vector

size of b = 6.64 Å, a dipole separation of d = 30 Å and an area of 1200×6.64 Å2.

The image shows a constant gradient increase of c–axis expansion with constant

rate of dislocations introduced to the model.

The energy density can be seen to increase quite regularly, albeit with some

fluctuation, with the constant rate of dislocations added until it reaches the stage

ringed in blue in Fig 5.11. The energy is then seen to fluctuate with dips and

then increases but the rate of increase does not continue as it did before this

point. The self energy of the dislocations must always increase as positive energy

is placed into the system. If an energy dip occurs it is because the interaction

energy introduced to the system is greater than the added self energy. This

effect has been described by Cotterill [157] as the point when a system makes the

transition from a two-dimensional solid state to a two-dimensional liquid state.

Burakovsky [158] has calculated such a melting point in a two dimensional solid

to have a dislocation density of

ρm = (0.61± 0.02)b−2 (5.3)

where the units are the reciprocal of the magnitude of the particular Burgers

vector squared.

The limits of the region where melting is expected to take place, according to

the Burakovsky parameters Eq 5.3, has been highlighted in Fig 5.11 using two

vertical blue lines. This is within the melting zone predicted. It should be noted

that the gradient of the c-expansion remains constant throughout.

Figure 5.12 results were generated using a Burgers vector magnitude of b =

6.64 Å, the dipole separation used was d = 60 Å and the area of the cell
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Figure 5.11: DD2D run with Burgers vector magnitude b = 6.64 Å , dipole separation
d = 30 Å and area a = 1200× 6.64 Å2.
Two dislocations introduced per iteration. Total number of dislocations: 170
Burakovsky melting region is indicated between blue lines marked by arrows.

a = 500× 500 Å2.

The results shown in Fig 5.13 were calculated using a Burgers vector magnitude

of b = 6.64 Å , dipole separation of d = 30 Å and cell area a = 1200× 1600 Å2.

It can be seen for all of the runs that the displacement increases linearly with

the introduction of dipoles at a continuous rate. The gradient can be increased

or decreased by altering the width of dislocation dipole separation d but always

remains constant. This is the desired result as the dipole separation d corresponds

to the amount of additional material being placed into the crystal per dipole as

described in Sec 5.1.6.

The energy does not increase with such regularity. The range where the energy

tails off has been circled in blue for each of the images Figs 5.11 - 5.13. This

result is in line with the predicted melting density of dislocations Eq 5.3 made by

Burakovsky.

The results of this model can be seen as a proof of concept. The two-dimensional
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Figure 5.12: DD2D run with Burgers vector magnitude b = 6.64 Å , dipole separation
d = 60 Å and area a = 500× 500 Å2.
200 dislocations introduced per iteration. Total number of dislocations: 6400
Beginning of Burakovsky melting region is indicated by blue line. The zone showing
energy density dipping is circled in blue.
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Figure 5.13: DD2D run with Burgers vector magnitude b = 6.64 Å , dipole separation
d = 60 Å and area A = 1200× 1600 Å2.
200 dislocations introduced per iteration. Total number of dislocations: 39800
Beginning of Burakovsky melting region is indicated by blue line. The zone showing
energy density dipping is circled in blue.
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prismatic dislocaton dipole model can be used to simulate expansion of the c-axis

as seen in irradiated graphite. The DD2D is a simple model that has been shown

to work in this respect. It is also a way of modelling at the macroscopic level

rather than the microscopic level thereby giving predictions that are more readily

tested against experimental evidence on a scale larger than the atomic level.

It is hoped that future work will combine the basal and prismatic dislocations

into one model that can explain more of the details seen in neutron irradiation

in graphite. The basal dislocations will be responsible for transporting material

around the crystal. Pileups of basal dislocations will be represented using prismatic

dislocations which will drive the c-axis expansion.

Another area will need to be developed to provide a more realistic model.

Currently extra material is introduced into the model but no account is taken of

the relocation of that material from other areas of the crystal. For the sake of

conservation of material this must be taken into account. With this feature would

come a way of explaining the a-axis shrinkage seen in irradiated graphite samples

that is not currently covered in the DD2D model.

Graphite in nuclear moderators does not consist of one large crystal of pure

hexagonal graphite, as implied by the DD2D model, but is made up of randomly

oriented crystals of graphite. This feature could be a future development to

be incorporated into the two-dimensional model. This would involve randomly

orienting crystals and aligning them with other crystals with appropriate boundary

conditions.



Chapter 6

Conclusion

The study of this thesis has been concerned with the properties of graphite. The two

areas studied have been, firstly, the elastic properties of pure hexagonal graphite

and bromine intercalated graphite and, secondly, dislocation theory applied to

irradiated graphite.

A study of the elastic constants of hexagonal graphite using DFT with LDA

has been undertaken using the AIMPRO code. The calculations have described

the total and partial elastic constants of the five second order and 10 third order

independent elastic constants. A high k-point mesh of 72× 72× 26 coupled with a

pdddp basis set has given well-converged results. The results presented are the first

to use these parameters to optimise and then calculate the single point energies

over the strained lattices. These are also the first results to show the contributions

of internal strain to the third order elastic constants using DFT with LDA.

The study of the third order elastic constants could be taken further. The results

of the current calculations are a representation of the combined internal elastic

constants for the given strains. Using appropriate combinations of homogeneous

strains the full array of internal elastic constants could be extracted and represented

individually.

The zero point energy contribution to the hexagonal graphite elastic constant

C33 has been calculated using vibrational mode DFT with LDA results from

Haffenden. The anharmonic contribution to C33 has also been calculated from
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the vibrational mode data. The vibrational mode data has also been used in the

calculation for the interlayer separation of hexagonal graphite. The result for the

combination of LDA SPE and ZPE with LJ [6− 12] at 300 K gave a separation

D = 3.37 Å in excellent agreement with experimental data.

Lennard-Jones [5 − 10] and [6 − 12] models were combined with the LDA

SPE results to model hexagonal graphite binding energy. The LJ [6 − 12]

model combined with the LDA SPE results gave a binding energy of BE =

−51 meV/atom in agreement with a recent experimental study [83]. To apply the

ZPE and temperature effects to the binding energy requires further vibrational

mode calculations to be performed. The results used in this thesis are suitable for

the calculation of elastic constants and interlayer separation effects where relative

energy differences are suitable. For the binding energy absolute energies are needed.

The elastic constant C33, C44 and C55 have been studied for stage-1 and stage-2

intercalated graphite compounds. These are the first to be reported using DFT

with LDA. The energies were well defined and should be interpreted as correct for

DFT with LDA within a margin of error. They indicate that the results for C33

are somewhat lower than that for hexagonal graphite as would be expected.

More information concerning the interlayer binding mechanism could be investigated

using band structure calculations available in AIMPRO and imaging of the

molecular orbitals using AIMVIEW an extension package for AIMPRO. A further

study could also be undertaken to calculate the full array of second and third

order elastic constant values of bromine intercalated graphite. Also various other

unit cell arrangements with varying bromine densities and staging could be taken

into consideration.

A dislocation dynamics model has been created in collaboration with Pippa

Young. Various runs of the model have been carried out modelling the response

of graphite, modelled as a continuum, to dose. The prismatic dislocation model

describes the c expansion using anisotropic elastic displacement fields. The internal

energy has been modelled using anisotropic self energy coupled with the interaction
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energy of the dislocation fields.

The results of the simulations show a shielding of energy for high dislocation

density. This comes from the interaction energy of dislocations entered into the

system having lower energy than the always positive self energy contributions.

This is in broad agreement with data. The density of dislocations when the effects

of the shielding are most obviously seen to coincide with the value of 0.61/b2 in

agreement with the [158] study.

It has been shown that two-dimensional dislocation theory is a suitable framework

for modelling irradiation effects in graphite. Although this is a simple model it

shows scope for development and potential to solve some of the problems that

have not been properly addressed by the interstitial standard model.

The model is still under development. It is hoped that basal dislocations

will be incorporated within the current prismatic model. With suitable boundary

conditions applied a number of variously aligned crystals in a two dimensional

array could be modelled. This could lead to a more realistic modelling of irradiated

graphite within a reactor environment where the randomly oriented crystallites

form a highly isotropic macroscopic material. Non periodic boundary conditions

would also allow the modelling of basal contraction of the crystallites which is

missing in the current program.



Appendix A

Lennard-Jones Script

Octave script, LJ.m, used for Lennard-Jones calculations in Chapter 3. Can be

run using a run script similar to that shown in Appendix B.

LJ.m

function[LJE]=LJ(strain)

%

% Calculate LJ interactions for graphite

%

% To run:

% open octave in shell [i.e. inside shell type: octave]

% type: LJ(strain)

% where strain is an integer [e.g. LJ(0.1) for calculation at 10% strain]

%

% Returns a value LJE for the Lennard-Jones energy depending on parameters used

% and atom positions specified

%

output_precision(9);

% set output precision required

% zero variables for first iteration

LJEtmp=0;
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LJEcurrent1=0;

LJEcurrent2=0;

%

% cut: horizontal cut off radius for calculation [adjust as required]

cut=36.000;

%

% num: number of atoms in reference layer

num_atoms=5208;

%

% sep: 2xinterlayer separation. To increase separation

% between reference atoms and double layer

sep=2*3.32358502659;

%

% R0: vdW radius

R0=7.05;

% power values in LJ [e.g. P1=6, P2=12 for LJ 6-12 potential]

P1=6;

P2=12;

% epsilon: energy coefficient [Ha]

epsilon=0.0000324;

% positions for alpha and beta reference atoms [adjust as required]

% alpha atom:

alpha=[42.32211467872, 36.69428817675, -3.32358502659];

% beta atom:

beta=[40.91137752277, 36.69428817675, -3.32358502659];

% load atom positions to data1

%[atom_pos.dat: file of atom positions in columns of format: x y z

% where x,y,z are integers in chosen units]

data1=load("atom_pos.dat");
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%%

% ralpha, rbeta: measure atom-atom distance from alpha and beta

% reference atoms to particular atom

% j: count over number of double layers required

%

for j=1:15

for i=1:num_atoms

% calculate the atom-atom distance

ralpha=sqrt((alpha(1)-data1(i,1))^2+(alpha(2)-data1(i,2))^2+(alpha(3)...

-(data1(i,3)+(j-1)*sep)*(1+strain))^2);

rbeta=sqrt((beta(1)-data1(i,1))^2+(beta(2)-data1(i,2))^2+(beta(3)...

-(data1(i,3)+(j-1)*sep)*(1+strain))^2);

% LJ energy calculation

if(sqrt((alpha(1)-data1(i,1))^2+(alpha(2)-data1(i,2))^2)<cut)

LJEcurrent1=-4*epsilon*((R0/ralpha)^P1-(R0/ralpha)^P2);

endif;

if(sqrt((beta(1)-data1(i,1))^2+(beta(2)-data1(i,2))^2)<cut)

LJEcurrent2=-4*epsilon*((R0/rbeta)^P1-(R0/rbeta)^P2);

endif;

LJEcurrent=LJEcurrent1+LJEcurrent2;

% add new value to LJE

LJE=LJEcurrent+LJEtmp;

LJEtmp=LJE;

% reset LJEcurrent

LJEcurrent1=0.;

LJEcurrent2=0.;

end

end



Appendix B

Lennard-Jones run file

Example run file for LJ.m as shown in Appendix A

runLJ.m

function[x]=runLJ

% example of a run script to be used with LJ.m

%

% open octave in shell

% to run type: runLJ

clear;

% str_min: use as zero binding-energy reference point [adjust as needed]

str_min=LJ(20);

% conv: conversion factor [adjust as needed]

conv=6802.90620152929;

% strain values as required

str1=[
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-0.2

-0.15

-0.1

-0.05

0.0

0.05

0.1

0.15

0.2

];

% call LJ.m to perform calculations

for i=1:9

ens1(i)=(LJ(str1(i))-str_min)*conv;

end

ens=ens1’;

% save results as a column of values in file out.dat

save out.dat ens
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