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Abstract

Graphite is widely used in modern industry, particularly in nuclear power generation

in the UK. Understanding its formation is important for economical and safety reasons.

The process to turn carbon materials into graphite by heat treatment is called the

graphitisation process. It is the transformation of amorphous carbon, through a 2D

turbostratic carbon intermediate, into 3D ordered layers of graphite. While many

manufacturing processes have been established and many authors have contributed

to understanding the important stages of graphitisation, the chemistry involved is not

fully understood. It appears that impurities found in precursors can have a direct

impact on the final graphite obtained.

The following work is an investigation of the role played by these heteroatoms during

the graphitisation process. Using density functional theory (DFT), calculations on

possible mechanisms involved in the graphitisation process are investigated. However,

the initial stages contain complex and poorly defined chemistry, so we have chosen

to avoid this area, even though factors such as the C:H:O ratios are clearly important.

Instead, this work is focussed on the latter stages of graphitisation in order to better

understand the ordering processes to obtain graphite (and their inverse disordering,

insofar as it is relevant to radiation damage). In this way it is still possible to invoke

standard concepts in the physics and chemistry of defects in crystals. If there is too

much disorder, and the system is close to amorphous in nature, complexity would

overwhelm the project. The descriptions of an amorphous material with a little extra

order would be much more difficult than the descriptions of a crystal with some

disorder. For this reason, we have focussed on the heteroatoms which endure until

the later stages of graphitisation, boron and sulphur, and also on turbostratic graphite,

where calculations of interlayer separation as a function of relative rotation of a layer
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and of its neighbours are described.

We find for sulphur that it can open up folds in graphite, forming very stable sulphur

decorated edges. In dislocation terms, this could be the beginning of the dissociation

of a perfect prismatic edge dislocation. An edge dislocation is described as an added

half plane. If the plane is a bilayer graphene terminating in a fold, the dislocation

is perfect. If the plane is a single graphene the dislocation is ‘partial’. Importantly

two partial dislocations have lower elastic energy than the perfect, so dissociation is

important in stabilising the structure.

For boron, we show how it can pin twist boundaries, preventing slip and suggest that

radiation damage can achieve the same effect through vacancies. The mechanism does

not appear to involve cross-linking bonds and provides a good explanation for the

variations in C44 between different graphites and different methods of measurement.

Furthermore, we show that B can aid in the removal of twist boundaries by pushing

up their formation energy with respect to AB graphite.
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Chapter 1

Introduction

1.1 Physical and chemical definition of Graphite

Carbon is an important element on earth and is recorded to be present in close to

20 million molecules, however, it is not necessarily the most abundant (∼0.20% in

weight). Its ability to form many compounds is due to its versatility to react with

atoms such as nitrogen, sulphur, oxygen, chlorine and others. Carbon’s properties

have been studied for decades and it remains one of the main topics in research due

to the discovery of new forms of carbon [1, 2]. In the modern periodic table, carbon

is found in the second row, fourteenth column, and it has an atomic number of six.

The main forms of carbon are 12C (98.98%) and one of its isotope 13C (1.1%), which

gives an atomic weight of 12.0107 g mol−1 [3]. Its 1s22s22p2 electron configuration

means it can form four covalent bonds with its available electrons. Carbon atoms

hybridise as sp3, sp2 and sp, thus it can form single, double and even triple bonds [4].

The different hybridisations give different carbon allotropes with diverse properties,

with the best known being graphite and diamond. Some of the allotropic forms are

described in table 1.1.

Spatial Dimension Bond properties Allotrope name
and coordination number Hybridisation Length Energy

(n) (Å) (eV mol−1)
3D (n=4) sp3-sp3 1.54 15 Diamonds
3D (n=3) sp2-sp2 1.41 25 Graphites
2D (n=3) sp2-sp2 1.33 26.5 Fullerenes
1D (n=2) sp-sp 1.21 35 Carbynes

Table 1.1: Classifications of different forms of carbon with their bond properties,
taken from [5]

1
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In the present work, we are focusing on the allotrope graphite. The word graphite

means ‘to write’ in Greek. It is a soft black carbon based mineral naturally occurring,

but it can also be manufactured. Studies with x-ray diffraction techniques, first from

Hull (1917) and then Bernal (1924), indicated that the normal structure of graphite is

hexagonal [6, 7]. In graphite, one of the 2s electrons hybridises with two of the 2p

electrons to give three sp2 orbitals at 120◦ to each other in a plane, with the remaining

orbital having a pz configuration perpendicular to this plane. The sp2 orbitals form the

strong σ bonds between carbon atoms in the graphite planes. Condensed hexagonal

rings form atomic sheets called graphene with an in plane nearest C-C bond distance

of 1.415 Å. Graphite is the stacking of the graphene sheets in a translational ABAB

sequence with a perpendicular inter-plane distance of 3.351 Å as illustrated in figure

1.1. Therefore, the third layer is similarly placed with respect to the c-axis as the first

layer, and so on.

Figure 1.1: Schematic representation of the graphite layers: in a AB sequence (left)
and in a ABC sequence (right), the AB graphite is also called Bernal graphite.

This stacking of the layers in an AB sequence is not the only form of graphite. Other

studies, with x-ray spectra, electron diffraction and transmission electron microscopy,

have shown the existence of rhombohedral graphite [8]. In this structure, the third

layer has the same order to the second, as the second to the first, and ABC stacking is

formed with respect to the c-axis. By heating to 3000 ◦C, the rhombohedral stacking is

transformed to the more stable AB stacking [9]. A carbon atom of a particular layer is

designated as α if it has an atom just above and below itself in the nearest neighbouring

layers and as β if it does not. Weak disorder can lead to stacking faults and if the ideal

translation is changed, a small increase in the graphite inter-layer distance occurs [10].

It is often called turbostratic graphite and is discussed in chapter 6. The association of



3

σ and π-bonds make graphite a high anisotropic material. Van der Waals interactions

were first identified as weak inter-layer bonds but it has now been shown that the

bonding comes mainly through a covalent band-structure term associated with overlap

in the delocalised π-electron system of each carbon layer [11].

1.2 Graphite’s properties and its industrial use

The final properties of manufactured graphite mainly depend on the precursors used.

Precursors are discussed in chapter 4 section 4.2. The bulk density for perfect graphite

is around 2.26 g cm−3 but the density for synthetic graphite can be considerably less

due to porosity. Some of its properties are listed below:

• High resistance to thermal shock.

• High compressive strength.

• Low friction and self-lubrication.

• High resistance to chemical attack.

• Low coefficient of thermal expansion (CTE).

• Good electrical conductivity.

Applications which use graphite can also differ depending on whether it comes

from a natural or synthetic source. Some of them are reviewed in the following

paragraph.

Graphite is used as a lubricant for machinery. Its lubricating properties are believed

to arise from the loose interactions between sheets in the structure. Graphite is also

used as electrodes to carry the electricity in electric furnaces in metallurgy. It can

conduct electricity within the planes of the layers due to some of the free moving

valence electrons. It can also be used as anodes in lithium batteries. Graphite is

also used as a starting material for synthetic diamond. Finally, graphite is used as a

reactor moderator which is further discussed in the next section. It is also the main

reason for my research in the present work.
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1.2.1 Use in Nuclear reactors

Graphite is used as a moderator in nuclear power reactors [12]. A slow neutron

collides with an atom of enriched uranium-235 and it turns briefly into an uranium-236

nucleus. It then splits into fast-moving lighter elements (fission products) and releases

free fast neutrons [13]. In order to keep a chain reaction going, fast neutrons have

to be slowed down and graphite moderates (decreases) the speed of these neutrons

before they are absorbed by another uranium atom. Electricity was generated for the

first time by a nuclear reactor in 1951 [12]. Graphite was used in this first reactor

due to its moderating properties from its low neutron cross section, and also because

it was easily available and cheap [14]. Pure Graphite had a neutron cross-section

of 0.0032 ± 0.0002 × 10−24 cm2. Manufactured graphite can reach a cross-section

of 0.0035 × 10−24 cm2 [15]. The bulk density for nuclear graphite can be between

1.8 − 2.2 g cm−3 [16]. In the United Kingdom, it is considered that the graphite used

has an average of 20% porosity (table 1.2). Taking this value into account, the bulk

neutron absorption coefficient is 0.00033 cm−1, which means a slow neutron may

travel 33 meters in graphite without capture, however its moderating ability arises

from its low atomic weight. The carbon scattering cross-section is 4.69 × 10−24 cm2,

this means that a neutron could travel a few centimetres before it collides with a

carbon atom [17]. With this information, Evans reported that graphite has a slowing

down power of 0.0625 cm−1 resulting in a fast neutron losing 6.25% of its energy per

cm inside the graphite bulk [18]. The moderating ratio, used to compare moderator

materials, which is calculated from the slowing-down power and the bulk absorption,

is 202 for graphite. It is the second best moderator after heavy water [14].

A lower porosity in nuclear graphites is necessary to take into account the dimensional

change induced by the neutrons’ irradiation inside the graphite bulk [19]. An

introduction to the graphitisation process for nuclear graphite is described in chapter 4.

Further information on the effect of irradiation in graphite is discussed in section 1.3.

Also, not every synthetic graphite is used inside a nuclear reactor and certain

requirements are necessary. The material must be semi-isotropic, sufficient density,

high thermal conductivity, high purity and a dimensional stability under irradiation,

associated with high coefficient of thermal expension (CTE). Some of the properties
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Property Pile grade A Gilsocarbon
Parallel Perpendicular

Density [g cm−3] 1.74 1.74 1.81

Coefficient of thermal expansion 0.9 2.8 4.3
(20 − 120◦C) 10−6K−1

Thermal conductivity 200 109 131
(20◦C) W m−1 K−1

Young Modulus 11.7 5.4 10.85
GPa

Tensile Strength 11 11 17.5
MPa

Table 1.2: Typical virgin properties of pile grade A (PGA) and gilsocarbon nuclear
graphite [16]

for the UK pile grade A (PGA) and gilsocarbon graphite are presented in table 1.2.

PGA was used in Magnox reactors, whereas gilsocarbon was developed for advanced

gas reactors (AGRs) due to its more robust properties [16].

1.3 Ordered and disordered graphite

This section tries to show the possible link between graphitisation and radiation

damage. Graphitisation begins with a disordered structure to end with a well

ordered one, while radiation damage begins with well ordered structure to end

with a disordered one.

In radiation damage, a fast neutron collides with a carbon atom, the latter is displaced

from its original position. A cascade reaction follows with more carbon atoms being

displaced. Depending on how far these atoms are from their original positions, they

either go back into the plane or not. When they do not, they become interstitial atoms,

and these can move and aggregate with other interstitial atoms. Thus the formation

of loops in irradiated graphite [20]. They are often referred to as dislocations loops.

Homogeneous nucleation over an irradiation temperature range of 150◦C to 650◦C

has been observed [21]. If it is near a region of high defect density, they can regroup

to form loops. Once in place, they start growing by capturing further displaced

atoms [21].
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In the late stages of graphitisation, basal structural units (BSUs), which are described

in 4, can join edge to edge into distorted aromatic layers. These BSUs could be

compared to dislocation loops. At even higher temperatures, the remaining interstitial

atoms are wiped off to give rise to more or less perfect layers.

The following questions can be asked: Is radiation damage the reverse of

graphitisation? Is there any evidence that these two processes show similar

features?

The first question cannot be answered just yet. However when experimental works

on graphitisation and radiation damage are compared, it can become difficult to

tell which process the results come from. A first example comes from transmission

electron microscopy (TEM) images. Figure 1.2 illustrates two images taken from a

graphitising carbon and from an irradiated graphite. Both images show distorted

layers and disordered structures.

Figure 1.2: TEM images of a graphitising carbon [22] (left) and of an irradiated
carbon [23] (right)

Another example comes from x-ray diffraction patterns. Figure 1.3 illustrates two

images showing the same characteristics. It is interesting to see two almost identical

diffraction pattern images for two different processes.

Figure 1.3: Diffraction pattern from a graphitising carbon (left) and from an irradiated
carbon [24]
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The last example is a comparison of the measured interlayer spacing values.

Graphitisation shows a decrease in d002 in the late stages of the process while there

is a growth in the c-direction of the crystal in radiation damage. This is illustrated

by the two graphs in figure 1.4.

Figure 1.4: Left: Measured interlayer spacing, d002, throughout the late stage of
graphitisation [25]; Right: Growth of the crystal in the c-direction of graphite at
different temperature and different irradiation dose [26].

Understanding graphitisation at an atomic level could greatly improve our knowledge

of radiation damage as both processes show similar characteristics at certain

stages.



Chapter 2

Theoretical background

This chapter is a review of the fundamental aspects of the many-body problem model;

the initial problem is exposed and the methods adopted to solve it are described.

This section starts with the Schrödinger equation, followed by the Hartree-Fock theory

(HFT) and the density functional theory (DFT). The two main exchange-correlation

energy functions inside DFT, the local density approximation (LDA) and the conjugate

gradient approximation (GGA), are also explained. Finally, the pseudopotentials, a

simplification allowing to speed up the theory is presented. More detailed informations

can also be found in these reference [27, 28, 29].

2.1 The Schrödinger equation

The simplest form of the non-relativistic time-independent Schrödinger equation, for

a system consisting of Ne electrons and Nn nuclei, is:

HΨ = EΨ. (2.1)

with the wave function, Ψ, containing all the information known about the quantum

system. E is the numerical value of the total energy of the state described by Ψ. H

8
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is the Hamiltonian operator, it can be expanded to a more general form:

H = Te + Ti + Vi−e + Ve−e + Vi−i

= −
1
2

Ne∑
i=1

∇
2
i −

1
2

Nn∑
A=1

1
MA
∇

2
A −

Ne∑
i=1

Nn∑
A=1

ZA

riA

+

Ne∑
i=1

Ne∑
j>i

1
ri j

+

Nn∑
A=1

Nn∑
B>A

ZAZB

RAB
(2.2)

where A and B represent the nuclei, i and j denote the electrons in the system.

The first two terms, Te and Ti respectively, represent the kinetic energy of both the

electrons and the nuclei. The Laplacian operator ∇, summarizes the sum of differential

operators. MA is the mass of nucleus A. The last three terms represent, in order,

the attractive interaction between the nuclei and the electrons, the electron-electron

repulsive potential and the nucleus-nucleus interaction. The equation 2.2 is expressed

in atomic units, so that Planck’s constant, ~, the permittivity of the vacuum 4πε0, the

mass of electron (me) and the electronic charge (e) are equal to one and not shown.

To solve equation 2.2, decoupling the motion of the electrons and ions components

of the many-body wavefunctions must be achieved.

2.2 The Born-Oppenheimer Approximation

The Schrödinger equation can be simplified because of the important mass difference

between the nuclei and the electrons. A light atom like hydrogen, has a nucleus

1,800 times heavier than an electron. For an element like carbon, it is above 20,000

times, so the electrons move much faster than the nuclei. From this, the electrons are

considered to be moving in the fields of fixed nuclei, this is the Born-Oppenheimer

(or clamped nuclei) approximation. If the nucleus is fixed then its kinetic energy

is zero and the potential energy due to nucleus-nucleus repulsion becomes constant.

Thus the second and the last term of equation 2.2 are unnecessary. The Hamiltonian

is now called the electronic Hamiltonian, Helec:

Helec = −
1
2

Ne∑
i=1

∇
2
i −

Ne∑
i=1

Nn∑
A=1

ZA

riA
+

Ne∑
i=1

Ne∑
j>i

1
ri j
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Now equation 2.1 can be rewritten with the electronic wave function Ψelec and the

electronic energy Eelec as:

HelecΨelec = EelecΨelec (2.3)

The total energy, Etot, is the sum of Eelec and the constant nuclear repulsion term

Enuc:

Etot = Eelec + Enuc = Eelec +

Nn∑
A=1

Nn∑
B>A

ZAZB

RAB

Despite this simplification, solving the Ψ term from equation 2.1 is a difficult task

because of the nature of the electrons. Further approximations must be made.

2.3 The Hartree Approximation

To deal with the many-particle problem, it can be assumed that each electron can be

considered separately. All of them are treated as if they were moving in a mean field

potential Vr. The one-electron equation has the form :

(−
1
2
∇

2 + Vr)ψi = εiψi

with the constant εi a Lagrange multiplier introduced to take into account the

normalization of the single particle state ψi. The Hartree approximation starts

from the one-electron equation. From equation 2.3, the electrons are assumed to

be non-interacting, and so the N-electron wavefunction Ψi (Ψelec in equation 2.3) is

just the product of the one-electron wavefunction ψi.

Ψi(ri) = ψ1(r1)ψ2(r2)...ψN(rN)
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In this approximation, Vr models the mean electrostatic potential of all the electrons

too [30]. Vr is now equal to:

Vr = Vion +

∫
n(r′)
|r − r′|

dr′,

n(r) =

N∑
i=1

|Ψi(r)|2

with Vion the ions’ potential contribution. The second term is the remaining electrons

potential contribution. The total many-body wavefunction is then formed as the

product of these one-electron spin orbitals. However if two electrons of the same spin

interchange positions, Ψ must change sign, this is known as the exchange energy

following Pauli’s exclusion principle.

Ψ(r1s1, r2s2, ..., rNsN) = −Ψ(r1s2, r2s1, ..., rNsN)

Moreover, each electron is affected by the motion of the other electrons in the system,

defined as the correlation energy. The Hartree equation, being a good approximation,

still has something missing: the electronic exchange.

2.4 Hartree-Fock (HF) Approximation

The next step is to incorporate the exchange properties of the electron in the

many-body wavefunction Ψ(risi). An anti-symmetrised wavefunction with the Hartree

wavefunction is thus chosen: the Hartree-Fock approximation. To overcome the

problem of the same spin interchange positions, a determinant, first introduced by

Slater, is used [31].

Ψ(r1s1, r2s2, . . . , rNsN) =
1
√

N!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1s1) ψ1(r2s2) · · · ψ1(rNsN)

ψ2(r1s1) ψ2(r2s2) · · · ψ2(rNsN)
...

...
...

ψN(r1s1) ψN(r2s2) · · · ψN(rNsN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The determinant would change sign if two columns are altered/swapped. It is

equivalent to interchanging the position of two electrons. Using a simpler notation,
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the equation above becomes:

Ψ(r) =
1
√

N!
det

∣∣∣ψN(rN)
∣∣∣

where the one-electron function ψN(rN) introduces electron spin via a spatial orbital

ψ j(r) and a spin function σ(s), which can have the notation either α(s) or β(s):

ψλ(r) = ψ j(r)σ(s)

The spin functions are orthonormal (αα=ββ=1 and αβ=0) and satisfy the

equations:

∑
s
σ∗α(s)σβ(s) = δαβ∫
ψ∗i (r)ψ j(r) = δi j

where the Kronecker delta symbol, δ, is used.

It is important to find the most suitable Slater’s determinant, which would give the

lowest energy. The only flexibility in the determinant comes from the spin orbitals.

In the Hartree-Fock method, the spin orbitals, σi, are varied so the energy obtained

from the determinant is minimal while the spin orbitals remain orthonormal using

the Lagrange multiplier Eλµ. The Hartree-Fock equation is for each orbital λ:

{
−

1
2
∇

2 + Vi−e(r) + VH(r) + Vx
λ(r) − Eλ

}
ψλ(r) =

∑
µ,λ

Eλµψµ(r) (2.4)

where the first and second terms are the kinetic and potential energies, i.e. the

one-electron energy. The third and fourth term (VH(r)ψλ(r) and Vx
λ(r)ψλ(r)) are the

Hartree and exchange potential respectively:

VH(r)ψλ(r) =
δEH

δψ∗
λ

=

∫
n(r1)ψλ(r)
|r − r1|

dr1,

Vx
λ(r)ψλ(r) =

δEx

δψ∗
λ

= −
∑
µs1

ψ∗µ(r1)ψλ(r1)ψµ(r)

|r1 − r|
dr1
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Equation 2.4 can be simplified by removing Eλµ with diagonalisation so the right hand

side becomes zero. In order to find Etot, the total energy, the equation is multiplied

by ψλ∗(r) integrated over r and summed over s and λ to give:

−

∑
λ,s

∫
ψλ
∗(r)

1
2
∇

2ψλ(r)dr −
∑
λ,s

∫
ψλ
∗(r)Vi−e(r)ψλ(r)dr

+
∑
λ,s

∫
ψλ
∗(r)VH(r)ψλ(r)dr +

∑
λ,s

∫
ψλ
∗(r)Vx

ψλ(r)dr −
∑
λ,s

Eλ(r) = 0 (2.5)

The Hartree and exchange potentials are equal to twice the Hartree and exchange

energies respectively. Therefore, equation 2.5 is rewritten:

Te + Ee−i + 2EH + 2Ex −
∑
λ

Eλ = 0

The total energy can be calculated by removing the double counting and adding the

ion-ion energy term:

Etot =
∑
λ

Eλ − EH − Ex + Ei−i

The Hartree-Fock equation is solved by predicting the spin orbital ψλ(r) and calculating

the Hartree and exchange potentials. The new potentials are then used to determine

ψλ(r). The process is repeated many times until the difference between the input

potential and the output potential is minimal. This is called a self-consistency

method. This early computational method gives relatively good optimised structures

and vibrational modes for small molecules but is not accurate enough for bond

lengths or frequencies. The lack of electron correlation is a problem for metallic

compounds where the band gap is often over-predicted. Different approaches exist to

tackle this weakness, collectively called post-Hartree-Fock methods (e.g. Møller-Plesset

perturbation theory (MP) [32]). Hartree-Fock is very useful for small molecules but

becomes time consuming when the number of atoms, hence the number of electrons,

is increased due to the complicated N-electron wavefunction with its dependence on

3N spatial plus N spin variables (4N dependency) for every electron.
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2.5 Density-Functional Theory (DFT)

Molecules in chemistry, biology and other areas usually involve many electrons, so

any wavefunction based calculation will reach an ’unquantified’ size. The HF method

shows its limits. Another approach needs to be used for larger systems. This method

works to simplify the many-body problem by working with the electronic charge

density, n(r), as fundamental variable rather than the wavefunction. Thus evolved

density functional theory. The idea is that the 4N dependency for every electron

described in the Hartree-Fock approximation is now defined by the charge density

which is a function of only three spatial variables and spin. It was first introduced

by the Thomas-Fermi model in 1927. This model is not discussed further and is more

of an historical interest as it was the first form of DFT. Density functional theory,

as used today, was introduced in 1964 by Hohenberg and Kohn (HK) and then by

Kohn and Sham (KS) in 1965 [33, 34]. Their paper shows that there is a one-to-one

correspondence between a non-degenerate, non-polarised ground state wavefunction,

Ψ(r) and the electron density n(r) defined by:

n(r1) =
∑
µ

∫
δ(r1 − rµ)|Ψ(r)|2dr

Using the electron Hamiltonian equation, HK demonstrated, that:

H = Te + Vi−e + Vi−i

the external potential Vi−e is a unique functional of n(r), and since Vi−e fixes Ĥ, the

full, many-particle ground state is a unique functional of n(r). Moreover, the total

energy E is also related to the charge density,

E[n] = T[n] + Ei−e[n] + Ei−i[n] + EH[n] + Exc[n]

including the Coulomb energy (Ei−e[n]),

Ei−e[n] = −

∫
n(r)

∑
A

ZA

|r − RA|
dr
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the ion-ion interaction (Ei−i[n]),

Ei−i[n] =
1
2

∑
A,B

ZAZB

|RA − RB|

the Hartree energy (EH[n]),

EH[n] =
1
2

∫
n(r1)n(r2)
|r1 − r2|

dr1dr2

the kinetic energy of the set of non-interacting particles:

T[n] = −
1
2

∑
i

∫
ψi
∗
∇

2ψi(r)dr

Finally, the exchange correlation energy (Exc[n]) includes all the terms due to

interactions within the gas. It is the only term with no explicit form and is the

big unknown. By guessing an initial charge density, Exc[n] is obtained and used

afterwards to obtain the new charge density and so on until it converged. It can also

be noted that if the exact form of Exc was known, the KS approach would lead to

the exact energy, and subsequently the exact Hamiltonian operator of the Schrödinger

equation.

2.6 Local Density Approximation (LDA)

The Kohn-Sham method is still subject to a better approximation to determine

the exchange-correlation energy. An early approximation is the local density

approximation. All approximate exchange-correlation functionals are based on this

system. LDA states that for any small region in the system, the exchange-correlation

is the same as for the uniform electron gas with the same electron density. This

model is far from the situation in molecules, because the densities vary rapidly, but

it is the only system where its exchange-correlation energy functional is known with

high accuracy. In this case we write Exc:

Exc =

∫
n(r)εxc(n)dr (2.6)
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where εxc can be split in two values:

εxc[n(r)] = εx[n(r)] + εc[n(r)]

with the exchange part, εx, which represents the exchange energy of an electron in a

uniform electron gas of a particular density and is written:

εx = −
3
4

3

√
3n(r)
π

No such explicit version is known for the correlation part, εc, but accurate quantum

Monte-Carlo simulation of the homogeneous electron gas from Ceperley’s and Alder’s

work is available [35]. The equation 2.6 is for a spin average energy density. There

is also a spin polarised variation called the local spin density approximation (LSDA)

which introduces the energy density for a polarised homogeneous electron gas. Even

though results can be better or at least comparable to HF approximation, the LDA

approximation, unfortunately, has disadvantages: it under-predicts atomic ground

state energies and ionisation energies, while also over-predicting binding energies. In

general this method is not fully accurate for small molecules but improves with larger

systems.

Analytical expressions of εc

The work done by Ceperley and Alder resulted in other groups presenting analytical

expressions of εc. One of the first was developed by Vosko, Wilk and Nusair

in 1980 [36]. These were later parametrised by Perdew and Zunger in 1981 and

improvements were later added by Perdew and Wang [37, 38]. The aimpro code uses

the latter, this is further explained in section 3.2.2. The correlation energy per electron,

εc, the spin-polarisation parameter ζ and Wigner-Seitz radius of each electron rs are

defined as:

Ec = Ωnεc(n, ζ), ζ =
n↑ − n↓

n
, rs =

3

√
4πn

3
,
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where ζ attains values from 0 (spin compensated) to 1 (fully spin polarised). εc is

given by [38]:

εc(rs, ζ) = εc(rs, 0) + αc(rs)
f (ζ)

f ′′(0)
(1 − ζ4) + [εc(rs, 1) − εc(rs, 0)] f (ζ)ζ4,

f (ζ) =
[1 + ζ]4/3 + [1 − ζ]4/3

− 2
24/3 − 2

It is possible to simplify these expressions and aimpro uses such simplifications. More

information and details about the parameter values can be found in Perdew’s paper

which also states: "We recommend the use of these formulas in density-functional

and other calculations..." [38]. In DFT, this exchange correlation function has the short

notation PW92. It is one of the latest approximations and it is regarded as one of the

most efficient.

2.7 Generalised Gradient Approximation (GGA)

This is not used in the calculations presented later as GGA has been shown to

give inaccurate interlayer spacing in graphite [39] but it is valuable to acknowledge

another form of approximation, especially when it is an extension to LDA. For

the disadvantages mentioned in the previous paragraph, other exchange correlation

forms were found to move beyond the LDA notably through the addition of gradient

corrections ∇n to account for the non-homogeneity of the electron density.

Exc[n↑,n↓] =

∫
n(r)εxc(n↑,n↓)dr +

∑
σ,σ′

∫
Cσ,σ

′

xc (n↑,n↓)
∇nσ

n2/3
σ

∇n′σ

n′2/3σ

dr + ...

This form of functional is called the gradient expansion approximation. Unfortunately,

it does not improve the accuracy and can give worse results due to the missing

exchange-correlation hole properties, present in LDA [40]. Functionals that include

the gradient of the charge density and where the hole constraints have been restored
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are called generalized gradient approximations (GGA). It is usually written:

EGGA
xc = EGGA

x + EGGA
c ,

EGGA
x = ELDA

x −
∑
σ

∫
F(sσ)n4

σ/3dr

where F is the enhancement factor that directly modifies the LDA energy density for

a spin σ. sσ is usually interpreted as a local inhomogeneity of small densities. The

function can be complicated and will not be further discussed. The gradient-corrected

correlation functionals for EGGA
c are also complicated and can be found in papers

from Perdew, Perdew and Wang and Lee to just name a few [40, 41, 42]. Although

these improvements seem to give better total energies, the optimised structure is often

worse and at a greatly increased computational cost. Care should be taken when a

choice must be made between LDA and GGA. By introducing Van der Waals forces in

the energy functional on an ab initio basis, the interlayer binding energy of graphite

using GGA have been found to be similar to experimental values [43].

2.8 Kohn-Sham Orbitals (KS)

By keeping the number of electrons and spins of the system fixed, the KS orbitals

can be calculated by minimising the total energy, E, with respect to n(s). To do so,

one needs to keep the orbitals ψλ orthonormal, and apply the variational principle,

including the Lagrange multiplier Eλ.

E(n) −
∑
λ

Eλ

∑
s

∫
|ψλ(r)|2dr − 1


and by differentiating it with ψ∗λ(r), the KS equation becomes:

{
−

1
2∇

2
−

∑
A

ZA
|r−RA|

+ VH(r) + Vxc
sλ(n↑,n↓)

}
ψλ(r) = Eλψλ(r),

Vxc
s =

d(nεxc)
dns
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The self-consistent solution of this determines the ground state charge density of the

system. The HF orbitals, due to their lack of correlation effects, are not representing the

the real system correctly. Therefore the KS orbitals are recommended for qualitative

molecular orbital (MO) calculations although in KS theory, it is not possible to relate

the orbital energies to ionisation energies.

Discussion

Many comparisons have been made between DFT and similar methods based on the

molecular wavefunction but DFT seems to be a good cost-effective approximation to

get a certain level of accuracy [44]. However there are also downsides to this; DFT and

molecular orbital theory are different. MO theory optimises a wavefunction and DFT

an electron density. As already pointed out previously, the computational efficiency

of DFT is N3, with N the number of basis functions representing the KS orbitals,

compared to the N4 with HF theory or methods with a greater complexity (e.g. MP2,

MP3, CISD and others which are not discussed). Most DFT codes use the Kohn-Sham

self-consistency field (SCF) approach, but there are limitations to the KS formalism.

Its main advantage is to compute the kinetic energy for a single KS determinant but

in MO theory, some systems (e.g. transitions metals) are not always well described

with a single Slater determinant. This problem can sometimes be solved by using an

unrestricted KS formalism or by allowing the wavefunction to break spin symmetry

as in LSDA. A final disadvantage of the theory, as density functionals are approximate

for arbitrary molecular systems, is its difficulty to prove its accuracy if there is no

other answer for a particular problem. Fortunately, experimental datas exist for many

systems which DFT can be compared to. Despite certain failures in the model, DFT,

as an ab initio theory, is a method of choice and has proven to be accurate for many

aspects of different systems (energies, structures ...) [44].

2.9 Pseudopotentials

The use of pseudopotentials is to simplify calculations even further. It was first

introduced in 1935 [45]. An atom is constituted of core and valence electrons and the
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properties of a material are mainly governed by the valence electrons. Pseudopotentials

include all the core states into a bulk nuclear potential, only leaving the valence

electrons to be handled separately. For example, in carbon, the 1s electrons are

included in the nuclear potential. This approximation can have considerable effects

on the results:

• If all the electrons were included in the calculation, the total energy would be

very large and negative, and the comparison of two systems could return large

errors, resulting from the difference of two large numbers.

• In heavier atoms, the mass of the core electrons can be more significant than

the valence electrons.

• Including core electrons explicitly can make the fitting to a Gaussian or

plane-wave basis very difficult.

Pseudopotentials take into account the core states that do not take part in bonding and

it also deals with the interactions with the valence electrons. The pseudo wavefunction

should be reasonably close to the true wavefunction and few parameters should be

set while constructing a new pseudopotential:

• The real and pseudo valence eigenvalue fro the atom have to be equal.

• Beyond the core radius rc, the real and pseudo wavefunctions have to be identical.

• Beyond rc, the real and pseudo first energy derivatives agree.

The construction of pseudopotentials is not an easy task. Fortunately, for their

influence in DFT, different pseudopotentials have been made available. Bachelet et al.,

for example, studied the pseudopotentials from hydrogen to plutonium [46]. It was

first used with the aimpro package. In the new aimpro versions, the pseudopotentials

developed by C. Hartwigsen, S. Goedecker and J. Hutter are chosen [47].



Chapter 3

The Ab Initio Modelling PROgram

(aimpro) package

The aimpro code was first written by Professor R. Jones (Exeter University) and was

extended and rewritten several times by his former PhD student Doctor R. Briddon

(Newcastle University). It is a self-consistent density functional code. This chapter

provides details of aimpro theoretical approaches and the principal types of calculation

available in it. The package has many other tools available which are not necessarily

described here, more information is available elsewhere [48], with further theoretical

background in [49].

3.1 General aimpro

3.1.1 Self-consistency

A set of parameters are provided, by the user inside an input file, to meet a desirable

accuracy for the calculation. The position of each individual atom, using x, y and z

coordinates, is also given. From the types of atoms specified in this file, a starting

charge density can be guessed from a sum of the charge density of these neutral atoms.

The code uses a self-consistent method with an iterative approach. The Kohn-Sham

21
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equations have to be solved:

∑
j

(Hi j − EλSi j)cλj = 0

After optimisation, new wavefunction expansion coefficients cλj are found. Hi j and Si j

are matrix elements of the Hamiltonian and the overlap respectively. These are used

to calculate the new charge density. Each iteration gives a minimised total energy.

If the new charge density does not equal the previous one or is not equal within

the tolerance specified in the input files, then the new charge density is fed into the

equation again and the process is repeated, it is called a self-consistent cycle. When

the conditions are fulfilled the cycle ends and a minimum energy is given for the

current set of atomic positions. The final convergence can sometimes be difficult or

fail for various reasons. If this happens, aimpro gives the possibility to change a

few parameters such as the type of occupancy smearing to be used in populating the

Kohn-Sham levels -in our calculations we used Methfessel-Paxton [50]- or to give the

energy equivalent for an effective electronic temperature, kT (in eV) of the electronic

system.

3.1.2 Basis Set

aimpro uses charge density as the fundamental variable to its advantage. In order to

solve the Kohn-Sham equations, the Kohn-Sham spin orbitals need to be expanded

in a basis function. It is usually written:

ψλs(r) =

N∑
i=1

cλs
i φi(r)

where ci is the expansion coefficient. The number of functions N used and the choice

of the functions φi(r) limit the accuracy of this approach. There are two common

choices of basis function: plane waves and Gaussian type orbitals. A majority of

codes would use plane waves as they easily match periodic boundary conditions.

The function is written:

φi(r) = exp[iG
¯
· r

¯
]
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where r
¯

is the position vector and G
¯

is the propagation vector. Their use is equivalent

to making a Fourier transform of the wavefunction. There are many other advantages

of using a plane wave basis set but one of the main disadvantages is the large

number of functions needed even for a light atom. This increases even more when

heavier atoms or combinations of different species are studied in the same unit cell.

The consequence is a large memory usage and an increase in the time needed for

each iteration. aimpro uses the other approach, where the function φi is a localised

Cartesian Gaussian function written:

φi(r) = (x − Rix)n1(y − Riy)n2(z − Riz)n3e−αi(r−Ri)2

where n1, n2 and n3 are non-negative integers. Linear combinations of these Cartesian

Gaussian functions can be chosen to form other functions. These new functions can

be labelled as s−, p− or d−type. For example, if the sum of n1, n2 and n3 is zero

then the function is a s−type orbital. p−orbitals correspond to one of these integers

being one and the others zero.

This method is very efficient and can result in a calculation four or five times less

resource demanding than plane waves for an identical unit cell. In order to treat

difficult elements, such as transition metals, higher angular momentum functions

need to be placed on that atom without changing the basis sets for other elements.

Another advantage of localised orbitals is, even if the size of the system increases,

the Hamiltonian matrix does not become harder to solve, it becomes sparser and

amenable to linear scaling methodologies. Unfortunately, using a Gaussian basis

with a high number of functions requires fiddling with many parameters (exponents,

number of functions and location of the function centres), numerical noise can appear

and an ‘over-complete’ basis set can be produced. Another disadvantage of this

method compared to calculations using a plane-wave basis, is a fully converged total

energy of the system cannot be easily obtained. However, when energy differences

between two systems are compared, aimpro gives reliable results through cancellation

of errors. In a Gaussian basis, the coefficients of the functions and their exponents are

the two parameters to be specified for an individual atom. aimpro allows the users

to optimise basis sets. The package provides an optimal coefficient for an atom but
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the exponents αi have to be first guessed, then optimised a few times by the user to

minimise the energy. Most of the atoms in the first few rows of the periodic table

and their well-known molecules (e.g. Carbon dioxide, benzene and graphite) have

already been optimised and verified by former users of the code. The new users just

have to carefully choose the right basis set and only optimise a new one when it is

necessary.

3.1.3 Structural Optimisation

When approaching a new system, one of the first tasks, is to find the lowest energy

state from the unoptimised atomic positions. The easiest way is to calculate the forces

acting on each atom. They are individually moved to find a lower energy state and

a new structure is obtained. Once the energy has been minimised with regards to

the charge density, the eigenstates are known and the forces acting on each atom can

be determined. The forces are given by the Hellmann-Feynman theorem and can be

simply written [51, 52]:

FA = −
δE
δRAl

where FA is the force, RAl is the coordinate of the atom A and E is the energy. To

achieve the lowest energy state, a conjugate gradient method is used [53]. Each atom

is moved in the direction of the forces in the first iteration. Subsequent iterations have

the requirement that the new direction has to be orthogonal to all previous directions.

By using a mathematical function for the energy along the new direction, the distance

of the displacement is chosen to arrive at the position with a minimum energy.

Shewchuk wrote a detailed introduction on the conjugate gradient method [54].

One of the drawbacks of this approach is that the geometry optimisation can be

stopped in a local minimum (figure 3.1) which is different from the global minimum.

To avoid or to verify if a structure is not located in a local minimum, is not easy

to do rigorously but a practical method is to start with a slightly different initial

structure. It is often understood that a structural optimisation is a rearrangement

of the atom only but aimpro allows, like many other programs, the optimisation
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Figure 3.1: Scheme representing a local minimum

of the lattice parameters giving a zero pressure simulation. The choice can either

be to optimise the atom positions and the lattice parameters together or separately.

Figure 3.2 illustrates the route used by aimpro for a structural optimisation.

Figure 3.2: Schematic aimpro optimisation

3.1.4 Calculating Diffusion Barriers

Calculating diffusion barriers requires finding a saddle-point, similar to a local

minimum, between an initial and a final structure. In figure 3.1, there is an energy

barrier between the local minimum and the global minimum (i.e. lowest energy).

This method gives an accurate energy for the barrier to go from one structure to the

other. There are four available techniques in aimpro. The more appropriate technique

chosen in the later calculations is called Nudged Elastic Band (NEB) [55, 56]. The

coordinates of the initial and final structures are given by the user, an additional

structure of the transition state can be given too. From these, a series of images

is built by creating a path by linear interpolation, the more images the better the
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approximation so as to avoid abrupt changes in bonding which could represent a

poor approximation. The atomic positions are optimised for each image created using

forces modified to ensure an uphill energy direction. Additional forces are included

between adjacent images as though the images were connected by elastic bands. NEB

calculation should be run with care because it is easy to use large amounts of CPU,

often to no great effect and the saddle point can be missed in the linear interpolation.

When a calculation is finished, aimpro gives the possibility to restart from the latest

coordinates, to implement more images between the ones from the previous run and

to also find the structures of the saddle point, confirming that the Hessian has one

and only one imaginary eigenvalue.

3.1.5 Band structure (BS)

When studying solids, it is quite often important to look at the energy levels. For Bloch

functions, this yields a band structure E(k
¯
) (see later equation 3.1). The occupation

limit is given by the Fermi level. The wavevector k
¯

takes on values within the

Brillouin zone (BZ) corresponding to the crystal lattice. The BZ is the region where

every eigenstate of an electron can be represented. Its shape is connected to the

symmetry of the crystal and its irreducible representation is the zone reduced by all

the symmetries in the point group of the lattice. More information can be found in

the appendix A. It is always defined with known points, usually labelled by Γ,∆,Λ,Σ

and others. Another program, called aimview, allows visualisation of any molecular

orbital or Bloch function; to analyse its composition in the system (see picture 3.3)(e.g.

px, py or pz orbitals).

Figure 3.3: Side view of a Bloch function from a graphene band
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3.1.6 Other type of job

Another possibility is to run a Mulliken analysis [57]. One of the useful properties of

a molecule or a solid is its charge or spin density distribution. This analysis estimates

the valence electron population associated with each atom. The sum of the Mulliken

charges is equal to the total number of electrons in the system and the Mulliken

spin density is calculated from the difference of the Mulliken charges of spin-up and

spin-down electrons. Its sum equals the total spin of the system.

The second derivative energy of a system can be computed to find the vibrational

modes of individual atoms. An atom a is moved by a distance ±d along the cartesian

vector m, the charge density is then recalculated giving the forces, f±(l, a), on each

atom in each direction, l. The double derivative D is written:

D =
f +(l,a) − f−(l,a)

2d
=

δ2E
δrlδrm

3.2 Cluster or Supercell

aimpro gives the possibility to choose between a cluster or a supercell mode. A

cluster run is designed for the simulation of an isolated, finite atomic assemblage

and a supercell run is used to simulate an infinite, crystalline material by exploiting

periodic boundary conditions.

3.2.1 Cluster

The cluster mode was the only one available in the first versions of aimpro. It is

mainly used for molecules which cannot be described as a crystal. It can also simulate

parts of a crystal but each edge of the cell must be terminated with atoms of hydrogen

to saturate the dangling bonds. There are some issues using this method. Hydrogen

atoms tend to give an overestimate for the band gap compared to experimental

values and also increase the computational time. There are few advantages of using

the cluster mode, but one is the speed. Another is if the symmetry of a system is not

supported in a supercell run since only 2, 3, 4 and 6 fold symmetries are possible.
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So a molecule with a C5 axis cannot, in theory, be optimised in a supercell without

compromising its symmetry. Another advantage, and not the least, is the ability to

give a charge to a molecule whereas in a supercell, charge must be compensated

with an opposite charge spread over the whole lattice. A distinct disadvantage is the

default functional, which is a Padé approximation to the PW 92 functional [48]. GGA

calculations cannot be performed under a cluster run.

3.2.2 Supercell

The supercell method is the most widely used in the calculations presented later and

is more convenient for studying bulk systems. It can model a crystal by repeating one

unit cell in the three lattice vectors directions indefinitely. To make it more efficient

a primitive unit cell, i.e. the smallest possible cell to be repeated to form a crystal

should be used. When using periodic boundary conditions, Bloch’s theorem should

be applied [58]. It states that the wave function, ψk(r), is a product of plane waves

eik
¯
.r
¯ and a periodic function of the lattice υk(r) that has the same periodicity as the

potential:

ψk(r) = eik
¯
.r
¯υk(r) (3.1)

In aimpro, the plane waves are used for the charge density and an expansion in the

Gaussian basis set is used for generating wave functions. aimpro uses the functional

PW92 (LDA) as default in supercell mode and if GGA is required it must be specified

in the input file. The GGA functional is PBE96 [59]. One option is to use the real

space build for the Hamiltonian matrices [60]. Using this parameter typically results

in considerable speed gain when the lattice vectors are orthogonal. And if they are

orthogonal then the real-space build is effective for even quite small systems, but for

other lattice types, more atoms are required to obtain an advantage. The disadvantage

of this technique is that it requires the usage of more memory.
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Should I run cluster or supercell mode?

The question must be asked depending on the computer resources available and the

accuracy needed for a certain job. But nowadays, even desktop machines are powerful

enough to run supercell mode. Also, when simulating molecules and clusters, it may

still be best to use the supercell modes, introducing vacuum between each repeated

cell. It is often referred to as the ’cluster in box’. The vacuum (fictitious environment)

between ‘repeated’ cells must be sufficiently large that no significant interaction is

present. This method allows to simulate molecular systems using the GGA-PBE

functional.

3.2.2.1 k-points sampling mesh

A supercell run invokes the Kohn-Sham equations to be solved in reciprocal space,

also called k-space. k-space is a Fourier transform of real space. The real space, with

lattice vectors ~a1, ~a2 and ~a3, has a reciprocal space, with lattice vectors ~b1, ~b2 and ~b3.

One can be calculated from the other using the equation:

~ai •
~b j = 2πδi j

where δi j is a Kronecker delta function. From the equation 3.1 of Bloch’s theorem,

the value of ~k gives the periodicity of the wavefunction ψk(r) and its whole range of

wave vectors defines the k-space. The energy of a free electron E(~k) is directly related

to ~k:

E(~k) ∝| ~k |2

To summarise, each point k in the k-space has a wavefunction ψk, with an eigenvalue

Ek, and it provides a solution of the Kohn-Sham equations. In DFT, a solution of the

Kohn-Sham equations is given for each ~k in the BZ. The sampling of every k-point

would result in ‘infinite’ job, and it is not required for a good approximation of the

BZ. aimpro uses a method developed by Monkhorst and Pack [61]. It chooses a set

of ‘special’ k-points for sampling the BZ. A product MxxMyxMz of integers, often
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called a grid and chosen by the user, represents three different, usually orthogonal,

directions of k-points and it allows to cover the whole BZ. In order to get the lowest

energy state and a good accuracy, a high number of k-points is required although

more computational time is needed. The table below shows the convergence of the

total energy for the primitive unit cell of graphite (4 atoms) with respect to k-point

density and computational time. A good balance must be found between decent

convergence and the number of k-points.

k-points grid k-point mesh density Total energy (Ha/unit cell) Time per iteration (s)
2x2x2 2 -22.89826 0.20
8x8x4 40 -22.84591 0.84
12x12x6 126 -22.84600 2.38
16x16x6 216 -22.84595 3.89
24x24x6 468 -22.84595 8.27

Table 3.1: Convergence of a four atom unit cell with respect to the k-point mesh
and the time required per iteration

The reason why the sampling, in graphite, in the c direction is not as important as the

other direction is because the lattice parameter is bigger, hence a smaller reciprocal

lattice vector in this direction. On the contrary, in the hexagonal basal directions,

the reciprocal lattice vectors are bigger, requiring more k-points in this direction to

broadly maintain the same k-point density in reciprocal space.

3.2.2.2 Size effects in Supercell

As mentioned earlier, it is preferable to run a supercell calculation. But the size of

the unit cell is important when certain defects are introduced in the solid in order to

avoid undesirable interaction between the repeated cells. An easy way to realise if

there is an interaction is to increase the size of cell and compare the energies. It would

obviously be simple to just use a huge unit cell but the computational cost would

largely increase. Another reason why the size of the cell is important is because the

concentration must be as close as possible to a real system. If an impurity is less

than 1% in a crystal, a unit cell of at least a 100 atoms is necessary. Another group

has looked at the effects of unit cell size in well known materials [62]. It was found

that a certain size was sufficient enough for a converged geometry optimisation and

formation energy, but a much bigger cell was required for calculation of ionisation
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levels. Typically in this work, cell of 20–300 atoms have been used.



Chapter 4

Graphitisation

The chapter will essentially focus on the graphitisation process itself and the

mechanisms involved instead of the techniques used to describe them. These will be

discussed in a later chapter (see chapter 5). Research on the formation of graphite

has been an ongoing subject for almost a century and several questions remain to be

answered. Many scientists have contributed to understand the chemistry and physics

of such a complex reaction and a vast array of information is available. A subset paper

related to the work will be introduced here. The figure 4.1 is a simple representation

of the high temperature process.

Figure 4.1: Marsh-Griffith Model for the graphitisation process, taken from [63]
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4.1 Important definitions

To avoid confusion between the very similar terms used in graphitisation, their

definitions are introduced here. They were validated and published by the

International Union of Pure and Applied Chemistry [64]:

4.1.1 Graphitic Carbon

“All varieties of substances consisting of the element carbon in the allotropic form

of graphite irrespective of the presence of structural defects. The use of this term is

justified if three-dimensional hexagonal crystalline long-range order can be detected

in the material by diffraction methods, independent of the volume fraction and

the homogeneity of distribution of such crystalline domains. Otherwise, the term

non-graphitic carbon should be used.”

4.1.2 Non-graphitic Carbon

“All varieties of solids consisting mainly of the element carbon with two-dimensional

long-range order of the carbon atoms in planar hexagonal networks, but without

any measurable crystallographic order in the third direction (c-direction) apart from

more or less parallel stacking. Some varieties of non-graphitic carbon convert on

heat treatment to graphitic carbon (graphitisable carbon) but some others do not

(non-graphitisable carbon).”

4.1.3 Graphitisable and non-graphitisable carbon

“Graphitisable carbon is a non-graphitic carbon which upon graphitisation heat

treatment converts into graphitic carbon. Non-graphitisable carbon is a non-graphitic

carbon which cannot be transformed into graphitic carbon solely by high-temperature

treatment up to 3300K under atmospheric pressure or lower pressure.” These terms

were introduced by Franklin and were then used by every author [65].



34

4.1.4 Graphitisation

“It is a solid-state transformation of thermodynamically unstable non-graphitic carbon

into graphite by means of heat treatment. Graphitisation is also used for the

transformation of metastable diamond into graphite by heat treatment, as well as in

metallurgy for the formation of graphite from thermodynamically unstable carbides

by thermal decomposition at high temperatures. Such uses of the term graphitisation

are in line with the above definition. The use of the term graphitisation to indicate

a process of thermal treatment of carbon materials at T>2500K regardless of any

resultant crystallinity is incorrect.” Note: The first line of this definition describes the

process studied here.

4.1.5 Carbonisation

“It is a process by which solid residues with increasing content of the element

carbon are formed from organic material usually by pyrolysis in an inert atmosphere.

Carbonisation is a complex process in which many reactions take place concurrently

such as dehydrogenation, condensation, hydrogen transfer and isomerisation. It differs

from coalification in that its reaction rate is faster by many orders of magnitude.

The final pyrolysis temperature applied controls the degree of carbonisation and the

residual content of foreign elements.”

4.1.6 Catalytic graphitisation

“It refers to a transformation of non-graphitic carbon into graphite by heat treatment in

the presence of certain metals or minerals. Catalytic graphitisation gives a fixed degree

of graphitisation at lower temperature and/or for a shorter heat treatment time than

in the absence of the catalytic additives (or a higher degree of graphitisation at fixed

heat treatment conditions). Often it involves dissolution of carbon and precipitation

of graphite at the catalyst particles so that non-graphitising carbons can be graphitised

by this procedure.”
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4.2 How to make graphite

The process of making graphite was discovered around 50 years before its crystal

structure. It was first synthesised by Edward Goodrich Acheson by heating silicon

carbide (SiC) to high temperature. The range of carbon based materials, used as starting

materials to form graphite or partially graphitised carbon under high temperature is

wide. However the initial product used should be relative to the final product required.

Some materials are contaminated with impurities and they can have undesired effects

during the process. To produce blocks of graphite for nuclear reactors, coke particles,

derived from petroleum (figure 4.2) and coal tar pitches, are often used as fillers. They

are used to avoid volatiles, which can introduce the formation of distortions or cracks.

Pitch is used as a binder because it gives a residue similar to cokes after carbonisation.

The controls of the particle size of the filler and the mixing ratio of the filler to the

binder are of great importance depending on the material application. However let

us not forget that not every graphitisation is intended for nuclear purpose and many

experiments use other starting materials. Over decades, researchers have looked at

different materials to understand the process. They tried to investigate why certain

materials can graphitise and others cannot. Some questions are still unanswered but it

is well understood that the precursors used predetermine the characteristics of primary

carbonisation and the later processes. In the following, the different graphitisation

precursors and their behaviour are discussed with reference to key publications in

the development of this science.

Figure 4.2: Picture of a petroleum pitch coke
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4.3 Graphitisable carbons versus non-graphitisable carbons

From the definition in 4.1.3, we understand that temperature is not the only factor

that allows a material to graphitise. Different precursors show different properties at

the same temperature (figure 4.3). They tend to be divided into two categories after

they undergo pyrolysis. Only some materials will be discussed with a clarification

on why they have the capability to graphitise or not. The pioneer in this field was

R.E. Franklin and a summary of her studies on graphitisation can be found in her

paper for the Proceedings of the Royal Society, published in 1951 [66].

Figure 4.3: High resolution transmission electron microscopy (HRTEM) image and
their selected area diffraction (SAD) patterns of two different carbons heated to the
same temperature: left) sucrose, right) anthracene, taken from [67].

4.3.1 The different precursors

Coal had a big impact on Britain’s economy during the second world war and a lot

of work was attributed to it. It is a solid but brittle carbonaceous black sedimentary

rock but it can also be synthesised. It contains mostly carbon but has impurities such

as hydrogen, oxygen, nitrogen and sulphur. All coals are porous to different extents

and many of their properties depend on it. In 1949, experiments demonstrated that

coal was acting like a molecular "sieve" [68]. Franklin et al. calculated that the density

of a coal of zero hydrogen would be 1.85 g/cm3 and arrived at the conclusion that

coals cannot be graphitic in nature. The different types of natural coal are shown in

table 4.1. Anthracite is the hardest with high carbon content.

Not all coals are graphitisable and this usually depends on their carbon concentration.

Anthracite, for example, is used as a precursor for nuclear purposes. Petroleum is a
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Types of coal Carbon %
Lignite 25-35%
Sub-bituminous 35-45%
Bituminous 45-85%
Anthracite 85-95%

Table 4.1: The four types of Coal [69]

natural complex mixture of various hydrocarbons with a vast number of impurities.

It has a carbon concentration between 80–90%, hydrogen between 10–20%, oxygen,

nitrogen and sulphur are usually <2% but sulphur can sometimes be higher. It is

used in many industrial applications such as fuels, lubricants and other. Asphalt,

also known as bitumen, is a form of petroleum which is used to form the pitch for

the binder. These forms of carbon are considered graphitisable carbon. They are

precursors used for nuclear graphite but many other materials can graphitise. A short

list of graphitising and non-graphitising carbon is shown in table 4.2.

Graphitisable Non-graphitisable
Petroleum Coke Most Resin
PVC (polyvinylchloride) Saran (polyvinylidenechloride)
Pitch coke Cellulose
Coal Tar pitch Coal (83.1% C)
... ...

Table 4.2: Classification of the graphitising and non-graphitising carbons according to
references in this chapter.

Most resins, from plants (e.g. trees), are declared as non-graphitising carbon but they

can be used to make pitches, thus indicating that not all pitches are graphitisable and

confirming the importance of the precursors.

4.3.2 Pyrolysis

Pyrolysis is a thermolysis of organic materials. In other words, it is a chemical

decomposition caused by heat. The process is irreversible and usually produces gas

and liquid, leaving solid residues richer in carbon content, char or coke. Carbonisation

is the result of high temperature pyrolysis with carbon residue above 90 wt.% at 1400 ◦C

and ∼ 99 wt.% at 1800 ◦C. Char is a solid decomposition product of an organic material

-synthetic or natural- resulting from a precursor which has not passed through a fluid

stage. The shape of the char would be similar to the shape of the precursor but smaller
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in size. It cannot be transformed into crystalline graphite even at temperatures around

3000 ◦C. For example, sugar melts and then polymerises to produce chars. Charcoal is

the term used for char obtained from wood, peat or coal. Coke, in contrast, is a solid

product which has passed through a liquid or liquid crystalline state during pyrolysis

(or carbonisation). It is in a non-graphitic state which has the ability to graphitise

around 2200 ◦C. The term coke can sometimes be used to describe a graphitisable

carbon before the beginning of graphitisation. This indicates that the result of a

pyrolysis from organic materials is the first stage that will indicate if a precursor

is a graphitising carbon or a non-graphitising carbon. Pitch is also a residue from

pyrolysis which is solid at room temperature and is mainly made up of aromatic

hydrocarbons and heterocyclic compounds. It originates from different treatment

of different precursors. They have a broad softening range (600–900 ◦C) depending

on their compositions, and when cooled, they solidify without crystallization. For

example, petroleum pitches are obtained by treating the residues of refinery distillation.

Tar is a by-product from the coke production and can be obtained from either coal

or petroleum. Tar is sometimes confused with pitch although tar is more liquid and

pitches can be made from tar (e.g. coal-tar pitches).

4.3.3 Structure of non-graphitising carbon

Franklin gave her understanding of why such products could be classified into two

categories. She started by stating that non-graphitising carbons contained a lower

concentration of hydrogen and a higher concentration of oxygen. During the process

this class develops, at low temperature, cross-linkers between small crystallites which

prevent them to move and to rearrange themselves at a later stage. The final structure

is hard, shows a high amount of large porosity and no sign of large crystallite structure

(usually coherence lengths no more than ∼ 70 Å) even when the temperature has

exceed 3000 ◦C. In contrast, the concentration of hydrogen is more important in

graphitising carbons. The cross-linkers formed at the early stages are weak and

do not interfere in the mobility of the small crystallites. The porosity is minimal

and large crystallite structures are already visible at around 2000 ◦C. Her conclusion

is that crystallite growth depends on the rearrangement of whole layers together



39

Figure 4.4: Harris’s proposed structure for non graphitising carbons, taken from [72]

and not by isolated atoms or small group of atoms. The theory of the existence

of small crystallites containing a few layer planes which are joined together by

cross-links was also described by Oberlin [70]. Although the process cannot be

refuted, the theory is weakened by the unspecified nature of the cross-linkers. Some

work, using lattice-imaging electron microscopy, proposed structures constructed from

curved sheets of graphite made of hexagonal rings enclosing voids [71]. This proposed

structure was also rejected, due to their ability to fold strongly together in order

to reduce surface energy at higher temperature [72]. The presence of sp3 carbons

was rejected due to their propensity to become sp2 at temperatures around 1700 ◦C

(transformation of diamond to graphite). Another theory had to be found. The

discovery of fullerenes in 1985 and the new improvement in transmission electron

microscopy (TEM) opened new perspectives for the structure of non-graphitising

carbon.

Using high resolution TEM, Harris et al. showed the presence of closed structures

(hollow nanoparticles) in non-graphitising carbon heated up to 2300 ◦C [73]. They

believed that non-graphitizing carbons contain pentagonal carbon rings (in high

concentration), as well as other non-six-membered rings, forming lots of fragments

instead of continuous sheets. The conclusion of his paper suggests that fullerene-like

structures (as shown in figure 4.4) are the reason some carbons can graphitise and

others cannot. Zhang et al. used electron energy loss spectroscopy to show the presence

of curved layers containing fullerene-like bonds, which are critical for the formation

of closed porosity within the structure and find agreement with the structural model
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for non-graphitising carbons proposed by Harris et al. [74]. The broad overview

given above, of the possible structures established for non-graphitising carbon, can

be summarised with general rules. Apart from few exceptions (e.g. anthracites)

non-graphitising carbons tend to be:

• Hard

• Low density materials

• Microporous structures

• High in Oxygen/Sulfur (cross-linkers)

They are of great interest due to their ability to produce activated carbon. These types

of carbon are used in water purification, metal extraction, medicine and many other

applications [75].

4.4 The first and second carbonisation

In the previous sections, the result of pyrolysis on different organic materials was

reviewed and it was shown that pyrolysis is a major step for the rest of the

graphitisation process. In fact, the degradation of organic materials correspond to the

formation of aromatic molecules and a release of volatiles while the carbon content of

the residue increases. The chemistry and the molecule/crystallite shapes involved from

300 ◦C up to 2000 ◦C is discussed here. For lower temperature, an extensive review

written by Richter and Howard on the formation of polycyclic aromatic hydrocarbon

(PAH) could be an attempt to describe the process [76]. Even though the optical

anisotropy of coke was first described around 1930, it is only later that Brooks and

Taylor recognized the development of mosaic structures during this stage [77]. They

reported the appearance and growth of spherical bodies in the plastic carbonaceous

material. The spheres have an initial size of ∼0.1 µm and can expand to 2 mm with

further heating (figure 4.5). They are mainly made of aromatic compounds. The

same group later found that every graphitising carbon from different precursors form

similar mosaic structures composed of these spherical bodies, but their nature and

their growth modes are different.
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Figure 4.5: Spherical bodies during the mesophase, taken from [77, 78]

In order to understand what happens, it is crucial to remember that the molecules

in the precursors are constituted of aromatic rings. The growth of the spheres begins

at a temperature where the materials are in the liquid phase or in the mesophase

(transition between liquid and solid phase). A general path is that mesophase spheres

appear at the temperature for which viscosity is at a minimum, but still in a plastic

phase. They merge and form a bulk mesophase (right picture in figure 4.5). The

aromatic hydrocarbons in a typical coal tar pitch vary in molecular size and shape.

They can have alkyl side chains and contain heteroatoms such as nitrogen and

sulphur. Edstrom and Lewis studied a large number of polynuclear aromatics and

stated that the steric conformation and planarity of the starting material influenced

the structure of the final carbon and graphite [79]. Other experiments showed that

these properties only apply to a limited group of intermediate molecules or to free

radicals when they reach the size of several rings [80]. To elucidate the process,

researchers concentrated their effort on the polymerisation process. It seemed obvious

to them that small aromatic structures are polymerised to produce bigger ones which

ultimately achieve the three dimensional order of graphite. Lewis explained that the

polymerisation process goes through stages which may or may not be simultaneous:

C-H and C-C bond cleavage to form reactive free radicals, molecular rearrangement,

thermal polymerization, aromatic condensation and elimination of side chains [81].

The number of polymerisation sites in an aromatic molecule makes the carbonisation

process really complex to understand. Some experiments give an idea of the possible

mechanisms for the polymerisation process of anthracene, one of the many PAH

compounds [82]. Experiment on the spheres before their coalescence, using dark field

(DF) TEM, showed that aromatic molecules stack together and can have a range of

interlayer spacings of around 3.44 Å in soft carbons. These values can be considerably
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increased when a char is studied [83, 84]. From the DF images, it was calculated

that the aromatic molecules’ mean diameter and thickness are about 8 Å. This means

the molecules at this stage have less than 10 aromatic rings (e.g. ovalene) and form

no more than three layers before the semi-coke stage. This was called the Basic

Structural Unit (BSU) by the authors and the term BSU is now widely used. It should

be noted that the semi-coke stage still contains volatiles and is just the result of an

incomplete carbonisation. The polymerisation process described above carries on. A

computational study was performed for polynuclear aromatic hydrocarbon molecules

in pitches such as ovalene and coronene using molecular mechanics [85]. They looked

at possible configurations for BSU. It was found that homogeneous and heterogeneous

dimer or trimer clusters have a strong preference for face-to-face orientation. They

form a parallel stack with layers shifted with respect to each other like in normal

graphite. The interlayer spacing between layers is 3.4 Å on average. Interestingly, if

a fourth layer is added, it will prefer to orient perpendicular to the stack such that

its face is against the edge of the stack.

Figure 4.6: Lattice fringes after spheres coalescence (left) and LMO columns (right),
taken from [86]

When the BSUs coalesce, it is found that a structural disorder suddenly happens so

the peculiar short range order is destroyed and replaced by a nematic order before

it gets restored [87]. The bulk mesophase is thus made of BSUs orientated nearly

parallel. They begin to form columns which are not coherent with each other and the

distorted piles of molecules are in complete disorder, this is called the local molecular

orientation (LMO). The two pictures, figure 4.6, show the appearance of LMOs. The

bulk mesophase remains viscous to around 1000 ◦C until, with loss of more volatiles,

it forms green coke, which is the first solid product of the carbonisation. This is the
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end of the first carbonisation and the beginning of the second carbonisation starts. All

the light molecules have disappeared but the BSUs are not free of edge groups. The

second carbonisation is expected to end at around 2000 ◦C. This stage can be described

as a growth of the layer diameter which can be determined by either the size, the

shape, the crystalline order or the arrangement in space. It is often seen as two distinct

steps: the formation of small columns of fringes which trap a single disorientated BSU

between them (up to 1500◦C) and the formation of stacks of distorted layers in a zigzag

shape after BSUs disappear. Different techniques are used and each of them provides

different information regarding the crystallites (see chapter 5). Many measurements

on many different graphitisable carbons were studied and they all show a similar

behaviour. Emmerich studied the evolution of the crystallinity in carbons with heat

treatment [88]. He showed that the growth of the size of the crystal happens by a

small in-plane growth of crystallite, followed by the plane coalescing along the c-axis

and finally by the coalescence of crystallites along the a-axis. The latter can often

happen in the final stage (see section 4.5). Figures 4.7 shows lattice fringe TEM images

and represent the growth of the layer in the a direction and the stacking ordering.

The evolution with HTT of the number of crystallites and the total volume occupied

by the crystallites was determined. From an atomistic point of view, it starts with the

release of heteroatoms and makes the lattice vulnerable to impurity effects [89]. The

formation of dangling bonds is expected and only then BSUs can start to rearrange

together and form distorted layers. These distorted layers can form pores and these

pores can often trap molecules. With higher temperatures, the distorted layers become

more and more flattened. Some remaining defects are removed. The process ends

when most of the physical properties change/appear. The materials go from brittle

to ductile. Finally, the second carbonisation stage is sometimes seen as if each layer

is similar to a crumpled sheet of paper which then partially or totally becomes flat

(non-crumpled). So the carbonisation process cannot be described without taking

into account the progressive association of more and more neighbouring elementary

domains for the crystal growth.
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Figure 4.7: TEM image of: left) the distorted layers, right) Almost perfect flat sheet,
end of second carbonisation, taken from [83]

4.5 The final step: Graphitisation

The final ordering of the planes occurs in the stage called ‘final graphitisation’.

Depending on the material and the method of graphitisation used, this stage might

not be necessary. It can reach temperatures of up to 3500 ◦C if required. If there

are any twist boundaries between the layers, the final high temperature treatment

would reorientate the boundaries (figure 4.8) and allow the interlayer spacing, d002, to

decrease from 3.44 Å to 3.37 Å. In the graph of figure 4.9, there is an inflection point

near 2100◦C representing the polygonisation and sudden perfection of graphite sheets.

It should be pointed out that the natural graphite value, 3.354 Å is never obtained.

Quite often this stage shows an important growth in the plane direction.

Figure 4.8: Graphitised carbon at 2900 ◦C, taken from [83]

For further detail the reader is directed to an excellent review of the carbonisations and

the final graphitisation written by Oberlin [22]. The interlayer spacing is often used to

establish the completion of the graphitisation and authors use different mathematical

relationships to express their results.
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4.5.1 The graphitisation order

After Franklin’s discovery, a lot of effort was put into finding a relationship between

the experimental value of the interlayer spacing d002 and the "ordering parameters".

Several authors have introduced different terms to correlate them and the most common

ones are reviewed:

1) p = the probability that two neighbouring layer planes are disorientated with respect

to each other is deduced from the equation:

d002(Å) = 3.440 - 0.086(1-p2)

where 3.440 Å is the interlayer spacing for non-graphitic graphitising carbon. The idea

is that the average value d002 lies between 3.354 Å (highly crystallized graphite) and

3.440 Å. An intermediate spacing value of 3.397 Å for disorientated layers sandwiched

between orientated layers is also considered. The 0.086 coefficient is just the subtraction

of the two extreme values [65].

2) P1 = the probability that the graphite orientation is between two neighbouring

layers planes. Here, each pair of nearest neighbour layer planes reorders separately

from others neighbouring layers [90]. P1 is calculated using the equation:

d002(Å) = P1a3 + (1-P1)a′3

where a3=3.354 Å and a′3=a3(1+Z1) (where Z1 is the distortion in a3 produced by the

presence of distorted layers planes, this equation can become:

d002(Å) = 3.440 - 0.086P1

if a3=3.354 Å and a′3=3.440 Å [90]. P1 should be measured by hk band modulations.

The table 4.9 below is taken from reference [25] and shows the experimental correlation

between d002 and the probability P1 for different starting materials.

3) g = the degree of graphitisation, a coefficient measuring the fraction of carbon layers

modified by the graphitisation process with a spacing of 3.354 Å [91]. A partially

graphitised carbon consists of graphitised and non-graphitised layers. Thus the idea of

the graphitisation of the stacks of layers is replaced by the idea of graphitisation of the

elementary layers. The coefficient g measures the fraction of carbon layers modified
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by the graphitisation process and having a spacing of 3.354 Å. This coefficient is

deduced from a measurement of d002 [91].

d002(Å) = 3.440 - 0.086g

Maire and Mering, from an x-ray investigation of polyvinyl chloride char, suggested

that the probability P1 is related to g by the relation P1=g2. It was shown later this

equation is only valid for PVC. Thrower suggested that g should not be used as it is

just confusing and another way to describe the other definitions [92]. If the first two

methods are compared, it is obvious that a problem arises. Their definitions mean

that P1=1-p, whereas their equations suggest that P1=1-p2. One difference between

the two equations is that Franklin introduces a third possible spacing (non-linear

relationship) while Houska uses only two (linear relationship) [65, 90]. It should also

be considered how these parameters are obtained, either from the modulation of the

hk bands or from the mean interlayer spacing.

4.6 Induced graphitisation

4.6.1 Catalytic graphitisation

Quite often, catalytic graphitisation tends to have a consequential amount of residual

catalytic material which is not convenient for industrial purposes. Nevertheless,

Figure 4.9: Left: The d002 decrease in the final graphitisation, right: the degree of
graphitisation of some carbon materials, taken from [25]
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if the graphitisation temperature can be decreased, or a more perfect polycrystal

can be manufactured with help of a catalyst, it can certainly have a great impact.

The additional metals are not the only parameters to influence the process and other

experimental conditions such as the type of carbon (graphitisable or non-graphitisable),

the particle size, the catalyst concentration as well as its structure (i.e. the element or

one of its compounds) and the temperature treatment should always be considered.

The aim here is not to discuss every possible metal catalyst: one of the first reviews [93]

and another later [94] give a broad overview of those. Instead, we will summarize

their catalytic effects. Oya and Marsh divided them into four different categories but

we will regroup them in three [95].

• The G-effect:

A d002-spacing of approximately 335.4 pm and a crystallite height Lc above 50 nm

inside a usually non-graphitising carbon can be obtained. One of the principal

catalysts is iron.

• The TS effect:

A turbostratic carbon is obtained here with a d002-spacing around 340.0pm and

Lc approaches a few nanometres. The structure is not changed even with further

heating. One of the metals is nickel.

• The A effect and the TN effect:

A more homogeneous crystal with various values of d002 is obtained. The in-plane

defects within the crystallites hinder the growth. The catalyst (e.g. boron) reacts

with these defects and allows some rearrangement in the A effect. In the TN

effect, the catalyst (e.g. calcium and magnesium) react with cross-linkers between

layers.

4.6.2 Graphitisation under pressure

Man-made graphites are always less crystallised than natural graphite because natural

single crystal graphite undergoes a preliminary strain in carbonaceous rock by tectonic

stresses. It is produced at temperatures between 300 ◦C and 500 ◦C and pressures of
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400 to 500 MPa [96]. Experiments under pressure or/and stress have been carried out

in order to reproduce the natural environment. It was first reported that graphitisation

under reduced pressure or in vacuum increases the temperature for the rearrangement

of the layers and also the interlayer spacing [97]. The same authors then showed

that high pressure accelerate the process. Pressure of 1 GPa lowers the graphitisation

temperature, remarkable changes appear around 1500 ◦C and even a non-graphitising

carbon reaches its ‘graphitised’ structure at a temperature lowered by 1000 ◦C compared

to normal [98]. In another experiment and under a different pressure (500 MPa),

non-graphitising carbons showed an intermediate phase (turbostratic) at 1100 ◦C with

an increase of these structures until 1600 ◦C [99]. When heat-treated under the

same pressure but at higher temperature, this phase is suddenly transformed into

graphite.

4.7 Manufacturing Process for nuclear purpose

Here the steps involved in graphite manufacture are reviewed, with a nuclear graphite

used as an example. The raw materials and pitch binders are combined together to

form a homogeneous mix, usually at a temperature up to 150 ◦C. The raw coke is then

calcined to 1300 ◦C for a few hours. Some impurities are removed and the material

develops a small crystal structure. By crushing the mixture, a range of particle sizes

are formed and fine ‘flour’ grains are mixed with larger grains and coal-tar pitch at

temperatures up to 170 ◦C. Different methods are used to extrude the new mixture.

This process introduces a preferred orientation in the product. This is due to the

anisotropy of the graphite lattice. One of the longest steps (∼ 4 weeks) is the baking

process which goes up to 1000 ◦C in order to convert the binder pitch to coke. Some

of the gaseous volatiles are removed. The resulting carbon block is mostly amorphous

carbon (∼ 1.55 g cm−3 density with porosity of about 25%) [100]. Baking is followed

by pitch impregnation. It can often be rebaked in order to improve some properties,

notably density. The next step is the final graphitisation. The material is heated

in an Acheson type furnace. It requires electrical heating in the absence of air to

temperatures in the range of 2600–3000 ◦C for approximately four weeks, followed by

slow cooling over several days. The final step is the purification either by chemical
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or thermal purification. Chemical purification involves heating the graphite blocks in

a halogen atmosphere. This removes impurities such as rare-earth metals, vanadium,

and boron to less than 20 ppm. The figure 4.10 represents the process in a simplistic

way.

Figure 4.10: Manufacturing process



Chapter 5

Experimental techniques to evaluate

graphite crystals

Structures of carbon materials have been characterized by many different experimental

techniques. Throughout the graphitisation process, graphite has been studied via x-ray

diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy.

Some other techniques such as infra-red (IR) and electron spin resonance (esr) were

also used but only for specific stages of the process. Much information on the structure

and evolution of the materials can deduced from these techniques. They give access

to important parameters which reveal how perfect, or not, a graphite crystal can be.

The aim of this chapter is to summarise some of the main techniques, discussing their

pros and cons and by relating them to some of the experimental works.

5.1 Diffraction

Wide angle x-ray diffraction is one of the quickest, easiest techniques and also the

most applied technique to characterise the crystal structure. It is a simple way to

measure the interlayer spacing d002 and the coherence lengths Lc and La. To obtain

these, an x-ray diffraction pattern of graphitic carbons gives distinct reflections of

the (00l) and (hk) bands, but unfortunately non-negligible final value errors -up to

20%- can result if approximations are made or careful measurements are not carried

out.

50
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Historically, it all started when a group of workers passed beams of x-rays through

crystals. They discovered a pattern of dark spots on a photographic plate placed

behind a small crystal [101]. A theoretical approach to these patterns was introduced

by the Bragg’s equation [102]:

2d sinθ = nλ

where d is the interplanar distance, θ is the scattering angle, n an integer and λ the

wavelength. This equation is still used nowadays. Later, Scherrer studied the effect

of crystallite size on the width of x-ray diffraction peaks [103]. He postulated the

equation:

L =
Kλ

B cosθ

where L is the crystallite size, it is usually referred to the direction perpendicular to

the lattice planes (i.e. Lc for the 002 peak), K is a numerical factor frequently referred

to as the crystallite-shape factor (∼ 0.9 when calculating Lc), λ is the wavelength of

the x-rays (usually CuKα1+2=154.18 pm is used), B is the full width at half-maximum

intensity of the x-ray diffraction peak and θ is the Bragg diffraction angle. The

measurement of the peak is taken from the lines (002) and (004) therefore Lc must be

written following the Miller indices (i.e. Lc(002) and Lc(004)). It should be pointed

out that Scherrer’s equation can only be applied for average sizes of 100 nm, because

diffraction-peak broadening decreases with increasing crystallite size, and the difficulty

arises from separating the peak broadening due to crystallite size from the broadening

caused by to other factors [104].

Diffraction study can be divided into two categories: single-crystal and

poly-crystals. All the references cited later are for experiments carried on powder

(poly-crystals).

Warren made a big contribution in the carbon field with x-ray diffraction. He

demonstrated the distribution of atoms can be determined directly from the

experimental scattering curve using Fourier integral analysis and recognised the

existence of aromatic layers in carbon black [105, 106]. In 1941, in a study of random
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layers lattice structure and using Scherrer’s equation above, he was able to find an

equation for the size of the two-dimensional layer:

La =
1.84λ

B cosθ

The (100) and (110) lines are used to determine the La parameter. And the following

year, Biscoe and Warren looked at the diffraction pattern of a coke heat-treated at

1000 ◦C. The pattern showed a broad (002) peak and the appearance of a small 004

peak. They introduced the term ‘turbostratic carbon’ for graphitic carbons. From the

paper they define turbostratic as: “each group consisting of a number of graphite layers

stacked together roughly parallel and equidistant, but with each layer having a completely

random orientation about the layer normal” [10]. The broadening of the diffraction lines

is due to the small size of crystallites, but can also come from strain and defects of

the lattice. Warren’s equation was confirmed and proved to be valid for layers with

a diameter as small as 16 Å [107].

Figure 5.1: Computed diffraction pattern for the parallel-layer group size La=20 and
Lc=13.8 Å, taken from [108]

Other methods of calculating the integral breadths of Debye-Scherrer lines was subject

to some research [109] and Bacon used these variants to explain that if the carbon

layers are assumed to be of infinite horizontal extension; it can be shown that the

line widths B are given by [110]:

B =
λ sinα
L cosθ

where α is the inclination to the horizontal of the normal to the (hkl) planes, all other

terms are the same as above. He correlated the value of d002 with the thickness of
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the crystal. It should be noted the Stokes’ method used by Bacon requires careful

evaluation of the tails of the peak and the background.

Finally, Houska and Warren explain that if there are modulations (i.e. not a single

peak) in the (hk) bands, the value obtained for La cannot be considered as accurate

and a certain correction must often be applied [90, 111, 112]. They also suggested

that layer thickness Lc cannot be obtained from the (00l) peaks without first correcting

for the distortion broadening due to the existence of two different layer spacings

corresponding to ordered and disordered pairs. Following Houska’s work, Bouraoui

et al. showed that La was related to the index of the (hk) band [113]. They consider

LH as the length of an (hk) band such that H = h2 + k2 + (hk)1/2. The figure 5.2 from

Bourauoi’s paper is an example of their method.

Figure 5.2: Determination of La with Bouraoui’s method, taken from [114]

X-ray diffraction techniques are also used to find the graphitisation order presented

earlier (see section 4.5.1).

5.2 Spectroscopy

5.2.1 Raman

Raman Spectroscopy is another method used to look at graphite crystal structure. The

technique was discovered a few years after x-ray diffraction but the lasers available

were not suitable for black materials. One of the first pieces of experimental work

was carried out in 1970 and it was reported that graphite single crystals show one
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single line at 1575 cm−1, which is linked to the E2g vibrational mode [115]. For

polycrystalline graphites, another line appears at 1355 cm−1 which is attributed to

defects in the crystal and is named the D mode. The intensity ratio of these two

peaks is directly connected to the size of the crystal and it allows the measurement of

La in a thin surface layer of any carbon sample. Raman spectroscopy can be divided

into two different orders, the first and second order. Tuinstra calculations were only

first order [115].

The second-order Raman spectra results from double-resonant Raman scattering by

two phonons instead of a phonon and a defect [116]. Later, another group showed that

second order Raman spectra exhibit an anomalously sharp feature at an energy higher

than twice the energy of the first order Raman line [117]. The same group related

the first- and second-order Raman features of graphite [118]. There is a strong sharp

feature at 1581 cm−1 as the high-frequency E2g first-order mode described before. The

low-frequency E2g mode which occurs at 42 cm−1 is the interplanar ‘rigid-layer shear’

mode and is only obtained with special techniques. The continuum scattering from

2200 to 3250 cm−1 represents the second-order and exhibits three distinct groups of

bands; a dominating band near 2710 cm−1 named D* and two weaker features observed

at 2450 and 3250 cm−1. It becomes apparent that the D* feature is very close to twice

the D mode energy and is due to an overtone. Wang et al. gave evidence for the D

mode’s intensity dependence on any kind of disorder or defects using boron-doped and

oxidized highly ordered pyrolytic graphite [119]. When defects/disorder are present,

the D4
6h symmetry is broken and it causes all the vibrational modes to contribute

to the Raman scattering; hence the appearance of new bands and the broadening

of some observed bands [120]. Finally, Vidano found that certain Raman modes’

frequencies can depend on the energy of the incoming laser light, while modes for

perfect graphite do not vary, the modes for disordered structure can shift [121]. This

technique can be applied to graphitising and non-graphitising carbons and correlation

with polyaromatic hydrocarbons can be obtained [122]. Another group described a

sharp peak at about 464 cm−1 and broadened peaks in the range 75–210 cm−1 as

evidence for the presence of fullerene-like elements in non-graphitising carbon as

described earlier in section 4.3.3 [123]. Analysing disordered and amorphous carbon,

Ferrari et al. accounted the G peak as the relative motion of sp2 carbon, and the D
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peak to the breathing modes of the rings. They classified all the available visible

Raman data by defining three stages from perfect graphite to tetrahedral amorphous

carbon [124]. Stage 1 is from graphite to nanocrystalline graphite, stage 2 is from

nanocrystalline graphite to amorphous carbon and stage 3 is from amorphous carbon

to tetrahedral amorphous carbon.

Figure 5.3: Raman spectrum at different La, taken from [118]

5.2.2 Infra-red (IR)

Infra-red has never been a predominant technique for studying graphite. Nevertheless,

it has been used for just one purpose, which is to present the residual concentration

of various chemical groups during the first carbonisation. Rouxhet studied the main

chemical modifications taking place in the pyrolysis of kerogens [125]. The process,

in this order, is as follows: removal of carboxyl and carbonyl groups, removal of

saturated hydrocarbon groups, formation and removal of aromatic CH. IR also gives

information on carbons from highly oxygenated precursors which form products with

a high concentration of C-OR functions. The evolution of the aromatic CH is an

indication of the involvement of free radicals (detected by esr).
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Note

There has been a reconsideration of the relationship between the crystallite size La of

carbons determined by x-ray diffraction and Raman spectroscopy [126]. This concluded

that the measurement of the size of a carbon crystallite, La<2 nm, using the ID/IG

form and by applying Tuinstra correlation is incorrect.

Another advantage of these techniques is that they can be associated together. Since

materials properties in carbon depend on their microstructures and techniques such

as diffraction or spectroscopy do not give enough local detail, being spatial average,

other techniques such as microscopy can be used.

5.3 Microscopy

Carbon materials can be poorly organised and microscopy is a powerful tool as an

imaging or analytical technique. Its main interest is to study the relation between

structure and physicochemical properties. In this section, only transmission electron

microscopy (TEM) is discussed as it has been an important technique to interpret

graphitisation. To understand TEM imaging, the reciprocal space of each structure

should be well understood. Details about the reciprocal space structure are given in

the appendix A. This technique has the ability to perform a double Fourier transform

from real space to reciprocal space and back to real space again. TEM images can be

divided into several categories but only lattice fringes images, dark field images and

selected area electron diffraction are reviewed below. The two main (hkl) orientations

are the (110) and (002).

5.3.1 Lattice Fringe (LF) TEM

From a (002) lattice fringe (LF) micrograph, the length of a set of perfect or distorted

fringes and the number of them in a stack can be measured. In order to get relatively

accurate measurements, it is necessary to know the value of the parameters involved

(e.g. magnification) and for further detail the reader is directed to an excellent

review [127]. For graphitic materials, the resolution of the TEM has, until recently,
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limited the images to the 002 fringes. The only part of the carbon layer shown on an

image is the one which nearly fulfils the (002) Bragg condition (0.29 ◦ at 120 kV) [70].

If a layer is distorted then the image disappears. Many authors attempted to find

a model entirely based on images but the models were found to be unreliable [70].

Lattice fringes images have been presented in figures 4.6 and 4.7 in chapter 4. They are

very helpful to see the evolution of the layer stacking throughout graphitisation.

5.3.2 Selected Area electron Diffraction (SAD)

In TEM, there is the possibility to choose another mode: Selected Area electron

Diffraction. It allows to select a diffracting area with less than 1 µm in diameter. If

the scattering domains are distributed at random in the material, the SAD pattern is

similar to an x-ray powder diffraction pattern. Therefore this technique can be used

early in the process to detect single BSU and LMO [25]. Three different orientations

can be chosen for SAD; the orientation can be parallel (i.e. edge-on, orientation P1),

perpendicular (i.e. face-on, P2) or oblique (P3) to the beam. The figure 5.4 shows each

orientation in the reciprocal space, each resulting in different patterns. The first two

orientations give the chance to measure d002, Lc and La as the (00l) and (hk) bands

are well separated.

5.3.3 Dark Field (DF) TEM

In a polycrystal, dark field images can light up only parts of the crystals which are

Bragg reflecting at a given orientation. The (110) and (002) orientation can be studied

with this technique.

5.3.3.1 (002) DF

When the aperture is rotated along the (002) ring (from a SAD pattern), one rotation

position would show a set of BSU (e.g. BSU 1), while it is still rotating, the first set

of BSU disappears and another group of BSU appears (BSU 2). This leads to different

dark field images as shown in the first two pictures 5.5. If a BSU has a diameter of

1 nm, there is a tolerance of a 10◦ rotation angle to the beam before it disappears
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Figure 5.4: Left: SAD images from the different orientation on the right, taken
from [128]

in the (002) DF. Knowing the direction of the (002) scattering vector and the image

rotation relative to the SAD, the projection of the aromatic layer can be related to

the images and the thickness of the BSU can be evaluated. Many TEM images are

available in the literature, either for coal, petroleum derivatives or saccharose based

carbon, and they all appear to have similar BSU sizes [129, 130, 128].

Figure 5.5: The first two images represent BSU 1 and BSU 2 from different rotational
angles. The last picture represent a (002) DF image at higher temperature, taken
from [131].

Bright dots are formed at low temperature, representing single BSU, but when the



59

temperature is increased, long and relatively perfect fringes are imaged (see far right

picture 5.5).

5.3.3.2 (11) DF

When the layers get a big enough diameter, numerous (hk) DF data can be added to

the (002) data. Figure 5.6 illustrates (11) DF at two different high temperature stages.

Moiré fringes are produced when single aromatic layers are superimposed with slight

rotation. Similar Moiré patterns can be observed with (002) bright field, not discussed

here. The (hk) orientation is a reliable representation of both the orientation and the

distortions of the specimen along the planes.

Figure 5.6: (11) DF images of graphitisation carbons at two different high temperatures,
taken from [132]

TEM method What is measured Description

SAD patterns Lc(004) Half width of 004 reflections
La Half width of 11(0) ring

(002) DF Lc Thickness of elementary bright domain (BSU)
La Length of elementary bright domain

(002) LF N Number of fringes in a stack
L1 Length of a perfect fringe
L2 Length of a distorted fringe

(11) DF Lt f Length of turbostratic Moiré fringes
Lcr Diameter of a domain showing rotational

Moiré fringes

Table 5.1: The different possible measures from TEM
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5.3.4 TEM notes

TEM allows the imaging of very small aromatic ring structures present in the low

temperature carbonaceous materials. When the small aromatic layers are piled up, an

additional (00l) scattered beam will appear whereas a single layer alone would only

appear in the 10 and 11 asymmetrical bands. If BSUs join together, the area is imaged

as a cluster of bright domains and a LMO is defined. Other LMOs, either twisted or

tilted, which block the beam, are represented by dark areas. As for the BSUs, in order

to get all the LMO, the aperture must be rotated. With an increase of the diameter

La and the thickness Lc, the (00l) nodes and the (hk) lines in SAD patterns would

become smaller and thinner, this induces a change in the DF images. If the instrument

setting can be known with enough accuracy, (002) LF images can be used concurrently

with (002) DF. It can be valuable to compare the two images together. Despite the

fact that both are based on the Fourier transform of the same (00l) scattered beam

their uses overlap but they are partly complementary. The table 5.1 summarises the

possible measurements available from TEM according to the experiment cited in this

chapter.

5.4 Conclusion

Many available techniques were presented in this chapter. It was shown that

they all bring valuable information about the evolution of the crystal structure as

the temperature increases. They can be used individually but they give a better

understanding of the graphitisation when they are put together. Other techniques can

be found in the literature but their usage is restricted to few, if not just one, stage of

the graphitisation.



Chapter 6

Twist Boundaries in graphite and the

effect on d002

One of the later stages of graphitisation is the change from a two dimensional

structure (2D) to a three dimentional structure (3D), in other words, from turbostratic

to AB graphite. Turbostratic graphite was defined by Biscoe and Warren as layers of

graphene stacked upon one another with random relative orientations [10]. Later, it

was also acknowledged that experimental work on graphite can also induce a twist

in the layers; this can happen when graphite is mixed with an organic solvents [133],

or when a metal atom is deposited on the surface [134]. The phenomenon is usually

observed near or along grain boundaries, lattice dislocations and defects [135]. When

two neighbouring layers are misoriented, Moiré patterns can be observed [136]. The

normal periodicity of 246 pm changes, depending on the misorientation angle, to a

higher value arising from a superperiodic hexagonal structure. Tubostratic graphite

can give rise to an increase of up to 2.7% from the normal AB stacking interlayer

spacing value [137]. One of the reasons for this phenomenon has been attributed to

the weakening of the binding between layers. Estimates for the interlayer binding

energy in graphite vary; 35 meV/atom [138] is typical, however another theoretical

work has found 25 meV/atom [139] . In this section, the aim is to review the variation

of the interlayer spacing d002 with relative orientation angle for turbostratic graphite,

including whether AB graphite lies on the same curve, or not.

61
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6.1 Franklin’s model

On the basis of x-ray diffraction measurements on different carbons [65], Franklin

described the interlayer spacing between two layers to have only two possible values;

334 pm in graphitic carbon and 344 pm in non-graphitic graphitising carbon. Any

intermediate values between these two are the result of samples containing both

perfect AB and turbostratic regions. Figure 6.1 illustrates the intermediates according

to Franklin. The interlayer spacing of graphite with AB stacking is a, while for

the normal ‘disorientation’ (Franklin’s terminology) the spacing is b, and the two

intermediate spacings are c and d. Thus, c is a reduced distance from disorientated

and orientated layers, whereas d is the doubly reduced distance from two orientated

layers. The arrows indicate the positions of disorientations.

Figure 6.1: Schematic representation of intermediate inter-layer spacings in graphitic
carbons described by Franklin [65].

6.1.1 Equations from Franklin’s model

Franklin found that a relationship can be written between the measured interlayer

spacing d and the probability p that two layers are misorientated. The equation

is

d002 (pm) = 344.0 − k
′

(1 − p) − 2k
′′

p(1 − p),

where k
′

= 8.6 pm is the reduction in spacing corresponding to the change from

a turbostratic structure to an AB graphite, as already introduced in section 4.5.1 of
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chapter 4. The quantity k
′′

is the reduction in spacing of disoriented layers in contact

with an orientated group. Franklin found that the best agreement with experiment was

given by k
′′

= 1
2 k
′

. In this case, it is supposed that the spacing between a disorientated

layer and an orientated group lies halfway between the two extreme values, while

the spacing at a single disorientation, isolated between two orientated groups, is the

same as that within an orientated group. The equation above becomes

d002 (pm) = 344.0 − 8.6(1 − p2).

This approximation means that Franklin assumed that there are only three inter-layer

spacings with an intermediate value of 339 pm. However according to Bacon [140],

k
′′

is different from 1
2 k
′

, since the the spacing between a disoriented layer and an

oriented group is significantly nearer to that of a pure disoriented structure than to

that of a pure oriented structure. This lead to a new equation for p < 0.4:

d002 (pm) = 344.0 − 8.6(1 − p) − 6.4p(1 − p). (6.1)

Bacon also finds that a better fit to experiment can be found over an increased range

of p if an extra term, 0.03p2(1 − p), is appended to 6.1. Thus, Bacon considered four

different spacings with two intermediate values of 341 pm and 337 pm, instead of

the single value of 339 pm used in Franklin’s model.

6.2 Modelling the structures

Model structures of turbostratic structures with different degrees of misorientation are

generated by a fortran program [141]. These models contain two graphene sheets

that are rotated by equal amounts in opposite directions. The choice of the rotational

center, either an α or a β carbon atom, can produce different orientations. The D6h

symmetry of the crystal about an axis through α means that neighbouring layers have

a range of relative rotation angles θ from 0◦ to 60◦, with respect to each other. When

a β site is the centre, the structures have D3h symmetry and are symmetric at 30◦,

returning to AB stacking at θ = 60◦. However, when an α site is the centre, θ = 60◦
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produces AA stacking.

Specific relative rotation angles give rise to coincident lattice points for the two

graphene layers projected on the basal plane. This means some pairs of atoms lie on

lines along the prismatic direction. If A and B are described as the graphite lattice

vectors, taken in integer multiples of n and m respectively, then V, the superlattice

vector of the first layer is given by

V = nA + mB.

If U is the superlattice vector of the second layer, then in order to find the same

superlattice vector length, U must be equal to

U = (n + m)A + (−m)B.

Figure 6.2 illustrates the superlattice vector V. As an example, if we take n = 2 and

m = 2 in the expression for V, then U must have integers of n = 4 and m = −2.

High integer values of n and small integers value of m for the V superlattice vector

produce small relative rotational angles between both layers. The fortran program

varies both n and m and calculates every possible angle with the number of atoms

required to form a primitive unit cell of two layers. This is illustrated in figure 6.3

when n and m are varied over the range 1–9.

Figure 6.2: Schematic representation of the superlattice vector V.

The red curve in figure 6.3 shows that for relative rotational angles smaller than 8◦

(and more than 52◦), the minimum size of the unit cell grows rapidly. These cells are
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too large for DFT calculations to be done for them. The curve also indicates there is a

wide range of angles giving cells that contain manageable numbers of atoms. Hence,

only some unit cells containing less than 250 atoms are investigated in the following

calculations because structures with slightly different relative rotational angle can have

unit cells with different numbers of atoms. For instance, a 21.8◦ structure is obtained

with m = 2 and n = 1 and only 28 atoms, whereas a relatively close structure with an

angle of 24.4◦ is obtained with m = 7 and n = 2 and 268 atoms.

Figure 6.3: Coincidence site lattice point angles

6.3 Energy and interlayer separation optimisation

In this section, the aim is to calculate the interlayer spacing for turbostratic graphites

with different rotational angles. The calculations begin with a unit cell containing two

layers, and are subsequently extended to four and eight layers.

6.3.1 Computational details and choice of the basis set

In chapter 3 section 3.1.2, the Gaussian basis sets used in aimpro were introduced.

For graphite, the existing aimpro basis set library contains four different, optimised

combinations; pdpp, pdddp, pppp and ddpp. The first two are considered to be more

reliable than the last two, and of these pdpp represents a good compromise in terms

of size and accuracy. Table 6.1 provides a summary of the structural parameters for
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graphite calculated using these basis sets, together with their experimentally observed

values. Primitive unit cells of four atoms are used in the following assessment of

basis sets. The Brillouin zone is sampled using the Monkhorst and Pack scheme

with a 30 × 30 × 2 mesh, and the states are occupied according to the first-order

Methfessel-Paxton scheme with kT = 0.01 eV.

Basis set d002 a Bond Length
pdpp 325 244 141
pdddp 333 244 141
pppp 320 244 142
ddpp 326 244 142
experiment [142] 335.40 ± 0.03 246.12 ± 0.01 142.10

Table 6.1: Structural parameters for an ideal four-atom primitive unit cell of
graphite calculated by the aimpro method using four different basis sets, and their
experimentally observed values. All values are in pm.

It can be seen from these results that the size of d002 given by the pdpp basis set is

325 pm, which is about 3% smaller than the experimental value 335 pm.

The pdddp basis set is chosen for later calculations as it gives an interlayer spacing value

of 333 pm for AB stacking, making it within 1% of the observed size. For the following

results, Monkhorst-Pack sampling of the Brillouin zone is used, with grids varying

from 2 × 2 × 2 to 5 × 5 × 2, depending on the size of the cell. The states are occupied

according to the first-order Methfessel-Paxton scheme with kT = 0.01 eV.

6.3.2 Two Layers

Seven structures with rotational angles varying from 9.4◦ to 50.6◦ have been

investigated, with both the atom positions and the lattice parameters optimised.

AA stacking is found to have, as expected, the highest d002 value of 357 pm, in

good agreement with earlier calculations where d002 = 366 pm [143] given the 1%

underestimation using this basis.

For the interlayer separation of the seven rotated structures, the values calculated

are shown in table 6.2. A very small change (± 0.002 pm) in the C-C bond length

appeared between the AB stacking and the rotated structures. This is due to the break

in symmetry in the rotated structures. Figure 6.4 shows how the interlayer separation

(blue line) and the interlayer energy (red line) vary with the relative rotational angle.
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Angle m, n # of atom d002 (pm)
13.2◦ 7, 1 228 340.7
17.9◦ 5, 1 124 340.1
21.8◦ 4, 1 82 340.1
27.8◦ 3, 1 52 340.1
38.2◦ 2, 1 28 340.3
46.8◦ 3, 2 76 340.8
50.6◦ 4, 3 148 341.6

Table 6.2: Calculated d002 with respect to relative rotational angle in a two-layer cell.

The interlayer separation and energy are nearly constant for intermediate relative

rotation angles, not including 0◦ and 60◦. There is only a shallow minimum in the

curve for the interlayer separation at 30◦. The interlayer energy is calculated by

comparing the energy of two layers in graphite with two isolated graphene layers. It

is found that AB graphite is bound by about 44 meV/atom, which is in fair agreement

with earlier work [138]. The difference in binding energy between AB graphite and

AA graphite is calculated to be about 11 meV/atom.

Figure 6.4: Interlayer spacing, d002 and interlayer energy of graphitic structures with
different rotational angle in a two layer unit cell. A smooth curve is drawn between
the points to guide the eye. The dots is an extrapolation of the blue line.

The dotted blue line in figure 6.4 represents an extrapolation of the full blue line

excluding the points at 0◦ and 60◦. It appears that there might be a discontinuous

change in both d002 and in the interlayer energy between a turbostratic structure and

both, AB and AA graphite stackings. Similar calculations in earlier work [144] agree
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well with the present results.

With a two-layer cell, two of the four interlayer spacings described by Franklin can

be calculated. The interlayer spacing a, calculated previously in section 6.3.1 table 6.1,

and the pure turbostratic value, b, which is about 340.5 pm if we take the average d002

overall the rotated angles calculated (table 6.2). The discrepancy between experiment,

344 pm [66, 140], and our calculations is slightly more than 1%.

6.3.2.1 Remarks on the interlayer spacing

In this section we examine in more detail the reasons for the nearly constant interlayer

spacing at all relative rotation angles excluding 0◦ and 60◦. Figure 6.5–a) illustrates

the stackings of two layers with a selected angle. It shows that when a layer is rotated

with respect to another, there is a mix of three approximate stackings: AA, AB and

an intermediate state called SlipBA. Campanera et al. wrote a fortran algorithm to

calculate the fractions of AA, BA, or SlipBA for angles varying from 0◦ to 60◦ [144].

The results of their program is shown in figure 6.5–b).

According to their results, structures with a rotational angle within the range of 0◦–15◦

are characterised as having a higher percentage of AA- and BA-stacked graphite regions

than SlipBA-stacked. This situation is reversed in the structures with rotational angle

within the range of 15◦–30◦.

The range used for our calculations, when compared to figure 6.5–b), is in the regime

where the system contains mostly the slipBA form. Hence, this could be responsible

for the nearly constant interlayer spacing.

6.3.3 Four Layers

In order to estimate the third interlayer spacing d, the same relative rotational angle

structures were extended to four layers per cell. We now have four interlayer spacings

with only one rotation between two layers. Both the atoms positions and the lattice

parameters have been optimised. The calculated value of d002 at each of the angles
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Figure 6.5: a) Illustration of the mix of AB, AA and ABC stacking when two layers
are rotated or slipped, b) Fractions of AA, BA, or SlipBA in rotated structures, taken
from [144].

in table 6.2 are 336.6, 336.4, 336.5, 336.7, 336.4, 336.4, and 337.0 pm, respectively.

Figure 6.4 shows how the interlayer separation (blue line) and the interlayer energy

(red line) vary with the relative rotational angle. The interlayer separation now spans

a range of 0.6 pm for intermediate relative rotation angles, not including 0◦ and

60◦.

Figure 6.6: Interlayer spacing (blue) and interlayer energy (red) of graphitic structures
with different rotational angle of one layer in four-layer unit-cells.
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The average value over all the angles (except 0◦ and 60◦) for the third turbostratic

distance, d, is about 336.7 pm. The discrepancy between experiment, 341 pm [140],

and the present results is slightly less than 1%.

6.3.4 Eight Layers

The interlayer spacing b and d found in the sections above were calculated by taking

the average values of all relative rotational angles. However, the number of layers

must be extended to eight in order to obtain the final parameter c. Unfortunately, the

number of atoms can become very large with some angles, for example a rotational

angle of 13.2◦ has 912 atoms per unit cell. If we take into account that, regardless of

the rotational angles, the interlayer spacing is found to differ by 1.6 pm in a two-layer

cell and only 0.6 pm in a four-layer cell, as shown in graphs 6.4 and 6.6, respectively,

then we can find the c parameters with only few structures. Hence, in order to

facilitate the calculations, only the two rotational angles with the lowest number of

atoms per cell have been chosen: 21.8◦ and 27.8◦. After optimisation the values found

for d002 are 333.5 pm and 333.9 pm respectively. The error between experiments, 339

and 337 pm, [66, 140] and our calculations is also slightly less than 1%.

6.4 Experiment versus Theory

This section compares the interlayer spacings calculated with Franklin’s and Bacon’s

equations (see section 6.1.1) with d002 calculated by the aimpro program package for

a wide range of p, the probability to have disorientated layers.

A graph showing interlayer spacing versus the probability p, calculated using

both equations described in section 6.1.1, and the aimpro method, is shown in

figure 6.7.

6.4.1 Introduction of more disordered layers

In order to be able to measure a wide range of different p-values, it is necessary

to introduce more than one rotated layer per cell. In the previous calculations
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Figure 6.7: Interlayer spacing calculated from Franklin’s and Bacon’s equations, and
by the aimpro program package, versus the probability to have disorientated layers,
p.

(sections 6.3.2, 6.3.3, and 6.3.4) our structures only determined values for p = 1, 0.5, 0.25,

respectively. Unfortunately, introducing a second disordered layer by using a second

rotational angle is challenging, since the superlattice vectors for both different relative

rotational angles must match. For example, the length of the superlattice vector is

a = 892 pm for a 27.8◦ angle, while for a 21.8◦ angle a = 1120 pm. In order to match

both superlattice vectors, they must be multiplied by four and five respectively to

find a similar superlattice vector. In this case the number of atoms becomes too large

for DFT calculations. Instead, we have used the following approach. As already

explained in section 6.2, the program rotates two layers in opposite directions; thus,

it can be considered as two different rotational angles compared with normal AB

graphite. Now, the aim is to match the superlattice vector of one rotated angle with

the lattice vector used for perfect graphite, i.e. 244 pm. A relative rotational angle of

43.5◦ has a superlattice vector of 1712 pm, which is 7.01 times the 244 pm used in

perfect graphite. This system contains 392 atoms in a four-layer cell.

6.4.2 Calculations

We have applied the ‘double-rotation’ method for three structures only: one containing

four layers, a second with six layers, and a third with eight layers. This allows us

to calculate p values equal to 0.75, 0.50, and 0.375, respectively. Other values of p
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can be obtained by varying the number of layers with one rotation. Both the atoms’

positions and the lattice parameters have been optimised, and the calculated d002 for

several models are shown in table 6.3.

Structure, # of rotation p d002(pm)
2 Layers, AB Stacking 0.000 333.0
10 Layers, 1 rotation 0.200 333.8
8 Layers, 1 rotation 0.250 333.9
6 Layers, 1 rotation 0.333 334.7
8 Layers, 2 rotations 0.375 335.0
4 Layers, 1 rotation 0.500 336.2
6 Layers, 2 rotations 0.500 336.1
3 Layers, 1 rotation 0.666 337.7
4 Layers, 2 rotations 0.750 338.6
2 Layers, 1 rotation 1.000 340.5

Table 6.3: Calculated interlayer spacings for different values of p

The results of these calculations are represented by the red curve in figure 6.7.

Compared with Franklin’s and Bacon’s measurements, the interlayer spacing is slightly

underestimated by the aimpro calculations, as is typical for the LDA and this basis.

However, it can be seen that the form of the curves derived by experiment and

theory differ: theory predicts a more nearly linear relationship between d002 and p

than experiment. Nevertheless, the general trend is similar, and the difference in d002

for p = 0.0 and p = 1.0 is nearly equal. A possible explanation for the difference in

curvature between theory and experiment may be related to the difficulty of optimising

the large models used by the aimpro method. Another possibility is that the form of

the variation is indeed incorrect.

6.4.3 Conclusion

After Biscoe introduced the term turbostratic graphite, significant effort was put into

numerical relationships to describe the evolution of the interlayer spacing between

turbostratic graphite and AB graphite. In this chapter, we have investigated the

changes in the interlayer spacing, d002 between a 2D structure and a 3D structure.

Using a program package, we have been able to construct a wide range of structures

with different relative rotational angles, in order to model turbostratic graphite. The

two intermediate interlayer spacings between turbostratic graphite and AB graphite,

first measured by Franklin and later by Bacon, have been calculated by the aimpro
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method, and good agreement (± 1%) is found between theory and experiments. We

then compared Franklin’s and Bacon’s equations to different models employing the

aimpro program package. These results are also found to be in fair agreement with

those derived from experimental measurements. Calculations of a similar nature do

not appear to have been performed previously. Although, LDA underestimates the

interlayer spacing in graphite, DFT has shown to be a good technique to estimate the

probability of misorientated layer, p.



Chapter 7

The role of sulphur in

graphitisation

In chapter 4 on graphitisation, it was explained that heating precursor materials

results in the removal of non-carbonaceous and carbonaceous gases from them. After

the first carbonisation, the carbon yield, for most precursors, is above 95 at.%. The

remaining fraction is mainly oxygen and other heteroatoms. Two other important

impurity atoms are sulphur and nitrogen. Considerable attention was paid to their

effects when added to relatively pure carbon compounds, to find evidence for the

mechanisms by which microstructures are formed. It was shown that heteroatoms

like oxygen, depending on their concentration, can inhibit the aromatic polymerization

that promotes mesophase. However, other experiments have studied the addition of

heterocyclic compounds, and found that the graphitisability of cokes that originally

graphitise poorly is improved [145]. The concentration of ‘impurities’ (these can be

intentional or unintentional) present in coal-tar pitches and petroleum cokes can be

high. Sulphur concentration was found to be as high as 13 wt.% [146]. As the

temperature increases, heteroatoms (except boron) become increasingly volatile which

can have significant effects. Some of them (O and N) are evolved before 1400 ◦C.

However, in certain materials, sulphur continues to evolve for temperatures up to

about 2500 ◦C [147]. This chapter discusses the role of sulphur during graphitisation.

It begins with a review of experimental work from the literature, and includes

a description of the role that sulphur is believed to play during the process of

74
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graphitisation, along with the properties of elemental sulphur. Our theoretical work

is then presented. It aims to verify experimental works and to discover new modes

of action for sulphur.

7.1 The history of sulphur in graphitisation

7.1.1 Puffing effect

It might be expected that the removal of impurities from a precursor during the

process of graphitisation would result in shrinkage of the material. Nevertheless, some

graphitising carbon can often undergo an irreversible expansion during heat treatment

between 1400 ◦C and 1800 ◦C [64]. This effect is often referred to as ‘puffing’. The

process is linked to sulphur, and sometimes to nitrogen (e.g. in coal tar-based needle

coke), present in the mixture. Experiments have shown that the impurity concentration

is not the main factor: the deformation is characterised by the formation of micro pores

and cracks, created by the sudden release of hydrogen sulphide, carbon disulphide, and

nitrogen gas. This can affect the final properties by reducing the bulk density, strength,

and conductivities [148]. Desulphurisation, or the use of low-sulphur feedstocks,

are the usual solution to this problem for manufactured graphite nowadays [149].

However, puffing remains a subject of research in order to reduce the number of

steps and save time for the process. According to Whittaker, dimensional changes of

up to ∆l/l ∼ 3% in a binder-filler artefact can occur [150]. Cokes respond differently

to puffing effects depending on their concentration of volatile impurities (S, N and

O): the higher their concentration is, the sooner (lower temperature) that puffing

begins.

Table 7.1 shows the evolution of the impurities’ concentrations at different

temperatures. A review by Fujimoto enumerates the main factors that puffing depends

on [151]:

• The extent to which cokes result from the binder or the impregnation pitches.

• The particle size of the filler coke: smaller particles lead to less puffing.

• The coke used: two different cokes with the same concentration of heteroatoms
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Coke puffing at 1400 ◦C Coke puffing at 1700 ◦C
Heat Treatment (wt.%) (wt.%)

temp. (◦C) S N2 O2 S N2 O2
Raw Coke 4.90 1.37 0.90 0.80 0.33 0.68

1250 4.72 0.77 0.01 0.05
1400 3.73 < 0.01 0.0 0.74
1600 0.37 0.75
1800 0.62
2000 0.09 0.54
2400 0.01 0.13
2600 0.00

Table 7.1: Volatile impurities in petroleum cokes heated to various temperatures,
taken from [150]. The coke with a higher impurity concentration (left column) start
puffing at a lower temperature (1400 ◦C) compared to the coke with a lower impurity
concentration (right column) which start puffing at a higher temperature (1700 ◦C).

can exhibit different puffing.

• Sulphur and nitrogen content: CS2 can cause puffing more readily than cyanides

(CN).

Figure 7.1: Pore creation during the puffing effect, taken from [152]. X represents
sulphur or nitrogen. The left picture shows basal cracks and the right picture is a
schematic representation of the puffing effect.

Puffing usually occurs during the ‘plastic’ phase of the graphitisation (i.e. above

1000 ◦C). Figure 7.1 shows a possible mechanism involving heteroatoms during puffing.

The evolving gases (e.g. X2) push on the pore wall of the coke as they expand and

escape from the microfissures. Sulphur (and nitrogen) may travel to its nearest

microfissure, and puffing happens when the pressure of the evolving gases exceeds

the strength of the pore wall.

Different techniques were found to reduce this effect. Desulphurisation of the cokes

during calcination is one that has already been described. Reduction of the rate of

temperature increase is another approach. Unfortunately, it does not always provide
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a solution since a slow cycle can modify the final graphite properties, and may even

degrade it [151]. Additives, called puffing inhibitors, can be used [149, 148, 153].

In petroleum needle coke, puffing is inhibited by adding iron oxide (Fe2O3). At

525 ◦C, approximately 20% of the Fe2O3 added could be accounted for by FeS. At

1200 ◦C, it was calculated that over 95% of the original Fe2O3 had been converted to

FeS [149]. In coal tar based needle coke, cobalt and nickel oxide reduce puffing [148].

Compounds such as boric acid or disodium hydrogen phosphate (DHP) have also

shown signs of puffing reduction [153]. Sometimes catalytic activity for graphitisation

may be related to puffing inhibition. Kipling et al. studied the effect of sulphur on

the pyrolysis of polyvinyl chloride sulphur (PvCS) [154]. They observed an increase

in viscosity of the PvCS when the sulphur concentration exceeds about 5 wt.%. This

trend continued with increasing concentration of sulphur and was accompanied by

changes in the microstructure to glassy carbon at about 9 wt.% S. However, the more

viscous the intermediate materials are, the more difficult the reorientation process for

obtaining a graphitic carbon becomes. Nevertheless, Kipling concluded that unless the

concentration of sulphur is higher than 9 wt.%, no effect is observed on the graphitic

structure.

7.1.2 Sulphur as a promoter

Despite the dramatic changes that sulphur may cause during the puffing effect, other

experiments have established that it can enhance graphitisation. Christu et al. were

the first to recognise its ‘positive’ effect [155]. After heat treatment in the presence

of dibenzothiophene, at temperatures above about 1700 ◦C, they found that a new

peak appeared in the x-ray diffraction pattern corresponding to the (002) reflection

at 26.7◦ using CuKα wavelength, which is consistent with the formation of ordered

layers inside the material. To confirm that only sulphur was responsible for the new

peak, iron oxide (a puffing inhibitor) was introduced in the initial carbon sample,

and the peak disappeared. The same year, another group independent from Christu’s

group, studied the pressure generated by the puffing effect, and they concluded that

pressure enhances the graphitisation process [150]. The sulphur concentration in their

materials was around 5 wt.%. The benefits of pressure are also described in chapter 4.
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Fitzer and Weisenburger also made x-ray measurements of petroleum and pitch cokes,

but with a lower concentration of sulphur (0.4 wt.% to 1.7 wt.%) [156]. They found

similar results to Christu, and agreed with the conclusion that there are no possible

sources, other than sulphur, for the peak. Fitzer and Weisenburger also observed

a contraction of the interlayer distance for temperatures between 1400 ◦ and 1700 ◦C

in materials containing sulphur, while this contraction usually happens at around

2200 ◦C in materials free of sulphur. Finally, they found that the activation energy of

graphitisation is decreased from 7–10 eV to about 3–4 eV between 1400 ◦ and 2000 ◦C

in the presence of sulphur. Brandtzaeg and Oye [157] described the promoting steps

in a similar way to Whittaker and Grindstaff [150], as being the vapour pressure

initiated by sulphur. When pressure exceeds a threshold level, puffing can start, and

sulphur is released. The sulphur subsequently reacts with imperfectly located carbon

atoms to form CS2 and CS gas. These leave perfect oriented carbon atoms behind.

Bourrat et al. [158] found the source of sulphur that is responsible for promoting

graphitisation arises from thiophenic sulphur, which does not inhibit the formation

of mesophase spheres.

7.1.3 Sulphur classification within graphite

In order to rationalise the many different descriptions for the role of sulphur during

graphitisation, Bourrat et al. classified them in three types. Type I sulphur is defined as

sulphur in a gaseous state, H2S primarily, that is released during the first carbonisation,

and has completely disappeared at the end this stage. The amount of sulphur

evaporated as a gas is considered to be half of the initial sulphur concentration.

Type II sulphur is described as a modifier, and is present at temperatures between

1300 ◦ and 1700 ◦C. They acknowledged this type to be responsible for the puffing

effect. It is fully eliminated at about 1700 ◦C. The final type (III), still present above

these temperatures, can only be removed with further heating. Figure 7.2 illustrates

how the three different classes of sulphur change as a function of temperature. No

experimental works appear to have confirmed this, but according to Bourrat et al. it

is believed that type III forms cross-links between layers or polyaromatics. However,

Kipling et al. [154] suggested that these cross-links would appear only when there is
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a high concentration of sulphur.

Figure 7.2: The three types of sulphur (I, II and III) versus temperature, taken
from [158]. The shaded region at about 500 ◦C, represents the formation of the
distorted piles of molecules in complete disorder (LMO). Weight % is relative to
precursor sulphur concentration.

7.2 Review of some of the graphite lattice and sulphur crystal

properties

7.2.1 S8 molecule and orthorhombic α-sulphur

Elemental sulphur comprises different shaped rings of atoms. The best known,

and most stable, is the S8 ring. This is the basic unit of the most stable types

of sulphur crystals. It can be described geometrically as a crown-shaped molecular

unit, with a point symmmetry group of D4d. The α, β, and γ allotropes of sulphur

represent different spatial arrangements of these S8 units. There are similarities in their

structures, but they differ in their bond lengths, bond angles, and torsion angles [159].

The orthorhombic structure, or α allotrope, is based on monoclinic sulphur, β. The

α form isomerises into the β form above 95.31 ◦C [160]. It has a space group of

Fddd [161].

7.2.2 Point-defects in graphite

One of the features that both graphitisation and radiation damage have in common, is

the presence of lattice defects. In radiation damage, fast neutrons collide with carbon
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atoms from the graphite lattice, and these atoms may be displayed. Thus, interstitial

atoms and vacancies are formed, as already explained in chapter 1.

In this section, only vacancy defects are reviewed. If a carbon atom is removed

from one of the planes in graphite, and on either an α or a β site, there is a D3h

symmetry with a threefold axis through its centre. This is illustratated in figure 7.3B.

This monovacancy defect reconstructs to a more stable structure as described in [39]

and the symmetry is changed to C2v.

It is believed that monovacancy on a same sheet can coalesce if they are at a fourth

neighbour separation. This is because vacancies become mobile at 200 ◦C [39]. This

allows to reduce the number of broken bonds [162]. If two carbon atoms are removed

from one of the planes in graphite, with one on an α site and another on one of its

nearest β site, a structure similar to figure 7.3D is obtained. This can reconstruct to

a more stable structure described in [39], with an octagon and two pentagons. Many

more reconstructed structures are described in this paper depending if the vacancies are

second, third or fourth neighbour, and it is also calculated that the nearest-neighbour

αβ divacancy structure is more stable than two isolated monovacancies.

If two carbon atoms are removed, from two neighbouring graphite planes, and both

from α sites, a structure similar to figure 7.3C is obtained. Other interplanar models

can be formed if β sites are involved. These interplanar divacancy defects can form

bound pairs. Two reconstructed structures were first found by Telling et al. [163] and

another two by Latham et al. [39]. In Latham et al.’s paper, the four reconstructed

structures are reviewed and it is concluded that the stability of multivacancy complexes

is controlled by the number of dangling bonds, and their ability to reconstruct.

A few authors have described the possibility of cross-linking between sulphur and

graphite [157, 158, 130]. According to Oberlin, cross-linking atoms can bind to BSUs

during the self-association stage, which leads to LMOs shorter in size and with lower

flexibility [164]. However, this appears to be an early stage phenomenon and this

work concerns late stage.
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Figure 7.3: Schematic diagram illustrating the construction used for models of
cross-linked structures containing sulphur atoms in hexagonal graphite.

7.2.3 Graphite edges and their stability

Graphite is often theoretically represented as a single crystal, meaning there is an

infinite number of layers of infinite extent, with AB stacking. However, manufactured

graphite is a polycrystalline material. Many individual crystallites with various

orientation are joined together to form a solid block at the end of the graphitisation

process. Between each crystallite a reconstruction of the bonds occurs in order to

minimise the number of broken bonds. This region is called a grain boundary. Impurity

atoms also tend to segregate to grain boundaries, where there are opportunities for

them to form chemical bonds. During graphitisation, impurity atoms lodged within

the grain boundaries may escape. Depending on the local arrangement of atoms, the

broken bonds can often further reconstruct to form new bonds with nearby carbon

atoms; however, this not always possible.

A single sheet of graphene has two principal low index directions along which it

may be cut: armchair and zigzag (also called Fujita edge [165]). A mixed-character

edge is produced when a sheet is cut in an intermediate direction. Atoms along

an edge can be arranged in various ways. In addition to the low index cuts, other

rearrangements including the Klein edge, and the reconstructed zigzag edge [166].

These are illustrated in figure 7.4.

The edges of graphene have been studied widely [167, 168, 166]. Theoretical work
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Figure 7.4: Schematic representation of four types of edges found in a graphene
sheet, taken from [166].

has shown that edges with a zigzag shape give an extra nonbonding π electron state

to the layers [167]. This means that a zigzag edge is higher in energy and less stable

than an armchair edge. Radovic et al. described the free armchair sites as being

similar to o-benzyne (one triple bond on the armchair) while the free zigzag site

is carbene-like (one carbon having two unpaired electrons) [168]. These two types

of edges can spontaneously recontruct, forming new edge patterns as described by

theoretical work [169]. Zobelli et al. calculated the formation energy of four types

of edges described in figure 7.4 [166]. The armchair and reconstructed zigzag edges

have a similar formation energy of 1.10 eV/Å whereas, the zigzag edge is 1.34 eV/Å,

and the Klein edge is 2.22 eV/Å.

7.2.4 Folded reconstructions of graphene edges

Folds in graphene have been studied in recent years due to possible new

functionalities [170]. The stress induced by a fold can be reduced by the interaction

between adjacent layers [138]. Folds have also been produced and observed by

scanning tunneling microscopy (STM) in graphitic sheets within HOPG, and can be

formed from either one or two layer edges [171]. Indeed, folds inside a graphite crystal

(shown in figure 7.5) were observed by TEM more than thirty years ago [132]. During

the graphitisation process, the edges of two neighbouring layers can reconstruct in

the form of a fold. They are also relatively stable at high temperature and it can be

difficult to measure them with x-ray diffraction, since the interlayer spacing c is only

slightly modified [72].

Other rearrangements for reconstructed edges have been proposed; three examples

are illustrated in figure 7.6. Image A illustrates an edge terminated by a nanotube.

Different configurations for the recombination depending on the type of edge and
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Figure 7.5: A TEM dark field image observed in a (002) lattice fringe of a two-layer
fold in graphite, taken from [132].

the type of nanotube have been investigated by Ivanovskaya et al. [172]. Image B

illustrates the reconstruction of three layers into two folds, where the middle layer

has sp3 carbon atoms along its edge which bind all three layers together. Image C

illustrates alternating open and closed edges of graphite distributed over three layers.

Other structures are possible; however, they will not be investigated further in the

present work.

Figure 7.6: Three examples of possible reconstructed edges from graphite layers
terminated with a zigzag edge, calculated with DFT: (A) A single layer terminated
with a nanotube; (B) A three-layer fold; (C) Alternating open and closed edges.

7.2.5 Prismatic edge dislocation

Prismatic edge dislocations are dislocations for which the line lies in the (0001) plane.

Dislocations of this type are formed during the graphitisation process, and can be

observed in the crystal [173]. Dawson and Follet are believed to have recorded

the earliest image showing an edge dislocation using electron microscopy in synthetic

graphite [174]. A schematic representation, in two different configurations is illustrated

in the first two images of figure 7.7. The character of the prismatic edge (zigzag or

armchair), affects the way in which these dislocations reconstruct. If a prismatic

dislocation is terminated by an armchair edge, then there is a reconstruction of the
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dangling bond within the layer to form triple bond with sp-type carbon atoms. If

the prismatic dislocation is terminated by a zigzag edge, then the dangling bonds

would interact with one of the neighbouring layers to form new interlayer bonds with

sp3-hybridised carbon atoms. This is illustrated in the last image of figure 7.7.

Figure 7.7: Schematic representation of prismatic edge dislocation.

7.2.6 The release of hydrogen sulphide during graphitisation

It is well established that the release of hydrogen sulphide gas occurs mainly during

the first carbonisation, and that all of the hydrogen is removed at the end of this

stage [158]. Fitzer et al. described that an increase in the coke yield in graphitisable

carbons can be achieved so long as the H2S formation is not complete below or at

230 ◦ [175]. Another group has shown that sulphur acts as a polymerisation agent

for aromatic hydrocarbons [176]. The reactions involved form oligomers containing

sulphur, and the polymerisation is effected through the dehydrogenative action of

sulphur [176]. The different sulphur compounds, in petroleum sources, have been

classified (e.g., sulfur, sulfides (di- and poly-), thiophenes, sulfoxides, etc.) [146]. It

is widely believed that the decomposition of organic sulphides account for a large

proportion of H2S gas release at moderate temperature but a non negligible amount

of those compounds are still stable at 550 ◦ [177].

7.2.7 Remarks

In summary, it is commonly believed that sulphur has a bad influence on the formation

of carbon layers, and is responsible for structural defects. However, many authors

have described its promoting role at specific stages of the graphitisation process. X-ray

diffraction has consistently showed that particular types of materials can have a more



85

ordered structure at temperatures where it is usually disordered in the absence of

sulphur.

7.3 Calculations

7.3.1 S8 molecule and orthorhombic α-sulphur

Initially, DFT calculations were made on elemental sulphur for validation and as a

reference state. The α form is considered in two different ways: (1) as an isolated

molecule of eight atoms, and (2) as a crystal. The primitive unit cell of the crystal

contains 32 atoms; however, it is more convenient to construct a conventional supercell

of 128 atoms, so this was used for the calculations instead. The Brillouin zone was

sampled using the Monkhorst and Pack scheme with a sampling of 5 × 5 × 3. The

basis set dddd is used for sulphur atoms, and the states are occupied according to

the first-order Methfessel-Paxton scheme with kT = 0.01 eV. Optimisation of the lattice

parameters yielded a = 9.892 Å, b = 12.177 Å, and c = 23.471 Å for their values.

These differ from the experimental values by ∼ −5%, ∼ −5%, and ∼ −4% for a, b,

and c, respectively [161]. The observed S-S bond lengths within the S8 rings are

2.057(4) Å, with an error of less than 0.1% [161]. The difference between theory and

experiment is probably accounted for the poor reproduction of weak intermolecular

forces, within LDA. Basis set optimisation was only performed for an isolated S8

molecule, since this procedure is prohibitively time consuming for the crystal unit

cell. The new basis set was labelled pdpp and contributed to the aimpro collection.

This yielded both slightly better estimates for the structural parameters of isolated

S8, and lowered the computational cost. The new basis, however, made very little

difference to the lattice parameters for the crystal, giving a = 9.891 Å, b = 12.175 Å

and c = 23.469 Å. Nevertheless, the calculated S-S bond length of 2.055(2) Å within

the S8 rings is in excellent agreement with the measured interatomic distance. In

addition, the calculated bond angle between the sulphur atoms is S-S-S= 108.6◦,

and the torsion angle is S-S-S-S= 97.3◦ compared with experimental 108.2◦ and 98.5◦

respectively [161].
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7.3.2 Notes on the standard heat of formation

The standard heat of formation, or enthalpy of formation, ∆H◦, is used to examine

the possible sites for sulphur inside a graphite crystal. ∆H◦ represents the change of

enthalpy during a reaction with all substances in their standard states. The example

of CS2 is shown here since its thermodynamics are well documented. The reactants in

their standard states, for the formation of a CS2 molecule, are solid carbon (graphite)

and solid sulphur (see paragraph 7.2.1). The reaction is as follows:

C(s) +
1
4

S8(s) −→ CS2(g).

∆H◦ is calculated by subtracting the sum of the standard enthalpies of formation of the

reactants from the sum of the standard enthalpies of formation of the products:

∆H◦ = ∆H◦f (products) − ∆H◦f (reactants).

For the formation of CS2, the equation becomes,

∆H◦ = [∆H◦f (CS2(g))] − [∆H◦f (C(s)) +
1
2

∆H◦f (S8(s))].

From aimpro, the following energies were obtained:

∆H◦ = −26.13755 − (−5.71141 − 20.4727);

= 0.04656 Hartrees;

= 1.2666 eV.

The measured value from experiment is 116.7 ± 1.0 kJ mol−1 [178], i.e. 1.209 eV. The

calculated value differs from the measured value by only about 5%. The sign of

∆H◦ is positive, which means the reaction is endothermic. In order to determine the

possible chemical sites for sulphur, the same technique is used on various graphite

structures and their ∆H◦ are compared. It is important to remember that theoretical

calculations are at 0 K whereas experimental values are usually at 300 K, hence the

difference between the two values. The heat capacity of each molecule at constant
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pressure Cp has to be known in order to know the exact difference.

7.3.3 Cross linking and point-defects

In order to investigate the hypothesis that sulphur can act as a cross-linking atom, the

following model structures have been constructed in supercells, and optimised using

the aimpro method. To begin, a single atom of sulphur was placed at several trial

locations within the graphite lattice. Next, point defects were introduced by removing

one or two selected carbon atoms from the models and the schematic form of these

initial models is illustrated in section 7.2.2 figure 7.3. In the following calculations, the

Brillouin zone was sampled using the Monkhorst and Pack scheme with a sampling

of 7 × 7 × 2. The basis sets pdpp and dddd are used for carbon and sulphur atoms

respectively and the states are occupied according to the first-order Methfessel-Paxton

scheme with kT = 0.01 eV.

7.3.3.1 Interstitial sulphur

The unit cell of the perfect crystal employed here is orthorhombic and has two layers

with 24 carbon atoms in each. The sulphur concentration, in all the structures studied,

is about 2 at.%. When a single interstitial atom is placed at various trial positions

between the two planes in a perfect crystal, and then optimised, the lowest energy

structure resembles the grafted interstitial found in irradiated graphite [179]. This

structure is illustrated in figure 7.8A. The sulphur atom lies opposite the centre of

a C-C bond, similar to the carbon ad-atom described in [180]. The sulphur atom is

bonded to the layer, forming a triangular arrangement. The two carbon atoms nearest

to the sulphur atom are pushed slightly out of the original basal plane. The lengths

for the two C-S bonds are 1.54 and 1.64 Å, and the C-S-C bond angle is 55◦. The

standard heat of formation, ∆H◦, when the lattice parameters are kept constant, and

using

48C(s) +
1
8

S8(s) −→ 48C : S, (7.1)
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Number of layers (freedom) Formation energy (eV) c-axis expansion (%)
2 (fixed) 5.1 0
2 (free) 2.9 25
4 (free) 3.1 10
6 (free) 3.6 3.7

Table 7.2: Calculated formation energies and c-axis expansions depending on the
number of layers, and whether the c-axis is kept fixed or optimised, for an interstitial
sulphur atom in graphite.

Figure 7.8: Optimised structures for sulphur complexes in graphite and their point
group symmetry. (A) Grafted interstitial sulphur atom, Cs; (B) Off-site substitutional
sulphur atom, C3v; (C) Interplanar split-vacancy sulphur complex, D3d; (D) Coplanar
split-vacancy sulphur complex, C2v (also shown in figure 7.9).

is 5.1 eV. If the lattice vectors are optimised, then the interlayer vector c increases to

accommodate the interstitial atom better. This yields a range of d002 values depending

on the number of layers per unit cell. In a two-layer unit cell, the c value expands

by about 25% compared with the original interlayer spacing and give 2.95 eV for

∆H◦. Four- and six-layer unit cells are found to expand by about 10% and 3.7%,

respectively, and have ∆H◦ ≈ 3.1 eV and ≈ 3.6 eV. The table 7.2 summarises the

calculated values.

Some of the calculated expansions appears to be incorrect, and it probably arises

from the failures in lattice optimisation method used with aimpro. The percentage

expansion for the two layers, with the c-axis optimised, is likely to be the closest to

reality as sulphur is a large atom. Also, if the 25% expansion is right, then four- and

six-layer unit cells should give expansion of about 12.5% and 8.3%

The energies calculated are relatively high for the structure to be formed. The table

7.2 summarises these values. The sulphur atom in this system neither hinders the

LMO size nor its flexibility, as no cross-linking atoms are formed. All n trial locations

attempted within the graphite lattice gave similar optimised structures and ∆H◦.
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7.3.3.2 Substitutional sulphur

The next model involves a direct substitution of a carbon atom with a sulphur

atom. After optimisation, the sulphur atom stays ‘on-site’ in the basal plane, and

the graphite layer remains flat. The sp2 bonding is retained, and the sulphur atom is

now coordinated to three carbon atoms. All three C-S bonds have the same length

(1.61 Å). The structure was found to have a high formation energy ∆H◦ ≈ 5.4 eV,

presumably due to weakened σ and π bonding, and compression of the larger sulphur

atom. Another structure, where the sulphur atom is placed in a position slightly out

of plane, similar to an interstitial (shown in 7.8 B), is found to have lower energy. The

difference in energy between the on-site and the off-site structures is about 1.7 eV.

The sulphur atom remains coordinated to three carbon atoms, but its bond lengths

are slightly longer than when it lies on site (1.69 Å), implying that the compression

is smaller. The average interlayer spacing is slightly changed when the unit cell has

two layers (∼ 3%) or four layers (∼ 2.5%). The ∆H◦ in this case is 3.74 eV using the

reaction 7.2,

48C(s) +
1
8

S8(s) −→ 47C : S + 1C(s). (7.2)

Strictly, the ∆H◦ stated previously is for a substitutional sulphur atom on an α site.

However, the β site is calculated to have the same heat of formation and same

bond lengths to the three nearest neighbouring carbon atoms, to the accuracy of the

method. The sulphur atom does not cross-link with the other layers. Interstitial and

substitutional sulphur atoms have been investigated, and both of them do not form

cross-links. Their energies are also relatively high.

7.3.3.3 Split vacancy complexes

The two other defects studied may be described as sulphur-split-vacancy complexes.

Two carbon atoms are missing, which may be taken from either the same

plane (coplanar) or from two neighbouring planes (interplanar). The interplanar

split-vacancy complex refers to two α atoms missing here (see figure 7.3C). This

structure is a trigonal antiprism. For the coplanar split-vacancy complex, a structure
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similar to reconstructed lattice vacancy [181] in graphite might have been expected

to be the lowest energy state, where two of the carbon atoms form a C-C bond of

1.85 Å on one side of a pentagonal ring, with an eight-sided structure, as illustrated in

figure 7.9. Nevertheless, the most stable structure, with 3.1 eV lower energy than the

one previously described, is when the sulphur atom is located in the middle of the

small void. The sulphur atom possesses four nearly equal bonds, 1.83 ± 0.02 Å long,

with the neighbouring carbon atoms. It appears to be similar to the rearrangement

found for metals in graphene, where the metal atom is a planar, D2h symmetry

centre [182]. Sulphur in diamond adopts a similar split-vacancy structure as a way

of accommodating the size of the sulphur atom [183]. As expected, the in-plane

sulphur-split-vacancy complex did not cross-link with the neighbouring planes, and

the calculated ∆H◦ for this reaction was found to be 4.5 eV.

Figure 7.9: Optimised structures of the monovacancy in graphite when formed with
carbon atoms (left) and with a neighbouring sulphur atom (right)(a split-vacancy
structure).

The last structure investigated, to determine whether a single sulphur atom can

cross-link two layers, involves the interplanar split-vacancy complex. The model is

constructed so that it can form a cross-link between a pair of neighbouring sheets,

each containing an α vacancy. After optimisation, the structure found to have the

lowest energy is one with the sulphur atom midway between the two planes. The

three nearest carbon atoms on each plane are bound to the sulphur atom to form six

S-C bonds. The six bonds have the same length (1.90 Å). The structure is very similar

to a single SF6 molecule, but Oh-symmetry is not compatible with graphite symmetry,

and it has D3h. A cross-link is formed, which is illustrated in figure 7.8C. There is

a small contraction of the c-axis parameter by about 3%. ∆H◦ for the interplanar

split-vacancy complex is 9.7 eV. If the sulphur atom is moved slightly away from its

initial position before optimisation, the cross-link is not formed after optimisation, and

the sulphur atoms moves toward the nearest plane. The optimised structure gives
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one layer with the substituted off-site configuration, and the other plane contains a

reconstructed lattice vacancy. This structure is found to have an energy about 0.6 eV

less stable than the D3h-symmetry configuration.

7.3.3.4 Remarks on cross-link via sulphur

These results demonstrate that vacancies are necessary in two neighbouring layers in

order for cross-links to be formed between them. The one model where sulphur links

two layers is found to have a high formation energy: unlikely to appear near thermal

equilibrium, but possibly during radiation damage. The idea that sulphur is present

in the form of defect complexes cross-linking layers in carbon in the late stages of

graphitisation appear unfounded.

7.3.3.5 Cross-linking via S2 species

Interstitial S2 molecules within the interlayer spaces, were also investigated in order

examine their possible role in the formation of sulphur bridges, similar to what

is known to occur in the vulcanisation process of rubber [184]. These simulations

followed a similar approach to that used for single sulphur atoms. Optimisation of

different trial structures, both with and without vacancies, yielded no results where

cross-links form between layers. The lowest energy structure contains a S2 molecule

bridging two β atoms on only one layer. The structure is similar to the β-β arch

bridge formed with two interstitial carbon atoms [181]. When one atom of carbon

is removed, the molecule rearranges itself around the vacancy but does not make a

cross-link. When two carbon atoms are removed, the two sulphur atoms repel each

other, and form a pair of off-site substitutional sulphur complexes, one on each plane,

similar to the defect described previously. These configurations, similar to others, have

high ∆H◦ values, with the lowest being around 6.5 eV. The results for S2-complexes

reinforce the first conclusion that sulphur atoms do not cross-link graphite planes

together when intercalated.
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Figure 7.10: Optimised structures for S2 complexes in graphite: (A) with no defect;
(B) with a monovacancy ; (C) With an interplanar divacancy.

7.3.4 Sulphur on the graphite edges

In order to investigate the hypothesis that sulphur can stabilise zigzag and armchair

graphite edges, the following ribbons structures have been constructed, and optimised

using the aimpro method. An orthorhombic cell with two layers, containing sixteen

atoms of carbon each, is only repeated in one direction of the basal plane, with one

side of the ribbon terminated with four hydrogen atoms. The hydrogen atoms are

held fixed to emulate the boundary condition imposed by the rest of the crystal. Both

types of edge can be created, although the zigzag edge is the main focus due to

its higher reactivity. Each unit cell is represented by at least four graphene edges.

Using a similar approach to that of section 7.3.3, the standard heat of formation

is calculated. Since the size of the unit cell is variable, and hence the number of

edges and the number of sulphur atoms involved are also variable, all the following

∆H◦ are expressed in electron volts per carbon edge (eV/Cedge). In the following

calculations, the Brillouin zone was sampled using the Monkhorst and Pack scheme

with a sampling of 7 × 7 × 2. The basis sets pdpp, dddd and ppp are used for carbon,

sulphur and hydrogen atoms respectively and the states are occupied according to

the first-order Methfessel-Paxton scheme with kT = 0.01 eV. Our calculations found

a difference of 0.30 eV/Å between the formation energy of a zigzag edge and an

armchair edge which is in aggreement with Zobelli et al. results [166].

7.3.4.1 Substitution

As Bourrat et al. recognised that promoting sulphur (type II) comes from

thiophenic-like molecules [158], our first model is a direct substitution of a carbon
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atom with a sulphur atom, placed on either a zigzag or an armchair edge. In these

cases, it resembles a thiine ring. The equation for this reaction is,

32C(s) +
1
8

S8(s) −→ 31C : S + C(s).

The standard heat of formation for a sulphur atom on a zigzag edge is −0.76 eV/Cedge.

∆H◦ is now negative, meaning that the reaction becomes exothermic. This result gives

a first indication that sulphur might be likely to be stable on the edge rather than

between or within planes. ∆H◦, for a sulphur atom on an armchair edge is also

negative; however, the energy is slightly higher, −0.39 eV/Cedge.

These two particular structures, with a single substitutional sulphur atom, only

correspond to a partially saturated edge, leaving many dangling bonds on other

carbon atoms of the other edges. Thus, the final structures are not as stable as they

might be. In order to get a better undesrtanding of the effect of sulphur, another model

has all edges saturated with sulphur atoms. The previous equation becomes,

32C(s) +
4
8

S8(s) −→ 28C : 4S + 4C(s).

This yields the result ∆H◦ = −1.33 eV/Cedge, which is lower than for a single

substitutional atom, and it reinforces the initial conclusion that sulphur atoms are

more likely to be found on the edges, favouring the zigzag shape. A unit cell, with

substitutional sulphur atoms on a zigzag edge, is illustrated in figure 7.11A.

7.3.4.2 Addition

The shape of the zigzag edge offers many other sites for sulphur atoms. In general, sites

at edges provide more opportunities for impurity atoms to bind without generating

stress in the structure. In order to investigate the available sites for additional sulphur

atoms, several model ribbon structures have been constructed, shown in figure 7.11,

where sulphur atoms are attached as ad-atoms to the zigzag edge. The edges of

interest are saturated with sulphur so no dangling bonds remain. Structures B–D are

very similar, and only the stacking of the layers and sulphur differs. Structure E, with

a dithiolane like molecule, appears to be plausible; however, following optimisation
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Figure 7.11: A–G: View in the prismatic direction of possible positions for sulphur
(yellow) atoms on the carbon (grey) zigzag edge of graphite; H is G viewed along the
edge. Carbon atoms are represented in grey, sulphur atoms in yellow and hydrogen
atoms in white.

yields structure F, where the inner pair of S-S bonds are broken. Structure G differs

from the others in the sense that sulphur links the two carbon sheets together. This

forces one sheet to curve, as shown in H, which is the same as G viewed along the

edge. Table 7.3 summarizes the results.

All the reactions investigated yield negative values for ∆H◦. The highest value is found

for structure G and it is the only one where ∆H◦ is higher than for substitutional

sulphur. Structure F is found to be the most energetically favourable, of all the

configurations investigated, being lower in ∆H◦ by about 1.3 eV/Cedge relative to the

next lowest configurations B and C. Interestingly, in structure G, the cross-link remains

Structure Description ∆H◦ (eV/Cedge)
A Substitutional sulphur −1.34
B AB stacking, Sulphur away −1.73
C AB stacking, Sulphur above each other −1.73
D AA stacking, Sulphur above each other −1.70
F AB stacking, 1, 3 sulphur −3.07
G AB stacking, Cross-linking sulphur −1.04

Table 7.3: Calculated heats of formation ∆H◦ for the structures illustrated in figure 7.11.
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even after optimisation, even though it has a relatively high ∆H◦, compared with the

other structures.

In order to investigate the formation of cross-link at the edge, two sulphur atoms

were used to bind the two layers together, instead of one sulphur atom as for

structure G. However, after optimisation, the cross-links disappear and the structure

becomes similar to F. These calculations demonstrate that additional sulphur atoms

on a graphite edge is more favourable than as substitutional atoms, and they can also

stabilise the edges.

7.3.4.3 Remarks on armchair edges for additional sulphur

Many other configurations have been investigated for the armchair edge in the present

work. The configurations with the lowest ∆H◦ are illustrated in figure 7.12.

Figure 7.12: Structure with the lowest ∆H◦ on an armchair edge.

The four structures gives negative ∆H◦. The highest value is found for substitutional

sulphur. Structure C is found to be the most energetically favourable of all the

configurations studied. The ∆H◦ is −1.52 eV/Cedge. The energies for the remaining

structures are presented in table 7.4.

Structure Description ∆H◦ (eV/Cedge)
A Substitutional sulphur −1.03
B ‘Epoxy-like’ sulphur −0.33
C One sulphur atom bridge −1.52
D One and two sulphur atoms bridge −1.62

Table 7.4: Calculated heats of formation ∆H◦ for the structures illustrated in figure 7.12.

Although the ∆H◦ calculated for these structures are negative, these reactions are

relatively less favourable than the additional sulphur structure F calculated in the

previous section.
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7.3.5 Sulphur reaction with reconstructed edges, and the opening of folds

in graphite

The following ribbons structures have been constructed, and optimised using the

aimpro method. An orthorhombic cell with two layers, containing 64 atoms of carbon

each, is only repeated in one direction of the basal plane, with one side of the ribbon

terminated with eight hydrogen atoms. In the following calculations the Brillouin

zone was sampled using the Monkhorst and Pack scheme with a sampling of 4×4×2.

The basis sets pdpp, dddd and ppp are used for carbon, sulphur and hydrogen atoms

respectively. The states are occupied according to the first-order Methfessel-Paxton

scheme with kT = 0.01 eV .

According to the present aimpro calculations, the formation energy for the

reconstructed bilayer edge with respect to two unbound zigzag graphite edges is about

−0.62 eV. The stacking following the fold is found to be AB instead of AA which was

suggested previously by other theoretical work [185]. However, the difference could

arise from the folding axes used [171].

Only the most favourable sites for sulphur inside and on the edges of graphite have

been investigated so far. The aim of this section is to find a role for sulphur which

could enhance the graphitisation process (type II). The hypothesis that sulphur, when

it is released, can help folds to open is investigated. It might then be able to stabilise

the edges before it is removed at higher temperatures, and this would allow the layers

to reorient themselves.

The results given in table 7.5 represent the heat of formation ∆H for the model

structures illustrated in figure 7.11, but are now calculated with respect to reconstructed

edges rather than open edges. Only structures F and G have negative ∆H, with the

1,3-sulphur being the lowest. These values seem to support the proposal that sulphur

atoms can help folds to open.

In order to verify this hypothesis, further calculations are necessary. Mechanisms,

which involve the reconstructed edge and S2 molecules, are investigated by employing

the nudged elastic band (NEB) method to find reaction paths, transition states, and

any energy barriers related to the process.
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Structure from 7.11 ∆H from reconstructed edge(eV)
A 0.59
B and C 0.40
D 0.63
F -1.13
G -0.31

Table 7.5: Calculated heats of formation ∆H◦ for the structures illustrated in figure 7.11
calculated with respect to a reconstructed edge.

7.3.5.1 The first S2 molecule

The main steps are illustrated in figure 7.13, and any references to images in this

subsection refer to this figure. Each step is shown from different directions. The

path for the reaction begins with a S2 molecule in a location far away from the fold.

As the molecule approaches the fold, it starts to interact with the folded edge. One

sulphur atom attaches to one carbon atom present inside the fold. No bonds are

broken, but the molecule is now linked to the fold (shown in 1), and the triplet state

of S2 vanishes. The next step is a rearrangement of the second sulphur atom, and

its reaction with its nearest carbon atom (shown in 2). Between the structure 1 and

2 there is a small barrier about 0.30 eV in height. At temperatures above 1500 ◦C, as

used in a graphitization furnace, this small barrier is insignificant. Once structure 2

is formed, the carbon-carbon bond, forming the fold is broken, as shown in 3. This

process represents the first step for the fold to open. If the extent of the fold is large,

then a single S2 molecule is insufficient to break the other C-C bond inside the fold,

and the S-S bond remains. The final image in figure 7.13 shows the energy curve for

a single S2 reacting with the reconstructed edge.

It is remarkable to see that the C-C bond inside the fold breaks easily once sulphur

has reacted, considering that the dissociation energy for a C-C bond in graphite is

around 7 eV [186].

The next step is to investigate the addition of a second sulphur molecule to the folded

edge.
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Figure 7.13: Reaction of S2 with a fold. Four different views of each structure
are shown: A is along the prismatic direction, B is from outside the fold along the
armchair direction, C is from the opposite direction to B, and D is along the zigzag
direction. The bottom right panel is a graph of the energy versus NEB reaction
coordinate.

7.3.5.2 The second S2 molecule

The path for the reaction begins with a S2 molecule in a location far away from the

fold from figure 7.13–3. As the molecule approaches the fold, it starts to interact. Two

different sites of the folded edge can be investigated in this case. The S2 molecule

can either interact with the folded edge on a site next to the inserted S2 molecule, or

on a site away from the molecule. The most energetically favoured reaction is shown

first. This is illustrated in three images in figure 7.14. While the first S2 molecule

is part of the fold and does not move, the second molecule interacts by following

a similar path to the reaction descibed in section 7.3.5.1, as shown in figure 7.14–2.

Once it is fully attached, the coplanar S-S bonds are broken to form new interplanar

S-S bonds (shown in 3).

The fold has now started to open. This reaction has also a small barrier of about

0.53 eV in height, which is slightly more than the first S2 reaction. The higher

energy barrier could arise from a sulphur-sulphur repulsion created between the two
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Figure 7.14: Reaction of the second S2 molecule with a fold. Four different views
of each structure are shown: A is along the prismatic direction, B is from outside
the fold along the armchair direction, C is from the opposite direction to B, and D is
along the zigzag direction. The bottom right panel is a graph of the energy versus
NEB reaction coordinate.

S2 units, which occurs on the path (shown in image 2). Following this, a reversal

of the pairing for the sulphur atoms occurs, breaking the S-S bonds in both of the

original two S2 units, and creating two pentagonal rings, at the end of the reaction.

Pentagon formation did not occur when sulphur was an ad-atom on the zigzag edge,

as described in section 7.3.4.

The second possible route, where the incoming S2 molecule binds at the next

neighbouring site along the edge, has an energy barrier of about 0.30 eV in height.

The final structure takes the same form as for the first S2 molecule. However, this

structure is almost 2 eV higher in energy to the pentagon-pair form. Thus, at high

temperatures, it can be concluded that the first route is likely to be predominant.

7.3.5.3 The following S2 molecules

With the addition of two S2 molecules, the fold is now partially open. The next

logical step is to investigate the addition of a third, then fourth sulphur molecule to
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the folded edge. Two different sites on the folded edge can be investigated for the

third S2 molecule, in a similar way to the second S2. Only the most energetically

favoured reaction is shown here. This occurs when the molecule interacts with the

C-C bond next to sulphur atoms on the edge. The third molecule follows a similar

path to the reaction described for the first two S2 molecules. The energy barrier for

the third molecule is estimated to be only about 0.05 eV. Figure 7.15–A illustrates the

final structure. The length between two carbon atoms on the zigzag edge is about

2.45 Å. It might be expected that the distance between two sulphur atoms is similar;

however, it is found they are separated by about 2.34 Å. In figure 7.15–A, it can

be seen that each group of three sulphur atoms on each sheet are attracted to each

other.

Figure 7.15: Reaction of third and fouth S2 molecules with a fold. (A) Final structure
following the reaction of the third S2 molecule: A is viewed along the prismatic
direction, B is from outside the fold along the armchair direction, C is from the
opposite direction to B, and D is along the zigzag direction. E is a graph of the
energy versus NEB reaction coordinate. (B) Final structure following the reaction of
the fourth S2 molecule: A is viewed along the prismatic direction, B is from outside
the fold along the armchair direction, C is from the opposite direction to B, and D is
along the zigzag direction. E is a graph of the energy versus NEB reaction coordinate.

The final structure with four S2 units is shown in figure 7.15–B. It is very similar

to the structure F in figure 7.11. This reaction has no energy barrier. The sulphur

atoms on each plane are now separated by 2.45 Å. The fold is now fully open: no
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C-C bonds remain between the two sheets.

To conclude, this section has shown a new role for sulphur. Unfolding layers is

a crucial step for the reorganisation of the layers, and sulphur is able to enhance

it.

7.3.6 Sulphur and prismatic edge dislocation

A fold embedded in graphite is a perfect prismatic dislocation. It has Burgers (slip)

vector, b, equal to the lattice vector c since it comprises two added half planes (an

A and a B plane). The elastic energy per unit length of a dislocation is proportional

to the square of the Burgers vector, b. If it is possible to form a low energy stacking

fault in the glide plane of the dislocation; it is usually thermodynamically desirable

for it to split into two dislocations (‘dissociation’) whose Burgers vectors sum to the

original one, b. A single extra half plane is a ‘partial’ dislocation with Burgers vector

c/2 and hence apart from the cost of the stacking fault and repulsion between the

partials, the energy saving upon dissociation is proportional to b2
−(b/2)2

−(b/2)2 which

is substantial and positive. The hypothesis that sulphur, once it has opened a fold

when, can help two neighbouring prismatic dislocation to move apart is investigated.

An illustration of this mechanism is shown in figure 7.16.

Figure 7.16: Schematic representations of: 1) an opened fold via sulphur; 2) more
stable structure with two partial disclocations. The stacking fault between two half
plane is represented by the long dotted lines.

A graphene sheet, terminated by sulphur at the end of a zigzag edge, as it has

been described in structure F of figure 7.11, is placed between layers of graphite.
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The structure is optimised. The complexities of dissociation of a perfect prismatic

dislocation have not been worked out yet, especially in the case of HOPG where

each graphite layer is a patchwork of crystallites. Further calculations are required.

However, if sulfur does help prismatic dislocations move, similar transitional structures

shown in figure 7.7 are expected to occur, as seen in the literature for undecorated

edges [187].

7.3.7 The release of hydrogen sulphide during graphitisation

The aim of this section is to investigate a possible mechanism which involves the

release of hydrogen sulphide. The results of calculations show that there is a relatively

low energy barrier for this process. A model based on the dissociation of a molecular

fragment, which contains a pair of sulphur atoms, is used here. Equation 7.3 defines

the reaction, in which an H2S molecule is released, leaving the remaining sulphur

atom on the fragment.

C6H6SSH −→ C6H5S + H2S. (7.3)

The energy curve for the release of H2S, calculated using the NEB method, is shown

in figure 7.17. The initial, final, and transition state structures are also illustrated.

The reaction begins with a relatively stable molecule. As the reaction progresses, the

S-S bond in the molecule is broken. The activation energy required for this is about

0.65 eV. At this point, the departing S-H radical binds to an H atom from the original

molecule, breaking a C-H bond in the process, and subsequently forms H2S.

7.3.8 Conclusion

This chapter reviews the impurity sulphur in the process of graphitisation. The

literature provides significant information on the different role played by sulphur

during graphitisation. One possible role is the formation of sulphur cross-links

between layers of graphite. The present study appears to be inconsistent with the

idea that sulphur is present in the form of defect complexes cross-linking layers in

well-graphitised carbon, owing to the high value found for ∆H◦ by the calculations.
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Figure 7.17: Graph of the energy versus NEB reaction coordinate for release of H2S
from a molecular fragment representing the edge of a larger molecule in the precursor
material.

Furthermore, calculations have shown that the edges of graphite are a more favourable

site for sulphur, owing to the lower value found for ∆H◦. According to the literature,

substitutional sulphur atoms, or thiophenic like molecules, found in petroleum, have

been described as molecules which can promote the process of graphitisation. The

calculations presented in this chapter also suggest that sulphur can easily react with

zigzag and armchair edges when being released during the graphitisation process.

Our calculations do not refute that sulfur can form cross-linkers, which can be present

in cokes of smaller LMO, in the early stages of the process. However, the remaining

sulfur in the late stage, according to calculations, does not come from cross-linkers

but from another type of sulfur. New roles for sulphur are also proposed. The first

one concerns the ability of sulphur to open folds. Only a small activation energy

is needed for the chain reaction to occur. The second role, is the possibility that

prismatic dislocations may move more easily when sulphur is attached to their edge.

When sulphur is found on the edge, it could be described as the type III state,

defined by Bourrat [158], instead of within cross-links. Sulphur is not expected, in

these situations to leave at low temperatures.



Chapter 8

The role of Boron

Sulphur is the main impurity atom considered so far. The subject of this chapter is

boron. It occupies the fifth position (atomic number 5) in the periodic table, and is a

group III element, having properties of both metals and non-metals. Boron has two

stable isotopes: 11B (80.1%) and 10B (19.9%), which gives it an mean atomic weight of

10.811 g mol−1. Its electron configuration, 1s22s22p1, means it can form covalent bonds

with its three available valence electrons. The energy released by the formation of

three bonds is much higher than the energy of formation of a single bond. Naturally

occurring single crystals of graphite contain ∼10 ppm of boron [188]. Many other

types of atoms or molecules can be forced in the graphite lattice, but they are mostly

found as interstitial impurities [189]. Boron, however, is an unusual species, since it

can dope graphite as a substitutional atom [190]. This chapter discusses the role of

boron in graphitisation and radiation damage by reviewing its stability, its preferential

sites, and its electronic effect inside the hexagonal structure of graphite. Its ability

to form strong bonds with its three neighbouring carbon atoms when substitutional,

and also its effect on the elastic constant C44 are described. A paragraph on the role

of boron inside a nuclear reactor is presented first.

104
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8.1 The history of boron

8.1.1 In nuclear reactor

Graphitisation gives a relatively pure material; however, when used in nuclear reactors,

even a small concentration of impurities, especially the ones with high cross-section for

neutron capture, can have an undesired effect [137]. Boron is one of the unfavourable,

and most difficult impurities to remove from the graphite lattice; hence, the purification

step following the final graphitisation is crucial [137]. Nevertheless, boron also plays

a major role in a fission reactor for controlling the reactivity. When uranium is

used as a fuel, it releases typically two or three neutrons. Only one is needed to

sustain the chain reaction, while the excess are absorbed in non-fission reactions.

The boron isotope, 10B, is used in neutron absorbing control rods due to its high

cross-section for neutron capture [191, 192]. Thus, when the rods are slightly removed

from their original position, the number of neutrons available increases and hence

the power level increases. Once a desired power is reached, the control rods are

returned to their position and the power stabilises. For some types of reactors, a

small amount of boron may be added intentionally to the cooling water. For emergency

situations, rapidly adding an excessive quantity of boron to the water can also be

done. In graphite-cored nuclear reactors, however, the control rods are normally the

only intentional neutron-absorbing material present. Boron has never been found in

irradiated graphite used in fission reactors [191].

8.1.2 In graphitisation

A few reports can been found in the literature of experiments on the role of boron

during the graphitisation process [193, 194, 195]. A catalytic effect on the rate of

graphitisation was observed in some of the experiments [193]. Murty et al. were

the first to report this catalytic effect at various concentrations of boron, but also as

a function of heat treatment, time and temperature [194]. It was found that, when

boron is present at a concentration of about 0.5–1 wt.%, the normal d002 interlayer

spacing of graphite is reached at lower temperature (by about 400 ◦–500 ◦C) than for

a graphitic carbon without boron. Furthermore, according to Murty et al. at higher
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concentrations to up to about 5 wt.%, the catalytic effect saturates, meaning no further

lowering of the temperature necessary for graphitisation to occur is observed. In these

experiments, it is only the rate of graphitisation that changes, and not the activation

energy. Kotlensky found similar results to these for low concentrations, but he also

concluded that concentrations higher than 1 wt.% can, to some extent, even inhibit

graphitisation [195]. It was demonstrated that the equilibrium solid solubility, of

2.12 wt.% at 2350 ◦C (see section 8.2), is not dependent on the initial carbon coke,

whereas the extent and rate of catalysis at a given boron level depends on the initial

structure [194]. Oya et al. came to the conclusion that the presence of boron, mainly

as a substitutional impurity, augments the rate of graphitisation [194].

Oya et al. [193] classified the catalytic effect of boron according to its concentration,

and described that when less than 1 wt.% of boron is added to carbon, it becomes

substitutional, and it results in a well-graphitised carbon. When 1 to 5 wt.% of boron

is present, in a non-graphitising carbon, the formation of a more ‘ordered’ turbostratic

structure is observed on heating to temperature of about 2200 ◦C. When 10 wt.% of

boron is present in a phenolic resin carbon, a well ordered structure is observed

at temperature of about 2400 ◦C. They also reported the catalytic action of boron or

boron oxide for other carbons [193]. According to Trask, the addition of at least 3

wt.% of boron into synthetic graphite from petroleum coke and coal-tar pitch binder,

enhanced the crystallinity of graphite, improved its oxidation resistance, and decreased

the coefficient of thermal expansion (CTE) without causing any deterioration in the

flexural strength [196]. This was also found by Hagio et al., and they explained that

the effect on CTE was mainly caused by a distortion of the graphite lattice due to

boron [197]. Addition of 1 wt.% of boron to pyrolytic graphite formed at about 1500 ◦C

also considerably improved the oxidation resistance. This doped pyrolytic graphite

had a high density, p = 2.19 g cm−3, a value of the order parameter Lc = 15.8 nm, and

a highly preferred orientation of crystallites.

8.1.3 In radiation damage

In the last section of Chapter 1, 1.3, it was explained that prismatic interstitial

dislocation loops are formed after radiation. An early experiment reported the possible
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influence of boron in the formation of loops [198]. Later experiments demonstrated

that when irradiated graphite single crystals are doped with boron and heated to

temperature as high as 2100 ◦C, then large interstitial loops are formed [199]. An

example is shown in figure 8.1.

Figure 8.1: Electron microscope image of interstitial-type loops produced in
boron-doped graphite annealed to high temperature, taken from [200]. Some of
the loops are highlighted with a black circle.

And even at different neutron doses, the density of the loops increases when more

boron is present. There is also a dependence of their radius with the boron content;

mathematical equations related to this can be found in Kelly and Mayer’s paper [201].

A theory was established by Brown et al. which explains the role of boron in irradiated

samples [202]. According to their calculations, the nucleation and growth of interstitial

loops in highly oriented pyrolytic graphite (HOPG) shows Arrhenius dependence of

∼ 1.2 eV. Brown et al. concluded that boron, 11B, can enhance the effect of radiation

damage due to its very high cross-section for elastic collisions, an effect which was

explored to accelerate damage in material test reactors [192]. Unfortunately, it was

not easy to interpret the results of these experiments and the idea was dropped.

Another interesting feature of boron in graphite is its effect on the elastic constant

C44 [203]. There is a curious similarity between B-doping and radiation damage:

both push up the measured value of the shear modulus, C44, to the values generally

accepted for a perfect AB stacked graphite crystal (i.e. 4–5 GPa) [204, 205].

Generally, without either doping or damage, C44 is found to be very small for a

well graphitised synthetic sample or for natural graphite (i.e. 0.25–1.2 GPa) [206].

The reason is often attributed to extra compliance arising from reversible motion of

basal dislocations. Since the Peierls stress for these is zero [207], reversible motion
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is possible. Another interpretation is that these natural and good synthetic samples

have [002] twist boundaries and these have very flat gamma surfaces and hence very

low C44 [208, 209]. This is pushed up to the perfect crystal C44 value (4–5 GPa) by

pinning these boundaries, meaning that the gamma surface is not flat in these cases.

It appears to be inhibited by radiation damage [210] and by boron [203]. The origin

of the radiation damage effect has been generally associated with cross-linking defects

(e.g. interstitials) preventing slip, but it is difficult to understand this for boron doping,

since it is a substitutional impurity and not cross-linking. Our calculations later will

show how substitutional boron atom causes pinning without cross-linking.

8.2 Review of the stability, effect, and diffusion of boron in the

graphite lattice

The solubility of solid boron in graphite has been determined by Lowell from the

boron-carbon phase diagram [211]. Lowell found that boron is substitutional with a

maximum solubility of 2.12 wt.% at 2350 ◦C, and its effects on the lattice constants

can be described by the two following equations:

a0 (Å) = 2.46023 + 0.0031KB

for the a lattice parameter and

c0 (Å) = 6.71163 − 0.00594KB

for the c lattice parameter, with KB the atomic fraction of dissolved boron in both

equations.

The minimum lattice constant occurs at 2350 ◦C. Turnbull et al. also studied amorphous

boron diffusing into a reactor-grade graphite [188]. They produced single crystals of

graphite containing up to 4 wt.% boron, and claimed that at this concentration boron

must occupy both interstitial and substitutional sites. They concluded that interstitial

atoms generate expansion in the prismatic direction with no apparent effect on the

basal direction, whereas substitutional boron creates a c-axis contraction and an a-axis
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expansion. The interstitial boron atoms escape from the crystal at temperatures

around 1400 ◦C, while the substitutional boron atoms remain stable. The high value

for the c-parameter due to the interstitial atoms now decreases. Only substitutional

atoms remain, and the d002 is now smaller than the normal graphite value. When the

temperature is above 2000 ◦C, the substitutional boron is able to diffuse, and the lattice

parameters return to their normal values for graphite [188]. Wagner and Dickinson

also observed a decrease of the interlayer spacing with concentration of boron of up

to 0.79 wt.% with the crystallites size (Lc) unaffected [212].

Another group found similar results: doping graphite, with 0.6 wt.% and 1.5

wt.% boron, changed the lattice parameters [213]. They also took Raman spectra

of boron-doped graphite, and observed an increase in intensity of the 1360 cm−1

D-mode, implying that defects are present (chapter 5, section 5.2.1), or at least, that

substitutional boron atoms manage to break the symmetry mode enough for it to be

Raman-allowed.

Hennig measured the mobility of substitutional boron atoms in a single crystal [214].

He found that the activation energies for the migration of boron in the prismatic

and basal directions are similar, and are about 6.7 eV. He employed the following

equation to determine the diffusion coefficient, DB, in the two directions:

DB = D0exp(−Ea/kBT)

where D0 is the self-diffusion constant, Ea is the activation energy for migration, and

T is the temperature. The values of D0 and Ea measured by Hennig are shown in

table 8.1. Using this equation, at 1800 ◦C, the diffusion coefficient is a factor 350

greater in the basal plane. Suarez-Martinez et al. studied the boron interaction with

point defects in graphite and its possible diffusion route [215]. They concluded that

a kick-out mechanism is responsible for the diffusion of boron, in both the prismatic

and basal directions. In addition, their calculations showed that the activation energy

for its diffusion was controlled by the formation and migration of interstitial carbon

atoms.

The diffusion constants for carbon atoms are calculated to be significantly lower than
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Diffusion D0(cm2 s−1) Ea (eV)
Boron along a-axis 6320 6.78
Boron along c-axis 7.1 6.61
Carbon self-diffusion along a-axis 0.4–14 6.99

Table 8.1: Experimental values for the self-diffusion constants and activation energies
of boron in graphite, taken from [215]

for boron atoms [215]. The parameters for carbon atom self-diffusion in graphite in

the basal direction were first measured by Kanter (table 8.1) [216]. Later experiments

found good agreement with those values (1.81 cm2 s−1) and also measured a value of

82.8 cm2 s−1 in the prismatic direction [217]. If boron and carbon atoms diffuse via

a similar mechanism, then boron atoms could increase the rate of graphitisation due

the relatively higher diffusivity of boron over carbon in the graphite lattice.

The literature provides significant information on the various effects that boron

has when present as an impurity in graphite. This has stimulated research into

new boronated carbon compounds. A material with the composition BC3 has been

synthesised by reacting benzene and boron trichloride at about 800 ◦C [218]. LDA

calculations predict that BC3 is a stable, semiconducting compound with a hexagonal

lattice, arranged in layers, similar to graphite, and where the primitive unit cell

contains eight atoms [219]. However, this concentration cannot be expected after

graphitisation, as most of the boron would be removed. Nevertheless, the synthesis

of BC3, supported by theory, represents further evidence of the ability of boron to be

incorporated as a substitutional atom within graphite.

8.2.1 As a substitutional

When boron is added to graphite during heat treatment, it can diffuse in the lattice

and find a vacancy site to occupy, with a preference for less ordered regions [220, 221].

Another group confirmed that a boron atom becomes substitutional more easily when

it undergoes graphitisation, since it can form new B-C bonds at the defective sites

removal by diffusion of other impurities [222]. It is believed to be difficult for

boron atoms to enter the graphite lattice at temperature below 2000 ◦C due its high

activation energy, unless the host material has been irradiated first [200]. Previous

LDA calculations give the formation energy of substitutional boron atoms to be
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1.4 eV [215].

8.2.2 As an interstitial

When boron is added to carbon, either as elemental boron or as boric acid, boron

atoms may become interstitial before they react with available vacancy sites [222, 223].

The same occurs when substitutional boron atoms trap interstitial carbon atoms,

and become interstitial boron atoms in the process [215]. It is also believed that

boron atoms, at a higher concentration than described by Lowell, might exist

as interstitials [188]. Unfortunately, the exact concentration and the mechanisms

involved for interstitial boron atoms are unclear. Previous LDA calculations give the

formation energy of interstitial boron atoms to be 4.5 eV [215]. This high formation

energy rules out interstitial boron atom as an equilibrium defect of any importance.

However, it has been suggested that their effect on the lattice parameter c cannot be

ignored [188]. It should be noted that carbon spiro-interstitial defects give very little

c-axis expansion [224], but there are mechanisms (e.g. pinning basal dislocations and

buckling [225]) by which c can be increased.

8.3 Calculation

8.3.1 As a substitutional

The aim of this section is to investigate, using the aimpro package, models for

substitutional boron atom in graphite. This includes varying the concentration of

boron to examine what effect this has. The size of boron is smaller than carbon or

sulphur atoms; thus, it is expected that substitutional boron forms a high-symmetry

on-site defect centre, rather than off-site. The unit cells used in the following calculation

contain either 4×4×1 or 7×7×1 orthorhombic supercells. This means that for these two

models, the concentration is either 0.6 or 1.5 at.%, respectively. In the following work,

the Brillouin zone was sampled using the Monkhorst and Pack scheme with a sampling

of 6 × 6 × 4. The basis sets pdpp and pdpp are used for carbon and boron atoms

respectively. The states are occupied according to the first-order Methfessel-Paxton
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scheme with kT = 0.01 eV. The calculations confirm that the on-site configuration is

the one favoured for substitutional boron. This illustrated in figure 8.2. Thus, the

impurity atom is found to be threefold coordinated with D3h symmetry.

Figure 8.2: Structure of a substitutional boron atom within a graphite layer on a β
site, optimised by the aimpro program package.

A substitutional boron atom has an influence on its neighbouring carbon atoms. The

three B-C bonds are longer (1.468 Å) than a normal C-C bond (1.411 Å), while the next

neighbouring C-C bonds are slightly shorter (1.395 Å), according to the calculations.

The predicted B-C bond lengths are in good agreement with their values determined

by Raman scattering experiments on boron-doped graphite (1.48 Å) [226].

The difference in energy for a single boron atom placed on an α or a β site is negligible

(20–30 meV, see 8.2). However, the formation energy shows that boron is more easily

inserted at lower concentration, according to the calculations. A summary of the

results is shown in table 8.2.

The next models investigate the possible segregation of boron atoms by placing two

substitutional atoms in a 64-atom supercell, arranged in eight different ways. The

impurity concentration for this model system is 3 at.%. Four different models can

be generated for boron atoms in the same graphene sheet on different α and β sites.

The formation energy for the nearest neighbouring α-β pair is higher by nearly 1 eV

compared with any other models investigated. This means that the formation of boron

dimers in graphite is unlikely. When two boron atoms are separated by at least a few

C-C bonds, no differences in formation energies between α and β are predicted. When

the boron atoms occupy different sheets, the calculations predict that there is negligible

interaction, meaning that the formation energy is simply double the formation energy

of a single substitutional boron atom in the same cell. However, the calculations find

that pairs of substitutional boron atoms in different sheets are slightly more stable, by
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about 0.25 eV, than when they are coplanar. This effect can be understood in terms

of the increase of the density of states arising from the shift in the Fermi level when

boron is added. Further details are given later in section 8.4.2.6.

A summary of the results for substitutional boron is provided in table 8.2. All the

formation energies are calculated with respect to the rhombohedral crystalline form

of icosahedral-B12, and hexagonal graphite.

Description at.%B carbon site(s) formation energy (eV)
Single boron atom only 0.6 α 0.73

β 0.76
1.5 α 0.89

β 0.87
Two coplanar boron 3.0 αβ neighbours 2.99
atoms αβ separate 2.07

αα separate 2.07
ββ separate 2.06

Two boron atoms in 3.0 αα neighbour 1.80
different sheets αα separate 1.84

αβ separate 1.81
ββ separate 1.78

Table 8.2: Formation energies calculated using the aimpro package for substitutional
boron in graphite at different concentrations, in different configurations. For two
boron atoms in a supercell, ‘separate’ means that they are not on neighbouring sites
and there is a distance of at least 6 Å between them.

Thus, for models containing 3 at.% B, no preferential sites, and no clustering is

predicted, in good agreement with experiments using B-NMR, which show that isolated

boron atoms are dominant at low boron concentration. However, increasing numbers

of B-B near neighbours are detected as the boron content increases [227]. The effect of

boron on the lattice parameters with the same model has also been also investigated.

The results confirm an increase in the a lattice parameter and a decrease in the

c lattice parameters. However, the calculated values are relatively small: 0.52%

increase in the basal direction and 1.03% decrease in the prismatic directions at

3 at.% B. These values sensibly change as the concentration decreases. They follow

Vegard’s law [228], which is an approximate empirical formula which explains that

there is a linear relationship between the crystal lattice constant of an alloy and the

concentrations of the constituent elements at constant temperature. This is also in

reasonable agreement with experiment [213]; the a-axis parameter is increased by 0.1%

and the c-axis parameter is decreased by 0.12% at 0.6 wt.%
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8.3.2 As an interstitial

The following model has been constructed in a supercell and calculations were

performed using the same input parameters as the previous section. A single boron

atom is placed midway between the two graphene sheets in AB graphite with 32

carbon atoms each. After optimisation, two structures are found to be relatively

stable: a threefold interstitial boron atom with the layers in ABAB stacking, and a

fourfold ‘spiro’ interstitial boron atom with a shear of one of the layers in the basal

direction. The ‘spiro’ interstitial model is slightly lower in energy, by 0.2 eV, compared

to the threefold model. The formation energy for the spiro model is 4.5 eV; hence

is higher than the formation energy of a substitutional boron atom (0.87 eV). An

illustration of the spiro-configuration is shown in figure 8.3. A significant distortion

can be observed in this figure but the increase of the lattice parameter c is only

0.35% with respect to normal graphite. The four B-C bonds are 1.585 Å, the two C-C

bonds forming two triangles with the boron atom are 1.508 Å, and both C-B-C angles

are 58◦. The interstitial boron atom causes a spontaneous relative translation of the

graphene sheets along a [101̄0] direction by about half a C-C bond length (left image

in 8.3). This behaviour is similar to that for the spiro form of self-interstitial atoms

in graphite [163].

Figure 8.3: Structure of a interstitial boron atom between graphene sheets in hexagonal
graphite, optimised by the aimpro program package.

8.3.3 As substitutional and interstitial pairs

The following models examine the stability of boron atom pairs, where one is

substitutional and the other is a nearby interstitial. The unit cells contain 64 carbon

atoms arranged as two graphene sheets in graphite. Two different configurations

have been optimised by moving boron atoms from their interstitial and substitutional
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positions. The first configuration has an interstitial boron atom located about 7 Å

away from a substitutional atom, while the second case is sufficiently close for a

B-B bond to exist between the pair. The bonded configuration is found to be lower

energy by about 1.2 eV compared with the separate pair. The formation energy for

this model is found to be approximately 3.69 eV, which is 0.8 eV lower in energy

compared with the formation energy of a single interstitial. In this model, the B-B

bond is 1.704 Å, the B-C bonds between the interstitial boron atom and the carbon

atoms are 1.601 Å and the B-C bonds between the substitutional boron atom the carbon

atoms are 1.504 Å. Also, unlike the isolated boron interstitial, no relative translation

of the adjacent graphene sheets occurs: the stacking remains AB. The structure of a

boron pair defect complex is illustrated in figure 8.4. Comparing formation energies

of isolated interstitial boron atom and substitutional boron atom (4.5 eV and 0.9 eV),

the binding energy is 5.4 eV-3.7 eV, and is equal to 1.7 eV. This complex does not

appear to have been reported previously; however, its relatively low energy suggests

that it may be possible for these defects to form, especially when the concentration

of boron is high, or following suitable heat treatment.

Figure 8.4: Illustration showing the structure of a split interstitial-substitutional boron
defect complex in graphite, optimised by the aimpro program package.

8.3.4 Remarks

Model structures for defects containing boron as an impurity in graphite have been

examined in this section, using the aimpro program package. The results of the

calculations are in good agreement with previous work by others for isolated interstitial

and substitutional boron atoms. A defect complex comprising a pair of boron atoms

is also found. This structure, which does not seem to have been described in previous

work, is predicted to have a relatively low energy, suggesting that it is likely to exist
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when the circumstances are favourable.

8.4 Band structure of graphite with boron

The effect of doping on the electronic properties of a material can only be predicted

provided that the dopant species perturbs the lattice and band structure of the host by

a negligible amount. Boron in graphite is a good example since, at low concentrations,

it has relatively little effect on the lattice parameters of graphite, suggesting that the

band structure of the host is nearly unaffected by the presence of the impurity. In

this section, the band structure of normal hexagonal graphite is calculated using the

aimpro package, then compared with the band structure of model supercells when

boron atoms are in substitutional states. The boron band structures were calculated

from the optimised cells previously described.

8.4.1 Review of the electronic band structure

8.4.1.1 Graphite

The band structure of hexagonal graphite was first calculated in 1947 by Wallace and

Coulson using a tight-binding approximation [229, 230]. Many later band structure

calculations are in broad agreement; nevertheless, they do not necessarily interpret

the results in the same way [137].

The Brillouin zone (BZ) zone of hexagonal graphite is a hexagonal prism, and its

vectors can be determined from the primitive lattice vectors, where the real-space and

reciprocal space basal lattice vectors are rotated by 60 ◦ with respect to each other. The

BZ boundaries can be described with specific points. The standard parametrisation

is due to Slonczewsky, Weiss and McCure [231, 232]. Further details are given in the

appendix A, which includes an illustration of the full BZ.
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8.4.1.2 Substitutional boron

The ability of graphite to accept boron as a substitutional atom was discussed

previously. The main purpose of doping carbons is to change the position of the Fermi

level, and introduce a possible charge transfer. This can either be electropositive,

meaning an electron is added to one of the unoccupied π bands, which moves

the Fermi level higher, or electronegative, having the opposite effect. Nitrogen

atoms might reasonably be expected to be the only possible substitutional electron

donors in carbon [233]; however, at temperatures of about 1700 ◦C, most substitutional

nitrogen atoms in carbon materials have been lost by diffusion [234]. Nitrogen in

carbon materials was also reviewed by Ewels and Glerup [235]. The electropositive

effect usually occurs when atoms or molecules are intercalated between layers [233].

However, boron atoms are normally considered to be the only possible substitutional

electron acceptors in carbon materials [233].

8.4.2 Band structures calculations

8.4.2.1 Graphite

Band structures shown in the present work follow a specific path around the BZ, i.e:

K → Γ → M → K → H → A → L. Some of the low energy bands are omitted for

clarity; only bands near the Fermi level are shown. For example, the band structure

of a 64-atom graphite supercell is illustrated in figure 8.5.

The band structure calculated in the present work is similar to the results from

previous theoretical studies [236]. Their band structure calculation for graphite is

illustrated in figure 8.6.

Although 64 atoms have been used to match the later calculations, the energy bands

can be more easily described with a primitive unit cell of four atoms. In the case

of a four-atom cell, each carbon atom has four valence electrons, therefore there are

sixteen energy levels, provided the spin is ignored (singlet). Twelve of these levels

describe σ bands, and four other levels the π bands. Six of the σ bands are bonding

orbitals, and the remaining six are anti-bonding orbitals. There are also two π-bonding
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Figure 8.5: Band structure of a 64-atom graphite supercell containing two graphene
sheets with AB stacking, optimised by the aimpro program package. The occupied
bands are represented in red, and the unoccupied bands in dark blue. The Fermi
level is depicted in green.

Figure 8.6: Ab− initio band structure of graphite along different lines in the Brillouin
zone, taken from [236].

and two π-anti-bonding bands. The anti-bonding orbitals have higher energies than

the bonding orbitals. Graphite has sixteen valence electrons available in its primitive

unit cell, thus only eight energy bands are filled with two electrons (six σ and two

π).

In figure 8.5, a large gap between the π-bonding band and the π-anti-bonding band

can be seen at the Γ-point, a smaller gap at the M-point, and notably, no gap at the

K-point. All these points lie in the basal plane crossing the centre of the BZ; however,

a similar behaviour is observed at the H-, A-, and L-points, lying on the hexagonal

faces of the BZ. The small overlap of the bands at K means that the two states at

the Fermi level are degenerate. Graphite has many other degenerate bands. Another

example can be seen at the M-point for the bands slightly above and below the Fermi
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level. These two pairs of bands are split elsewhere in the BZ.

The bands at the K-point arise from combinations of the celebrated graphene states

at the K-point, the Dirac point [2]. These two states are delocalised non-bonding

wavefunctions, each sitting on one and only one of the two sublattices (see

figure 8.7).

Figure 8.7: The two wavefunctions at the K-point on different sublattice. We label
these α (left) and β (right). Large circles correspond to coefficient of +1 and small
circles - 1

2 .

When graphene layers are stacked in AB fashion, the sublattices which are directly

above one another in the c-direction (labelled α) are allowed to interact, by symmetry,

but the β sublattices are not. Thus the graphene K-states on β sublattices remain

non-bonding and degenerate along K to H, while the α states show dispersion along

that direction as illustrated in figure 8.8.

Figure 8.8: Schematic representation of the bonding, non-bonding, and anti-bonding
orbitals, and their respective energy band between H and K in the BZ.

The electronic effect of substitutional boron atoms are investigated in the following

sections by calculating their effect on the electronic band structure. A concentration

of 1.5 at.% is used for the models, since this value is close to maximum substitutional
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boron concentration described by Lowell [211]. This has the added advantage of

needing only a relatively small unit cell. A lower concentration of 0.6 at.% B has

also been investigated; however no noticeable difference is found between the band

structures. The band structure at this concentration is given in the appendix B.

8.4.2.2 Substitutional α site

The band structure of a substitutional boron atom on an α site is shown in figure 8.9,

together with the band structure of AB graphite. The two band structures are broadly

similar; however, many important differences can be observed, especially near the

Fermi level of AB graphite.

The Fermi level, represented by the green line for the boron-doped model, is lowered

as expected. According to the calculations, the difference in the Fermi level between

1.5 at.% B-doped graphite and AB graphite is about 0.56 eV.

As already explained in chapter 3, these plots are Kohn-Sham band structures (i.e.

Kohn-Sham energies). DFT gives the ground-state energy only, and not energies

of excited states. These band structures are not the true bands, and the two may

differ. In our calculations, the band gap is the difference between the eigenvalues

of the lowest unoccupied orbital (conduction band) and the highest occupied orbital

(valence band); the difference with a real band gap may arise from the discontinuity

of the functional derivative of the exchange and correlation energy in LDA, even

after theoretical correction [237]. This could affect the Fermi-level value as well, since

this is determined from the highest valence band and the lowest conduction band.

It should also be noted that higher eigenstates are not involved in the calculation

of ground state properties, and it is likely that the shift of the non-bonding band in

figure 8.9 will be estimated very poorly.

At the Γ-point, the lowest partially-occupied band (marked with ∗) for the π-orbitals

is significantly higher in energy when boron is present as an impurity, than for the

corresponding bond in pure graphite, and is decoupled from the other bands. The

boron atom splits α–β degeneracy and the interlayer degeneracy.

At the M-point, the same band crosses the Fermi level, but it remains decoupled
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Figure 8.9: Band structure of a 64-atom graphite supercell containing one substitutional
boron atom on an α site, and two graphene sheets with AB stacking, optimised by
the aimpro program package, overlayed on the band structure of pure graphite. The
occupied bands are represented in red, the unoccupied bands in dark blue for the
boron-doped model and the Fermi level in green, while grey lines are used for the
pure graphite supercell.

from all the other π-bands. Between the Γ- and M-point, most of the bonding and

anti-bonding bands are very similar between the B-doped graphite and AB graphite.

Many changes appear between the M- and the K-points, especially in the bonding

region. In AB graphite, symmetry requires degeneracies and at certain k-points, some

bands merge, cross and split around these points, whereas, in B-doped graphite,

symmetry is broken and these bands do not cross (as shown in figure 8.9 with bands

labelled 2 and 3).

It can be seen in figure 8.9 that the two lowest partially-occupied bands are split

between K- and H, while in pure, hexagonal graphite, the corresponding bands

are nearly degenerate. This splitting is found to be about 0.4 eV, according to the

aimpro method. The next nearest bonding and anti-bonding bands do not exhibit this

behaviour.

Between the K- and H-point, the non-bonding bands remain flat and only cross later

in the path. When compared with the two non-bonding bands in AB graphite, we

can see that one band shifts to a lower level, while the other band shifts to a higher
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level. The gap between the upper shift is similar to the gap of the lower shift. The

next nearest bonding and anti-bonding bands follow different paths compared with

the corresponding band in AB graphite.

At the K-point, the next nearest bonding and anti-bonding α bands, cross in AB

graphite; however, in B-doped graphite, a gap of about 0.5 eV opens.

The layer which contains a boron atom has a lower average nuclear potential and a

negative charge. Thus α and β states at the K-point are raised in energy and split. The

other layer is positively charged and lowered in energy, with no α–β splitting.

8.4.2.3 Substitutional β site

When a substitutional boron atom occupies a β site instead of α, as described

previously, then the band structure is calculated to be as shown in figure 8.10.

Once again, the two band structures are broadly similar; however, many significant

differences can be observed near the Fermi level of pure, hexagonal graphite.

Figure 8.10: Band structure of a 64-atom graphite supercell containing, one
substitutional boron atom on a β site, and two graphene sheets with AB stacking,
optimised by the aimpro program package. The occupied bands are represented in
red, the unoccupied bands in dark blue, and the Fermi level in green.

Similar interpretations of the bands’ shape can be drawn for a β site and an α site.

Nevertheless, they do differ in some particular respects. The lowest partially-occupied
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band has slightly higher energy at Γ. In addition, the highest non-bonding band

(labelled 3), from the β sublattice, crosses with the anti-bonding band (labelled 4)

from the α sublattice.

As before, the lower nuclear potential of a boron atom pushes up the energy of the β

band from the boron layer (3), while the α band from this layer is not much affected.

This gives a crossing of the two along K–H. The α and β bands from the unboronated

layer are unsplit and are lowered by positive charge.

8.4.2.4 Remarks

Regardless of whether boron occupies an α or β substitutional site, the calculated

band structures show several differences with the calculated band structure for AB

graphite. The Fermi level is lowered as expected. Nevertheless, it is difficult to

compare the present results with experimental works, for the reasons explained earlier.

Another factor hindering comparison with experiment is that the concentration of

boron in the models (1.5 at.%) is larger than in the specimens used for measurements

(< 0.1 at.%) [238]. Calculations with a concentration of boron less than 0.1 at.%

requires a very large cell and this was not inverstigated here. The changes in the

energy bands are not fully understood; however it seems that the smaller nuclear

potential of a boron atom might be responsible for some of the changes. This problem

is examined further, using linear perturbation theory, in subsection 8.4.2.8.

8.4.2.5 Substitutional α versus β

In order highlight differences between boron at α and β sites on the band structure,

figure 8.11 shows both plotted on the same graph. The two Fermi levels can be

considered as being equal within the accuracy of the calculation. Although broadly

similar in overall form, many differences between the two sites for boron can be seen,

with most of them appearing between the K-point and the H-point. In this region,

the three main observations are as follows:

• The upper non-bonding β band is slightly higher in energy than the upper

non-bonding α band, whereas the lower non-bonding α and β bands have the
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same energy.

• When a boron atom occupies an α site, the bands close to the non-bonding

bands, representing the bonding and anti-bonding orbitals of an α sublattice,

are slightly shifted to higher energies between K and H, compared with a boron

atom on a β site.

• At the H-point, the changes between the two plots vanish, then the two bands

remain nearly identical up to the L-point. At the H-point, there is no interlayer

interaction and all that remains is the in-layer splitting which is identical for α

and β cases.

Figure 8.11: Comparison of the two band structures described in section 8.4.2.2 and
section 8.4.2.3. Solid red lines represent the band structure when boron occupies an
α site, while blue lines represent the β site band structures.

The coincidence of the bands near the H-point shows that the effect of the boron

nuclear potential on one sublattice is the same, irrespective of whether a substitutional

boron atom occupies an α or β location.

8.4.2.6 The effect increasing substitutional boron concentration

The band structures of the models described in table 8.2 with 3 at.% B, are examined

next. The aim is to find the extent to which increasing the concentration of

substitutional boron atoms in graphite affects the energy bands. For the sake of
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brevity, only the effects observed between the K- and H-point, are discussed in this

section for two cases: boron atoms in the same sheet, and in two neighbouring sheets.

The band structures of the remaining models of table 8.2 are shown in appendix B.

Finally, the two concentrations 1.5 and 3 at.% B are compared.

First, we consider two of the four models of two boron atoms placed in the same

sheet, namely the αα and ββ combinations. Their calculated band structures are shown

in figure 8.12.

Figure 8.12: Band structures of a 64-atom graphite supercells containing two
substitutional boron atoms in the same sheet. The band structure of two boron
atoms both on α sites is represented in blue. The band structure of two boron atoms
both on β sites is represented in red. The Fermi level is now at -0.75eV.

Similar outcomes are found for two boron atoms on ββ sites versus αα sites, as seen

previously for isolated boron atoms on either a β or an α site (figure 8.11), with one

crucial difference: the gaps beween bands are approximately doubled. For example,

the calculated band gap between the two non-bonding bands is about 0.5 eV at

1.5 at.% B, compared with about 0.95 eV at 3 at.% B.

Next, we examine what happens when two boron atoms are placed in two

neighbouring sheets. On this occasion, the band structures for αα and αβ pairs

are chosen. There are two possibilities for αα; we chose the α position to be away

from each other. The results are shown in figure 8.13.
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Figure 8.13: Band structures of 64-atom graphite supercells containing two
substitutional boron atoms in different sheets. The cross-layer αα pair is represented
in red, while the αβ pair is represented in blue.

In common with all the band structures described previously, differences are between

the two cases occur mainly between K and H; however, they take a different form

from before. Specifically, unique to the αα pairing, the two lowest unoccupied bands

are degenerate between K and H, which is the same as in pure hexagonal graphite.

This contrasts with the αβ cross-layer pairing, where there is a gap between the

bands of about 0.2 eV, or about half the size of the corresponding gap for a single

substitutional atom. Thus, this case is, at least as far as LDA calculations go, a narrow

gap semiconductor.

8.4.2.7 Note

The band structures for many different models have been calculated to understand

the effect of boron as an impurity. In these models, various concentrations were

investigated as well as the effect of the α and β site. It is difficult to draw many

conclusions from these bands but it appears that the higher the concentration of boron,

the lower the Fermi level, as expected. Perturbation theory is used in the next section

to interpret the possible effect of boron atom on the energy bands.
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8.4.2.8 Linear perturbation theory (LPT)

The general use of this theory is to simplify a complicated quantum system. LPT

is often applied in order to determine a solution to the Schrödinger equation for

complicated Hamiltonians by using the Hamiltonians where the exact solution is

known (e.g. hydrogen). Then from the known solution, the perturbation is added

to the system. If there are not many changes (e.g. energy levels and eigenstates), it

can be considered that the perturbation is defined as corrections to the initial model.

In our case, we use LPT to explain the changes in the band structures. The energy

bands for graphite are known and have been described previously. When one or

two carbon atoms are substituted with boron atoms, the band structures look very

similar apart from some minor shifts. We focus on the graphene wave-functions at

the K-point which reside on either the α or β sublattices.

If the wave-functions are considered to be unchanged, then four wave-functions are

to be considered on the two layers of the supercell (1 and 2): ψKα1
, ψKβ1

, ψKα2
and

ψKβ2
. If it is assumed that the change in potential is uniform throughout the layer,

then the following expression can be written:

∆E =

∫
ψ∗Kα1

∆VBψKα1
dτ = ∆VB

∫
ψ∗Kα1

ψKα1
dτ

=

∫
ψ∗Kβ1

∆VBψKβ1
dτ = ∆VB

∫
ψ∗Kβ1

ψKβ1
dτ,

and for normalised wavefunctions, it equals the change in potentials. ∆E is the

difference in energy between two bands. This most likely due to charge transfer

between layers. Now if we consider the non-uniform effect of boron, largely due to

the weaker nuclear potential, we can write the following expressions for boron on an

α site:

∆Eαα =

∫
ψ∗Kα1

∆VBαψKα1
dτ

∆Eαβ =

∫
ψ∗Kβ1

∆VBαψKβ1
dτ
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and for boron on a β site:

∆Eβα =

∫
ψ∗Kα1

∆VBβψKα1
dτ

∆Eββ =

∫
ψ∗Kβ1

∆VBβψKβ1
dτ

The notation ∆VBi is the boron potential where i represents the boron site. The shift in

energy, ∆Ei j, between graphite and boron doped graphite, where j labels the sublattice

where the band resides, can be measured from the difference between the bands as

illustrated in figure 8.14.

Figure 8.14: Enlarged view between the K- and the H-point of the band structure
from figure 8.10. The short and long arrow represent the shift in energy, for the α
and β sublattices when boron is on a β site, compared to normal graphite (black line).

If we compare the ∆Ei j of the two band structures plotted in figure 8.11 at the K-point,

we observe that for a boron atom on an α and a β sites we have:

∆Eαα > ∆Eαβ

∆Eβα > ∆Eββ

and if we compare the shift for α versus β, we have:

∆Eαα > ∆Eβα

∆Eββ > ∆Eαβ
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These changes in energy can also be written for the H-point. In this case we have:

∆Eαα > ∆Eαβ

∆Eββ > ∆Eβα

and for α versus β, we have:

∆Eαα = ∆Eββ

∆Eαβ = ∆Eβα

These observations, both for the K- and H-point can be made for boron at different

concentrations; the same equations are found. These results indicate that the weaker

nuclear potential of boron is the prime reason for the splitting of bands from the same

layers when boron atoms are present as substitutional atoms, and charge transfer for

the splitting of bands in different layers.

In order to confirm the origin of these shifts, the offset calculation option in aimpro

is invoked. The offset analysis option calculates potentials along one dimension,

averaged over the other two dimensions. In our case it is the c-direction. Figure 8.15

illustrates offset calculations for structures with and without substitutional atoms.

Image 2 shows the graph for a pure graphite structure. The potentials of each layer

are the same. However, in image 3, the graph represents the potentials when a

substitutional boron atom is present in layer A. It can be observed that the potential

in layer B is lower than the potential in layer A by 0.67 eV. This indicates that the

nuclear potential of a boron atom is lower than a carbon atom. Image 4, shows the

graph for the potentials when two substitutional boron atoms are present in layer A.

The difference in potentials between the two layers is even larger in this case and

∆E=1.34 eV.
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Figure 8.15: ‘Offset’ calculation of graphite with and without substitutional boron
atoms. 1) Graph representing the full path of an offset calculation, with x-axis
representing the c lattice vector of graphite in angstrom and with the y-axis representing
the potential in eV; 2) Enlarged view of an offset calculation graph for pure graphite;
3) Enlarged view of an offset calculation graph for graphite with one substitutional
boron atom; 4) Enlarged view an of offset calculation graph for graphite with two
substitutional boron atoms in the same layer. The red dotted line represents the
highest potential of the structures. A and B indicates the layers

8.5 Calculation on substitutional boron atom in turbostratic

graphite

In this section, one of the aims is to understand how boron as a substitutional impurity

can promote the graphitisation process. Another aim is to describe the increase in the

shear constant C44 with substitutional boron. Turbostratic structures in graphite have

been discussed in a previous chapter and more information about their formation

and properties has been given, and only the effect of boron on these structures is

investigated here.

8.5.1 The effect of boron in graphitisation

The unit cells used in the following calculations contain either 28, 52 or 82

atoms hexagonal unit cells with relative rotational angles of 38.2 ◦, 27.8 ◦ and 21.8 ◦

respectively. This means that for these two models, the concentration of boron atom

is either 3.5, 1.9 or 1.2 at.%. In the following work, the Brillouin zone was sampled

using the Monkhorst and Pack scheme with a sampling of 5×5×2. The basis sets
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pdpp and pdpp are used for carbon and boron atoms respectively. The states are

occupied according to the first-order Methfessel-Paxton scheme with kT = 0.01 eV. In

order to understand the effect of boron during graphitisation, the binding energy of

boron to twist boundaries, ∆EBbinding , is calculated. To determine ∆EBbinding , equation 8.1

is used.

∆EBbinding = −[(∆Hsubt)twist − (∆Hsubt)AB] (8.1)

with (∆Hsubt)twist and (∆Hsubt)AB equal to:

(∆Hsubt)twist = EBtwist − Etwist

(∆Hsubt)AB = EBgraph − Egraph

The definition of these notations is summarised in table 8.3.

Notation Description
∆EBbinding Boron binding energy to twist boundaries
(∆Hsubt)twist Heat of formation of boron at twist boundaries
(∆Hsubt)AB Heat of formation of boron at AB graphite
EBtwist and Etwist Calculated energy with or without boron in twist boundaries
EBgraph and Egraph Calculated energy with or without boron in AB graphite

Table 8.3: Description of the notations used in equation 8.1.

The calculated energies are shown in table 8.4. Given that both boron doping and

radiation damage restore the lattice value of C44, and that boron might be doing this

by an electronic interaction without cross-linking bonds, we repeated the calculations

with vacancies. The calculated energies are also shown in table 8.4

Defect Concentration ∆EBbinding (eV)
Boron 1.2 at.% -0.235

1.9 at.% -0.233
3.5 at.% -0.313

Vacancy 1.2 at.% -0.237
1.9 at.% -0.189
3.5 at.% -0.481

Table 8.4: Calculated binding energy for boron and monovacancy to twist boundaries
using equation 8.1

It is interesting to see that binding energies are very similar for many systems
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at different concentrations. The negative binding energies at all the concentrations

studied shows that boron atoms should be repulsive to twist boundaries. In other

words, when boron is present during the turbostratic stage of the graphitisation, the

boron destabilises the turbostratic layers. This means that one of the role of boron

in graphitisation is the aid the removal of twist boundaries to arrive to the final AB

stacking. Although vacancies would be unlikely at these very high temperatures, it is

interesting to see that they have a similar effect that boron on twist boundaries.

8.5.2 The effect of boron on C44

The unit cells used in the following calculations contain 28 atoms hexagonal unit

cells with a relative rotational angles of 38.2 ◦. This means that for these models, the

concentration of boron atom is about 3.5 at.%. In the following work, the Brillouin

zone was sampled using the Monkhorst and Pack scheme with a sampling of 7×7×2.

The basis sets pdpp and pdpp are used for carbon and boron atoms respectively.

The states are occupied according to the first-order Methfessel-Paxton scheme with

kT = 0.01 eV. The increase in C44 with doped boron in graphite is believed to be related,

in the same that radiation damage, to interstitial atoms pinning two neighbouring

layers together [203]. The present calculations suggest another possibility:

• Small angle twist boundaries can be described as hexagonal networks of basal

screw dislocations.

• Basal screw dislocations move with zero Peierls stress

• This gives a flat energy landscape for basal slip.

• If boron interacts with dislocations this landscape is no longer flat and pinning

occurs.

• The same behaviour is happening for vacancies.

Thus we performed gamma surfaces calculations, along the x-axis and the y-axis, for

one twist boundaries with a relative rotational angle of 38.2 ◦. The results are shown

in figure 8.16. The first important feature arises from the straight line shown by the

blue curve, representing pure graphite in both x and y directions. Our calculations
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show that the gamma surface is flat in [002] twist boundaries in pure graphite and

this is in good agreement with earlier work [209]. We can thus expect a very low C44

value for [002] twist boundaries in pure graphite. Another feature arises from the red

curves in the two graphs, representing substitutional boron atom. We can see that

the curves are not flat and small undulations are observed. The difference between

the highest and lowest binding energy is about 3.36 meV and 2.89 meV in the x and

y directions respectively. This phenomenon is even more important for vacancies, as

shown by the yellow curves. The difference between the highest and lowest binding

energy is about 4.82 meV and 5.35 meV in the x and y directions respectively.

Figure 8.16: Gamma surface calculations for turbostratic graphite (blue), turbostratic
graphite with one substitutional boron atom (red) and turbostratic graphite with a
monovacancy (yellow) along: top) the x-axis, bottom) the y-axis.
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There is a clear evidence for undulations in the energy landscape for substitutional

boron and vacancy. The gamma surfaces are not flat and thus C44 values are expected

to increase. This means that the pinning of basal dislocations via substitutional boron

atoms and via vacancies could be the reason for the increase in C44. The results

demonstrate a substantial advance in understanding shear modulus changes, without

them, it is difficult to square a rationale for pinning by radiation induced defects

through interplanar cross-links, with a similar effect arising from a substitutional atom

like boron, which does not appear to chemically bond between layers. It would appear

that both interstitials and vacancies contribute to basal dislocation pinning.

8.6 Conclusion

This chapter reviews the impurity boron in graphite by investigating its doping

effect through the band structure and its role during the process of graphitisation.

Information on the different catalytic roles played by boron during graphitisation

has been well observed. It has been suggested that its catalytic effect arises from

its ability to become a substitutional impurity, and to fill carbon vacancy sites. Our

calculations show another possible catalytic effect; substitutional boron can destabilise

twist boundaries and help their removal. Another interesting feature described in the

literature is the boron effect on the shear constant C44. It has been suggested that

the increase of the C44 value comes from the interstitial boron atoms which hinder

the layers to shear. Our calculations suggest that the increase in C44 can come from

the pinning of basal dislocations via substitutional boron atoms. Similarly, radiation

damage could also pin via vacancies.



Chapter 9

Conclusion

Conclusions and remarks have been drawn at the end of each chapter. A summary

of these points is given here, together with some general conclusions.

In the introduction, graphite is described as a unique material with many properties,

which give it an important role for industrial purposes. Its single crystal structure

was established almost a century ago, and since then, it has been a central topic for

research. In more recent times, research into carbon has lead to the discovery of new

forms.

Over the years, the process of synthesising graphite has been developed by many

manufacturers. Experimental work has shown that certain materials have the ability

to graphitise while others cannot. For many precursors, experiments have established

that impurities are responsible for non-graphitising carbons; however, some questions

remain about their behaviour. In this thesis, I have begun by giving a broad review

of some of the chemistry involved in the graphitisation process with some of the

techniques available to measure the evolution of carbon materials with heat treatment. I

have then used current first principle techniques to review the evolution of turbostratic

graphite into AB graphite, as well as to find new possible roles of two impurities;

sulphur and boron, during the late stage of the graphitisation process. Heat of

formation for these impurities in pure and defected graphitic materials, have been

calculated to investigate their preferential sites and determine their roles.

For turbostratic graphite, we have investigated the changes in the interlayer spacing,
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d002 between a 2D structure and a 3D structure. Our calculations are in good agreement

for the interlayer spacing of pure turbostratic graphite, with the value described in

the literature. Then, the two intermediate interlayer spacings described by Franklin

have been calculated using aimpro. Despite the fact that LDA always underestimates

interlayer separation, our calculations are in congruence with experimental studies

(± 1%). It is believed to be the first time such computational calculations have been

performed.

For the impurity sulphur, the literature suggests that a sulphur atom cross-links

between layers of graphite. The calculations appear to be incompatible with the idea

that sulphur forms defect complexes cross-linking layers in well-graphitised carbon.

However, calculations have shown that more favourable sites for sulphur in graphite

are at the edges. Some authors in the literature have described thiophenic-like

molecules as molecules which can promote the process of graphitisation. The

calculations also suggest that sulphur can easily react with zigzag and armchair

edges which could also ease the graphitisation process. Furthermore, new roles for

sulphur were also proposed. Calculations have shown that sulphur atoms have the

ability to open folds with a small activation energy. The second role is, once a fold

is open via sulphur, prismatic dislocations with a Burgers vector equal to c, may be

moved more easily when sulphur is attached to their edge, in order to give a more

stable structure with two partial dislocations.

For boron, experimental works have described the catalytic effect that this impurity can

have on the formation of layers. We reviewed the preferential sites for boron within

the graphite lattice as well as its effect on the graphite electronic band structures.

The results indicate that the weaker nuclear potential of boron is the prime reason

for the splitting of bands from the same layers when boron atoms are present as

substitutional atoms, and charge transfer for the splitting of bands in different layers.

Our calculations also described a new role for substitutional boron: it can make

twist boundaries even less stable, which can help with their removal. The effect of

substitutional boron on the shear constant C44 was also studied. It appears that the

increase in C44 comes from the pinning of basal dislocations via substitutional boron

atoms, and the same phenomenon is observed with vacancies.
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As a final remark, DFT is a powerful tool which can help to better understand the

graphitisation process. The work presented in this thesis has concentrated on the late

stages of graphitisation. It was shown that two impurities, which are not released

early in the process, can promote the graphitisation process. However, some questions

remain to be answered regarding the role of sulphur on prismatic dislocations and

this work is ongoing. DFT can also help understanding grain boundaries, as well as

dislocations and defects in poly-crystal graphite. Calculations on the previous stages

can also be considered but the increase of disordering makes it a difficult task.



Appendix A

Graphite’s first Brillouin zone

The reciprocal lattice (full lines) and the first Brillouin zone (dashed lines) of the

graphite hexagonal lattice is illustrated in figure A.1.

Figure A.1: Schematic representation of the reciprocal space and the first Brillouin
zone in a hexagonal lattice.

The reciprocal basis vectors g j ( j=1,2 and 3). kx, ky and kz indicate the Cartesian

coordinate system in reciprocal space parallel to x, y and z in real space. The g j

vectors can be determined with by the following coordinates:

~g1 =

(
4π
√

3a
, 0, 0

)
~g2 =

(
2π
√

3a
,

2π
a
, 0

)
~g3 =

(
0, 0,

2π
c

)
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The first Brillouin zone is illustrated in more details in figure A.2

Figure A.2: Schematic representation of the points describing the first Brillouin zone.

Each point inside the Brillouin zone have the following coordinates with respect to

the vectors g j:

Γ = (0, 0, 0)

M =
(1
2
, 0, 0

)
K =

(1
3
,

1
3
, 0

)
A =

(
0, 0,

1
2

)
L =

(1
2
, 0,

1
2

)
H =

(1
3
,

1
3
,

1
2

)



Appendix B

Band structures of graphite with

substitutional boron atoms

The band structure of a substitutional boron atom is illustrated in figure B.1. The

concentration is 1.5 at.% B.

Figure B.1: Band structure of a 196-atom graphite supercell containing one
substitutional boron atom on an α site, and two graphene sheets with AB stacking,
optimised by the aimpro program package, overlayed on the band structure of pure
graphite. The occupied bands are represented in red, and the unoccupied bands in
dark blue for the boron-doped model, while grey lines are used for the pure graphite
supercell.

The band structure of two substitutional boron atoms, on an α site and a β site in
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the same sheet, is illustrated in figure B.2. The concentration is 3.0 at.% B.

Figure B.2: Band structure of a 64-atom graphite supercell containing two substitutional
boron atoms in the same sheet. One boron atom is on an α site and the other on a
β site.

The band structure of two substitutional boron atoms, on two neighbouring α and

β sites in the same sheet, is illustrated in figure B.3. The concentration is 3.0 at.%

B.

Figure B.3: Band structure of a 64-atom graphite supercell containing two substitutional
boron atoms in the same sheet. One boron atom is on an α site and the other on a
the neighbouring β site.
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The band structure of two substitutional boron atoms, on two β sites and in two

neighbouring sheets, is illustrated in figure B.4. The concentration is 3.0 at.% B.

Figure B.4: Band structure of a 64-atom graphite supercell containing two substitutional
boron atoms in two different sheets. Both boron atoms are on β sites.



List of Figures

1.1 Schematic representation of the graphite layers: in a AB sequence (left)

and in a ABC sequence (right), the AB graphite is also called Bernal

graphite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 TEM images of a graphitising carbon [22] (left) and of an irradiated

carbon [23] (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Diffraction pattern from a graphitising carbon (left) and from an

irradiated carbon [24] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Left: Measured interlayer spacing, d002, throughout the late stage of

graphitisation [25]; Right: Growth of the crystal in the c-direction of

graphite at different temperature and different irradiation dose [26]. . 7

3.1 Scheme representing a local minimum . . . . . . . . . . . . . . . . . . . . 25

3.2 Schematic aimpro optimisation . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Side view of a Bloch function from a graphene band . . . . . . . . . . . 26

4.1 Marsh-Griffith Model for the graphitisation process, taken from [63] . . 32

4.2 Picture of a petroleum pitch coke . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 High resolution transmission electron microscopy (HRTEM) image and

their selected area diffraction (SAD) patterns of two different carbons

heated to the same temperature: left) sucrose, right) anthracene, taken

from [67]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Harris’s proposed structure for non graphitising carbons, taken from [72] 39

4.5 Spherical bodies during the mesophase, taken from [77, 78] . . . . . . . 41

4.6 Lattice fringes after spheres coalescence (left) and LMO columns (right),

taken from [86] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

143



144

4.7 TEM image of: left) the distorted layers, right) Almost perfect flat sheet,

end of second carbonisation, taken from [83] . . . . . . . . . . . . . . . . 44

4.8 Graphitised carbon at 2900 ◦C, taken from [83] . . . . . . . . . . . . . . . 44

4.9 Left: The d002 decrease in the final graphitisation, right: the degree of

graphitisation of some carbon materials, taken from [25] . . . . . . . . . 46

4.10 Manufacturing process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Computed diffraction pattern for the parallel-layer group size La=20 and

Lc=13.8 Å, taken from [108] . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Determination of La with Bouraoui’s method, taken from [114] . . . . . 53

5.3 Raman spectrum at different La, taken from [118] . . . . . . . . . . . . . 55

5.4 Left: SAD images from the different orientation on the right, taken

from [128] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 The first two images represent BSU 1 and BSU 2 from different rotational

angles. The last picture represent a (002) DF image at higher temperature,

taken from [131]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.6 (11) DF images of graphitisation carbons at two different high

temperatures, taken from [132] . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Schematic representation of intermediate inter-layer spacings in graphitic

carbons described by Franklin [65]. . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Schematic representation of the superlattice vector V. . . . . . . . . . . . 64

6.3 Coincidence site lattice point angles . . . . . . . . . . . . . . . . . . . . . 65

6.4 Interlayer spacing, d002 and interlayer energy of graphitic structures with

different rotational angle in a two layer unit cell. A smooth curve is

drawn between the points to guide the eye. The dots is an extrapolation

of the blue line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5 a) Illustration of the mix of AB, AA and ABC stacking when two layers

are rotated or slipped, b) Fractions of AA, BA, or SlipBA in rotated

structures, taken from [144]. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.6 Interlayer spacing (blue) and interlayer energy (red) of graphitic

structures with different rotational angle of one layer in four-layer

unit-cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



145

6.7 Interlayer spacing calculated from Franklin’s and Bacon’s equations,

and by the aimpro program package, versus the probability to have

disorientated layers, p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1 Pore creation during the puffing effect, taken from [152]. X represents

sulphur or nitrogen. The left picture shows basal cracks and the right

picture is a schematic representation of the puffing effect. . . . . . . . . 76

7.2 The three types of sulphur (I, II and III) versus temperature, taken

from [158]. The shaded region at about 500 ◦C, represents the formation

of the distorted piles of molecules in complete disorder (LMO). Weight

% is relative to precursor sulphur concentration. . . . . . . . . . . . . . . 79

7.3 Schematic diagram illustrating the construction used for models of

cross-linked structures containing sulphur atoms in hexagonal graphite. 81

7.4 Schematic representation of four types of edges found in a graphene

sheet, taken from [166]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.5 A TEM dark field image observed in a (002) lattice fringe of a two-layer

fold in graphite, taken from [132]. . . . . . . . . . . . . . . . . . . . . . . 83

7.6 Three examples of possible reconstructed edges from graphite layers

terminated with a zigzag edge, calculated with DFT: (A) A single layer

terminated with a nanotube; (B) A three-layer fold; (C) Alternating open

and closed edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.7 Schematic representation of prismatic edge dislocation. . . . . . . . . . . 84

7.8 Optimised structures for sulphur complexes in graphite and their point

group symmetry. (A) Grafted interstitial sulphur atom, Cs; (B) Off-site

substitutional sulphur atom, C3v; (C) Interplanar split-vacancy sulphur

complex, D3d; (D) Coplanar split-vacancy sulphur complex, C2v (also

shown in figure 7.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.9 Optimised structures of the monovacancy in graphite when formed with

carbon atoms (left) and with a neighbouring sulphur atom (right)(a

split-vacancy structure). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.10 Optimised structures for S2 complexes in graphite: (A) with no defect;

(B) with a monovacancy ; (C) With an interplanar divacancy. . . . . . . 92



146

7.11 A–G: View in the prismatic direction of possible positions for sulphur

(yellow) atoms on the carbon (grey) zigzag edge of graphite; H is G

viewed along the edge. Carbon atoms are represented in grey, sulphur

atoms in yellow and hydrogen atoms in white. . . . . . . . . . . . . . . 94

7.12 Structure with the lowest ∆H◦ on an armchair edge. . . . . . . . . . . . 95

7.13 Reaction of S2 with a fold. Four different views of each structure are

shown: A is along the prismatic direction, B is from outside the fold

along the armchair direction, C is from the opposite direction to B, and

D is along the zigzag direction. The bottom right panel is a graph of

the energy versus NEB reaction coordinate. . . . . . . . . . . . . . . . . . 98

7.14 Reaction of the second S2 molecule with a fold. Four different views of

each structure are shown: A is along the prismatic direction, B is from

outside the fold along the armchair direction, C is from the opposite

direction to B, and D is along the zigzag direction. The bottom right

panel is a graph of the energy versus NEB reaction coordinate. . . . . . 99

7.15 Reaction of third and fouth S2 molecules with a fold. (A) Final structure

following the reaction of the third S2 molecule: A is viewed along

the prismatic direction, B is from outside the fold along the armchair

direction, C is from the opposite direction to B, and D is along the zigzag

direction. E is a graph of the energy versus NEB reaction coordinate.

(B) Final structure following the reaction of the fourth S2 molecule: A is

viewed along the prismatic direction, B is from outside the fold along

the armchair direction, C is from the opposite direction to B, and D

is along the zigzag direction. E is a graph of the energy versus NEB

reaction coordinate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.16 Schematic representations of: 1) an opened fold via sulphur; 2) more

stable structure with two partial disclocations. The stacking fault

between two half plane is represented by the long dotted lines. . . . . 101

7.17 Graph of the energy versus NEB reaction coordinate for release of H2S

from a molecular fragment representing the edge of a larger molecule

in the precursor material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



147

8.1 Electron microscope image of interstitial-type loops produced in

boron-doped graphite annealed to high temperature, taken from [200].

Some of the loops are highlighted with a black circle. . . . . . . . . . . 107

8.2 Structure of a substitutional boron atom within a graphite layer on a β

site, optimised by the aimpro program package. . . . . . . . . . . . . . . 112

8.3 Structure of a interstitial boron atom between graphene sheets in

hexagonal graphite, optimised by the aimpro program package. . . . . 114

8.4 Illustration showing the structure of a split interstitial-substitutional

boron defect complex in graphite, optimised by the aimpro program

package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.5 Band structure of a 64-atom graphite supercell containing two graphene

sheets with AB stacking, optimised by the aimpro program package.

The occupied bands are represented in red, and the unoccupied bands

in dark blue. The Fermi level is depicted in green. . . . . . . . . . . . . 118

8.6 Ab− initio band structure of graphite along different lines in the Brillouin

zone, taken from [236]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.7 The two wavefunctions at the K-point on different sublattice. We label

these α (left) and β (right). Large circles correspond to coefficient of +1

and small circles - 1
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.8 Schematic representation of the bonding, non-bonding, and anti-bonding

orbitals, and their respective energy band between H and K in the BZ. 119

8.9 Band structure of a 64-atom graphite supercell containing one

substitutional boron atom on an α site, and two graphene sheets with

AB stacking, optimised by the aimpro program package, overlayed on

the band structure of pure graphite. The occupied bands are represented

in red, the unoccupied bands in dark blue for the boron-doped model

and the Fermi level in green, while grey lines are used for the pure

graphite supercell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



148

8.10 Band structure of a 64-atom graphite supercell containing, one

substitutional boron atom on a β site, and two graphene sheets with

AB stacking, optimised by the aimpro program package. The occupied

bands are represented in red, the unoccupied bands in dark blue, and

the Fermi level in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.11 Comparison of the two band structures described in section 8.4.2.2 and

section 8.4.2.3. Solid red lines represent the band structure when boron

occupies an α site, while blue lines represent the β site band structures. 124

8.12 Band structures of a 64-atom graphite supercells containing two

substitutional boron atoms in the same sheet. The band structure of two

boron atoms both on α sites is represented in blue. The band structure

of two boron atoms both on β sites is represented in red. The Fermi

level is now at -0.75eV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.13 Band structures of 64-atom graphite supercells containing two

substitutional boron atoms in different sheets. The cross-layer αα pair

is represented in red, while the αβ pair is represented in blue. . . . . . 126

8.14 Enlarged view between the K- and the H-point of the band structure

from figure 8.10. The short and long arrow represent the shift in energy,

for the α and β sublattices when boron is on a β site, compared to normal

graphite (black line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.15 ‘Offset’ calculation of graphite with and without substitutional boron

atoms. 1) Graph representing the full path of an offset calculation,

with x-axis representing the c lattice vector of graphite in angstrom

and with the y-axis representing the potential in eV; 2) Enlarged view

of an offset calculation graph for pure graphite; 3) Enlarged view of

an offset calculation graph for graphite with one substitutional boron

atom; 4) Enlarged view an of offset calculation graph for graphite with

two substitutional boron atoms in the same layer. The red dotted line

represents the highest potential of the structures. A and B indicates the

layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



149

8.16 Gamma surface calculations for turbostratic graphite (blue), turbostratic

graphite with one substitutional boron atom (red) and turbostratic

graphite with a monovacancy (yellow) along: top) the x-axis, bottom)

the y-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.1 Schematic representation of the reciprocal space and the first Brillouin

zone in a hexagonal lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.2 Schematic representation of the points describing the first Brillouin zone.139

B.1 Band structure of a 196-atom graphite supercell containing one

substitutional boron atom on an α site, and two graphene sheets with AB

stacking, optimised by the aimpro program package, overlayed on the

band structure of pure graphite. The occupied bands are represented

in red, and the unoccupied bands in dark blue for the boron-doped

model, while grey lines are used for the pure graphite supercell. . . . . 140

B.2 Band structure of a 64-atom graphite supercell containing two

substitutional boron atoms in the same sheet. One boron atom is on an

α site and the other on a β site. . . . . . . . . . . . . . . . . . . . . . . . . 141

B.3 Band structure of a 64-atom graphite supercell containing two

substitutional boron atoms in the same sheet. One boron atom is on an

α site and the other on a the neighbouring β site. . . . . . . . . . . . . . 141

B.4 Band structure of a 64-atom graphite supercell containing two

substitutional boron atoms in two different sheets. Both boron atoms

are on β sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



List of Tables

1.1 Classifications of different forms of carbon with their bond properties,

taken from [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Typical virgin properties of pile grade A (PGA) and gilsocarbon nuclear

graphite [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Convergence of a four atom unit cell with respect to the k-point mesh

and the time required per iteration . . . . . . . . . . . . . . . . . . . . . . 30

4.1 The four types of Coal [69] . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Classification of the graphitising and non-graphitising carbons according

to references in this chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 The different possible measures from TEM . . . . . . . . . . . . . . . . . 59

6.1 Structural parameters for an ideal four-atom primitive unit cell of

graphite calculated by the aimpro method using four different basis

sets, and their experimentally observed values. All values are in pm. . 66

6.2 Calculated d002 with respect to relative rotational angle in a two-layer

cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 Calculated interlayer spacings for different values of p . . . . . . . . . . 72

7.1 Volatile impurities in petroleum cokes heated to various temperatures,

taken from [150]. The coke with a higher impurity concentration (left

column) start puffing at a lower temperature (1400 ◦C) compared to the

coke with a lower impurity concentration (right column) which start

puffing at a higher temperature (1700 ◦C). . . . . . . . . . . . . . . . . . . 76

150



151

7.2 Calculated formation energies and c-axis expansions depending on the

number of layers, and whether the c-axis is kept fixed or optimised, for

an interstitial sulphur atom in graphite. . . . . . . . . . . . . . . . . . . . 88

7.3 Calculated heats of formation ∆H◦ for the structures illustrated in

figure 7.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.4 Calculated heats of formation ∆H◦ for the structures illustrated in

figure 7.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.5 Calculated heats of formation ∆H◦ for the structures illustrated in

figure 7.11 calculated with respect to a reconstructed edge. . . . . . . . 97

8.1 Experimental values for the self-diffusion constants and activation

energies of boron in graphite, taken from [215] . . . . . . . . . . . . . . . 110

8.2 Formation energies calculated using the aimpro package for

substitutional boron in graphite at different concentrations, in different

configurations. For two boron atoms in a supercell, ‘separate’ means

that they are not on neighbouring sites and there is a distance of at

least 6 Å between them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.3 Description of the notations used in equation 8.1. . . . . . . . . . . . . . 131

8.4 Calculated binding energy for boron and monovacancy to twist

boundaries using equation 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . 131



Bibliography

[1] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley. C60:

Buckminsterfullerene. Nature, 318:162, 1985.

[2] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.

Grigorieva, and A.A. Firsov. Electric field effect in atomically thin carbon films.

Science, 606:666, 2004.

[3] M.E. Wieser. Atomic weights of the elements 2005: Iupac technical report. Pure

and applied chemistry, 78:2051, 2006.

[4] C.E. Housecroft and E.C. Canstable. Chemistry, an integrated approach. Prentice

Hall, 1997.

[5] P. Delhaes. Design and control of structure of advanced Carbon Materials for enhanced

performance. Nato Science Series, Kluwer Academic Publishers, 2001.

[6] A. W. Hull. A new method of x-ray crystal analysis. Physical Review, 10:661,

1917.

[7] J.D. Bernal. The structure of graphite. Proceeding of the royal society A, 106:749,

1924.

[8] H. Lipson and A.R. Stokes. The structure of graphite. Proceedings of the Royal

Society of London. Series A, 181:101, 1942.

[9] H.P Boehm and U. Hofmann. Die rhomboedrisched des graphits. Zeitschrift für

anorganische und allgemeine Chemie, 278:58, 1955.

[10] J. Biscoe and B.E. Warren. An x-ray study of carbon black. Journal of Applied

Physics, 13:364, 1942.

152



153

[11] J.-C. Charlier, T. W. Ebbesen, and P. Lambin. Structural and electronic properties

of pentagon-heptagon pair defects in carbon nanotubes. Physical Review B,

53:11108, 1996.

[12] M. Irvine. Nuclear power: A very short introduction. Oxford, 2011.

[13] H.L. Anderson, E. Fermi, and L. Szilard. Neutron production and absorption

in uranium. Physical Review, 56:284, 1939.

[14] Proceeding of the international conference on the peaceful uses of atomic energy, 1955.

[15] V.F. Sears. Neutron scattering lengths and cross section. Neutron News, 3:26,

1992.

[16] A.N. Jones and B.J. Marsden. Nuclear graphite manufacture, microstructure and

unirradiated properties. Technical report, Nuclear Graphite Research Group,

2009.

[17] R.M. Brugger. Total neutron cross section of chlorine and carbon. Physical Review,

104:1054, 1956.

[18] G.E. Evans. Selection of materials for reactors. Nucleonics, 11:18, 1953.

[19] B.T. Kelly. Graphite - the most fascinating nuclear material. Carbon, 20:3, 1982.

[20] P.A. Thrower. Interstitial and vacancy loops in graphite irradiated at high

temperatures. British journal of applied physics, 15:1153, 1964.

[21] W.N. Reynolds and P.A. Thrower. The nucleation of radiation damage in graphite.

Philosophical Magazine, 12:573, 1965.

[22] A. Oberlin. Carbonization and graphitization. Carbon, 22:521, 1984.

[23] A. Asthana, Y. Matsui, M. Yasuda, K. Kimoto, T. Iwatac, and Ken ichi Ohshimaa.

Investigations on the structural disordering of neutron-irradiated highly oriented

pyrolytic graphite by x-ray diffraction and electron microscopy. Journal of Applied

Crystallography, 38:361, 2005.

[24] W.T. Eeles. Diffuse diffraction phenomena from neutron-irradiated graphite single

crystals. Acta Crystallographica A, 24:688, 1968.



154

[25] A. Oberlin, S. Bonnamy, and K. Oshida. Landmarks for graphitization. Tanso,

224:281, 2006.

[26] J. Lachter and R.H. Bragg. Interstitials in graphite and disordered carbons.

Physical review B, 33:8903, 1986.

[27] J. P. Goss. A first principle study of defects in semiconductors. PhD thesis, University

of Exeter, 1997.

[28] A. A. El-Barbary. First principles characterisation of defects in irradiated graphitic

materials. PhD thesis, University of Sussex, 2005.

[29] C. P. Ewels. Density functional modelling of point defects in semiconductors. PhD

thesis, University of Exeter, 1997.

[30] D. R. Hartree. The wave mechanics of an atom with a non-coulomb central

field. part i. theory and methods. Proceedings of the Cambridge Philosophical Society,

24:89, 1928.

[31] J. C. Slater. Note on hartree’s method. Physical Review, 35:210, 1930.

[32] C. Møller and M.S. Plesset. Note on an approximation treatment for

many-electron systems. Physical Review, 46:618, 1934.

[33] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Physical Review,

136:B864, 1964.

[34] W. Kohn and L. J. Sham. Self-consistent equations including exchange and

correlation effects. Physical Review, 140:A1133, 1965.

[35] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochastic

method. Physical Review Letters, 45:566, 1980.

[36] S. J. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent electron liquid

correletion energies for local spin density calculations: A critical analysis.

Canadian Journal of Physics, 58:1200, 1980.

[37] J. P. Perdew and A. Zunger. Self-interaction correction to density-functional

approximations for many electron systems. Physical Review B, 23:5048, 1981.



155

[38] J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the

electron gas correlation energy. Physical Review B, 45:13244, 1992.

[39] C.D. Latham, M.I. Heggie, M. Alatalo, S. Ob̈erg, and P.R. Briddon. The

contribution made by lattice vacancies to the wigner effect in radiation-damaged

graphite. In preparation, 2012.

[40] J. P. Perdew. Density-functional approximation for the correletion energy of the

inhomogeneous electron gas. Physical Review B, 33:8822, 1986.

[41] J. P. Perdew. Electronics structure of solids. Akademie Verlag, 1991.

[42] C. Lee, W. Yang, and R. G. Parr. Development of the colle-salvetti correlation

energy formula into a functional of the electron density. Physical Review B, 37:785,

1988.

[43] M. Dion, H. Rydberg, E. Schrod̈er, D.C. Langreth, and B.I. Lundqvist. Van der

waals density functional for general geometries. Physical review letters, 92:246401,

2004.

[44] D. Sholl and J. A. Steckel. Density Functional Theory: A Practical Introduction.

John Wiley & Sons, 2011.

[45] H. Hellmann. A new approximation method in the problem of many electrons.

Journal of chemicals physics, 3:61, 1935.

[46] G. B. Bachelet, D. R. Hamann, and M. Schlüter. Pseudopotentials that work:

From H to Pu. Physical Review B, 26:4199, 1982.

[47] C. Hartwigsen, S. Goedecker, and J. Hutter. Relativistic separable dual-space

gaussian pseudopotentials from H to Rn. Physical Review B, 58:3641, 1998.

[48] http://aimpro.ncl.ac.uk/.

[49] P.R. Briddon and R. Jones. LDA calculations using a basis of gaussian orbitals.

Physica Statu Solidi B, 217:131, 2000.

[50] M. Methfessel and A. T. Paxton. High-precision sampling for brillouin-zone

integration in metals. Physical Review B, 40:3616, 1989.



156

[51] Hans Hellmann. Einführung in die Quantenchemie. Leipzig, 1937.

[52] R.P. Feynman. Forces in molecules. Physical Review, 56:340, 1939.

[53] W.H. Press, B.P Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical recipes.

Cambridge university press, 1987.

[54] J. R. Shewchuk. An introduction to the conjugate gradient method without the

agonizing pain. Unpublished, 1994.

[55] G. Henkelman, B.P. Uberuaga, and H. Jonsson. A climbing image nudged elastic

band method for finding saddle points and minimum energy paths. Journal of

chemicals physics, 113:9901, 2000.

[56] G. Henkelman and H. Jonsson. Improved tangent estimate in the nudged elastic

band method for finding minimum energy paths and saddle points. Journal of

chemicals physics, 113:9978, 2000.

[57] R.S. Mulliken. Electronic population analysis on LCAOxMO molecular wave

functions I. Journal of Chemical Physics, 23:1833, 1955.

[58] Felix Bloch. Über die quantenmechanik der elektronen in kristallgittern. Physics

and astronomy, 52:555, 1928.

[59] J.P. Perdew, K. Burke, and Matthias Ernzerhof. Generalized gradient

approximation made simple. Physical Review Letters, 77:3865, 1996.

[60] S.R. White. Density-matrix algorithms for quantum renormalization groups.

Physical review B, 48:10345, 1993.

[61] H.J. Monkhorst and J.D. Pack. Special points for brillouin-zone integrations.

Physical review B, 13:5188, 1976.

[62] M.J. Puska, S. Pöykkö, M. Pesola, and R. M. Nieminen. Convergence of supercell

calculations for point defects in semiconductors: Vacancy in silicon. Physical

review B, 58:1318, 1998.

[63] H. Marsh and I. A. Edwards. Introduction to carbon science. Butterworth Publishers,

1989.



157

[64] E. Fitzer, K. H. Kochling, H. P. Boehm, and H. Marsh. Recommended terminology

for the description of carbon as a solid. Pure and applied chemistry, 67:473, 1995.

[65] R. E. Franklin. The structure of graphitic carbons. Acta Cristallographica, 4:253,

1951.

[66] R.E. Franklin. Crystallite growth in graphitizing and non-graphitizing carbons.

Proceeding of the royal society london A, 209:196, 1951.

[67] P.J.F. Harris, A. Burian, and S. Duber. High-resolution electron microscopy of a

microporous carbon. Philosophical Magazine Letters, 80:381, 2000.

[68] R.E. Franklin. A study of the fine structure of carbonaceous solids by

measurements of true and apparent densities. part I. coals. Transactions of the

Faraday Society, 45:274, 1949.

[69] C. Carroll, D. Berry, and C. Greenman. Colorado coal: energy security for the

future. Rocktalk, 8:1, 2005.

[70] A. Oberlin. Chemistry and physics of carbon vol. 22 p. 1, volume 22. P.A. Thrower,

1989.

[71] L.L. Ban, D. Crawford, and H. Marsh. Lattice-resolution electron microscopy

in structural studies of non-graphitising carbons from polyvinylidene chloride

(PVDC). Journal of Applied Crystallography, 8:415, 1975.

[72] P.J. Harris. Structure of non-graphitising carbons. International Materials Reviews,

42:206, 1997.

[73] P.J.F. Harris and S.C. Tsang. High-resolution electron microscopy studies of

non-graphitizing carbons. Philosophical Magazine A, 76:667, 1997.

[74] Z. Zhang, R. Brydson, Z. Aslam, S Reddy, A. Brown, A Westwood, and B. Rand.

Investigating the structure of non-graphitising carbons using electron energy loss

spectroscopy in the transmission electron microscope. Carbon, 49:5049, 2011.

[75] H. Marsh and F. Rodriguez-Reinoso. Activated Carbon. Oxford: Elsevier, 2006.



158

[76] H. Richter and J.B. Howard. Formation of polycyclic aromatic hydrocarbons and

their growth to soot-a review of chemical reaction pathways. Progress in Energy

and Combustion Science, 26:565, 2000.

[77] J.D. Brooks and G.H. Taylor. Formation of graphitizing carbon from the liquid

phase. Nature, 206:297, 1965.

[78] M. Inhatowicz, P. Chiche, J. Deduit, S. Pregermain, and R. Tournant. Formation

de la texture des cokes de houilles et de brais etudiee par solubilite et par

microscopie. Carbon, 4:41, 1966.

[79] T. Edstrom and I.C. Lewis. Chemiscal structure and graphitization: x-ray

diffraction studies of graphite derived from polynuclear aromatics. Carbon,

7:85, 1969.

[80] I.C. Lewis and L.S. Singer. Electron spin resonance of stable aromatic radical

intermediates in pyrolysis. Carbon, 7:93, 1969.

[81] I.C. Lewis. Chemistry of carbonisation. Carbon, 20:519, 1982.

[82] S.E. Stein. Thermochemical kinetics of anthracene pyrolysis. Carbon, 19:621, 1981.

[83] A. Oberlin, G. Terriere, and J. L. Boulmier. Carbonification, carbonization and

graphitization as studied by high resolution electron microscopy part i. Tanso,

80:29, 1975.

[84] A. Oberlin, G. Terriere, and J. L. Boulmier. Carbonification, carbonization and

graphitization as studied by high resolution electron microscopy part ii. Tanso,

83:153, 1975.

[85] E.R. Vorpagel and J.G. Lawn. Most stable configurations of polynuclear aromatic

hydrocarbon molecules in pitches via molecular modelling. Carbon, 30:1033, 1992.

[86] D. Auguie, M. Oberlin, A. Oberlin, and P. Hyvernat. Microtexture of mesophase

spheres as studied by high resolution conventional transmission electron

microscopy (ctem). Carbon, 18:337, 1980.

[87] N.H. Tinh, C. Destrade, and H. Gasparoux. Nematic disc-like liquid crystals.

Physics letters A, 72:251, 1979.



159

[88] F.G. Emmerich. Evolutions with heat treatment of crystanillity in carbons. Carbon,

33:1709, 1995.

[89] S. Mrozowski. ESR of carbons in the transition range: Part I. Carbon, 17:227,

1979.

[90] C. R. Houska and B. E. Warren. X-ray study of the graphitization of carbon

black. Journal of Applied Physics, 25:1503, 1954.

[91] J. Maire and J. Mering. S.c.i. conference carbon and graphite. In p. 204, 1957.

[92] P.A. Thrower. Editorial. Carbon, 44:699, 2006.

[93] D.B. Fischbach. Chemistry and physics of carbon vol. 7 p. 1. Marcel Dekker, New

York, 1971.
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