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Asymptotic Safety and Black holes

Summary

We study the ultraviolet properties of quantum gravity and its consequences for black
hole physics using the functional renormalisation group (RG). In particular we concen-
trate on the asymptotic safety scenario for quantum gravity put forward by S. Weinberg.
This approach relies on the existence of an ultraviolet fixed point in the renormalisation
group flow. In chapter 2 we review the functional renormalisation group formalism that is
used in order to search for the existence of a fixed point with the properties required for
asymptotic safety. Following this introduction, in chapter 3 we use these methods to find
ultraviolet fixed points in four-dimensional quantum gravity to high order in a polynomial
approximation in the Ricci scalar.

In the following three chapters we concentrate on the implications of the renormalisa-
tion group for black hole physics. In chapter 4 we study quantum gravitational corrections
to black holes in four and higher dimensions using a renormalisation group improvement of
the metric. The quantum effects are worked out in detail for asymptotically safe gravity,
where the short distance physics is characterised by a weakening of gravity due to the non-
trivial fixed point. Furthermore, mini-black hole production in particle collisions, such as
those at the Large Hadron Collider (LHC), is analysed within low-scale quantum gravity
models. In chapter 5 we investigate the thermodynamical properties of the RG improved
metrics in detail and study their evaporation process. In chapter 6 we study renormalisa-
tion group improved black hole thermodynamics in a metric free approach. Conditions are
formulated under which the thermodynamic properties of four dimensional Kerr-Newman
type black holes persist under the RG evolution of couplings. We show that the RG scale
must be set by the horizon area of the black hole which acts as a diffeomorphism invariant
cut-off for the underlying Wilsonian action.
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Chapter 1

Introduction

Gravity is perhaps the most intriguing force in nature. Unlike the other fundamental

interactions, gravity is embodied in the curvature of the very arena in which all natural

processes occur. It is the presence of matter in the universe that tells the geometry of

space-time how it should curve and warp. In turn it is the geometry of space-time that

tells matter how to move in the presence of the gravitational field. Classically these

gravitational interactions are expressed in the Einstein field equations

Rµν � 1
2
gµνR � 8πGNTµν . (1.1)

Where the left-hand side of the equation represents the curvature of space-time while the

right-hand side is given by the energy-momentum tensor of the matter living on space-time.

The coupling constant is given by 8πGN where GN is Newton’s constant.

A direct consequence of Einstein’s theory is existence of black holes in nature. These

extreme physical states of matter and space-time are the result of an uncontrollable gravit-

ational collapse which occurs when material of mass M is concentrated within the Schwar-

zschild radius

r À 2GNM . (1.2)

The space-time which is the endpoint of this implosion possesses an event horizon which

hides the interior of the black hole from observers that stay outside. Remarkably the states

of a stationary black hole observed from its exterior may be parameterised by just three

parameters corresponding to the mass, charge and angular momentum of the matter that

fell in. An observer that happens to fall beyond the event horizon is unable to send signals

back across the horizon and will ultimately be crushed by tidal forces as they fall towards

the black hole’s centre. More precisely, if we consider matter crossing the horizon the

radial direction becomes time-like and out-going light rays will be pulled inwards. As the
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matter reaches the centre of the black hole singularities develop which prevent the further

evolution of the equation of motion. These singularities mark the breakdown of classical

general relativity at small scales. Furthermore they arise for imploding matter under very

general initial conditions [87]. It is expected that a full theory of quantum gravity is needed

in which no such unphysical divergencies occur and predictivity is restored. However, for

an observer who remains outside the black hole, the breakdown of the classical theory is

censored by the event horizon and therefore, for her, the classical theory remains predictive.

Furthermore, despite the large possible set of initial conditions of the collapsing matter, the

outside observer will still be able to characterise the black hole by just a finite number of

parameters. Thus the process of black hole formation seems to imply a loss of information

as matter crosses the event horizon. It is hoped that a quantum theory of gravity can help

uncover the inner workings of black holes and explain the fate of matter that falls into

them.

Quantum theory successfully describes the three other fundamental interactions of

nature, namely electromagnetism and the strong and weak nuclear forces. These interac-

tions are understood as gauge theories and are defined within the framework of quantum

field theory (QFT). Attempts to include gravity as a well behaved QFT are plagued by the

perturbatively non-renormalisable nature of general relativity. This unfavourable charac-

teristic of gravity is related to its nonlinear interactions with a coupling of negative mass

dimension. These interactions render perturbative gravity non-renormalisable by perturb-

ative power counting. In particular counter terms must be included which are not part

of the classical action. These counter terms are needed to absorb infinities that occur in

loop integrals over high momenta and appear at two loop order in pure gravity [82]. In

the presence of matter these divergencies occur already at one loop [180].

In the absence of gravity the background space-time can be taken to be that of flat

Minkowski space and QFT then combines the principles of both special relativity and

quantum mechanics [192]. Within this framework the standard model of particle physics

has predicted the discovery of fundamental particles from quarks, first detected in the late

1960’s, to the apparent recent discovery of the Higgs boson at the LHC [1, 38]. One of the

great challenges of theoretical physics is how to incorporate gravity into a quantum theory

of all four interactions which is both predictive and free from unphysical divergences. At

a deeper level a theory is required that supports the principles of both general relativity

and quantum mechanics.

Beyond purely classical gravity there is the semi-classical approach which treats gravity
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as a classical theory while quantising the other interactions. Gravity is then coupled to

the expectation value of energy-momentum tensor for the quantum matter fields. In turn

the matter fields are quantised on a curved space-time background which satisfies the

Einstein equations. Within this framework many subtleties arise, for example the concept

of a particle becomes observer dependent and there is no unique choice for the vacuum

state. This framework has serious implications for black holes. In particular the semi-

classical theory implies that black holes are thermal objects with a finite temperature and

an entropy [88, 14] given by the Bekenstein-Hawking formula

S � A

4h̄GN
, (1.3)

where A is the area of the black hole horizon. It would seem that this entropy represents

the large number of possible micro-states of the black hole that are not accessible to the

observer who lies outside the black hole. The thermal properties of black holes make the

information loss even more alarming in the semi-classical theory. In particular a thermal

bath of particles, as seen by observers far from the horizon, seems to contain no information

of the matter that initially collapsed to form the black hole. If left alone the black hole

will eventually evaporate away completely via Hawking radiation. But where now has

the information gone? In the classical theory we could always think that the information

was simply behind the horizon. But now in the semi-classical theory the black hole has

vanished leaving no place for the information to hide. This seems to be in conflict with the

basic principle of quantum mechanics since it implies that initial pure states can evolve into

mixed states leading to the so called “information paradox” [89]. A natural question to ask

is how genuine quantum-gravitational effects will alter this correspondence and shed light

on the information paradox. Intuitively the existing picture seems to suggest that there

exists an underlying microstructure of space-time in the same way as the thermodynamics

of e.g. a gas can be explained by the coarse-graining of atoms and molecules to produce

macroscopic properties. A clear challenge to any ultraviolet (UV) completion of gravity is

to identify the coarse grained degrees of freedom which give rise to Bekenstein-Hawking

entropy.

Despite the fact that perturbative gravity is non-renormalisable one may still make

progress by treating quantum gravity as an effective theory [54, 33]. This means that loop

effects may be calculated and corrections to classical gravity at low energies can be found

which are independent of its UV completion. The philosophy of effective field theory is

based on a ordering principle in which interactions in the action are arranged in an energy

expansion, starting with the terms which are relevant at low energy followed by terms with
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increasing numbers of derivatives. Then the dominant low energy effects may be isolated

such that parameter free leading order corrections can be computed. As we increase the

energy higher order terms in the energy expansion become important which has the effect

of shifting the parameters of the effective theory. At energies below the characteristic

scale of the theory one can deal with a finite number of parameters which in principle

can be determined by experiment. However, at scales above the characteristic energy the

effective field theory breaks down since we now have an infinite number of parameters

that must be determined. In quantum gravity the effective field theory has been used to

give corrections to the Newtonian potential [3, 84, 22, 21]. However the effective theory

suggests that the Einstein-Hilbert action, containing only the Newton’s constant and the

cosmological constant, gives only the first of an infinite number of interactions

Sgrav �
»
ddx

?
g

"
2Λ

16πGN
� 1

16πGN
R� g2R

2 � g2bRµνR
µν � ...

*
. (1.4)

Therefore there is no reason to restrict any theory of quantum gravity to just the first two

terms in the expansion. For black holes this expansion implies that far outside the black

hole gravity will be described by just the two terms. However if we consider the matter

that moves to the centre of the black hole new curvature terms and quantum corrections

should alter the behaviour.

One may ask if it is even possible to observe the high energy behaviour of gravity

and thus whether we ever need to go beyond the effective low energy theory. It has been

suggested that the production of Planck scale black holes is possible during Planckian or

trans-Planckian scattering processes [179]. As mentioned earlier the classical theory seems

to suggest that if enough energy is located within the Schwarzschild radius rs � 2GNM

a black hole forms and that the high energy dynamics is hidden behind the horizon.

Furthermore, the scale at which we expect quantum effects to become important is the

Planck scale M2
Pl � h̄{G2

N � 1019GeV in four space-time dimensions. This suggests that

quantum effects at a black hole horizon become important as its mass approaches the

Planck scale. However if the fundamental Planck scale is at 1019GeV it is unlikely we will

observe such a process in the near future. One may wonder if in fact the fundamental

scale of quantum gravity is much closer to the electro-weak scale currently accessible

by today’s colliders. Such a possibility is offered by models where gravity propagates

in a higher-dimensional space-time while Standard Model particles are constrained to a

four-dimensional brane [8, 7, 157, 158]. This opens the exciting possibility that particle

colliders such as the LHC could become the first experiment to provide evidence for the

quantisation of gravity. Signatures of low-scale quantum gravity from particle collisions
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include real and virtual graviton effects [81], and the production and decay of TeV size

black holes [52, 79].

To access the Planckian behaviour of gravity within a given framework it is likely that

we must go beyond effective theory. There are many approaches to constructing a funda-

mental theory of gravity each based on different philosophies and starting assumptions.

In approaches such as string theory [153] new fundamental degrees of freedom are postu-

lated such that the space-time metric only emerges as a low energy description of gravity.

New symmetries and/or extra dimensions may also be introduced to unify gravity with

the other forces and improve the high energy behaviour e.g. super-gravity. Other ap-

proaches such as loop quantum gravity (LQG) [169] aim to construct a truly background

independent formulation of non-perturbative gravity. There are also discrete approaches

to non-perturbative gravity such as spin foam models [10] and causal dynamical triangula-

tions [5] based on a similar philosophy to lattice gauge theories. By taking the continuum

limit these theories aim to produce a truly non-perturbative definition of the gravitational

path integral. In this thesis we shall explore an approach to quantum gravity that utilises

Wilson’s renormalisation group (RG). This program, dubbed ‘quantum Einstein gravity’

(QEG), relies on the existence of a UV fixed point in the RG flow of quantum gravity

[141, 138, 148, 162]. The existence of a UV fixed point with the desired properties would

imply that gravity is ‘asymptotically safe’.

The idea of asymptotic safety is similar to the philosophy of effective field theory how-

ever it takes the idea one stage further such that the theory may be predictive at arbitrarily

large energy scales. These ideas find their natural home in the renormalisation group as

formulated by Wilson [197, 196]. The renormalisation group is a set of tools that also

offers an answer to the deep question: what is quantum field theory? Like effective field

theory the idea is to isolate high and low energy behaviour of the theory. High energy

quantum fluctuations are integrated out using a sliding momentum or RG cut-off scale k.

Taking k to smaller values we include quantum fluctuations over increasing length scales.

The parameters of the theory then become scale dependent couplings ḡipkq corresponding

to the coefficients of all the interaction terms that are allowed by the symmetries of the

theory. As the RG scale k is shifted all quantities are rescaled by measuring them in units

of the cut-off. An infinitesimal shift in the RG scale, where modes are integrated out in

a momentum shell and the parameters are rescaled, constitutes a continuous RG trans-

formation. One can then construct a ‘theory space’ parameterised by the dimensionless

couplings of the theory gi � k�di ḡipkq (where di is the mass dimension of ḡi). Every point
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in theory space is a different scale dependent theory which can be thought of as giving a

description of the theory as viewed through a microscope of resolution scale

`k � 1
k
. (1.5)

An experimenter who can observe dynamics of a system down to length scales `k should

then be able to use the theory at scale k to make predictions about the system. Starting

from some initial point in theory space we can flow to different theories along RG traject-

ories by lowering the scale k. This amounts to zooming out with the microscope to view

the system at large length scales. The most interesting points in theory space are fixed

points under infinitesimal RG transformations. At these points the theory becomes scale

invariant. Directions in theory space which flow away from a fixed point as we move into

the infrared (IR) are called relevant directions and correspond to observables that increase

in magnitude as we move to larger distance scales.

Any theory that admits a UV fixed point with a finite number of UV attractive dir-

ections is said to be asymptotically safe [191]. The idea of asymptotic safety is that UV

fixed points, or rather perturbations away from fixed points in relevant directions, consti-

tute microscopic theories ‘safe’ from any high energy divergencies. This follows from the

fact that at the fixed point all dimensionless quantities are finite. The predictivity of the

theory is ensured by the additional requirement that the number of relevant directions

is finite. This is so on account of each relevant direction corresponding to a low energy

observable that must be fixed by experiment. The idea is beautiful. What it means is that

we may have some highly non-linear and non-perturbative theory involving many com-

plicated interactions at high energies. However once we coarse grain these interactions to

recover macroscopic observables the theory is nonetheless parameterised by only finitely

many free parameters.

One of the strengths of the renormalisation group is its ability to describe systems of

many strongly coupled degrees of freedom by their averaged behaviour, opening the door to

non-perturbative calculations. A black hole would appear to be such a system. Indeed at

the centre of a black hole general relativity tells us that gravity becomes arbitrarily strong

until the classical theory breaks down. However, to an observer outside the horizon the

black hole is a macroscopic object with its own temperature and entropy, understandable

without reference to the small distance behaviour of gravity. This picture suggests that

macroscopic properties of the black hole emerges from some averaging process over many

degrees of freedom. It is therefore interesting to speculate whether the renormalisation

group can shed light on a full understanding of black holes and more generally a theory
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of quantum gravity. The hope would be that the renormalisation group can provide a

map between the small distance behaviour of gravity at the centre of the black hole to the

large distance physics at the black holes horizon. This map should exist provided gravity

is asymptotically safe.

In this work we will address the possibility of asymptotic safety for gravity, and its

implications for the physics of black holes. We will approach this in a three step proced-

ure. First, in chapter 3 we study fpRq quantum gravity to high polynomial order using

the Wilsonian renormalisation group. Our results establish further support towards the

existence of a fundamental UV fixed point for gravity. We also find that the fixed point

search strategy, guided by the canonical dimension of invariants, is applicable even in

gravity. In a second next step, we import these results to analyse renormalisation group

improved black hole metrics. This procedure involves a matching (1.5) between the RG

scale parameter k and length scales associated with the space-time geometry. In chapter 4

we study these space-times in four, and more, dimensions, exploiting a large variety of

scale matching. Universal features come out independent of the matching. Most signific-

antly we find that asymptotic safety predicts the existence of a smallest black hole mass in

all dimensions. In chapter 5 we evaluate the dynamics and thermodynamics of these black

hole space-times, including their evaporation. In higher dimensional settings, our results

have implications for the production and decay of mini black holes at colliders, provided

that the fundamental Planck scale is in the TeV energy regime. Thirdly, in chapter 6, we

adopt a different angle and relate the thermodynamical laws of black holes directly to an

underlying coarse-grained action. This provides a more direct access to the degrees of free-

dom counted by the entropy (1.3) and leads to a metric-independent picture of black-hole

thermodynamics for all RG scales, complementing the study of chapters 4 and 5. We also

obtain new results for the scale-dependence of the entropy. We present our conclusions in

chapter 7.

Some technicalities are summarised in chapter 2 and the appendices. Specifically, in

chapter 2, we introduce the Wilsonian renormalisation group and the main set of tools

needed in the subsequent study. The appendices collect technical formulae related to the

heat kernels, and to the central RG equations analysed in Chapter 3.
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Chapter 2

The Renormalisation group

The standard model of particle physics along with gravity describes a set of interactions

capable of explaining the vast number of physical phenomena from particle collisions at

the LHC to the everyday physics such as the boiling of water at one hundred degrees

centigrade. However it would be absurd for a car mechanic, say, to attempt to understand

the workings of a car engine in terms of quarks, gluons and electrons. In turn a cosmologist

does not want to describe the universe in terms every star and planet in the cosmos.

Instead we generally seek a natural description of a physical system suitable for the length

scales we are interested in. The question then is how we can go from the microscopic

laws governing physics at short distance scales to a description of the complex array of

phenomena observed at larger and larger distance scales. The renormalisation group (RG)

offers a systematic approach to answering this question.

2.1 Block spin RG

The key idea of the RG is to implement a coarse graining procedure by which we average

over local patches of the system, starting at short distance scales, to obtain a description

at larger distances directly from the microscopic laws. This processes is then iterated such

that yet larger scale interactions are averaged. This idea is realised concretely in both

quantum field theory and statistical physics in a continuous form although the origin of

the coarse graining procedure can be traced to the discrete block spin RG developed by

Kadanoff [95]. A simple example of the block spin RG is a two dimensional lattice of

spins, s, which can be up (s �Ò) or down (s �Ó). At the level of a single configuration the

coarse graining is implemented by taking blocks of spins and replacing them by a single

spin state s1 which takes its value depending on whether majority of spins in that block
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are up or down. After this procedure has been performed the system is rescaled and we

will be left with a new lattice of block spins s1 which appears similar to the original lattice.

This process is illustrated in Fig 2.1. However, if the original lattice theory was described

by a theory with coupling constants gi corresponding to the interactions between the spins

s, a description of the interactions between blocked spins s1 will be given by a new set of

couplings g1i which differ from the original couplings. For example, if in the microscopic

theory only nearest neighbours interact after coarse graining the general interactions will

be between all blocked spins. Iterating the procedure again we obtain another set of spin

states s2 interacting with each other via couplings g2i . One can then think of the ‘theory

space’ spanned by all possible values of the coupling constants gi. The gi then become

coordinates in the theory space. A discrete Block spin RG step then maps points in

theory space to other points. The most interesting points in theory space are fixed points

g�i where the theory is mapped to itself.

Figure 2.1: From the lattice on the left to the centre lattice one discrete blocking step

has been preformed such that each three by three block of spins s �Ò or s �Ó is replaced

by a single spin s1 depending on whether the majority of spins are up or down e.g. the

highlighted block of spins on the left lattice is replaced by the highlighted block spin s1 �Ò
in the centre. From the centre lattice to the lattice on the right the whole system is

rescaled. The rescaling is such that the lattice spacing is restored to its original value and

we “zoom out” to see more of the lattice leaving the original part of the lattice ( the dark

grey spins) in the top left corner.

2.2 Wilsonian RG

In quantum field theory (QFT) and statistical mechanics the coarse graining procedure

was first formulated in a continuous manner based on the functional integral by Wilson in
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the early 70’s [197, 196]. In this formulation of the RG an adjustable cut-off momentum

scale k is introduced into the functional integral such that Fourier modes ϕppq of the

fluctuating fields ϕpxq in the path integral with momenta Λ2 ¡ p2 ¡ k2 are integrated out

first before the whole functional integral is attempted. Here Λ is the ultra-violet (UV)

cut-off which can be thought of as the (inverse) microscopic lattice spacing in analogy to

the block spin. Explicitly we separate the field into two parts ϕpxq � ϕhpxq�ϕlpxq where

ϕh only depends on the high momentum modes k2   p2   Λ2 and ϕl depends just on the

low modes p2   k2. Then we may write the function integral as

Z �
»
p2 Λ2

Dϕe�Srϕs

�
»
p2 k2

Dϕl
»
k2 p2 Λ2

Dϕhe�Srϕh�ϕls

�
»
p2 k2

Dϕe�Skrϕs (2.1)

where in the last line we have renamed the integration variable ϕL Ñ ϕ and the Wilsonian

effective action Sk is defined by

e�Skrϕs :�
»
k2 p2 Λ2

Dϕh e�Srϕh�ϕs . (2.2)

From this definition it is clear that SΛ � S. Furthermore one can obtain from Sk the

Wilsonian effective Sk1 action at some lower scale k12   k2

e�Sk1 �
»
k12 p2 k2

Dϕh e�Srϕh�ϕs (2.3)

where now the field ϕhpxq only depends the high momentum modes k12   p2   k2. We

see then that the Wilsonian effective action Sk is defined for all values of Λ2 ¥ k2 ¥ 0.

One may parameterise the Wilsonian effective action in terms of couplings gi such that

the Skrϕ, gis depends on both the fields and on the couplings gi where i labels all possible

interactions. That is we expand the action Sk in some basis of operators

Sk �
¸
giOirϕs (2.4)

The rescaling step of the continuous RG can be achieved by measuring all quantities in

units of the cut-off scale k e.g. gi Ñ kdigi where di is the mass dimension of the operator

Oi. Then as we change the RG scale k the dimensionless fields, coupling constants etc.

are all rescaled.

As in the case of the block spin RG, one can think of theory space as the space spanned

by the essential dimensionless couplings gi. Essential couplings being all couplings which
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cannot be removed by a field re-definition. On this space the RG flow is a vector field

given tangent to the direction of decreasing RG time t � ln k{Λ

� Bt ��
¸
i

Btgi B
Bgi

��
¸
i

βi
B
Bgi (2.5)

with components of the flow �βi corresponding to (minus) the beta functions of the

dimensionless couplings βi � Btgi which are functions of the couplings βipgiq. Fixed points

in theory space correspond to points g�i for which beta functions of all essential couplings

vanish βipg�j q � 0. Close to a fixed point we can make a small perturbation in theory

space to uncover which directions are attracted to the fixed point in the UV or IR. To

leading order in the perturbation δgi � gi � g�i the beta functions are given by

βi �
¸
j

Bβi
Bgj

����
g�g�

δgj

�
¸
j

Mijδgj (2.6)

where Mij � Bβi
Bgj

���
g�g�

is the stability matrix. It follows that the small perturbation δgi

obeys the linearised flow equation around the fixed point

Btδgi �
¸
j

Mijδgj . (2.7)

We see that the stability matrix contains all the information about the flow in the vicinity

of a given fixed point. In the simplest cases Mij can be diagonal however in the strong

coupling regime of a theory the stability matrix will in general be non-diagonal. The

general solution of (2.7) is given by

δgi �
¸
A

CAV
i
Ae

�tθA (2.8)

where V i
A are the eigenvectors of the stability matrix Mij and �θA are the eigenvalues. The

θA are called the critical exponents. Each index A corresponds to a generalised coupling

in a basis which diagonalises the stability matrix. In this basis the vectors VA point along

directions in theory space corresponding to small perturbations away from the fixed point.

These directions can be classified into three classes depending on the critical exponents.

If the real part of θA is positive then the corresponding direction is called relevant as a

perturbation in this direction grows as we take k Ñ 0. If the real part of θA is negative then

the direction is irrelevant. If the real part of θA vanishes then the direction is marginal and

we must go to higher orders in δgi to see if the direction is marginally relevant, marginally
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irrelevant or exactly marginal. Physically a relevant direction corresponds to an observable

that grows in magnitude as we coarse grain the system and go to larger scales. Thus, by

following the flow from a fixed point in the UV along a relevant direction to low energy

scales k2 ! Λ, we can observe how effects of the underlying microscopic theory Srϕs
defined at the fixed point manifest themselves at low energy scales or large distances. An

RG trajectory which emanates from a fixed point in this way is called a renormalisable

trajectory. The surface of all renormalisable trajectories is called the UV critical surface

which has a dimensionality equal to the number of relevant directions. In Fig. 2.2 we

depict the theory space containing a fixed point and its UV critical surface. In the vicinity

of a fixed point the UV critical surface is obtained from (2.8) by setting CA � 0 for all

irrelevant directions θA   0 1. This leaves only the relevant perturbations δgi that may

be parameterised with remaining CA with θA ¡ 0. Along a renormalisable trajectory one

may remove the UV cut-off of the theory since one can safely take the limit k Ñ8. This

implies that fixed points allow one to define the continuum limit of the theory. Next we

describe how fixed points can therefore allow us to define fundamental local quantum field

theories even for highly non-linear and strongly coupled theories such as gravity.

2.3 Asymptotic safety

A natural first question when one begins to study a given QFT is whether it falls into the

class of renormalisable theories for which renormalisation effects can be parameterised by

the shift of only a finite number of parameters. As discussed in the introduction (chapter 1)

perturbative gravity, based on the Einstein Hilbert action, does not fall into this category of

renormalisable field theories. The virtue of Weinberg’s asymptotic safety conjecture [191]

is that gravity may nonetheless be a renormalisable theory described within conventional

quantum field theory. For this to be the case there must exist a fixed point with a finite

number of relevant directions. The fixed point ensures that the theory is ‘safe’ from any

UV divergencies whereas the finite number of relevant directions means the theory remains

predictive at high energies. This can be understood as follows. If we imagine that such

a fixed point exists for gravity then in order that this theory describes nature we must

lie on the UV critical surface. If this surface was infinite dimensional then we would be

no better off than in perturbative gravity. On the other hand if the UV critical surface is

finite dimensional we only have to perform a finite number of experiments to locate our

position on the critical surface. Once this is done all parameters in the theory are fixed

1for simplicity we assume there are no marginal directions
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Figure 2.2: Theory space containing a non-Gaussian fixed point and its UV critical

surface. The UV critical surface is spanned by all relevant directions leading away from

the fixed as we flow to the IR.

and we can predict the outcome of all future experiments. In this way asymptotic safety

provides a theory which is both predictive and valid up to arbitrarily large high energy

scales. In gravity an additional requirement of the asymptotic safety scenario is that we

should recover general relativity at low energies. For this to happen there must exist a

trajectory connecting the fixed point in the UV to a classical regime in the IR where the

theory is described by classical general relativity.

A theory with a Gaussian fixed point g�i � 0 with a finite number of relevant directions

is said to be asymptotically free meaning that at high energies the theory becomes weakly

coupled and perturbation theory applies. An example of such a theory is QCD where

the gauge coupling gs Ñ 0 as k Ñ 8. As such quarks and gluons behave as weakly

coupled degrees of freedom at high energies whereas at low energies the theory becomes

strongly coupled and bound states form. For gravity, on the other hand, the dimensionless

Newton’s constant g � kd�2Gpkq decreases as we go to low energies such that the theory

is weakly coupled in the IR and strongly coupled in the UV. This means that the UV
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fixed point, if it exists, must occur at a non-Gaussian fixed point g�i � 0. Furthermore,

the existence of the UV fixed point requires a non-vanishing anomalous dimension which

follows from the form of the beta function [112, 110, 113, 138]

βg � Btg � pd� 2� ηqg (2.9)

where η � Bt lnGpkq is the anomalous dimension of the dimensionful Newton’s constant.

In general, the anomalous dimension depends on all couplings of the theory. Due to its

structure, (2.9) can achieve two types of fixed points. At small coupling, the anomalous

dimension vanishes and g � 0 corresponds to the non-interacting (i.e. Gaussian) fixed

point of (2.9). This fixed point dominates the deep infrared region of gravity k Ñ 0.

In turn, an interacting fixed point g� is achieved if the anomalous dimension becomes

non-perturbatively large,

η� � 2� d . (2.10)

A non-trivial fixed point of quantum gravity in d ¡ 2 implies a negative integer value for

the graviton anomalous dimension, counter-balancing the canonical dimension of G. As

a consequence, Gpkq Ñ g�{kd�2 in the vicinity of a non-trivial fixed point. In the UV

limit where k Ñ 8, the gravitational coupling Gpkq becomes arbitrarily small implying

that gravity is ‘anti-screening’ at small distances. However unlike QCD the dimensionless

coupling reaches a non-zero value in the UV. Therefore the difficulty of accessing the

existence of such a non-trivial fixed point is that it lives in the strong-coupling regime

where calculations are difficult to carry out. First attempts to address the possibility of

asymptotic safety used therefore an expansion close to two dimensions [76, 99, 98] or in the

number of matter fields [175, 183]. The derivation of an exact functional renormalisation

group equation by Wetterich [195] paved the way to more extensive studies in gravity as

first performed in [159]. Following this original work a large body of evidence has been

found supporting the existence of such a UV fixed point including in the Einstein-Hilbert

approximation [106, 177, 160], in higher dimensions [70, 71, 112, 113], in approximations

with higher derivatives [105, 104, 40, 16, 17, 18, 170], with running couplings in the ghost

sector [59, 61, 83], using a proper time flow [29, 30], using tetrad fields [50, 48, 86], in

bi-metric approximations [127, 126], including matter fields [55, 151, 152, 46, 45, 58, 60,

85, 131, 132, 186], in F pRq gravity [41, 124, 42], in conformally reduced gravity [164,

165, 166, 47, 123, 49, 51], from Weyl invariant flows [150], with matter fields in the large

N -limit [147], from the flow of the geometric effective action [53], from holographic flows

[118], from mini-superspace approximations [108], from the flow of the inverse propagator

[39], from dimensionally reduced theories [73, 142, 137, 136] and from perturbation theory
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[139, 140, 143]. Implications of asymptotic safety for cosmology have been studied in

[193, 26, 28, 25, 32, 23, 43, 44, 91, 92, 101, 185] and for black hole physics [27, 31, 163, 69,

35, 34].

2.4 The effective average action

We now introduce and review the basic tools needed in the functional approach to quantum

field theory and show how they may be generalised in the presence of an IR regulator term

in the functional integral. Here, for simplicity, we concentrate on a scalar field theory,

in flat (Euclidean) space-time, with no gauge symmetries present. However the whole

formalism may be carried over to both gauge theories and gravity with the addition of

some technical steps. We follow review articles [80, 19] (see also [146, 154, 168]).

In QFT physical information is stored in the generating functionals of n-point correl-

ation functions. These n-point functions are weighted averages of the product of n fields

over all possible field configurations subject to boundary conditions

xϕpx1qϕpx2q...ϕpxnqy �
³
Dϕϕpx1qϕpx2q...ϕpxnqe�Srϕs³

Dϕe�Srϕs
. (2.11)

Here Srϕs is the bare (Euclidean) action of the theory. At least in flat space it is as-

sumed that the Lorentzian n-point functions may be obtained from the Euclidean ones

by analytical continuation. In order that the functional integral is well defined one also

assumes that a regularised measure
³
ΛDϕ exists with a built in ultra-violet cut-off Λ and

that continuum QFT is defined by the limit Λ Ñ8. When this limit cannot be taken the

bare action is taken as the Wilsonian effective action SΛ obtained by integrating out some

high energy degrees of freedom.

The generating functional ZrJs for the correlation functions (2.11) is a functional of

the external source Jpxq

ZrJs � eW rJs �
»
Dϕe�Srϕs�J �ϕ , (2.12)

where the source term J � ϕ � ³
ddxJpxqϕpxq is added to the bare action. In addition to

ZrJs, the generating functional of connected correlation functions W rJs � lnZrJs also

contains the physical information of the theory. A third generating functional, the effective

action Γrφs, obtained via a Legendre transform of W rJs

Γrφs � supJ

�»
ddxJpxqφpxq �W rJs



, (2.13)

is the generating functional of one-part irreducible correlation functions. Here supJ indic-

ates that the RHS of (2.13) is taken at J � Jsuprφs by taking the supremum, such that
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the effective action is a functional of the field φ. In turn this implies that φ corresponds

to the expectation value of the quantum field ϕ in the presence of the source

φpxq � δW rJs
δJpxq � xϕpxqyJ (2.14)

The effective action can be viewed as the quantum counterpart to the classical action

Srϕs. This interpretation is justified by taking the functional derivative of Γrφs to obtain

the quantum equation of motion for φ

δΓrφs
δφpxq � Jpxq (2.15)

which resembles the classical equation of motion in the presence of an external source J .

However, (2.15) takes into account all quantum fluctuations that have been averaged over

in the functional integral to obtain the dynamics of the expectation value of the field.

Taking the exponential of (2.13) and using (2.15) one obtains a functional integral

representation of the effective action which has no explicit dependence on J ,

e�Γrφs �
»
Dχ exp

"
�Srφ� χs � δΓrφs

δφ
� χ
*
. (2.16)

Here we have performed a shift in the integration variable such that we integrate over the

fluctuations χ � ϕ� φ around the exception value φ. This equation is the starting point

for obtaining the Dyson-Schwinger equations upon a vertex expansion of Γrφs.
The functional renormalisation group (FRG) is centred around the effective average

action [194] denoted Γkrφs which is a scale-dependent version of the effective action Γrφs
defined in (2.13). The idea is that Γkrφs should interpolate between the bare action S and

the effective action Γ such that

ΓkÑ8 � S , ΓkÑ0 � Γ (2.17)

Here k corresponds to the renormalisation group momentum scale down to which modes

have been integrated out in the path integral unsurpassed. The low momenta modes

p2 ! k2 are suppressed due to the presence of an infra-red (IR) regulator function Rk in

the functional integral such that we have the generating functionals

ZkrJs � eWkrJs �
»
Dϕe�Srϕs�J �ϕ�

1
2
ϕ�Rkp�B2q�ϕ , (2.18)

The regulator Rk appears as momentum dependent mass term. In position space it is a

continuous matrix Rkpx, yq proportional to a Dirac delta function. In momentum space

Rk is required to behave as

Rkpp2q � k2 for p2 ! k2 , Rkpp2q � 0 for p2 " k2 . (2.19)
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Figure 2.3: A smooth regulator function Rk (red, bottom) and its derivative kBkRk (blue,

top) plotted as a function of p2 in units of the RG scale k2. Inserted into the functional

integral, as a scale dependent mass term, the Rk provides an IR regularisation for all

modes p2 À k2, its derivative allows for modes to be integrated out as k2 is decreased.

These conditions ensure that the low momentum modes are suppressed by a mass-like

cut-off whereas the high modes are integrated out normally as in (2.12). Apart from these

conditions there is a great freedom in the exact form of the cut-off. A particular example

is the exponential regulator Rkpp2q � p2rexppp2{k2q � 1s�1 which smoothly interpolates

between the two conditions (2.19). Alternatively one might choose a step-function type

regulator such as Rk � k2 θpk2 � p2q which sharply crosses from one regime to the other

at p2 � k2.

Next we introduce the Legendre transform of Wk as in (2.13)

Γ̃krφs � supJ

�»
ddxJpxqφpxq �WkrJs



, (2.20)

Taking the supremum of the RHS implies that the field φpxq � xϕpxqyJ � δWk{δJpxq is

the scale dependent average field. Due to the presence of the IR regulator this expectation

value has only been averaged over field modes of momenta p2 Á k2. Intuitively we can

think of φ as being averaged in position space over local matches of length scale ` � 1{k.

The actual effective average action Γkrφs is also a functional of the field φ and is

obtained by additionally subtracting from Γ̃krφs the regulator term [194]

Γkrφs � Γ̃krφs � 1
2
φ �Rkp�B2q � φ (2.21)

One sees immediately that the limit k Ñ 0 for Γk given in (2.17) is satisfied since in this
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limit the regulator Rk vanishes for all p2 in this limit. To show that the UV limit (2.17)

is achieved by Γk we first note that by differentiating the definition of the effective action

(2.21) we recover the identity

δΓkrφs
δφpxq � Jpxq � pRk � φqpxq (2.22)

Using this expression one may obtain a functional integral representation of Γk by shifting

the integration variable to the fluctuations around the (scale dependent) expectation value

of the field χ � ϕ� φ

e�Γkrφs �
»
Dχ exp

"
�Srφ� χs � δΓkrφs

δφ
� χ� 1

2
χ �Rk � χ

*
. (2.23)

Since in the limit k2 Ñ 8 the cut-off Rk also diverges the additional regulator term

expt�1
2χ � Rk � χu will behave as a delta functional δrχs. Thus performing the integral

over χ in this limit we see that the saddle point approximation becomes exact and we may

recover the UV limit (2.17).

We also point out that when the average effective action obeys the quantum equation

of motion
δΓk
δφ

� 0 (2.24)

the RHS of (2.23) becomes the Feynman function integral with the fluctuations χ sup-

pressed rather than the full field.

To summarise the effective action Γkrφs allows us to interpolate between microscopic

physics described by the bare action S and the macroscopic physics described by the

effective action Γrφs for which all quantum fluctuations have been integrated out in the

functional integral. For intermediate values of k the effective action gives a set of different

“models” for each value of k describing physical processes occurring at energy scales E2 �
k2 with all higher momentum modes being integrated out.

2.5 The Wetterich equation

Imagine we wish to compute the effective action (2.13), one approach to this would be

to try to solve the Dyson-Schwinger equations derived from (2.16) and compute Γrφs
term by term in a vertex expansion. This approach involves integrating out all quantum

fluctuations at once. An alternative approach is provided by the effective average action

Γk using Wilson’s idea of integrating out quantum fluctuations a momentum shell δk at

a time. We will see in this section that Γk obeys an exact functional renormalisation
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group equation (FRGE) or flow equation obtained by taking its scale derivative kBkΓk at

constant field

kBkΓk � 1
2

Tr

�
kBkRk � 1

Γp2qk �Rk

�
, (2.25)

where Γp2qk is the Hessian (second functional derivative) of Γk. For this reason we can also

refer to Γk as the “flowing action”. This flow equation has the advantage that the bare-

action S does not enter the equation explicitly, instead it provides the initial condition

ΓkÑ8 � S for the RG flow from the UV to the IR. Also despite its one-loop structure it is

nonetheless an exact equation. It should be noted that the presence of the regulator and

its derivative of (2.25) provides both IR and UV regularisation. The typical form of both

Rk and its derivative kBkRk are plotted in Fig. 2.3. The presence of the IR regulator in

the propagator regulates the IR. Whereas since kBkRk has dominate support only around

p2 � k2 its presence ensures UV regularisation as well. Next we derive (2.25) for a scalar

field and comment on the various approximation schemes used to solve it.

In preparation to deriving the flow action for Γk, we consider the connected two point

function or propagator, computed by taking two functional derivatives of WkrJs,

Gkpx, yq � δ2Wk

δJpxqδJpyq � xϕpxqϕpyqy � xϕpxqy xϕpyqy (2.26)

Since the field φ is given by a single functional derivative φ � δWk{δJ � xϕy we can

also express the connected propagator as the functional derivative of the field Gpx, yq �
δφpxq{δJpyq. When deriving the effective average action we assumed that the relation

between φ and J was invertible and therefore we can think of the source as a functional

of the field J � Jrφs such that

»
ddy Gkpx, yq δJpyq

δφpzq � δpx� zq (2.27)

Now taking a functional derivative of (2.22) with respect to φ one finds that δJpyq{δφpzq
is given by the sum of Hessian of the effective action and the cut-off Rk. Therefore the

connected propagator is given by the inverse continuous matrix

Gkpx, yq �
�
δ2Γk
δφδφ

�Rk

��1

px, yq . (2.28)

Now to derive the flow equation (2.25) we simply take the scale derivative of the flowing
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action Γk given by (2.21) (with (2.20)) at constant field

kBkΓk � kBkWk � 1
2
φ � kBkRk � φ

� 1
2
xϕ � kBkRk � ϕy � 1

2
xϕy � kBkRk � xϕy

� 1
2

Tr rkBkRk �Gks

� 1
2

Tr

�
kBkRk � 1

Γp2qk �Rk

�
. (2.29)

Here the second line is obtained by taking the scale derivative of Wk given by the logarithm

of (2.18), the third line is obtained from expression (2.26) for the connected propagator

and the final line is obtained by (2.27). Thus we recover the flow equation (2.25) also

known as the Wetterich equation. Although we have derived the equation for a simple

scalar field it may be generalised for fermions, gauge theories and gravity.

2.5.1 Approximation schemes

Once the space-time dimensionality, field content φ and symmetries are fixed the Wetterich

equation (2.25) gives rise to the RG flow in the corresponding theory space i.e. the space

spanned by all possible functionals Γkrφs consistent with the symmetries. In most cases

this is an infinite dimensional space parameterised by the set of couplings λipkq associated

to some functional basis Oirφs such that

Γkrφs �
¸
i

λipkqOirφs . (2.30)

Typically it is impossible to keep track of the RG flow in this infinite dimensional theory

space and one must rely on approximations in order to deal with a finite number of

couplings.

The one loop approximation to (2.25) can be obtained by restoring factors of h̄ into

(2.23) with the substitution χ Ñ h̄
1
2χ. Expanding the bare action Srφ � h̄

1
2χs to order

h̄χ2 the one loop effective action Γk � S � h̄Γk, 1�loop can be found by performing the

Gaussian functional integral

exp
"
�Srφs

h̄
� Γk, 1�loop

*
�
»
Dχ exp

"
�Srφs

h̄
� 1

2
χ � Sp2q � χ� 1

2
χ �Rk � χ

*
. (2.31)

This results in the addition of a regulator term to the standard one-loop expression for

the effective action,

Γk, 1�loop � 1
2

Tr ln
�
δ2S

δφδφ
�Rk

�
. (2.32)

It follows that the one-loop flow for the effective average action is obtained simply by

replacing Γp2qk Ñ Sp2q in the RHS of the exact flow equation (2.25). This is equivalent to
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taking the approximation where all the couplings in the RHS of the exact flow equation

are held fixed at their “bare” values. It forms the first order correction in a perturbative

expansion in powers of h̄.

One may also use a vertex expansion to solve the FRGE by inserting the ansatz into

(2.25)

Γkrφs �
8̧

n�0

1
n!

»
ddx1...

»
ddxnΓpnqk φpx1q...φpxnq , (2.33)

such that one obtains a set of equations similar to the Dyson-Schwinger equations con-

taining the scale dependent vertex functions Γpnqk . One then obtains the flow for the vertex

functions between the bare and fully dressed vertices. In particular, due to the structure

of the flow equation, the equation for kBkΓpnqk will depend on vertex functions up to Γpn�2q
k .

Yet another approximation scheme is the operator expansion where one chooses a basis

(2.30) for the effective action Γk in operators of increasing mass dimension. For scalar

field theories this usually corresponds to a derivative expansion, for example

Γkrφs �
»
ddx

�
Ukpφq � 1

2
ZkpφqBµφBµφ�OpB4q

�
(2.34)

where Ukpφqis the effective potential and Zkpφq is the wave function renormalisation.

On the other hand for theories such as gravity or Yang-Mills, where symmetries restrict

the form of possible operators, the operator expansion corresponds to an expansion in

curvature invariants of increasing mass dimension.

Other approximation schemes also exist which combine the ones mentioned above.

Most importantly any approximation should be both systematic and consistent to ensure

that a finite set of operators allows for a reliable approximation to the underlying physics.

By systematic we mean that an ordering principle exists that classifies each piece of the

effective action relating them to a specific order in the approximation. Consistency requires

that at a fixed order all terms up to the order have been included in the flow equation.

These conditions are necessary but not sufficient requirements for a reliable approximation

and will not always lead to a rapid convergence of the approximation to the full effective

action.

It should also be noted that there always exists an interplay between the choice of

regulator and the approximation scheme used [109, 178]. This is true since the regulator

couples to all operators in the effective action. A given approximation can therefore intro-

duce a spurious scheme regulator dependence into the flow. A strong scheme dependence

implies that some important operator has been neglected within an approximation. On

the other hand one can utilise the freedom to choose a regulator to help improve a given
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approximation. Thus a set of optimisation criteria for the regulator can be established to

optimise the convergence of approximate solutions to the flow equation.

Finally, both the approximation and regulator should be chosen bearing in mind the

physical problem at hand. One should always be guided by the physics and be sure that

all relevant degrees of freedom are included in the approximation used.

2.6 Flow equation for gravity

Now we consider the construction of a flow equation of the form (2.25) for gravity. The

flow equation was first constructed in [159]. Diffeomorphism symmetry is controlled with

the help of the background field method. In preparation we first review the construction of

the functional integral for gravity and the background field gauge. See [106] for a detailed

discussion of flow equations in quantum gravity.

We will take the field to be the space-time metric γµν . The classical action is a

functional Srγs which is invariant under an arbitrary diffeomorphism

δγµν � Lεγµν � ερBργµν � γρνBµερ � γµρBνερ (2.35)

where εµ is an infinitesimal parameter and Lε denotes the Lie derivative. It follows that

all physical observables must also be invariant under diffeomorphisms. Consider the space

M of all metrics γµν and let G be the diffeomorphism group which acts on M. The

equivalence class of metrics tγµνu which can be obtained from γµν P M by the action of

all elements in G is called the gauge orbit. The invariance under (2.35) implies that the

gauge orbits tγµνu are the physical fields and that all physical observables are functionals

Ortγµνus on the space of orbits M{G.

When we write the functional integral for gravity we wish to integrate over the physical

fields tγµνu only. This can be achieved by the Faddeev-Popov method. The idea is that

the full integral over all metrics will include an integration over the different orbits tγµνu as

well an integration around the gauge orbit i.e. over the diffeomorphism group G. However

we expect that the integration over G should factorize and simply give a multiplicative

factor corresponding to the volume of the diffeomorphism group VolG. In order to extract

VolG we introduce the gauge condition

Fµrγs � lµ � 0 (2.36)

where the lµ are arbitrary functions over space-time and we take Fµ � Fαβ
µ γαβ to be linear

in the metric. The gauge condition should be such that it introduces a surface in the space
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of metrics M which intersects every gauge orbit a single time. Consider the transformed

metric field

γεµν � γµν � Lεγµν . (2.37)

Using this we can multiply the functional integral over the whole of M by the factor unity

written in the form

1 �
»
Dε δrFνpγεµνq � lνs det

�
δFνpγεµνq
δερ



(2.38)

to obtain

»
Dε

»
Dγµνe�SrγµνpxqsδrFνpγµνq � lνs det

�
Fαβ
ν pγαρ∇β � γβρ∇αq

	
. (2.39)

Where we have shifted the integration variable to γµν Ñ γεµν and then renamed the

dummy integration variable back to γµν . This introduces both the Dirac delta functional,

which enforces the gauge condition, and the determinant of the Faddeev-Popov matrix.

Furthermore the integral over ε which can be identified with VolG can be factored out.

Next we perform a Gaussian integral over the functions lνpxq which results in the addition

of the gauge fixing action Sgf rγs to the classical action and a determinant of a matrix Gµν .

This smears out the gauge fixing condition around lµ � 0. The gauge fixing action is given

by

Sgf rγs � 1
2

»
ddxFµGµνF

ν , (2.40)

its addition to the classical action means that the operator Sp2q � S
p2q
gf is invertible such

that the tree level propagator can be obtained. The path integral then takes the form

»
Dtγµνue�Srγs �

»
Dγµν e�Srγs�Sgf rγs detMµνpdetGµνq

1
2 . (2.41)

where we have dropped the integral over the diffeomorphism group to identify the gauge

fixed functional integral with the integral over M{G. Here the Faddeev-Popov operator

Mµν is given by

Mµν � Fαβ
µ pγαν∇β � γβν∇αq (2.42)

Ghosts can be introduced by expressing the functional determinants as Gaussian integrals

over ghost fields. To economise the number of ghosts introduced we can use the identity

detMpdetGq 1
2 � detpMGqpdetGq� 1

2 . This introduces a pair of complex conjugate anti-

commuting ghosts fields Cµ and C̄µ and the third real commuting ghost bµ. Then the final

form of the functional integral reads

»
Dtγµνue�Srγs �

»
DγµνDC̄µDCµDbµ e�Srγs�Sgf rγs�Sghrγ,C,C̄,bs . (2.43)
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where the ghost action is given by

Sgh �
»
ddx C̄µG

µ
ρM

ρνCν �
»
ddx

1
2
bµG

µνbν (2.44)

We shall now introduce the notation ϕ � tγµν , Cµ, C̄ν , bµu for the integration variables

and φ � tgµν , zµ, z̄ν , Bµu for their expectation values, in order to write equations in a

more compact form. Additionally a � product implies a sum over fields and indices and an

integration over space time. Following similar steps that lead to the integral expression

for the effective action (2.16) one obtains the following equation for the effective action

for gravity

e�Γrφs �
»
Dϕ exp

#
�S̃rϕs � Γrφs

ÐÝ
δ

δφ
� pϕ� φq

+
(2.45)

where the bare action is

S̃rϕs � S̃rγ,C, C̄, bs � Srγs � Sgf rγs � Sghrγ,C, C̄, bs (2.46)

Furthermore we may define the expectation value of an operator O in terms of the

effective action itself

xOy � eΓrφs
»
DϕO exp

#
�S̃rϕs � Γrφs

ÐÝ
δ

δφ
� pϕ� φq

+
(2.47)

In order to have a diffeomorphism invariant effective action we will use the back-

ground gauge. In particular we choose Gµν � Gµνrḡµνs and Fαβ
µ � Fαβ

µ rḡµνs to depend

on some fixed background metric ḡµν such that Sgh and Sgf are invariant under diffeo-

morphisms with the background metric transforming accordingly. The effective action

Γrgµν , zµ, z̄µ, Bµ; ḡµνs is then a functional of both the expectation values gµν and the back-

ground field metric ḡµν .

To obtain the effective average action for gravity we have to introduce a regulator term

for each fluctuating field. This will contain an IR regulator function Rk for each of the

fields. In field space the Rk will be a matrix such that the regulator term is quadratic in the

fields i.e. 1
2φ�Rk�φ. AdditionallyRk should be anti-symmetric in the anti-commuting ghost

sector. In order to make the construction of the regulator possible we use the background

metric to define the momentum such that in position space Rkr∆̄s is a function of some

differential operator ∆̄ defined on the background metric gµν e.g. ∆̄ � �∇̄2 where ∇̄µ

is the covariant derivative of the background metric. After implementing these steps the
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effective average action for gravity can be defined by

e�Γkrφ;ḡs �
»
Dϕ exp

"
� S̃rϕ; ḡs � Γkrφ, ḡs

ÐÝ
δ

δφ
� pϕ� φq

� 1
2
pϕ� φq �Rkrḡs � pϕ� φq

*
(2.48)

and the expectation values (2.47) now becomes scale dependent,

xOyk � eΓkrφ;ḡs
»
DϕO exp

#
�S̃rϕ; ḡs � Γkrφ, ḡs

ÐÝ
δ

δφ
� pϕ� φq

� 1
2
pϕ� φq �Rkrḡs � pϕ� φq

*
. (2.49)

From these two equations one may derive all other expressions. In particular, in a

number of steps analogous to those presented in the previous section, one may derive the

flow equation

BtΓkrφ; ḡs � 1
2

STr

�
1

Γp2qk rφ, ḡs �Rkrḡs
� BtRkrḡs

�
(2.50)

Here Γp2qk is the Hessian of the effective average action and STr is the super trace over all

fields, indices and an integral over space-time. When the quantum equations of motion

apply, i.e. when the Γk is at its minimum, the RHS of (2.48) becomes the Feynman func-

tional integral where the fluctuations of the metric γµν�gµν are being regulated. However

since the regulator Rk is a function of the momentum defined by the background metric

ḡµν the fluctuations are being regulated as if they lived on the background. This implies

that we should always take gµν � ḡµν at the end of any calculation in order to be con-

sistent. Ultimately we are therefore interested in the functional Γkrḡ, 0, 0, 0; ḡs from which

observables (2.47) may be calculated. However in order to calculate the renormalisation

group flow all dependence on the ghosts and the background field should be retained.

The flow equation (2.50) is an exact equation however to solve it one has to resort to

approximations. In the next chapter we shall present one such of approximation where we

assume the gravity part of Γk is an F pRq action where R is the scalar curvature.
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Chapter 3

The flow of F pRq gravity

3.1 Introduction

In this section we will use the flow equation (2.50) to find evidence for the asymptotic safety

conjecture [191]. In order to approximately solve the flow equation most approaches try

to access different portions of the coupling space by including a subset of all possible

interaction terms into the effective average action. These investigation started from the

Einstein-Hilbert action [159, 55, 177, 106, 112, 71, 70], including higher-derivative terms

[104, 40, 41, 42, 124, 170], matter fields [152, 151, 131, 132, 60, 58, 72, 85, 201], quantum

effects in the ghost sector [61, 59, 83], to name only a few of the extensions which have

been considered so far, for reviews see [113, 141, 138, 148, 114, 161, 149, 162].

In all these calculations non-trivial fixed points as required by the asymptotic safety

scenario are found. An important result is that the inclusion of higher-derivative terms

does not seem to alter lower-order approximations too much. Instead results obtained

within the simplest approximation, the Einstein-Hilbert action, are very stable against

the inclusion of further interaction terms and non-perturbative effects in the fixed point

regime are usually not very strong. A threat for the asymptotic safety scenario would be

that couplings which in perturbation theory would be classified as irrelevant by power-

counting could receive non-perturbative corrections of arbitrary size at an arbitrary order

of the approximation, thus making them relevant. In that case, any calculation including

only a few couplings would not seem reliable. Fortunately, explicit calculations including

interaction terms which are polynomial in the Ricci scalar [41, 42, 124] showed convincing

evidence to the contrary. With interaction terms up to R6 [41, 124] and R8 [42] the

existence of a UV fixed point with a three-dimensional UV critical surface was established,

and a similar fixed point, though without evaluating the critical exponents, was found at
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the level of R10 [25]. We extend these results here to order R34 finding that the same

fixed point with three attractive directions exists at each order [67, 68]. Going up to such

a high order gives a much better understanding of the convergence properties of the flow.

It allows us to estimate the statistical error on the critical exponents and a more accurate

determination of the radius of convergence of the polynomial approximation. A particular

periodicity pattern in the rate of convergence is observed which was not visible at the

orders considered previously.

The outline of this chapter is as follows. In section 3.2 we review the construction of a

flow equation capturing the F pRq flow in d dimensions [41, 124]. Here we include explicit

expressions for the evaluation of the traces using the optimised cut-off [109, 110] and

the heat kernel expansion. In appendix B we give explicit expressions for the evaluated

traces appearing on the RHS of (2.50) and the form of the RG equation we will solve.

In section 3.3 we present our results for fixed points in four dimensions. We discuss the

fixed points obtained in the classical limit of vanishing quantum fluctuations and in the

strongly coupled quantum regime of high energy. The fixed point values at each order

up to R34 are computed and an error estimate on the fixed point values is obtained. We

determine the radius of convergence of the used approximation and discuss the possibility

of de Sitter solutions within this regime. The anomalous dimension and the universality

properties of the flow are discussed. In section 3.4 we present the results for the critical

exponents confirming that the found fixed points have a three-dimensional UV critical

surface. We relate the properties known from perturbation theory to those found in the

case of the asymptotically safe fixed point and find that the values of the critical exponents

stay closer to the canonical dimension the higher the considered order is. We end with

our conclusions in section 3.5.

3.2 Construction

The solutions to the flow equation (2.50) will in general live in the theory space of all

diffeomorphism invariant functionals of the meteric gµν . In order to make progress one

can look to a subset of this space, one such subspace is that spanned by actions of the

form

Γk �
»
ddx

?
g F pRq � Sgf � Sgh . (3.1)

where F pRq is an arbitrary function of the scalar curvature R, and Sgf and Sgh are the

classical gauge fixing and ghost actions. This is a very large class of actions which contains

the Einstein-Hilbert action. This is seen Expanding F(R) polynomially to recover the



28

Einstein-Hilbert action

F pRq � Λk
8πGk

� 1
16πGk

R� � � � . (3.2)

up to higher order corrections in the Ricci scalar. Here, Λk denotes the running cosmolo-

gical constant, Gk denotes the running gravitational constant which in the classical limit

is given by GN � 6.67�1011 m3{pkg s2q Newton’s constant, and Λk{p8πGkq is the running

vacuum energy. The product GkΛk is dimensionless, its observed value is GNΛ � 10�122

and is proportional to the inverse of the entropy of the cosmological de-Sitter horizon of

the observable universe.

A flow equation for F pRq gravity in d-dimensions equation was originally derived in

[41, 124]. Functional flows (2.50) for actions (3.1) have been derived in [41, 42, 124], and in

[15] based on the on-shell action, also using [110, 112], and in three dimensions, a solution

to the complete flow has been found in the conformally reduced approximation [51]. To

facilitate consistency checks and a comparison with earlier findings we have adopted the

approach put forward in [41]. We will begin by reviewing this construction of the flow

equation.

3.2.1 Field content

In order to construct the flow equation for F pRq gravity we need to be able to evaluate

the RHS of (2.50). To simplify this computation we will take the background metric ḡµν

to be that of a d-sphere such that we have

R̄µν � ḡµνR̄

d
, R̄µνρσ � R̄

dpd� 1qpḡµρḡνσ � ḡµσ ḡνρq (3.3)

Where R̄ is the constant scalar curvature, and R̄µν and R̄µνρσ are the Ricci tensor and

Riemann tensor of the background metric respectively. Furthermore, we decompose of

the fluctuation of the metric around the spherical background hµν � γµν � ḡµν into the

following components [200]

hµν � hTµν � ∇̄µξν � ∇̄νξµ � ∇̄µ∇̄νσ � 1
d
ḡµν∇̄2σ � 1

d
ḡµνh . (3.4)

with

hTµν � hTνµ, hT µ
µ � 0, ∇̄νh

T ν
µ � 0, ∇̄µξ

µ � 0 (3.5)

Here ∇̄µ is the covariant derivative with respect to the background metric. The metric

fluctuation hµν expressed in this way is known as the “transverse-traceless” decomposition.

A flow equation using the transverse-traceless decomposition was first introduced in [55].
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We note that the symmetric spin two field hµν receives no contribution from the field

modes Cµ � ∇̄µσ satisfying conformal Killing equation

∇̄µCν � ∇̄νCµ � 2
d
ḡµν∇̄λCλ � 0 (3.6)

or from the ξµ modes which satisfy the killing equation

∇̄µξν � ∇̄νξµ � 0 . (3.7)

These modes, corresponding to the lowest two modes of σ and the lowest mode of ξν on

the sphere, are unphysical and therefore should not be included in the functional integral.

Similarly, we decompose the ghost fields into the transverse and longitudinal parts

Cµ � CTµ � ∇̄µη, C̄µ � C̄Tµ � ∇̄µη̄, bµ � bTµ � ∇̄µθ (3.8)

where CT , C̄T and bTµ are transverse. Here the lowest modes of the scalar fields η, η̄ and

θ do not contribute to the physical fields and should therefore also be excluded from the

functional integral. Furthermore, following [41], we will remove the lowest mode of the

ghost fields Cµ and C̄ν which are the Killing vectors of the sphere and hence not true

gauge degrees of freedom. These modes corresponds to the lowest mode of the transverse

vectors CT , C̄T and bTµ and the second lowest mode of the scalars η, η̄ and θ.

When we insert the decompositions (3.4) and (3.8) into the functional integral both

the source terms and regulator terms in (2.48) will decompose into their individual com-

ponents [106]. In order to preform the functional integral (2.48) over the quantum fields

decomposed as in (3.4) and (3.8) we need to perform a change of variables in the func-

tional measure. This introduces functional Jacobians which in turn may be exponentiated

and represented as additional terms in the bare action which depend on a set of auxiliary

fields. This action reads

Saux �
»
ddx

?
ḡ
�
λ̄Mσ λ� ωMσ ω � c̄T

µM
µν
ξ cT

ν � ζT
µM

µν
ξ ζT

ν

	
�
»
ddx

?
ḡ
�
s̄Mηs� ψ̄Mθψ � wMθw

�
(3.9)

Where λ, λ̄ are complex anti-commuting scalars, ω is a real commuting scalar, cT and c̄T

are complex anti-commuting transverse vectors, ζT
µ is a real commuting transverse vector,

s̄ and s are complex commuting scalars, ψ̄ and ψ are complex anti-commuting scalars and

w is a real commuting scalar. The differential operators Mϕ come from Jacobians of fields

indicated by the subscript and are given by

Mσ �
��

1� 1
d



∇̄2∇̄2 � R̄

d
∇̄2

�2
, Mξ � �2 ḡµν

�
∇̄2 � R̄

d

�1
Mη �Mθ � r�∇̄2s2 (3.10)
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Since the unphysical modes are left out of the Jacobians it follows that the auxiliary inherit

the same unphysical modes from the fields whose Jacobian they derive from. The number

of unphysical modes that must be removed is indicated by the number of primes on the

operators in (3.10). Since these auxiliary fields now appear in functional integral, source

and regulator terms for them should additionally be added to (2.48). Therefore the overall

effect of changing to the component fields is to replace the fields ϕ in (2.48) and (2.49)

with

ϕ � thT , ξ, σ, h, CT , C̄T , η, η̄, bT , θ, λ̄, λ, ω, c̄T , cT , ζT , s̄, s, ψ̄, ψ, wu , (3.11)

and similarly for their expectation values φ, and to replace the bare action by

S̃rϕs � S � Sgf � Sgh � Saux . (3.12)

We will therefore add the classical auxiliary field action (3.9) to the action (3.1) which we

insert into the flow equation (2.50). Thus we treat the auxiliary fields classically along

with the ghosts and gauge fixing terms. It then follows that the flow equation (2.50)

decomposes into its individual components corresponding to (3.11).

3.2.2 Gauge fixing

For the gauge fixing action p2.40q we choose the gauge condition Fµ � 0 to be linear in

the full metric γµν � ḡµν � hµν such that Fµ � Fαβ
µ γαβ � Fαβ

µ hαβ. One such choice is

Fαβ
µ � δβµ ∇̄α � 1�ρ

d ḡαβ∇̄µ which leads to

Fµ � ∇̄νhµν � 1� ρ

d
∇̄µh . (3.13)

Here ρ is a dimensionless constant that parameterises different gauge choices. The har-

monic gauge is given by ρ � d
2 � 1 here we will choose the “geometric gauge” ρ � 0 which

greatly simplifies the flow equation. In addition we take

Gµν � ?
ḡ ḡµνpα� β∇̄2q (3.14)

Note that Fµ has mass dimension one which implies that that α has mass dimension d� 2

and β has mass dimension d� 4. Then the gauge fixing action (2.40) is given by

Sgf � 1
2

»
ddx

?
ḡ

�
α

�
p∇̄σhσµqp∇̄λh µ

λ q �
�

1� ρ

d


2

h∇̄2h� 2p1� ρq
d

h∇̄µ∇̄λh µ
λ

�

� β

�
p∇̄σhσµq∇2p∇̄λh µ

λ q �
�

1� ρ

d


2

h∇µ∇̄2∇µh� 2p1� ρq
d

h∇̄µ∇2∇̄λhλµ

��
(3.15)

The ghost action is given by

Sgh �
»
ddx

?
ḡ C̄µ ḡ

µλpα� β∇̄2qM ν
λ Cν �

»
ddx

?
ḡ

1
2
bµḡ

µνpα� β∇̄2qbν (3.16)
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Where

Mµν � ḡαγ∇̄γ pγµν∇α � γαν∇µq � 2p1� ρq
d

ḡαβ∇̄µpγνβ∇αq (3.17)

is the Faddeev-Popov operator. Appearing in the gauge fixing and ghost actions there are

three gauge fixing parameters α, β and ρ. In principle the gauge parameters could run

with energy scale. To avoid this running one can choose a Landau type gauge Gµν Ñ 8
by either by taking α Ñ 8 and β � 0 or taking β Ñ 8 and α � 0. Taking either of

these gauges with ρ � 0 greatly simplifies the RHS of the flow equation. In particular

the h and σ fields completely decouple such that their traces become two separate terms.

Furthermore, in these gauges only the traces over hTµν and h depend on FkpRq with the

traces over ξµ and σ coming just from the gauge fixing action. This is due to the gauge

orbits being aligned with the directions ξ, σ in Landau gauge. In addition to ρ � 0 we

shall use the gauge αÑ8 and β � 0.

3.2.3 Hessians

The next step in the calculation is to find the second functional derivatives of the action.

We will evaluate the flow equation at gµν � ḡµν so that after we have taken two functional

derivatives of the action we can evaluate all quantities on the sphere. After this is done we

shall drop the bar from all quantities for notational simplicity but it should be understood

that all quantities are now evaluates of the sphere.

We will take the following steps. First expand the action to quadratic order in the

fluctuations around the background and insert the decompositions (3.4) and (3.8). Then

we can commute the background covariant derivatives on the sphere which brings the

quadratic action into a diagonal form other than a mixing between the h and σ fields.

After this the Hessian

ÝÑ
δ

δφi
Γk

ÐÝ
δ

δφj
� i,Γ,j � Γp2q

φiφj
1ij

?
g δpx� yq (3.18)

can easily be obtained in an almost diagonal form in terms of the component fields. Here

φi � xϕiy are the expectation values of the fields (3.11) and 1ij is the identity in field space

for scalars, transverse vectors or transverse traceless symmetric tensors. The resulting

Hessian from the gravitational part of the action Γ̄k � Sgf are given by the transverse

traceless symmetric tensor part

Γp2q
hT hT

� �1
2
F pRq � F 1pRq

�
1
2
l� R

d

d� 2
d� 1



, (3.19)



32

The transverse vector part

Γp2qξξ � F pRq
�
l� R

d



� F 1pRq

�
2R
d
l� 2

R2

d2



� α

�
l

2 � 2R
d
l� R2

d2




� β
�
l

3 � 2R
d
l

2 � R2

d2
l



(3.20)

and the scalar contributions

Γp2qσσ ��
1
2
F pRq

�
d� 1
d

l
2 � R

d
l

�
� F 1pRq

�
1
d2
R2

l� 1
2d
Rl2 � pd� 1qpd� 2q

2d2
l

3

�

� F 2pRq
��

d� 1
d


2

l
4 � 2

d� 1
d2

Rl3 � 1
d2
R2

l
2

�

� α
��

d� 1
d


2

l
3 � 2

d� 1
d2

l
2R� 1

d2
R2

l

�

� β
�
R3

d3
l� p3d� 2qR

2

d3
l

2 � p1� 4d� 3d2qR
d3

l
3 � pd� 1q2 1

d2
l

4

�
, (3.21)

Γp2qσh � F 1pRq
�pd� 1qpd� 2q

2d2
l

2 � d� 2
2d2

lR

�

� F 2pRq
��

d� 1
d


2

l
3 � 2pd� 1q

d2
Rl2 � 1

d2
R2

l

�
� αρ

�
d� 1
d2

l
2 � R

d2
l

�

� βρ
�
d� 1
d2

l
3 � 2d� 1

d3
Rl2 � R2

d3
l

�
(3.22)

and

Γp2qhh � F pRq
d� 2
d4

� F 1pRq
�
�Rd� 2

d2
�l

pd� 1qpd� 2q
2d2




� F 2pRq
�
R2

d2
� 2pd� 1q

d2
lR� pd� 1q2

d2
l

2




� ρ2

d2

�
αl� β

�
l

2 �l
R

d




(3.23)

which includes the mixing between h and σ. The ghost Hessian Sp2qgh has transverse vector

and scalar contributions

Γp2q
C̄TCT

� pα� β∇2q
�
∇2 � R

d



, (3.24)

Γp2q
bT bT

� α� β∇2 , (3.25)

Γp2qη̄η �
�
α� β

�
∇2 � R

d



�
2p1� ρq

d
∇2∇2 � 2∇2∇2 � 2

R

d
∇2



, (3.26)

and

Γp2qθθ � �
�
α� β

�
∇2 � R

d


�
∇2 . (3.27)
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Finally the auxiliary field Hessian S
p2q
aux has the transverse vector and scalar parts,

Γp2q
c̄T cT

� �2
�
∇2 � R

d

�
, (3.28)

Γp2q
ζT ζT

� �4
�
∇2 � R

d

�
, (3.29)

Γp2q
λ̄λ
�
�

1� 1
d



∇2∇2 � R

d
∇2 , (3.30)

Γp2qωω � 2
��

1� 1
d



∇2∇2 � R

d
∇2

�
(3.31)

and

Γp2qs̄s � Γp2q
ψ̄ψ

� Γp2qww � �∇2 . (3.32)

Here l � ∇2 denotes the Laplacian on the d sphere.

3.2.4 Regulator choices and the flow equation

Now we must choose how to implement the regulator to obtain the full inverse propagator

Γ̃p2qk � Γp2qk �Rk (3.33)

We note that all the components of the Hessian are functions of �∇2 and R, and that

in the gravity sector they additionally depend on the couplings. There are three cut-off

types that we can choose [42] where we obtain Γ̃p2qk from Γp2qk by the substitution

∆ Ñ Pk � ∆�Rk (3.34)

with

∆ � �∇2 � E . (3.35)

Here Rk is the shape function which regulates the IR modes of the differential operator ∆

and E is a potential term independent of ∇2. For type I we set E � 0 such that ∆ � �∇2.

Type II corresponds to choosing E non-zero but independent of the couplings and type

III means that we allow E to depends of the couplings and hence k. Here we choose type

I such that ∆ � �∇2.

After this choice has been made, in the different components of the Hessian, the form

of the flow equation is obtained. We have to remember however to remove the unphysical

modes from the traces in the RHS of the flow. We denote the removal of these modes by

primes on the traces, Tr1 for the removal of the lowest mode and Tr2 for the removal of

the two lowest modes. Due to the mixing of the h and σ fields we have to invert a two

by two matrix to obtain the full propagator. Furthermore, since the lowest two modes of
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σ have to be left out of the trace while the lowest two modes of h should be included we

should include the trace over lowest two modes of h separately while removing the lowest

two modes from the trace over the remaining hσ part. So the flow equation reads

BtΓk � 1
2

Tr

�
BtRhT hT

Γp2q
hT hT

�Rh
T hT
k

�
� 1

2
Tr

1

�
� BtRξξ

Γp2qξξ �Rξξk

�
�� 1

2
Tr

2

�
BtRωω

Γp2qωω �Rωωk

�

� 1
2

Tr
1

�
� BtRζT ζT

Γp2q
ζT ζT

�Rζ
T ζT

k

�
�� Tr

2

�
BtRs̄s

Γp2qss �Rs̄sk

�
� Tr

2

�
BtRλ̄λ

Γp2q
λ̄λ
�Rλ̄λk

�

�Tr
2

�
BtRη̄η

Γp2qη̄η �Rη̄ηk

�
� Tr

1

�
BtRc̄T cT

Γp2q
c̄T cT

�Rc̄
T cT
k

�
� Tr

1

�
BtRC̄TCT

Γp2q
C̄TCT

�RC̄
TCT

k

�

�Tr
2

�
1

Γ̃p2qhh Γ̃p2qσσ � Γ̃p2qσh Γ̃p2qσh

�
1
2

Γ̃p2qhhBtRσσk � 1
2

Γ̃p2qσσBtRhhk � Γ̃p2qσhBtRσhk

�

� 1
2

1̧

l�0

Dl,0
BtRhhpλl,0q

Γp2qhh pλl,0q �Rh
T hT
k pλl,0q

� 1
2

Tr
1

�
BtRbT bT

Γp2q
bT bT

�Rb
T bT
k

�

� 1
2

Tr
2

�
BtRθθ

Γp2qθθ �Rθθk

�
� Tr

2

�
� BtRψ̄ψ

Γp2q
ψ̄ψ

�Rψ̄ψk

�
�� 1

2
Tr

2

�
BtRww

Γp2qww �Rwwk

�
(3.36)

where λl,0 and Dl,0 are the Eigenvalues and multiplicities of the operator ∆. This is the

form of the flow equation (2.50) where the action is approximated by (3.1) plus Saux and

we have evaluated the flow at gµν � ḡµν for a spherical background. For the gauge choice

we have chosen the off diagonal parts of the hσ trace vanishes and we can evaluate the

traces recombining the two lowest modes of h with the rest of the trace over the higher h

modes.

3.2.5 Trace evaluation

The next stage of the calculation is to evaluate the traces in the RHS of (3.36). These

traces have the form

Tr rW p∆qs (3.37)

where ∆ is a mass dimension two differential operator. Since the spectrum of Laplace type

operators is known on the sphere we may evaluate these as a sum over the eigenvalues.

However this is an infinite sum and is hard to evaluate in practice therefore we will resort

to heat kernel methods to evaluate the traces.
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3.2.6 Traces with excluded modes

As discussed earlier some unphysical modes coming from the “TT -decomposition” and the

zero modes of the Faddeev-Popov operator and gauge fixing operators have to be excluded

from the functional trace. A prime or two primes on the Tr denotes one or two excluded

modes such that

Tr
1...1rW p∆qs � TrrW p∆qs �

np̧

l�s
Dl,sW pλl,sq . (3.38)

Here Dl,s and λl,s are the multiplicities and eigenvalue of the l-th mode for spin s and np

is equal to the number of primes. For hT no modes are excluded. For all the spin one

fields one mode is excluded whereas two modes are excluded from all the scalars apart

from h. The multiplicities and eigenvalues on the d-sphere are given in appendix A.

3.2.7 Heat kernels

To compute the traces of the form (3.37) using heat kernel techniques we first express the

functions W p∆q in terms of their Laplace anti-transform W̃ pτq as

W p∆q �
» 8

0
dτe�τ∆W̃ pτq (3.39)

where we have integrated over an auxiliary parameter τ . Here we suppress the coordinate

dependence and index structure of W which is a two point function. The exponential

appearing here

kpx, y, τq � e�τ∆ (3.40)

is called the heat kernel due to the fact that it obeys the heat equation Bτk � ∆k � 0,

with the initial condition kp0, x, yq � 1 δpx�yq, where τ has the interpretation of a “time”

and here we keep the index structure surpassed with 1 standing for the identity. The heat

kernel has the known asymptotic expansion

kpx, y; τq � 1

p4πτq d2
exp

"�σpx, yq
2τ

* 8̧

n�0

b2npx, yq τn (3.41)

Here b2npx, yq are the heat kernel coefficients and σpx, yq is half the square geodesic distance

between points x and y. The b2npx, yq in the coincidence limit y Ñ x may be calculated

using known recursion relations [9] and are given by linear combinations of curvature

invariants and their derivatives. On the sphere however they reduce to being proportional

to powers of the scalar curvature b2n9Rn. Ultimately we are interested in the trace

TrrW p∆qs �
» 8

0
dτ Trre�τ∆sW̃ pτq � 1

p4πq d2
8̧

n�0

�»
ddx

?
g b2npx, xq



Q d

2
�npW q

� Vd
8̧

n�0

b2nQ d
2
�npW q (3.42)
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where

QnpW q �
» 8

0
dττ�nW̃ pτq (3.43)

In the second line of (3.42) we have factored out the total volume Vd of the sphere since

the curvature R, and hence the heat kernel coefficients b2n � b2npx, xq, are constant. In

appendix A we give explicit expressions for the b2n for scalars, transverse vectors and

transverse-traceless tensor fields. The volume of a d-sphere is given by

Vd � 2dπ
d
2

�
dpd� 1q

R


 d
2 Γpd2q

Γpdq . (3.44)

We now want to determine Qn in terms of the functions W pzq. The gamma function

Γpnq is defined as the integral for Repnq ¡ 0

Γpnq �
» 8

0
duun�1e�u (3.45)

If we consider the integral» 8
0
dz zn�1W pzq �

» 8
0
dτW̃ pτq

» 8
0
dzzn�1e�τz

�
» 8

0
dττ�nW̃ pτq

» 8
0
duun�1e�u , (3.46)

where in the second line we made the substitution u � τz, we have for n ¡ 0

Qn � 1
Γpnq

» 8
0
dz zn�1W pzq (3.47)

For n ¤ 0 and an integer we can consider taking derivatives of (3.39) and them evaluating

at zero. Comparing the result with (3.43) we find for n ¤ 0

Qn � p�1q�nW p�nqp0q . (3.48)

If we consider the integral

p�1qm
» 8

0
dz zn�m�1W pmqpzq �

» 8
0
dττmW̃ pτq

» 8
0
dzzn�m�1e�τz

�
» 8

0
dττ�nW̃ pτq

» 8
0
duun�m�1e�u , (3.49)

we get a more general form for Qn where we can choose m such that m� n is positive

Qn � p�1qm
Γpn�mq

» 8
0
dzzn�m�1W pmqpzq (3.50)

This equation allows us to find Qn when n is a negative half integer.

Now we need to find W p∆q for the various field components. Here we will use the type

I one cut-off scheme ∆ � �∇2. The general form of the Hessian components is given by

Γp2qk �
¸
n

An∆n (3.51)
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where the An are the coefficients of ∆ that will depend on R, FkpRq and its first and second

derivatives. In the case of the non-diagonal hσ part the An are two by two matrices. Then

the type I cut-off scheme means

Γp2qk �Rk �
¸
n

Anp∆�Rkqn (3.52)

and therefore

Rk �
¸
n

An pp∆�Rkqn �∆nq . (3.53)

Taking a derivative with respect to the scale t � ln k we have

BtRk �
¸
n

�BtAnpp∆�Rkqn �∆nq �Annp∆�Rkqn�1BtRk
�
. (3.54)

It follows that the general form of the operators W p∆q is

W p∆q � 1
2

1°
nAnp∆�Rkqn �

¸
n

�BtAnpp∆�Rkqn �∆nq �Annp∆�Rkqn�1BtRk
�
.

(3.55)

Here we will use the optimised cut-off as the shape function [109, 110]

Rkp∆q � pk2 �∆qθpk2 �∆q . (3.56)

For m ¡ 0 we can then insert (3.55) with (3.56) into (3.47) which gives

Qm � 1
2

1°
nAnk2n

� 1
Γpmq

1
m

¸
n

k2pn�mq
�

n

pn�mqBtAn � 2nAn



(3.57)

For from (3.48) we find Q0 by evaluate (3.55) at ∆ � 0 with (3.56) to obtain

Q0 � 1
2

1°
nAnk2n

�
¸
n�1

k2n pBtAn � 2nAnq . (3.58)

For negative integers we insert (3.55) with (3.56) into (3.47) which gives

Q�m � 1
2

1°
nAnk2n

� p�1qm�1m! BtAm (3.59)

For negative half integers we find

Q�m� 1
2
� 1

2
1°

nAnk2n
� p�1qm?

π

¸
n

k2pn�mq�1

�
BtAn

�
� n!
pn�mq!

1
n�m� 1

2

�
m�2̧

l�0

1
2l
p1� 2pl � 1qq!! n!

pn�m� 1� lq!

�

�An 2n
1

2m�1
p1� 2pm� 2qq!!

�
. (3.60)

Plugging in the various coefficients of An and choosing the gauge and space-time dimension

d we can then evaluate all the traces in a heat kernel expansion to obtain the RHS of the
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flow equation. We note that for our choice of gauge the Qm’s vanish for negative integers

m   �2 since there are no non-vanishing BtAm (see (3.59)). This means that in even

dimensions we only need heat kernel coefficients b2n up to order 2n � d � 4. In odd

dimensions the negative half integer Q’s are needed which don’t vanish. This termination

of the heat kernel expansion at a finite order is due to the use of the optimised cut-off and

will allow us to go to very high order in a polynomial approximation despite only using

the first five heat kernel coefficients. We note that the expressions (3.57), (3.58), (3.59)

and (3.60) are general for Hessians of the form (3.51) using a type one cut-off schemes and

the optimised cut-off function (3.56). There generalisation to other cut-off schemes is also

possible.

3.2.8 The flow equation in dimensionless form

It is desirable to switch to dimensionless quantities at this stage. Since the flow equation

is itself dimensionless we may express all quantities as dimensionless quantities in units of

the cut-off k. This automates the rescaling step of the continuous RG transformation and

allows for the detection of fixed points corresponding to the vanishing beta functions of all

dimensionless couplings. However care must be taken to take any scale derivatives Bt of

dimensionful quantities appearing in the flow equation first and then move to dimensionless

quantities. We define the dimensionless curvature, volume and F pRq as

ρ � k�2R , vd � kdVd , fpρq � 16πk�dF pRq . (3.61)

Following from these definitions we have expressions for n derivatives of F pRq and BtF pRq,

16π k2n�dF pnqpRq � f pnqpρq (3.62)

and

16π k2n�dBtF pnqpRq � pd� 2nqf pnqpρq � 2ρf pn�1qpρq � Btf pnqpρq (3.63)

where the number in the brackets denotes the number of derivatives with respect to the

argument of the function and the t derivatives are taken at constant argument. Further-

more the dimensionless Newton’s constant and cosmological constant (see (3.2)) are given

by

g � Gk k
2 , λ � Λk

k2
. (3.64)

Re-writing the flow equation in terms of these dimensionless variables leads to expressions

with no explicit k dependence which is the form suited to extracting the beta-functions

themselves. The pre-factor 1{p16πq is purely conventional and has been adopted to ensure
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that the dimensionless Newton coupling is related to f as g � �1{f 1pρ � 0q without

further numerical factors. In general the functional RG flow for the flow of fpρq takes the

form

Btf � 4f � 2ρ f 1 � Irf s . (3.65)

The terms on the LHS account for the canonical running of couplings, and those on the

RHS originate from quantum fluctuations. Here the function Irf s (given explicitly for

d � 4 in appendix B) has homogeneity degree zero in f with Ira f s � Irf s for any a � 0.

Furthermore, the terms on the RHS also involve the flow of higher order derivatives of f

up to the second order,

Irf s � I0rf s � Btf 1 I1rf s � Btf2 I2rf s . (3.66)

This structure comes about due to background field dependences introduced via the Wilso-

nian regularisation [111, 117], and also appears in (generalised) proper-time RG flows [116].

Additional flow terms on the RHS are expected to enhance the stability of the RG flow,

as they correspond to effective resummations [117]. The functions In depend explicitly

on f and its first three derivatives, and on ρ. Explicit expressions for d � 4 are given in

appendix B.

3.3 Fixed points in four dimensions

In this section, we detail our numerical methods and summarise results for fixed points

and their universal scaling behaviour.

3.3.1 Classical fixed points

As a warm-up we first discuss the ‘classical’ fixed points of our theory, as these may be

achieved as asymptotic limits of the quantum theory. In the absence of fluctuations the

RG flow (3.65) becomes

pBt � 4� 2ρ Bρq f � 0 . (3.67)

It states that all (dimensionful) couplings in the classical theory are independent of the

energy scale. The linearity of the flow in f implies the existence of a Gaussian fixed point

f� � 0 . From the flow for the inverse

pBt � 4� 2ρ Bρq pf�1q � 0 (3.68)
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we also conclude the existence of an ‘infinite’ Gaussian fixed point [135] associated to the

asymptotic vanishing of

1{f� � 0 . (3.69)

More specifically, the RG flow (3.67) has the general solution

fpρ, tq � ρ2H
�
ρe2t

�
(3.70)

for arbitrary function Hpxq which is determined by the boundary conditions at t � 0.

Fixed points correspond to t-independent solutions to (3.70). A trivially t-independent

solution is achieved via the boundary condition Hpxq � const. It leads to a line of fixed

points corresponding to R2-theories of gravity,

f� � λ2 ρ
2 , (3.71)

parametrized by the free parameter λ2, which has the role of a marginal coupling due to

the vanishing canonical mass dimension of the R2 coupling in four space-time dimensions.

As such (3.71) is both an UV and IR fixed point. The Gaussian and infinite Gaussian fixed

points arise from (3.70) in asymptotic UV and IR limits where tÑ �8. The discussion of

these cases is simplified due to the linearity of (3.67) and (3.68), and we can limit ourselves

to the scaling analysis for monomials in the Ricci scalar f � λnρ
n (no sum). The result

(3.70) then states that the couplings scale canonically with Gaussian eigenvalues ϑG,

λnptq � λnp0q exppϑG,ntq

ϑG,n � 2n� 4 .
(3.72)

Consequently, the dimensionless vacuum energy term pn � 0q and the dimensionless Ricci

coupling pn � 1q are relevant operators, and their dimensionless couplings diverge towards

the IR, leading to the infinite Gaussian fixed point (3.69). Using (3.61) and (3.1), we can

relate the IR diverging couplings λ0 and λ1 to the dimensionless Newton coupling and

cosmological constant to find g � �1{λ1 and λ � �pλ0q{p2λ1q, which translates into

1{λÑ 0 , g Ñ 0 . (3.73)

We conclude that general relativity with positive (negative) vacuum energy corresponds

to the IR fixed point (3.73), provided that λ is positive (negative). Furthermore, this

fixed point is IR attractive in both couplings. The theory also displays an IR fixed point

corresponding to a vanishing vacuum energy,

λ � 0 , g Ñ 0 . (3.74)
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This fixed point is IR attractive in g and IR repulsive in λ, in contrast to (3.73). Classically,

it can only be achieved by fine-tuning the vacuum energy to zero through the boundary

condition. This analysis can straightforwardly be extended to higher order monomials

including non-local ones, such as inverse powers in the Ricci scalar. According to (3.72)

all higher order couplings with n ¡ 2 pn   2q are irrelevant (relevant), meaning that

they approach the (infinite) Gaussian fixed point λn Ñ 0 (1{λn Ñ 0) in the IR limit.

Furthermore, each of these couplings could be, in principle, fine-tuned to 1{λn � 0 pλn �
0q, which then takes the role of an UV attractive fixed point.

Next we discuss in which limits the classical fixed points may arise out of the full RG

flow (3.65). To that end, we divide (3.65) by f , finding

4� pBt � 2ρBρq ln f � Irf s{f . (3.75)

Note that the LHS of (3.75) and Irf s both have homogeneity degree zero in f . Fur-

thermore, the fluctuation-induced term Irf s is generically non-zero also at vanishing f .

However, the classical limit requires the vanishing of the RHS which, therefore, is achieved

as

Irf s{f Ñ 0 for 1{f Ñ 0 . (3.76)

We conclude that the classical limit (3.76) arises from the full RG flow (3.65) through

the infinite Gaussian fixed point (3.69). This specifically includes the IR fixed point

for the couplings λ0 and/or λ1 which entail classical general relativity in the deep IR

with a vanishing or non-vanishing vacuum energy, see (3.73), (3.74). It also includes

the possibility for a classical limit arising through (3.71) for asymptotically large-fields

1{ρÑ 0, leading to an R2-type theory.

3.3.2 Quantum fixed points

We now turn to the fluctuation-induced fixed points of the theory, which arise through the

non-vanishing RHS of (3.65), I � 0. Provided that the RG flow of fpρq has a non-trivial

fixed point where Btf� � 0, its location is determined by the function I0,

4f� � 2ρ f 1� � I0rf�s , (3.77)

see (3.66), and (B.17) for an explicit expression. A non-trivial UV fixed point is a candidate

for an asymptotically safe short distance theory of gravity.

An analytical solution for the third-order non-linear differential equation (3.77) is

presently not at hand, and we have to content ourselves with approximate ones. To



42

that end we adopt two complementary methods which have been tested successfully in

other theories [111, 20]: paq small field polynomial expansions of f , in combination with

pbq numerical integration of the fixed point equation. Polynomial expansions assume that

the fixed point solution is expandable as a power series in the dimensionless Ricci scalar

to high orders. If so, the fixed point condition provides equations for the polynomial coup-

lings, which can be solved order by order. The strength of this procedure is that it leads to

a manageable set of equations which can be extended systematically to higher orders. The

weakness is that polynomial approximations have a finite radius of convergence in field

space. The strength of the numerical integration of (3.77) is that it makes no assumptions

as to the functional form of its solution, polynomial or other. In turn, the weakness of the

procedure is that a numerical integration requires high-accuracy initial data. Also, the

accuracy in the result is limited by that of the integration algorithm. Below, we combine

these methods to increase the reliability in our results.

We begin with a polynomial expansion of (3.77) about vanishing curvature scalar,

fpρq �
N�1̧

n�0

λnρ
n . (3.78)

The series terminates at the order ρN�1 leading to N independent couplings λn, pn �
0, � � � , N � 1q. Inserting (3.78) into (3.77) leads to N algebraic equations for N � 2

couplings. The reason for this mismatch is that the RG flow for a coupling λn depends

on the couplings up to λn�2. We have managed to obtain explicit expressions for the

couplings λn�2pλ0, λ1, ..., λn�1q by hand. This is possible since the nth algebraic equation

is linear in λn�2. From these we can recursively plug the lower order couplings into the

higher order couplings to obtain analytical expressions for all couplings n ¥ 2 as functions

λnpλ0, λ1q of just two couplings λ0 and λ1 For λ2, for example, we find

λ2 � �1
9

12πλ3
0 � 6 p5πλ1 � 1qλ2

0 � 2λ1 p9πλ1 � 1qλ0 � 9λ2
1

12πλ2
0 � 3 p4πλ1 � 1qλ0 � 7λ1

(3.79)

and similarly to higher order. Using the recursion relations obtained by hand we can

compute λnpλ0, λ1q to higher and higher order however expressions get larger order by

order so we have resorted to computing them using algebraic computer software up to

order n � 20. The analytical expressions for the couplings λnpλ0, λ1q up to order n � 36

have been computed using a C++ program [144].

With the analytical expressions for every coupling up to n � 36 at hand it remains to

identify the correct values for the independent couplings pλ0, λ1q. To that end, we adopt

the following strategy: at order N in the approximation, we impose the auxiliary condition
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that the (unknown) higher order couplings λN and λN�1 vanish,

λN � 0

λN�1 � 0 .
(3.80)

Each of the conditions (3.80) leads to a constraint in the pλ0, λ1q plane. Since the higher-

order couplings are algebraic functions of pλ0, λ1q, the boundary conditions (3.80) lead to

a high-order polynomial equation in λ0 (or λ1). In principle, these have many roots in

the complex plane, and it remains to identify those roots which are real and stable under

extended approximations with increasing N . If so, the fixed point qualifies as a candidate

for a fundamental fixed point of the theory.

In order to find candidate fixed points at each order we first plot the roots of (3.80)

on the pλ0, λ1q plane. Fixed points are then identified from the plots where the two roots

cross signifying that (3.80) is satisfied. The visual aid of the plots allows for the automatic

identification of candidate fixed points in the plotted region. To obtain the values of the

fixed points pλ0, λ1q we can numerically solve (3.80) taking input from the plots. As a

consistency check of our whole method we may plug the fixed point values back into the

original algebraic equations to check that they are satisfied.

In the absence of fluctuations, the polynomial action (3.78) leads to a Gaussian fixed

point with eigenvalues (3.72). It is expected that the inclusion of fluctuations at an

asymptotically safe fixed point may change the sign of, at best, finitely many of these

eigenvalues [191]. We postpone a more detailed discussion of this point to Sec. 3.4.

Polynomial expansions are not bound to the form (3.78) and can equally be performed

about non-vanishing dimensionless Ricci scalar,

fpρq �
Ņ

n�1

λnpρ� ρ0qn , (3.81)

where ρ0 � 0 is the expansion point. One finds that all higher order couplings λn �
n! f pnqpρ0q for n ¡ 2 can be expressed as rational functions in terms of three independent

couplings λ0, λ1 and λ2, except for a few exceptional points in field space where the

recursive solution reduces to two independent couplings. Generically, three additional

conditions are required to uniquely identify the fixed point. We have confirmed that this

method works, but it is often more demanding than (3.78) to which we stick for most of

our analysis.



44

N 35 31 27 23

λ0 0.25562 0.25555 0.25560 0.25546

λ1 �1.0272 �1.0276 �1.0276 �1.0286

λ2 0.01567 0.01549 0.01539 0.01498

λ3 �0.44158 �0.44687 �0.43997 �0.44946

λ4 �0.36453 �0.36802 �0.36684 �0.37407

λ5 �0.24057 �0.23232 �0.24584 �0.23188

λ6 �0.02717 �0.02624 �0.02286 �0.01949

λ7 0.15186 0.13858 0.15894 0.13620

λ8 0.23014 0.23441 0.22465 0.22904

λ9 0.21610 0.23820 0.20917 0.24918

λ10 0.08484 0.08207 0.092099 0.095052

λ11 �0.14551 �0.17774 �0.13348 �0.19444

λ12 �0.32505 �0.33244 �0.33242 �0.36205

λ13 �0.29699 �0.25544 �0.32410 �0.24239

λ14 �0.05608 �0.04049 �0.05633 �0.000217

λ15 0.22483 0.16347 0.26944 0.14317

λ16 0.36315 0.34000 0.37795 0.28611

λ17 0.34098 0.44488 0.28138 0.50187

Table 3.1: The coordinates λ0 to λ17 of the ultraviolet fixed point in a polynomial base

(3.78) for orders N � 35, 31, 27 and 23. We note the approximate eight-fold periodicity

pattern in the signs of couplings.
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N 19 15 11 7

λ0 0.25559 0.25522 0.25577 0.25388

λ1 �1.0281 �1.0309 �1.0289 �1.0435

λ2 0.01490 0.01369 0.01354 0.007106

λ3 �0.43455 �0.45726 �0.40246 �0.51261

λ4 �0.36981 �0.38966 �0.37114 �0.48091

λ5 �0.25927 �0.22842 �0.31678 �0.18047

λ6 �0.01564 �0.002072 �0.003987 0.12363

λ7 0.17702 0.12649 0.23680

λ8 0.21609 0.21350 0.23600

λ9 0.18830 0.28460 0.12756

λ10 0.095688 0.13722 �0.041490

λ11 �0.097057 �0.25527

λ12 �0.31812 �0.46476

λ13 �0.39520 �0.16735

λ14 �0.11204 0.16762

λ15 0.37336

λ16 0.50997

λ17 0.17199

Table 3.2: The coordinates λ0 to λ17 of the ultraviolet fixed point in a polynomial base

(3.78) for orders N � 19, 15, 11 and 7. We note the approximate eight-fold periodicity

pattern in the signs of couplings. The data for N � 7 and N � 11 agree with earlier

findings in [41] and [25], respectively.
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N 35 31 27 23 19

λ18 0.18536 0.23941 0.15207 0.35074 �0.11901

λ19 �0.16304 �0.32036 �0.07588 �0.41733

λ20 �0.61457 �0.73133 �0.53776 �0.95176

λ21 �0.75346 �0.53875 �0.88929 �0.41230

λ22 �0.25160 �0.05746 �0.43756 0.29953

λ23 0.55701 0.22998 0.73065

λ24 0.93392 0.60948 1.3116

λ25 0.70608 1.2552 0.54266

λ26 0.35710 0.98891 �0.31179

λ27 �0.09106 �0.92872

λ28 �1.1758 �2.3752

λ29 �2.2845 �1.1315

λ30 �1.4145 0.64746

λ31 1.6410

λ32 3.5054

λ33 1.7098

λ34 �0.66883

Table 3.3: The coordinates λ18 to λ34 of the ultraviolet fixed point in a polynomial base

(3.78) for selected orders in the expansion. We note the approximate eight-fold periodicity

pattern in the signs of couplings.
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3.3.3 Critical couplings

Following our strategy, we have computed the fixed point up to order N � Nmax in the

polynomial approximation. Our results up to the order Nmax � 35 are summarised in

Figs. 3.1, 3.2, and in Tabs. 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7.

Tabs. 3.1, 3.2 and 3.3 summarise the fixed point couplings parameterising f� in (3.61),

(3.78) for selected sets of approximations. Notice that the signs of the couplings follow,

approximately, an eight-fold periodicity in the pattern p� � � � � � ��q. Four consec-

utive couplings λ3�4i � λ6�4i come out negative (positive) for odd (even) integer i ¥ 0,

see Tabs. 3.1, 3.2 and 3.3. Periodicity patterns often arise due to convergence-limiting

singularities of the fixed point solution f�pρq in the complex ρ-plane, away from the real

axis. This is well-known from scalar theories at criticality where 2n-fold periodicities are

encountered regularly [111, 121].

We exploit the periodicity pattern to estimate the asymptotic values of couplings

λnpN Ñ 8q from an average over an entire cycle based on the eight highest orders in

the approximation between Nmax � 7 and Nmax,

xXy � 1
8

Nmax¸
N�Nmax�7

XpNq , (3.82)

where XpNq stands for the N th order approximation for the quantity X. Fig. 3.1 shows

the first six fixed point couplings as a function of the order N in the expansion, normalised

to their asymptotic value (3.82). The first two couplings λ0 and λ1 converge rapidly

towards their asymptotic values, and settle on the percent level starting from N � 10. As

expected, the convergence is slower for the higher order couplings. An interesting exception

is the R2 coupling λ2, which only just starts settling to its asymptotic value at the order

N � 20 of the expansion, and hence much later than some of the subleading couplings.

Furthermore, its value even becomes negative once, at order N � 8, see Tab. 3.4. The

origin for this behaviour, we believe, is that the R2 coupling is the sole marginal operator

in the set-up, whereas all other operators have a non-trivial canonical dimension. On

the level of the RG β-function a non-vanishing canonical mass dimension leads to a term

linear in the coupling, which helps stabilizing the fixed point and the convergence of the

coupled system. Therefore, to establish the existence of the fixed point and its stability,

it becomes mandatory to extend the expansion to high orders N " 8.

Interestingly, the higher order couplings λ3 and λ4 converge more rapidly than λ2

and settle close to their asymptotic value starting at N � 15 � 20. Notice also that

the convergence behaviour in each coupling reflects the underlying eight-fold periodicity
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Figure 3.1: Convergence of the first six polynomial fixed point couplings λn with increasing

order of the expansion N , (3.78). The couplings fluctuate about the asymptotic value xλny
(3.82) with decreasing amplitude and an approximate eight-fold periodicity. Note that the

convergence of the R2-coupling is slower than some of the higher-order couplings. The

shift term cn � n
3 has been added for display purposes.
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Figure 3.2: The rate of convergence of the three leading couplings λ0, λ1 and λ2 as given

by the number of relevant digits Dn (3.85) (from top to bottom). The mean slopes range

between 0.04 � 0.06 (dashed lines), and the data points are connected through lines to

guide the eye. The curve for λ0 is shifted upwards by two units for display purposes.

pattern. For the fixed point coordinates, using (3.82), we find the estimates

xλ0y � 0.25574� 0.015%

xλ1y ��1.02747 � 0.026%

xλ2y � 0.01557� 0.9%

xλ3y ��0.4454 � 0.70%

xλ4y ��0.3668 � 0.51%

xλ5y ��0.2342 � 2.5%

(3.83)

for the first six couplings. Clearly, the couplings λ0 and λ1 show excellent convergence

with an estimated error due to the polynomial approximation of the order of 10�3� 10�4.

The accuracy in the couplings λ2, λ3 and λ4 is below the percent level and fully acceptable

for the present study. The coupling λ5 is the first one whose accuracy level of a few percent

exceeds the one set by λ2. Notice also that the mean value over all data differs mildly

from the mean over the last cycle of eight, further supporting the stability of the result.

On the other hand, had we included all data points in the error estimate, the standard

deviation, in particular for λ2 and λ5, would grow large due to the poor fixed point values

at low orders.

The results (3.83) translate straightforwardly into fixed point values for the dimen-
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sionless Newton coupling and the cosmological constant,

xg�y � 0.97327� 0.027%

xλ�y � 0.12437� 0.041% .
(3.84)

Note that because λ is given by the ratio of λ0 and λ1 its statistical error is essentially

given by the sum of theirs.

In Fig. 3.2 we estimate the rate of convergence for the couplings with increasing order

in the expansion. To that end we compute the number of relevant digits DnpNq in the

coupling λn achieved at order N in the approximation, using the definition [111, 20]

10�Dn �
����1� λnpNq

λnpNmaxq
���� . (3.85)

We could have used xλny rather than λnpNmaxq in (3.85) to estimate the asymptotic value.

Quantitatively, this makes only a small difference. The estimate for the growth rate of

(3.85) is insensitive to this choice. In Fig. 3.2 we display (3.85) for the first three couplings.

Once more the eight-fold periodicity in the convergence pattern is clearly visible. The

result also confirms that the precision in the leading fixed point couplings λ0 and λ1 is

about 10�3 to 10�4 at the highest order in the expansion, in agreement with (3.83). The

average slope ranges between 0.04 � 0.06, meaning that the accuracy in the fixed point

couplings increases by one decimal place for N Ñ N � 20.

We briefly comment on additional fixed point candidates besides the one discussed

above. In the search for fixed points and starting at order N � 9 we occasionally en-

counter spurious fixed points. With ‘spurious’ we refer to fixed points which either only

appear in few selected orders in the expansion and then disappear, or whose universal prop-

erties change drastically from order to order, such as a change in the number of negative

eigenvalues. In principle, the boundary conditions (3.80), which are rational functions in

the couplings, may have several real solutions λ0 and λ1. For example, at order N � 35,

the vanishing of λ36 leads to a polynomial equation of degree 264 (167) in λ0 (λ1), and

similarly for λ35, corresponding, in principle, to a large number of potential fixed points

in the complex plane. It is therefore quite remarkable that, in practice, we only find a

unique and real solution which consistently persists to all orders. We conclude that the

occasional spurious UV fixed points are artefacts of the polynomial expansion and we do

not proceed with their investigation any further.

3.3.4 Radius of convergence

The polynomial expansion (3.78) has a finite radius of convergence ρc, which can be

estimated from the fixed point solution. Standard convergence tests fail due to the eight-
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N g� λ� g� � λ� 10� λ2

2 0.98417 0.12927 0.12722

3 1.5633 0.12936 0.20222 0.7612

4 1.0152 0.13227 0.13429 0.3528

5 0.96644 0.12289 0.11876 0.1359

6 0.96864 0.12346 0.11959 0.1353

7 0.95832 0.12165 0.11658 0.07105

8 0.94876 0.12023 0.11407 �0.01693

9 0.95887 0.12210 0.11707 0.04406

10 0.97160 0.12421 0.12069 0.1356

11 0.97187 0.12429 0.12079 0.1354

12 0.97329 0.12431 0.12099 0.1604

13 0.97056 0.12386 0.12021 0.1420

14 0.97165 0.12407 0.12055 0.1474

15 0.96998 0.12378 0.12006 0.1369

16 0.96921 0.12367 0.11987 0.1301

17 0.97106 0.12402 0.12043 0.1398

18 0.97285 0.12433 0.12096 0.1509

19 0.97263 0.12430 0.12090 0.1490

20 0.97285 0.12427 0.12090 0.1551

Table 3.4: The fixed point values for the dimensionless Newton coupling g�, the dimen-

sionless cosmological constant λ�, the R2 coupling λ2 and the universal product λ � g at

orders N � 2 to N � 20 in the expansion.

fold periodicity in the result, and a high-accuracy computation of ρc requires many orders

in the expansion. As a rough approximation, we adopt the root test according to which

ρc � lim
nÑ8 ρc,mpnq where ρc,mpnq �

���� λn
λn�m

����1{m , (3.86)

with m held fixed, and provided the limit exists. It turns out that if m is taken to be

the underlying periodicity or larger, m ¥ 8, the ratios ρc,mpnq depend only weakly on m.

Since our data sets are finite, the limit 1{n Ñ 0 can only be performed approximately.

We estimate ρc from the most advanced data set pN � 35q by computing the smallest

ρcpmq � minnrρc,mpnqs for all admissible m p8 ¤ m ¤ 34q and then taking the average
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N g� λ� g� � λ� 10� λ2

21 0.97222 0.12417 0.12073 0.1504

22 0.97277 0.12428 0.12089 0.1532

23 0.97222 0.12418 0.12073 0.1498

24 0.97191 0.12414 0.12065 0.1472

25 0.97254 0.12426 0.12084 0.1503

26 0.97335 0.12440 0.12109 0.1551

27 0.97318 0.12437 0.12104 0.1539

28 0.97329 0.12436 0.12104 0.1568

29 0.97305 0.12432 0.12097 0.1549

30 0.97337 0.12438 0.12107 0.1565

31 0.97310 0.12434 0.12099 0.1549

32 0.97291 0.12431 0.12094 0.1534

33 0.97319 0.12437 0.12103 0.1547

34 0.97367 0.12445 0.12117 0.1574

35 0.97356 0.12443 0.12114 0.1567

mean (all) 0.98958 0.12444 0.12320 0.1580

mean (cycle) 0.97327 0.12437 0.12105 0.1557

st. dev. (%) 0.02668 0.04025 0.06673 0.89727

Table 3.5: The fixed point values for the dimensionless Newton coupling g�, the dimen-

sionless cosmological constant λ�, the R2 coupling λ2 and the universal product λ � g at

orders N � 21 to N � 35 in the expansion, including their mean values and standard

deviations for all orders.

over m. In this manner, the estimate will be insensitive to m. We find

ρc � 0.83 � 5% (3.87)

where the statistical error is due to the variation with m. The smallness of the statistical

error reflects that the value (3.87) is achieved for essentially all m ¥ 8. For illustration,

we show in Fig. 3.3 the fixed point solution as a function of ρ � R{k2 to order N � 31

and N � 35. Both solutions visibly part each other’s ways at fields of the order of (3.87),

supporting our rationale.

Note that if we restrict our procedure to the first 11 fixed point couplings (by using

either the N � 11 data, or the first 11 entries from the N � 35 data set), we find
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Figure 3.3: The fixed point solution f� to order N � 35 (full line) and N � 31 (dashed

line) in the polynomial approximation, and the full solution.

ρc � 1.0� 20%. This is consistent with the estimate ρc � 0.99 given in [25] based on the

same N � 11 data set but derived differently. The larger value for ρc at low orders is due

to the fact that a full period has just been completed for the first time at N � 11 resulting

in a slight over-estimation for ρc.

3.3.5 Non-polynomial fixed point

The fixed point solution beyond ρc is found by integrating (3.77) numerically with initial

data from the polynomial approximation, see Fig. 3.3. Since the equation is third order

we need to give three initial conditions. At ρ � 0 this reduces to two initial conditions

since one condition is “used up” in order to avoid a divergence at the origin. This leaves

us with the two free parameters λ0 and λ1. To numerically integrate (3.77) into positive

(negative) values of ρ we take initial conditions for f , f 1 and f2 from our best polynomial

approximation to f� with N � 35 at ρ � 0.1 (ρ � �0.1) well within the radius of

convergence. In Fig. 3.3 we compare the numerical solution to the approximations N � 35

and N � 31 and note that we are able to compute f� outside the radius of convergence ρc.

We have checked that the numerical solution is insensitive to the value of ρ from which

we set the initial conditions.

We see from Fig. 3.3 that f�pρq is monotonically decreasing which means that the

effective Newton’s constant GeffpRq � �1{p16πF 1pRqq remains positive. This is reassuring

since a negative GeffpRq would mean that the graviton kinetic term has the wrong sign.
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Figure 3.4: The equation of motion to order N � 35 (full line) and N � 31 (dashed line)

in the polynomial approximation, and the full solution.

3.3.6 de Sitter solutions

We now turn to the possibility of de Sitter solutions to the F pRq equations of motion

at the UV fixed point. These solutions correspond to values of the dimensionless scalar

curvature ρ � ρ0 which satisfy

ρf 1pρq � 2fpρq � 0 . (3.88)

We can look for solutions to (3.88) at each order N in the approximation by plotting

the LHS of the equation and looking for zeros. Solutions to (3.88) can be found at some

orders in the approximation. These solutions can be considered as physical only if they

lie within the radius of convergence and if they persist when we increase the order of the

approximation.

We can use the same technique as before to calculate the radius of convergence from the

LHS of (3.88). However since ρ2 is a zero mode of (3.88) there will be no terms proportional

to ρ2 present and therefore we take n ¥ 3 when determining ρcpmq � minnrρc,mpnqs and

average m over values 8 ¤ m ¤ 31. Using this method we obtain ρc � 0.77� 5% which is

less than the value obtained from fpρq. The reason for this is that the equation of motion

contains a derivative of fpρq and is therefore more sensitive to the approximation.

After checking for de Sitter solutions for real ρ we find that the only de Sitter solutions

within the radius of convergence occur at low orders in the approximation but do not

persist to higher orders. For example at orders N � 10 and N � 11 de Sitter solutions

were found previously at ρ0 � 0.758 and ρ0 � 0.769 [25], but at order N � 12 no de Sitter
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Figure 3.5: Field-dependent anomalous dimension (3.89) to order N � 35 (full line) and

N � 31 (dashed line) in the polynomial approximation.

solution is found. We conclude therefore that there are no real de Sitter solutions within

the radius of convergence which are not artefacts of the approximation.

It is also possible that de Sitter solutions exist outside the radius ρc but within the

region for which we have a numerical (non-polynomial) solution. In Fig. 3.4 we plot the

equation of motion for the numerical solution to the equation of motion in the region

�2 ¤ ρ ¤ 2 together with the polynomial approximations N � 31 and N � 35. The

numerical solution does not show any solutions satisfying the equation of motion within

this region. Note however that for N � 31 (N=35) (3.88) is fulfilled at some negative

(positive) value of ρ. These values are however outside the radius of convergence and only

appear because of the divergence of the approximations at large ρ.

We conclude therefore that a phase of inflationary expansion obtained from a de Sitter

phase in the fixed point regime within polynomial approximation of the fpRq-type may

be artefacts of this approximation.

As a curiosity we can also look for solutions to (3.88) which lie within the radius of

convergence but in the complex plain. Here we find that there is a single stable solution

which appears in order N � 5 at ρ � 0.5630 � 0.2095i and persists up to N � 35 at

ρ � 0.5651� 0.2414i.

3.3.7 Anomalous dimension

We now turn to a discussion of the field-dependent anomalous dimension ηF 1 associated

to F 1 � dF {dR. It is defined via the RG flow (3.65) as BtF 1 � ηF 1 F
1. In the fixed point
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regime, we find

ηF 1 � 2� 2ρ f2pρq{f 1pρq . (3.89)

where f 1 � df{dρ. The fixed point solution is plotted in Fig. 3.5 for N � 31 (dashed line)

and N � 35 (full line). We note that η displays a local maximum at ρ � 0. Using the

same technique as before, we find that the radius of convergence ρc � 0.65 � 10% comes

out smaller than the one for f and (3.88), see (3.87). The reason for this is that the

anomalous dimension involves up to two derivatives of f and is therefore more sensitive

to the underlying approximation than f itself or the de Sitter equation (3.88). Note that

the anomalous dimension becomes small, η � 0, close to the radius of convergence ρ � ρc.

We can relate the function (3.89) to the anomalous dimension of Newton’s coupling,

ηN . The latter is defined through the RG flow of Newton’s coupling, BtGk � ηN Gk. At

a non-trivial fixed point for the dimensionless Newton coupling g � Gk k
2 its anomalous

dimension takes the value

ηN � �2 (3.90)

to ensure the vanishing of Btg � p2 � ηN qg. Using the definitions (3.64), (3.61) we have

that g91{f 1|ρ�0, leading to the relation

ηN � �ηF 1pρ � 0q . (3.91)

In this light, it becomes natural to interpret the function Geffpρq � �1{p16π F 1pρqq as a

field-dependent generalisation of Newton’s coupling, which falls back onto the standard

definition in the limit ρ � 0. Away from this point in field space, however, the effective

anomalous dimension of the graviton (3.89) differs from the value (3.90) and becomes

smaller in magnitude.

3.3.8 Universality

In critical phenomena, fixed point coordinates are often non-universal and not measurable

in any experiment. Instead, the scaling of couplings in the vicinity of a fixed point are

universal. In quantum gravity, universal exponents can be read off from the eigenvalues

of the stability matrix,

Mij � Bβi
Bλj

����
�

(3.92)

which is, to order N in the approximation, a real and in general non-symmetric N �
N matrix, and βi � Btλi. The computation of (3.92) and its N eigenvalues ϑn, pn �
0, 1, � � � , N � 1q is more involved than finding the fixed points, because the additional

terms proportional to I1 and I2 in (3.66) have to be taken into account, see (B.18) and
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N θ1 θ2 θ2 θ3

2 2.3824 2.1682

3 1.3765 2.3250 26.862

4 2.7108 2.2747 2.0684 �4.2313

5 2.8643 2.4463 1.5462 �3.9106

6 2.5267 2.6884 1.7830 �4.3594

7 2.4139 2.4184 1.5003 �4.1063

8 2.5070 2.4354 1.2387 �3.9674

9 2.4071 2.5448 1.3975 �4.1673

10 2.1792 2.1981 1.5558 �3.9338

11 2.4818 2.1913 1.3053 �3.5750

12 2.5684 2.4183 1.6224 �4.0050

13 2.6062 2.4614 1.5823 �4.0163

14 2.4482 2.4970 1.6699 �4.0770

15 2.4751 2.3844 1.5618 �3.9733

16 2.5234 2.4051 1.5269 �3.9590

17 2.5030 2.4582 1.5811 �4.0154

18 2.3736 2.3706 1.6051 �3.9487

19 2.4952 2.3323 1.5266 �3.8741

20 2.5415 2.4093 1.6038 �3.9805

Table 3.6: The first four exponents at orders N � 2 to N � 20 in the expansion, including

their mean values and standard deviations.
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N θ1 θ2 θ2 θ3

21 2.5646 2.4370 1.5965 �3.9938

22 2.4772 2.4653 1.6506 �4.0332

23 2.4916 2.3853 1.5876 �3.9629

24 2.5271 2.3999 1.5711 �3.9596

25 2.5222 2.4334 1.5977 �3.9908

26 2.4328 2.4025 1.6237 �3.9734

27 2.5021 2.3587 1.5673 �3.9182

28 2.5370 2.4047 1.6050 �3.9728

29 2.5537 2.4262 1.6044 �3.9849

30 2.4951 2.4527 1.6446 �4.0165

31 2.4997 2.3865 1.5995 �3.9614

32 2.5294 2.3980 1.5882 �3.9606

33 2.5306 2.4228 1.6042 �3.9819

34 2.4660 2.4183 1.6311 �3.9846

35 2.5047 2.3682 1.5853 �3.9342

mean (all) 2.4711 2.3996 2.3513 �3.9915

mean (cycle) 2.5145 2.4097 1.6078 �3.9746

st. dev. (%) 1.122 1.085 1.265 0.603

Table 3.7: The first four exponents at orders N � 21 to N � 35 in the expansion,

including their mean values and standard deviations.

(B.19) for explicit expressions. At each order n in the expansion of the flow equation in ρ

we obtain an equation linear in the beta functions of the form

n�2̧

m�0

Bnmpλiqβm � Anpλiq (3.93)

Where the terms Bnm originate from the I1 and I2 in (3.66) and the An � 0 are the

algebraic fixed point equations. At order N we can apply a boundary condition analogous

to (3.80) setting pβN � 0, βN�1 � 0q such that we get a closed system of N equations

(3.93).

Differentiating (3.93) with respect to λi and evaluating the expression at the UV fixed

point we obtain an equation for the stability matrix

Mnm �
N�1̧

k�0

B�1
nkAkm|� , (3.94)
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Figure 3.6: The convergence of the first four exponents θ � θ1 � iθ2, θ2 and θ3, showing

θ1 (blue line), 1� θ2 (red line), θ2 (yellow line) and �θ3 (green) together with their mean

values (straight line).

where B�1
nm is the inverse of the N by N matrix Bnm and Anm � BAn

Bλm . Explicit equations

for both Anmpλiq and Bnmpλjq for arbitrary n and m can be obtained such that for a

given fixed point we can compute the critical exponents corresponding to the eigenvalues

of Mnm.

We have computed the eigenvalues for all N up to Nmax. Our results are summarised

in Fig. 3.6 and Tabs. 3.6 and 3.7. A detailed discussion of the large-order behaviour of

eigenvalues is deferred to Sec. 3.4.

Since M is in general a non-symmetric matrix some of its eigenvalues may become

a complex conjugate pair. At the asymptotically safe fixed point, this happens for the

leading and a few sub-leading eigenvalues. It is customary to discuss universality in terms

of the critical scaling exponents θn, to which the eigenvalues relate as θn � �ϑn. The

results for the first few exponents are displayed in Fig. 3.6 (see Tabs. 3.6 and 3.7 for

the numerical values). The leading exponent is a complex conjugate pair θ � θ1 � iθ2.

Furthermore, only the first three exponents have a positive real part, whereas all other have

a negative real part. The positive sign of θ1, and the positive sign of θ2 imply that the first

three couplings are asymptotically safe couplings in the sense of Weinberg’s conjecture.

From Fig. 3.6 we notice that the exponents oscillate about their asymptotic values with

an eight-fold periodicity and a decreasing amplitude. We estimate their asymptotic values
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from an average over an entire period (3.82), leading to the exponents

xθ1y � 2.51� 1.2%

xθ2y � 2.41� 1.1%

xθ2y � 1.61� 1.3%

xθ3y ��3.97 � 0.6% .

(3.95)

Here, the accuracy in the result has reached the percent level for the first two real and

the first pair of complex conjugate eigenvalues. The error estimate (3.95) allows us to

conclude that the ultraviolet fixed point has three relevant directions. The asymptotic

estimates xθ1y, xθ2y and xθ3y depend only mildly on whether the average is taken over all

approximations, or only the highest ones, see Tabs. 3.6 and 3.7. An exception to this is

the exponent θ2. The slow convergence of the underlying fixed point λ2 has lead to a very

large eigenvalue at the order N � 3. Although the eigenvalue rapidly decreases by a factor

of nearly 20 with increasing N , its presence is responsible for the overall mean value to

deviate by 40% from xθ2y, (3.95), see Tabs. 3.6 and 3.7. We therefore conclude that the

large eigenvalue θ2pN � 3q is unreliable and an artefact of the approximation N � 3.

Further universal quantities of interest are given by specific products of couplings. An

important such quantity is the product of fixed point couplings g � λ � λ0{p2λ2
1q. It is

invariant under re-scalings of the metric field gµν Ñ `gµν , and may serve as a measure for

the strength of the gravitational interactions. We find the universal product

xg� � λ�y � 0.12105� 0.07% (3.96)

with an accuracy which is an order of magnitude better than the one in the scaling ex-

ponents. Furthermore, we find that xg� � λ�y � xg�y � xλ�y within the same accuracy, see

(3.84), which supports the view that the cycle-averaged values have become independent

of the underlying polynomial approximation.

3.4 Power counting for asymptotic safety

In perturbatively renormalisable theories with a trivial UV fixed point (such as QCD) the

canonical mass dimension of operators dictates whether couplings are relevant or irrelev-

ant at high energies. Then standard dimensional analysis can be applied to conclude that

operators with increasing canonical mass dimension will become increasingly irrelevant.

In the presence of a non-trivial UV fixed point (such as here) the theory achieves an inter-

acting scaling limit and therefore a perturbative operator ordering according to canonical

mass dimension cannot be taken for granted. Rather, one may expect that the non-trivial
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fixed point will alter the set of relevant, marginal, and irrelevant operators. In this sec-

tion, we establish that the scaling of operators with a sufficiently large canonical mass

dimension becomes approximately Gaussian at an asymptotically safe UV fixed point.

3.4.1 Perturbation theory

We first recall a line of reasoning due to Weinberg [191], who conjectured that higher-

dimensional operators in a fundamental gravitational action are likely to remain irrelevant

even in the presence of a non-trivial UV fixed point. The rationale behind this observation

is that there are at most a finite number of local and diffeomorphism invariant terms in

the action with relevant couplings. This is a consequence of the vanishing canonical

dimension of the field rgµνs � 0 and the positive mass dimension of covariant derivatives,

rDµs � 1 which are used to construct Laplacians l � gµνDµDν and invariants of the form

OipDµ, gµνq.1 Therefore, the RG β-function of couplings λi associated to interactions Oi

in the fundamental action has the form

Btλi � di λi � quantum corrections (3.97)

where di denote the canonical mass dimension of the interaction term di � rOis associated

to the dimensionless coupling λi. If the interaction term Oi contains 2n derivatives, we

have di � 2n � 4. In the absence of quantum corrections, the couplings scale with the

Gaussian eigenvalues ϑG � di,

ϑG,n � 2n� 4 . (3.98)

In 4d gravity, only the cosmological constant and Planck mass squared are relevant due to

the negative mass dimensions of
³
d4x

a
det gµν and

³
d4x

a
det gµνR. Interaction terms in-

volving four derivatives such as
³
d4x

a
det gµνR2,

³
d4x

a
det gµνlR,

³
d4x

a
det gµνRµνRµν

or
³
d4x

a
det gµνRµνρσRµνρσ are marginal, and those involving more than four derivatives

such as
³
d4x

a
det gµνRn pn ¥ 2q or the seminal Goroff-Sagnotti term

³
d4x

a
det gµνRµνρσRρσλτRλτ µν

are perturbatively irrelevant and their Gaussian eigenvalues (3.98) increase strongly with

the number of derivatives.

Including quantum corrections, the eigenvalue spectrum at a non-trivial fixed point is

modified. It is conceivable that some of the eigenvalues (3.98) may change sign due to

interactions (3.97), which would be in accord with the asymptotic safety scenario provided

that the set of negative eigenvalues remains finite. On the other hand, a fixed point theory

1Other conventions for the mass dimension of the metric field are equally possible without affecting the

outcome.
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would lose its predictive power if the eigenvalues of infinitely many couplings changed

their sign due to quantum corrections. This would require substantial corrections to

infinitely many eigenvalues, nearly all of which need to be very large and with the opposite

sign. One concludes from these observations that the feasibility of an asymptotic safety

scenario necessitates that operators with a sufficiently large canonical mass dimension

remain irrelevant in the UV.

asymptotically safe fixed point

ϑn Gauss N � 15 11 7

ϑ0 �4 �2.4751 �2.4818 �2.4139

ϑ1 �2 �2.4751 �2.4818 �2.4139

ϑ2 0 �1.5618 �1.3053 �1.5003

ϑ3 2 3.9733 3.0677 4.1063

ϑ4 4 5.6176 3.0677 4.4184

ϑ5 6 5.6176 3.5750 4.4184

ϑ6 8 8.3587 6.8647 8.5827

ϑ7 10 12.114 10.745

ϑ8 12 12.114 10.745

ϑ9 14 15.867 13.874

ϑ10 16 18.336 16.434

ϑ11 18 20.616

ϑ12 20 24.137

ϑ13 22 27.196

ϑ14 24 27.196

Table 3.8: The large-order behaviour of asymptotically safe eigenvalues n � 0 to n � 17

for a selection of orders N � 15, 11 and 7 in the polynomial expansion, in comparison

with the Gaussian eigenvalues. If the eigenvalues are a complex conjugate pair, only the

real part is given.
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asymptotically safe fixed point

ϑn Gauss N � 35 31 23

ϑ0 �4 �2.5047 �2.4997 �2.4916

ϑ1 �2 �2.5047 �2.4997 �2.4916

ϑ2 0 �1.5853 �1.5995 �1.5876

ϑ3 2 3.9342 3.9614 3.9629

ϑ4 4 4.9587 5.6742 5.6517

ϑ5 6 4.9587 5.6742 5.6517

ϑ6 8 8.3881 8.4783 8.4347

ϑ7 10 11.752 12.605 12.366

ϑ8 12 11.752 12.605 12.366

ϑ9 14 14.089 15.014 15.384

ϑ10 16 17.456 17.959 18.127

ϑ11 18 19.540 20.428 20.510

ϑ12 20 22.457 23.713 23.686

ϑ13 22 25.158 25.087 23.686

ϑ14 24 26.014 25.087 23.862

ϑ15 26 26.014 26.048 26.311

ϑ16 28 27.235 28.534 28.734

ϑ17 30 30.289 31.848 32.045

Table 3.9: The large-order behaviour of asymptotically safe eigenvalues n � 0 to n � 17

for a selection of orders N � 35, 31 and 23 in the polynomial expansion, in comparison

with the Gaussian eigenvalues. If the eigenvalues are a complex conjugate pair, only the

real part is given.
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asymptotically safe fixed point

ϑn Gauss N � 35 31 23

ϑ18 32 33.131 34.205 34.361

ϑ19 34 35.145 36.606 36.629

ϑ20 36 38.069 39.876 40.008

ϑ21 38 40.914 42.258 49.675

ϑ22 40 42.928 44.707 49.675

ϑ23 42 45.640 48.011

ϑ24 44 48.708 50.248

ϑ25 46 49.101 52.159

ϑ26 48 49.101 52.159

ϑ27 50 50.800 52.291

ϑ28 52 53.591 55.422

ϑ29 54 56.658 56.048

ϑ30 56 58.625 56.048

ϑ31 58 60.755

ϑ32 60 63.796

ϑ33 62 69.299

ϑ34 64 69.299

Table 3.10: The large-order behaviour of asymptotically safe eigenvalues n � 18 to n � 34

for a selection of orders N in the polynomial expansion, in comparison with the Gaussian

eigenvalues. If the eigenvalues are a complex conjugate pair, only the real part is given.
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Figure 3.7: The largest real eigenvalue ϑmaxpNq to order N ¥ 4 in the expansion (red

dots) in comparison with the corresponding Gaussian exponent ϑG,maxpNq in the absence

of fluctuations (straight line).

3.4.2 Asymptotic safety

We now discuss in concrete terms the large-order behaviour of the eigenvalues ϑn at an

asymptotically safe fixed point. At order N in the polynomial approximation, we retain

invariants up to order RN�1 leading to a set of N universal eigenvalues at the UV fixed

point,

tϑnpNq, 0 ¤ n ¤ N � 1u . (3.99)

In our case most of the eigenvalues are real except for a few complex conjugate pairs. The

real part of eigenvalues determines whether the associated operator is relevant or irre-

levent. Therefore we should order the eigenvalues according to the size of their real parts,

ReϑnpNq   Reϑn�1pNq. The subset of eigenvalues with a negative real part characterises

the UV critical surface of the fixed point. Here, we have three such eigenvalues and the

dimensionality of the UV critical surface SUV is therefore 3. The set (3.99) should then

be compared with the sorted list of Gaussian eigenvalues

tϑG,n � 2n� 4, 0 ¤ n ¤ N � 1u (3.100)

in the limit where fluctuations are absent, see (3.98). This implies that a Gaussian fixed

point has a two-dimensional UV critical surface.
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Figure 3.8: The real part of the universal eigenvalues ϑn at N � 35, ordered according

to magnitude. The dots (squares) indicate that the eigenvalue is real (complex), and the

straight line stands for the classical result ϑG,n � 2n� 4.

At fixed order in the approximation N , we are now interested in the largest real

eigenvalue within the set (3.99), which we denote as

ϑmaxpNq � max
n

ϑnpNq . (3.101)

Notice that we specifically focus on the real eigenvalue for this consideration, excluding

any complex conjugate pair of eigenvalues. In Fig. 3.7 we display (3.101) as a function of

the order of the approximation N (dots). Increasing the order from N �1 to N , the set of

eigenvalues (3.99) of the new fixed point solution will contain a new largest real eigenvalue

ϑmaxpNq. It arises mainly through the addition of the invariant
³a

det gµνRN�1. We

wish to compare this eigenvalue with the largest eigenvalue within (3.100) in the absence

of fluctuations, at the same order N ,

ϑG,maxpNq � 2pN � 1q � 4 . (3.102)

In Fig. 3.7 we indicate (3.102) by the full line. For low values of N the largest real

eigenvalue ϑmaxpNq differs from its classical counterpart ϑG,maxpNq. In particular the

perturbatively marginal operator 9R2 becomes a relevant operator non-perturbatively.

With increasing order N we find

ϑmaxpNq
ϑG,maxpNq Ñ 1 for 1{N Ñ 0 . (3.103)
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The significance of the result (3.103) is as follows. The addition of the invariant
³a

det gµνRN

leads to the appearance of a new largest real eigenvalue ϑmaxpNq. The newly added in-

teraction term also feeds into the lower order couplings and eigenvalues, and vice versa.

The coupled system achieves a fixed point with ϑmaxpNq � ϑGpNq for all N (provided N

is not too small), stating that the UV scaling of invariants with a large canonical mass

dimension becomes mainly Gaussian, even in the vicinity of an interacting fixed point.

It remains to establish the stability of this pattern under the inclusion of further

interactions. This is assessed through a term-by-term comparison of the asymptotically

safe set of eigenvalues (3.99), retaining the complex conjugate pairs of eigenvalues, and

the Gaussian set (3.100), to sufficiently high order N in the approximation, see Tabs. 3.8,

3.9 and 3.10. We find
ReϑnpNq
ϑG,n

Ñ 1 for nÑ N � 1 (3.104)

for approximations including up to N � 35. Clearly, the large eigenvalues only differ

mildly from the Gaussian ones. In Fig. 3.8 we illustrate the result (3.104) for N � 35.

The data in Fig. 3.8 is complementary to Fig. 3.7 in that it shows how the eigenvalue

distribution has evolved under the inclusion of further invariants. The result states that

the eigenvalue ϑmaxpnq, the nth largest real eigenvalue at the order N � n � 1 in the

expansion (3.78), is already a good approximation to the full nth eigenvalue ϑnpNq at a

higher order in the expansion N ¡ n � 1. The latter is a better approximation to the

physical result because it is fuelled by pN � n � 1q additional operators in the effective

action.

To conclude, the qualitative, and largely even quantitative, similarity of Fig. 3.7 and

Fig. 3.8 establishes the stability of the results (3.103) and (3.104) under increasing orders in

the polynomial expansion. In this light, the main effect of asymptotically safe interactions

is to induce a shift away from Gaussian eigenvalues

ϑG,n Ñ ϑn � ϑG,n �∆n , (3.105)

thereby generating precisely one further relevant eigenvalue in the spectrum by turning a

marginal eigenvalue into a relevant one, ie. ϑ2 � ∆2   0. Also, the interaction-induced

shifts ∆n come out bounded, with ∆n{ϑn � ∆n{n Ñ 0 for 1{n Ñ 0. The eigenvalue

distribution approaches Gaussian scaling with increasing canonical dimension, despite the

fact that the underlying theory displays an interacting fixed point. Note also that the

shifts ∆n are mostly positive once n ¡ 5, meaning that the asymptotically safe interactions

generate scaling operators which are more irrelevant than their perturbative counterparts.

Interestingly, this structure is more than what is needed to ensure an asymptotic safety
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scenario. It is then conceivable that asymptotic safety persists under the inclusion of

further curvature invariants beyond those studied here.

3.5 Discussion and conclusions

We performed a high accuracy study of gravitational fixed points in four dimensions for

F pRq theory of gravity. Expanding the fixed point as a high order polynomial in the Ricci

scalar allowed for new structural insights including the impact of asymptotically safe

interactions on the scaling of curvature invariants. Intriguingly, for curvature invariants

with a mass dimension sufficiently larger than four, we find that the universal fixed point

scaling is largely governed by Gaussian exponents. We have confirmed this pattern up to

very high order (N � 35) in the curvature scalar. It is thus conceivable that this pattern is

generic for an asymptotically safe theory and may hold true for other curvature invariants

not included in F pRq-theory. To test this one would have to go beyond the F pRq type

approximation schemes and include different tensor structures such as RµνRµν and Weyl

squared CµνρλC
µνρλ. Furthermore, calculations should be performed at higher orders in

the fluctuation field hµν .

In addition, we presented high accuracy results for the asymptotically safe fixed point,

its coordinates in a polynomial basis, and the universal scaling exponents. The expansion

converges with an eight-fold periodicity pattern, suggesting the existence of convergence-

limiting near-by singularities in the complex plane. In particular the marginal coupling

9R2 showed a slow convergence. At the high order of the approximation that we achieved,

we are now able to give precise statements about the radius of convergence of the approx-

imation. As a consequence we saw that the conjectured existence of de Sitter points in

the fixed point regime holds only true at low orders of the approximation and has to be

considered as an artefact of the low order approximation.

Our results support the asymptotic safety conjecture. They also strengthen existing

search strategies for gravitational fixed points guided by the canonical mass dimension of

operators. Only the marginal coupling of the R2 term receives a non-perturbative cor-

rection which renders it relevant, but for all the other couplings the sign of the scaling

exponent is exactly as suggested by pure power counting. At high orders the ratios of

scaling exponents to the Gaussian ones are close to one. This indicates that, as a per-

centage, quantum corrections to the scaling behaviour expected from power counting are

mild. The result that the perturbative scaling takes over for operators with sufficiently

large canonical dimension gives convincing confidence that no surprises are to be expected
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when further operators with higher orders are taken into account and that a realisation of

the asymptotic safety scenario could be feasible.
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Chapter 4

Black hole space-times

Black holes are intriguing solutions to Einstein’s classical equations for gravity, charac-

terised by conserved global charges such as total mass, angular momentum, or electric

charge. Most prominently black holes display an event horizon which classically cannot

be crossed by light rays emitted from their interior. The simplest black hole solution in

four dimensions, the Schwarzschild black hole, has been discovered nearly a century ago

[171], and many more solutions with increasing degree of complexity are known by now

both in lower and in higher dimensions. The latter have received much attention recently

due to qualitatively new solutions such as black rings which cannot be realised in a low

dimensional setup [62].

The inclusion of quantum gravitational corrections to the dynamics of space-time be-

comes a challenge once the black hole mass approaches the fundamental Planck scale.

Furthermore, the quantisation of matter fields on a black hole background and the very

notion of a black hole temperature has to be revisited once quantum fluctuations of space-

time itself become dominant. An understanding of the Planckian regime should clarify

the so-called “information paradox” and the ultimate fate of an evaporating black hole.

Here we will be interested in the consequences of asymptotic safety for black hole

physics. Since black holes pose many problems at the classical and semi-classical level they

are an ideal testing ground for any theory of quantum gravity. Therefore it remains an

open challenge for asymptotic safety to explain the resolution of the information paradox

and provide an explanation of black hole entropy. In the later part of this thesis we wish to

shed some light on these theoretical issues while also exploring the possible experimental

implications of asymptotic safety on phenomenological black hole production models.

In this chapter, we study quantum corrections to black holes in higher dimensions in

the context of asymptotically safe gravity. We build on results found in four dimensions



71

[27, 31, 24] and in higher dimensions [156, 63]. It is the central assumption of this approach

that the leading quantum gravity corrections to black hole metrics are accounted for

through replacing Newton’s coupling constant by a ‘running’ coupling which evolves under

the renormalisation group equations for gravity. The approach is informed by RG results

for higher dimensional quantum gravity [112, 110, 113, 70, 71, 114, 115]. The findings are

relevant for the phenomenology of e.g. mini-black hole production at colliders.

It is widely expected that a semi-classical description of black hole production and

decay at colliders is valid provided curvature effects remain small, and as long as the black

hole mass is large compared to the Planck scale [11, 93]. Then the fundamental black

hole production cross section is estimated by the geometric one provided by the hoop

conjecture [182], modulo grey body factors reflecting impact parameter dependences and

inefficiencies in the formation of a horizon [96, 190, 78]. However it is expected this semi-

classical behaviour breaks down a once the black hole mass approaches the Planck scale.

At this point the quantum gravitational effects may become model dependent. Here we

shall see that asymptotic safety provides a cross over regime between the semi-classical

and the deep UV as the black hole radius approaches the Planck length.

In previous work [156, 63] it was found that asymptotic safety predicts a smallest black

hole with a vanishing temperature in all dimensions d ¥ 4 a result that was obtained earlier

in d � 4. Here we extend this analysis in higher dimensions.

This chapter is organised as follows. We first recall the essentials of classical black

holes, and outline the qualitative picture (Sec. 4.1). This is followed by a discussion of

the renormalisation group equations for the running of Newton’s coupling within asymp-

totically safe gravity (Sec. 4.2). We construct improved black holes in four and higher

dimensions, and analyse their main characteristics including the horizon structure, mass

dependence, the existence of smallest black holes (Sec. 4.3), as well as their singularity

and causality structure (Sec. 4.4). Our findings are applied to the physics of black hole

production in higher dimensional scenarios with low-scale quantum gravity (Sec. 4.5). We

close with a discussion of the main results and indicate further implications (Sec. 4.6).

4.1 Generalities

In this section, we recall the basics of classical black holes, introduce some notation,

outline the renormalisation group improvement for black hole metrics and discuss first

implications.
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case α gravity horizons fpr Ñ 0q
(i)   d� 3 strong, if α   0 1 singular

weak, if α ¡ 0

(ii) � d� 3 weak 0, 1 or more finite

(iii) ¡ d� 3 weak 0, 1 or more 1

Table 4.1: Horizons of quantum-corrected Schwarzschild black holes assuming a scale-

dependent gravitational coupling strength (4.6) at short distances for various dimensions

and in dependence on the short distance index α (see text).

4.1.1 Schwarzschild metric

The classical, static, spherically symmetric, non-charged black hole solution to Einstein’s

equation is the well-known Schwarzschild black hole [171]. Its line element in d ¥ 4

dimensions is given by [181] (see also [130])

ds2 � �fprq dt2 � dr2

fprq � r2 dΩ̄2
d�2 . (4.1)

Where dΩ̄2
d�2 is the metric on a d� 2 sphere. The lapse function

fprq � 1� cdGN M

rd�3
(4.2)

depends on Newton’s coupling constant GN in d dimensions, the mass of the black hole

M and is a constant cd that only depends on the space-time dimension

cd �
8 Γpd�1

2 q
pd� 2qπpd�3q{2 , (4.3)

In terms of these, the classical Schwarzschild radius rcl is given as

rd�3
cl � cdGN M . (4.4)

The black hole solution is continuous in the mass parameter M and displays a Bekenstein-

Hawking temperature inversely proportional to its mass. For large radial distance r Ñ8,

we observe fprq Ñ 1, indicating that the geometry of a Schwarzschild space-time becomes

flat Minkowskian. The coordinate singularity at r � rcl where fprclq vanishes, defines the

event horizon of the black hole. In the short distance limit r Ñ 0 we observe a divergence

in fprq, reflecting a metric and curvature singularity at the origin.
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4.1.2 Improved metric

The classical black hole is modified once quantum gravitational effects are taken into

account. In general, quantum fluctuations will modify the gravitational force law by

turning Newton’s coupling GN into a distance-dependent “running” coupling Gprq,

GN Ñ Gprq . (4.5)

It is the central assumption of this chapter that the leading quantum gravitational cor-

rections to the black hole are captured by the replacement (4.5) in the metric (4.2). This

“renormalisation group improvement” should provide a good description of the leading

quantum corrections, because the primary, explicit, dependence of the Schwarzschild black

hole on the gravitational sector is only via Newton’s coupling GN . Furthermore, the clas-

sical black hole solution is continuous in its mass parameter M , and the effects of quantum

corrections are parametrically suppressed for large black hole mass with MD{M serving as

an external, small, control parameter, where MD � G
� 1
d�2

N is the Planck mass. Whether

gravity becomes “strong” at shortest distances, or “weak”, will depend on the ultraviolet

completion for gravity and the related running under the renormalisation group.

Next we discuss the main implications arising from a running gravitational coupling.

For the sake of the argument, we parametrize Gprq as

Gprq � rd�2
char

�
r

rchar


α
(4.6)

for sufficiently small r, where rchar denotes a characteristic length scale where quantum

corrections become dominant. The index α then parametrizes the gravitational coupling

strength at short distances, with α ¡ 0 pα   0q denoting a decrease (increase) of Gprq{GN
at small distances, respectively, and the classical limit α � 0 where rchar is given by

the Planck length rchar � 1{MD. The behaviour of fpr Ñ 0q, and the solutions to the

horizon condition fprq � 0 then teach us how the RG-improved black hole depends on the

quantum effects parametrized by α. The qualitative pattern is summarised in Tab. 4.1.

We distinguish three cases, depending on the short distance index α:

(i) α   d� 3. In this case the gravitational coupling either increases with decreasing r,

or even decreases slightly, though not strongly enough to overcome the enhancement

due to the 1
rd�3 -factor in (4.2). Therefore fprq unavoidably has to change sign leading

to a horizon. This includes the classical case α � 0, and all cases of strong gravity

corresponding to a diverging Gprq{GN for small r. Interestingly, even if gravity

weakens at short distances with an index 0   α   d � 3, we still observe a horizon

for arbitrary small black hole masses.
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(ii) α � d � 3. In this case, we have a finite limit fpr Ñ 0q � f0. For f0   0,

this necessarily enforces a horizon, similar to case (i). For f0 ¡ 0, the situation is

analogous to case (iii).

(iii) α ¡ d�3. In this case, Gprq weakens fast enough to overcome the enhancement due

to 1
rd�3 . Therefore fpr Ñ 0q Ñ 1 and fprq may display either several zeros, a single

one, or none at all, leading to several, one or no horizon depending on the black hole

mass M and the precise short-distance behaviour of Gprq.

We conclude that for α ¡ d�3 the Schwarzschild black hole may no longer display a horizon

for all mass, whereas for α   d � 3 a horizon is guaranteed for all M . Which of these

scenarios is realised depends on the short-distance behaviour of gravity. In the remaining

part of the chapter we access this picture quantitatively, using the renormalisation group

for gravity.

4.2 Asymptotically safe gravity in higher dimensions

In this section, we discuss field theory based approaches to quantum and provide the

renormalisation group running for Newton’s coupling.

4.2.1 Effective theory for gravity

In the absence of a complete theory for quantum gravity, quantum corrections of the form

(4.5) can be accessed in the weak gravity regime using methods from effective theory

[54, 33]. In practice, this amounts to an ultraviolet regularisation of the theory by an UV

cut-off Λ of the order of the fundamental Planck scale. In the weak gravity regime where

rMD " 1, it has been found that

Gprq � GN

�
1� ωGN

r2



(4.7)

in four dimensions, and at the one-loop order [84, 22, 21, 3], with ω ¡ 0 (see [56] for earlier

results). In higher dimensions, no effective theory results are available and thus we have

to provide the relevant RG input from a different source.

4.2.2 Renormalisation group

Analytical results for the running of the gravitational coupling have been given in [112,

110], where the effective average action Γkrgµνs has been approximated by the Ricci scalar.
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The central result is not altered through the inclusion of a cosmological constant [70].

Using (2.50), one finds

βg � p1� 4dg{bdqpd� 2qg
1� p2d� 4qg{bd (4.8)

with parameter bd � p4πqd{2�1Γpd
2�2q. The scale-dependence of the anomalous dimension

is given via the scale-dependence of the running coupling,

η � 2pd� 2qpd� 2q g{bd
2pd� 2q g{bd � 1

. (4.9)

We observe a Gaussian fixed point at g� � 0 and a non-Gaussian one at g� � bd{p4dq.
Integrating the flow (4.8) gives an implicit equation for Gk,

Gpkq
Gpk0q �

�
g� �Gpkq kd�2

g� � Gpk0q kd�2
0

�pd�2q{θ
(4.10)

with boundary condition Gpk0qkd�2
0   g�, and the non-perturbative scaling exponent

θ � 2d d�2
d�2 . The fixed point value and the scaling exponent depend slightly on the

underlying momentum cut-off [112, 110, 70]. Inserting the running coupling (4.10) into

(4.8) shows that the anomalous dimension displays a smooth cross-over between the IR

domain k !MD where η � 0 and the UV domain k "MD where η � 2�d. The cross-over

regime becomes narrower with increasing dimension. For our purposes, it will be sufficient

to approximate the non-perturbative solution (4.10) further by setting the scaling index θ

to θ � d� 2. In the limit where Gpk0qkd�2
0 ! 1, we find

1
Gpkq �

1
G0

� ω kd�2 (4.11)

where ω � 1{g� is a positive constant, and G0 � Gpk0 � 0q. Note that (4.11) looks,

formally, like a 1-loop equation. The difference here is that the coefficient ω, in general,

also encodes information about the underlying fixed point and may be numerically different

from the 1-loop coefficient. This equation captures the main cross-over behaviour.

4.2.3 Relevant scales

In order to implement quantum corrections to the classical Schwarzschild black hole geo-

metry, we replace the classical coupling G by an r-dependent running coupling Gprq under

the RG flow. The renormalisation group provides us with a momentum-scale dependent

Gpkq. This requires, additionally, a scale identification between the momentum scale k

and the coordinate variable r of the form

kprq � ξ{Dprq , (4.12)
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Figure 4.1: Comparison of various distance functions Dprq as functions of r{rcl. (a)

Proper distance in d � 4, 6, 7 and 10 dimensions (top to bottom) and linear matching

(straight line). (b) Interpolating expressions (4.20) and (4.22), proper distance matching

(4.17), and linear matching (4.18) (bottom to top) in 7 dimensions.

such that
1

Gprq �
1
G0

� ω ξd�2

Dd�2prq . (4.13)

The distance function Dprq should be an appropriately chosen length scale which may

depend on other parameters such as eg. the black hole mass M . In general, the matching

coefficient ξ is non-universal and its numerical value will depend on the RG scheme used

to obtain the RG running of Gpkq. In a fixed RG scheme, and for a given choice for Dprq, ξ
can be computed explicitly using methods discussed in eg. [54]. Such scale identifications

were first introduced in four dimensions [27] and then generalised to higher dimensions

[156, 63].

Here we introduce a variety of distance functions motivated by the Schwarzschild met-

ric, flat space metric, dimensional analysis, and interpolations. We then analyse the

different physically motivated choices Dprq to see for which of the scenarios outlined in

Tab. 4.1 they lead to.

 Dimensional analysis. The gravitational force on a test particle in a Schwarzschild

space-time depends on two independent dimensionful parameters, the horizon rcl (or the

black hole mass, respectively) and the radial distance scale r. Therefore, dimensional

analysis suggests that a general length scale Dprq can be written as

Ddaprq � cγr
γ r�γ�1

cl . (4.14)

for some γ, and cγ a positive constant. Moreover, γ may depend on dimensionless ratios
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such as r{rcl. An ansatz taking into account the flat-space limit for r Ñ8, and the deep

Schwarzschild regime r ! rcl, is given by

Ddaprq9
$&
% r for r ¡ rcl

rγ r�γ�1
cl for r   rcl

(4.15)

with coefficient γ. In the parametrisation (4.6), this corresponds to the short-distance

index α � γpd � 2q. For γ ¡ 1 pγ   1q, the matching enhances (counteracts) the RG

running of (4.11). We note that 1{γ Ñ 0 corresponds to a decoupling limit where gravity

is switched-off at scales below rcl.

 Proper distance. A different matching is obtained by identifying the RG momentum

scale k with the inverse diffeomorphism invariant distance Ddiffprq�1 [27]. Such a distance

is defined through the line integral

Ddiffprq �
»
C

a
|ds2| , (4.16)

where C is an appropriately chosen curve in space-time. Using the classical Schwarzschild

metric, we consider a path C running radially from 0 to r, thereby connecting time-like

with space-like regions. With dt � dΩ � 0 this defines the proper distance

DSchwprq �
» r

0
dr

����1� �rcl

r

	d�3
�����1{2

. (4.17)

For any d, (4.17) has an integrable pole � 1{?r � rcl at the connection point between

space-like and time-like regions r � rcl. Analytical expressions for DSchwprq are obtained

from (4.17) for fixed dimension. We note that (4.17) corresponds to (4.14) with an pr{rclq-
dependent index γ. For large r " rcl, we have DSchwprq Ñ r, where the Schwarzschild

metric becomes flat corresponding to γ � 1 in (4.14). For small r (4.17) corresponds to

(4.14) with γ � pd� 1q{2.

 IR matching. If the black hole mass M is sufficiently large compared to the Planck

mass, we can assume that the only RG relevant length scale in the problem is given by r.

Therefore, r is directly identified with the (inverse) RG scale k [27],

Dirprq � r . (4.18)

This matching (4.18) corresponds to (4.14) with γ � cγ � 1. In the parametrisation (4.6),

the short distance behaviour corresponds to α � d� 2. We therefore expect the matching

(4.18) to capture the leading quantum effects correctly.

 UV matching. For small r ! rcl, the proper distance DSchwprq scales like a power-law

in r. We find

Duvprq � 2 rpd�1q{2

pd� 1q rpd�3q{2
cl

. (4.19)
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Matching the RG momentum scale with the inverse proper distance (4.19) leads to (4.14)

with γ � c�1
γ � pd � 1q{2. In the parametrisation (4.6), this corresponds to the short-

distance index α � pd�1qpd�2q{2 ¡ 0, which for all d ¡ 3 is larger than the index pd�2q
obtained from linear matching.

 Interpolations. For the subsequent analysis, it is useful to have approximate expres-

sions for DSchwprq (4.17) which interpolate properly between (4.18) and (4.19). We use a

simple interpolation formula for general dimension to implement the non-linear matching

(4.17) into (4.11) and write

Dint1prq � 2 rpd�1q{2

pd� 1q prcl � εd rqpd�3q{2 (4.20)

εd �
�

d
2 � 1

2

��2{pd�3q (4.21)

which is exact for r Ñ 8 and r Ñ 0, and εd P r49 , 1s for d P r4,8s. Alternatively, we also

use

Dint2prq � r

1� 1
2pd� 1q prcl{rqpd�3q{2 . (4.22)

In Fig. 4.1 we compare different distance functions. In Fig. 4.1(a), the functions

(4.17) are compared with the linear matching (4.18) in various dimensions. For large r

the proper distance (4.17) approaches r for all d ¥ 4. As r{rcl × 1 we observe that

the gradient steepens rapidly due to the presence of an integrable pole 1{?r � rcl. For

r ! rcl the gradients of each curve are steeper with increasing d due to an additional

dimensional suppression in (4.17). In Fig. 4.1(b) we fix d � 7 and observe that for large

r the matchings (4.17). (4.20) and (4.22) approach the correct IR behaviour (4.18). For

small r these matchings approach the UV matching (4.19). We also observe that the rapid

steepening of (4.17) around r{rcl implies that the transition between IR and UV behaviour

is well approximated by (4.15).

Finally, we provide a link with the discussion of Tab. 4.1, see Sec. 4.1.2. For the

distance functions motivated by the Schwarzschild metric (4.17), (4.19), (4.20) and (4.22),

we find the index α � 1
2pd� 1qpd� 2q ¡ pd� 3q for all d ¥ 4, corresponding to case (iii).

In the same vein, for Dprq motivated by the flat space metric (4.18) we find α � d � 2

equally corresponding to case (iii). Finally, the distance function motivated by dimensional

analysis (4.15) contains a free parameter γ, whose natural value is of order one. It leads

to the index α � γpd� 2q and hence relates to case (iii) for all γ ¡ γc, where

γc � d� 3
d� 2

. (4.23)
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We conclude that for all physically motivated distance functions we are lead to the scenario

described by case (iii) in Tab. 4.1, independently of the scale identification k � kprq.
This, therefore, appears to be a robust prediction from the renormalisation group running

implied within asymptotically safe gravity.

4.3 Asymptotically safe black holes

In this section, we implement the renormalisation group improvement and analyse the

resulting black holes, their horizon structure, and critical Planck-size mini-black holes.

The asymptotically safe black hole is obtained by replacing GN with the running Gprq
(4.13) in (4.4) and (4.2), leading to the improved, asymptotically safe, lapse function

[27, 156, 63]

fpr,Mq � 1� cdGpr,Mq M

rd�3
. (4.24)

At this point we make two observations. The improved Schwarzschild radius rspMq is

given by the implicit solution of

rd�3
s pMq � cdM GprspMq,Mq . (4.25)

If (4.24) has a solution fprspMq,Mq � 0, then it follows that the quantum-corrected

horizon is smaller than the classical one rspMq   rclpMq. This is a direct consequence of

Gpr,Mq{GN ¤ 1 for all r. Secondly, if Gpr,Mq{GN decreases too rapidly as a function of

r, fprspMq,Mq � 0 will no longer have a real solution rspMq ¥ 0, implying the absence

of a horizon.

4.3.1 Horizons

To see the above picture quantitatively, we analyse the horizon condition analytically, also

comparing various matching conditions. For a general matching the dimensional analysis

(4.14) leads to a running Newton’s constant (4.13) of the form

G0

Gprq � 1� ω̃ G0

rd�2
cl

�rcl

r

	γpd�2q
(4.26)

with rcl as in (4.4) and

ω̃ � ωpξ{cγqd�2 (4.27)

This leads to a lapse function given by

fpxq � 1� 1
xd�3

xγpd�2q

xγpd�2q � Ω
, (4.28)
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Figure 4.2: Mass and renormalisation group dependence of the RG improved function

fpxq with x � r{rcl in higher dimensions. From top to bottom: absence of horizon Ω ¡ Ωc,

critical black hole Ω � Ωc, semi-classical black hole Ω   Ωc, and classical black hole Ω � 0.

where we have also introduced the variables

x� r{rcl (4.29)

rcl � pcdM G0q1{pd�3q (4.30)

Ω� ω̃
�
Md

cdM


 d�2
d�3

. (4.31)

We define the d-dimensional Planck mass as G0 �M2�d
D corresponding to the convention

used by Dimopoulos and Landsberg [52]. The parameter Ω captures the RG running of

Newton’s coupling, and the mass and matching parameter dependence. The classical black

hole corresponds to Ω � 0 which is achieved in the limit of vanishing quantum corrections

ω Ñ 0 or in the limit of infinite black hole mass M Ñ8. Therefore, the horizon condition

fpxq � 0 always includes the classical solution x � 1 at r � rcl for Ω � 0.

For simplicity, we begin with the case γ � 1 corresponding to the IR matching (4.18),

where fpxq takes the form

fpxq � 1� x

xd�2 � Ω
. (4.32)

For Ω ¡ 0, the horizon condition becomes

0 � xd�3 � 1� Ω{x . (4.33)

We find three qualitatively different solutions, depending on the value of Ω (see Fig. 4.2(a)).

In general, (4.33) has d� 2 possibly complex roots xpΩq. For sufficiently small Ω, two of

these are positive real with 0   x�pΩq   x�pΩq ¤ 1 and correspond to a Cauchy horizon

x� � rw{rcl and an outer horizon x� � rs{rcl. In even dimensions, the remaining roots

are complex congugate pairs, whereas in odd dimensions, one of the remaining roots is



81

0.2 0.4 0.6 0.8 1.0

W

W
c

0.2

0.4

0.6

0.8

1.0

rs

rcl

Figure 4.3: Horizons rs as a function of Ω{Ωc for d � 7 for different values of the

parameter γ � 1, 6
5 , 2, 3, 4, and 10 from bottom to top. Upper/ lower branch are event/

Cauchy horizon.

real and negative. Analytical solutions are obtained for x�pΩq as a power series in Ω for

any d ¡ 3. With increasing Ω (decreasing black hole mass M), real solutions to (4.33)

cease to exist for Ω ¡ Ωc. Hence, black hole solutions are restricted to masses M with

Ω ¤ Ωc and M ¥Mc . (4.34)

For a black hole of critical mass Mc we find ΩpMcq � Ωc. For such a critical black hole the

inner Cauchy horizon and the outer event horizon coincide, x� � x� � xc with a radius

of rc � xc rclpMcq. Solving fpxcq � 0 and f 1pxcq � 0 simultaneously leads to the critical

parameter

Ωc � pd� 3q pd� 2q� d�2
d�3 (4.35)

xc � pd� 2q�1{pd�3q . (4.36)

We note that (4.35) is of order one for all d ¥ 4.

Next, we consider the distance function (4.20) whose index γ interpolates between

γ � 1 for large r and γ � 1
2pd� 1q for small r, similar to the matchings (4.17) and (4.22).

We find

Gprq � G0 r
α

rα � ω̃ G0 prcl � εd rqα�2�d (4.37)



82

0.6 0.8 1.0 1.2 1.4

r

rcl

0.2

0.4

0.6

0.8

1.0

f HxL

Figure 4.4: Dependence of the metric coefficient fpxq at criticality Ω � Ωc, on the

parameter γ � 1, 6
5 , 2, 3, 4, and 10 from left to right in d � 7 dimensions. The minima

denote the degenerate horizon xc. Metric singularities are absent for γ ¥ γdS � d�1
d�2 .

Large values of γ Ñ8 represent the decoupling limit (see text).

with rcl and εd from (4.4) and (4.21), and

α� 1
2
pd� 1qpd� 2q (4.38)

ω̃ � ω ξd�2
�

d
2 � 1

2

�d�2
. (4.39)

Consequently,

fpxq � 1� xα�d�3

xα � Ωp1� xεdqα�d�2
(4.40)

and the horizon condition becomes

xα�d�3 � xα � Ωp1� xεdqα�d�2 . (4.41)

In Fig. 4.2(b) we plot (4.40) in d � 7 for three values of Ω. The main difference in

comparison with Fig. 4.2(a) is that the limit f Ñ 1 is achieved more rapidly.

Finally, we come back to a matching with general index γ, (4.28), with horizon condi-

tion

0 � 1� x3�d � Ωx�γpd�2q . (4.42)

Again, three types of solution are found for γ ¡ d�3
d�2 , corresponding to two horizons (x�

and x�) for Ω   Ωc, none for Ω ¡ Ωc and a single horizon (x� � x� � xc) for Ω � Ωc.
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Solving fpxcq � 0 and f 1pxcq � 0 simultaneously leads to the critical parameter

xc �
�

1� d� 3
γpd� 2q


 1
d�3

(4.43)

Ωc � d� 3
γpd� 2q

�
1� d� 3

γpd� 2q

 γpd�2q

d�3
�1

. (4.44)

It follows that condition (4.34) will hold independently of the matching used.

Next we discuss the quantitative differences between the various distance functions.

This relates to the limit r Ñ 0, where fprq approaches f Ñ 1, though with different rates,

see Figs. 4.2. Effectively, the rate is parametrised through γ. We recall that the limit

γ Ñ 8 switches off gravity below the horizon xc. This entails, in (4.43), that xc Ñ 1.

This is nicely seen in Fig. 4.3 where the horizons are plotted as a function of Ω{Ωc for

various γ with fixed dimensionality d � 7. In Fig. 4.4, instead, we use (4.15) with γ � 1

for r ¡ rcl and γ ¡ 1 for r   rcl. At Ω � Ωc we show fprq for various γ, and note that the

limit f Ñ 1 is approached more rapidly for larger values of γ, as expected. We conclude

that γ ¡ 1 enhances the weakening of gravity in the limit r Ñ 0.

The above findings allow first conclusions. The RG running of Gprq in the regime

where r " rcl has little quantitative influence on the gravitational radius rs. Interestingly,

the precise RG running in the deep short distance regime r ! rcl is also largely irrelevant

for the RG improved gravitational radius. Instead, the behaviour of Gprq and its gradient

r BrGprq in the regime between r � rcl and r � rs is mostly responsible for the quantit-

ative shift from rcl to rs. In consequence, the slight differences in the distance functions

(4.17), (4.18), (4.19) and (4.20) are attributed to a slight variation in the underlying RG

running of Gprq. The RG results from [70] favour moderate values for γ, as do regularity

and minimum sensitivity considerations (see Sec. 4.4.4). In all cases studied here, the

qualitative behaviour of the horizon structure remains unchanged.

4.3.2 Critical mass

A direct consequence of our results from Sec. 4.3.1 is the appearance of a lower bound on

the black hole mass below which the RG improved space-time ceases to have a horizon,

see (4.34). The critical mass Mc is defined implicitly via the simultaneous vanishing of

fprspMcq,Mcq � 0 and f 1prspMcq,Mcq � 0 (here a prime denotes a derivative with respect

to the first argument). Using the solution rspMq of (4.25), we conclude that

pd� 3qGprc,Mcq � rcG1prc,Mcq , (4.45)

rc � rspMcq , (4.46)
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which serves as a definition for Mc. The classical limit is achieved for Mc Ñ 0. If Gprq
is a monotonically increasing function of r, we have rBrGprq ¥ 0. Then, away from the

classical limit, there exists a unique solution Mc ¡ 0 to (4.45). Consequently, the critical

mass Mc is related to the fundamental Planck scale MD as

Mc � ζc
cd
MD . (4.47)

The coefficient ζc accounts for the renormalisation group improvement of the black hole

metric, and hence encodes the RG effects. In the approximation (4.11), (4.14), it reads

ζc �
�
ω̃

Ωc


 d�3
d�2

(4.48)

where ω̃ � ωpξ{cγqd�2. The link between the RG parameters and the critical mass in units

of the fundamental Planck mass Mc{MD is displayed in Fig. 4.5. The location and the

number of the horizons depends explicitly on the value of Ω, which becomes

Ω � Ωc

�
Mc

M


 d�2
d�3

(4.49)

in terms of Mc, see (4.31). Therefore, below, we display our results in terms of Mc. We

return to the discussion of Mc in Sec. 4.3.6.

4.3.3 Horizons revisited

Next, we return to the quantitative analysis of improved metrics and present our numerical

results for the improved Schwarzschild radius.

Figs. 4.6 4.8 show how the Schwarzschild radius rs depends on the mass of the black

hole M in various dimensions using (4.18). In these plots we considered the scenario where

the critical mass Mc is equal to the Planck mass MD. The suppression is less pronounced

with increasing dimension (Fig. 4.6). Also, the deviation from classical behaviour sets in

at lower masses in lower dimensions, see Fig. 4.7. Next we consider varying the value

of Mc in units of MD while keeping the dimensionality fixed, see Fig. 4.8. The dashed

curve corresponds to the classical result. Depending on Mc, quantum corrected curves

start deviating visibly as soon as the black hole mass is only a few Mc or lower. At fixed

M{MD, the deviation from classical behaviour sets in earlier for larger Mc.

The horizon is slightly sensitive to the distance function (4.12), or equivalently, to the

parameter γ. Here, γ parametrises how rapidly Gprq weakens in the cross-over regime at

scales r � rcl. This can be seen from Fig 4.3. In the decoupling limit γ Ñ8, the critical

radius xc Ñ 1 reaches the classical value. In this limit, gravity is switched off below rcl,
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Figure 4.5: Map between the renormalisation group parameter ω̃, the critical mass Mc,

and the Planck mass MD, based on (4.11) and (4.18) for various dimensions. From top to

bottom: d � 4, 5, � � � , 10.

implying that the Schwarzschild radius remains unchanged. For γ � 1, instead, the outer

horizon x� decreases rapidly as Ω increases towards Ωc.

In conclusion, the quantitative reduction of rs{rcl by quantum effects can be associated

to the behaviour of the running coupling Gprq and its decrease rG1prq at length scales set

by the horizon r � rs. This decrease, in turn, can be understood via the parameter γ

which controls how quickly quantum effects are turned on as r{rcl becomes small. For

all matchings kprq91{Dprq discussed in section 4.2.3, and for dimensionality d ¥ 4, the

same qualitative behaviour is observed. In particular the RG improvement indicates that

quantum black holes display a lower bound (4.47) of the order of the Planck scale.

4.3.4 Perturbation theory

In the limit MD{M ! 1, quantum corrections become perturbative and we can perform a

large mass expansion. In particular, for asymptotically heavy black holes we find x� Ñ 1,

as can be seen in Fig. 4.8 where rs approaches its classical value for large M and the

dimensionless inner horizon x� Ñ 0 in the large-mass limit. We note that the parameter

Ω scales as � M� d�2
d�3 . Hence a large mass expansion corresponds to an expansion in
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Ω ! 1. In general, and independently of the RG running and the matching, we find

x� �
8̧

n�0

a�n Ωn (4.50)

with dimensionless coefficients an, where a�0 � 1 and a�0 � 0. The expansion converges

rapidly, see Fig. 4.9. Explicitly, the first few coefficients read

x� � 1� 1
d� 3

Ω� d� 2
2pd� 3q2 Ω2

�pd� 1qpd� 2q
3pd� 3q3 Ω3 �OpΩ4q (4.51)

x� �Ω� Ωd�2 � pd� 2qΩp2d�5q � � � � (4.52)

using the matching (4.18) and (4.33). The leading order quantum effects modify the

Schwarzschild radius rs � x� rcl and the Cauchy horizon rw � x� rcl as

rs � rcl � c
1
d�3

d

Ωc

d� 3

�
Mc

MD


 d�2
d�3 1

M
� subleading , (4.53)

rw � c
1
d�3

d Ωc

�
Mc

MD


 d�2
d�3 1

M
� subleading. (4.54)

Thus, in the limit MD{M Ñ 0 we confirm rs Ñ rcl and rw Ñ 0, as expected.
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dashed curves the respective classical result. Mc �MD and d � 5, 6, � � � 10, from top right

to left.

Interestingly the inner horizon behaves differently if we employ the non-linear matching

(4.20). To that end, we again solve the horizon condition, now given by (4.41), and expand

in Ω ! 1 to find x� and x� to leading order in Ω,

x� � 1� p1� εdqα�d�2

d� 3
Ω� subleading (4.55)

x� �Ω
1

3�d�α � subleading (4.56)

where α and εd are given by (4.38) and (4.21). We note that if we take α � d � 2 we

recover (4.51) and (4.52). In the non-linear case the outer horizon rs has a large mass

expansion similar to (4.53), whereas the inner horizon has a large mass expansion whose

leading term is proportional to a positive power of the mass,

rs � rcl � c
1
d�3

d

Ωcp1� εdqα�d�2

d� 3

�
Mc

MD


 d�2
d�3 1

M
(4.57)

rw � 1
MD

�
cdMcΩc

MD


ρ0 �cdM
MD


ρ1
(4.58)

plus terms subleading in M . We have introduced ρ0 � d�2
pd�3qpα�3�dq , ρ1 � 5�2d�α

pd�3qpα�3�dq
and ρ1 � ρ2 � 1

d�3 . For d � 4, ρ1 � 0 for d ¡ 4 we find 1 ¡ ρ1 ¡ 0. This implies

that in the limit M Ñ 8 the Cauchy horizon rw will approach a constant for d � 4.
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Figure 4.8: Dependence of the renormalisation group improved Schwarzschild radius

rspMq on critical mass Mc. End points of curves denote the critical radius rc and dashed

curves the respective classical result. Mc{MD � 0.1, 0.5, 1, 5, 10, 50, from top right to left.

The black line with no end point is the classical Schwarzschild radius. In d � 7 space-time

dimensions.

In higher dimensions d ¡ 4, rw will increase with mass as rw � Mρ1 , whereas the ratio

rw{rs �M2�d Ñ 0 in the large mass limit.

4.3.5 Threshold effects

The RG improved black hole displays an interesting threshold behaviour in the vicinity of

M Ñ Mc. This can be understood as follows. Suppose we read (4.24) as a function of r

and M , fpr,Mq, and perform a Taylor expansion in both variables. The outcome is then

evaluated at the horizon r � rspMq where fprspMq,Mq � 0. Independently of the chosen

expansion point pr0,M0q with r0 � rspM0q, we find

0�
¸
n�1

�
1
n!
pM �M0qn B

nf

BMn
� 1
n!
pr � r0qn B

nf

Brn
�

at the horizon. Note that the derivatives are evaluated at pr,Mq � pr0,M0q. If the RG

running of G is M -independent, the expansion has only a linear term in pM �M0q. At

threshold where r0 � rc, we furthermore have Bf{Br|rc � 0. In addition, Bf{BM |0 is

always non-zero. Therefore, close to M �Mc, fprpMq,Mq � 0 can only be satisfied if

rspMq � rc �
a
M �Mc , (4.59)
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(a) Perturbative approximation of the horizon.
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Figure 4.9: Location of the event horizon x�pΩq � rs{rcl as a function of the parameter

Ω in d � 8 (thick line) within various approximations (thin lines). (a) Perturbative

expansion about Ω � 0 using (4.50) at order n � 1, 2, � � � , 20, approaching the exact

solution adiabatically (from top to bottom). (b) Threshold expansion about the critical

point Ω � Ωc using (4.61) at order n � 1, 2, � � � , 9, alternating towards the full solution.

provided that B2f{Br2|rc � 0. More generally, if the first non-vanishing derivative Bnf{Brn|rc
occurs at order n, the threshold behaviour (4.59) becomes

rspMq � rc � n
a
M �Mc . (4.60)

The generic case encountered in this chapter, for all RG runnings employed, is n � 2.

Consequently, at threshold, we have the expansions

x� �
8̧

n�1

b�n

�
M

Mc
� 1


n{2
(4.61)

with dimensionless coefficients b�n . This is equivalent to an expansion in powers of
?

Ωc � Ω.

This expansion converges rapidly as can be seen from Fig. 4.9, where the first few terms

(up to n � 6) are enough to match the full solution even for small Ω.

Explicitly, using the matching (4.18), the behaviour (4.59) reads to leading order

rspMq � rc � pcdG0Mcq1{pd�3qb
1
2pd� 3qMc

a
M �Mc . (4.62)

In the light of the above, the dependence of the horizon radius on the black hole mass

can easily be understood, see Fig. 4.6. For large black hole mass M " Mc, Brf is non-

vanishing at fprsq � 0, implying that the linear terms in (4.59) have to cancel. This leads

to the very soft dependence of rs{rcl on Mc{M for large M . With decreasing M , Brf is

decreasing as well, thereby increasing the admixture from pr�r0q2 corrections. The latter

fully take over in the limit M Ñ Mc, leading to non-analytical behaviour (4.59) which is

nicely seen in Fig. 4.6. We stress that this structure is independent of the dimension as

long as d ¡ 3.
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4.3.6 Renormalisation and the Planck scale

We summarise the results. The main physics of this chapter originates from a new mass

scale Mc, which is absent in the classical theory. Its existence is due to quantum gravity

corrections, implemented on the level of the metric.

For black hole mass M large compared to Mc, renormalisation group corrections to

the metric are small. The gravitational force remains strong enough to allow for black

holes. Improved black hole metrics display horizons of the order of the classical horizon,

the specific heat stays negative and the temperature scale inversely proportional to mass,

modulo small quantum corrections. This is the semi-classical regime of the theory.

Once the mass M approaches Mc, we observe the transition from strong to weak

gravity. In its vicinity, renormalisation effects become of order one, the reduction of

the event horizon becomes more pronounced, the specific heat has become positive and

the thermodynamical properties are no longer semi-classical. This is the Planckian (or

quantum) regime of the theory.

When M drops below Mc, renormalisation group corrections to the metric have become

strong. The gravitational force has weakened significantly, to the point that improved

black hole space-times no longer display a horizon. This is the deep UV scaling regime of

the theory. The improved metric differs qualitatively from the classical one. Hence, the

applicability of our renormalisation group improvement becomes doubtful, and conclusions

from this regime have to be taken with care.

If the renormalisation effects of the black hole space-time are parametrically strong,

ω̃ " 1, the scale Mc grows large, and parametrically larger than the Planck scale MD. In

turn, for weak renormalisation ω̃ ! 1, the scale Mc remains small as well. We note that

Mc vanishes in the classical limit where quantum corrections are switched off. The reason

for this is that the Schwarzschild solution of classical general relativity does not predict its

own limit of validity under quantum corrections. Interestingly, the underlying fixed point

is not primarily responsible for the existence of the lower bound Mc. Other ultraviolet

completions of gravity such as string theory, loop quantum gravity or non-commutative

geometry can lead a similar weakening of the gravitational force at length scales of the

order of the Planck length.

To conclude, the improved metric changes qualitatively at M � Mc. Therefore it is

tempting to interpret Mc as a ‘renormalised’ Planck scale. Its numerical value depends on

the precise renormalisation group running. As long as the latter is driven by the gravita-

tional self-coupling only, it is natural to have Mc of the order of MD. This may be different
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once strong renormalisation effects are induced by external mechanisms, eg. through the

coupling to a large number of matter fields.

4.4 Space-time structure and Penrose diagram

In this section, we study the implications of quantum gravitational effects on the space-

time structure of black holes, including a discussion of critical black holes, an analogy

with Reissner-Nordström black holes, an interpretation in terms of an effective energy

momentum tensor, the (absence of) curvature singularities at the origin, and the causality

structure and Penrose diagram of quantum black holes.

4.4.1 Critical black holes

The space-time structure of a critical black hole with mass M � Mc has a single horizon

at rc � rcl xc and x� � x� � xc where the function fpxq has a double zero fpxcq � 0.

For the matching (4.18) xc is given explicitly by (4.36). The near-horizon geometry of a

critical black hole is obtained by expanding fpxq around x � xc. We find

fpxq � 1
2
x̄2 f2pxc,Ωcq (4.63)

where x̄ � x� xc and the double prime represents a second derivative with respect to x.

Therefore, we can write the line element in terms of the coordinate r̄ � r � rc as

ds2 �� r̄2

r2
AdS

dt2 � r2
AdS

r̄2
dr2 � r2

c dΩ̄2
d�2 (4.64)

The metric (4.64) is the product of a two-dimensional anti-de Sitter space with a pd� 2q-
sphere, AdS2 � Sd�2, and depends on their respective radii

rAdS � pcdG0MAdSq1{pd�3q (4.65)

rc � xc pcdG0Mcq1{pd�3q (4.66)

The curvature of the anti-de Sitter part is determined by the mass parameter MAdS,

MAdS �Mc

�
1
2
f2pxc,Ωcq


� 1
2
pd�3q

. (4.67)

Using (4.18) for d � 4 we have MAdS � 1?
2
Mc. For higher dimensions d � 6, 8, 10 we find

MAdS{Mc � 0.14, 0.017, 0.0016, respectively. For all dimensions, we have MAdS  Mc. We

note that the metric (4.64) is of the form of a Robinson-Bertotti metric for a constant

electric field.
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4.4.2 Reissner-Nordström-type metrics

It is interesting to compare the RG improved black hole with the well-known Reissner-

Nordström solution of a charged black hole in higher dimensions [130]. The latter is defined

via the lapse function

fRNprq � 1� cdG0M

rd�3
� G0e

2

r2pd�3q (4.68)

where e2 denotes the charge of the black hole (squared). The charge has the mass dimen-

sion re2s � 4� d. The physics of the Reissner-Nordström black hole is best understood in

terms of the dimensionless parameter

ΩRN � e2

c2
dG0M2

(4.69)

which measures the relative strength of the competing terms on the rhs of (4.68). In terms

of (4.69) and using x � r{rcl , the lapse function becomes

fRNpxq � 1� 1
xd�3

� ΩRN

x2d�6
. (4.70)

For ΩRN ¡ 1
4 the spacetime has no horizons and exhibits a naked singularity. For ΩRN   1

4

the space-time displays two horizons, whereas for ΩRN � 1
4 the black hole displays a

single horizon. Therefore ΩRN � 1
4 is referred to as a extremal black hole with critical

mass MRN,c � 2c�1
d

a
e2{G0. The radius of the extremal black hole is given by rRN,c �

2�1{pd�3q rcl.

Reissner-Nordström space-times share some of the qualitative features of RG improved

higher dimensional black holes discussed in this chapter. If we consider a quantum black

hole using the matching (4.18) and expand the lapse function to leading order in Ω, we

find

fLOpxq � 1� 1
xd�3

� Ω
x2d�5

� subleading . (4.71)

In either case (4.70) and (4.71), the relevant physics originates from competing effects: a

leading order Schwarzschild term �1{rd�3, which is counterbalanced by either the charge,

parametrised by ΩRN � e2, or by quantum corrections due to a running gravitational

coupling, parametrised by Ω � ω̃. The correction terms become quantitatively dominant

with decreasing r Ñ 0. We note that (4.70) and (4.71) are formally equal for ΩRN � Ωx.

In either case, in the large mass limit M Ñ 8 we find an outer horizon fpx�q � 0 for

x � 1. It follows that the near horizon geometry of a quantum black hole is approximately

that of a Reissner-Nordström black hole of charge e2 � ω̃ rd�4
cl , and in the large mass limit.
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Next we consider the near horizon geometry of an extremal Reissner-Nordström black

hole, which is of the AdS2 � Sd�2 type. The line element is given by (4.64) where

rc �
�

1
2cdG0MRN,c

�1{pd�3q (4.72)

MAdS �MRN,c

�
1
2f

2
RN pxc,Ωcq

��pd�3q{2
. (4.73)

For d � 4 we find MAdS � 1
2MRN,c. For higher dimensions d � 6, 8 and 10, we obtain

MAdS{MRN,c � 0.02, 0.0002 and 6 � 10�7, respectively. The decreasing of MAdS{MRN,c

with dimension is similar to the decreasing of MAdS{Mc for the critical black hole (4.67).

4.4.3 Effective energy-momentum tensor

In this chapter we have obtained our results by replacing the classical value of Newton’s

constantG0 with a running constantGprq. It is interesting to ask whether this modification

could have arisen from an explicit source term, the energy-momentum tensor, for Einstein’s

equations. The answer is affirmative, and obtained by inserting the RG improved metric

into the left hand side of the Einstein equations Gµν � 8πG0 T
µν . The non-vanishing

components are the diagonal ones Tµν � diagp�ρ, pr, pK, .., pKq, given by

ρ � �pr � G1prqM
Sd�2G0 rd�2

(4.74)

pK � � G2prqM
pd� 2qSd�2G0rd�3

(4.75)

where Sd�2 � 2πpd�1q{2{Γppd� 1q{2q. Integrating the energy density ρ over a volume of

radius r one finds the effective energy within that radius,

Eprq � Sd�2

» r
0
dr1ρpr1qr1d�2 � GprqM

G0
, (4.76)

where we assume Gprq obeys the limits Gprq Ñ 0 for r Ñ 0 and G Ñ G0 for r Ñ 8.

As such we note that Ep8q � M the physical mass. We also make the observation that

replacing GprqM Ñ G0Eprq leaves the metric invariant.

4.4.4 Absence of curvature singularities

In this section, we discuss the r Ñ 0 limit of asymptotically safe black holes and the

absence of curvature singularities. Classical Schwarzschild solutions display a coordinate

singularity at r � rcl where fprq�1 Ñ 8. Curvature invariants remain well-defined and

finite at the horizon, which shows that the singularity is only an apparent one.

A curvature singularity in the classical metric is found at r Ñ 0, where fprq Ñ �8 and

the Ricci scalar diverges as R � r1�d. This curvature singularity implies the break-down



94

of classical physics at the centre of a black hole. It is expected that quantum fluctuations

should lead to a less singular or finite behaviour as r Ñ 0.

Within the renormalisation group set-up studied here, the main new input is the

anti-screening of the gravitational coupling. Consequently, Gprq{GN becomes very small,

thereby modifying the r Ñ 0 limit. For small r{rcl ! 1, we have

fprq � 1� pµ rqσ � subleading (4.77)

where the mass scale µ and the parameter σ are fixed by the renormalisation group and the

matching condition discussed in Sec. 4.2. We note that a value of σ � 2 would correspond

to a de Sitter core with cosmological constant

ΛdS � 1
2
pd� 1qpd� 2qµ2 . (4.78)

More generally, the value of σ depends on the detailed short distance behaviour. We find

σir � 1 using (4.18) for all values of d ¥ 4, and σuv � 1
2pd2 � 5d � 8q using (4.19). For

d ¥ 4 the latter takes values σuv ¥ 2. In contrast to this, the classical solution displays

σcl � 3 � d. Using the matching (4.14) with parameter γ we have σ � γpd � 2q � d � 3.

Consequently, a de Sitter core is achieved for

γdS � pd� 1q{pd� 2q (4.79)

in the limit r Ñ 0.

Next, we calculate the Ricci scalar, the Riemann tensor squared and the Weyl tensor

squared in the limit r Ñ 0, using (4.77). The results are

R� FR � pµ rqσ�2 µ2

RµνκλRµνκλ � FRiem � pµ rq2σ�4 µ4

CµνκλCµνκλ � FC � pµ rq2σ�4 µ4 (4.80)

modulo subleading corrections. The coefficients are

FR � pσ � d� 2qpσ � d� 3q
FRiem � σ4 � 2σ3 � p2d� 3qσ2 � 2pd� 2qpd� 3q
FC � d� 3

d� 1
pσ � 1q2pσ � 2q2 (4.81)

Clearly, the curvature singularity is absent as soon as σ ¥ 2, which in general is achieved for

the matchings employed here including (4.19). For the matching (4.18), however, we have

σ � 1 and conclude that in this case the remaining curvature singularity reads R � 1
r . This
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is still a significant reduction in comparison with the behaviour � r1�d within the classical

Schwarzschild solution, and indicates that the weakening of gravitational interactions leads

to a better short distance behaviour.

The Riemann-squared coefficient is non-zero for all values of σ when d ¥ 4. The Weyl-

squared term has the same r-dependence as the Riemann -squared term, but its coefficient

vanishes for both σ � 1 and σ � 2. Hence, there is no choice for σ which makes all three

coefficients vanishing.

We are lead to the following conclusions. Regularity of an asymptotically safe black

hole requires σ ¥ 2. The RG study indicates that the behaviour for the physical theory

lies in between the limits set by σir ¤ σphys ¤ σuv. It is tempting to speculate that

the physical value would read σ � 2 corresponding to a de Sitter core with positive

cosmological constant set by (4.78). A distance function with effective index γ ¥ γdS

together with a momentum-scale RG for Newton’s coupling provides for a singularity-free

metric for all r. This is a very mild constraint on the RG running, as γdS P r1, 3
2 s is very

close to γir � 1 for all d ¥ 4.

Finally we can offer an interpretation of the weakening of singularities from the per-

spective that the scale k corresponds to the resolution scale of a microscope. More pre-

cisely we wish to assess whether actual measurable quantities diverge if they do this would

seem to counter the claim that no unphysical divergencies occur in asymptotic safety.

We can interpret k as the smallest scale that we can observe or 1{k as the wavelength

of a test particle that probes the geometry. Then, provided that the dimensionless ratio

of the curvature invariants (4.81) measured in units of k does not diverge, the radius of

curvature will still be larger than the wave-length of the test particle, even in the limit

k Ñ 8. If the dimensionless invariants go to zero it implies that the space-time appears

flat when observed at wavelengths 1{k. This is similar to how a smooth manifold should

appear locally flat. If the ratio goes to a constant this implies that the space-time looks

self-similar on scales as k Ñ8 since as the wavelength is decreased the radius of curvature

also seems to decrease at the same rate. If however the dimensionless curvature invariants

diverge this implies that the curvature relative to the wavelength diverges and we have an

unphysical singularity. Considering the dimensionless scalar curvature we have

R̃ � R{k2 � rσ�2kprq�2 (4.82)

In the limit r Ñ 0 For the scale identification (4.14) with parameter γ the scale k diverges

for γ ¡ 0 as we take r Ñ 0. Then we have R̃ � rγd�d�1 which implies that for γ ¡ d�1
d

the dimensionless curvature goes to zero as k Ñ 8. For γ � d�1
d the dimensionless ratio
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reaches a fixed value in the UV and for γ   d�1
d the unphysical divergency remains. We

conclude that provided γ ¥ d�1
d no unphysical divergencies appear. This is the case for

all physically motivated values of γ and hence we can confirm the absence of unphysical

behaviour at the centre of the RG improved black hole space-time.

4.4.5 Kruskal-Szekeres coordinates

In this section we introduce Kruskal-Szekeres coordinates which remove the coordinate

singularities at the horizons. This is the first step towards a discussion of the causal

structure of asymptotically safe black holes and their Penrose diagrams.

Here we consider the case where M ¡ Mc such that the space-time has two horizons;

the outer horizon rs � rcl x� and the Cauchy horizon rw � rcl x�. For simplicity we will

consider the linear matching (4.18) where the lapse function is given by (4.32) such that

α � d�2. The horizons are found by the real positive roots of (4.33). In general there will

be exactly α � d�2, possibly complex, roots. In the regime of interest where 0   Ω   Ωc,

we have always two real positive roots x�. In even or odd dimensions, we additionally

find pd� 4q{2 pairs of complex conjugate roots, or a real negative root and pd� 5q{2 pairs

of complex conjugate roots, respectively. Therefore, we decompose

∆� xα � Ω� x

� px� x�qpx� x�q
α�2¹
i�1

px� ziq. (4.83)

into the two real roots x� ¡ 0 and the remaining d�4 roots zi. In terms of these, we have

Ω � p�1qα x� x�
α�2¹
i�1

zi . (4.84)

We express the line element in terms of the roots and the dimensionless radial coordinate

x

ds2 � � ∆
xα � Ω

dt2 � xα � Ω
∆

dr2 � r2 dΩ̄2
d�2 . (4.85)

Next we express the line element in terms of Kruskal-Szekeres type coordinates to re-

move the coordinate singularities. We will follow the method as outlined in [184] for

a Reissner-Nordström black hole with two horizons. First we define the dimensionless

tortoise coordinate

dx� � xα � Ω
∆

dx (4.86)

It is then clear that radial null geodesics correspond to t{rcl � �x�. Performing the
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integral we find

x� � x� 1
2κ�

lnp|x� x�|q � 1
2κ�

lnp|x� x�|q

�
α�2̧

i�1

1
2κi

lnppx� ziqq � constant (4.87)

κi �
pzi � x�qpzi � x�q

±α�2
j�i pzi � zjq

2zi
(4.88)

κ� �
px� � x�q

±α�2
j�1 px� � zjq

2x�
(4.89)

κ� �
px� � x�q

±α�2
j�1 px� � zjq

2x�
(4.90)

We now introduce advanced and retarded time coordinates given by

v � x� � w (4.91)

u � x� � w (4.92)

where w is the dimensionless time w � t{rcl. We then define the coordinates

V � � eκ� v (4.93)

U� � �eκ� u (4.94)

These are the KS-type coordinates for quantum black holes. The product

U�V � � �e2κ�x� (4.95)

is a constant for any given radius x. In terms of the coordinates U� and V � the line

element becomes

ds2 ��
�
rcl

κ�


2

e�2κ� x� ∆
xα � Ω

dU�dV �

� r2 dΩ̄2
d�2 (4.96)

Inserting x� given by (4.87) we find

ds2 ��r2
cl F�pxq dU� dV � � r2 dΩ̄2

d�2 (4.97)

F� � e�κ�x

xα � Ω
κ�2
� px� x�q
px� x�q

κ�
κ�

α�2¹
i�1

x� zi

px� ziq
κ�
κi

. (4.98)

The singularity in the x� coordinate has been removed and the metric covers regions

of space time for x ¡ x�. There remains a singularity at x � x�, and, therefore, the

metric does not cover the region x ¤ x�. Instead we use the coordinates U� and V � in
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terms of which the line element is given by

ds2 ��r2
cl F�pxq dU� dV � � r2 dΩ̄2

d�2 (4.99)

F� � e�κ�x

xα � Ω
κ�2
� px� x�q
px� � xq

κ�
κ�

α�2¹
i�1

x� zi

px� ziq
κ�
κi

. (4.100)

Hence the singularity at x � x� is removed in these coordinates and the metric is well

defined in the region x   x�. The singularity at x � x� remains in this parametrisation

and does not cover the region x ¡ x�. The coordinates (4.93) are defined such that for

ingoing null rays V � � constant and for outgoing null rays U� � constant.

4.4.6 Causality and Penrose diagram

The global structure of the black hole can be represented by a Penrose diagram. To

produce the diagram we make an analytical continuation of the KS-type coordinates and

then map them to a finite interval

V � Ñ tanhpV �q (4.101)

U� Ñ tanhpU�q. (4.102)

The resulting Penrose diagram is shown in Fig. 4.10. The causal structure can be un-

derstood by noting that null geodesics are always at 45o such that ingoing photons point

“north-west” and outgoing photons point “north-east”. Regions I, II and III correspond

to x ¡ x�, x�   x   x� and x   x�, respectively, where x� denotes the outer horizon

and x� the inner Cauchy horizon in units of rcl. The other regions are the analytical

continuations; in particular regions IV and V correspond to x�   x   x� and x ¡ x�.

Surfaces of constant r in region II (x�   x   x�) are trapped surfaces such that all null

geodesics move towards the inner horizon. On the other hand region IV defines a white

hole where all null geodesics point towards r�.

To get an idea of the causal structure experienced by an in-falling observer we follow the

standard procedure of considering a radially moving test particle as was done in the d � 4

case [27]. We define the dimensionless proper time of the radial particle dτ2 � ds2{r2
cl. A

constant of motion ζ is defined by the Killing vector equation corresponding to the time

independent nature of the metric,

ζ � fpxqdw
dτ

. (4.103)
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Figure 4.10: The Penrose diagram of a quantum black hole with M ¡ Mc. The black

curves in regions I and V are curves of constant t. The green (blue) [red] curves are curves

of constant r in region I and V (II and IV) [III], respectively. In- and outgoing radial

null geodesics are at 45o. Curves 1., 3. and 4. correspond to schematic plots of various

solutions to the equations of motion. The points i0, i� and i� denote spatial infinity,

future infinity and past infinity, respectively. J � and J � denote past and future null

infinity (see text).

From the form of the metric (4.1) the equations of motion for the test particle can then

be given in terms of ζ:

9x2 � ζ2 � fpxq (4.104)

(dots denote derivatives with respect to proper time τ .) We define a Newtonian-like

potential, Φpxq � 1
2pfpxq � 1q, to write an equation for the proper acceleration of the test
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particle

:x � �BΦpxq
Bx . (4.105)

This equation can be checked by differentiating (4.104) with respect to τ . For the linear

matching (4.18) the proper acceleration is given by,

:x � �1
2
pd� 3qxd�2 � Ω
pxd�2 � Ωq2 . (4.106)

From (4.104) write down an “energy” equation:

E � ζ2 � 1
2

� 1
2
9x2 � Φpxq (4.107)

For different values of E we analyse various solutions to the equations of motion for radially

moving test particles. The potential takes its maximum value Φmax � 0 at r � 0,8 and,

for M ¡ Mc, its minimum value will be Φmin   �1
2 . The different solutions discussed

below are shown as curves in Fig. 4.10.

1. For E � 0 the particle has zero velocity at r � 0 and r � 8. For the linear matching

the particle will start in region I with a non-zero velocity and cross the horizons into

regions II and III in a finite proper time. The particle will then reach the centre of

the black hole where it feels a repulsive force with a strength of 1{p2rsΩq. This force

will bounce the particle back into regions IV and V where it will escape to infinity.

2. For E ¡ 0 the motion of the particle will be unbounded since it has a non-zero

velocity at all points in space-time. Starting from region I the particle will again

move to the centre of the black hole crossing both horizons in a finite time τ . But

at r � 0 the particles energy will be enough to overcome the repulsive force and will

pass through the centre of the black hole into regions IV and V where it will escape

to infinity.

3. For �0.5   E   0 the particle starts with zero velocity in region I and continues to

move into regions II and then into III where it has an inflection at r ¡ 0. Here the

particle is bounced into regions IV and V. In region V it has a second inflection point

at a radius equal to it’s initial position in region I. The particle’s motion is therefore

bounded moving in and out of the black hole into different regions of space-time.

4. For Φmin   E   �0.5 the particle’s motion is bound to region II in which it has two

inflection points which it moves between eternally.

It is interesting that even though the curvature invariants diverge at r � 0 it is still

possible that particle trajectories either avoid this point or can be continued over it. This
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hints that processes that probe the inner region of the black hole where, the potential is

repulsive, may not lead to bound states. This could have implications for trans-Planckian

scattering within asymptotic safety. For example white holes corresponding to matter

moving from region III through region IV to region V could be possible. White holes

are nothing but the time reversal of gravitational collapse resulting in a black hole and

therefore the finial state would just be free matter at infinity. In classical general relativity

white holes are unphysical since we cannot continue the equations of motion into the past

beyond the singularity. Here however it may be possible to continue the solutions over the

singularities or even avoid them all together.

The causal structures, taking into account the time-dependent evaporation effects of

asymptotically safe black holes in four dimensions has been considered in [31]. In chapter 5

we will see that, as is the case here, the causal structure in higher dimensions in qualitat-

ively the same as in four dimensions .

4.4.7 Role of space-time dimensionality

It is interesting to summarise our results in view of their dependence on the space-time

dimensionality, and to compare with earlier findings in four dimensions by Bonanno and

Reuter [27, 31].

In [27, 31], RG improved black holes in four dimensions have been analysed using the

explicit RG running (4.13) using (4.18), (4.16) and interpolations thereof, leading to the

existence of a smallest black hole whose mass Mc is determined by the RG parameter

ω. We have added to this the following results. (i) Without specifying the explicit RG

running of Newton’s coupling we have established that quantum gravity corrections imply

the existence of a smallest black hole with critical mass Mc, as long as the short distance

behaviour is governed by a fixed point, see (4.45). (ii) Quantitatively, this result is largely

independent of the details of the scale matching for k � kprq, which is established using the

general class of matching conditions (4.15), and provided the short distance index satisfies

the bound γ ¥ γc which holds for all physically motivated choices see (4.23). (iii) Most

importantly, we have shown that this pattern holds true for general dimension. In hind-

sight, the reason for this is that in fixed point gravity the graviton anomalous dimension

becomes increasingly large with increasing space-time dimensionality. Because of (4.45),

the RG running of Newton’s coupling can successfully suppress the small-r singularity

induced by potential term in fprq. (iv) For general space-time dimension, the curvature

singularity of the RG improved black hole is either absent or significantly reduced, com-
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pared to the classical singularity. Geodesics of the RG improved black hole space-time, for

all dimensions considered, do not terminate at the curvature singularity unlike those of

classical d-dimensional Schwarzschild black holes. This result highlights that the reduction

(or absence) of curvature singularities as implied here leads to a qualitative change of the

space-time structure as opposed to the classical Schwarzschild black hole, for all dimen-

sions. Finally, (v) the non-analytic threshold behaviour of low-mass black holes (4.59) for

small M �Mc is universal with

rspMq � rspMcq 9
a
M �Mc

and independent of the dimensionality.

In summary, we have established that the space-time dimensionality has only a small

quantitative impact on the structure of RG improved black holes on all accounts addressed

here. An underlying RG fixed point implies a smallest black hole whose mass Mc is

determined by the RG equations for gravity. Quantitatively, the main difference with

increasing dimension is that the cross-over from perturbative to fixed point scaling happens

in a narrower momentum-scale window.

4.5 Black hole production

In this section, we apply our results to the production of mini-black holes in higher-

dimensional particle physics models of TeV scale quantum gravity.

4.5.1 Large extra dimensions

The scenario of large extra dimensions assumes that gravity propagates in d � 4 � n

dimensions, whereas matter fields are confined to a four-dimensional brane [8, 7]. The

n extra dimensions are compactified with compactification radius L. For simplicity, we

assume that all radii are of the same order of magnitude, which can be relaxed if required.

The presence of extra dimensions allows for a fundamental d-dimensional Planck scale

MD of the order of the electroweak scale � 1TeV. The relationship between the effective

4-dimensional Planck scale MPl and the d-dimensional Planck scale is given by

M2
Pl �M2

DpMD Lqn . (4.108)

Furthermore, we require the scale-separation MD L " 1 to achieve a low fundamental

quantum gravity scale. This implies that the length scale L at which the extra dimensions
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become visible is much larger than the fundamental length scale 1{MD at which the

quantum gravity effects become important. Consequently, at energy scales E � MD,

the full d-dimensional space-time is accessible to gravity, and our previous findings are

applicable.

4.5.2 Production cross section

Here, we apply our results to the production cross section for mini-black holes at particle

colliders. In these models, the elastic black hole production cross section for parton-parton

scattering at trans-Planckian center-of-mass energies
?
s "MD is semi-classical, provided

curvature effects are small [52, 79, 11, 93, 57]. Then, on the parton level, the geometric

cross section reads

σ̂clpsq � π r2
clpM � ?

sq θp?s�Mminq , (4.109)

with the physical mass replaced by the center-of-mass energy
?
s. There are formation

factor corrections to (4.109) which have been identified in the literature, taking into ac-

count inefficiencies in the production process (see [96, 190, 78] for reviews). Those have

not been written out explicitly as they are irrelevant to our reasoning. For phenomenolo-

gical applications, it is often assumed that the minimal mass Mmin is of the order of a few

MD, limiting the regime where the semi-classical theory is applicable.

Our study adds two elements to the picture. The first one relates to the threshold

mass, indicating that Mmin may in fact be lower, possibly as low as the renormalised

Planck mass

Mmin �Mc . (4.110)

This is a direct consequence of the RG running of the gravitational coupling, with Mc

relating to the critical physical mass (defined as in (4.3)), thereby marking a strict lower

limit for the present scenario. Consequently, the RG improved set-up has a larger domain

of validity due to the weakening of gravity at shorter distances, equally reflected in the

boundedness of the associated Bekenstein-Hawking temperature, see chapter. 5.

The second modification takes the quantum gravity-induced reduction of the event

horizon into account, replacing rcl by rs in (4.109). This can be written in terms of a form

factor, replacing (4.109) by σ̂ � σ̂cl � F p
?
sq with

F p?sq �
�
rs
rcl


2
�����
M�?s

, (4.111)

see Fig. 4.11. We conclude that the RG improved production cross section is reduced

with respect to the semi-classical one, already in the regime where the semi-classical
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Figure 4.11: The gravitational form factor F p?sq with parameter γ � γdS with n � 4

extra dimensions.

approximation is applicable, see Fig. 4.11. The quantitative impact of these effects on

mini-black holes production at colliders, eg. the LHC, is evaluated in [64].

4.5.3 Trans-Planckian region

Next, we implement our RG improvement directly on the level of the classical Schwarz-

schild radius rather than on the level of the underlying black hole metric. To that end,

we interpret the energy dependence of the form factor in the production cross section as

originating from an effective energy dependence of Newton’s coupling. The latter enters

the classical event horizon as

rclp
?
sq � 1?

π

�
8 Γpd�1

2 q
d� 2

� 1
d�3 �

GN
?
s
� 1
d�3 (4.112)

where the substitution Mphys �
?
s has already been executed. Under the assumption that

the functional dependence of (4.112) on the gravitational coupling GN remains unchanged

once quantum corrections are taken into account, we can interpret the non-trivial energy-

dependence of rsp
?
sq to originate from (4.112) via the energy-dependence of Newton’s

coupling. Substituting GN Ø Gp?sq, we find

Gp?sq � GN
�
F p?sq� d�3

2 . (4.113)
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Using the non-perturbative form factor F p?sq, we conclude thatGp?sq displays a threshold

behaviour, starting off at the black hole formation threshold
?
s � Mc, and increasing

asymptotically towards GN with increasing
?
s. Trans-Planckian scattering in gravity be-

comes classical: Gp?sq approaches GN with increasing center-of-mass energy
?
s " MD

and the production cross section reduces to the geometrical one. This is a consequence of

quantum corrections being suppressed for large black hole mass, see Sec. 4.3.4, and thus

for large
?
s.

With these results at hand, we can now turn the argument around and identify the

matching k � kp?sq which reproduces (4.113) from the renormalisation group running of

Gpkq. To leading order in MD{
?
s ! 1, the matching

GN Ñ Gpkq with k9MD

�
MD?
s


1{pd�3q
(4.114)

in (4.112) — together with Gpkq from the renormalisation group, see Sec. 4.2.2 — repro-

duces the form factor (4.111) and the semi-classical limit. The result (4.114) highlights a

duality between the regime of large center-of-mass energy
?
s{MD " 1 of a gravitational

scattering process, and the low-momentum behaviour pk{MDqd�39MD{
?
s ! 1 of the

running coupling Gpkq in the ‘gravitational bound state’ of a black hole.

It would be interesting to have access to the behaviour of Gp?sq at below-threshold

energies, where the energy dependence of Newton’s coupling should be obtained from

standard field theory amplitudes for s-channel scattering in asymptotically safe gravity

[120, 119], which become strongly dominated by multi-graviton exchange at Planckian

energies [179]. For recent developments along these lines within quantum string-gravity,

see [4, 128].

4.5.4 Semi-classical limit

It is useful to compare our results with a related renormalisation group study, where

qualitatively different conclusions have been reached [100]. There, black hole production

cross sections are estimated from (4.112) using the RG matching

GN Ñ Gpkq with k9?s (4.115)

for Newton’s coupling, with Gpkq taken from the renormalisation group and k identified

with
?
s, following [90]. This would be applicable if

?
s is the sole mass scale in the prob-

lem, and if GN in (4.112) is sensitive to the momentum transfer in the s-channel. However,

the matching (4.115) is in marked contrast to (4.114). Most importantly, with (4.115) no
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semi-classical limit is achieved in the trans-Planckian regime, because Gp?sq{GN ! 1 be-

comes strongly suppressed. This conclusion is at variance with the findings of the present

paper.

The origin for this difference is traced back to the following observation: the RG

improved Schwarzschild radius depends on several mass scales, the Planck scale MD, the

black hole mass M and, implicitly, the momentum scale k. Identifying both the mass

M � ?
s and the renormalisation group scale k � ?

s with the center-of-mass energy in

a gravitational scattering process entangles mass dependences with RG scale running. In

turn, the détour taken in Sec. 4.5.3 disentangles these effects by taking into account that

the physics involves several mass scales. This also explains why MD enters the matching

(4.114), besides
?
s, which is responsible for the qualitative difference with respect to

(4.115).

We conclude that the set-up laid out in this work is necessary to capture the semi-

classical limit of trans-Planckian scattering.

4.6 Discussion

How does quantum gravity modify the physics of black holes? We have implemented

quantum corrections on the level of black hole metrics, replacing Newton’s constant by a

coupling which runs under the renormalisation group equations for gravity.

If Newton’s coupling weakens sufficiently fast towards shorter distances, it implies

the existence of a smallest black hole of mass Mc. This is the case for all dimensions

d ¥ 4 provided quantum gravity is asymptotically safe. The mass scale Mc is dynamically

generated and of the order of the fundamental Planck scale MD. Interestingly, a mere

weakening of the gravitational coupling would not be enough to disallow the formation of

an event horizon.

The mechanism responsible for a lower bound on black hole mass relates with the

RG scaling of the gravitational coupling at the cross-over from perturbative to non-

perturbative running. In consequence, the underlying fixed point is not primarily respons-

ible for the existence of the lower bound and alternative UV completions may display a

similar weakening down to length scales of the order of the Planck length.

In the semi-classical regime MD{M ! 1, corrections to the event horizon and black

hole thermodynamics remain perturbatively small, but effects become quantitatively more

pronounced with decreasing black hole mass M . Once MD{M becomes of order one,

quantum corrections are more substantial. The specific heat changes sign, the black hole
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temperature displays a maximum, and vanishes with M Ñ Mc. This supports the view

that critical black holes constitute cold, Planck-size, remnants.

Direct implications of fixed point scaling are visible in the short distance limit rMD !
1. This limit becomes time-like rather than space-like as in classical Schwarzschild black

holes. Also, asymptotically safe black holes with M ¡ Mc always also display a Cauchy

horizon besides the event horizon. It is noteworthy that the classical curvature singularity

at the origin is significantly softened because of the fixed point, and either disappears

completely, or becomes vastly reduced. The conformal structure of quantum black holes

is very similar to classical Reissner-Nordström black holes, including the near horizon

geometry of critical black holes which is of the AdS2 � Sd�2 type.

We remark on the similarity of our results to those of non-commutative geometry

inspired black holes [129, 134, 6, 133]. Recently there has been interest in non-commutative

geometry approaches to quantum field theory. Non-commutative geometry is characterised

by allowing rxµ, xνs � iθµν to be non-zero. Such coordinates arise naturally in string

theory where coordinates on the target space become non-commutating operators on a

D-brane. The effect of non-commutativity means that point-like structures are in some

sense “smeared out”. These effects have inspired models based on classical black hole

space-times by replacing the singularity with a Gaussian matter distribution. This leads

to a very similar modification of the space-time lapse function as with the RG improved

black hole. In particular a smallest black hole is observed and inner horizons are present

even in the Schwarzschild case [134].

Our results have direct implications for the collider phenomenology of low-scale gravity

models. Interestingly, quantum corrections increase the domain of validity for a semiclas-

sical description. At low center-of-mass energies, a threshold for black hole production is

identified. At larger energies, quantum corrections to production cross sections lead to a

new form factor. It reduces the cross section, and reproduces the semi-classical result in

the trans-Planckian limit. A quantitative implementation of this scenario for mini-black

hole production is given elsewhere [64]. It would be very interesting to complement this

picture by explicit computations based on multi-graviton exchange at Planckian energies

along the lines laid out in [120, 119].
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Chapter 5

Thermodynamics of space-time

5.1 Introduction

From a theoretical point of view one of the most interesting properties of black holes are

their thermodynamical properties. These properties suggest a deep connection between

classical gravity, thermodynamics and quantum mechanics due to the presence of causal

horizons. Already at the classical level it was found that black hole solutions in general

relativity obey a set of laws analogous to those of thermodynamics [13] with the surface

gravity at the horizon κ and the area of the horizon A playing the roles of the temperature

T and entropy S. Then in his seminal paper S. Hawking [88] showed, by considering

quantum fields on a curved space background, that black holes radiate particles with a

thermal spectrum. This implies that black holes carry an entropy proportional to their

area, as first conjectured by J. Bekenstein [14]. That the laws of thermodynamics seem

to be embedded within the structure of general relativity is a remarkable result. Perhaps

even more profoundly, in a paper by T. Jacobson [94], it was shown that one may look at

these relations the other way around, to the extent that Einstein’s equations can be viewed

as an equation of state. This brings up the interesting question of whether gravity should

in fact be quantised as a fundamental theory or thought of as an emergent phenomenon.

Further ideas in this direction have been explored recently [12, 145, 187]. In the next

two chapters we shall explore the thermodynamics of black holes using ideas from the

renormalisation group.

The Hawking effect can be understood as the creation of particles at the black hole

horizon whereby positive energy particles are emitted and propagate to infinity while

negative energy particles fall into the horizon. The resulting physical picture implies that

a black hole will undergo an evaporation process such that its massM will steadily decrease
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while its temperature will increase. Thus semi-classical black holes are characterised by a

negative specific heat due to an influx of negative energy. However this picture explicitly

neglects both back reaction effects due to the emitted radiation onto the metric and metric

fluctuations themselves i.e. due to the quantisation of the gravitational field. As such the

semi-classical picture is expected to breakdown once the mass of the black hole approaches

the Planck mass. In particular the renormalised energy-momentum tensor of the matter

fields just outside the event horizon and the effective energy momentum tensor of the

metric fluctuations should modify the classical space-time geometry.

In four dimensions the evaporation process of an RG improved black hole space-time

has been studied in [31] . In this chapter we will be interested in the evaporation process

of higher dimensional microscopic black holes within the frame work of chapter 4 which

could have implications for black hole decay at the LHC.

Black hole production at colliders may be expected for centre of mass energies well

above the fundamental d dimensional Planck scale MD where it should be well described

by semi-classical physics. After the black hole forms the semi-classical picture suggests

that the black hole will go through a number of stages [79] (See [96] for a review) :

(a) In the first stage the black hole losses its “hair” via classical gravitational and gauge

radiation in the so called balding phase.

(b) The next stage is the spin-down phase in which the black loses angular momentum by

Hawking radiation.

(c) This stage is then followed by a Schwarzschild phase where the black hole will continue

to radiate and loses most of its mass.

(d) When the mass approaches the fundamental Planck mass the black hole enters a final

Planckian phase.

In chapter 4 quantum corrections to classical black holes were calculated via a renorm-

alisation group improvement in four and higher space-time dimensions. These corrections

were implemented by replacing the classical Newton’s constant GN Ñ Gprq with a running

constant depending on the radial coordinate. Here we shall see that temperature of the

resulting space-time will have a maximum at some mass M̃c before falling to zero when

the mass reaches a critical value M � Mc, of order Md, corresponding to a critical black

hole (see Figs. 5.1 and 5.2).

In this chapter we shall discuss the quantitative behaviour of T pMq for all dimension

d ¥ 4 and the resulting thermodynamical picture. This leads us to a qualitatively different
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picture of the final evaporation process than the one suggested by purely semi-classical

physics in all dimensions d ¥ 4. We start from Schwarzschild classical black holes and

will not concern ourselves with first two stages of the semi-classical picture ( (a) and (b)

above). Our picture is split into four phases determined by the mass of the black hole M

1. The first stage is for masses M "Mc. Here quantum gravity effects may be neglected

and the temperature is well approximated by the Hawking temperature such that it

corresponds to the Schwarzschild phase in the semi-classical picture ( (c) above). In

this regime the specific heat CV is negative and increasing with decreasing mass.

As the mass decreases we see a qualitatively different behaviour. In particular when

the mass reaches M � M̄c, of order a few Mc, the specific heat reaches a maximum

Cmax � CV pM̄cq.

2. For M̃c   M   M̄c the specific heat falls rapidly as M decreases. This stage

corresponds to an intermediate stage between the semi-classical Schwarzschild phase

and the fully quantum gravitational Planck phase.

When M � M̃c the temperature reaches a maximum for which the specific heat has

a pole.

3. For masses Mc   M   M̃c we have a second intermediate stage. The specific heat

is positive hence the black hole temperature decreases as it evaporates. During

this phase the specific heat falls to zero for M Ñ Mc which implies that thermal

fluctuations in the temperature become large.

It follows that a statistical approximation should break down for some mass Mc  
Mmin   M̃c and hence we no longer expect that an RG improved classical space-time

description should be valid approximation.

4. Hence for masses M   Mmin the black hole enters a fully quantum regime where

a full particle physics description of the black hole decay including back reaction

is needed. Here we expect that the back reaction of the energy momentum tensor

due to the matter fields at the horizon and thermal fluctuations to play a prominent

role.

These four stages can clearly be seen in Figs. 5.1 and 5.2 where we plot the temperature

and specific heat of a d � 8 dimensional black hole.

The rest of this chapter is as follows. In section 5.2 we recall the set-up of the RG

improved space-time and introduce the coordinate dependent anomalous dimension. In
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Figure 5.1: . Here we see the temperature T pMq plotted as a function of the black hole

mass M for both a classical and quantum black hole in d � 8 where we take Mc � 3Md. For

M ¡ M̄c � 6.066Mc the quantum black hole thermodynamics is qualitatively similar to

that of a classical black hole. For a black hole of mass M � M̃c � 3.473Mc the temperature

reaches a maximum T pM̃cq � Tmax. For M   M̃c the temperature falsl to zero. However

we expect a breakdown of the statistical approximation at M � Mmin � 2.664Mc such

that for mass M  Mmin important quantum effects(e.g. back-reaction) can no longer be

neglected.

section 5.3 we find the specific heat and temperature of the black hole and calculate there

mass dependence. In section 5.4 we present various definitions of the energy and entropy

of the black hole space-time and their thermodynamical relations. We give expressions

for luminosity both in the bulk and confined to a 3-brane in section 5.5. The evaporation

process is addressed in section 5.6 where the d-dimensional time dependent Vaidya metric

is introduced. The limitations of our model is addressed in section 5.7. We end with our

conclusions in section 5.8

5.2 The metric and the anomalous dimension

In this section we recap the general set-up of chapter 4 where by the classical Newton’s

constant appearing in the line element was replaced GN Ñ Gprq. Additionally we intro-
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Figure 5.2: . Here we see the temperature specific heat CV pMq plotted as a function of

the black hole mass M for both a classical and quantum black hole in d � 8 where we take

Mc � 3Md. For M ¡ M̄c � 6.066Mc the quantum corrected specific heat is qualitatively

similar to that of a classical black hole. However when M � M̄c the specific heat reaches

a maximum and hence the thermodynamics takes on a qualitatively different character

for M   M̄c. For a black hole of mass M � M̃c � 3.473Mc the specific heat has a pole

CV � pTmax � T pMqq� 1
2 . For M   M̃c the specific heat falls to zero. This implies that

thermal fluctuations of the temperature diverge and we can expect our model to break

down.
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duce the space-time dependent anomalous dimension and rewrite some of the results of

chapter 4 in terms of it. We will restrict attention here to the scale identification (4.12)

with Dprq � r leading simply to

kprq � ξ

r
(5.1)

such that Gprq is obtained from Gpkq by Gprq � Gpkq|k�kprq. This leads to the line element

ds2 � �fprq dt2 � f�1prq dr2 � r2 dΩ̄2
d�2 . (5.2)

where the lapse function fprq is given by

fprq � 1� cdGprqM
rd�3

. (5.3)

The horizons of the space-time are found by the vanishing of the lapse function (5.3)

leading to the implicit equation (4.25). We will assume here that Gp0q � G0 is a constant

which we identify with the classical Newton’s constant and the d-dimensional Planck mass

G0 �M2�d
d . This ensures that for large black holes the event horizon will be at

rcl � pcdG0Mq 1
d�3 (5.4)

For now let us not assume anything more about the form of Gpkq other than the classical

limit for k ! Md and that it is derived from some RG trajectory. Then depending on

the form of Gpkq at high energies there may be multiple solutions ripMq of (4.25) where i

takes different “values” corresponding to the different horizons of the RG improved space-

time. The relevant thermodynamics of the RG improved black hole is derived from the

outermost horizon rs (i.e. the largest positive real solution to (4.25)), as this is where

the thermal radiation will be emitted which is observable by a distant observer (collider

detector). As such we will only be concerned with rspMq which we identify with the event

horizon of the static black hole as seen by an at observer r " rspMq.
Although the solutions of (4.25) are multivalued the inverse function Mprsq is single

valued following from the single valued nature of the running coupling Gpkq. This single

valued mass function is given by

Mprsq � rd�3
s

cdGprsq (5.5)

It will prove useful at this stage to introduce the anomalous dimension of the graviton and

interpret some of the results of chapter 4 in light of it. In momentum space the anomalous

dimension of the graviton is defined by

η � kBk lnGpkq . (5.6)
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Therefore under the scale identification (5.1) we can express anomalous dimension as a

function of the radial coordinate in the RG improved black hole space-time as

ηprq � �rBr lnGprq . (5.7)

The effect of a non-zero analogous dimension is to modify the power law behaviour �
1{rd�3 of the “potential” in (5.3). This can be seen as follows. If we imagine that for

some range of scales that anomalous dimension is approximately constant then within the

corresponding region of space-time we will have Gprq9Geffr
�η where Geff is a constant

of mass dimension 2� d� η. It follows that in this region of space-time the lapse function

will be given by

fprq � 1� cd�ηGeffM

rd�η�3
. (5.8)

We observe that the RG lapse function, in the region of constant η, behaves as the classical

Schwarzschild black hole in

deff � d� η (5.9)

dimensions. Therefore the decreasing negative anomalous dimension at high energies re-

quired for asymptotic safety leads to an effective dimensional reduction at short distances

on the black hole space-time. This dimensional reduction is similar to that seen in the RG

improved graviton propagators [107] also due to the running of Newtons constant.

Since the thermodynamical properties of the black hole space-time are determined at

the horizon we introduce the horizon anomalous dimension

ηs � ηprq|r�rs . (5.10)

which can be expressed either as a function of the horizon radius rs or as a function of

the mass M since rs � rspMq. In the previous chapter we saw that if Newton’s constant

decreases sufficiently quickly as r Ñ 0 there is a smallest black hole of mass Mc and radius

rc corresponding to the vanishing of f 1prsq when rs � rc. The equation which determines

rc (and therefore Mc by (5.5)) for the smallest black hole (4.45) given in the previous

chapter may also be expressed in terms of ηs as

ηsprcq � ηc � 3� d . (5.11)

We see that the mass scale Mc can be associated directly to a dimensionless number

ηc which characterises the quantum corrections. We therefore conclude that any RG

trajectory for which ηpkcq � 3 � d at some finite scale kc � ξ{rc will lead to a smallest

black hole of mass Mc � Mprcq. We will see in the later sections that other mass scales
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related to the quantum corrections correspond to different values of η and that we can

therefore make similar conclusions. Finally we note that the effective dimension of the

smallest black hole horizon, as defined by (5.9), is deff � 3.

5.2.1 One-loop running of Gpkq

Here we will mostly concentrate on the one-loop type running of the Gpkq given by (4.11)

which corresponds to an anomalous dimension given by

ηpkq � p2� dqω gpkq
� p2� dq ωkd�2G0

1�G0ωkd�2

� p2� dq
�

1� Gpkq
G0



(5.12)

where gpkq � kd�2Gpkq. It will prove useful to rearrange this equation for k using (4.11)

to find the expression

kd�2 � �η
ωG0pη � d� 2q (5.13)

Plugging in the value of ηc � 3�d corresponding to the smallest black hole we immediately

see that the value of the cut-off at the horizon is given by kd�2
c � d�3

ωG0
. The minimum

black hole mass Mc is given by (4.47) with (4.48), where here Ωc � pd � 3q{pd � 2q d�2
d�3 .

Using (5.13) we can express both the black hole mass and the horizon radius as functions

of the horizon anomalous dimension ηs and the mass Mc

M �
�p2� dq

ηs
� 1


 d�3
d�2

�
1

1� ηs
p2�dq

�
Ω
d�3
d�2
c Mc . (5.14)

rd�2
s �

�
2� d

ηs
� 1



Ωc c

d�2
d�3

d

Md�2
D

�
Mc

MD


 d�2
d�3

. (5.15)

These expressions are useful since if we calculate a critical value of ηs for which some

physical quantity has a maximum or a pole we can plug the numerical value of ηs into

(5.14) and (5.15) to find the corresponding black hole radius and mass.

A useful expression derived from the one loop running (4.11) and the scale identification

(5.1) allows us to express the r dependence of ηprq as

Bη
B ln r

� p2� dqη � η2 . (5.16)

this expression will be used later to compute various critical quantities and their corres-

ponding anomalous dimension ηs.
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5.3 Temperature and specific heat

For a classical d-dimensional Schwarzschild black hole the Hawking temperature is in-

versely proportional to the horizon radius

Tcl � d� 3
4πrcl

(5.17)

Within this semi-classical approximation the evaporation process continues until the black

hole evaporates away completely. In a complete theory of quantum gravity one would

expect that this semi-classical picture will breakdown as the temperature approaches the

Planck temperature. For the RG improved metrics considered here the temperature is

given by κ the surface gravity of the outer horizon

T � κ

2π
� f 1prsq

4π

� 1
4πrs

�
d� 3� rs

G1prsq
Gprsq



(5.18)

It follows from (5.18) that the temperature vanishes at the critical mass T pMcq � 0 since

f 1prcq � 0. In terms of the horizon anomalous dimension the temperature takes the form

T prsq � d� 3
4πrs

�
1� ηsprsq

d� 3



, (5.19)

From which we see explicitly that T � 0 when ηs � 3 � d. The specific heat CV is given

by the infinitesimal change of internal energy with temperature at fixed volume

CV � BM
BT . (5.20)

Relating the internal energy to the black hole mass the classical specific heat is always

negative and my be expressed as a function of the black hole mass

Ccl � �4πMrclpMq (5.21)

It therefore corresponds to an influx of negative energy across the horizon of a black hole.

For the RG improved black hole metric the specific heat will gain quantum corrections due

to the fluctuation of the metric. As with the temperature we may express these corrections

using the horizon anomalous dimension. Here we find

CV � dM

dT
� BM
Brs

� BT
Brs


�1

��4πrsM
d� ηs � 3

d� ηs � 3� Bηs
B ln rs

(5.22)

Here we see that the specific heat can develop depending on the behaviour of ηs along an

RG trajectory. The value of ηs at which the specific heat has a pole is seen to depend
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on how quickly ηs decreases as it tends to ηc � 3 � d. The horizon radius r̃c of the pole,

where the temperature has a maximum Tmax, is the solution of

d� ηspr̃cq � 3� r̃cη
1
spr̃cq � 0 (5.23)

Expressions (5.19), (5.22) and (5.23) are quite general for the scale identification (5.1) and

are independent of the form of Gprq entering in (5.3) provided, of course, that solutions to

(4.25) exist. If we assume that ηs is zero for rs Ñ8 and that it is a smooth monotonically

decreasing function of rs such that at some rc (5.11) is satisfied then there will be a pole

in the specific heat for the radius r̃c ¡ rc for some 0 ¡ ηpr̃cq ¡ 3� d. Here we will mostly

be interested in the one-loop type running (4.11) where this property holds.

5.3.1 Mass dependence of T pMq and CV pMq

Explicit expressions for the mass dependence of the black hole temperature T and specific

heat CV are found be solving (4.25) for rspMq as a function of the black hole mass M and

inserting this function into (5.19) and (5.22).

T pMq � T prs Ñ rspMqq, CV pMq � CV prs Ñ rspMqq (5.24)

In the case of the one-loop type running (4.11) we can then express the temperature and

specific heat in terms their classical expressions and a function,

ZT pΩq � T

Tcl
. (5.25)

of the dimensionless mass parameter Ω given by (4.31).

In chapter 4 it was shown that Ω can be expressed as a ratio Mc{M (4.49) where here

Ωc is given by (4.35). The function ZT pΩq has the limits ZT p0q � 1 corresponding to

the classical limit M Ñ 8 and ZT pΩcq � 0 corresponding to the limit M Ñ Mc. The

effect of ZpΩq is to renormalise the classical temperature when quantum fluctuations are

taken into account. The form of the function T pMq contains a lot of physical information

which does not enter the semi-classical picture of black hole evaporation. In particular we

avoid the semi-classical divergence T Ñ8 in the limit that the black hole mass vanishes.

Instead the black hole temperature in renormalised by quantum effects which remove this

divergence. We can obtain ZT pΩq explicitly in terms of x�pΩq � rs{rcl which is the largest

real root of (4.33)

ZT pΩq � f 1px�pΩqq
d� 3

� 1
x�pΩq

�
d� 2
d� 3

xd�3
� pΩq � 1

d� 3



(5.26)
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Where here fpxq is the lapse function (4.32) expressed in terms of the dimensionless

coordinate x � r{rcl. Inserting the expression (5.4) for the classical Schwarzschild radius

the temperature is given by

T �MD
d� 3

4πc
1
d�3

d

�
MD

M


 1
d�3

ZT pΩq (5.27)

The temperature is seen to depend on three mass scales MD � G
1

2�d

0 corresponding to the

infrared value of Gk, Mc the smallest black hole mass and M the mass of the black hole.

In Fig. 5.3 we plot the RG improved temperature of a black hole in d � 8 dimensions as

a function of M and the ratio of Mc{MD. The ratio Mc{MD parameterises the relative

strength of the quantum corrections such that in the limit Mc{MD Ñ 0 we recover the

classical temperature (5.17). In Figs. 5.4 we plot the temperature of a RG improved black

hole compared to the classical temperature in d � 4 and d � 8 dimensions as a function

of the mass M with Mc �MD.

The specific heat of a quantum black hole can also be expressed in terms of ZpΩq and

its first derivative Z 1T pΩq

C �Ccl

�
ZT pΩq � pd� 2qΩZ 1T pΩq

��1

��4πc
1
d�3

d

�
M

Md


 d�2
d�3 �

ZT pΩq � pd� 2qΩZ 1T pΩq
��1 (5.28)

Here we see the implicit form of the pole in terms of ZT which occurs when ZT pΩq �
�pd � 2qΩZ 1T pΩq as the temperature reaches a maximum. As with the temperature the

specific heat depends on Md, Mc and M in Fig. 5.5 we plot the specific heat in d � 8

dimensions as a function of M{Md and Mc{Md. In Fig. 5.6 we plot the specific heat as a

function of the mass with Mc � Md in d � 4 and d � 8 and compare with the classical

mass dependence.

Perturbation theory

In the limit M " Mc we recover the classical temperature Tcl and the classical specific

heat Ccl. In this regime the qualitative features of the thermodynamics correspond to a

semi-classical black hole. It is therefore interesting to see what the leading order effects

of quantum gravity are. The quantum corrections, in this limit become perturbative in

the parameter Ω (4.49) and we can make an expansion in inverse powers of the black hole

mass M . The large mass expansions of T and CV , using the explicit running one loop-type
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Figure 5.3: Here we see the temperature in d � 8 dimensions plotted as a function of

M{MD and Mc{MD. As we decrease Mc{MD Ñ 0 we get closer to the classical temperat-

ure Tcl at Mc{MD � 0 where Tcl diverges as M Ñ 0. For Mc ¡ 0 the classical divergence is

removed and the temperature has a maximum which decreases as Tmax{MD9pMD{Mcq1{5

(see (5.45)). Similar behaviour is seen in all dimensions d ¥ 4.

Newton’s constant (4.11) and the scale identification (5.1), are given by

T � Tcl

�
�1� Ωc

�
Mc

M


 d�2
d�3

� 1
2
p3d� 8q
pd� 3q2 Ω2

c

�
Mc

M


 2pd�2q
d�3

�O
�
pMc{Mq 3pd�2q

d�3

	�� (5.29)

and

CV � Ccl

�
�1� pd� 1qΩc

�
Mc

M


 d�2
d�3

� c2Ω2
c

�
Mc

M


 2pd�2q
d�3

�O
�
pMc{Mq 3pd�2q

d�3

	� (5.30)

with c2 � 42�73d�50d2�16d3�2d4

2p�3�dq2 . We see here that the leading order effects to CV are of

the same sign as the classical term meaning the specific heat gets more negative whereas

the leading order effects decrease the temperature such that T   Tcl.

5.3.2 Pole in the specific heat

At some mass M̃c ¡ Mc the temperature will have a maximum T pM̃cq � Tmax. In turn

this will produce a pole in the specific heat CV , it is interesting, therefore, to understand

the behaviour of the CV in the limit M Ñ M̃c in more detail. For masses M   M̃c the
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Figure 5.4: In the left panel we plot the temperature of d � 4 dimensional black hole

(below) which has a maximum before dropping to zero we compare it to the classical

temperature (above) which diverges as M Ñ 0. In the right panel we observe the same

behaviour for the temperature of a d � 8 dimensional black hole (below) and compare

it to the classical temperature (above). In both cases the classical temperature is always

higher than the RG improved temperature.

specific heat becomes positive and decreases as the black hole evaporates. To find the

exponent α of the pole CV � pT � Tmaxq�α we first expand T pMq around M � M̃c

T pMq �
¸
n�0

�
1
n!
pM � M̃cqn B

nT

BMn
pM̃q

�

We note that the first derivative vanishes at M � M̃ where we have a maximum in T pMq
therefore in the limit M Ñ M̃c we find that T pMq � Tmax � pM � M̃cq2. This implies

the square root relation between the mass and the temperature M � M̃c �
?
T � Tmax

as the temperature approaches Tmax. We note that this behaviour is independent of the

dimensionality d ¥ 4 and the scale identification (5.1). Making a further expansion of

BT {BM � 1{CV pMq around the mass M � M̃c we have

1{CV �
¸
n�1

�
1

pn� 1q!pM � M̃qn�1 BnT
BMn

pM̃q
�

Here again the first derivative vanishes and hence to leading order we have

CV � 1
M � M̃

� B2T

BM2
pM̃q


�1

� 1?
2

1?
T � Tmax

� B2T

BM2
pM̃q


� 1
2

(5.31)

We find then that the critical exponent is given by α � 1
2 . We stress that this behaviour

does not depend on the dimensionality of space-time for d ¡ 3. Similar behaviour is

also found for classical black holes with maximum temperatures where the same critical

exponent is found [122].
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Figure 5.5: For a d � 8 dimensional black hole we plot the specific heat as a function of

both M and the critical mass Mc in units of the fundamental Planck scale MD.

1 2 3 4 5
M

-1000

-800

-600

-400

-200

200

400

CvHML

2 4 6 8 10
M

-400

-200

200

CvHML

Figure 5.6: . d � 4 and d � 8 Specific Heat

5.3.3 Criticality

In the limit M ÑMc the temperature T of the black hole vanishes. We would like to see

the explicit behaviour of T pMq and CV pMq in this limit. To this end we first consider

the temperature as a function of the horizon rs. Then the limit M ÑMc is equivalent to

rs Ñ rc for which fprcq � 0 � f 1prcq. Expanding the temperature around rc we have

T prsq �
¸
n�0

�
1
n!
prs � rcqn B

nT

Brns
prcq

�

Since T prcq � 0 for a critical black hole the first term vanishes. Therefore close to rs � rc

we find the linear relation T prsq � prs � rcq between the temperature and the black hole

radius as M Ñ Mc. However in [69] (see 4.3.5) it was found that, in this limit, the black

hole radius is related to the mass by a square root behaviour

rspMq � rc �M�3{2
c

a
M �Mc . (5.32)
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This is due to the simultaneous vanishing of fprcq � f 1prcq � 0 at M � Mc provided the

second derivative f2prcq doesn’t also vanish. This behaviour has important implications

for the thermodynamics leading to non-analytic behaviour in the limit M Ñ Mc. In

particular (4.59) implies a square root behaviour of the temperature as M ÑMc

T pM ÑMcq9
a
Mc

a
M �Mc (5.33)

From the form of the temperature (5.33) we can find the specific heat in the threshold

limit M ÑMc from the definition (5.20) to obtain

CV9
c
M

Mc
� 1 (5.34)

Which tells us that the specific heat vanishes in the limit M Ñ Mc with a non-analytic

behaviour. The form of the temperature close to the critical point M � Mc implies that

the energy of a typical quanta emitted via Hawking radiation will have energy E � T �
?
Mc

?
M �Mc and therefore could have implications for the stability of the black hole in

the limit M Ñ Mc. Furthermore we note that the vanishing of the specific heat implies

that thermal fluctuations become large as the specific heat falls to zero [155]. We will

come back to these points later in section 5.7.

Next we relate the mass scales M̄c and M̃c to values of the horizon anomalous dimension

ηs for which CV pMq has a local maximum and T pMq has an absolute maximum.

5.3.4 Onset of quantum black hole regime

Classically the specific heat of a black hole decreases as the mass is increased. The leading

order effects are consistent with this picture, however the presence of a pole in the specific

heat of a quantum black hole where T � Tmax at M � M̃c implies that as the mass

decreases the specific heat must reach a local maximum at some mass M̄c ¡ M̃c. We

therefore single out the mass M̄c as signifying the onset of quantum gravity corrections to

the black hole which alter the qualitative features of the thermodynamics. This mass is

found by solving
dCV
dM

pM̄q � 0 (5.35)

or equivalently

C2
V

d2T

dM2
� C2

V

�
B2rs
BM2

BT
Brs �

� Brs
BM


2 B2T

Br2
s

�
� 0 (5.36)

Using the matching k � ξ{r we take derivatives of (5.19) with respect to rs to obtain

dT

drs
� 1

4πr2
s

�
3� d� ηs � Bηs

B ln rs



(5.37)
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and
B2T

Br2
s

� 1
4πr3

s

�
�2
�

3� d� ηs � Bηs
B ln rs



�
� Bηs
B ln rs

� B2ηs
B ln r2

s




. (5.38)

Furthermore we can take derivatives of Mprsq given by (5.5) to obtain

Brs
BM �

�BM
Brs


�1

� rs
Mprsqpd� ηs � 3q (5.39)

and
B2rs
BM2

� rs
M2

�
1

pd� 3� ηsq2 �
1

d� 3� ηs
� 1
pd� 3� ηsq3

Bηs
B ln rs



(5.40)

We then plug the expressions (5.37), (5.38),(5.39) and (5.40) into (5.36) to obtain a con-

dition on ηs and its derivatives. For the one-loop running we can use the expression (5.16)

to express the derivatives of ηs in terms of ηs itself such that condition (5.36) can then be

expressed as the vanishing of a polynomial in ηs

dCV
dM

9 d3 � �6d2 � 26d� 26
�
η2
s � 8d2

� �2d3 � 11d2 � 16d� 3
�
ηs � p6d� 14qη3

s � 21d� 2η4
s � 18 (5.41)

We can find the roots of this polynomial to obtain the anomalous dimension η̄c �
ηprspM̄cqq evaluated at the horizon for which the black hole specific heat has a local max-

imum. It has one solution which is η � 2�d, however the solution we are interested corres-

ponds to a local maximum in the range 0 ¡ η̄c ¡ 3�d. Such solutions η̄c exist in arbitrary

dimension d and take the values η̄c � �0.206, �0.304, �0.356 � 0.387, �0.407, �0.422

and �0.432 in d � 4, 5...9 and 10 dimensions. In the limit dÑ 8 we have η̄c Ñ �1
2 . We

can now express both M̄c and rspM̄cq in terms of the anomalous dimension η̄c by (5.14)

and (5.15). The mass depends linearly on the value Mc in Fig. 5.11 we plot M̄c{Mc

as a function of dimensionality using a general expression for η̄cpdq. In general we find

that ratio M̄c{Mc grows with dimension implying that, as the mass decreases, quantum

corrections set in sooner in a higher number of dimensions. Using (5.14) and (5.15) we

can obtain the value of the specific heat at the maximum Cmax. We find that it scales

as Cmax9 � pMc{MDq
d�2
d�3 . In the semi-classical limit Mc Ñ 0 the specific heat reaches

its maximum at Cmax � 0 for vanishing mass. After the mass of the black hole reaches

M̄c the temperature will continue to grow as the mass decreases whereas the specific heat

remains negative and will decreases rapidly until M � M̃c at which point CV has a pole.

5.3.5 Maximum temperature

The mass M̃c signifies that the specific heat has a pole at CV pM̃cq and the temperature

T pM̃cq has a maximum. In order to find the mass M̃c and the maximum temperature
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Figure 5.7: The maximum temperature is plotted as a function of the mass scale Mc

and the dimensionality d. In the limit Mc Ñ 0 we recover the classical divergence of the

maximum temperature Tmax Ñ8

Tmax we again consider T prsq as a function of rs (5.19). To find the radius r̃c � rspM̃cq
we can solve the equation

dT

drs
pr̃cq � 0 . (5.42)

This condition is given by the vanishing of the RHS of (5.37). With the simple one

loop-running (4.11) the derivative of the anomalous dimension is given by (5.16) and the

derivative of the temperature takes the form

dT

drs
pr̃cq � 1

4πr2
s

�
3� d� p1� dqηs � η2

s

� � 0 . (5.43)

As with (5.36) this condition is seen to correspond to the vanishing of a polynomial in ηs

which we solve to find the anomalous dimension 3 � d   η̃c   η̄c, corresponding to the

maximum temperature, as a function of space-time dimension d, explicitly we find

η̃c � ηpr̃cq � 1
2

�
1� d�

a
d2 � 6d� 13

	
. (5.44)

From (5.44) we have η̃c � �0.382,�0.586,�0.697,�0.764,�0.807,�0.838,�0.860 in d �
4, 5, ...10 dimensions. It is clear from (5.43) that in the limit d Ñ 8 we have η̃c Ñ �1.

Again this value of ηs � η̃c can be inserted into (5.14) and (5.15) to find the mass M � M̃c

and Schwarzschild radius rs � r̃c. We may then use (5.44) and (5.15) to obtain an explicit

expression for the maximum temperature and its dependence of the Mc. By substituting

r̃s and η̃ into (5.19) we obtain

Tmax � d� 3
4πr̃c

�
1� η̃c

d� 3



9MD

�
MD

Mc


 1
d�3

(5.45)
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Figure 5.8: Here we plot expp M
T pMqq as a function of M in d � 8. From bottom to

top we have Mc
MD

� 0.5, 1, 2 and 5 with the dashed lines corresponding to the classical

temperature.

The maximum temperature is inversely proportional to Mc this is because higher values

of Mc mean that the quantum effects set in quicker, as the mass decreases, before the

temperature has a chance to grow with its characteristic classical behaviour (5.17). This

can be seen in Fig. 5.3 where T pMq is plotted as a function of Mc and M in units of

the fundamental Planck mass MD. In Fig. 5.7 we plot Tmax as a function of the space-

time dimension d and the ratio Mc{MD. We observe that Tmax grows with approximate

linear behaviour in d due to the d � 3 in the numerator of (5.45). The mass M̃c for

which T pM̃q � Tmax is given by (5.14) with ηs � η̃c. In Fig. 5.11 the mass M̃c is

plotted as a function of dimensionality d and compared to the other critical masses in

units of the smallest black hole mass Mc. We expect that our model will break down at

the maximum temperature unless T {M ! 1 otherwise the thermal spectrum implies that

quanta will be emitted with energies E � M . More precisely emission of quanta E � M

will be highly suppressed in the thermal spectrum provided exp M
T " 1 throughout the

evaporation process. In Fig. 5.8 we plot expp M
T pMqq as a function of M for various values

of Mc in d � 8. We see that in the presence of quantum corrections expp M
T pMqq reaches

a minimum and that the minimum increases as we increase Mc{MD. We conclude that

to prevent unphysical behaviour indicating the breakdown of our approximation we must

have Mc{MD sufficiently large.
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5.4 Energy and entropy

Here we discuss various energies and entropies associated with the black hole space-time

and the effective energy momentum tensor.

5.4.1 Komar energy and Smarr’s formula

In general relativity there is no well defined local energy density associated to the gravit-

ational field. However the Komar mass gives a measure of the gravitational charge within

a region of space-time. In analogy to Gauss’s law in electro-statics, an integration over a

surface BΣ that encloses the region Σ is taken which measures the force needed to hold in

place test matter of a unit surface mass density in place on BΣ

FΣ �
»
BΣ
dd�2x

?
γ nµσνD

µKν (5.46)

where nµ and σν are the normal vectors in the time and radial directions and γ is the

determinant of the induced metric on BΣ. Classically one divides FΣ by a constant pro-

portional to GN to obtain the Komar mass. For asymptotically flat, static space-times e.g.

Schwarzschild it can be shown that the Komar mass evaluated on a surface with Tµν � 0

gives the mass M . For our RG improved space-times characterised by a running gravita-

tional coupling it is not clear that there exists a unique definition of an energy analogous

to the classical Komar mass. However one option is to compute the Komar integral over

a surface BΣ of constant kprq giving the force FΣ and dividing by Gprq � Gkprq. This is

achieved by choosing BΣ to be a sphere at radius r. We can then define a mass MRprq by

MRprq � d� 2
pd� 3q16πGprq

»
BΣ
dd�2x

?
γ nµσνD

µKν (5.47)

For general Gprq we find

MRprq �M

�
1� ηprq

d� 3



(5.48)

Evaluating MRprq at infinity, where Gprq Ñ GN we recover the black hole mass MRp8q �
M . For r � rs however we have a renormalised mass

Ms �M

�
1� ηprsq

d� 3



(5.49)

This quantity measures the effective gravitational charge at the horizon of the black hole.

For M �Mc we have Ms � 0. Here we find that we recover the classical Smarr’s formula

Ms � d� 2
d� 3

T
A

4Gprsq (5.50)

where GN has been replaced with the running Newton’s constant at the horizon of the

black hole Gprsq.
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5.4.2 Effective energy momentum tensor

It is also interesting to ask what energy-momentum Tµν distribution would lead to the

lapse function (5.3) and hence to these RG-improved black holes. By inserting the im-

proved metric back into the left hand side of the Einstein equations the energy momentum

tensor takes the form diagp�%, pr, pK...pKq with

% � �pr � G1prqM
Ω̄d�2G0rd�2

(5.51)

pK � � G2prqM
pd� 2qΩ̄d�2G0rd�3

(5.52)

If one integrates the energy density % over a volume of radius r one finds the effective

energy within that radius

Eprq � Ωd�2

» r
0
dr1%pr1qr1d�2 � GprqM

G0
, (5.53)

As such we note that Ep8q �M the physical mass. We also define the energy

UspMq � EprspMqq (5.54)

which corresponds to the effective energy behind the event horizon rs. Using this definition

we can express the horizon radius as a function of the energy Us, from (4.25) we have

rd�3
s � cdG0Us (5.55)

which resembles the classical Schwarzschild radius (5.4).

5.4.3 Entropy

For semi-classical black hole solutions the entropy of a black hole is found to be related

to the surface volume of the event horizon (the area in d � 4). Thermodynamically

it is defined via the thermodynamical relationship dM � TdS where T is the Hawking

temperature and M is the mass of the black hole. For a classical Schwarzschild black hole

in d ¥ 4 the variation of the entropy is given by

dS � 1
4GN

dAcl (5.56)

and leads to the famous Bekenstein-Hawking result Scl � Acl
4GN

. This result was first anti-

cipated by Bekenstein and derived by Hawking. Bekenstein first proposed that the entropy

should be proportional to the area to ensure that the second law of thermodynamics is

not violated by black hole physics. Further work has shown that black hole mechanics

contains a set of generalised thermodynamical laws.
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Here we would like to find the entropy corresponding to the RG improved space-times.

Using the definitions above we can re-write the temperature (5.19) in the form

T � d� 3
4πrs

�
1� ps

BV
BUs



(5.57)

where ps � prprsq (see (5.51)) is the radial component of the pressure evaluated at the

outer horizon rs, Us is the black hole energy (5.54) and V � Sd�2

d�1 r
d�1
s is a d� 1 volume.

The second term can then be interpreted as the work due to a nonzero quantum pressure

ps, due to metric fluctuations, where Us is the internal energy, in the thermodynamical

relation

δUs � TδSBH � psδV (5.58)

Here SBH is the entropy associated to the degrees of freedom behind the event horizon

and given by

SBH � A

4GN
(5.59)

We note that (5.58) is slightly misleading since it implies that we have two free parameters,

SBH and V say, where as for the metrics we consider here there is an additional constraint

such that all quantities are parameterised by a single free variable.

The equation (5.58) applies only to the energy Us which can be considered as the

energy of a subsystem r   rs corresponding to the interior of the black hole. However it

is clear that this entropy is only associated to the energy U and not to the total mass M .

Therefore we can define the entropy S associated with M via dM � TdS. To find dS for

a quantum black hole we first consider M as a function of the radius rs given by (5.5)

dM � dM

drs
drs � 4πT prsqMprsqdrs (5.60)

The entropy can then be expressed as

dS � Sd�2 pd� 2q rd�3
s

4Gprsq drs � 1
4GprsqdA . (5.61)

Remembering that the area is simply related to the Schwarzschild radius by A � Sd�2r
d�2
s .

Upon integration the entropy can be expressed as a function of the area A

SpAq � A

4GN
� ω̃Sd�2

4
log

A

GN
� c (5.62)

where c is a constant of integration. In [27] an expression for the entropy in d � 4 was

found by computing the integral over the inverse temperature

SpMq � SpMcq �
» M
Mc

dM 1

T pM 1q (5.63)
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The expression found in [27] is the same entropy as in (5.62) but expressed as a function

of M instead of A. Here we see that expressing entropy in terms of the area leads to a far

simpler expression for the entropy and in arbitrary dimension d for which the infinitesimal

entropy (5.61) differs from the classical expression only by the replacement GN Ñ Gprsq
in the denominator. This observation is intriguing and forms the inspiration for chapter

6 where we consider a type of RG improvement at the level of the laws of black hole

thermodynamics.

To complete the picture of the various entropies we can define an energy Qs associated

to a thermodynamical subsystem corresponding to the region of space-time exterior to the

black hole r ¡ rs. It is assumed that the two regions of space-time insider and outside

the horizon are in thermal equilibrium at a temperature T . We define the energy Qs by

the relation M � Us � Qs and write a corresponding thermodynamical relationship for

exterior of the black hole as

dQs � TdSQs � psdV (5.64)

with SQ given by

SQs �
ω̃Sd�2

4
log

A

GN
(5.65)

The reverse in the sign of the term psdV is because we assume the change in the volume of

the exterior of the black hole is �dV where dV is the change in the interior The entropy

(5.65) can then be associated with the quantum fluctuations just outside the horizon r ¡ rs

with the effective energy momentum tensor given by (5.51) and (5.52).

Logarithmic corrections to the black hole entropy due to quantum corrections have

also been obtained using various methods. These include use of the conical singularities

in Euclidean space-times and relations to the conformal anomaly [75, 74, 125, 173] and

corrections from the Cardy formula [36]. Also logarithmic corrections have been found in

loop quantum gravity [97] where boundary states describing a three dimensional SUp2q
Chern-Simons theory and in string theory [172] (and references therein). Sen has argued

that any theory of quantum gravity should be able to reproduce the logarithmic corrections

to the entropy. We note that requiring consistency between our results and those of [172]

fixes the values of ξpRkq for a given regulator choice Rk. This choice leads to a certain

value of ωpRkq such that the combination ω̃ � ξd�2pRkqωpRkq is regulator independent

and fixes the coefficient of the logarithmic correction ω̃Ω̄d�2

4 to be in agreement with [172].
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Figure 5.9: Here we plot the bulk luminosity in d � 7 with MD �Mc and compare it to

the classical luminosity which diverges.

5.5 Luminosity

The Hawking effect for a RG improved black hole implies that particles created at the

outer horizon will propagate to infinity. This implies that if the black hole is left in

isolation that it will lose mass due to a non-zero luminosity. The luminosity then tells

us the energy flux of the radiation produced by the black hole. This picture is therefore

inconsistent with a static space-time metric in section 5.6 we will consider a dynamical

metric which takes into account the evaporation process. For now we will just concern

ourselves with the mass dependence of the luminosity and the quantum corrections to it.

We will consider both radiation into the bulk d-dimensional space-time corresponding to

the luminosity L and radiation that is confined to a 3-brane on which the energy flux is

given by Lbr. In the case of particle physics models it is just the emission onto the brane

that is observed. In general there will be both bulk and brane emission however here, for

simplicity, we will just compare the two types of evaporation in isolation.

In the bulk the luminosity LpMq is a function of the black hole mass given by the

d-dimensional Stefan-Boltzmann law for black-body radiation:

LpMq � σdApMqT pMqd (5.66)

Where A � Ωd�2 r
d�2
s is the “area” of the event horizon and σd is the d-dimensional
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Stefan-Boltzmann constant for a field with gs spin degrees of freedom given by [103] :

σd � gs Γpdq ζpdq
2d�1 π

d
2 Γpd2q

(5.67)

where we take the Boltzmann constant as kB � 1 and ζpnq is the Riemann zeta function.

For simplicity we will take gs � d � 2 corresponding to spin one degrees of freedom.

Classically the d-dimensional black hole luminosity Lcl is given by (5.66) with A � Acl

and T � Tcl which takes the form

Lcl � σdΩd�2pd� 3qd
p4πqd r�2

cl (5.68)

where rcl � pcdGNMq 1
d�3 . In the limit M Ñ 0 the classical luminosity diverges indicating

that the black hole will evaporate in a finite amount of time. For quantum black holes the

luminosity is given by

L � σdΩd�2pd� 3� ηsqd
p4πqd r�2

s (5.69)

It is evident from the form of the luminosity that it finishes. As we did for T pMq can

express the mass M dependence of LpMq for the one-loop running (4.11) in terms of the

dimensionless parameter (4.49)

L �M2
D

�
MD

M


 2
d�3 σdΩd�2pd� 3qd

p4πqd
1

c
2
d�3

d

xd�2
� ZdT pΩq (5.70)

Where x� � rs{rcl � x�pΩq and ZT � ZT pΩq is given by (5.26). In the limit M
Mc

Ñ 8
we have x� Ñ 1 and ZT Ñ 1 such that we recover the classical luminosity Lcl. For large

black holes the temperature is small and quantum gravity effects can be neglected the

black hole has a vanishing luminosity L � M� 2
d�3 . For smaller black holes the higher

temperature means the luminosity is no longer negligible and the black hole will radiate

quickly such that the horizon rs recedes. In Fig. 5.9 we plot the bulk luminosity (5.69) of

a quantum black hole, in d � 7, as a function of the black hole mass M and compare it to

the classical luminosity (5.68).

Radiation on the brane

If we assume that the radiation from the black hole is confined to a 3-brane embedded in

the d-dimensional space-time Then the luminosity will be modified from that of the bulk

luminosity (5.69). A higher-dimensional black hole will induce the following metric on the

3-brane.

ds2
b � �fdprqdt2 � fdprq�1dr2 � r2dΩ2

2 (5.71)
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Here we will use a subscript d to distinguish quantities that depend on the number of extra

dimensions n � d�4 where fdprq is the d-dimensional lapse function (5.3). It follows that

the luminosity of spin-1 radiation in the 3-brane will have the form

Lbr � 4πσ4r
2
s,dT

4
d (5.72)

Which for quantum black holes gives a luminosity on the brane

Lbr � p4πq�3σ4r
�2
s,d pd� 3� ηs,dq4 (5.73)

The mass dependence is given by

Lbr �M2
D

�
MD

Mc


 2
d�3 4πσ4pd� 3q4

p4πq4c
2
d�3

d

x2
�Z

4
T pΩq (5.74)

The luminosity on the brane will fall to zero when the temperature vanishes at M �Mc.
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Figure 5.10: Here we plot the luminosity on the brane in d � 7 with MD � Mc and

compare it to the classical luminosity which diverges.

5.5.1 Maximum luminosity

Since the luminosity both in the bulk and on the brane vanish for both M{Mc Ñ 8 and

M �Mc it follows that there is some mass scales ML and MLbr for which L and Lbr have

maximums. To find ML we take a derivative of (5.69) with respect to rs and find the
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condition for a maximum given by

dL

drs
� σdΩd�2pd� 3� ηsqd

p4πqd r�3
s

�
�2� d

1
d� 3� ηs

Bηs
B ln rs



� 0 (5.75)

Although this expression vanishes for ηs � 3�d this is clearly a minimum of the luminosity

at L � 0. The value of the anomalous dimension for which L has its maximum ηL �
ηprspMLqq comes from the vanishing of the expression inside the large brackets of (5.75)

which lies in the range 0 ¡ ηL ¡ 3� d. Using the one-loop running the condition for the

maximum luminosity becomes

d2 p�ηLq � dη2
L � 2dηL � 2d� 2ηL � 6
d� ηL � 3

� 0 (5.76)

The corresponding root is a function of the dimensionality

ηL � �d2 �?
d4 � 4d3 � 16d� 4� 2d� 2

2d
. (5.77)

In d � 4, 5, ...., 10 the anomalous dimension ηL takes values �0.219,�0.254,�0.245,

�0.226,�0.207,�0.190,�0.174. Taking the limit d Ñ 8 we have ηL Ñ 0. which implies

that in higher dimensions the luminosity will reach a maximum early on in the evaporation

process. In fact in all dimensions d ¥ 4 we have ηL ¡ η̃c implying that the luminosity will

always reach a maximum before the temperature whereas for d ¥ 5 we have ηL ¡ η̄c which

means for higher dimensional black holes the luminosity in the bulk reaches a maximum

before the specific heat.

We can repeat this analysis for the brane emission by taking a derivative of the lumin-

osity Lbr given by (5.73)

dLbr
drs

� p4πq�3σ4r
�3
s pd� 3� ηsq4

�
�2� 4

1
d� 3� ηs,d

Bηs,d
B ln rs



� 0 (5.78)

and repeating the steps used for L. We find that anomalous dimension corresponding to

the maximum brane luminosity is given by

ηLbr � �1
4
p2d� 3�

a
33� 20d� 4d2q (5.79)

which takes values �0.219,�0.314,�0.363,�0.392,�0.411,�0.424,�0.434 in dimensions

d � 4, 5, ...., 10. These values are slightly more negative than those found for the anomalous

dimension at the (local) maximum of specific heat η̄c. In the limit d Ñ 8 we have

ηLbr Ñ �1
2 which is the same behaviour seen for η̄c in the large dimension limit.

All the various masses which we have calculated by finding the corresponding horizon

anomalous dimension and plugging it into (5.14) are plotted in 5.11. These masses each

correspond to the maximum of some quantity which does not have a maximum in the
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Figure 5.11: Here we plot several critical black hole masses, as a function of dimensionality

d, corresponding to the mass at maximum temperature M̃c(bottom, purple), mass at the

local specific heat maximum M̄c (red), mass at maximum bulk luminosity ML (green, top)

and mass at maximum luminosity confined to the brane MLb (blue, dashed). Note that

the curves M̄c and MLb lie very close to each other.

classical theory (at least at M � 0). These emergent mass scales are all proportional to

Mc which itself represents the minimum mass of an RG improved black hole. Each of the

masses increases with dimensionality.

Plugging the expressions (5.77) and (5.79) for ηs into (5.14) we obtain the masses ML

and MLbr for which the luminosities reach a maximum as a function of the dimension d.

The maximum luminosity is then found by plugging (5.77) and (5.79) into (5.69) and (5.72)

via the expression (5.15) for rs. In both cases the maximum luminosity has a dependence

on the mass scale Mc given by

Lbr,max9Lmax9M2
D

�
Md

Mc


 2
d�3

. (5.80)

Clearly the classical limit in which the luminosity diverges is given by Mc Ñ8.



135

Vanishing luminosity

In the limit that the mass of the black hole approaches the critical mass Mc the luminosity

in the bulk L vanishes. This vanishing for the bulk luminosity is proportional to the

vanishing of T d given by (5.33)

LpMq9pM �Mcq
d
2 . (5.81)

Similarly the luminosity on the brane vanishes as T 4

LbrpMq9pM �Mcq2 (5.82)

As we will see shorty in section 5.6 the vanishing of the luminosity means that the evap-

oration process slows down as M ÑMc.

5.6 Evaporation

In this section we will consider the evaporation process of the RG improved black hole

and explore its causal structure.

5.6.1 Quantum Vaidya metric in d dimensions

Here we will explore the space-time structure of an RG improved higher dimensional

Vaidya metric which gives the metric of an evaporating black hole to first order in lu-

minosity. We follow Reuter and Bonnano’s paper where they study the d � 4 case and

generalise the case for d ¥ 4. We expect the RG improved Vaidya metrics to be a valid

description of an evaporating quantum space-time provided the Luminosity remains small

from (5.80) Our starting point is to define a set of Eddington-Finkelstein coordinates. We

define an advanced time v in terms of the higher dimension quantum black hole metric

(5.2)

v � t� r� (5.83)

here r� is the tortoise coordinate given by

r� �
» r

dr1
1

fpr1q (5.84)

We note that (5.84) implies dv � dt � dr{fprq and we can write the metric (5.2) in

Eddington-Finkelstein coordinates as

ds2 � �fprqdv2 � 2dvdr � r2Ω2
d�2 (5.85)
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Figure 5.12: . Here we plot the mass of the black hole as a function of the time v for

various initial masses M0 � Mp0q in d � 7. The black hole evaporates radiation into the

7-dimensional space-time and steadily loses mass until M Ñ Mc where the evaporation

process slows down.

To describe the structure of an evaporating black hole we introduce a time dependent

mass Mpvq which decreases as the black hole radiates energy. By using the luminosity

calculated for a static black hole we can find the mass of the black hole Mpvq, as observed

by a distant observer at time v, by solving the differential equation

� d

dv
Mpvq � LpMpvqq (5.86)

By replacing M with Mpvq we recover the RG improved Vaidya metric in d ¥ 4 dimensions

ds2 � �p1� cdGprqMpvqr3�dqdv2 � 2dvdr � r2Ω2
d�2 (5.87)

which describes an evaporating space-time to first order in the luminosity. Using the

explicit form of the luminosity (5.70) we can find numerical solutions for Mpvq in any

dimension d ¥ 4. We will assume that the black hole is formed at time v � 0 and then

study the numerical solutions to (5.86) for various values of the initial mass M0= M(0).

These numerical solutions for Mpvq can then be plugged back into (5.70) and (5.27) to

find the time dependent functions Lpvq and T pvq. In Figs 5.12, 5.13 and 5.14 we plot the

time dependence of Mpvq, T pvq and Lpvq of a d � 7 dimensional black hole evaporating

in the bulk. Figs 5.15, 5.16 and 5.17 show the time dependence of the mass, temperature

and luminosity of a d � 7 dimensional black hole radiating on the 3-brane.
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Figure 5.13: Here we plot the temperature of the black hole as a function of the time v

for various initial masses M0 � 24Mc, 12Mc, 6Mc and 3Mc(from right to left) in d � 7.

As M ÑMc the temperature falls to zero slowly as L � v�7{5.

Semi-classical limit

We can recover an analytical description of the very early evaporation process as long as

the initial mass M0 " Mc such that the quantum effects can be neglected. In this case

LpMq and T pMq are given by their classical expressions

T pMq � d� 3

4πpcdG0Mq 1
d�3

(5.88)

and

L � BdpcdG0Mq �2
d�3 (5.89)

where Bd is the constant

Bd � σdΩd�2

p4πqd (5.90)

We can then solve (5.86) to find

Mpvq �
�
M

d�1
d�3

0 � d� 1
d� 3

pd� 4qdBdpcdG0q
�2
d�3 v


 d�3
d�1

(5.91)

Criticality

In addition to the large mass limit we can also solve (5.86) in the limit M Ñ Mc. In

this limit both the temperature and luminosity vanish corresponding to the end of the
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Figure 5.14: Here we plot the luminosity of d � 7 dimensional black hole as a function of

the time v for initial masses M0 � 24Mc, 12Mc, 6Mc and 3Mc(from right to left) in d � 7.

As M ÑMc the luminosity diminishes as L � v�1{5.

evaporation process. In this limit we obtain expressions for T and L given by

T pMq � C1M
1{2
c

a
M �Mc (5.92)

and

LpMq � C2M
4�d
2

c pM �Mcq
d
2 (5.93)

where C1 and C2 are constants. Solving (5.86) using (5.93) we get

Mpvq �Mc � M1 �Mc�
1� d�2

2 C2M
4�d
2

c pv � v1qpM1 �Mcq d�2
2


 2
d�2

(5.94)

where M1 �Mpv1q. In the limit that v Ñ8 the difference Mpvq�Mc vanishes as 1{v 2
d�2

implying that the temperature and luminosity go to zero as T � 1{v 1
d�2 and L � 1{v d

d�2 .

5.6.2 Hawking radiation in the 3-Brane

If we assume that spin one particles are confined to a 3-brane it follows that the radiation

in the form of spin-1 particles will be emitted only in the brane. A higher-dimensional

black hole will induce the following metric on the 3-brane. Here we will use a subscript d

to distinguish quantities that depend on the number of extra dimensions n � d� 4

ds2
br � �fdprqdt2 � fdprq � fdprq�1dr2 � r2dΩ2

2 (5.95)

where fdprq is the d-dimensional lapse function (5.2). It follows that the luminosity of

spin-1 radiation in the 3-brane will have the form
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Lbr � σ4Ω2r
2
s,dT

4
d � B4f

1px�q4r�4
cl,dr

2
s,d (5.96)

Again we can solve (5.86) to find the time dependence of Mpvq, Lpvq and T pvq
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Figure 5.15: Here we plot the mass of d � 7 dimensional black hole evaporating in the

brane as a function of the time v for initial masses M0 � 24Mc, 12Mc, 6Mc and 3Mc in

d � 7.

Semi-classical limit

In the early stages we have

Lbrane � σ4Ω4pd� 3q4
p4πq4 pcdG0Mq �2

d�3 (5.97)

Mpvq is then given by

Mpvq �
�
M

d�1
d�3

0 � d� 1
d� 3

B4pd� 3qdpcdG0q
�2
d�3 v


 d�3
d�1

(5.98)

with B4 � σ4Ω4
p4πq4 .

Criticality

For the late times where M ÑMc the luminosity is given by

LpMq � C2,dpM �Mcq2 (5.99)

where C2,d is a constant. The time dependence of the mass is given by

Mpvq �Mc � M1 �Mc

1� C2,dpM1 �Mcqpv � v1q (5.100)
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Figure 5.16: The temperature of a 7 dimensional black hole evaporating in the brane.

For initial masses M0 � 24Mc, 12Mc, 6Mc and 3Mc (from right to left).

.

On with radiation confined to the brane we see that that in the late time limit v Ñ8 we

have Mpvq �Mc � 1{v which leads to the temperature vanishing as T � 1{?v and the

luminosity diminishing as L � 1{v2.

5.6.3 Apparent Horizons

When considering the time dependent RG improved Vaidya metric one finds the existence

of horizon-like d � 1-surfaces which are the histories of spherical d � 2-surfaces. To find

the apparent horizons of a given space-time one must define an affine parameter λ which

parameterises a null geodesic xµpλq. An affine parameter defines a null vector field

nµpxpλqq � d

dλ
xµpλq (5.101)

such that n is a contravariant vector satisfying the geodesic equation

nνDνn
µ � 0 . (5.102)

The apparent horizon is then found to be the surface for which the divergence of the null

vector field Dµn
µ vanishes. If we consider a radial outgoing null geodesic, i.e. ds2 � 0 �

Ω2
d�2, in the RG improved Vaidya space-time with the general line element given by

ds2 � r�fpr, vqdv � 2drsdv � r2dΩ2
d�2 (5.103)

we have fpr, vqdv � 2dr. We can then parameterise r � rpvq by the advanced time v

this implies that 9rpvq � fprpvq, vq{2 where the dot denotes a derivative with respect to v.
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Figure 5.17: The temperature of a 7 dimensional black hole evaporating in the brane.

For initial masses M0 � 24Mc, 12Mc, 6Mc and 3Mc (from right to left).

.

However, if we use v to define a null vector field uµpxpvqq � d{dv xµpvq it can be shown

that u fails to satisfy (5.102) and hence that v is not an affine parameter. In particular

uνDνu
µ � κuµ where

κ � 1
2
B
Brf (5.104)

To continue we must re-express the null geodesic xpvq in terms of an affine parameter. To

do this we follow [31] and compute a function λpvq by integrating

d

dv
λpvq � exp

» v
dv1κpxpv1qq (5.105)

From its inverse v � vpλq we can define the null geodesic xµpλq � xµpvpλqq whose null

vector field is given by

nµpxpλqq � d

dλ
xµpλq � e�Γpxquµpxq (5.106)

where Γpxq satisfies

uµBµΓ � κ (5.107)

One can then show that (5.106) satisfies (5.102) and hence that λ is an affine parameter.

One can now compute the divergence

Dµn
µ � e�ΓpDµu

µ � κq � pd� 2q 1
2r
eΓf (5.108)

which vanishes if and only if f � 0. From (5.87) we can then write the apparent horizon

condition as

rd�3
� pMpvqq � cdMpvqGprspMpvqq,Mpvqq (5.109)
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Another topologically spherical (d-2)-surface called the timelike limit surface (TLS) loc-

ated at rTLS such that for r   rTLS the vector B{Bv becomes spacelike. As gvv � �f
we see that the TLS coincides with the apparent horizon rTLS � r�. This is generally

true for spherically symmetric space-times but in the case of a rotating black hole where

rTLS � r�.

5.6.4 Event horizon

Radial outgoing light rays have a world line given by rpvq where

drpvq
dv

� 1
2

�
1� cdGprpvqqMpvq

rpvqd�3



. (5.110)

We observe that in Eddington-Finkelstein photons have a velocity which vanishes on the

apparent horizon. The event horizon EH of the space-time is defined to be outermost locus

traced by outgoing photons that can never reach arbitrarily large distances. As such to

locate the position of the event horizon one needs knowledge of Mpvq for arbitrarily late

times. General analytic solutions to (5.110) are not currently available and therefore we can

not have an analytical expression for the radius of the event horizon rEHpvq. However, we

can numerically integrate the equation for different initial conditions to see the behaviour

of light rays during the evaporation process and therefore deduce the location of the event

horizon.

To find an analytical approximation to this definition we can follow York’s [199, 198]

working definition for the horizon which does not require knowledge of very late times.

This approximation was used by Reuter and Bonanno [31] in the d � 4 case and was

shown to give a good approximation to the exact result given by numerically solving

(5.110). York’s proposal is to identify the approximate location of EH with the radius

for which a photons acceleration vanishes :rEH � 0. To locate the radius rEH in York’s

approximation we take the second derivative of (5.110) to obtain

:r � 1
2

�
LpvqcdGprq

rd�3
� pd� 3qcdGprqMpvq

rd�2
9r � cdG

1prqMpvq
rd�3

9r



(5.111)

Thus when :r � 0 the velocity is given by

9rEH � �LGprEHq
�
pd� 3qGprEHqM

rEH
�G1prEHqM


�1

(5.112)

Since the RG improved metric (5.87) is only valid to leading order in L we will only be

concerned with the difference r� � rEH to order L. As such we may replace rEH with r�

in the RHS of (5.112) and use (5.109) to obtain

9rEH � � LcdGpr�q
pd� 3qrd�4

� � cdG1pr�qM
� � LcdGpr�q

pd� 3� ηpr�qqrd�4
�

(5.113)
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Here we see that because the product GL is only dimensionless in d � 4 (5.113) gains

an additional r�-dependence for d � 4. On the LHS of (5.113) we may replace 9rEH

= 1{2 fprEHq however we know that fpr�q � 0. As such we may expand fprEHq �
fpr�q � prEH � r�qf 1pr�q � OpL2q and hence we find to leading order in L that 9rEH �
prEH � r�q f 1pr�q{2. Using this we find the approximation of rEH to order L is given by

rEH � r�

�
1� 2cdLGpr�q

rd�4
� pd� 3� ηpr�qq2

�
(5.114)

If we now plug in the expression (5.69) for the bulk luminosity we obtain

rEH � r� � 2
M

σd Ω̄d�2

p4πqd pd� 3� η�qd�2 (5.115)

where η� � � r�
Gpr�qG

1pr�q is the anomalous dimension evaluated on the apparent horizon.

If rEH is to be a good approximation it is important that r�   rEH for the whole evap-

oration process. Otherwise the event horizon would be inside the inner horizon. This is

ensured if

r� � r� ¡ 2
M

σd Ω̄d�2

p4πqd pd� 3� η�qd�2 (5.116)

If this condition is violated it is likely that the RG improved Vaidya metric is not a valid

approximation. We note that classically the RHS of this inequality diverges in the limit

M Ñ 0 however due to the non vanishing anomalous dimension quantum corrections

mean that the RHS vanishes in the limit M ÑMc as pM �Mcq d�2
2 . We can express this

condition in terms of a function of the dimensionless variable Ω using the solutions to

(4.33) x�pΩq � r�{rcl and x�pΩq � r�{rcl. In arbitrary dimension d ¥ 4 we have

�
Mc

MD


 d�2
d�3

¡ Y pΩq (5.117)

Y pΩq � 2
σd Ω̄d�2c

1
3�d

d

p4πqd
Ω
Ωc

pd� 3� pd� 2q Ω
x�
qd�2

x� � x�
(5.118)

Provided Y pΩq is bounded from above a maximum values Ymax then the condition that

rEH ¡ r� for the whole evaporation process is given by

�
Mc

MD


 d�2
d�3

¡ Ymax (5.119)

Proving the existence of Ymax in arbitrary dimension is beyond the scope of our current

work. Instead in Fig. 5.18 we plot Y pΩq in dimensions d � 4 to d � 10 and observe that a

maximum exists for each dimension and grows as the dimensionality increases. In d � 4

we have Ymax � 10�5 where as in d � 10 it grows to Ymax � 10�4.
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Figure 5.18: The function (5.118) is plotted as a function of the Ω which parameterises

the black hole mass assuming radiation in the bulk space-time. In order that our approx-

imation doesn’t breakdown we require
�
Mc
MD

	 d�2
d�3 ¡ Y pΩq. We consider all dimensions

d � 4, ...10 and observe in each case that Y pΩq is bounded from above.

.

We can now repeat the analysis for the case of brane emission. In this case York’s

approximation to the event horizon gives

rEH � r�
�

1� 2cdLbrGpr�q
rd�4
� pd� 3� ηpr�qq2

�

� r� � 2
σ4

p4πq3
1
M
pd� 3� ηpr�qq2 (5.120)

The condition that rEH ¡ r� throughout the evaporation process can again be expressed

using a function of the dimensionless parameter Ω

�
Mc

MD


 d�2
d�3

¡ YbrpΩq (5.121)

YbrpΩq � 2
σ4 c

1
3�d

d

p4πq3
Ω
Ωc

pd� 3� pd� 2q Ω
x�
q2

x� � x�
. (5.122)

This function can again be plotted in arbitrary dimension d ¥ 4 to check that it has

a maximum between Ω � 0 and Ω � Ωc. In Fig. 5.19 we plot YbrpΩq in d � 5 to

d � 10 dimensions as for the case of the bulk luminosity we see that the maximum grows

with dimensionality. In d � 5 the maximum is at Ybr,max � 10�4 where as in d � 10 in is

approximately Ybr,max � 10�3. We conclude that for both the bulk and brane emission the

approximation will not break down provided the quantum corrections are strong enough

such that the the mass of the smallest black hole Mc is sufficiently large compared to the

Planck mass MD which also ensures that the maximum luminosity (5.80) is small.
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The gap between the apparent horizon and the event horizon ∆r � r��rEH ¥ 0 means

that there exists a “quantum ergosphere” [198][31] from which particles may escape the

apparent horizon and propagate to infinity. This is illustrated in Fig. 5.20 in d � 11

We conclude that the causal structure of an evaporating RG improved black hole in

d ¡ 4 is qualitatively the same as that found previously in d � 4 [31].
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Figure 5.19: The function (5.122) is plotted as a function of the Ω which parameterises

the black hole mass. In order that our approximation doesn’t breakdown for radiation

on the brane we require
�
Mc
MD

	 d�2
d�3 ¡ YbrpΩq. We consider all dimensions d � 4, ...10 and

observe that YbrpΩq is bounded from above in every dimensions.

.

5.7 Limitations

The limitations of a thermodynamical description of black holes have been argued in [79]

(also see [155]). It is argued that thermodynamics will break down due to uncontrollable

thermal fluctuations for an extremal black hole where the temperature vanishes. One

limitation is due to the of back-reaction of particles created at the horizon. The typical

quanta emitted from the black hole has an energy proportional to the temperature E9T
which implies that the mass will decrease by δM � T when one single quanta is emitted

from the black hole. The condition that we can neglect back reaction |δT | ! T is given by

����T BT
BM

���� ! T (5.123)

This is equivalent to |CV | " 1 which is violated as M ÑMc. Thermodynamical arguments

[102] also suggest that in the limit CV Ñ 0 thermal fluctuations become large for both
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Figure 5.20: The quantum ergosphere of an d � 11 dimensional black hole. On the

horizontal is the time v while the vertical is the radial coordinate rpvq. We plot three

radial outgoing light rays (red) in the evaporating space-time two of which two escape

the black hole reaching asymptotically large radii. The third falls into the black hole.

The blue line (above) is the apparent horizon where as the black line is the event horizon

in-between these is the ergosphere from which the two light rays escape. The third light

ray is within the event horizon and cannot escape.

.

temperature and entropy. For temperature we have

xp∆T q2y
T 2

� 1
CV

(5.124)

which diverges in the limit CV Ñ 0.

A second limitation comes from the statistical origin of thermodynamical laws. The

number degrees of freedom of a black hole is roughly its entropy S. For black holes with

a minimum mass the relevant degrees of freedom is approximately given by the available

entropy N � SpMq � SpMcq. Small statistical fluctuations then require

1a
SpMq � SpMcq

! 1 . (5.125)

Another necessary requirement is that the life time of the black τ " 1{M such that

it constitutes a well defined resonance in the s-channel. For a minimum mass Mc the
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condition τpM,Mcq " 1{pM �Mcq where τpM,Mcq is the time for which it takes a black

hole of initial mass M to reach a Mc. This time would seem to be infinite provided our

approximation holds in the limit M ÑMc (see (5.94) and (5.100)).

If we consider the emission spectra of particles being emitted from the black hole there

are further limitations on the black hole decay. For example it is unphysical for a particle

to be emitted with an energy greater than the mass E ¡M therefore it seems appropriate

to put a kinematical limit on the emission spectra E  M{2.

Clearly there are many limitations that are violated in the limit M Ñ Mc. Therefore

it is hard to make any hard statements about the stability of quantum black holes in this

limit. However there are two apparent possibilities. The black hole mass could remain

M ¡ Mc for an infinite amount of time such that we are left with a stable cold remnant.

On the other hand there are reasons to suspect that this is not the case if we consider the

emission spectra of the black hole. If the limit M ÑMc the temperature T � ?
M �Mc

this implies that as M Ñ Mc the emission spectra of the black hole will become peaked

at some energy Epeak ¡ M �Mc. If such a quanta were emitted from the black hole the

mass would fall below M   Mc implying a vanishing of the apparent horizon in a finite

time.

Further limitations are associated to the black hole when the temperature becomes

large. These limitations apply to the semiclassical phase where the black hole has a

negative specific heat. In particular the black hole temperature should remain much less

than the mass of the black hole T ! M . Since T   Tcl it follows that the quantum

corrections allow for a thermodynamical description to be valid for a higher range of

mass.

The specific value of Mc{MD sets the mass scale Mmin for which thermodynamics

breaks down. The ratio T {M � pMD{Mcq
d�2
d�3 it follows that provided Mc is large enough

T ! M can be satisfied for all M also we have SpMq � SpMcq � pMc{MDq
d�2
d�3 . We will

define the mass Mmin by
a
SpMminq � SpMcq � 5 which corresponds to the assumption

that thermodynamics still gives a reasonable approximation for N � 5 quanta. In general

we find that
b
SpM̃cq � SpMcq Á 5 provided Mc Á 3MD therefore we expect that if

Mc   3MD thermodynamics will break down before the mass reaches M̃c and thus before

the temperature reaches a maximum T pM̃cq � Tmax.
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Figure 5.21: . This plot shows
a
SpMq � SpMcq as a function of the black hole mass M

as
a
SpMq � SpMcq approaches one we expect a thermodynamical description to break

down. We plot for Mc
MD

� 1, 3 and 5 in d � 8.

5.8 Conclusion

In this chapter we have studied the thermodynamical properties of black holes in d ¥ 4

including quantum corrections from the renormalisation group. The quantum corrections

come solely from the running of the Newton’s constant Gk by relating the RG scale to the

radial coordinate k91{r and can be parameterised in terms of the anomalous dimension

η � kBk lnGk. Expressed as a function of the black hole radius the temperature takes

the form of the classical temperature with the replacement d Ñ d � ηs where ηs is the

anomalous dimension evaluated at the horizon. This implies a kind of dimensional reduc-

tion when ηs is negative. An infinitesimal variation of the entropy is given by δS � δA
4Gprsq

which resembles the Bekenstein-Hawking entropy with the replacement GN Ñ Gprsq.
Provided gravity weakens in the UV such that at some finite scale kc the anomalous

dimension takes the value ηc � 3� d there exists a smallest black hole mass Mc. Further-

more, the existence of the smallest black hole mass implies that the Hawking temperature

has maximum Tmax at a mass M̃c ¡ Mc and vanishes as M Ñ Mc with a square root

behaviour T � ?
M �Mc. At T � Tmax the specific heat has a pole with a universal

scaling exponent CV � pT � Tmaxq� 1
2 . The onset of quantum corrections is indicted by a

local maximum of the specific heat which occurs at a mass scale M̄c ¡ M̃c. We emphasise

that these results are universal both in the dimension and in the exact form of the running

Gk provided the anomalous dimension reaches the critical value ηc.

When we take Gk to have a simple one loop-type form which exhibits a UV fixed point
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Gk � k2�dg� in the limit kd�2 we parameterise the strength of the quantum corrections in

terms of the mass scale Mc. When we take Mc Ñ 0 we obtain semi-classical limit which

may also be obtained dynamically for M " Mc. Also the simple form of the running

allows us to associate values of the anomalous dimension η̄c and η̃c with maximums in the

specific heat and temperature. In turn this allows for the explicit calculation of the mass

scales M̄c and M̃c and the (local and global) maximum values of Cmax and Tmax.

From the effective energy momentum tensor we identified two energies Us and Qs

associated with the interior and exterior of the black hole where M � Us�Qs. Associated

to these are the entropies SBH � A
4GN

and a logarithmic correction SQ associated to

the energy momentum tensor outside the horizon. This suggests that at least some of

the entropy associated to the space-time lies outside the horizon and therefore that the

corresponding information could be retrieved.

We considered evaporation both in the bulk and constrained to a 3-brane. In both

cases the luminosity vanishes as M Ñ Mc and this implies that the evaporation process

slows down such that it takes an infinite time before the mass reaches Mc. However in this

limit thermal fluctuations of the temperature become large and the square root behaviour

of the temperature implies that T {pM �Mcq Ñ 8. It is therefore possible that the black

hole is unstable in the critical limit. If a quanta of energy E ¡M �Mc were emitted from

the black hole it would mean that there exists no event horizon since after the emission

all outgoing light rays will propagate to infinity. Whether this happens or not it does not

answer the questions as to how, and if, information escapes the black hole for M ¡ Mc.

We will come back to this question in the next chapter where we consider black hole

thermodynamics from a Wilsonian viewpoint.

Finally we comment that the findings presented in this chapter can be used as input

for phenomenological studies of black hole production and decay at the LHC. We hope to

come back to this point in future work.
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Chapter 6

Black hole thermodynamics under

the microscope

6.1 Introduction

In this chapter we explore the idea that a successive coarse-graining in a Wilsonian sense

can give rise to the thermodynamics associated to black hole horizons. Since the RG

uses coarse-graining as fundamental concept it seems like natural tool to apply to ther-

modynamics where the coarse-graining of microscopic degrees of freedom is implied. This

allows for a continuous interpolation between the well-established black hole thermody-

namics of macroscopic black holes, and quantum gravity corrections thereof. Our logic

will be partially inspired by ideas linking gravity directly to thermodynamics in that we

will apply RG ideas directly to black hole thermodynamics with little reference to the

underlying metric. Part of the inspiration for RG improvements of the black hole thermo-

dynamics comes from the observation in chapter 5 that a change in the entropy of an RG

improved black hole metric (5.61) appears in form similar to the semi-classical expression

but with the gravitational coupling replaced by the running coupling evaluated at the

horizon Gprsq. Additionally, Jacobson has shown [94] that by assuming that a change

in entropy of a causal horizon is proportional to a change in its area one may derive the

Einstein equations from a the thermodynamical relation δQ � TδS. Thus we expect that

a renormalisation group improvement of the thermodynamics to give similar results to an

RG improvement of the Einstein equations.

The rest of the chapter is as follows. We begin in section 6.2 with a quick review of

black hole thermodynamics. In section 6.3 we will construct an RG inspired model of

black hole thermodynamics for Kerr-Newman type black holes. This will lead to an RG
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improved relation ApM,J, qq between the black hole area A and the conversed charges

which integrates the RG flow of Γk via scale dependent couplings ek and Gk. In section

6.4 we will give an explicit example of this model for a rotating black hole based on a

simple RG running for Gk which exhibits a UV fixed point. In section 6.5 we will show

how the RG improved thermodynamics is related to RG improved black hole metrics and

their statistical entropy. We end the chapter in 6.6 with a discussion and our conclusions.

6.2 Black hole thermodynamics

In this section we provide a brief overview of black hole thermodynamics and introduce

some notation.

In four dimensions stationary black hole solutions to the coupled Einstein-Maxwell

equations are parameterised by their mass M , angular momentum J and charge q[37, 167],

a result known as black hole uniqueness. This set of most general black hole solutions for

long ranged forces, the Kerr-Newman black holes, are expected to be the end points of

gravitational collapse [188]. It follows from black hole uniqueness that the area of the

horizon may be considered as a function ApM,J, qq.
If an infinitesimal amount of matter crosses the horizon the area A of the horizon will

vary according to [13]
κ

8πGN
δA � δM � ΩδJ � Φeδq (6.1)

where κ, Ω and Φ are the surface gravity, angular velocity and electric potential evaluated

at the horizon. Here GN and e denote Newton’s constant and elementary electric charge,

respectively (we work in units c � 1). In this chapter we make the split q Ñ eq where q is

the quantity of charge and e is the coupling which we will renormalise. The equation (6.1)

has the form of the first law of thermodynamics δU � δQ� µiδNi for which the internal

energy U is associated to M , the heat crossing the horizon δQ is identified with κ
8πGN

δA

and the conserved quantities Ni and the associated chemical potentials µi with tJ, qu and

tΩ,Φu, respectively. As in conventional thermodynamics one can think of the black hole

area A as a “state function” ApM,J, qq, defining a set of states parameterised by M , J

and q. Then by taking appropriate derivatives in line with the first law (6.1), one can

obtain the intensive quantities κ, Ω and Φ. For an equilibrium thermodynamical process

at temperature T , the heat transfer δQ due to the motion of coarse-grained microscopic

degrees of freedom is related to the change in entropy δS by

δQ

T
� δS . (6.2)
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Additionally the second law of thermodynamics states that the entropy of an isolated

system can never decrease δS ¥ 0.

By considering a Gedanken experiment in which some hot gas is thrown into a black

hole, J. Bekenstein conjectured [14] that a black hole should itself have an entropy pro-

portional to its horizon area S9A in order that the second law of thermodynamics is not

violated. Shortly after this, S. Hawking [88] showed, by studying a quantum field theory

on a classical black hole space-time, that black holes will actually emit thermal radiation

with a temperature T � h̄ κ
2π . Thus, identifying the heat flow of some microscopic degrees

of freedom at a temperature h̄ κ
2π crossing the horizon to be

δQ � δM � ΩδJ � Φeδq (6.3)

the first law of black hole thermodynamics implies that the entropy of the black hole is

given by

SBH � A

4h̄GN
. (6.4)

We will now use units in which h̄ � 1.

S. Hawking’s original derivation of the black hole entropy (6.4) centrally relied on ther-

modynamical reasoning and a semi-classical approximation for quantum gravity. However

later it was shown by G. Gibbons and S. Hawking [77] that it is also possible to obtain

these results directly from the Euclidean path integral for quantum gravity taking the

Einstein-Hilbert action (with vanishing cosmological constant and the appropriate bound-

ary terms) as the saddle point approximation. Thus, the entropy (6.4) also corresponds

to the correct statistical entropy within this approximation to the full path integral.

6.3 Black holes under the microscope

In this section we introduce our set-up to implement quantum corrections to the physics

of black hole thermodynamics using a continuous Wilsonian renormalisation group.

6.3.1 Action

To be specific, we are interested in a four-dimensional theory involving gravity, Up1q
gauge fields, and possibly matter fields. In the spirit of a scale-dependent effective action

we describe their dynamics in terms of the “flowing” Einstein-Hilbert action coupled to

photons and matter, approximated by

Γkrgµν , Aµs �
»
d4x

a
�det gµν

�
1

8πGk
R� 1

4αk
FµνFµν

�
� Sm . (6.5)
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Here, R denotes the Ricci scalar and F the field strength of the photon, and Sm stands

for a possibly scale-dependent matter action. The effective action differs from the classical

Einstein-Hilbert action coupled to matter in that all couplings are considered as running,

scale-dependent couplings. Its tree level approximation describes the quantum physics

of modes down to the energy scale k. In the deep infrared limit where the RG scale is

removed pk Ñ 0q both the running Newton coupling Gk and the running fine structure

constant αk � e2
k{p4πq will approach their low-energy values G � 6.674�10�11 N pm{kgq2

and α � 1
137 . We assume that the scale-dependence of Newton’s coupling Gk and of the

fine structure constant are known, at least approximately, though the actual form of these

functions is not important for our line of reasoning.

For large k, we will approach a fine grained action for high momentum modes. The

action (6.5) is understood as an approximate solution to the flow equation. The RG

flow of quantum gravity coupled to a Up1q gauge field with an action of this form plus a

cosmological constant has been considered in [85].

6.3.2 Black holes and entropy

At fixed k, and by varying Γk with respect to the metric and the gauge fields we recover

the Einstein-Maxwell theory coupled to an energy momentum tensor Tµνm and a current

Jµ obtained from the matter action Sm. Setting Jµ � 0 and Tµνm � 0 Kerr–Newman-type

black holes are the unique stationary black hole solutions. The sole difference with the

standard solutions is that the couplings Gk and αk explicitly take k-dependent values. As

such we have a family of Kerr-Newman black hole solutions characterised by a fundamental

relation between its mass M , the horizon area A, charge Q, and angular momentum J ,

and the RG scale k. This relation has the form

A � ApM,J, q; kq (6.6)

where the scale-dependence enters the equation only implicitly via the couplings Gk and

e2
k. The equation (6.6) expresses an on-shell relation with respect to the underlying action

Γk. The scale k indicates that degrees of freedom with momenta above k have been

integrated out to give rise to a semi-classical space-time geometry. It is our assumption

that these microscopic degrees of freedom also give rise to the thermodynamical properties

of space-time. Under this assumption we think of their black hole entropy

Sk � A

4Gk
(6.7)
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as accounting for those degrees of freedom which have already been integrated out from

the path integral. With the area A given by (6.6) the relation (6.7) will give an on-

shell expression for the entropy Sk � SkpM,J, q; kq. We could also consider an off-shell

definition for the entropy where it is not assumed that the area is given by (6.6), but

instead take (6.7) as the Wald entropy [189] obtained from the underlying action (6.5).

Consequently the entropy would depend on the metric, via A and, independently, on the

scale k. The RG flow for the off-shell entropy (6.7) taken at constant area is then given

by

B
B ln k

Sk � �Sk B lnGk
B ln k

(6.8)

and only depends on the RG flow of Gk, and not on the on-shell relation (6.6). We

can think of this flow of the entropy as the focusing of the microscope through which the

physics is viewed in contrast with changing the underlying state of the system which would

result in a variation of the area δA.

The family of Kerr-Newman black holes with (6.6) obeys the standard laws of black

hole thermodynamics for all k. This is so because the thermodynamical nature of black

hole solutions to (6.5) is independent of the numerical values of couplings. These relations

are modified as soon as the RG scale k is linked to the physical parameters of the black

hole solution.

6.3.3 Scale identification

In order to develop a renormalisation group improved version of black hole thermodynam-

ics, we identify the degrees of freedom responsible for the thermodynamical properties of

the black hole with those that have been integrated out in the underlying path integral.

To this end we will assume that there exists an optimal momentum scale k � kopt, asso-

ciated to the macroscopic space-time geometry, such that (6.5) gives a good saddle point

approximation to the full partition function. Heuristically, if k is too large, the effect-

ive action Γk is not yet a good tree level approximation for the black hole solution with

physical parameters M , J and q, and further quantum (loop) corrections will have to be

taken into account. On the other hand, for k too small the effective action and its saddle

point solution may become too coarse-grained. Therefore, there should exist an optimal

scale k � kopt which best describes the physics of the black hole geometry for given mass,

angular momentum and charge.1 Since the black hole geometries are parameterised by

1This reasoning is similar to an optimised scale identification used in the context of inflation in [193].
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M , J and q these quantities must implicitly set the optimal scale as

kopt � koptpM,J, qq . (6.9)

Under this assumption we will again have a set of Kerr-Newman-type black holes para-

meterised by M J and q, except that now the space of black hole solutions is deformed by

the underlying RG trajectory through the link (6.9). In particular, a new state function

A � ApM,J, qq is obtained by inserting k � kopt into (6.6) which, in general, may be

different from the classical state function. Below we determine the scale koptpM,J, qq up

to an overall normalisation provided that the black holes obey a scale-dependent version

of black hole thermodynamics. In order to achieve this goal we must decide on the ap-

propriate generalisation for the variation of the entropy δS. We will take this variation

as

δSkopt �
δA

4Gkopt

. (6.10)

This choice amounts to a variation of the off-shell entropy with respect to the metric field

at fixed RG scale k. This is similar to how the equations of motion are obtained from

Γk, and ensures that we compare entropies which are defined with respect to the same

coarse-graining scale. Reintroducing h̄ this choice (6.10) can be thought of varying the

entropy while keeping the Planck area l2kopt
� h̄Gkopt constant. If, on the other hand,

we are taking the full exterior derivative of Skopt we would instead gain an extra term

originating from the flow (6.8), giving

δSkopt �
δA

4Gkopt

� Skoptδ lnGkopt . (6.11)

The interpretation of this quantity is that it compares two different entropies defined

relative to two distinct coarse-graining scales. Here, we will therefore take (6.10) in favour

of (6.11).

6.3.4 Thermal equilibrium

Next we determine the scale (6.9) entering the relation (6.6) using a thermodynamical

bootstrap. We assume that (6.9) is given as a function of M , J and q. We perform

a Gedankenexperiment and allow a small amount of matter to fall into the black hole

which thereby will change in mass, charge, and angular momentum to settle down into a

new state corresponding to M � δM , J � δJ and q � δq. This process induces a change

in the scale (6.9), which will change into kopt � δkopt. In order to describe this process

thermodynamically we have to relate the change in heat with the change in entropy. We
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will assume that the relation
δQ

T
� δSkopt (6.12)

holds true, with the variation in entropy taken as (6.10). In the light of the results by

Jacobson [94], the equation (6.12) has a natural interpretation as a RG improved form

of Einstein equations on the black hole horizon. We expect on general thermodynamical

grounds that a thermal description of the black hole embodied by the relation (6.12) should

be valid provided the entropy is large S " 1 and back reaction effects can be neglected,��T � BTBM ��� ! T [155]. The heat crossing the horizon will be given by

δQ � δM � ΩδJ � Φekoptδq , (6.13)

where δQ is understood as the energy carried by the coarse-grained degrees of freedom with

energy larger than (6.9). These are the degrees of freedom that have been integrated out in

the path integral to obtain the effective equations of motion, in analogy to the ‘integrating-

out’ of individual atoms or molecules which carry heat in a standard thermodynamical

description of a gas. To continue, we note that the total change in the area of the black

hole is given by

δA � 4Gkopt

2π
κ
δQ� BApM,J, q; kq

B ln k

����
k�kopt

δkopt

kopt
. (6.14)

The first term follows from (6.1) since at constant k we obtain the classical variation of

the area. The second term takes the implicit scale-dependence of A into account. It

is proportional to the RG β-functions of the couplings and accounts for the quantum

corrections. These new terms imply that we go off-shell with respect to the equations of

motion at scale kopt to obtain a solution to the equations at a scale kopt � δkopt. In order

to identify the scale kopt which appears in (6.14) we rearrange (6.14) for δQ and insert it

into the LHS of (6.12). With the RHS of (6.12) given by (6.10) we obtain the relation

�
1� 2π

κ
T



δA � BApM,J, q; kq

B ln k

����
k�kopt

δkopt

kopt
. (6.15)

The significance of (6.15) is as follows. The classical relation between temperature and

surface gravity T � κ
2π holds true provided the RHS vanishes. In the presence of RG

corrections, the RHS describes quantum correction to the surface gravity of the black

hole. Most importantly, we note that δkopt must be proportional to δA independently of

the heat δQ. This implies that the scale kopt depends on M , J and q only through the

combination

koptpM,J, qq � koptpApM,J, qqq (6.16)
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up to an A-independent additive constant of mass dimension one. Thus we are lead to

the conclusion, via a thermodynamical argument, that the black hole area A is the unique

scale associated to the black hole geometry which determines the renormalisation group

scale koptpAq. Dimensional analysis then dictates that this relation reads

k2
opt �

4π
A
ξ2 (6.17)

where the factor 4π, the surface of the unit 2-sphere, is conventional and ξ is an un-

determined dimensionless constant. The scale identification (6.17) has a straightforward

generalization to dimensions different from four. Our thermodynamical reasoning fixes the

relation (6.17) up to the proportionality factor. This is due to the freedom in fixing the

cutoff k on the level of the RG equations via the underlying Wilsonian momentum cutoff

function Rk (not to be confused with the Ricci scalar). Hence the coefficient ξ � ξpRkq
depends on the RG scheme inasmuch as the value of kopt � koptpRkq depends on it, to

ensure that the effective physical cutoff scale kphys � kopt{ξ becomes scheme-independent.

For physical choices of the RG scheme we have ξ of order unity, and assuming that this

has been done we will set ξ � 1.

The significance of the result (6.17) is as follows. It states that the underlying effective

action Γk, (6.5), should be evaluated at the scale kopt set by the horizon area of the black

hole solution to its equations of motion. In particular, this means that the quantum

fluctuations of momentum modes larger than kopt have indeed been integrated out. As

such, the result is fully consistent with the view that the thermodynamics of black holes

originates from those degrees of freedom with k ¡ kopt. In this light, the black hole area

acts as an infrared cutoff.

6.3.5 RG thermodynamics

Given (6.17) we are now in a position to define a renormalisation group improved relation

between the area A and the parameters M , J and q by replacing the classical couplings by

running couplings evaluated at the scale (6.17). This is most neatly expressed as a mass

function

M2 � 4π
A

�
��A� 4πGoptpAqe2

optpAqq2

8πGoptpAq

�2

� J2

�
� (6.18)

which defines initial and final states of a thermodynamical process, in conjunction with a

small RG transformation. The mass function is obtained from the standard relation for

the Kerr-Newman black hole by replacing the classical couplings with GN Ñ GoptpAq �
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GkoptpAq and e2 Ñ e2
optpAq � e2

koptpAq under the identification (6.17). The relation (6.18)

then allows us to parameterise these states simply by the mass M , charge q, and angular

momentum J thus recovering a RG improved version black hole uniqueness. Solving for A

we find RG improved state functions ApM,J, qq. If there are several roots Ai for the same

values of M , J and q these have the natural interpretation as multiple horizons for the

same black hole e.g. inner and outer horizons of a Kerr black hole as in the classical theory.

Note that since these horizons generically have different entropies and temperatures, being

in thermal equilibrium with either of them corresponds to a different thermodynamical

state. Their entropy is given by

Skopt �
A

4GoptpAq (6.19)

with its thermodynamical variation given by (6.10). At this point it is useful to remember

that the scale k tells us which degrees of freedom have been integrated out in the path

integral and that the relation (6.17) is obtained by requiring that k is optimised according

to the background geometry. So the entropy (6.19) counts the number of degrees of

freedom that have been integrated out in this optimal coarse graining.

The temperature T , angular velocity Ω and electric potential Φ appear in an improved

first law of black hole thermodynamics obtained by putting the variation of the entropy

(6.10) on the RHS of (6.12) and (6.13) on the LHS, leading to

T
δA

4GoptpAq � δM � ΩδJ � ΦeoptpAqδq . (6.20)

This differs from the standard first law by the presence of the area-dependent couplings.

Also, the relation between temperature and the classical expression for the surface gravity

of the black hole receives RG corrections. (We will see in Sec. 6.5 that there exist RG-

improved metrics for which (6.20) holds true with the temperature identified with the

surface gravity felt by a test particle on these black hole metrics.) The intrinsic quantities

T , Ω and Φ are obtained by taking derivatives of M (or A) in line with (6.20). The RG

improved black hole temperature is obtained as

1
T
� 1

4GoptpAq
BA
BM (6.21)

which receives corrections containing derivatives of the couplings and their RG β-functions.

On the other hand both Ω and Φ can be simply obtained from their classical expressions by

replacing the classical couplings by the functions eoptpAq and GoptpAq. This ‘factorization’

holds true since derivatives of (6.18) with respect to J and q, by the virtue of (6.17), cannot

touch the running couplings as they only depend on the area A.
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We note in passing that if we had instead used (6.11) in the RHS of (6.12) we would

obtain a different temperature

1
T
� 1

4GoptpAq
BA
BM

�
1� B lnGpAq

B lnA



. (6.22)

In particular this would imply that if GpAq9A, the temperature would diverge due to the

vanishing of the bracket on the RHS of this equation. Here we always take (6.10) to define

the variation of the entropy and hence are lead simply to (6.21), where no such divergence

appears.

At a practical level the formalism here presented in this chapter allows us to obtain

models of quantum black hole thermodynamics given an RG trajectory for Gk and ek. This

allows for a controlled way to include quantum corrections without moving too far from

the semi-classical thermodynamics of black holes. Ultimately such a description should

break down at high energies where we expect that the action (6.5) should include higher

order terms and where the thermodynamical approximation based on Kerr-Newman black

holes will no longer be a good one.

6.3.6 Semi-classical limit

For low energies we should recover classical general relativity such that astrophysical black

holes are described by the Einstein-Maxwell equations. That is, we expect to recover the

correct semi-classical limit provided we have an RG trajectory such that we have

Gk Ñ GN for k !MP

e2
k Ñ e2 for k ! me

(6.23)

where MP � 1{?GN is the Planck mass and me is the electron mass. The relation (6.17)

implies that these limits are achieved for a black hole with a sufficiently large area A

and that, indeed, astrophysical black holes will then be described accurately by classical

general relativity. Our model of RG improved black hole thermodynamics then seems

to pass the first test of recovering the right semi-classical limit for RG trajectories that

flow to general relativity in the infra-red. We note that since MP " me there exists a

large range scales for which gravity remains semi-classical but that the running of ek will

induce quantum corrections to charged black hole solution as the radius of the black hole

approaches the Compton wavelength of an electron.
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6.4 Black hole thermodynamics and asymptotic safety

Our reasoning in the previous sections was independent of the actual form of the running

couplings Gk and αk at high energies and, therefore, of the UV completion of gravity. In

this section we consider an explicit example where gravity becomes anti-screening at short

distances, motivated by the asymptotic safety conjecture for gravity [191].

6.4.1 Fixed point and cross-over

To explore the implications of the asymptotic safety conjecture for the physics of black

holes within our model we go beyond the semi-classical approximation by assuming a

non-trivial scale-dependence of Newton’s constant. We write

1
Gk

� 1
GN

� k2

g�
(6.24)

where g� denotes the non-trivial UV fixed point of gravity. In the infrared limit k Ñ 0 the

running coupling reduces to its classical value. In the UV limit 1{k Ñ 0 the second term

takes over leading to a weakening of gravity Gk � g�{k2 Ñ 0. The quantum corrections

are responsible for the appearance of a characteristic energy scale

E2
c � g�M2

P , (6.25)

where we have introduced the Planck mass MP , with M2
P � 1{GN . At the energy scale

k � Ec we have that the tree level term equals the quantum corrections in magnitude,

and hence the scale Ec sets the boundary between IR and UV scaling. We also note that

the quantum corrections are suppressed in the limit where 1{g� Ñ 0. The meaning of this

limit is that the theory still owns an UV fixed point except that it is infinitely far away

and cannot be approached within finite RG ‘time’. This is equivalent to a semi-classical

approximation with no RG running at all.

6.4.2 Critical mass and area

We now show that an asymptotically safe RG running – such as (6.24) with the cross-over

scale (6.25) and in conjunction with the reasoning of the previous section – lead to the

appearance of a new mass scale

M2
c �

1
g�
M2
P . (6.26)

The scale Mc owes its existence to the presence of the fixed point g� and is hence absent

in the semi-classical theory. This is different from the scale MP which comes directly

from the semi-classical theory by dimensional analysis. The classical limit is recovered by
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taking 1{g� Ñ 0 where the mass scale Mc Ñ 0 disappears. The significance of the mass

scale (6.26) can be understood as follows. (For simplicity we restrict the discussion to the

case where q � 0.) Inserting the running coupling (6.24) into (6.18), we find

M2 � 4π
A

�pA� 4πG2
NM

2
c q2

64π2G2
N

� J2



. (6.27)

This function encodes all the relevant information needed to obtain properties of the

RG improved black hole via the first law (6.20). Note that it takes a form similar to the

classical Kerr-Newman black hole (i.e. (6.18) with constant G and e) with M2
c {M2

P playing

the role of the classical charge pe qq2. Taking the limit Mc Ñ 0 we obtain the classical Kerr

black hole relation between the mass, area and angular momentum. Leaving Mc non-zero

we can solve (6.27) to find the quantum-corrected area A�pM,Jq of the outer and inner

horizons of the RG improved black hole,

A� � 4πGN

�
2GNM2 �GNM

2
c � 2

b
G2
NM

4 � J2 �G2
NM

2
cM

2



. (6.28)

Taking a derivative of this expression with respect to the mass M one can find the tem-

perature of the black hole T from the first law (6.20). Similarly one may find the angular

momentum by taking a derivative with respect to J . When the expression inside the square

root of (6.28) vanishes we have degeneracy between inner and outer horizons A� � A�

and the temperature of the black hole falls to zero. This correspond to an extremal black

holes with mass

MexpJq2 � 1
2

�
�M2

c �
d

4J2 �
�
Mc

MP


4

M2
P

�
 . (6.29)

In the classical limit Mc Ñ 0 we recover the extremal Kerr mass M2
c pJq �

?
J2M2

P . The

physical meaning of the mass scale (6.26) follows from (6.29) in that it characterizes the

smallest achievable black hole mass Mc � Mexp0q. Here, the existence of a lightest black

hole is a direct consequence of the RG equations for Gk. As we probe gravity at smaller

distances the anti-screening effects weaken the gravitational interactions such that a black

hole horizon can no longer form, and the notion of a semi-classical black hole space-time

ceases to exist. The horizon area of the smallest black hole is given by Ac � 4πpGN Mcq2,

which can be written as

Ac � 4π
g�M2

P

. (6.30)

The area of the lightest black hole has a natural interpretation as the smallest unit of

area. Using (6.30) together with (6.17) identifies the optimal RG scale corresponding to

the smallest black hole as the cross-over scale (6.25), kopt � Ec. We also note that for

masses M ¡ Mc and vanishing angular momentum J � 0 an inner horizon of area A�
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Figure 6.1: Horizon temperature as a function of the black hole mass, comparing classical

gravity (dashed lines) with asymptotically safe gravity with g� � 1 (solid lines) for several

angular momenta, with a given in units of 1{Mc. Temperatures are normalised to the

maximum temperature of the asymptotically safe Schwarzschild black hole (see text).

will always be present. This holds true independently of the detailed form of the RG

equation (6.24), showing that the degeneracy of the Schwarzschild black hole is lifted by

asymptotically safe quantum effects.

6.4.3 Temperature and specific heat

The temperature of the black hole T follows from (6.27) or (6.28) through appropriate

differentiation. In Fig. 6.1 we show the temperature (6.21) of the black hole for the

outer horizon for various values of the rotation parameter a � J{M . In all cases, and in

contradistinction to the classical Schwarzschild black hole, the temperature falls to zero

in limit M Ñ Mc. This pattern implies the existence of a maximum temperature which

at J � 0 is found to scale as

Tmax9
a
g�MP . (6.31)

With (6.24) the proportionality factor reads p1�?5q1{2{p23{2p2�?5qπq � 0.024 showing

that the largest achievable temperature stays well below Planckian energies for all M ,

provided that g� is of the order one. The specific heat is defined as

C � BM
BT . (6.32)

In Fig. 6.2 we show the specific heat (6.32) in comparison with the classical result (dashed

lines) for different angular momenta. For vanishing angular momenta, the classical spe-

cific is always negative. Once quantum effects are taken into account, the specific heat

changes sign for black hole masses approaching Mc. This implies a qualitative change
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Figure 6.2: Specific heat as a function of the black hole mass, comparing classical gravity

(dashed lines) with asymptotically safe gravity (g� � 1, solid lines) for several angular

momenta a, given in units of 1{Mc (see text).

in the thermodynamics in that the BH becomes thermodynamically stable. The specific

heat vanishes once the BH mass is as low as M � Mc allowing for a cold black hole

remnant. Furthermore, for non-vanishing angular momenta, classical black holes show a

change in specific heat for sufficiently small black hole masses. Including quantum correc-

tions, we note that the sign flip in the specific heat takes place already at larger masses.

Furthermore, the critical smallest BH mass is also larger than in the classical case.

6.4.4 Semi-classical expansion

It is interesting to evaluate the implications of an asymptotically safe RG running in a

semi-classical limit which is achieved for Mc{M Ñ 0. This is equivalent to either sending

Mc Ñ 0 at fixed black hole mass M (meaning 1{g� Ñ 0q or 1{M Ñ 0 at fixed Mc. We

adopt the RG running (6.24). Expanding the state function, we find

A

Acl
� 1� 1

2

�
Mc

M


2

� 1
16

�
Mc

M


4

� J2

4

�
MP

M


4�Mc

M


2

� subleading . (6.33)

Here we have introduced Acl the area of the classical horizon which for J � 0 reads Acl �
4πp2GN Mq2. All subleading terms involve Mc and originate from quantum fluctuations

and decrease the horizon area relative to the classical horizon area at the same mass and

angular momentum. At J � 0, the RHS becomes independent of the infrared Planck scale

MP . The ratio (6.33) interpolates between 1 in the semiclassical limit and 1
4 in the limit

where M ÑMc. For the temperature, we find

T

Tcl
� 1� 1

4

�
Mc

M


2

� 5
16

�
Mc

M


4

� 5J2

16

�
MP

M


4�Mc

M


2

� subleading . (6.34)
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showing that quantum corrections decrease the temperature in comparison to the classical

one. Here, Tcl denotes the classical temperature of the black hole which reads Tcl �
M2
P {p8πMq for J � 0. The algebraic corrections to (6.33) and (6.34) originate from the

power-law running of Newton’s coupling under the RG flow (6.24).

6.4.5 Conformal scaling

We now turn to the scaling laws of black holes within asymptotically safe gravity in view of

the conformal scaling expected in the vicinity of an UV fixed point. Under the assumption

that the partition function at high energies is dominated by semi-classical black holes, it

has been suggested by O. Aharony and T. Banks [2] and by A. Shomer [174] that a quantum

theory of gravity may not exist as a local quantum field theory. Here, we evaluate this

conclusion within an asymptotic safety scenario. For want of generality we consider the

case for black holes in general dimension d, and take J � 0 for simplicity. We recall that

for a conformal field theory (CFT), the entropy and energy scale as

S � pRT qd�1, E � Rd�1T d (6.35)

where R is the radius of spacetime under consideration, and T is the temperature. It is

important when dealing with black holes to note that the black hole radius R depends on

the energy E �M of the black hole. Therefore we should consider a relation between the

entropy and energy densities of the form

S

Rd�1
�
�

E

Rd�1


ν
. (6.36)

For a conformal field theory, the scaling behaviour (6.35) dictates (6.36) with

νCFT �
d� 1
d

(6.37)

and T d�1 � S{Rd�1. The scaling relation (6.37) is different from the one put forward by

A. Shomer [174], according to which entropy scales with energy as S � E
d�1
d . The latter

would only be true if the radius was independent of the mass and entropy. This is not the

case for black holes such as those considered here. For a semi-classical black hole we have

that A � Rd�2, E � G�1
N Rd�3 and S � Rd�2G�1

N , where R is the Schwarzschild radius,

leading to the scaling relation (6.36) with index

νBH �
1
2

(6.38)

for any dimension. Not surprisingly, (6.38) shows that semi-classical black holes do not

behave as conformal field theories. This also follows from the fact that the Schwarzschild
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Figure 6.3: Scaling index for an asymptotically safe Schwarzschild black hole in four

dimensions interpolating between the classical value νBH for large horizon radii and the

conformal limit νCFT for small radii.

solution depends on the dimensionful quantity GN , implying that the physics cannot be

scale invariant. On the other hand, extrapolating down to two dimensions where GN is

dimensionless, we find that (6.37) formally agrees with the semi-classical estimate (6.38).

We now turn to the scaling of asymptotically safe black holes. The central observation

is that the horizon area always scales according to A � k2�d, and hence R � k�1. For

k ! Ec, energy, entropy and temperature scale exactly the same way as in the classical

case, leading to (6.38). For k " Ec, fixed point scaling takes over and we find that entropy

becomes a constant while both mass and temperature scale linearly with energy M � k

and T � k in this limit, leading to

T � R�1 , E �M � R�1 and S � const. (6.39)

for asymptotically safe black holes in any dimension. The scaling (6.39) is evidently

conformal, obeying (6.36) with ν given by (6.37). The appearance of conformal scaling

can also be understood by noting that fixed point removes the scale GN from the set-up.

Consequently, in the absence of any other scales, the system must fall back onto (6.36) for

any dimension. In Fig. 6.3, we have computed the index

ν �
�
d� 1� B lnS

B lnR


�
d� 1� B lnE

B lnR


�1

. (6.40)

in four dimensions along the RG trajectory (6.24), with Rc denoting the scale correspond-

ing to A � Ac and k � Ec. With decreasing R, the index shows a smooth cross-over from

classical behaviour for large R to conformal scaling for small R. We conclude that the

UV fixed point scaling of asymptotically safe gravity is encoded in the Cauchy horizon of

its black hole solutions.
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6.5 Black hole space-time metrics

In this section we implement our results to find explicit space-time metrics which carry

the physics derived in the previous sections.

6.5.1 Improved metrics

The construction presented in this chapter so far makes no reference to an explicit un-

derlying space-time metric. For some applications, it will be useful to have explicit RG

improved metrics available which carry the thermodynamics derived above. In fact, it is

possible to provide such metrics for any choice of coordinates. As an example, we con-

sider the Kerr metric for an uncharged black hole pq � 0q in the familiar Boyer-Lindquist

coordinates,

ds2 ��
�

1� 2GM r

ρ2prq


dt2 � GM r

ρ2
a sin2 θ dt dφ� ρ2prq

∆prq dr
2 � ρ2prqdθ2

�sin2 θ

ρ2prq
�pr2 � a2q2 � a2∆prq sin2 θ

�
dφ2 (6.41)

where a � J
M denotes the angular momentum in units of the mass, and

∆prq � r2 � 2GMr � a2 (6.42)

ρ2prq � r2 � a2 cos2 θ . (6.43)

The horizons radii are found from solving ∆pr�q � 0 with r� and r� the well-known outer

and inner horizon, respectively, and the horizon area is then given by A � 4π2pr2� � a2q.
In the classical theory G is a constant, given by Newton’s coupling. In the spirit of a

renormalisation group improvement, we now wish to take the RG running of couplings

into account, replacing

GÑ Gpr, � � � q (6.44)

where the new coupling Gpr, � � � q depends on the coordinates and parameters of the space-

time metric including the radial distance r. We expect, by continuity, that changes in the

numerical value of G in (6.41) along some RG trajectory account for the leading corrections

to the effective space-time geometry. The coordinate-dependence of couplings is imported

from the RG equations with GÑ Gpkq by means of a scale identification

k � kpr, θ; a,Mq . (6.45)

The scale identification (6.45) is central as it modifies the physical properties of RG im-

proved black hole metrics. In a multiscale problem identifying k with a function of the
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physical mass parameters is non-trivial. Our claim is that the scale identification

k2 � 1
r2 � a2

(6.46)

leads to an RG improved black hole space-time with identical thermodynamical relations

as those derived in Sec. 6.3. The identification implies that one recovers (6.17) and hence

Gpr�q � GoptpAq on the horizons r Ñ r�.

6.5.2 Thermodynamics

We establish the thermodynamical equivalence between RG improved black hole metrics

with (6.44) and (6.46) and the RG thermodynamics derived in Sec. 6.3. The equivalence

is such that the relation between M , J , q and A given by (6.18) is satisfied, and that

the temperature (6.21) corresponds exactly to the surface gravity of the RG improved

black hole metric, i.e. T � κ
2π . Our reasoning is independent of the specific RG scale

dependence of couplings. We consider the example of the Kerr-Newman black hole, and

begin by replacing the couplings through running couplings using (6.46). We denote them

as Gprq and e2prq, although they also depend on a. The RG improved equations for

the Kerr-Newman black hole follow from the Kerr metric (6.41), substituting 2GMr by

2GprqMr �Gprqe2prqq2. The horizon condition at radial coordinate r � r� is now given

by ∆pr�q � 0 where

∆prq � r2 � a2 � 2GprqMr �Gprqe2prqq2 . (6.47)

The area of the black hole event horizon reads A � 4πpr2� � a2q in terms of the rotation

parameter a and r�. From ∆ � 0 we have the relation

r� � A� 4πe2pr�qq2Gpr�q
8πMGpr�q . (6.48)

One then finds a state function which relates mass with angular momentum, charge and

the area

M2 � 4π
A

��
A� 4πe2pr�qq2Gpr�q

8πGpr�q

2

� J2

�
. (6.49)

Upon the use of (6.46), and hence Gpr�q � GoptpAq and e2pr�q � e2
optpAq, we find that the

state function (6.49) agrees with (6.18). Since the functional dependence of MpA, J, qq,
as given by (6.18), on J and q is the same as for a classical black hole we find that the

potentials Ω and Φ obtained by taking derivatives of M equally retain their classical form,

the only difference being that e2 and GN are replaced by the running couplings, and the
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classical horizon radius replaced by r�. Expressed in terms of r� and a, the potentials

Ω� BM
BJ � a

r2� � a2
(6.50)

Φ� 1
epr�q

BM
Bq � epr�qq r�

r2� � a2
(6.51)

agree with the expressions obtained from the metric and the RG improved electric poten-

tial. Finally, we turn to the black hole temperature. In the metric formulation it is given

by the surface gravity on the black hole horizon T � κ
2π � 1

4π
∆1pr�q
r2��a2 . Using (6.47), we find

that

T � 1
4πr�

�
r2� � a2

r2� � a2
� r�
Gpr�qG

1pr�q e
2pr�qq2Gpr�q
r2� � a2

�
1� r�

e2pr�qe
2 1pr�q


�
, (6.52)

where primes denote derivatives with respect to the argument. We have to show that this

expression is equivalent to the temperature defined in (6.21), T � 4GpAqBM{BA . Using

the mass function (6.18) as well as (6.48), we find explicitly

T � 1
4πr�

�
r2� � a2

r2� � a2
� 2r2�
r2� � a2

B lnGopt

B lnA
� Gopte

2
optq

2

r2� � a2

�
1� 2r2�

r2� � a2

B ln e2
opt

B lnA

��
(6.53)

Clearly, (6.52) and (6.53) agree in the absence of RG corrections. In the presence of

non-trivially running couplings, the terms involving derivatives of couplings have to agree

as well. Here, in consequence of the scale identification (6.17) and (6.46), we have that

r Br|r�r� �
2r2

�
r2� � a2

A BA . (6.54)

when applied on the running couplings. Using (6.54) we therefore conclude that (6.52)

and (6.53) are identical, term by term, as claimed.

It is worth pointing out that the thermodynamical consistency of (6.41) with (6.44)

and (6.46) is non-trivial. In fact, one cannot expect that (6.41) with (6.44) and a generic

matching k � kpr, � � � q necessarily leads to a thermodynamically consistent picture. For

example, matching conditions such as k � 1{r [27, 163, 69, 35, 34], or k � rγ�1
cl {rγ for

some model parameter γ [69], and matchings k � 1{D [27, 31] where Dpr, θq denotes

the proper distance of the classical space-time have been explored in the literature. For

rotating black holes, none of these obey (6.54) and all fail to reproduce (6.12) or equality of

the temperatures (6.52) and (6.21). Moreover, in these cases one cannot define an entropy

function without giving up the relation T � κ
2π since the 1-form δQ{T is neither exact nor

an integrating factor can be found [163]. In turn, the scale identification (6.46) resolves

these matters. Finally, for Schwarzschild black holes where a � 0 the relation (6.54)

becomes less restrictive showing that matchings of the form k � 1{r lead to a consistent

thermodynamics, and the 1-form δQ{T is trivially exact.
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6.5.3 Entropy

It is interesting to discuss corrections to the thermodynamical entropy in the light of the

RG. If we use the classical equation for the entropy of the space-time metric it follows

from (6.21), which holds true for the metric, that»
dS �

»
1
T
dM �

»
dA

4GpAq . (6.55)

This equation assumes that we can straightforwardly compare the entropy of two black

hole solutions with thermodynamics defined at different coarse-graining scales k evaluated

at the horizon. However, in Sec. 6.4 we argued that the off-shell variation of the entropy

δS should be used and hence that dS should be replaced with δS given by (6.10) such that

we compare entropies defined with respect to the same coarse-graining scale k. If instead

we simply perform the integral in (6.55), using the RG running for Gpkq given by (6.24)

together with (6.17), the integral leads to a logarithmic correction to the entropy

S � A

4GN
� π

g�
lnA� constant . (6.56)

Our expression for the entropy is quite general in that it applies universally for rotating and

charged black holes, despite of being only a function of the area A. It can also be shown

that (6.56) agrees with an expression given in [27] for the RG improved Schwarzschild black

hole, although it was not expressed in this form. Furthermore, and despite agreement

with all other quantities considered, we see that the entropy (6.56) derived from the RG

improved metric differs from (6.19) to which we were lead via thermodynamical reasoning.

Finally, in order to gain more insight into an appropriate definition of the entropy, we

compute the statistical entropy of the RG improved metric obtained from the functional

integral. This can be done using the “off shell” conical singularity method by S. Solodukhin

[176] for the RG improved Schwarzschild black hole J � q � 0 [27] . To that end we

approximate the Euclidean action by (6.5) plus the Gibbons-Hawking surface term, with

k � kopt according to (6.17). From this one obtains the free energy F � T ΓE , where

ΓE denotes the euclidean action. Inserting the RG improved metric with (6.46) into the

action we find that the free energy is given in terms of mass, temperature and entropy as

F �M � S T . (6.57)

Here, the mass M is given explicitly by the mass function (6.18) (with J � q � 0), and the

entropy is given by (6.7). Thus we can confirm that (6.7) is the correct statistical entropy

associated to RG improved black hole metric as well as being the point of departure for

the RG improved thermodynamics presented in Sec. 6.4.
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6.6 Discussion and conclusions

We have presented a formalism for renormalisation group improvement of black hole ther-

modynamics. The improvement is based on the idea that coarse graining in a Wilsonian

sense can give rise to black hole thermodynamics. It was found that in order to maintain

thermal equilibrium that the renormalisation group scale k2 must be inversely proportional

to the black hole area A. In turn this leads to quantum corrections to the temperature of

the black hole. We stress that the model is completely general for stationary black hole

solutions to the Einstein-Maxwell equations in four dimensions and could also be general-

ised to higher dimensions for known classical black hole solutions. The model is not specific

to any particular solution to renormalisation group equations other than the requirement

that the trajectory is well approximated by just the Einstein-Hilbert and Maxwell terms

in the low energy regime. The results of semi-classical black hole thermodynamics are

recovered for large black holes in the limit AÑ8.

In section 6.4 we investigated the implications of our model for asymptotic safety. The

results are based only on thermodynamical reasoning and the running of Newton’s constant

as given by (6.24). Our setup is independent of any coordinate system and leads directly

to the prediction of both a smallest black hole mass Mc and a maximum temperature. The

semi-classical physics is recovered in the limit g� Ñ8 such that Gk � GN . We note that

in this limit Mc Ñ 0 which simply reminds us that classical black hole solutions exist for

arbitrary small mass. On the other hand the energy scale Ec corresponds to the highest

energy at which we find black hole space-times. Its semi-classical limit corresponds to

large energies 1{Ec Ñ 0 and is opposite to that of Mc. Under our assumption that Ec

corresponds to the cut-off scale of the microscopic degrees of freedom this would seem to

imply that there is a highest momentum scale for which a black hole can form and that

semi-classical black hole space-times emerge only after these degrees of freedom are coarse-

grained over distances larger than 1{Ec. This should be contrasted with the minimum

centre of mass energy
?
smin � Mc for which a black hole could form. Additionally it

was also shown that by extending our thermodynamics to the inner horizon of a black

hole that the conformal scaling expected at a UV fixed point is recovered. This is a clear

property of the absence of any mass scale in the vicinity of a non-gaussian fixed point.

Although we make no attempt to identify the fundamental degrees of freedom respons-

ible for the Hawking-Bekenstein entropy we can offer an interpretation of the emergent

thermodynamics from a Wilsonian point of view. The background gravitational field in

the semi-classical set-up can be thought of as an averaged field coming from integrating
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out some high energy degrees of freedom in a path integral. Adjusting the coarse graining

scale to k � kopt to a scale set by the black hole horizon brings the black hole “into fo-

cus”, by not setting k too small, but at the same time not making the course graining too

fine that the microscopic structure of the horizon is observed and thermodynamics breaks

down. Thus the black hole thermodynamics can be seen as emerging as we move along

the RG flow into the infra-red. This interpretation melds well with the observation (see

section 3.3.1) that classical general relativity sits at an IR fixed point of the RG flow and

hence that degrees of freedom must be integrated out to recover semi-classical space-times.

The model presented here is based on the truncated action (6.5) can at best give leading

order quantum corrections to black hole thermodynamics however the general philosophy

could be taken much further. It will be interesting to apply the conceptual ideas here in a

more general setup for more general actions including higher order derivative terms where

(6.7) could be generalised to a flowing Wald entropy [189].
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Chapter 7

Conclusion

The theories of general relativity and quantum mechanics stand as two great pillars of 20th

century physics. Combing these two theories into a single frame work remains an open

challenge for the 21st century. The synthesis of special relativity and quantum mechanics

leads to quantum field theory; a framework capable of describing the intricate interactions

of fundamental particles. Asymptotic safety in gravity, which has been a principal focus of

this thesis, offers the possibility that gravity may equally be described by a local quantum

field theory. The physics of black holes offers an ideal testing ground for any theory of

quantum gravity.

In this work we have made contributions supporting the asymptotic safety conjecture

at the example of F pRq quantum gravity. Our findings provide substantial evidence for

a fundamental fixed point in metric quantum gravity. Taking a polynomial expansion in

the Ricci scalar to very high order allowed for an in-depth investigation of the scaling of

high-order invariants. Critical eigenvalues deviate mildly form canonical ones, suggesting

that the UV fixed point is perhaps not too far away from a perturbative regime.

We have exploited these insights to study quantum corrections of black hole physics

in the presence of a gravitational fixed point. Interestingly, the qualitative features are

independent of how the RG scale is identified with parameters of the black-hole space-time.

This has led to the prediction of a smallest black hole mass with a vanishing temperature.

Our results can also be understood by the anti-screening nature of asymptotically safe

gravity: in fact, gravity weakens at short distances in such a manner that black hole

horizons no longer can form. We have also studied the dynamical evaporation of black-

hole space times for both radiation in a bulk space-time and radiation connected to a

three-dimensional brane. The latter is of phenomenological interest for experiments at the

LHC, which are sensitive to low-scale models of quantum gravity.
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Finally, we have related the ideas of the renormalisation group directly to the ther-

modynamical laws of black holes. This has led to a coarse-grained version of black hole

thermodynamics where the renormalisation group scale is set by the horizon area of the

black hole. Within this framework the coarse-grained degrees of freedom responsible for

the black hole entropy are identified with those hidden behind its horizon. The seminal

Bekenstein-Hawking entropy then receives quantum corrections due to the RG running

of couplings. Interestingly, we also observe that this picture has a metric representation

reproducing the features found in the earlier chapters.

Constructing an asymptotically safe theory of quantum gravity is a true test of the

consistency of local quantum field theory. In this thesis we have provided insights into

how to proceed with this challenge both conceptually and on the level of approximations.

In future work we hope to use the tools developed here to continue to explore the vast

theory space of quantum gravity. Additionally our study of black hole physics has allowed

us to understand the qualitative physical effects of quantum gravity. A natural next step

will be to include higher order curvature terms into the black hole models studied here

and to use the conceptual understanding which we have developed to shed light on the

information paradox.
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Appendix A

Trace technology

Here we list the heat kernel coefficients which are needed in order to evaluate the traces

(3.37) which occur on the RHS of the flow equation (3.36). They appear as the coefficients

of the trace of the heat kernel in the early-time expansion where the background geometry

is taken to be a d sphere

Tr
�
e�tp�∇

2q
�
�
�

1
4πt


 d
2 ¸
n�0

»
ddx

?
gtn b2n (A.1)

The general expressions are given in [9] and must then be restricted to spherically symmet-

ric backgrounds [124, 42]. These traces are obtained for spin 0, 1 and 2 without differential

constraints. Traces of the transverse vector fields and transverse traceless fields can be

found by relating them to the traces of the unconstrained fields and contributions from a

discrete set of eigenvalues needed to complete the trace (see the spectrum below). Here

we list the results [124, 42] denoting b2n|s for coefficients b2n with the traces over indices

performed with s � 0, T, TT for scalar transverse vector and transverse traceless tensor

fields. For the scalars we have

b0|0 � 1 (A.2)

b2|0 � 1
6
R (A.3)

b4|0 �
�
5d2 � 7d� 6

�
R2

360pd� 1qd (A.4)

b6|0 �
�
35d4 � 112d3 � 187d2 � 110d� 96

�
R3

45360pd� 1q2d2
(A.5)

b8|0 �
�
175d6 � 945d5 � 2389d4 � 3111d3 � 3304d2 � 516d� 2160

�
R4

5443200pd� 1q3d3
. (A.6)
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s Dl,s λl,s

0 pd�2l�1qpd�l�2q!
pd�1q!l! R lpd�l�1q

pd�1qd
T lpd�l�1qpd�2l�1qpd�l�3q!

pd�2q!pl�1q! R plpd�l�1q�1q
pd�1qd

TT pd�1qpd�2qpl�dqpl�1qp2l�d�1qpl�d�3q!
2pd�1q!pl�1q! R lpl�d�1q�2

dpd�1q

Table A.1: Eigenvalues and multiplicities of �∇2 on the d-sphere. For scalars s � 0,

transverse vectors s � T and transverse traceless tensors s � TT .

For the transverse vector fields we have

b0|T � d� 1 (A.7)

b2|T � Rp6δ2,d � pd� 3qpd� 2qq
6d

(A.8)

b4|T �
R2
�
360δ2,d � 720δ4,d � 5d4 � 12d3 � 47d2 � 186d� 180

�
360pd� 1qd2

(A.9)

b6|T �R3

�
δ2,d

8
� δ4,d

96



(A.10)

�
�
35d6 � 147d5 � 331d4 � 3825d3 � 676d2 � 10992d� 7560

�
R3

45360pd� 1q2d3

b8|T �R4

�
δ2,d

96
� δ4,d

768
� δ6,d

2700
� 15δ8,d

175616



(A.11)

�
�
175d7 � 2345d6 � 8531d5 � 15911d4 � 16144d3 � 133924d2 � 206400d� 75600

�
R4

75600pd� 1q3d4

Finally for the transverse traceless tensor fields we have

b0|TT � 1
2
pd� 2qpd� 1q (A.12)

b2|TT � pd� 1qpd� 2qRp3δ2,d � d� 5q
12pd� 1q (A.13)

b4|TT �
pd� 1qR2

�
1440δ2,d � 3240δ4,d � 5d4 � 22d3 � 83d2 � 392d� 228

�
720pd� 1q2d (A.14)

b6|TT �R3

�
3δ2,d

2
� 5δ4,d

36



(A.15)

� pd� 1q �35d6 � 217d5 � 667d4 � 7951d3 � 13564d2 � 10084d� 28032
�
R3

90720pd� 1q3d2

b8|TT �R4

�
δ2,d

2
� 5δ4,d

288
� δ6,d

175
� 675δ8,d

175616



(A.16)

�
�
175d10 � 945d9 � 464d8 � 150566d7 � 478295d6 � 2028005d5

�
R4

453600pd� 1q4d4

� p�2945774d4 � 5191124d3 � 10359960d2 � 7018560d� 181440qR4

453600pd� 1q4d4

An alternative to the heat kernel expansion for evaluating the traces is to compute the

spectral sum. Since we are working on the d-sphere the spectrum is known for scalars,



191

transverse vectors and transverse traceless symmetric tensors. The traces can then be

written

Tr
1...1W p�∇2q �

8̧

l�s�np
Dl,sW pλl,sq (A.17)

here Dl,s is the multiplicity and λl,s is the eigenvalue where s is the spin, l labels the

different eigenvalues and np is equal to the number of primes indicating which how many

modes have been excluded. Also we need to exclude individual terms in this spectrum cor-

responding to the unphysical modes. In Tab. A.1 we list the multiplicities and eigenvalues.

Details can be found in [106].



192

Appendix B

F pRq flow equation in d � 4

In this section, we provide the explicit RG equations for the flow of F pRq studied in

chapter 3. First we show the traces in four dimensions for the various fields in terms of

the dimensionless quantities. The trace of the spin two field is independent of the gauge

choice for α, β and ρ, in four dimensions it is given by

1
2

Tr

�
BtRhT hT

Γp2q
hT hT

�RhT hT

�
� v4

580608π2 p3fpρq � pρ� 3qf 1pρqq

�
��

311ρ3 � 126ρ2 � 22680ρ� 45360
� �Btf 1pρq � 2ρf2pρq�

� 2
�
311ρ3 � 252ρ2 � 68040ρ� 181440

�
f 1pρq



(B.1)

In four dimensions we take the gauge α Ñ 8 and ρ � β � 0. The trace over the field h

gives

1
2

Tr

�
BtRhh

Γp2qhh �Rhh

�
� v4

11612160π2 ppρ� 3q2f2pρq � p3� 2ρqf 1pρq � 2fpρqq (B.2)

�
�

3258ρ5f p3qpρq � 58464ρ4f p3qpρq � 275184ρ3f p3qpρq

� 1632960ρf p3qpρq � 1480ρ4f2pρq � 87696ρ3f2pρq � 731808ρ2f2pρq � 362880ρf2pρq
� 6531840f2pρq � 8

�
185ρ3 � 7308ρ2 � 68040ρ� 181440

�
f 1pρq � 1629ρ4Btf2pρq

� 29232ρ3Btf2pρq � 137592ρ2Btf2pρq � 816480Btf2pρq
� 4

�
185ρ3 � 3654ρ2 � 22680ρ� 45360

� Btf 1pρq


. (B.3)

The traces of the transverse vector fields include the heat kernel part and the subtracted

modes which must be excluded. Since the excluded modes are evaluated using the op-

timised cut-off they are proportional to theta-functions θp1 � ρ{4q which means that the

contribution changes discontinuously at ρ � 4. The vectors therefore combine to give an
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overall contribution

S1 � �v4
607ρ2 � 360ρ� 2160

5760π2pρ� 4q for ρ   4 (B.4)

S1 � �v4
7ρ2 � 360ρ� 2160

5760π2pρ� 4q for ρ ¡ 4 (B.5)

Similarly for the scalars (apart from h) the second lowest mode is subtracted and is

proportional to a theta function θp1�ρ{3q such that the scalars give an overall contribution

S0 � v4
�511ρ2 � 360ρ� 1080

11520π2pρ� 3q for ρ   3 (B.6)

S0 � v4
�61R2 � 360R� 1080

11520π2pR� 3q for ρ ¡ 3 (B.7)

In what follows we will be interested in the flow equation for ρ around zero and therefore we

will take ρ   3. Here we show the traces in four dimensions in terms of the dimensionless

quantities. The trace of the spin two field is independent of the gauge choice for α, β and

ρ, in four dimensions it is given by

1
2

Tr

�
BtRhT hT

Γp2q
hT hT

�RhT hT

�
� v4

580608π2 p3fpρq � pρ� 3qf 1pρqq

�
��

311ρ3 � 126ρ2 � 22680ρ� 45360
� �Btf 1pρq � 2ρf2pρq�

� 2
�
311ρ3 � 252ρ2 � 68040ρ� 181440

�
f 1pρq



(B.8)

In four dimensions we take the gauge α Ñ 8 and ρ � β � 0. The trace over the field h

gives

1
2

Tr

�
BtRhh

Γp2qhh �Rhh

�
� v4

11612160π2 ppρ� 3q2f2pρq � p3� 2ρqf 1pρq � 2fpρqq (B.9)

�
�

3258ρ5f p3qpρq � 58464ρ4f p3qpρq � 275184ρ3f p3qpρq

� 1632960ρf p3qpρq � 1480ρ4f2pρq � 87696ρ3f2pρq � 731808ρ2f2pρq � 362880ρf2pρq
� 6531840f2pρq � 8

�
185ρ3 � 7308ρ2 � 68040ρ� 181440

�
f 1pρq � 1629ρ4Btf2pρq

� 29232ρ3Btf2pρq � 137592ρ2Btf2pρq � 816480Btf2pρq
� 4

�
185ρ3 � 3654ρ2 � 22680ρ� 45360

� Btf 1pρq


. (B.10)

The traces of the transverse vector fields include the heat kernel part and the subtracted

modes which must be excluded. Since the excluded modes are evaluated using the the

optimised cut-off they are proportional to theta-functions θp1�ρ{4q which means that the

contribution changes discontinuously at ρ � 4. The vectors therefore combine to give an

overall contribution

S1 � �v4
607ρ2 � 360ρ� 2160

5760π2pρ� 4q for ρ   4 (B.11)
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S1 � �v4
7ρ2 � 360ρ� 2160

5760π2pρ� 4q for ρ ¡ 4 (B.12)

Similarly for the scalars (apart from h) the second lowest mode is subtracted and is

proportional to a theta function θp1�ρ{3q such that the scalars give an overall contribution

S0 � v4
�511ρ2 � 360ρ� 1080

11520π2pρ� 3q for ρ   3 (B.13)

S0 � v4
�61R2 � 360R� 1080

11520π2pR� 3q for ρ ¡ 3 (B.14)

In what follows we will be interested in the flow equation for ρ around zero and therefore we

will take ρ   3. Re-expressing also the LHS of the flow equation (3.36) in the dimensionless

quantities the flow equation in four dimensions takes the final form (3.65),

Btfpρq � 2ρf 1pρq � 4fpρq � Irf spρq . (B.15)

The RHS encodes the contributions from fluctuations and arises from the operator trace

in the RHS of (2.50) over all propagating fields where as the LHS arises from BtΓk. It

generically splits into several parts,

Irf spρq � I0rf spρq � Btf 1pρq I1rf spρq � Btf2pρq I2rf spρq . (B.16)

The additional flow terms proportional to Btf 1pρq and Btf2pρq arise through the Wilso-

nian momentum cutoff BtRk, which we have chosen to depend on the background field.

Furthermore, the terms I0rf spρq, I1rf spρq and I2rf spρq depend on fpρq and its field de-

rivatives f 1pρq, f2pρq and f3pρq. There are no flow terms Btf3pρq or higher because the

momentum cutoff Rk is proportional to the second variation of the action. A dependence

on f3pρq in I0rf s results completely from rewriting BtF 2pRq in dimensionless form. In

the following expressions, we will suppress the argument ρ. To indicate the origin of the

various contributions in the expressions below, we use superscripts T , V , and S to refer to

the transverse traceless tensorial, vectorial, and scalar origin. The specific form of I0rf s,
I1rf s, I2rf s depends on the gauge (here the same as in [42]) and regulator choice (with

the optimised cutoff [109, 110]).

With these considerations in mind, we write the various ingredients in (B.15) as

I0rf s � c
�
P Vc
DV
c

� PSc
DS
c

� P T1
0 f 1 � P T2

0 ρ f2

DT
� PS1

0 f 1 � PS2
0 f2 � PS3

0 ρ f3

DS



(B.17)

I1rf s � c
�
P T1
DT

� PS1
DS



(B.18)

I2rf s � c P
S
2

DS
. (B.19)
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The numerical prefactor reads c � 1{p24πq. It arises from our normalisation factor 16π

introduced in (3.61), divided by the volume of the unit 4-sphere, 384π2. Note that the

factor is irrelevant for the universal exponents at the fixed point. The first two terms

in (B.17) arise from the ghosts pV q and the Jacobians pSq, while the third and fourth

arise from the tensorial pT q and scalar pSq metric fluctuations, respectively. Both (B.18)

and (B.19) only have contributions from the tensorial and scalar metric fluctuations. The

various denominators appearing in (B.17), (B.18) and (B.19) are given by

DT � 3f � pρ� 3qf 1 (B.20)

DS � 2f � p3� 2ρqf 1 � p3� ρq2f2 (B.21)

DV
c � p4� ρq (B.22)

DS
c � p3� ρq . (B.23)

The numerators in (B.17), (B.18) and (B.19) are polynomials in ρ. They arise through

the heat kernel expansion of the traces, and are given by

P Vc � 607
15

ρ2 � 24ρ� 144 (B.24)

PSc �
511
30

ρ2 � 12ρ� 36 (B.25)

P T1
0 � 311

756
ρ3 � 1

3
ρ2 � 90ρ� 240 (B.26)

P T2
0 ��311

756
ρ3 � 1

6
ρ2 � 30ρ� 60 (B.27)

PS1
0 � 37

756
ρ3 � 29

15
ρ2 � 18ρ� 48 (B.28)

PS2
0 �� 37

756
ρ4 � 29

10
ρ3 � 121

5
ρ2 � 12ρ� 216 (B.29)

PS3
0 � 181

1680
ρ4 � 29

15
ρ3 � 91

10
ρ2 � 54 (B.30)

P T1 � 311
1512

ρ3 � 1
12
ρ2 � 15ρ� 30 (B.31)

PS1 � 37
1512

ρ3 � 29
60
ρ2 � 3ρ� 6 (B.32)

PS2 �� 181
3360

ρ4 � 29
30
ρ3 � 91

20
ρ2 � 27 . (B.33)

From the explicit expressions it is straightforward to confirm that I0rf s has homogeneity

degree zero in f , I0ra f s � I0rf s for any a � 0, whereas I1rf s and I2rf s have homogeneity

degree �1, Iira�f s � a�1 Iirf s pi � 1, 2q. This establishes that Irf s (B.16) has homogeneity

degree zero.
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