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Abstract

This thesis is concerned with modelling the spread of diseases amongst host pop-

ulations and the epidemics that result from this process. We are primarily inter-

ested in how networks can be used to model the various heterogeneities observable

in real-world populations.

Firstly, we start with the full system of Kolmogorov/master equations for

a simple Susceptible-Infected-Susceptible (SIS) type epidemic on an arbitrary

contact network. From this general framework, we rigorously derive sets of ODEs

that describe the exact dynamics of the expected number of individuals and pairs

of individuals.

We proceed to use moment closure techniques to close these hierarchical sys-

tems of ODEs, by approximating higher order moments in terms of lower order

moments. We prove that the simple first order mean-field approximation be-

comes exact in the limit of a large, fully-connected network. We then investigate

how well two different pairwise approximations capture the topological features

of theoretical networks generated using different algorithms.

We then introduce the effective degree modelling framework and propose a

model for SIS epidemics on dynamic contact networks by accounting for random

link activation and deletion. We show that results from the resulting set of

ODEs agrees well with results from stochastic simulations, both in describing

the evolution of the network and the disease. Furthermore, we derive an analytic

calculation of the stability of the disease-free steady state and explore the validity
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of such a measure in the context of a dynamically evolving contact network.

Finally, we move on to derive a system of ODEs that describes the interacting

dynamics of a disease and information relating to the disease. We allow individ-

uals to become responsive in light of received information and, thus, reduce the

rate at which they become infected. We consider the effectiveness of different

routes of information transmission (such as peer-to-peer communication or mass

media campaigns) in slowing or preventing the spread of a disease.

Finally, we use a range of modelling techniques to investigate the spread of

disease within sheep flocks. We use field data to construct weighted contact

networks for flocks of sheep to account for seasonal changes of the flock structure

as lambs are born and eventually become weaned. We construct a range of

network and ODE models that are designed to investigate the effect of link-weight

heterogeneity on the spread of disease.
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Chapter 1

Introduction

1.1 Background

The Greek physician Galen (c.129-c.216 AD), who was greatly influenced by the

rational, patient-based approach to medicine pioneered by Hippocrates, became

the most trusted health advisor in the Roman Empire. On the matter of dealing

with plague, he is thought to have advised ‘Cito, Longe, Tarde’, which translates

as ‘Leave quickly, go far away, come back slowly’. This advice was still the most

prevalent attitude when the plague epidemics of the 14th century swept through

Europe. The novel response of the wealthy merchants of Venice to the spread

of plague was to force trading vessels to remain at anchor for 30 days prior to

docking. This was later increased to 40 days and, thus, the modern word ‘quar-

antine’ was born from the Italian ‘quaranta’ [37]. This intuitive response to an

epidemic remains a valid public health response to this day, but is disruptive and

controversial. Over the last 30 years or so, real advances have been made in the

understanding of how infectious diseases spread through populations, with con-

tributions not just from the medical fraternity, but also with crucial contributions

from fields such as sociology, mathematics, computer science and physics. For

example, there has been much inter-disciplinary research published in response to

recent outbreaks of Foot and Mouth disease [31, 65], SARS [3, 107] and Influenza
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[32, 50].

Epidemiological control of infectious diseases falls broadly into two categories:

developing vaccines and cures to directly combat the spread of disease at the level

of the pathogen, or disrupting the contact networks or transmission vectors along

which the pathogen spreads to indirectly combat the disease at the level of the

hosts. This thesis is concerned with the second of these responses; in particular,

it is concerned with how the structures of host populations can help or hinder

the spread of a disease. Networks readily lend themselves to such study, as the

connections between individuals naturally define a network. In this introductory

chapter, we take a brief look at the development of mathematical epidemiology

and how these advances have been used to help model the spread of diseases. We

then look at some general modelling methods that will be used throughout this

thesis and, finally, we give a brief overview of the following chapters.

1.2 Mathematical epidemiology

1.2.1 Compartmental disease models

The vast majority of epidemiological models are based on splitting the population

into compartments based on the disease status of each individual, a technique

that can be traced back to early work by Kermack & McKendrick [70] and, more

recently, to that of Anderson & May [4]. The number of compartments and the

way in which individuals move from one compartment to another depend upon

the nature of the disease being modelled. For example, diseases that leave the

infected individual with lifelong immunity upon recovery are described by the

SIR model, whereby individuals are either Susceptible, Infectious or Recovered.

This model is also valid for diseases that kill the individual, in which case the

R compartment is better understood as Removed. The transition rates between

compartments are specific to the disease being modelled and can be inferred from
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field-data using statistical techniques [17, 57] but, in general, for a population of

size N , the dynamics of SIR type epidemics are described as follows:

Ṡ(t) = −βI
S

N
, (1.1)

İ(t) = βI
S

N
− γI, (1.2)

Ṙ(t) = γI, (1.3)

where βI represents the force of infection, which takes into account both the

contact structure of the population and the virulence of the pathogen. In its

most general form we write β = pC(N), where C(N) is the contact rate and

p is the probability of infection per contact [21, 108]. Exactly what is defined

as a contact depends upon the particular disease being modelled. For example,

an airborne pathogen, such as influenza, has a different mode of transmission

to STDs, such as HIV or chlamydia, and also to vector-borne diseases, such as

malaria.

Diseases that allow repeat infections are described by the SIS model, in

which individuals return to being Susceptible once they have recovered [21, 67].

This model is suitable for some STDs, such as chlamydia or gonorrhoea, and is

described by the following ODEs:

Ṡ(t) = −βI
S

N
+ γI, (1.4)

İ(t) = βI
S

N
− γI. (1.5)

Other compartments can be added to describe different stages of infection, such

as if the disease has a latent period during which the infected individual is asymp-

tomatic (SEIR), or if the disease confers a limited immunity upon recovery but

eventually the individual will again become Susceptible (SIRS), or if the infected

individual enters treatment or contact-tracing programs (SITS), but SIR and
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SIS type epidemics form the backbone of this thesis as well as the wider literature

[21, 67].

1.2.2 Networks and epidemic models

It is clear from Eqs. (1.1 - 1.5) that, even in the case of homogeneous random mix-

ing where each individual can come into contact with every other individual, the

rate at which susceptible individuals become infected depends upon the number

of infected individuals to whom they are linked. In other words, the spread of a

disease from individual to individual depends upon the local structure of the host

population. The science of networks has had a massive impact upon the study of

epidemics. It dates back to work from the 1980s on the AIDS epidemic [79, 86]

and has lately come to dominate the field. Recent papers detail the application

of network theory to the study of epidemics [20, 53, 63], and highlight that there

are two interrelated areas of study - the dynamics of networks and dynamics on

networks. This thesis is primarily concerned with the latter of these two problems

as it aims to explore how different network topologies help or hinder the spread

of epidemics. Below is a brief overview of the three main approaches available

when it comes to modelling epidemics on networks.

Exact master equations

Any given network, whether generated using a theoretical algorithm or con-

structed from real-world observations, can be described by a simple adjacency

matrix which is then used in the construction of exact Kolmogorov/master equa-

tions, which describe the probability of the population being in each and every

possible configuration.

In the most general sense, for a stochastic system denoted by Γ, where system

states are given by Γα, α ∈ {1, 2, . . . , 2N} if an SIS dynamic on a network with

N nodes is considered, the probabilities for the system being in each state are

4



Population
size

Number of equa-
tions

3 8
5 32
10 1024
20 1048576
N 2N

Table 1.1: Showing how the size of system of master equations, Eq. 1.6, scales
with population size.

given by

〈Γ̇α〉 =
∑

β

Tαβ〈Γβ〉 −
∑

β

T βα〈Γα〉, (1.6)

where T is a constant matrix of Poisson rates which also incorporates the net-

work’s adjacency matrix, β simply goes over all possible states and 〈·〉 here de-

notes the probability of being in a particular state.

The solution of these master equations leads to an exact description of the

dynamics of the full system. Indeed, some of the earliest work on epidemics

on networks involved the solution of master equations for small, fully-connected

networks [7]. However, since the system size of the master equations scales expo-

nentially with population size, even with modern advances in computing power

we are unable to numerically integrate these equations for realistic populations,

as shown in Table 1.1. In addition, the exact master equation model is compared

to other models in Table 1.2.

Stochastic simulation

As an alternative to solving master equations, individual-based stochastic simula-

tions can be performed on the full network. Taking an average of a large number

of such simulations remains the most viable way to explore dynamics on large,

complex networks. Unfortunately, all information about rare events is lost in the

averaging process, whereas if the master equation could be solved, the probability

of any possible event could be calculated.
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There are two methods of stochastic simulation that are used in this thesis.

Firstly, discrete-time simulations can be performed by fixing a time step ∆t and,

at every time step, allowing every possible event - whether infection or recovery

- to occur with a probability calculated from the various disease parameters, the

current state of the network and the magnitude of ∆t. The state of the system

is updated at each time step and, due to testing each possible event within a

particular time step, this discrete-time type of simulation is sometimes referred

to as a synchronous simulation.

Synchronously updating simulations can be very efficient to implement in

terms of coding complexity. However, allowing multiple events to occur simul-

taneously is not in keeping with the Markovian nature of stochastic models and

hence ∆t needs to be small enough to avoid this happening. An alternative sim-

ulation approach is to use what is known as a Gillespie algorithm [38], whereby

the time to next event, T , is an exponentially distributed random variable chosen

from an exponential distribution parameterised by Rtotal, where Rtotal is the rate

of all possible transitions given the current status of all individuals. It follows that

working out Rtotal amounts to summing all infection and recovery rates across the

whole network. As the inter-event time is directly related to the total rate, large

rates result in small inter-event times. Once the time to next event is determined,

a single event out of all possible is chosen at random but proportionally to its

rate. Due to the Markovian nature of this type of simulation, it is sometimes

referred to as an asynchronous simulation.

Although asynchronous simulations are clearly in closer agreement with the

Markovian nature of the master equations, they can sometimes be computa-

tionally prohibitive, especially for large networks with complicated dynamics and

virulent epidemics, as multiple rates need storing and updating at each time step.

As Danon et al. note [20], synchronous simulations are a viable alternative, and

results converge with those obtained from asynchronous simulations, provided

6



∆t is small enough to make the mean number of events per time step close to

one. During this thesis, both methods of simulation are used at different points

and, whenever synchronous simulations have been employed, we always track the

number of events per time-step to ensure a suitable ∆t has been chosen.

Moment closure approximations

While stochastic simulations allow for a high degree of detail and heterogeneity,

they are time consuming and offer no analytic insight into the underlying dynam-

ics. While the master equations offer a full description of the system, they are

not feasible for realistic population sizes. However, we can derive equations that

describe the dynamics of the expected number of individuals. For SIS dynam-

ics, we can describe the time evolution of the expected number of individuals as

follows:

˙[S](t) = γ[I]− τ [SI], (1.7)

˙[I](t) = τ [SI]− γ[I]. (1.8)

where [·] represents population level expectations and τ = β/N is the per-contact

transmission rate. In Chapter 2 we show that Eqs. (1.7 - 1.8) are exact at the

level of individuals, but the system of equations does not form a closed set as

clearly the number of individuals depends upon the distribution of (S, I) pairs.

Similar equations can be derived to describe the evolution of the number of pairs,

however the dynamics of the pairs depends upon the distribution of triples. For

example, the expected number of (S, I) pairs is given by:

˙[SI](t) = γ([II]− [SI]) + τ([SSI]− [ISI]− [SI]). (1.9)

This hierarchical dependence on higher order moments continues until the be-

haviour of the whole system is recovered. Hence, in order to find a low-order,
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solvable set of ODEs, moment closure approximations are needed that approxi-

mate higher order moments in terms of the current system variables. For example,

to close Eq. (1.8) we can make the assumption of independent mass action, and

hence [SI] ≈ n[S][I]/N , where N is the population size and n is the degree of a

node, thus leading to the following closed set of ODEs:

˙[S](t) = γ[I]− τn[S]
[I]

N
, (1.10)

˙[I](t) = τn[S]
[I]

N
− γ[I]. (1.11)

This mean-field approximation loses all information about the network structure

and assumes that any individual can connect to any other individual. The con-

sequences of this strong assumption are explored fully in Chapter 3 of this thesis

and we investigate under what circumstances this becomes a valid approximation.

An alternative approach is to close at a higher level, for example Eq. (1.9),

and approximate triples in terms of pairs and individuals. There is more than one

way that triples can be approximated by lower order moments but, in general,

we have [ABC] = f([AB], [AC], [BC], [A], [B], [C]). This higher order approxi-

mation allows some information about the network to be preserved, such as the

average degree of the network and the clustering coefficient [61, 103]. Although

these pairwise approximations do not make the strong assumption of random

mixing, they do assume that the state of an individual’s neighbours follows a

multinomial distribution, which ignores correlations that naturally develop re-

garding the distribution of infectious individuals, especially in the early stages

of an epidemic. In Chapter 3, we explore how this standard closure performs on

networks with different topologies, and also compare its performance with that

of an improved pairwise closure that accounts for correlations between infectious

individuals. This pairwise approach assumes, in the moment closure approxima-

tion, that the network is homogenous, with each node having the same degree.
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Model Assumption Advantages Disadvantages
Exact No assumptions Full spectrum of

behaviour
Unsolvable for net-
works of realistic
size

Heterogeneous
pairwise

States of a node’s
neighbours multi-
nomially dis-
tributed

Some network
structure pre-
served; assortative
mixing models
possible

Analytic results
limited; large sys-
tem of equations

Effective de-
gree

Explicit definition
of ‘star’-shaped
motifs; infection
from outside mo-
tif proportional
to global rate of
infection

State of the neigh-
bours of a node ex-
plicitly defined

Limited analytic
tractability; no fa-
cility for clustering

Homogeneous
pairwise

States of a node’s
neighbours multi-
nomially dis-
tributed; every
node has the same
degree

Some network
structure pre-
served; some
analytical results
possible

Fewer network
heterogeneities
included

Mean-field Homogeneous ran-
dom mixing

Analytical analysis
possible

All network hetero-
geneities excluded
from model

Table 1.2: Table highlighting the advantages and disadvantages of a range of
approaches for modelling epidemics.

Eames & Keeling [26] generalise this modelling approach to account for networks

with heterogenous degree distributions. The system of equations is much larger

than for homogenous pairwise models, and analytic results are more limited.

Other methods have been used to approximate epidemics on networks. For

example, the effective degree model [83, 85], explored in full in Chapter 4, de-

fines star-like motifs that explicitly track the number and type of neighbours to

which an individual is directly linked, which means we know explicitly how many

infectious or susceptible individuals are linked to other infectious or suscepti-

ble individuals from outside. For example Ss,i denotes the expected number of

susceptible individuals that have i infectious neighbours and s susceptible neigh-
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bours. Hence this class of individuals becomes infectious at rate τiSs,i. The

closure assumption in this model is introduced when accounting for the infection

of an individual’s susceptible neighbours from outside the basic star-like motif,

which is assumed to happen at a rate proportional to the total rate of infection

in the system - in other words, random mixing applies outside of the the explicit

triples defined by Ss,i.

A further method of generating low-dimensional ODE approximations of epi-

demics on networks relies on the use of probability generating functions (PGFs)

to describe the degree distribution of a network, and to use these to keep track

of the number of susceptibles over time [45, 89, 124]. This novel approach only

works for SIR epidemics, as it is unable to account for repeat infections. A re-

cent paper by House & Keeling [53] demonstrates the links between these various

epidemic models.

Adding further heterogeneity

Further classes of individuals can also be introduced, to model certain real-world

heterogeneities that may be influential. For example, we could include two classes

of individuals based on their connectivity - highly-connected individuals and

poorly-connected individuals, thus doubling the total number of disease com-

partments [60]. With this model, the effects of assortative and disassortative

mixing can be explored - in other words, what happens if highly-connected in-

dividuals only mix with other highly-connected individuals, and vice-versa [72].

These models are designed to account for the intrinsic heterogeneities found in

real-world networks.

In addition to these intrinsic properties of the underlying network, external

factors, such as individual behaviour, can also be included in the model. For

example, we could include classes of awareness where, in this context, awareness

implies that an individual is aware of the potential threat of a disease and has
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taken action to reduce their chance of becoming infected [35]. This again leads

to an increase in the number and complexity of equations in order to account

for individuals who are either aware or unaware. Individuals will become aware

in response to information about the disease, which could be made available via

different routes. This leads to models which consider the interplay between the

spread of a disease and the spread of information [74].

As ever, when using mathematics to model real-world situations, a word of

warning needs to be sounded. All the various real-world factors that lead to a

certain outcome cannot ever be hoped to be captured in even the most complex

of models. Assumptions are made, simplifications employed and parameters are

inferred. Even highly complex models are vast oversimplifications of the real-

world and, as such, cannot accurately predicate the quantitative outcomes of

future epidemics. However, simplified, tractable models that consider a few key

dynamics allow us to gain a deeper understanding of the importance and effects of

the interplay and feedback between these dynamical processes and, as such, can

guide and inform any public health measures that may need to be implemented

in response to a disease outbreak. Mathematics has a crucial role to play in this

exciting and vital multidisciplinary subject area.

1.3 Thesis overview

This thesis is primarily concerned with epidemics on networks. In Chapter 2, we

start with a full stochastic description of an SIS type epidemic on an arbitrary

contact network, as described by a set of Kolmogorov master equations, and

proceed to prove that the system of ODEs that govern the dynamics of individuals

and pairs can be described exactly in terms of the number of triples in the system.

In Chapter 3, we look at different methods of closing this system of ODEs

by approximating the number of triples in terms of the number of individuals

and pairs. We then simulate epidemics on a number of networks generated via
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different algorithms and hence displaying different local and global topological

structure. We investigate how well the different moment closure approximations

perform on each type of network and question their real-world applications and

limitations.

In Chapter 4, we derive a model that describes the spread of an SIS-type

epidemic on a dynamic contact network, where individuals are able to break

and create links with other individuals. We describe the dynamics using an

effective degree ODE formalism and show that this system of ODEs agrees well

with results from stochastic simulations, both in describing the evolution of the

network and the disease. Furthermore, we derive an analytic calculation of the

disease threshold and explore the validity of such a measure in the context of a

dynamically evolving contact network.

In Chapter 5, we derive a system or ODEs that describes the interacting dy-

namics of a disease and information relating to the disease. We allow individuals

to become responsive in light of received information and, thus, reduce the rate

at which they become infected. We consider the effectiveness of different routes

of information transmission (such as mouth-to-mouth or mass media campaigns)

in slowing or preventing the spread of a disease.

In Chapter 6, we use a range of techniques to model the spread of disease

amongst flocks of sheep. The full network model is based on field data that

describes the number of contacts per day between the different members of a flock.

Data is available for flocks with or without lambs, and is used to parameterise

a weighted contact network. We construct a range of network and ODE models

that are designed to investigate the effect of link-weight heterogeneity on the

spread of disease.

Finally, in Chapter 7 we discuss some open questions related to the work in

previous chapters and consider what future research is possible in the field of

epidemics on networks.
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Chapter 2

From Markovian epidemic models

on networks to exact ODEs at

the level of individuals and pairs

2.1 Introduction

The spread of directly transmitted diseases within a population depends not

only on the nature of the pathogen but also on the way in which infectious

individuals come into contact with susceptible individuals. The network of these

contacts provides the supporting structure on which the disease transmission

process takes place. There is a large body of research examining network epidemic

models with the aim of understanding how network properties impact on disease

invasion, spread and control [63]. Many different modelling approaches have

been proposed, which fall into three broad classes: exact Markovian or state-

based models, which are explored in this chapter, individual-based stochastic

simulation or micro models [63] and deterministic ODE-based macro models [61,

103, 109, 122]. This classification is not application specific and it simply refers

to the scale (e.g. individual level or population level) at which the modelling is
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being carried out. The links between state-based, micro and macro models are

explored in detail by Gustafsson & Sternard [47].

State-based systems, given by the master equation, or Kolmogorov equation,

contain information about all possible states of the system along with the asso-

ciated rates of transition from one state to another. Solving the resulting set of

differential equations provides a full system description with no need for simula-

tion. This approach has typically been used for small networks [68] due to the

number of equations increasing exponentially with system size (e.g. SIS type

dynamics on a network with N individuals results in 2N − 1 equations). With

significant increases in computing power, this approach provides a realistic alter-

native to individual-based stochastic simulation of small populations, although

we are unable yet to solve a full state-based set of ODEs for realistic network

sizes. For special classes of networks, lumping [21, 55, 113] can lead to signifi-

cant reductions in system size, and thus the state-based models become a more

viable alternative even for large populations. However, for problems involving

large networks with complex structure, individual-based simulation remains the

most realistic approach.

The advantages offered by individual-based modelling come at the cost of lit-

tle or no analytical tractability. To overcome this problem, ‘moment-closure’

type ODE-based models have been developed and formulated, offering faster

computational time and more analytical tractability. These differ from clas-

sic compartmental-based ODE models in that the evolution equations for the

expected number of individuals involves the expected number of pairs and

higher-order structures. Many such models have been derived heuristically

[53, 61, 103, 109, 122] and the main aim of this chapter is to rigourously demon-

strate the direct link between these ODE models and the exact Markovian state-

based models.

These systems of ODEs are of a tractable size, however they do not form a
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closed set of equations since lower moments depend on higher moments. Much

work has been done on deriving moment closure approximations where the ex-

pected number of triples is approximated by a combination of the expected num-

ber of pairs and individuals [53, 61, 103, 109, 122] and hence closes the system and

leads to a set of numerically tractable equations. In chapter 3 we explore several

distinct moment closure approximations and investigate how effective they are

by comparing their solutions to results generated by individual-based stochastic

simulations. Another approach to modelling epidemics on networks through a

closed set of ODEs uses a probability generating function formalism [89, 124], al-

though this has so far only been used for SIR type dynamics. A number of papers

present reviews and summaries of many of the current approaches to modelling

epidemics on networks [20, 53, 63].

In this chapter, we start from an exact continuous time Markov chain formu-

lation of a simple SIS type epidemic on an arbitrary contact network. From this

exact stochastic foundation, systems of ODEs for the dynamics of the expected

number of singles (e.g. the expected number of susceptible individuals, [S](t))

and pairs (e.g. the expected number of (S, I) links, [SI](t)) are rigorously de-

rived, hence results that were previously only heuristically justified are proven to

be exact before a closure is applied.

2.2 Model

2.2.1 Disease dynamics and the network of contacts

In this chapter epidemics with SIS type dynamics [4] are considered on an ar-

bitrary static contact network. In this section the model formulation used in all

subsequent sections is clearly defined. For ease of reference, Table 2.1 summarises

all of the notations used. The network has N nodes with links between nodes de-

fined by an adjacency matrix G = (gij)i,j=1,2,...,N ∈ {0, 1}N2
where gij = 1 if node
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i and j are connected, and gij = 0 otherwise. Here, we only consider networks

with bi-directional edges and without self-loops. This requirement translates to

the following two constraints upon G: G = GT and gii = 0. The dynamics of

transmission has two key stages: transmission of the disease and recovery of in-

fectious individuals. Infection starting from an initial index case is transmitted

at rate τ across every (S, I) edge. This is followed by the recovery of infectious

individuals at rate γ. Upon recovery, infectious individuals become susceptible

again. Both infection and recovery are modelled as independent Poisson pro-

cesses. For example, in a small time interval δt, a susceptible individual with kI

infectious neighbours becomes infected with probability 1 − exp(−kIτδt). Sim-

ilarly, 1 − exp(−γδt) represents the recovery probability of a single infectious

individual, and this is independent of the status of its neighbours.

2.2.2 Formulation of the disease transmission model

At any point in time, every node can be either susceptible (S) or infected and

infectious (I), and hence, the state of the system is given by a vector of length N

with all entries either S or I (or zero or one). The state space of system is given by

S = {S, I}N or S = {0, 1}N and the transmission dynamics on the network can be

formulated in terms of a transition matrix between all possible states. In the case

of continuous time, this matrix is also known as the infinitesimal generator matrix

[16, 18, 69]. Based on the generator matrix, it is straightforward to write down

the Kolmogorov differential equations that uniquely determine the probability

of the system being in a particular state at a given time [16, 18]. However, in

practice even for small network size, this approach becomes unfeasible due to the

large number of equations (i.e. 2N − 1). As detailed in the introduction, using

various techniques, it is possible to reduce the number of states (i.e. number of

equations) and derive models that are either equivalent to the original system

or are approximations that in the limit of large networks (i.e. N → ∞) become
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Table 2.1: Notation for model formulation and parameters

N Number of nodes in the network.

G = (gij)i,j=1,2,...,N ∈ {0, 1}N2

Adjacency matrix with gij = 1 if node i and j are
connected, gij = 0 otherwise. The network is bi-
directional and has no self loops so that G = GT and
gii = 0 for all i.

τ Rate of infection per (S, I) edge.

γ Rate of recovery.

S = {S, I}N State space of the network, with nodes either suscep-
tible, S, or infected, I, and |S| = 2N .

Sk = {Sk
1 ,Sk

2 , . . .Sk
ck
} The ck =

(
N
k

)
states with k infected individuals in all

possible configurations, with k = 0, 1, ..., N .

Xk
j (t)

Probability of being in state Sk
j at time t, where k =

0, 1, ...N and j = 1, 2, ..., ck.

Ak
i,j

Rate of transition from Sk−1
j to Sk

i , where k =
0, 1, ...N and i, j = 1, 2, ..., ck. Note that only one indi-
vidual is changing (i.e. in this case an S node changes
to an I through infection).

Ck
i,j

Rate of transition from Sk+1
j to Sk

i , where k =
0, 1, ...N and i, j = 1, 2, ..., ck. Note that only one indi-
vidual is changing (i.e. in this case an I node changes
to an S through recovery).

Bk
i,j

Rate of transition out of Sk
j , where Bk

i,j = 0 if i 6= j,
with k = 0, 1, ...N and i, j = 1, 2, ..., ck.

NAB(Sk
j )

Number of (A,B) type edges in state Sk
j , where A, B ∈

{S, I}, with k = 0, 1, ...N and j = 1, 2, ..., ck.
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exact.

2.2.3 Kolmogorov equations in the case of an arbitrary

network

The 2N elements of the state space can be conveniently divided into N +1 subsets

as follows: (a) S0 is the subset with one single element, namely the state with

all nodes susceptible: S0 = (S, S, . . . , S), (b) Sk is the subset of all states with

k infected nodes (on a network with N nodes, k infected nodes can be arranged

in
(

N
k

)
distinct configurations), and (c) SN is the subset with one single element,

namely the state with all nodes infected: SN = (I, I, . . . , I). The elements of the

subset Sk are denoted by Sk
1 ,Sk

2 , . . . ,Sk
ck

, where ck =
(

N
k

)
. The status of the l-th

node of state Sk
j will be denoted by Sk

j (l), thus Sk
j (l) = S or Sk

j (l) = I. The state

of the system can change in two ways:

• A node becoming infected: an S node becomes an I node, that is an Sk
j →

Sk+1
i type transition, where j and i are chosen such that ∃ l for which

Sk
j (l) = S, Sk+1

i (l) = I, and Sk
j (m) = Sk+1

i (m) for ∀ m 6= l. Moreover,

∃ r 6= l such that Sk
j (r) = I and glr = 1 (i.e. there is an (S, I) type edge

between nodes labelled l and r).

• The recovery of a node: an I node becomes an S node, that is an Sk
j → Sk−1

i

type transition, where j and i are chosen such that ∃ l for which Sk
j (l) = I,

Sk−1
i (l) = S, and Sk

j (m) = Sk−1
i (m) for ∀ m 6= l. This means that that

states Sk
j and Sk−1

i may differ only at one position, this is the l’th position.

The evolution in the state space can be described by a continuous time Markov-

process. Let us denote the probability of the system being in state Sk
j at time t

by Xk
j (t). Let

Xk(t) = (Xk
1 (t), Xk

2 (t), . . . , Xk
ck

(t))
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be a ck-dimensional vector for k = 0, 1, . . . , N . The above transitions determine

the Kolmogorov equations (i.e. a system of linear differential equations) for the

probability functions Xk
j (t). In the general case of an arbitrary network, the

Kolmogorov equations can be written in terms of a matrix with the following

block tridiagonal form

Ẋk = AkXk−1 + BkXk + CkXk+1, k = 0, 1, . . . , N, (2.1)

where A0 and CN are zero matrices. Thus Eq. (2.1) can be written in the

following form

Ẋ = PX, (2.2)

where

P =




B0 C0 0 0 0 0

A1 B1 C1 0 0 0

0 A2 B2 C2 0 0

0 0 A3 B3 C3 0

0 0 · · · · · · · · · 0

0 0 0 0 AN BN




,

and

X =
(
X0, X1, X2, ..., XN

)T
.

We note that often the transpose of P is used, and then X is a row vector, not

a column. However, here we use this formulation since it is more convenient

from a dynamical system point of view. The Ak matrices capture the infection

while the Ck matrices describe the recovery process. These matrices depend

on the structure of the network, and the transmission and recovery rates. The

dimension and the entries of these matrices can be obtained using some simple

bookkeeping rules.
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The entry in the i-th row and j-th column of matrix Ak is denoted by Ak
i,j.

This element gives the rate of transition from Sk−1
j to Sk

i . In the Sk−1 class there

are ck−1 elements, and in the Sk class there are ck elements, hence matrix Ak

has ck rows and ck−1 columns. The entry Ak
i,j is non-zero only in the case when

the states Sk−1
j and Sk

i differ at one position, say at position l and Sk−1
j (l) = S,

Sk
i (l) = I, and Sk−1

j (m) = Sk
i (m) for ∀ m 6= l. Moreover, we also require that

there ∃ r 6= l such that Sk−1
j (r) = I and glr = 1 (i.e. there is an (S, I) type edge

between nodes labelled l and by r). In this case

Ak
i,j = τ ·#{r ∈ {1, 2, . . . , N} : Sk−1

j (r) = I, glr = 1}, (2.3)

where the term multiplying τ simply denotes the number of infectious nodes

connected to the susceptible node at position l. In order to better understand

the role of the Ak matrix let us consider a state Sk−1
j and choose an index l

such that the node at position l is S (i.e. Sk−1
j (l) = S). Next, find an index

i ∈ {1, 2, . . . , ck} such that states Sk−1
j and Sk

i only differ at position l, that is

Sk
i (l) = I and Sk−1

j (m) = Sk
i (m) for ∀ m 6= l. Let us denote by q the number of

nodes in state Sk−1
j which are I and are connected to node l which is S. Then

Ak
i,j = τq. Repeating this for all l ∈ {1, 2, . . . , N}, such that Sk−1

j (l) = S, it can

be observed that the total number of (S, I) edges in the Sk−1
j state multiplied by

τ is equal to the sum of the elements in the j-th column of matrix Ak, that is for

∀ j ∈ {1, 2, . . . , ck−1} the following equality holds

ck∑
i=1

Ak
i,j = τNSI(Sk−1

j ), (2.4)

where NSI(Sk−1
j ) denotes the number of (S, I) edges in state Sk−1

j .

The entry in the i-th row and j-th column of matrix Ck is denoted by Ck
i,j.

This element gives the rate of transition from Sk+1
j to Sk

i . In the Sk+1 class there

are ck+1 elements, and in the Sk class there are ck elements, hence matrix Ck has

20



ck rows and ck+1 columns. The entry Ck
i,j is non-zero only in the case when the

states Sk+1
j and Sk

i differ at one position, say at position l such that Sk+1
j (l) = I,

Sk
i (l) = S and Sk+1

j (m) = Sk
i (m) for ∀ m 6= l. In this case Ck

i,j = γ. In state

Sk+1
j , k+1 nodes of the network are in state I, hence in the j-th column of matrix

Ck there are k + 1 entries that are equal to γ and the remaining entries are zero.

Hence, for all j ∈ {1, 2, . . . , ck+1} the following equality holds

ck∑
i=1

Ck
i,j = γ(k + 1). (2.5)

The matrix Bk is a diagonal matrix with the number of rows and columns equal

to ck. The Bk matrices account for transitions out of a particular state, either

through infection or recovery. The diagonal elements of Bk are determined such

that the sum of entries in each column of P sum to zero. This gives the following

expression for the entries of B,

Bk
i,i = −

ck+1∑
j=1

Ak+1
j,i −

ck−1∑
j=1

Ck−1
j,i . (2.6)

The system given by Eq. (2.1) describes the rate of transition from any possible

system state to any other possible system state. In other words, all possible

system states and transitions are described. However these ODE are impractical

to solve or cannot be solved for large N as the system consists of 2N equations.

2.2.4 Kolmogorov equations in the case of a complete net-

work with N = 3

To illustrate and clarify the notations introduced thus far, in this section we

derive the full set of master equations for a fully connected network with N = 3.

We note that the above rules can be conveniently programmed in a code, using

a programming language such as Matlab for example, that will automatically
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generate and provide numerical solution to the full set of differential equations

provided N is sufficiently small.

This small network has a state space with 23 elements, and following pre-

viously introduced notation, this can divided in the following subsets, X0 =

XSSS, X1 = (XSSI , XSIS, XISS), X2 = (XSII , XISI , XIIS), X3 = XIII with

X = (X0, X1, X2, X3). For N = 3, P is given by

P =




B0 C0 0 0

A1 B1 C1 0

0 A2 B2 C2

0 0 A3 B3




.

Taking into account the structure of the network (i.e. each node connected to

every other node) the entries of matrix P are given by

B0 =

(
0

)
, C0 =

(
γ, γ, γ

)
,

A1 =




0

0

0




, B1 =




−2τ − γ 0 0

0 −2τ − γ 0

0 0 −2τ − γ




, C1 =




γ γ 0

γ 0 γ

0 γ γ




,

A2 =




τ τ 0

τ 0 τ

0 τ τ




, B2 =




−2τ − 2γ 0 0

0 −2τ − 2γ 0

0 0 −2τ − 2γ




, C2 =




γ

γ

γ




,

A3 =

(
2τ, 2τ, 2τ

)
, B3 =

(
−3γ

)
.

Here, for example, the entries in the first column of matrix A2, (τ, τ, 0), cor-

respond to the rates of the following transitions, SSI → SII, SSI → ISI and

SSI → IIS. Based on the definition of sub-matrices above, Ẋ = PX is equiva-
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lent to the following system

Ẋ0 = B0X0 + C0X1,

Ẋ1 = A1X0 + B1X1 + C1X2,

Ẋ2 = A2X1 + B2X2 + C2X3,

Ẋ3 = A3X2 + B3X3.

In terms of the most intuitive notation, this system is equivalent to

ẊSSS = γ(XSSI + XSIS + XISS),

ẊSSI = γ(XSII + XISI)− (2τ + γ)XSSI ,

ẊSIS = γ(XSII + XIIS)− (2τ + γ)XSIS,

ẊISS = γ(XISI + XIIS)− (2τ + γ)XISS,

ẊSII = γXIII + τ(XSSI + XSIS)− 2(τ + γ)XSII ,

ẊISI = γXIII + τ(XSSI + XISS)− 2(τ + γ)XISI ,

ẊIIS = γXIII + τ(XSIS + XISS)− 2(τ + γ)XIIS,

ẊIII = −3γXIII + 2τ(XSII + XISI + XIIS),

and from either formulation, the transition matrix is

P =




0 γ γ γ 0 0 0 0

0 −2τ − γ 0 0 γ γ 0 0

0 0 −2τ − γ 0 γ 0 γ 0

0 0 0 −2τ − γ 0 γ γ 0

0 τ τ 0 −2τ − 2γ 0 0 γ

0 τ 0 τ 0 −2τ − 2γ 0 γ

0 0 τ τ 0 0 −2τ − 2γ γ

0 0 0 0 2τ 2τ 2τ −3γ




.
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2.3 Exact equations at the level of individuals

and pairs

The idea of deriving mean-field equations is based on the observation that pop-

ulation level expected values are simply linear combinations of the probability

functions in Eq. (2.1). It is not always necessary to determine all probability

functions, and in many situations, the expected values of the number, or propor-

tion, of susceptible (S) and infectious (I) nodes or individuals is equally valuable.

These expected values at time t are denoted by [S](t) and [I](t) and can be ex-

pressed as follows,

[I](t) =
N∑

k=0

k

ck∑
j=1

Xk
j (t), [S](t) =

N∑

k=0

(N − k)

ck∑
j=1

Xk
j (t). (2.7)

Hence, based on Eq. (2.1), it is feasible to try to derive a new system of differential

equations that will uniquely define [S] and [I]. However, we know that the rate

at which individuals become infected is proportional to the number of (S, I) pairs

in the system, hence [SI](t), the expected value of (S, I) pairs, is expressed as

follows:

[SI](t) =
N∑

k=0

ck∑
j=1

NSI(Sk
j )Xk

j (t). (2.8)

However, this means that the newly derived system of equations for [S] and [I]

will not be closed since it contains the new variable [SI], and hence and equation

for [SI](t) is needed. Similarly the number of pairs in the system depends upon

the arrangement of different triples (e.g. an (S, S) pair changes to an (S, I) pair

due to infection coming from a third infected node acting from outside the pair,

giving rise to a (S, S, I) triple). The precise dependency of lower order moments

on higher order moments can be formulated in the following Theorem:

Theorem 2.1. The expected values of [S], [I], [SI], [II] and [SS] satisfy the

following system of differential equations which can be derived directly from the
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Kolmogorov equations, Eq. (2.1)

˙[S] = γ[I]− τ [SI], (2.9)

˙[I] = τ [SI]− γ[I], (2.10)

˙[SI] = γ([II]− [SI]) + τ([SSI]− [ISI]− [SI]), (2.11)

˙[II] = −2γ[II] + 2τ([ISI] + [SI]), (2.12)

˙[SS] = 2γ[SI]− 2τ [SSI]. (2.13)

This is a result that is known and has been previously derived based on heuristic

arguments [61, 103]. Despite this being a well known system, we provide a proof

of this Theorem for two reasons. On one hand, this system is usually not derived

from the differential equations of the Markov-process, and on the other hand,

the proof illustrates the usefulness of the block tridiagonal form of the transition

matrix P .

Proof of Theorem 2.1:

This proof is satisfied by the proof of two lemmas. Firstly, a proof of the

dynamics at the level of individuals is given, and this is followed by a separate

proof for the equations that govern the dynamics of the pairs.

Lemma 2.2. The expected values [S] and [I] satisfy the following system

˙[S] = γ[I]− τ [SI],

˙[I] = τ [SI]− γ[I].

Proof: Let us introduce the row matrix Sk = (1 1 . . . 1) with ck columns. Then
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∑ck

j=1 Xk
j = SkX

k (here Xk is a column vector). Hence from Eq. (2.7) we obtain

[I](t) =
N∑

k=0

kSkX
k, [S](t) =

N∑

k=0

(N − k)SkX
k. (2.14)

Using this notation, Eq. (2.6) takes the following form,

Bk
i,i = −(Sk+1A

k+1)i − (Sk−1C
k−1)i,

and using that Bk is a diagonal matrix Bk
i,i = (SkB

k)i holds, and hence,

(SkB
k)i = −(Sk+1A

k+1)i − (Sk−1C
k−1)i

which is true for ∀ i = 1, . . . ck. Thus the following equation is obtained

Sk+1A
k+1 + SkB

k + Sk−1C
k−1 = 0, (2.15)

and this holds for ∀ k = 0, 1, . . . , N . We note that, when indices are out of the

relevant range (i.e. AN+1 and C−1) matrices should be set to zero. Differentiating

[I](t) and using Eq. (2.1) we obtain

˙[I] =
N∑

k=0

kSkẊ
k =

N∑

k=0

kSk(A
kXk−1 + BkXk + CkXk+1)

=
N∑

k=1

kSkA
kXk−1 +

N∑

k=0

kSkB
kXk +

N−1∑

k=0

kSkC
kXk+1

=
N−1∑

k=0

(k + 1)Sk+1A
k+1Xk +

N∑

k=0

kSkB
kXk +

N∑

k=1

(k − 1)Sk−1C
k−1Xk

=
N∑

k=0

(
(k + 1)Sk+1A

k+1 + kSkB
k + (k − 1)Sk−1C

k−1
)
Xk.
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Now upon using Eq. (2.15), we obtain

˙[I] =
N∑

k=0

(
Sk+1A

k+1 − Sk−1C
k−1

)
Xk.

The statement for [I](t) follows from the Proposition below. The proof for [S](t)

is similar. 2

Proposition 2.3. 1. Sk−1C
k−1 = γkSk

2.
∑N

k=0 Sk−1C
k−1Xk = γ[I]

3.
∑N

k=0 Sk+1A
k+1Xk = τ [SI]

Proof: 1. According to Eq. (2.5), for all j ∈ {1, 2, . . . , ck} the following equality

holds

(Sk−1C
k−1)j =

ck−1∑
i=1

Ck−1
i,j = γk,

and this implies that Sk−1C
k−1 = γkSk, since the j-th coordinate of the left and

right hand side are equal.

2. The second statement is a direct consequence of the first part of the Proposition

and Eq. (2.14).

3. According to Eq. (2.4), for all j ∈ {1, 2, . . . , ck} the following equality holds

(Sk+1A
k+1)j =

ck+1∑
i=1

Ak+1
i,j = τNSI(Sk

j ),

with this yielding

N∑

k=0

Sk+1A
k+1Xk =

N∑

k=0

ck∑
j=1

(Sk+1A
k+1)jX

k
j = τ

N∑

k=0

ck∑
j=1

NSI(Sk
j )Xk

j (t) = τ [SI].

2

We note that the Lemma above holds for any network, and completes the

first part of the proof of Theorem 2.1. The remainder rests on the proof of the

following:

27



Lemma 2.4. The expected values [SS], [SI] and [II] satisfy the following system

˙[SI] = γ([II]− [SI]) + τ([SSI]− [ISI]− [SI]),

˙[II] = −2γ[II] + 2τ([ISI] + [SI]),

˙[SS] = 2γ[SI]− 2τ [SSI].

Proof: This part of the proof focuses on the derivation of Eq. (2.12), where

[II] is the expected number of (I, I) pairs at a given time and is given by

[II] =
N∑

k=0

NII(Sk)Xk, (2.16)

where NAB(Sk) is a row vector of length ck and denotes the number of (A,B)

pairs in all possible configurations with k infected individuals, i.e.

NAB(Sk) =
(
NAB(Sk

1 ), NAB(Sk
2 ), . . . , NAB(Sk

ck
)
)
.

Similarly, NABC(Sk) refers to the number of (A,B, C) triples. By differentiating

Eq. (2.16) we obtain that

˙[II] =
N∑

k=0

NII(Sk)Ẋk =
N∑

k=0

NII(Sk)(AkXk−1 + BkXk + CkXk+1)

=
N∑

k=1

NII(Sk)AkXk−1 +
N∑

k=0

NII(Sk)BkXk +
N−1∑

k=0

NII(Sk)CkXk+1

=
N∑

k=0

(
NII(Sk+1)Ak+1 + NII(Sk)Bk + NII(Sk−1)Ck−1

)
Xk,

where matrices that are out of range (i.e. A0 and CN) are zero matrices. The

term that involves Bk in the summation above can be written as

NII(Sk)Bk = (NII(Sk
1 )Bk

1,1, ..., NII(Sk
ck

)Bk
ck,ck

),
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where (NII(Sk)Bk)j = NII(Sk
j )Bk

j,j is the jth component of the NII(Sk)Bk vector.

Matrices Bk are square and diagonal and are defined in terms of Ak+1 and Ck−1

as given in Eq. (2.6). This allows us to write the jth component as

NII(Sk
j )Bk

j,j = NII(Sk
j )

(
−

ck+1∑
i=1

Ak+1
i,j −

ck−1∑
i=1

Ck−1
i,j

)
.

Using the definition of matrices A and C as given in Eqs. (2.4 & 2.5), the RHS

of the expression above can be written as

NII(Sk
j )

(−τNSI(Sk
j )− kγ

)
= −τ

(
NII(Sk

j )NSI(Sk
j )

)− kγNII(Sk
j ).

This per-component identity can be written in vector form to give

˙[II] =
N∑

k=0

(
NII(Sk+1)Ak+1−τ

(
NII(Sk) ∗NSI(Sk)

)−γkNII(Sk)+NII(Sk−1)Ck−1

)
Xk

(2.17)

where the ∗ operator stands for the per component multiplication of two vectors

as exemplified below

NII(Sk) ∗NSI(Sk) =
(
NII(Sk

1 )NSI(Sk
1 ), ..., NII(Sk

ck
)NSI(Sk

ck
)
)
.

In Eq. (2.17) the first two terms govern infection and the second two terms govern

recovery. These terms can be equated to the appropriate terms in Eq. (2.12).

Indeed if Eq. (2.12) is rewritten as

˙[II] = −2γ
N∑

k=0

NII(Sk)Xk + 2τ
N∑

k=0

NISI(Sk)Xk + 2τ
N∑

k=0

NSI(Sk)Xk,

which is just using the same notation as above, then the proof for the equation
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governing the dynamics of [II] follows from the identitites below:

N∑

k=0

(−2γNII(Sk) + γkNII(Sk)−NII(Sk−1)Ck−1
)
Xk(t) = 0,

N∑

k=0

(
2τNISI(Sk)+2τNSI(Sk)−NII(Sk+1)Ak+1+

(
NII(Sk) ∗NSI(Sk)

))
Xk(t) = 0.

These have to hold for any t > 0 and for all Xk(t). If the coefficients of all

terms involving Xk(t) are zero then the identities hold. Upon removing the

summation, the above identities become equalities between vectors of the same

size. This means that the equality must hold for each of the ck elements of the

vectors. Thus the following Lemma has to be verified to complete the proof of

the Theorem.

Lemma 2.5. For any k = 0, 1, . . . , N and j = 1, 2, . . . , ck the following identities hold,

(k − 2)γNII(Sk
j ) =

(
NII(Sk−1)Ck−1

)
j
, (2.18)

2τNISI(Sk
j ) + 2τNSI(Sk

j ) =
(
NII(Sk+1)Ak+1

)
j
−

(
NII(Sk) ∗NSI(Sk)

)
j
(2.19)

The proof of this Lemma needs the following auxiliary Proposition that will be

stated and proved first.

Proposition 2.6. For any k = 0, 1, . . . , N and j = 1, 2, . . . , ck we have

A: Ak
j,i 6= 0 ⇒ Ck−1

i,j 6= 0, for all i = 1, 2, . . . , ck−1, (2.20)

B:

ck−1∑
i=1

Ak
j,i = τNII(Sk

j ), (2.21)

C: NISI(Sk
j ) =

1

τ 2

ck+1∑
i=1

Ak+1
i,j (Ak+1

i,j − τ). (2.22)
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Proof: (A) In Eq. (2.20), Ak
j,i is the rate of moving from the ith arrangement of

Sk−1 to the jth arrangement of Sk. This means that Sk−1
i and Sk

j differ only at one

position, say l, where Sk
j (l) = I and Sk−1

i (l) = S and hence the reverse process is

also possible, that is a transition from Sk
j to Sk−1

i captured by Ck
i,j. Hence, Ak

j,i

and Ck−1
i,j are reverse processes leading into and out of the same state through

infection and recovery. Therefore, if infection is possible then also recovery can

happen and Eq. (2.20) holds.

(B) Eq. (2.21) gives the total rate of entering Sk
j by infection. This means that

for each of the k infected individuals in Sk
j , there is a corresponding state Sk−1

i

that differs only at one position, say at position l, where Sk
j (l) = I and Sk−1

i (l) =

S. The rate at which such a new infection happens is equal to the number of I

neighbours of the S at position l multiplied by the individual transmission rate τ .

If there are q such neighbours, giving q (S, I) pairs given that the S is at position

l, then once the infection has taken place there will be q new (I, I) pairs. If this

is taken into account for all new infections leading to Sk
j , then the sum of these

transition rates gives τNII(Sk
j ) and Eq. (2.21) holds.

(C) Eq. (2.22) gives the relationship between matrices A that govern the

infection process and the number of (I, S, I) triples. If a node l is in state S

and has q neighbours that are infected then there are q(q − 1) (I, S, I) triples

centered around this S. As Ak+1
i,j captures the infection rate from Sk

j to Sk+1
i ,

this is equal to τ multiplied by the number of I neighbours connected to the

susceptible node S that is being infected at position l. Hence, the number of

(I, S, I) triples centered around this node l is given by 1
τ2 A

k+1
i,j (Ak+1

i,j − τ). This

allows us to count NISI(Sk
j ) by summing over all the ck+1 possible Sk

j to Sk+1
i

transitions, giving Eq. (2.22).

2

Furthermore, based on the arguments above it is straightforward to derive a

relation between the number of (I, I) pairs in a particular state and the number
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in a preceding or succeeding state. Namely, the following two identities hold.

Proposition 2.7. For any k = 0, 1, . . . , N and j = 1, 2, . . . , ck we have

NII(Sk+1
i )Ak+1

i,j =

(
NII(Sk

j ) +
2

τ
Ak+1

i,j

)
Ak+1

i,j , ∀i = 1, 2, . . . , ck+1, (2.23)

NII(Sk−1
i )Ck−1

i,j =

(
NII(Sk

j )− 2

τ
Ak

j,i

)
Ck−1

i,j , ∀i = 1, 2, . . . , ck−1. (2.24)

Proof: We prove the first one, the proof of the second is similar. If the states

Sk+1
i and Sk

j differ at more than one position, then Ak+1
i,j = 0, hence the statements

trivially holds. In the case when the states Sk+1
i and Sk

j differ at one position,

then there is a position l, such that Sk+1
i (l) = I, Sk

j (l) = S, and Sk+1
i (m) = Sk

j (m)

for ∀ m 6= l. Moreover, we also require that there ∃ r 6= l such that Sk
j (r) = I

and glr = 1 (i.e. there is an(S, I) type edge between nodes labelled l and by r) to

ensure that a transition between the two states via infection is possible. In this

case one can prove that

NII(Sk+1
i ) = NII(Sk

j ) +
2

τ
Ak+1

i,j , for all i = 1, 2, . . . , ck+1.

This identity can be understood by considering the transition from Sk
j → Sk+1

i

(i.e. a single susceptible node becoming infected). If a single infection has oc-

curred then the increase in the number of (II) pairs can be calculated by exam-

ining the number of Is or (SI) links centered around the newly infected node,

just before becoming infected. The number of such (SI) pairs is proportional to

Ak+1
ij and is given by 1

τ
Ak+1

ij . Since, all the (SI) links, upon infection, become

(II) links, and taking into account that (II) pairs must be counted twice, the

identity follows immediately. 2 These Propositions allow us to prove Lemma 2.5.
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Proof of Lemma 2.5: The RHS of (2.18) can be expressed as

(
NII(Sk−1)Ck−1

)
j
=

ck−1∑
i=1

NII(Sk−1
i )Ck−1

i,j .

Using Eq. (2.24), this can be written as

(
NII(Sk−1)Ck−1

)
j

=

ck−1∑
i=1

(
NII(Sk

j )− 2

τ
Ak

j,i

)
Ck−1

i,j

= NII(Sk
j )

ck−1∑
i=1

Ck−1
i,j − 2

τ

ck−1∑
i=1

Ak
j,iC

k−1
i,j

From Eq. (2.20) it follows that every non-zero element of Ak multiplies a non-

zero element of Ck−1. As every non-zero element in a C matrix is γ, each and

every non-zero element in Ak is multiplied by γ. Hence using (2.21) and that
∑ck−1

i=1 Ck−1
i,j = kγ (see Eq. (2.5)), the RHS of Eq. (2.18) can be written as:

(
NII(Sk−1)Ck−1

)
j
= kγNII(Sk

j )− 2γNII(Sk
j ) = γ(k − 2)NII(Sk

j ),

which completes the proof of the first part of Lemma 2.5.

In order to prove the identity given in the second part of Lemma 2.5, as given

in Eq. (2.19), let us start from the first term in the RHS of Eq. (2.19). Using

Eqs. (2.4 & 2.23) it can be written as

(
NII(Sk+1)Ak+1

)
j

=

ck+1∑
i=1

NII(Sk+1
i )Ak+1

i,j =

ck+1∑
i=1

NII(Sk
j )Ak+1

i,j +
2

τ

ck+1∑
i=1

(Ak+1
i,j )2

= NII(Sk
j )

ck+1∑
i=1

Ak+1
i,j +

2

τ

ck+1∑
i=1

(Ak+1
i,j )2

= τNII(Sk
j )NSI(Sk

j ) +
2

τ

ck+1∑
i=1

(Ak+1
i,j )2

= τ
(
NII(Sk) ∗NSI(Sk)

)
j
+

2

τ

ck+1∑
i=1

(Ak+1
i,j )2.
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This can be rearranged to give the RHS of Eq. (2.19):

(
NII(Sk+1)Ak+1

)
j
− (

NII(Sk) ∗NSI(Sk)
)

j
=

2

τ

ck+1∑
i=1

(Ak+1
i,j )2. (2.25)

However, using Eqs. (2.4 & 2.22), Eq. (2.25) can be rewritten as follows:

(
NII(Sk+1)Ak+1

)
j
− (

NII(Sk) ∗NSI(Sk)
)

j
= 2τ

(
1

τ 2

ck+1∑
i=1

(Ak+1
i,j )2

)

= 2τ

(
NISI(Sk

j ) +
1

τ

ck+1∑
i=1

Ak+1
i,j

)

= 2τNISI(Sk
j ) + 2

ck+1∑
i=1

Ak+1
i,j = 2τNISI(Sk

j ) + 2τNSI(Sk
j ),

which completes the proof of the Lemma and consequently of Theorem 2.1. 2

This proof shows that the system of equations given in Theorem 2.1 are exact for

an arbitrary network.

2.4 Discussion

The main result of this chapter is the identification of the direct link between

the Markovian formulation and the ODE system that governs the dynamics of

pairs. The key to the proof was provided by the special tri-diagonal structure

and properties of the transition matrices from the Kolmogorov equations. The

resulting system of ODEs is well known, having been derived heuristically before

but here the link to the state-based Markovian formulation is emphasized. This

macro model is exact at the level of pairs but is not a closed system as the

dynamics of the pairs depends upon the number of triples. Again, a set of ODEs

that govern the dynamics of the triples can be derived, however they will depend

upon the number of four-tuples. This hierarchical dependence will continue until

the dynamics of the full system is captured. House at al. [51], following earlier

work by Bauch [10], explicitly derived the equations governing the dynamics of
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triples:

˙[SSS] = −τ(2[S − S − S − I] + [S − S − S I]) + γ(2[SSI] + [SIS]),

˙[SSI] = τ([S − S − S − I]− [I − S − S − I]− [S − S − I I]− [SSI])

+γ([SII] + [ISI]− [SSI]),

˙[SIS] = τ([S − S − S I]− 2[S − I − S − I]− 2[SIS])

+γ(2[SII]− [SIS]), (2.26)

˙[SII] = τ([S − I − S − I] + [S − S − I I]− [I − S − I − I]

+[SIS] + [SSI]− [SII]) + γ([III]− 2[SII]),

[̇ISI] = τ(2[I − S − S − I]− [I − S − I I]− 2[ISI])

+γ([III]− 2[ISI]),

˙[III] = τ(2[I − S − I − I] + [I − S − I I] + 2[SII] + 2[ISI])− 3γ[III].

Here we have introduced new notation to describe the four-tuples, where [A −
B −C −D] describes four nodes in a straight line, but [A−B − C D] instead

describes three nodes A, B and C connected in a straight line but with node D

connected only to node B in order to form a ‘T’ shape motif, as shown in Fig.

2.1. House et al. [51] extend these equations to consider how these two four-

tuples could become clustered by further connections between the four nodes.

For triples, there is only one way a triple can become further connected - by

the two end nodes being joined to form a triangle. However, when considering

four-tuples there are four distinct closed forms. House et al. [51] derive moment

closures based around these six distinct four-tuples (two unclosed and four closed)

and proceed to solve the equations for the dynamics of triples. They show that

there is an improvement in agreement with results from stochastic network simu-

lations when compared with results from the pairwise equations considered in this

chapter and the next. However the degree of improvement differs with different

network topologies and furthermore the increase in complexity and the resultant
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A B C D A B C

D

Figure 2.1: The two distinct ways an unclosed four-tuple can be configured.

loss in analytical tractability need to be carefully considered when choosing an

appropriate moment at which to close the system. In the next chapter we look

at how to close the system at the level of pairs and triples, and look at how well

these closures perform on different network topologies. Furthermore, we provide

a proof that the system closed at the level of pairs becomes exact in the limit as

N →∞ for a fully connected network.
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Chapter 3

On the performance of moment

closure approximations

3.1 Overview

In the previous chapter a well known system of ODEs describing the time evolu-

tion of SIS type epidemics on an arbitrary static contact network was derived.

It was shown that Eqs. (2.9 - 2.10) are exact at the level of the individual and

furthermore that including Eqs. (2.11 - 2.13) gives an exact description at the

level of pairs, and these equations are shown again here for ease of reference:

˙[S] = γ[I]− τ [SI], (3.1)

˙[I] = τ [SI]− γ[I], (3.2)

˙[SI] = γ([II]− [SI]) + τ([SSI]− [ISI]− [SI]), (3.3)

˙[II] = −2γ[II] + 2τ([ISI] + [SI]), (3.4)

˙[SS] = 2γ[SI]− 2τ [SSI]. (3.5)

This system has an inherent dependence on higher order motifs, and an exact

description of the evolution of triples would be dependent on four-tuples. In
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order to break this higher order dependence, approximations must be made using

the set of system variables. For example, the number of different triples can be

approximated in terms of the number of pairs and individuals. In this chapter

three different closures are considered. Firstly, the mean-field equations are found

by approximating the number of pairs in terms of the number of individuals, and

then two pairwise closures are introduced, whereby the number of triples are

estimated in terms of the number of pairs and individuals.

The rest of the chapter is concerned with examining the accuracy of these

approximations. The simplest mean-field system is rigourously shown to become

exact on a complete network in the limit of large N . In addition, the ODEs are

solved numerically and these results are compared to realisations from stochastic

simulations on a range of different network topologies. It is shown that the ability

of the closed sets of ODEs to accurately describe the evolution of an epidemic is

fundamentally dependent on the underlying structure of the contact network.

3.2 Moment closure at the level of pairs - the

mean-field model

The simplest closing relation is [SI] ' n[S][I]/N , where n is degree of a node for a

homogeneous network, or the mean nodal degree otherwise. This approximation

is based on the statistical independence in the state of individuals (in the limit of

a fully-connected network, the expected number of [SI] pairs is equivalent to the

product of the expected number of [S] and [I]). Applying this relation in Eqs.

(2.9 - 2.10), we obtain:

˙[S] = γ[I]− τ
n

N
[S][I], (3.6)

˙[I] = τ
n

N
[S][I]− γ[I], (3.7)
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which, as n → N , looks exactly like the well known deterministic mean-field

equation:

˙̃S = γĨ − τ S̃Ĩ, (3.8)

˙̃I = τ S̃Ĩ − γĨ. (3.9)

Such a closure relation leads to the problem of identifying networks for which the

approximation above holds. It is known that for a large, fully connected network

this is a good approximation when τ = β/N for some fixed value β, where β is

the transmission rate used in classic compartmental models, and as I, S →∞ in

the same way as N →∞, as first shown by Kurtz [80]. In order to formalize this

statement more precisely it is useful to use the scaled variables:

s̃ = S̃/N, ĩ = Ĩ/N, [s] = [S]/N, [i] = [I]/N. (3.10)

In the new variables, with τ = β/N , the system given by Eqs. (3.8 - 3.9) takes

the the following form

˙̃s = γĩ− βs̃̃i, (3.11)

˙̃i = βs̃̃i− γĩ. (3.12)

It is generally believed that, under appropriate conditions, ĩ is a good approxi-

mation of [i]. Before formalizing this in a mathematically rigorous way we give

details of a key aspect which seems to contradict our previous statement. This

observation also justifies the need to formalise rigorously the meaning of ĩ being

a good approximation of [i].

It is known, and it can also be easily derived from Eqs. (3.11 - 3.12), that in
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the case of β > γ the following holds

lim
t→∞

ĩ(t) = 1− γ

β
,

and in the case when β ≤ γ, this limit is zero. However, the corresponding limit

for [i](t) is always zero, that is

lim
t→∞

[i](t) = 0,

as shown first in [101], as the system is stochastic and there is an absorbing state

at [i] = 0. N̊asell [90] has shown that in the case of large N , the function [i] has

a quasi steady state that is close to the steady state of the ODE system given

by Eqs. (3.11 - 3.12), and that the time to extinction scales exponentially with

N . Computing [i](t) and ĩ(t) numerically for N > 30, the two nearly coincide

on a quite long time interval. However, for very large t, [i](t) will tend to zero.

N̊asell [90] also investigated the length of the time interval on which ĩ(t) is a good

approximation of [i](t).

The next Theorem specifies in rigorous terms the way in which ĩ(t) can be

considered a good approximation of [i](t).

Theorem 3.1. Let G be a fully connected network, and let τ = β/N for some

fixed value β. Let X be the solution of Ẋ = PX, the master equation given by Eq.

(2.2), and let [S], [I], [s] and [i] be as defined by Eqs. (2.7) & (3.10). Let (s̃, ĩ)

be the solutions of the system given by Eqs. (3.11) & (3.12) with the following

initial conditions s̃(0) = [s](0), ĩ(0) = [i](0). Then for any t ≥ 0 we have

lim
N→∞

|[s](t)− s̃(t)| = 0, lim
N→∞

|[i](t)− ĩ(t)| = 0.

We note that for large t, ĩ(t) remains a valid approximation only if N is suf-
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ficiently increased. For finite N , the approximation in the limit of t →∞ breaks

down. While in practical applications t → ∞ is not necessarily an interesting

regime, it is worthwhile to formalise precisely and rigorously what is meant by a

good approximation.

3.2.1 Proof that the mean-field becomes exact in the limit

of a fully connected network and large N

For the proof of Theorem 3.1, it is noted that the full set of 2N − 1 Kolmogorov

equations, Ẋ = PX, can be significantly reduced in the case of a fully connected

network. For a complete network we can introduce xk(t) as the total probability

of states with k infected nodes at time t. This equation lumping exploits the sym-

metries of complete networks for a fixed number of infected nodes to reduce the

system size [113]. Hence for a complete network, the full Kolmogorov equations

are given by the following reduced system

ẋk = (k + 1)γxk+1 + (k − 1)(N − k + 1)τxk−1 − (k(N − k)τ + kγ)xk, (3.13)

for k = 0, 1, . . . , N , with x−1 = 0 and xN+1 = 0. The scaled expected values of

susceptible and infected nodes are

[s](t) =
1

N

N∑

k=0

(N − k)xk(t), [i](t) =
1

N

N∑

k=0

kxk(t). (3.14)

Our aim here is to investigate the limit of large N and compare these to the

solution of the scaled mean-field equations as given by Eqs. (3.11-3.12).

The idea of comparison for large N is to introduce a continuous, time depen-

dent density function ρ(t, z) instead of the discrete distribution xk(t), with the

following formal relation, z = k/N . Following this, in Eq. (3.13) we can formally

change ẋk(t) to ∂tρ(t, z), xk(t) to ρ(t, z), xk−1(t) to ρ(t, z − 1/N) and xk+1(t) to
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ρ(t, z + 1/N). This leads to the following partial differential equation,

∂tρ(t, z) = (Nz + 1)γρ(t, z + 1/N) + (Nz − 1)(N −Nz + 1)τρ(t, z − 1/N)−

(Nz(N −Nz)τ + Nzγ)ρ(t, z).

Now using the approximations

ρ(t, z + 1/N) = ρ(t, z) + ∂zρ(t, z)/N, ρ(t, z − 1/N) = ρ(t, z)− ∂zρ(t, z)/N,

and after some algebra we obtain

∂tρ(t, z) = (Nz + 1)γ∂zρ(t, z)/N + (2Nz −N − 1)τρ(t, z)−

(Nz − 1)(N −Nz + 1)τ∂zρ(t, z)/N + γρ(t, z).

Substituting τ = β/N , neglecting the 1/N and 1/N2 terms and writing ρ instead

of ρ(t, z), we obtain the following first order partial differential equation for ρ

∂tρ = zγ∂zρ + (2z − 1)βρ− z(1− z)β∂zρ + γρ.

Introducing the function g(z) = γz − βz(1− z), the equation for ρ becomes

∂tρ = ∂z(gρ). (3.15)

This first order partial differential equation needs an initial condition of the fol-

lowing type

ρ(0, z) = ρ0(z). (3.16)

The desired initial condition can be obtained from the initial condition of Eq.
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(3.13). This latter initial condition can be written as

xm(0) = 1, for some m, xl(0) = 0, for l 6= m, (3.17)

that is at the initial instant there are m infected nodes. Since the formal relation

between the variables is z = k/N , the above initial condition yields

ρ0(z) = 1 for
m

N
< z <

m + 1

N
and ρ0(z) = 0 otherwise.

Finally, we want to determine the expected value of the infected and susceptible

nodes from the first order PDE. Thus we have to find the functions corresponding

to [s](t) and [i](t) in Eq. (3.14). Using z = k/N and changing the term xk(t)

to ρ(t, z), we note that the sums in Eq. (3.14) correspond to integrals. Namely,

[i](t) corresponds to

N

N∑

k=0

k

N
ρ(t,

k

N
)

1

N
,

and this sum is an approximation of the integral

N

∫ 1

0

zρ(t, z)dz.

Noticing that
∫ 1

0
ρ0(z)dz = 1/N , we can introduce i∗(t) as a function correspond-

ing to [i](t) as follows

i∗(t) =

∫ 1

0
zρ(t, z)dz∫ 1

0
ρ0(z)dz

. (3.18)

The mean-field equation, Eq. (3.12), can be solved explicitly and the solution is

given by

ĩ(t) =
B(t)i0

β − γ − A(t)i0
,

where i0 = ĩ(0) is the initial condition and

A(t) = β − βe(β−γ)t, B(t) = (β − γ)e(β−γ)t.
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The first order PDE, Eq. (3.15), can also be solved explicitly, and the solution is

outlined below.

Intermezzo on the solution of Equation (3.15)

Eq. (3.15) is a first order inhomogeneous linear PDE, with g(z) = γz−βz(1−z).

Multiplying both sides by g(z) gives

∂t(gρ) = g∂z(gρ) (3.19)

allowing the introduction of another variable w(t, z) = g(z)ρ(t, z) which leads to

the PDE being expressed as

∂tw − g∂zw = 0. (3.20)

This PDE, Eq. (3.20), can be solved using the method of characteristics. In

parametric form the characteristic equations are given by

dt

dx
= 1,

dz

dx
= −g (3.21)

or alternatively Eqs. (3.21) can be written as the ODE

dz

dt
= −g. (3.22)

After substituting for g(z) = γz − βz(1 − z), Eq. (3.22) can be solved using

partial fractions and separation of variables to yield the first integral

1

γ − β
ln

(
z

γ − β + βz

)
+ t = C1. (3.23)
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This means that the dependent variable, w(z, t), can be written as a function of

the first integral Eq. (3.23):

w(z, t) = φ

(
1

γ − β
ln

(
z

γ − β + βz

)
+ t

)
. (3.24)

In terms of the dependent variable, ρ(t, z) = w(t, z)/g(z), this yields

ρ(z, t) =
1

γ − β + βz
φ

(
1

γ − β
ln

(
z

γ − β + βz

)
+ t

)
. (3.25)

Next, the initial condition given in Eq. (3.16) needs to be written in terms of w,

which gives

w(0, z) = g(z)ρ(0, z) = z(γ − β + βz)ρ0(z) = φ

(
1

γ − β
ln

(
z

γ − β + βz

))
.

(3.26)

A dummy variable u is introduced where

u =
1

γ − β
ln

(
z

γ − β + βz

)

which allows us to construct an expression for z, namely

z =
(γ − β)eu(γ−β)

1− βeu(γ−β)
. (3.27)

Substituting Eq. (3.27) into Eq. (3.26) allows us to define the function φ(u)

explitly

φ(u) =

[
(γ − β)eu(γ−β)

1− βeu(γ−β)

(
γ − β + β

(γ − β)eu(γ−β)

1− βeu(γ−β)

)]
ρ0

(
(γ − β)eu(γ−β)

1− βeu(γ−β)

)
.

(3.28)
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Now the form of the function φ is known, an equation for ρ(t, z) can now be

developed as we know that

ρ(t, z) =
w(t, z)

g(z)
=

φ
(

1
γ−β

ln
(

z
γ−β+βz

)
+ t

)

g(z)
. (3.29)

After substituting for φ
(

1
γ−β

ln
(

z
γ−β+βz

)
+ t

)
from Eq. (3.28) and g(z) = γz −

βz(1− z), some algebra yields an explicit general solution of Eq. (3.15):

ρ(t, z) = ρ0

(
z(β − γ)

βz − (γ − β + βz)et(β−γ)

)
(β − γ)2et(γ−β)

(βz − (γ − β + βz)et(β−γ))
2 . (3.30)

As the objective of this Theorem is to compare Eq. (3.18), the same substitutions,

namely

A(t) = β − βexp((β − γ)t), B(t) = (β − γ)exp((β − γ)t).

are made, reducing Eq. (3.30) to

ρ(t, z) = ρ0

(
z(β − γ)

A(t)z + B(t)

)
(β − γ)B(t)

(A(t)z + B(t))2 . (3.31)

We are now in a position to solve Eq. (3.18) and find an expression for i∗(t).

Firstly an expression for i∗(0) is developed

i∗(0) =

∫ 1

0
zρ0(z)dz∫ 1

0
ρ0(z)dz

=
bu + bl

2
. (3.32)

where bl,u are the upper and lower boundaries of the region in which ρ0(z) 6= 0.

Note also that bu − bl = 1/N . Also by solving Eq. (3.31) and noting that a

solution only exists if ρ0(z) = 1 then we find that

∫ 1

0

ρ(t, z)dz =

∫ zu

zl

(β − γ)B(t)

(A(t)z + B(t))2 dz
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=
(β − γ)B(t)

A(t)

[
1

A(t)zl + B(t)
− 1

A(t)zu + B(t)

]zu

zl

As bl,u are initial conditions of ρ0(z), we need to know what zl,u are in terms of

bl,u. This is found by

(β − γ)zl,u

A(t)zl,u + B(t)
= bl,u ⇒ zl,u =

B(t)bl,u

(β − γ)− A(t)bl,u

(3.33)

As
∫ 1

0
ρ(t, z)dz =

∫ 1

0
ρ0(z)dz ∀t, substituting the limits given in Eq. (3.33) into

our expression for
∫ 1

0
ρ(t, z)dz, given above, leads us to deduce that

∫ 1

0

ρ0(z) =
1

N
. (3.34)

Similarly ∫ 1

0

zρ(t, z)dz =

∫ zu

zl

z
(β − γ)B(t)

(A(t)z + B(t))2 dz

can be solved by using integration by parts and remembering that i(0) = bu+bl

2

and bu − bl = 1
N

to give

∫ 1

0

zρ(t, z)dz = B(t)(β − γ)

(
− 1

NA(t)(β − γ)
(3.35)

+
1

A2
ln

(
1 +

2A(t)

2N((β − γ)− A(t)i0)− A(t)

))
.

By substituting Eqs. (3.34 & 3.35) into Eq. (3.18) yields a final expression for

i∗(t):

i∗(t) =
B(t)

A(t)

[
N(β − γ)

A(t)
ln

(
1 +

2A(t)

2N(β − γ − A(t)i0)− A(t)

)
− 1

]
.

End of Intermezzo

Having these explicit formulas for i∗(t) and ĩ(t), it is easy to see that i∗ is not

a solution of the mean-field equation, Eq. (3.12), but it can be proved that as

N → ∞ it tends to the solution of Eq. (3.12). Namely, we have the following
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Lemma.

Lemma 3.2. Let ρ be the solution of the system given by Eq. (3.15) with initial

condition given by Eq. (3.16). Let i∗(t) be defined by Eq. (3.18). Let ĩ(t) be

the solution of the scaled mean-field equation given by Eq. (3.12) with initial

condition ĩ(0) = m/N . Then for any t ≥ 0 we have

lim
N→∞

|̃i(t)− i∗(t)| = 0.

This Lemma can be proved by using the explicit formulas for i∗(t) and ĩ(t). As

N →∞
i∗(t) ≈ B(t)

A(t)

[
N(β − γ)

A(t)

2A(t)

2N(β − γ − A(t)i0)
− 1

]

≈ B(t)

A(t)

[
β − γ

β − γ − A(t)i0)
− 1

]

≈ B(t)

A(t)

[
β − γ − (β − γ − A(t)i0)

β − γ − A(t)i0)

]

≈ Bi0
β − γ − A(t)i0

= ĩ(t)

Now the proof of the Theorem can be concluded as follows. We want to prove

that the scaled expected value [i](t) tends to the solution ĩ(t) of the scaled mean-

field equation as N → ∞. In order to prove this, we introduced a first order

PDE that can be considered the limit of Eq. (3.13) as N →∞. Using this PDE,

we defined the function i∗(t) that corresponds to [i](t). According to Lemma 3.2,

i∗(t) is close to ĩ(t) for large N . Hence, we only have to show finally that [i](t)

is close to i∗(t). Thus the proof of Theorem 3.1 will be complete if the following

Lemma is verified.

Lemma 3.3. Let xk be the solution of Eq. (3.13) satisfying the initial condition
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given by Eq. (3.17), and let ρ be the solution of Eq. (3.15) with initial condition

given by Eq. (3.16). Let [i](t) and i∗(t) be defined by Eq. (3.14) and by Eq.

(3.18). Then for any t ≥ 0 we have

lim
N→∞

|[i](t)− i∗(t)| = 0.

2 The proof of the Lemma is based on the fact that the lumped system, Eq.

(3.13), can be considered as the discretisation of the first order PDE, Eq. (3.15),

in the variable z. It is known even for more general PDEs, see e.g. Chapters 3

and 4 in [54], that the solution of the discretised system tends to that of the PDE

as the step size of the discretisation goes to zero, that is in our case N tends to

infinity.

3.3 Moment closure at the level of triples (pair-

wise models)

The exact system of Equations (2.9 - 2.13) that has been derived from the Kol-

mogorov equation, as shown again at the start of this Chapter, is now closed at

the level of triples by finding approximate closures that describe them in terms

of pair and individual counts.

We assume here that every individual has the same neighbourhood size n (in

the case of networks with heterogeneous degree distribution we obtain an approx-

imation by taking n to be the real-valued mean degree, which is not rigorously

interpretable) and also define a clustering coefficient φ

n =
∑

j

Gij, ∀i , φ =
Tr(G3)

‖G2‖ − Tr(G2)
∈ [0, 1] .
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We will use these two real parameters n, φ in the formulation of different closure

approximations. In the absence of clustering (φ = 0) both approximations we

will consider agree that

[ABC] ≈ n(n− 1)pA|BpC|B , where pA|B :=
[AB]

n[B]
. (3.36)

Figure 3.1: Motivation for improved pairwise closure. Triples of type [ABI] are
counted by consideration of the neighbourhood around a typical [BI] pair. The
states X1, . . . , Xn−1 are chosen in order, with the presence or absence of potential
transitive links (red dotted lines) decided simultaneously as outlined in Eq. (3.38)
of the main text.

This closure implicitly assumes that the disease states of individuals around a

node in state B are given by independent trials, and so neighbourhood types are

multinomially distributed [19]. However, this assumption breaks down as corre-

lations will develop between the status of neighbouring nodes, as new infections

are bound to be the neighbours of their infectors. This will especially become an

issue for SIS type dynamics as, for example, if the middle node of an [III] triple

recovers, it is likely to quickly become infected again, leading to more [II] pairs

and [III] triples than would be expected if the infected nodes were distributed at

random. This effect is further exacerbated when the disease spreads on networks

with heterogeneous degree distributions [23]. Furthermore, for the case of clus-

tering, understanding the implicit assumptions behind different closure methods

is much harder. Here, we present a new motivation of existing moment closure
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techniques, similar to the classic statistical approach to clustering of Klotz [78]

who developed a method of statistical inference for non-independent Bernoulli

trials, whereby there is assumed to be a statistical dependence between the state

of a given node and the state of that node’s neighbourhood. This new explana-

tion makes it much easier to see which kinds of network structure are assumed

during moment closure, and how different closures are related to each other.

Our starting point is the correlation matrix between different adjacent dy-

namical states, which is equal to unity for homogeneous random mixing

CA,B :=
N

n

[AB]

[A][B]
. (3.37)

Figure 3.1 shows the construction used in our closure derivation. We start by

noting that only triples of type [ABI] need to be closed, and that this can be

done in terms of the neighbourhood around each [BI] pair. We consider each of

the other n − 1 neighbours of a B in such a [BI] pair in turn. For each such

neighbour Xi, we decide with probability φ whether it is connected to the I in

the [BI] pair or not. We then pick its dynamical state, taking into account the

correlations between the proposed state and I if they are connected. Making use

of equation (3.37), the fact that Xi state probabilities have to sum to unity, and

provided the identity
∑

a[aB] = n[B] is conserved by the dynamics (as it was

shown to in [52]), our explicit consistent local assumption is that

Pr(Xi = A) =





pA|B with probability (1− φ) ,

pA|BCA,I/
(∑

a pa|BCa,I

)
with probability φ .

(3.38)

Averaging over all neighbourhoods around [BI] pairs gives the expected number
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A B

−→
a b

A B

(a) Unclustering rewiring

O

a

A

b

B

−→
O

a

A

b

B

(b) Big-V rewiring

Figure 3.2: Rewiring methods. (a) shows the unclustering rewiring, which will
evolve a network towards an unclustered configuration-model network of the same
degree distribution. (b) shows the big-V rewiring, which generates clustering of
the type expected to agree with moment closure approximations.

of relevant triples in the network as

[ABI] ≈ (n− 1)[BI]

(
(1− φ)pA|B + φ

pA|BCA,I∑
a pa|BCa,I

)

≈ (n− 1)

(
(1− φ)

1

n

[BI][BA]

[B]
+ φ

[BA][IA]/[A]∑
a ([Ba][Ia]/[a])

)
.

(3.39)

This is the improved pairwise approximation (IPA) proposed in [52], which was

originally motivated by its satisfaction of two practical desiderata: the conserva-

tion of pair number and consistent behaviour of [III]-type triples. These proper-

ties can now be seen to follow from the consistent probabilistic neighbourhood-

based description of the improved closure above.

The standard clustered pairwise closure presented in [61, 103] can be recov-

ered by making the assumption
(∑

a pa|BCa,I

) ≈ 1 so that

[ABI] ≈ n− 1

n

[AB][BI]

[B]

(
(1− φ) + φ

N

n

[AI]

[A][I]

)
. (3.40)

This closure, referred to as the original pairwise approximation (OPA), has the
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benefit of significantly reducing the complexity (and hence numerical effort in

integration) of the closed set of equations, but since the approximation used is

logically inconsistent there is the possibility of serious pathologies creeping into

numerical results. This possibility partly motivates our comparison below of

both closures against a more comprehensive set of clustered networks than has

previously been considered.

In both the standard and improved closures, the now-explicit assumption

made about clustering is that each transitive link exists with independent prob-

ability φ, and so we would expect networks where transitive links are themselves

clustered together into cliques as in [8] or unclustered as in [127] where no trian-

gles overlap not to give good dynamical agreement with the proposed closures.

3.4 The performance of different moment clo-

sures versus stochastic simulation

The pairwise models aim to capture the local or small scale network properties

such as n, the average node degree, and φ, the clustering coefficient by using

different moment closures. However, there are many known large-scale network

properties that have been observed in real-world networks [128]. As shown by

Green & Kiss [41], it is possible to produce theoretical networks that capture a

range of these observed real-world features, and hence can produce networks that

differ vastly in large scale properties even though the local properties are identical.

In this section, we explore how much of the underlying network structure is

captured by n and φ alone on networks generated by different algorithms by

examining how well the pairwise models based on the closures given in Eqs. (3.40

& 3.39) agree with results from stochastic simulation.

The network generating algorithms used here are deliberately chosen such that

some agree well with the pairwise ODEs whilst other agree poorly, despite having
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the same values of n and φ. This is done in order to demonstrate the limited

ability of these local metrics to accurately describe the full network structure. For

each network generating algorithm 100 distinct networks were produced. There-

after, 5 realisations of an epidemic were performed on each, leading to the mean

number of individuals, pairs and triples being averaged over 500 realisations for

each family of network. For all simulations, we set γ = 1 and τ = 0.5 to en-

sure that an epidemic will break out. Each network has N = 10, 000 nodes,

and simulations were synchronously updated. Initially 5 nodes are chosen at

random to be infected. In fact, apart from the networks themselves, the only

differences between the simulations are the parameters n and φ, with n ∈ {5, 10}
and φ ∈ {0, 0.4}.

The first networks explored were generated using the spatial algorithm [105]

whereby nodes are distributed uniformly at random across a
√

N × √N square

with toroidal boundary conditions. The probability pij of two nodes i and j being

connected is dependent on the distance dij between them and is determined by

a normal-like connectivity kernel such that pij = p0e
−d2

ij/2D2

, where p0 and D are

parameters to be adjusted to obtain the required values of n and φ. A second set

of networks were generated by first removing any existing clustering, and then

re-wiring the spatial networks using big-V rewiring [41, 53], as shown in Fig. 3.2.

This preserves the clustering coefficient and node degree but removes other forms

of structure.

A third set of networks were generated using the group-based algorithm [92]

which is based on a bipartite network. The N nodes are assigned to groups and

the connections within groups are explained in detail by Green & Kiss: “Multiple

group membership by nodes leads to between group linkages. For each of g groups,

ν nodes are chosen at random (without replacement), with nodes thus enjoying

a mean of µ = gN/ν groups, binomially distributed. For every pair of nodes that

are members of the same group, an edge is added with probability p = n
µ(ν−1)

.
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Figure 3.3: Infection prevalence time series for networks generated using the
spatial algorithm along with results given by moment closure equations. In all
plots N = 10, 000, τ = 0.5 and γ = 1 with varying n and φ. The solid black
line is for simulation results from the spatial algorithm and the black dashed line
is for simulation results from the same spatial algorithm but with the networks
reclustered using big-V rewiring. The red line is the mean-field approximation,
the blue line is the ordinary pairwise approximation (OPA) and the green line
is for the improved pairwise approximation (IPA). In the cases where φ = 0 the
OPA and IPA coincide.

The resulting networks have clustering coefficient φ = p
1+µ(ν−1)/(ν−2)

” [41]. Thus

the desired values of n and φ can be obtained by varying the number of groups

per node, µ, subject to the constraint that p ≤ 1. A fourth set of networks comes

from applying big-V rewiring to the group-based algorithm.

A fifth set comes from an iterative algorithm proposed by Eames [25], which

is a two step process. Firstly n1 triples are generated by connecting three unique,

randomly chosen nodes. Secondly n2 triangles are generated by selecting a node
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Figure 3.4: Infection prevalence time series for networks generated using the
group-based algorithm along with the results given by moment closure equations.
In all plots N = 10, 000, τ = 0.5 and γ = 1 with varying n and φ. The solid
black line is for simulation results from the group-based algorithm and the black
dashed line is for simulation results from the same group-based algorithm but
with the networks reclustered using big-V rewiring. The red line is the mean-
field approximation, the blue line is the ordinary pairwise approximation (OPA)
and the green line is for the improved pairwise approximation (IPA). In the cases
where φ = 0 the OPA and IPA coincide.

at random that has at least two neighbours, of which two neighbours are then

chosen at random to themselves be connected. The parameters n1 and n2 are

varied to obtain the required values of n and φ. A final set is generated by

unclustering the networks generated by the iterative algorithm. Further details

of all these algorithms can be found in [41]. The rewirings used are shown in

Figure 3.2, where (a) shows the unclustering rewiring and (b) shows the big-V

rewiring.
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Figure 3.5: Prevalence time series for networks generated using the iterative al-
gorithm along with the results given by moment closure equations. In all plots
N = 10, 000, τ = 0.5 and γ = 1 with varying n and φ. The solid black line is
for simulation results from the iterative algorithm and the black dashed line is
for simulation results from the same iterative algorithm but with the networks
unclusterd. The red line is the mean-field approximation, the blue line is the
ordinary pairwise approximation (OPA) and the green line is for the improved
pairwise approximation (IPA). In the cases where φ = 0 the OPA and IPA coin-
cide.

The different combinations of n and φ values leads to four versions of each

network type. For each of these, the prevalence of infection over time is compared

with the approximations from the two pairwise closures as well as the mean-field

model. Figure 3.3 shows results for both the spatial networks and their reclustered

counterparts, Figure 3.4 show results for both the group-based networks and

their reclustered versions and Figure 3.5 shows results for the iterative networks

and their unclustered versions. Both of the pair approximations agree best with
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simulation results at equilibrium when n = 10 and φ = 0 regardless of the network

and this is in line with previous findings [61, 113]. In this case, even the mean-

field approximation provides a good fit even though n << N . The figures show

that reducing n or increasing φ reduce the goodness of fit between the moment

closure approximations and the simulation results for all networks, although the

amount they differ depends on the network generating algorithm.

The networks that show the worst fit for the moment closures are the group-

based networks when n is low and φ is high, as seen in Figure 3.4(b). Here

the epidemic picks up much quicker than predicted even by the mean-field ap-

proximation but the final epidemic size is much smaller. This is a result of the

algorithm producing high degree heterogeneity with many nodes remaining un-

connected for higher values of φ, as shown by Green & Kiss [41]. Indeed for all

four combinations of n and φ there is negligible difference between the results

on the standard group-based networks and those on their reclustered counter-

parts. For these group-based networks φ has a more important role than n in

determining whether or not the pairwise approximations are in good agreement

with simulations. Another interesting feature of the group-based networks is the

limited impact of the big-V rewiring on the underlying structure, as this simply

rearranges the local links within the existing groups and will not change the way

the two groups are linked together.

The somewhat simpler and more straightforward iterative algorithm shown in

Figure 3.5 shows good qualitative agreement between the simulations and ODEs,

with the ODEs overpredicting the initial growth in all cases but with agreement

becoming good for increasing n. Unclustering these networks returns simulation

results that are similar to those seen in the cases where φ = 0 and this provides

a good check for the effectiveness of the unclustering algorithm.

The most interesting case is for networks generated by the spatial algorithm as

shown in Figure 3.3. Here the ODEs overpredict final epidemic size in all cases,
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Figure 3.6: Figures 3.6(a) & 3.6(c) show time series for the correlation CSI as
defined in Eq. (3.37). Figures 3.6(b) & 3.6(d) show time series for proportion
of pairs that are (S, I) (circles) and (I, I) (triangles). In all plots N = 10, 000,
τ = 0.5 and γ = 1. The solid black line is for simulation results from the spatial
algorithm and the black dashed line is for simulation results from the same spatial
algorithm but with the networks reclustered using big-V rewiring. The blue line is
the ordinary pairwise approximation (OPA) and the green line is for the improved
pairwise approximation (IPA).

but not by a significant amount. For the cases with φ > 0 the initial growth

of the epidemic is much slower than predicted by the ODEs, especially when

n = 5. This type of network, however, responds very well to being reclustered

using big-V rewiring. The difference in agreement for the standard networks and

their reclustered counterparts when φ > 0 is very large, showing that there is

much underlying network structure generated by the spatial algorithm that is

not captured by n and φ. There are remarkable differences between the results

from these two networks, as seen in Figures 3.3(b) and 3.3(d), and these show
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Figure 3.7: Showing [III] triples counted in different ways for n = 5, 10 and
φ = 0.4 on spatial networks and their big-V rewired counterparts. The grey cloud
shows actual counts of (I − I − I) triple from individual stochastic realisations.
The blue and green line show [III] calculated using the OPA given by Eq. (3.40)
and the IPA given by Eq. (3.39) respectively with both using pair and individual
values from solving the macro ODE system (Eqs. (2.9 - 2.13)). The red and
black lines show the OPA and IPA respectively, but with values for individuals
and pairs as averages from the stochastic simulation.

the importance of large scale spatial structure in determining how an epidemic

can invade. The goodness of agreement is directly linked to the capability of

the pairwise models to correctly describe the pair dynamics. This is captured in

Figure 3.6 that shows the correlations, CSI , and the normalised expected number

of [II] and [SI] pairs. It can be seen that the rewired networks display much

better agreement in both the growth of pairs and CSI when comparing pairwise

approximations to simulation results. This shows that the big-V rewiring has
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successfully removed higher level structure, and in this case, the pairwise closures

correctly capture the evolution of correlations and pairs.

The performance of pairwise models does not depend solely on the structure of

the network but also on the dynamics (e.g. SIS, SIR, SITS, where T stands for

tracing triggering individuals) that unfold on the network. For example, House

& Keeling [52], show that for contact tracing models, the OPA does not account

correctly for the evolution of triangles with three infected individuals and this

can lead to skewed outcomes and they went on to address this via the IPA. In

Figure 3.7 we show that for simple SIS dynamics the IPA captures the initial

growth of [III] triples much better than the OPA. This difference is emphasised

when the values of the pairs and singles that constitute the two different closures

are taken directly from the simulation. Figure 3.7(a) shows this difference most

dramatically, with the OPA predicting a much more rapid early growth of these

[III] triples, whereas the IPA describes their actual evolution with a much higher

degree of accuracy. However, the failure of the OPA to correctly capture the

evolution of [III] triples does not translate to a significant difference in the time

evolution of the prevalence (see Figure 3.3) but as House & Keeling [52] point

out, the evolution of these triples becomes important when more complicated

dynamics, e.g. SITS, are playing out on the networks. The evolution of all other

triples is much better approximated by both the OPA and IPA and moreover,

as noted before, the big-V rewiring successfully removes higher level network

structure and leads to an overall better agreement between all approaches. Thus,

these observations highlight the importance of considering both network structure

and the particular dynamics when deriving macro-ODE models.

3.5 Discussion

In this chapter we have used three different moment closures approximations and

rigourously proven that they become exact in the limit of large fully connected
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networks. Also, we have compared results from these ODEs to those from the

micro-modelling process of individual-based simulations. The results reveal that

moment closures heavily rely on exploiting local network structure and for net-

works where higher order structure is present the agreement breaks down. We

have shown that using a special rewiring technique, that removes higher-order

or large-scale structure while keeping local properties unchanged, improves the

agreement between micro and macro models significantly for certain types of

network but has little effect on certain others.

Our analysis shows that large-scale network structure plays a crucial role

when deriving moment closure approximations. Existing closures often rely on

local network properties alone and perform poorly in accounting for larger scale

features. However, much progress has been made in accounting for properties

such as node degree and degree distribution heterogeneity [26, 71], preferential

mixing [24, 72], clustering [27] and even directed or weighted edges [112]. While

most of these models rely on some form of pairwise closure, there is scope for

better understanding and justification of the approximations used, as well as

working towards a unifying framework for such approximation models.

This chapter shows that it is worthwhile to consider alternative custom-made

closures for different networks, and to do this, it may be necessary to incorporate

non-local network properties especially when local network metrics such as n

and φ fail to capture the key network features. For example, Green & Kiss [41]

use network measures other than n and φ to investigate the correlation between

simulation results and non-local network metrics. An alternative approach may

rely on higher order motifs, such as quadruples [51], and accounting for these

could lead to improved approximation models. One of the key challenges for

generating valid and accurate moment closure approximations is to account for

the dependence of the state of a node on the state of neighbouring nodes, and the

correlations that arise as a result. Indeed these dependencies will act on a larger
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scale than simply a node’s immediate neighbours, so the challenge of finding

appropriate closures may be very difficult. Such approaches, at least in the initial

stages of development, will rely on generating theoretical toy networks that can

be used to assess the goodness of the approximations. If these novel approxi-

mations will only yield satisfactory results for specific networks, their practical

benefits will be small but could form the building blocks to develop models that

are valid for larger or more realistic sets of networks. It is clear that only by un-

derstanding the fundamental structures that underpin any network can moment

closure techniques be confidently used to model dynamical processes on networks.
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Chapter 4

Dynamic contact networks - an

epidemic model with random link

activation and deletion

4.1 Introduction

In this chapter we present a model describing SIS type epidemics spreading on

a dynamic contact network with random link activation and deletion, where link

activation can be locally constrained. We use and adapt an improved effective

degree compartmental modelling framework recently proposed by Lindquist et al.

[83] and separately by Marceau et al. [85]. The resulting set of ODEs is solved

numerically and results are compared to those obtained using individual-based

stochastic network simulation. We show that the ODEs display excellent agree-

ment with simulation for the evolution of both the disease and the network, and

are able to accurately capture the epidemic threshold for a wide range of parame-

ters. We also present an analytical R0 calculation for the dynamic network model

and show that, depending on the relative timescales of the network evolution and

disease transmission, two limiting cases are recovered: (i) the static network case
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when network evolution is slow and (ii) homogeneous random mixing when the

network evolution is rapid. We also use our threshold calculation to highlight the

dangers of relying on local stability analysis when predicting epidemic outbreaks

on evolving networks.

4.2 Background

The rise in the popularity and relevance of networks as a tool for modelling com-

plex systems is well illustrated by the ever increasing body of research concerned

with the spread of diseases within host populations exhibiting non-trivial contact

structures [1, 93]. Networks offer an intuitive and relatively simple modelling

framework which enables us to relax the strong implicit assumptions of more

classical ODE based approaches and to account for complexities in the contact

structure of the host population [9, 26, 44, 91, 114]. This approach has shown

that epidemic thresholds not only depend upon the infectiousness of the pathogen,

or even simply the mean number of contacts per individual, but also upon the

exact structure of the host population [5, 120]. In addition to its inherent the-

oretical value, this paradigm has immediate practical benefits, as the primary

role of public health services is to put measures in place to bring diseases below

their epidemic threshold. These measures depend heavily upon disrupting the

transmission of a disease through vaccination and also more directly through the

closure of public services, or even quarantine and curfews in extreme cases. Hence

the knowledge of how the structure of the host population is contributing to the

spread of a disease would help to increase the efficacy of any intervention [88].

Despite advances in both rigorous and non-rigorous analysis of networks, a key

assumption in many network models is that contacts are fixed for the duration

of an epidemic and that the disease propagates with a constant intensity across

links. This will not be true for many diseases, especially those with long infectious

periods, or diseases that become endemic. Indeed human contact patterns are
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well described by short repeated events, with individuals having a number of

contacts best described by some appropriate time dependent random variable

[104]. Furthermore, individuals and the communities they belong to are likely to

change their contact behaviour as a result of natural evolution and endogenous

or exogenous perturbations such as a disease outbreak [82].

Recently a number of studies have attempted to relax this assumption by

allowing the networks to evolve over time by either varying contacts independently

of the status of individuals [125, 126] or by explicitly coupling contact activation

and deletion to the disease status of individuals [44, 85, 123]. Thus, in the latter

case, the dynamics of the disease is coupled with the dynamics of the network

itself, with both acting as a feedback mechanism for the other [43, 123, 129].

Many of these studies have built macro ODE-based models that describe the

coevolution of networks and the diseases that spread along them [44, 85, 111, 123].

All these studies confirm that dynamic networks and the coupling between the

two dynamics lead to a richer spectrum of behaviour than is found for epidemics

on static networks.

A crucial feature of allowing the co-evolution of disease and network is the

interplay and feedback between both dynamics, however this interdependence is

difficult to measure empirically. The models developed so far mainly use rewiring

rules that intuitively make sense given that individuals would have knowledge

of the disease states of the rest of the population. However in this chapter we

move away from these assumptions and we propose a dynamic network model

that is based on random link activation-deletion, which would be more relevant

for asymptomatic diseases, such as chlamydia [84]. Furthermore our dynamic

network model is refined by introducing a local constraint on link activation to

account for the difference in the magnitude of the number of contacts of a node

relative to system size. This dynamic network coupled with the simple SIS dis-

ease dynamics leads to the full model that will be analysed and discussed. We
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study this system and explore to what extent a macro ODE-based compartmental

model proposed for static networks is flexible enough to be adapted to a dynamic

network case. Specifically, we focus on the SIS effective degree model as described

in detail by Lindquist et al. [83] and also proposed by Marceau et al. [85] indepen-

dently. Gleeson [39] later uses this same modelling framework and demonstrates

that the effective degree formulation can be used to model other binary-state

dynamics such as Glauber spin dynamics and shows that the ODE model can be

used to carry out linear stability type analysis.

Whereas both Lindquist et al. [83] and Gleeson [39] confine themselves to

modelling on static contact networks, Marceau et al. [85] uses this same improved

effective degree formalism to explore SIS disease dynamics on adaptive networks.

In this model the number of links in the network is fixed but the susceptible in-

dividuals can replace links to infectious neighbours with links to other randomly

chosen susceptible individuals, as originally proposed by Gross et al. [45]. Our

proposed model also uses SIS type epidemics on dynamic networks, but, unlike

in Marceau et al. [85], our model allows for the random activation and deletion

of links over time. As such not only the network topology will evolve and change

over time, but also the number of links. This modified dynamic effective degree

model is also governed by a closed set of ODEs, which is then solved and com-

pared to results from individual based simulations and its ability to accurately

predict the epidemic threshold over a range of parameters is investigated. We also

derive an analytical R0 calculation that describes the stability of the disease-free

equilibrium and we discuss the limitations of such a calculation in the light of

having a dynamically active and evolving contact network.

4.3 The model

Linquist et al. [83], who work in the mathematical biology community, and

Marceau et al. [85] and Gleeson [39], who both work in the physics community,
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Figure 4.1: Flow chart showing transitions in the dynamic SIS effective de-
gree model. The directed red (gray), green (light gray), blue (dark gray) and
black lines represent changes in state of an individual via infection, recovery, link
creation and link deletion respectively. The thick lines represent changes to the
individual, and thin lines represent changes to that individual’s immediate neigh-
bourhood. In relation to nodes of type Xsi, X ∈ {S, I}, infection of neighbours
occurs at rate sGX , recovery of neighbours at rate γi, creation of a susceptible
(infectious) link at rate α(M − (s + i))PS(I) and deletion of a susceptible (infec-
tious) link at rate ωs(i), where:

GS = β
∑M

k=1

∑
j+l=k jlSjl∑M

k=1

∑
j+l=k jSjl

, GI = β
∑M

k=1

∑
j+l=k l2Sjl∑M

k=1

∑
j+l=k jIjl

, PX =
∑M

k=0

∑
j+l=k(M−(j+l))Xjl∑M

k=0

∑
j+l=k(M−(j+l))(Sjl+Ijl)

.

use different notation to describe the same modelling framework. However, in

both cases the resulting models not only categorize the disease state of each

individual as susceptible (S) or infected (I) but also describes the state of their

immediate neighbourhood. This is achieved by keeping track of the number of

susceptible and infected neighbours that belongs to a given node.

Marceau at al. [85] build upon the work on adaptive networks by Gross

et al. [45] to construct a model that not only describes individuals infecting

68



their neighbours and recovering, but also allows susceptible individuals to replace

links to infectious neighbours with links to individuals chosen randomly from

the susceptible population. This re-wiring process ensures that even while the

topologies of local neighbourhoods are evolving over time, the number of links in

the whole population remains constant. This process is captured by introducing

Skl(t) and Ikl(t) as the number of nodes of total degree k and infectious degree l ≤
k at time t. Population level counts of individuals, pairs and triples can be easily

obtained by using the explicit information about the state of each neighbourhood,

and summing over all possible values of k and l. For example:

S =
∑

kl

Skl, SI = IS =
∑

kl

(k − l)Ikl, SSI =
∑

kl

(k − l)lSkl, (4.1)

which give us the number of susceptibles, (SI) pairs and (SSI) triples respec-

tively. The full dynamics are given by a system of ODEs which is O(k2
max), with

kmax being the degree of the most highly connected node or nodes, as follows:

Ṡkl = αIkl − βlSkl + α[(l + 1)Sk(l+1) − lSkl] + β
SSI

SS

[(k − l + 1)Sk(l−i)

−(k − l)Skl] + γ[(l + 1)Sk(l+1) − lSkl] + γ
SI

S
[S(k−1)l − Skl],

˙Ikl = −αIkl + βlSkl + α[(l + 1)Ik(l+1) − lIkl] + β

(
1 +

SII

SI

)
[(k − l + 1)Ik(l−i)

−(k − l)Ikl] + γ[(k − l + 1)I(k+1)l − (k − l)Ikl] + γ
SI

S
[S(k−1)l − Skl],

where in this case Marceau [85] has used α to be the per-node recovery rate, β

the per-link infection rate and γ the per-link rate at which (S, I) pairs are rewired

to become (S, S) pairs. This is at odds with notation used thus far in this Thesis,

where γ has been used as the rate of recovery. In addition, terms such as S, SI ,

SSI and so on, are calculated following Eqs. (4.1).

Gleeson [39] used this same modelling formalism, but for generalised binary-
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state dynamics on a static network:

˙sk,m = −Fk,msk,m + Rk,mik,m − βs(k −m)sk,m

+βs(k −m + 1)sk,m−1 − γsmsk,m + γs(m + 1)sk,m+1,

˙ik,m = Fk,msk,m −Rk,mik,m − βi(k −m)ik,m

+βi(k −m + 1)ik,m−1 − γimik,m + γi(m + 1)ik,m+1,

where here F and R are general functions that describe the infection or recovery

of a node, and βx and γx, x ∈ {s, i} describe the infection or recovery of an

individuals neighbours. These rates are derived fully in Gleeson [39], as well

as the closures implicit in approximating the rate of infection of a susceptible

neighbour.

For the model we present in this chapter, however, we use the notation pro-

posed by Lindquist et al. [83] to describe the same binary-state dynamics on a

static network as did Glesson [39], however Lindquist at al. [83] have written

their model specifically for SIS type epidemics.

In Linquist et al. [83] for example, Ssi represents the number of susceptible

individuals that have s susceptible and i infected neighbours. This gives rise

to more states and equations than would be seen in a standard pairwise model,

where equations are given at the population level for all types of singles and pairs

[63]. For example if a Ssi type node became infected via one of its i infectious

neighbours, this individual would move to state Isi as only the status of the node

itself is changing. However, if one of the i infected neighbours of an Ssi type node

recovered then the node would enter the Ss+1,i−1 class, whereas infection of one

of the s neighbouring susceptible nodes moves the Ssi type node into the Ss−1,i+1

class.

Lindquist et al. [83] defined γ to be the per node recovery rate, β the per

link infection rate and M the maximum nodal degree of a network with N nodes.
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They then derived the following system of
∑M

k=1 2(k +1) = M(M +3) equations:

Ṡsi = −βiSsi + γIsi + γ[(i + 1)Ss−1,i+1 − iSsi] (4.2)

+β

∑M
k=1

∑
j+l=k jlSjl∑M

k=1

∑
j+l=k jSjl

[(s + 1)Ss+1,i−1 − sSsi],

˙Isi = βiSsi − γIsi + γ[(i + 1)Is−1,i+1 − iIsi]] (4.3)

+β

∑M
k=1

∑
j+l=k l2Sjl∑M

k=1

∑
j+l=k jIjl

[(s + 1)Is+1,i−1 − sIsi],

for {(s, i) : s, i ≥ 0, 1 ≤ k = s + i ≤ M}. This is the SIS effective degree model

for a static contact network.

In order to adapt this model to describe SIS dynamics on a dynamic contact

network, we introduce two new parameters: ω, the per link deletion rate and α,

the per non-link, or more precisely the per potential link creation rate. These

rates could also be made to be link-type dependent, i.e. ωSI would be the per

SI link deletion rate. For the dynamic network cae, the system size will increase

slightly from M(M +3) to
∑M

k=0 2(k+1) = (M +1)(M +2) equations, to account

for nodes of the type X0,0 where X ∈ {S, I}. In the static case, these nodes were

dynamically unimportant as they could neither infect nor become infected by

other nodes. However in the dynamic model, they could connect to other nodes

in the system and so enter states X1,0 or X0,1 depending on the state of the node

with which they have just formed a new link.

When adding the terms that govern link creation and deletion to Eqs. (4.2)

and (4.3) it is far simpler to construct the terms that govern deletion of existing

links than those for the creation of new links. Links to nodes of type Xsi where

X ∈ {S, I} are cut at a rate proportional to their degree, so individuals will leave

Xsi through link deletion at a rate ω(s + i) and will either enter the Xs−1,i or

Xs,i−1 classes depending on the state of the nodes to which they were previously

connected. Similarly individuals can enter state Xsi if they were in states Xs,i+1

or Xs+1,i and a link to an infected or susceptible node was deleted, respectively.
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When creating new links to nodes of type Xsi, there are M − (s + i) stubs

remaining, so nodes will transition out of this state at a rate α(M − (s + i))

and will either enter the Xs+1,i or Xs,i+1 classes depending on the state of the

node to which they have just connected. The rate at which nodes enter the Xsi

class from either Xs−1,i or Xs,i−1 depends not only on the number of stubs still

available in the node in question, but also on the probability that the newly

created link attaches to a node of state S or I, respectively. So nodes enter Xsi

from Xs−1,i at the rate αPS(M − (s− 1 + i)), and nodes enter Xsi from Xs,i−1 at

rate αPI(M − (s + i− 1)), where PX =
∑M

k=0

∑
j+l=k(M−(j+l))Xjl∑M

k=0

∑
j+l=k(M−(j+l))(Sjl+Ijl)

, X ∈ {S, I} is

the probability of picking an available stub belonging to nodes of type X where

X ∈ {S, I}. The full set of transitions captured by this model is shown in Fig.

4.1.

The addition of these terms to Eqs. (4.2) and (4.3) transforms the SIS effective

degree model for a static network into one that captures the spread of SIS type

diseases on a dynamic contact network and is described by the following system

of (M + 1)(M + 2) equations:

Ṡsi = −βiSsi + γIsi + γ[(i + 1)Ss−1,i+1 − iSsi] (4.4)

+β

∑M
k=0

∑
j+l=k jlSjl∑M

k=0

∑
j+l=k jSjl

[(s + 1)Ss+1,i−1 − sSsi]

−ω[(s + i)Ssi − (i + 1)Ss,i+1 − (s + 1)Ss+1,i]

−α(M − (s + i))Ssi + α(M − (s− 1 + i))PSSs−1,i,

+α(M − (s + i− 1))PISs,i−1

˙Isi = βiSsi − γIsi + γ[(i + 1)Is−1,i+1 − iIsi] (4.5)

+β

∑M
k=1

∑
j+l=k l2Sjl∑M

k=1

∑
j+l=k jIjl

[(s + 1)Is+1,i−1 − sIsi]

−ω[(s + i)Isi − (i + 1)Is,i+1 − (s + 1)Is+1,i]

−α(M − (s + i))Isi + α(M − (s− 1 + i))PSIs−1,i

+α(M − (s + i− 1))PIIs,i−1,
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for {(s, i) : s, i ≥ 0, 0 ≤ k = s+ i ≤ M}. This system is the dynamic SIS effective

degree model.

The total number of links in the system at time t, Λ(t), and potential links,

Φ(t) can easily be calculated from the effective degree formulation as

Λ(t) =
M∑

k=0

∑

j+l=k

(j + l)(Sjl + Ijl),

Φ(t) =
M∑

k=0

∑

j+l=k

(M − (j + l)) (Sjl + Ijl)

= MN − Λ(t),

with the mean nodal degree given by 〈k(t)〉 = Λ(t)
N

. At the equilibrium, αΦ = ωΛ

which gives us the mean nodal degree at equilibrium to be:

〈k〉∗ =
α

α + ω
M. (4.6)

Note that Eq. (4.6) does not depend on the system size, N , but rather on the

maximum nodal degree, M . This is important because in the static model, M is

simply given by the node or nodes with the highest degree whilst in the dynamic

case, however, M can be considered as a carrying capacity, whereby no node can

have more than M links. This subtle but important difference means that in

the dynamic case, M itself can be regarded as a parameter which controls the

potential level of network saturation, and hence the network is locally constrained.

4.4 Calculating the disease threshold

For the static case, Lindquist et al. [83] used the next generation matrix approach

[21] to calculate the disease threshold to be

R0 = ρ(FV −1) =
β∑M

k=1 kSk,0

M∑

k=1

vT
k V −1

k uk. (4.7)
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In this approach, Eqs. (4.4) and (4.5) are linearized at the disease-free equilibrium

(DFE) and the Jacobian at the DFE is written as F − V . In this formulation,

F accounts for transitions from disease-free states to disease states (in the static

case only the transition from Ss,0 to Ss−1,1 needs to be considered) and V accounts

for transitions between , and out of, different disease states. The spectral radius,

ρ, the leading eigenvalue of FV −1, gives R0 and describes the stability of the

DFE. If R0 < 1 the DFE is stable and no epidemic will occur, but if R0 > 1 the

DFE is unstable and the infectious agent can spread through the population.

We can calculate F in the dynamic case by noting that the same Ss,0 to Ss−1,1

type transitions can still occur, but in addition nodes can enter the disease states

by linking to an infected node, namely Ss,0 to Ss,1 transitions. If we introduce

a subscript s to denote the static version of the next generation matrix, so the

static version of F is called Fs and so on, we have

Fs =
β∑M

k=0 kSk,0




us0

us1

...

usM




[
vT

s0
vT

s1
. . . vT

sM

]
, (4.8)

where usk
and vsk

are (2k+1) x 1 vectors. The usk
vectors have kSk,0 as their first

entry and zeros elsewhere and the vsk
vectors have their first (k−1) entries equal

to (k − 1), 2(k − 2), . . . , s(k − s), . . . , (k − 1) and zeros elsewhere. This is almost

identical to the F matrix constructed by Lindquist et al., but is augmented by

us0 and vs0 to account for the new disease state, I0,0, and the summation starts

at k = 0 rather than k = 1.

We now introduce a new subscript d to describe the new transitions that are

only possible in the dynamic model. Hence a new F matrix, Fd, is created, which
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has exactly the same dimensions as Fs, and is given by

Fd =
α∑M

k=0(M − k)Sk,0




ud0

ud1

...

udM




[
vT

d0
vT

d1
. . . vT

dM

]
. (4.9)

Here, udk
is again a (2k + 1) x 1 vector with the first entry equal to (M − (k −

1))Sk−1,0 and all other entries equal to zero. In the case where k = 0, ud0 = (0). In

addition, vdk
is the same size as udk

and the first k entries are equal to zero, with

the remaining k + 1 entries equal to M − k. The final F matrix that captures all

the possible transitions in the dynamic effective degree model is found by taking

a linear sum of the two, namely F = Fs + Fd.

As with the static case, the V matrix is constructed through careful book-

keeping, which can be done through iterative routines. In the static case, as the

nodes have fixed degree, Vs is a block diagonal matrix with Vs = Vs1⊕Vs2⊕...⊕VsM
,

as described by Lindquist et al. [83]. For the dynamic model, Vd will be a block

tri-diagonal matrix, as state transitions can now also occur by nodes gaining or

losing a link. In addition, the extra disease state I0,0 needs to be considered, and

V will now also depend upon α and ω as well as β and γ. Once F = Fs + Fd and

V = Vd are constructed, the leading eigenvalue or R0 is computed numerically.

Intermezzo - Recipe for constructing the V matrix

Below is a descriptive account of how to construct the V matrix required in the R0

calculation described above. Unless the reader intends to reproduce the results

in this chapter, the reader can safely leave this Intermezzo and move onto the

next section without any loss of clarity.

For a given M , the leading block diagonal on V will be a concatenation of

M +1 sub-matrices, Vk for k = 0 : M . Each has dimensions 2k+1 and contain all
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the transitions included in V for the static case and, in addition, it will include

new dynamic terms on the leading diagonal that govern transitions out of a state

by link creation or deletion.

In order to keep track of the various transitions that can occur within

and out of disease states, it is important to have a structured lexicographi-

cal approach to ordering the different states. Noting that states of the form

Sk,0 are not disease states, the ordering of states for each k = 0 : M is

(Sk−1,1, Sk−2,2, ..., S0,k, Ik,0, Ik−1,1, ..., I0,k).

Each sub-matrix Vk can be constructed from four further parts that can be

thought of as containing, from top left clockwise, Sk → Sk, Ik → Sk, Ik → Ik and

Sk → Ik type transitions respectively. It should be noted that for the case where

k = 0, there are no susceptible states as S0,0 is not a disease state.

The leading diagonal of the Vk contains the rate of transitions out of a par-

ticular state. These entries are all positive and contain β, γ, α and ω. The link

creation and deletion terms are the same for both S → S and I → I transi-

tions and hence each entry on the leading diagonal of the Vk has a contribution

(M − k)α + kω. The recovery rates are proportional to the infectious degree of

a state and hence contributes jγ, with j = 1 : k for S → S and j = 1 : k + 1 for

I → I. When considering infection rates, it should be noted that at the DFE only

within pair infections are possible, and we are assuming an entirely susceptible

population. Hence the infections rates are proportional to the infectious degree

for S → S and contribute jβ for j = 1 : k, and are proportional to the suscep-

tible degree for I → I and contribute k − (j − 1) for j = 1 : k + 1. These are

all the ways transitions out of a particular state can occur. All other transitions

described below are for transitions into a state and are therefore all negative.

To finish constructing the S → S and I → I parts of the Vk, entering a

state via infection and recovery of a neighbour must be considered. The upper

off-diagonals govern recovery and the lower off-diagonals infection. The recovery
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rates for S → S are −(j + 1)γ for j = 1 : k − 1 and for I → I they are −jγ for

j = 1 : k. The infection rates are all zero for S → S as at the DFE there are no

further infectious neighbours of a particular node’s own susceptible neighbours.

For I → I, only within pair infection is possible for the same reason, and hence

the infection rate is proportional to the node’s infectious degree and is given by

−(k − j + 1)β for j = 1 : k.

Now all possible S → S and I → I transitions have been accounted for, the

S → I and I → S sections of the Vk sub-matrices need to be constructed. Clearly

transitions of this type can only occur by the infection and recovery respectively

of the node itself. At the DFE, S → I transitions are proportional to a node’s

infectious degree so on the diagonal starting from position (2, 1) the rates are

−jβ for j = 1 : k. On the other hand for I → S transitions, as recovery is

neighbourhood independent the rates are all simply −γ on the diagonal starting

at position (1, 2).

Once each of the four components of the individual Vk are joined, and then

each of the Vk concatenated, the entire leading block diagonal of V has been

constructed. The upper and lower block diagonals govern transitions into states

via changes in the network structure rather than changes in the disease states of

individuals.

The upper block diagonal deals with link deletion and hence a change in degree

of k → k− 1. It is constructed by a concatenation of M sub-matrices, called Vωk
,

with dimensions (2(k−1)+1)x(2k+1). Once again these sub-matrices can be split

into four parts, but as the disease state of the node cannot change only S → S

and I → I will be non-zero. Each state Xa,b, where X ∈ S, I and a + b = k − 1,

can be entered in two ways, from Xa+1,b or Xa,b+1, where a+b+1 = k. For S → S,

these are described by two diagonals, firstly capturing deletion of a susceptible

link and starting from position (1, 1) with entries −(k − j)ω for j = 1 : k − 1

and secondly capturing deletion of an infectious link and starting from position
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(1, 2) with entries −(j + 1)ω for j = 1 : k − 1. Similarly I → I has two non-zero

diagonals, starting at (1, 1) with entries −(k − j + 1)ω for j = 1 : k.

The lower block diagonal deals with link creation and hence a change in degree

of k → k +1. It is constructed by a concatenation of M sub-matrices, called Vαk
,

with dimensions (2k + 1)x(2(k + 1) + 1). Once again only S → S and I → I

need be considered. At the DFE only Xa,b → Xa+1,b type transitions need to be

accounted for, and furthermore the are always M − k stubs available. For both

S → S and I → I, there is one non-zero diagonal starting at position (1, 1) with

entries always −(M − k)α.

This completes the construction of V , and hence R0 = ρ(FV −1) can be rapidly

calculated for SIS type epidemics on a dynamic contact network with random

link creation and deletion.

End of Intermezzo

4.5 Results

As shown in Fig. 4.2, the ODEs given by Eqs. (4.4) and (4.5) closely capture the

time evolution of an epidemic as predicted by stochastic simulations. The only

parameter that is varied in Fig. 4.2 is M , and it is interesting to note the effect

it has on the evolution of the disease. As per Eq. (4.6), the mean nodal degree

at equilibrium is dependent on M , and hence, given the same initial network

configuration and values of α and ω, the network either loses or gains links as

the system evolves. Thus varying the carrying capacity alone leads to different

outcomes depending on whether the network can reach a level of connectedness

that allows an epidemic to spread and become established. Allowing M to become

an active model parameter that is able to control the outcome of an epidemic

has potentially interesting real world implications. The number of contacts per

person is a natural, countable property unlike the other model parameters, such
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Figure 4.2: Time evolution of I(t) =
∑M

k=0

∑
j+l=k Ijl(t) and 〈k〉(t) = Λ(t)

N
for

three different values of M . Results from the ODE are given by solid lines and
those from simulation by points. In all cases N = 1000, I0 = 100, α = 0.05,
ω = 0.1, β = 0.5 and γ = 1. The initial network is a regular random network
with k = 4. In each case, mean values from the stochastic simulations were found
by averaging over 100 repetitions, with the individual realisations plotted in grey.

as ω, which are more difficult to infer. Therefore local constraints that limit the

maximum number of contacts per person could be potentially used as a metric

when promoting safe behaviour at a population level in the event of an outbreak

or other public health crisis.

In Fig. 4.3, for a given value of α, M and β, the epidemic threshold has

been calculated from the ODEs in terms of ω and compared to that predicted

by simulations. The agreement is excellent and this is strong evidence that the

dynamic effective degree model accurately captures the evolution of an epidemic

on a network with random link creation and deletion. When considering the

(β, ω) parameter space used for the threshold plot in Fig. 4.3, there are three
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Figure 4.3: Epidemic threshold plot in the (β, ω) parameter space for four distinct
values of α. Above the lines/points represents parameter space that leaves the
system at the DFE, and below the lines/points represents parameter space in
which the disease invades the population. Results from the ODE are given by
solid lines and those from simulation by solid points. In each case, N = 1000,
I0 = 10, M = 20 and γ = 1. The initial network is a regular random network
with k = 4.

distinct regions that are worth noting. Firstly, given an initial starting network,

it is possible to calculate the threshold value of β in the static network case. For

the regular random network with k = 4 used here, that value is β∗ ≈ 0.36. For

values of β < 0.36, the relative time scales of disease and network evolution are

crucial in determining whether or not an epidemic will occur. In this situation,

the network needs to quickly evolve to become more densely connected in order

for there to be an outbreak. The second area of interest is when the disease is

highly infectious and as a result requires a high value of ω to drive the epidemic

below threshold. Indeed, if the disease parameters β and γ are fixed then the
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Figure 4.4: R0 for a range of values of β and α, with fixed parameters γ = 1,
M = 20 and 〈k〉∗ = 3 for (thin solid lines, in order from top to bottom) α = 10−4

(green), α = 10−2 (red), α = 10−1 (blue) and α = 10 (black). In (a) the initial
network is a regular random network with k = 6 and in (b) the initial degree
distribution is negative binomial with 〈k〉 = 6 and σ2 = 12. In each case, ω =

αM−〈k〉∗
〈k〉∗ . The thick short-dashed red line is the theoretical value of R0 for a static

network, and the thick red dash-dotted line is the mean field limit R0 = β
γ
〈k〉∗.

only way of affecting the outcome of an epidemic is through changing the network

structure, i.e. reducing the number of links or the variance. Hence, for a fixed α

and M , a value of β can be chosen large enough so that the minimum value of ω

needed to reduce the connectivity of the network sufficiently to stop an outbreak

(see Fig. 4.3), gives 〈k〉∗ < 2 as can be calculated from Eq. (4.6). If a network has

〈k〉∗ < 2 then it becomes fragmented, with many nodes becoming unconnected. In

these situations, the value ω needed to prevent an epidemic virtually destroys the

network. In terms of real world implications, a large value of ω could correspond

to a situation of strict quarantine and curfew whereby links between individuals
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Figure 4.5: Time evolution of I and 〈k〉 with γ = 1, M = 20, α = 0.1, ω =

αM−〈k〉∗
〈k〉∗ and an initial regular random network with k = 6. The two cases

illustrated above correspond to: 〈k〉∗ = 3 and β = 0.35, giving R0 ≈ 1.29 (red
long-dashed line) and 〈k〉∗ = 9 and β = 0.125, giving R0 ≈ 0.77 (blue short-
dashed line).

are kept to a minimum. In between these two cases lies a region within which an

epidemic would take hold naturally, given the initial network, but which can be

prevented by a value of ω that leaves the network well connected.

In Fig. 4.4, we show analytical values of R0 for a range of values of β and

α. It is worth noting that two limiting cases are recovered when the timescale of

the network dynamics is fast and slow relative to the timescale of the disease dy-

namics. The thick short-dashed red line shows R0 calculated for a static network,

as proposed by Lindquist et al. [83] and given in Eq. (4.7), and this is exactly

followed by results from our dynamic R0 calculation when the network dynamics

are set to be much slower than the disease dynamics. The other extreme is shown
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by the thick dash-dotted red line, and is the value of R0 that results form the

classic mean-field calculation R0 = 〈k〉β
γ

. The time evolution of 〈k〉 is given by

˙〈k〉 = α(M − 〈k〉) − ω〈k〉 but, when the network dynamics is fast, the equilib-

rium network distribution, and hence 〈k〉∗, is approached much quicker than the

epidemic timescale and hence a value of 〈k〉 = 〈k〉∗ as given by Eq. (4.6) can be

used. This limit is closely matched by results from our dynamic R0 calculation

when the network dynamics are rapid compared to disease transmission as shown

in Fig. 4.4.

Although Fig. 4.4 demonstrates the accuracy of our analytical R0 calculation,

Fig. 4.5 highlights two example cases where the long term epidemic outcomes

are the opposite of what is predicted by R0. In the cases R0 < 1 (blue short-

dashed curve) and R0 > 1 (red long-dashed curve) the system settles to an

endemic and to a disease free equilibrium respectively, due to the different ways

the networks evolve. Given that R0 is based on a local stability analysis, it can

only incorporate the immediate next-generation effects of random link activation

and deletion, and cannot account for long term changes to the network structure.

It is well established in the literature (see, for example [21, 119]) that R0 is of

limited value when used as a predictor, and even for static networks needs to be

used with care. Our results add weight to this argument, and we show that when

dealing with diseases spreading through dynamic contact networks the use of R0

as any kind of predictor on long term disease evolution should be met with some

degree of caution.

4.6 Discussion

In summary, this chapter has proposed an effective degree model for epidemics

on dynamic networks with random link activation and deletion, where activation

is locally constrained. We have shown that this model agrees extremely well

with results obtained from stochastic simulations, and as such can reliably be
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used for the analytical and semi-analytical study of coupled disease and network

dynamics. We have shown how a local constraint limiting the number of contacts

per individual can be used to control and prevent the outbreak of an epidemic in

this dynamic model. We have also proposed a next-generation based calculation

of R0, but also demonstrated the limited value of threshold stability analysis in

predicting the evolution of a disease in a dynamic contact network. In future

work, this model can be adapted and extended to account for individuals cutting

and creating links with knowledge of the state of others in the population, i.e.,

link-type dependent network dynamics. This two-way feedback will lead to more

sophisticated network properties such as degree correlations, high clustering or

even network fragmentation. This is in contrast with the model proposed in this

Chapter, in which the network remains Poisson-like due to the random, state-

independent link activation and deletion. In such cases ODE models need to be

used with care, making sure that the agreement with simulations remains valid.

Besides modelling epidemics, this framework could also be used to study the

spread of information, beliefs and new ideas within populations, and as such could

have implications across a wide range of disciplines beyond the mathematical

biology and physics communities.
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Chapter 5

Epidemic control through

behavioural change: the effect of

information on disease spread

5.1 Introduction

When confronted by a disease outbreak, human beings will, consciously or sub-

consciously, become more aware of the potential new risks they face. Indeed,

individual behavioural change forms a key part of any public health campaign.

From leaflets found in a local clinic all the way up to national and global mul-

timedia campaigns, efforts are put into effect with the goal of changing people’s

behaviour in the presence of an infectious disease thus reducing the overall impact

of an epidemic [30, 36, 121].

When disease spread through relatively well defined contact networks, as in

the case of sexually transmitted diseases (STDs), contact tracing data collected

at clinics can be used to identify individuals with a prominent structural role

in the network who can then be approached or screened preferentially. Similar

approaches can be taken when considering the dissemination of information. Well-
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connected individuals can be approached and seeded with information in the hope

that they will diffuse this through their social network [82, 121].

Besides centrally organised campaigns, research suggest that people’s deci-

sions on whether to adopt a change in behaviour are influenced by others in their

personal network of contacts [77, 121]. This peer-to-peer effect has been observed

and utilized in electronic marketing [40, 81, 100] and when modelling the diffusion

of innovations [73, 87]. In addition to information flowing along our social net-

work of contacts, it is possible to pick up information from ‘random’ encounters,

such as overhearing a conversation on a bus. These sort of random encounters

lend themselves to being modelled as mean-field type transmissions [25].

Besides mass-media, peer-to-peer and random contacts, a fourth route to

awareness is via direct, personal experience: once an infected individual becomes

symptomatic, they are inevitably aware of the disease and are likely to seek med-

ical advice.

A major motivation for the incorporation of behavioral change models in in-

fectious disease studies was the AIDS epidemic from the early 1980s and onwards.

The main driver for this was the realisation that the growth of STDs, including

AIDS/HIV, could be understood as a consequence of lifestyles choices and sub-

jective risk perception motivated by individual attitudes and beliefs [13, 15]. This

field of work is still very prominent, and is of particular interest when consider-

ing the explosive nature of the AIDS epidemic in Africa [42, 59, 106]. In this

situation, where money and resources are scarce, control via public awareness

and behaviour modification offers a potentially very effective and cost efficient

method of control.

In the past few years, a number of compartmental models have been proposed

that incorporate various aspects of the spread of a disease and human behavioral

response to the growing epidemic. Broadly speaking, most of the research can

be classified into one of two categories. In the first class are models that deal
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with vaccine-preventable diseases [11, 12, 22, 98]. In this case, a natural question

is whether (and to what extent) individuals’ attitudes to vaccination can affect

the dynamics of the disease. In cases of voluntarily vaccination, without further

incentives, as vaccination coverage increases the risk of infection decreases due to

herd immunity. At the same time any real or imaginary risks from the vaccine

itself remain in effect. This effect may motivate individuals to act in self-interest

and avoid vaccination even if the risks of the vaccine are very small. Consequently

disease eradication may become very difficult [98].

The second class of models deal with behavioral change in response to an

epidemic outbreak [29, 34, 35, 74, 75, 102]. Our model belongs in the latter class.

Here individuals may alter the course of an epidemic by taking disease specific

risk-reducing measures such as washing hands or using condoms. In modeling

terms, this is usually represented as subdivisions of a population into classes

differentiated by degrees of risk exposure, a body of work reviewed in [36].

In this Chapter, we propose a model that allows individuals of any disease

state to belong to either an ‘responsive’ or ‘non-responsive’ sub-state, with respon-

sive individuals having a lower risk of infection due to changes in their behaviour.

We allow for multiple sources of information generation and transmission, ex-

plore the relative effectiveness of each of these and consider the implications for

effective public health decision making.

5.2 Model

Following on from Kiss et al. [74], the population is divided into five different

classes that specify the individual’s status with respect to disease and informa-

tion. These are: susceptible non-responsive (Snr), susceptible responsive (Sr),

infected non-responsive (Inr), infected responsive (Ir) and in treatment (T ). The

term responsiveness emphasizes that the willingness to act or respond to the

available information is key in trying to avoid infection or halting further spread.
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transition rate contact type
Inr + Snr → 2Inr τ Gd infection
Inr + Sr → Inr + Ir σsτ Gd infection
Ir + Snr → Ir + Inr σiτ Gd infection
Ir + Sr → 2Ir σsσiτ Gd infection
Inr → T γ independent infection
Ir → T σrγ independent infection
T → Snr rp independent infection
T → Sr r(1− p) independent infection
Xr + Ynr → Xr + Yr αX Gi information
Xnr → Xr δXGX([Inr], [Ir]) independent information
Inr → Ir ω independent information
Xr → Xnr dX independent information

Table 5.1: All transitions allowed by the coupled infection/information system,
where X,Y ∈ {S, I} with individuals in treatment acting as members of the
responsive classes (i.e. Xr ∈ {Sr, Ir, T}). Individuals in the treatment class
return to being susceptible non-responsive and responsive at rate pr and r(1− p)
with 0 ≤ p ≤ 1, respectively. The reduced susceptibility, infectivity and faster
recovery, as a result of acting on information, is captured by the discount factors
σs, σi ∈ (0, 1] and σr > 1. The function GX([Inr], [Ir]) maps the prevalence of
infection to the unit interval and is subsequently multiplied by the constant rate
δX . This form models the saturating effect of media on individual behavioral
response.

The important ingredients of the model relate to the generation and transmission

of information as well as the benefits of possessing and responding to information.

In the current model, information or responsiveness about the disease is gener-

ated in three ways: (a) Inr → Ir as a result of symptoms, (b) Ix → T , where

x ∈ {nr, r}, as a result of being diagnosed and moving to the treatment class and

(c) Xnr → Xr, where X ∈ {S, I} either as a result of global information transmis-

sion, or from local neighbourhood contact with other ‘aware’ individuals. While

information dissemination locally represents the simple interaction of individuals

where they can engage in discussions about an ongoing outbreak or diseases in

general, global information transmission is used to model the effect of mass-media

campaigns which act as a single-source of information with its strength and du-

ration often linked to the prevalence of infection in the population. This is not an

exhaustive list of mechanisms that could account for information generation. For
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example, a mean-field form of transmission across randomly generated links could

be introduced to model the effect of random encounters or overhearing strangers’

conversations. Many of these different mechanisms of information generation

and transmission can be easily linked to various ways in which information is

disseminated in real-life.

It is natural to also incorporate the possibility for loss of responsiveness, con-

sequently every Xr individual will transition to the Xnr class at a constant rate

dX , where X ∈ {S, I} . Note that this form is general enough that it could also

model an individual’s inability or refusal to act on information. Alternatively,

as suggested in [74], the rate of information loss can be encoded as a decreasing

function of the prevalence, a form that we do not explore here. The principal

benefits of being informed and responding to the information can translate into

reduced susceptibility, reduced infectivity and/or faster recovery if infected. The

full suite of possible transitions are given in Table 5.1, and the model proposed

by Kiss et al. [74] is described by the following system of ODEs:

˙[Snr] = −βd([Inr] + σi[Ir])[Snr]/N − βi([Sr] + [Ir] + [T ])[Snr]/N

−Gs([Inr], [Ir])[Snr] + ds[Sr] + pr[T ], (5.1)

˙[Sr] = −βdσs([Inr] + σi[Ir])[Sr]/N + βi([Sr] + [Ir] + [T ])[Snr]/N

+Gs([Inr], [Ir])[Snr]− ds[Sr] + (1− p)r[T ], (5.2)

˙[Inr] = βd([Inr] + σi[Ir])[Snr]/N − βi([Sr] + [Ir] + [T ])[Inr]/N

−Gi([Inr], [Ir])[Inr] + di[Sr]− γ[Inr], (5.3)

˙[Ir] = βdσs([Inr] + σi[Ir])[Sr]/N + βi([Sr] + [Ir] + [T ])[Inr]/N

−Gi([Inr], [Ir])[Inr]− di[Sr]− γσr[Inr], (5.4)

˙[T ] = γ[Inr] + γσr[Ir]− r[T ], (5.5)

where here βx, x ∈ {d, i} is the number of infectious contacts an individual has per

unit time, and the superscripts d and i represent contacts that transmit disease
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or information, respectively.

This model incorporates multiple ways that information can be generated and

transmitted, and Kiss et al. show that there are three potential long-term model

outcomes: (a) a trivial disease-free steady state, with the whole population in

the Snr class, (b) a non-trivial disease-free steady state, where a finite proportion

of the population are in the Sr class, and (c) an endemic state, where individuals

can be infected, aware or both. The model described by Kiss et al. is constructed

using a random mixing assumption, as can be seen in the term βd[Inr][Snr]/N , for

example, and hence contact between individuals is random and no information

about local network structures is included in the model. In this chapter, we take

the system of ODEs given in Eqs. (5.1 - 5.5) and extend it to a pairwise model

that retains information about the state of pairs of individuals, thus relaxing the

assumption of random mixing somewhat. This allows us to not only consider the

effect of various routes of information generation on the size of a potential epi-

demic, but also to investigate the effects of information on the network structure,

and to examine, for example, how responsive individuals are distributed amongst

the population.

5.2.1 Full system of ODEs

Extending Eqs. (5.1 - 5.5) and taking account of the full suite of transitions given

in Table 5.1, gives the following pairwise model:

˙[Snr] = −τ [SnrInr]− τσi[SnrIr] + pr[T ]− λCαs([SnrSr] + [SnrIr] + [SnrT ])

− λGGs([Inr], [Ir])[Snr] + ds[Sr], (5.6)

˙[Sr] = −τσs[SrInr]− τσiσs[SrIr] + (1− p)r[T ] + λCαs([SnrSr] + [SnrIr] + [SnrT ])

+ λGGs([Inr], [Ir])[Snr]− ds[Sr], (5.7)
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˙[Inr] = +τ [SnrInr] + τσi[SnrIr]− γ[Inr]− λCαi([InrSr] + [InrIr] + [InrT ]) (5.8)

− λGGi([Inr], [Ir])[Inr] + di[Ir]− ω[Inr],

˙[Ir] = +τσs[SrInr] + τσiσs[SrIr]− γσr[Ir] + λCαi([InrSr] + [InrIr] + [InrT ])

+ λGGi([Inr], [Ir])[Inr]− di[Ir] + ω[Inr], (5.9)

˙[T ] = +γ[Inr] + γσr[Ir]− r[T ], (5.10)

˙[SnrSnr] = −2τ [SnrSnrInr]− 2τσi[SnrSnrIr] + 2pr[SnrT ] + 2ds[SnrSr] (5.11)

− 2λCαs([SnrSnrSr] + [SnrSnrIr] + [SnrSnrT ])− 2λGGs([Inr], [Ir])[SnrSnr],

˙[SnrSr] = −τσs[SnrSrInr]− τσiσs[SnrSrIr]− τ [InrSnrSr]− τσi[IrSnrSr]

+ pr[TSr] + (1− p)r[SnrT ] + λCαs([SnrSnrSr] + [SnrSnrIr] + [SnrSnrT ])

+ λGGs([Inr], [Ir])[SnrSnr]− λCαs([SrSnrSr] + [IrSnrSr] + [TSnrSr])

− −λGGs([Inr], [Ir])[SnrSr]− ds[SnrSr] + ds[SrSr]− λCαs[SnrSr], (5.12)

˙[SrSr] = −2τσs[SrSrInr]− 2τσsσi[SrSrIr] + 2(1− p)r[SrT ]

+ 2λCαs([SrSnrSr] + [IrSnrSr] + [TSnrSr])

+ 2λGGs([Inr], [Ir])[SnrSr]− 2ds[SrSr] + 2λCαs[SnrSr], (5.13)

˙[SnrInr] = +τ [SnrSnrInr] + τσi[SnrSnrIr]− τ [InrSnrInr]− τσi[IrSnrInr]− τ [SnrInr]

− λCαs([SrSnrInr] + [IrSnrInr] + [TSnrInr])− λGGs([Inr], [Ir])[SnrInr]

− λCαi([SnrInrSr] + [SnrInrIr] + [SnrInrT ])− λGGi([Inr], [Ir])[SnrInr]

− γ[SnrInr] + rp[TInr] + di[SnrIr] + ds[SrInr]− ω[SnrInr], (5.14)

˙[SnrIr] = +τσs[SnrSrInr] + τσiσs[SnrSrIr]− τ [InrSnrIr]− τσi[IrSnrIr]− τσi[SnrIr]

+ λCαi([SnrInrSr] + [SnrInrIr] + [SnrInrT ]) + λGGi([Inr], [Ir])[SnrInr]
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− λCαs([SrSnrIr] + [IrSnrIr] + [TSnrIr])− λGGs([Inr], [Ir])[SnrInr] (5.15)

− γσr[SnrIr]− di[SnrIr] + ds[SrIr]− λCαs[SnrIr] + pr[TIr] + ω[SnrInr],

˙[SrInr] = +τ [SrSnrInr] + τσi[SrSnrIr]− τσs[InrSrInr]− τσiσs[IrSrInr]− τσs[SrInr]

+ λCαs([SrSnrInr] + [IrSnrInr] + [TSnrInr]) + λGGs([Inr], [Ir])[SnrInr]

− λCαi([SrInrSr] + [SrInrIr] + [SrInrT ])− λGGi([Inr], [Ir])[SrInr] (5.16)

− γ[SrInr] + (1− p)r[TInr]− ds[SrInr] + di[SrIr]− λCαi[SrInr]− ω[SrInr],

˙[SrIr] = +τσs[SrSrInr] + τσiσs[SrSrIr]− τσs[InrSrIr]− τσiσs[IrSrIr]− τσiσs[SrIr]

+ λCαs([SrSnrIr] + [IrSnrIr] + [TSnrIr]) + λGGs([Inr], [Ir])[SnrIr]

+ λCαi([SrInrSr] + [SrInrIr] + [SrInrT ]) + λGGi([Inr], [Ir])[SrInr]

− γσr[SrIr] + (1− p)r[TIr]− ds[SrIr]− di[SrIr]

+ λCαs[SnrIr] + λCαi[SrInr] + ω[SrInr], (5.17)

˙[InrInr] = +2τ [InrSnrInr] + 2τσi[InrSnrIr] + 2τ [SnrInr]− 2γ[InrInr]

− 2λCαi([InrInrSr] + [InrInrIr] + [InrInrT ])

− 2λGGi([Inr], [Ir])[InrInr] + 2di[InrIr]− 2ω[InrInr], (5.18)

˙[InrIr] = +τ [InrSnrIr] + τσi[IrSnrIr] + τσs[InrSrInr] + τσiσs[InrSrIr]

+ τσi[SnrIr] + τσs[InrSr]− (γ + γσr)[InrIr]

+ λCαi([InrInrSr] + [InrInrIr] + [InrInrT ]) + λGGi([Inr], [Ir])[InrInr])

− λCαi([SrInrIr] + [IrInrIr] + [TInrIr])− λGGi([Inr], [Ir])[InrIr]

− di[InrIr] + di[IrIr]− λCαi[InrIr] + ω[InrInr]− ω[InrIr], (5.19)

˙[IrIr] = +2τσs[InrSrInr] + 2τσiσs[IrSrIr] + 2τσiσs[SrIr]

+ 2λCαi([SrInrIr] + [IrInrIr] + [TInrIr]) + 2λGGi([Inr], [Ir])[InrIr]

− 2γσr[IrIr] + 2λCαi[IrInr]− 2di[IrIr] + 2ω[InrIr], (5.20)
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˙[SnrT ] = −τ [InrSnrT ]− τσi[IrSnrT ]− λCαs([SrSnrT ] + [IrSnrT ] + [TSnrT ])

− λGGs([Inr], [Ir])[SnrT ] + γ[SnrInr] + γσr[SnrIr]

+ ds[SrT ] + pr[TT ]− r[SnrT ]− λCαs[SnrT ], (5.21)

˙[SrT ] = −τσs[InrSrT ]− τσiσs[IrSrT ] + λCαs([SrSnrT ] + [IrSnrT ] + [TSnrT ])

+ λGGs([Inr], [Ir])[SnrT ] + γ[SrInr] + γσr[SrIr]

− ds[SrT ]− r[SrT ] + r(1− p)[TT ] + λCαs[SnrT ], (5.22)

˙[InrT ] = +τ [InrSnrT ] + τσi[IrSnrT ]− λCαi([SrInrT ] + [IrInrT ] + [TInrT ])

− λGGi([Inr], [Ir])[InrT ] + γ[InrInr] + γσr[InrIr] + di[IrT ]

− r[InrT ]− γ[InrT ]− λCαi[InrT ]− ω[InrT ], (5.23)

˙[IrT ] = +τσs[InrSrT ] + τσiσs[IrSrT ] + λCαi([SrInrT ] + [IrInrT ] + [TInrT ])

+ λGGi([Inr], [Ir])[InrT ] + γ[IrInr] + γσr[IrIr]− γσr[IrT ]

− r[IrT ] + λCαi[InrT ]− di[IrT ] + ω[InrT ], (5.24)

˙[TT ] = 2γ[InrT ] + 2γσr[IrT ]− 2r[TT ], (5.25)

where N = Snr +Sr + Inr + Ir +T is the population size, τ = βd/N is the rate of

disease transmission across a (S, I) link and α = βi/N is the rate of information

transmission across a (Xnr, Xr) link. The routes of responsiveness transmission

can be switched on and off or can be combined using λC and λG which are set to

0 or 1 accordingly. For our purposes we set

Gs([Inr], [Ir]) = Gi([Inr], [Ir]) =
δ([Inr] + [Ir])

n

K + ([Inr] + [Ir])n
. (5.26)
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In this chapter, n = 1 unless otherwise stated. To integrate the equations numer-

ically, we use the classic closure proposed in [61]. This amounts to approximating

all triples in terms of singles and pairs, with the general closure relation given by

[ABC] =
〈k〉 − 1

〈k〉
[AB][BC]

[B]

where 〈k〉 is the mean degree of a node, and the closure assumes that the states

of an individual’s neighbouring nodes follow a multinomial distribution. This

approximation, discussed in detail in Chapter 3, closes the system and numerical

integration can be performed. Parameter values are based on those used in [74]

but with units changed from weeks to years. For simplicity we assume that

αs = αi = α, ds = di = d and δs = δi = δ. The present model, in some sense, can

be seen as a generalization of the model in [34] but with a few important remarks.

The model by Funk [34] is different in that information is only generated via self-

diagnosis from infected individuals and this can lead to a qualitatively different

behaviour when compared to the present case where information is also generated

via treatment. The model by Funk [34] uses a general pairwise approach but it

does not include the global prevalence-based transmission of information. In light

of the above, the model proposed here shares some common features with some

of the existing models but incorporate new ways in which information can be

generated and transmitted.

5.3 Results

Pairwise ODE models [61] provide a good compromise between simple compart-

mental and full simulation models and allows us to capture more of the local

nature of contacts and to depart from the very limiting homogeneous random

mixing assumption. For example, this is important when modelling contact trac-

ing [26, 52] where control relies on being able to answer the ‘who infected whom’
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Figure 5.1: The three distinct outcomes of the pairwise information model: the
trivial disease-free steady state with τ = 0.1γ and αs = αi = 0.1ds (top panel),
the non-trivial disease-free steady state with τ = 0.1γ and αs = αi = ds (middle
panel) and the endemic state with τ = γ and αs = αi = 0.1ds (bottom panel).
The plots show Snr in blue, Sr in green and Inr + Ir in red. Other parameters
are: N = 1000, 〈k〉 = 4, γ = 1, σr = 2, σi = σs = 0.5, di = ds = σrγ, r = 1,
p = 0.9, K = 10, n = 1, δ = 0.1di and ω = 0.

type questions. In this case, the situation is similar in that the local nature of

individual to individual transmission of information can lead to clusters of respon-

sive individuals that are difficult to capture via simple compartmental models.

The pairwise model given by Eqs. (5.6 - 5.25), which can be numerically inte-

grated, allows us to explore not only how the levels of infection and awareness

in the population evolve over time, but also to investigate the local correlations

between individuals in different states.

The system exhibits three qualitatively different long-term behaviors: (a)

neither disease nor responsiveness can spread - the trivial disease-free steady

state, (b) only responsiveness spreads and a state of endemic-responsiveness is
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Figure 5.2: The critical information transmission rates that bring Ieq < 1/N as
a function of τ . The red line corresponds to α, the blue to ω and the black and
green to δ, with black representing K = 5, green K = 20, dashed show where
n = 1 and solid where n = 0.5. Other parameters are: N = 1000, 〈k〉 = 6, γ = 1,
σr = 2, σi = σs = 0.5, di = ds = σrγ, r = 1, p = 0.9.

reached - the non-trivial disease-free steady state - and (c) both responsiveness

and infection are endemic. The three distinct outcomes are shown in Fig 5.1. The

model is highly complex, with many states, transitions and parameters. We will

focus our investigation on comparing the effectiveness of the different routes of

information generation and transmission, in addition to exploring how resistant

a recently recovered population is to reinfection.

The analysis begins by comparing information sources with respect to their

capacity to bring the prevalence to a desired low level, when each is acting in

isolation. Information can achieve this by shifting a large fraction of the popu-

lation into the responsive class. Such informed individuals will then experience
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decreases in their infectivity and susceptibility as well as a faster recovery. The

minimum rate at which a source of information can bring the prevalence to a

desired low level will be referred to as the critical information transmission rate.

We choose a prevalence level greater than zero, specifically Ieq = 1/N , because

as the prevalence approaches zero precise identification of the critical information

rates becomes numerically challenging. Starting with a small initial informa-

tion generation or transmission rate, for a range of infection rates τ with fixed

recovery parameters, the system is seeded with a small number of Inr and Sr in-

dividuals. The system of pair approximation equations, Eqs. (5.6 - 5.25) is then

numerically integrated to identify the smallest or critical rate that will lead to the

desired prevalence level Ieq. Next, the relative capacities of α, ω and δ to deliver

a state of low infection prevalence for different values of τ are considered. We let

p = 0.9, which approaches a worse case scenario limit whereby no information is

generated by the individuals themselves through past experience. This parameter

choice allows us to examine the effects of α, ω and δ in relative isolation.

As shown in Fig. 5.2, contact-based transmission of information is by far the

most efficient way to generate a responsive population, a result well known in the

diffusion of innovations literature [87]. In this case every receiver of information

(Inr or Snr) immediately also becomes a transmitter of information, in contrast

to global transmission of information from a single source.

We model the transition to the responsive class due to media exposure at

a rate given by the Holling-type response function given in Eq. (5.26). The

effectiveness of global information (acting on Inr or Snr) is strongly tied to the

K parameter which controls the growth of G() such that when the prevalence is

low the function grows like 1
K

(Inr + Ir)
n. It is helpful to think of K as a measure

of population inertia in responding to information. Populations with high values

of K are resistant to behavioral change which can therefore act as an indicator

for the quality of global information campaigns. For example, high values of K
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Figure 5.3: Combined effects of globally generated information, δ, versus peer
generated information, α, with the different colours representing different pro-
portions of the population that are infected at equilibrium. Four distinct global
scenarios are shown as combinations of fast and slow treatments (r = 1 and
r = 0.1) and global information being generating based on the number in treat-
ment (G = G(T )) or the number of infected (G = G(Inr + Ir)). Parameters are:
N = 1000, 〈k〉 = 6, τ = 2.5, γ = 1, σr = 2, σi = σs = 0.5, di = ds = σrγ, p = 0.5,
δ = 1, n = 1, K = 10, ω = 1.

will simply lead to observing vanishingly small benefits from global information

campaigns.

The critical rates for self-diagnosis, ω, are at best similar to those for global

information, especially for diseases with low transmissibility, as shown in Fig.

5.2. As is the case for global information, self-diagnosis will only function once

infected individuals are present and the situation is somehow even less fortunate

given that ω can only act on Inr, and hence awareness can only follow infection,

and cannot build up a sub-population of Sr type individuals to slow or prevent
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Figure 5.4: Intervention via global information transmission, G([Inr] + [Ir]),
and three different stages of an outbreak, compared to no intervention. In each
intervention plot, the course of the epidemic without any intervention is shown
as a black dashed line. Parameters are: N = 1000, k = 6, γ = 1, σr = 2,
σi = σs = 0.5, di = ds = σrγ, r = 1, p = 0.9, δ = 1, n = 1, K = 10, ω = 0.

the onwards spread of the epidemic. The self-diagnosis rate can be thought of as

a model for the probability of a particular infection being symptomatic. Thus for

diseases with mild symptoms or those that are asymptomatic, the need for peer-

to-peer communication and low population inertia is even more pressing. Finally

self-diagnosis can, in cases where the population has very high behaviorial inertia,

be more effective than certain methods of global information dissemination. This

can be seen by comparing the appropriate curves in Fig. 5.2, but is only true for

low values of τ , and compared to weak global media campaigns. It is also worth

noting that as τ increases it is less and less likely that any route information

generation and/or transmission can prevent an epidemic. More precisely at large

but finite values of τ , the rates of information generation and/or transmission
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needed to halt the spread will tend to unfeasible large values.

Results suggest that global information is never a more efficient way to lower

infection prevalence than contact-based transmission. The global information

transmission rate takes its maximum value as K → 0, for large δ and high preva-

lence of infection, at which point G ' δ. For any value of δ we have found that

there is a contact-based rate α (α < δ) that will lower the prevalence at least by

the same amount, as shown in Fig. 5.3. However, we also note that peer-to-peer

information transmission requires information generating sources, for example

people in treatment. With self diagnosis and global information transmission

this is not the case, but, on the other hand, they do rely on infection being

present. In reality no single information source will act in isolation. Media cam-

paigns encourage discussion which can bring forth behavioral change. Infected

individuals are likely to learn from experience and further communicate this to

their family and friends. Our model is able to accommodate such scenarios as we

show in Fig. 5.3 for various combinations of α and δ.

One challenge for central administrative bodies who are responsible for na-

tional or global awareness campaigns is to estimate the number of infected in-

dividuals, in order to pitch the messages so as to raise enough concern as to

be effective but without causing unnecessary panic. In our proposed model, we

have G([Inr], [Ir]), but in reality data will in the first instance be derived from

health care records, which will be related to the number of people in or seeking

treatment. In Fig. 5.3 we compare G([T ]) with G([Inr] + [Ir]) for two different

rates of treatment for diagnosis rates of γ = 1 for non-responsive individuals and

γσr = 2 for responsive individuals. In the instance where the rate of treatment

is slow compared to the rate of diagnosis, r = 0.1, we find that G([T ]), i.e. a

media campaign based on numbers in treatment, lead to a smaller epidemic than

G([Inr], [Ir]), whereas when the treatment rate is of the same order, r = 1, both

measures of prevalence lead to similar results. It is clear that each disease needs
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Figure 5.5: Correlation plots showing the probability that the neighbour of a
responsive individual is (i) non-responsive (first panel) or (ii) responsive (second
panel), plotted against the probability of picking either a (i) non-responsive (first
panel) or (ii) responsive (second panel) individual at random. Information is
spread via peer-to-peer transmission with αi = αs = σrγ, with the population
being at a disease-free equilibrium. Other parameters are: τ = 0.5 N = 1000,
k = 6, γ = 1, σr = 2, σi = σs = 0.5, di = ds = σrγ, r = 1, p = 0.5, δ = 1, n = 1,
K = 10.

to be taken on its own merits, and careful analysis of the rates of transition in

and out of treatment needs to be considered in order to effectively estimate the

actual number of infected individuals from the number in treatment.

A second challenge is to know when to act. In Fig. 5.4 we have investigated

the effect of a global awareness campaign initiated at different stages of the devel-

opment of the epidemic. As can clearly be seen in Fig. 5.4, early intervention has

a significant effect on the levels of infection experienced, as would be expected,

and it is reassuring that such a complex model agrees with intuitively simple

real-world arguments. However, a full national or global awareness campaign is

expensive and could cause panic, so the ability to recognise potentially serious

epidemics in their early stages is crucial for effective public health care, a problem

highlighted in the recent FMD outbreak in the UK [31].

Contact based transmission of information is by far the single most efficient

transmission mechanism, as shown in Fig. 5.2, as it constantly builds new sources

of information. Responsive individuals are then able to halt the spread of an

101



0 0.5 1
0

0.2

0.4

0.6

0.8

1

S
nr

/N

[I
xS nr

]/
[I

X
S y]

0 0.5 1
0

0.2

0.4

0.6

0.8

1

S
r
/N

[I
xS r]/

[I
X

S y]

Figure 5.6: Correlation plots showing the probability that in an (Sx − Iy) pair,
with x, y ∈ {nr, r}, the susceptible individual is (i) non-responsive (first panel)
and (ii) responsive (second panel). These are plotted against the probability of
picking either (i) a non-responsive susceptible individual (first panel) and (ii)
a responsive susceptible (second panel) at random. Three different sources of
information are shown: Self-diagnosis with ω = 50 (red), peer-to-peer information
transmission with αi = αs = σrγ (green) and global information transmission
with K = 10, n = 1, δ = ds (blue). The population is in an endemic state with
τ = 2.5 and I∗ ≈ 0.2 for each of the three information routes. Other parameters
are: N = 1000, k = 6, γ = 1, σr = 2, σi = σs = 0.5, di = ds = σrγ, r = 1,
p = 0.5, δ = 1, n = 1, K = 10.

epidemic by forming clusters that can resist infection invasions, as can be seen in

Fig. 5.5. If no peer-to-peer routes of information transmission are in place, and

the self-diagnosis rate or a global prevalence based media campaign are alone used

to control an epidemic, then once the system reaches a disease-free equilibrium, all

individuals are non-responsive with no memory of the disease. However, control

via α leads to an endemic level of awareness once the disease has died, and thus

the population is left resistant to reinfection in the future. This can be seen in Fig.

5.5, which also reveals that in the non-trivial disease free state, the distribution

of Sr type individuals in the population is at random. From Fig 5.5, we can see

that the probability that a Sr individual has a Snr neighbour, given it is part of

a SxSr pair, is the same as the probability of picking a Snr type individual at

random from the whole population, and hence the random mixing assumption
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holds at the non-trivial disease-free equilibrium:

[XnrXr]

[XyXr]
≈ Xr〈k〉Xnr

N

Xr〈k〉 =
Xnr

N
.

However, in the case where both disease and information are endemic, as shown

in Fig. 5.6, responsive and non-responsive individuals are non-randomly mixed,

and correlations arise. Indeed, both global and peer-to-peer transmissions lead

to a much higher proportion of (Sx − Ix) type links having a Sr type individual

as part of them than is found from simply allowing information to be generated

via self-diagnosis. This high correlation of responsive susceptible individuals with

infected individuals will have a significant effect on the efficacy of different forms

of intervention, leading to a greater awareness of potential risks of infection.

5.4 Discussion

Incorporating behavioural change into epidemiological models is a challenging

task with many unknowns when modelling the transmission of information and

responsiveness of people. These are complex processes with many heterogeneities

at the individual level in how information is acquired, processed, acted upon and

transmitted further. In this chapter, we derived and analysed a pairwise model

that captures multiple ways of generating and transmitting information. This

pairwise model was used to assess the efficacy of different sources of information

generation and routes of information transmission in bringing prevalence to as

a low level as possible. Contact based transmission of information was found

to be the most efficient as it creates multiple secondary sources of information

and out-competes processes such as the global transmission of information. The

analysis, in line with previous findings [35], also shows that information cannot

always stop an epidemic but can significantly reduce its impact via lowering the

prevalence of infection.
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The particular types of information generation and transmission will heavily

depend on disease characteristics and these will impact on model outcome and

on establishing what the most influential factors are in controlling epidemics via

information transmission. In addition, a balance needs to be found between the

epidemiological impacts of different control strategies and their economic costs

[76].

It is rarely the case that diseases invade populations that are fully naive. A

number of responsive individuals are always present due to past epidemics or

simply due to awareness being a trait that arises independently of past epidemics

through genetic, social, cultural or economic reasons. In either case, the number

of responsive individuals and their precise distribution will have an important

impact on whether newly seeded infections can invade.

A number of simplifying assumptions on human behaviour are built into our

model. There are only two levels of information awareness and transitions be-

tween them are instantaneous. In the real world an individual’s exposure to the

risk of infection is certainly not limited to two categories. People are also likely to

react to information around them via imitative behaviour with individuals having

different propensity for changing their behaviour. Furthermore the decision to act

on information may depend on the source of information - or the combination of

sources of information - the order of arrival of information, or any segmentation

of the population as discussed in the introduction. Indeed, cognitive and social

aspects of a host population, as well as a network of contacts (particularly in

the case of STDs), are interacting and altering the epidemiological profile of an

infectious pathogen.

Also, these information and disease transmission mechanisms could be ap-

plied to full network simulations to include more detailed heterogeneities. This

approach would also allow us to research the effect of allowing information and

infection to travel on two overlapping networks, as, for example, a phone call to
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a friend could result in a transmission of awareness but certainly not of infection.

These are early days for behaviorial epidemiology and in the future it is likely

that knowledge generated in other fields, for example cognitive and evolutionary

psychology, communications theory, market research, game theory and anthro-

pology should be examined for integration into epidemiological modelling.
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Chapter 6

Modelling disease transmission in

domestic sheep flocks: from

weighted network to multi-group

ODE models

6.1 Overview

In the previous chapters of this Thesis, we have derived and analysed various

models the help understand how disease spread in host populations. We have

focused on how networks can be used to capture real-world heterogeneities in the

structure of populations and we have proceeded to investigate how well different

ODE models can capture the structure of these networks.

In this chapter, we use some of the network and ODE modelling tools and

techniques studied in previous chapters to focus on a real-world epidemiological

problem - modelling how diseases spread within domestic sheep flocks. Success-

ful control of livestock diseases requires an understanding of how the pathogens

spread both amongst animals and between premises. While a number of studies
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have considered the problem of how a disease spreads from one farm to another

(see for example [31, 62, 64]), how the disease spreads within a flock is poorly

understood.

A key difference between work in previous chapters and work in this chapter

is the type of disease being modelled. Up until this point we have considered

SIS type epidemics, which have particular relevance to human health, such as

some STDs. In this chapter, two disease that pose a real threat to sheep are

considered - foot-and-mouth disease, a viral disease with a fast recovery rate, and

brucellosis, a bacterial disease with a slow recovery rate. Both of these disease are

SIR type epidemics, whereby the infected individual enters the Removed class

upon recovery, instead of returning to the Susceptible class and hence becomes

dynamically unimportant with respect to disease transmission.

In this chapter the quantitative results from observational studies of contact

within domestic sheep flocks [110] are applied to range of epidemiological models,

both network and ODE based models, and the subsequent dynamics and real-

world implications are explored.

We start with a full network simulation model, similar to those used in pre-

vious chapters, but here we are able to construct a weighted network from the

field-data, whereby each link is not represented simply by 0 or 1, as was the

case in previous chapters, but by values that represent the relative strengths of

different links.

The field-data has been collected at three distinct times of the year, firstly

just after ewes have given birth, secondly when their lambs are nearly weaned

and thirdly when the lambs have left the flock. These three different types of

flock composition each have their own full weighted network, and hence seasonal

variation to the susceptibility of a flock to an outbreak can be investigated.

We show that the observed heterogeneity of contacts amongst members of

a flock is best captured by full weighted network simulations, although simple
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compartmental models describe the key features of an outbreak but, as expected,

often overestimate the speed of it. The observed weights of the contacts be-

tween sheep are highly heterogeneous, with many low weighted links, but the

well connected nature of the flocks leads to only small differences between models

that distribute the weights more homogeneously. Since sheep flocks are probably

amongst the most heterogeneously stocked livestock in the UK and Europe, the

application of such simplified compartmental models is also well justified for other

domestic species.

6.2 Background

Livestock diseases present a challenge to global food security and are of socioe-

conomic importance both in industrialised nations [97] and the developing world

[99]. It is important to understand the spread of pathogens amongst animal hosts

both for livestock health and productivity and potentially for human health di-

rectly, since the majority of emerging infectious diseases are of zoonotic origin

[58, 115].

Epidemiological models have already been applied to a number of important

diseases, such as foot-and-mouth disease (FMD) [31, 56, 62, 64, 118], bluetongue

[46, 49], brucellosis [28] and classical swine fever [6]. Most, however, only consider

disease transmission explicitly on a large scale i.e. between premises, making use

of livestock movement data and holding records, while actual transmission data is

generally restricted to small scale experiments between a few animals. Although

infection between individuals is therefore reasonably well understood for a number

of pathogens, it is fallacious to assume that groups of animals will respond in the

same way; key temporal factors such as the latent, incubation and infectious

periods are likely to be different for herds and flocks than for individual animals.

Group level dynamics will be driven by the pattern of interactions between

susceptible and infectious hosts, as well as intrinsic properties of the pathogens.
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How these relate to individual dynamics can be non trivial, especially if behaviour

is not homogeneous. The number and relative strength of connections between

individuals impacts on the basic reproduction number for an outbreak [66]. These

properties, as well as factors such as group size and heterogeneity, determine what

theoretical structures (mathematical models) are appropriate in different settings.

For example, human contact patterns have been found to be more heterogeneous

than assumed by classic homogeneous-mixing models, but not as variable as some

have speculated [9].

It is of practical value to determine what level of model complexity is required

to adequately describe a realistic scenario, and where approximating assumptions

do not undermine the validity of results. Here detailed field data is applied to

a series of models to identify the most suitable model structure for representing

disease transmission amongst what are probably the least intensively farmed -

and thus least homogeneously mixed - domestic animals in the UK and most of

Europe.

In this chapter the most appropriate formulation for domestic sheep flocks

is investigated, as determined by the level of contact between individuals. Pre-

vious observations have found age-dependent behaviour amongst sheep, as well

as behaviour driven by parenthood [33, 95]. Norton et al. [94] demonstrated a

clear difference in the rate of contact between and amongst ewes and lambs, and

showed that this changed with the age of offspring.

There exist a number of detailed studies on the nature and composition of

flocks [33, 95]. The rate of contact is a key factor in determining the force

of transmission between individuals or groups: explicitly, it is weighted by the

probability that a given contact is between a susceptible individual and an in-

fected individual and the probability that it results in transmission. Here avail-

able contact data [94] is considered directly to simulate the potential for disease

transmission within the flocks observed, and compared with predictions made
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using suitable state transition models, with particular emphasis on the effect of

observed seasonal differences [33, 94].

6.3 Modelling methodology

6.3.1 Disease dynamics

As there is significant variability in the dynamics of different sheep diseases,

results derived here are kept as general as possible. Where appropriate foot-

and-mouth disease (FMD), a viral disease with a fast recovery rate of 7-8 days in

sheep (see Alexandersen et al. [2]), and brucellosis, a bacterial disease with a slow

recovery rate of approximately 3 weeks in sheep (see England et al. [28]) are con-

sidered as exemplars, with the parameter ranges presented chosen to encompass

their respective values.

To provide estimates of p, the per-contact transmission probability for the

exemplar FMD, the experimental data of Orsel et al. [96] is considered. This

provides the infection status, at the end of a 14-day trial period, of six groups

of four unvaccinated lambs, two of which were initially infected (by inoculation),

the other two being susceptible individuals [96].

6.3.2 Contact rates based on field observations

Contact data used in this chapter are derived from field observations by Norton

et al. [94] for three different conventionally managed flocks: one with young

(newborn) lambs and their mothers; one with older (nearly weaned) lambs and

their mothers; and one with ewes only. The observed flocks consisted of Ne ewes

and Nl lambs, giving N = Ne +Nl sheep in total (between 25 and 30 in practice);

for details of data collection see Norton et al. [94].

Contact data are in the form of adjacency matrices C = {cij}1≤i,j≤N that

record the frequency of physical contacts between individuals per day. The re-
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Figure 6.1: The degree distribution (top row) and per-link weight distribution
(bottom row) for the three flocks: ewes and newborn lambs (blue: first column),
ewes and nearly-weaned lambs (green: second column); and ewes only (red: third
column).

sulting matrix is symmetric due to a contact initiated by sheep i to sheep j con-

tributing to both cij and cji . This is an appropriate assumption when considering

disease transmission, since it is the contact alone that is important. Where there

is no contact between two sheep, the entry is zero (including cii for i = 1, . . . , N).

This matrix of weighted contacts can be interpreted as a weighted network, where

the strength of a link cij is simply equal to the frequency of contacts between in-

dividual i and j (for the purpose of the analysis, all rates have been scaled to

units corresponding to the expected number of contacts per day). The networks,

in all three situations, are relatively well connected with individuals having a high

number of links and with a per-link weight distribution that is skewed towards

smaller weights, as shown in Fig. 6.1.
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Flock Contacts Parameter Estimated daily rate
ewe ↔ ewe ce 0.8± 2.7

Ewes with ewe ↔ lamb cm 49.7± 131.6
newborn lambs lamb ↔ lamb cl 41.7± 74.8

any ↔ any c 39.6± 102.7
ewe ↔ ewe ce 1.3± 5.5

Ewes with nearly ewe ↔ lamb cm 17.0± 47.7
weaned lambs lamb ↔ lamb cl 14.3± 32.0

any ↔ any c 13.5± 38.6
Ewes only ewe with ewe c 2.8± 6.7

Table 6.1: Daily rate of physical contacts between individuals of different types,
with the total population level weight of contact averaged over all possible links,
thus assuming a fully connected network within each population. The values
given (mean ± standard deviation) are calculated from the raw observational
data available in the supplementary materials section of Schley et al. [110] and
is explored further in Norton et al. [94].

The weighted contact matrix C = {cij}1≤i,j≤N will be the building block for

a range of within-flock models and will be used to define (i) individual based

stochastic network models and (ii) compartmental ODE models at the group (ie

ewes and lambs) or flock level. How the full contact data feed into both the

stochastic simulation and ODE models is clearly defined below.

6.3.3 Network models

In this Chapter, the following four increasingly homogeneous network models are

considered:

1. The fully weighted heterogeneous network model, with rates given by the

full adjacency matrix C (See Fig. 6.2 and the supplementary materials in

Schley et al. [110]),

2. A homogeneous-weight network model, with the full network structure pre-

served but with each link weighted equally with mean cG, as given by Eq.

(6.1),

3. A semi-homogeneous two-class fully connected network model, with all con-
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Figure 6.2: Expected number of physical contacts per day in a flock of ewes
with newborn lambs. Here letter-number combinations (e.g. G1, B3) refer to
individual ewes with suffix letters (e.g. a,b) referring to their respective lambs.
This data was collected through field observations and is reproduced from the
supplementary materials of Schley et al. [110], where similar tables can be found
for flocks comprising ewes with nearly-weaned lambs and flocks comprising ewes
only.

tact rates replaced by the group-level means ce, cl and cm, as given by Eq.

(6.2),

4. A completely homogeneous one-class fully connected network, with all con-

tact rates equal to the flock mean c, leading to random mixing.

For each of the three different flocks under consideration, comparison of these

network models allows us to determine the effect of the group and population

level heterogeneity implicit in the field data.

In the first model, the weighted adjacency matrix contains rich individual level

data from which we define the full stochastic weighted network simulation model

(network model 1), and this matrix is shown for the flock with lambs and ewes in

Fig. 6.2. Further details can be found in the supplementary materials section of

Schley et al. [110]. In addition to an explicitly defined contact network, the two

main features of this full stochastic model are the heterogeneity in link weight and
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the modular, or group-like, structure of the populations. The detailed, individual

level data given by C can be aggregated at either group or population level and

then used to parameterise a range of stochastic network models. These models

allow us to investigate the impact of the weighted and modular structure of the

full population on the spread of disease.

Secondly, a homogeneous-weight network model (network model 2) that pre-

serves the full network structure but remove link-weight heterogeneity can be

parameterised by finding the ratio of link weight to link frequency:

cG =
1

|L|
N∑

i=1

N∑
j=1

cij, L = {cij : cij 6= 0} (6.1)

Thirdly, The impact of the group-like structure of the population can be inves-

tigated by removing the network structure entirely by assuming a fully connected

network (network model 3). This model can be parameterised by calculating the

mean daily contact rate between any two ewes ce, between any two lambs cl and

between any ewe and lamb cm.

Finally, the mean rate of contact between any two individuals c can also be

calculated, which can be used to parameterise a fourth model that assumes ran-

dom mixing between all animals (network model 4). These group and population

level means can be calculated following Norton et al. [94] as follows:

ce =
1

Ne(Ne − 1)

∑
i∈Ce

∑
j∈Ce

cij, cl =
1

Nl(Nl − 1)

∑
i∈Cl

∑
j∈Cl

cij,

cm =
1

NlNe

∑
i∈Cl

∑
j∈Ce

cij, c =
1

N(N − 1)

N∑
i=1

N∑
j=1

cij, (6.2)

where Ce and Cl are the set of indices in each matrix for ewes and lambs respec-

tively. The actual values used in the stochastic network models are calculated

from C by Schley et al. [110] and are summarised in Table 6.1.
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6.3.4 Compartmental ODE models

In a compartmental SIR formulation, the force of infection is the product of the

rate of contact k an individual has with the rest of the group, the probability that

any given contact is between a susceptible individual and an infectious individual

- here assumed to be frequency dependent and equal to I/N - and the probability

p that such a contact successfully results in transmission [14]. In addition to being

used to parameterise stochastic network models, the field-data can also be used

to parameterise these compartmental ODE models. For compartmental models,

however, a different method is needed to calculate the appropriate rates from the

raw data given by adjacency matrix C. In this case it is the total contact an

individual has with all members of each group that determines the contact rate.

For a flock of ewes and lambs the rate of contact a ewe has with other ewes kee,

a ewe has with lambs kel, a lamb has with ewes kle and a lamb has with other

lambs kll, together with the equivalent single-group parameter representing the

amount of contact any individual has with the rest of the flock, k, are calculated

as follows:

kee =
1

Ne

∑
i∈Ce

∑
j∈Ce

cij, kel =
1

Ne

∑
i∈Ce

∑
j∈Cl

cij,

kle =
1

Nl

∑
i∈Cl

∑
j∈Ce

cij, kll =
1

Nl

∑
i∈Cl

∑
j∈Cl

cij, (6.3)

where Ce and Cl are the set of indices in each matrix for ewes and lambs re-

spectively. The actual values used in the ODE models are calculated from C by

Schley et al. [110] and are summarised in Table 6.2.

The observed flocks lend themselves to being modelled using a two-class sys-

tem of ODEs. In addition, the clear differences in the contact rates within and

between lamb and ewe groups [94] suggest that the assumption of homogeneous

contact required by a single class model are not appropriate for breeding flocks.

Building on work by Kiss et al. [72], where a two-group preferential mixing model
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was formulated from a contact network point of view, a two-class SIR model rep-

resenting ewes and lambs is constructed. The system utilizes the group-level

contact rates described above and is given by:

Ṡe = −p

(
kee

Ie

Ne

+ kel
Il

Nl

)
Se, (6.4)

Ṡl = −p

(
kle

Ie

Ne

+ kll
Il

Nl

)
Sl, (6.5)

İe = p

(
kee

Ie

Ne

+ kel
Il

Nl

)
Se − γIe, (6.6)

İl = p

(
kle

Ie

Ne

+ kll
Il

Nl

)
Sl − γIl, (6.7)

Ṙe = γIe, (6.8)

Ṙl = γIl, (6.9)

where the subscripts e and l refer to the ewe and lamb populations. A single-class

ODE can be obtained by ignoring the class distinctions and is also valid in the

case of the ewe-only flock.

Ṡ = −pk
I

N
S, (6.10)

İ = pk
I

N
S − γI, (6.11)

Ṙ = γI. (6.12)

Although it is assumed that parameters derived from the contact data are ap-

plicable to all flock sizes of more than three or four animals [94], the underlying

assumptions of these deterministic models are only truly valid in the limit of large

N . Since here disease dynamics are firstly considered amongst a conventional

sized flock of only about 30 animals, it is important to compare the determinis-

tic ODE results to results from stochastic network simulations and consider any

significant difference carefully.
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Flock Contacts Parameter Estimated daily rate
ewe with ewes kee 8.7± 9.1
ewe with lambs kel 895.4± 475.0

Ewes with lamb with ewes kle 547.2± 193.6
newborn lambs lamb with lambs kll 749.9± 213.4

any with all k 1148.0± 386.6
ewe with ewes kee 13.4± 21.8
ewe with lambs kel 254.4± 99.9

Ewes with nearly lamb with ewes kle 169.6± 67.6
weaned lambs lamb with lambs kll 213.8± 121.3

any with all k 337.1± 121.0
Ewes only ewe with ewes k 83.8± 52.5

Table 6.2: Daily rate of physical contacts for individual members of different
groups with any other members of a group (mean ± standard deviation). Distri-
butions are skewed with high variability. These rates are calculated from the raw
observational data available in the supplementary materials section of Schley et
al. [110] and is explored further in Norton et al. [94].

Flock R0

Ewes with newborn lambs 1171p/γ
Ewe with nearly weaned lambs 344p/γ
Ewes only 84p/γ

Table 6.3: Estimated R0 of whole flock based on the average number of physical
contacts per day. Here γ is the recovery rate and p is the probability of a given
SI contact resulting in transmission.

6.4 Results

We can analytically derive the basic reproductive number, R0, by using a next

generation approach [21], whereby we separate different states into either disease

or disease free and consider transitions into and out of the disease states when

the system is at disease free equilibrium, for the two-class ODE we find that

F = p




kee kel
Ne

Nl

kle
Nl

Ne
kll


 and V =




γ 0

0 γ


 ,

where F describes all the rates of transition from disease-free to disease states

and V describes all the rates of transitions out of disease states. For example, the

top left entry of the F matrix is related to how the rate at which individuals leave
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Se and enter Ie changes with respect to Ie, given that we are starting from the

disease free equilibrium (DFE). From Eq. (6.4) it is clear that individuals enter

state Ie from Se at rate p(keeIe/Ne + kelIl/Nl)Se. We differentiate with respect

to Ie and evaluate at the DFE where Se = Ne, Sl = Nl and all other states are

empty. This leads to the entry in F of pkee. All other entries in F and V are

found in a similar way. From here R0 is given by the leading eigenvalue of FV −1:

R0 =
p

γ

kee + kll +
√

(kee − kll)2 + 4kelkle

2

whereas for the single-class ODE we simply find R0 = (p/γ)k. The estimated

values of R0, as function of the recovery rate γ and the probability of a contact

(between and infected individual and a susceptible one) resulting in transmission

p for each of the trials are given explicitly in Table 6.3, but of greatest interest

is the relative magnitude of the basic reproduction number within the flock at

different times of the year, as the lambs are born, weaned and leave the flock.

This is independent of p and γ, and shows that the presence of lambs significantly

increases the susceptibility to an outbreak and that this is worst when lambs are

young:

Rwith newborns
0

Rewes only
0

= 16.1,
Rwith weaned

0

Rewes only
0

= 4.6. (6.13)

Note that using the conventional (single class) form for these ratios would be

smaller in magnitude (13.7 and 4.0 respectively).

The final epidemic size R∞ is the proportion of the flock that become infected

(i.e. does not remain in the susceptible population). For the mixed-model this

can be calculated following the methods used by Kiss et al. [72]. Firstly, Eqs.

(6.4-6.7) are rewritten for ease of notation to give

Ṡm = −Sm

∑

n∈{e,l}
pkmn

In

Nn

, m ∈ {e, l}, (6.14)
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˙Im = Sm

∑

n∈{e,l}
pkmn

In

Nn

− γIm, m ∈ {e, l}. (6.15)

We let λm =
∑

n∈{e,l} pkmnIn/Nn and solve the ODE in Eq. (6.14) with initial

conditions Sm(0) = Nm and Im(0) = 0 to find

Sm(t) = Nm exp(−Φm(t)), m ∈ {e, l}, (6.16)

where

Φm(t) =

∫ t

0

λm(s) ds. (6.17)

Next, we can sum Eqs. (6.14-6.15), integrate from 0 to ∞ and use initial condi-

tions Sm(0) = Nm, Im(∞) = 0 and Im(0) = 0 to obtain

−γ

∫ ∞

0

Im(s)ds = Sm(∞)−Nm, m ∈ {e, l}. (6.18)

By noting that Sm(∞) = S∞m = Nm − R∞
m the following expression for R∞

m is

obtained:

R∞
m = γ

∫ ∞

0

Im(s) ds, m ∈ {e, l}. (6.19)

Also, by taking the limit as t → ∞ of Eq. (6.17), and then using Eq. (6.19) it

follows that

Φm(∞) = Φ∞
m =

∫ ∞

0

∑

n∈{e,l}
pkmn

In(s)

Nn

ds

=
∑

n∈{e,l}

pkmn

Nn

∫ ∞

0

In(s) ds

=
∑

n∈{e,l}

pkmn

Nn

1

γ
R∞

n . (6.20)

By again noting that S∞m = Nm−R∞
m and using Eq. (6.16) in the limit as t →∞

we find that

R∞
m = Nm (1− exp(−Φ∞

m )) , m ∈ {e, l}, (6.21)
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and as R∞ = R∞
e + R∞

l , it follows that

R∞ = Ne (1− exp(−Φ∞
e )) + Nl (1− exp(−Φ∞

l )) . (6.22)

where

Φ∞
e =

p

γ
(ke(1− exp(−Φ∞

e )) + km(1− exp(−Φ∞
l ))) , (6.23)

Φ∞
l =

p

γ
(km(1− exp(−Φ∞

e )) + kl(1− exp(−Φ∞
l ))) . (6.24)

For the ewe only flock the standard implicit formula holds:

R∞ = (1− exp(−(p/γ)kR∞))N. (6.25)

Although the final number of infected individuals does not depend on the

total population size N , it is affected by the proportion of the population that

is ascribed to each group. The final epidemic size as a consequence of physical

contact, as a function of the probability of successful transmission p, is shown as

a proportion of the population r∞ = R∞/N in Fig. 6.3. This is done by fixing

γ and solving the parametric system of equations given by Eqs. (6.22-6.24) for

a range of values of p. Results indicate that an epidemic is much more likely to

take off in a flock with lambs, increasingly so with younger lambs, and that only

in an all adult flock is it likely that some individuals will remain uninfected. Note

that unless the recovery rate γ is exceptionally high, only a very low probability

of successful transmission per contact is required to sustain the disease.

Epidemic length t0 is the time between the infection of the first case and the

recovery of the last, whereas the time of peak infectiousness t∗ is defined as the

time when the largest number of animals are infectious: these may be extracted

from simulations by considering the duration for which I ≥ 0 (or, more precisely

for the continuous model, some strictly positive threshold value) and the time
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Figure 6.3: Final epidemic size r∞, as a function of the transmission probability
p for physical contacts amongst a flock with (top) a fast recovery rate similar to
FMD (γ = 2/15) and (bottom) a slower recovery similar to brucellosis (γ = 1/21)
for: ewes with newborn lambs (blue), ewes with nearly weaned lambs (green) and
ewes only (red) flocks in a conventional group with two lambs per ewe on average.

when max{I(t) : t ≥ 0} are attained respectively. For the single-class model

given by Eqs. (6.10) - (6.12), an analytical solution exists:

t∗ =
1

γ

∫ 1− 1
R0
−I(t∗)

0

dR

1−R− S(0) exp(−R0R)
(6.26)

I(t∗) = 1− 1

R0

(1 + ln(R0S(0))) (6.27)

Differences in the rates of contact within each flock impact on the length of the

outbreak, although the interaction between the probability of infection and the

rate of recovery is perhaps more significant, as shown in Fig. 6.4. As can be seen,

for flocks with lambs infection will only die out without a minor outbreak (or full

epidemic) if the probability of successful transmission on contact p is very low,
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Figure 6.4: Epidemic length t0 (left column) and time of peak infectiousness t∗

(right column) in days, as a function of the recovery rate γ and the transmission
probability p for physical contacts amongst a flock of 30 sheep consisting of: 10
ewes with 20 newborn lambs (top), 10 ewes with 20 nearly weaned lambs (middle)
and 30 ewes only (bottom), based on initial infection of a single ewe. Results are
derived from numerical simulations of the deterministic system, and distinguished
according to whether infections die out (blue), result in partial outbreaks (green)
or cause epidemics that infect the entire flock (red). When infection dies out,
peak infectiousness occurs at the outset of the outbreak (t∗ = 0) by definition.

while for the ewe only flock the parameter landscape is dominated by self-limiting

outbreaks unless the disease recovery rate is very slow.

Results from network simulations also indicate a strong seasonal effect (i.e.

differences between flock types as lambs are born, weaned and eventually leave

the flock) as shown in Fig. 6.5. The presence of lambs facilitates a much quicker

spread of the disease and such flocks have a much higher chance of experiencing

an epidemic. This is to be expected, given the presence of lambs that are more

highly connected and who have a much greater frequency of repeat contacts [94],

which more than compensates for the reduction in connection between ewes that
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Figure 6.5: The time evolution (in days) of a potential outbreak amongst the
three different flocks (top row: ewes with new-born lambs; middle row: ewes with
nearly weaned lambs; bottom row: ewes only). Here γ = 2/15, appropriate for
FMD, and results are presented for three different values of p, the probability of
transmission occurring during contact: that estimated for FMD (middle column)
and values an order of magnitude smaller (left column) and larger (right column)
than this. The total number of susceptible (blue), infected (red) and recovered
(green) individuals is plotted as a function of time: the solid lines show the median
values from stochastic simulations of the full weighted network, with the shaded
bands showing confidence intervals in steps of 5%. The dashed line shows results
from the two-class ODE system.

is seen in breeding flocks compared to ewe-only groups. The number and strength

of links decreases as lambs grow older, and amongst mature animals, a per contact

probability of transmission of an order of magnitude bigger is required in order

to achieve an outbreak similar to that observed in a flock with newborn lambs,

as demonstrated in Fig 6.5. Explicitly, for our estimated parameter values the

system results in die-out amongst mature ewes, a partial outbreak amongst ewes
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Figure 6.6: Time evolution of the number of infected for ewes with nearly-weaned
lambs for N = 25, γ = 2/15 and p = 1.789x10−3, the estimated recovery rate
and probability of transmission per contact respectively for FMD. For all network
models, the median number of infected individuals is shown: the black line shows
the results from simulations on the full weighted network, with the shaded bands
showing confidence intervals in steps of 5%; the white line represents simulations
on the homogeneous-weight network model, the magenta line shows results a
semi-homogeneous two-class fully connected network model, the cyan line shows
results from a homogeneous fully connected network model. The blue and red
lines represent results from the two-class one-class ODE models respectively, with
a solid line for the deterministic solution, a dashed line for the median of the
stochastic results and a dotted line for the mean of the stochastic results.

with nearly-weaned lambs and an epidemic amongst ewes with new-born lambs

on the full weighted network, as shown in Fig 6.4.

6.4.1 Model comparison

Fig. 6.5 shows predicted epidemic from the two-class ODE system: results from

the compartmental model vary in their agreement with simulation results for
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different flock compositions and different values of p.

In Fig. 6.6, all four network models and the two ODE models are compared

on the same figure. All of the network models that remove heterogeneity in some

way predict very similar results to each other, and are all much closer to the ODE

outputs than to the output from the full weighted network simulation. Thus Fig.

6.5 suggests that the heterogeneity in the contact rates acts to slow down the

spread of diseases. The lack of difference between the one-class and two-class

ODEs is due to the very high rates of mixing between the groups (see Norton et

al. [94]), which agrees with previous findings [72].

6.5 Discussion

Results from one-class and two-class epidemic models have been presented, with

each class representing ewes or lambs in sheep flocks. These results include the

derivation of important epidemiological parameters such as the basic reproduction

ratio and the final outbreak size, in terms of the disease recovery rate, contact

rates between individuals and the probability of successful transmission when a

contact between an susceptible and infected individual occurs. Application of

field data indicates that the basic reproduction ratio increases dramatically in

the presence of lambs, an effect that decreases with the age of lambs, as might be

expected. Furthermore, it has been shown that for realistic contact rates based on

field observations, this increase is underestimated if a conventional (single class)

formulation of R0 is used. Flock demographics influence not only how quickly a

disease spreads, but also the final epidemic size. It is clear from Fig. 6.3 that

the absence of lambs contributes significantly to reducing the overall size of the

outbreak.

It appears that differences in contact structure and difference in the weight

of contacts can always be compensated for in this network by adjustments in the

per-contact probability of infection, to produce similarly behaving outbreaks in
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different flocks. This is illustrated by the subplots on the main diagonal of Fig.

6.5 where the time evolution of the epidemics is very similar. This suggests that

the fundamental structure of the networks is similar, despite the variability in

the weight of each contact.

In general, as networks become more densely connected, the results from

stochastic simulations on networks tend to approach the mean-field approxima-

tion, given by ODE models [113], which is exactly the situation shown in Figs.

6.5 & 6.6. As expected, for unrealistically high per-link probability of infection,

the differences are less significant as in this case almost all individuals become

infected rapidly. It is interesting to note that the full network simulation is more

markedly different from the mean-field result than the homogeneous, or semi-

homogeneous network models. Since the main difference between the various

network models lies in the distribution of contacts, it seems reasonable to as-

sume that the observed differences shown in Fig. 6.6 are being driven by this

hetergeneity. The difference between the output from homogeneous and hetero-

geneous network models can be explained intuitively as follows: links with high

weight are relatively rare and hence they will play a minor role in the overall

dynamics, which is going to be dominated by links with low weights. This leads

to slower dynamics and smaller epidemics. However, when the contribution of

highly weighted links is spread evenly across all links, the previously numerous

low-weight links become more potent in transmitting the infection and this leads

to both faster and larger epidemics.

Although individual-based simulations on networks are usually regarded as

the most accurate type of model, there are a number of considerations that need

to be taken into account when assessing their appropriateness. Firstly, networks

are very good at describing situations in which contact patterns between indi-

viduals are well defined. For this to be the case, what constitutes a contact, in

addition to who contacts whom, needs to be well defined. It is clear from the
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observational data [94] that what constitutes a contact that could potentially

lead to the transmission of the disease is unclear. For example, the rates given in

the full contact matrix are the estimates for the expected number of short lived

contacts between two sheep, regardless of the type of contact (for example, was

the contact a nuzzle or a mount - see Norton et al. [94] for a full breakdown of

the different types of between-sheep contacts that were observed and recorded).

This differs from a sexual contact network, in which the contact between two

individuals that could result in disease transmission is more clearly defined.

Modelling using networks assumes frequency dependent contact, which is in-

dependent of population size [14]. Whether a frequency or density dependent

approach should be used depends heavily on the flock setup and how the flock is

managed. For example, if the flock is roaming on open hillside then a frequency

dependent approach seems suitable. However, if the flock was rounded up and

kept in a tight pen, then a density dependent approach would seem more suitable,

as the number of contacts an individual could expect to have would depend upon

how many sheep were in the pen.

In conclusion, seasonal variability in the structure and resultant connectivity

of conventionally managed sheep flocks, as lambs are born, weaned and even-

tually leave the flock, can have a significant impact on the potential spread of

directly-transmitted ovine diseases. While full network simulations best capture

the observed heterogeneity of contacts amongst animals, simple compartmental

models describe the key features of an outbreak. Although these models over-

predict the speed and scale of an outbreak, they do fall within the 95% confidence

intervals predicted by full stochastic network simulations, and as such could prove

to be a useful tool for modelling real-world flocks. Since sheep are probably the

least intensively farmed livestock in the UK and much of Europe, it is likely that

results will be even more favourable for other more intensively farmed (and hence

more homogeneously mixed) species of livestock.
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Chapter 7

Discussion

This thesis is concerned primarily with modelling the spread of epidemics on

networks. In this final chapter, we highlight some of the results of this thesis and

examine their limitations in more detail. We also propose future lines of enquiry

where appropriate.

In Chapter 2, we proved that the previously well known equations governing

the population level expectations of individuals and pairs are exact. Until now

these equations were derived using only heuristic reasoning, whereas in this thesis

these are rigorously derived from the full Kolmogorov equations for SIS type

epidemics on an arbitrary network.

In Chapter 3, we start with these exact but unclosed equations and proceed

to apply three different closure approximations. Firstly, we assume homogeneous

random mixing between all individuals, and hence approximate the number of

pairs in terms of the number of individuals in the system. This strong assumption

leads to the well known mean-field approximation, which overestimates the size

of epidemics when compared to results from stochastic simulation. We proceed

to prove that this crude mean-field approximation becomes exact in the limit of

a large, fully connected network.

We also examine the performance of two distinct pairwise closures, the orig-

inal pairwise closure (OPA) [61] and an improved pairwise closure (IPA) [52].
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Both deal with triple motifs - both open and closed triples - and we show that,

unsurprisingly, they perform best on networks that have been re-wired to remove

large-scale network structures and replace them with the local clustering captured

by the closures. An interesting avenue for future work would be to develop be-

spoke closure approximations for use with different network topologies, although

the development of a pairwise closure that captures large-scale network properties

is unrealistic, due to the local assumptions required to construct the approxima-

tions and the limited amount of network information that can be included at the

level of pairs.

In Chapter 4 we introduce the effective degree (ED) modelling framework,

proposed by Linquist et al. [83]. They show that the static ED model is ideally

suited for modelling epidemics on simple random networks, with results from

ODEs agreeing closely to those from stochastic simulation. However, the static

ED model is unable to account for clustering or degree correlations. This inability

to account for local clustering follows from the assumption of star-like structures

as its core motifs. Hence, a pairwise model is better suited to modelling epidemics

on networks that have a high degree of clustering or are assortatively mixed.

Comparing the ED model to an unclustered pairwise model reveals two dif-

ferent approaches to the problem of moment closure. For the standard pairwise

closure with no clustering, Keeling [61] defines that Qi(B|A) is the number of

neighbours of disease state B surrounding node i, given that node i is in state

A. It is comprised of two parts: the expected value Q̄ and an associated error σ

which is not necessarily small:

Qi(B|A) = Q̄(B|A) + σi(B|A) =
[AB]

[A]
+ σi(B|A).

By assuming a distribution for the Qi, and hence the σi, expressions can be

produced for triples in terms of pairs and singles. Keeling assumes a multinomial
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error distribution

[ABC] =
∑

j,Bj=1

Qj(A|B)Qj(C|B)

=
∑

j,Bj=1

(
[AB]

[B]
+ σj(A|B)

)(
[BC]

[B]
+ σj(C|B)

)

=
[AB][BC]

[B]
+

∑
j,Bj=1

σj(A|B)σj(C|B)

=

(
n− 1

n

)
[AB][BC]

[B]
.

Here
∑

j,Bj=1 σj(A|B)σj(C|B) is the covariance of two multinomial distributions.

In general, Cov(Xi, Xj) = −npipj. Here pi = PAB = AB
nB

and pj = PCB = CB
nB

.

Hence
∑

j,Bj=1

σj(A|B)σj(C|B) = − 1

n

[AB][BC]

[B]

as required.

Using the same idea, but with the effective degree model:

[ABC] =
∑

j,Bj=1

Qj(A|B)Qj(C|B)

=
∑

k

∑

j+l=k

jlSjl.

At first glance, it may appear that no assumptions are needed on the state of a

given node’s neighbours. However this is not the case, for in the ED model the

closure lies in placing assumptions on the rate at which a given node’s neighbours

change their disease state, which depends upon the rate at which they come into

contact with other infectious individuals. The ED model assumes that the rate

at which an individual’s neighbours come into contact with others follows the

homogeneous random mixing assumption, as given by the term

β

∑M
k=1

∑
j+l=k jlSjl∑M

k=1

∑
j+l=k jSjl

(s + 1)Ss+1,i−1
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in Eq. (4.2), for example. So, in the case of the static ED model, the dynamics

are primarily driven by two key assumptions: (1) the network is comprised of

star-like motifs and (2) the rate at which individuals mix between these core

motifs is via homogeneous random mixing.

Lindquist et al. [83] point out that the ED modelling framework for static

networks is suited to adaptation for modelling epidemics on dynamic networks.

This is due to the explicit notation denoting the expected number and type of a

node’s neighbours, along with the strong random mixing assumption. Hence it

would be expected to perform well on dynamic networks with random link acti-

vation/deletion. In this thesis, we test this claim and the main result of Chapter

4 was the adaptation of the static ED model to deal with dynamic networks that

have locally constrained random link activation and deletion. We showed that

this new model, given by Eqs. (4.4-4.5), closely agrees with simulations results

for both the evolution of the disease and network. Furthermore, we derived a

next-generation calculation of R0 and showed that in the context of a dynami-

cally changing network, it is possible for epidemics to take off with R0 < 1 and

die out with R0 > 1.

The dynamic ED model could be extended to allow for type dependent dy-

namics, as well as relaxing the local constraint. Below, a few different models are

proposed that begin to address this. The most general form of the dynamic ED

model, adapted for type dependent link activation and deletion, is described by

the following set of (M + 1)(M + 2) equations

˙Ss,i = −βiSs,i + γIs,i + γ[(i + 1)Ss−1,i+1 − iSs,i] (7.1)

+β

∑M
k=1

∑
j+l=k jlSjl∑M

k=1

∑
j+l=k jSjl

[(s + 1)Ss+1,i+1 − sSs,i]

−ωSSsSs,i − ωSIiSs,i + ωSI(i + 1)Ss,i+1 + ωSS(s + 1)Ss+1,i

−(M − (s + i))(PSαSS + PIαSI)Ss,i + αSS(M − (s− 1 + i))PSSs−1,i

+αSI(M − (s + i− 1))PISs,i−1,
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˙Is,i = βiSs,i − γIs,i + γ[(i + 1)Is−1,i+1 − iIs,i] (7.2)

+β

∑M
k=1

∑
j+l=k l2Sjl∑M

k=1

∑
j+l=k jIjl

[(s + 1)Is+1,i+1 − sIs,i]

−ωSIsIs,i − ωIIiIs,i + ωSI(s + 1)Is+1,i + ωII(i + 1)Is,i+1

−(M − (s + i))(αs,iPS + αIIPI)Is,i + αSI(M − (s− 1 + i))PSIs−1,i

+αII(M − (s + i− 1))PIIs,i−1,

for {(s, i) : s, i ≥ 0, 0 ≤ k = s + i ≤ M} and where PX =
∑M

k=0

∑
j+l=k(M−(j+l))Xjl∑M

k=0

∑
j+l=k(M−(j+l))(Sjl+Ijl)

, X ∈ {S, I} and is the probability of picking a stub

belonging to a node of type X.

Clearly by setting αSI = αII = αSS = α, a model that describes type de-

pendent link deletion, but random link activation can be recovered. This model

could have intuitive modelling merit, as it could be argued that an individual

would not be aware of the state of another individual until after a link between

them has been established. Type dependency is preserved in the model through

the variable link deletion rates, whereby a high ωSI would ensure that an SI

link was active for less time than links of other types. Furthermore, by setting

ωSI = ωII = ωSS = ω, the original random link model, described by Eqs. (4.4-

4.5), is recovered.

By setting M = N − 1, the model becomes unconstrained. However, due

to the system size of Eqs. (4.4-4.5) being defined by M , setting M = N − 1

would result in systems too large to solve for N & 25. This can be overcome by

calculating the mean degree at equilibrium. For the case with type independent

cutting, Eqs. (4.5-4.4), this is given by Eq. (4.6).

So, for example, with values of α = 0.005, ω = 0.995, N = 1000 and M =

N − 1 = 999 gives 〈k〉∗ = 4.995. As the degree distribution at equilibrium is

Poisson, the probability that a node has a certain degree, D, is given by

P (Degree = D) =
(〈k〉∗)D

e−(〈k〉∗)

D!
. (7.3)
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For the example given above, P (Degree = 20) = O(10−7). This means we can

confidently limit our system size by a parameter D, for which there is a very

small probability that there will ever be nodes that exceed that degree.

However, if we decide to proceed with an unconstrained model, a far simpler

fully-type dependent model can be constructed by recognising that a node of type

Xs,i has ([S]− s) susceptible nodes and ([I]− i) infected nodes to which it is cur-

rently not connected. As the model is unconstrained and hence could potentially

describe a fully connected network, we know that each of these inactivate links

could be activated at rates αXS and αXI respectively (where X ∈ {S, I}), with-

out the need for the probability parameters PS and PI , which were previously

required. This gives rise to the following model:

˙Ss,i =− βiSs,i + γIs,i + γ[(i + 1)Ss−1,i+1 − iSs,i]

+ β

∑M
k=0

∑
j+l=k jlSjl∑M

k=0

∑
j+l=k jSjl

[(s + 1)Ss+1,i−1 − sSs,i]

− ωSSsSs,i − ωSIiSs,i + ωSI(i + 1)Ss,i+1 + ωSS(s + 1)Ss+1,i

− αSS([S]− s)Ss,i − αSI([I]− s)Ss,i

+ αSS([S]− (s− 1))Ss−1,i + αSI([I]− (i− 1))Ss,i−1,

˙Is,i =βiSs,i − γIs,i + γ[(i + 1)Is−1,i+1 − iIs,i]

+ β

∑M
k=1

∑
j+l=k l2Sjl∑M

k=1

∑
j+l=k jIjl

[(s + 1)Is+1,i−1 − sIs,i]

− ωSIsIs,i − ωIIiIs,i + ωII(i + 1)Is,i+1 + ωSI(s + 1)Is+1,i

− αSI([S]− s)Is,i − αII([I]− i)Is,i

+ αSI([S]− (s− 1))Is−1,i + αII([I]− (i− 1))Is,i−1.

Another adaptation of the dynamic ED model follows from the argument that

rates such as αSI have little real world relevance. How are people to know the

state of another individual until a link has been created? The creation rates could
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be better described by half-rates such as αS, whereby the rate at which new links

are created depends on the state of the individual, not the link. This has the

added advantage of reducing the number of parameters by two. This kind of

behaviour is described by the following model:

˙Ss,i = −βiSs,i + γIs,i + γ[(i + 1)Ss−1,i+1 − iSs,i] (7.4)

+β

∑M
k=1

∑
j+l=k jlSjl∑M

k=1

∑
j+l=k jSjl

[(s + 1)Ss+1,i+1 − sSs,i]

−ωSSsSs,i − ωSIiSs,i + ωSI(i + 1)Ss,i+1 + ωSS(s + 1)Ss+1,i

−αS(M − (s + i))Ss,i + αS(M − (s− 1 + i))P̃SSs−1,i

+αS(M − (s + i− 1))P̃ISs,i−1,

˙Is,i = βiSs,i − γIs,i + γ[(i + 1)Is−1,i+1 − iIs,i] (7.5)

+β

∑M
k=1

∑
j+l=k l2Sjl∑M

k=1

∑
j+l=k jIjl

[(s + 1)Is+1,i+1 − sIs,i]

−ωSIsIs,i − ωIIiIs,i + ωSI(s + 1)Is+1,i + ωII(i + 1)Is,i+1

−αI(M − (s + i))Is,i + αI(M − (s− 1 + i))P̃SIs−1,i

+αI(M − (s + i− 1))P̃IIs,i−1,

where P̃X =
∑M

k=0

∑
j+l=k(M−(j+l))αXXjl∑M

k=0

∑
j+l=k(M−(j+l))(αSSjl+αIIjl)

, X ∈ {S, I}. Indeed a whole range of

different models can be created this way, and are easily captured by systems of

ODEs. However, as there are now more complex feedback mechanisms between

the disease and network dynamics, care must be taken that these ODEs are

consistent with simulation results, which are challenging to produce.

In Chapter 5, we extend the work of Kiss et al. [74], who propose a model that

allows for individuals to be either responsive or non-responsive to the possibility

of an epidemic outbreak, with responsive individuals becoming infected at a lower

rate than non-responsive individuals. Individuals can move from one awareness

class to another as they respond to information about the disease and then slowly

forget over time. Whereas the model proposed by Kiss et al. [74] is a simple
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compartmental model, our model proposed in Chapter 5 is a full pairwise model

that accounts for multiple sources of information generation and transmission. We

show that peer-to-peer dissemination of information is more effective than a global

dissemination of information for a range of different values of τ . The pairwise

nature of the model allows us to look at the correlations of responsive and non-

responsive individuals, something not possible in a simple compartmental model.

We show that peer-to-peer information transmission leads to a non-trivial disease-

free steady state, whereby responsiveness is endemic even though the disease

dies out. This leaves the population more resistant to re-infection than would

otherwise be the case. Future work may expand on the work by Hatzopoulos et

al. [48] and model the effects of having information and disease travel on sperate

networks. The degree of overlap between these networks can be adjusted, and

this type of model could be used to account for the difference between virtual

and physical links, for example.

An interesting open question brings together Chapter 4 and Chapter 5. Both

models aim to investigate the control of an epidemic via behavioral response. For

the information model, control is through the modification of disease transmission

parameters, with the contact network unchanged, but for the dynamic ED model,

control is through the removal of links. It would be interesting to consider how

these two approaches are similar, especially if the dynamic ED model was changed

to reflect preferential link deletion. Both aim to prevent an epidemic, but both

consider two very different approaches. Which is more effective could depend

upon the virulence of a disease, or of the particular structure of a host population.

The ability to be able to compare these two approaches in a meaningful way

would allow public health officials to make informed decisions about whether an

awareness raising campaign would be sufficient to reduce the likelihood of an

outbreak, or whether more direct measures, such as the closure of public services,

curfews or quarantines, are required.
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In summary, this thesis contributes a number of significant results to the

field of epidemiology. Mathematical modelling of epidemics plays a key role in

understanding the risks of disease outbreaks and the effectiveness of different

intervention strategies. The field of epidemiology is best described as multi-

disciplinary. Closer collaboration between the medical, social and mathematical

communities will allow us to better infer disease parameters, to develop a deeper

understanding of how real-world networks can be described, as well as being able

to include these in realistic models that will allow informed health choices to be

made by both individuals and public health bodies.
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