
   

 

A University of Sussex DPhil thesis 

Available online via Sussex Research Online: 

http://sro.sussex.ac.uk/   

This thesis is protected by copyright which belongs to the author.   

This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

Please visit Sussex Research Online for more information and further details   



 

OPTIMAL CONTROL OF A FLYWHEEL-BASED 

AUTOMOTIVE KINETIC ENERGY RECOVERY SYSTEM  

 

 

by 

 

 

LUIS ALEJANDRO PONCE CUSPINERA 

 

 

 

 

SUBMITTED FOR THE DEGREE OF  

DOCTOR OF PHILOSOPHY 

 

 

 

 

 

 

UNIVERSITY OF SUSSEX 

SCHOOL OF ENGINEERING AND INFORMATICS 

DEPARTMENT OF ENGINEERING AND DESIGN 

 

 

APRIL 2013 

  



ii 

 

 

 

 

ABSTRACT 

 
 

This thesis addresses the control issues surrounding flywheel-based Kinetic 
Energy Recovery Systems (KERS) for use in automotive vehicle applications. 
Particular emphasis is placed on optimal control of a KERS using a 
Continuously Variable Transmission (CVT) for volume car production, and a 
wholly simulation-based approach is adopted. Following consideration of the 
general control issues surrounding KERS operation, a simplified system model 
is adopted, and the scope for use of optimal control theory is explored. Both 
Pontryagin’s Maximum Principle, and Dynamic Programming methods are 
examined, and the need for numerical implementation established. With 
Dynamic Programming seen as the most likely route to practical implementation 
for realistic nonlinear models, the thesis explores several new strategies for 
numerical implementation of Dynamic Programming, capable of being applied 
to KERS control of varying degrees of complexity. The best form of numerical 
implementation identified (in terms of accuracy and efficiency) is then used to 
establish via simulation, the benefits of optimal KERS control in comparison 
with a more conventional non-optimal strategy, showing clear benefits of using 
optimal control. 
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NOMENCLATURE 
 

wT      traction wheel torque 

wfT      traction wheel friction torque 

fT      flywheel torque 

ffT      flywheel friction torque 

wJ      wheel moment of inertia 

fJ      flywheel moment of inertia 

w      wheel angular displacement 

f      flywheel angular displacement 

G      gear ratio 

x      a vector of state variables 

u      a vector of control variables 

vm      vehicle mass 

wr      traction wheel radius 

vK      viscosity friction factor 

MBK      magnetic bearings friction factor 

J      performance index 

H      Hamiltonian 

      co-state equations 

0f  cost associated to the states, control or time 

behaviour 

if      state equations 

c      damping coefficient 

k      stiffness coefficient, discrete time steps 

m      mass 

      weighting factor (cost related, control) 

gu      control gradient 

w      wheel rotational speed 

q      least square evaluation function 



viii 

 

      weighting factor (cost related, states) 

      weighting factor (cost related, control) 

Kp      proportional gain 

Kd      differential gain 

Ki      integral gain 

 

ABBREVIATIONS 

 
KERS     Kinetic Energy Recovery System 

CVT     Continuously Variable Transmission 

EV     Electric Vehicle 

HEV     Hybrid Electric Vehicle 

P     Proportional 

PI     Proportional-Integral 

PID     Proportional-Integral-Derivative 

TPBV     Two-point Boundary-value 
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1. INTRODUCTION 
 
The increasing concerns about environmental protection, through the reduction 

of pollution, creates a need for more environmentally friendly devices. This has 

a great impact on the road transport sector, which in total currently represents 

around 25% of the carbon dioxide emissions throughout the world. With stricter 

legislations for lower CO2 and harmful emissions, and an awareness that 

energy resources are finite, this gives increasing motivation for manufacturers, 

designers and researchers to improve and optimize power generation and 

transmission systems. In the automotive area this means the development and 

application of new materials, the optimization of the engine and powertrain 

systems, and the rapid evolution of hybrid and electric vehicles that could be 

introduced in the near future without any significant loss of vehicle performance. 

These necessities have given rise to the creation of several new devices, 

techniques and powertrain configurations. One of these devices is the Kinetic 

Energy Recovery System (KERS), which is intended to recover and store 

kinetic energy of a vehicle instead of wasting it as heat during braking. This is 

indeed a form of regenerative braking. KERS are not new, but with increasing 

interest and development in hybrid and electric vehicles, combined with the 

motivation to improve efficiency of combustion-engine-powered vehicles, the 

use of KERS is an area of growing focus. The recent inclusion for example of 

KERS in formula one cars not only shows a growing interest in KERS 

development but also makes its use more exciting. However the use of KERS in 

motor sport is largely for enhanced performance not for efficiency 

improvements. The ultimate benefit of KERS may be in volume car usage. 

 

As part of this introduction, a description of KERS and a brief assessment is 

shortly presented. Different KERS possibilities are identified and the reasons for 

selecting a study of a Flywheel-based KERS with a Continuously Variable 

Transmission (CVT) are highlighted. Relevant information about both flywheels 

as storage systems, and CVTs as transmission systems, is presented. In the 

assessment of the state of the art of KERS, the importance of the control 

strategies used to transfer the energy to the storage device is manifest. For this 

reason, a particular interest is shown in the currently-used control strategies. 
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Since one of the major objectives in the regenerative process, is to maximise 

the energy recovered, the possibility of using an optimal control strategy to 

achieve this is worthy of detailed examination. Therefore, the use of optimal 

control in automotive systems and particularly in KERS is explored. Indeed as 

part of the literature review presented shortly in section 1.4, the most relevant 

publications in regenerative braking, flywheels as storage systems, CVT models 

and control, optimal control in automotive systems, and control of KERS are 

examined. With it, the motivation of using optimal control to improve 

performance and efficiency for KERS becomes evident. 

 

The research addressed in this thesis is particularly concerned with the optimal 

control of a Flywheel-based KERS with a CVT. The modelling of the system 

plays an important role for control, therefore, suitable models for this application 

are evaluated and presented. The optimal control methodologies considered 

are the Classical tools of Pontryagin’s Maximum Principle, and discrete 

Dynamic Programming. These methodologies are initially implemented via 

simulation and the results highlight the need for substantial development. It 

quickly becomes apparent that the approach to the improvement needed is the 

development of a modified version of Dynamic Programming. 

 

In the next three subsections an overview is given of Kinetic Energy Recovery 

Systems in general, followed by focus on flywheel-based KERS. Of course 

flywheels and transmissions are not new, thus something of an overview is also 

given of these. The control issues, in particular the optimal control possibilities, 

are then examined leading into the review of the literature on all these topics. 

 

1.1 Vehicle Kinetic Energy Recovery Systems (KERS) 

A Kinetic Energy Recovery System (KERS) is a system capable of recovering 

the kinetic energy from a moving device by reducing its speed and storing the 

energy in a ‘reservoir’. In an automotive application, the term KERS refers to a 

system that can recover the vehicle kinetic energy while braking, instead of 

wasting it as heat, this process is normally known as Regenerative Braking. 
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There are two main advantages of using a regenerative process: i) to extend 

the driving range (Cheng et al. 2011, Ye et al. 2010); and ii) to save energy 

consumption (Cheng 2011). These characteristics make a vehicle more efficient 

and increase its performance, which represents an improvement in fuel 

economy and a reduction in CO2 emissions. 

 

Although the concept of Regenerative Braking is relatively old it is only recently 

that it has captured more attention, especially as a result of increasingly strict 

vehicle emissions regulations, and the development of Hybrid Electric Vehicles 

(HEV) and Electric Vehicles (EV). This is why, the term Regenerative Braking is 

commonly associated with EV technology, and the term KERS or even ERS, is 

used as a more general energy management concept. 

 

A KERS is formed by two subsystems: i) The transmission, normally consisting 

of a gear box, a Continuously Variable Transmission (CVT), electrical 

transmission or a motor-generator; and ii) the storage device (reservoir) which 

can be divided in two different groups: Electrical Storage Systems (ESS) and 

Mechanical Storage Systems (MSS). 

 

The transmission is the connection between the wheels, engine and the storage 

system, also any additional devices between them. This has to be engaged at 

both ends to pump energy from the wheels and engine to the storage system. 

This subsystem may also be used to pump energy back to the vehicle, with the 

appropriate configuration, when needed. Three important characteristics of this 

subsystem are: i) high efficiency, ii) wide energy density range in order to store 

as much energy as possible; and iii) high power density, i.e. fast operation while 

braking or accelerating. 

 

Turning to ESS, these include batteries, hydrogen fuel cells, and capacitor 

banks. They are good storage devices because they can store energy for a long 

time. The transmission subsystem for EES is not necessarily complex because 

for hybrid and electric vehicles, the motor is also used as a generator (Cheng et 

al. 2011, Inoue et al. 2010) and the vehicles transmission is the same for the 

KERS. Unfortunately they have a low operational range, in addition to 
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charge/discharge limitations. By contrast, MSS include springs, flywheels, and 

fluid reservoirs. They are lighter than ESS, have a relatively good charging rate 

and wider operational range, but they cannot generally store energy for long 

periods of time. 

 

But the storage elements chosen for a KERS are closely-linked to the type of 

vehicle where the storage process is adopted depending on the different 

options available and the demands imposed. For example, HEVs and EVs 

normally use the main electric source as storage for the KERS; however for 

combustion engine powered vehicles, the use of an auxiliary source is needed. 

Lukic et al. (2008) and Van Mierlo et al. (2004) analyse the characteristics of 

different energy stores, including batteries, ultra capacitors, hydrogen fuel cells, 

and flywheels, when these are used in electric vehicles as the main energy 

store. From this analysis, it is clear that the lower cost, portability and storage 

capacity for long periods of time, batteries are the most prevalent energy 

storage system, especially as a main store. However, because of its limited 

charge/discharge rate, and the need for energy transformations that the 

regenerative process must undertake (Boretti 2010), using batteries is not the 

most efficient means of storage. Ultra capacitors and flywheels by contrast 

allow fast charge and discharge, making them more attractive secondary 

storage devices for use in high charge rates. In addition, reduced or non-energy 

transformations are required when using these two devices since electrical or 

mechanical energy (respectively) is stored. 

 

Flywheels however are quite novel in automotive applications (Lukic et al. 

2008), for this reason they have not been fully explored and are still very 

expensive. However, because they have a higher energy density and a higher 

energy capacity than Ultra Capacitors (Van Mierlo et al. 2004), they are 

becoming more popular in automotive applications. 

 

Secondary storage means, and especially flywheels, require a transmission 

device to transfer the energy from the kinetic device. Therefore it is appropriate 

to consider the types of transmission available. 
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Transmission systems 

Lechner et al. (1999) present very good and complete information about the 

different types of transmissions used in automotive engineering. They suggest 

that, transmissions can be categorized in many different ways. Two important 

categories however are: Geared transmissions, and Continuously Variable 

Transmissions. One of the motivations for the development of CVTs is the high 

efficiency they can achieve; but its main disadvantage, is the limited torque 

capacity they provide. But with high efficiency, and the huge effort being put into 

developing higher torque capacity CVTs, this makes it potentially a good future 

transmission system to be considered for KERS applications. 

 

With the purpose of studying a KERS that is not exclusively for hybrid or electric 

vehicles, the next motivation is to explore technologies that are currently being 

considered for implementation in automotive applications, taking account of the 

benefits and possibilities that have been identified thus far. The selection of a 

Flywheel as a storage device and a CVT as a transmission system, as a subject 

of further study, has already been justified. But before fully reviewing the 

literature it is appropriate to focus on flywheel KERS, indeed on flywheels as 

energy stores in general. 

 

1.2 Flywheel-based KERS 

The concept of using flywheels as storage systems has been in existence for 

some years (Bolund et al. 2007), with the main applications being electric 

stabilizers in machines (Samineni et al. 2003), or electrical energy sources, or 

energy production units (Boukettaya et al. 2010). However, as Liu, H. et al. 

(2007) mention, flywheel characteristics have widened the possible applications 

into several areas such as in space, vehicle, or power sources. This is 

especially possible as a result of developments in materials and tribology, like 

the improvements in ball bearings and the development of magnetic bearings 

(Bolund et al. 2007). 

 

It was mentioned earlier that HEVs and EVs use the main electric source to 

store the energy most of the time. However, advantages are accrued of using a 

flywheel combined with the electric sources, especially for rapid acceleration or 
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energy recovery high power density in charging. For example, Hua et al. (2009) 

use a flywheel as a second energy storage device in a hybrid vehicle. 

 

In the case of combustion engine powered vehicles, flywheel-based KERS are 

being explored mainly in motor sport. The FIA regulations for the 2009 racing 

season allowed the use of regenerative braking systems. The company Flybrid 

Systems LLP, developed a mechanical KERS with a CVT that is suitable for 

both F1 vehicles and mainstream automotive applications (Cross et al. 2008). In 

addition to motorsport applications, Boretti (2010) presents a flywheel-based 

KERS with a CVT system in a compact car. Figure 1.1 shows a Flybrid system 

fitted to a production car. 

 

 
 

Figure 1.1 Flybrid® 9013 hybrid system as fitted to the Jaguar XF demonstrator 
(http://www.flybridsystems.com/Roadcar.html) 

 

Flywheel-based KERS are however not exclusive to automotive engineering. 

There are other applications where the kinetic energy is recovered and stored 

for later use, for example Ghedamsi et al. (2008) mention its use as an auxiliary 

source in a wind generator to store the extra electrical energy produced and 

also for improving the generator performance by working as a power regulator. 
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Flywheels 

Whilst the subject of flywheels is being discussed it is appropriate to digress just 

to say something about flywheel materials and operating conditions.  Liu, H. et 

al. (2007) and Bolund et al. (2007) state the importance of flywheel geometry 

and physical composition as a determining factor to its performance. Specific 

energy and energy density are two important features for this characterisation. 

 

Flybrid Systems LLP (Cross et al. 2008) for example use a filament wound 

carbon composite flywheel. This composition provides higher energy densities 

and its shape produces higher specific energy levels, and allows it to reach high 

speeds up to 64 000 rpm. For efficiency and integrity reasons, the flywheel is 

enclosed in a vacuum housing that ensures containment in the event of failure. 

Boretti (2010) mentions that for series volume production cars, the speeds do 

not have to reach such levels because larger inertias can be used. Cross et al. 

(2008) also emphasize the importance of safety, and have performed various 

relevant crash tests to ensure the highest standards are met. An overview will 

now be given of the transmissions used with KERS. 

 

Transmissions 

Flywheel-based KERS mainly use two types of transmission: i) A Motor-

generator (Bolund et al. 2007, Ghedamsi et al. 2008), and ii) CVT (Boretti 2010, 

Cross et al. 2008). A motor-generator transmission is commonly used when the 

main vehicle power source is electrical; and CVTs are normally chosen when a 

transmission must be added to the vehicle. The main reason for this is to avoid 

the energy transformation losses. 

 

The term CVT covers various types of transmissions, Lechner et al. (1999) 

mention the most common: Pulley transmission, Toroidal transmission (or 

friction gear), Hydrostatic transmission, and Electric transmission. 

 

A pulley transmission consists of two variable diameter pulleys joined by a belt. 

The diameter variability creates a continuous range for the input/output ratio. 

The toroidal transmission consists of two discs, and a couple of rollers. The 

rollers work as contact point between the discs, and with its rotation, the contact 
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point change the centre distance, allowing a continuous range in the gear ratio. 

A hydrostatic transmission transfers the power through liquid, and this is 

controlled by a variable displacement pump which regulates the flow used by a 

hydrostatic motor. The Electric transmission regulates the current using different 

types of electric or power electronic components. 

 

The first two types of transmission are entirely mechanical, the third one is 

hydraulic and the last one is electric. The application of the CVT has a great 

influence on which is the most convenient to be used, especially to avoid 

energy conversion losses. Flybrid Systems LLP (Cross 2008) use a full toroidal 

CVT, but for most electric vehicle applications the motor-generator is used 

(Bolund et al. 2007, Ghedamsi et al. 2008). 

 

There is a great deal of interest in increasing efficiency and power range in 

transmission systems. For friction-based transmissions this means the 

development of new materials technologies and control techniques. For the 

electric based transmissions the focus is mainly in the energy management 

strategies used. 

 

Control 

Information about the control used in Flywheel-based KERS is actually very 

limited or non-specific. Cross et al. (2008) and Boretti (2010) do not mention 

any particular strategy used for control purposes, however, their control 

descriptions fit into classical control categories (e.g. trial and error approach). 

Elsewhere Ghedamsi et al. (2008) discuss the use of a PID control strategy for 

a wind generator; which, owing to its configuration, is represented as a MIMO 

(multiple input multiple output) control system. 

 

Owing to the limited number of citations on Flywheel-based KERS, it is 

appropriate to consider and review the control systems used in other types of 

KERS. Ye et al. (2010) mention some of the strategies previously used in 

energy recovery systems, these are: Variable structure control, fuzzy control, 

intelligent control, and neural network control; and they present a H2/H∞ control 

strategy. Cheng et al. (2011) use a genetic algorithm (GA) based neural 
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network as a control strategy, and also mentions other strategies used in the 

past, including: fuzzy PID, H∞ control, and robust sliding mode control. Hua al. 

(2009) implement two frequency conversion control methods: i) Constant 

Torque Control, and ii) Constant Power Control. Inoue et al. (2010) use a 

variational method as an optimal control strategy. But it is noticeable that only in 

the most recent years modern control strategies have been used for energy 

recovery purposes. This has opened up a whole new research topic namely in 

how to control KERS. An advantageous way to do this, if it were possible in 

practice, would be via optimal control. It is worth stating here the main 

approaches available and whether these have been used to control KERS. 

 

1.3 Optimal Control 

The classical control approach, which has been suitable for many different 

applications with acceptable results, finds its limitations with the modern 

systems characteristics and the additional control requirements. On the other 

hand, modern control strategies (such as optimal control) aim to fulfil these new 

demands (Ogata 2002, Kirk 1998). Kirk (1998) emphasizes the difference in the 

performance measurement between classical and optimal control theories. For 

classical control systems the performance is normally measured in terms of 

time and frequency characteristics: “rise time, settling time, peak overshoot, 

gain and phase margin, and bandwidth”. An optimal control objective is “to 

determine the control signals that will cause a process to satisfy the physical 

constraints and at the same time minimize (or maximize) some performance 

criterion” Kirk (1998). This is normally achieved in terms of time or energy. In a 

KERS application, where the objective is to maximize the amount of stored 

energy, and to satisfy other systems requirements, the use of optimal control 

theory therefore seems a very promising option. 

 

Optimal Control Theory is usually applied using two independent 

methodologies: Pontryagin’s Maximum Principle, and Dynamic Programming. 

The first approach is based on the Calculus of Variations, and the second is 

based on Bellman’s principle of Optimality. In the case of Dynamic 

Programming, it can be implemented either in continuous or discrete time, the 

latter being more frequently used owing to the mathematical complexity that can 
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arise when working in continuous time. For this same reason use of 

Pontryagin’s Maximum Principle’s is uncommon for complex systems 

applications. 

 

These two methods, and the general optimal control theory, are presented in 

more detail later in this thesis, where a brief contrast with the classical control 

theory is also made. However, it is important to note at the start the extent 

which optimal control theory has been applied to KERS. There is no evidence of 

using the optimal control strategies in a flywheel-based KERS with a CVT. 

There have been some applications in regenerative braking optimization, and 

also in the optimal control of CVTs, but not in KERS with a CVT. 

 

In the case of regenerative braking optimization, Hoon et al. (2006) use a 

classical control strategy to follow an optimal operation line (OOL) combined 

with a regenerative braking algorithm; and Mukhitdinov et al. (2006) present 

four different strategies to maximize different parameters, where one of them 

includes maximization of the energy stored. 

 

Optimal Control of CVTs has been implemented by Pfiffner et al. (2003) 

proposing a numerical solution approximation using the optimization package 

DIRCOL; and also by Liu, J et al. (2007) which use a genetic algorithm to solve 

the nonlinear problem presented by the system model (obtained by using the 

predictive model CARIMA). A different type of optimization is presented by 

Youmin et al. (2009) where they find the optimal PID parameters for a CVT 

control system through a faster experimentation strategy. 

 

None of the optimal control strategies mentioned actually deal with the use of 

Pontryagin’s Maximum Principle or Dynamic Programming. However, Pérez et 

al. (2007) evaluate the possibilities of using these strategies for a power split in 

a hybrid electric vehicle, where they highlight the difficulties of implementing 

both Pontryagin’s Maximum Principle, and Dynamic Programming, and propose 

using a form of Nonlinear programming code. 
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Although optimization processes can become very complicated, especially 

when dealing with complex systems, there is interest in applying optimal control 

strategies in a range of relevant automotive engineering problems. First it is 

necessary to consider relevant and recent publications. 

 

1.4 Literature Review 

Here the most relevant literature related to Flywheel-based KERS is reviewed. 

First, the literature associated with regenerative braking process and KERS are 

reviewed, followed by a focus on flywheels as storage systems. For the subject 

it is also appropriate to assess the state of the art and apparent direction of 

CVTs. Optimal control applications (particularly in automotive systems) are then 

reported followed by the current control strategies used in KERS. The relevant 

literature that does not fall neatly into any of these five categories, (usually 

because it overlaps more than one), is allocated into the most appropriate one 

based on the particular research application. 

 

Regenerative Braking/KERS 

At the time of relatively early implementation of regenerative braking there was 

some scepticism about the actual benefits of implementing the strategy, as 

mentioned by Wicks et al. (1997). But they initiated the process of good system 

modelling and pointed out the benefits of regenerative braking. By making an 

idealized assumption of best case scenarios, and considering the driving cycle 

of a public transport bus, their analysis showed potential economy savings of up 

to 59% in a year of operation. A more realistic figure is actually presented by 

Cross et al. (2008), showing energy savings up to 30%. These figures for 

example, show the motivation for working with KERS and explains why, from 

then on, the interest in them has been increasing. 

 

Electric Vehicles 

EVs bring together various branches of engineering and are now-state-of-the-

art in the sense that huge effort has been specifically focused on the 

improvement of battery systems, electric machines, power electronics and 

energy management. The development of EVs goes hand in hand with the 

global concerns about environmental protection and the shortage of non-
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renewable energy sources (Yang et al. 2011). For electric vehicles, the 

regenerative process is considered almost compulsory since all of the elements 

needed to recover energy already exist in the vehicle. Yang et al. (2011) 

mention the advantage of using the driving motor as a generator. The energy 

management study of an electric scooter is examined for a system consisting of 

a DC motor, a lead acid battery bank, ultra capacitors, and an electronic 

gearshift. The objective is to determine the gear shifting points based on torque 

and efficiency curves. The results of a simulation study are compared with 

experimental results showing a good performance but with only 7.5% difference 

of the total energy regenerated. 

 

Hybrid Electric Vehicles 

Karden et al. (2006) analyse the future for HEVs, which use batteries as energy 

storage systems. This publication emphasizes the need for improvements in the 

power supply system comparing different hybrid configurations, and pointing out 

the use of regenerative braking as an important characteristic in HEVs 

development. 

 

There are other types of Hybrid Vehicle that allow regenerative braking such as 

the air hybrid. Fazeli et al. (2011) present a double tank air hybrid engine 

vehicle, where the engine is used as compressor for the regenerative process. 

The upgrade from one conventional tank to two tanks (one of smaller size) is 

reported as improving the efficiency of the regenerative braking process. The 

particular types of vehicles described in this publication are relatively recent 

(1999) where the regenerative process was considered from the initial design 

stage. 

 

Combustion engine powered vehicles 

The work presented by Cross et al. (2008) is the most representative of all 

flywheel-based KERS. The system designed by Flybrid Systems LLP has been 

used in the F1 competitions and the implementation into mainstream vehicles is 

mentioned throughout. Despite having implemented a full design into real life 

applications, the need for new developments is clearly stated, especially in the 

areas of: i) failure modes of the rotating mass, ii) the method of control, and iii) 
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the transmission of energy to and from the flywheel. They emphasize the 

benefits of using a purely mechanical system to avoid energy conversions. A full 

toroidal CVT is used as the energy transfer medium. Two clutches (one 

connecting the driving shaft to the CVT, and one connecting the CVT to the 

flywheel) assist in achieving a wider gear ratio range. For this reason, a lot of 

the control is done with the clutches. The F1 KERS has an efficiency higher 

than 70% (round trip) and a dynamic response of 50 ms. Special attention is 

given to safety conditions which are a major concern, especially for mainstream 

vehicles. 

 

Flywheel Storage Systems 

The characteristics of a flywheel make it a great prospect as a storage system, 

especially when energy needs to be rapidly stored for short periods of time. This 

is because flywheels store energy in a kinetic form by rotational movement. Liu, 

H. et al. (2007) mention the most attractive characteristics i.e.: high efficiency, 

long cycle life, wide operating temperature range, freedom from depth-of-

discharge effects, and high power and high energy density relative to the 

alternatives. In this publication, the key factors for delivering high performance 

are identified, namely: the material, geometry, length, and the type of bearings. 

Also the most important concerns are considered i.e.: safety, and energy 

losses. In a very similar publication, Bolund et al. (2007) include an extra 

consideration of a motor-generator that works as a converter/transmission 

system, stating the importance of power electronics in the matter. 

 

In order to better visualize the main characteristics for the most common 

auxiliary storage systems, information has been summarized into Table 1.1. 

(Lukic et al. (2008), Fabien (2009), Dumé (2010)). 
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Device 
Energy 
Density 
[Wh/kg] 

Rates of Charge 

Lead acid Battery 30 Very Low 

Nickel-Cadmium 
Battery 

31 Low 

Supercapacitors 10-80 Very High 

Li-ion Battery 200 Average 

Composite 
Flywheels 

100-1000 Very High 

Table 1.1 – Energy densities for the most common auxiliary storage systems, 
and qualitative information about their rates of charge. 

 

Flywheels have been used for a long time as stabilizers or regulators, in both 

mechanical and electrical applications. Such is the case presented by Smineni 

et al. (2003), where a flywheel is used to mitigate voltage sags. An induction 

machine is used as converter/transmission with a power converter interface and 

the model is given. A voltage reference is set up, where the flywheel operates 

as a source or storage depending on the negative torque command. 

 

Although at the present time, the use of a flywheel as storage system in HEVs 

and EVs is not very common, the clear advantages of a flywheel’s rapid 

response over batteries, make a combined storage device an attractive option 

to be considered. The hybrid vehicle presented by Hua et al. (2009) is an 

example of such system. In this publication, the energy recovered can be stored 

in a battery or a flywheel. When the recovered energy produces heavy current, 

the energy is stored in the flywheel, otherwise the energy is stored in the 

battery. The flywheel can operate under constant torque or constant power 

control depending on its rotational speed. The system is configured so that the 

battery works in the highest efficiency region. Combined storage systems like 

this make the most of the properties of storage devices, although it would not be 

practical to implement such a system for purely mechanical systems, because 

adding a set of batteries would significantly increase vehicle weight with a 

corresponding increase in carbon emissions. 
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Bearing friction 

The Stribeck curve makes profound contribution to Tribology when introducing 

the curve of the coefficient of friction as a function of speed (see “The Stribeck 

curve”, Lu et al. 2005). Stribeck’s contributions were later extended to various 

lubrication regimes which led to the introduction of the dimensionless 

Sommerfeld number (Lu et al. 2005). 

 

Stribeck curves show a nonlinear relationship between the friction coefficient 

and the rotational speed of bearings especially at lower speeds. In the literature, 

it can be observed that after a certain ‘breakaway point’ the system behaviour is 

almost linear (see for example Lu et al. 2005). However, it is important to 

consider that the flywheel reaches very high rotational speeds which is heavily 

influenced by the bearing friction behaviour.  In this last publication, various 

experimental results for different journal bearing lubrication materials and loads 

are presented, as well as the temperature effects. Harnoy (2003) mentions the 

close relationship between ball bearings and journal bearings, stating that the 

main difference is the breakaway point, which happens earlier in rolling 

bearings due to a lower friction interaction. 

 

The friction model for magnetic bearings is more complicated, Schweitzer 

(2002) shows various aspects that contribute to the friction forces acting on 

magnetic bearings. The most relevant losses are due to hysteresis, air, and 

eddy currents. The combination of these friction forces produce a nonlinear 

relationship between rotational speed and friction coefficient. 

 

Continuously Variable Transmissions (CVT) 

Most CVT research done so far is related to vehicle driveline where most of its 

developments are explored. CVT applications in KERS are very recent, in fact 

the state-of-the-art can be drawn mainly from the most recent standard 

application reported. There are two important areas to be considered for CVTs, 

one is CVT modelling, and the other one is the CVT control. Although for control 

purposes it is necessary to have an accurate model of the CVT, models are 

very much simplified to give a reasonable representation of system behaviour. 
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CVT Models 

The simplest model for a CVT can be found in Powell et al. (2000), where a full 

hybrid electric vehicle with a CVT is modelled. The transient behaviour of the 

transmission is analysed and reported, where the model of the electric motor 

and the lead-acid battery are also given. (This model is actually found to be very 

useful when considering control applications, especially when advanced control 

techniques are used). 

 

A different approach to a V-belt CVT is reported by Assadian et al. (2001), 

where the friction models consider the angle of contact at each pulley, as well 

as including the hydraulic system that controls the pulleys aperture. Stiffness 

and damping, in the shaft that connects the load, are also included. The full 

drive representation is obtained by assembling individual ‘bond graphs’ for the 

different parts of the system. The control analysis is limited to the hydraulic part 

of the system not to the overall behaviour of the system. 

 

Pfiffner et al. (2003), and Setlur et al. (2003), present similar CVT models which 

are more detailed than the one presented by Powell et al. (2000). Pfiffner et al. 

(2003) focus more on the optimal control approach and do not follow the model 

in much detail. A numerical optimization approach is proposed and the solution 

is obtained with the help of the optimization package DIRCOL. The difficulty of 

solving for the optimal control online is clearly highlighted, and for this reason 

the optimization is done offline. However, they show that, from a simplified 

optimal control strategy, this can be tracked by using a classical control 

strategy. Indeed an improvement in the fuel consumption was achieved. Setlur 

et al. (2003) include an engine model into the full simplified representation of 

the system. The full model representation differs from the earlier ones, because 

here, the CVT is used to split the power where both CVT ends are connected to 

a planetary gear train and the output, giving more flexibility to the engine 

operation without producing changes in wheel speed. The control objective is to 

drive the vehicle wheels to follow a desired trajectory using the ‘backstepping’ 

strategy. 
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A more complete CVT model that could still be used for control purposes is 

presented by Müller et al (2001). There are two main contributions over the 

previous models. The first one is that it mentions coupling between engine 

speed and the CVT output torque, where they propose compensation of the 

CVT torque by changing the engine torque. The second one is the inclusion of 

the electrohydraulic valve that controls the pulley aperture. The paper shows a 

nonlinear relationship between the gear ratio and the axial displacement of the 

pulley. A general regression neural network is used to identify the overall 

nonlinearity of the system. 

 

There is a good deal of interest in CVT analysis and design, which has 

considerably improved the development of the CVT. In the case of the pulley-

based CVT, research has focused on the friction contact between the belt and 

the pulleys. An example of this is the multi-band layered belts, which are 

examined by Kong et al. (2008). A complex friction model is shown, where this 

model considers various factors like the viscosity of the lubricant, the thickness 

of the oil-film, the band width, and the relative sliding speed. The governing 

equations for the layers are shown, and using steady state conditions, a 

solution using a boundary value problem solver is found. The results show the 

distribution of the traction force depends on the position of the pulley. 

Redistribution of the load using layered-belts, improves the performance of a 

CVT. Carbone et al. (2007), and Srivastava et al. (2008), present more detailed 

models, where they include various factors like the contact angle, the sliding 

velocity, and the geometrical relations. It can be seen from these publications 

that that the complete mathematical representation of a CVT is very complex, 

even when the CVT is operating in a steady state condition. 

 

A more elaborate version of a pulley CVT is the ‘infinitely variable’ transmission 

(IVT). With the assistance of a planetary gear set, the CVT is capable of 

reaching an infinite gear ratio range. This type of transmission is analysed and 

compared with a CVT by Mangialardi et al. (1999). In this publication the 

kinematic analysis of an IVT is shown and explained.  It explores two different 

power flows for two different IVT configurations (i.e. both series and parallel), 

and shows the parameters determination. Both power flows are compared with 
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a standard CVT. The results show that for different torques, different power 

flows have a higher efficiency. In this publication the power flow series system 

No. 1, is the most efficient provided the operational range stays at higher gear 

ratios. 

 

Most of the research has focused on pulley-based CVTs, however there is an 

increasing interest in the toroidal transmission since they potentially offer 

greater torque capacity with fast ratio change (Osumi et al. 2002). In this 

publication, a half-toroidal CVT is explored, and a geared-neutral system is 

developed. A combined simplified half-toroidal CVT model and hydraulic piston 

model is presented. The model is validated by installing a torque converter into 

the vehicle. The geared neutral system allows shifting between two different 

modes (low and high speeds) and it shows improvements over a more 

conventional system. 

 

Mensler et al. (2006) use a continuous time identification method to model a 

toroidal CVT. The main advantage of using this method is that the model is 

obtained in continuous time. The results obtained using a simulation model and 

real vehicle experiments show very good agreement. This demonstrates that 

when the system model structure is known, a very efficient approach to 

complete the model is the use of parameter or system identification methods. 

This is also very convenient when a control strategy is to be applied to complex, 

or difficult to model, systems. 

 

Control 

There are different approaches to solve the control problem for a nonlinear 

model that describes CVT transient behaviour. However, most solution methods 

are concerned with optimal operation. Guzzela et al. (1995) present a feedback 

linearization strategy to represent a CVT model where a linear “kick-down” 

controller is used to achieve time optimal control. The resulting control has a 

fast response and keeps the system within the desired bounds. Gauthier et al. 

(2012) also use a feedback linearization design. They describe, that despite the 

fact of having two inputs to adjust the gear ratio, it can be simplified to just one 

input (assuming that only one of the pulleys moves). A PI (Proportional Integral) 
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compensator is used to eliminate the steady-state error, and a real time wear 

adaptation is achieved. The adaptation is implemented as a lookup table based 

on the use of experimentally derived maps. 

 

As mentioned earlier, Pfiffner et al. (2003) and Liu, J. et al. (2007) use optimal 

control on a CVT. Pfiffner et al. (2003) use the mathematical model obtained 

from mechanical analysis, whereas Lui et al. (2007) use a predictive model 

strategy to obtain the model, and a genetic algorithm (GA) to solve the control 

problem. One of the motivations of using a genetic algorithm is because the 

solution search starts from many points simultaneously, and also because a GA 

is less susceptible to getting stuck in a local minimum. The results show an 

improvement over a standard PID controller. 

 

A parallel hybrid vehicle with a CVT is considered by Won et al. (2005), mainly 

for energy management purposes. The energy management task considers two 

issues: Torque distribution, and Charge maintenance. It is mentioned that the 

implementation of optimal control is promising, however difficult to generate an 

appropriate solution “given the unknown nature of the driving situation”. A 

torque representation of the system is given, and then approximation and 

linearization applied. In order to maintain the current, the state of charge is kept 

within a range. An important highlighted issue is the difficulty of doing on-line 

optimization, for this reason the CVT gear ratio is set to follow the optimal path 

along the efficiency curves for the engine. The resultant ratio is used to 

determine the torque distribution. 

 

Optimal Control 

There is a great deal of interest in finding optimal control solutions to practical 

engineering problems. But many approaches adopted do not necessarily 

involve using conventional optimal control strategies. However, some of the 

most relevant literature associated with the particular powertrain problem of 

interest is mentioned below, which mainly includes optimal control in automotive 

systems, or problems where conventional optimal control strategies have in fact 

been applied. 
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An optimal control approach for a turbocharged SI engine using an automated 

wet clutch is proposed by Frei et al. (2006). First, an analysis of the possible 

variables to be controlled is undertaken, where the spark and clutch commands 

are suitably selected. Because of the nonlinear characteristics of the model, the 

use of the Minimum Principle and other analytical methods are discarded, and 

instead a nonlinear programming approach is selected. It is stated that the 

results obtained might not be the optimal solution but that improvements can be 

achieved. Interestingly the time to reach the torque specifications was actually 

reduced considerably in most cases. 

 

Haj-Fraj et al. (2001) present an optimal control of gear shift operation using 

Dynamic Programming. The automatic transmission is modelled and the 

nonlinear characteristic (from the gearshifts) is simplified by linearization 

methods. The system is discretized and the optimal problem formulation is 

stated. Simulation results show smoothness in the acceleration, and the system 

is found to be robust with respect to varying the gear shifting time. 

 

A Nonlinear Programming optimization for a power split in a hybrid vehicle is 

presented by Pérez et al. (2007). The hybrid system consists of an internal 

combustion engine and a bank of ultra-capacitors as the storage system. As 

mentioned earlier, conventional optimal control strategies are discarded owing 

to the non-linearity of the system. The objective function is to minimize the 

power losses and the discrete problem is solved using MINOS (a Fortran-based 

computer system for nonlinear applications). The results are compared with a 

Dynamic Programming solution proposed by Pérez et al. (2006). The Nonlinear 

Programming solution shows an improvement over Dynamic Programming. 

 

A recent publication by Song et al. (2011) shows a customized Dynamic 

Programming solution to a clutch fill control problem. The authors state that in 

conventional Dynamic Programming some of the discretised states are not 

reachable at all. For this reason, they propose a customized version where an 

accurate solution with a reduced computational burden is achieved. This 

version inverts the discretized dynamic model making the control variable a 
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function of the system states, with this eliminating the inaccuracy introduced by 

approximations in the conventional version which uses linear interpolation. 

 

KERS control 

As mentioned earlier, there is not much literature related to flywheel-based 

KERS control. However, Ghedamsi et al. (2007) present a multiple-input-

multiple-output (MIMO) PID-based Torque control for a wind generator. The 

flywheel is connected to an induction machine which converts the excess 

electrical energy into mechanical energy. The flywheel works as a regulator to 

improve electrical power quality. The mathematical representation of the 

Induction Machine is presented and a simulation is undertaken to validate the 

proposed control strategy in terms of steady-state and transient responses. 

 

Cikanek et al. (2002) discuss the regenerative braking process for an HEV. A 

motor-generator is used to transfer the energy back and forth (from mechanical 

to electric energy), and a proportioning ratio control strategy is used to optimize 

the regenerative process. The algorithm is developed using MATRIXx 

(engineering software developed by National Instruments which provides 

solution for dynamic control systems). The code was tested in a development 

vehicle. 

 

An Optimal Torque control using the variational method is presented by Inoue et 

al. (2010). In this publication, the modelling and control for an induction motor is 

presented. The variational method is used to find the optimal torque, and 

appropriate electronic circuits are included in order to maintain the optimal 

torque found. The strategy is verified via simulation using MATLAB/Simulink 

and the SimPowerSystems block set. 

 

Ye et al. (2010) present an electronic configuration connecting the main and 

auxiliary sources of an electric vehicle in order to increase system efficiency by 

controlling the regenerative current with an H2/H∞ control strategy. The software 

program is designed in Matlab (and rewritten in C for on-board memory 

implementation). The results show efficiency improvements of 3% in soft 

braking, and 6% in emergency braking. Another robust control solution for an 
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electric vehicle is shown by Cao et al (2005), the objective being to improve the 

regenerative process without damaging the energy storage system. The natural 

robustness of standard PID is mentioned but the operational requirements 

require a more effective method. The results show an improvement in the 

charging currents over use of a PI control. 

 

Cheng et al. (2011) propose a genetic algorithm neural network control for a 

recovery system of an electric motorcycle. It is mentioned that the advantage of 

using neural networks is in handling non-linear or highly correlated models. The 

motivation to use a genetic algorithm is the searching efficiency. Neural 

networks are capable of learning governing behaviour, and in finding a 

relationship between input/output parameters. The designed algorithm does not 

require complicated computations, which makes it easy to implement. The 

results show more stability in the energy recovery of the battery which increases 

its life-cycles. Cao et al. (2007) also use neural network control, in this case for 

an electric vehicle. The implementation of two networks, one that determines 

the PID parameters, and one that estimates the nonlinear prediction model, 

form a full closed-loop self-adaptive PID control strategy. The importance of off-

line training of the neural networks is stated in order to reduce on-line 

computing time. Results for driving and regenerative braking experiments are 

shown and compared with standard PID control, with considerable improvement 

in the systems time response. 

 

Having reviewed the literature, and with specific interest in the optimal control of 

a flywheel-based KERS with a CVT, it is evident from the literature that there is 

an important need for development of tools that can be used to implement 

conventional optimal control theory. The application here being focused on 

energy efficiencies for volume-produced vehicles but still with interest in the 

possibility of using optimal control for performance enhancement in motor sport. 

Until these computational tools are available, the full benefit of optimal control 

theory will not be realised. Apart from the issues of real-time implementation in 

practice, the key requirement is adequate treatment of a KERS taking account 

of bearing friction and adoption of even the simplest model of a CVT. Therefore 
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with a range of unsolved problems to be addressed, a position has been 

reached where justifiable objectives can be set. 

 

1.5 Objectives of the thesis 

The aim of this thesis is to develop a suitable optimal control strategy for a 

flywheel-based KERS with a CVT. The intention is to propose a technique that 

can be used to optimize the energy stored in the system and with appropriate 

development can be implemented in both motorsport and mainstream 

production vehicles. 

 

The specific objectives are as follows: 

 

 To find a suitable and simple, yet representative, model of the flywheel-

based KERS with a CVT for control purposes. 

 

 To implement the conventional optimal control strategies, and to find, 

develop and determine an appropriate optimal control methodology for 

this application. 

 

 To compare the developed optimal control strategy with a non-optimal 

strategy in terms of performance and robustness. 

 

Two main contributions have been made in this thesis, namely: i) it is the first 

time that the use of Runge Kutta, and Modified Euler integration methods has 

been recorded as part of inverting the integration process in discrete Dynamic 

Programming. In addition, the assumption and use of piece-wise linear control 

as part of this procedure has also not been reported before; and ii) this is the 

first implementation of optimal control via discrete Dynamic Programming, and 

Pontryagin’s Maximum Principle applied to a flywheel-based Kinetic Energy 

Recovery System. 
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1.6 Layout of the thesis 

The layout of the thesis can be given as follows: 

 

Chapter 2 presents the modelling of a flywheel-based KERS with a CVT. Initially 

a simplified frictionless model is presented, and later friction is included in the 

model with two different variants. A previously-published extended model is 

included which includes a hydraulic actuator for a pulley-based CVT. The model 

is included to contrast a simplified model with a more realistic model. 

 

Chapter 3 covers Optimal Control theory including the implementation of both 

Pontryagin’s Maximum Principle, and Dynamic Programming. Application of 

Pontryagin’s Maximum Principle to the optimal control of a linear oscillator is 

used to understand the computational problem associated with a corresponding 

Dynamic Programming solution and the likely problems for flywheel-based 

KERS with a CVT implementation. It shows the advantages and disadvantages 

of these methodologies, where major difficulty with Dynamic Programming is 

encountered. This difficulty then leads to the development of a new improved 

modified computational version of conventional Dynamic Programming. The 

purpose of this, is the development of an accurate and efficient optimal control 

strategy which can be implemented on a flywheel-based KERS with a CVT. The 

improved version of discrete Dynamic Programming is based on control 

parameter finding, which is done by inverting the integration process. To 

achieve this, both the Euler numerical integration method, and Runge Kutta 

numerical integration method are explored and considered, where Runge Kutta 

is selected as the appropriate method to be used. 

 

Chapter 4 shows the implementation of the Pontryagin’s Maximum Principle, 

and the newly developed improved version (from Chapter 3) of a modified 

Dynamic Programming approach. This applies to on the flywheel-based KERS 

models with a CVT, presented in Chapter 2 (for both the frictionless and simple 

friction options). Further development is undertaken to take account of problems 

not previously seen with the linear oscillator. A suitable new improved, 

methodology in the form of a modified Dynamic Programming, this time based 

on the modified Euler numerical integration method, is fully implemented for the 
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flywheel-based KERS models with a CVT. This implementation of optimal 

control strategies explores two possibilities: i) control variable optimization, and 

ii) energy optimization. An example which emphasises the potential of using 

optimal control theory for energy optimization in flywheel-based KERS with a 

CVT is presented. For this example, the simplified model is combined with an 

additional control input which can be related to friction brakes. 

 

Chapter 5 presents a comparison between the implemented optimal control 

strategy and conventional classical control. Both, the simplified and more 

realistic models are compared with proportional (P) and proportional-integral 

(PI) controllers. The implementation of the classical control strategy is achieved 

using Matlab-Simulink, where the model is verified and later, control is applied. 

 

Chapter 6 draws appropriate conclusions of the study and identifies further 

research. 
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2. MODELS OF A FLYWHEEL-BASED KERS WITH A CVT 
 
A very important step in the use of control theory is dynamic system modelling. 

Therefore, an understanding of the dynamics of the system to be controlled is 

usually essential. For this reason some sort of modelling has to be done as a 

first step. This chapter presents (for control purposes) the kinematics and 

dynamic modelling of a flywheel-based KERS with a CVT. First a simple model 

of a KERS is shown, and later a more complicated version is given. The 

appropriate adaptations and representations of the system for control purposes 

are then explained. The more realistic model is extended to include a hydraulic 

piston, which works as actuator for the pulleys (assuming a pulley-based CVT 

transmission is used). First considering the dynamic model for a simple KERS. 

 

2.1 Obtaining a simple KERS model 

A KERS can be represented in its simplest form by three elements: i) The 

device containing the kinetic energy (in this case a vehicle’s wheel), ii) the 

transmission device (in this case a pulley-based CVT), and iii) a storage device 

(in this case a flywheel). A free body diagram representation of this model is 

shown in figure 2.1. 

 

 
Figure 2.1 Representation of a simple KERS for an automotive application 

 

In order to construct a model that can be operated for control applications a 

kinematic analysis and dynamic representation of these elements has to be 

performed where the gear ratio is allowed to vary as a function of time. The 

wheel and flywheel are represented as two rotating discs where the equations 

of motion are given as follows: 

 

   tJtT fff         (2.1) 

    
wT fT

w

f
wJ

fJ
  

CVT 
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and 

   tJtT www         (2.2) 

 

where  tT  is the total torque, J  is the moment of inertia, and  t  is the 

angular displacement for the flywheel and drive wheel respectively. 

 

A CVT consists of two pulleys, with a V-shape that can be adjusted, connected 

by a metal belt. The V-shape of the pulleys allows adjustment of the gear ratio 

at each end. The forces and moments associated with the pulley are given as 

follows: 

 

   tFrtT tff          (2.3) 

and 

   tFrtT tww         (2.4) 

 

where  trt  represents the distance from the connecting shaft to the belt and 

F is the force inside the belt. Now, defining the gear ratio  tG  as the ratio of 

the input radius to the output it radius i.e.: 

 

 
 
 tr

tr
tG

tf

tw         (2.5) 

 

and, by combining equations (2.3) to (2.5), the relationship between the input 

and output torques becomes: 

 

     tTtGtT wf         (2.6) 

 

In order to find the overall relationship between the input and output of the 

system for control purposes, the dynamics model for the CVT has to be 

included. The CVT speed relationship for the transmission can be defined as: 

 

     ttGt wf           (2.7) 
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and, as mentioned by Powell et al. (2000), the main difference between a fixed-

ratio transmission, and a variable transmission, is found while finding the 

derivative of the speed. This is given as: 

 

      ttGt
dt

d
wf           (2.8) 

and 

         ttGttGt wwf          (2.9) 

 

Now working with equations (2.1) to (2.9), the overall dynamic model becomes: 

 

         tJtGJttGtGJ wwfwf   )( 2      (2.10) 

 

This is a time-varying 2nd order differential equation and its representation in 

state space form is: 

 

   ttx w1         (2.11) 

and 

     txttx w 21         (2.12) 

and 

 
     

 tGJJ

txtGtGJ
tx

fw

f

2

2

2






       (2.13) 

 

where equations (2.12) and (2.13) are the state differential equations. 

 

It is important at this point to define a control variable. As seen in equation 

(2.13), there are two elements present that are neither constant nor states. 

Therefore appropriate selection of a control variable is needed (and appropriate 

modifications must be made). The gear ratio cannot be chosen as a control 

variable because its derivative is also found in equation (2.13) and, as clearly 

emphasised by Brogan (1991), the system input must be the actual physical 

input, but when the input is specified, there is no freedom left in specifying its 
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derivative. Pfiffner et al. (2003) and Setlur et al. (2003) select the derivative of 

the gear ratio as the system input. In doing this, another state has to be added 

so that the system has three state variables and is represented by three first 

order differential equations. This modification gives the following equations: 

 

   tGtx 2

3          (2.14) 

 

and, defining the control variable as: 

   tutG          (2.15) 

and 

 
     

 txJJ

txtxtuJ
tx

fw

f

3

5.0

32

2



       (2.16) 

and 

     txtutx 5.0

33 2        (2.17) 

 

It can now be seen that the simplest state space representation of a controllable 

KERS presented here is in the form given by equations (2.12), (2.16) and (2.17). 

This model is used in the thesis to explore simple control possibilities. But it can 

also be seen that the simplest state space representation of a controllable 

system is a set of non-linear first order differential equations (even though the 

individual components have linear characteristics). 

 

2.2 Obtaining a more realistic KERS model 

Owing to its simplification the system presented in the previous section does not 

include representative characteristics of the system, like friction; which can have 

a large impact on the system behaviour. These features can be crucial for a 

control analysis especially when dealing with energy optimization. 

 

Kiencke et al. (2005) show more realistic models for diverse vehicle subsystems. 

The model in the driveline section of this publication has been used as a guide 

in order to make the KERS model more realistic. A free body diagram, to 

represent a more realistic KERS model for an automotive application, is shown 

in figure 2.2. 
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Figure 2.2 Representation of a more realistic KERS for an automotive application 

 

From figure 2.2, the dynamic analysis has to be performed to obtain the 

equations of motion and with this, construction of the mathematical 

representation of the whole system has been achieved. For the vehicle and the 

wheels, the subsystem can be represented as follows: 

 

       tJtTrtFtT wwwfwvw       (2.18) 

 

where  tFv  represents the traction forces acting on the vehicle, wr  is the radius 

of the wheels, and  tTwf  is the friction torque in the wheels, mainly present at 

the bearings. Kiencke et al. (2005) give a detailed formulation of the forces 

acting in the vehicle and these include: rolling resistance, wind friction, the 

acceleration of the mass, and the resolution of the vehicle weight on an inclined 

plane. However it is only the acceleration of the vehicle that is included in this 

more realistic model and therefore it can be written as: 

 

   tamtF vvv         (2.19) 

 

where vm  and va  are vehicle mass and acceleration respectively. By assuming 

no tyre slip equation (2.19) can be expressed as: 

 

    wwvv rtmtF         (2.20) 
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The friction torque will actually be described in more detail later on together with 

the flywheel’s friction torque. 

 

The second block in figure 2.2 represents a friction clutch which when fully 

engaged, and assuming that it does not have any additional friction losses, the 

input and output torques remain the same, expressed as: 

 

   tTtT cw          (2.21) 

 

The CVT model like the one described in the previous section remains 

unchanged, therefore the ratio between the input and output stays the same; 

and for the flywheel block the introduction of friction is needed so it is now 

represented by: 

 

     tJtTtT fffff        (2.22) 

 

where  tT ff  is the rotational friction for the flywheel. 

 

The main rotational friction for both the wheel and the flywheel occurs at the 

bearings. Special interest is focused on the friction in the flywheel since the 

rotational speeds are very high and of course because it is energy store. As 

mentioned in Chapter 1, there are two types of bearings used in flywheel 

systems: Ball bearings, and Magnetic bearings (see Bolund et al. 2007, Liu, H. 

et al. 2007). 

 

Considering ball bearings, a linear relationship between the coefficient of friction 

and the rotational speed is assumed, due to the fluid viscosity properties of the 

lubricants. In this case, a simplified rotational friction torque characteristic for 

the flywheel is given as: 

 

   tKtT fvff         (2.23) 
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where vK  is a viscosity related constant factor. For the friction losses in the 

wheels, the same simplification can be used, thus the relationship is given as: 

 

   tKtT wvwf         (2.24) 

 

The friction model for magnetic bearings by contrast has a nonlinear 

relationship with respect to the rotational speed (Schweitzer 2002). This can be 

simplified to a quadratic relationship, which is given as: 

 

   tKtT fMBff

2
        (2.25) 

 

where MBK  is a constant factor. 

 

To construct the full model of the system, equations (2.18), (2.21), (2.22) and 

(2.5) are combined to give the final relationship: 

 

                 tJtGJrtFtTtGtTttGtGJ wwfwvwfffwf   )( 2   (2.26) 

 

But before substituting all the variables, equations (2.23) and (2.25) are 

combined with equation (2.7) in order to formulate the final relationship as 

function of the angular displacement of the wheel. These expressions are given 

as: 

 

     ttGKtT wvff         (2.27) 

 

for ball bearings, and for magnetic bearings: 

 

     ttGKtT wMBff

22        (2.28) 

 

Now equations (2.20), (2.27) or (2.28), and equation (2.24) can be used in 

equation (2.26), to give two relationships: 
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                 tJtGJrtmtKtGtKttGtGJ wwfwwvwvwvwf   )( 222   (2.29) 

 

for ball bearings, and 

 

                 tJtGJrtmtKtGtKttGtGJ wwfwwvwvwvwf   )( 2232
  (2.30) 

 

for magnetic bearings. 

 

From equation (2.29), it can be seen that only the second state has been 

modified with respect to the simplified model. Therefore including friction from 

ball bearings the second state equation changes to: 

 

 
           

  2

3

232

5.0

32

2

wvfw

vvf

rmtxJJ

txKtxtxKtxtxtuJ
tx




   (2.31) 

 

and considering magnetic bearings the second state equation becomes: 

 

 
           

  2

3

2

5.1

3

2

2

5.0

32

2

wvfw

vvf

rmtxJJ

txKtxtxKtxtxtuJ
tx




   (2.32) 

 

A more realistic model of the Flywheel-based KERS is now found in equations 

(2.11), (2.12), (2.14), (2.15), (2.31) or (2.32), and (2.17). The more realistic 

model represents a greater challenge in terms of control theory, especially 

when considering the magnetic bearings. Cross et al. (2008) and Van Mierlo et 

al. (2004), represent the rotational friction forces with a constant term in order to 

simplify the problem. 

 

2.3 Obtaining a more realistic KERS model with a hydraulic piston 

In the literature review, it was mentioned that Müller et al. (2001) included the 

representation of a hydraulic system in their model. This is mainly done 

because the position of the hydraulic system and the gear ratio have a non-

linear relationship. In this section, an extension of the previous dynamic models 
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is made to include a hydraulic system. This model is shown just to give an 

indication of an even more realistic KERS. 

 

The model is constructed assuming a non-linear (quadratic) relationship 

between the gear ratio  tG  and the hydraulic piston position  tx , in the form: 

 

   txKtG a

2        (2.33) 

 

where aK  is the constant of proportionality. 

 

Finding the derivative with respect to time from equation (2.33), gives a 

relationship for the gear ratio rate of change as: 

 

     txtxKtG a
 2        (2.34) 

 

Considering that a hydraulic piston can be represented by a second order 

oscillator, the dynamic equation is given as: 

 

     
 
m

tF
tx

m

k
tx

m

c
tx         (2.35) 

 

Setting the external force as the control input, the state space is now given as: 

 

   txtx 1         (2.36) 

and 

       txtxtxtf 211         (2.37) 

and 

   
     

m

tkxtcxtu
txtf 12

22


       (2.38) 

 

Considering the simple CVT model, a third state can be formulated as: 
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 
     

 tGJJ

txtGtGJ
tx

fw

f

2

3

3






       (2.39) 

 

Using equations (2.33) and (2.34) in equation (2.39), the final relationship for 

the extended state is given as: 

 

 
     

 txKJJ

txtxtxKJ
tx

afw

af

4

1

2

32

3

1

2

3

2




      (2.40) 

 

The state space model represented in equations (2.37), (2.38) and (2.40) is a 

frictionless representation of the CVT considering the hydraulic piston. The 

input force is the actual force applied to the actuator, and  tx3  represents the 

speed of the wheels. If friction is added to the model,  tx3
  changes to: 

 

 
         

  24

1

2

33

4

1

23

12

2

3

2

wvafw

vavaf

rmtxKJJ

txKtxtxKKtxtxKJ
tx




   (2.41) 

 

The upgraded state space model is a more realistic representation. However, 

this representation assumes that only one of the pulleys can be manipulated to 

vary the gear ratio. 

 

It can be seen that including the actuator substantially complicates the nature of 

the CVT transient dynamics giving a highly nonlinear system. This model is not 

actually used for control purposes in this thesis but is included to show the type 

of model that is ultimately needed as KERS system models become more 

realistic. 

 

2.4 Conclusions of the findings in Chapter 2 

In this chapter the state space model representation of a flywheel-based KERS 

with a CVT system is obtained through kinematic and dynamic analysis of 

pulley-based CVT transient behaviour. Initially a simplified frictionless model is 

developed, and later on, friction is included in the model, considering two 
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different bearing types operating with the flywheel. CVT dynamics are governed 

by a nonlinear relationship which represents a degree of complexity for control 

purposes. For control purposes where a clutch is used this is assumed to be 

fully engaged at all times. An extended model including a hydraulic actuator 

acting on a pulley-based CVT is described, to demonstrate its highly nonlinear 

characteristic only to suggest an extremely complicated control design were it to 

be used. In this chapter, a pulley-based CVT is used to obtain the models, 

however the transient behaviour presented could be considered for other friction 

CVTs (i.e. toroidal) as it is evident that the same degree of complexity would be 

present. The simplified CVT with friction models will be used in the following 

chapters for control purposes. 
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3. OPTIMAL CONTROL METHODOLOGIES – THE POTENTIAL 
FOR KERS CONTROL 
 
Optimal Control theory differs in various ways from Classical control theory, 

therefore, it is important to know the differences between them. It is therefore 

helpful to understand the underlying concepts behind optimal control theory, in 

order to implement it (even for people with a reasonable understanding of 

classical control). With this intention this chapter first presents a general 

description of optimal control theory, particularly Pontryagin’s Maximum 

Principle, and the Dynamic Programming strategy. It then moves to the 

application of these strategies to a linear oscillator problem, as an academic 

example. This is done with the intention of building up a methodology that can 

be tested and then applied to more complex systems (in later Chapters). The 

KERS is more complex because it has nonlinear characteristics (as shown in 

Chapter 2). The first methodology applied is Pontryagin’s Maximum Principle; 

and the second is Dynamic Programming. 

 

After initial implementation of Dynamic Programming, results show some 

evident deficiencies, therefore a new strategy for Dynamic Programming is 

explored and developed. This is then applied to a combination of forward 

integration approaches needed for numerical implementation of discrete time of 

Dynamic Programming, culminating to form a modified version of Dynamic 

Programming. The results show the need for this modified version of Dynamic 

Programming which has particular advantages over the use of direct and 

standard applications of Dynamic Programming. This strategy is later applied to 

a KERS model in Chapter 4. Before drawing conclusions at the end of the 

Chapter, a summarizing table with the different versions of Dynamic 

Programming is presented. 

 

3.1 Optimal Control Theory 

Classical control theory is mainly a trial and error design methodology (Kirk 

1998). Although it is very useful and often reaches acceptable behaviour, the 

control and specification of modern systems, demands more accurate control 

strategies, like optimal control. Also, whereas in classical control theory, time 
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and frequency domain characteristics determine the quantitative performance of 

the controlled system, in optimal control theory, the objective is to minimize or 

maximize a certain performance criterion. This criterion can be defined in terms 

of different indicators, such as time or energy. 

 

Ogata (2002) emphasizes the use of the frequency-response and the root-locus 

methods as the fundaments of classical control theory. These methods are 

most useful when the system is represented in the frequency domain, which is 

achieved by time domain transformation of the mathematical expressions using 

Laplace Transform techniques (i.e. differential equations describing the system 

plant). 

 

Much of linear control theory has been based on the frequency domain 

representation. It is not only suitable for determining the frequency response 

(which is best represented by Bode diagrams) but also for determining control 

stability, and finding the steady state error. These characteristics are key factors 

for measuring the performance of classical control systems. 

 

Classical control theory measures the system response to a given input 

(commonly a step input). For a closed loop control, the response is fed back to 

be compared with the desired input (reference). The difference is used to 

generate the new system input (effectively a trial and error approach). The 

design of a controller is based on this error detection process, where the error is 

adjusted by a gain and compensating factor. The compensating factors are 

based on the system frequency response (leading or lagging characteristics), 

derivative compensators respond based on an anticipation of the systems 

response (error prediction) and integral compensators based on the previous 

systems response (error accumulation). The most common controller designs 

use all the three characteristics and are known as proportional-integral-

derivative (PID) controllers, however the proportional controller can stand alone 

or use any of the compensators. 

 

In order to emphasize the main characteristics of classical control theory, 

relative advantages and disadvantages are presented in table 3.1. 
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Advantages Disadvantages 

 Satisfies more or less 
arbitrary performance 
requirements 

 Robust (insensitive to 
disturbances) 

 No error (steady state) 

 Stability consideration 

 Acceptable but not 
optimal 

 Difficult for MIMO 
(Multiple Input Multiple 
Output) systems 

 Primarily used with linear 
constant coefficient 
systems 

Table 3.1 Advantages and Disadvantages of classical control theory 

 

The representation of a system for Optimal Control by contrast is given in state 

space form (a time domain representation), which, to use the words of Pinch 

(1993), “The state variables are the ones that define what the system is doing at 

specific time t  and the control variables are the ones that modify the behaviour 

of the system”. The state space representation is mainly used in modern control 

theory; however classical control theory problems can be approached using the 

time domain representation but much of the frequency domain understanding is 

compromised. 

 

Optimal Control theory is not based on frequency response characteristics of 

the system, and the controller design is not built specifically to eliminate the 

systems error in the steady state response given desired time response 

characteristics. Optimal control design is based on meeting specific system 

requirements and on minimizing (or maximizing) specific performance criteria. 

For this reason, it is more convenient to work in the time domain. 

 

An essential part of the process of constructing an optimal solution is the 

construction of the dynamic model which includes the definition of so called 

state variable which must satisfy quite strict conditions. 

 

The state variables are commonly represented in vector form by variable x , 

and the control variable is normally represented by vector u . The standard 

notation of a system model in state space is as follows: 

 

      ttutxftx ,,        (3.1) 
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In order to construct an optimal control solution, both Brogan (1991) and Kirk 

(1998), emphasise three components: 

i. A mathematical description of the system (model) to be controlled 

ii. A description of the system constraints including the task to be 

performed 

iii. The specification of a performance criterion 

 

The mathematical model of the system involves the representation of the 

system in state space form. 

 

The system constraints are normally physical restrictions or limitations imposed 

on the system; these constraints establish the boundaries for the control 

problem and they play a very important role in order to find an appropriate 

solution. 

 

The performance measurement, commonly represented by variable J  and also 

called performance cost, is the quantitative evaluation of the system 

performance based on a specific criterion which is chosen by the designer. The 

cost can be evaluated at any stage and its representation is usually given as 

follows: 

 

         ff

t

t
ttxhdtttutxftJ

f

o

,,,0       (3.2) 

 

Where 0f  represents the cost associated to the states, control variables or time 

behaviour and h  represents the cost associated with the final conditions of the 

system in terms of the states or time. 

 

The two most common strategies to approach an optimal control problem are 

the Pontryagin’s Maximum Principle and Dynamic Programming. The 

Pontryagin’s Maximum Principle is essentially a mathematical strategy, whereas 

Dynamic Programming is a computational strategy. Both are implemented in 
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order to verify the accuracy of the results, to establish the most appropriate 

method for KERS development. 

 

3.2 Optimal Control Using Pontryagin’s Maximum Principle 

Pontryagin’s Maximum Principle, is very well described in Pinch (1993), and is a 

method based on the calculus of variations. This approach can be described as 

the optimization process of functionals (i.e. “A transformation from a function to 

a number”, Bellman et al (1965)) in which the functions themselves satisfy 

differential equations. The calculus of variations cannot be implemented directly 

in optimal control problems since control systems are described by differential 

equations (instead of integrals), and also owing to the form the constraints can 

take. It was for this reason that Pontryagin developed the Maximum Principle 

suitable for work with differential equations. 

 

When a system, like the state space model given by equation (3.1) is subject to 

the performance criterion given by equation (3.2), it is said to be an optimal 

control problem. But before moving to the process of solving this problem, there 

is an important question that needs to be asked (Brogan (1991), Kirk (1998) and 

Pinch (1993)): Is the system controllable? In most cases it is assumed that 

there is one control that will successfully drive the system and meet the 

constraint criteria. Therefore instead of just determining the existence of the 

optimal control, the challenge in practice is to find it. While using Pontryagin’s 

Maximum Principle to find such control, the solution found will certainly satisfy 

certain necessary conditions. This means that the system will meet all the 

specific requirements in following an optimal trajectory; however this may not be 

the global optimal solution to the problem. 

 

Two concepts, that are needed to solve an optimal control problem using the 

Pontryagin’s Maximum Principle, have to be considered first. In order to 

minimize the cost function in equation (3.2) using variational and optimization 

theory, it is necessary to introduce the concept of Lagrange multipliers. By 

doing this, a new function (which includes both the states and the integral part 

of the cost function) is formed. This function is referred as the Hamiltonian H . 
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In order to define the Hamiltonian it is necessary to revise briefly the concept 

behind the calculus of variations. From optimization theory it is known that the 

minimum (or maximum) points are reached when the partial derivatives of the 

function of interest are equal to zero. In the case of the calculus of variations the 

optimization of J  is found when the variations around the optimal trajectory are 

equal zero, the mathematical expression for this is given by: 

 

  ttfdtu
u

f
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x

f
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    (3.3) 

 

where n  represents the number of states and m  represents the number of 

control variables. However the control variables u  and the states x  are 

dependent on the state equations, and for this reason it is necessary to 

introduce the Lagrange multipliers  ti . Therefore, in order to complete the 

minimization process it is necessary to introduce the following set of integrals: 

 

     
1

0

,

t

t

iiii dtuxfxt        (3.4) 

 

which, as it was done for J , their variations have to be equal zero; therefore a 

new condition can be expressed as: 

 





n

i

iJ
1

0        (3.5) 

 

giving as a result the Hamiltonian H , expressed as: 

 

       tfttftH
n

i

ii



1

0         (3.6) 

 

where 0f  is the function evaluated in the performance criterion, n  represents 

the number of states, if  are the state equations, and i  are the Lagrange 

multipliers which satisfy the necessary conditions: 
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 
 
 tx

tH
t

i

i



        (3.7) 

 

The set of equations formed by (3.7) are commonly known as the co-state 

functions. The condition for optimality is then given by: 

 

 
 

0




tu

tH
        (3.8) 

 

Up to this point, the optimal control problem does not deal with any constraints 

on the system, neither physical nor imposed, but just with the optimization 

procedure subjected to a specific criterion. If a problem of this nature should be 

solved, it is just a matter of mathematically solving these set of equations for the 

unknown variable u . For simple linear systems this represents solving a set of 

integrals but the variational approach normally leads to a nonlinear two-point 

boundary-value problem, which becomes extremely difficult to be solved 

analytically, and as Kirk (1998) mentions, it is more appropriate to use 

numerical methods to find the solution to this type of problems. 

 

The inclusion of the constraints is analysed in detail by Kirk (1998) (Chapter 5), 

which normally does not increase the difficulty of the problem. It is important to 

mention however that these constraints have to be chosen carefully in a very 

well represented mathematical way. Kirk (1998) presents the eight most 

common boundary conditions for control systems. This will be shown shortly 

and explained in more detail when Pontryagin’s Maximum Principle is applied to 

some relevant test cases. 

 

Before moving forward to implement Pontryagin’s Maximum Principle, it is 

appropriate to give a brief description of the alternative optimal strategy: 

Dynamic Programming. With this, the discussion and analysis of the results will 

be easier to understand. 
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3.3 Optimal Control using Dynamic Programming 

Dynamic Programming is a multistage sequential decision-making process 

based on Bellman’s principle of optimality, described in his own words: “An 

optimal policy has the property that whatever the initial state and initial decision 

are, the remaining decisions must constitute an optimal policy with regard to the 

state resulting from the first decision” (Bellman 1962). 

 

Brogan (1991) describes one of the main advantages of the principle of 

optimality by saying that it replaces a decision between all alternatives by a 

sequence of decisions between fewer alternatives. The principle of optimality 

fulfils both necessary and sufficient conditions, which means that the solution 

found is a global minimum within the specification of the problem. 

 

For example, consider a decision process to select the optimal path between 

two points a  and z , where two different trajectories can be chosen: i) One 

through b  and c , and ii) another one through b  and  d . If a cost is incurred for 

each trajectory, the optimal cost can be expressed as: 

 

 zdbazcba JJJ  min*       (3.9) 

 

where the cost for each trajectory is the sum of the costs from their segments 

i.e.: 

 

zccbbazcba JJJJ         (3.10) 

 

for the first trajectory, and 

 

zddbbazcba JJJJ         (3.11) 

 

for the second trajectory. 

 

Assuming that the optimal trajectory from b  to z  is given by the path zcb  , it 

can be said that: 
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zddbzccb JJJJ         (3.12) 

 

For this reason, the optimal path from a  to z  is found as: 

 

  zcbba JJJ   min*       (3.13) 

 

Making clear that when finding the optimal path between a  and b , the path 

zdb   should not be considered any longer as an option for optimality; the 

global minimum found it is used for further decision taking. From this example, it 

can be seen that the Principle of Optimality implies an initial decision based on 

comparing the last trajectories (‘backward’ run). 

 

Dynamic Programming can be implemented for both continuous and discrete 

time systems. Continuous time Dynamic Programming deals with the solution of 

the Hamilton-Jacobi-Bellman equation (Kirk 1998), a nonlinear partial 

differential equation based on the principle of optimality that can be solved 

analytically or with numerical techniques. Kirk (1998) mentions that this 

equation works as a bridge between Dynamic Programming and variational 

methods (i.e. Pontryagin’s Maximum Principle). The discrete time Dynamic 

Programming method uses a combinatorial strategy and compares different 

possible trajectories, which are chosen and reduced by using the principle of 

optimality. Following a ‘backward’ run, the procedure selects the best trajectory 

by using an appropriate performance measurement. This strategy is relatively 

easy to implement numerically. 

 

For a more detailed picture of how discrete Dynamic Programming works 

consider the following, if there is a two state system with state variable 

 Txxx 21 , at any given time, there are an infinite number of values of 1x  and 

2x  forming a two dimensional mesh. A discrete state mesh is found at each 

time step, for which different trajectories can be found. This trajectories are 

given by an initial state       Ttxtxtx 21 , where t  can only take discrete 
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values, and by applying an admissible control u , giving a following state 

      Ttxtxtx 111 21  . However in order to determine which route is 

optimal (and meets the specification) all combinations need to be compared. 

Although these combinations are considerably reduced given the principle of 

optimality, the problem easily becomes huge. Furthermore when more states 

are involved the mesh becomes multidimensional leading to a problem of 

growing complexity commonly known as the ‘curse of dimensionality’. 

 

For these reasons it is crucial to define the working limits to create the different 

combinations. A range for admissible values must be set for both state and 

control variables. The step size for these variables is very important and plays 

an important role not just in the accuracy of the solution but also in the 

efficiency of the strategy. But reducing the time-step, in order to make better 

paths available, easily leads to a computational problem. Setting the step size 

to be small enough so that the optimal control and trajectory could not be 

missed, would however be ideal. 

 

Even with a good set of state and control variables when the system is taken 

from a specific point of the mesh at mt  by using a control u (chosen from a set 

of admissible controls), the chances that one of the admissible values of the 

mesh at 1mt  is reached, are not very good. For this problem the Dynamic 

Programming standard solution suggests interpolating the control u  obtained so 

that the closest point can be achieved. For example, in the case of a linear 

system, if the admissible state at 1mt  is exactly half way between two non-

admissible states that are reached by the admissible controls 1u  and 2u , then 

the control to reach the admissible state can be found by linear interpolation as 

follows: 
2

21 uu
u


 . Unfortunately for either high order systems or nonlinear 

systems, interpolation is generally not very successful in terms of accuracy. 

 

Owing to the complexity of the system of interest, discrete Dynamic 

Programming is used in this application despite some of the difficulties with 

standard implementation. The reason for this is that the nonlinearity of the 
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system would make the Hamilton-Jacobi-Bellman equation hard to handle; 

therefore only discrete Dynamic Programming and the Pontryagin’s Maximum 

Principle are considered further. 

 

3.4 Application of Optimal Control to a Linear Oscillator 

As mentioned earlier the application of optimal control differs from classical 

control. Therefore before attempting to implement an optimal control strategy for 

the system of interest (i.e. a KERS), it is useful to explore the most common 

methodologies on a simpler problem. Therefore a second order oscillator, 

formed by a mass attached to a spring and a damper, is used to build up an 

optimal control solution. It is chosen because of its relatively simple 

characteristics, i.e. a linear system formed of two states (two differential 

equations), and also because it is a well-known system. Thus it can be used to 

obtain an understanding of the numerical implementation of all the adopted 

methods. 

 

Following the steps in section 3.1, to construct an optimal control solution, the 

first step is to construct the state space model of the system. The dynamic 

equation for a linear oscillator is given as: 

 

     
 
m

tF
tx

m

k
tx

m

c
tx         (3.14) 

 

where m  is the mass, k  is the spring stiffness coefficient, c  is the damping 

coefficient, F  is an external force applied (or the desired control variable u ), 

and  tx  is the position of the mass with respect to its steady state point. 

 

The state vector is defined as  Txxx 21 , where for the linear oscillator the 

state space form is represented as: 

 

   txtx 1         (3.15) 

and 

       txtxtxtf 211         (3.16) 
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and 

   
     

m

tkxtcxtu
txtf 12

22


       (3.17) 

 

The system is in state space form, the following step is to determine the 

constraints on the system, and to specify the desired task to be performed. In 

this case the objective is to drive the system from a rest position with initial 

speed of zero (i.e.     0000 21  xx ) to a final position and speed at a 

specified final time (i.e.    
ffff xtxxtx 2211   ). 

 

The last step is to define a performance measurement, in this case the 

optimization criterion involves the control variable. Its mathematical expression 

from equation (3.2) is shown below: 

 

   
ft

dttutJ
0

2
        (3.18) 

 

This is a quadratic cost criterion which is referred to as a minimum ‘energy’ 

performance index when J  in equation (3.18) is to be minimised. 

 

Now that the general description of the optimal control problem is complete, it is 

appropriate to discuss the adoption of the strategies described in the previous 

sections. To keep the same order as they were presented the Pontryagin’s 

Maximum Principle is applied first. 

 

Application of Pontryagin’s Maximum Principle 

Turning to the use of the Maximum Principle to formulate the optimal control 

problem the procedure described in section 3.2 is followed. The Hamiltonian for 

a second order system is given as: 

 

           tfttfttftH 22110        (3.19) 
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By substituting equations (3.16), (3.17), and (3.18) into equation (3.19), H  is 

obtained as: 

 

         
     

 t
m

tkxtcxtu
ttxttutH 2

12
120

2 


    

 (3.20) 

 

where the “Lagrange multiplier” ( 0 ) related to the cost-function has been 

introduced, however from the definition of the Hamiltonian (equations (3.3) to 

(3.6)) it is known that its value is equal to -1, for this reason the co-state ( 0 ) is 

always zero. 

 

Using equations (3.7) and (3.8), from the Hamiltonian obtained in equation 

(3.20) the co-state equations can be found as follows: 

 

  00 t         (3.21) 

and 

 
 

m

tk
t 2

1


          (3.22) 

and 

   
 

m

tc
tt 2

12


        (3.23) 

 

And the condition for optimality is: 

 

 
 

   
 

02 2
0 





m

t
ttu

tu

tH 
      (3.24) 

 

From equation (3.24) the control variable is given as: 

 

 
 
 tm

t
tu

0

2

2 


        (3.25) 
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The set of equations (3.20) to (3.25) formulate the minimum ‘energy’ optimal 

control problem for the linear oscillator using Pontryagin’s Maximum Principle. 

In order to find the optimal control solution it is necessary to solve these 

equations. Simple linear problems can be solved in closed form; however for 

more complex problems an analytical solution is no longer available. The state 

and co-state equations have to be then solved numerically in the form of a two-

point boundary-value problem. 

 

Optimal Control solution for the Oscillator via Pontryagin’s Maximum 
Principle 
 

In order to find the optimal control solution analytically, the set of differential 

equations formed by the state and co-state variables, equations (3.16), (3.17), 

and equations (3.21) to (3.23), have to be solved. The condition for optimality 

given by equation (3.25) is used to relate the state and co-state variables, and 

the value of the constants of integration that emerge from the process can be 

found by using the boundary conditions. 

 

Since the Hamiltonian is never a function of the variable 0x , equation (3.21) is 

always equals zero which implies that its solution is a constant value. Therefore 

any negative value, in order to meet the requirements of the Pontryagin’s 

Maximum Principle theory, can be chosen (Pinch 1993). The standard solution 

for equation (3.21) is given as: 

 

  10 t
        

(3.26) 

 

To obtain the analytical solution for equations (3.22) and (3.23) it is necessary 

to do some algebraic manipulation. Therefore finding the derivative of equation 

(3.22) with respect to time the following is obtained: 

 

 
 

m

tk
t 2

1





          (3.27) 

 

And using equations (3.27) and (3.23), a final expression for 1  is found as: 
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      0111  t
m

k
t

m

c
t         (3.28) 

 

The second order differential equation given by (3.28) is actually a common 

expression whose solution is given by the method of undetermined coefficients, 

which is given as: 

 

  tt eCeCt  211         (3.29) 

 

where the coefficients for the exponential functions are determined by: 

 

2

4
2

2

m

k

m

c

m

c


        (3.30) 

and 

2

4
2

2

m

k

m

c

m

c


        (3.31) 

 

The constants 1C , 2C can be determined by using the boundary conditions 

specified in the optimal control problem. With the solution given in equation 

(3.29), and using equation (3.22), a final expression for 2  is given as: 

 

 
 

k

meCeC
t

tt  
 21

2


       (3.32) 

 

Therefore in order to find the missing constant values  21,CC , by substituting 

the solutions given in equations (3.32) and (3.26) into equation (3.25), the 

control variable can is expressed by: 

 

 
k

eCeC
tu

tt



 

2

21 
        (3.33) 
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Equation (3.33) can be substituted in equation (3.17) where it can be written in 

terms of the state variable 1x  as follows: 

 

     
km

eCeC
tx

m

k
tx

m

c
tx

tt



 

2

21
111


      (3.34) 

 

Equation (3.34) is a second order differential equation which has both a 

homogenous (complementary function) and a particular integral solution. The 

homogenous solution is found by using the method of undetermined coefficients 

and is given as: 

 

  tt

H eCeCtx 
431         (3.35) 

 

where, the coefficients of the exponential functions are:  

 

2

4
2

2

m

k

m

c

m

c


       (3.36) 

 

and 

 

2

4
2

2

m

k

m

c

m

c


       (3.37) 

 

And its particular solution is given as: 

 

 
   mckk

eC

mckk

eC
tx

tt

P 2

2

2

1
1

22 





 





    (3.38) 

 

By adding both solutions it is found that: 

 

 
   mckk

eC

mckk

eC
eCeCtx

tt
tt

2

2

2

1
431

22 





 






  (3.39) 
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And using equation (3.16), the expression for the state variable 2x  is given as: 

 

 
   mckk

eC

mckk

eC
eCeCtx

tt
tt

2

2

2

2

2

1
432

22 















  (3.40) 

 

Since both initial and final states are known from the boundary conditions, it is 

possible to find the four constants  4321 ,,, CCCC  of integration by solving the 

algebraic relations for four equations and four unknowns. 

 

In an example the values in Table 3.1 are used as specifications of the second 

order oscillator and the values in Table 3.2 are the desired boundary conditions. 

 

 
 

Second Order Oscillator 

Parameters 

m [kg] 1 

k [N/m] 1 

c [Ns/m] 0.1 

 
Table 3.1 Second order oscillator 

parameter values 
 

Boundary Conditions 

 
to tf 

time [s] 0 10 

x1 (t) [m] 0 0.6 

x2 (t) [m/s] 0 1 

 
Table 3.2 Boundary conditions for 

control of the oscillator

Using the values in Tables 3.1 and 3.2, and for a weighting factor in the cost 

function of 10 , the constants of integration for this example are given as 

follows: 

 

iC

iC

iC

iC

5341.00039.0

5341.00039.0

1348.20154.0

1348.20154.0

4

3

2

1









 

 

Using these constants of integration in equations (3.39), (3.40) and (3.33), the 

optimal control solution is finally obtained in closed form. The results are shown 

in figures 3.1 to 3.3. 
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Figure 3.1 Optimal control u  for the linear oscillator problem using Pontryagin 

Maximum Principle analytical solution 

 

 
Figure 3.2 Optimal trajectory 1x  (position) for the linear oscillator problem using 

Pontryagin Maximum Principle analytical solution 
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Figure 3.3 Optimal trajectory in 2x  (speed) for the linear oscillator problem using 

Pontryagin Maximum Principle analytical solution 

 

Figure 3.1 shows the control u  which drives the system optimally under the 

specifications given. Figures 3.2 and 3.3 show that the boundary conditions for 

the states are satisfied. With the results obtained, equation (3.18) is used to 

calculate the performance measure which gives the value 19.4J  (‘energy’ 

dimensions). 

 

These results are verified next by using a two-point boundary-value solver and 

later in the chapter by using the Dynamic Programming methodology. 

 

Optimal Control solution for the linear Oscillator via Pontryagin Maximum 
Principle and Two-Point Boundary-Value solution 
 

As mentioned earlier, the Pontryagin Maximum Principle analytical solution for 

more difficult problems, represents a huge challenge. Therefore the two-point 

boundary-value problem is normally solved using numerical methods or 

computational tools, like Matlab. Since for this example, the closed form 

solution has been found a numerical solution is used to verify the results and to 

gain experience when no analytical solution will be available (such as for the 

KERS problem). Therefore the Matlab function (bvp4c) is used to solve the 

boundary-value problem; the results are shown in figures 3.4 to 3.6. 
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Figure 3.4 Optimal control u  for the linear oscillator problem using Pontryagin 

Maximum Principle numerical solution of the TPBV 

 

 
Figure 3.5 Optimal trajectory 1x  (position) for the linear oscillator problem using 

Pontryagin Maximum Principle numerical solution of the TPBV 
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Figure 3.6 Optimal trajectory in 2x  (speed) for the linear oscillator problem using 

Pontryagin Maximum Principle numerical solution of the TPBV 

 

Figure 3.4 shows the optimal control found, and figures 3.5 and 3.6 show the 

trajectories for the states, which meet the specified boundary conditions; and 

evaluating equation (3.18) the performance measure is 196.4J  (‘energy’ 

units). 

 

The results presented in figures 3.4, 3.5 and 3.6 show complete consistency 

with the solutions presented in figures 3.1, 3.2 and 3.3. The performance 

measurement is the same for both cases. The comparison is presented in 

figures 3.4b, 3.5b and 3.6b. 
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Figure 3.4b Optimal control u  for the linear oscillator problem comparison 

between analytical and numerical solutions 

 

 
Figure 3.5b Optimal trajectory 1x  (position) for the linear oscillator problem 

comparison between analytical and numerical solutions 
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Figure 3.6 Optimal trajectory in 2x  (speed) for the linear oscillator problem 

comparison between analytical and numerical solutions 

 

For a linear system, Pontryagin’s Maximum Principle is not difficult to 

implement, but it can be seen in the analytical solution that the problem can 

easily become a mathematical challenge. Moreover, when considering 

nonlinear problems, analytical solutions are no longer available and numerical 

methods have to be used. Also, as mentioned in section 3.2, since Pontryagin’s 

Maximum Principle only deals with necessary conditions, there is a degree of 

uncertainty about the global optimum being achieved. For these reasons, the 

implementation of another methodology, like Dynamic Programming, is found to 

be wholly appropriate. 

 

Application of Dynamic Programming 

Optimal Control of the Linear Oscillator via Standard Dynamic 
Programming 
 

The implementation of a Dynamic Programming strategy is now considered. A 

standard Dynamic Programming solution has been developed, for the same 

oscillator control problem. The importance of using interpolation or another 

method to reduce the error will be shown while applying what will be called 

standard Dynamic Programming. 
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The Computer Code 

In this example, the procedure described in section 3.3 is followed to create a 

Dynamic Programming solution numerically. The computer code is given a set 

of admissible state values and controls, and it uses the Principle of Optimality to 

select the control with the lowest performance measure. For each discrete time 

step, starting from the last one, the system takes an admissible state 

    txtx 21 , applies an admissible control 1u , and evaluates the state where the 

system is driven     11 21  txtx  (discarding any results that take the system 

outside the admissible range). This result is then compared with the admissible 

states, and once it finds the closer one, the performance measure for that step 

is calculated (using the admissible control 1u ), adding the accumulative 

performance measure up to that point. After applying all the admissible controls, 

the code selects the best option and stores the total performance measurement 

to be used later as the accumulated cost. 

 

To set up the ranges for the state and control admissible variables, the solution 

from Pontryagin’s Maximum Principle will be used in order to avoid an 

exploratory run that might be needed if the system is completely unknown. The 

input values are shown in Table 3.3. 

 

Admissible Values for Dynamic 
Programming (case 1) 

x1 (position) [m] [-0.9:0.02:0.8] 

x2 (speed) [m/s] [-1:0.02:1.3] 

u (control) [-0.5:0.02:0.5] 

k (number of steps) 40 

 
Table 3.3 Admissible values used in the Dynamic Programming optimal control 

solution of the linear oscillator 
 

The admissible values contained in table 3.3 can be read like this: a vector of 

values is created from the minimum to the maximum value in increments of 

0.02. The systems specifications and boundary conditions are taken from 

Tables 3.1 and 3.2. The results and the comparison with Pontryagin’s Maximum 

Principle, are shown in figures 3.7 to 3.9. 
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Figure 3.7 Optimal control comparison between Dynamic Programming and 

Pontryagin Maximum Principle 

 

 

 

 
Figure 3.8 Position path comparison between both methods, and the integration 

of the control obtained using Dynamic Programming 
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Figure 3.9 Speed path comparison between both methods, and the integration of 

the control obtained using Dynamic Programming 

 

The Dynamic Programming solution shown in figure 3.7 follows closely 

Pontryagin Maximum Principle solution, considering the discretization of the 

system. Figures 3.8 and 3.9 show that the chosen trajectory using Dynamic 

Programming is consistent with Pontryagin’s Maximum Principle solution, 

however the curve representing the integration of the control shown in figure 3.7 

presents a steady state error. 

 

The lack of interpolation and the “rounding” errors from selecting the nearest 

neighbour are responsible for the steady state error. In the results it can be 

seen that the optimal route is chosen but when integrating the control obtained, 

the actual path is different. 

 

It is clear that an interpolation or an equivalent strategy is needed in order to 

eliminate the error and reach consistency between both methods. However, 

since linear interpolation does not work for this kind of system, it will not work 

for a more complicated model such as a KERS, therefore another solution has 

to be found. 
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Optimal Control of the Linear Oscillator via Nonstandard Discrete 
Dynamic Programming 
 

Exploring different ideas of how to get the right control variable with a more 

precise strategy than interpolation, and one that could be suitable for a 

nonlinear system, is the problem that needs to be solved. Standard Dynamic 

Programming normally evaluates the system state from a specific starting point 

and, by applying a control u , the state at the following time step is found by 

integration. The proposed new strategy is instead of having a set of allowable 

control variables to drive the system, the approach is to find the control 

parameters in an assumed form of u  at each time step, from the initial state to 

the final state by inverting the integration process. This approach is based on 

the mathematical characteristics of a discrete system, meaning that for a 

number of algebraic equations it is possible to solve for the same number of 

unknowns; for Dynamic Programming, given an initial and final states at an 

iteration time it is possible to find the control variable. 

 

In standard Dynamic Programming, due to the discretization of the state and 

control variables, a numerical approximation for integration purposes is normally 

used. O’Neil (1995) describes in detail some methods that are frequently used, 

these are: the Euler method, the Taylor method and the Runge Kutta method. 

When implementing standard Dynamic Programming the Euler method is used 

in most cases, however the first order method is not the very accurate. Higher 

order methods are often used to achieve higher accuracy (especially when 

using larger time steps). 

 

One of the main reasons for using the Euler method while implementing 

standard Dynamic Programming, is that the systems representation in state 

space already forms Euler’s algorithm after discretization. In the case of the 

oscillator equations (3.16) and (3.17) in discrete form are given as: 

 

k

k x
t

x
2

1 



      (3.41) 

and 



64 
 

 
 

m

kxcxu

t

x kkkk 122 





     (3.42) 

 

where the suffix k
 
represents the time step. And using equations (3.41) and 

(3.42), the discrete states are given as: 

 

txxx kkk  2111        (3.43) 

and 

t
m

kxcxu
xx kkk

kk 




12

212
     (3.44) 

 

In order to invert the integration process, the equations must be solved for u  

(the control variable). For the second order oscillator only equation (3.44) is 

function of the control variable, therefore the desired equation is given as: 

 

 
kkk

kk ukxcx
t

mxx






12

212      (3.45) 

 

Before implementing this strategy for an optimal control solution, it is necessary 

to test that given a known path, it is possible to determine the control that forces 

the system to follow the given path. To do this, the solution from Pontryagin’s 

Maximum Principle is used, therefore at each time step, both initial and final 

states are known. Figure 3.10 shows a set of results. 
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Figure 3.10 Optimal controls found by inverting the Euler integration method 

compared with, using Pontryagin Maximum Principle states trajectories (where 
the optimal trajectory is known). 

 

The results in figure 3.10 show that an error is present, especially when using a 

small number of steps. For a large number of steps the control obtained follows 

the known solution closely. 

 

The results show that when the trajectory is known, it is possible to find the 

control that drives the system between two specified points. It also shows that 

the strategy converges as the number of steps is increased. However it is also 

clear that a high number of steps is needed for the system to have an accurate 

response. 

 

To attempt to achieve higher accuracy, and to reach convergence faster, the 

Runge Kutta numerical integration method is now considered. The Runge Kutta 

algorithm can be found in Appendix A, and its implementation for the oscillator 

is given in the following steps: for the states, and the control variable, the 

general equations are given as: 
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6

1
   (3.46) 
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which represents the discretized first state, and 

 

  tWkWkWkWkxx
kk


 42322212212 22

6

1
   (3.47) 

which represents the discretized second state, and 

 

  tWkWkWkWkuu uuuukk  43211 22
6

1
   (3.48) 

which represents the discretized control variable, where the first set of 

equations are given as: 

 

k
xWk 211          (3.49) 

 

for the discretized first state, and 

 

m

kxcxu
Wk kkk 12

12


       (3.50) 

 

for the discretized second state, and 

 

gu uWk 1         (3.51) 

 

for the discretized control variable. Where the variable 
gu  is the gradient of the 

control, which in this example is given only constant values allowing the control 

to be constant or linear for each discrete step. 

 

The second set of equations are given as: 

 

2
*12221

t
WkxWk

k


        (3.52) 

 

for the discretized first state, and 

 



67 
 

 
 

m
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
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*
2

*
2

* 1111221

22  (3.53) 

 

for the discretized second state, and 

 

gu uWk 2         (3.54) 

 

for the discretized control variable. 

 

The third set of equations are given as: 

2
*22231

t
WkxWk

k


       (3.55) 

 

for the discretized first state, and 

 

m
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
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*
2

*
2

* 2112222

32  (3.56) 

 

for the discretized second state, and 

 

gu uWk 3         (3.57) 

 

for the discretized control variable. 

 

Finally, the fourth set of equations are given as: 

 

tWkxWk
k

 *32241       (3.58) 

 

for the discretized first state, and 

 

   
m

tWkxktWkxctWku
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
*** 3113223

42  (3.59) 
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for the discretized second state, and 

 

gu uWk 4         (3.60) 

 

for the discretized control variable. 

 

Substituting equations (3.49) to (3.60) into (3.46) to (3.48), (and grouping the 

terms that do not depend on u ) the final expressions are given as: 
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and 
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(3.62) 

and 

tuuu gkk 1        (3.63) 

 

where the coefficients in the discretized set of equations are given by: 

m

kxcx
A kk 12 
        (3.64) 
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      (3.66) 

and 

2
2

dt
DxE

k
        (3.67) 

and 

m

Bkdt

m

kx

m

Ec
F k

2

1        (3.68) 

and 

k
xFdtG 2         (3.69) 

and 

m

Ekdt

m

kx

m

Gc
H k  1       (3.70) 

 

In equations (3.61) and (3.62) it can be seen that since the Runge Kutta 

algorithm is a recursive method, both of the state equations are functions of the 

control variable. For this reason it is necessary to solve the pair of equations 

algebraically in order to find the control variable. In addition, equation (3.48) 

shows the possibility of using a time dependent control variable, unlike the Euler 

method which can only evaluate constant controls for each discrete step. 

 

Considering the first case, for which the control variable can only take constant 

values  0gu , by doing this, it can be seen that the use of equations (3.61) 

and (3.62) create a problem of two equations and one unknown (i.e. an 

oversubscribed system), for which the solution can be obtained by using the 

least square method. As done earlier, the inverting method is tested using 

Pontryagin’s Maximum Principle solution as a known given path. The results are 

shown in figure 3.11 

 

The results in figure 3.11 show that the solutions obtained follow closely the 

given solution, even when a low number of steps is used. 
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Figure 3.11 Optimal controls found by inverting Runge Kutta integration method 
and using Pontryagin’s Maximum Principle states trajectories (where the optimal 

trajectory is known). 
 

By comparing figures 3.10 and 3.11 it is clear that for determining the control 

variable of the linear oscillator, Runge Kutta integration represents an 

improvement both in accuracy and convergence time. The Euler method 

required at least 500 points in order to converge and eliminate the integration 

error whereas Runge Kutta integration requires less than 10% of the points to 

achieve a comparative solution, and it almost totally eliminates the integration 

truncate errors even for large time steps. 

 

Modified Discrete Dynamic Programming Strategy with Constant Control 

Since the previous strategy determines the control given the state trajectory and 

the initial and final states, a modified version of Dynamic Programming was 

created which, given a set of discrete admissible states, finds the control 

(‘integrating forwards’) and then by using the principle of optimality, selects the 

optimal path, whereas standard Dynamic Programming follows ‘backwards 

integration’ and only allows a set of admissible controls at each time step. 
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In an example, the admissible values to be used are shown in Table 3.4 and the 

system specifications and boundary conditions are drawn from Tables 3.1 and 

3.2. 

 

Admissible Values for Dynamic 
Programming (case 2) 

x1 (position) [m] [-0.9:0.1:0.7] 

x2 (speed) [m/s] [-0.8:0.1:1.3] 

k (number of steps) 10 

 
Table 3.3 Admissible values used in the modified version of Dynamic 

Programming 
 

However when implementing this strategy the modified discrete Dynamic 

Programming approach fails; after doing several tests it was found that for some 

combinations where the solution is not unique and especially for the ones that 

are unachievable by using constant control (or physically impossible to 

achieve), the least squared solution is compromised and the control found is no 

longer representative of the system behaviour even when it seems to be 

meeting the boundary conditions. The results are shown in figures 3.12, 3.13, 

and 3.14. 

 
Figure 3.12 Control found using the modified dynamic programming program by 

determining the constant control using the Runge Kutta integration method. 
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Figure 3.13 Comparison between position paths for Pontryagin’s Maximum 

Principle and the modified dynamic programming program. 

 

 
Figure 3.14 Comparison between speed paths for Pontryagin’s Maximum 

Principle and the modified dynamic programming program. 

 

The Dynamic Programming result in figure 3.12 shows an almost constant zero 

control. Figures 3.13 and 3.14 show that the trajectories obtained with Dynamic 

Programming meet the boundary conditions but are not close to the solution 

obtained using Pontryagin’s Maximum Principle. They also show that the 

integration of the control does not follow the trajectory chosen. 
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In figures 3.11, 3.12, and 3.13 it is clearly shown that after integrating the 

results found using constant control in the modified version of Dynamic 

Programming, the system does not follow the trajectory for which that control 

was found. As mentioned before, this is because the solution is compromised 

and therefore it is necessary to investigate new possibilities. 

 

Modified Discrete Dynamic Programming with Linear Control 

In order to eliminate the problem thus described, the first option is to assume 

linear control between the discrete steps. As in the previous case, the first test 

is to determine the control parameters given a known solution. In this case, 

equations (3.61) and (3.63) represent a system of two equations and two 

unknown parameters, which can be solved either as a system of algebraic 

equations or using a least square strategy. The results for a convergence 

analysis are shown in figure 3.15. 

 

 
Figure 3.15 Optimal linear controls found by inverting Runge Kutta integration 

method and using Pontryagin states trajectories (where the optimal trajectory is 
known). 

 

The results in figure 3.15 show a very accurate control is found. Using only ten 

time steps the solution is very good compared to the one given. And for twenty 

or more time steps, the solution can be considered identical. 
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In addition to correcting the problem which arises with being an oversubscribed 

system, figure 3.15 shows that the solution converges even for a reduced 

number of steps which is a very positive characteristic when implementing 

combinatorial problems. The determination of the control variable inverting 

Runge Kutta was then implemented in the modified dynamic programming 

problem, with input values drawn from Tables 3.1, 3.2 and 3.4. The results are 

shown in figures 3.16, 3.17, and 3.18. 

 

 

 

 
Figure 3.16 Comparison between Pontryagin Maximum Principle and the 

modified dynamic programming program optimal control solutions. 
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Figure 3.17 Comparison between Pontryagin Maximum Principle and the 

modified dynamic programming program optimal position trajectory. 

 

 
Figure 3.18 Comparison between Pontryagin Maximum Principle and the 

modified dynamic programming program optimal speed trajectory. 

 

As seen in figures 3.16, 3.17, and 3.18 the solution found drives the system 
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conditions. This means that the accuracy of the strategy proposed is good and it 

converges for a more refined selection of values for both states and time steps. 
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the computational effort to achieve good results is enormous and therefore 

further improvements have still to be made. 

 

Improved Discrete Dynamic Programming with Linear Control 

Knowing the capability for determining the control, given the initial and final 

states, a modification to the standard Dynamic Programming is now made in 

order to combine it with the previous strategy. Starting from the standard 

Dynamic Programming, that has a specific set of possible control variables 

which eliminates unnecessary combinations, the system is driven from a 

starting point by the selected (constant) control but instead of penalizing the 

error in the cost function, and carrying the state error, the nearest 

neighbourhood point is used as final point to determine the control that drives 

the system. This combination makes the most of both strategies since the main 

disadvantage for each case has been corrected. The input values to test the 

Improved Dynamic Programming version are drawn from Tables 3.1, 3.2, and 

3.4, and the results are shown in figures 3.19, 3.20, 3.21. 

 

 

 
Figure 3.19 Comparison between Pontryagin Maximum Principle and the 

modified Dynamic Programming optimal control solutions. 

 

0 1 2 3 4 5 6 7 8 9 10
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

C
o
n
tr

o
l 
(u

)

time [s]

Optimal Control Comparison

 

 

Pontryagin´s

Dynamic P



77 
 

 
 

 
Figure 3.20 Comparison between Pontryagin Maximum Principle and the 

modified Dynamic Programming optimal position trajectory. 

 

 
Figure 3.21 Comparison between Pontryagin Maximum Principle and the 

modified Dynamic Programming optimal speed trajectory. 

 

As shown in figures 3.19, 3.20, and 3.21 the results are consistent with the 
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in the computational time, which is reduced by 95%. 
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The previous results clearly show that the strategy of determining the control 

parameters considerably improves the accuracy as compared with the standard 

Dynamic Programming, and by combining both strategies an efficient and 

accurate solution is found. 

 

3.5 Dynamic Programming Summarizing Table 

Table 3.4 shows a compact summary of the different discrete Dynamic 

Programming versions explored in this Chapter. This table summarizes the 

most important features, their benefits and limitations 

 

Discrete 
Dynamic 

Programming 
strategy 

Main Characteristic Accuracy 
Computational 

Efficiency 
Control 

Smoothness 

Standard 

 Backwards integration 

 From initial state uses 
admissible control and 
selects closest 
neighbourhood (no 
interpolation is used) 

Poor Very Good Average 

Modified 

 Forwards Integration 

 Matches all admissible 
states and later uses 
the Principle of 
Optimality 

 Point-to-point control 
variable determination 

Very 
Good 

Poor 
Sometimes 

Poor 

Improved 
Modified 

 Same as Standard but 
uses the selected 
closest state for control 
variable determination 

Very 
Good 

Good 
Sometimes 

Poor 

 
Table 3.4 Discrete Dynamic Programming versions explored 

 

3.6 Conclusions of the findings in Chapter 3 

Modern engineering systems and recent engineering requirements often make 

demands beyond the scope of the classical control approaches. Optimal control 

gives the flexibility of evaluating the quantitative system performance based on 

different indicators that are found to be useful, such as in terms of minimum 

time and energy. The two most common optimal control methodologies 

Pontryagin’s Maximum Principle, and discrete Dynamic Programming have 
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been implemented on a linear oscillator, placing particular emphasis on 

Dynamic Programming because of its ability to provide both necessary and 

sufficient conditions for optimality and because it can be potentially applied 

where Pontryagin’s Maximum Principle will become intractable. Moreover owing 

to the limitations of standard Dynamic Programming, and a commonly used 

interpolation strategy, a new modified version has been developed and 

implemented; this achieves higher accuracy by finding the control parameters at 

each iteration, which is done by inverting the integration process. While 

developing this new technique it was found that Euler method converges only 

for a very high number of time steps and introduces errors for reducing number 

of steps whereas the Runge Kutta method is highly accurate and converges 

quickly. The results show that, despite dealing with a discrete system, constant 

control is not useful since the system becomes oversubscribed has to be solved 

with a least square solution. Even if it seems promising when following the 

optimal trajectory, the solution was compromised when implemented in a 

modified version of Dynamic Programming. Therefore the need for a time 

dependent control was obvious and was then implemented; first in a modified 

Dynamic Programming and later in an improved version of Dynamic 

Programming where the results were successful. The objective of this study 

was to examine the most common optimal control methodologies in order to 

build up a computational strategy that can be implemented in more complex 

systems such as the KERS. This will be taken up in Chapter 4. 
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4. APPLICATION OF OPTIMAL CONTROL THEORY TO A 
FLYWHEEL-BASED KERS WITH A CVT 
 
In this Chapter the optimal control strategies described and developed in 

Chapter 3 are applied, first to a simplified frictionless flywheel-based KERS with 

a CVT, and later to a more realistic model that includes friction. First, by using 

Pontryagin’s Maximum Principle, the mathematical procedure is presented and 

the two-point boundary-value problem is solved using Matlab. Later the 

application of an improved Dynamic Programming is presented. 

 

As in Chapter 3, for the application of Dynamic Programming to the KERS, the 

methodology for determining the control parameters is assessed and 

developed. Initially this uses the Runge Kutta integration method and results are 

presented and analysed but difficulties are found. Then use is made of the 

modified Euler integration method. After selecting the appropriate integration 

method to determine the control variable, a full Dynamic Programming solution 

is presented and compared with the Pontryagin’s Maximum Principle solution 

for both the simplified and the more realistic KERS models. In the case of the 

frictionless model, the optimal control objective is to minimize the control 

variable; whereas for more realistic models the stored energy is maximized. An 

additional approach to a two-input system model is explored at the end of the 

Chapter, the additional input being associated with the friction brakes of the 

vehicle; this approach clearly shows the possibilities of optimal control in KERS 

applications. The motivation to explore the application of optimal control in 

KERS comes from the good deal of interest in the literature (presented in 

Chapter 1) on the control of KERS, and although the information about flywheel-

based KERS is limited several publications have mentioned the need for 

developing and implementing strategies for KERS control. 

 

4.1 Application of Optimal Control to a simplified flywheel-based KERS 
with a CVT 
 

The simplified model described in Chapter 2 is now considered for optimal 

control application. In a similar approach to Chapter 3, to construct the optimal 

control problem, the first step is to establish the system model. In this case, this 
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procedure has been presented in Chapter 2, and from it the state space 

representation (equations (2.11), (2.12), and (2.14) to (2.17)) is recalled as: 

 

   ttx w1         (4.1) 

and 

     txttx w 21         (4.2) 

and 

 
     

 txJJ

txtxtuJ
tx

fw

f

3

5.0

32

2



       (4.3) 

and 

     txtutx 5.0

33 2        (4.4) 

 

where wJ represents the moment of inertia for the wheel, fJ the moment of 

inertia for the flywheel,  tw  is the angular displacement of the wheel and  tu  

is the rate of change of the gear ratio (  tG ). 

 

The next step is to define the systems constraints and to specify the task to be 

performed. Since for an automotive KERS application the objective is to transfer 

the energy from the vehicle wheels to the flywheel as a regenerative process, 

the procedure is to drive the wheel to a lower speed by changing the gear ratio 

of the CVT. As outlined in Chapter 3, the system is to be driven from an initial 

state to a final state in a given time. 

 

It has to be noted that for this case the specifications do not relate to the 

angular position of the wheel (or flywheel). Therefore, since the variables of 

interest are not a function of the angular position, the system given in equations 

(4.1) to (4.4) can be represented in a simplified form: 

 

   ttx w1         (4.5) 

and 

     
     

 txJJ

txtxtuJ
ttxtf

fw

f

w

2

5.0

21

11



      (4.6) 
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and 

       txtutxtf 5.0

222 2        (4.7) 

 

After defining the desired task, the last step is to define a performance index, 

which in this case involves only the control variable. Its mathematical 

representation is given as: 

 

   
ft

dttutJ
0

2
        (4.8) 

 

By specifying numerical values to the initial and final speeds, the construction of 

the optimal control problem is complete. With this, the full application of optimal 

control theory can be considered. 

 

Application of Pontryagin’s Maximum Principle 

Turning to the use of Pontryagin’s Maximum Principle, the formulation of the 

optimal control solution proceeds in a similar way to Chapter 3. The Hamiltonian 

for the simplified KERS model (equations (4.5) to (4.7)) is given as: 

 

     
     

 
       ttxtut

txJJ

txtxtuJ
ttutH

fw

f

2

5.0

21

2

5.0

21

0

2 2  



  (4.9) 

 

And, from equation (4.9), the co-state functions are given as: 

 

  00 t         (4.10) 

and 

 
   

 
 t

txJJ

txtuJ
t

fw

f

1

2

5.0

2

1 


       (4.11) 

and 

 
           

  
       ttxtut

txJJ

txtxtuJtxtxtuJJ
t

fw

ffw

2

5.0

212

2

5.0

21

25.0

21

2

5.05.0
 







  

 (4.12) 
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And, the condition for optimality is given as: 

 

 
 

   
   

 
     ttxt

txJJ

txtxJ
ttu

tu

tH

fw

f

2

5.0

21

2

5.0

21

0 22  






  (4.13) 

 

From equation (4.13), the optimal control is given as: 

 

 
   

 
 
 

   
 t
ttx

t

t

txJJ

txtxJ
tu

fw

f

0

2

5.0

2

0

1

2

5.0

21

22 











     (4.14) 

 

When the state and co-state variables correspond to optimal paths. The 

formulation of the Optimal Control problem using Pontryagin’s Maximum 

Principle for the simplified KERS is now complete. From equations (4.6), (4.7), 

(4.11), (4.12) and equation (4.14) can be seen that the analytical solution of this 

system of equations poses an enormous challenge. Therefore the problem is 

solved as a two-point boundary-value (TPBV) problem numerically. 

 

Optimal Control solution for simplified KERS model via Pontryagin’s 
Maximum Principle and two-point boundary-value problem solution 
 

In order to solve the two-point boundary-value problem numerically using 

Matlab function (bvp4c), the following is required: i) a system representation as 

a set of differential equations (in state space form), in this case given in 

equations (4.6), (4.7), (4.11), (4.12) and equation (4.14); ii) a set of boundary 

conditions (involving at least as many conditions as equations), these are given 

in Table 4.2; and iii) an initial guess at the solution. Like many numerical 

strategies, a good initial guess (or starting point) is crucial for successful 

determination of the solution. In the case of complex systems this might be 

difficult to achieve and the solver may not reach stability. In fact most of the 

time, either an unstable solution or no-solution is found when physical or 

mathematical constrains are reached. In the case of the KERS, the gear ratio 

cannot take a value of zero (or infinite) which represents a spinning wheel 

connected to a static flywheel. 
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As an example KERS to demonstrate a Pontryagin solution, a test model is 

selected and the system model parameters are given in Table 4.1 and the 

boundary conditions are given in Table 4.2. 

 

 

Simplified KERS 

Parameters 

α 40 

Jw [kg*m^2*rad^-2] 2 

Jf [kg*m^2*rad^-2] 1 

 
Table 4.1 The parameters for a 

simplified KERS 

 

Boundary Conditions 

  to tf 

time [s] 0 10 

x1 (t) [rad/s] 60 10 

x2 (t) [ratio^2] 1 106 

 
Table 4.2 Example boundary 

condition

In the case of the simplified KERS model, the implementation of the two-point 

boundary-value problem needs further consideration than that presented in 

Chapter 3 for the linear oscillator. It can be observed that both problems (i.e. 

KERS and the oscillator problem) are in the same category as Case 1 in Kirk 

(1998), i.e. the initial and final states are specified with final time fixed. However 

solving the two-point boundary-value problem, is different owing to the 

simplification of the model since when both states are specified as initial and 

final conditions, one condition becomes redundant. This means that for the 

simplified model, given an initial speed and gear ratio, for any given final speed 

there is only one gear ratio. Therefore, implementation of Pontryagin’s 

Maximum Principle for the simple KERS model requires an additional condition 

for the co-states (this is also true for Case 3 in Kirk (1998). In this case the initial 

states are specified and the final states on the surface    0txm  with final time 

fixed. Consequently an additional boundary condition equation must be 

included. The additional boundary condition is given as: 

 

       


















 k

i

f

i

iff tx
x

m
dttx

x

h

1

     (4.15) 

 

where id  represents a set of unknown variables to be determined, along with 

the constants of integration, and h  (defined in Chapter 3) represents the cost 
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function associated with the final state error. In equation (4.8), it can be seen 

that for this example 0h , and since  
ftx1  is specified, the boundary condition 

for the co-state is as follows: 

 

  01 ft         (4.16) 

 

The additional boundary condition for the co-state eliminates the redundancy 

problem that arises with the simplified model. It is important to note that this is 

possible only for 
1x  (and its co-state) because it is function of both states, 

however 
2x  does not depend on 

1x . 

 

The implementation is done using the values from Tables 4.1, 4.2 and equation 

(4.16). The initial guess values are given in Table 4.3, and the results are 

shown below. 

 

 

 

Initial Guess 

x0 112 

x1 35 

x2 50 

p0 -1 

p1 0 

p2 14 

 
Table 4.3 The initial guess used with the TBVP solver (Matlab function bvp4c) 
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Figure 4.1 Optimal control u  for the simplified KERS model using Pontryagin 

Maximum Principle two-point boundary-value numerical solution 

 

 
 

 
Figure 4.2 Optimal trajectory for 1x  (speed) for the simplified KERS model using 

Pontryagin Maximum Principle two-point boundary-value numerical solution 
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Figure 4.3 Optimal trajectory for 2x  (Gear ratio squared) for the simplified KERS 

model using Pontryagin Maximum Principle two-point boundary-value numerical 
solution 

 

 
Figure 4.4 Cost evaluation of the optimal control for the simplified KERS model 

using Pontryagin Maximum Principle two-point boundary-value numerical 
solution 

 

Figure 4.1 shows the optimal control obtained solving the TPBV. Figure 4.2 and 

4.3 show the optimal path for the two state variables 1x  and 2x  respectively. 

Figures 4.2 and 4.3 show that the boundary conditions are met and the control 

found has a constant value (figure 4.1). In fact, figure 4.1 shows that a trivial 
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solution is obtained, indicating that the best way to move from an initial gear 

ratio to a final gear ratio is to keep the rate of change constant (when optimizing 

for the rate of change). As a first stage these results are compared and verified 

using the developed discrete time Dynamic Programming method. 

 

Application of Dynamic Programming - Determination of Control 
Parameters 
 

In order to verify the results obtained from Pontryagin’s Maximum Principle and 

to compare with a different methodology, the implementation of Dynamic 

Programming is now considered. The improved discrete Dynamic Programming 

strategy developed in Chapter 3 (which showed high accuracy) is now to be 

implemented for the simple KERS. 

 

The developed strategy is based on the determination of the control parameters 

given the initial and final states by inverting the integration process using the 

Runge Kutta method. Implementation for the simple KERS is achieved as 

follows: The states and control variable general equations are drawn from 

Chapter 3, equations (3.36) to (3.38), and the first set of equations for the 

boundary states is given as: 

 

kfw

kkkf

xJJ

xxuJ
Wk

2

5.0

21

11



        (4.17) 

and 

5.0

212 2 kk xuWk          (4.18) 

 

And, the second set of equations is given as: 
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 (4.19) 

and 
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The third set of equations is given as: 
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 (4.21) 

and 
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t
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t
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Finally, the fourth set of equations is given as: 

 

   
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and 

   5.0

322342 2 tWkxtWkuWk kuk      (4.24) 

 

The final expressions are obtained using equations (4.17), (4.24), (3.36), (3.27), 

and equation (3.53) for the control variable. The final expressions for the states 

are given as: 

 

  tWkWkWkWkxx
kk
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***
6

1
41312111111    (4.25) 

 

where 11Wk  is given in equation (4.17), and 
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and 
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and *41Wk  is grouped in three terms 

 

3*2*1*41 TermTermTermWk        (4.28) 

 

where the first term is 

 

 tuuJTerm gkf 1        (4.29) 

 

and, the second term is 
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finally, the last term is 
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Whereas for the second state the final expression is given as: 
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(4.32) 

where 

2

t
uuU gk


        (4.33) 

 

Both discrete state equations (4.25) to (4.32) are dependent on the control 

variable; therefore, as for the linear oscillator, to invert the integration process it 

is necessary to solve both equations in order to find the control parameters. 

 

It is appropriate to test this procedure before implementing the full improved 

Dynamic Programming approach. Following the steps used in Chapter 3, the 

solution found from Pontryagin’s Maximum Principle (which are slightly 

manipulated in order to confirm that changes in the control variable are 

possible), is used as a known given path. Linear control is assumed. The 

system of equations is solved using the least squares method and the results 

are shown in figure 4.5. 
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Figure 4.5 Linear controls found by inverting Runge Kutta integration method 

and using Pontryagin Maximum Principle (manipulated solution) states 
trajectories. 

 

It can be seen from figure 4.5 that the solution becomes unstable for larger 

number of steps, even when the results with a discrete time step of 1s initially 

seemed promising. This shows that an even deeper analysis of the results is 

necessary in order to develop a strategy that can be implemented with the 

improved Dynamic Programming approach. 

 

In order to have a closer look to the possible values that the control parameters 

can take, the least squares solution can be used to reconstruct the problem. 

The least squares solution is found by minimizing q  in equation (4.34), and 

since the discrete state equations ( 21, ff ) are functions of the control 

parameters, equation (4.34) can be evaluated for different ku  and gu  values, 

meaning that the lowest value from equation (4.34) represents the minimum 

control used. The least squares equation is shown below and the evaluation of 

the function is shown in figures 4.6 and 4.7. 
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where q is the objective function to be minimized. 
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Figure 4.6 Evaluation of q  for various combinations of uguk ,  

 

 
Figure 4.7 Evaluation of q  for various combinations of gk uu ,  

 

 

Figure 4.6 shows the values of the function q  where it can be seen that for 

various values of gk uu ,  the evaluated function takes the same value. Figure 4.7 

shows a three-dimensional graph with the evaluation of q   in terms of gk uu , . 
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Figures 4.6 and 4.7 show that when using the least squares method various 

combinations of control parameters minimise the function q , it can be clearly 

seen that this is not a single point but a valley which represents the minimum of 

q . This suggests that an additional condition is needed in order to find a 

solution. 

 

Since the manipulated Pontryagin’s Maximum Principle solution is available, in 

order to explore the possibility of an improvement, an additional condition must 

be considered. To create this additional condition the cost function 0f  can be 

included in the least squares minimization procedure. The results are shown in 

figure 4.8. 

 

 
Figure 4.8 Linear control found by inverting Runge Kutta integration method, 

using Pontryagin Maximum Principle (manipulated solution) states trajectories 
and minimising cost function. 

 

In figure 4.8 it can be seen that the solution is unstable oscillating around the 

expected value. The first step is close to the modified Pontryagin solution, but 

from the second step an error is introduced and carried forward. 

 

These results show that including the cost function as part of the minimisation 

criteria for the least squares method, does not improve the response. Therefore, 
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a different approach is needed. In order to provide more information to the 

system the introduction of the cost function is considered now in explicit form for 

minimising the control parameters. The explicit form of J  assuming linear 

control is given by: 

 

  dttuuJ

t
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0

2
       (4.35) 

 

The minimisation of J  with respect to the control parameters, involves solving: 
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Equations (4.36) and (4.37) are now considered for the least squares solution in 

combination with the discrete state equations ( 21, ff ) with the objective of 

eliminating the instability. The results are shown in figure 4.9. 

 
Figure 4.9 Linear control found by inverting the Runge Kutta integration method, 
using Pontryagin Maximum Principle (manipulated solution) states trajectories 

and minimising the control parameters. 
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Figure 4.9 shows that the system is unstable and the parameters found for the 

control make it oscillate around the expected value. 

 

Since the results shown before are not within a desirable range compared with 

the expected solution (and indeed the solution behaviour becomes unstable 

even after giving the additional information), it is appropriate to even further 

explore if the approach to this problem is adequately posed to start with. This is 

done by assuming that the final cost at each time step is known. The results of 

doing this are shown in figure 4.10. 

 

 
Figure 4.10 Linear controls found by inverting Runge Kutta integration method 

and using Pontryagin Maximum Principle (manipulated solution) states 
trajectories and cost function (J known). 

 

Figure 4.10 contains the results assuming the final cost for each step is known. 

It can be seen that the method responds very well when the final cost is 

included, however given that the cost is actually not known when implementing 

Dynamic Programming, a different approach should be explored. 

 

The results shown from figures 4.5 to 4.9 suggest that the approach to the 

problem is indeed not adequate. From the results in figures 4.6 and 4.7 it is 

clear that there are various solutions that minimise the function used in the least 

squares method, however, when enough information to reconstruct the 
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manipulated from Pontryagin’s Maximum Principle is provided, the solution is 

followed accurately as shown in figure 4.10. 

 

With the objective of exploring further the strategy used, where the cost function 

is included into the least square approach, it is now decided to try using a 

quadratic control; the reason for this is to avoid (as it was shown in Chapter 3) 

the use of an oversubscribed system. The equation for the control is given as: 

 

2

21 tutuuu ggkk 
      (4.38) 

 

where gu  and 2gu  are the coefficients associated with the linear and quadratic 

factors respectively, and ku  is the initial value for the control variable. 

 

The results of determining the control parameters assuming quadratic control 

are shown in figure 4.11. 

 

 
Figure 4.11 Quadratic controls found by inverting Runge Kutta integration 

method and using Pontryagin Maximum Principle (manipulated solution) states 
trajectories and cost function (J known). 

 

The results in figure 4.11 show that given the cost function as part of the least 
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The results shown so far suggest that using the Runge Kutta integration method 

although very suitable for the linear oscillator control in Chapter 3 is actually not 

suitable for the KERS application within the inverse integration strategy. The 

nonlinear characteristics of the system model, and the recursive characteristics 

of the Runge Kutta method make the implementation complicated. This 

combination increases the number of roots (as can be seen in equations (4.25) 

and (4.26)) when trying to solve for the control variable. Therefore, even with 

the help of advanced computational tools, to obtain the desired solution it might 

not be possible or is too difficult to do this. 

 

In fact, the recursive character of the higher order numerical approximation 

method (Runge Kutta) is found to be a key factor in the increase in complexity 

in the system of equations. Therefore, it is appropriate to consider a lower order 

numerical approximation method. As it was earlier shown (Chapter 3), the Euler 

integration method was not suitable for the desired oscillator application. 

However consideration of the use of the Modified Euler method, is appropriate 

to address the problems encountered. This first order method evaluates the 

system at a middle integration point; therefore, the desired character of time 

dependent control is suitable, and the recursive iteration is avoided. The time 

integration of a second order dynamic system using Modified Euler method is 

given (from Appendix A) as: 
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where the function ikf  denotes the finite difference for each state respectively. 

For the model represented by equations (4.6) and (4.7), assuming linear 

control, the integration equations become: 
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Following the same procedures as adopted earlier, the system of equations is 

implemented in order to find the control parameters given by the Pontryagin’s 

Maximum Principle manipulated solution. This case considers only equations 

(4.41) and (4.42) in the least squares method. The results are presented in 

figure 4.12. 

 

 
Figure 4.12 Linear controls found by inverting Modified Euler integration method 

and using Pontryagin Maximum Principle (manipulated solution) states 
trajectories. 
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Maximum Principle manipulated solution. The solution obtained is oscillatory but 

the oscillations become very small for larger number of steps. 

 

The convergence of the Modified Euler method suggests that it is adequate to 

be implemented in the improved version of Dynamic Programming, even for 

small number of time steps, the solution shows an accurate response which is 

highly desirable for Dynamic Programming. 

 

Improved Discrete Dynamic Programming with Linear Piece-wise Control 

Given that using the Modified Euler method to determine the control parameters 

is an accurate strategy which converges when increasing the number of steps, 

the full implementation for Optimal Control purposes using the improved 

discrete Dynamic Programming strategy developed earlier (Chapter 3) is now 

considered. 

 

The values shown in Tables 4.1 and 4.2 are the systems parameters and 

boundary conditions respectively, and the values shown in Table 4.4 are the 

input parameters for Dynamic Programming, which are presented in vector 

form. 

 

Admissible Values for Dynamic 
Programming (case 1) 

x1 (speed) [rad/s] [10:0.25:60] 

x2 (Gear ratio squared) [1:0.75:106] 

u (control) [0.1:0.05:1] 

k (number of steps) 15 

 

Table 4.4 The admissible values used in Dynamic Programming 

 

The results and their comparison with Pontryagin’s Maximum Principle are 

shown in figures 4.13 to 4.16. In order to validate that the control found 

corresponds to the states chosen in the Dynamic Programming process, an 

integration of the control is made and also displayed with the results. 
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Figure 4.13 Optimal control comparison between Dynamic Programming and 

Pontryagin Maximum Principle for the simplified KERS. 

 

 

 

 
Figure 4.14 Optimal speed trajectories comparison between Dynamic 

Programming and Pontryagin Maximum Principle for the simplified KERS. 
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Figure 4.15 Optimal Gear ratio squared trajectories comparison between 

Dynamic Programming and Pontryagin Maximum Principle for the simplified 
KERS. 

 

 
Figure 4.16 Performance (J) comparison between Dynamic Programming and 

Pontryagin Maximum Principle for the simplified KERS. 
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closely. Figure 4.16 shows the performance index comparison between both the 

methods, where the final values are found to be very close. 

 

Although the control found in figure 4.13 using Dynamic Programming does not 

seem very accurate, in figures 4.15 and 4.16 can be seen that the trajectory 

followed is actually good. Considering that the time steps are 1s and that the 

admissible discrete states are limited, the solution found is very accurate. It can 

be seen that the first step (where Dynamic Programming solution is found 

backwards) is the one with least accuracy, and after that, the system 

compensates. 

 

The improved version of Dynamic Programming using the Modified Euler 

method gives very promising results; further tests are now performed with a 

more realistic model. 

 

4.2 Application of Optimal Control to more realistic flywheel-based KERS 
with a CVT – Including friction from ball bearings 
 

The simplified model used earlier (equations (4.5) to (4.7)) is not a very good 

model for optimal control applications, since it has been shown that a “trivial” 

solution is found. Therefore, the more realistic model (outlined in Chapter 2) is 

now considered. The friction features in the model are functions of the angular 

speeds (flywheel and traction wheel), so a non-trivial solution is now expected. 

 

As was realised with the simplified model, since there is no interest in the 

angular displacement of the system, a state reduction is applied. The system 

given by equations (2.11), (2.12), (2.14), (2.15), (2.17) and (2.31), can be 

expressed in state space form as follows: 

 

   ttx w1         (4.43) 
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and 

       txtutxtf
5.0

222 2        (4.45) 

 

Where vK  represents the friction coefficient due to viscosity for the bearings 

associated with the flywheel and the traction wheel, vm  is the mass of the 

vehicle and wr  is the traction wheel radius. 

 

In order to approach an energy optimization solution, it is important to specify 

that the objective is to maximize the energy stored in the flywheel. Since the 

kinetic energy of the flywheel is given as: 

 

2

2

ffJ
E


         (4.46) 

 

where fJ  is the moment of inertia and f  is the angular velocity of the 

flywheel. For the control problem described, the angular velocity of the flywheel 

is a function of the wheels speed (equation (2.7); this relationship is given as: 

 

wf G          (4.47) 

 

where G  is the gear ratio. In this case, the final speed of the wheels is specified 

  knownt fw   , for this reason the energy at the flywheel is dependent on the 

final gear ratio  
ftG . And, since the second state  tx2  is function of the gear 

ratio (equation (4.7)), the energy optimization problem can be achieved by 

minimizing the difference respect to a desired final value of  tx2 . 

 

The final value of the gear ratio is unspecified (since  
ftx2  is unknown) so that 

the final gear ratio difference optimization can be included in the performance 

index (with this maximizing the energy at the flywheel). The cost function is 

given as: 
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22
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where, dx2 is the desired final gear ratio squared, and   is a weighting factor. 

 

The optimal control objective is to drive the system from a given initial state 

 0tx , to a final specified rotational speed for the vehicle traction  wheels  
ftx1 , 

by minimizing the cost function given by (4.48) 

 

Application of Pontryagin Maximum Principle 

Turning to the use of Pontryagin’s Maximum Principle, the formulation of the 

problem is as follows: The Hamiltonian for the KERS model and friction, based 

on the ball bearing models, is given as: 
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 (4.49) 

 

And, from equation (4.49) the co-state functions are given as: 

 

  00 t         (4.50) 

 

and 
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and 
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The condition for optimality is now given as: 
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And, from equation (4.53) the optimal control is given as: 
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   (4.54) 

 

Assuming the final condition for the gear ratio is not specified, additional 

information is required to complete the boundary conditions. Using equation 

(4.15) the additional relationship is given as: 

 

    
dff xtxt 222         (4.55) 

 

The formulation of the Optimal Control problem using Pontryagin’s Maximum 

Principle for the friction KERS is now complete. This problem has to be solved 

using a two-point boundary-value numerical method. 

 

 

 

 



107 
 

 
 

Optimal Control for simplified KERS via Pontryagin’s Maximum Principle 
and two-point boundary-value problem numerical solution 
 

An example for the friction model is now considered, the systems parameters 

are given in Table 4.5 and the boundary conditions are specified in Table 4.6. 

As mentioned earlier, the final gear ratio is not specified (NS). 

 

Friction KERS 

Parameters 

α 20 

β 1 

Jw [kg*m^2*rad^-2] 2 

Jf [kg*m^2*rad^-2] 1 

mv [kg] 600 

rw [m] 0.33 

Kvf 1 

Kvw 5 

 
Table 4.5 Friction KERS model 

parameters 

 

 

Boundary Conditions 

 
to tf 

time [s] 0 2 

x1 (t) [rad/s] 60 40 

x2 (t) (gear ratio squared) 0.16 NS 

 

Table 4.6 Boundary conditions used 
in the optimal control of the KERS 

with friction

Since  
ftx2 is not specified, a target is set to a numerical value of 30. This is 

done since although the final gear ratio is not restricted, the final difference from 

the desired point should be minimized. The results are shown in figures 4.17, 

4.18 and 4.19. 

 

Figure 4.18 shows that the boundary conditions for the angular speed are met. 

The optimal control obtained (figure 4.17) shows that it has a high initial value 

and is decreasing with time, and figure 4.19 shows the gear ratio squared 

resulting from such a change. However the final value for the gear ratio squared 

does not reach the desired value. 

 



108 
 

 
 

 
Figure 4.17 Optimal control u  for the friction KERS using Pontryagin Maximum 

Principle and a two-point boundary-value numerical solution 

 

 

 

 
Figure 4.18 Optimal trajectory 1x  (speed) for the friction KERS using Pontryagin 

Maximum Principle and a two-point boundary-value numerical solution 
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Figure 4.19 Optimal trajectory in 2x  (Gear ratio squared) for the friction KERS 

using Pontryagin Maximum Principle and a two-point boundary-value numerical 
solution 

 

In this example, there are two different ways to reduce the energy of the 

system: i) through friction losses at the flywheel, and ii) through friction losses in 

the traction wheel bearing. Additionally, energy is transferred to the flywheel 

from the traction wheel; being these three the only sources to reduce the wheel 

speed. Given the system parameters, the optimal control solution shows that in 

order to meet the final conditions, the friction losses have to be modified; 

therefore, the trivial solution found in the simplified model does not arise 

anymore. The energy stored is maximized with the requirement to meet the final 

condition, given the friction losses this means that the desired final value for the 

gear-ratio-squared may not be reached, and, as it is seen in Figure 4.19, it is 

indeed not reached. After various tests, where the desired final value was 

modified, the same results are obtained; therefore the conclusion is that there is 

only one optimal solution for different desired conditions. This makes sense 

since given a final time there is a minimum amount of energy that will be lost 

due to friction and for this reason the reminder to meet the final conditions has 

to be transferred to the flywheel. An additional and more representative 

approach, where the energy to be stored can be controlled, is shown after a 

comparison and validation of the Pontryagin’s Principle results with the 

improved modified Dynamic Programming Strategy is done. 
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Application of Dynamic Programming - Improved Discrete Dynamic 
Programming with Linear Piece-wise Control 
 

The full implementation of the improved discrete Dynamic Programming 

strategy developed is now considered. Given the results for the simplified 

model, the best option is to use the Modified Euler method to determine the 

control parameters. Therefore, using equations (4.38) and (4.39) and the model 

represented by equations (4.43) and (4.44), the Modified Euler equations are 

given as: 
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(4.56) 

and 

t
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2    (4.57) 

 

And the control variable is obtained from equation (4.33). 

 

The values shown in Table 4.5 are the physical characteristics of the system, 

and the ones in Table 4.6 indicate the boundary conditions to be met. The 

values presented in Table 4.7 are the admissible values for Dynamic 

Programming. 
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Admissible Values for Dynamic 
Programming (case 2) 

x1 (speed) [rad/s] [40:0.25:60] 

x2 (Gear ratio squared) [0.16:0.1404:14.2] 

u (control) [0.5:0.1:2.5] 

k (number of steps) 10 

 
Table 4.7 Admissible values used in Dynamic Programming 

 

The results and comparison with Pontryagin’s Maximum Principle solution are 

shown in figures 4.20 to 4.23. The integration of the solution obtained with 

Dynamic Programming, as a form of validation, are included in the results.  

 

 

Figure 4.20 Optimal control comparison between Dynamic Programming and 
Pontryagin Maximum Principle for the friction KERS. 
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Figure 4.21 Optimal speed trajectories comparison between Dynamic 
Programming and Pontryagin Maximum Principle for the friction KERS. 

 

 

 

 

Figure 4.22 Optimal Gear ratio squared trajectories comparison between 
Dynamic Programming and Pontryagin Maximum Principle for the friction KERS. 
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Figure 4.23 Performance (J) comparison between Dynamic Programming and 
Pontryagin Maximum Principle for the friction KERS. 

 

The results in figure 4.20 show an oscillatory response from Dynamic 

Programming around the Pontryagin Maximum Principle Solution. However, it 

can be seen from figure 4.21 that the boundary conditions are met, and from 

figure 4.22, that the gear ratio squared follows closely the solution obtained 

from Pontryagin Maximum Principle. The cost shown in figure 4.23 is 

considerably higher for Dynamic Programming. 

 

The results in figures 4.21 and 4.22 show consistency between the two 

methods employed. However, with the discretization of the system, the control 

obtained with Dynamic Programming is not consistent with Pontryagin’s 

Principle and incurs a higher cost. 

 

4.3 Application of Optimal Control to the simplified flywheel-based KERS 
with a CVT – Including brake friction (A two inputs system) 
 

Regenerative braking generally works together with the friction brakes since it is 

not always possible to store all the kinetic energy in a vehicle given a 

specifically short period of time. An example that combines both braking and 

KERS is now considered. 
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Using the simplified model given by equations (4.5), (4.6) and (4.7), equation 

(4.6) can be modified to include a friction torque from the brakes. This 

relationship is given as: 

 

     
       

 txJJ

tutxtxtuJ
ttxtf

fw

f

w

2

2

5.0

21

11



     (4.58) 

 

where  tu2  is an additional input which represents the friction brakes. The extra 

input has no direct impact on equation (4.7), so it can be used as previously 

stated. 

 

When minimizing the difference of the gear ratio squared with a desired final 

value, an optimization of the amount of energy stored is taking place. Therefore, 

the performance index is then given as: 

 

          

ft

df dttutuxtxtJ
0

2

2

22

22 

    

(4.59) 

 

The control solution is now evaluated using Pontryagin’s Maximum Principle 

and by solving the two-point boundary-value problem numerically (using 

Matlab). 

 

Application of Pontryagin’s Maximum Principle - An Optimal Energy 
Approach 
 

Turning to the use of Pontryagin’s Maximum Principle, the formulation of the 

problem is as follows: The Hamiltonian for the simplified KERS model including 

friction brakes is given as: 
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   (4.60) 

 

And, from equation (4.60) the co-state functions are given as: 
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  00 t         (4.61) 
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And, the condition for optimality is given as: 
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and 
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From equation (4.64) and (4.65), the control variables are given as: 
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and finally: 
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As it has been seen earlier, the final condition for  ftx2  is not specified and 

additional information is required to complete the boundary conditions. Using 

equation (4.15), the additional relationship is given as: 

 

    
dff xtxt 222         (4.68) 

 

The formulation of the problem using Pontryagin’s Maximum Principle is now 

complete. Three examples are presented where the energy optimization is 

clearly shown; the parameter values for the system are shown in Table 4.8 and 

the boundary conditions are given in Table 4.9 

 

Friction KERS 

Parameteres 

α 20 

β 10 

ς 0.1 

Jw [kg*m^2*rad^-2] 2 

Jf [kg*m^2*rad^-2] 1 
 
Table 4.8 – System Parameters 

 

Boundary Conditions 

  to tf 

time [s] 0 15 

x1 (t) [rad/s] 60 0 

x2 (t) (gear ratio squared) 0.16 NS 

 
Table 4.9 – Boundary conditions 

 

The vehicle is to be taken from an initial speed to rest in a given period of time 

minimizing the performance index given by equation (4.59). The desired final 

values for the gear ratio squared are shown in Table 4.10. 

 

Desired final Gear ratio square 

Case 1 0.16 

Case 2 10 

Case 3 20 

Table 4.10 Different desired values for 2x  
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The comparisons between the three different cases are shown in figures 4.24 to 

4.26: 

 

 

Figure 4.24 Optimal controls comparison for three different desired final values 

for 2x . 

 
 
 

 

Figure 4.25 Angular speed optimal path comparison for three different desired 

final values for 2x . 
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Figure 4.26 Gear ratio squared optimal path comparison for three different 

desired final values for 2x . 

 

The results in figure 4.25 show that the boundary conditions are met, and in 

figure 4.26 it can be seen that the solution is close to the desired final value for 

2x . In figure 4.24 it can be seen that the brakes and the KERS combine in order 

to achieve the system specifications. 

 

It can be seen that the results show that the energy stored is optimized and the 

use of the brakes is reduced when the KERS activates. It has been shown, 

using a simplified representation, what the impact of the KERS is, and how it 

combines with the friction brakes. A more realistic representation of the system 

is achieved by combining the more realistic models developed in Chapter 2 with 

the inclusion of the friction brakes. This result is however not yet verified with 

Dynamic Programming since the additional control variable requires further 

modification, as well as a somewhat different approach from the strategy 

developed this far. 
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4.4 Optimal Control Summarizing Table and Practical Implementation 

 

Summarizing Table 

Table 4.11 shows a compact summary of the different optimal control 

objectives, emphasising their applications and stating their cost functions. 

 

Control 

Objective 
Description Cost Function 

General form 

 Minimization of the 

state and control 

variables is possible 

as well as time 

 An desired final state 

value can be included 

       ff

t

t
ttxhdtttutxfJ

f

o

,,,0    

Time 

Optimization 

 Minimization of the 

time to meet the 

boundary conditions 

and specifications 

 
f

o

t

t
dttfJ 0

 

“Fuel” 

Optimization 

 Minimization of the 

control variable 

 Final time can be 

fixed or free 

  
f

o

t

t
dttufJ 0  

Table 4.11Summary of the optimal control performance criteria measurements 

 

It is important to mention that for the KERS applications included in this chapter 

the “Fuel” Optimization strategy (equation (4.8)) is used to obtain a control with 

smooth changes of the gear ratio, and the General form (equation (4.48) is used 

to maximize the energy stored in the flywheel. 

 

Practical Implementation 

The discussion of this chapter has focused on two optimal control 

methodologies, namely discrete Dynamic Programming, and the Pontryagin’s 

Maximum Principle; which along with other modern control methodologies that 

are used in new technologies, require a heavy computational effort to find the 
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desired control strategies. This makes the online implementation virtually 

impossible and for this reason, in a good deal of cases the control solutions 

would be found offline leading to a practical implementation via Lookup Tables 

or Path Tracking strategies. 

 

4.5 Conclusions of the findings in Chapter 4 

The conventional Optimal Control strategies of Pontryagin’s Maximum Principle, 

and Dynamic Programming have been successfully implemented for a flywheel-

based KERS with a CVT application. The implementation of Dynamic 

Programming based on the strategy developed in Chapter 3 (inverting Runge 

Kutta integration method) needed further investigation and development, since 

results were unsatisfactory for this application, the conclusion that the recursive 

characteristics used in the Runge Kutta algorithm, in addition to the nonlinear 

characteristics of the system, increased the possible values that the control 

variable could take was drawn, and indeed shown. The Modified Euler method 

was implemented and tested giving successful results and the improved 

discrete Dynamic Programming strategy was updated to use this method to do 

the inversion in the integration procedure. The results obtained for a simplified 

model and a friction based model, were contrasted between the optimal control 

strategies, showing consistency in the trajectories but discrepancies in the 

control variable. But also incurring differences in the performance index. At the 

end of this Chapter a two-input simplified flywheel-based KERS with a CVT was 

developed to show clearly an energy optimization case, the two inputs 

represents the combination of using the KERS with friction brakes. The 

advantages and disadvantages of the two conventional Optimal Control 

strategies can be seen in the chapter. Pontryagin’s Maximum Principle can 

easily lead to laborious algebraic operations, and for different models or 

different optimization requirements, the strategy has to be implemented from 

the start. On the other hand, Dynamic Programming needs very little 

modification. The results obtained from the improved discrete Dynamic 

Programming were accurate, despite the fact that the control obtained does not 

always follow very closely to the Pontryagin’s Maximum Principle solution, the 

behaviour of the state trajectory is satisfactory. The developed strategy is not 

only accurate but converges for a much reduced number of time steps. With 
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further development of this Dynamic Programming method it should prove 

appropriate for use on more realistic optimal energy management of KERS 

provided there are not too many states in the overall model. 
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5. ASSESMENT OF OPTIMAL CONTROL STRATEGIES FOR A 
FLYWHEEL-BASED KERS WITH A CVT 
 
Full implementation of conventional Optimal Control strategies for flywheel-

based KERS with a CVT has been achieved in Chapter 4. In this Chapter, a 

comparison with a more conventional classical control strategy is made. The 

system models are implemented in Matlab-Simulink and verified using results 

from Chapter 4. Two controllers (namely a proportional (P), and a proportional 

plus ‘integral’ (PI)) are tuned to meet the boundary conditions. The results are 

evaluated and compared with the optimal control solutions obtained in Chapter 

4. 

 

5.1 Flywheel-based KERS with a CVT - modelling in Matlab-Simulink 

The simplified flywheel-based KERS with a CVT model described in Chapter 2 

(and reduced in Chapter 4 to equations (4.5), (4.6) and (4.7)) is considered for 

implementation in Matlab-Simulink for classical control purposes. The system 

state space form is given as follows: 

 

   ttx w1         (5.1) 

and 

     
     

 txJJ

txtxtuJ
ttxtf

fw

f

w

2

5.0

21

11



      (5.2) 

and 

       txtutxtf 5.0

222 2        (5.3) 

 

The system of equations (5.1), (5.2) and (5.3) are close in definition to what is 

called a bilinear system. Elliot (2009) states “the word bilinear means that the 

velocity contains a ux  term but is otherwise linear in x  and u . In this case, the 

system is linear in u  but non-linear in x . Therefore, the approach to simulate 

the control of this problem is achieved using the Matlab tool Simulink. 

 

Figure 5.1 shows the block diagram representation of the system described 

before. 
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Figure 5.1 Block Simulink diagram for the simplified flywheel-based KERS with a 

CVT 

 

 

The model shown in Figure 5.1 is verified using the results from figure 4.1, 

where a constant control  tu  of magnitude 6197.0  was found to drive the 

system from the initial conditions    Ttx 1600  to the final conditions 

   Tftx 10610 . The results are shown in figures 5.2 and 5.3, and the systems 

specifications are drawn from Table 4.1. 
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Figure 5.2 Angular speed trajectory to validate the systems representation using 

Simulink 

 

 
Figure 5.3 Gear ratio squared trajectory to validate the systems representation 

using Simulink 

 

Figures 5.2 and 5.3 show that the boundary conditions specified are met and 

with this the model can be verified. 

 

With the verification of the system complete, the necessary modifications can 

be made in order to implement a classical control controller. 
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5.2 Classical Control implementation for simplified and friction flywheel-
based KERS with a CVT 
 

Here both the Simplified KERS model of Chapter 2 and the KERS model with 

friction are examined. 

 
A Comparison using the simple model in the Fuel-optimal-control problem 

The system implemented in Simulink is slightly modified for control purposes, 

this is shown in figure 5.4. The block that contains the input variable  tu  is 

replaced by a “summing point” and a PID controller block. The systems 

requirement is to drive a vehicle from given initial speed to a specified final 

speed. Therefore, the signal representing  tx1  is connected to the summing 

point, thereby closing the loop (feedback control). The other input to the 

summing point is given by a set up reference (in this case the final condition for 

 
ftx1 ). The output of the summing point is connected to the PID controller and 

its output is used as the input variable. 

 

 

 
Figure 5.4 Block Simulink diagram for the simplified flywheel-based KERS with a 

CVT using a PID controller. 
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The PID controller is set up with the values given in Table 5.1. It can be seen 

that only the proportional constant is used for this example making it a P 

controller. 

 

PID gain values 
Case 1 

Kp -0.1 

Kd 0 

Ki 0 
 

Table 5.1 The proportional (P) controller gain 

 

The results are shown in figures 5.5, 5.6, and 5.7, including a comparison with 

the optimal control solution obtained in Chapter 4. 

 

 

 

 
Figure 5.5 Control comparison – P Controller and Pontryagin Maximum Principle 

solutions (J=483) 
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Figure 5.6 Angular speed comparison – P Controller and Pontryagin Maximum 

Principle solutions 

 

 
Figure 5.7 Gear ratio squared comparison – P Controller and Pontryagin 

Maximum Principle solutions 

 

The results in figure 5.6 show a very rapid response from the controller, getting 

very close to the target in about five seconds but rapidly becoming steady and 

incurring a steady state error. Therefore, the results for the gear ratio in figure 

5.7 also have steady state error. The control found in figure 5.5 shows a very 

high input at the beginning that decreases with time. The evaluation of the 

0 5 10 15
10

15

20

25

30

35

40

45

50

55

60
Angular Speed Path Comparison

time [s]

A
n
g
u
la

r 
S

p
e
e
d
 

w
 (

x
1
)

 

 

Pontryagin's Maximum Principle

P Controller

0 5 10 15
0

20

40

60

80

100

120
Optimal Gear Ratio Squared Path Comparison

time [s]

G
e
a
r 

R
a
ti
o
 S

q
u
a
re

d
 (

G
2
) 

(x
2
)

 

 

Pontryagin's Maximum Principle

P Controller



128 
 

 
 

performance index produced a much larger value than using optimal control via 

Pontryagin’s Maximum Principle. 

 

It is clear from the results (and is indeed well-known) that a proportional 

controller cannot drive the system to the specific target.  

 

A proportional-integral (PI) controller is now considered for implementation. The 

integral feature introduced in the controller reduces, or eliminates, the steady 

state error. The controller gains are shown in Table 5.2, where the proportional 

gain is reduced in order to smooth the shape of the control to reduce the control 

cost control. The constant of integration was tuned to meet the boundary 

conditions. 

 

PID gain values 
Case 2 

Kp -0.05 

Kd 0 

Ki 0.003 
 

Table 5.2 The proportional-integral (PI) controller gains 

 

The results are shown in figures 5.8, 5.9, and 5.10 

 
Figure 5.8 Control comparison – PI Controller and Pontryagin Maximum Principle 

solutions (J=317) 
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Figure 5.9 Angular speed comparison – PI Controller and Pontryagin Maximum 

Principle solutions 

 

 
Figure 5.10 Gear ratio squared comparison – PI Controller and Pontryagin 

Maximum Principle solutions 

 

It can be seen from figures 5.9 and 5.10 that the boundary conditions are met. 

The control shown in figure 5.8 starts from a value near to 2.5 and decreases 

with time, the performance index is 317, which is still far above from the value of 

230 obtained from Pontryagin’s Maximum Principle. 
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The implementation of a PI controller using Matlab-Simulink shows no 

improvement respect to the ‘fuel-optimal’ control solution obtained with the 

conventional strategies. The PID controller is therefore not considered for 

implementation since the results suggest that the best solution would be to 

explore the tuning combinations of the proportional and integral constants; the 

derivative part of a controller contributes to a faster response but also suggests 

much higher costs. 

 

A Comparison using the friction model in the energy-optimal-control 
problem 
 

As part of the assessment of the optimal control strategies implemented in 

Chapter 4, the energy-optimal control is now considered. The system shown in 

figure 5.4 is modified to include the friction of the rotating elements (traction 

wheel and flywheel). The block diagram of the friction flywheel-based KERS 

with a CVT is shown in figure 5.11 

 

 

Figure 5.11 Block diagram of the friction flywheel-based KERS with a CVT using 
Simulink 
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A proportional controller is again tuned to meet the boundary conditions in this 

energy-optimal control problem. The parameters for the controller are shown in 

Table 5.3. 

 

 

PID gain values 
Case 3 

Kp -0.151 

Kd 0 

Ki 0 
 

Table 5.3 The proportional (P) controller gain 

 

The results are shown in figures 5.12, 5.13, and 5.14. 

 

 

 

 
Figure 5.12 Control comparison – P Controller and Pontryagin Maximum 

Principle solutions 
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Figure 5.13 Angular speed comparison – P Controller and Pontryagin Maximum 

Principle solutions 

 

 
Figure 5.14 Gear ratio squared comparison – P Controller and Pontryagin 

Maximum Principle solutions 

 

Figure 5.12 shows that the proportional controller generates a solution relatively 

close to the optimal control. In figures 5.13 and 5.14 it can be seen that the 

boundary conditions are met, and for the speed comparison the system is 

driven very closely to the optimal path. However, for the energy storage 

optimization the final gear ratio is lower than the optimal. 
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For the friction model, the proportional controller shows a good response, 

relatively close to the optimal. But the energy optimization is not achieved, 

which suggests that modification to the gain and the introduction of an integral 

gain would help to achieve this. 

 

A PI controller is now considered, although a higher gain in the proportional 

controller seems to represent a higher control variable and therefore an 

increment in the energy stored, it is not necessarily the case and the possibility 

is shown. The controller parameters are shown in Table 5.4: 

 

PID gain values 
Case 4 

Kp -0.2 

Kd 0 

Ki 0.04 
 

Table 5.4 The proportional-integral (PI) controller gains 

 

The results and comparison with the optimal solution are shown below in figures 

5.15, 5.16, and 5.17. 

 

 

 
Figure 5.15 Control comparison – PI Controller and Pontryagin Maximum 

Principle solutions 
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Figure 5.16 Angular speed comparison – PI Controller and Pontryagin Maximum 

Principle solutions 

 

 
Figure 5.17 Gear ratio squared comparison – PI Controller and Pontryagin 

Maximum Principle solutions 
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seen that the energy optimization was not achieved. 
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The negative value for the control means that the KERS is using the energy 

stored to compensate for friction losses, actually causing the energy stored to 

drop. Therefore to consider friction losses and to maximize the energy stored, is 

not at all a straight forward task in the parameter selection for classical control 

strategies implementation thereby giving justification to the use of optimal 

control. 

 

5.3 Conclusions of the findings in Chapter 5 

The comparison between optimal control solutions and classical control 

implementation has been successfully achieved. The optimal control solutions 

show better performance. However, the tuned classical PI control strategy 

responds well considering that no explicit optimization was specified, especially 

for the simplified system. It can be noted that the more specifications there are 

applied to the system, the more limited a classical control strategy will be. 

 

The relatively easy implementation of classical control theory shows the reason 

for its wide use; however in this Chapter some of the classical control theory 

limitations have been highlighted. This was clearly shown when using a 

performance criterion that involves the minimization of the control variable or 

the maximization of the energy stored in the KERS; also, the ‘two-inputs’ 

system shown in Chapter 4 could not be implemented by following simple 

classical control procedures. On the other hand, the use of optimal control 

strategies shows a good response given the systems behaviour requirements 

and performance criterion, this is clearly seen since both the smoothness of the 

control and the energy maximization have been achieved. Although optimal 

control strategy implementation is more complicated than for the classical 

approach, it shows some benefits, especially in terms of the desired 

performance, which means that optimal control theory can be considered for 

modern systems which have more complex demands. 
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6. CONCLUSIONS AND FUTURE WORK 
 
6.1 Conclusions 

The overall aim of this thesis was to develop and determine an appropriate 

optimal control methodology for a flywheel-based Kinetic Energy Recovery 

System (KERS). This was to be achieved through the identification and 

selection of a simple but representative system model, and the implementation 

of conventional optimal control strategies. An assessment of an optimal KERS 

control implementation involving a comparison with a non-optimal strategy has 

been made, in order to show the benefits and potentials of optimal control. 

 

A number of flywheel-based KERS driven via a CVT model have been 

evaluated, via kinematic and dynamic models analysis, and appropriately 

modified to suit the control requirements. This representation includes an ideal 

model, two friction based models (for ball bearings, and magnetic bearings), 

and an extended model including a hydraulic actuator acting on a pulley-based 

CVT (which is included to contrast simplified models with a more realistic 

version). The models shown are representative when compared with the 

models currently used in relevant literature. 

 

In order to build up a suitable optimal control strategy, the theory was briefly 

compared with classical control theory, and then detailed implementation was 

made (for a second order oscillator) using the two most common optimal control 

methodologies, namely Pontryagin’s Maximum Principle, and Dynamic 

Programming. This implementation showed the challenges that each 

methodology presented, with particular emphasis placed on the potential of 

Dynamic Programming because of its ability to provide both necessary and 

sufficient conditions for optimality, whereas Pontryagin’s Maximum Principle 

only provides necessary conditions. Owing to the limitations of standard 

Dynamic Programming, a new improved discrete time version was developed 

and implemented. This modified version finds a solution to the problems arising 

with the interpolation strategies that are normally present in standard Dynamic 

Programming. The developed strategy achieves higher accuracy by finding the 

control parameters at each iteration, which is achieved by inverting the 
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integration process. An Euler numerical integration method is first implemented, 

where piece-wise constant control is assumed. However, it was found that the 

Euler method converges only for a very high number of time steps, introducing 

errors for a reduced number of time steps. For this reason, the Runge Kutta 

numerical integration method was implemented, where constant control 

between sample points was initially assumed but where piece-wise linear 

control between sample points was ultimately considered. It was demonstrated 

that working with constant control is insufficient because, by introducing a 

recursive method (such as the Runge Kutta scheme) the system becomes 

oversubscribed and has to be solved via a least square method. But even when 

use of constant control seemed promising in following a known trajectory, the 

solution was compromised when implemented in full Dynamic Programming. 

Implementation of full Dynamic Programming (in a so called improved modified 

version) was successfully achieved by inverting the Runge Kutta numerical 

integration method and assuming piece-wise linear control. This strategy 

showed high accuracy, and very good computational efficiency but only for 

application to a linear oscillator optimal control problem. 

 

When the developed modified Dynamic Programming methodology, and 

Pontryagin’s Maximum Principle, were applied to the control of a flywheel-based 

KERS with a CVT, the modified version of Dynamic Programming was found to 

need further development. The conclusion drawn from several different 

numerical experiments was that the recursive feature of the Runge Kutta 

numerical integration method, increases the number of possible solutions 

needed to find the control. For this reason, the Modified Euler method was 

considered instead and tested, giving very successful results. 

 

Full implementation of the improved modified version of Dynamic Programming 

was undertaken, and the results were compared to these obtained using the 

Pontryagin’s Maximum Principle and showed general consistency. Some, 

Dynamic Programming derived control variables show unwanted oscillatory 

behaviour which are dependent on the discretization, but show high accuracy 

with a reduced number of time steps can still be achieved. 
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A simplified model for the KERS was used to explore control variable 

optimization, and a more realistic KERS model (including friction) was used to 

explore energy optimization. It is found that Pontryagin’s Maximum Principle 

requires quite laborious algebraic manipulations, but also that for use with 

different models, or for application with different optimal control objectives, a 

complete reformulation of the problem is needed. By contrast, Dynamic 

Programming needs very little modification even for quite different models, 

except when the system order or the number of inputs are increased. The 

improved modified version of Dynamic Programming generally proves to be 

accurate and shows convergence for reduced number of time steps. 

 

In order to assess the application of optimal control theory to a flywheel-based 

KERS with a CVT, a brief comparison with classical control was undertaken. 

Both simplified and more realistic models are implemented in Matlab-Simulink, 

and appropriate controllers are tested. The controllers used are proportional (P) 

control, and proportional plus ‘integral’ (PI) control; both are implemented and 

tuned manually to meet specific system requirements. The comparison with the 

results obtained from the optimal control implementation showed the benefits of 

using optimal control strategies. For the simplified model (used for control 

variable optimization), the P controller produces steady state errors, whereas 

the PI gives an accurate sub-optimal response. In the example, the PI controller 

can be tuned without major difficulty to have a sub-optimal response. In the 

case of a more realistic model (used for energy optimization), it is possible to 

tune the P controller to meet the boundary conditions giving a reasonable non-

optimal solution. This is also true for the PI controller. However, if the controller 

parameters are to be tuned for energy optimization, a major challenge arises 

since various considerations must be taken into account. The results confirm 

that the optimal control significantly improves the system response compared to 

application of classical control strategies. 

 

The development and implementation of an Optimal Control strategy for a 

flywheel-based KERS with a CVT was therefore successful. However, the 

results from the study have identified further research. 
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6.2 Future Work 

As mentioned, improvement in the developed modified Dynamic Programming 

is needed, especially to make the control variable smoother. A study of 

potential, of imposing continuity conditions was initiated but has not yet been 

applied to full Dynamic Programming. Also, a reduced “first time step iteration” 

is worthy of further investigation. This would increase the accuracy of the 

response considerably reducing the oscillations. For non-linear systems, a non-

uniform discrete mesh (i.e. a non-linear mesh) could improve computational 

efficiency. The possibility of having different mesh size gets benefit in using the 

developed modified Dynamic Programming, and this potentially could lead to a 

time variant mesh size; which can be developed into an adaptive Dynamic 

Programming algorithm. 

 

A more realistic optimal control approach is also needed. This includes working 

with more realistic system requirements (such as braking time and vehicle 

speeds), and the addition of more realistic friction brake models for the system. 

 

Finally the comparison of fully developed optimal control strategies with more 

realistic classical nonlinear control approaches would be more appropriate to 

assess the system performance and the benefits of using optimal control for a 

KERS. 
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APPENDIX A 
 
Algorithms for numerical integration of Ordinary Differential Equations 

Here three algorithms for numerical integration of ODEs are summarised. 

These algorithms are used in the optimal control application using Dynamic 

Programming. The algorithms are taken from O’Neil (1995). The general initial 

value problem is to integrate the first order system of ODEs defined as: 

 

 yxfy ,          (A.1) 

 

With initial conditions   00 yxy  . Where the independent variable x , dependent 

variable y  are in general vector quantities which covers a system of differential 

equations. 

 

Euler Method 

The definition of 1ky  in terms of ky  is given as: 

 

 kkkk yxhfyy ,1        (A.2) 

 

for 1...,,2,1,0  nk , and   00 yxy   

 

Modified Euler Method 

The definition of 1ky  in terms of ky  is given as: 
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for 1...,,2,1,0  nk , and   00 yxy   

 

Runge-Kutta Method (RK4) 

The definition of 1ky  in terms of ky  is given as: 
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where h represents the increments of the independent variable and the terms 

are given as follows, for the first term: 

 

kk fW 1         (A.5) 

 

for the second term 
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for the third term 
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finally, for the fourth term 

 

 34 , kkkk hWyhxfW        (A.8) 

 

for 1...,,2,1,0  nk , and   00 yxy   

 

End Appendix A 
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