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SUMMARY

A major theme in geometric measure theory is establishing global properties, such as

rectifiability, of sets or measures from local ones, such as densities or tangent measures. In

establishing sufficient conditions for rectifiability it is useful to know what local properties

are possible in a given setting, and this is the theme of this thesis.

It is known, for 1-dimensional subsets of the plane with positive lower density, that the

tangent measures being concentrated on a line is sufficient to imply rectifiability. It is

shown here that this cannot be relaxed too much by demonstrating the existence of a

1-dimensional subset of the plane with positive lower density whose tangent measures are

concentrated on the union of two halflines, and yet the set is unrectifiable.

A class of metrics are also defined on R, which are functions of the Euclidean metric, to

give spaces of dimension s (s > 1), where the lower density is strictly greater than 21−s,

and a method for gaining an explicit lower bound for a given dimension is developed. The

results are related to the generalised Besicovitch 1
2 conjecture.

Set functions are defined that measure how easily the subsets of a set can be covered by

balls (of any radius) with centres in the subset. These set functions are studied and used

to give lower bounds on the upper density of subsets of a normed space, in particular

Euclidean spaces. Further attention is paid to subsets of R, where more explicit bounds

are given.
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Chapter 1

Introduction and Background

1.1 Introduction

This thesis is concerned with the small-scale measure theoretic properties of various sets

and spaces. Also of interest is how these local properties relate to global properties, such

as rectifiability. In this chapter we develop this and introduce the fundamental concepts

that we will use throughout the rest of thesis.

The remaining three chapters are all connected with this theme but are fairly independent

of each other. In Chapter 2 we give an example of an unrectifiable set with fairly regular

tangent measures, which serves to give a limit on how far rectifiability theorems involving

tangent measures can be improved. In Chapter 3 we give an example of an unrectifiable

metric space with particularly high lower density, again this limits how far rectifiability

theorems can be improved, but in this case with reference to lower densities. In Chapter

4 we develop actual bounds on what values for upper densities are possible.

Most of the results in this chapter are based on those in Mattila’s book, [19], with some

further references to Federer’s book, [14]. For brevity, only results from other sources will

be individually referenced.
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1.2 Measures

In this section, we will reproduce some basic definitions and results from measure theory

that we will use throughout this thesis. We begin with σ-algebras.

Definition 1.2.1 Let X be some set. Then we say that A ⊆ P (X) is a σ-algebra if and

only if

(i) ∅ ∈ A

(ii) A ∈ A ⇒ X\A ∈ A

(iii) {Ai}i∈N ⊆ A ⇒
⋃
i∈NAi ∈ A

Proposition 1.2.2 If A,Ai ⊆ P (X) are σ-algebras then

(i) X ∈ A

(ii) {Ai}i∈N ⊆ A ⇒
⋂
i∈NAi ∈ A

(iii) P (X) is a σ-algebra

(iv)
⋂
iAi, where i ranges over some (possibly uncountable) set, is a σ-algebra.

Properties (iii) and (iv) above ensure that following is well defined.

Definition 1.2.3 If X is a topological space, then its Borel sets are the smallest σ-algebra

of X containing all of its open sets.

For a definition of a measure, we will use what is sometimes referred to as an outer measure.

This will be be useful as we will often only require subadditivity and the restriction to a

σ-algebra of sets would be inconvenient.

Definition 1.2.4 Let X be some set. Then we say µ : P (X) → [0,∞] is a measure if

and only if

(i) µ (∅) = 0 (null empty set)

(ii) A ⊆ B ⇒ µ (A) 6 µ (B) (monotone)
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(iii) µ
(⋃

i∈NAi
)
6
∑

i∈N µ (Ai) (countably subadditive)

In which case we call (X,µ) a measure space and, if (X, d) is a metric space, then we call

(X,µ, d) a metric measure space.

Furthemore, we say that µ is finite if and only if µ (X) < ∞ and σ-finite if and only if

there exist {Ai}i∈N ⊆ P (X) such that, for all i ∈ N, µ (Ai) <∞ and
⋃
i∈NAi = X.

Definition 1.2.5 We say that A ⊆ X is µ-measurable if and only if for every E ⊆ X

µ (E) = µ (E ∩A) + µ (E\A) .

We say a function f : (X,µ) → (Y, ν) is measurable if and only if for every set A ⊆ Y

which is ν-measurable we have that f−1 (A) is µ-measurable.

Proposition 1.2.6 Let (X,µ) be a measure space and M the collection of µ-measurable

sets.

(i) M is a σ-algebra,

(ii) µ (A) = 0⇒ A ∈M,

(iii) if {Ai}i∈N ⊆M is such that i 6= j ⇒ Ai ∩Ai = ∅ then µ
(⋃

i∈NAi
)

=
∑

i∈N µ (Ai),

(iv) if {Ai}i∈N ⊆M is such that, for all i ∈ N, Ai ⊆ Ai+1, then

µ

(⋃
i∈N

Ai

)
= lim

i→∞
µ (Ai) ,

(v) if {Ai}i∈N ⊆M is such that, for all i ∈ N, Ai ⊇ Ai+1 and µ (A1) <∞, then

µ

(⋂
i∈N

Ai

)
= lim

i→∞
µ (Ai) ,

(vi) a function f : X → [−∞,∞] is measurable if and only if for any a ∈ R we have

f−1 ([−∞, a]) ∈M.
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Statement (iii) in Proposition 1.2.6 indicates that our chosen definition of a measure is not

much of a restriction, especially when one considers that an additive set function defined

on a σ-algebra can be extended to a measure simply by taking the infimum of the value

of that function for supersets in the σ-algebra.

In particular, Lebesgue measure, which we denote L on R and Ln on Rn, extends in this

fashion and retains its usual properties, except countable additivity, which it retains on

Lebesgue measurable sets.

Furthermore, if we restrict ourselves to measurable functions integrated over measurable

sets, then integration retains all of its usual properties when applied to measures as defined

in this thesis.

The notion of a measure is often too general for many of the standard results that will be

needed, as well as for those proved in this thesis. We therefore define the following classes

of measures.

Definition 1.2.7 Let X be a topological space, µ a measure on it, and M the collection

of its measurable sets. Then,

(i) if M contains all of the Borel sets of X then µ is called Borel,

(ii) if µ is Borel and for every A ⊆ X there exists a Borel set B such that A ⊆ B and

µ (A) = µ (B), then µ is called Borel regular,

(iii) if X is Hausdorff and locally compact, µ is Borel, and

(a) K ⊆ X is compact ⇒ µ (K) <∞,

(b) for every open set U ⊆ X we have µ (U) = sup {µ (K) : K ⊆ U,K is compact},

and

(c) for every A ⊆ X we have µ (A) = inf {µ (U) : U ⊇ A,U is open},

then µ is called a Radon measure,

(iv) if X is a metric space and for every x ∈ X there exists r > 0 such that µ (B (x, r)) <

∞ then µ is called locally finite.
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We note that a Radon measure is also Borel regular and that L and Ln are examples of

Radon measures.

Since this thesis is in the field of geometric measure theory, it will, of course, be using

measure theory to study the properties of certain sets. Thus the concept of restricting a

measure to a set, and the closely related notion of the support of a measure, are central.

Definition 1.2.8 Given a measure space (X,µ) where X is a topological space, we define

the support of µ, supp (µ) to be X\
⋃
{U : U is open, µ (U) = 0}

Proposition 1.2.9 If (X,µ) is a measure space where X is a separable metric space and

µ is Borel, then supp (µ) is a closed set with µ (X\supp (µ)) = 0, furthermore it is the

intersection of all such sets.

Definition 1.2.10 Given a measure space (X,µ) and a set A ⊆ X then we define the

restriction of µ to A, written µxA, by

µxA (E) = µ (E ∩A)

Proposition 1.2.11 Let (X,µ) be a measure space and A ⊆ X. Then,

(i) µxA is a measure,

(ii) if X is a topological space, µ (A) <∞ and µ is Borel regular, then µxA is also Borel

regular, and

(iii) if E ⊆ X is µ-measurable, then it also µxA-measurable.

The following are extremely useful tools and will be applied in many of the proofs in this

thesis.

Theorem 1.2.12 Let µ be a Borel regular measure on a metric space X, A ⊂ X a µ-

measurable set, and ε > 0. Then,

(i) if µ (A) <∞ then there exists a closed set C ⊆ A such that µ (A\C) < ε,

(ii) if there exists {Ui}i∈N ⊆ P (X) such that, for all i ∈ N, Ui is open and µ (Ui) <∞,

and A ⊆
⋃
i∈N Ui then there exists an open set U ⊇ A such that µ (U\A) < ε.



11

Corollary 1.2.13 Let µ be a measure on a Rn. Then,

(i) if µ is Borel regular, A ⊂ X is a µ-measurable set with µ (A) < ∞, then for any

ε > 0 there exists a compact set K ⊆ A such that µ (A\K) < ε,

(ii) µ is a Radon measure if and only if it is Borel regular and locally finite.

1.3 Hausdorff Measure and Dimension

We are now ready to define Hausdorff measure, the predominant measure of study in this

thesis. All of the results that follow in this section are fairly standard and are either

explicitly stated or immediate consequences of results in [19].

Definition 1.3.1 Let X be a separable metric space, s ∈ [0,∞), δ ∈ (0,∞] and E ⊆ X.

Then we define

Hsδ (E) = inf

{∑
i∈N

(diamEi)
s : E ⊆

⋃
i∈N

Ei,diamEi < δ

}
,

interpreting 00 = 1 with the exception diam (∅)0 = 0.

We may now define the s-dimensional Hausdorff measure by

Hs (E) = lim
δ↓0
Hsδ (E) .

Proposition 1.3.2 With the notation above,

(i) Hsδ is a well defined measure on X, and the covering sets used in Definition 1.3.1

may be restricted to open sets, closed sets, or, if X is a normed space, convex sets

without changing the resultant set function,

(ii) if 0 < δ1 < δ, then Hsδ1 (E) > Hsδ (E),

(iii) Hs is a well defined Borel regular measure on X,

(iv) if X is a normed space, x ∈ X and E ⊆ X then Hsδ (E + x) = Hsδ (E) and

Hs (E + x) = Hs (E), that is Hsδ and Hs are translation invariant,
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(v) if X is a normed space and λ ∈ (0,∞) then Hsδ (λE) = λsHsδ (E) and Hs (λE) =

λsHs (E),

(vi) for any E ⊆ X, H0 (E) = # (E), and

(vii) if X = Rn, then Hn = 2−nα (n)Ln, where α (n) is the volume of a unit ball in Rn.

Hausdorff measure is an example of Carathéordory’s construction of a measure, which

is used to define a whole class of Borel regular measures using coverings of decreasing

diameter. The reason these measures are Borel is due to Theorem 1.3.3, below; they are

regular simply because of the way that they are defined using covering sets.

Theorem 1.3.3 Let (X,µ, d) be a metric measure space. Then, µ is a Borel measure if

and only if for every A,B ⊆ X such that d (A,B) > 0 we have

µ (A ∪B) = µ (A) + µ (B) .

Hausdorff measures are used to give a notion of dimension to a set or space. There are

many different types of dimension with differing definitions, but Hausdorff is probably the

most used in geometric measure theory, and the only one that will be used in this thesis.

Definition 1.3.4 Let X be a separable metric space and E ⊆ X. Then we define the

Hausdorff dimension of E to be

inf {s ∈ [0,∞) : Hs (E) <∞} .

Definition 1.3.5 We call A ⊆ X an s-set if and only if it is Hs-measurable and 0 <

Hs (A) <∞.

Proposition 1.3.6 Let X be a separable metric space, and s ∈ [0,∞). Then,

(i) if E ⊆ X has a Hausdorff dimension of s then Ht (E) = ∞ for all t < s and

Ht (E) = 0 for all t > s,

(ii) an s-set has Hausdorff dimension s, and

(iii) if E ⊆ X is an s-set, then HsxE is a finite Radon measure on X.
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We now have all that we need to formulate a suitable definition of rectifiability. Rectifi-

ability will not so often be used in the content of this thesis, indeed most of the objects

discussed are not rectifiable. But it does, as we shall see, provide a major motivation for

the material.

Definition 1.3.7 Let X be a separable metric space and n ∈ N. Then, we say that a set

E ⊆ X is Hn-countably n-rectifiable (henceforth n-rectifiable or just rectifiable) if and only

if there exists {fk}k∈N such that

(i) fk : Rn → X is a Lipschitz function, for every k ∈ N, and

(ii) Hn
(
E\
⋃
k∈N fk (Rn)

)
= 0.

We say that a measure µ on Rn is n-rectifiable if and only if there exist a Borel function

f such that

µ (A) =

∫
A
f dHnxE,

where E is an n-rectifiable set.

On the other hand we say that a set (or measure) is unrectifiable if it is not rectifiable,

and purely unrectifiable if it intersects any n-rectifiable set in an Hn-negligible set.

Lipschitz functions are the most convenient for use in geometric measure theory, but it is

worth noting that an equivalent definition may be given using continuously differentiable

functions instead. This helps to emphasise why the concept is so useful, as it provides a

notion that is applicable to measure theory which represents what may be thought of as a

physically meaningful solution to a problem. Areas in which such problems occur include

material science, liquid crystals and image analysis; a good source for more examples with

a fuller treatment is [1].

1.4 Densities

Along with tangent measures, densities are one of the fundamental objects of study in this

thesis. We only present here the definitions that we will be using and a few basic results,

which will be used in the later chapters.



14

Definition 1.4.1 Given a measure, µ, and s > 0, we define the s-dimensional upper and

lower densities of µ at the point x by

Ds (µ, x) = lim inf
r↓0

µ (Br (x))

(2r)s

and

D
s

(µ, x) = lim sup
r↓0

µ (Br (x))

(2r)s

respectively. Where these values coincide, we may define the density µ at x by

Ds (µ, x) = lim
r↓0

µ (Br (x))

(2r)s
.

Since we are primarily concerned with Hausdorff measures restricted to a certain set, it

will be convenient to also define the density of a set at a point.

Definition 1.4.2 We define the s-dimensional upper and lower densities of a set E at a

point x by

Ds (E, x) = lim inf
r↓0

HsxE (Br (x))

(2r)s

and

D
s

(E, x) = lim sup
r↓0

HsxE (Br (x))

(2r)s

respectively. Again, where these values coincide, we define the density of E at x by

Ds (E, x) = lim
r↓0

Hs (Br (x))

(2r)s
.

The above definition would work equally well if we were to use closed balls instead of open.

We will use these interchangeably, as is most convenient, throughout the thesis.

Proposition 1.4.3 With the notation above, we have

Ds (µ, x) = lim inf
r↓0

µ
(
Br (x)

)
(2r)s

,
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D
s

(µ, x) = lim sup
r↓0

µ
(
Br (x)

)
(2r)s

,

Ds (E, x) = lim inf
r↓0

HsxE
(
Br (x)

)
(2r)s

,

and

Ds (E, x) = lim sup
r↓0

HsxE
(
Br (x)

)
(2r)s

.

We give an upper bound to the upper density of sets. We will look at lower bounds on

upper density in Chapter 4 and lower densities in Chapter 3.

Theorem 1.4.4 Let X be a separable metric space and E ⊆ X be an s-set. Then,

D
s

(E, x) 6 1,

for Hs-almost every x ∈ X.

One of the reasons that densities are of so much interest is because of their relationship

to rectifiability. The following theorem is an example of this.

Theorem 1.4.5 Let E ⊆ Rn be an k-set for some integer 0 6 k 6 n. Then E is

k-rectifiable if and only if Dk (E, x) exists and has equality with 1 for Hk-almost every

x ∈ E. Furthermore, Ds (E, x) exists and takes a positive, finite value for Hs-almost

every x ∈ E only if s is an integer.

Theorem 1.4.5 follows from the main result in [9]. The proof of the above was the result of

a long string of results culminating with a stronger result proved in a paper by Preiss, [21].

Earlier work was completed by Besicovitch, Marstrand and Mattila.

Theorem 1.4.5 does not generalise completely to metric spaces, and this is discussed further

in Chapter 3.

Theorem 1.4.6 below is a form of the Vitali covering theorem, as is presented in [19].

Although this does not relate specifically to densities, it is presented in this section as its

utility to this area is quite clear, and this is the only context in which it will be used in

this thesis.
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Theorem 1.4.6 Let µ be a Radon measure on Rn, E ⊆ Rn and

E ⊆
{
B (x, r) : x ∈ Rn, r ∈ (0,∞)

}
be such that

inf
{
r ∈ (0,∞) : B (x, r) ∈ E

}
= 0

for every x ∈ E. Then there exists a countable collection of disjoint sets, A ⊆ E, such that

µ

(
E\

⋃
A∈A

A

)
= 0.

Furthermore, if µ = Ln, then, for any ε > 0, A can be chosen such that

∑
A∈A
Ln (A) 6 Ln (E) + ε.

1.5 Tangent Measures

Tangent measures were first defined by Preiss in [21]. They represent what a measure looks

like on a small scale in much the same way that a classical tangent does for a smooth curve.

They do this by zooming in on a particular point and taking a limit. Therefore, before we

can give a formal definition of a tangent measure, we must first define a suitable form of

convergence.

Definition 1.5.1 A sequence of Radon measures, {µk}k∈N, on a metric space converges

weakly to a measure, µ, and we write µk
w→ µ if and only if, for every φ ∈ Cc (Rn), we

have
∫
φ dµn →

∫
φ dµ.

We mean by Cc (Rn) the space of all compactly supported continuous functions mapping

Rn to R.

Lemma 1.5.2 Let {µi}i∈N be a sequence of Radon measures and µ a Radon measure, all

on a locally compact metric space X, such that µi
w→ µ. Then, for any open set U ⊆ X
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and compact set K ⊆ X, we have

µ (U) 6 lim inf
i→∞

µi (U) ,

and

µ (K) > lim inf
i→∞

µi (K) .

We are now ready to formulate our definition of tangent measures. We assume from now

on that we are working in Euclidean space, Rn.

Definition 1.5.3 We let µ be a Radon measure on Rn and s > 0. We define the rescaled

measures µx,r by

µx,r (E) =
µ (rE + x)

rs
.

Then we say that a Radon measure ν is a tangent measure to µ at x if and only if there

exists a sequence {ri}i∈N ↓ 0 such that µx,ri
w→ ν as i→∞.

We denote the set of all such tangents of µ at x as Tans (µ, x).

Actually, the original definition of tangent measures was slightly more general in that the

normalisation is not restricted to be some power of the scaling ratio, but is an arbitrary

sequence converging to zero. This will not prove to be too much of a restriction for the

type of measures we will be looking at - that is, those with positive and finite upper and

lower densities - as the more general definition would only add scalar multiples (including

zero) to our tangent set.

As was the case with densities, tangent measures provide a characterisation of rectifiability.

The following theorem is based on a result presented in [9].

Theorem 1.5.4 Let E ⊆ Rn and 0 6 k 6 n be an integer. Then E is k rectifiable if and

only if there exists, for Hk-almost every x ∈ E, a k-dimensional plane L, such that

Tank
(
HkxE, x

)
=
{
HkxL

}
.
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The conditions on the tangent measures Theorem 1.5.4 can be relaxed significantly. The

extent to which this can be done is the topic of Chapter 2.

The following two results were proved originally proved in [21] and are presented for the

definition used here in [20].

Theorem 1.5.5 We let µ be a Radon measure on Rn and s > 0. Then Tans (µ, x) is

closed.

Theorem 1.5.6 We let µ be a Radon measure on Rn and s > 0. Then, for µ-almost

every x ∈ Rn, if ν ∈ Tans (µ, x) and a ∈ supp (ν) then

νa,1 ∈ Tans (µ, x) .

Since, for Hausdorff measures restricted to s-sets, the measure of a ball of radius r scales

with rs, we get the following corollary to Theorem 1.5.6.

Corollary 1.5.7 Let s > 0, E ⊆ Rn be an s-set. Then, for Hs-almost every x ∈ Rn, if A

is an s-set such that HsxA ∈ Tans (HsxE, x), a ∈ A and r > 0 then

Hsxr (A− a) ∈ Tans (HsxE, x) .

The following lemma follows from the more general Lemma 14.7 in [19], or immediately

from a result given in [20]. However, a standalone proof is given here for convenience and

to highlight some differences between the definition of tangent measures as defined here

and the originals. Indeed, this result would be false under Preiss’s original definition.

Proposition 1.5.8 Let ν ∈ Tans (µ, x). Then

Ds (ν, 0) > Ds (µ, x)

and

D
s

(ν, 0) 6 D
s

(µ, x) .
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Proof Pick (ri) such that µx,ri
w→ ν and then choose r0 > 0. Now

Ds (µ, x) = lim inf
r↓0

µ
(
Br (x)

)
(2r)s

6 lim inf
i→∞

µ
(
Br0ri (x)

)
(2r0ri)

s

= lim inf
i→∞

µx,ri
(
Br0 (0)

)
(2r0)

s

6
ν
(
Br0 (0)

)
(2r0)

s by Lemma 1.5.2.

But, since r0 is arbitrary, we conclude that Ds (ν, 0) > Ds (µ, x). A similar argument

using open balls gives D
s

(ν, 0) 6 D
s

(µ, x). �

Corollary 1.5.9 Let ν ∈ Tans (µ, x). Then

Ds (µ, x) > 0⇒ 0 ∈ supp (ν) .
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Chapter 2

Tangent Measures of a One

Dimensional Subset of R2

2.1 Introduction

In Chapter 1 we stated that rectifiability in Rn is essentially equivalent to all of the set’s

only tangent measure being a m-dimensional plane. Thus tangent measures can be used

as a means of establishing rectifiability. A natural question then follows: How far can the

conditions on the tangent measures be relaxed, whilst still ensuring rectifiability?

Since, in a rectifiable set, the tangents are planes anyway, the question essentially becomes

one on the existence of sets with certain kinds of tangents. We will be imposing a limit

on how far the result can be extended by demonstrating the existence of an unrectifiable

set with tangents that are somehow quite close to meeting known conditions for implying

rectifiability.

In this chapter we will only be looking at 1-dimensional subsets of R2, and so, for conve-

nience, we write Tan (µ, x) for Tan1 (µ, x).

We first state a result by O’Neil, presented in [20], which gives a positive result in this

matter.

Theorem 2.1.1 Let m,n ∈ N such that m 6 n. Then, if µ is a Radon measure on Rn
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such that, for µ-almost every x ∈ Rn,

(i) 0 < Ds (µ, x) 6 D
s

(µ, x) <∞, and

(ii) the projection of any ν ∈ Tans (µ, x) onto any m-dimensional subspace of Rn is a

convex set,

then µ is m-rectifiable.

The condition that µ be Radon is slightly stricter than in the original statement but is

sufficient for our purposes and avoids introducing new terminology.

In this chapter we will demonstrate, by an example based on a set originally defined by

Dickinson in [11], that the condition on the projections of tangent measures cannot be

weakened to the union of two convex sets. In particular the tangents of this unrectifiable

set consist of lines, halflines and the union of two halflines. This would seem to indicate

that the above theorem is somehow quite close to being optimal.

An example was given by De Lellis and Otto in [10] of a set whose tangents consist entirely

lines, halflines, segments, lines with a segment removed or the empty set, however the set

in question did not meet the other criterion as its lower density was zero at almost every

point.

2.2 Approximately Constant Functions

A convenient way of expressing the 1-dimensional subsets of R2 that we will be looking at

is expressing them as graphs of functions, and restricting 1-dimensional Hausdorff measure

to their graphs.

We will be using functions whose codomain is the set R∪{∞}. We are doing this as we are

only concerned as to whether a sequence of functions is unbounded, not whether it limits

to ∞, −∞ or both. It will soon become clear why this is the case. We use the obvious

arithmetic on this set, apart from ∞−∞ which we define to be zero; this is because the

sum will only ever be used to indicate that a function taking the value∞ has zero distance

from another function taking the same value, which is not unreasonable.



22

Definition 2.2.1 Let f : R→ R ∪ {∞} and S ⊆ R2 its graph, that is

S = {(x, f (x)) : x, f (x) ∈ R} .

Then we call H1xS the graph measure of f and denote it γf .

The types of functions that we are interested in are those that, despite having a fractal

structure, are in some sense quite flat locally. We formalise with the notion of approxi-

mately constant functions.

Definition 2.2.2 Let f : R → R ∪ {∞}. If for any given ε > 0 there exist −∞ = a0 <

a1 < . . . < an =∞ such that, for all 1 6 i 6 n,

sup
x∈[ai−1,ai]

f (x)− inf
x∈[ai−1,ai]

f (x) < εmin {ai − ai−1, 1} ,

then we say that f is an approximately constant function. We also define

wε (f) = sup {min {ai − ai−1 : 1 < i < n}} ,

where the supremum is taken over all partitions that satisfy the above condition.

Since we will be using these to look at tangent measures, we will want to rescale these

functions in the same way.

Definition 2.2.3 Let f : R→ R ∪ {∞}, r ∈ (0,∞) and x ∈ R. Then we write

fx,r (t) =
f (rt+ x)− f (x)

r
.

Proposition 2.2.4 Let f be approximately constant. Then for any r ∈ (0,∞) and x0 ∈ R

we have that fx0,r is also approximately constant.

Proof We fix ε > 0. Then we can find −∞ = a0 < a1 < . . . < an =∞ such that

sup
x∈[ai−1,ai]

f (x)− inf
x∈[ai−1,ai]

f (x) < rεmin {ai − ai−1, 1} .

Now, taking ãi = ai−x0
r for each 0 6 i 6 n gives us suitable choices to show that fx0,r is
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also approximately constant. �

Because these functions are so flat, there is a very simple characterisation of their graph

measures.

Proposition 2.2.5 Let f : R→ R∪{∞} be approximately constant. Then for any A ∈ R2

γf (A) = L{x ∈ R : (x, f (x)) ∈ A} .

Proof Put P = {x ∈ R : (x, f (x)) ∈ A}.

Since the mapping (x, y) 7→ (x, 0) is Lipschitz with constant at most 1, we have

γf (A) = H1 (A ∩ f (R))

> H1 {(x, 0) : (x, f (x)) ∈ A}

= L (P ) . (2.1)

On the other hand, since f is approximately constant, for any δ > 0 and −∞ < a < b <∞,

we can find a = ã0 < . . . < ãñ = b such that, for every 1 < i < ñ,

sup
x∈[ãi−1,ãi]

f (x)− inf
x∈[ãi−1,ãi]

f (x) <
δ

4 (b− a)
(ãi − ãi−1) .

And thus, splitting the rectangles if necessary, we can find a = a0 < a1 < . . . < an = b

such that for all 1 < i < n

sup
x∈[ai−1,ai]

f (x)− inf
x∈[ai−1,ai]

f (x) <
δ

2
(ai − ai−1)

and

ai − ai−1 <
δ

2
.
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This gives that for any 0 < δ < 1 the diameter of the rectangle is less than δ, and so

γf ([a, b]× R) = H1 (([a, b]× R) ∩ f (R))

= lim
δ↓0
H1
δ (([a, b]× R) ∩ f (R))

6 lim
δ↓0

n∑
i=1

√
(ai − ai−1)2 +

δ2

4
(ai − ai−1)2

= lim
δ↓0

√
1 +

δ2

4

n∑
i=1

ai − ai−1

= lim
δ↓0

√
1 +

δ2

4
(b− a)

= b− a.

But, by the definition of Lebesgue measure, there exist, for any ε > 0, intervals, Ik, where

k ∈ K and K is finite or countable, each of length lk ∈ (0,∞), such that P ⊆
⋃
k∈K Ik

but
∑

k∈K lk 6 L (P ) + ε, and so

γf (A) 6 γf (P × R)

6
∑
k∈K

γf (Ik × R)

=
∑
k∈K

lk

6 L (P ) + ε. (2.2)

The inequalities (2.1) and (2.2), along with the arbitrariness of ε, give the result. �

An immediate question we may ask is whether approximately constant functions are the

only ones with the above property. The answer is no, as the following example demon-

strates.

Example 2.2.6 Let

An =

3n−1−1⋃
k=0

(
3−n [1, 2] + k31−n

)
and f =

∑
n∈N 3−(n+1)χAn. Then f has a graph measure as in Proposition 2.2.5 but is

not approximately constant.
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The above example has the projection property since it can be covered by a series of

arbitrarily small equilateral triangles whose projections do not overlap, and whose diameter

is equal to the length of their projection. They cannot, however, be covered by arbitrarily

thin strips as any strip would have a projection with length in the range
(
3−n, 3−(n−1)

]
, for

some n ∈ N, and such a strip would have to contain a jump with height at least 3−(n+1);

it cannot, therefore, be an approximately constant function.

We now give a definition for convergence that is appropriate to finding the tangents to

the graphs. We call it local convergence in measure, and it is very closely based on the

standard definition, but slightly tailored to our current needs, in particular in how it allows

unbounded sequences of functions to converge to a value of ∞.

Definition 2.2.7 Let fn, f : R → R ∪ {∞}. Then we say that fn converges locally in

measure to f , and we write fn
m→ f , if and only if given any a, b ∈ R and ε > 0

lim
n→∞

L
{
x ∈ [a, b] : |fn (x)− f (x)| > ε and max {|fn (x)| , |f (x)|} < 1

ε

}
= 0.

In order to use this to calculate tangent measures, we would hope that this kind of con-

vergence of the functions was equivalent to weak convergence of their graph measures.

Actually, we cannot quite achieve this, but one implication is true and, in the other direc-

tion, we can get a partial result, which will be sufficient for our purposes. We begin with

the direction that allows us to show the existence of tangent measures.

Theorem 2.2.8 Let fn, f be approximately constant functions, then

fn
m→ f ⇒ γfn

w→ γf .

Proof Fix φ ∈ Cc
(
R2
)

and ε > 0.

Let X = {x ∈ R : ({x} × R) ∩ supp (φ) 6= ∅}, that is the projection of supp (φ) onto the x-

axis, then let a = inf X and b = supX. Similarly let Y = {y ∈ R : (R× {y}) ∩ supp (φ) 6= ∅}

and s = supY .

Since φ is uniformly continuous there exists some δ > 0 such that |fn (x)− f (x)| < δ ⇒

|φ (x, fn (x))− φ (x, f (x))| < ε
2(b−a) . And since fn

m→ f we have, for sufficiently large n and
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for all x ∈ [a, b] \E where L (E) < ε
4max |φ| , either |fn (x)− f (x)| < δ or fn (x) , f (x) > s

and thus φ (x, fn (x)) = φ (x, f (x)) = 0 (defining φ (x,∞) = 0). So,

∣∣∣∣∫ φ dµ−
∫
φ dµn

∣∣∣∣ =

∣∣∣∣∫ b

a
φ (x, f (x)) dx−

∫ b

a
φ (x, fn (x)) dx

∣∣∣∣
=

∣∣∣∣∫ b

a
φ (x, f (x)) − φ (x, fn (x)) dx

∣∣∣∣
6

∫ b

a
|φ (x, f (x)) − φ (x, fn (x))| dx

<

∫
[a,b]\E

ε

2 (b− a)
dx+

∫
E

2 max |φ| dx

<

∫ b

a

ε

2 (b− a)
dx+

ε

4 max |φ|
2 max |φ|

= ε,

and hence γfn
w→ γf .

�

We now begin work on the opposite direction.

Lemma 2.2.9 Let {fn}n∈N be a sequence of approximately constant functions and c ∈

R ∪ {∞}. Then,

γfn
w→ H1x(R× {c})⇒ fn

m→ c,

where we interpret H1x(R× {∞}) as the zero measure.

Proof Fix a < b and 0 < ε < b− a.

Then for c ∈ R we define φ ∈ Cc
(
R2
)

by

φ (x) = max

{
1− 2

ε
d
(
x,
[
a+

ε

2
, b− ε

2

]
×
[
c− ε

2
, c+

ε

2

])
, 0

}
.

This gives us ∫
φ dH1x{c} = b− a− ε

2
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and

∫
φ dγfn =

∫ b+ε

a−ε
φ (x, fn (x)) dx

6
∫ b

a
φ (x, fn (x)) dx+ ε

6 L{x ∈ [a, b] : |fn (x)− c| 6 ε}

= b− a− L{x ∈ [a, b] : |fn (x)− c| > ε} .

But then for sufficiently large n, since γfn
w→ H1x{c},

L{x ∈ [a, b] : |fn (x)| > ε} 6 b− a−
∫
φ dγfn

< b− a−
∫
φ dH1x{c}+

ε

2

= ε.

If, on the other hand, c =∞ then we define ψ ∈ Cc
(
R2
)

by

ψ (x) = max

{
1− d

(
x, [a, b]×

[
−1

ε
,
1

ε

])
, 0

}
.

Then we have

∫
ψ dγfn >

∫ b

a
ψ (x, fn (x)) dx

> L
{
x ∈ [a, b] : |fn (x)| < 1

ε

}
.

But, since γfn
w→ 0, we have, for sufficiently large n, L

{
x ∈ [a, b] : |fn (x)| < 1

ε

}
< ε.

In either case, the arbitrariness of a, b and ε give fn
m→ c. �

Lemma 2.2.10 Let fn be approximately constant functions, −∞ = a0 < . . . < ak = ∞

be extended real numbers and µ1, . . . , µk be measures on R2, then

γfnx([aj−1, aj ]× R)
w→ µjx([aj−1, aj ]× R) ∀j ∈ {1, . . . , k}

⇔ γfn
w→ µ :=

k∑
j=1

µjx([aj−1, aj ]× R).
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Proof Since for any 1 6 j < k there exists δ > 0 such that γfn ([aj − δ, aj ]) is arbitrarily

small, we have, for any 1 6 j < k and 1 6 i 6 k,

µ ({aj} × R) = µix([ai−1, ai]× R) ({aj} × R) = 0.

Thus we may fix φ ∈ Cc
(
R2
)

and write, assuming the left hand side of the equivalence,

∫
φ dγfn =

k∑
j=1

∫
[aj−1,aj ]×R

φ dγfn

=
k∑
j=1

∫
φ dγfnx([aj−1, aj ]× R)

→
k∑
j=1

∫
φ dµjx([aj−1, aj ]× R)

=

∫
φ dµ.

Conversely, we can assume the right hand side, define ψn (x) = max {1− nd ([aj−1, aj ] , x) , 0}

(noting ψn ∈ Cc
(
R2
)
), and write

∫
φ dγfnx([aj−1, aj ]× R) =

∫
[aj−1,aj ]×R

φ dγfn

=

∫
φψn dγfn + o (1)

=

∫
φψn dµ+ o (1) + o (1)

→
∫
[aj−1,aj ]×R

φ dµ

=

∫
φ dµx([aj−1, aj ]× R)

=

∫
φ dµjx([aj−1, aj ]× R).

�

We now have the tools we need to prove the following theorem, which will enable us to

restrict the set of possible measures. Indeed, the measure defined in the next chapter will

have, at almost every point, all of the allowed measures in its tangent set, and so we will

have determined it completely.

Theorem 2.2.11 Let (fn) be a sequence of approximately constant functions and µ be
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some measure. If for each ε > 0 we have γfn
w→ µ and limn→∞wε (fn) = ∞ then there

exists f : R→ R∪ {∞} and j ∈ R such that f is constant on (−∞, j] and (j,∞), fn
m→ f

and µ = γf .

Proof Fix φ ∈ Cc
(
R2
)
, and letX = {x ∈ R : ({x} × R) ∩ supp (φ) 6= ∅}, a = min {inf X, j}

and b = max {supX, j}.

We take a subsequence,
{
fi(n)

}
, such that w 1

n

(
fi(n)

)
> n. Then there exist

(
li(n)

)
,
(
ri(n)

)
⊆

R and
(
ji(n)

)
such that

f (R) ∩ supp (φ) ⊆ Li(n) ∪Ri(n),

where

Li(n) =

{
(x, y) ∈ R2 : x ∈

(
−∞, ji(n)

]
, y ∈

[
li(n), li(n) +

1

n

]}
and

Ri(n) =

{
(x, y) ∈ R2 : x ∈

(
ji(n),∞

)
, y ∈

[
ri(n), ri(n) +

1

n

]}
.

We may now take a further subsequence, fk(n), such that jk(n) → j ∈ [a, b].

Now, focussing on (−∞, j] we can take a still further subsequence, fm(n), to ensure either

lm(n) → l ∈ R or
∣∣lm(n)

∣∣ → ∞, in which case we set l = ∞. This convergence of
(
jm(n)

)
and

(
lm(n)

)
give us fm(n)

m→ l on (−∞, j]. So, using Theorem 2.2.8 and Lemma 2.2.10, we

can write

γfm(n)
x((−∞, j]× R)

w→ H1x((−∞, j]× {l}) .

But, since we assumed weak convergence of the whole sequence, we have

γfnx((−∞, j]× R)
w→ H1x((−∞, j]× {l}) .

And, by Lemma 2.2.9, we have fn
m→ l on (−∞, j].

We similarly get

γfnx((j,∞)× R)
w→ H1x((j,∞)× {r})

and fn
m→ r on (j,∞).
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Thus we define f : R→ R by

f (x) =


l x ∈ (−∞, j]

r x ∈ (j,∞) ,

where fn
m→ f and, by Lemma 2.2.10, γfn

w→ γf . �

Corollary 2.2.12 Let f be an approximately constant function such that, for any decreas-

ing sequence, {ri}, with ri → 0 as i→∞, any x ∈ R and any ε > 0, we have

lim
i→∞

wε (fx,ri) =∞.

Then, for all x ∈ R2, we have

µ ∈ Tan (γf , x)⇒ µ = γg,

where g : R→ R ∪ {∞} is constant on (−∞, j] and (j,∞), for some j ∈ R.

Proof By Proposition 2.2.4 fx,ri are approximately constant and so the result follows

immediately from Theorem 2.2.11. �

2.3 A Set from Dickinson

We are now ready to introduce the main object of study in this chapter: the set defined by

Dickinson in [11]. Actually, the following definition is a slight variation of the one in [11],

but there are no essential differences.

Definition 2.3.1 Let

Rm =

2m
2−1⋃

k=1

2−m
2

(2k − 1, 2k] ,

then

σ (x) :=


∑

m∈N
1
m2−m

2
χRm (x) x ∈ (0, 1]

∞ otherwise

shall be called the Dickinson function; we put R := σ ((0, 1]) and ρ := γσ.
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Figure 2.1: The Dickinson set, R
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We begin by showing that this set can indeed be represented by approximately constant

functions.

Lemma 2.3.2
∞∑

n=m+1

1

n
2−n

2
6

1

m+ 1
2−2m2−m

2
.

Proof

∞∑
n=m+1

1

n
2−n

2
6

1

m+ 1

∞∑
n=m+1

2−n
2

=
1

m+ 1

∞∑
n=1

2−(m+n)2

=
1

m+ 1
2−m

2
∞∑
n=1

2−n(n+2m)

6
1

m+ 1
2−2m2−m

2
∞∑
n=1

2−n

=
1

m+ 1
2−2m2−m

2
.

�

Corollary 2.3.3 The Dickinson function is approximately constant.

Proof From Lemma 2.3.2 R can be contained in 2m
2

strips of height 1
m+12−2m2−m

2
and

the result follows. �

The following lemma gives us the remaining condition we require in order to be able to

apply Corollary 2.2.12.

Lemma 2.3.4 Let {ri}i∈N ⊆ R be a decreasing sequence with ri → 0 as i → ∞. Then,

for any x ∈ R2 and ε > 0,

lim
i→∞

wε (σx,ri) =∞.

Proof Using the coverings implied in Lemma 2.3.2, it is sufficient to show that for a

given ε > 0 and n ∈ N we can find, for any sufficiently small r, an m ∈ N such that

(i) 1
r2−m

2
> n,

(ii) 1
r

2
m+12−2m2−m

2
< ε, and
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(iii) 2
m+12−2m < ε.

Above, (i) gives us the increasing width required for wε (σx,ri) = ∞ whilst (ii) and (iii)

give us the two required restrictions on height.

We now pick m ∈ N to be such that

1√
m+ 1

2−(m+1)2 < r 6
1√
m

2−m
2
,

and so we have

1

r
2−m

2
>
√
m

→ ∞ as m→∞,

1

r

1

m+ 1
2−2m2−m

2
=

1

r

2

m+ 1
2−(m+1)2

=
1

r

1√
m+ 1

2−(m+1)2 2√
m+ 1

<
2√
m+ 1

→ 0 as m→∞,

and

1

m+ 1
2−2m → 0 as m→∞.

But m→∞ as r → 0, and thus the result follows. �

We now give a lower bound on the lower density of this set, which we shall need later.

Actually, this is the exact value for almost every point, but it will be more convenient to

prove the reverse inequality later.

Lemma 2.3.5 For every x ∈ R,

D1 (ρ, x) >
1

2
.

Proof Fix x ∈ (0, 1] and r ∈
(
0, 12
)
. Then there exist m ∈ N and 0 6 k < 2m

2
such that
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r ∈
(

2−(m+1)2 , 2−m
2
]

and x ∈
(
k2−m

2
, (k + 1) 2−m

2
]
.

Now let

I = Br (x) ∩
(
k2−m

2
, (k + 1) 2−m

2
)

=
(

max
{
x− r, k2−m

2
}
,min

{
x+ r, (k + 1) 2−m

2
})

,

so that sup I − inf I > r (since r 6 2−m
2
).

But, from Lemma 2.3.2, we have that, for all x1, x2 ∈
(
k2−m

2
, (k + 1) 2−m

2
]
,

|σ (x1)− σ (x2)| 6
1

m+ 1
2−2m2−m

2
.

And so we may use Pythagoras’s Theorem to give

ρ (Br ((x, σ (x))))

2r
>

√
r2 − 1

m+12−2m2−m2

2r

=

√
r2 − 1

2(m+1)2
−(m+1)2

2r

>

√
r2 − 1

2(m+1)r
2

2r

=
1

2

√
1− 1

2 (m+ 1)

→ 1

2
as m→∞.

But, since m→∞ as r → 0, we have D1 (ρ, (x, σ (x))) > 1
2 . �

We now come to the part of section where we give the main thrust of how we are going

to prove the existence of certain measures in the tangent set. The language of probability

will be useful here. If we pick a point at random, and its tangent set contains a measure

with probability 1, then almost all of the points must contain that measure.

As we rescale, different levels of iteration in the definition of the Dickinson function are

going to dominate. We can use this to make the problem essentially discrete, by checking

how the rescaled measure looks at scales where each level is dominant. To formalise this,

we will use the notion of R sequences, which we define below.



35

Definition 2.3.6 We say that a set A ⊆ R is an Rm set if and only if there exists

K ⊆
{
k ∈ N : 1 6 k 6 22m+1

}
such that

A =

(⋃
k∈K

(
(k − 1) 2−(m+1)2 , k2−(m+1)2

])
+
{
j2−m

2
: 0 6 j < 2m

2
}
.

And {Am} is an R sequence if and only if Am is an Rm set for every m ∈ N.

We say that {Am} is a joint R sequence if and only if, for every m ∈ N, Am = F2m−1∩G2m

where {Fm} and {Gm} are R sequences.

We can think of Rm as an event, which occurs if x occurs, in a certain collection of the

(m+ 1)th iteration. It is repeated over the sections of the mth iteration, and so the

probability of x being in Rm does not depend on which section of the mth iteration x was

in. We formalise this notion of independence below.

Lemma 2.3.7 Let (Am) be an R sequence or a joint R sequence and J a finite subset of

N. Then L
(⋂

j∈J Aj

)
=
∏
j∈J L (Aj).

Proof Take (Am) to be an R sequence.

If we assume that the property holds for all J where # (J) = n and we are given a set

K ⊆ N where # (K) = n+ 1, then we can pick k0 = min (K) so that

L

 ⋂
k∈K\{k0}

Ak

 =
∏

k∈K\{k0}

L (Ak) .

But each of the sets Ak where k ∈ K\ {k0} repeat over the intervals that make up Ak0

and thus so does their intersection. Thus

L

(⋂
k∈K

Ak

)
=
∏
k∈K
L (Ak)

and, since the assumption is clearly true where J is a singleton set, the lemma is true for

all R sequences by induction.

If {Fm} and {Gm} are R sequences then F1, G2, F3, G4, . . . is itself an R sequence and so the

result extends to joint R sequences by the associativity of multiplication and intersection.
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Below we state one of the classic Borel-Cantelli lemmas, and then relate it to R sequences.

Lemma 2.3.8 Let (X,µ) be a probability space and An ⊆ X where {An} is independent

and
∑

n∈N µ (An) =∞, then

µ

( ∞⋂
k=1

∞⋃
n=k

An

)
= 1.

Corollary 2.3.9 Let (An) be an R sequence or a joint R sequence such that
∑

n∈N L (An) =

∞. Then for almost every x ∈ (0, 1] there exists a subsequence Ak(n) such that x ∈ Ak(n)

for every n ∈ N.

Proof If we randomly pick x ∈ (0, 1] using a uniform distribution, then Lemma 2.3.7

gives us that the events x ∈ An are independent. So we can apply Lemma 2.3.8 to give

L

( ∞⋂
k=1

∞⋃
n=k

An

)
= 1.

The above is the set of all x ∈ (0, 1) for which a suitable subsequence exists, and so one

exists almost everywhere. �

So we now have all we need to begin the proof of our main theorem: if we can find an R

sequence, or a joint R sequence, where, when x ∈ Rm we can produce a rescaled measure

that looks, with increasing m, more and more like one of our target tangent measures,

then Corollary 2.3.9 is sufficient to show that that measure must be part of the tangent

set at almost every point.

Theorem 2.3.10 For H1 almost every x ∈ R we have that Tan (ρ, x) consists exactly of

the measures γf , where

f (x) =


h1 x ∈ (−∞, j]

h2 x ∈ (j,∞) ,

for any h1, h2 ∈ R ∪ {∞} and j ∈ R such that f (0) = 0 or f (ε) = 0 for any ε > 0 (in

case the jump is at 0).

Proof Lemma 2.3.4 allows us to apply Corollary 2.2.12 to give that any tangent measure
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of ρ is of the form γf where

f (x) =


h1 x ∈ (−∞, j]

h2 x ∈ (j,∞) ,

with h1, h2 ∈ R ∪ {∞} and j ∈ R. On the other hand, Lemma 2.3.5 and Corollary 1.5.9

give us the further condition on the value of f near 0.

This means that Tan (ρ, x) (for any x ∈ (0, 1]) may only consist of measures of the above

form. It remains to show that, for almost every x ∈ (0, 1], Tan (ρ, x) does include all of

the above possible measures.

Suppose that we have a sequence, (rm), with rm ↓ 0 and an R sequence or a joint R

sequence, (Am), with
∑

m∈N L (Am) = ∞ such that given any ε > 0 and a, b ∈ R where

a < b we have

x ∈ Am ⇒

L
{
t ∈ [a, b] : |σx,rm (t)− f (t)| > ε and max {|σx,rm (t)| , |f (t)|} < 1

ε

}
< am (2.3)

where am ↓ 0. But, by Corollary 2.3.9, for almost every x ∈ (0, 1) there is a subsequence,

(A)l(m), such that x ∈ Al(m) for every m ∈ N. Thus we have σx,rl(m)

m→ f and so, by

Theorem 2.2.8, γf ∈ Tan (ρ, x).

To avoid the cases at the very edge of R, we defineM0 ∈ N such that x ∈
(

2−M
2
0 , 1− 2−M

2
0

]
and M0 > 3 (to ensure log (m) > 1) and examine the sequences after this point.

We let, for the time being, j = 0, h1 = 2s− 1 and h2 = 0, where s ∈ {0, 1}, and fix ε > 0

and a, b ∈ R where a < b. Next we find sequences (rm), (Am) and (am).

We let rm = 1
m2−m

2
and

Km =

{
i ∈ N : i 6

⌊
1

m logm
22m+1

⌋}
.
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Then

Fm =

 ⋃
k∈Km

(
(k − 1) 2−(m+1)2 , k2−(m+1)2

]+
{
i2−m

2
: 0 6 i < 2m

2
}

and Gm = Rm − s2−m
2
, where Rm is as it is in Definition 2.3.1), are R sequences; and

thus Am = F2m ∩G2m−1 forms a joint R sequence.

L (Fm) = 2−(2m+1)# (Km) and L (Gm) = 1
2 for all m ∈ N, so

∑
m∈N
L (Am) >

∞∑
m=M0

1

2
2−(4m+1)# (K2m)

>
1

2

∞∑
m=M0

2−(2m+1)

(
1

m logm
22m+1 − 1

)

=
1

2

 ∞∑
m=M0

1

m logm
−

∞∑
m=M0

2−(2m+1)


>

1

2

(
∞− 1

6

)
= ∞.

Now we take 1 6 n 6 2(2m)2 such that (n− 1) 2−(2m)2 < x 6 n2−(2m)2 , and 1 6 k 6

2(2m)+1 such that (k − 1) 2−(2m+1)2 < x− (n− 1) 2−(2m)2 6 k2−(2m+1)2 . That is, x ∈ Am

implies that k ∈ K2m (the converse is not necessarily true). So, if we assume x ∈ Am,

then

(n− 1) 2−m
2
< x 6 (n− 1) 2−m

2
+

(
1

m logm

)
22m+12−(m+1)2 .

So, for any t ∈ [0,
√
m], we have

x+
1

m
2−m

2
t > x > (n− 1) 2−m

2
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and

x+
1

m
2−m

2
t 6 x+

1√
m

2−m
2

6 (n− 1) 2−m
2

+

(
1

m logm

)
22m+12−(m+1)2 +

1√
m

2−m
2

= n2−m
2

+
−m logm+ 1 +

√
m logm

m logm
2−m

2

< n2−m
2
.

We use the above two inequalities to give us

|σx,rm (t)| =
|σ (rmt+ x)− σ (x)|

rm

= m2m
2

∣∣∣∣σ( 1

m
2−m

2
t+ x

)
− σ (x)

∣∣∣∣
6 m2m

2

∣∣∣∣∣
∞∑

i=m+1

1

i
2−i

2

∣∣∣∣∣
6 m2m

2 1

m+ 1
2−2m2−m

2
by Lemma 2.3.2

=
m

m+ 1
2−2m

→ 0.

We also get that for any t ∈ [−
√
m, 0]

x+
1

m
2−m

2
t > x− 1√

m
2−m

2

> (n− 1) 2−m
2 − 1√

m
2−m

2

= (n− 2) 2−m
2

+
m−

√
m

m
2−m

2

> (n− 2) 2−m
2
.
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Furthermore, for t ∈
[
−m, 0− 1√

logm

]
we have

x+
1

m
2−m

2
t 6 x− 1

m
2−m

2

(
1√

logm

)
6 (n− 1) 2−m

2
+

(
1

m logm

)
2−m

2 − 1

m
2−m

2

(
1√

logm

)
= (n− 1) 2−m

2 1−
√

logm

m logm

< (n− 1) 2−m
2
.

Exactly one of
(

(n− 2) 2−m
2
, (n− 1) 2−m

2
]

and
(

(n− 1) 2−m
2
, n2−m

2
]

belong to Rm, but,

from our choice of Gm, which one is determined by the value of s, being the former if s = 1

and the latter if s = 0. So,

|σx,rm (t)− (2s− 1)| =

∣∣∣∣σ (rmt+ x)− σ (x)

rm
− (2s− 1)

∣∣∣∣
=

∣∣∣∣m2m
2

(
σ

(
1

m
t+ x

)
− σ (x)

)
− h1

∣∣∣∣
=

∣∣∣∣∣m2m
2

(
s

1

m
2−m

2
+

∞∑
i=m+1

(
1

i
2−i

2
χRi

(
1

m
t+ x

))

− (1− s) 1

m
2−m

2 −
∞∑

i=m+1

(
1

i
2−i

2
χRi (x)

))
− (2s− 1)

∣∣∣∣∣
6

∣∣∣∣m2m
2

(
s

1

m
2−m

2 − (1− s) 1

m
2−m

2

)
− (2s− 1)

∣∣∣∣
+2m2m

2
∞∑

i=m+1

1

i
2−i

2

= 2m2m
2
∞∑

i=m+1

1

i
2−i

2

6 2m2m
2 1

m+ 1
2−2m2−m

2
by Lemma 2.3.2

=
2m

m+ 1
2−m

→ 0.

And so there exists M > M0 such that for m > M we have [a, b] ⊆ [−
√
m,
√
m],

|σx,rm (t)| < ε for t ∈ [0, b] and |σx,rm (t)− (2s− 1)| < ε for t ∈
[
a, 0− 1√

logm

]
. Thus

(2.3) is satisfied taking
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am =


b− a m < M

1√
logm

m >M.

We have now established that γf ∈ Tan (ρ, x) for j = 0, h1 ∈ {1,−1} and h2 = 0; a similar

argument will also give the same result when j = 0, h1 = 0 and h2 ∈ {−1, 1}.

We can use Corollary 1.5.7 to extend this, for H1-almost every x, to the cases where

h1, h2, j ∈ R, h1h2 = 0 and |h1|+ |h2| > 0.

If we take j = 0, h1 = 1
k and h2 = 0 we get a sequence of functions that converge locally in

measure to the zero function as k →∞, and so by Theorems 2.2.8 and 1.5.5 we have also

obtain the case where h1 = h2 = 0. Similarly we get the last case where {h1, h2} = {0,∞}

by fixing j ∈ R and taking a sequence where h1 = k and h2 = 0 or h1 = 0 and h2 = k.

�

Finally, we use our knowledge of the tangent set in deriving the following properties of

our set.

Theorem 2.3.11 We have

(i) D1 (ρ, x) = 1
2 almost everywhere,

(ii) D
1

(ρ, x) = 1 almost everywhere, and

(iii) ρ is purely unrectifiable.

Proof (i) From Theorem 2.3.10 (ii) with t = 0 we know that, for almost every x ∈ R,

H1x(0,∞)× {0} ∈ Tan (ρ, x). So, we may use Proposition 1.5.8 to get

D1 (ρ, x) 6 D1
(
H1x(0,∞)× {0}, x

)
=

1

2
.

Combining the above with Lemma 2.3.5 gives D1 (ρ, x) = 1
2 .

(ii) We can similarly use Theorem 2.3.10 (i) to get that, for almost every x ∈ R,
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H1xR× {0} ∈ Tan (ρ, x) and thus

D
1

(ρ, x) > D
1 (H1xR× {0}, x

)
= 1.

But, since for any x ∈ R2 and r > 0 we have

ρ (Br (x)) 6 ρ ((x− r, x+ r)× R) = 2r,

we get D
1

(ρ, x) 6 1. Hence D
1

(ρ, x) = 1.

(iii) Any 1-rectifiable set, E, has D1
(
H1xE, x

)
= 1 for H1 almost every x (see, for

example, Theorem 2.63 in [1]) but by (i) we have D1 (ρ, x) = 1
2 for H1 almost every

x. Thus H1 (R ∩ E) = 0 and R is purely unrectifiable.

�
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Chapter 3

Unrectifiable Metric Spaces with

High Lower Hausdorff s-Densities

3.1 Introduction

In this chapter we will be looking at what range of lower densities are possible in a metric

space. We begin by stating the famous Besicovitch 1
2 -conjecture: If E ⊆ R2 is a 1-set and

D1 (E, x) > 1
2 , then E is rectifiable. We can generalise this problem using the following

notation from [22].

Definition 3.1.1 Let X be a separable metric space and k ∈ N. We denote by σk (X, d)

the smallest number such that, for all E ⊆ X satisfying 0 < Hk (E) <∞, we have that

Dk (E) > σk ⇒ E is k-rectifiable,

for almost every x ∈ E.

In this language, the Besicovitch 1
2 -conjecture can be stated as σ1

(
R2
)
6 1

2 .

Now, we know from Theorem 1.4.4 that σk (X) 6 1, for any separable metric space

X. Theorem 1.4.5 says that a rectifiable subset of Rn has an upper density of 1 almost

everywhere and, thanks to Kirchheim’s result in [15] and [16], this can be extended to
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metric spaces. In light of this, the problem can be thought of as one of the existence of

unrectifiable subsets of a particular space with lower densities between a certain value and

1. For instance, we know that σ1
(
R2
)
> 1

2 because of the set defined in Chapter 2, and

many more like it, which are unrectifiable but have a lower density of 1
2 . This will be our

approach in putting a lower bound on sup {σk (X) : X is a metric space}.

Before we continue, we shall look briefly at the positive results in this field, to put the work

into context. We begin with Besicovitch showing that σ1
(
R2
)
6 1 − 10−2576 in [2] and

then σ1
(
R2
)
6 3

4 in [4]. Then Marstrand showing σ2
(
R3
)
< 1 in [17], Mattila showing

σk (Rn) < 1 in [18], and Chleb́ık showing sup {σk (Rn) : n ∈ N} < 1 in [6]. Finally Preiss

and Tǐser showing in [22] that σ1 (X) 6 2+
√
46

12 < 3
4 , for any metric space X.

On the other hand it was shown by Schechter in [23], using a different, but similar,

construction to the one used here, that there exists a metric space such that σ2 (X) > 1
2 .

In our construction we produce, for any s > 1, an unrectifiable metric space X of σ-finite

Hs measure and a number ξ (s) such that Ds (Hs, x) > ξ (s) > 2dse−s−1, for any x ∈ X.

And, consequently,

sup {σk (X) : X is a metric space} > ξ (s) .

3.2 Construction of the Space

The idea of this construction is to take R, with the Euclidean metric, and form a new

metric space by specifying the distance between two points as a function of their Euclidean

distance. It is clear that the resultant “distance” function will not, in general, be a bona

fide metric, given an arbitrary function. There has been some study of the functions that

do indeed produce a metric; we shall not go into too much depth, as we will need only the

basics. Our references for the general results will be a paper of Doboš, [12], dealing with

metric preserving functions on the Euclidean space R, and a more general survey paper

by Corazza, [8].
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Definition 3.2.1 We say that f : [0,∞) → [0,∞) is metric preserving if and only if for

any metric space, (X, d), we have that (X, f ◦ d) is also a metric space; we say that it is

Euclidean metric preserving if and only if (R, (x, y) 7→ f (|x− y|)) is a metric space.

We also set E =
{
f : [0,∞)→ [0,∞) : f ∈ C0, f is Euclidean metric preserving

}
.

Clearly every metric preserving function is also Euclidean metric preserving, but the con-

verse is not true, as is demonstrated by an example given in [12]. Although we will not

use the result here, it is interesting to note that a function that is metric preserving on

the Euclidean space R2 will be metric preserving on any metric space.

Proposition 3.2.2 Let f ∈ E. Then (X, (x, y) 7→ f (|x− y|)) is a separable, locally com-

pact metric space with the same topology as the Euclidean space R.

Proof Since f is continuous, Q is still dense and a set in R is open if and only if it is

open in (X, (x, y) 7→ f (|x− y|)). It thus follows that the same sets are compact in each

space and so (X, (x, y) 7→ f (|x− y|)) is also locally compact. �

Proposition 3.2.3 Let f : [0,∞)→ [0,∞) and 0 6 y 6 x <∞, then f ∈ E if and only if

(i) f−1 ({0}) = {0},

(ii) f is continuous at 0, and

(iii) max {f (x+ y) , f (x− y)} 6 f (x) + f (y).

Proof We note that f−1 ({0}) = {0} if and only if f (|x− y|) = 0 ⇔ x = y. Since

the metric is translation invariant, we can consider the intermediate point in the triangle

inequality to be 0, thus the triangle inequality reduces to condition (iii), with f (x+ y)

being the maximum if the intermediate point is between the other two points, and f (x− y)

being the maximum otherwise. Symmetry is clear from the definition. Thus f being metric

preserving is equivalent to conditions (i) and (iii) above.

It therefore remains to show that (ii) is equivalent to f being continuous. If f is discon-

tinuous at 0 then f is obviously not continuous. On the other hand, suppose that f is

continuous at zero and discontinuous at some point a, but then there would exist some

ε > 0 such that x ∈ (a− ε, a) and y ∈ (a− x, ε) would provide a contradiction to (iii).
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We now define the class of functions, fs,τ , that we shall use to produce our metrics.

Definition 3.2.4 Given s ∈ (1, 2) and τ ∈
(
0, 13
)
, we define the functions hτ , gs,τ , fs,τ :

[0,∞)→ [0,∞) as follows

hτ (x) =



x x ∈ [1, 1 + τ)

3 + 3τ − 2x x ∈
[
1 + τ , 1 + 3τ

2 + τ2

2

)
2x− 2τ2 − 3τ − 1 x ∈

[
1 + 3τ

2 + τ2

2 , (1 + τ)2
)

0 otherwise,

gs,τ = hτ (λs,τ (x− 1) + 1) ,

and

fs,τ (x) =
∑
k∈Z

(1 + τ)−k gs,τ

(
(1 + τ)sk x

)
,

where λs,τ = 2τ+τ2

(1+τ)s−1 .

Furthermore, we set

cs,τ =
1− τ2(

(τ2+3τ)((1+τ)s−1)
2(τ2+2τ)

+ 1
) 1
s

ds,τ =
1 + τ(

τ((1+τ)s−1)
τ2+2τ

+ 1
) 1
s

cτ = c2,τ =
1− τ2√

1 + 3τ
2 + τ2

2

dτ = d1,τ = 1 +
τ

2
.

Not all of these functions will be Euclidean metric preserving, and most of this section is

dedicated to investigating which of them are.

The upper bound of 1
3 on τ is not too significant; it is just a simple value chosen to be

small enough to avoid some complications involved with higher values, and small enough

that we can be confident we are not missing any genuine metric preserving functions.

As we can see from the definition, and from Figure 3.2, fs,τ is closely related to the function

x 7→ x
1
s . To make that relationship more explicit, we introduce the notion of geometrically
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Figure 3.1: A graph of hτ

Figure 3.2: A graph of f2, 1
5
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periodic functions, which will also come in very useful later.

Definition 3.2.5 We shall call a function, f : (0,∞) → R, geometrically periodic with

period p > 1 if

f (x) = f (pmx) ,

for all x ∈ (0,∞) and m ∈ Z.

We now give some of the easier to obtain properties of fs,τ .

Proposition 3.2.6 For the above functions, we have

(i) for each x ∈ (0,∞) ,

{
k ∈ Z : gs,τ

(
(1 + τ)sk x

)
> 0
}

=

{⌈
− log x

s log (1 + τ)

⌉}
,

and thus, for each x ∈ (0,∞), there is exactly one non-zero term in the sum defining

fs,τ ,

(ii) f−1s,τ ({0}) = {0},

(iii) x−
1
s fs,τ (x) is geometrically periodic with period (1 + τ)s for (x ∈ (0,∞)),

(iv) cτx
1
s 6 cs,τx

1
s 6 fs,τ (x) 6 ds,τx

1
s 6 dτx

1
s for (x ∈ (0,∞)),

(v)
cs,τ
ds,τ
> 1− 3τ

2 , and

(vi) fs,τ is continuous and piecewise affine.

Proof (i) From the definition of h we have that

{x : hτ (x) > 0} =
[
1, (1 + τ)2

)
.

Thus

{x : gs,τ (x) > 0} = [1, (1 + τ)s)

and {
x : gs,τ

(
(1 + τ)sk x

)
> 0
}

=
[
(1 + τ)−sk, (1 + τ)s(1−k)

)
,
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which forms a partition of (0,∞) when k ranges over Z.

(ii) This follows immediately from (i) and the definition of fs,τ .

(iii) Fixing x ∈ (0,∞), there exists k ∈ Z such that

fs,τ ((1 + τ)s x) ((1 + τ)s x)−
1
s = (1 + τ)−k hs,τ

(
(1 + τ)s(k+1) x

)
((1 + τ)s x)−

1
s

= (1 + τ)−(k+1) hs,τ

(
(1 + τ)s(k+1) x

)
x−

1
s

= fs,τ (x)x−
1
s .

The result follows.

(iv) We examine fs,τ on the interval [1, (1 + τ)s). We note that the maxima and mini-

mum of hτ are hτ (1 + τ) = hτ

(
(1 + τ)2

)
= 1 + τ and hτ

(
1 + 3τ

2 + τ2

2

)
= 1 − τ2

respectively. Thus the maxima and minimum of fs,τ are

fs,τ

(
1 +

(1 + τ)s − 1

τ3 + 2τ2

)
= fs,τ ((1 + τ)s) = 1 + τ

and

fs,τ

(
1 +

2τ + τ2

(1 + τ s)− 1

(
3τ

2
+
τ2

2

))
= 1− τ2

respectively. Now,

d

dx
fs,τ (x)x−

1
s = f

′
s,τ (x)x−

1
s − 1

s
fs,τ (x)x−

s+1
s .

When d
dxfs,τ (x) is negative the above expression is clearly negative. On the other

hand, when g
′
s,τ (x) is positive, we have that

f
′
s,τ (x) =

2τ + τ2

(1 + τ)s − 1
h
′
τ

(
2τ + τ2

(1 + τ)s − 1
(x− 1) + 1

)
>

2τ + τ2

(1 + τ)s − 1

>
2τ + τ2

sτ
(
1 + τ

2

)
=

2

s
,
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and so

d

dx
fs,τ (x)x−

1
2 >

2

s
x−

1
s − 1

s
fs,τ (x)x−

s+1
s

>
2

s
x−

1
s − 1

s
fs,τ (x)x−

s+1
s

>
2

s
x−

1
s − 1

s
(1 + τ) (x)x−

s+1
s

>
2

s
x−

1
s − 1

s
(1 + τ) (x)x−

1
s

=
x−

1
s

s
(1− τ)

> 0.

Using this and the fact that, by (ii) and (iii), the endpoints are equal, we get that

the maximum and minimum of fs,τ (x)x
1
s over the range [1, (1 + τ)s) are

fs,τ

(
1 + (1+τ)s−1

2+τ

)
s

√
1 + (1+τ)s−1

2+τ

and
fs,τ

(
1 + (1+τs)−1

2τ+τ2

(
3τ
2 + τ2

2

))
s

√
1 + (1+τs)−1

2τ+τ2

(
3τ
2 + τ2

2

)
respectively. These extend to (0,∞) by (iv) and evaluate to the inner bounds on

fs,τ (x)x−
1
s .

For the outer bounds, we note that

∂

∂s
(α (1 + τ)s + β)−

1
s = −1

s
(α (1 + τ)s + β)−

s+1
s α log (1 + τ) (1 + τ)s

and, since both cs,τ and ds,τ are of this form with α > 0, they both decrease with s

and so we get the required bounds by substituting s = 2 and s = 1 respectively.

(v) Noting cτ > 1−τ2√
(1+τ)2

= 1− τ we get
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cs,τ
ds,τ

>
cτ
dτ

>
1− τ
1 + τ

2

=
(1− τ)

(
1− τ

2

)
1− τ2

4

> (1− τ)
(

1− τ

2

)
> 1− 3τ

2
.

(vi) hτ is piecewise affine by definition and thus, using (i), so is fs,τ . Similarly, it is easily

checked that hτ is continuous on
[
1, (1 + τ)2

)
, hence gs,τ is on [1, (1 + τ)s), and so

we get that fs,τ is continuous on (0,∞) by noting that for any k ∈ Z

fs,τ (1 + τ)sk = 1 (1 + τ)−k = (1 + τ) (1 + τ)k−1 = lim
x↑(1+τ)sk

fsτ (x) .

Finally, it is an immediate consequence of (ii) and (v) that fs,τ is continuous at 0.

�

We can see from Propositions 3.2.3 and 3.2.6 that the real stumbling block for the resulting

function to be a metric is the triangle inequality. This is what we shall be looking at

next. We attack this from two directions: If x and y are similar in size, then the proofs,

where fs,τ (|x+ y|) and fs,τ (|x− y|) are handled separately, are based on the large scale

behaviour of the function being like x
1
s , the former on the fact that x

1
s is concave and the

latter on the fact that it is increasing; on the other hand, if x and y are quite different in

size, it is based on the fact that fs,τ at the larger value grows relatively slowly compared

with x
1
s near the smaller value. We begin with the case where the values are very different.

Lemma 3.2.7

fs,τ (x± y) 6 fs,τ (x) + 2λs,τ (1 + τ)x
1
s
−1y.
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Proof From its definition hτ (x± y) 6 hτ (x) + 2y, and so

gs,τ (x± y) 6 gs,τ (x) + 2λs,τy.

Thus

fs,τ (x+ y) 6 fs,τ (x) + 2λs,τ (1 + τ)(s−1)k y, (3.1)

where

k =

⌈
− log x

s log (1 + τ)

⌉
.

But we have

(1 + τ)k 6 (1 + τ)
1− log x

s log (1+τ)

= (1 + τ)

(
(1 + τ)

log x
log (1+τ)

)− 1
s

= (1 + τ)

(
(1 + τ)

log x
log (1+τ)

)− 1
s

= (1 + τ)
(

(1 + τ)log1+τ (x)
)− 1

s

= (1 + τ)x−
1
s ,

and so

(1 + τ)(s−1)k 6
(

(1 + τ)x−
1
s

)s−1
= (1 + τ)s−1 x

1
s
−1

6 (1 + τ)x
1
s
−1.

Substituting the above into (3.1) gives the required result. �

Lemma 3.2.8 Suppose that 0 < y 6
(

cτ
2λs,τ (1+τ)

) s
s−1

x, then

fs,τ (x± y) 6 fs,τ (x) + fs,τ (y) .
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Proof Using Lemma 3.2.7 we get

fs,τ (x± y) 6 fs,τ (x) + 2λs,τ (1 + τ)x
1
s
−1y

= fs,τ (x) +
2λs,τ (1 + τ)

cτ
x

1
s
−1cτy

= fs,τ (x) +

((
cτ

2λs,τ (1 + τ)

) s
s−1

x

) 1
s
−1

cτy

6 fs,τ (x) + y
1
s
−1cτy

= fs,τ (x) + cτy
1
s

6 fs,τ (x) + fs,τ (y) .

�

We are now ready to look at the cases when x and y are comparable in size.

Lemma 3.2.9 Suppose that 0 < 3τ
2(1− 1

s )−3τ
x 6 y 6 x, then

fs,τ (x+ y) 6 fs,τ (x) + fs,τ (y) .

Proof We suppose that assumptions of the lemma are true and set t = y
x , then

t >
3τ

2
(
1− 1

s

)
− 3τ

. (3.2)

Since t 7→ (1 + t)
1
s is a concave function that has value 1 and gradient 1

s when t = 0, we

have

(1 + t)
1
s 6 1 +

t

s
.

We also note that, since t ∈ [0, 1],

1 + t
1
s > 1 + t.
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So, we are now able to write

fs,τ (x+ y) 6 ds,τx
1
s (1 + t)

1
s

6 ds,τx
1
s

(
1 +

t

s

)
= ds,τx

1
s

(
1 +

(
−1 +

1

s
+

3τ

2

)
t+

(
1 +

3τ

2

)
t

)
6 ds,τx

1
s

(
1 +

3τ

2
+

(
1 +

3τ

2

)
t

)
by (3.2)

= ds,τ

(
1 +

3τ

2

)
x

1
s (1 + t)

6 cs,τx
1
s (1 + t) by Proposition 3.2.6

6 cs,τx
1
s

(
1 + t

1
s

)
6 fs,τ (x) + fs,τ (y) .

�

Lemma 3.2.10 Suppose that 0 <
(
ds,τ
cs,τ
− 1
)s
x 6 y 6 x. Then

fs,τ (x− y) 6 fs,τ (x) + fs,τ (y) .

Proof We suppose that 0 <
(
ds,τ
cs,τ
− 1
)s
x 6 y 6 x and take α ∈ [c, d] such that fs,τ (x) =

αx
1
s . Then

fs,τ (x− y) 6
ds,τ
α
fs,τ (x)

= fs,τ (x) +

(
ds,τ
cs,τ
− α

cs,τ

)
cs,τ
α
fs,τ (x)

6 fs,τ (x) +

(
ds,τ
cs,τ
− 1

)
cs,τ
α
fs,τ

6 fs,τ (x) +
(y
x

) 1
s cs,τ
α
fs,τ

6 fs,τ (x) +
(y
x

) 1
s
cs,τx

1
s

= fs,τ (x) + cs,τy
1
s

6 fs,τ (x) + fs,τ (y) .

�
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Combining these approaches allows us to give our first estimate on which τ do indeed lead

to metric space.

Theorem 3.2.11 If for any given s ∈ (1, 2] we define

τ0 (s) = inf

{
τ > 0 : max

{
3τ

2
(
1− 1

s

)
− 3τ

,

(
ds,τ
cs,τ
− 1

)s}
>

(
cs,τ

2λs,τ (1 + τ)

) s
s−1

}
,

then τ0 (s) > 0 and, for any τ ∈ (0, τ0 (s)], fs,τ ∈ E.

Proof Recall from Proposition 3.2.6 that fs,τ ({0}) and fs,τ is continuous at 0. And, by

combining Lemma 3.2.8 with Lemmas 3.2 and 3.2.10, we have that

max {fs,τ (x+ y) , fs,τ (x− y)} 6 fs,τ (x) + fs,τ (y)

for any 0 < y < x <∞, whenever the conditions of the theorem are met.

It remains to show that τ0 (s) > 0. However,

3τ

2
(
1− 1

s

)
− 3τ

→ 0 as τ → 0

and

(
cτ

2λs,τ (1 + τ)

) s
s−1

→

(
1

22
s (1)

) s
s−1

as τ → 0

> 0,

and the result follows. �

The above proves the existence of metric spaces of the form (R, (x, y) 7→ fs,τ (|x− y|)) for

any s ∈ (1, 2], but does not, on its own, give a very good estimate for which values of τ

will work. It does, however, lead on to a method for establishing much better estimates

numerically.

Lemma 3.2.12 Suppose that fs,τ (x+ y) > fs,τ (x) + fs,τ (y) for some 0 < y 6 x. Then

there exists k ∈ N ∪ {0} such that

fs,τ (x̂+ ŷ) > fs,τ (x̂) + fs,τ (ŷ) ,
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where

x̂ =
1

λs,τ

(
3τ

2
+
τ2

2

)
and ŷ = x̂ (1 + τ)−sk .

Proof We suppose that fs,τ (x+ y) > fs,τ (x) + fs,τ (y), that is ϕs,τ (x, y) > 0, where we

define

φs,τ (x, y) = fs,τ (x+ y)− fs,τ (x)− fs,τ (y) .

Using the fact that for any k ∈ Z

ϕs,τ

(
(1 + τ)sk x, (1 + τ)sk y

)
= (1 + τ)k ϕs,τ (x, y) , (3.3)

we can find x1 and y1 such that ϕs,τ (x1, y1) > 0 and x1 ∈ [a, d), where

a = (1 + τ)−s
(

1 + λs,τ

(
3τ

2
+
τ2

2

))
b = 1

c = 1 +
1

λs,τ
τ

d = 1 +
1

λs,τ

(
3τ

2
+
τ2

2

)
.

Now, for some j ∈ N ∪ {0}, we have that x1 + y1 ∈ (1 + τ)sj [a, d) and we set η =

(1 + τ)−sj (x1 + y1).

We now need to look at different cases.

(i) If x1 ∈ [a, b], or if x1 ∈ (b, c) and η > x1, then (ignoring the corners, as we may since

they have zero length), for t ∈ [0, x1 − a],

d

dt
fs,τ (x1 − t) 6

d

dt
fs,τ (x1 + y1 − t)

and so we may take x2 = a and have ϕs,τ (x2, y1) > ϕs,τ (x1, y1) > 0.

(ii) If x1 ∈ [c, d) and η 6 x1, then, for t ∈ [0, c− x1],

d

dt
fs,τ (x1 + t) 6

d

dt
fs,τ (x1 + y1 + t)

and so we may take x2 = c and have ϕs,τ (x2, y1) > ϕs,τ (x1, y1) > 0.
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(iii) If, on the other hand, x1 ∈ (b, c) and η 6 x1. Then we take t̃ = min
{

(1 + τ)sj (c− η) , d− x1
}

.

If the former of the above terms is the minimum, then

fs,τ
(
x1 + y1 + t̃

)
= (1 + τ)j (1 + τ) > (1 + τ)j fs,τ

(
x1 + t̃

)
,

but

(1 + τ)j fs,τ (x1) > (1 + τ)j fs,τ (η) = fs,τ (x1 + y1) ,

and thus, ϕ
(
x1 + t̃, y1

)
> ϕ (x1, y1) > 0. But x1+t̃ ∈ [b, c] and (1 + τ)−sj

(
x1 + y1 + t̃

)
=

b and so we can use (ii) to get x2 = d with ϕs,τ (x2, y1) > 0.

If, however, the latter of the above terms is the minimum then we can take x2 =

x1 + t̃ = c. And, since for t ∈
[
0, t̃
]
d

dt s,τ
f (x1 + t) > 0,

we have that fs,τ (x2 + y1) > fs,τ (x1 + y1)

Since this covers every case we now have

x2 =
1

λs,τ

(
3τ

2
+
τ2

2

)
(1 + τ)sk ,

for some k ∈ Z, and y2 = y1 such that ϕs,τ (x2, y2) > 0.

We may now repeat this process with y2 to give

y3 =
1

λs,τ

(
3τ

2
+
τ2

2

)
(1 + τ)sl1

x3 = x2 (1 + τ)sl2

=
1

λs,τ

(
3τ

2
+
τ2

2

)
(1 + τ)sl3 ,

for some l1, l2, l3 ∈ Z. Finally, we can use (3.3) to find l4 ∈ Z so that when x̂ =

(1 + τ)sl4 max {x3, y3} and ŷ = (1 + τ)sl4 min {x3, y3} we have ϕs,τ (x3, y3) > 0. �

Lemma 3.2.13 Suppose that fs,τ (x− y) > fs,τ (x) + fs,τ (y) for some x > y > 0. Then
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either there exists k ∈ N ∪ {0} such that

fs,t (x̂− ŷ) > fs,t (x̂) + fs,t (ŷ)

where

x̂ =
1

λs,τ

(
3τ

2
+
τ2

2

)
and ŷ = x̂ (1 + τ)−sk ,

or

fs,t

(
1 +

1

λs,τ
(1 + τ)

)
> fs,t (x̂) + fs,t

(
x̂−

(
1 +

1

λs,τ
(1 + τ)

))
.

Proof We suppose that fs,τ (x+ y) > fs,τ (x) + fs,τ (y), that is ϕs,τ (x, y) > 0, where we

define

ϕs,τ (x, y) = fs,τ (x− y)− fs,τ (x)− fs,τ (y) .

Using the fact that for any k ∈ Z

ϕs,τ

(
(1 + τ)sk x, (1 + τ)sk x

)
= (1 + τ)k ϕs,τ (x, y) , (3.4)

we can find x1 and y1 such that ϕs,τ (x1, y1) > 0 and x1 ∈ [a, d), where

a = 1

b = 1 +
1

λs,τ
τ

c = 1 +
1

λs,τ

(
3τ

2
+
τ2

2

)
d = (1 + τ)s .

We will first show that x1 − y1 ∈ (a, d), and so we assume that this is not the case and

x1 − y1 6 a. Then, from our assumptions and the construction of fs,τ , we can see that

fs,τ (y1) < fs,τ (x1 − y1)− fs,τ (x1) 6 τ
2.

But it must also be the case that

x1 > 1 +
1

λs,τ

3τ

2
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and thus

y1 >
1

λs,τ

3τ

2
.

So, we have

1

9
> τ2

> fs,τ (y1)

>
1− τ
1 + τ

1

λs,τ

3τ

2

>
1− τ
1 + τ

1

2 + τ2
3τ

2

>
9

76
,

which is a contradiction. Thus x1 − y1 ∈ [a, d).

We note that if x1 ∈ [a, c]

d

dt
fs,τ (x1 + t) 6

d

dt
fs,τ (x1 − y1 + t)

for t ∈ [0, c− x1], and if x1 ∈ (c, d)

d

dt
fs,τ (x1 − t) 6

d

dt
fs,τ (x1 − y1 − t)

for t ∈ [0,min {x1 − c, x1 − y1 − a}]. So, with x̂ = c, we have ϕs,τ (x̂, y1) > 0, as if

x1 − y1 − a < x1 − c it would lead to a contradiction with the first part of this proof.

Now, for some j ∈ N ∪ {0}, we have that y1 ∈ (1 + τ)−sj [a, d].

Again, we need to look at different cases.

(i) If (1 + τ)sj y1 ∈ [c, d), we have, for t ∈
[
(1 + τ)−sj c, y1

]
,

d

dt
fs,τ (y1 − t) 6

d

dt
fs,τ (x̂− y1 + t)

and so we may take ŷ = (1 + τ)−sj c and have ϕs,τ (x̂, ŷ) > ϕs,τ (x̂, y1) > 0.
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(ii) If (1 + τ)sj y1 ∈ [b, c), we have, for t ∈
[
y1, (1 + τ)−sj c

]
,

d

dt
fs,τ (y1 + t) 6

d

dt
fs,τ (x̂− y1 − t)

and so we may take ŷ = (1 + τ)−sj c and have ϕs,τ (x̂, ŷ) > ϕs,τ (x̂, y1) > 0.

(iii) If (1 + τ)sj y1 ∈ [a, b) and

f ′s,τ (y1) 6 −f ′s,τ (x̂− y1) ,

then, necessarily, x̂−y1 ∈ [b, c] and we have, for t ∈
[
0,min

{
(1 + τ)−sj b− y1, x̂− y1 − b

}]
,

d

dt
fs,τ (y1 + t) 6

d

dt
fs,τ (x̂− y1 − t) .

So, when (1 + τ)−sj b−y1 6 x̂−y1−b we have ϕsτ

(
x̂, (1 + τ)−sj b

)
> ϕs,τ (x̂, y1) > 0,

in which case we can use (ii) to give us ϕs,τ (x̂, ŷ) > 0, where ŷ = (1 + τ)−sj b. And

when (1 + τ)−sj b− y1 > x̂− y1 − b we have ϕs,τ (x̂− b) > ϕs,τ (x̂, y1) > 0, and so

fs,τ

(
1 +

1

λs,τ
(1 + τ)

)
> fs,τ (x̂) + fs,τ

(
x̂−

(
1 +

1

λs,τ
(1 + τ)

))
.

(iv) If (1 + τ)sj y1 ∈ [a, b) and

f ′s,τ (y1) > −f ′s,τ (x̂− y1) ,

then there are two cases for us to consider.

Firstly, if y1−(1 + τ)−sj a 6 b−(x̂− y1), we have that, for t ∈
[
0, y1 − (1 + τ)−sj a

]
,

d

dt
fs,τ (y1 − t) 6

d

dt
fs,τ (x̂− y1 + t) .

So ϕs,τ

(
x̂, (1 + τ)−sj a

)
> ϕs,τ (x̂, y1) > 0, and we can use (i) to give us ϕs,τ (x̂, ŷ) >

0, where ŷ = (1 + τ)−s(j+1) c.
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On the other hand, if y1 − (1 + τ)−sj a > b− (x̂− y1), we have

d

dt
fs,τ (y1 − t) 6

d

dt
fs,τ (x̂− y1 + t)

for t ∈ [0, b− (x̂− y1)]. So ϕs,τ (x̂, x̂− b) > ϕs,τ (x̂, y1) > 0, and so

fs,τ

(
1 +

1

λs,τ
(1 + τ)

)
> fs,τ (x̂) + fs,τ

(
x̂−

(
1 +

1

λs,τ
(1 + τ)

))
.

So, in any case, we either have that

fs,τ

(
1 +

1

λs,τ
(1 + τ)

)
> fs,τ (x̂) + fs,τ

(
x̂−

(
1 +

1

λs,τ
(1 + τ)

))
,

or

fs,τ (x̂− ŷ) > fs,τ (x̂) + fs,τ (ŷ) ,

where y has equality with either x̂ (1 + τ)−sj or x̂ (1 + τ)−s(j+1). �

Using Lemmas 3.2.12 and 3.2.13 in conjunction with Theorem 3.2.11 allows us to extend

the value of τ for which we can guarantee a metric space.

Theorem 3.2.14 Let

K =

⌊
log (2λs,τ (1 + τ))− log (cs,τ )

(s− 1) log (1 + τ)

⌋
,

Φs (τ) = min
{
fs,τ

(
x̂
(

1 + (1 + τ)−sk
))
− fs,τ (x̂)− fs,τ

(
x̂ (1 + τ)−sk

)
> 0 : 0 6 k 6 K

}
,

Ψ̃s (τ) = min
{
fs,τ

(
x̂
(

1− (1 + τ)−sk
))
− fs,τ (x̂)− fs,τ

(
x̂ (1 + τ)−sk

)
> 0 : 0 6 k 6 K

}
,

and

Ψs (τ) = min

{
Ψ̃s (τ) , fs,τ

(
1 +

1

λs,τ
(1 + τ)

)
− fs,τ (x̂)− fs,τ

(
x̂−

(
1 +

1

λs,τ
(1 + τ)

))}
,

where x̂ are defined as in Lemmas 3.2.12 and 3.2.13, and τ0 (s) is defined as in Theorem

3.2.11. Then, for

τ < τ1 (s) = inf

{
τ ∈

(
τ0,

1

3

]
: min Φs,τ ,Ψs,τ > 0

}
,
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we have that fs,τ ∈ E.

Proof We suppose that fs,τ /∈ E .

By Theorem 3.2.11 we have that τ > τ0. And by Proposition 3.2.6 fs,τ satisfies all of the

properties to be in E apart from the conditions on fs,τ (x+ y) and fs,τ (x− y). So, using

Lemmas 3.2.12 and 3.2.13 and the conditions of this theorem, we obtain some j > K such

that either

fs,τ

(
x̂
(

1 + (1 + τ)−sj
))

> fs,τ (x̂) + fs,τ

(
x̂ (1 + τ)−sj

)
or

fs,τ

(
x̂
(

1− (1 + τ)−sj
))

> fs,τ (x̂) + fs,τ

(
x̂ (1 + τ)−sj

)
.

But,

(1 + τ)−sj 6 (1 + τ)−s(K+1) <

(
cs,τ

2λs,τ (1 + τ)

) s
s−1

,

which contradicts Lemma 3.2.8. �

It is clear from the statement of the above theorem that τ1 is the optimal value for which

all τ ∈ (0, τ1] will give us a metric space. But, since the functions of τ used are not

monotonically decreasing, there is no guarantee that there are not higher values that have

been missed; experimental checking with a variety of values of s, however, suggests this is

not the case, and certainly not when s = 2.

Since the above functions over the stated range consist of a finite number of smooth

functions, it is possible to generate a bound to any precision required. In the case s = 2

the functions are polynomials (quintics) so an exact solution is possible. However, since

there is no reason to believe the value to be of any deep significance, we shall content

ourselves with the numerical estimate τ1 (2) > 0.2478.

Since we now have a good idea of when our functions do indeed generate a metric space, we

give some notation for the resultant space, before going on to study the density properties

of this space in the next section.

Definition 3.2.15 Let s ∈ [0, 1) and τ ∈
(
0, 13
)

be such that fs,τ ∈ E. Then we define the
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metric space

Rs,τ = (R, (x, y) 7→ fs,τ (|x− y|)) .

3.3 Density Properties

In this section we will be calculating the upper and lower densities of Hs in Rs,τ . In doing

so we shall also speak of the Lebesgue measure of sets; clearly this is not defined in Rs,τ

and, when we do mention them, we are referring to the Lebesgue measure of the same

set of points, but considered as a subset of the Euclidean space R. This should not be

confusing, as Lebesgue measure will always be meant in this way, whilst Hausdorff measure

and diameter will always refer to the metric in Rs,τ .

Definition 3.3.1 We define mo
τ ,m

i
τ : (0,∞)→ Z by

m0
τ (r) = max

{
k ∈ Z : r ∈ fs,τ

(
(1 + τ)−sk [1, (1 + τ)s)

)}
,

m1
τ (r) = min

{
k ∈ Z : r ∈ fs,τ

(
(1 + τ)−sk [1, (1 + τ)s)

)}
,

and lis,τ , ls,τ : (0,∞)→ (0,∞) by

l0s,τ (r) = inf {x ∈ (0,∞) : fs,τ (x) > r} ,

l1s,τ (r) = inf
{
x ∈

(
l0s,τ ,∞

)
: fs,τ < r

}
,

l2s,τ (r) = inf
{
x ∈

(
l1s,τ ,∞

)
: fs,τ > r

}
,

l3s,τ (r) = inf
{
x ∈

(
l2s,τ ,∞

)
: fs,τ < r

}
,

l4s,τ (r) = inf
{
x ∈

(
l3s,τ ,∞

)
: fs,τ > r

}
, and

ls,τ (r) = sup {x ∈ (0,∞) : fs,τ (x) < r} ,

unless the set in the definition of lis,τ is empty, in which case we may take lis,τ = ls,τ .

Finally δs,τ : P (R)→ [0,∞] by

δs,τ (E) = sup {fs,τ (|x− y|) : x, y ∈ E} ,

that is δs,τ (E) = diam (E) where a metric space is defined.
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Proposition 3.3.2

m0
τ (r)−m1

τ (r) =


0 if r ∈

⋃
k∈Z (1 + τ)k

[
1, (1 + τ)

(
1− τ2

))
1 if r ∈

⋃
k∈Z (1 + τ)k

[
(1 + τ)

(
1− τ2

)
, 1 + τ

)
,

ls,τ (r) =


l2s,τ (r) if m0

τ (r) = m1
τ (r)

l4s,τ (r) if m0
τ (r) = m1

τ (r) + 1,

and

L
(
f−1s,τ ([0, r])

)
=


l2s,τ (r)− l1s,τ (r) + l0s,τ (r) if m0

τ (r) = m1
τ (r)

l4s,τ (r)− l3s,τ (r) + l2s,τ (r) = l1s,τ (r) + l0s,τ(r) if m0
τ (r) = m1

τ (r) + 1.

Proof The first statement follows from the fact that (1 + τ)
(
1− τ2

)
< (1 + τ) but

(1 + τ)2
(
1− τ2

)
> (1 + τ) for τ ∈

(
0, 13
)
. The statements follow immediately from this

and the definition of fs,τ . �

We again use the concept of geometric periodicity, this will mean that we will only need

to study the functions on a finite interval, and not the whole domain or range.

Lemma 3.3.3 los,τ (r) rs, lis,τr
s and ls,τ (r) rs are geometrically periodic with period (1 + τ).

Proof We have that r = fs,τ (x) if and only if (1 + τ) r = (1 + τ) fs,τ (x) = fs,τ ((1 + τ)s x).

The result now follows from the definitions of the functions and from Proposition 3.2.6

(iii). �

Before we can link the Hausdorff and Lebesgue measures, it will be useful to bound

Lebesgue measure in R with the diameter of the set in Rs,τ .

Lemma 3.3.4 Suppose that E ⊆ Rs,τ has diam (E) = r ∈ (0,∞), then L (E) 6 rs.

Proof We assume without loss of generality that inf (E) = 0, and let a = sup (E). And

we take E to be the closure of E. We note that

E ⊆ f−1s,τ ([0, r]) ∩
(
a− f−1s,τ ([0, r])

)
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(where a− f−1s,τ ([0, r]) =
{
x ∈ Rs,τ : a− x ∈ f−1s,τ ([0, r])

}
and subtraction is defined in the

usual way).

Thus we have three possibilities:

(i) a ∈
[
0, l0s,τ (r)

]
, in which case

L (E) 6 L
(
E
)
6 l0s,τ (r) ,

(ii) a ∈
[
l1s,τ (r), l2s,τ (r)

]
, in which case

L (E) 6 L
(
E
)
6 l2s,τ (r)− 2

(
l1s,τ (r)− l0s,τ (r)

)
,

or

(iii) a ∈
[
l3s,τ (r), l4s,τ (r)

]
, in which case

L (E) 6 L
(
E
)
6 l4s,τ (r)− 2

(
l3s,τ (r)− l2s,τ (r)

)
− 2 (r)− 2

(
l1s,τ (r)− l0s,τ (r)

)
.

We now need to show that each of the above expressions is bounded above by rs for all

r ∈ (0,∞). By Lemma 3.3.3 it is enough to show this is the case for r ∈ [1, 1 + τ). We

also note that, for i ∈ {0, 1, 2},

lis,τ (r)− 1 =
1

λs,τ

(
l12,τ (r)− 1

)
whilst

rs − 1 =
rs − 1

r2 − 1

(
r2 − 1

)
;

the above coefficients are, by definition, equal when r = 1 + τ . But, while the upper is

constant, the lower is decreasing with r, and does not take a higher value for r ∈ [1, 1 + τ).

It is therefore sufficient to show (i) and (ii) in the case where s = 2.

(i) We note that r2 and l02,τ (r) take the same value when r = 1, but their gradients are

2 and 1 respectively. Since r2 is convex, the result follows.
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(ii) We note that

l22,τ (r) = (1 + τ)2 − 1

2
(1 + τ − y)

and

l12,τ (r)− l0s,τ (r) =
3

2
(1 + τ − y) .

Thus

L (E) 6 (1 + τ)2 − 7

2
(1 + τ − y) .

This takes the value (1 + τ)2 when r = (1 + τ) and has gradient 7
2 , whilst r2 takes

the same value but has gradient 2 + 2τ < 7
2 . The result again follows from the

convexity of r2.

(iii) We note, using that τ 6 1
3 , that

l4s,τ (r)− l3s,τ (r) 6 lim
r↑1+τ

(
l4s,τ (r)− l3s,τ (r)

)
=

1

λs,τ
(1 + τ)s τ2 6

1

λs,τ
(1 + τ)s

1

9

and

l3s,τ (r)− l2s,τ (r) > lim
r↑1+τ

(
l3s,τ (r)− l2s,τ (r)

)
=

1

λs,τ

3

2
(1 + τ)s+1 >

1

λs,τ
(1 + τ)s

5

2
.

But now,

L (E) 6 l4s,τ (r)− 2
(
l3s,τ (r)− l2s,τ (r)

)
− 2 (r)− 2

(
l1s,τ (r)− l0s,τ (r)

)
=

(
l4s,τ (r)− l3s,τ (r)

)
−
(
l3s,τ (r)− l2s,τ (r)

)
+ l2s,τ (r)− 2

(
l1s,τ (r)− l0s,τ (r)

)
6 l2s,τ (r)− 2

(
l1s,τ (r)− l0s,τ (r)

)
,

and the result follows from (ii).

We have the result in any case. �

We show the equivalence of the two measures in stages.

Lemma 3.3.5 Let E ⊆ Rs,τ , then

Hs (E) > L (E) .
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Proof

Hs (E) > inf

{∑
i∈N

(diam (Ai))
s : E ⊆

⋃
i∈N

Ai

}

> inf

{∑
i∈N

(diam (Ai))
s :
∑
i∈N
L (Ai) > L (E)

}

> inf

{∑
i∈N

(diam (Ai))
s :
∑
i∈N

(diam (Ai))
s > L (E)

}
by Lemma 3.3.4

> L (E) .

�

Lemma 3.3.6 Let E ⊆ Rs,τ , then

Hs (E) 6 (ds,τ )s L (E) .

Proof If L (E) = ∞ then there is nothing to prove, so we assume that L (E) < ∞. We

now fix ε > 0 and find δ > 0 such that

min

{
Hs (E) ,

1

ε

}
< Hsδ (E) + ε

(we do not yet know that Hs (E) is finite).

Then there exist {(ai, bi)}i∈N ⊆ R2 such that

E ⊆
⋃
i∈N

[ai, bi] ,

∑
i∈N

(bi − ai) < L (E) + ε

and, for every i ∈ N,

0 < bi − ai < δ.
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Now,

(diam ([ai, bi]))
s = (sup {fs,τ (|x− y|) : x, y ∈ [ai, bi]})s

6
(

sup
{
ds,τ (|x− y|)

1
s : x, y ∈ [ai, bi]

})s
= (ds,τ )s (bi − ai) .

Therefore,

min

{
Hs (E) ,

1

ε

}
< Hsδ (E) + ε

6
∑
i∈N

(diam ([ai, bi]))
s + ε

6 (δs,τ )s
∑
i∈N

(bi − ai) + ε

6 (δs,τ )s (L (E) + ε) + ε.

Since L (E) is finite, for sufficiently small ε we get

Hs (E) < (δs,τ )s (L (E) + ε) + ε,

and letting ε ↓ 0 gives the result. �

Theorem 3.3.7 Let E ⊆ Rs,τ , then

Hs (E) = L (E) .

Furthermore, it does not affect the value of the measure if we restrict the class of covering

sets in the definition of Hs to be closed intervals of the form I such that

(diam (I))s = L (I) .

Proof If Hs (E) = ∞ then we have Hs (E) = L (E) immediately from Lemma 3.3.6, so

we need only consider E with Hs (E) < ∞. We fix ε > 0. We may now find δ > 0 such

that

Hs (E) < Hsδ (E) + ε,
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and then K ∈ N such that

(1 + τ)−K < δ.

We now define E ⊆ P (Rs,τ ) by

E =

{[
x− 1

2
(1 + τ)−sk, x+

1

2
(1 + τ)−sk

]
: x ∈ E, k > K

}
.

So, we can use Theorem 1.4.6 to give us a countable collection of disjoint sets, A ⊆ E ,

such that

L

(
E\

⋃
A∈A

A

)
= 0

and ∑
A∈A
L (A) < L (E) + ε.

Furthermore, by Lemma 3.3.6, it follows that

Hs
(
E\

⋃
A∈A

A

)
= 0.

We note that

[
x− 1

2
(1 + τ)−sk, x+

1

2
(1 + τ)−sk

]
= f−1s,τ

([
0, (1 + τ)−k

])
+ x− 1

2
(1 + τ)−sk .

Thus, for any A ∈ A, we have

L (A) = (diam (A))s .
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So,

Hs (E) < Hsδ (E) + ε

6 Hsδ

( ⋃
A∈A

A

)
+Hsδ

(
E\

⋃
A∈A

A

)
+ ε

= Hsδ

( ⋃
A∈A

A

)
+ ε

6
∑
A∈A

(diam (A))s + ε

=
∑
A∈A
L (A) + ε

< L (E) + 2ε.

Letting ε ↓ 0 and combining with Lemma 3.3.5 gives the main result. The final statement

follows from the construction used in this proof and noting that restricting the class of

covering sets cannot decrease the infimum used in the definition. �

With this equivalence established, it is now easy to calculate the upper and lower densities

of the space.

Theorem 3.3.8 For any x ∈ Rs,τ ,

Ds (Hs, x) = 21−s inf
r∈[1,1+τ)

{
ls,τ (r)

rs

}

and

D
s

(Hs, x) = 21−s sup
r∈[1,1+τ)

{
ls,τ (r)

rs

}
.

Proof Since L (B (x, r)) = 2ls,τ (r), we may use Theorem 3.3.7 and Lemma 3.3.3 to give

Ds (Hs, x) = lim inf
r↓0

(2r)−s 2ls,τ (r)

= 21−s inf

{
ls,τ (r)

rs
: r ∈ [1, 1 + τ)

}

and

D
s

(Hs, x) = lim sup
r↓0

(2r)−s 2ls,τ (r)

= 21−s sup

{
ls,τ (r)

rs
: r ∈ [1, 1 + τ)

}
.
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�

We can use this along with our calculated value of τ1 (2) to give us D2
(
H2, x

)
≈ 0.5117

and D
2 (H2, x

)
≈ 0.5307, for every x ∈ R2,τ . In particular D2

(
H2, x

)
> 0.5117, and so

sup {σ2 (X) : X is a metric space} > 0.5117.

3.4 Extension to s > 2

We now extend our density results to higher dimensions by forming some new spaces. We

do this by taking Cartesian products of Rs,τ with a Euclidean space.

Definition 3.4.1 Let s > 2. Then we define the metric space,

Rs,τ = (Rs0,τ × Rn, d) ,

where n = ds− 2e, s0 = s− n, and d : R2
s,τ → [0,∞) is defined by

d ((x, a1, . . . , an) , (y, b1, . . . , bn)) = max {fs,τ (|x− y|) , |a1 − b1| , . . . , |a1 − b1|} .

For simplicity, we shall only calculate the Hausdorff measure of a ball in this resultant

space. This is, of course, all we shall need to calculate the densities of Hs in these spaces.

Lemma 3.4.2 Let s > 2, x ∈ Rs,τ and y ∈ Rs0,τ . Then,

Hs (B (x, r)) = (2r)nHs0 (B (y, r)) .

Proof Since the metrics are translation invariant, we may assume that x = (y, a), for

some a ∈ Rn. We prove each inequality separately.

(i) We fix ε > 0, and pick δ ∈ (0, ε) such that

Hs (B (x, r)) < Hsδ (B (x, r)) + ε.
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We may now find a collection of sets, {Ai}i∈N ⊆ P (Rs0,τ ), such that

(1) B (y, r) ⊆
⋃
i∈NAi,

(2) diam (Ai) < δ for any 1 6 i 6 n, and

(3)
∑

i∈N diam (Ai) < Hs0 (B (y, r)) + ε.

We note that

B (x, r) ⊆
⋃
i∈N

Ai ×

mi⋃
j=1

Ii,j

 ,

where

mi =

⌈
2r

diam (Ai)

⌉
and {Ii,j} ⊆ Rn is a collection of closed cubes with diam (Ii,j) = diam (Ai), for any

i ∈ N and j ∈ {1, . . . ,mi}.

Thus,

Hs (B (x, r)) < Hsδ (B (x, r)) + ε

6
∑
i∈N

mi∑
j=1

diam (Ai) + ε

6
∑
i∈N

(2r + δ) diam (Ai) + ε

< (2r + ε)Hs0 (B (y, r)) + ε.

Letting ε ↓ 0 gives us

Hs (B (x, r)) 6 2rHs0 (B (y, r)) . (3.5)

(ii) For the other inequality, we note that there exists {Ei}i∈N ⊆ P (Rs,τ ) such that

(1) B (x, r) ⊆
⋃
i∈NEi,

(2)
∑

i∈N (diam (Ei))
s < Hs (B (x, r)) + ε, and

(3) for each i ∈ N, Ei = Ẽi × Ri, where Ẽi ⊆ Rs0,τ is the projection of Ei onto

Rs0,τ , and Ri ⊆ Rn is a closed cube with diam (Ri) = diam (Ei).
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The qualification (3) may be made since any set in Rs,τ is the subset of a set of the

same diameter that has the properties mentioned in (3).

So, we can use Theorem 3.3.7 to write

Hs0 (B (y, r)) (2r)n = Ln+1 (B (x, r))

6
∑
i∈N
Ln+1 (Ei)

=
∑
i∈N
L
(
Ẽi

)
(diam (Ei))

n

6
∑
i∈N

(
diam

(
Ẽi

))s0
(diam (Ei))

n

6
∑
i∈N

(
diam

(
Ẽi

))s
< Hs (B (x, r)) + ε.

Letting ε ↓ 0 in (3.5) and (3.6) gives us the result. �

It is worth noting at this point that the above theorem implies that Rs,τ is of σ-finite Hs

measure.

We are now ready to extend our density results.

Theorem 3.4.3 For any x ∈ Rs,τ ,

Ds (Hs, x) = 21−s0 inf
r∈[1,1+τ)

{
ls0,τ (r)

rs0

}

and

D
s

(Hs, x) = 21−s0 sup
r∈[1,1+τ)

{
ls0,τ (r)

rs0

}
.

Proof By Lemma 3.4.2 we have that

Hs (B (x, r))

(2r)s
=

(2r)nHs0 (B (y, r))

(2r)s
=
Hs0 (B (y, r))

(2r)s0
,

where y ∈ Rs0,τ . The result now follows from Theorem 3.3.8. �
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With the estimate we made at the end of the last section, Theorem 3.4.3 gives us that

sup {σk (X) : X is a metric space} > 0.5117,

for any k ∈ N.

At this point all that remains for us to do is to demonstrate that Rk,τ is purely unrectifiable

for any integer k > 2. This is easy given the following Lemma, which is an immediate

consequence of Kirchheim’s result in [16].

Lemma 3.4.4 Let X be a k-rectifiable separable metric space with σ-finite Hk measure.

Then

Ds (X,x) = D
s

(X,x)

for Hk-almost every x ∈ X.

Theorem 3.4.5 Let k ∈ N\ {1}. Then Rk,τ is purely unrectifiable.

Proof The result follows immediately from Lemma 3.4.4 and Theorem 3.4.3. �
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Chapter 4

Lower Bounds on Upper

Hausdorff s-Densities

4.1 Introduction

In Chapter 3 we were concerned with the question of how large lower densities can be for

purely unrectifiable sets. In this chapter we are concerned with how small upper densities

can be. Whilst in Chapter 3, and in a sense Chapter 2, we were using extreme examples

to place limits on how far bounds could be extended, we will, in this chapter, be working

on improving the bounds themselves.

Besicovitch showed in [2] that if E ⊂ R2 is a 1-set then D
s

(E, x) > 1
2 almost everywhere.

The proof generalises to separable metric spaces and general s with the bound 2−s, as is

shown in, for example, [14].

The bound appears in the proof because a covering, as per the definition of Hausdorff

measure, uses general sets, but, in order to use the definition of density, we require balls

centred in the set. The way this is achieved in the proof is taking an arbitrary point and

putting a ball whose radius is the diameter of the set that needs covering. The bound 2−s

is from the normalisation term in density being (2r)s, where r is the radius of the ball.

We use the same idea, but we use more efficient coverings with balls to improve the bound.
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We do this using the notion of centred contents.

4.2 Centred Content

Centred contents are defined by Chleb́ık in [6]. They are a means of measuring how

difficult it is to cover an arbitrary subset of a given set with ball centred in that subset.

They are used in [6] to define a lower bound for upper densities in a normed space. For

our bound, we will actually be using a modified definition, which we define in the next

section. But, since that definition is more convoluted, it is useful to first examine centred

contents here.

Definition 4.2.1 Let X be a metric space, s ∈ [0,∞). Then we define the s-dimensional

centred content, Cs∞ : P (X)→ [0,∞], by

Cs∞ (E) = sup
{
C̃s∞ (A) : A ⊆ E

}
,

where

C̃s∞ (E) = inf

{∑
i∈N

rsi : E ⊆
⋃
i∈N

B (xi, ri) , xi ∈ E, ri ∈ (0,∞)

}
,

defining C̃s∞ (∅) = 0.

We now give some elementary properties of centred contents.

Proposition 4.2.2 Let X be a metric space, s ∈ [0,∞), and E ⊆ X. Then C̃s∞ is

subadditive, and Cs∞ is a measure.

Proof Suppose that A1,A2 ⊆ P (X) are coverings of E1 and E2 respectively, comprising

balls centred in E1 and E2 respectively. Then the union of these coverings is a cover of

E1 ∪ E2 comprising balls centred in E1 ∪ E2. It follows that C̃s∞ is subadditive.

It is immediate from the definition that Cs∞ is monotonic and Cs∞ (∅) = 0 . For subadditivity
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we note that for any ε > 0 there exists Ẽ ⊆ E1 ∪ E2 such that

Cs∞ (E1 ∪ E2) < C̃s∞
(
Ẽ
)

+ ε

6 C̃s∞
(
E1 ∩ Ẽ

)
+ C̃s∞

(
E2 ∩ Ẽ

)
+ ε

6 Cs∞
(
E1 ∩ Ẽ

)
+ Cs∞

(
E2 ∩ Ẽ

)
+ ε

6 Cs∞ (E1) + Cs∞ (E2) + ε,

and let ε ↓ 0. �

Proposition 4.2.3 Let X be a metric space, s ∈ [0,∞), and E ⊆ X. Then,

2−sHs (E) 6 Cs∞ (E) 6 Hs∞ (E) 6 min {Hs (E) , (diam (E))s} .

Proof As an immediate consequence of Definition 4.2.1, we have that, for any ε > 0,

there exists {(xi, ri)}i∈N ⊆ E × (0,∞) such that

E ⊆
⋃
i∈N

B (xi, ri)

and

Cs∞ (E) > C̃s∞ (E) >
∑
i∈N

rsi − ε.

But, diam (B (xi, ri)) 6 2ri and so

2−sHs∞ (E) 6 2−s
∑
i∈N

(2ri)
s 6 Cs∞ (E) + ε. (4.1)

On the other hand, there exists A ⊆ E such that Cs∞ (E) < C̃s∞ (A) + ε. Now, from the

definition of Hs∞, there exists a collection of non-empty sets {Ai}i∈N ⊆ P (X) such that

A ⊆
⋃
i∈N

Ai and
∑
i∈N

(diam (Ai))
s 6 Hs∞ (E) + ε.

Thus, picking any xi ∈ Ai, we have

A ⊆
⋃
i∈N

B
(
xi,diam (Ai) +

ε

2i

)
.
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So,

Cs∞ (E) < C̃s∞ (A) + ε

6
∑
i∈N

(diamAi)
s + 2ε

6 Hs∞ (A) + 3ε

6 Hs∞ (E) + 3ε. (4.2)

Letting ε ↓ 0 in (4.1) and (4.2) gives the first two inequalities, Hs∞ (E) 6 Hs (E) fol-

lows from Proposition 1.3.2, and Hs∞ (E) 6 (diam (E))s follows immediately from the

definition. �

Proposition 4.2.4 Let X be a normed space, E ⊆ X, a ∈ X and λ ∈ (0,∞). Then,

C̃s∞ (λE + a) = λsC̃s∞ (E)

and

Cs∞ (λE + a) = λsCs∞ (E) .

Proof The first equality comes from the fact that {Ei}i∈N ⊇ E if and only if {λEi + a}i∈N ⊇

λE + a and that diam (λEi + a) = λdiam (Ei).

The second equality follows from the first, noting that A ⊆ E if and only if λA+a ⊆ λE+a.

�

4.3 Measured Centred Content

We will now define a variation of centred content. This is significantly more difficult to

work with and, consequently, we will have to reduce the generality of our bound from

normed spaces to finite dimensional normed spaces. I do not know whether the bound is

actually false in the more general case but, if it were true, then it would require a proof

significantly different from the one presented here. The advantage of this definition is, as

we shall see in the next section, that the density bounds produced are, in some sense, the

best possible.
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In the proof of the bound on upper density, the sets we are trying to cover with centred

balls are those which make up an efficient small scale covering as per the definition of

Hausdorff measure. As such, it is possible to restrict our attention to the kind of sets

we will necessarily encounter there: Borel sets of finite s-dimensional measure where the

measure is somehow evenly spread out. We formalise this in the following definition.

Definition 4.3.1 Let X be a separable metric space, s ∈ [0,∞), and E ⊆ X. Then we

define the s-dimensional measured centred content, Ms
∞ : P (X)→ [0,∞], by

Ms
∞ (E) =


limρ↓1Ms

ρ (E) E is Borel

inf {Ms
∞ (A) : E ⊆ A,A is Borel} otherwise

where

Ms
ρ (E) = sup

{
C̃s∞ (A) : A ⊆ E,A is Borel,Hs (A) 6 ρHs∞ (A)

}
,

defining Ms
ρ (∅) = 0.

We define Ms
∞ separately for Borel sets as it is will be useful, in showing that Ms

∞ is a

measure, to have that every set has a Borel superset of equal Ms
∞ content, by analogy

with the Borel regularity property. Of course, Ms
∞ is actually neither Borel nor regular,

as these sets are not in general Ms
∞-measurable.

We now attempt to show that Ms
∞ has many of the same properties as Cs∞ does.

Proposition 4.3.2 Let X be a separable metric space, s ∈ [0,∞) and ρ ∈ (1,∞). Then,

the supremum in the definition of Ms
ρ is taken over a non-empty set. Furthermore, for

any ρ̃ ∈ (1, ρ), Ms
ρ̃ 6Ms

ρ. Thus Ms
∞ is well defined.

Proof For any non-empty set E, {x} ⊆ E for some x and

Hs ({x}) =


0 s > 0

1 s = 0

= Hs∞ ({x})

6 ρHs∞ ({x}) ,

so the set the supremum is taken over is non-empty.
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Since

{
C̃s∞ (A) : A ⊆ E,A is Borel,Hs (A) 6 ρ̃Hs∞ (A)

}
⊆
{
C̃s∞ (A) : A ⊆ E,A is Borel,Hs (A) 6 ρHs∞ (A)

}
,

we have Ms
ρ̃ (E) 6Ms

ρ (E). �

Proposition 4.3.3 Let X be a separable metric space, s ∈ [0,∞) and E ⊆ X be Borel.

Then,

Ms
∞ (E) 6 Cs∞ (E) 6 Hs∞ (E) 6 min {Hs (E) , (diam (E))s} .

Proof It is immediate from the definitions that Ms
∞ (E) 6 Cs∞ (E), and the other in-

equalities are shown in Proposition 4.2.3. �

We note that we do not have the same lower bound onMs
∞ that we did on Cs∞, the reason

for this is that, in the case of Cs∞, we can consider a covering of the whole set, whilst in

Ms
∞ we could only do this if the original set met the conditions on the subsets used in

Definition 4.3.1. Actually, it would be enough for the set to contain a suitable subset of

equal Hs∞ measure, but even this is hard to guarantee for an arbitrary set.

Proposition 4.3.4 Let X be a separable metric space, s ∈ [0,∞) and ρ ∈ (1,∞). Then,

Ms
ρ and Ms

∞ are monotonic set functions.

Proof It follows immediately from the definition that Ms
ρ is monotonic. Taking limits

then gives thatMs
∞ is monotonic when restricted to the Borel sets. This means that any

set, including Borel sets, equals the infimum of Ms
∞ on Borel supersets, and thus Ms

∞ is

monotonic. �

Proving the final property required for Ms
∞ to be a measure is somewhat more difficult

than it was for Cs∞, and we proceed in stages.

Lemma 4.3.5 Let X be a separable metric space, s ∈ [0,∞), and E ⊆ X be a Borel set

such that Hs∞ (E) < ∞. Furthermore, let E1, E2 ⊆ X be disjoint Borel sets such that

E ⊆ E1 ∪ E2. Then Ms
∞ (E) 6Ms

∞ (E1) +Ms
∞ (E2).

Proof We fix s ∈ [0,∞) and ρ ∈ (1,∞). Since Hs∞ (E) <∞, Ms
∞ (E) <∞ by Proposi-
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tion 4.3.3. Thus there exists ρ1 ∈ (1, ρ) such that

max

{Ms
ρ1 (E1)

Ms
∞ (E1)

,
Ms

ρ1 (E2)

Ms
∞ (E2)

}
< ρ.

We may then find ρ2 ∈ (1, ρ1) such that

ρ2 6 ρ1

(
1− ρ2 − 1

ρ1 − 1

)
(4.3)

and

ρ2 − 1

ρ1 − 1
Hs∞ (E) 6 ρ− 1. (4.4)

We now take a Borel set, A ⊆ E, such that Hs (A) 6 ρ2Hs∞ (A) and ρC̃s∞ (A) >Ms
ρ2 (E) >

Ms
∞ (E), and assume without loss of generality that Hs∞ (A ∩ E1) 6 Hs∞ (A ∩ E2).

But then

Hs (E1 ∩A) = Hs (A)−Hs (A ∩ E2)

6 ρ2Hs∞ (A)−Hs∞ (A ∩ E2)

= Hs∞ (A)−Hs∞ (A ∩ E2) + (ρ2 − 1)Hs∞ (A)

6 Hs∞ (A ∩ E1) + (ρ2 − 1)Hs∞ (A) .

We first look at the case where (ρ2 − 1)Hs∞ (A) 6 (ρ1 − 1)Hs∞ (A ∩ E1). Then

Hs (A ∩ E1) 6 Hs∞ (A ∩ E1) + (ρ1 − 1)Hs∞ (A ∩ E1)

= ρ1Hs∞ (A ∩ E1) ,

and henceMs
ρ1 (A ∩ E1) > C̃s∞ (A ∩ E1). We can similarly getMs

ρ1 (A ∩ E2) > C̃s∞ (A ∩ E2).
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So,

Ms
∞ (E) 6 Ms

ρ1 (E)

< ρC̃s∞ (A)

6 ρ
(
C̃s∞ (A ∩ E1) + C̃s∞ (A ∩ E2)

)
6 ρ

(
Ms

ρ1 (A ∩ E1) +Ms
ρ1 (A ∩ E2)

)
6 ρ (ρMs

∞ (A ∩ E1) + ρMs
∞ (A ∩ E2))

= ρ2 (Ms
∞ (E1) +Ms

∞ (E2)) . (4.5)

If, however, (ρ2 − 1)Hs∞ (A) > (ρ1 − 1)Hs∞ (A ∩ E1), then

Hs (A ∩ E2) 6 Hs (A)

6 ρ2Hs∞ (A)

6 ρ1

(
Hs∞ (A)− ρ2 − 1

ρ1 − 1
Hs∞ (A)

)
by (4.3)

6 ρ1 (Hs∞ (A)−Hs∞ (A ∩ E1))

6 ρ1Hs∞ (A ∩ E2) .

So,

Ms
∞ (E) 6 Ms

ρ1 (E)

< ρC̃s∞ (A)

6 ρ
(
C̃s∞ (A ∩ E2) + C̃s∞ (A ∩ E1)

)
6 ρ

(
C̃s∞ (A ∩ E2) +Hs∞ (A ∩ E1)

)
6 ρ

(
C̃s∞ (A ∩ E2) +

ρ2 − 1

ρ1 − 1
Hs∞ (A)

)
6 ρ

(
C̃s∞ (A ∩ E2) +

ρ2 − 1

ρ1 − 1
Hs∞ (E)

)
6 ρ

(
C̃s∞ (A ∩ E2) + (ρ− 1)

)
by (4.4)

6 ρ
(
Ms

ρ1 (A ∩ E2) + (ρ− 1)
)

6 ρ (ρMs
∞ (A ∩ E2) + (ρ− 1))

6 Ms
∞ (A ∩ E1) + ρ2Ms

∞ (A ∩ E2) + ρ (ρ− 1) . (4.6)
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Letting ρ ↓ 1 in (4.5) and (4.6) gives us the result in either case. �

Lemma 4.3.6 Let X be a separable metric space, s ∈ [0,∞), E ⊆ X a Borel set, and

{Ei} ⊆ P (X) disjoint Borel sets such that E ⊆
⋃
i∈NEi. Then

Ms
∞ (E) 6

∑
i∈N
Ms
∞ (Ei) .

Proof Fixing ρ > 1, we find a Borel set A ⊆ E such that

Hs (A) < ρHs∞ (A) <∞

and

ρMs
∞ (A) > ρC̃s∞ (A) > min

{
Ms
∞ (E) ,

1

ρ− 1

}
;

the second term in the above minimum being introduced to cover the case whereMs
∞ (E) =

∞.

We note that ∑
i∈N
Hs (A ∩ Ei) = Hs (A) <∞,

and so there exists n ∈ N such that

∞∑
i=n+1

Hs (Ei) < ρ− 1.
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Thus, we have

min

{
Ms
∞ (E) ,

1

ρ− 1

}
< ρMs

∞ (A)

6 ρ

(
n∑
i=1

Ms
∞ (A ∩ Ei) +Ms

∞

( ∞⋃
i=n+1

A ∩ Ei

))
by Lemma 4.3.5

6 ρ

(
n∑
i=1

Ms
∞ (A ∩ Ei) +Hs

( ∞⋃
i=n+1

A ∩ Ei

))

6 ρ

(
n∑
i=1

Ms
∞ (A ∩ Ei) +

∞∑
i=n+1

Hs (A ∩ Ei)

)

6 ρ

(
n∑
i=1

Ms
∞ (A ∩ Ei) + (ρ− 1)

)

6 ρ

(
n∑
i=1

Ms
∞ (Ei) + (ρ− 1)

)
.

Letting ρ ↓ 1 gives us the result whether or not Ms
∞ (E) is finite. �

Theorem 4.3.7 Let X be a separable metric space. Then Ms
∞ is a measure on X.

Proof Ms
∞ (∅) = C̃s∞ (∅) = 0 as an immediate consequence of the definition and Ms

∞ is

monotonic by Proposition 4.3.4, so it only remains to show that Ms
∞ is subadditive.

We let E ⊆ X and {Ei}i∈N ⊆ P (X) such that E ⊆
⋃
i∈NEi, and we fix ρ > 1.

For each i ∈ N we can define

Ẽi = Ei\
⋃

j∈N,j<i
Ej

and take Borel sets Ai ⊇ Ẽi such that Ms
∞ (Ai) =Ms

∞

(
Ẽi

)
. Then {Ai}i∈N is a disjoint

Borel cover of E.
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So,

Ms
∞ (E) 6 Ms

∞

(⋃
i∈N

Ei

)

= Ms
∞

(⋃
i∈N

Ẽi

)

6 Ms
∞

(⋃
i∈N

Ai

)
6

∑
i∈N
Ms
∞ (Ai) by Lemma 4.3.6

=
∑
i∈N
Ms
∞

(
Ẽi

)
6

∑
i∈N
Ms
∞ (Ei) .

�

Fortunately, the scaling and translation properties of Ms
∞ are not much more difficult to

prove than those of Cs∞.

Proposition 4.3.8 Let X be a normed space, s ∈ [0,∞), ρ ∈ (1,∞), a ∈ X and λ ∈

(0,∞). Then,

Ms
ρ (λE + a) = λsMs

ρ (E)

and

Ms
∞ (λE + a) = λsMs

∞ (E) .

Proof The above equality for Ms
ρ can be shown to hold in the same way as was shown

for Cs∞ in Proposition 4.2.4, provided that

Hs (A) 6 ρHs∞ (A)⇔ Hs (λA+ a) 6 ρHs∞ (λA+ a) .

But, if Hs (A) 6 ρHs∞ (A),

Hs (λA+ a) = λsHs (A)

6 ρλsHs∞ (A)

= ρHs∞ (λA+ a) .
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We can achieve the reverse implication in a similar fashion.

Letting ρ ↓ 1 then gives the equality for Ms
∞. �

4.4 Density Bounds

In this section we prove the central result of the chapter, the general lower bound on the

upper density of sets. We will also show that this bound is a characterisation in Euclidean

spaces, that is a set exists with an upper density that precludes any stronger bound.

Before we defined Ms
∞, we mentioned that the class of sets used were all that we were

required to consider when dealing with efficient small scale coverings used in the definition

of Hausdorff measure. This is formalised in Lemma 4.4.2, and we use Lemma 4.4.1 as a

stepping stone.

Lemma 4.4.1 Let X be a separable metric space and E ⊆ X be an s-set. Then, for any

ρ ∈ (1,∞) and δ ∈ (0,∞), there exist Borel sets {Ai}i∈N ⊆ P (E) such that

ρ2Hs
(⋃
i∈N

Ai

)
> ρHs (E) >

∑
i∈N

(diam (Ai))
s ,

and for every i ∈ N

diam (Ai) < δ and ρHs∞ (Ai) > Hs (Ai) .

Proof Fixing ρ ∈ (1,∞), δ ∈ (0,∞) and ρ̃ ∈ (1, ρ), we can find δ̃ ∈ (0, δ) such that

ρ̃Hs
δ̃

(E) > Hs (E) .

We can now find a collection of disjoint Borel sets, {Ai} ⊆ P (E), such that

E ⊆
⋃
i∈N

Ai and ρHs
δ̃

(E) >
∑
i∈N

(diam (Ai))
s

and, for every i ∈ N, diam (Ai) < δ̃ < δ.
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Now we let

I = {i ∈ N : ρHs∞ (Ai) 6 Hs (Ai)} ,

and write

∑
i∈N
Hs (Ai) = Hs (E)

< ρ̃Hs
δ̃

(E)

6 ρ̃
∑
i∈N
Hs∞ (Ai)

6 ρ̃

∑
i∈I

1

ρ
Hs (Ai) +

∑
i∈N\I

Hs (Ai)

 .

We can rearrange the above to give

(
1− ρ̃

ρ

)∑
i∈I
Hs (Ai) 6 (ρ̃− 1)

∑
i∈N\I

Hs (Ai) .

By choosing ρ̃ to be sufficiently small, we may ensure that those intervals identified by I

make up an arbitrarily small proportion of the whole, in particular

∑
i∈I
Hs (Ai) <

(
1− 1

ρ

)
Hs (E) .

Thus

ρHs
 ⋃
i∈N\I

Ai

 > Hs (E) .

Finally, we note

∑
i∈N\I

(diam (Ai))
s 6

∑
i∈N

(diam (Ai))
s < ρHsδ (E) 6 ρHs (E) .

We now have that {Ai}i∈N\I satisfies all of required properties (if N\I is finite then we

can make up the rest of the collection with empty sets). �

Lemma 4.4.2 Let X be a separable metric space, E ⊆ X be an s-set. Then, for any
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ρ ∈ (1,∞) and δ ∈ (0,∞), there exists a Borel set A ⊆ E such that diam (A) < δ and

(diam (A))s < ρHs (A) < ρ2Hs∞ (A) .

Proof We fix ρ ∈ (1,∞) and δ ∈ (0,∞). We can now use Lemma 4.4.1 to give us Borel

sets {Ai}i∈N ⊆ P (E) such that

ρHs
(⋃
i∈N

Ai

)
>
√
ρHs (E) >

∑
i∈N

(diam (Ai))
s ,

and for every i ∈ N

diam (Ai) < δ and ρHs∞ (Ai) >
√
ρHs∞ (Ai) > Hs (Ai) .

It is now sufficient to show that, for some i ∈ N, (diam (Ai))
s < ρHs (Ai). We assume

that there is no such i, then

Hs (E) <
√
ρHs

(⋃
i∈N

Ai

)
6
√
ρ
∑
i∈N
Hs (Ai)

6
1
√
ρ

∑
i∈N

(diam (Ai))
s

< Hs (E) ,

which is a contradiction. �

In the proof of our density bound, we will be required to useMs
ρ. However, it is desirable

to have the bound itself purely in terms of Ms
∞. We will be rescaling so that the sets we

form the bound from will be of the same diameter, but we will have no information on the

shape; we thus need something akin to a compactness result to ensure convergence when

taking the limit ρ ↓ 1. In doing this, we will use the Hausdorff metric on sets.

Definition 4.4.3 Let X be a metric space. Then we define δH : K2 → [0,∞), where K is

the set of non-empty compact subsets of X, by

δH (E1, E2) = max

{
sup
x∈E1

d (x,E2) , sup
x∈E2

d (x,E1)

}
,
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and call it the Hausdorff metric.

Proposition 4.4.4 With the notation above, (K, δH) is a metric space.

We are now ready to proceed with our convergence result. The proof of which is inspired by,

and partly based on, the proof given in [13] of the Blaschke Selection Theorem, originally

proved in [5].

It is the need for this lemma that restricts our bound to finite dimensional normed spaces.

Lemma 4.4.5 Let X be a finite dimensional normed space. Then,

lim
ρ↓1

(
sup

{
Ms

ρ (E) : E ⊆ X,diam (E) = 2
})

= sup {Ms
∞ (E) : E ⊆ X,diam (E) = 2} .

Proof For convenience we write

η = sup {Ms
∞ (E) : E ⊆ X,diam (E) = 2} .

We suppose that

lim
ρ↓1

(
sup

{
Ms

ρ (E) : E ⊆ X,diam (E) = 2
})

> η.

Then for some ε > 0 there exists

{E0,i}i∈N ⊆ P
(
B (0, 2)

)
such that, for each i ∈ N, E0,i is a compact set with diameter 2 and

Ms
i+1
i

(E0,i) > η + ε.

We may take the above sets to be compact as, if they were otherwise, we could take their

closure; we may assume that they are subsets of B (0, 2) sinceMs
∞ is translation invariant.

Now, for each k ∈ N, we can find {xk,j}nkj=1 such that

B (0, 2) ⊆
nk⋃
j=1

B

(
xk,j ,

1

4k

)
.
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So, for any k ∈ N, we can define Jk : P
(
B (0, 2)

)
→ P ({j ∈ N : j 6 nk}) by

Jk (A) =

{
j ∈ N : A ∩B

(
xk,j ,

1

4k

)
6= ∅
}
.

Now, since the codomain of Jk is finite, we can use the pigeon hole principle to recursively

define subsequences {Ek,i}i∈N ⊆ {Ek−1,i}i∈N ⊆ {E0,i}i∈N such that Jk (Ek,i) = Jk (Ek,j)

for all i, j, k ∈ N.

We now define

Fk =
⋃

j∈Jk(Ek,1)

B

(
xk,j ,

1

4k

)

and note that, for any i, k ∈ N,

Ek,i ⊆ Fk ⊆
{
x ∈ X : d (x,Ek,i) 6

1

2k

}
.

It then follows that, for any i, j, k ∈ N,

δH (Ek,i, Ek,j) 6 δH (Ek,i, Fk) + δH (Ek,j , Fk)

6
1

2k
+

1

2k

=
1

k
.

In particular we note that

δH (Ei,i, Ej,j) 6
1

min {i, j}

and define, for any m ∈ N, the set

Em =

∞⋃
i=m

Ei,i.
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So,

diam (Em) = sup {‖x− y‖ : x, y ∈ Em}

6 sup {diam (Ei,i) + δH (Ei,i, Ej,j) : i, j ∈ N, i, j > m}

= 2 + sup {δH (Ei,i, Ej,j) : i, j ∈ N, i, j > m}

6 2 +
1

m
.

And, defining

Ẽm =
2Em

diam (Em)
,

we get that diam
(
Ẽm

)
= 2 and

Ms
∞

(
Ẽm

)
=

(
2

diam (Em)

)s
Ms
∞ (Em)

=

(
2

diam (Em)

)s
lim
j→∞

Ms
j+1
j

(Em)

>

(
2

diam (Em)

)s
lim
j→∞

Ms
j+1
j

(Ej,j)

>

(
2

diam (Em)

)s
(η + ε)

>

(
2

2 + 1
m

)s
(η + ε)

> η

for sufficiently large m. But this is a contradiction and so

lim
ρ↓1

(
sup

{
Ms

ρ (E) : E ⊆ X,diam (E) = 2
})
6 η.

However, if

lim
ρ↓1

(
sup

{
Ms

ρ (E) : E ⊆ X,diam (E) = 2
})

< η

then there exists A ⊆ X with diam (A) = 2 and

Ms
∞ (A) > lim

ρ↓1

(
sup

{
Ms

ρ (E) : E ⊆ X,diam (E) = 2
})
.
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But,

lim
ρ↓1

(
sup

{
Ms

ρ (E) : E ⊆ X,diam (E) = 2
})
6 lim

ρ↓1
Ms

ρ (A)

= Ms
∞ (A) ,

which is also a contradiction. �

We are, at last, ready to prove our density bound. With the preceding lemmas in place,

the proof is fairly similar to the bound using Cs∞, which is presented in [7].

Theorem 4.4.6 Let X be a finite dimensional normed space and E ⊆ X be an s-set.

Then,

D
s

(E, x) >
1

sup {Ms
∞ (A) : A ⊆ X,diam (A) = 2}

for Hs almost every x ∈ E.

Proof For convenience we write

η = sup {Ms
∞ (A) : A ⊆ X,diam (A) = 2} .

Since D
s

(E, ·) is an Hs measurable function,

E1 =

{
x ∈ X : D

s
(E, x) <

1

η

}

is also Hs measurable. We assume that Hs (E1) > 0.

We use the fact that

E1 =
⋃
k∈N

{
x ∈ E : r <

1

k
⇒ k + 1

k
HsxE (B (x, r)) <

1

η
(2r)s

}

to find ρ ∈ (1,∞), δ ∈ (0,∞) and E2 ⊆ E1, with Hs (E2) > 0, such that, for every x ∈ E2

and r ∈ (0, δ),

ρ3HsxE (B (x, r)) <
1

η
(2r)s . (4.7)
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By Lemma 4.4.5 we may find ρ̃ ∈ (0, ρ) such that

sup
{
Ms

ρ̃ (A) : A ⊆ X,diam (A) = 2
}
< ρη.

Now we use Lemma 4.4.2 to give us A ⊆ E2 such that diam (A) < δ and

(diam (A))s < ρ̃Hs (A) < ρ̃2Hs∞ (A) . (4.8)

So,

C̃s∞ (A) 6 Ms
ρ̃ (A)

=

(
diam (A)

2

)s
Ms

ρ̃

(
2

diam (A)
A

)
<

(
diam (A)

2

)s
ρη.

Thus, there exists {(xi, ri)}i∈N ⊆ A× (0, δ) such that

A ⊆
⋃
i∈N

B (xi, ri)

and ∑
i∈N

rsi < ρ2η

(
diam (A)

2

)s
. (4.9)

We may now write

(diam (A))s < ρ̃Hs (A) (by (4.8))

< ρHs (A)

6 ρ
∑
i∈N
HsxE (B (xi, ri))

<
2s

ρ2η

∑
i∈N

rsi (by (4.7))

< (diam (A))s (by (4.9)).

But this is a contradiction and so Hs (E1) = 0 after all. �
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Corollary 4.4.7 Let X be a finite dimensional normed space and E ⊆ X. Then

D
s

(E, x) >
1

sup {Cs∞ (A) : A ⊆ X,diam (A) = 2}

for Hs almost every x ∈ E.

We now come on to the result that justifies defining Ms
∞ in addition to Cs∞.

Theorem 4.4.8

sup
{
κ : E ⊆ Rn and 0 < Hs (E) <∞⇒ D

s
(E, x) > κ for Hs almost every x ∈ E

}
=

1

sup {Ms
∞ (A) : A ⊆ Rn, diam (A) = 2}

.

Proof We fix s ∈ [0,∞) and ρ ∈ (1,∞), and pick E ⊆ Rn such that diam (E) = 2,

ρC̃s∞ (E) > sup {Ms
∞ (A) : diam (A) = 2} and Hs (E) < ρHs∞ (E) 6 ρ2s.

We define

κ = sup
{
t : D

s
(E, x) > t for Hs almost every x ∈ E

}
,

and

E1 =
{
x ∈ E : D

s
(E, x) > κ

}
.

We note that Hs (E\E1) = 0. Furthermore, for each x ∈ E1, there exists {rx,j}j∈N such

that rx,j → 0 as j →∞ and, for each j ∈ N, we have

ρHsxE1

(
B (x, rj)

)
> κ (2rx,j)

s .

Since, by Proposition 1.3.6, HsxE1 is a Radon measure, we may use Theorem 1.4.6 to give

us {(xi, ri)}i∈N ⊆ E1 × {rxi,j}j∈N such that Hs (E1 \ E2) = 0, where

E2 =
⋃
i∈N

B (xi, ri) .
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Now,

sup {Ms
∞ (A) : A ⊆ X,diam (A) = 2} < ρC̃s∞ (E)

6 ρ
(
C̃s∞ (E2) + C̃s∞ (E1 \ E2) + C̃s∞ (E \ E1)

)
= ρC̃s∞ (E2)

6 ρ
∑
i∈N

rsi

6 ρ
∑
i∈N

ρ

κ
2−sHsxE1

(
B (xi, ri)

)
6

ρ2

κ
2−sHs (E)

<
ρ3

κ
.

Thus κ < ρ3

sup{Ms
∞(A):A⊆X,diam(A)=2} . So, letting ρ→ 1, and combining this with Theorem

4.4.6, gives the result. �

4.5 Subsets of R

We now apply our generic bound on upper densities to produce some more explicit bounds

in the case of the Euclidean space R. This is a particularly easy case as we do not need

to take a supremum over sets of diameter two, it is sufficient to consider the set [−1, 1].

Actually, these bounds turned out to be pre-existing, but our generic bound from the last

section does allow for new, and significantly simpler, proofs. Theorem 4.5.2 was shown by

Besicovitch in [3], and Theorem 4.5.3 was shown by Walker in [24].

Both theorems rely on the fact that we are able to pick a point in the set that requires

covering that is fairly close to the centre. We make this explicit in the following lemma.

Lemma 4.5.1 Let s ∈ (0, 1], ρ ∈ (1,∞) and E ⊆ [−1, 1] such that ρC̃s∞ (E) > Cs∞ ([−1, 1]).

Then, there exists x ∈ E such that

|x| < ρ− 2 (2ρ)−
1
s .
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Proof Letting

λ = inf {t ∈ [0, 1] : E ∩ (t− 1, 1− t) = ∅} ,

we have that

Cs∞ ([−1, 1]) < ρC̃s∞ (E)

6 ρ
(
C̃s∞ (E ∩ [−1, λ− 1]) + C̃s∞ (E ∩ [1− λ, 1])

)
6 ρ (Cs∞ ([−1, λ− 1]) + Cs∞ ([1− λ, 1]))

= 2ρ

(
λ

2

)s
Cs∞ ([−1, 1]) .

Rearranging the above gives us that λ > 2 (2ρ)−
1
s . The result then follows from the

definition of λ. �

Theorem 4.5.2 Let s ∈ (0, 1] and E ⊆ R such that 0 < Hs (E) <∞. Then

D
s

(E, x) >
(

2
(

1− 2−
1
s

))−s
for Hs almost every x ∈ E.

Proof If we take ρ ∈ (1,∞) then we can find E ⊆ [−1, 1] such that ρC̃s∞ (E) >

Cs∞ ([−1, 1]). So, by Lemma 4.5.1,

E ⊆ [−1, 1] ⊆ B
(
x, 1 + ρ− 2 (2ρ)−

1
s

)
.

Thus

Cs∞ ([−1, 1]) < ρC̃s∞ (E)

6 ρ
(

1 + ρ− 2 (2ρ)−
1
s

)s
.

Letting ρ ↓ 1 gives Cs∞ ([−1, 1]) 6
(

2
(

1− 2−
1
s

))s
, and the result then follows from

Corollary 4.4.7. �

It is proved in [24] that the above bound is the best possible for subsets of R and s ∈ [0, s0],

where s0 ≈ 0.6635. This bound matches the upper density of the s-dimensional Cantor
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set for s ∈ [0, s0].

Theorem 4.5.3 Let E ⊆ R have 0 < Hs (E) <∞. Then

D
s

(E, x) > 21−s
(

1−
(

1− 21−
1
s

)s)

for Hs almost every x ∈ E.

Proof If we take ρ ∈ (1,∞) then we can find E ⊆ [−1, 1] such that ρC̃s∞ (E) >

Cs∞ ([−1, 1]). Then we use Lemma 4.5.1 to give us x ∈ E, which we assume without

loss of generality to be positive, such that

E ⊆ [−1, 1] ⊆ B (x, 1− x) ∪ (E ∩ [−1, 2x− 1]) .

Thus

Cs∞ ([−1, 1]) < ρC̃s∞ (E)

6 ρ
(

(1− x)s + C̃s∞ (E ∩ [−1, 2x− 1])
)

6 ρ ((1− x)s + Cs∞ ([−1, 2x− 1]))

= ρ ((1− x)s + xsCs∞ ([−1, 1])) .

Provided ρ is sufficiently small, 1− ρ (2x)s is positive and so we may rearrange the above

to give

Cs∞ ([−1, 1]) 6
ρ (1− x)s

1− ρ (2x)s
.

Since the above function is increasing in x, we may substitute in the bound from Lemma

4.5.1 and let ρ ↓ 1 to give

Cs∞ ([−1, 1]) 6
2s−1

1−
(

1− 21−
1
s

)s .

The result then follows from Corollary 4.4.7. �

Neither of these theorems required the additional information incorporated into the def-

inition Ms
∞ as compared to Cs∞. It does seem that improvements could be made to the
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above, possibly using Cs∞, but maybe requiring Ms
∞. The obvious conjecture is that the

optimal bound remains equal to the upper density of the Cantor set for all s ∈ [0, 1]. If it

could be shown that Ms
∞ ([0, 1]) = Ms

∞ (Cs), where Cs is the s-dimensional Cantor set

scaled to fill [−1, 1], or even the intermediary sets that are used to define it iteratively,

then it may be shown that the conjecture holds true for s slightly larger than s0.
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