

A University of Sussex DPhil thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

Partitions of Codes

Karl Michael Vincent Waugh

for a DPhil in Mathematics

University Of Sussex

March 2013

Declaration

I hereby declare that this thesis has not been and will not be, submitted in whole or in

part to another University for the award of any degree.

Signature:...........................

Dedication

For Chloe, with love

Acknowledgements

I would like to thank my advisor, Prof. James W.P. Hirschfeld for his confidence in

my mathematical skill, his support, his patience and his advice throughout my entire

research period, this thesis would not have happened without his faith in me. I would

like to thank my parents for all the love and support they have given me, and for being

constantly baffled that I could do a doctorate in mathematics, and yet still being proud

of me. I would like to thank all of my friends for their ability to bring me back to earth

and for telling me not to worry when things seemed heavy, I might just have gone mad

without you. Finally I would like to thank my fiancée and the love of my life, Chloe,

for her unwavering support and love whilst I committed to something as foolhardy as a

doctorate, I love you so much, and to our cat, Bettie, for purring and cuddles, and for

not even knowing what mathematics is, I think she just wishes I would bring home more

fish.

Abstract

In this thesis we look at coding theory wherein we introduce the concept of perspective,

a generalisation on the minimum distance of a code, which naturally leads to a partition

of the code. Subsequently we introduce focused splittings, which shall be shown to be a

generalisation of perfect codes. We investigate the existence of such objects, and address

questions such as the complexity of finding a focused splittings, which we show to be NP-

Complete. We analyse the symmetries of focused splittings. We use focused splittings to

address the problem of error correction and we construct an encoding method based on

them. Finally we test this construction for various classes of focused splittings.

Contents

List of Figures iii

1 Introduction To The Problem 1

1.1 In This Thesis . 1

1.2 What is Coding Theory? . 2

1.3 Channel Noise . 3

1.4 Block Codes . 7

1.5 The Limits of Coding Theory . 20

1.6 Perfect Codes . 28

1.7 Concluding . 34

2 Focused Splittings 35

2.1 Overview . 35

2.2 Perspective and Focused Splittings . 35

2.3 Structure of Focused Splittings . 38

2.4 Which Codes have a Focused Splitting . 41

2.5 Applications to Design Theory . 52

2.6 Concluding . 56

3 Finding a Focused Splitting is NP-complete 57

3.1 Overview . 57

i

3.2 Complexity Theory . 57

3.3 Finding a Focused Splitting is NP-Complete 69

3.4 The Ramifications of Being NP-Complete 76

4 Automorphisms of Focused Splittings 77

4.1 Overview . 77

4.2 Preliminaries . 77

4.3 Decomposing the Automorphism Group 80

4.4 Specific Examples of Automorphism Groups 95

4.5 Concluding . 102

5 A Construction for Increased Error Correction 104

5.1 Overview . 104

5.2 Convolutional Codes . 104

5.3 A Focused Splitting Based Construction 107

5.4 Concluding . 111

6 Testing 112

6.1 Overview . 112

6.2 Error models and Simulation . 112

6.3 Linear Binary Codes with n odd and 1n ∈ C 115

6.4 Perfect Codes as Focused Splittings of Complete Spaces 128

6.5 Linearly Independent Focused Splittings 146

6.6 Concluding . 150

Bibliography 152

ii

List of Figures

1.1 Message transmission schematic . 3

1.2 State transitions for a Gilbert-Elliot model 4

6.1 The relationship between P, the probability of an error and PB. 113

6.2 Comparison of [77, 36]2 codes for a random error channel up to an error

probability of 0.2 . 123

6.3 Comparison of [77, 36]2 codes for a burst error channel with PG = 0.1 with

PB ≤ 0.2 . 124

6.4 Comparison of [77, 36]2 codes for a burst error channel with PG = 0.1 with

PB ≤ 0.02 . 124

6.5 Comparison of [77, 36]2 codes for a burst error channel with PG = 0.2 with

PB ≤ 0.2 . 125

6.6 Comparison of [77, 36]2 codes for a burst error channel with PG = 0.2 with

PB ≤ 0.02 . 126

6.7 Comparison of [77, 36]2 codes for a burst error channel with PG = 0.3 with

PB ≤ 0.2 . 126

6.8 Comparison of [77, 36]2 codes for a burst error channel with PG = 0.3 with

PB ≤ 0.02 . 127

6.9 Comparison of [77, 36]2 codes for a burst error channel with PG = 0.4 with

PB ≤ 0.2 . 127

iii

6.10 Comparison of [77, 36]2 codes for a burst error channel with PG = 0.4 with

PB ≤ 0.02 . 128

6.11 Comparison of [22, 15]2 codes for a random error channel up to an error

probability of 0.2 . 130

6.12 Comparison of [22, 15]2 codes for a random error channel up to an error

probability of 0.02 . 131

6.13 Comparison of [22, 15]2 codes for a burst error channel with PG = 0.1 with

PB ≤ 0.2 . 132

6.14 Comparison of [22, 15]2 codes for a burst error channel with PG = 0.2 with

PB ≤ 0.2 . 132

6.15 Comparison of [22, 15]2 codes for a burst error channel with PG = 0.3 with

PB ≤ 0.2 . 133

6.16 Comparison of [22, 15]2 codes for a burst error channel with PG = 0.4 with

PB ≤ 0.2 . 133

6.17 Comparison of [73, 63]2 codes for a random error channel up to an error

probability of 0.2 . 135

6.18 Comparison of [73, 63]2 codes for a random error channel up to an error

probability of 0.02 . 135

6.19 Comparison of [73, 63]2 codes for a random error channel up to an error

probability of 0.002 . 136

6.20 Comparison of [73, 63]2 codes for a burst error channel with PG = 0.1 with

PB ≤ 0.2 . 137

6.21 Comparison of [73, 63]2 codes for a burst error channel with PG = 0.1 with

PB ≤ 0.02 . 137

6.22 Comparison of [73, 63]2 codes for a burst error channel with PG = 0.2 with

PB ≤ 0.2 . 138

iv

6.23 Comparison of [73, 63]2 codes for a burst error channel with PG = 0.2 with

PB ≤ 0.02 . 138

6.24 Comparison of [73, 63]2 codes for a burst error channel with PG = 0.3 with

PB ≤ 0.2 . 139

6.25 Comparison of [73, 63]2 codes for a burst error channel with PG = 0.3 with

PB ≤ 0.02 . 139

6.26 Comparison of [73, 63]2 codes for a burst error channel with PG = 0.4 with

PB ≤ 0.2 . 140

6.27 Comparison of [73, 63]2 codes for a burst error channel with PG = 0.4 with

PB ≤ 0.02 . 140

6.28 Comparison of [77, 63]2 codes for a random error channel up to an error

probability of 0.2 . 141

6.29 Comparison of [77, 63]2 codes for a burst error channel with PG = 0.1 with

PB ≤ 0.2 . 142

6.30 Comparison of [77, 63]2 codes for a burst error channel with PG = 0.2 with

PB ≤ 0.2 . 143

6.31 Comparison of [77, 63]2 codes for a burst error channel with PG = 0.3 with

PB ≤ 0.2 . 143

6.32 Comparison of [77, 63]2 codes for a burst error channel with PG = 0.4 with

PB ≤ 0.2 . 144

6.33 Comparison of [67, 25]2 codes for a random error channel up to an error

probability of 0.2 . 148

6.34 Comparison of [67, 25]2 codes for a burst error channel with PG = 0.1 with

PB ≤ 0.2 . 148

6.35 Comparison of [67, 25]2 codes for a burst error channel with PG = 0.2 with

PB ≤ 0.2 . 149

v

6.36 Comparison of [67, 25]2 codes for a burst error channel with PG = 0.3 with

PB ≤ 0.2 . 149

6.37 Comparison of [67, 25]2 codes for a burst error channel with PG = 0.4 with

PB ≤ 0.2 . 150

vi

A man who does not think for

himself, does not think at all

Oscar Wilde

Chapter 1

Introduction To The Problem

1.1 In This Thesis

In this thesis we are looking at coding theory, we shall go over the core ideas and themes

and hopefully show how they lead onto the work we shall present. Chapter 1 shall intro-

duce all the relevant previous work in coding theory, roughly following the work in [17]

and [36], giving an overview of the subject to inform the subsequent Chapters. In Chapter

2 we will be introducing the concept of perspective, and shall show how this generalises

the traditional concept of the minimum distance of a code. We show how perspective

leads to a partition of the code into distinct codes and we distinguish those which we

consider to be most natural, which we subsequently call focused splittings, this assertion,

although ultimately a value judgement, will be further reinforced by demonstrating that

in the extremal cases of perspective all the partitions formed will be focused splittings,

and also that for the case where the code in question is the whole space that the focused

splittings are precisely the perfect codes on that space and that perfect codes will induce

a focused splitting on the space. We follow this up by giving a few constructions of fo-

cused splittings for codes with specific parameters or properties. In Chapter 3 we give an

overview of complexity theory, including an explanation and proof of Cook’s Theorem, we

follow this by proving that the question of deciding whether a code has a focused split-

1

ting is NP-complete. Chapter 4 deals with the inevitable question of automorphisms of

focused splittings and how they are related to various structural properties of the focused

splittings themselves. For Chapter 5 we move our attention on to the uses of focused split-

tings in an error correcting capacity, we start by briefly examining alternative methods

of error correction and we then move on to a construction of a code, with a potentially

higher probability of a correct decoding. Chapter 6 follows the work of Chapter 5 by

testing various constructions of focused splittings with the construction given in Chapter

5, these are compared under both normal random error channels and burst error channels

giving various results.

1.2 What is Coding Theory?

In many scenarios in the world we may wish to transfer information from one computer,

machine, or other electronic device to another. Regardless of the medium of transmission,

be it wires, radio waves or something else, there is a potential for interference to disrupt

the message being sent, there will be errors introduced. Obviously an error in a digital

message can change the entire meaning of the message and this is clearly undesirable.

The original objective of coding theory, and of codes, is to be able to correct these errors

which is achieved by introducing redundancy, that is transmitting more than the original

message so that the original message can be recovered assuming that there are not “too

many” errors. Thus we introduce an message encoder and a message decoder to add

redundancy and correct errors respectively, giving the situation given in Figure 1.1.

2

Figure 1.1: Message transmission schematic

The message encoder will take an information message, that is one where every symbol

counts and is important to the receiver and encode it as one of a number of longer

messages which are hopefully robust against a certain number of errors, the noisy channel

will change some of the symbols of the message, depending on the channel the number

and distribution of these will change, we shall discuss this further in Section 1.3, wherein

the decoder will either detect the errors and if possible correct the errors such that the

original information message is received and presented to the user. Codes have found many

other applications in cryptography, see [5] and [31] as well as in projective geometry [18]

and design theory [2], but we will not be focusing on them but shall instead just consider

codes as a method of correcting errors in information and as objects of pure mathematical

interest.

1.3 Channel Noise

It is clear that every different medium of transferring information will have different

properties and quirks. Noise on a channel is a process which introduces errors to a

message, an error is where a symbol being transmitted gets changed to a different symbol.

We shall be looking at two of the main models of noise on a channel, random noise and

burst noise. Random noise does essentially what it says, it is where errors are caused

at each co-ordinate of the transmitted message independently with a fixed probability p,

thus the location of some errors has no effect on the location of other errors, thus a model

3

channel with random noise can be described just by the probability p and simulated by

use of a random number generator to see if an event occurs at each co-ordinate with

probability p. Burst noise is where the errors come in bursts, that is they are clustered

together, this could occur if a cable got disconnected or if there was a lightning storm

affecting radio waves or other such intermittent phenomena, it is where errors would

occur frequently for a number of co-ordinates before becoming less frequent afterwards,

we model burst errors by the Gilbert-Elliot model [15] [12] wherein we view the channel

as a Markov chain consisting on two states, traditionally called G and B, for “Good” and

“Bad”. When the channel is in state G there is a probability of Pg of an error occurring,

and when the channel is in state B there is a probability of Pb of an error occurring, with

the usual proviso that Pb > Pg to fit our description of G being the “Good” state and

B being the “Bad” state. Transitions between the states occur with probabilities PG, for

going from state B to state G, and with probability PB, for going from state G to state B.

Thus the probabilities of staying in state G or B would be 1−PB and 1−PG respectively,

this is all shown in Figure 1.2

Figure 1.2: State transitions for a Gilbert-Elliot model

Moreover for some models [26] we take the simpler approach and set values of Pg and

4

Pb to be 0 and 0.5 respectively, this is so that in state G no errors occur, and in state B

errors occur with a probability of 0.5. The reason we consider 0.5 to be the error rate in

the “Bad” state is because with an error rate of 0.5 an error is as likely to happen as not,

and as such the channel becomes completely unreliable. If an error rate was 1 then for a

binary channel the message received is the negative of the message sent, because every 0

would be changed to a 1 and every 1 would be changed to a 0. For similar reasons with

the random noise channel we allow the error probability p to range from 0 to 0.5. The

reason we take this simpler approach to the Gilbert-Elliot model is because it reduces

the number of variables required to describe the channel whilst still giving us the bursty

nature we are after. In more detailed models we could consider there to be a certain

amount of noise even when not in the “Bad” state and as such we would set Pg ≥ 0 but

this is superfluous to our requirements. For the purpose of this thesis we only require

either the unbiased scenario of a random error channel or the bursty nature of the burst

error channel.

For the burst error channel with Pg = 0 and Pb = 0.5, from hereon these value will

be fixed as this, we can work out the probability P of an error. By use of the transition

matrix for the Markov chain, which is

 1− PB PB

PG 1− PG

 .

Thus the stationary distributions [16], πG and πB, can be found by

(πG, πB)

 1− PB PB

PG 1− PG

 = (πG, πB)

and thus

(1− PB)πG + PGπB = πG

5

which implies

πG − PBπG + PGπB = πG.

Thus we find

πG
πB

=
PG
PB

which allows us to calculate the overall probability of an error P which can be worked

out as

P = 0.5
(πB
πB + πG

)
= 0.5

(πB + πG
πB

)−1

= 0.5
(
1 +

πG
πB

)−1

= 0.5
(
1 +

PG
PB

)−1

= 0.5
(PB + PG

PB

)−1

= 0.5
(PB
PB + PG

)
.

Subsequently we can see that P = 0.5(PB

PB+PG
) and thus we can notice that P depends on

the ratio of PB and PG rather than specific values, as well as the fact that an increase in

PB, for a fixed value of PG will increase P. Moreover for any fixed value of PG, we see

that P can range from 0 to 0.5(1
1+PG

) and thus a natural question to ask is “what would

be the difference between channels which admit the same value of P but for which PB and

PG are different?”. The answer to this question, in a non-rigourous manner, is that the

smaller the value of PG the “burstier” the channel becomes, this means that the errors

will be clumped together. We can see this by considering the expected amount, E(G)

of time before a “Bad” state B changes to a “Good” state G, this gives us the expected

number of time steps that the system is in state B in one go. When we are in state B

changing to state G happens with probability PG then the expected time for this to occur

6

is

E(G) =
1

PG

and thus a lower value for PG will lead to a higher value of E(G), and thus for a given

probability p and a given value PG then by setting

PB =
2pPG
1− 2p

we get that

P = 0.5
(PB
PB + PG

)
= 0.5

(2pPG

1−2p

2pPG

1−2p
+ PG

)
= 0.5

(2pPG

1−2p

2pPG+PG−2pPG

1−2p

)
= 0.5

(2pPG
2pPG + PG − 2pPG

)
= 0.5

(2pPG
PG

)
= 0.5

(
2p
)

= p

and thus we can fix P to any value we choose. Thus if the expected number of errors is

the same, but the expected time spent in state B in any one sitting is greater then the

errors must be clumped together more. Thus a lower value of PG leads to a “burstier”

channel.

1.4 Block Codes

In this section we shall be going over the basics of the theory of block codes, we shall

define everything from first principles and prove the relevant theorems, giving a basic

7

understanding of the area. We will mention results or interesting asides but not prove

them if they are not necessary for our need. A fully and more rounded view point can be

gained from textbooks such as [17] and [36].

If we wish to protect information against potential errors, we need a way of sending

that information so that as long as there are not too many errors then we can work out

what the original message was, and thus what the original information was. The method

we shall be following is that of block codes, the other main method of error correction

is that of convolutional codes which we shall briefly remark on in Chapter 5. In block

codes we have a space from which all possible messages can be sent, we shall be using an

alphabet, Σ of q symbols, and we shall restrict q to a prime power so that we can consider

our alphabet to be Fq. This restriction becomes relevant later on. If we send messages of

length n, then our messages belong to Σn, usually (Fq)n, and we want our message to be

from a subset of Σn such that they are “far apart” and can not be easily mistaken, this

shall be clarified later. Therefore we shall require a method to measure how far apart two

messages are, this is the Hamming distance. We shall be using the notation c1(i) to refer

to the i-th coordinate of c1.

Definition 1.1. The Hamming distance, d(c1, c2) for c1, c2 ∈ Σn is

d(c1, c2) = |{i : c1(i) 6= c2(i)}|

that is the number of differences in co-ordinates.

Lemma 1.2. The Hamming distance is a metric.

Proof (i) As d(c1, c2) is defined as the cardinality of a set thus d(c1, c2) ≥ 0 for all

c1, c2.

(ii) If d(c1, c2) = 0 then there would be no differences in co-ordinates and thus c1 = c2.

8

(iii) It is clear that as the i-th co-ordinate differs between c1 and c2 that we get that

d(c1, c2) = d(c2, c1).

(iv) For three words c1, c2 and c3 in Σn, if we know d(c1, c3), then we can see for each

co-ordinate i such that c1(i) is not equal to c3(i) then either c1(i) is not equal to

c2(i) or c2(i) is not equal to c3(i), otherwise we would have that c1(i) is equal to

c2(i) and that is equal to c3(i), causing a contradiction. Therefore

{i : c1(i) 6= c3(i)} ⊆ {i : c1(i) 6= c2(i)} ∪ {i : c2(i) 6= c3(i)}

thus we get that

|{i : c1(i) 6= c3(i)}| ≤ |{i : c1(i) 6= c2(i)} ∪ {i : c2(i) 6= c3(i)}|

≤ |{i : c1(i) 6= c2(i}|+ |{i : c2(i) 6= c3(i)}|

d(c1, c3) ≤ d(c1, c2) + d(c2, c3)

thus showing the triangle inequality and completing the proof.

�

We now define what we mean by a code.

Definition 1.3. A code C is an (n,M, d)q code, where n, M , d and q are all positive

integers, if and only if

(i) C is a subset of Σn, where |Σ| = q. Note we will often take Σ = Fq.

(ii) |C| = M .

(iii) For every pair of words c1, c2 ∈ C we have that d(c1, c2) ≥ d, moreover there is a

pair such that equality holds. We will refer to d as the minimum distance of the

code.

9

Definition 1.4. We say a code C is i error detecting if and only if for every codeword

c ∈ C, if c is transmitted and has j errors in the received word, where 1 ≤ j ≤ i, then we

can systematically detect that errors have occurred, that is for all j, when j errors occur,

we can be certain that some errors have occurred.

Definition 1.5. We say a code C is i error correcting if and only if for every codeword

c ∈ C if c is transmitted and has j errors in the received word, where 1 ≤ j ≤ i, then we

can systematically can correct the errors that have occurred, that is we can calculate c

from the received words when j errors occur.

Lemma 1.6. A code C = (n,M, d)q can detect d− 1 errors or correct bd−1
2
c errors.

Proof As C has a minimum distance of d, then by changing ≤ d − 1 co-ordinates in a

codeword, the received word can not have been changed to another word in C, as this

would take a minimum of d changes, and thus will belong to (Fq)n \ C, as we know that

the sent word will belong to C, thus we can see that some errors have occurred, thus C

is d− 1 error detecting.

If bd−1
2
c errors occur in a codeword c, giving us a word w ∈ (Fq)n then we can see that

d(c′, w) > bd−1
2
c for all codewords c′ 6= c. By contradiction if d(c′, w) ≤ bd−1

2
c then we

get d(c, c′) ≤ d(c, w) + d(c′, w) ≤ bd−1
2
c+ bd−1

2
c ≤ d− 1 which is a contradiction with the

minimum distance being d− 1. Thus we can see c is the only codeword within a distance

of ≤ bd−1
2
c of w and by assuming that at most bd−1

2
c errors occurred we can correct w to

c. �

Locating c from w as in the above proof is not always a simple calculation, as codes

can be quite big in terms of the number of codewords to check, this is the crux of the

decoding problem in coding theory, whereby we wish to know the most efficient method

of decoding, we shall discuss this aspect later. We would obviously want a code to both

correct a lot of errors, and also to transmit a lot of information, and clearly this is a bit

ambitious.

10

Definition 1.7. The rate of a code C = (n,M, d)q is R(C) =
logq M

n
. Thus the higher the

rate of the code, the more efficient the code is.

It is clear that if we wish to find “good” codes then we wish to be able to find codes

which have a high minimum distance, and thus error correction, and also have a high

rate. To further this search we now discuss linear codes; linear codes are codes which are

linear subspaces of (Fq)n, now although this gives no reason why they should provide the

most efficient codes, it does allow us to use a lot of machinery to examine to possibilities.

Definition 1.8. A linear code C = [n, k, d]q is a linear subspace of (Fq)n of dimension k,

with a minimum distance of d. Thus C is a subset of (Fq)n such that for all c1, c2 ∈ C

we have c1 + c2 ∈ C and ic1 ∈ C for all i ∈ Fq.

Now clearly an [n, k, d]q code is also an (n, qk, d)q code, although this is obviously only

one way. The advantages of restricting our attention to linear codes are that they can

be simpler to examine, as checking the minimum distance of a linear code involves only

checking the distances between each word and the 0n word, which is always in a linear

code, we can describe a linear code by just describing a basis for it, and we can use the

theory of linear algebra to give us various properties more easily than we could otherwise.

We also note that in a linear code the rate is the ratio of the number of symbols holding

information to the total length of the code.

Definition 1.9. For a linear code C the weight of a codeword c is the number of non-zero

co-ordinates and thus

w(c) = d(c, 0n).

Definition 1.10. A k × n matrix whose rows form a basis for a linear [n, k, d]q code is

called a generator matrix of the code.

We can thus see that the rate of a linear code can be more simply described as

R(C) = k
n

since logqM = logq q
k = k.

11

Definition 1.11. Two linear codes are equivalent if and only if one can be obtained from

the other by a combination of permuting the co-ordinates of the code, and multiplying

the symbols appearing in a fixed co-ordinate by a non-zero scalar.

Lemma 1.12. Two k×n matrices generate equivalent linear codes over (Fq), if and only if

one can be obtained from the other by a combination of permuting the rows, multiplying the

rows by a non-zero scalar, addition of a scalar multiple of one row to another, permuting

the columns and multiplying any column by a non-zero scalar,

Proof We note that permuting, multiplying and addition of the rows preserves the fact

that matrix is a basis for the subspace. Permuting the columns and multiplying the

columns is equivalent to permuting the co-ordinates of the code and multiplying a fixed

co-ordinate. Thus the codes are equivalent. �

We also briefly note that the generator matrix of code C can always be transformed

to the form

[Ik|A]

where Ik is the k × k identity matrix and A is a k × (n − k) matrix. This is done by a

combination of the above moves and can be seen in detail in [17].

We recall that for two vectors c1 = (x1, x2, . . . , xn) and c2 = (y1, y2, . . . , yn) the inner

product of them c1 · c2 = x1y1 + x2y2 + . . . xnyn.

Definition 1.13. For a linear code C = [n, k, d]q the code

C⊥ = {w ∈ (Fq)n : w · c = 0 ∀c ∈ C}

that is the set of words in (Fq)n orthogonal to every word of C, we call C⊥ the dual of C.

Dual codes are very interesting in coding theory and are studied a lot, we mainly

introduce them for something attaining completeness and for the following development.

12

Lemma 1.14. For a linear code C = [n, k, d]q with a generator matrix G and a dual code

C⊥ we get that c ∈ C⊥ if and only if cGT = 0k.

Proof As the rows of G are codewords of C then the columns of GT are codewords, and

as such cGT = 0k. Assuming that cGT = 0k, let the rows of G be g1, g2, . . . , gk and thus

we get that c · gi = 0 for all gi. As G forms a basis for C, let w be in C and as such

w =
∑k

i=1 λigi, for λi in Fq, and thus

c · w = c ·
k∑
i=1

λigi

=
k∑
i=1

λi(c · gi)

=
k∑
i=1

λi(0) = 0

and thus c is in C⊥. �

Lemma 1.15. For a linear code C = [n, k, d]q we get that the dual code C⊥ = [n, n−k, d′]q.

Proof We first show C⊥ is linear, let c1, c2 ∈ C⊥, w ∈ C and λ1, λ2 ∈ Fq, then we

consider λ1c1 + λ2c2. We can see that

(λ1c1 + λ2c2) · w = λ1(c1 · w) + λ2(c2 · w)

= λ1(0) + λ2(0) = 0

and thus (λ1c1 + λ2c2) belongs to C⊥ and C⊥ is linear. We now show that for a code C

with length n and dimension k we get C⊥ having dimension n− k. For induction we take

a base case of k = 1, thus C has a generator matrix

G = (g1)

13

and thus for a word c to belong to C⊥ we must have c · g1 = 0, we write

g1 = (g1(1), g1(2), . . . , g1(n))

and thus

c ∈ C⊥ ⇐⇒ c · g1 = 0

⇐⇒
n∑
i=1

c(i)g1(i) = 0

⇐⇒
n−1∑
i=1

c(i)g1(i) = −c(n)g1(n)

⇐⇒ 1

−g1(n)

n−1∑
i=1

c(i)g1(n) = c(n)

and thus we get that c(n) is determined by the set of c(i) for 1 ≤ i ≤ n− 1 and thus C⊥

has dimension n−1. For our inductive step we assume that the statement of the theorem

hold for a code C with dimension k − 1 and consider a code with dimension k.

Let C1 be the code generated by the matrix

G1 =



g1

g2

...

gk−1



14

and let C2 be the code generated by the matrix

G2 =



g1

g2

...

gk−1

gk


thus C1 has dimension k − 1 and C2 has dimension k, moreover as G1 ⊆ G2 then all the

restrictions of G1 on C⊥
1 are also restricting C⊥

2 and thus C⊥
2 ⊆ C⊥

1 . Subsequently the

dimension of C⊥
2 is less than the dimension of C⊥

1 which by the inductive hypothesis is

n− k + 1. We consider a word c ∈ C⊥
1 and consider when c ∈ C⊥

2 , that is when

cGT
2 = 0k

but we know that c · gi = 0 for 1 ≤ i ≤ k − 1 so we only need to consider c · gk, that is c

will belong to C⊥
2 when c · gk = 0. We write

gk = (λ1, λ2, . . . , λn)

and thus

c ∈ C⊥
2 ⇐⇒ c · gk = 0

⇐⇒
n∑
i=1

c(i)λi = 0

⇐⇒
n−k+1∑
i=1

c(i)λi +
n∑

i=n−k+2

c(i)λi = 0

now we know that as C⊥
1 has dimension n− k+ 1, and as c ∈ C⊥

1 that a choice of c(i) for

15

i ≤ n− k + 1 will fix c(i) for i ≥ n− k + 2 and thus we know that the value

n∑
i=n−k+2

c(i)λi

is determined by c and gk as c ∈ C⊥
1 . We shall call this value Ω(c, gk). Thus we get

c ∈ C⊥
2 ⇐⇒

n−k+1∑
i=1

c(i)λi + Ω(c, gk) = 0

⇐⇒
n−k∑
i=1

c(i)λi + λn−k+1c(n− k + 1) + Ω(c, gk) = 0

⇐⇒ 1

−λn−k+1

(n−k∑
i=1

c(i)λi + Ω(c, gk)
)

= c(n− k + 1)

and thus we get that c(n−k+1) is determined by c(i) for 1 ≤ i ≤ n−k and thus C⊥
2 has

dimension n− k. This completes our inductive step and thus proves the theorem. �

Lemma 1.16. The dual of a dual is the code itself, that is (C⊥)⊥ = C.

Proof We can see that C ⊆ (C⊥)⊥ as every word in C is orthogonal to every word in

C⊥. As the dimension of (C⊥)⊥ is n − (n − k) = k is the dimension of C, we see that

C = (C⊥)⊥. �

Definition 1.17. A parity check matrix H for a linear code C = [n, k, d]q is a (n−k)×n

matrix over Fq such that H is the generator matrix for C⊥.

Lemma 1.18. We can define C by a parity check matrix such that

C = {c ∈ (Fq)n : cHT = 0n−k}

that is every word is orthogonal to H.

Proof By Lemma 1.16 we get C = (C⊥)⊥ and by Lemma 1.14 we have that

C⊥ = {c ∈ (Fq)n : cGT = 0k)}

16

where G is the generator matrix of C, thus

C = (C⊥)⊥ = {c ∈ (Fq)n : cHT = 0n−k}

where H is the generator matrix for C⊥. �

We now discuss how knowing structural properties about H lead us to knowing prop-

erties about C, most important of these is the following theorem wherein we connect the

linear dependancy and independency of columns of H with the minimum distance of C.

Theorem 1.19. Let C = [n, k, d]q with a parity check matrix H. Then C has minimum

distance d if and only if any d − 1 columns of H are linearly independent and some d

columns are linearly dependent.

Proof As C is linear then we know that if the minimum distance is d then there exists

a codeword c with exactly d non-zero co-ordinates. If we label the columns of H as

H1, H2, . . . , Hn then for every codeword c ∈ C we get that

c(1)H1 + c(2)H2 + . . .+ c(n)Hn = 0

and thus for a codeword c such that d(c, 0) = d then this gives a set of d linearly dependant

columns of H. Similarly if there did exists a set of d−1 columns of H which were linearly

dependant, columns Hφ(1), Hφ(2), . . . , Hφ(d−1), where φ is a permutation of 1 to n, then

there would exist scalars λ1, λ2, . . . λn, not all zero, such that

λ1Hφ(1) + λ2Hφ(2) + . . .+ λd−1Hφ(d−1) = 0

and thus we could create the word x = (0, 0, . . . , 0, λ1, 0, . . . , 0, λd−1, 0, . . . , 0) with λi in

the φ(i)-th co-ordinate, and this would show xH = 0n−k and thus x would belong to C,

but d(x, 0) ≤ d− 1 which is a contradiction of C having minimum distance d. Thus every

set of d− 1 columns must be linearly independent. �

17

One consequence of Theorem 1.19 is that it means that the quest for good codes is

instead the search for good parity check matrices, that is a parity check matrix that

produces a good code. The size and shape of the parity check matrix gives the length

and dimension of the code, and the dependancies between columns gives us the minimum

distance, so attention should be paid to methods of creating such parity check matrices

rather than just searching for good codes arbitrarily.

When constructing a code, looking for a high rate of transmission and high error

correction are clearly the best initial aims, but the method of decoding is also highly

important [3], [4], [37]. The reason for this is that in practical application of codes,

the dimension of a code may be fairly high, and as such we would not want to search

through all the codewords to ascertain which is closest to the received word, therefore

some process which automatically leads us to that conclusion in a shorter computation is

necessary. One general method is that of syndromes.

Definition 1.20. For a code C = [n, k, d]q with a parity check matrix H, for a word

w ∈ (Fq)n we define the syndrome of w as

S(w) = wHT .

We first note that we already know that a word belongs to the code C if and only if

cHT = 0n−k that is, we know that the syndrome of a codeword is the zero word.

Lemma 1.21. Two words w1, w2 have the same syndrome if and only if they differ by a

codeword c in C.

Proof If w1 and w2 have the same syndrome we get that

S(w1) = S(w2) ⇐⇒ w1H
T = w2H

T

⇐⇒ (w1 − w2)H
T = 0

⇐⇒ w1 − w2 = c ∈ C

18

⇐⇒ w1 = w2 + c

that is that they differ by a codeword c in C, and thus words in (Fq)n which differ by a

codeword will have the same syndrome. �

We can class the words of (Fq)n into cosets of the code C, each coset differing from C

by fixed amount. Therefore to each syndrome we can associate a coset of C.

Definition 1.22. In a coset of C we define the coset leader to be a word of minimum

weight, the coset leader is not necessarily unique but where it is not we choose one at

random from the words of minimum weight.

We shall denote the coset leader of a coset associated with a syndrome as f(S(w)).

Lemma 1.23. Every word w in (Fq)n differs from its nearest neighbour in C by a word

z where z is the coset leader of the coset associated with the syndrome of w. That is, let

z = f(S(w)) then we decode w to w − z.

Proof If two words w1 and w2 differ by a codeword then we know they have the same

syndrome, S(w1) = S(w2), and thus for a word w, which has a nearest neighbour c in

the code C, there will exist a word z in the same coset as w where z will have minimum

weight. As (w − c) is in the same coset as w, and as c is w’s nearest neighbour, thus

(w − c) is of minimum weight amongst words in that coset. Thus c = w − z, where z is

in the same coset as w and of minimum weight thus z will be a coset leader and thus will

be the coset leader associated with the syndrome of w. �

Thus for a linear code we can construct a look up table of coset leaders and syndromes

and merely refer to this when decoding a code, decoding a received word w to the codeword

w − f(S(w)).

19

1.5 The Limits of Coding Theory

Between balancing the transmission rate of a code and the error correcting capabilities

there are general questions about how much of one we can do if we wish to do a certain

amount of the other. In this section we present a few bounds which give us a good idea

of the limitations of block codes. We also introduce what is known as “the main coding

theory problem”.

Definition 1.24. The value Aq(n, d) is the smallest value such that if C = (n,M, d)q

then M ≤ Aq(n, d), that is Aq(n, d) is the maximum number of codewords in a code of

length n and minimum distance d over Fq.

Definition 1.25. Thus we can say “the main coding theory problem” is to find a code

C = (n,M, d)q such that M = Aq(n, d), that is given q, n and d we want to determine

Aq(n, d).

Lemma 1.26. If d is odd then a (n,M, d)2 code exists if and only if a (n+ 1,M, d+ 1)2

code exists. Thus we get that A2(n, d) = A2(n+ 1, d+ 1).

Proof Let C = (n,M, d)2 code, and we define Ĉ as follows

Ĉ = {ĉ = (x1, x2, . . . , xn, w) : c = (x1, . . . , xn) ∈ C,w = w(c) mod 2}.

As we have increased the length and not the number of codewords, we have that Ĉ =

(n+1,M, d′)2 code where d ≤ d′ ≤ d+1, as the minimum distance can only have increased

in the one new co-ordinate, but as w(ĉ) = w(c) + (w(c) mod 2) we have that if w(c) is

even then (w(c) mod 2) = 0 and w(ĉ) is even, and if w(c) is odd then (w(c) mod 2) = 1

thus w(ĉ) is even, therefore we get that all weights in Ĉ are even and thus Ĉ has an even

minimum distance, therefore d′ = d + 1. Thus the existence of a (n,M, d)2 code implies

the existence of a (n+ 1,M, d+ 1)2 code.

20

Let C = (n + 1,M, d + 1)2 code, as the minimum distance is d + 1 there must exist

two codewords c1 and c2 such that d(c1, c2) = d+ 1 and subsequently there must be d+ 1

co-ordinates which disagree, we let i be a co-ordinate where c1 and c2 disagree and we

define

C̄ = {c̄ = (x1, x2, . . . , xi−1, xi+1, . . . , xn) : c ∈ C}.

We notice that this gives C̄ a length of n, and as no two distinct words in C will be the

same in C̄, as d+ 1 is at least 2, thus C̄ will have M words. The minimum distance of C̄

can be at least d as only one co-ordinate has been removed, but as we choose i such that

d(x̄, ȳ) = d(x, y) − 1 = d this shows that C̄ = (n,M, d)2 code. Thus the existence of a

(n+ 1,M, d+ 1)2 code implies the existence of a (n,M, d)2 code. This proves the lemma.

�

Lemma 1.27. If there exists an (n,M, d)q code then there exists an (n− 1,M ′, d′)q code

with M ′ ≥ M
q

and d′ ≥ d. Thus we get that Aq(n, d) ≤ qAq(n− 1, d).

Proof Let C = (n,M, d)q and we partition C into q classes, C(i) depending on the n-th

co-ordinate of c. That is

C(i) = {c ∈ C : c(n) = i}

and thus we see that C =
⋃
i∈Fq

C(i), thus we can see that

max{|C(1)|, |C(2)|, . . . , |C(q)|} ≥ M

q

and thus picking j such that |C(j)| ≥ M
q

we define

C̄ = {c̄ = (x1, x2, . . . , xn−1) : c ∈ C(j)}.

Subsequently |C̄| = |C(j)|, and as none of the words in C(j) did not differ in the n-th co-

ordinate we can see that the minimum distance of C̄ is equal to the minimum distance of

21

C(j), which by definition is greater or equal to the d. Thus we see that C̄ = (n−1,M ′, d′)q

code with M ′ ≥ M
q

and d′ ≥ d. Also noting that Aq(n, d
′) ≤ Aq(n, d) for all values of n

and d′ ≥ d by virtue of the fact any (n,M, d′)q code could be considered as a (n,M, d)q

as all distances are by definition greater than d. Thus by letting our original code C have

M = Aq(n, d) we can see that

1

q
Aq(n, d) ≤M ′ ≤ Aq(n− 1, d′) ≤ Aq(n− 1, d)

and thus

Aq(n, d) ≤ qAq(n− 1, d).

�

We now prove the Plotkin bound.

Theorem 1.28. The following five statements are known as the Plotkin bound.

(i) For q > 2 then

Aq(n, d) ≤ q

⌊
d

q(d− n) + n

⌋
.

(ii) For q = 2 if d is even and 2d > n, then

A2(n, d) ≤ 2

⌊
d

2d− n

⌋
.

(iii) For q = 2 if d is odd and 2d+ 1 > n, then

A2(n, d) ≤ 2

⌊
d+ 1

2d+ 1− n

⌋
.

(iv) For q = 2 if d is even, then

A2(2d, d) ≤ 4d.

22

(v) For q = 2 if d is odd, then

A2(2d+ 1, d) ≤ 4d+ 4.

Proof We begin with the proof of (i). Let C be a (n,M, d)q code, and let us consider

the value of ∑
c1,c2∈C,c1 6=c2

d(c1, c2)

and note that as d is the minimum distance thus d(c1, c2) ≥ d and that there are M(M−1)

ways to choose c1 and c2 and thus

M(M − 1)d ≤
∑

c1,c2∈C,c1 6=c2

d(c1, c2)

giving us a lower bound. We consider a M × n matrix T consisting of all the words of

C. Let ti,α be the number of occurrences of α in the i-th column of T . Thus by summing

over each column and symbol of Fq we get that

∑
c1,c2∈C,c1 6=c2

d(c1, c2) =
∑
αinFq

n∑
i=1

ti,α(M − ti,α)

and noting that M − ti,α =
∑

β 6=α ti,β we can see that

∑
αinFq

n∑
i=1

ti,α(M − ti,α) le
∑
αinFq

n∑
i=1

ti,α(
∑

βinFq ,β 6=α

ti,β)

and noting that
∑

α ti,α = M we can see that the right hand term is maximised when

ti,α = M
q

and thus

∑
c1,c2∈C,c1 6=c2

d(c1, c2) ≤ nq
M

q

(q − 1)M

q
=
q − 1

q
nM2.

23

Combining this with our lower bound we get

M(M − 1)d ≤ q − 1

q
nM2

and thus

M2d−Md− q−1
q
nM2 ≤ 0

=⇒ Md− d− q−1
q
nM ≤ 0

=⇒ M(d− q−1
q
n) ≤ d

=⇒ M ≤ d

d− q−1
q
n

=⇒ M ≤ qd

qd− (q − 1)n

and as M is even then M must be less than the lowest even integer below

fracqdqd− (q − 1)n thus

M ≤ qb qd

q(d− n) + 1
c.

.

For the proof of (ii) we substitute q for 2.

For the proof of (iii), we note by Lemma 1.26 that A2(n, d) = A2(n+ 1, d+ 1) and if

d is odd then d+ 1 is even and by (ii) we have

A2(n, d) = A2(n+ 1, d+ 1) ≤ 2b d+ 1

2(d+ 1)− (n+ 1)
c = 2b d+ 1

2d+ 1− n
c

completing the proof for (ii).

If d is even then by Lemma 1.27 we can see that A2(2d, d) ≤ 2A2(2d−1, d) and by (ii)

we can see that A2(2d− 1, d) ≤ 2b d
2d−(2d−1)

c = 2d thus A2(2d, d) ≤ 4d. This proves (iiii).

If d is odd, then by Lemma 1.26 we have A2(2d+ 1, d) = A2(2d+ 2, d+ 1) and the by

(iv) we have that A2(2d+ 2, d+ 1) ≤ 4(d+ 1) = 4d+ 4. This proves (v). �

24

Theorem 1.29. The Singleton bound states that

Aq(n, d) ≤ qn−d+1

Proof Let C = (n,M, d)q code with M = Aq(n, d), if we construct

Ĉ = {ĉ = (x1, x2, . . . , xn−d+1) : c = (x1, x2, . . . , xn) ∈ C}

then we can see that as C had a minimum distance of d and we have deleted d − 1 co-

ordinates from C, thus Ĉ has a minimum distance of at least 1 and that |Ĉ| = |C| as no

two words in C will have been mapped to the same word in Ĉ and so their cardinality

is conserved. We finally note that as Ĉ has length n − d + 1 that |Ĉ| ≤ qn−d+1 which

completes the proof. �

Another bound we can construct is know as the “Hamming bound”, also known as

the “sphere packing bound”. The basic idea is that if we have a minimum distance of d,

then every word within a distance of e = bd−1
2
c of a codeword can not be in the code, and

thus we can bound the maximum number of codewords.

Theorem 1.30. For a code C = (n,M, d)q we get that

M

b d−1
2
c∑

i=0

(
n

i

)
(q − 1)i ≤ qn

which can be written

M ≤ qn

b d−1
2
c∑

i=0

(
n

i

)
(q − 1)i

25

which bounds the total number of words in C. Similarly for linear codes we get that

qk ≤ qn

b d−1
2
c∑

i=0

(
n

i

)
(q − 1)i

which thus bounds the dimension of the code k.

Proof If the code C has minimum distance d, then for e = bd−1
2
c and c ∈ C we define

the sets

Be(c) = {w ∈ (Fq)n : d(w, c) ≤ e}

and we can see that these sets do not intersect, for if they did then there would exist an

element w ∈ Be(c1) and w ∈ Be(c2) and thus d(w, c1) ≤ e and d(w, c2) ≤ e thus

d(c1, c2) ≤ d(w, c1) + d(w, c2)

which implies that

d(w, c2) ≥ d(c1, c2)− d(w, c1) ≥ d− d(w, c2) ≥ d− e > e

as d(c1, c2) ≥ d and d(w, c2) ≤ e and as d − e = d − bd−1
2
c ≥ d+1

2
> e and this is a

contradiction with d(w, c2) ≤ e. Thus the sets Be(c) do not intersect.

Counting the number of words in Be(c) for each c. We start by counting the number

of words for a fixed value i of errors, we can see that for i errors there will be
(
n
i

)
(q − 1)i

words, as there have to be i co-ordinates where the words differ, and thus
(
n
i

)
ways to

choose these co-ordinates, and if they differ the symbol in that position must be one of

the other (q − 1) symbols. Thus the total number of words is

|Be(c)| =
b d−1

2
c∑

i=0

(
n

i

)
(q − 1)i

26

and as there are |C| sets Be(c) which do not intersect, we can see that |C||Be(c)| ≤ |(Fq)n.

This completes the proof. �

Now obviously it is useful to have lower bounds as well as upper bounds, so we can

get a more thoroughly defined idea of the actual values of Aq(n, d).

Theorem 1.31. The Gilbert Varshamov bound states

Aq(n, d) ≥
qn

d−1∑
i=0

(
n

i

)
(q − 1)i

that is we can always construct a code with these values.

Proof Let C = (n,M, d)q code with M = Aq(n, d). We can see that for every word w

in (Fq)n that there exists a word c in C such that d(w, c) ≤ d − 1, if there did not then

we could add w to C without decreasing the minimum distance and thus create a code

C ′ with a greater value of M than Aq(n, d), which is by definition the maximum. Thus

(Fq)n =
⋃
c∈C

Bd−1(c)

and subsequently

|(Fq)n| = |
⋃
c∈C

Bd−1(c)|

≤
∑
c∈C

|Bd−1(c)|

= |C||Bd−1(c)|

= |C|
d−1∑
i=0

(
n

i

)
(q − 1)i

27

and thus as |(Fq)n| = qn we get that

qn

d−1∑
i=0

(
n

i

)
(q − 1)i

≤ |C| = M

which completes the proof. �

There are of course other more sophisticated bounds on the parameters of codes, such

as the linear programming bound. We shall not deal with these due to only wishing to

outline the basics required by this thesis.

1.6 Perfect Codes

An important area in coding theory is that of perfect codes.

Definition 1.32. A code C = (n,M, d)q is a perfect code if and only if the spheres of

radius e = bd−1
2
c around each codeword exactly fill the space (Fq)n. Equivalently

|C|
e∑
i=0

(
n

i

)
(q − 1)i = qn

and thus for a linear code we get

e∑
i=0

(
n

i

)
(q − 1)i = qn−k

subsequently these are codes which meet the Hamming bound in Theorem 1.30.

We note that as these codes meet the Hamming bound, perfect codes are important

because they are, in some sense, the most efficient codes we can create as the spheres fit

exactly into the space. They also admit some interesting properties, see [9].

It is possible to completely classify linear perfect codes, as seen in [35], and we shall

briefly outline the results, without proving all the theorems themselves.

28

Firstly we shall deal with a number of “trivial” perfect codes. The complete space

(Fq)n with a minimum distance of 1, satisfies the criteria in Definition 1.32 as the sum

totals 1 and |C| = qn, any code consisting of a single codeword, as the value of e can be

as large as we want, and thus equal to n and so the set Be(c) = C, we also have binary

repetition codes of an odd length n, that is a code C = {0n, 1n}, this is as n is odd and

as the minimum distance is n we get e = bd−1
2
c = n−1

2
as a whole number, and thus every

word in (Fq)n either consists of more 0s than 1s or visa versa and thus every word in (Fq)n

is closer to either 0n or 1n and thus C is perfect.

Now we move onto the known constructions for linear perfect codes, the main example

for these are the “Hamming codes” [17] which we present here.

Definition 1.33. Fix r a positive integer and consider (Fq)r, the r-dimensional vector

space of Fq, we choose a set S ⊆ (Fq)r of non-zero vectors which are not multiples of each

other, as large as possible. There are qr − 1 non-zero vectors in (Fq)r, and each one has

q − 1 non-zero multiples, thus we can partition (Fq)r in to qr−1
q−1

classes

{iv : i ∈ Fq, v ∈ (Fq)r}

and as such two vectors are scalar multiples of each other if and only if they are in the

same class. Thus by choosing 1 vector from each class we can obtain a set S with qr−1
q−1

vectors, and as any further vectors will require 2 vectors from some class then this is the

maximal size of S. We now construct a parity check matrix H, where the columns of H

are the vectors of S. We define the code Ham (r, q) as the code generated by the parity

check matrix H.

Theorem 1.34. The code Ham (r, q) over Fq is a perfect code.

Proof By the construction in Definition 1.33 we get H as a r × qr−1
q−1

matrix, and thus

Ham (r, q) is a (q
r−1
q−1

, q
r−1
q−1

− r, d)q code. If a set of 2 vectors are linearly dependant then

one is a multiple of the other, and by definition none of the column vectors of H are

29

multiples of each other and therefore all sets of 2 columns are linearly independent and

thus d > 2. To show that d = 3 we note that when choosing the classes in Definition

1.33 that there will be a class where v1 = (0, 0, . . . , 0, 1), and all words in that class are

multiples of that word, similarly for v2 = (0, 0, . . . , 0, 1, 0) and v3 = (0, 0, . . . , 0, 1, 1) and

regardless of the representatives from each class taken we can show that these are linearly

dependant. Let the representatives of each class be w1 = λ1v1, w2 = λ2, v2 and w3 = λ3v3

then we take the linear combination

(q − 1)λ−1
1 w1 + (q − 1)λ−1

2 w2 + λ−1
3 w3 = (q − 1)v1 + (q − 1)v2 + v3

= (0, 0, . . . , 0, 0,−1) + (0, 0, . . . , 0,−1, 0) + (0, 0, . . . , 0, 1, 1)

= (0, 0, . . . , 0, 0, 0)

and thus a set of 3 columns are linearly dependant and thus by Theorem 1.19 we see that

d = 3. Now to prove the Ham (r, q) is perfect we note that

|Ham(r, q)|
e∑
i=0

(
n

i

)
(q − 1)i = q

qr−1
q−1

−r
1∑
i=0

(qr−1
q−1

i

)
(q − 1)i

= q
qr−1
q−1

−r(1 +

(qr−1
q−1

1

)
(q − 1)1)

= q
qr−1
q−1

−r(1 + qr − 1)

= q
qr−1
q−1

−r+r

= q
qr−1
q−1 = qn

and thus Ham (r, q) is perfect. �

The other main construction for perfect codes, and in fact the only other linear perfect

codes, are the Golay codes, these are codes with parameters

G23 = [23, 12, 7]2

30

and

G11 = [11, 6, 5]3,

each of these codes also has an extended version, that is with an added parity check

co-ordinate making the weight of every word even, with parameters

G24 = [24, 12, 8]2

and

G12 = [12, 6, 6]3

and although the extended versions are not perfect they are very interesting and are useful

in the construction of the perfect Golay codes. We shall only be displaying the Golay

codes and suggest the interested reader refer to [17], [36] or [9] for further details and

proofs of relevant statements.

Definition 1.35. The code G23 is generated by a generating matrix over F2 in the form

[I12|A]

31

where A is a 12× 11 matrix of the form

A =



1 1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 0 0 0 1 0

1 0 1 1 1 0 0 0 1 0 1

0 1 1 1 0 0 0 1 0 1 1

1 1 1 0 0 0 1 0 1 1 0

1 1 0 0 0 1 0 1 1 0 1

1 0 0 0 1 0 1 1 0 1 1

0 0 0 1 0 1 1 0 1 1 1

0 0 1 0 1 1 0 1 1 1 0

0 1 0 1 1 0 1 1 1 0 0

1 0 1 1 0 1 1 1 0 0 0

0 1 1 0 1 1 1 0 0 0 1


We note that G23 = [23, 12, 7]2 satisfies

212

(
1 +

(
23

1

)
+

(
23

2

)
+

(
23

3

))
= 212

(
1 + 23 + 253 + 1771

)
= 212(2048) = 223

which are the conditions to be a perfect code and as such G23 is perfect. Note that we

have left the proof that G23 has minimum distance of 7 due to their lack of necessity for

our following work. We note however that the relevant calculation would be to check the

linear dependance of the columns.

Definition 1.36. The code G11 is generated by a generating matrix over F3 in the form

[I6|A]

32

where A is a 6× 5 matrix of the form

A =



1 1 1 1 1

0 1 2 2 1

1 0 1 2 2

2 1 0 1 2

2 2 1 0 1

1 2 2 1 0


We note that G11 = [11, 6, 5]3 satisfies

36

(
1 +

(
11

1

)
(3− 1) +

(
11

2

)
(3− 1)2

)
= 36

(
1 + 22 + 220

)
= 3635 = 311

which are the conditions to be a perfect code and as such G11 = [11, 6, 5]3 is perfect. Note

we have left the proof out of the minimum distance and this can be checked by checking

the linear dependance of the columns in A.

There are many papers building to a proof of the non-existence of codes with different

parameters, including [34], [33] and culminating in [35]. It has been shown in [13] and

[28] that there exist non-linear codes with the same parameters as the Hamming codes.

Moreover it can be shown that any perfect codes will have the parameters of a Hamming

or are one of the Golay codes [35].

This work culminates in the following Theorem, which we will omit the proof of.

Theorem 1.37. A nontrivial perfect code over an alphabet of prime power must either

have the parameters of a Hamming code, or be a Golay code.

There are no known examples of perfect codes over non-prime power alphabets, more-

over it is known that Lloyds Theorem holds for non-prime power alphabets and that

certain classes of codes do not exist over non-prime power alphabets, namely group codes

[21].

33

1.7 Concluding

In this Chapter we have introduced the problem of transmission of messages over a noisy

channel and have shown one of the most effective methods of battling this problem, block

codes. We have given the basic definitions and properties of block codes, shown some of

their limitations and have exhibited some of the properties of the highly practical and also

theoretical interesting perfect codes. We have only scratched the surface of the interesting

and wonderful properties of many block codes, and mean this chapter as a repository of

only the basic preliminary information.

Other wonderful aspects of coding theory that can be investigated include higher

weights [32], which is a generalisation of the weight of a codeword to that of the weight of

a general linear subspace and thus questions of the type “what is the minimum distance/

minimum weight of a code” can be more generally tackled as questions of the type “what

is the minimum weight of a subspace of dimension i in a code” this can lead to some in-

teresting answers. Other further directions include the tie in between other combinatorial

objects and that of codes, this can be particularly fruitful in the search for ‘good’ parity

check matrices and the work of Goppa [6] ties in the search for, and maximum size of,

arcs from projective geometry with MDS codes, that is codes which meet the Singleton

bound from Theorem 1.29.

In the following Chapters we hope to shine a light on a different approach at looking at

codes, to establish other properties that they can have, to examine these thoroughly and

then to attempt to integrate this back into an approach with the view of error correction

in mind.

34

I never saw an ugly thing in my life:

for let the form of an object be what

it may, light, shade and perspective

will always make it beautiful

John Constable

Chapter 2

Focused Splittings

2.1 Overview

In this Chapter we introduce the concept of perspective, which is a generalisation on

the Hamming distance, and show that it leads to a natural partition of the codewords

into distinct codes. We shall then identify which of these partitions we consider to be

nice, these are the focused splittings, and show that they are a natural choice in two

ways, firstly for their appearance at the extremal situations of perspective as well as their

relationship to perfect codes. We follow this up by examining the existence of focused

splittings for various parameters as well as giving a couple of specific constructions for

focused splittings. Furthermore we look at design theory and show a relationship between

focused splittings and certain forms of designs.

2.2 Perspective and Focused Splittings

Definition 2.1. A code with perspective (θ, δ) ∈ N2 is a set C ⊆ (Fq)n such that

|{b ∈ C : d(b, c) < δ}| ≤ θ

35

for all c ∈ C, where we generally assume δ is the largest such integer satisfying the relation

for a given θ, and that there exists some element c ∈ C such that

|{b ∈ C : d(b, c) < δ}| = θ

We call θ the width of the perspective and δ the distance.

Thus, for a width of 1, the distance of the perspective is the minimum distance of

the code. As such, perspective presents a way of generalising the concept of minimum

distance.

Definition 2.2. A code has a balanced perspective (θ, δ) if and only if

|{b ∈ C : d(b, c) < δ}| = θ for all c ∈ C.

A balanced code is a code which admits a balanced perspective for some value of δ.

Notation 2.3. The set {b ∈ C : d(b, c) < δ} will be referred to as the society of c and

denoted S(c). We shall use the word neighbour to express when two words in a code have

a distance less than δ, that is when two words are in the same society.

Theorem 2.4. Linear codes are always balanced.

Proof Let C be a linear code. To show C is balanced, we need to prove that there are

the same number of elements in the societies of b and c, that is |S(b)| = |S(c)| for all

b, c in C. We do this by constructing a one-to-one correspondence between elements of

S(b) and S(c). Let d ∈ S(c), this happens when d(c, d) < δ. As C is linear, this means

there exists e ∈ C such that c+ e = d; so d(c, c+ e) < δ, and so d(b, b+ e) < δ. Now let

d′ = b+ e. So for every d ∈ S(c) there is a unique d′ ∈ S(b), and as c and b are arbitrary,

thus |S(c)| = |S(b)| for all b, c in C as required. �

Now we show that this idea of a perspective of a code leads to a natural partition of

the code into θ distinct codes, each with a minimum distance of at least δ.

36

Theorem 2.5. A code C with perspective (θ, δ) can be partitioned into θ codes, not nec-

essarily non empty, each with a minimum distance of at least δ.

Proof We prove this by induction on θ.

Base Case θ = 1

The code is already partitioned into 1 code and this code has a minimum distance of

at least δ by the definition of perspective.

Inductive Step

Assume that “A code C with perspective (θ, δ) can be partitioned into θ codes each

with a minimum distance of at least δ” is true for θ = i− 1, that is, D1, D2, . . . , Di−1 can

be constructed. For the case of θ = i, we select our first split code Di as follows:

(1) set D = C and Di as empty;

(2) select an element c ∈ D and put c ∈ Di;

(3) set D = D\S(c).

Repeat steps (2) and (3) until D is empty.

As C is finite this process must terminate. As D is empty at the end of the process,

every element of C must appear in one of the societies of an element in Di as these will

be the only words that are ever removed.

Now we claim that C\Di is a code with perspective (i− 1, δ).

In C each word has at most i words at a distance < δ, but as each word in C belongs

to the society of a word in Di, one of these words must belong to Di. So each word in C

has at most i− 1 words at a distance < δ inside C\Di, and thus each word in C\Di has

at most i− 1 words at a distance < δ inside C\Di. Thus C\Di is a code with perspective

(θ′, δ) where θ′ ≤ i − 1. As we have θ′ ≤ i − 1 we know by our definition of perspective

that

|{b ∈ C\Di : d(b, c) < δ}| ≤ θ′ ≤ i− 1

37

and we can thus consider C\Di as a code with perspective (i−1, δ), and so by the inductive

hypothesis can be split into i− 1 codes, not necessarily non-empty, D1, D2, . . . , Di−1 each

with a minimum distance of at least δ. Adding Di to this we get the splitting for C. As

we artificially extended the perspective of C\Di we note that the codes are not necessarily

non-empty, we demonstrate this by example of a code with a single word, thus the code

has perspective of (1, δ) and we could thus consider it as a code with perspective of (2, δ)

but by virtue of their being just one word we know we can not partition it into two

non-empty codes each with a minimum distance of at least δ. �

Definition 2.6. A splitting of a code C with perspective (θ, δ) is a partition into θ codes,

not necessarily non-empty, each with a minimum distance of at least δ. We shall refer to

an individual code in the splitting as a split code.

Definition 2.7. A code has a focused splitting if and only if given c ∈ C and Di a split

code, then |S(c) ∩Di| ≤ 1.

Also note that if a code is balanced then this is equivalent to |S(c) ∩Di| = 1.

As this definition requires every word in a code to have a particular property, we can

talk about particular words having that property, we shall say a code is “focused around

a word” if a particular word does have that property and “not focused around a word” if

it does not. We shall also speak of a “word being focused” where we mean that the code

is focused around that word, and similarly with a “word being not focused”. It is clear

that to show that a splitting is not focused, it will be enough to show that a particular

(or arbitrary) word is not focused within it and that to show a splitting is focused we will

have to show that all words are focused.

2.3 Structure of Focused Splittings

Lemma 2.8. Let C be a code with a balanced perspective of (θ, δ) having a focused splitting

of D1, D2, . . . , Dθ and let M be the number of words in C. Then |Di| = |Dj| for all i and

38

j, and |Di| × θ = M . Thus θ |M .

Proof Let C be a code with a balanced perspective of (θ, δ) having a focused splitting

of D1, D2, . . . , Dθ. As C has a balanced perspective, c ∈ C will have exactly θ neighbours

in C and as the splitting is focused at most 1 of these is in each Di. As there are θ split

codes there must be precisely 1 neighbour of c per Di. Now we need to show that for

different words in the same split code they will have distinct neighbours in another split

code. If b, c ∈ Di both have the neighbour d ∈ Dj then the splitting of C would not be

focused, because d would have more than 1 neighbour in Di. Thus for each element in

Di there is 1 in Dj thus |Di| ≤ |Dj|, but as Di and Dj are arbitrary this means that

|Di| = |Dj| for all i, j. As there are θ split codes all together and they partition C this

means there must be θ × |Di| words in C. Thus θ |M . �

Lemma 2.9. Let C be a linear [n, k, d]q code, with a perspective of (θ, δ). Then (q − 1) |

(θ − 1)

Proof As Fq is a field thus for all i, j ∈ Fq \ {0} we get ij 6= 0. Also note by linearity,

all words in (Fq)n will have the same size society, so without loss of generality we shall

deal with S(0).

A word c is in S(0) \ {0} if and only if 0 < w(c) < δ. Now we note that the words

ic for i ∈ Fq \ {0} will all distinct and as c has at least one non-zero entry k then in the

words ic for i ∈ Fq \ {0} there will be non-zero entries of ik. Thus note that the weights

of the words ic for i ∈ Fq \ {0} will all be the same as the weight of the word c and thus

they will belong to S(0). So for each words c ∈ S(0) \ {0} there will be q− 2 other words

ic for i ∈ Fq \ {0, 1} in S(0) \ {0}.

Also note as Fq is a field, for any word d = j × c, where j ∈ Fq \ {0}, the set of words

{di : i ∈ Fq \ {0}} = {cji : i ∈ Fq \ {0}} = {ci : i ∈ Fq \ {0}} and thus the multiples of a

word c in S(0) \ {0} will produce distinct classes of words.

Thus θ − 1 = |S(0) \ {0}| = (q − 1) × φ where φ is the number of distinct class of

multiples of words. Thus q − 1 | θ − 1. �

39

Now in the same way that the sphere packing bound gives a bound on the number

of words in a code, we can use the same machinery to give a bound on the value of θ in

relation to the dimension of the code k.

Theorem 2.10. Given a linear code with dimension k and perspective (θ, δ) then

θ ≤
δ−1∑
i=0

(
k

i

)
(q − 1)i.

Proof Given that the code has dimension k, then by choosing k independent co-ordinates

of the n co-ordinates of any word, the other n− k co-ordinates will be fixed by the choice

of the first k. In a k-dimensional space, the number of words in a sphere of size δ − 1 is

δ−1∑
i=0

(
k

i

)
(q − 1)i

that is, at a distance of i there will be
(
k
i

)
ways to choose i co-ordinates to change and

(q − 1)i ways in which to change them.

Because our k-dimensional space is a subspace of an n-dimensional space, not all the

words in the sphere will be of Hamming distance < δ from the centre word, as the n− k

other co-ordinates may contribute to the distance. Noting that any words not counted in

the sphere, will have a distance of at least δ from the k co-ordinates, thus we get

θ = |{c ∈ A : d(a, c) < δ}| ≤
δ−1∑
i=0

(
k

i

)
(q − 1)i.

�

We now look at what form of regularity a focused splitting can have.

Theorem 2.11. Let C be a [n, k, d]q code with perspective (θ, δ) and a focused splitting

D1, D2, . . . , Dθ.

(i) Let S(0) be labelled {e1, e2, . . . , eθ}.

40

(ii) Fix j ∈ [1, θ].

(iii) Define Ei = Dj + ei = {(ct + ei) : ct ∈ Dj}.

Then E1, E2, . . . , Eθ is a focused splitting for C.

Proof Firstly we count the elements in E1, E2, . . . , Eθ. As the size of Ei is irrespective

of i thus no word will get counted twice. If a word did get counted twice then some word

is in Ei and Es for some i and s and so ct + ei = cv + es for some t and v with ct, cv ∈ Dj.

Subsequently the distance from the word cv + es to both ct and cv is less than δ and so

ct, cv ∈ (S(cv+es)
⋂
Dj). This implies that |S(cv+es)

⋂
Dj| ≥ 2, which is a contradiction

to the fact that Dj is a split code from a focused splitting. Thus we can see that

θ × |Ei| = θ × |Dj| = θ × M

θ
= M.

Secondly each Ei has a minimum distance > δ as Dj does.

Thirdly |Ei
⋂
S(c)| = 1 for all i ∈ [1, θ] and for all c ∈ C. If this was not the case then

there would exist b, d ∈ Ei, with b 6= d such that b, d ∈ S(c) and thus (b−ei), (d−ei) ∈ Dj

and (b−ei), (d−ei) ∈ S(c−ei). This implies |S(c−ei)
⋂
Dj| ≥ 2, which is a contradiction

to the fact that Dj is a split code from a focused splitting.

Thus E1, E2, . . . , Eθ is a focused splitting for C. �

Note that we shall refer to this as the linearity of focused splittings, because it shows

that there is always a focused splitting where every split code has exactly the same

structure.

2.4 Which Codes have a Focused Splitting

In this section we investigate when a code has a focused splitting. We start by looking at

the case where the code is in fact the whole space, and we get the lovely result that these

are precisely the perfect codes in that space.

41

Theorem 2.12. Let C = (Fq)n with perspective (θ, δ) and a focused splitting

D1, D2, . . . , Dθ. Then Di is a perfect code for all i.

Proof As C is balanced and focused, thus |Di| = |Dj| for all i, j and θ | qn.

Choose Di and count the words in the societies around the words of Di. No word will

get counted twice, because if it did that word would appear in 2 societies around words

in Di, and thus two words of Di would appear in that word’s society, which would mean

that the code would not be focused. Now there are |Di| words, each with a society of

|S(c)| and we know that

|Di| × |S(c)| = |Di| × θ = M = qn

and thus the spheres of size δ around the words of Di exactly fill the space (Fq)n; thus Di

is a perfect code. �

Theorem 2.13. A perfect code P over (Fq)n induces a focused splitting of (Fq)n.

Proof Let P be a perfect code with minimum distance d and let e be such that 2e+1 = d.

As the code P is perfect, spheres around the words of size e will fill the space. Let T

be all the words in (Fq)n of weight at most e and label these words e1, e2, . . . , eφ, and set

Di = {p + ei : p ∈ P}. Now to prove that D1, D2, . . . , Dφ is a focused splitting we must

show that

(1) it partitions the space (Fq)n;

(2) each Di has a minimum distance of greater than e, and thus is a splitting of (Fq)n;

(3) it is focused; that is, that given c ∈ (Fq)n and Di, then |S(c) ∩Di| ≤ 1.

We show each of these in the following ways.

(1) There are φ words of weight at most e and so there are φ words in each sphere around

a word in P . Thus there are a total of φ × |P | words in (Fq)n. Now there are |P |

42

words in each Di and so there are φ × |P | in D1, D2, . . . , Dφ and so D1, D2, . . . , Dφ

partitions the space.

(2) P has a minimum distance greater than e, and so any translation of P is going to

have minimum distance greater than e.

(3) If |S(c) ∩Di| ≥ 2 for some c and i, then there exists b1, b2 ∈ Di such that b1 ∈ S(c)

and b2 ∈ S(c) which implies c ∈ S(b1) and c ∈ S(b2). Noting that b1 = p1 + ei and

b2 = p2 + ei for appropriately labelled p1 and p2 ∈ P , then S(b1) ∩ S(b2) 6= Ø which

implies S(p1 +ei)∩S(p2 +ei) 6= Ø which implies S(p1)∩S(p2) 6= Ø, which contradicts

the fact that P is a perfect code.

Therefore D1, D2, . . . , Dφ is a focused splitting. �

Theorem 2.14. All splittings for codes with a perspective of θ = 1 are focused.

Proof A code with perspective θ = 1 will split into just one code with a minimum

distance of δ and so will automatically be focused. �

Theorem 2.15. All splittings for codes with a perspective of θ = 2 are focused.

Proof For a proof by contradiction, assume that C with perspective (2, δ) has an un-

focused splitting into two codes D1 and D2, that is |S(c)
⋂
Di| ≥ 2 for some c ∈ C and

i ∈ {1, 2}. As |S(c)| ≤ 2 thus for |S(c)
⋂
Di| ≥ 2 we have that S(c) ⊆ Di, but as Di has

a minimum distance ≥ δ and S(c) consists of 2 words with a distance < δ we can see that

this causes a contradiction. Thus the splitting is focused. �

With θ = 3 there are codes which have no focused splitting, and codes which have

both focused and unfocused splittings. There are also conditions on whether a code has

a focused splitting. We shall start by introducing an idea which will help us reduce the

number of cases we need to look at.

43

Definition 2.16. The component of a code containing c ∈ C is the set of all words

that can be reached by a finite number of steps from one word to its neighbour starting

at c. We shall consider a component to have the same perspective as the whole code it

originates from, even if when the component is considered separately it could have a lower

value of θ.

This is an equivalent idea to that of components in graphs and as such we can use it

to reduce problems to the case of codes made of single components, using the following

lemma.

Lemma 2.17. A code C has a focused splitting if and only if every component of the code

has a focused splitting. Moreover we show how to construct one from the other.

Proof To prove the forward implication. Let a code C have a focused splitting

D1, D2, . . . Dθ such that |S(c)
⋂
Di| ≤ 1. Let C ′ be an arbitrary component of the code,

and let D′
i = Di ∩ C ′. Then we claim that D′

1, D
′
2, ...D

′
θ is a focused splitting of C ′.

Then
⋃

{D′
i}θi=1 =

⋃
{Di ∩ C ′}θi=1 = (

⋃
{Di}θi=1)

⋂
C ′ = C ∩ C ′ = C ′ and so

D′
1, D

′
2, . . . , D

′
θ partitions the component, and also eachD′

i will inherit a minimum distance

≥ δ and so D′
1, D

′
2, . . . , D

′
θ is a splitting of C ′. To show that the splitting is focused we

must show that each word has at most 1 neighbour in each D′
i. In C ′ each word has

exactly the same neighbours that it did in C, and as D′
i ⊆ Di, thus each c ∈ C ′ will have

at most one neighbour per D′
i because in C it had at most one neighbour per Di, and it

can not have any more. Thus each component has a focused splitting.

To prove the the reverse implication, consider a code C, which has components

C ′, C ′′, . . . , C(α)

which each have focused splittings

(D′
1, D

′
2, . . . , D

′
θ), (D

′′
1 , D

′′
2 , . . . , D

′′
θ), . . . , (D

(α)
1 , D

(α)
2 , . . . , D

(α)
θ)

44

respectively. Then we can construct a focused splitting for C as follows:

Set Di =
⋃
{D(j)

i }αj=1 for all i ∈ [1, θ]. Then we claim that D1, D2, . . . , Dθ is a focused

splitting for C. First note that

⋃
{Di}θi=1 =

⋃
{
⋃
{D(j)

i }αj=1}θi=1 =
⋃
{
⋃
{D(j)

i }θi=1}αj=1 =
⋃
{C(j)}αj=1 = C.

So D1, D2, . . . , Dθ is a partition of C, and as each of the C
(j)
i was a splitting for each of the

components each C
(j)
i has a minimum distance ≥ δ, and as words in different components

must be at least δ distance apart by virtue of being in separate components, then the

words inside Di must be at least δ distance apart; thus D1, D2, . . . , Dθ is a splitting of

C. To show that it is focused, we take an arbitrary word and an arbitrary split code and

show that the word has at most 1 neighbour in the split code. Let c ∈ C and let Di be a

split code of c. Without loss of generality say that c ∈ C ′ ⊆ C. As all of the neighbours

of c are in C ′ we know that if c has a neighbour in Di it must also be in Di ∩ C ′ = D
′
i.

As D′
1, D

′
2, . . . , D

′
θ is a focused splitting of C ′ we know that there is at most 1 neighbour

of c in D
′
i and thus at most 1 neighbour of c in Di �

Lemma 2.18. A code C with a balanced perspective with θ = 3 made up of a single

component has a focused splitting if and only if the size of the code M ≡ 0 mod 3

Proof The forward implication is covered by Lemma 2.8. To prove the reverse implica-

tion, if M ≡ 0 mod 3 and C is made of a single component, then the words of C can be

labelled as follows.

Choose an arbitrary word, label it 1. As there are 3 neighbouring words, one of which is

itself, there are 2 other neighbours, arbitrarily label these 0 and 2. Take the word labelled

2, it will have one unlabelled neighbour, label this 3, label 3’s unlabelled neighbour 4 and

so on. As there are only a finite number of words this will eventually terminate, and as

C is a single component thus every word of C will have been labelled. The words of C

will be labelled from 0 to M − 1, and as M ≡ 0 mod 3 then M − 1 ≡ 2 mod 3. Partition

45

the words into equivalence classes mod 3, giving θ = 3 codes. This gives a splitting of

C as there are θ = 3 codes and in each code, the words have minimum distance ≥ δ,

as otherwise they would be neighbours, and no neighbours are in the same code by the

definition of how they were partitioned. To show the splitting is focused, consider a word

labelled i, it will have two neighbours, i−1 and i+1, and these 3 words will be in separate

equivalence classes mod 3, and thus the splitting is focused. �

If a code C, consisting of a single component, has an unbalanced perspective with

θ = 3, then there must be at least one word with either 1 or 2 neighbours. In the first

case, then that word is its only neighbour, and thus that word is the entire component,

and any splitting of such is automatically focused.

Lemma 2.19. If a code C, consisting of a single component with an unbalanced perspective

of θ = 3 and has 1 word with precisely 2 neighbours (including itself) then it must have

exactly 2 such words.

Proof Let there be M words in A.

Take the first word with only two neighbours and label it 0, and its neighbour 1.

If 1 has only two neighbours then we have proved the lemma as 0 and 1 will form the

component. Otherwise label 1’s unlabelled neighbour 2, label 2’s unlabelled neighbour 3

and so on.

As M is finite this must terminate. No word can have only 1 neighbour because

it would form its own component, so each word must have 2 or 3 neighbours. As the

labelling must terminate, the final word labelled M − 1 must have 2 neighbours, for if

it had 3 then one would be M − 2, and there would not be an unlabelled word to label

M , as any labelled word already had all its neighbours accounted for. Any word before

M − 1, except 0, can not have exactly 2 neighbours, as that would mean that the words

0 up to that word would form a component. Thus 0 and M − 1 are the only words with

exactly 2 neighbours and all other words have 3 neighbours. �

46

Corollary 2.20. Any code C, made of a single component with an unbalanced perspective

of θ = 3, has a focused splitting.

Proof There are two cases.

(i) If there is a word with exactly one neighbour, then that word forms its entire com-

ponent and is thus automatically focused.

(ii) If there is a word with exactly two neighbours, thus by Lemma 2.19 there are pre-

cisely 2 such words. Label the words, as in Lemma 2.19, 0 to M −1. Partition them

according to equivalence classes mod 3. This will give θ = 3 codes. For any word i,

not 0 or M − 1, i has two other neighbours i− 1 and i+ 1 and these are in separate

equivalence classes and thus separate codes. As no two neighbours are in the same

code, the words in one code have to be at least δ apart; otherwise they would be

neighbours. The word 0 will have one other neighbour, the word 1, and this will

be in a separate code, similarly the word M − 1, will have one other neighbour, the

word M − 2, which will be in a separate code. Thus the splitting is focused.

�

Theorem 2.21. A Code C with perspective θ = 3 has a focused splitting if and only if

each component C ′ of C has one of the following properties:

(i) an unbalanced perspective of θ = 3;

(ii) a balanced perspective of θ = 3 with M ′ ≡ 0 mod 3 words, where M ′ is the cardinality

of C ′.

Proof By Lemma 2.17, a code C has a focused splitting if and only if each component

has a focused splitting. If a component C ′ has an unbalanced perspective of θ = 3 then by

Corollary 2.20 that the component will have a focused splitting. Also if C ′ has a balanced

47

perspective of θ = 3 we have seen in Lemma 2.18 that it has a focused splitting if and

only if it has M ′ ≡ 0 mod 3, where M ′ is the cardinality of C ′. �

Now we consider higher values of θ.

Theorem 2.22. A code C with a perspective with width of θ = M will always have a

focused splitting. Moreover there is only one splitting of a code C with perspective θ = M .

Proof Let C be a code with perspective θ = M , then a splitting of this code will

produced M codes, each with only one word in it. So the splitting is focused as each word

will have only up to one neighbour per code, as there is only up to one word per code.

The splitting is unique as every word has to go into a separate way, and this can only be

done one way. �

Theorem 2.23. A code C where M/2 < S(c) < M , for all c ∈ C has no focused splittings.

Proof Proof by contradiction. Suppose that there was a focused splitting for C. As

θ < M the code would split into less than M codes, and as there are M words, by the

pigeon hole principle there will be at least one split code with at least 2 words in it. Let

b, c be two words in the same split code. As S(c) > M/2 for all c ∈ C so |S(b)∩S(c)| ≥ 1,

thus there exists a word d which is neighbours with both b and c, and thus the code would

not be focused around that word. �

Corollary 2.24. All codes with a balanced perspective of M/2 < θ < M have no focused

splittings.

Proof For a code with a balanced perspective, S(c) = θ, for all c ∈ C and by Theorem

2.23 it will have no focused splittings. �

Theorem 2.25. Let C = [n, k, d]2 be a binary linear code, let n be odd, and let 1n ∈ C,

where 1n = (1, 1, . . . , 1) ∈ (F2)
n. Then C has a focused splitting for θ = 2k−1 and δ = dn

2
e.

48

Proof As n is odd, n
2

is not an integer and so all words in C have weight either strictly

less than or strictly more than n
2
.

As 1n ∈ C and C is linear, then for each c ∈ C with w(c) < n
2

there is a word b ∈ C

with b = 1n + c and thus w(b) > n
2

and similarly for w(c) > n
2

we have w(b) < n
2
. Thus

|{c ∈ C : w(c) < n
2
}| = 2k−1.

We label {c ∈ C : w(c) < n
2
} = {c1, c2, . . . , cθ} with c1 = 0n, we set Di = {ci, 1n + ci},

and we claim that D1, D2, . . . , Dθ is a focused splitting for C.

(i) D1, D2, . . . , Dθ is a partition of C as there are θ = 2k−1 codes and each contains 2

words, so a total of 2k words.

(ii) Each split code has a minimum distance of n > dn
2
e and so the form a splitting of

C.

(iii) If |Di ∩ S(c)| ≥ 2 then ∃b, e ∈ Di such that b, e ∈ S(c) Thus {b, e} = Di and so

e = 1n + b, thus d(b, e) = n. Now as b, e ∈ S(c) then d(b, c) < n
2

and d(b, e) < n
2
, so

by the triangle inequality d(b, e) ≤ d(b, c) + d(c, e) < n
2

+ n
2

= n which contradicts

that d(b, e) = n, thus |Di ∩ S(c)| ≤ 1 and thus the splitting is focused.

�

Theorem 2.26. Let C = [n, k, d]2 be a linear code with perspective (θ, δ) and with the set

S(0) \ {0} linearly independent. Then there exists a focused splitting on C if and only if

there exists a perfect single-error correcting code on (F2)
θ−1.

Proof First note, that as C is a linear code, and S(0) \ {0} is linearly independent then

|S(0) \ {0}| = θ − 1 ≤ k, and thus we can choose a set G such that S(0) \ {0} ⊆ G

and 〈G〉 = C, that is G forms a generator matrix for C, and so every word in C can be

uniquely represented as the sum of words in G.

49

Labelling the elements of G, g1, g2, . . . , gk such that g1, g2, . . . , gθ−1 are the elements

in S(0) \ {0}, thus g1, g2, . . . , gθ−1 are the only non-zero words of weight < δ.

We can represent each word in C uniquely as the sum of the words in the generator

matrix, that is for c ∈ C we can write c =
∑k

i=1 αigi where αi ∈ F2. Thus we can

represent each word in C as (α1, α2, . . . , αk) where αi is the coefficient of gi. Note that

each combination of different values of αi will appear as some word in C, and as there are

2k words in C and 2k different combinations of (α1, α2, . . . , αk) this will be unique .

Now if two words b and c in C differ in any of (αθ . . . , αk) then they are not neighbours

in C as each of gθ . . . , gk has weight ≥ δ, and as G is linearly independent g1 . . . , gθ−1 are

the only words of weight < δ.

If two words b and c have 1 difference in α1 . . . , αθ−1 and no differences in αθ . . . , αk

then they will be neighbours in C.

If two words b and c have more than 1 difference in α1 . . . , αθ−1 then they will not be

neighbours in C as α1 . . . , αθ−1 is linearly independent and consists of all words of weight

< δ thus the difference between b and c will be ≥ δ.

Now if there was a focused splitting on C and we restrict all words in C to (α1 . . . , αθ−1)

then there are 2θ−1 different words, each equivalent to one in (F2)
θ−1. Each word in (F2)

θ−1

has 2k−θ+1 words in C mapped to it under the restriction, that is 1 for each of the variations

of (αθ, . . . , αk).

As there is a focused splitting on C the words are all partitioned so that no two

neighbours are in the same split code, that is, no two words differing by one value in

α1, . . . , αθ−1. So taking one of the split codes, say D1, representing it as (α1, α2, . . . , αk)

and restricting it to (F2)
θ−1, we see that for each word in D1 the sphere of distance 1

around a word is empty, as the words of distance 1 in (F2)
θ−1 are the neighbours of the

word in C. We can also see that every word in (F2)
θ−1 appears in one of these spheres of

distance 1 as for any c ∈ C we have |S(c)
⋂
D1| = 1 and as each c represents some word

in (F2)
θ−1 and S(c) consists of words which are of distance 1 from c when considered as

50

words in (F2)
θ−1. Thus this forms a perfect single error correcting code on (F2)

θ−1.

Now if there is a perfect single-error correcting code P on (F2)
θ−1, and we can assume

that P contain the zero word (0, 0, . . . , 0), then set D̂1 to be P translated to (α1, . . . , αθ−1)

and setD1 to be D̂1 extended to (α1, . . . , αk) with all possible combinations of (αθ, . . . , αk).

Now setting D2, . . . , Dθ to be D1 translated by a word of weight 1 in (F2)
k, that is by

a word (0, . . . , 0, αi, 0, . . . , 0) for i ≤ θ − 1 and αi in the i-th position.

We claim D1, D2, . . . , Dθ forms a focused splitting for C.

(i) Each word in C is represented by a unique word in (α1, . . . , αk) and all such words

represent some word in C. As P was perfect, it had no words in spheres of size 1

around words of P and so when extended to (α1, . . . , αk) there were no words which

differed by 1 in the first θ − 1 positions. So by translating D1 by words of weight 1

where the 1 appears in the first θ − 1 positions then there would be no duplicated

words. Counting the number of words in D1, D2, . . . , Dθ, we get

θ × |D1| = θ × |P | × (2k−θ+1)

= θ × 2θ−1

1 + (θ − 1)(2− 1)
× (2k−θ+1)

= θ × 2θ−1+k−θ+1

1 + (θ − 1)

= θ × 2k

θ

= 2k = |C|.

Thus D1, D2, . . . , Dθ is a partition of C.

(ii) As D1, D2, . . . , Dθ is a partition of C and Di’s are all translates of D1. Consider

S(c) ∩D1 for some c ∈ C. Now c belongs to one split code, say Di, and as Di is a

translate of D1 then for some word e ∈ C with weight < δ, then Di = D1 + e; so

there exists a word b ∈ D1 such that c = b + e thus b ∈ S(c) thus |S(c) ∩D1| ≥ 1.

If |S(c)∩D1| ≥ 2 then there exists b, f ∈ D1 such that b, f ∈ S(c) but if b, f ∈ S(c)

51

then b and f differ in the first θ− 1 positions when represented as (α1, . . . , αk), and

thus b and f differ when restricted to (α1, . . . , αθ−1) and so are different words in P .

But in P each word has non-intersecting spheres of size 1 but b and f would both

have the restriction of c in their spheres of size 1. Thus we reach a contradiction

and so |S(c) ∩D1| = 1.

Thus D1, D2, . . . , Dθ forms a focused splitting for C. �

2.5 Applications to Design Theory

In the following we shall take a side step into design theory. Design theory is, initially

at least, the study of how to construct (or how to design) efficient experiments. The

parable goes that a company had seven different types of coffee they wished to compare,

presumably they were going to invest money into the winning coffee type or some other

such prize. They were not going to trust one person’s opinion so they knew they would

need several volunteers to drink the coffee, but it soon became clear that if they made

each person drink seven cups of coffee and then asked them to rate them, all that would

happen is they would have an extremely hyperactive person, possibly on the brink of

having a coronary since the coffee was reportedly very strong, who could not really tell

the differences between the coffees because they had all started to taste the same after

a few. So it was decided that each person should only drink a few cups of coffee, and

to make this judgement fair it was also noted that each coffee should be compared to

every other coffee and that each coffee should only be tested equally often so that no type

of coffee gets an advantage by being tested more than any other. A couple of solutions

were proposed, each pair could be tested by a different person, and this would lead to

21 different people being required or they could be arranged in triples, with each person

testing a 3 different coffees and comparing them, the triples being arranged as such

{1, 2, 3}, {1, 4, 5}, {1, 6, 7},

52

{2, 5, 7}, {2, 4, 6}, {3, 4, 7},

{3, 5, 6}.

Which we may notice is the same arrangement as the Fano plane [2]. Thus the question

got asked: “What if we had more types of coffee? How could we still arrange a fair ex-

periment?” and this is the question that design theory answers. Incomplete block designs

and partial incomplete block designs are studied widely [2], [30], with both practical and

pure motivation. We shall continue by formally defining the objects we are interested in.

Note we shall be following definitions and theorems from both [2] and [30].

Definition 2.27. For t, n, k and λ all positive integers with t ≥ 2 then a partial t−(n, k, λ)

design is a pair of sets (X,B) which contain points and blocks respectively. We couple

this with an incidence structure and we require that

(i) X contains n points;

(ii) each block B ∈ B is incident with precisely k points of X;

(iii) every t-tuple of points in X is incident with at most λ blocks.

A pair (X,B) is a t− (n, k, λ) design if we replace ‘at most’ in part (iii) of the condition

with ‘exactly’. By convention a block is described by the points it is incident with, and

as such we can describe B as a subset of the power set of X, that is each B ⊆ X. If

|X| = |B| then we say it forms a symmetric partial block design.

Theorem 2.28. For a linear code C = [n, k, d]q with perspective (θ, δ), let C be the set

of points, let B = {S(c) : c ∈ C} be the set of blocks and set t = maxb,c∈C |S(b)
⋂
S(c)|.

Then (C,B) is a partial t− (qn, θ, t) design. Moreover as |C| = |B| it forms a symmetric

partial block design.

Proof We know |C| = qn and as each block B ∈ B is S(c) for some c ∈ C, thus

|B| = |S(c)| = θ and B is thus incident with precisely θ points of C. To complete the

53

proof we thus need to show that ever t-tuple of points in C is incident with at most t

blocks. We do this by proving that the intersection of any t+ 1 blocks must contain 0 or

1 points.

Suppose for contradiction that there exists t+1 points b1, b2, . . . bt+1 and 2 other points

c1, c2 such that
t+1⋂
i=1

S(bi) ⊇ {c1, c2}.

Note that we do not know whether c1 = bj for some j or not, similarly for c2. Thus we

know that for all i we have

c1, c2 ∈ S(bi),

which as we know b ∈ S(c) if and only if c ∈ S(b), thus for all i we have

bi ∈ S(c1) and bi ∈ S(c2)

and so this would give

{b1, b2, . . . bt+1} ⊆ S(c1)
⋂

S(c2),

which contradicts that t = maxb,c∈C |S(b)
⋂
S(c)|. Thus the intersection of any t+1 blocks

must contain 0 or 1 points.

Thus if the intersection of any t + 1 blocks contains either 0 or 1 points then any

t-tuple of points can only appear in at most t blocks. �

Definition 2.29. A parallelism of a block design (X,B) is a partition of B into classes

Bi for an index set i ∈ I such that

(i)
⋃
i∈I

Bi = B;

(ii) Bi

⋂
Bj = ∅ for all i 6= j;

(iii)
⋃
B∈Bi

B = X for all i;

54

(iv) Bj

⋂
Bj = ∅ for all Bj, Bk ∈ Bi for all i ∈ I.

That is a partition of blocks into classes such that each class is a partition of the point

set. Note that a block design which admits a parallelism is sometimes called a resolvable

block design.

Theorem 2.30. For a linear code C with a perspective (θ, δ), a focused splitting

D1, D2, . . . , Dθ induces a parallelism of the block design (C,B).

Proof Let Bi = {S(c) : c ∈ Di} and we wish to prove the criteria in Definition 2.29.

(i)

⋃
i∈I

Bi =
⋃
i∈I

{S(c) : c ∈ Di}

= {S(c) : c ∈ C}

= B.

(ii) Bi

⋂
Bj = {S(c) : c ∈ Di}

⋂
{S(c) : c ∈ Dj} and as Di

⋂
Dj = ∅ for all i 6= k then

Bi

⋂
Bj = ∅.

(iii) For a fixed i we have ⋃
B∈Bi

B =
⋃
c∈Di

S(c)

and by counting the words we can see that |
⋃
c∈Di

S(c)| = |S(c)||Di| = θM
θ

= M

which as every word contained is in C and are distinct then
⋃
B∈Bi

= C.

(iv) For all Bj, Bk ∈ Bi for all i ∈ I we have Bj

⋂
Bj = S(c1)

⋂
S(c2) for c1, c2 ∈ Di and

by definition of Di we have S(c1)
⋂
S(c2) = ∅.

�

55

2.6 Concluding

In this Chapter we have introduced the concept of perspective and the subsequent con-

cept of focused splittings and have shown several relationships between the latter and

perfect codes, specifically that a focused splitting on the complete space (Fq)n will be

equivalent to a perfect code existing on the complete space. We have gone on to give

several constructions of focused splittings, and to establish the existence of focused split-

tings for extremal values of θ and to show connections with design theory. We shall leave

the question of the existence of focused splittings for other parameters, specifically those

not covered by Theorem 2.26 where the set S(0) \ {0} is not linearly independent, and in

subsequent Chapters we shall be exploring other aspects of focused splittings, namely the

hardness of the problem of finding a focused splitting, the symmetry of focused splittings

and also their use within error correction.

56

Everything is complicated; if that

were not so, life and poetry and

everything else would be a bore

Wallace Stevens

Chapter 3

Finding a Focused Splitting is

NP-complete

3.1 Overview

In this Chapter we discuss complexity theory, a theory in which we try to distinguish

different classes of problems and in which we find that some problems can be classed as

‘hard’, we shall define what we mean for a problem to be hard, that is that a problem is

NP-complete, and we shall also give a proof of Cook’s Theorem. We shall discuss what

ramifications this has for the problem and furthermore we shall show that the problem of

finding a focused splitting for an arbitrary code is NP-complete.

3.2 Complexity Theory

Complexity theory [14] is the study of algorithms and the maximum number of steps

they take to return an answer, this is calculated by analysis of the worst case scenario

for an arbitrary sized input . The theory generally deals with decision problems, that

is questions which have a ‘yes/no’ answer, as opposed to optimisation problems which

look for the smallest or largest of something or problems which ask for an instance of

57

something satisfying certain criteria. Optimisation problems can be converted to decision

problems by asking whether something of ‘at least’ or ‘at most’ a certain size exists. So

a problem such as “Given a graph G and two vertices u and v what is the length of the

shortest path between them?” can be posed as a set of questions: “Given a graph G, two

vertices u and v and an integer k is there a path between u and v of length at most k?”,

and we do this for a range of k to find the shortest length, this thus turns the optimisation

problem into a set of decision problems. We note that at most dlog2 ne values of k need

to be considered, where n is the length of the longest path in G, as we can home in on

the value of the shortest length by repeatedly halving our search space.

Definition 3.1. A decision problem is a function f from the set of instances of a problem

I to the set {0, 1} that is f : I → {0, 1}.

Thus a decision problem takes an instance of a problem i ∈ I and says whether that

problem has a solution, by returning f(i) = 1, or if they problem does not have a solution

f(i) = 0. For example with the problem “Given a graph G, two vertices u and v and

an integer k is there a path between u and v of length at most k?”, an instance of the

problem would be i = (G, u, v, k) and f(i) = 1 if there is such a path and f(i) = 0 if

there is not. Obviously if we are going to be computing with instances of a problem, we

need to be able to encode the information in an efficient manner.

Informally an algorithm is a collection of instructions which with an instance of a

problem i ∈ I will calculate f(i). To formalise the idea we have to define a Turing machine

[14], a Turing Machine is an abstract concept of what we now call a computer, and it is

generally accepted, but ultimately impossible to prove, that anything that is ‘effectively

calculable’ is computable by a Turing machine [23]. Informally a Turing machine is a

machine that has an infinite strip of tape, split up into blocks, each of which contains

one of a finite number of symbols. The machine has a state q, and depending on the

combination of state and symbol the machine changes the symbol on that section of the

tape, changes the state the machine is in, and moves one position left or right on the tape.

58

Definition 3.2. A Turing machine is a 7-tuple,

(Q,Σ,Γ, δ, q1, qaccept, qreject)

where

1. Q is a finite set of states for the machine,

2. Σ is the input alphabet, not containing a blank symbol t,

3. Γ is the tape alphabet, with t ∈ Γ and Σ ⊂ Γ,

4. δ : Q× Γ → Q× Γ× {−1,+1} is the transition function,

5. q1 ∈ Q is the starting state,

6. qaccept is the accept state,

7. qreject is the reject state and qreject 6= qaccept.

A Turing machine is fed an infinite input L ∈ ΓZ where the blank symbol is the only

symbol appearing infinitely often. We use L(p) to denote the symbol on the tape in

position p. The machine starts with a position vector of p = 0 and a state q = q1, and

at each step of the computation the machine computes δ(q, L(p)) = (q′, r, s), and then

changes q to q′, L(p) to r and p to p + s. If q′ = qaccept or q′ = qreject then the machine

halts, otherwise it continues with the next step of the computation.

We say a Turing machine accepts an input if the machine eventually halts with qaccept

and we say the Turing machine rejects an input if the machine halts with qreject.

We say an Turing machine solves a decision problem if the Turing machine accepts

the input precisely when the decision problem has a solution, that is f(i) = 1, and the

Turing machine rejects the input precisely when the decision problem does not have a

solution, that is f(i) = 0.

59

For a decision problem we can talk about a signature of a solution, which is information

relating to the solution of a given instance of the problem, usually the signature of a

solution will be an instance of the object having specific properties, for example a path

between two vertices in a graph which has a length less than the required distance. Thus

if we have a Turing machine which solves the decision problem, we can create a Turing

machine which can check whether a given signature is the signature of the solution to

a given instance of the decision problem. Using this observation we can define a non-

deterministic Turing machine.

Definition 3.3. A non-deterministic Turing machine is a Turing machine coupled with

a random function r : N → Σ, that is a function which maps on to the alphabet with

every symbol appearing with a positive probability, and a given integer n. The random

function writes to the tape for positions from −1 to −n a random symbol from Σ, where

n is the desired length of a signature and then returns to the starting position before

running as a Turing machine.

We require the non-deterministic Turing machine to accept the random input if and

only if it is the signature to a solution of the instance, which is given to the machine in

the normal manner, and rejects the random input if it is not. We say a non-deterministic

Turing machine solves a decision problem if for a given instance and random input it

accepts the random input precisely when the input is a solution of the instance.

Now that we have the concepts of a Turing machine and a non-deterministic Turing

machine we can consider the complexity of algorithms. The two classes that we are

primarily going to be interested in are P and NP, and we shall also be discussing NP-

complete problems. Informally we can think of the class P to be problems with an

efficient algorithm for solving them, the class of NP to be problems that a solution

to can be checked efficiently but not necessarily computed efficiently, and the class of

NP-complete problems to be the hardest problems within NP. Before we can formally

define such concepts we must define what we mean by the complexity of an algorithm,

60

which although formally we are talking about Turing machines, we can keep the colloquial

concept of an algorithm at hand.

Definition 3.4. Let T = (Q, Σ, Γ, δ, q1, qaccept, qreject) be a Turing machine or a non-

deterministic Turing machine solving a decision problem f and let i be an instance of the

problem, then we define #T (i) to be the number of time steps T takes before returning

either qaccept or qreject.

Informally we can think of this as the number of steps an algorithm will take to solve

a specific case of the problem.

Definition 3.5. Let T = (Q, Σ, Γ, δ, q1, qaccept, qreject) be a Turing machine or a non-

deterministic Turing machine solving a decision problem f , then for a function g(n) we

say T has complexity O(g(n)) if for h(n) defined as

h(n) = sup{#T (i) : |i| = n}

there exists a real number M such that h(n) ≤Mg(n) for all values of n.

Informally this can be thought of as the worst case scenario, that is what is the longest

that the algorithm could take to solve an instance of the problem. We will often refer to a

problem having a given complexity, by which we shall mean that a machine solving that

problem will have that complexity.

It is clear that when evaluating an algorithm it is simple enough to just consider the

overall behaviour of h(n) and to ignore all terms in any finite expansion of h(n) except

for the one with the quickest growth rate, see [11] for details.

Now we can define the complexity classes of P and NP.

Definition 3.6. A decision problem f is in P if for a Turing machine T solving f , and

for a polynomial g(n), T has complexity O(g(n)). We say f is of polynomial time.

61

Definition 3.7. A decision problem f is in NP if for a non-deterministic Turing machine

T solving f , and for a polynomial g(n), T has complexity O(g(n)). We say f is of

non-deterministic polynomial time

We can see that every problem f in P is in NP by constructing a non-deterministic

Turing machine which solves f . We do this by letting it run as the Turing machine which

solves f and then comparing this solution to the guessed solution, this forms a non-

deterministic Turing machine as it runs on the deterministic input and then compares

the signature from the computation to the guessed solution formed by random input.

Moreover the non-deterministic Turing machine will only accept the random input if it

agrees with the calculated output. Thus the complexity of the non-deterministic Turing

machine is at most the complexity of the Turing machine, as the process of checking the

random input against the calculated output is linear and thus P ⊆ NP. Such an inclusion

begs the question P = NP and unfortunately this remains an open, and famous, problem

see [14], but we can make further progress with the problem via the seminal Cook’s

Theorem [14] and with the theory of reductions, see [14] and [22].

If we have two problems, one of which we know about, a useful concept for the anal-

ysis of the unknown problem is the concept of reductions. A reduction is a polynomial

algorithm which converts an instance of the understood problem into an instance of the

new problem, such that any solution to the new problem gives a solution to the under-

stood problem, and thus if there existed a polynomial algorithm solving the new problem

it could be converted to a polynomial algorithm solving the understood problem. This

would be done by running the algorithm for the new problem and then interpreting the

result for the understood problem. Thus the new problem can be seen to be at least as

hard as the understood problem.

Definition 3.8. For two decision problems f1 and f2, with instance classes of I1 and I2

respectively, we say that f1 transforms to f2, written f1 ∝ f2 if and only if there exists a

function t : I1 → I2 such that f1(i) = f2(t(i)) for all i ∈ I1, providing there is a Turing

62

machine which computes t in polynomial time.

Lemma 3.9. For two decision problems f1 and f2, if f1 ∝ f2 and f2 ∈ P then f1 ∈ P.

Proof As f1 ∝ f2 then we know that there exists a function t such that f1(i) = f2(t(i))

for all i ∈ I1 and that t can be computed by a Turing machine in polynomial time, thus

the size of t(i) is bounded by a polynomial in the size of i. As we know f2 ∈ P then f2 can

be computed by a Turing machine in polynomial time. Thus f2(t(i)) can be calculated

by a Turing machine in polynomial time by first calculating i′ = t(i) and then calculating

f2(i
′), each of which can be done in a polynomial amount of time, and as the product of

two polynomials is a polynomial, f1 must have polynomial time. �

Thus we can see that if f1 ∝ f2 then we can say that f2 is at least as hard as f1. It

is clear that if f1 ∝ f2 ∝ f3 then f1 ∝ f3, that is ∝ is a transitive relation and as such

reductions can be used to provide a hierarchy on the space of decision problems. In 1971

Stephen Cook showed in [10] that the problem of Boolean satisfiability (herein referred

to as SAT) is at least as hard as any problem in NP, that is he showed that for every

problem f ∈ NP that f ∝ SAT . In doing this Cook gave the first example of a problem

being NP-complete, this is as SAT was shown to be at least as hard as any problem in

NP. This means that if SAT ∈ P then it would show that P = NP. Similarly if SAT

reduced to another problem f ∈ NP then the same could be said for f , as f ∈ P would

imply SAT ∈ NP which would imply P = NP.

Definition 3.10. A decision problem f is NP-complete if and only if

(i) f ∈ NP;

(ii) for all f ′ ∈ NP we have that f ′ ∝ f .

It should be clear that by the transitivity of∝ that condition (ii) in the above definition

could be considered as there existing some known NP-complete problem that transforms

to f . Before we can prove Cook’s Theorem we must first define what we mean by the

63

problem SAT and before we can do this we must define a few concepts which we shall

subsequently use.

Definition 3.11. Let U = {u1, u2, ...un} be a set of variables and then a truth assignment

for U is a function b : U → {T, F}, where we say u is true under b if and only if b(u) = T

and u is false under b if and only if b(u) = F .

Definition 3.12. If u ∈ U , then u and ū are literals over U . The literal u is true under b

if and only if u is true under b, the literal ū is true under b if and only if u is false under

b.

Definition 3.13. A clause over U is a set of literals over U , which represents the dis-

junction of those literals. Thus a clause is satisfied under b if and only if at least one of

the literals is true under b.

Definition 3.14. A set of clauses S is satisfiable if and only if there exists a truth

assignment b such that each clause is satisfied.

Definition 3.15. The problem SAT is defined as such “Given a set of clauses S over a

set of variables U , is S satisfiable?”

Theorem 3.16. The problem SAT is NP-complete.

Proof This will only be a sketch proof giving the overall flavour of the full proof, for

complete details see [14] or [10]. The main concept is that we consider an arbitrary

problem f in NP and we prove that f transforms to SAT . As f is in NP we know

that there exists a non-deterministic Turing machine which solves f with polynomial

complexity. Thus to show f transforms to SAT we create a set of boolean clauses which

are satisfied precisely when the non-deterministic Turing machine which solves f accepts

a given input, and this is done by emulating the actions of the non-deterministic Turing

machine.

64

For a given size of input n, we know that on a non-deterministic Turing machine f has

a complexity of O(g(n)) and thus there exists a polynomial p(n) = Mg(n) which bounds

the total number of times steps taken by the non-deterministic Turing machine to solve

f . Similarly if the non-deterministic Turing machine only takes p(n) time steps, it can

only feasibly use p(n) tape spaces, and as the non-deterministic Turing machine starts at

position 0, the only tape positions used can be in the range −p(n) to p(n) + 1.

To construct our variable set U we must consider how to represent the non-

deterministic Turing machine, this can be done by at any given time representing the

state of the machine, the position of the read head, and the contents of each tape posi-

tion. Thus we create the following variables with the following conditions

Q[i, k] = T ⇐⇒ at time i machine is in state qk

H[i, j] = T ⇐⇒ at time i read head is in position j

S[i, j, l] = T ⇐⇒ at time i position j contains symbol sl

We do this for all values 0 ≤ i ≤ p(n), 1 ≤ k ≤ r, −p(n) ≤ j ≤ p(n) + 1 and 0 ≤ l ≤ v

where r = |Q| and v = |Γ| − 1. Moreover we specify state qr to be qaccept.

Now we create our set of clauses, we break the set into several subsets depending on

the purpose the clauses have in emulating the non-deterministic Turing machine. There

are six subsets in total which we shall denote S1 to S6, each of which has a specific purpose

and places a specific restriction on the way the variables in U can interact such that they

emulate the non-deterministic Turing machine. We need to make sure that the machine

is in exactly one state at any one time, this is the purpose of S1. We need to make sure

that the read head is in exactly one position at any one time, this is the purpose of S2.

We need to make sure that each position on the tape contains exactly one symbol at any

one time, this is the purpose of S3. We need to make sure that at time 0 that the machine

is in it’s initial configuration, this is the purpose of S4, here we don’t specify the contents

65

of the part of the tape which would have been the guess, because then the satisfiability

of the clauses says whether there would exist some guess which would satisfy the initial

conditions. We need to check that by time p(n) the machine will have accepted the input,

this is the purpose of S5. Most importantly we need to check that moving from each time

step to the next, that the only differences in the the state of the machine, the contents

of the tape, and the position of the read head, are differences that would be caused by

the non-deterministic Turing machine which solves f moving forward in time with the

transition function, this is the purpose of S6. It is easy to see that subsets S1, S2, S3

and S6 ensure that the emulated machine would act as a machine would, that is having

only one state at any time, reading only one tape position at any one time, each tape

square containing only one symbol at any one time and the change in states, symbols

and position of read head only happens as dictated by the transition function. Subset

S4 ensures that the machine starts off in an initial configuration, otherwise it would be

calculating a different instance of the problem. Subset S5 ensures that the machine will

have accepted the input, because not only do we require the the set of clauses to emulate

a working machine but we also require the input to be accepted.

We now display how each of clauses in these subsets are formed. S1 is formed by

taking clauses of the form

{Q[i, 0], Q[i, 1], . . . , Q[i, r]} for all 0 ≤ i ≤ p(n)

and clauses of the form

{Q[i, j], Q[i, j′]} for all 0 ≤ i ≤ p(n) and for all 1 ≤ j < j′ ≤ r.

The first of these ensures that for each time step there is a state, and the second ensures

66

that there is at most one per time step. S2 is formed by taking clauses of the form

{H[i,−p(n)], H[i,−p(n) + 1], . . . , H[i, p(n) + 1]} for all 0 ≤ i ≤ p(n)

and clauses of the form

{H[i, j], H[i, j′]} for all 0 ≤ i ≤ p(n) and for all − p(n) ≤ j < j′ ≤ p(n) + 1.

The first of these ensures that at each time step the read head is in some position, and

the second ensures that there is at most one per time step. S3 is formed by taking clauses

of the form

{S[i, j, 0], S[i, j, 1], . . . , S[i, j, v]} for all 0 ≤ i ≤ p(n) and for all − p(n) ≤ j ≤ p(n) + 1

and clauses of the form

{S[i, j, l], S[i, j, k′]} for all 0 ≤ i ≤ p(n), for all −p(n) ≤ j ≤ p(n)+1 and for all 0 ≤ k < k′ ≤ v.

The first ensures that each tape square contains at least one symbol, and the second

ensures that there is at most one. S4 is formed by taking the following clauses

{Q[0, 1]}, {H[0, 0]}

{S[0, 0, 0]}{S[0, 1, l1}, {S[0, 2, l2}, . . . , , {S[0, n, ln}

and

{S[0, n+ 1, 0}, {S[0, n+ 2, 0}, . . . , {S[0, p(n) + 1, 0}

where the information about the instance is encoded sl1sl2 . . . sln . The first three of these

clauses are to make sure the state and read head start off in the position in which a

67

machine would start, the next n are to ensure that the information about the instance is

encoded and the final p(n) + 1− n are to ensure no further information is encoded as the

instance. S5 is formed by taking the clause

{Q[p(n), r]}.

This is to ensure that by the maximum amount of time we know a computation would

take, that the machine has entered the accept state. S6 is formed of clauses of two different

types. The first type of clauses in S6 are of the form

{S[i, j, l], H[i, j], S[i+ 1, j, l]} for all 0 ≤ i < p(n), − p(n) ≤ j ≤ p(n) + 1 and 0 ≤ l ≤ v.

This is such that if S[i, j, l] is true, that is at time i tape position j contains symbol sl,

then either the read head is at position j and a time i, and thus a change may occur, or

that S[i + 1, j, l]. Thus these clauses are true if the tape doesn’t change other than via

the transition function. The second type of clauses in S6 are of the form

{H[i, j], Q[i, k], S[i, j, l], H[i+ 1, j + s],

{H[i, j], Q[i, k], S[i, j, l], Q[i+ 1, k′]}

and

{H[i, j], Q[i, k], S[i, j, l], S[i+ 1, j, l′]}

for every quadruple of (i, j, k, l) with 0 ≤ i < p(n), −p(n) ≤ j ≤ p(n) + 1, 1 ≤ k ≤ r

and 0 ≤ l ≤ v and where if qk ∈ Q \ {qaccept, qreject} then δ(qk, sl) = (qk′ , sl′ , s) and if

qk ∈ {qaccept, qreject} then s = 0, k′ = k, l′ = l. This is such that for each each possible

combination of time(i), position of read head (j), state (k) and symbol being read (l) either

the machine is not in the specified state, position and symbol or the state, position and

68

symbol at the next time step is as implied by the transition function. For S1, S2, . . . , S6

it is fairly easy to see that each of these subsets contains only a polynomial of the input

size number of clauses, and thus the entire set S is polynomial of the size of the input.

Also we note that an accepting computation for a guessed input on the non-deterministic

Turing machine would give a truth assignment to U which would satisfy S, and that any

truth assignment satisfying S could be used to calculating a guess, the tape positions −1

to −p(n) at time 0 of the accepting Turing machine, which would be accepted by the non-

deterministic Turing machine. Thus the satisfying truth assignments are in one-to-one

correspondence with the accepting guesses for f and thus f ∝ SAT . �

3.3 Finding a Focused Splitting is NP-Complete

In the following we show that finding a focused splitting in a code C is NP-complete

by a reduction from the problem of finding the total chromatic number of a graph, which

is known to be NP-complete [29]. We start with some definitions.

Definition 3.17. A graph G is a pair (V,E) where V is the vertex set, and E the edge

set, each vertex is just a single element and each edge is incident to 2 vertices, and as such

is sometimes represented as a pair of vertices. We shall represent an edge by the pair of

vertices it is incident to in either order. A simple graph is a graph where there is at most

one edge between any two vertices. A pair of graphs are isomorphic, written G ∼= G′ if a

relabelling of the vertices in one gives the other.

Definition 3.18. The perspective graph of a code C is a graph where the vertices are the

words in C, that is V = C and an edge exists between two distinct vertices if and only if

the words in C have a distance less than δ, that is

E = {(wi, wj) : wi, wj ∈ C, d(wi, wj) < δ}.

We denote the perspective graph of a code C by G(C).

69

Definition 3.19. The distance between two vertices on a graph G is the number of edges

in the shortest path between them. If no such path exists we say the distance is infinite.

For two vertices v and w we denote the distance d(v, w) with

d(v, w) = min{|{e1, e2, . . . , et}| : e1 = (v, w1), e2 = (w1, w2), . . . , et = (wt−1, w)}.

Definition 3.20. A distance-2 vertex colouring on a graph G is a colouring of the vertices

of G such that any two vertices with a distance less than or equal to 2 have distinct colours.

For analysis of the question of finding focused splittings, and distance-2 colourings,

we must formalise the questions.

Definition 3.21. The problem F.S. is defined as “Given a code C, with perspective (θ, δ),

does there exist a focused splitting on C?”

Definition 3.22. The problem D2 is defined as “Given a graph G does there exist a

distance-2 vertex colouring on G?”

Theorem 3.23. A code C has a focused splitting if and only if the perspective graph G(C)

has a distance-2 vertex colouring in θ colours.

Proof We start by proving the forwards implication. Let C have a focused splitting

D1, D2, . . . , Dθ, we label the words in C = {w1, w2, . . . , wM} and we construct a colouring

on G(C) by labelling the vertices in G(C) = {v1, v2, . . . , vM} respectively and colouring

vi colour j if and only if wi ∈ Dj.

We claim that this gives a distance-2 vertex colouring on G(C). We prove this by

contradiction. If it did not give a distance-2 vertex colouring on G(C) then there exists

2 vertices, vi and vj such that d(vi, vj) ≤ 2 with vi and vj coloured the same colour (say

colour k). This then breaks down into 2 cases:

(1) The first case is where the distance is 1, that is d(vi, vj) = 1 which implies the

equivalent words in C will be neighbours, that is wi ∈ S(wj) and wi, wj ∈ Dk. Thus

70

wi, wj ∈ (Dk ∩ S(wj)) which implies |Dk ∩ S(wj)| ≥ 2 and thus D1, D2, . . . , Dθ is not a

focused splitting. This is a contradiction.

(2) The second case is where the distance is 2, that is d(vi, vj) = 2 which implies the

existence of vL such that d(vi, vL) = 1 and d(vj, vL) = 1, that is there is a interim vertex

between vi and vj and thus the equivalent words in C both belong to the interim word’s

society, that is, wi, wj ∈ S(wL) and wi, wj ∈ Dk, as they are the same colour. Thus

wi, wj ∈ (Dk ∩ S(wL)) which implies |Dk ∩ S(wL)| ≥ 2 and thus D1, D2, . . . , Dθ is not a

focused splitting. This is again a contradiction, which completes the claim and proves the

forwards implication.

Now we prove the reverse implication. Let G(C) have a distance-2 vertex colouring

in θ colours. Then we place the words in C in split codes depending on the colour of the

associated vertex. Thus wi ∈ Dj if and only if vi is coloured colour j.

We claim that this gives C a focused splitting. We prove this by contradiction. If it

did not give C a focused splitting then there exists i, j such that |Dj ∩ S(wi)| ≥ 2 and

this implies there exists wk, wm with wk, wm ∈ S(wi) and wk, wm ∈ Dj (although we

require wk and wm to be distinct words in C, there is no requirement for either of them

to be distinct from wi) and we can see that this implies that there exists vk, vm ∈ G(C)

such that vk, vm both coloured j and that d(vk, vm) ≤ d(vk, vi)+d(vi, vm) ≤ 1+1 = 2 and

thus the colouring on G(C) is not a distance-2 colouring, as vk and vm have a distance

less than 2 and are coloured the same, which is a contradiction, and thus we prove the

claim.

Thus a code C has a focused splitting if and only if the perspective graph G(C) has

a distance-2 vertex colouring in θ colours. �

Lemma 3.24. For any simple graph G, there exists a code C, such that G(C) ∼= G.

Proof Proof is given by a construction of C from G such that G(C) ∼= G.

Let G = (V,E). We construct C over an alphabet of size |V |. From the definition we

will require |C| = |V | as each word of C will give a vertex in G(C), and we let M = |C|.

71

We label V = {v1, v2, . . . , vM} and we consider C to be made up of M words which we

label C = {w1, w2, . . . , wM} without yet knowing what each word looks like. We do this

so that vi will map to wi which will map to vi. Set the length of the code n = |E| and

label E = {e1, e2, . . . , en}. Then we define each word wi = αi,1, αi,2, . . . , αi,n with

αi,j =

 0 if vi ∈ ej,

i otherwise.

As the graph G is simple each pair of words will have a maximum of one edge joining

them and each co-ordinate will contribute a value of 1 to the distance between two words

unless those two words are joined by the relevant edge, which happens at most once. Thus

d(wi, wj) =

 n− 1 if vivj ∈ E,

n if vivj /∈ E.
So by setting δ = n, only the words that are adjacent in G will have a distance of n−1

between them and thus be in the same society in C and thus adjacent words in G will be

adjacent in G(C). Words that are non-adjacent in G will have a distance of n between

them in C and so will be not be in the same society in C and so will be non-adjacent in

the perspective graph G(C). Thus G and G(C) have the same vertex set and the same

adjacency between vertices and thus the same edge set and so G(C) ∼= G. �

Corollary 3.25. D2 ∝ F.S.

Proof By Theorem 3.23 a focused splitting of a code C and a distance-2 colouring in θ

colours of a graph G(C) are equivalent, and by Lemma 3.24 for every graph G there exists

a code C such that G(C) ∼= G. Therefore all we need to show is that this transformation

from G to C can be performed in polynomial time. We note that an instance of the

problem D2 can be described by the pair (V,E), and thus has size at most n + n(n−1)
2

where n is the size of V , we also note that an instance of C can be described by the set

of co-ordinates C and the numbers θ and δ and we observe that in our construction C

has n words each of length of |E|, which is at most n(n−1
2

from an alphabet of size n, and

thus C has at most size n2 n(n−1)
2

which is clearly bounded by a polynomial in the size of

72

n+ n(n−1)
2

. To build C from G, we must look at each edge, and then set αi,j accordingly,

therefore we need perform only |E||V | operations and thus this is polynomial in the size

of G. Thus D2 ∝ F.S. �

This construction of C from G is by no means the only one, and although it creates a

code with a high value of q this is by no means necessary.

Lemma 3.26. Any simple graph G can be transformed to a binary code C where the

perspective graph of the code is the initial graph, that is G(C) ∼= G.

Proof Having generated a code C ′, with an alphabet of size q as in Lemma 3.24, replace

every symbol α with q symbols, all 0 except the α-th which would be 1, with the symbol

0 getting mapped to 0q. All distances between non-zero co-ordinates will be doubled, as

what was originally symbols i and j will now differ in the i-th and j-th positions and

thus distances between non-zero co-ordinates in C ′ will be doubled, subsequently setting

δ = 2n− 1 gives the same perspective graph. �

We now look at total colourings of a graph [29], the question of whether a total

colouring exists and we tie that in to our question of focused splittings.

Definition 3.27. A total colouring on a graph G is a colouring of the vertices and edges

such that no adjacent vertices share the same colour, no adjacent edges share the same

colour, and no vertices with their adjacent edges share the same colour.

Definition 3.28. The problem TCOL is defined as “Given a graph G does there exists

a total colouring on G?”

Theorem 3.29. The problem of whether a graph G has a total colouring in n colours can

be reduced to the problem of whether a related graph Ḡ has a distance-2 colouring in n

colours. That is TCOL ∝ D2.

Proof We prove the theorem by constructing Ḡ from G. Let G = (V,E) and label

V = {v1, v2, . . . , vV } then set V ∗ = {v(i,j) : vivj ∈ E}, this is the set of new vertices, one

73

for each edge in E. We set Ḡ = (V̄ , Ē) where V̄ = V ∪ V ∗ and Ē = {viv(i,j) : vivj ∈ E}

that is the edges of Ḡ are representing the adjacency of vertices and edges in the original

graph.

Now we claim a total colouring exists on G in n colours if and only if a distance-2

colouring exists on Ḡ in n colours. To prove the claim, consider if there was a total

colouring on G in n colours, then each pair of the form:

(1) (vi, vj) for every edge vivj ∈ E, so this is pairs of adjacent vertices;

(2) (vi, vivj) for every edge vivj ∈ E, so this is pairs of vertices and edges which are

adjacent;

(3) (vivj, vivk) for every pair of edges vivj and vivk ∈ E, that is pairs of edges which share

a vertex;

would have distinct colours.

Similarly if there was a distance-2 vertex colouring on Ḡ in n colours then as the only

edges in Ḡ are between vertices in V ⊂ V̄ and vertices in V ∗ ⊂ V̄ thus the only paths of

distance-2 or less in Ḡ are

(i) vi to vj, for vivj ∈ E, these are paths of length 2 starting at a vertex in V ;

(ii) vi to v(i,j) for vivj ∈ E, these are paths of length 1 in Ḡ;

(iii) v(i,j) to v(i,k) for all pairs vivj, and vivk ∈ E, these are paths of length 2 starting at

a vertex in V ∗;

and thus the vertices at the ends of each of these paths would be coloured distinct colours.

Now as the pairs (1), (2) and (3) are equivalent to the paths (i), (ii) and (iii) we can

see that if we colour the vertices vi ∈ V ⊂ V̄ the colour of vi ∈ V , and the vertices

v(i,j) ∈ V ∗ ⊂ V̄ the colour of vivj ∈ E. Then a total colouring in G would produce a

distance-2 vertex colouring in Ḡ.

74

Equivalently if we colour the vertices vi ∈ V the colour of vi ∈ V ⊂ V̄ and if we colour

the edges vivj ∈ E the colour of the vertices v(i,j) ∈ V ∗ ⊂ V̄ . Then a distance-2 vertex

colouring in Ḡ would produce a total colouring in G.

Thus a total colouring exists on G in n colours if and only if a distance-2 colouring

exists on Ḡ in n colours. �

Corollary 3.30. The problem of whether a graph has a distance-2 colouring in n colours

and the problem of whether a code C has a focused splitting are both NP-complete.

Proof We can see that the problem of whether a graph G has a distance-2 vertex

colouring is in NP because we could be given a colouring and check whether it was a

distance-2 vertex colouring by looking at each vertex and checking all of the vertices at

distance-2 from it. Let d be the maximum degree of a vertex in G, then you could check

each of the V vertices, and each vertex has at most d neighbours and so less than d2

other vertices at distance-2 and so this would have a complexity less than V × d2, which

is polynomial. Thus the problem is in NP.

Moreover as the problem of whether a graph has a total colouring in n colours is known

to be NP-complete [29], thus the problem of whether a graph has a distance-2 colouring

in n colours is NP-complete.

The problem of whether a code C has a focused splitting is equivalent to the problem

of whether a graph G(C) has a distance-2 vertex colouring in θ colours, as shown in

Theorem 3.23, and for any graph G there exists a code C with G(C) = G as shown in

Lemma 3.24 and the problem of whether a graph G has a distance-2 colouring in n colours

was shown to be NP-complete in Theorem 3.29, and thus the problem of whether a code

C has a focused splitting is NP-complete. That is as TCOL ∝ D2 and D2 ∝ F.S. thus

TCOL ∝ F.S. �

75

3.4 The Ramifications of Being NP-Complete

As we now know that determining whether a given code has a focused splitting is, in

general, NP-complete then we know that we are highly unlikely to find a polynomial

algorithm for doing so and that if we ever did it would be a ground breaking result. As

such we shall be leaving the question of when does a given code have a focused splitting

and shall instead be focusing, excuse the pun, on the consequences of a given code having

a focused splitting, and on the properties a focused splitting may have, such as the

automorphisms of one.

76

To find a form that accommodates

the mess, that is the task of the artist

now

Samuel Beckett

Chapter 4

Automorphisms of Focused

Splittings

4.1 Overview

In this Chapter we shall be investigating the automorphisms that a focused splitting

can have. We shall show how the automorphism group can be decomposed into smaller

groups depending on the structural properties of the focused splitting and perspective

and we shall use this to determine the automorphism groups for certain classes of focused

splitting. We shall start by defining a group action [24].

4.2 Preliminaries

Definition 4.1. For a group G and a set S the action of G on S is a map, G × S → S

such that

(i) es = s ∀s ∈ S where e ∈ G is the identity element;

(ii) (α1α2)s = α1(α2s) ∀α1, α2 ∈ G, s ∈ S, that is the action is associative.

We shall now define the ‘natural’ permutation group of a code C.

77

Definition 4.2. For a code C = (n,M, d)q we label the elements of C = {c1, c2, ...cM}.

Let SM be the symmetric group, that is, all permutations on M elements and we define

the natural action of SM on C in the following manner:

For an element α ∈ SM which permutes an element i to an element j, for i, j in the

range 1 to M , we define αci = cj where ci, cj ∈ C.

It is clear from the definition that the labelling of elements of C does not affect the

action of the permutation group as SM is all permutations between M elements. Note we

shall also refer to αS where S ⊆ C, by which we shall mean the set of elements you get

to from applying α to S, that is αS = {c ∈ C : αs = c, s ∈ S}.

We now define an automorphism of a focused splitting.

Definition 4.3. Let C be a (n,M, d)q code, with a focused splitting D1, D2, . . . Dθ. Let

SM act on C in the natural way. Then α ∈ SM is an automorphism of the focused splitting

of C if and only if,

(i) for all b, c ∈ C then b, c ∈ Di if and only if αb, αc ∈ Dj for some j;

(ii) for all b, c ∈ C then c ∈ S(b) if and only if αc ∈ S(αb).

That is α preserves the structure of the split codes and of the societies of C.

In a simplification of notation we shall be binding a focused splitting D1, D2, . . . , Dθ to

the code C, and as such in this chapter where we refer to a code C with a focused splitting

it shall be assumed that a given focused splitting is known and is the focused splitting

being considered. We do this to avoid lengthy, and ultimately unnecessary notation from

cluttering the work. If we were to consider one code with two focused splittings on it then

we would treat this as two distinct codes each with an associated focused splitting, this is

because it is the structure of the focused splitting that we are interested in looking at and

not the structure of the underlying code. This is also why we only address the general

permutations of the set of C that preserve the structure of the focused splitting rather

78

than the automorphisms of the code C, that is permutations of co-ordinates and alphabet

which preserve the codewords of C, Had we taken this latter definition we would have all

kinds of groups appearing as automorphisms of focused splittings which themselves may

have a simplistic structure, purely by virtue of the underlying code having an interesting

structure. It is of course perfectly valid to consider the interaction of these two definitions

and consider the automorphisms of the underlying code which also preserve the structure

of the focused splitting, but but being this the first investigation into this realm we feel

it better to concentrate attention on the structure of the focused splittings themselves.

Thus we define the automorphism group of a focused splitting to be the set of of all

automorphisms of the focused splitting.

Definition 4.4. Γ(C) = {α ∈ SM : α is an automorphism of the focused splitting of C}.

Lemma 4.5. Γ(C) is a group.

Proof We prove this by showing that Γ(C) is a subgroup of SM . Now by definition

Γ(C) ⊆ SM so to show it is a subgroup we must show it is closed and that it contains

inverses, since SM is finite this reduces to just showing that Γ(C) is closed. To show

Γ(C) is closed we must check that for α1 and α2 in Γ(C) that α1α2 meets the criteria for

membership of Γ(C) :

(i) If α1, α2 ∈ Γ(C) thus for all b, c ∈ C we have b, c ∈ Di if and only if α1b, α1c ∈ Dj for

some j and we have b, c ∈ Di if and only if α2b, α2c ∈ Dj for some j. Thus b, c ∈ Di if

and only if α2b, α2c ∈ Dj for some j which happens if and only if α1α2b, α1α2c ∈ Dt

for some t.

(ii) If α1, α2 ∈ Γ(C) thus for all b, c ∈ C we have c ∈ S(b) if and only if α1c ∈ S(α1b)

and we have c ∈ S(b) if and only if α2c ∈ S(α2b). Thus c ∈ S(b) if and only if

α2c ∈ S(α2b) which happens if and only if α1α2c ∈ S(α1α2b).

Thus Γ(C) is closed and this completes the proof. �

79

Lemma 4.6. Let C be a code consisting of components C1, C2, . . . , Ct. Then for α ∈ Γ(C)

the image of a component is a component, that is αCi = Cj for some j ∈ [1, t].

Proof If b, c ∈ Ci then there exists a finite sequence of elements b1, b2, ...by such that

b ∈ S(b1), by ∈ S(c) and for all i ∈ [1, y − 1] we have bi ∈ S(bi+1). Thus as α ∈ Γ(C)

then we must have that αb ∈ S(αb1) and αby ∈ S(αc) and for all i ∈ [1, y − 1] we have

αbi ∈ S(αbi+1), thus αb and αc are still in the same component, thus αCi ⊆ Cj. Assume

there was an element d ∈ Cj such that α−1d /∈ Ci, and let αc = c′. By the first part of

this proof, as c′ and d are in the same component, then α−1c′ and α−1d must be. However

α−1c′ = α−1αc = c ∈ Ci; thus α−1d ∈ Ci. Thus we conclude αCi = Cj. �

4.3 Decomposing the Automorphism Group

Before we can deal with specific cases we have to be able to break down the calculation

for codes with a different number of components.

Definition 4.7. Let C be a code with a perspective (θ, δ) which has t components

C1, C2, . . . , Ct and a focused splitting D1, D2, . . . , Dθ. For α ∈ Γ(C) we define an au-

tomorphism of the components and split codes α ∈ γ(C) as an element that satisfies the

condition: For all α′ ∈ γ(C) and all c ∈ C we have αc, α′c ∈ (Ci
⋂
Dj) if and only if

αc = α′c.

By Lemma 4.6 and Definition 4.3 we know that for α ∈ Γ(C) that α takes components

to components, takes split codes to split codes and societies to societies. For a successful

decomposition of Γ(C) we require the intersection of split codes and components to be

taken uniquely to other intersection of split code and component in a unique way.

If we were going to build up a set of elements satisfying Definition 4.7 then we can see

that the order in which we pick such elements could affect the structure of the resulting

set, especially as the inclusion of one element denies the inclusion of other elements, and

as there is no initial non-trivial element we see that we could build up different sets. We

80

wish to consider maximal sets, that is ones where there are no further valid elements to

be included, As there may be many such maximal sets of elements satisfying this criteria,

we define γ(C) to be one such set, we shall prove shortly that this choice is irrelevant as

all such groups will be isomorphic but first we need to show that any choice of maximal

set will be a group.

Lemma 4.8. γ(C) is a group.

Proof As γ(C) ⊆ Γ(C) and by Lemma 4.5 we know Γ(C) is a finite group, then we

need only check that γ(C) is closed. To prove closure we must check the criteria. For

α1, α2, α
′ ∈ γ(C), let (α1α2)c, α

′c ∈ (Ci
⋂
Dj) and set α′′ = α−1

1 α′. By Lemma 4.6 we

know that α2c, α
′′c ∈ (Ck

⋂
Dl) for some k and l and as α2, α

′′ ∈ γ(C) we know that

α2c = α′′c and by multiplying on the left by α1 thus α1α2c = α1α
′′c = α′c. Thus γ(C) is

closed and thus γ(C) is a group. �

Lemma 4.9. Let C = (n,M, d)q be a code and let γ(C) and γ′(C) be two distinct auto-

morphism groups of the split codes and components, then γ(C) ∼= γ′(C).

Proof We know from Definition 4.3 and from Lemma 4.6 that for an element α in Γ(C)

that αCi = Ck for some k and that αDj = DL for some L and as such we can see that

α(Ci
⋂
Dj) = Ck

⋂
DL. From Definition 4.7 we know that if for α and β in γ(C) that

if α(Ci
⋂
Dj) = Ck

⋂
DL and β(Ci

⋂
Dj) = Ck

⋂
DL then we have αc = βc for all c in

Ci
⋂
Dj and thus we can describe an α in γ(C) by how it permutes (i, j) ∈ [1, t]× [1, θ].

Thus we can see that there exists a group G such that γ(C) ∼= Gγ ≤ St × Sθ.

Now we claim that if there exists an element α in Γ(C) then there exists an element

ᾱ in γ(C) such that α(Ci
⋂
Dj) = ᾱ(Ci

⋂
Dj) for all pairs (i, j). First we note that we

defined γ(C) as elements α in Γ(C) such that if an element α′ was also in γ(C) then we get

that αc, α′c ∈ (Ci
⋂
Dj) implies that αc = α′c for all pairs (i, j). Also note that we require

γ(C) to be maximal, that is that any element in Γ(C) \ γ(C) added to γ(C) would force

the condition to break. We can consider γ(C) to be constructed by repeatedly adding

81

elements β ∈ Γ(C) until all such attempts would cause the condition to break. Note that

if α takes each (Ci
⋂
Dj) to itself then we can take ᾱ to be the identity, thus we are only

considering α ∈ Γ(C) which permute the sets (Ci
⋂
Dj). If an element α is not in γ(C)

then there must exist an element β1 such that β1(Ci
⋂
Dj) = α(Ci

⋂
Dj) but there exists

c ∈ (Ci
⋂
Dj) such that β1c 6= αc, moreover we are considering α(Ci

⋂
Dj) 6= (Ci

⋂
Dj).

Now considering β−1
1 α we see that this takes (Ci

⋂
Dj) to itself and also β−1

1 α does not

belong to γ(C) because γ(C) is a closed group. Now we repeat the process and find

β2 such that β2(Ci
⋂
Dj) = β−1

1 α(Ci
⋂
Dj) but there exists a c ∈ (Ci

⋂
Dj) such that

β2c 6= β−1
1 αc for (i, j) such that β−1

1 α(Ci
⋂
Dj) 6= (Ci

⋂
Dj) and then we consider the

element β−1
2 β−1

1 α. We repeat this process until we have a sequence of β1, β2, . . . , βy such

that β−1
y . . . β−1

1 α takes (Ci
⋂
Dj) to itself for all pairs (i, j), we note that the process must

end as there are finite number of pairs. If we set ∆ = β−1
y . . . β−1

1 α and we know that ∆

takes (Ci
⋂
Dj) to itself for all pairs (i, j) and thus so does ∆−1, thus α∆−1 performs the

same permutation of the sets of the form (Ci
⋂
Dj) as α, but we can see that

α∆−1 = α(β−1
y . . . β−1

1 α)−1

= α(α−1β1β2 . . . βy)

= β1β2 . . . βy ∈ γ(C).

So by setting ᾱ = α∆−1 we’ve shown that for each α in Γ(C) there exists ᾱ in γ(C), and

thus there exists an element α̂ in G ≤ St × Sθ.

Thus for γ(C) and γ′(C) we know that there exists groups G and G′ ≤ St × Sθ such

that γ(C) ∼= G and γ′(C) ∼= G′ but as G and G′ can be determined by Γ(C) we can see

that G ∼= G′ thus γ(C) ∼= γ′(C). �

Thus the idea of the automorphism group of the split codes and components is well

defined and we can unambiguously talk about γ(C).

To get a better idea of the structure of the automorphisms of focused splittings we

82

couple these concepts with the automorphisms of the individual components.

Definition 4.10. For a code C with a perspective (θ, δ) consisting of t components

C1, C2, . . . , Ct, we define Γ′(Ci) as the automorphism group of the focused splitting when

restricted to the component Ci, that is for α ∈ SM we define α ∈ Γ′(Ci) if and only if

(i) c ∈ Ci if and only if αc ∈ Ci;

(ii) for all b, c ∈ Ci then b, c ∈ Dj if and only if αb, αc ∈ Dj;

(iii) for all b, c ∈ Ci then c ∈ S(b) if and only if αc ∈ S(αb).

We note that as there are no interactions between the actions on different components

of a code thus we get that Γ′(Ci) as described by the conditions above really is the

automorphism group of the focused splitting when restricted to the component Ci. We

also note that α ∈ Γ′(Ci) takes Ci ∩Dj to itself.

Lemma 4.11. Γ′(Ci) is a group.

Proof We prove that Γ′(Ci) is a group by showing that Γ′(Ci) is a subgroup of SM . Now

by definition Γ′(Ci) ⊆ SM and as SM is finite to show it is a subgroup we must show it is

closed. To show Γ′(Ci) is closed we must check the criteria:

(i) If α1, α2 ∈ Γ′(Ci) then for all c ∈ Ci we know α1c ∈ Ci and α2c ∈ Ci and if α2c ∈ Ci

thus α1α2c ∈ Ci.

(ii) If α1, α2 ∈ Γ′(Ci) thus for all b, c ∈ Ci we have b, c ∈ Dj if and only if α1b, α1c ∈ Dj

and we have b, c ∈ Dj if and only if α2b, α2c ∈ Dj. Thus b, c ∈ Dj if and only if

α2b, α2c ∈ Dj which happens if and only if α1α2b, α1α2c ∈ Dj.

(iii) If α1, α2 ∈ Γ′(Ci) thus for all b, c ∈ Ci we have c ∈ S(b) if and only if α1c ∈ S(α1b)

and we have c ∈ S(b) if and only if α2c ∈ S(α2b). Thus c ∈ S(b) if and only if

α2c ∈ S(α2b) which happens if and only if α1α2c ∈ S(α1α2b).

83

Thus Γ′(Ci) is closed and thus Γ′(Ci) is a group. �

We also require a slighter more rigorous concept of an individual components auto-

morphism, for our decomposition of the automorphism group.

Definition 4.12. For a code C with a perspective (θ, δ) consisting of t components

C1, C2, . . . , Ct, we define Γ̂(Ci), the restricted automorphism group of the focused splitting

for the component Ci as follows, α ∈ Γ̂(Ci) if and only if α ∈ Γ′(Ci) and for all c ∈ C \Ci

we have αc = c.

That is we wish Γ̂(Ci) to be the identity group when restricted away from Ci.

Lemma 4.13. Γ̂(Ci) is a group.

Proof By definition Γ̂(Ci) ⊆ Γ′(Ci) so to prove that Γ̂(Ci) is a group we must show

that it is closed and has inverses. For α, β ∈ Γ̂(Ci) we know αβ ∈ Γ′(Ci), and so for all

c ∈ C \ Ci we get

(αβ)c = α(βc)

= αc

= c

as αc = c for all c ∈ C \ Ci and for all α ∈ Γ̂(Ci), thus (αβ) ∈ Γ̂(Ci). For α ∈ Γ̂(Ci) we

know that α−1 ∈ Γ′(Ci) and for c ∈ C \ Ci we have

α−1c = α−1(αc)

= (α−1α)c

= c

thus α−1 ∈ Γ̂(Ci) and thus Γ̂(Ci) is a group. �

84

Before we can prove a theorem on the structure of the automorphism group we must

first prove a couple of useful lemmata.

Lemma 4.14. The intersection of all the automorphism groups of the focused splitting

when restricted to a particular components is a subgroup of the automorphisms of the

focused splitting. That is

t⋂
i=1

Γ′(Ci) ≤ Γ(C).

Proof As each Γ′(Ci) is a subgroup of SM , then clearly
⋂t
i=1 Γ′(Ci) is a subgroup of

SM , so to prove the lemma we need to show that every element of
⋂t
i=1 Γ′(Ci) is also an

element of Γ(C). If α ∈
⋂t
i=1 Γ′(Ci) then:

(i) c ∈ Ci if and only if αc ∈ Ci;

(ii) for all b, c ∈ Ci then b, c ∈ Dj if and only if αb, αc ∈ Dj for some j;

(iii) for all b, c ∈ Ci then c ∈ S(b) if and only if αc ∈ S(αb);

are true for all i ∈ [1, t]. As C =
⋃t
i=1Ci then we can conclude that for α ∈

⋂t
i=1 Γ′(Ci)

(i) for all b, c ∈ C then b, c ∈ Dj if and only if αb, αc ∈ Dj for some j;

(ii) for all b, c ∈ C then c ∈ S(b) if and only if αc ∈ S(αb);

which are restricted variant of the criteria for α to be an element of Γ(C). Thus α ∈ Γ(C)

and thus we prove the lemma. �

Lemma 4.15. The intersection of all the automorphism groups of the focused splitting

when restricted to a particular components is isomorphic to the product of all the restricted

automorphisms of the focused splitting when restricted to a particular component; that is

t⋂
i=1

Γ′(Ci) ∼=
t∏
i=1

Γ̂(Ci).

85

Proof Let α = (α1, α2, . . . αt) ∈
∏t

i=1 Γ̂(Ci). We prove the lemma by construction of

the isomorphism

π :
t∏
i=1

Γ̂(Ci) →
t⋂
i=1

Γ′(Ci)

as:

π(α1, α2, . . . , αt) = α1α2 . . . αt.

Let c ∈ Ci, then as c ∈ C \Cj for all j 6= i then αjc = c for all j 6= i and as αic ∈ Ci thus

we can show

(α1α2 . . . αt)c = (α1α2 . . . αi−1)αi(αi+1 . . . αtc)

= (α1α2 . . . αi−1)αic

= αic.

Thus as Γ′(Ci) is defined only in terms of what happens to elements c ∈ Ci thus

α1α2 . . . αt ∈ Γ′(Ci) and as this is true for all i then π(α) = α1α2 . . . αt ∈
⋂t
i=1 Γ′(Ci).

For β ∈
⋂t
i=1 Γ′(Ci) we know that β ∈ Γ′(Ci) for all i and for all i we choose αi ∈ Γ̂(C)

such that αic = βc for all c ∈ Ci, and thus αic = c for all c ∈ C \ Ci. Thus for c ∈ Ci we

can show that

(α1α2 . . . αt)c = (α1α2 . . . αi−1)αi(αi+1 . . . αtc)

= (α1α2 . . . αi−1)αic

= αic

= βc

and as this is true for all i, thus (α1α2 . . . αt)c = βc for all c ∈ C, thus (α1α2 . . . αt) = β.

Thus β can be described as an element in the product of the restricted automorphism

groups for the components, that is π−1(β) ∈
∏t

i=1 Γ̂(Ci). Thus π is one to one.

86

Now we need to prove that π is a homomorphism. Let α = (α1, α2, . . . , αt) and let

β = (β1, β2, . . . , βt) both in
∏t

i=1 Γ̂(Ci). Thus we can see that

π(αβ) = π(α1β1, α2β2, . . . , αtβt)

= α1β1α2β2 . . . αtβt

and

π(α)π(β) = π(α1, α2, . . . , αt)π(β1, β2, . . . βt)

= α1α2 . . . αtβ1β2 . . . βt

And thus for c ∈ Ci we can see that as (αiβic) ∈ Ci we get

α1β1α2β2 . . . αtβtc = (α1β1α2β2 . . . αi−1βi−1)αiβi(αi+1βi+1αi+2βi+2 . . . αtβt)c

= (α1β1α2β2 . . . αi−1βi−1)αiβic

= αiβic

and as βic ∈ Ci we get

α1α2 . . . αtβ1β2 . . . βtc = (α1α2 . . . αtβ1β2 . . . βi−1)βi(βi+1 . . . βt)c

= (α1α2 . . . αt)(β1β2 . . . βi−1)βic

= (α1α2 . . . αt)βic

= (α1α2 . . . αi−1)αi(αi+1αi+2 . . . αt)βic

= (α1α2 . . . αi−1)αiβic

= αiβic

and thus for c ∈ Ci we have π(αβ)c = π(α)π(β)c and as this is true for all i we have

π(αβ) = π(α)π(β) and thus π is a homomorphism and moreover an isomorphism.

87

Thus
t⋂
i=1

Γ′(Ci) ∼=
t∏
i=1

Γ̂(Ci).

�

Definition 4.16. For a code C with a focused splitting we define the automorphism group

of the split codes λ(C) as follows; α ∈ λ(C) if and only if

(i) α ∈ γ(C);

(ii) for all α′ ∈ λ(C) and for all c ∈ C we have αc, α′c ∈ Di if and only if αc = α′c.

That is α ∈ λ(C) takes words to specific words in each split code. Moreover as we know

λ(C) ⊆ γ(C) and γ(C) is really just a class of subgroups all isomorphic to each other, we

can choose λ(C) such that αCi = Ci for all i, this can be done because if αDj = DL and

we know that α(Ci
⋂
Dj) = Ck

⋂
DL and as α takes Dj to DL uniquely thus there will

exist a unique way that forces Ck = Ci. Essentially we do this such that we choose λ(C)

to preserve the components of the code.

Lemma 4.17. λ(C) is a group

Proof As λ(C) ⊆ γ(C) then to prove λ(C) is a group we need only show closure and

inverses exist. To prove closure:

(i) Let α, β ∈ λ(C), thus α, β ∈ γ(C) thus αβ ∈ γ(C).

(ii) Let α, β, α′ ∈ λ(C) and let αβc, α′c ∈ Di and set α′′ = α−1α′ and by the fact

that α−1 ∈ γ(C) we know α′′c, βc ∈ Dj for some j and thus α′′c = βc and thus

αα′′c = αα−1α′c = α′c = αβc.

To prove inverses exists:

(i) Let α ∈ λ(C), thus α ∈ γ(C) and thus α−1 ∈ γ(C).

88

(ii) Let α, α−1 ∈ λ(C) and let α−1c, α′c ∈ Di and thus αα−1c, αα′c ∈ Dj for some j,

which is the same as saying c, α′c ∈ Dj thus c = αα′c and applying α−1 to both

sides gives α−1c = α′c.

Thus λ(C) is a group. �

Definition 4.18. Let C be a code consisting of t components with a focused splitting, then

we say components Ci and Cj are in the same component class if there exists α ∈ Γ(C)

such that αCi = Cj.

As groups are closed we can see that the component classes are closed, since if Ci and

Cj are in the same class due to α, and Cj and Ck are due to β, then βαCi = βCj = Ck.

Lemma 4.19. Let C be a code with a focused splitting, and let t̂ be the number of compo-

nent classes in C, number the classes from 1 to t̂ and let ρ(i) be the number of components

in the ith class. Then

γ(C) ∼= λ(C)×
(t̂∏

i=1

Sρ(i)

)
.

That is the automorphism group of the components and split codes can be written as the

direct product of automorphism group of the split codes and the product of the symmetric

group for the size of each component class.

Proof First we prove that α ∈ γ(C) can be represented by a pair of elements

(β, φ) ∈ λ(C)× (
t̂∏
i=1

Sρ(i)).

For α ∈ γ(C), we know that α takes components to components and split codes to split

codes. As α takes split codes to split codes then α permutes the θ split codes and so can

be thought of as a permutation of 1 to θ. For β ∈ λ(C) , we know that β takes split

codes to split codes, and more over if βc, β′c ∈ Di we know βc = β′c for all β′ ∈ λ(C),

that is if β takes a word in Di to a word in Dj, then it always takes it to the same

89

word, thus β ∈ λ(C) can be thought of as a permutation of the θ split codes and thus

a permutation of 1 to θ, moreover for each permutation of 1 to θ there will be precisely

one element in λ(C) which performs that permutation on the split codes. Note for every

α ∈ γ(C) there will exist β ∈ λ(C) such that they both admit the same permutation

on the split codes. For α ∈ γ(C) choose β ∈ λ(C) such that they both admit the

same permutation on the split codes. Consider β−1α, as β, α ∈ γ(C) thus β−1α ∈ γ(C)

and as β and α admit the same permutation on the split codes then β−1α will take

split codes to themselves, thus β−1α will only permute the components. Moreover let

α, α′ ∈ γ(C) and let β, β′ be as defined above, then β−1α and β′−1α′ each take split codes

to themselves, so if β−1αc, β′−1α′c ∈ Ci we know β−1αc, β′−1α′c ∈ Dj for c ∈ Dj and thus

β−1αc, β′−1α′c ∈ (Ci
⋂
Dj) and as β−1α, β′−1α ∈ γ(C) thus β−1αc = β′−1α′c. So elements

β−1α takes a word in Ci to a specific word in Cj for some i and j. As an element β−1α

permutes the components, and β−1α ∈ γ(C) ≤ Γ(C) thus if β−1αCi = Cj then Ci and Cj

must be in the same component class. So β−1α will only permute components in the same

component class, and by Definition 4.3 an element of Γ(C) only has to preserve the split

codes and the societies, and thus any permutation of the components in a component

class is admissible. Thus when restricted to a given component class, say component

class i, then β−1α = φ ∈ Sρ(i) where Sρ(i) acts on the components of C in the natural

manner, taking component Ci to Cj whenever φ(i) = j. Now as this must be true for

each component class, of which there are t̂ and as the permutations of each component

class will not affect each other, thus we know

β−1α ∼= φ ∈
t̂∏
i=1

Sρ(i)

and thus by left multiplication of β we can show

α ∈ γ(C) = βφ ∼= (β, φ) ∈ λ(C)×
(t̂∏

i=1

Sρ(i)

)

90

Secondly we must prove that a mapping π(β, φ) = βφ is a homomorphism. That is

we must show that π((β1, φ1)(β2, φ2)) = π(β1, φ1)π(β2, φ2) and to prove this we first show

that βφ = φβ for β ∈ λ(C) and φ ∈
∏t̂

i=1 Sρ(i).

We know that α(Ci
⋂
Dj) = Ck

⋂
DL for some k and L, and we know from above that

α = βφ for β ∈ λ(C) and φ ∈
∏t̂

i=1 Sρ(i) and moreover as φ only permutes the components

whilst preserving the split codes and β permutes the split codes whilst preserving the

components, thus

φ(Ci
⋂

Dj) = (Ck
⋂

Dj)

β(Ci
⋂

Dj) = (Ci
⋂

DL)

for all i and j and thus

βφ(Ci
⋂

Dj) = β(Ck
⋂

Dj)

= (Ck
⋂

DL)

and

φβ(Ci
⋂

Dj) = φ(Ci
⋂

DL)

= (Ck
⋂

DL)

thus βφ = φβ for all β and φ. Thus

π((β1, φ1)(β2, φ2)) = π(β1β2, φ1φ2) = β1β2φ1φ2 = β1φ1β2φ2 = π(β1, φ1)π(β2, φ2)

and thus π is a homomorphism, and noting that every element in γ(C) can be described by

an element in λ(C)× (
∏t̂

i=1 Sρ(i)) and that every element in λ(C)× (
∏t̂

i=1 Sρ(i)) describes

91

an element in γ(C) we can see that

γ(C) ∼= λ(C)×
(t̂∏

i=1

Sρ(i)

)
.

�

For use in the following section we briefly recap the concept of semi-direct product.

Definition 4.20. For groups N and H and a homomorphism ψ : H → Aut(N), we

denote the automorphism ψ(h), for h ∈ H, acting on the element n ∈ N by ψh(n) and

we define the semi-direct product G = N oψ H = {(n, h) : n ∈ N, h ∈ H} where the

multiplication is defined by

(n1, h1)(n2, h2) = (n1ψh1(n2), h1h2).

Theorem 4.21. Let C be a code with a perspective (θ, δ) consisting of components

C1, C2, . . . , Ct and a focused splitting D1, D2, . . . , Dθ. Let ψ : (
⋂t
i=1 Γ′(Ci)) → Aut(γ(C))

be defined as ψβ(γ) = βγβ−1, that is we conjugate γ by β, and this is well defined because

β and γ both belong to SM . Then

Γ(C) ∼= γ(C) oψ

(t⋂
i=1

Γ′(Ci)

)
.

Proof Let α = (γ, β) ∈ γ(C)× (
⋂t
i=1 Γ′(Ci)). We shall construct the isomorphism

π : γ(C) oψ (
t⋂
i=1

Γ′(Ci)) → Γ(C)

as

π(α) = π(γ, β) = γβ

where γ and β are treated as members of SM .

92

We start by showing that π is a homomorphism:

π((γ1, β1)(γ2, β2)) = π(γ1ψβ1(γ2), β1β2)

= π(γ1β1γ2β
−1
1 , β1β2)

= γ1β1γ2β
−1
1 β1β2

= γ1β1γ2β2

= (γ1β1)(γ2β2)

= π(γ1, β1)π(γ2, β2)

and thus as the groups are finite we just have to show that the groups are the same size.

By Definition 4.7 we know that γ(C) ≤ Γ(C) and by Lemma 4.14 we also know that⋂t
i=1 Γ′(Ci) ≤ Γ(C), and thus as Γ(C) is closed we know that π maps into Γ(C). Thus

we can see that

π(γ(C) oψ (
t⋂
i=1

Γ′(Ci))) ≤ Γ(C),

that is the product of γ(C) and
⋂t
i=1 Γ′(Ci) is isomorphic to a subgroup of Γ(C). To

complete the proof we must show that an element of Γ(C) can be represented as the

product of an element from γ(C) with an element from
⋂t
i=1 Γ′(Ci), and thus they are

the same size and thus isomorphic.

By Lemma 4.6, α ∈ Γ(C) takes components of C to distinct components of C whilst

also taking split codes to split codes. Let Di,j = Di

⋂
Cj and let w be the number of non-

empty such sets. Then α will permute the w sets Di,j and so if we label the sets Di,j from

1 to w then there exists an element σ(α) ∈ Sw which will permute the numbers 1 to w in

the same manner. Similarly for each element γ ∈ γ(C) we can think of γ as permuting

[1, w] and thus there is an element σ(γ) ∈ Sw which permutes the numbers 1 to w in the

same manner. Note that although there may be many α ∈ Γ(C) such that σ(α) are the

same, for distinct γ ∈ γ(C) then σ(γ) will be distinct, also note that if α permutes the

93

components and split codes in a certain way, then that permutation is a symmetry of the

components and thus there is an element γ ∈ γ(C) which will permute the components in

the same way. For a given α we choose γ such that σ(γ) = σ(α) and then we consider the

element γ−1α. As γ(C) ≤ Γ(C) and Γ(C) is closed thus γ−1α ∈ Γ(C), and as α takes Ci

to Cj and γ−1 takes Cj to Ci then γ−1α will take each component to itself and each split-

code to itself. Thus for the element γ−1α we will have c ∈ Ci if and only if γ−1αc ∈ Ci,

and as γ−1α ∈ Γ(C) then for all b, c ∈ Ci then b, c ∈ Dj if and only if γ−1αb, γ−1αc ∈ Dj

and for all b, c ∈ Ci then c ∈ S(b) if and only if γ−1αc ∈ S(γ−1αb). Thus γ−1α ∈ Γ′(Ci),

and as this is true for all i thus γ−1α ∈
⋂t
i=1 Γ′(Ci). Thus there exists β ∈

⋂t
i=1 Γ′(Ci)

such that

γ−1α = β

=⇒ α = γβ

=⇒ α ∈ π
(
γ(C) oψ (

⋂t
i=1 Γ′(Ci))

)

Thus we have shown for α ∈ Γ(C) that α ∼= (γ, β) ∈ γ(C) oψ (
⋂t
i=1 Γ′(Ci)) and thus

we have proved that Γ(C) ∼= γ(C) oψ (
t⋂
i=1

Γ′(Ci)). �

Corollary 4.22. Let C be a code with t components and focused splitting, let t̂ be the

number of component classes in C, number the classes from 1 to t̂ and let ρ(i) be the

number of components in the ith class. Then

Γ(C) ∼=

(
λ(C)×

(t̂∏
i=1

Sρ(i)

))
oψ

(t∏
i=1

Γ̂(Ci)

)

94

Proof By Theorem 4.21 we know

Γ(C) ∼= γ(C) oψ (
t⋂
i=1

Γ′(Ci))

and by Lemma 4.15 we know

t⋂
i=1

Γ′(Ci) ∼=
t∏
i=1

Γ̂(Ci).

Thus

Γ(C) ∼= γ(C) oψ (
t∏
i=1

Γ̂(Ci))

and by Lemma 4.19 we get

Γ(C) ∼=
(
λ(C)× (

t̂∏
i=1

Sρ(i))
)

oψ (
t∏
i=1

Γ̂(Ci)).

�

4.4 Specific Examples of Automorphism Groups

Now we are going to calculate Γ(C) for various values of θ and δ and for some construc-

tions.

Theorem 4.23. For a code C with a perspective with width of θ = 1 and a focused

splitting then Γ(C) = SM

Proof As θ = 1 then C splits into one code D1 and so D1 = C. For α ∈ SM then α will

always satisfy; b, c ∈ Di if and only if αb, αc ∈ Dj for some j. Similarly as θ = 1 then

S(c) = c for all c ∈ C and so c ∈ S(b) if and only if αc ∈ S(αb). Thus α ∈ Γ(C) for all

α ∈ SM �

Theorem 4.24. Let C be a code with a perspective with width of θ = 2, and a focused

95

splitting. Let t be the number of components, where t = t1 + t2 + t3 and t1 is the number

of components consisting of 2 elements, t2 is the number of components consisting of

1 element which is in D1 in the focused splitting, and t3 is the number of components

consisting of 1 element which is in D2 in the focused splitting. Then

(i) If t2 = t3 then Γ(C) ∼= Z2 × St1 × St2 × St3 .

(ii) If t2 6= t3 then Γ(C) ∼= St1 × St2 × St3.

Proof First note that as θ = 2 then |Di

⋂
Cj‖ = 1 for all i and j and thus Γ̂(Cj) is the

identity group for all j, thus by Corollary 4.22 we get

Γ(C) ∼= γ(C) ∼= λ(C)× (
t̂∏
i=1

Sρ(i)).

The group λ(C) permutes the split codes, and as θ = 2 is thus a subgroup of Z2, so either

Z2 or the identity group. We can see that λ(C) ∼= Z2 if and only if the number of words

in the split codes is the same, that is |D1| = |D2| and as |D1| = t1 + t2 and |D2| = t1 + t3

then this happens precisely when t2 = t3 and otherwise λ(C) is the identity group. We

can easily see that each of the t1 components will consist of 2 words and thus as there

is exactly one such possibly way this could be constructed then these t1 components will

constitute a component class. Similarly the t2 components will constitute a component

class as will the t3 components. Thus there will be 3 component classes with t1, t2 and t3

words respectively. Thus Γ(C) ∼= λ(C)× St1 × St2 × St3 , and so:

(i) If t2 = t3 then Γ(C) ∼= λ(C)× St1 × St2 × St3
∼= Z2 × St1 × St2 × St3 ;

(ii) If t2 6= t3 then Γ(C) ∼= λ(C)× St1 × St2 × St3
∼= St1 × St2 × St3 .

Which completes the proof. �

Before we deal with the full case for a perspective with a width of θ = 3 we must

calculate the restricted automorphism group of the focused splitting for different compo-

nents.

96

Lemma 4.25. Let C be a code with a perspective with width of θ = 3, and a focused

splitting. By Theorem 2.21 we know each component has either an unbalanced perspective

or has a balanced perspective and 0 mod 3 words in each component. Then

(i) if Ci has a balanced perspective then Γ̂(Ci) ∼= ZM′
3

where M ′ = |Ci|;

(ii) if Ci has an unbalanced perspective then Γ̂(Ci) ∼= Z1.

Proof If Ci has a balanced perspective then we know we can label the words of Ci from

0 to M ′ − 1 such that a word j is neighbours with words j − 1 and j + 1 and such that 0

and M ′ − 1 are neighbours and thus we can describe the focused splitting by what that

word is mod 3. Thus for an automorphism α ∈ Γ̂(Ci) we require the focused splitting to

be retained that is we know that j mod 3 = (αj) mod 3 for all j and as we require the

societies to be retained that is we know that (αj) + 1 = α(j + 1) and (αj)− 1 = α(j − 1)

for all j. We claim that thus α is equivalent to adding a multiple of 3 to the labelling of

each word. Fixing a specific j we know that j mod 3 = (αj) mod 3 and thus we can see

that αj = j+3t mod M ′ where t is between 0 and M ′

3
−1, now as (αj)+1 = α(j+1) we

can see that α(j+1) = (αj)+1 = j+1+3t mod M ′ and be repeated application of this

we can see that αj = j + 3t mod M ′ for all j and thus α is equivalent to adding 3 times

a number between 0 and M ′

3
− 1 and thus as addition is associative and commutative we

can see that Γ̂(Ci) ∼= ZM′
3

.

If Ci has an unbalanced perspective then we know that there is either only 1 word in

the component or that there exists precisely 2 words with exactly 2 neighbours, and all

the other words will have 3 neighbours. In the first case it is clear that Γ̂(Ci) ∼= Z1. In

the second case we will be employing the same labelling as above and thus the words with

exactly 2 neighbours will be labelled 0 and M ′ − 1, and the conditions j mod 3 = (αj)

mod 3 for all j, (αj)+1 = α(j+1) and (αj)−1 = α(j−1) for all j will still all hold. We

start by noticing that any automorphism α ∈ Γ̂(Ci) will have to take the set {0,M ′ − 1}

to itself, as these are the only words with 2 neighbours, we shall show that this can only

97

happen by taking each word to itself. First note that if 0 and M ′ − 1 are in the same

split code, that is 0 mod 3 = M ′ − 1 mod 3 then their respective neighbours will be

in distinct split codes, that is 1 mod 3 6= M ′ − 2 mod 3 and thus if α is to preserve

membership of split codes and membership of societies then α will have to take 0 to 0

and M ′ − 1 to itself. If 0 and M ′ − 1 are in different split codes then α must take 0 to

itself and M ′ − 1 to itself. By conclusion if 0 goes to 0 then 1 goes to 1 and so on, as Ci

is finite each word is taken to itself and thus Γ̂(Ci) ∼= Z1. �

Thus from this information and by Corollary 4.22 we can calculate Γ(C) for a code

C with a perspective with width of θ = 3 and a focused splitting, by calculating λ(C)

and by observing how many different components there are and how many component

classes there are. Note that two components with balanced perspectives will be in the

same component class if and only if they contain the same number of words, and two

components with unbalanced perspectives will be in the same component class if and

only if they contain the same number of words and the split codes which the words with

only 2 neighbours are in for one component are the same as the split codes which the

words with only 2 neighbours are in for the other component. We shall now show a specific

case for a code with a perspective with width of θ = 3.

Theorem 4.26. Let C be a code with a balanced perspective with width of θ = 3 and

a focused splitting and consisting of exactly one component. Then Γ(C) ∼= DM where

M = |C|.

Proof By Lemma 4.25 we know that Γ̂(C) ∼= ZM
3
. By Corollary 4.22 we know that

Γ(C) ∼=
(
λ(C)× (

t̂∏
i=1

Sρ(i))
)

oψ (
t∏
i=1

Γ̂(Ci)).

Now as there is only one component, thus one component class consisting of one compo-

98

nent and we know Γ̂(C) this reduces to

Γ(C) ∼= λ(C) oψ ZM
3
.

As C has a balanced perspective thus each split code will consist of the same number of

words and thus λ(C) will be able to permute the split codes between the 3 of them in any

permutation, thus λ(C) ∼= S3. Thus

Γ(C) ∼= λ(C) oψ ZM
3

∼= S3 oψ ZM
3
.

We know show that S3 oψ ZM
3

∼= DM . Let M ′ = M
3

which we know to be an integer

and recall that

S3 = {αiβj : α2 = β3 = 1, αβ = β−1α}

ZM ′ = {γi : γM
′
= 1}

D3M ′ = {σiωj : σ2 = ω3M ′
= 1, σω = ω−1σ}

And we define the homomorphism π : S3 oψ ZM ′ → D3M ′ as π(αiβj, γk) = σiωjM
′+k. As

such we can consider β = ωn and γ = ω and thus we can give meaning to the conjugation

of ψ and we can also equate α = σ. Thus we can redefine the groups as

S3 = {σiωjM ′
: σ2 = ω3M ′

= 1, σω = ω−1σ}

ZM ′ = {ω3i : ω3M ′
= 1}

D3M ′ = {σiωj : σ2 = ω3M ′
= 1, σω = ω−1σ}

And thus the homomorphism can be rephrased as π(σiωj, ωk) = σiωj+k. Now we check

the homomorphism property. Let (σi1ωj1M
′
, ω3k1) and (σi2ωj2M

′
, ω3k2) be two elements in

99

S3 oψ ZM ′ , and we first deal with the case where i2 = 1

π((σi1ωj1M
′
, ω3k1)(σi2ωj2M

′
, ω3k2) = π(σi1ωj1M

′
ω3k1σi2ωj2M

′
ω−3k1 , ω3k1ω3k2)

= π(σi1σi2ω−j1M
′
ω−3k1ωj2M

′
ω−3k1 , ω3k1ω3k2)

= π(σi1+i2ωM
′(−j1+j2)+3(−k1−k1), ω3(k1+k2))

= σi1+i2ωM
′(−j1+j2)+3(−k1−k1)ω3(k1+k2)

= σi1σi2ω−j1M
′
ωj2M

′
ω−3k1ω−3k1ω3k1ω3k2

= σi1σi2ω−j1M
′
ω−3k1ωj2M

′
(ω−3k1ω3k1)ω3k2

= σi1σi2ω−j1M
′
ω−3k1ωj2M

′
ω3k2

= σi1ωj1M
′
ω3k1σi2ωj2M

′
ω3k2

= π(σi1ωj1M
′
, ω3k1)π(σi2ωj2M

′
, ω3k2)

and the case where i2 = 0

π((σi1ωj1M
′
, ω3k1)(ωj2M

′
, ω3k2) = π(σi1ωj1M

′
ω3k1ωj2M

′
ω−3k1 , ω3k1ω3k2)

= π(σi1ωj1M
′+3k1+j2M ′−3k1 , ω3k1+3k2)

= σi1ωj1M
′+3k1+j2M ′−3k1ω3k1+3k2)

= σi1ωj1M
′
ω3k1ωj2M

′
ω−3k1ω3k1ω3k2

= σi1ωj1M
′
ω3k1ωj2M

′
ω3k2

= π(σi1ωj1M
′
, ω3k1)π(ωj2M

′
, ω3k2)

and this shows that π is a homomorphism, and thus by comparing the orders of the groups,

|S3 oψ ZM ′| = 6×M ′ = 6M ′ = |D3M ′| we can see that the groups must be isomorphic.

�

Theorem 4.27. Let C be a code with a perspective with width of θ = M , and a focused

splitting. Then Γ(C) ∼= SM .

100

Proof As θ = M = |C| then for all b, c ∈ C we have b ∈ S(c) and so there is only

1 component, thus t̂ = 1 and ρ(1) = 1. As C splits into M codes D1, D2, . . . DM and

| Di |= 1 for all i, then Γ̂(C1) is the identity group. Thus

Γ(C) ∼=

(
λ(C)× (

t̂∏
i=1

Sρ(i))

)
oψ (

t∏
i=1

Γ̂(Ci)) ∼=

(
λ(C)× (

1∏
i=1

S1)

)
oψ (

1∏
i=1

S1) ∼= λ(C)

. We know λ(C) permutes the split codes, and as each split codes consists of exactly 1

element then every permutation of the split codes is admissible, and as there are M split

codes thus λ(C) ∼= SM . Thus Γ(C) ∼= SM . �

Lemma 4.28. Let C be a linear code consisting of components C1, C2, . . . , Ct, and let

0n ∈ C1, then Ci = C1 + c for some c ∈ C.

Proof As C is linear then the sum of two elements of C is itself in C. Let b, c ∈ Ci and

as Ci is a component then there exists a finite number of words s1, s2, . . . sr ∈ Ci such

that b ∈ S(s1), sj ∈ S(sj+1) for all i ∈ [1, r − 1] and sr ∈ S(c). Now consider the set

Ci + d where d ∈ C \Ci, as b, c, sj ∈ Ci thus we will have b+ d, c+ d, sj + d ∈ Ci + d and

thus Ci + d will be completely contained within a component of C say C ′
i. Let d′ = −d

that is the negative value of each of the non-zero co-ordinates of d, thus d+ d′ = 0n and

consider C ′
i+d′, as shown above C ′

i+d′ will be contained within a component of C and as

b+ d+ d′ ∈ C ′
i + d′ and b+ d+ d′ = b thus C ′

i + d′ ⊆ Ci. Thus |Ci| ≤ |C ′
i| and |C ′

i| ≤ |Ci|

thus all components are the same size and Ci + d = C ′
i and thus all components will have

the same structure. By using C1 as our initial component we can see that each component

can be formed as the sum of C1 and some other element by taking d ∈ Ci and thus C1 +d

must contain the element 0n + d = d and thus C1 + d = Ci for any component Ci. �

Theorem 4.29. Let C be a linear code with a perspective of (θ, δ) and a focused splitting

D1, D2, . . . , Dθ and moreover let the focused splitting be linear as in Theorem 2.11 , then

Γ(C) ∼=
(
Sθ × St

)
oψ

t∏
i=1

Γ̂(C1).

101

Proof By Theorem 2.11 we know that all the split codes can be described as the sum

of the split code containing 0n and a word ei ∈ S(0) \ {0}. Thus a permutation of S(0)

would give a permutation of the split codes, thus we can see that λ(C) ∼= Sθ.

By Theorem 4.28 each component will have the same structure as C1, and thus

Γ̂(Ci) ∼= Γ̂(C1)

for all i. Moreover as each component has the same structure thus there is only one

component class and we get that t̂ = 1 and ρ(1) = t, thus
∏t̂

i=1 Sρ(i) = St.

By Corollary 4.22 we know that

Γ(C) ∼=
(
λ(C)×

(t̂∏
i=1

Sρ(i)
))

oψ (
t∏
i=1

Γ̂(Ci))

∼=
(
Sθ × St

)
oψ

t∏
i=1

Γ̂(C1)

�

4.5 Concluding

As we have seen the automorphism groups of focused splittings are imbued with a con-

siderable amount of structure inherited from the focused splitting and the original code,

depending on the structure of the components of the original code as well as the relation-

ship of the split codes. We have shown how the automorphism group can be expressed as

the direct product and semi-direct product of other groups related to the focused split-

tings, and thus have a way of calculating the automorphism group of a focused splitting

via first calculating several other related groups of the focused splitting.

We have investigated the automorphism groups of focused splittings because it would

be amiss of us not to, many combinatorial objects can admit very interesting groups [9] and

102

as such it is necessary to investigate the automorphism groups of focused splittings. As it

turns out the automorphism groups of focused splittings are generally the direct product

and semi-direct product of many other groups and although this can be very interesting in

itself, we are not considering it to be especially so in this case. Further investigation into

the automorphism of a code and the focused splitting, that is permutations of co-ordinates

and permutations of the underlying alphabet which preserve both the code words and the

structure of the focused splitting would be valuable and potentially interested, especially

as certain codes such as the Golay code have considerably interesting automorphism

groups, but is alas beyond the scope of this chapter.

We shall now be moving our investigation away from the structure of focused splittings

and the structure of the automorphism groups of focused splittings, albeit that there are

still questions to be asked within these areas, and shall be moving on to look at the

potential for further error correction utilising focused splittings. Returning, as it were, to

the crux of the original problem.

103

Every act of creation is first an act of

destruction.

Pablo Picasso

Chapter 5

A Construction for Increased Error

Correction

5.1 Overview

In the following Chapter we shall briefly be discussing methods of error correction and

encoding information which are different from the normally used block codes. These shall

include convolutional codes [20], as well as unequal error correction codes [27][7] and low

density parity check codes [25], and we shall look at how these achieve this, we shall do this

in a rather informal manner, we are not attempting to explain these ideas in a thorough

setting but rather to try and gleam an idea of any overarching concepts used. We shall

then advance those ideas with our own construction for a form of block codes using the

ideas of focused splittings and the structure thereof.

5.2 Convolutional Codes

In this section we shall briefly outline convolutional codes, unequal error correction codes

and low density parity check codes, trying to highlight the structure that makes them

successful rather than to impart a usable understanding in them. The aim here is to see

104

how structure allows for increased error correction, and whether such principles can be

employed with focused splittings. Convolutional codes [20] are well known to be of high

practical use, whilst also being relatively simple to implement. Technical details can be

found in [20], we shall be briefly describing their behaviour here. Often described in terms

of circuits which enable the encoding, we shall omit this technicality because it brings

in to play concepts which are unnecessary for our purposes. Briefly an encoder takes

an input sequence, or number of input sequences, and constructs a number of output

sequences from combinations of the input bits.

Definition 5.1. An (n, k) convolutional encoder is a machine which takes k input se-

quences x1, . . . , xk and outputs n output sequences y1, . . . , yk, where

x1 = (. . . , x1D
−1, x1, x1D, x1D

2, . . .)

and

y1 = (. . . y1D
−1, y1, y1D, . . .)

andD is a variable representing a delay in time, that is x1D was the symbol of the message

sent one time step before x1. The input output relations can be represented as

yj(D) =
k∑
1

xi(D)gi,j(D)

where gi,j(D) are polynomials in D.

Definition 5.2. The constraint length for input i is defined as ci =

max1≤j≤n(deg(gi,j(D))) and then constraint of the encoder is defined as

c =
k∑
1

ci

that is the sum of the constraint length for each input sequence.

105

The constraint of an encoder is important in the construction of circuits that imple-

ment the encoders in real life scenarios. Another view point for convolutional codes is

of a machine having a state such that each k symbols of input message is encoded to n

symbols, and the way this is done depends on the state, these k symbols then change the

state of the machine. From this point of view a convolutional code can be viewed as a

trellis, or bipartite graph, where the states are the nodes and the edges represented the

combination of k symbols to be transmitted.

Given that every message starts with the machine in some initial state, or that the

previous symbols were blank, then a decoding algorithm works by following what the

state should be compared with the messages that it gets, if at some point a message is

received that would not have been sent from the state the machine should have been in,

then the decoder has to decide whether there was a mistake in the received message, or

in the previous message, and thus in the state of the machine, this is generally done by

the Viterbi algorithm [37] by playing out each possibility and seeing which leads to more

acceptable scenarios. Thus we can see that the reason that convolutional codes increase

error correction is because if we know a certain number of words have been received

correctly, then we know the state of the machine, and thus we know the next word will

be one of a specific set, moreover words following the erroneous words will show what

state the machine is after the word was sent, these extra bits of information can be used

to correct the word. The key idea being that information about the structure of the code

allows for an increase in error correction.

Unequal error correction involves giving different digits of the information different

weighted protection, therefore we have to define what we mean by this. We shall be

referring to the information word in (Fq)k which gives rise to the codeword from (Fq)n.

Definition 5.3. For a code C with a decoding method, we say the i-th digit of the

information word has protection level ei if for e ≤ ei errors in the codeword, the i-th digit

in the information word is correctly decoded, even though the entire codeword may not

106

be.

Definition 5.4. For a code C with a decoding method, we say the i-th digit of the

codeword has protection level ei if for e ≤ ei errors in the codeword, the i-th digit in the

codeword is correctly decoded, even though the entire codeword may not be.

A code has unequal error correction if different digits of the codewords have different

protection levels, this can be achieved by careful manipulation of the generator matrix

as seen in [7] . This exhibits how careful consideration of the process of decoding can

be used to manipulate the output, in the case of unequal error correction this is shown

by virtue of certain portions of information having a higher protection level than other

portions of information despite the nature of encoding usually protecting all information

equally.

Low density parity check codes work in a similar way, the idea is that the generator

matrix is ‘sparse’ and as such decoding can be performed efficiently. The basic idea is

that for each column in the parity check matrix any error that becomes obvious when

calculating the syndrome has only got a few potential locations due to the ‘sparse’ nature

of the matrix, and so there are only a few options for the location of the errors. We have

not paid much attention to the problem of efficient decoding of a code, but it can be of

huge importance if a large code is to be implemented, see [25], [3], [4]. We now move on

to look at focused splittings as a structure on a code and how they may be utilised in a

method of error correction.

5.3 A Focused Splitting Based Construction

In this section we look at how knowing that a given code has a focused splitting could

potentially be used to create a code with better error correction. For block codes we

hope to increase error correction by use of a check-word which shall be constructed from

a focused splitting of the code.

107

Given a code C = [n, k, d,]q which has a perspective of (θ, δ) and a focused splitting

D1, D2, . . . , Dθ, then for a word c ∈ C, knowing i such that c ∈ Di allows us to improve

the number of errors c can withstand once transmitted. Without knowing i then c can

be corrected to bd−1
2
c errors as per normal, but with the knowledge of i then c can be

thought of as an element of Di which has a minimum distance d′ ≥ δ, and thus c can be

corrected to bd′−1
2
c ≥ b δ−1

2
c errors. We shall use Ĉ to refer to a code that transmits the

information of i but with an minimum distance of d′′, the length of Ĉ shall be referred to

as n′.

This process in itself only decreases the rate of information while increasing the number

of errors correctable and is thus equivalent to adding redundancy. In fact we can see that

if we constructed a code D = {cĉ : c ∈ D1, ĉ ∈ Ĉ}, where ĉ is independent of c, and

is used to convey more information, then the amount of information D would carry is

M
θ
× θ = M , while if we consider D̃ = {cĉ : c ∈ Dĉ ⊂ C, ĉ ∈ Ĉ} where the second piece

of information is used to correct the first to bd′−1
2
c errors then the amount of information

sent is M . Both codes can withstand bd′−1
2
c errors for the first n co-ordinates and bd′′−1

2
c

for the following n′, and thus this construction does not give us any particular edge over

just taking 2 codes in order, as we do with D1 and Ĉ in the construction of D above.

Where this construction comes into its own is if we transmit several words which each

have a respective check word from Ĉ, but rather than transmit all of the check words, we

could transmit a related word from another code so that if we knew ‘some’ of the words

we could reconstruct the check word for the other words we transmitted. That is if we

are only expecting to need to use the check word for ‘some’ of the words we transmit. We

do that by treating the information of i ∈ Ĉ as a new alphabet and constructing a code

around this.

Definition 5.5. Given a positive integer T a code C which has a partition into φ codes

D1, D2, . . . , Dφ and let W = (c1, c2, . . . , cT) ∈ CT then the shadow of W is defined as

Shad(W) = (j1, j2, . . . , jT) such that ci ∈ Dji for all i. We shall also write Shad(ci) to

108

refer to the shadow of a single word ci where necessary.

The setting of the following construction is that we wish to transmit T words from

C and due to the channel we are expecting, or we are preparing for up to H of them to

have more than bd−1
2
c errors. As there is obviously a maximum amount of errors which

we can have an acceptance of, we are going to hope that each of these H words has less

than bd′−1
2
c errors. We choose a code C and it’s associated partition such that the codes

Di all have a minimum distance of at least d′, we also note that a focused splitting on C

would guarantee the existence of such a partition where a perspective θ, δ and a focused

splitting D1, D2, . . . , Dθ, with each code Di having a minimum distance d′ > δ.

Definition 5.6. Given a code C which has a partition into φ codes D1, D2, . . . , Dφ where

each code Di has a minimum distance of at least d′ and a word W = (c1, c2, . . . , cT) ∈ CT .

Let P be a perfect code P = [T, k̂, d̂]φ, assuming one exists, with d̂ ≥ 2H + 1, and

thus by Theorem 2.13 the perfect code P will induce a focused splitting over φT and so

(Fφ)T = P1 t P2 t . . . PM ′ . Let a code D = (n′,M ′, d′′)q, and arbitrarily label the words

of D as 1, 2, 3, . . . ,M ′.

Given W = (c1, c2, . . . , cT) ∈ CT then Shad(W) ∈ φT and then there exists s ∈ [1,M ′]

such that Shad(W) ∈ Ps. Let

C̃ = {Ws : W = (c1, c2, . . . , cT) ∈ CT , s ∈ D, such that Shad(W) ∈ Ps}.

Theorem 5.7. Constructing C̃ as in Definition 5.6 and assuming that:

(i) only up to H of the words in W have more bd−1
2
c errors;

(ii) that these each have less than bd′−1
2
c errors;

(iii) that there are no more than bd′′−1
2
c errors in s.

Then we can correctly decode C̃.

109

Proof As there are no more than bd′′−1
2
c errors in d then we can decode s ∈ D correctly.

Next we decode each ci ∈ W to its nearest neighbour in C giving us W̄ . As we know s we

know that Shad(W) ∈ Ps. We’ve assumed only up to H errors greater thanbd−1
2
c and so

there are only up to H errors in W̄ compared to W . As P = [T, k̂, d̂]φ, with d̂ ≥ 2H + 1

we can correct up to H errors in Shad(W̄) when considered as a word in Ps, thus giving

us Shad(W).

Now we know Shad(W) = (j1, j2, . . . , jT) and so for each c̄i ∈ W̄ such that c̄i /∈ Dji , of

which there are at most H of, we can take the originally received version of ci and correct

it to its nearest neighbour in Dji . Thus being able to correct up to bd′−1
2
c errors on each

of those H words in W that had more than bd−1
2
c errors.

The other T −H words in W were assumed to have less than bd−1
2
c errors and so were

decoded correctly in W̄ .

Thus every word in C̃ can be decoded correctly. �

We note that the existence of a focused splitting on C gives us the partition required

in the above Theorem and it is this interpretation which we shall be investigating in the

following chapter. Other codes with partitions into smaller codes with higher minimum

distance could also be applied to this theorem such as families of Reed-Muller codes. Next

we discuss the choice and existence of the code P for the above theorem.

If we recall back to Theorem 1.37 we know that perfect codes are either one of the

trivial codes, the Golay codes or the Hamming codes. The trivial perfect codes come in

three types. The first are of the form (n, 1, n)q, that is just 1 word, these are of no use in

our construction because the focused splitting induced by this code is the splitting of the

code into distinct code words, and thus the information telling us which focused splitting

the shadow of the sent word would belong to would just be the word itself. The second

form of trivial perfect codes are the complete space, this form of perfect code induces

a trivial focused splitting, that is a splitting into one code, and thus the value of H in

the above construction will be 0. The third form of trivial perfect codes are of the form

110

(n, 2, n)2, where n is odd, that is 2 words equally distanced. This will only be of use when

the width of the perspective of the code is 2, and will allow extra correction on bn−1
2
c code

words and will require |D| = 2n

2
= 2n−1 and thus have dimension n− 1. The Golay codes

are either binary or ternary. The binary Golay code is a [23, 12, 7]2 code, this will only

be of use when the width of the perspective of the code is 2, will allow extra correction

on 3 code words and will require |D| = 223

212 = 211. The ternary Golay code is a [11, 6, 5]3

code, this will only be of use when the width of the perspective of the code is 3, will allow

extra correction on 2 code words and will require |D| = 311

36 = 35. The Hamming codes

are [n, n− r, 3]q codes where n = qr−1
q−1

and r is an integer > 0. This can be used for any

value of the width of the perspective of the code, will allow extra correction on 1 code

word and will require |D| = θn

θn−r = θr. Thus we find that the Hamming construction is

the most applicable for our requirements.

5.4 Concluding

Although the concept and patterns around focused splittings developed are elegant in

their own right, it is pleasing to be able to take the structure of these focused splittings

and to apply this structure to the problem of error correction. We shall investigate the

success of various classes or constructions of focused splittings with this method of code

construction in the next Chapter.

111

Have no fear of perfection, you’ll

never reach it.

Salvador Dali

Chapter 6

Testing

6.1 Overview

In this Chapter we shall be constructing a number of examples to illustrate the construc-

tion given in Definition 5.6. We shall do this by comparing several different constructions

for the existence of focused splittings given in Chapter 2. We shall be looking at the

general form of each construction, an example of each construction, and we shall compare

the error correcting capabilities of these constructions to known codes of the same length

and dimension.

6.2 Error models and Simulation

In this chapter we shall be simulating a range of codes under both of our error models,

random error and burst error, for a range of probabilities in each case.

For burst errors we are utilising the Gilbert-Elliot model for burst errors [15], [26] [12]

as discussed in Section 1.3 with the ‘Good’ error rate as 0, the ‘Bad’ error rate as 0.5 and

with a varying state transition rate PB and with multiple values of PG. In each simulation

we fix the transition rate PG so that we can vary the overall error rate by varying PB

alone.

112

We know from Section 1.3 that the overall probability P can be expressed as

P = 0.5(
PB

PB + PG

)
then for a fixed PG we allow P ∈ [0, 1

1+PG
]. In our series of simulations where we vary

PB from 0 to 0.2 and PG is fixed at 0.1, 0.2, 0.3 and 0.4 respectively then we see that P

varies from 0 to 1
3
, 1

4
, 1

5
and 1

6
, respectively. We can see in Figure 6.1 this relationship

between P, the probability of an error and PB for various values of PG.

Figure 6.1: The relationship between P, the probability of an error and PB.

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Probability of P
B

P
ro

ba
bi

lit
y

of
 a

n
er

ro
r

P

G
 = 0.1

P
G

 = 0.2

P
G

 = 0.3

P
G

 = 0.4

We can see in Figure 6.1 that P is strictly increasing with PB and that for higher

values of PG we subsequently get P at a lower value than for lower values of PG. We also

recall from Section 1.3 that a lower value of PG leads to a higher concentration of bursts,

a “burstier” channel.

In the following sections of this Chapter we shall be comparing our constructions

against the best linear codes of the same length and dimension under the model of burst

errors and also under a random error channel. We shall be simulating the running of the

codes in Matlab. We simulate the codes by creating a noise vector, that is the distribution

113

of non-errors and errors through the codeword and then comparing how each of the codes

would react under the noise vectors, for the normal block codes we thus compare the

number of errors in the noise vector to the number which the code can withstand, and

for our constructions we take into consideration the distribution of the errors, and thus

count up the number of errors in various regions of the codeword, we then record whether

each code successfully corrected the errors or not. For each probability we repeat the

simulation 25, 000 times and average the results, thus to get a good idea of when each

code succeeds and fails and to minimise uncharacteristic random noise. We do this over

500 probability steps of PB, in most cases from 0 to 0.2, although for some codes we then

take a closer look at take 500 probability steps from 0 to 0.02, for each step we take the

average of the 25, 000 simulations and plot that average againstPB, this is what gives the

graphs we compute. For the random error channel we compute the noise vector by using

a random number generator and seeing if an error occurs at each co-ordinate. For the

burst error channel we first computer the state of the system at each co-ordinate, the two

states are G or B, we take the previous co-ordinates state and roll a die to see if the state

changes for the next co-ordinate, whilst in state G the probability of going to state B is

PB and the probability of staying in state G is 1− PB, whilst in state B the probability

of staying in state B is 1−PG and the probability of going to state G is PG, and we start

our simulation in state G at a non-realised co-ordinate 0. Having computed the state

at each co-ordinate we apply the error probability for that state, in our model we have

that in the state G there is 0 probability of an error occurring and in state B there is 0.5

probability of an error occurring, and thus we use a random number generator to simulate

the specific probabilities and the distribution of events and we use these to calculate the

distribution of errors in this channel.

114

6.3 Linear Binary Codes with n odd and 1n ∈ C

In this section we shall be looking at the construction of focused splittings given in Theo-

rem 2.25 and how these focused splittings behave when applied to the construction given

in Definition 5.6. Let C = [n, k, d]2 be a code, with 1n ∈ C and n odd. Thus by Theorem

2.25 there exists a focused splitting on C with θ = 2k−1. For a positive integer m, it is

known [35] that there exists a perfect code with length

T =
qm − 1

q − 1
=
θm − 1

θ − 1
=

2(k−1)m − 1

2k−1 − 1

and dimension

k̂ = T −m

and minimum distance 3. That is there exists a perfect code P = [T, k̂, 3]θ.

Thus by Theorem 2.13 we know P induces a partition on θT . (Fθ)T = P1tP2t. . . , PM ′

where

M ′ =
θT

θk̂
=

θT

θT−m
= θm = 2(k−1)m

and thus we need a code D = [n′, (k − 1)m, d′′]2. As m copies of C would give a code

with parameters [nm,mk, d]2 we can see that n′ ≤ nm, and thus the code C̃ = CTD has

a total length ≤ n× (T +m) = n× (2(k−1)m−1
2k−1−1

+m).

We now consider a more concrete example, with the Hamming code C = [7, 4, 3,]2.

We can calculate that C has weight enumerator 1+7x3 +7x4 +x7, and thus setting δ = 4

we get θ = 8. As 1n ∈ C, which can be seen from the weight enumerator, by Theorem

2.25 we know that C has a focused splitting into D1, D2, . . . , Dθ and |Di| = 2. As Di has

minimum distance of 7 we can see that Di can correct up to 3 errors.

As θ = 8 we require a perfect code over F8, which is given by P = [9, 7, 3]8, by the

Hamming Code construction [35]. As P is perfect, then P induces a splitting over (F8)
9,

and so there are 1 +
(
9
1

)
(q− 1) = 1 + 9× 7 = 64 split codes over (F8)

9 and we label them

115

P1, P2, . . . , P64. Thus we require |D| = 64 and thus over F2 this means D has dimension

6. We set D = [14, 6, 5]2, which is shown to exist [8] and label the words 1, 2, . . . , 64.

We transmit W ∈ C9, that is 9 consecutive words from C and then one from D which

represents i such that Shad(W) ∈ Pi. Thus we can correct 1 error in Shad(W̄), where

W̄ is the received form form of W once every word has been corrected to it’s nearest

neighbour in C, and thus can correct 1 of the words in W as though it was in Di and

thus correct up to 3 errors.

Our construction can correct up to 1 error in 8 of the 9 codewords from C and up to 3

errors in any specific 9th codeword as well as up to 2 errors in D. Thus our construction

can correct all occurrences of 1 or 2 errors, but it can also correct up to a maximum of

13 if the errors are arranged favourably.

We can see we can correct 3 errors if either all the errors are in separate codewords,

or only 2 errors are in the same codeword and only up to 2 errors in D, thus calculating

the fraction of triple errors possible to correct we get

(
9
3

)
73 +

(
9
1

)
7
(
8
1

)(
7
2

)
+
(
9
2

)
72
(
14
1

)
+
(
9
1

)(
7
2

)(
14
1

)
+
(
9
1

)
7
(
14
2

)
+
(
9
1

)(
7
3

)(
77
3

)
this is as there are either 3 errors in separate codewords, 2 errors in one codeword and 1

in another, 2 errors in separate codewords and 1 error in the D, 2 errors in one codeword

and 1 error in D, 1 error in a codeword and 2 errors in D or all 3 errors in one codeword.

This thus simplifies to showing that our construction can correct

28812 + 10584 + 24696 + 2646 + 5733 + 315

73150
=

72786

73150
=

5199

5225
≈ 0.9950

of triple errors. Similarly we break down the calculation for a higher number of errors by

considering them by type. There are either 0, 1 or 2 errors in D and therefore we consider

the combinations where these contribute to the total number of errors separately, as shown

by the breakdown of rows in the following calculations where the first row will contain

116

0 errors in D, the second row will contain 1 error in D and the final row will contain 2

errors in D. We also break the calculations down by whether one of the codewords from C

contains 2 or 3 errors, in each row the first calculation contains no codewords containing

2 or 3 calculations, the second calculation contains a codeword containing 2 errors and

the third calculation contains a codeword containing 3 errors.

Thus calculating the fraction of quadruple errors possible to correct we get

1(
77
4

) ((
9

4

)
74 +

(
9

2

)
72

(
7

1

)(
7

2

)
+

(
9

1

)
7

(
8

1

)(
7

3

)
+(

9

3

)
73

(
14

1

)
+

(
9

1

)
7

(
8

1

)(
7

2

)(
14

1

)
+

(
9

1

)(
7

3

)(
14

1

)
+(

9

2

)
72

(
14

2

)
+

(
9

1

)(
7

2

)(
14

2

))

Which it can be shown simplifies to

1

1353275

(
302526 + 259308 + 17640 +

403368 + 148176 + 4410 +

160524 + 17199

)
=

1313151

1353275

=
187593

193325

≈ 0.9704

of quadruple errors.

Thus calculating the fraction of quintuple errors possible to correct we get

1(
77
5

) ((
9

5

)
75 +

(
9

3

)
73

(
6

1

)(
7

2

)
+

(
9

2

)
72

(
7

1

)(
7

3

)
+(

9

4

)
74

(
14

1

)
+

(
9

2

)
72

(
7

1

)(
7

2

)(
14

1

)
+

(
9

1

)
7

(
8

1

)(
7

3

)(
14

1

)
+

117

(
9

3

)
73

(
14

2

)
+

(
9

1

)
7

(
8

1

)(
7

2

)(
14

2

)
+

(
9

1

)(
7

3

)(
14

2

))

Which it can be shown simplifies to

1

19757815

(
2117682 + 3630312 + 432180 +

4235364 + 3630312 + 246960 +

2621892 + 963144 + 28665

)
=

17906511

19757815

≈ 0.9063

of quintuple errors.

Thus calculating the fraction of sextuple errors possible to correct we get

1(
77
6

) ((
9

6

)
76 +

(
9

4

)
74

(
5

1

)(
7

2

)
+

(
9

3

)
73

(
6

1

)(
7

3

)
+(

9

5

)
75

(
14

1

)
+

(
9

3

)
73

(
6

1

)(
7

2

)(
14

1

)
+

(
9

2

)
72

(
7

1

)(
7

3

)(
14

1

)
+(

9

4

)
74

(
14

2

)
+

(
9

2

)
72

(
7

1

)(
7

2

)(
14

2

)
+

(
9

1

)
7

(
8

1

)(
7

3

)(
14

2

))

Which it can be shown simplifies to

1

237093780

(
9882516 + 31765230 + 4268880 +

29647548 + 50824368 + 6050520 +

2752986 + 23597028 + 1605240

)
=

160394316

237093780

≈ 0.6765

118

of sextuple errors.

Thus calculating the fraction of septuple errors possible to correct we get

1(
77
7

) ((
9

7

)
77 +

(
9

5

)
75

(
4

1

)(
7

2

)
+

(
9

4

)
74

(
5

1

)(
7

3

)
+(

9

6

)
76

(
14

1

)
+

(
9

4

)
74

(
5

1

)(
7

2

)(
14

1

)
+

(
9

3

)
73

(
6

1

)(
7

3

)(
14

1

)
+(

9

5

)
75

(
14

2

)
+

(
9

3

)
73

(
6

1

)(
7

2

)(
14

2

)
+

(
9

2

)
72

(
7

1

)(
7

3

)(
14

2

))

Which it can be shown simplifies to

1

2404808340

(
29647548 + 177885288 + 52942050 +

138355224 + 444713220 + 84707280 +

19270906 + 330358392 + 39328380

)
=

1317208288

2404808340

≈ 0.5477

of septuple errors.

Thus calculating the fraction of octuple errors possible to correct we get

1(
77
8

) ((
9

8

)
78 +

(
9

6

)
76

(
3

1

)(
7

2

)
+

(
9

5

)
75

(
4

1

)(
7

3

)
+(

9

7

)
77

(
14

1

)
+

(
9

5

)
75

(
4

1

)(
7

2

)(
14

1

)
+

(
9

4

)
74

(
5

1

)(
7

3

)(
14

1

)
+(

9

6

)
76

(
14

2

)
+

(
9

4

)
74

(
5

1

)(
7

2

)(
14

2

)
+

(
9

3

)
73

(
6

1

)(
7

3

)(
14

2

))

Which it can be shown simplifies to

1

21042072975

(
51883209 + 622598508 + 296475480 +

119

415065672 + 2490394032 + 741188700 +

899308956 + 2890635930 + 550597320

)
=

8958147807

21042072975

≈ 0.4257

of octuple errors.

Thus calculating the fraction of nonuple errors possible to correct we get

1(
77
9

) ((
9

9

)
79 +

(
9

7

)
77

(
2

1

)(
7

2

)
+

(
9

6

)
76

(
3

1

)(
7

3

)
+(

9

8

)
78

(
14

1

)
+

(
9

6

)
76

(
3

1

)(
7

2

)(
14

1

)
+

(
9

5

)
75

(
4

1

)(
7

3

)(
14

1

)
+(

9

7

)
77

(
14

2

)
+

(
9

5

)
75

(
4

1

)(
7

2

)(
14

2

)
+

(
9

4

)
74

(
5

1

)(
7

3

)(
14

2

))

Which it can be shown simplifies to

1

161322559475

(
40353607 + 1245197016 + 1037664180 +

726364926 + 8716379112 + 4150656720 +

2697926868 + 16187561208 + 4817726550

)
=

39619830187

161322559475

≈ 0.2456

of nonuple errors.

Thus calculating the fraction of decuple errors possible to correct we get

1(
77
10

) ((
9

8

)
78

(
1

1

)(
7

2

)
+

(
9

7

)
77

(
2

1

)(
7

3

)
+(

9

9

)
79

(
14

1

)
+

(
9

7

)
77

(
2

1

)(
7

2

)(
14

1

)
+

(
9

6

)
76

(
3

1

)(
7

3

)(
14

1

)
+

120

(
9

8

)
78

(
14

2

)
+

(
9

6

)
76

(
3

1

)(
7

2

)(
14

2

)
+

(
9

5

)
75

(
4

1

)(
7

3

)(
14

2

))

Which it can be shown simplifies to

1

1096993404430

(
1089547389 + 2075328360 +

564950498 + 17432758224 + 14527298520 +

4721372019 + 56656464228 + 26979268680

)
=

124046987918

1096993404430

≈ 0.1131

of decuple errors.

Thus calculating the fraction of hendecuple errors possible to correct we get

1(
77
11

) ((
9

8

)
78

(
1

1

)(
7

3

)
+(

9

8

)
78

(
1

1

)(
7

2

)(
14

1

)
+

(
9

7

)
77

(
2

1

)(
7

3

)(
14

1

)
+(

9

9

)
79

(
14

2

)
+

(
9

7

)
77

(
2

1

)(
7

2

)(
14

2

)
+

(
9

6

)
76

(
3

1

)(
7

3

)(
14

2

))

Which it can be shown simplifies to

1

6681687099710

(
1815912315 +

15253663446 + 29054597040 +

3672178237 + 113312928456 + 94427440380

)
=

257536719874

6681687099710

≈ 0.0385

121

of hendecuple errors.

Thus calculating the fraction of duodecuple errors possible to correct we get

1(
77
12

) ((
9

8

)
78

(
1

1

)(
7

3

)(
14

1

)
(

9

8

)
78

(
1

1

)(
7

2

)(
14

2

)
+

(
9

7

)
77

(
2

1

)(
7

3

)(
14

2

))

Which it can be shown simplifies to

1

36749279048405

(
25422772410 +

99148812399 + 188854880760

)
=

313426465569

36749279048405

≈ 0.0085

of duodecuple errors.

Thus calculating the fraction of triodecuple errors possible to correct we get

1(
77
13

) ((
9

8

)
78

(
1

1

)(
7

3

)(
14

2

))

Which it can be shown simplifies to

165248020665

183746395242025
≈ 0.0009

of triodecuple errors.

Collecting this together the fraction of errors correction for 1, 2, 3, etc. errors is

approximately 1, 1, 0.9950 0.9704, 0.9063, 0.6765, 0.5477, 0.4257, 0.2456, 0.1131, 0.0385,

0.0085, 0.0009.

Now as these 77 characters carries 9 × 4 = 36 bits of information, looking in the

122

literature [8] we can find a [77, 36, 16]2 code, which would thus correct 7 errors. We now

compare our [77, 36] construction to the [77, 36, 16]2 code under a random error channel

and obtain Figure 6.2.

Figure 6.2: Comparison of [77, 36]2 codes for a random error channel up to an error
probability of 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of an error

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[77,36,16] code
Our construction

We can see in Figure 6.2 that our construction performs better than the [77, 36, 16]2

code for error rates above approximately 0.09, although this gives a relatively low prob-

ability of correct decoding and is ultimately impractical. We now simulate the codes

under a burst error channel model, but first we need to interlace our code. We do this

as our construction for C̃ requires errors to be ‘far apart’ from each other for a success-

ful decoding, subsequently we rearrange the ordering of the co-ordinates such that ‘far

apart’ errors are actually close together and thus bursty error propagation will lead to

errors that are ‘far apart’ and thus can be corrected by C̃. We have C̃ = C9D where

C has length 7 and D has length 14, and as such we interlace them such that we get 4

co-ordinates from C9 and then 1 co-ordinate from D, then 5 co-ordinates from C9 and

then 1 co-ordinate from D, with the co-ordinates from C9 being from subsequent copies

of C, so that two co-ordinates from the same word appear far apart. For each simulation,

123

Figure 6.3 through to Figure 6.10 we fixed PG and we vary PB from 0 to 0.2 or from 0 to

0.02, once each for each value of PG in each case with 500 probability steps.

Figure 6.3: Comparison of [77, 36]2 codes for a burst error channel with PG = 0.1 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[77,36,16] code
Our construction

We repeat this simulation for PB up to 0.02 over 500 probability steps to get a closer

look at the lower end of the probability, where the codes are closer.

Figure 6.4: Comparison of [77, 36]2 codes for a burst error channel with PG = 0.1 with
PB ≤ 0.02

0 0.002	 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[77,36,16] code
Our construction

124

As we can see from Figure 6.3 and Figure 6.4 that even for a very low error probability

our construction has a higher probability of a correct decoding than the [77, 36, 16]2 code

under the burst error channel with PG = 0.1, where as for the random error channel it

did not, this is as due to the bursty nature of the error channel, the errors are more likely

to be collected together and are thus more commonly ‘favourable’ for our construction.

Figure 6.5: Comparison of [77, 36]2 codes for a burst error channel with PG = 0.2 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[77,36,16] code
Our construction

We repeat this simulation for PB up to 0.02 over 500 probability steps to get a closer

look at the lower end of the probability, where the codes are closer.

125

Figure 6.6: Comparison of [77, 36]2 codes for a burst error channel with PG = 0.2 with
PB ≤ 0.02

0 0.002	 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[77,36,16] code
Our construction

Figure 6.7: Comparison of [77, 36]2 codes for a burst error channel with PG = 0.3 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[77,36,16] code
Our construction

We repeat this simulation for PB up to 0.02 over 500 probability steps to get a closer

look at the lower end of the probability, where the codes are closer.

126

Figure 6.8: Comparison of [77, 36]2 codes for a burst error channel with PG = 0.3 with
PB ≤ 0.02

0 0.002	 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[77,36,16] code
Our construction

As we can see in Figure 6.5, Figure 6.6, Figure 6.7 and Figure 6.8 that for very low

error probability our construction has a higher probability of a correct decoding than the

[77, 36, 16]2 code under the burst error channel with PG = 0.2 and PG = 0.3, although the

improvement is less than it was for PG = 0.1.

Figure 6.9: Comparison of [77, 36]2 codes for a burst error channel with PG = 0.4 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[77,36,16] code
Our construction

127

We repeat this simulation for PB up to 0.01 over 500 probability steps to get a closer

look at the lower end of the probability, where the codes are closer.

Figure 6.10: Comparison of [77, 36]2 codes for a burst error channel with PG = 0.4 with
PB ≤ 0.02

0 0.002	 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0.975

0.98

0.985

0.99

0.995

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[77,36,16] code
Our construction

As we can see in Figure 6.9 and Figure 6.10 our construction and the [77, 36, 16]2 code

have fairly equally probability of a correct decoding for lower values of PB and where our

construction has a higher probability of a correct decoding is where the value of PB, and

thus the overall probability of an error, is higher.

We note that when the channel is ‘burstier’, i.e. PG = 0.1 our construction performs

substantially better than the [77, 36, 16]2 code.

6.4 Perfect Codes as Focused Splittings of Complete

Spaces

We now move on to examine the case where the initial code is the complete space (Fq)n

and to look at the construction when this is the case.

We know by Theorem 2.13 that a perfect code P ⊆ (Fq)n will induce a focused splitting

128

on (Fq)n and that the split codes Di will all be translations of P , that is

Di = {p+ ci : p ∈ P}

for some ci ∈ S(0). We now use this focused splitting on the complete space as the basis

for our construction.

It is known [35] that perfect codes are either trivial, repetition codes, Hamming codes

or Golay codes. Repetition codes have parameters [n, q, n]q. Hamming codes have param-

eters [q
m−1
q−1

, q
m−1
q−1

−m, 3]q. The binary Golay code has parameters [23, 12, 7]2. The ternary

Golay code has parameters [11, 6, 5]3.

For our first example we use the whole space (F2)
3 = [3, 3, 1]2 which contains the

perfect code P = [3, 2, 3]2 which is both an example of a repetition code and a binary

Hamming code with a redundancy of 2. Thus we find that θ = 1 + 3(2− 1) = 4 and thus

for our construction we require the existence of a perfect code P ′ over (Fθ)T for some T of

our choosing. Using the Hamming construction [17] we see that P ′ = [θ
m−1
θ−1

, θ
m−1
θ−1

−m, 3]θ

exists and so substituting θ = 4 and setting m = 2 we get P ′ = [5, 3, 3]4 and thus we see

|D| = θ5

θ3
= 42 = 24 and thus D will require dimension 4, and thus we set D = [7, 4, 3]2

code. Thus with T = 5 our construction gives

C̃ = {Wd : W ∈ C5, d ∈ D,Shad(W) ∈ Pd}

which gives a [5T + 7, 5T] = [22, 15]2 code which can protect against 1 error in the first

15 co-ordinates and 1 error in the final 7.

Looking in the literature [8] we see there exists a [22, 15, 4]2 code and no [22, 15, 5]2

code and thus we consider the [22, 15, 4]2 code as an equal length and dimension code and

then we compare this to our construction. We know that our construction C̃ can protect

against all occurrences of 1 error, and against 2 errors only if 1 error appears in a specific

129

15 co-ordinates and 1 error in the other 7 co-ordinates, and thus only for

(
15
1

)(
7
1

)(
22
2

) =
15× 7

231
=

105

231
=

5

11
≈ 0.4545

of double errors. We now simulate these codes to see the actual effect of this difference

in error correction. For a normal random error model we range our errors from 0 to 0.2

giving us Figure 6.11.

Figure 6.11: Comparison of [22, 15]2 codes for a random error channel up to an error
probability of 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of an error

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[22,15,4] code
Our construction

Looking at Figure 6.11 we can see that our construction has a higher likelihood of

correct decoding than the [22, 15, 4]2 code under a random error channel for higher values

of p. We repeated our simulation for the range 0 to 0.02, again with 500 probability

steps, to give a better analysis of the difference between the [22, 15, 4]2 code and our

construction, giving us Figure 6.12.

130

Figure 6.12: Comparison of [22, 15]2 codes for a random error channel up to an error
probability of 0.02

0 0.002	 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Probability an error

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[22,15,4] code
Our construction

As can be seen from Figure 6.12 our construction performs better than the [22, 15, 4]2

code for this lower range of probabilities as well.

To simulate the codes under a burst error channel model we need to first interlace

our code. We have C̃ = C5D where C has length 3 and D has length 7, and as such we

interlace them such that we get 2 co-ordinates from C5 and then 1 co-ordinate from D,

with 1 co-ordinate from C5 at the end. For each figure we fixed PG and we vary PB from

0 to 0.2 with 500 probability steps.

131

Figure 6.13: Comparison of [22, 15]2 codes for a burst error channel with PG = 0.1 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[22,15,4] code
Our construction

Figure 6.14: Comparison of [22, 15]2 codes for a burst error channel with PG = 0.2 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[22,15,4] code
Our construction

132

Figure 6.15: Comparison of [22, 15]2 codes for a burst error channel with PG = 0.3 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[22,15,4] code
Our construction

Figure 6.16: Comparison of [22, 15]2 codes for a burst error channel with PG = 0.4 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[22,15,4] code
Our construction

In Figures 6.13 6.14 6.15 and 6.16 we can see that our construction has a higher

likelihood of a correct decoding than the [22, 15, 4]2 code, moreover this improvement is

consistent across the range of PG values.

For our second example we use the whole space [7, 7, 1]2 which contains the perfect

code P = [7, 4, 3]2 which is a binary Hamming code with a redundancy of 3. Thus we

133

find that θ = 1 + 7(2− 1) = 8 and thus for our construction we require the existence of a

perfect code P ′ over (Fθ)T for some T of our choosing. Using the Hamming construction

[17] we see that P ′ = [θ
m−1
θ−1

, θ
m−1
θ−1

− m, 3]θ exists and so substituting θ = 8 and setting

m = 2 we get P ′ = [9, 7, 3]8 and thus we see |D| = θ9

θ7
= 82 = 26 and thus D will require

dimension 6, and thus we can set D = [10, 6, 3]2 code or we can set D = [14, 6, 5]2 code.

Thus with T = 5 our construction gives

C̃ = {Wd : W ∈ C9, Shad(W) ∈ Pd}

which gives a [9T + n′, 9T]2 code which depending on our value of D is either a [73, 63]2

code or a [77, 63]2 code, in the first case it can protect against 1 error in the first 63

co-ordinates and 1 error in the final 10 co-ordinates, in the second case it can protect

against 1 error in the first 63 co-ordinates and 2 errors in the final 14 co-ordinates.

Looking in the literature [8] we see there exists a [73, 63, 4]2 code and no [73, 63, 5]2

code and there exists a [77, 63, 6]2 code and no [77, 63, 7]2 code. Comparing our [73, 63]2

construction with the [73, 63, 4]2 code we see that the [73, 63, 4]2 code can protect against

1 error whilst our construction can protect against all occurrences of 1 error and 2 errors

if the first error appears in a specific 63 co-ordinates and the second error appears in the

other 10, thus our construction can correct

(
63
1

)(
10
1

)(
73
2

) =
630

2628
=

35

146
≈ 0.2397

double errors. We now simulate these codes to see the actual effect of this difference in

error correction. For a normal random error model we range our errors from 0 to 0.2

giving us Figure 6.17.

134

Figure 6.17: Comparison of [73, 63]2 codes for a random error channel up to an error
probability of 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability an error

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[73,63,4] code
Our construction

Looking at Figure 6.17 we can see that our construction has a higher likelihood of

correct decoding than the [73, 63, 4]2 code under a random error channel for higher values

of p. We repeated our simulation for the range 0 to 0.02, again with 500 probability

steps, to give a better analysis of the difference between the [73, 63, 4]2 code and our

construction, giving us Figure 6.18.

Figure 6.18: Comparison of [73, 63]2 codes for a random error channel up to an error
probability of 0.02

0 0.002	 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability an error

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[73,63,4] code
Our construction

135

To further examine this case at low probabilities we repeated the simulation again for

the range 0 to 0.002, again with 500 probability steps, to give a better analysis of the

difference between the [73, 63, 4]2 code and our construction, giving us Figure 6.19.

Figure 6.19: Comparison of [73, 63]2 codes for a random error channel up to an error
probability of 0.002

0 0.0002	 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002
0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[73, 63, 4] code
Our construction

We can see in Figure 6.19 and Figures 6.18 and 6.17 that our construction has a higher

likelihood of a correct decoding for PB probability values above 0.001 and that between

0 and 0.001 our construction matches the [73, 63, 4]2 code.

To simulate the codes under a burst error channel model we need to first interlace our

code. We have C̃ = C9D where C has length 7 and D has length 10, and as such we

interlace them such that we get 6 co-ordinates from C9 and then 1 co-ordinate from D,

with 3 co-ordinate from C9 at the end, this way the co-ordinates for D are as far as they

can be from each other. For each figure we fixed PG and we vary PB from 0 to 0.2 with

500 probability steps.

136

Figure 6.20: Comparison of [73, 63]2 codes for a burst error channel with PG = 0.1 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[73,63,4] code
Our construction

We repeated this simulation for the probability range 0 to 0.02 to get a clearer picture

of what is happening at these probability rates.

Figure 6.21: Comparison of [73, 63]2 codes for a burst error channel with PG = 0.1 with
PB ≤ 0.02

0 0.002	 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[73,63,4] code
Our construction

As can be seen in Figure 6.20 and Figure 6.21 that our construction and the [73, 63, 4]

code have very close likelihood of a correct decoding for a burst error channel with PG =

0.1, but that our construction does have a slightly higher likelihood of a correct decoding

137

even for very low values of PB.

Figure 6.22: Comparison of [73, 63]2 codes for a burst error channel with PG = 0.2 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[73, 63, 4] code
Our construction

We repeated this simulation for the probability range 0 to 0.02 to get a clearer picture

of what is happening at these probability rates.

Figure 6.23: Comparison of [73, 63]2 codes for a burst error channel with PG = 0.2 with
PB ≤ 0.02

0 0.002	 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[73,63,4] code
Our construction

138

Figure 6.24: Comparison of [73, 63]2 codes for a burst error channel with PG = 0.3 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[73,63,4] code
Our construction

We repeated this simulation for the probability range 0 to 0.02 to get a clearer picture

of what is happening at these probability rates.

Figure 6.25: Comparison of [73, 63]2 codes for a burst error channel with PG = 0.3 with
PB ≤ 0.02

0 0.002	 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[73,63,4] code
Our construction

As can be seen in Figure 6.22, Figure 6.23, Figure 6.24 and Figure 6.25 that our

construction and the [73, 63, 4] code have very close likelihood of a correct decoding for a

burst error channel with PG = 0.2 and PG = 0.3, but that our construction does have a

139

slightly higher likelihood of a correct decoding even for very low values of PB.

Figure 6.26: Comparison of [73, 63]2 codes for a burst error channel with PG = 0.4 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[73,63,4] code
Our construction

We repeated this simulation for the probability range 0 to 0.02 to get a clearer picture

of what is happening at these probability rates.

Figure 6.27: Comparison of [73, 63]2 codes for a burst error channel with PG = 0.4 with
PB ≤ 0.02

0 0.002	 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[73,63,4] code
Our construction

As can be seen in Figure 6.26 and Figure 6.27, our construction and the [73, 63, 4] code

have very close likelihood of a correct decoding for a burst error channel with PG = 0.4,

140

but our construction does have a slightly higher likelihood of a correct decoding even for

very low values of PB.

Now comparing our [77, 63]2 construction with the [77, 63, 6]2 code we see that the

[77, 63, 6]2 can correct all occurrences of up to 2 errors, whilst our [77, 63]2 construction

can deal with all occurrences of 1 error, 2 errors if they either both occur in the final 14

co-ordinates or if 1 error occurs in the first 63 and 1 in the final 14 and it can correct 3

errors if 1 appears in the first 63 and 2 appear in the final 14. Thus it can correct

(
14
2

)(
77
2

) +

(
63
1

)(
14
1

)(
77
2

) =
91

2926
+

882

2926
=

139

418
≈ 0.3325

of double errors, and only (
63
1

)(
14
2

)(
77
3

) =
819

10450
≈ 0.0784

of triple errors. We now simulate these codes to see the actual effect of this difference

in error correction. For a normal random error model we range our errors from 0 to 0.2

giving us the following graph.

Figure 6.28: Comparison of [77, 63]2 codes for a random error channel up to an error
probability of 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of an error

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[77,63,6] code
Our construction

141

As we can clearly see in Figure 6.28 our [77, 63]2 construction does not compare

favourably to the [77, 63, 6]2 code and this is because although the [77, 63]2 construc-

tion can correct up to 3 errors in favourable arrangements, it does so at the loss of being

able to correct all occurrences of 2 errors, and subsequently has a lower probability of

correct decoding.

To simulate the codes under a burst error channel model we need to first interlace our

code. We have C̃ = C9D where C has length 7 and D has length 14, and as such we

interlace them such that we get 8 co-ordinates from C9 and then 1 co-ordinate from D,

then 1 from C then 1 from D, this way for 9 co-ordinates from C we have 2 from D, and

thus this is repeated 7 times, also we see that this means that certain bursts of 3 errors

will hit 2 co-ordinates of D and only 1 from C. For each figure we fixed PG and we vary

PB from 0 to 0.2 with 500 probability steps.

Figure 6.29: Comparison of [77, 63]2 codes for a burst error channel with PG = 0.1 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[77,63,6] code
Our construction

142

Figure 6.30: Comparison of [77, 63]2 codes for a burst error channel with PG = 0.2 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[77,63,6] codeOur construction

Figure 6.31: Comparison of [77, 63]2 codes for a burst error channel with PG = 0.3 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[77,63,6] code
Our construction

143

Figure 6.32: Comparison of [77, 63]2 codes for a burst error channel with PG = 0.4 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[77,63,6] code
Our construction

As we can see from Figure 6.29, Figure 6.30, Figure 6.31 and Figure 6.32 our [77, 63]2

construction does not compare favourably with the [77, 63, 6]2 code, having a lower like-

lihood of a correct decoding for PG = 0.1, PG = 0.2, PG = 0.3 and PG = 0.4. We do

however note that for lower values of PG, the difference between the likelihood of a cor-

rect decoding for our construction and the [77, 36, 6]2 code is smaller than it is for higher

values of PG, and thus we note that the “burstier” the error channel the more efficient

our construction.

Now we briefly discuss the Golay codes, although we will not be able to test them for

reasons which will become clear. The binary Golay code is a [23, 12, 7]2 code, and thus

this will induce a focused splitting over (F2)
23 with a perspective width of

θ = 1 +

(
23

1

)
+

(
23

2

)
+

(
23

3

)
= 2048 = 211

144

and thus a perfect code P for our construction would have parameters

[
θm − 1

θ − 1
,
θm − 1

θ − 1
−m, 3

]
θ

=

[
(211)2 − 1

(211)− 1
,
(211)2 − 1

(211)− 1
− 2, 3

]
(211)

= [2049, 2047, 3]2048

where we usem = 2 to get our value of T as short as possible. Subsequently |D| = θ2 = 222

and thus D has dimension 22, hence we could codes such as [32, 22, 5]2 for D giving C̃ as

a

[2049× 23 + 32, 2049× 23] = [47159, 47127]

code. We notice that C̃ would only be able to correct a maximum of 5 errors, that is if 3

errors occurred in a single block of 23 and if 2 errors occurred in the final 32 co-ordinates.

We also note that this construction is in-feasible to be tested, as we do not have any

information about codes of this size, and as the size is unwieldy.

The tertiary Golay code is a [11, 6, 5]3 code, and thus will induce a focused splitting

over (F3)
11 with a perspective width of

θ = 1 +

(
11

1

)
(3− 1) +

(
11

2

)
(3− 1)2 = 1 + 22 + 220 = 243 = 35

and thus a perfect code P for our construction would have parameters

[
θm − 1

θ − 1
,
θm − 1

θ − 1
−m, 3

]
θ

=

[
(35)m − 1

(35)− 1
,
(35)m − 1

(35)− 1
−m, 3

]
(35)

= [244, 242, 3]243

where we use m = 2 to get our value of T as short as possible, with T = 244. Subsequently

|D| = θ2 = 310 and thus D has dimension 10, hence we can see in [1] that there will at

least exist a [17, 10, 5]3 code which we could use for D giving C̃ as a

[244× 11 + 17, 244× 11] = [2701, 2684]

construction. We notice that C̃ would only be able to correct a maximum of 4 errors, that

145

is if 2 occurred in a specific block of 11 and if 2 occurred in D. We also note that this

construction is in-feasible to be tested, as we do not have any information about codes of

this size.

6.5 Linearly Independent Focused Splittings

We shall begin by working on general example for the class of focused splittings given

in Theorem 2.26. Let C = [n, k, d]2 with S(0) \ {0} being linearly independent, then by

Theorem 2.26 there exists a focused splitting on C if and only if there exists a perfect

single-error correcting code on (F2)
θ−1.

It is known [35] that for a positive integer m1 that ∃ a perfect code on (F2)
θ−1 when

θ − 1 =
2m1 − 1

2− 1
= 2m1 − 1 ⇐⇒ θ = 2m1

So we have a focused splitting whenever θ = 2m1 .

Let P = [T, k̂, d̂]θ be a perfect code. We know that for a positive integer m2 we get

T =
qm2 − 1

q − 1
=

2m1m2 − 1

2m1 − 1

k̂ = T −m2

d̂ = 3

and by Theorem 2.13 P induces a focused splitting on θT and thus,

(Fθ)T = P1 t P2 t . . . , PM ′

with M ′ = θT

θT−m2
= θm2 = 2m1m2 and so the code D would have dimension m1m2. As we

can choose m2, and we generally shall wish T to be as small as possible comparatively

then we can choose m2 = 2, given that the code C must have a perspective of θ = 2m1 ,

146

then D will have dimension 2m1, and thus CTD will have length a little over n× T .

We consider a code C = [12, 5, 4]2 code with the following generator matrix



1 0 0 0 0 1 1 1 0 0 0 1

0 1 0 0 0 1 0 0 1 1 0 0

0 0 1 0 0 0 1 0 1 0 1 1

0 0 0 1 0 0 0 1 0 1 1 0

0 0 0 0 1 1 1 1 1 1 1 1


which thus has a weight enumerator

1 + 3x4 + 8x5 + 8x6 + 3x8 + x12

and so we can see that if we set δ = 5 then θ = 4 and then we can see that

S(0) \ {0} =


0 1 0 0 0 1 0 0 1 1 0 0

0 0 0 1 0 0 0 1 0 1 1 0

1 1 1 1 0 0 0 0 0 0 0 0


and it is easy to see that this set is linearly independent. Thus by Theorem 2.26 we can

see that C has a focused splitting, since there exists perfect code on (F2)
θ−1. We can thus

see that the split codes will have a minimum distance of 5. As θ = 4 we can construct a

perfect code P = [5, 3, 3]4 and thus we can calculate |D| = θ5−3 = 16 = 24, thus we can

use D = [7, 4, 3]2 or [11, 4, 5]2. These give us respectively a [12× 5 + 7, 5× 5]2 = [67, 25]2

construction and a [12× 5 + 11, 5× 5]2 = [71, 25]2 construction. We shall compare these

to the known to exist codes [19]of [67, 25, 14]2 and [71, 25, 16]2. As the [71, 25, 16]2 code

corrects one more error than the [67, 25, 14]2 code and our [71, 25] construction will only

correct one more error than our [67, 25] construction, and only if that extra error is in D

then any improvement of our construction over the block codes will be more prominent

147

in the comparison of the [67, 25] codes, thus we shall only compare these.

Figure 6.33: Comparison of [67, 25]2 codes for a random error channel up to an error
probability of 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of an error

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[67,25,14] code
Our construction

As we can see in Figure 6.33 that our construction has a lower likelihood of a correct

decoding than the [67, 25, 14] code.

Figure 6.34: Comparison of [67, 25]2 codes for a burst error channel with PG = 0.1 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[67,25,14] code
Our construction

148

Figure 6.35: Comparison of [67, 25]2 codes for a burst error channel with PG = 0.2 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[67,25,14] code
Our construction

Figure 6.36: Comparison of [67, 25]2 codes for a burst error channel with PG = 0.3 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[67,25,14] code
Our construction

149

Figure 6.37: Comparison of [67, 25]2 codes for a burst error channel with PG = 0.4 with
PB ≤ 0.2

0 0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of P
B

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 d

ec
od

in
g

[67,25,14] code
Our construction

As we can see in Figure 6.34, Figure 6.35, Figure 6.36 and Figure 6.37 our construction

has a lower likelihood of a correct decoding than the [67, 25, 14] code for all ranges of PG

that we explored. We do however note that the lower values of PG, and thus the “burstier”

channel, have a lesser difference in the likelihood of a correct decoding between the codes.

6.6 Concluding

We have seen that our construction can give codes which perform better than the best

known codes of the same length and dimension, but that this also seems to be more

prevalent for lower values of length. Our [77, 36] construction performed better than

the [77, 36, 16]2 code under burst error channels, but not under a random error channel,

and thus there is a potential for this construction to work well under burst error channels

because of the sectioned nature of how we allow errors to be distributed if we are to correct

them. Our [22, 15] construction and our [73, 63] construction both performed better than

the relevant codes of the same length and dimension, and this shows that the focused

splittings of whole spaces seemed to be good for the construction, this could be because

150

of the relatively short length of the codes involved as well as the relatively high value

of δ comparatively, and thus a larger number of extra errors which could be corrected if

favourably arranged. Some other constructions were less successful compared to the best

known codes of the same length and dimension, but this is only to be expected.

We feel that this shows a potential and practical use of focused splittings in an error

correcting capacity and we feel that this is a bonus to sit alongside the elegance of the

theory.

151

Bibliography

[1] P.R.J. Österg̊ard A.E. Brouwer, H.O. Hämäläinen and N.J.A. Sloane. Bounds on

mixed binary/ternary codes. IEEE Trans. Inform. Theory, 44:140–161, 1998.

[2] E. F. Assmus and J. D. Key. Designs and Their Codes. Cambridge University Press,

1992.

[3] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear codes for

minimizing symbol error rate (corresp.). Information Theory, IEEE Transactions on,

20:284 – 287, 1974.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon limit error-correcting

coding and decoding: Turbo-codes. 1. In Communications, 1993. ICC 93. Geneva.

Technical Program, Conference Record, IEEE International Conference on, pages

1064 – 1070, 1993.

[5] J. Bierbrauer. Authentication via algebraic-geometric codes. Rend. Circ. mat.

Palermo (2) Suppl., 51:139–152, 1998.

[6] I. Blake, C. Heegard, T. Høholdt, and V. Wei. Algebraic-geometry codes. IEEE

Trans. Inform. Theory, 44:2596 – 2618, 1998.

[7] I.M Boyarinov and G.L. Katsman. Linear unequal error protection codes. IEEE

Trans. Inform. Theory, 27:168–175, 1981.

152

[8] A.E. Brouwer and T. Verhoeff. An updated table of minimum-distance bounds for

binary linear codes. IEEE Trans. Inform. Theory, 39:662 – 677, 1993.

[9] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups, volume

290 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles

of Mathematical Sciences]. Springer-Verlag, third edition, 1999. With additional

contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko,

R. A. Parker, L. Queen and B. B. Venkov.

[10] S. Cook. The complexity of theorem-proving procedures. Proceedings of the Third

Annual ACM Symposium on Theory of Computing., pages 151–158, 1971.

[11] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to algorithms.

MIT Press, third edition, 2009.

[12] E.O. Elliot. Estimates of error rates for codes on burst-noise channels. Bell System

Technical Journal, 42:1977 – 1997, 1963.

[13] T. Etzion and A. Vardy. Perfect binary codes: Constructions, properties, and enu-

meration. IEEE Trans. Inform. Theory, 40:754 – 763, 1994.

[14] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completness. W. H. Freeman, 1979.

[15] E.N. Gilbert. Capacity of a burst-noise channel. Bell System Technical Journal,

39:1253 –1265, 1960.

[16] G.R. Grimmett and D.R. Stirzaker. Probability and random processes (Third edition).

Oxford University Press, 2001.

[17] R. Hill. A First Course in Coding Theory. Oxford Applied Mathematics and Com-

puting Science Series, 2002.

153

[18] J. W. P. Hirschfeld. Projective geometries over finite fields. The Clarendon Press

Oxford University Press, second edition, 1998.

[19] David B. Jaffe. Information about binary linear codes.

[20] G.D. Forney Jr. Convolutional codes I: Algebraic structure. IEEE Trans. Inform.

Theory, Vol. IT-16:720–738, 1970.

[21] H.W. Lenstra Jr. Two theorems on perfect codes. Discrete Math., 3:125–132, 1972.

[22] R.M. Karp. Reducibility among combinatorial problems. Complexity of Computer

Computations, 1972.

[23] S. C. Kleene. Recursive predicates and quantifiers. Transactions of the American

Mathematical Society, 53:41–73, 1943.

[24] W. Ledermann. Introduction To Group Theory. Longman Scientific and Technical,

1991.

[25] D.J.C. MacKay. Good error-correcting codes based on very sparse matrices. IEEE

Trans. Inform. Theory, 45:399 – 431, 1999.

[26] M. Mushkin and I. Bar-David. Capacity and coding for the Gilbert-Elliot channels.

IEEE Trans. Inform. Theory, 35:1277 – 1290, 1989.

[27] G.R. Redinbo and W.Y. Cheung. The design and implementation of unequal error-

correcting coding systems. IEEE Trans. Comm., 30, 1982.

[28] J. Roos. An algebraic study of group and nongroup error-correcting codes. Inform

Control., 8:195 – 214, 1965.

[29] A. Sánchez-Arroyo. Determining the total colouring number is NP-hard. Discrete

Math., 78:315 – 319, 1989.

154

[30] A. Sárközy and G.N. Sárközy. On the size of partial block designs with large blocks.

Discrete Math., 305:264–275, 2005.

[31] Y. Song and Z. Li. Secret sharing with a class of minimal linear codes.

http://arxiv.org/pdf/1202.4058.

[32] M.A. Tsfasman and S.G. Vlăduţ. Geometric approach to higher weights. IEEE

Trans. Inform. Theory, 41:1564–1588, 1995.

[33] J.H. van Lint. On the nonexistence of perfect 2- and 3-Hamming-error-correcting

code over GF(q). Inform. Control., 16:396–401, 1970.

[34] J.H. van Lint. Nonexistence theorems for perfect error-correcting codes. Computers

in Algebra and Number Theory, in: SIAM-AMS Proceedings, 4:89–95, 1971.

[35] J.H. van Lint. A survey of perfect codes. Rocky Mountain J Math., 5:199 – 224,

1975.

[36] J.H. van Lint. Introduction To Coding Theory. Springer, 1982.

[37] A.J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Trans. Inform. Theory, 13:260 – 269, 1967.

155

	Coversheet
	Waugh, Karl Michael Vincent

