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A FIBRE-BASED SINGLE-PHOTON SOURCE

ABSTRACT

The controlled emission and absorption of single photons is an important enabling technology

in the fields of quantum communication, cryptography and computing. We have realised a novel

single photon source, based on a miniature ‘endcap’ ion trap with integrated optical fibres. To

minimise distortion of the trapping field the fibres are tightly integrated and recessed within the two

hollow cylindrical rf electrodes of the trap. This allows us to bring the fibres to within approximately

300 µm of the trapped ion. With the fibres in place we are able to collect the ion’s fluorescence

using no further optics. In this thesis the ion trap is fully characterised, and the quantum nature of

the light demonstrated in the results of a variant on the Hanbury Brown-Twiss photon-correlation

experiment. The scheme will ultimately be extended to implement a coherent ion-photon interface

through strong coupling cavity-QED. Towards this end, an ultra-high-finesse cavity has been

designed and fabricated by laser-machining and coating surfaces with a range of radii of curvature

on the end facets of the fibres. To improve the stability and precision manipulation of the cavity

in-vacuum, an entirely new trap has been designed and built. Finally, the current status of the fibre

cavity and the oulook for the experiment are presented.
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Chapter 1

Introduction

“...in the now current interpretation, ample information is forthcoming about a host of experiments

that nobody has ever been or ever will be able to perform.”

E. Schrödinger,

British Journal of the Philosophy of Sciences, 3, 1952.

1.1 Motivation—Quantum Networking

In 1952, Erwin Schrödinger argued that we would never be able to perform experiments on single

electrons or atoms[1]. Today, in the atomic physics laboratories of the world, these experiments

have become routine. Although this is no longer news, the confinement of single atomic particles is

now a prerequisite in several important fields of research, and trapped single ions are considered

promising contenders for the hardware of a future quantum computer. The work presented here

is motivated by the problem of efficient communication between these quantum computers by

means of single photons. Although it is in spirit about communication, rather than computing, a

brief introduction to the principles of quantum computing will be given in this section, to give an

understanding of the problem this work is aimed at solving.

Why a quantum computer?

Moore’s Law1 states broadly that the number of transistors that can be placed on a chip will double

approximately every 2 years. Although there is a whole field of study around how long into the

future Moore’s Law can be sustained, with opinions in recent years ranging from 10–20 years [2],

to forever [3], we intuitively see that we will run into problems as transistors approach the size of

the de Broglie wavelength of the electrons carrying charge through them—for example, tunnelling

of electrons through potential barriers. If we want Moore’s Law to hold far into the future it seems

clear that some new processor architecture is required (that said, Weber et al. at the University of

New South Wales have just reported observation of constant resistivity in phosphorous wires one

atom high and four atoms wide embedded in a silicon crystal, suggesting that Ohm’s law may hold

down to even single atoms, given the right conditions [4]).

1After Gordon Moore, co-founder of Intel Corporation, 1965.

1
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Richard Feynman first discussed the idea of simulating quantum systems with computers

in 1981 [5], noting that it does not seem possible to simulate quantum systems with a classical

computer. David Deutsch’s description of the ‘Universal Quantum Computer’ in 1985 [6] showed

that a quantum computer might be able to efficiently solve problems which a classical computer

could not. In 1986 in an effort to investigate whether, as we shrink transistors down to microscopic

size, quantum mechanics places any limit on the amount of energy required per calculation ‘step’

in a computation, Feynman introduced the idea of a ‘Quantum Mechanical Computer’ [7].

Classes of computing problems

We classify computing problems according to the complexity of the resources used in obtaining

their solutions. For example, the P complexity class contains the set of problems solvable by a

deterministic Turing machine (such as a classical computer) in polynomial time. This means that

the time taken to solve the problem scales with the input as a polynomial. By contrast, the NP

complexity class contains the set of problems solvable by a non-deterministic Turing machine in

polynomial time. This class of problem is extremely difficult for a classical computer to solve.

There is a specific class of problems known as BQP—bounded error quantum polynomial time—

which is solvable by a quantum computer, with high probability (within some error bounds), in

polynomial time, and this is suspected to include some, but not all, NP problems [8].

The classic example of an NP/BQP problem is the prime factorisation of large numbers. That

is, factoring a number into its constituent primes. The number of operations required to do this

increases exponentially with the number, N, and this is dramatically demonstrated in figure 1.1 2.

In 1994, Peter Shor proposed a quantum algorithm to solve this problem [9] in polynomial

time, and in 2001 the group of Isaac Cheung at IBM’s Almaden Research Centre in California

experimentally implemented Shor’s algorithm using 7 quantum bits (qubits) to factorise the number

15 [10].

2The spikes in the data are due to the varying demands of the computer’s CPU at the time the function was called.
This graph was produced from a very simple prime-factoring algorithm—there are many more efficient algorithms
available.
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Figure 1.1: An NP problem—the time taken to factorise the numbers from 1 to 10000 into their constituent
primes, in terms of Matlab function call time, using a simple prime-factoring algorithm. As a
point of interest, the total time taken in terms of function calls, that is, the area under this graph,
was around 12 hours. We can calculate from the fitted function that at this rate it would have
taken 89 s to factorise 20,000, 527 s to factorise 30,000, 4 hours to factorise 50,000, 3 years to
factorise 100,000, and 6.6 ×1068 years to factorise 1,000,000. The RSA public-key encryption
algorithm is based on exactly this problem.

1.1.1 Qubits

Bits in a classical computer are represented by transistors. They are either on (1), or off (0). The

processor performs millions of logical operations on one or two bits at a time. The qubits in a

quantum computer can in principle be any quantum system with two distinguishable and accessible

states, corresponding to the on and off of the classical transistor. Let us use Dirac notation from

here on and call these two states |a〉 and |b〉. The crucial difference between quantum and classical

bits is that quantum bits can exist in a superposition of the |a〉 and |b〉 states:

|Ψ〉= ca|a〉+ cb|b〉, (1.1)

where |ca|2 and |cb|2 represent the probability of observing state |a〉 or |b〉 when a measurement

is performed. In such a superposition state then, the information carried by the qubit exists in the

amplitudes ca and cb—one qubit can carry two pieces of information.

If we add one more qubit to our system, then the system can exist in a superposition of four

states:

|Ψ〉= caa|aa〉+ cab|ab〉+ cba|ba〉+ cbb|bb〉. (1.2)

We can see that N qubits are capable of storing 2N pieces of information in the amplitudes

of their states, and any operation performed on the qubit is simultaneously performed on all 2N

amplitudes.

There have been many proposals for qubit candidates, including (this is by no means an
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exhaustive list):

• Trapped ions in an ion trap [11], where the qubits are two internal energy levels of ions.

• NMR, where nuclear spin holds the information [12].

• Neutral atoms, for example [13].

• The energy states of quantum dots [14].

• The spin states of donor impurities in, for example Silicon [15].

• Nitrogen-vacancies in diamond and similar defects in other materials, such as silicon carbide

[16].

1.1.2 Why a Trapped Ion Quantum Computer?

The DiVincenzo criteria

In 1998, in a work inspired by Cirac and Zoller’s 1994 proposal for a quantum computer using cold

ions in a trap [11] David DiVincenzo, at IBM’s Research Division, set out five criteria which he

considered essential to a physical implementation of a quantum computer [17]. They are:

1. The quantum states of the qubits must be precisely enumerated, that is, we must know

the state well, and know how to confine the qubit to that state. Also, the system must be

scalable—we must be able to add qubits to the system3.

2. State preparation: we must be able to set the system into some simple state, for example |a〉.

3. Low decoherence: the environment should not perturb the quantum interference (coherence)

of the system. DiVincenzo quotes a decoherence time of 1×106 times longer than the gate

operation time.

4. Controlled unitary transformations: it must be possible to perform gate operations on the

system.

5. Measurement: it must be possible to perform a measurement on individual qubits.

Vincenzo noted at the time that the Cirac-Zoller proposal for trapped ions appeared to satisfy

all five of these criteria, for example:

1. Ions can be routinely cooled to their ground state using laser cooling.

2. The internal states of trapped ions are very well known and understood. We could imagine

scaling such a device by simply adding more ions to the trap (although in practice this is not

the case, because the ions are all coupled through their motion. Also, as the ion string grows

it becomes harder to laser-cool the whole string to the ground state).

3Factorising a 200-digit number requires about 3,500 qubits [18] and in a theoretical work Hughes et al. found that
an ion trap quantum computer would be decoherence-limited at around ten or so ions [19].
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3. Long internal state coherence times.

4. Internal states are easily manipulated and systems for quantum logic operations are available.

5. Measurement can be carried out with high efficiency.

1.1.3 Quantum Networking

There are two current approaches to the problem of scaling mentioned in section 1.1.2. One solution

is to build arrays of traps [20], in which ions are shuttled between different trapping regions, with

each region only containing a small amount of ions. The group of David Wineland at NIST recently

implemented such an array, trapping two 9Be+ and two 24Mg+ ions in a segmented trap [21],

and ions have been successfully shuttled around 90◦ corners in a ‘T-Junction’ ion trap array [22].

However, our long-term interest lies more in an alternative idea; that of providing a communications

channel between many remote ion trap devices. This has applications beyond the idea of scaling an

ion trap quantum computer.

In 2000, in the prettily titled and very readable ‘Desiderata for Quantum Communication’ [23]

DiVincenzo added the following two criteria to the list in section 1.1.2:

6. The ability to interconvert stationary and flying qubits.4

7. The ability faithfully to transmit flying qubits between specified locations.

The work presented here is based around a scheme designed to fulfill these final two criteria.

The flying qubit in our case is a photon and the stationary qubit is a trapped ion.

1.1.3.1 Single-photon sources

If we restrict ourselves to the paradigm of the flying-qubit-as-photon, produced by a single quantum

emitter (and the justification for such a restriction is that we require only one photon to be emitted for

each ‘request’, so it is reasonable to use a single quantum emitter to produce it), then a prerequisite

is the development of a single-photon source which fulfills the final two criteria.

The generation of single-photons has been an active research area in recent years and several

different quantum emmitters have been tried. A review of many such schemes is given in [24]. The

interest in these schemes lies in their utility as enabling technologies for several applications, aside

from scaling quantum computers, some with extensive commercial relevance, such as:

• Key distribution/cryptography: the ability to transmit data between two points without any

possibility of it being intercepted [25].5

4The phrase ‘flying qubit’ has become standard terminology in the field. In most schemes the qubit is encoded in a
photon.

5Quantum cryptopgraphy is probably the most immediately obvious beneficiary of quantum networking technology
developments. The link to quantum information transmission being that quantum cryptography schemes depend upon
the reliable generation and transmission of a flying qubit (usually a photon—see, for example the BB84 protocol [26]).
Ones and zeroes can be encoded in the polarisation of the photon in some basis; for example the vertical and horizontal
polarisation for zero and one respectively. The basis can be chosen at random, for example a ±45◦ linear polarisation
can encode a one/zero. In this way a ‘key’ can be transmitted between two parties and used to decrypt a subsequent
transmission. Without knowing the basis, it would be impossible for an eavesdropper to know the key. For a recent
review of this field, see [27].
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• Authentication: the ability to transmit data between two points in a way that ensures it was

not corrupted in passage [25, 27].

• A ‘quantum repeater’: to transfer the state of one ion in one trap to a remote ion in a distant

trap—effectively to lengthen the distance over which quantum information can be transmitted

[28].

• The distribution of ‘quantum software’ [29].

• An absolute standard of optical brightness—if the rate of single photon production, r, and

their energy, is known, then the optical power is h̄ωr.

• ‘Blind’ quantum computing. In a paper published at the time of writing, Barz et al. [30] report

a demonstration of a kind of quantum cloud computing, whereby a user only has to prepare

photonic qubits and transmit them to a remote quantum computer where computations are

performed.

We now move on to describe in detail the background theory necessary to understand the

components of our implementation, that is:

• Radiofrequency ion traps

• Laser cooling

• Cavity Quantum Electrodynamics

1.1.4 This Thesis

In this thesis I will describe the realisation of a single-photon source based on a single calcium

ion in a novel miniature ion trap. We take as our model the CQED-based scheme of Cirac and

Zoller [31] for a quantum network composed of individual ion trap ‘nodes’ connected by optical

fibres. The ultimate goal of our work is to produce a single-photon source suitable for use in such

a scheme, that is, a single ion strongly coupled to a single cavity mode, as described in chapter

4. The work presented here consists of firstly the design and implementation of a miniature ion

trap, the detection of an ion’s fluorescence through optical fibres placed close to the ion, pulsed

and continuous non-cavity single-photon generation, and finally the design and fabrication of a

miniature optical cavity by laser-machining and coating the end facets of the fibres.

After covering the basic theory behind the trapping and laser-cooling of charged particles

in chapters 2 and 3, and the principles of cavity-QED in chapter 4, I will describe the technical

implementation of the experiment including materials and devices used (chapter 5). Chapter 6

presents a full characterisation of the ion trap, including comparison with simulations. Chapter

7 presents the main results of the experiment so far, that is, production and detection of single

photons.

In Chapter 8 I describe the techniques and results of work done to laser-machine concave

surfaces onto the ∼200 µm diameter end facets of optical fibres using a high-power CO2 laser.

Some predicted CQED parameters of the fibre cavity are calculated.

Chapter 9 presents a conclusion and the outlook for the experiment, including some details of

the design and build of an entirely new ion trap to accommodate the new fibre cavity.



Chapter 2

Radiofrequency Ion Traps

“I think it is a sad situation in all our chemistry that we are unable to suspend the constituents of

matter free.”

G.C. Lichtenberg, quoted in Wolfgang Paul’s Nobel Lecture, December 8, 1989.

In 1989, Wolfgang Paul, Hans G. Dehmelt and Norman F. Ramsey were awarded the Nobel Prize

in Physics ‘for contributions of importance for the development of atomic precision spectroscopy.’

Paul and Dehmelt’s contribution was the ion trap, that is, the ‘suspension’ of individual particles of

matter for long periods of time, allowing access to unprecedented regimes of precision1 in atomic

spectroscopy measurements [32]. The first single ion was trapped in 1980 [33]. Ion traps are now

commonly used in many fields, most commercially mass spectrometry—for a review of the history

of this application of ion traps see [34]. Ion traps also represent the world’s most precise frequency

(and therefore, time) standards. In 2010, NIST2 reported the worlds most precise clock, based on a

single trapped aluminium ion [35, 36]. The most common types of ion trap today are the Penning

trap [37], and the radiofrequency (rf), or Paul, trap. In this thesis we will concern ourselves only

with rf ion traps, and this section aims to describe the essential theory behind their operation, with

any necessary modifications relevant to our particular designs.

2.1 Earnshaw’s theorem

To perfectly trap a single ion in space with an electric field alone we might reasonably think that

the field lines must all point inwards, that is towards the equilibrium position of the particle. But

there is a problem with this.

Consider the divergence of a vector field:

∇ ·F≡ lim
V→0

∮
S F ·da

V
. (2.1)

1Heisenberg’s energy/time uncertainty relation tells us that over long periods of time we can make increasingly
precise measurements of energy.

2America’s National Institute for Standards and Technology.

7
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That is, the divergence of the vector force field surrounding a point is the flux of the field

through a closed surface surrounding a volume around that point as we shrink that volume to zero.

In other words, it is the rate of creation or removal of electric flux at that point. If we want our

electric field lines to terminate at the point where the particle is at equilibrium, such that if the

particles moves away, it is pulled back, then that point must be a sink for the field—the divergence

must be negative. Since we know from Maxwell’s equations that the divergence of an electric field

is zero in free space, and the curl of an electric field is zero, then we see that this is impossible.3 It

turns out in fact that there is no way to trap a charged particle with electrostatic forces alone, and

this is known as Earnshaw’s theorem. We can, however, trap a charged particle with electrodynamic

forces—an oscillating electric field, described by Wuerker et al. in 1958 as ‘a closed form of W.

Paul’s and M. Raether’s electric mass filter.’ [39]

2.2 The quadrupole potential

If we want to confine a charged particle at the bottom of a potential well, from which it does not

have sufficient energy to escape, then a simple solution would be to apply a potential in three

dimensions which has quadratic dependence on the particle’s coordinates x, y, and z :

φ = φ0(αx2 +βy2 + γz2), (2.2)

where φ0 is the potential at the origin.

For this potential to obey Laplace’s equation, we require

α +β + γ = 0. (2.3)

What we see from this is that while there could be a positive, confining potential in two of

the three directions, there must then be a negative ‘anti-trapping’ potential in the third—we must

always have a ‘saddle’ potential. This is illustrated in figure 2.3.

In a three-dimensional field, α = 1, β = 1 and γ =−2 satisfy this constraint and the potential

can be described by [41]

φ = φ0

(
r2−2z2

2r2
0

)
, (2.4)

where r represents the vector x2 + y2 and r0 is a factor depending on the geometry of the trap

(indicated on figure 2.1. Figure 2.2(a) shows a cross-section of the equipotentials of such a

quadrupole potential and the ideal electrode structure which achieves this along all directions is

shown in figure 2.1. This consiststs of two hyperboloids of revolution about the z-axis (the ‘endcap’

electrodes) and a ring electrode with a hyperbolic cross-section, with the condition r2
0 = 2z2

0. This

condition arises from the boundary conditions at the electrodes. We see that at z0 the potential is

φ0(2z2
0) and at r0 it is φo(−r2

0). Paul traps are often operated using a voltage of opposite sign on

the endcaps and ring; in other words φ(r0) =−φ(z0), and so we have r2
0 = 2z2

0. This condition is

not necessary for stable trapping, and we do not adhere to it strictly in this work—see chapter 5.

3We often invoke Laplace’s equation to show this: ∇ ·E = ∇ · (−∇φ) =−∇2φ . See, for example, [38].
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Endcap

Endcap

Ring Ring

Figure 2.1: An ideal Paul trap consisting of three electrodes. The top and bottom ‘endcap’ electrodes
are infinite hyperbolas of revolution about the z-axis, shown in cross section. The East/West
electrodes are hyperbolic cross-sections through a hypothetically infinite ring electrode. This
geometry produces in principle a perfectly quadratic potential in all directions. A typical rf
voltage arrangement is shown, whereby an oscillating voltage is applied to the endcaps while the
ring is held at rf ground. The hyperbolic cross-sections are described by r2

r2
0
− z2

b2
1

= 1 for the ring

and − r2

z2
0
+ z2

b2
2

= 1 for the endcaps. In this plot r2
0 = 2z2

0, as described in the text, and also the two

hyperbolas have the same asymptote, determined by the b-parameters, such that b2
2 = r2

0z2
0

b2
1

. See

[40]. Dimensions are arbitrary (although the r0 used is the real r0 in our trap).

However, for a general analysis of ion trapping theory we will use this approximation.

Over the years, Paul traps have moved further and further away from the ideal hyperbolic

electrode structure. Some alternative trap structures are mentioned in chapter 5, and the geometry

of a trap can be varied greatly depending on the intended purpose. For example, in our work we

are concerned with trapping single, laser-cooled ions. For this purpose we only require that the

quadrupole nature of the potential be maintained close to the trap centre, as we know that using

laser-cooling we can localise our ion there. Hyperbolic electrodes, therefore, are not necessary,

and we can design our electrode geometry in a way that gives, for example, better laser access, or

that can accommodate additional experimental apparatus. The type of trap used in our experiment

consists of two cylindrical electrodes, and two concentric ‘outer’ electrodes, recessed some distance

from the inner electrodes. This is known as an endcap trap, and is described in detail in chapter

5. The approximately quadrupole field generated by applying a voltage to one pair of electrodes

(it doesn’t matter which pair) can be determined by finite element analysis and the equipotentials
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of the field are shown for an arbitrary voltage in cross-section in figure 2.2(b). We can see in this

figure the potential starting to deviate from ideal quadrupole behaviour as we move far from the

centre. The potential distribution in the endcap trap is discussed in far more detail in chapter 6.

In our trap an approximately identical rf voltage of the form

φ0 = Udc +V0 cosΩrft (2.5)

is applied to the top and bottom endcap electrodes, and the ‘ring’ electrode is grounded. Udc is

the dc offset of the rf voltage. We have not used a dc offset on our rf electrodes, but we leave the

parameter in for the purpose of this general analysis. V0 is the 0–peak amplitude of the rf voltage

and Ωrf is its angular frequency.
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(a) Equipotentials in an ideal Paul trap (b) Equipotentials in an endcap trap

Figure 2.2: Figure (a) shows the ideal quadrupole potential in the Paul trap of figure 2.1, determined
analytically, while figure (b) shows, for comparison, the approximate quadrupole potential near
the centre of the endcap trap used in these experiments, calculated by finite element analysis.
We see that, provided we confine our ion to the centre of the trap, we can assume a quadrupole
potential. Note that the hyperbolic electrodes in figure (a) are not visible because the z0 parameter
of the ideal case differs from our z0.
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Figure 2.3: The ideal ‘saddle’ potential surface at two points in a half-cycle of the rf showing how a charged
particle is (a) trapped in the radial direction, and (b) trapped in the axial direction.

2.3 Equations of motion of an ion in a quadrupole field

The electric field is defined by

E =−∇∇∇φ . (2.6)

So we can construct an equation of motion for an ion in the radial plane, that is, the r-direction of

equation 2.4, and using the definition of the potential given in equation 2.5:

F = ma

⇒−e
∂

∂r
φr = mr̈

⇒ r̈+
e
m

∂

∂r
φr = 0

⇒ r̈+
e

mr2
0
(Udc +V0 cosΩt)r = 0. (2.7)

And similarly for the axial plane:

z̈− 2e
mr2

0
(Udc +V0 cosΩt)z = 0. (2.8)

If we make the following substitutions in these equations:

az =−2ar =
8eUdc

mr2
0Ω2 , (2.9)

−qz = 2qr =
4eV0

mr2
0Ω2 , (2.10)
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ζ =
Ωt
2

, (2.11)

then we can recast the equations of motion into Mathieu equations:

d2r
dζ 2 +(ar−2qcos2ζ )r = 0, (2.12)

d2z
dζ 2 +(az−2qz cos2ζ )z = 0. (2.13)

Stable solutions, that is, solutions for which r,z is finite as ζ → ∞4, are given by [41]

r,z(ζ ) = A
n=+∞

∑
n=−∞

C2n cos(2n±β )ζ +B
n=+∞

∑
n=−∞

C2n sin(2n±β )ζ , (2.14)

where the C2n represents an amplitude of motion and (2n±βζ ) represents a frequency. Equating

this latter with ωt and substituting equation 2.11, we have

ωz =
(2n±βz)Ω

2
, (2.15)

and

ωr =
(2n±βr)Ω

2
(2.16)

where Ω is as usual the angular frequency of the rf drive. For the fundamental frequency of

oscillation, n = 0 and ωr,z = βΩ/2. Higher harmonics are clearly allowed by the equations, and

indeed these sometimes show up in measurements of a trapped ion’s oscillatory spectrum.

We can see that at β = 0, the first non-zero frequency term is Ω, and for β = 1 the first term is

Ω/2. We can now define a stability region in a and q space. For each value of β in the stability

region, then, there is an associated fundamental frequency of oscillation.

This frequency is termed the secular frequency. The secular frequency is in contrast to a

second, high-frequency oscillation driven directly by, and having a similar frequency to, the trap rf.

This driven motion is termed the micromotion.

Solutions for β = 0 and β = 1 in terms of the a and q parameters are [39, 42]

a =−1
2

q2 +
1

128
q4− 29

2304
q6 +

68687
18874368

q8, (2.17)

and

a = 1−q− 1
8

q2 +
1
64

q3− 1
1536

q4− 11
35864

q5... (2.18)

Plotting a against q for the axial and radial directions gives us figure 2.4. The shaded area

represents stable trapping values of a and a for an ideal Paul trap.

4Stable here means that the amplitude of the motion of the ion is restricted for all times.



13 Radiofrequency Ion Traps

q
z

= 2q
r

a
z

=
 −

2
a

r

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

q
z

= −2q
r

a
z

=
 −

2
a

r

Figure 2.4: The first stable trapping region for an axially symmetric ideal Paul trap. This figure is a plot of
equations 2.17 and 2.18. That is, az(qz) for βz = 0,1, then ar(qr) = −2az(qz/2) for βr = 0,1,
where equations 2.12 and 2.13 provide the relation between az,ar,qz, and qr.

2.4 The Pseudopotential approximation

In this section we show how switching the potential on the electrodes of an ideal Paul trap generates

an effective potential well in both the radial and axial directions at the same time. This is known as

the pseudopotential.

Consider the equation of motion of the ion in the z-direction given by equation 2.13. The

amplitude of the motion at a given time can written as a sum of the secular and micromotion

amplitudes, Z and δ :

z = Z +δ , (2.19)

Now we make two assumptions; firstly that the micromotion amplitude δ is much smaller than

the secular amplitude Z, and secondly that the micromotion amplitude varies much faster than the

secular. With these assumptions, equation 2.13 can clearly be written as

d2δ

dζ 2 +(az−2qz cos2ζ )Z = 0. (2.20)

We further assume that az� qz and that the secular amplitude is constant over one cycle of the

rf oscillation. Now we can integrate equation 2.20 to give
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δ =−qzZ
2

cos2ζ , (2.21)

which we can rewrite as

z = Z− qzZ
2

cos2ζ . (2.22)

Substituting this into equation 2.13 gives

d2z
dζ 2 =−azZ +

azqzZ
2

cos2ζ +2qzZ cos2ζ −q2
z Z cos2ζ . (2.23)

We now consider the time average of the two motions over one cycle of the rf. Clearly the

micromotion averages to zero. The secular motion averages to

1
π

π∫
0

d2z
dζ 2 dζ . (2.24)

Now substituting d2z/dζ 2 from equation 2.23 we have

d2Z
dζ 2 =−(az +

q2
z

2
)Z, (2.25)

and using ζ = Ωt/2 we have

d2Z
dt2 =−

(
az +

q2
z

2

)
Ω2

4
Z. (2.26)

We can write this in another form

d2Z
dt2 =−ω

2
z Z, (2.27)

which describes simple harmonic motion at angular frequency ω . This enables us to identify ωz as

ωz =−
(

az +
qz

2

) 1
2 Ω

2
. (2.28)

If we recall that ω0 = βΩ/2, we can write β as

β
2 =

(
az +

q2
z

2

)
. (2.29)

In an ideal trap, of the form r2
0 = 2z2

0 the radial secular frequency is then given by ωz = 2ωr.

Substituting qz in equation 2.28 and assuming that az = 0, that is, no DC bias, we have

ωz =
2eV√
2mr2

0Ω
. (2.30)

2.5 The Trap Depth

We term the depth of the pseudopotential well the trap depth. The radial or axial depth of the well

here means the depth at the centre of the trap relative to that at the top of the well.
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Recall the definition of qz from equation 2.10. Letting the DC bias be zero, we have from

equation 2.26:

d2Z
dt2 =−

q2
z Ω2

8
Z (2.31)

=− 2e2V 2

m2r4
0Ω2 Z. (2.32)

If we now write this as

m
d2Z
dt2 =−e∇∇∇Φ, (2.33)

we can interpret the left side as the force produced by an electric field resulting from a pseudo

potential Φ. Let us denote the depth of this potential between z = 0 and z = z0 as Φz, so that

∇∇∇Φ = dΦz
dZ . Then we have

dΦz

dZ
=

2eV 2Z
mr4

0Ω2 = ∇∇∇Φ. (2.34)

Integrating this we have

Dz =
z=z0∫

z=0

dΦz

dZ
dZ (2.35)

=
eV 2z2

0

mr4
0Ω2 . (2.36)

2.6 Micromotion

At the trap centre, the electric field resulting from the rf drive is exactly zero. Equation 2.15 tells

us that the ion oscillates with some amplitude around the trap centre, and so experiences a force

resulting from the trap rf drive. This faster oscillation at the trap frequency is termed intrinsic

micromotion, since it is characteristic of the system, and can be reduced by restricting the ion’s

secular excursions from the trap centre (by laser cooling—see chapter 3). There is another form

of unwelcome micromotion, resulting from stray charges which can build up on dielectrics inside

the trap structure. These can push the ion off the trap centre and so generate what is termed excess

micromotion. We can reduce this by keeping dielectric surfaces well away from the ion, and again

by pushing/pulling the ion to the trap centre with dc voltages. The methods we use for compensating

for this excess micromotion will be described later.

We can describe the total amplitude of the ion’s motion in terms of the secular motion and

micromotion. Recall equation 2.21 where we describe the micromotion amplitude, given certain

assumptions, and equation 2.27 which shows that the secular motion can be written in simple

harmonic terms, Z = Asin(ωt), with A the amplitude of the motion. We can then write the total

amplitude z as
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z = Z +δ (2.37)

= Asin(ωzt)−
qzZ
2

cosΩt

= Asin(ωzt)
[
1− qz

2
cosΩt

]
. (2.38)

with A the amplitude of the secular motion. A plot of this motion for some typical parameters

in our experiment is shown in figure 2.5.
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Figure 2.5: The fast micromotion oscillation superimposed on the slower secular frequency, as described
by equation 2.37. Some parameters from our experiment were used: Ω = 2π×15 MHz, ωr =
2π×2 MHz, and qz was chosen to be 0.4. The amplitude is arbitrary. A = 1 in this case. Of note
is the fact that the micromotion amplitude increases as the ion moves away from the trap centre.



Chapter 3

Laser cooling

In 1975, Hänsch and Schawlow at Stanford University wrote: ‘We wish to point out that if the

laser radiation is essentially isotropic, but confined to frequencies on the lower half of the Doppler-

broadened absorption line of an atomic vapor, the gas can be cooled.’ [43]. With this simple

statement the field of laser cooling was launched. Wineland and Dehmelt at the University of

Washington independently proposed a scheme for laser cooling in the same year [44].

Ions in a trap must have less kinetic energy than the energy of the potential barrier formed by

the pseudoptential, and as we shall see in chapter 8 they must also be localised as much as possible

to prevent variations in the coupling strength between the ion and optical cavity. Experimental

laser cooling of trapped ions has been around since 1978, when Neuhauser et al. cooled a cloud of

Barium ions in a miniature Paul trap [45]. The theory and practice of laser cooling for both neutral

atoms and trapped ions has been extensively covered elsewhere—for a textbook see, for example

[46], for a theoretical treatment of the laser cooling of a single ion see Cirac et al. [47] or for an

extensive review of the field in 2003 with particular emphasis on trapped ions, see Eschner et al.

[48]. In this section, therefore, we will restrict the discussion to the principles of the specific laser

cooling technique we use in this work, following the straightforward approach given by Lett et al.

in [49].

3.1 The quantum hardware—Calcium

3.1.1 The 40Ca+ ion

Singly-ionised calcium holds great promise as the hardware of quantum computing—its lowest five

energy levels are already well-understood and accessible via commercially available or easily-built

lasers and it has a forbidden transition to the ground state from the metastable D3/2 state, giving

long optical qubit lifetimes.

The transitions of interest for laser cooling are shown in figure 3.1. The main cooling transition is

P1/2↔ S1/2, with P1/2↔ D3/2, P3/2↔ D3/2, and P3/2↔ D5/2 the so-called ‘repumper’ transitions,

so named because when, as dictated by the branching ratio, an ion is ‘shelved’ in the metastable

D3/2 or D5/2 states, it must be ‘repumped’ out of it to either the P3/2 or P1/2, from where it decays

quickly to the ground state.

In addition to the transitions shown, there are several other transitions available within this

17
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Figure 3.1: Partial energy level diagram of the 40Ca+ ion showing the first five lowest-lying levels. The
transitions we address in our experiments are marked, along with their wavelengths. Not to scale.

Transition Wavelength
(air)/nm

Rate/2π Lifetime

Electric Dipole
P1/2→ S1/2 396.847 20.7 MHz 7.7(2) ns
P1/2→ D3/2 866.214 1.7 MHz 94.3 ns
P3/2→ S1/2 393.366 21.5 MHz 7.4(3) ns
P3/2→ D3/2 849.802 0.2 MHz 901 ns
P3/2→ D5/2 854.209 1.6 MHz 101 ns

Electric Quadrupole
S1/2→ D3/2 732.389 0.14 Hz 1.16 s
S1/2→ D5/2 729.147 0.14 Hz 1.14 s

Table 3.1: Electric dipole and quadrupole transition wavelengths, decay rates and natural lifetimes of the
40Ca+ ion [50–52]. Uncertainties and accuracies differ because the various results originate from
different papers. Details can be found in [50].

energy-level structure. A summary of all the transitions, their wavelengths and rates is shown below

in table 3.1.

3.2 Doppler Cooling

In principle, Doppler laser cooling of a trapped ion is very straightforward—we tune a laser with

wavevector k to a wavelength slightly longer (‘redder’) than that of an atomic transition, ωab, so

that in the rest frame of an ion travelling towards the laser with velocity v, the laser frequency

is Doppler-shifted by a factor of 1± v/c. The ion, therefore, sees ‘bluer’ light, that is, closer to
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its resonance, and the probability of it absorbing a photon is higher. On absorbing a photon, the

atom can re-emit via stimulated or spontaneous emission. In the case of stimulated emission, the

photon is emitted back into the laser mode and so the momentum ‘kick’ received by the atom,

ρ = h̄k is cancelled out. Whilst the atom always absorbs a photon from the direction of the laser,

its spontaneous emission occurs isotropically. The net momentum transfer to and from the ion by

spontaneous emission therefore, is zero; however, there is a net transfer of momentum from the

laser to the ion, since this always occurs in the direction of k. The ion loses kinetic energy as a

result.

For the work described in this thesis, laser cooling is performed on the P1/2↔S1/2 transition in
40Ca+ (see figure 3.1 on page 18).

In order to understand the cooling mechanism we must first describe the laser-atom interaction.

We start with a brief introduction to the density matrix formalism of describing quantum states, and

then use it to obtain expressions for the force experienced by an atom in a laser field.

3.2.1 The Density Matrix Formalism

We consider the example of a two-level atom with a lower and upper energy states |a〉 and |b〉
respectively. In this case the orthonormal basis states spanning the Hilbert space are simply the

states |a〉 and |b〉. Then the state vector of the system can be written as

|ψ〉= Ca|a〉+Cb|b〉, (3.1)

with |Ca,b|2 the probabilities of finding the system is state |a,b〉.
An alternative and more versatile way to describe quantum states is by the density operator.

For a pure state this is simply the projector operator, for example

ρ̂ = |ψ〉〈ψ| (3.2)

and the matrix elements of this operator give us the density matrix. For the two-level system of

equation 3.1 we have matrix elements (
|C0|2 C0C∗1
C1C∗0 |C1|2

)
. (3.3)

The diagonal terms are the probabilities of the atom being in state |a〉 or |b〉, while the off-

diagonal terms represent coherent superpositions of the states. We can see that the trace Trρ̂ = 1

for a pure state.

The expectation value of the observable Ô is given by

〈Ô〉= Tr(ρ̂Ô), (3.4)

and the time evolution by

d
dt

ρ =
1
ih̄

[Ĥ, ρ̂]. (3.5)

The density matrix has the advantage that it can also be used to describe a statistical mixture of
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states. In this case the density operator is not simply the projector operator, rather it is

ρ̂ = ∑
n

pn|ψn〉〈ψn|, (3.6)

that is, the sum of each state’s density operator, weighted with its individual probability in the

ensemble. The time evolution of the density operator for a mixed state is also given by equation

3.5, and its trace is also equal to 1.

The advantages of describing a state using the density matrix over the wavefunction or state

vector are:

• It eliminates the arbitrary global phase factor that exists in a state vector description (the

states eiθ |ψ〉 and |ψ〉 are the same state. In the density matrix description this phase factor

disappears).

• It can describe mixed, as well as pure, states.

• It gives a somewhat intuitive view of the states of the system. For example, in a two-level

system the density matrix elements (1,1) and (2,2) represent the states |a〉 and |b〉.

3.2.2 The Optical Bloch Equations

We now consider how we may use the density matrix of a two-level system to make some specific

calculations.

First, we consider the combined Hamiltonians of an atom and its interaction with a light field:

Ĥ = Ĥ0 + ĤI, (3.7)

where the free atom Hamiltonian is given by

Ĥ0 = h̄ωa|a〉〈a|+ h̄ωb|b〉〈b|, (3.8)

h̄ωa,b being the respective energies of the states.

The dipole interaction Hamiltonian is given by

ĤI =−µ · Ê (3.9)

=−(|a〉〈b|+ |b〉〈a|)µabE, (3.10)

where µab is the dipole matrix element of the transition, given by µab = exab, if we assume the light

is polarised in the x-direction.

The electric field of the light is given by

E = E0 cosωt =
1
2

E0
(
e−iωt + eiωt) , (3.11)

and the Rabi frequency of the light driving the a→ b transition is defined as

Ω =
µabE0

h̄
. (3.12)
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We normally write the atomic raising and lowering operators |a〉〈b| and |b〉〈a| as σ̂+ and σ̂−

respectively, and so in the Heisenberg picture we can write the interaction Hamiltonian as

ĤI =− h̄Ω

2
(
σ̂+eiωabt + σ̂−e−iωabt)(e−iωt + eiωt) . (3.13)

Making the rotating wave approximation, we find

ĤI =− h̄Ω

2
(
σ̂+e−i∆t + σ̂−ei∆t) . (3.14)

where ∆ = ω−ωab.

We now make use of the time evolution of the density operator given in equation 3.5, adding a

term to represent spontaneous decay [53]:

d
dt

ρ̂ =
1
ih̄

[Ĥ, ρ̂]− Γ

2
[σ̂+σ̂−ρ̂−2σ̂−ρ̂σ̂+ +ρσ̂+σ̂−] , (3.15)

with Γ the spontaneous decay rate of the transition.

An equation of motion of a density matrix is known as a master equation, and in this form is

known as the Lindblad form. It can equivalently be written as [54]

d
dt

ρ =− i
h̄
[Ĥ, ρ̂]+

Γ

2
(2|a〉〈b|ρ̂|b〉〈a|− |b〉〈|bρ̂− ρ̂|b〉〈b). (3.16)

In general, a master equation can be written as

dρ̂

dt
= L ρ̂, (3.17)

with L the Liouvillian superoperator, which as we saw above can contain both pre-and post-

multiplications using several other operators.

For a two-level atom, the time evolution of the elements of the density matrix are described by

the optical Bloch equations [46]:

d
dt

ρ̂00 =−Γρ̂00 +
iΩ
2

(ρ̃10− ρ̃01) , (3.18)

d
dt

ρ̂11 = Γρ̂00−
iΩ
2

(ρ̃10− ρ̃01) , (3.19)

d
dt

ρ̃01 =
(

i∆− Γ

2

)
ρ̃01 +

iΩ
2

(ρ̂11− ρ̂00) , (3.20)

where we have made the susbstitution ρ̃01 = eiωt ρ̂01, and ∆ = ω−ωab, as before.

The steady-state solution to the optical Bloch equation for the excited state popuation is given

by [46]

ρ̂bb =
s0/2

1+ s0 +(2∆/Γ)2 , (3.21)

with s0 = 2Ω2/Γ2 the on-resonance saturation parameter.

The rate of transfer of momentum from the laser to the atom is determined by the steady state

solution 3.21 and the rate of spontaneous decay Γ:
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γ = Γρbb. (3.22)

The rate of momentum transfer is the force experienced by the atom for one photon, multiplied

by the scattering rate:

dρ

dt
= h̄k · γ, (3.23)

with the momentum ρ not to be confused with the density matrix ρ̂ .

So, using equation 3.21, we can now write the force on the atom as

F = h̄k · s0/2
1+ s0 +(2∆/Γ)2 . (3.24)

In the rest frame of the atom, the laser frequency appears Doppler-shifted to ωD

ωD =
(

1± v
c

)
= ω± kv, (3.25)

and the detuning ∆D as seen by the atom becomes

∆D = ∆± kv. (3.26)

Using this in equation 3.24, we have

F(v) = h̄k · s0Γ/2

1+ s0 +
(

2(∆±kv
Γ

)2 (3.27)

We can make a Taylor expansion of this force, around v = 0, and write the force as F = F0 +βv,

so

F0 =
h̄ks0Γ/2

1+ s0 +(2∆/Γ)2 , (3.28)

and

β =−4h̄|k|∆
Γ
· s0k
(1+ s0 +(2∆/Γ)2)2 . (3.29)

We conclude from this that for small atomic velocities, the laser force is composed of a constant

component, and a component that depends on the atomic velocity. The constant force is known as

the radiation pressure force, and the velocity-dependent component is a viscous damping force. For

cooling of neutral atoms, the radiation pressure force can be balanced out by a counter-propagating

laser.

By balancing the cooling rate with the heating rate produced by the recoil of the atom from

each emission event, it can be shown that the minimum temperature it is possible to reach is [49]

Tmin =
h̄Γ

2kB
, (3.30)

and this occurs at a detuning of ∆ =−Γ/2. In calcium this corresponds to around 0.5 mK.

Since
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1
2

mv2 =
1
2

kBT, (3.31)

we can write the minimum velocity as

vmin =

√
h̄Γ

2m
, (3.32)

corresponding to around half a metre per second in calcium.

This argument, which applies to a neutral atom, also applies to the Doppler cooling of a single

ion in a trap, although in a rf ion trap it is possible to cool a single ion using only one laser beam,

angled such that it addresses every possible direction of motion of the ion. The ions are not free

to continually move away from the laser, since the rf electric fields must always pull the ion back

towards the trap centre.

3.2.3 Three-Level Model - repumping on the 850 nm and 854 nm transitions

Consider the simplified three-level diagram of the calcium ion shown in figure 3.2. It is quite

straightforward to extend the master equation 3.16 to three levels, such as an atom with a metastable

D-state, which we will denote |m〉, by adding an extra term :

a

m

b

Figure 3.2: A simplified three-level model of the 40Ca+ ion.

∂ ρ̂

∂ t
=− i

h̄
[Ĥ, ρ̂]+

Γb

2
(2×|a〉〈b|ρ̂|b〉〈a|− |b〉〈b|ρ̂− ρ̂|b〉〈b|)

+
Γm

2
(2×|m〉〈b|ρ̂|b〉〈m|− |b〉〈b|ρ̂− ρ̂|b〉〈b|) . (3.33)

Provided the Liouvillian superoperator of section 3.2.2 does not change in time1, it is possible

to write the solution of the master equation as the sum of a series of complex exponentials of

the form es jt with each s an eigenvalue of the Liouvillian [55]. Once this is done, we can plot

1As it would do with pulsed light, for example.
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the expectation value for any element of the density matrix over time. Plotting the upper-state

population as a function of the detuning of the 866 nm repumper (section 3.1.1) reveals a dark

resonance at the point where the detunings of the 866 nm and 397 nm lasers are equal. The dark

resonance is the signature of a Raman transition between the D 3
2

and S 1
2

state, which bypasses the

P 1
2

state entirely. This is a situation which in our observation of continuous 397 nm ion fluorescence

we would like to avoid. So rather than repumping on the D 3
2
↔P 1

2
866 nm transition, we implement

an alternative setup, addressing the D 3
2
↔P 3

2
transition with a 850 nm laser, and the D 5

2
↔P 3

2

transition with a 854 nm laser (see figure 3.1 on page 18). This new setup entirely bypasses the

D 3
2
↔P 1

2
transition, avoiding any possibility of driving Raman transitions between those levels.

Implementing this repumper setup allows us to treat the system as effectively two-level, and we

will use this approximation in chapter 7, together with the two-level optical Bloch equations, to

calculate the upper-state population.
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Figure 3.3: A dark resonance occurs when the detunings of the 397 nm and 866 nm laser are equal, as shown
in this three-level simulation. Here, the detuning of the 397 nm laser is fixed at 0.5 ·Γ, and
the detuning of the 866 nm laser is swept. We see the upper state population drop to zero as
the 866 nm detuning passes 0.5 ·Γ. This situation is avoided if we repump on the 854 nm and
850 nm transitions. In this way we decouple the metastable D-state from the P-state and create
an effectively two-level system.



Chapter 4

Cavity Quantum Electrodynamics

Cavity quantum electrodynamics (CQED) describes how the radiative properties of atoms are

modified by the proximity of boundaries to the electric field. It dates from E.M. Purcell’s discovery

in 1946 that the probability of nuclear magnetic moment transitions can be enhanced by coupling

the system to a resonant electrical circuit [56]. In general terms this has become known as the

Purcell Effect and refers to the effect on atomic lifetimes of modifying the boundary conditions

on the vacuum around the system. An early review paper by Serge Haroche gives a very readable

introduction to the field [57].

In the context of ion trap experiments, we refer to optical cavity QED. Optical because we

place around the ion an optical cavity, usually consisting of two highly reflective mirrors. The

confinement, high degree of localisation, and isolation from the environment available in an ion

trap provides the ideal setting in which to test CQED theories and concepts.

In this chapter we first recap the general theory of optical cavities, before moving on to describe

how simply placing a cavity around a radiating particle is able to dramatically alter the properties

of the radiating atom. In general, detailed explanations of cavity-QED can be found in [58–60].

4.1 Optical cavities

We start by considering the simplest kind of cavity, that is, the Fabry-Pérot cavity. This consists of

two mirrors placed parallel to each other a distance L apart. An electric field in the cavity must be

zero at the boundaries, that is, the mirrors, and so a standing-wave is produced inside the cavity

when the following condition is met:

L = n
λ

2

= n
πc
ω

, (4.1)

Rearranging equation 4.1 for ω gives us the frequencies of the standing waves allowed in a

cavity of length L. These frequencies are termed axial, or longitudinal modes:

ω = n
πc
L

, (4.2)

25
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L

Input field Output field

M1 M2

Figure 4.1: Schematic drawing of a Fabry-Pérot cavity formed of two concave mirrors M1 and M2, with
radii of curvature R1 and R2. The cavity losses due to the transmissivity of the mirrors, T1 and T2
are shown, with the cavity losses due to absorption and scattering by the mirrors represented by
S1 and S2.

and the free spectral range of the cavity is the frequency spacing of its longitudinal modes:

FSR =
c

2L
. (4.3)

The spatial distribution of the electric field inside the cavity can be decomposed into a longitud-

inal mode function Φ(x,y,z) and two transverse mode functions Ψn(x,z) and Ψm(y,z):

Enm = (x,y,z) = E0Ψn(x,z)Ψm(y,z)Φ(x,y,z), (4.4)

with E0 the amplitude of the electric field. The transverse electromagnetic (TEM) modes are

labelled with the indices n and m

The transverse mode structure is defined by the Hermite polynomials Hm and Hn where each

combination of the integers m and n define one particular transverse electric field distribution. A

detailed derivation of these mode functions can be found in [61]. Let us assume that the cavity’s

axis is aligned along the z-direction, then the transverse mode structure is given by

Ψm,n(x,y,z) =
√

w0

w(z)
Hm,n

√
2(x,y)
w(z)

exp
(
−x2 + y2

w2

)
, (4.5)

where w(z) is the radius of the mode at the axial point z, such that

w(z) = w0

√
1+
(

z
zR

)2

, (4.6)

where zR = πω0/λ is the Rayleigh Range, and represents the distance one must travel axially along

the beam such that the area of the cross-section is doubled. w0 is the beam waist.

The first Hermite polynomial is given by
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H0 = 1, (4.7)

so that equation 4.5 becomes

Ψ00(x,y) =
w0

w(z)
exp
(
−x2 + y2

w2

)
. (4.8)

This TEM00 mode is known as the fundamental or Gaussian mode. It has the smallest possible

beam waist and the smallest divergence.

The longitudinal field mode function is given by [61]

Φ(x,y,z) = sin
(

kz− (1+n+m)arctan
z

zR
+

k(x2 + y2)
2R(z)

)
, (4.9)

where the wavenumber k = 2π/λ and R is the radius of curvature of the wavefront, such that

R(z) = [1+(zR/z)2]. (4.10)

The factor arctan(zR) represents the relative phase difference between the TEM00 Gaussian

mode and a plane wave of the same frequency. The resonance condition is that the phase shift of a

wave after one round trip of the cavity must be an integer multiple of 2π . The resonant frequencies

of modes given by the transverse mode indices m, n, and the longitudinal mode index q, which

must be a positive integer, are given by

νnmq = νFSR

[
q+

1
π

(1+n+m)arccos
(

1− L
Ri

)]
. (4.11)

Equation 4.11 tells us that in a confocal cavity, where L = Ri, transverse modes TEMnm and

TEMmn are degenerate.

4.1.0.1 Cavity types and the conditions for ‘stability’

There are several types of optical cavity, defined by the radii of curvature of the two mirrors, R1 and

R2, and the distance between them, L. A summary of some important cavity types is given here.

• Plane-parallel: R1 = R2 = ∞.

• Symmetric cavities: R1 = R2 = R.

• Confocal symmetric cavities: R1 = R2 = L.

• Concentric cavities: L = R1 +R2.

• Half-symmetric cavities: R1 = L,R2 = ∞.

We can use ray transfer matrices to treat the passage of a ray through the cavity. If we stipulate

that the beam must reproduce its original shape after one round-trip of the cavity, then, after some

matrix algebra (see, for example [62, Ch. 8]), we arrive at the condition

0 < (1−L/R1)(1−L/R2) < 1. (4.12)
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We define the cavity stability parameters

g1 = 1− L
R1

(4.13)

g2 = 1− L
R2

. (4.14)

So the stability condition becomes

0 < g1g2 < 1. (4.15)

This, then, is the condition for the existence of a low-loss standing wave in a cavity1. We must

bear this condition in mind when deciding on cavity parameters. A representation of the stability

criteria is shown in figure 4.2, along with the position of three stable cavity types. Any cavity that

exists in the parameter space represented by the grey-shaded area will be stable, and we can see

that stable symmetrical cavities lie along the g1 = g2 line.
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Figure 4.2: The cavity stability diagram, defined by the lines g1g2 = 1.

4.1.1 Finesse

The parameters most often used to characterise optical cavities are the free spectral range of equation

4.3, and the spectral width of the TEM00 cavity resonance. We measure the latter as the full-width

at half-maximum δν in frequency units of the cavity resonance, or alternatively as the half-width

at half-maximum κ in angular frequency units. In this form, and in the field of cavity-QED we

usually term κ the cavity field decay rate, or the cavity linewidth. The relationship between δν and

κ is therefore

1This has nothing to do with the stability of the cavity per se, rather it is the condition for the cavity to support
low-loss Gaussian-Hermite modes. ‘Stability’, however, is the common term for this.
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κ =
2πδν

2
. (4.16)

The finesse of the cavity F is given by the ratio of the FSR to the cavity linewidth

F =
FSR
δν

=
2πFSR

2κ
, (4.17)

or alternatively

F =
2π

LTot
, (4.18)

with LTot the total round-trip loss, = T1 +T2 +S1 +S2.

The cavity decay rate κ depends on the total cavity losses, and the cavity length, as

κ =
cLTot

4L
=

πc
2LF

. (4.19)

The cavity finesse is entirely determined by the cavity losses, and so essentially describes the

quality of the mirrors. When a photon hits a mirror, it is either transmitted or reflected and this does

not depend on the length of the cavity. Finessse can be extremely high—Rempe et al. measured a

finesse of 1.9×106 in 1992, with mirrors of transmissivity 2 parts per million (ppm) [63].

The finesse divided by π gives us the average number of times a photon crosses the cavity

before it is lost, that is, the number of times the photon passes a trapped ion.

A typical cavity, which we use in our experiment, might have the following parameters:

• T1 = T2 = 30 ppm or 30×10−6

• Cavity length L≈ 300 µm

• FSR = c/2L≈ 500 GHz

• Finesse F ≈ 100,000

With these numbers, figure 4.3 shows the influence of the absorption and scattering losses S1,S2

on the cavity transmission. This is an important consideration for the cavities considered in this

thesis, and will be touched on in later sections.
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Figure 4.3: Transmission as a ratio of input intensity for a cavity with the parameters given in the text, and
for the case of no, 10 ppm, and 30 ppm absorption/scattering (A/S) losses. The figure of 30 ppm
is a pessimistic estimate of losses in a cavity of the type which will be described later in this
thesis.

4.2 Atom-Cavity Interaction

In the theory of quantum electrodynamics, which quantises the electromagnetic field, each mode

of the field can be associated with a quantum harmonic oscillator and photons are interpreted as

elementary excitations ‘inside’ these oscillators, or modes. Each oscillator may in principle contain

from zero to an infinite number of excitations. The standard result of treating the simple harmonic

oscillator quantum mechanically [64] gives the energy of the oscillator as

En =
(

n+
1
2

)
h̄ω, (4.20)

and this imposes a quantisation on the energy contained in the electric field in a cavity. The energy

in any mode of the field, oscillating at angular frequency ω can be represented by an integer value

n in equation 4.20. In this case there are n quanta of energy in the mode of the field2.

The Hamiltonian of each of these oscillators, or modes, reads

Ĥ = h̄ω

(
â†â+

1
2

)
, (4.21)

where we define the photon creation and annihilation operators â† and â as respectively increasing

and decreasing the number of photons in the mode by 1. Furthermore, we define the number

operator

n̂ = â†â, (4.22)

which has as its eigenstates the photon number states |n〉, or ‘Fock States’. Each photon number

2Detailed accounts of the theory of quantum electrodynamics can be found in [59] and [60]
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state represents an elementary excitation in the mode. The annihilation and creation operators obey

the following relations:

â†â|n〉= n|n〉 (4.23)[
â, â†]= 1 (4.24)

â†|n〉=
√

n+1|n+1〉 (4.25)

â|n〉=
√

n|n−1〉, (4.26)

and any Fock state can be generated by applying the creation operator to the ground state |0〉 as

|n〉= a†n
√

n!
|0〉. (4.27)

Equation 4.21 also reveals the energy offset of the vacuum state—we see that even if the

eigenstates of the photon number operator are zero (no photons in the mode), the vacuum still

possesses an energy h̄ω/2. It turns out that the expectation value of the electric field is zero in all

photon number states. The average energy density, however, is non-zero for all states, including the

vacuum state.

4.2.1 The Jaynes-Cummings Model

Input field Output field

M1 M2

L

Figure 4.4: An atom in a cavity with the loss mechanisms indicated. Here, S1 + S2 are the combined
absorption and scattering losses of both mirrors. Γ is the (spontaneous) emission of the atom
into modes other than the cavity mode. g is the coherent atom-cavity mode coupling rate.

The coupling of a single two-level system, such as a trapped ion, with a single quantum harmonic

oscillator (a single mode of the quantised cavity field) is described by the Jaynes-Cummings model

[65, 66]. For this simple model, we assume that only one mode of the cavity is populated with
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photons, and that this mode only interacts with the two levels of the atom, not any other levels. We

also assume no dissipative processes, such as spontaneous emission or cavity losses.

A two-level system is often termed a spin system by analogy with a spin-1/2 system evolving

between two spin eigenstates |a〉 and |b〉 created by a magnetic field oriented along a z-axis. We

make use of the atomic raising and lowering operators, σ̂+ and σ̂− of section 3.2.2 on page 20, to

represent the transition of the atom from the lower to the upper, or excited state, and vice versa.

The operators have the properties:

σ+|a〉= |b〉 (4.28)

σ−|b〉= |a〉 (4.29)

σ+|b〉= 0 (4.30)

σ−|a〉= 0 (4.31)

We write the Hamiltonian of the entire system as

Ĥ = Ĥa + Ĥc + ĤInt (4.32)

where Ĥa, Ĥc and ĤInt represent respectively the energies of the atom, the cavity mode, and the

interaction.

The Hamiltonian for the atom is given by [59]:

Ĥa =
h̄ω

2
σ̂+σ̂−, (4.33)

where ω/2π is the atomic transition frequency.

The Hamiltonian for the cavity is Ĥc = h̄ω n̂, where we have set the vacuum energy to be zero

for simplification—we are aware that there is actually a h̄ω/2 offset everywhere.

The electric field in a cavity can be written as [59]

Ê = iE0
[
f(r)â− f∗(r)â†] , (4.34)

where f(r) is a function describing the electric field amplitude and polarisation across the mode (see

the mode functions of equation 4.4 ). At the electric field maximum we normalise this expression

so that f(r) = 1. The mode volume is

V =
∫
|f(r)|2d3r, (4.35)

and the normalisation

E0 =

√
h̄ω

2ε0V
, (4.36)

is the r.m.s. electric field amplitude of the vacuum for an angular frequency ω and mode volume

V . ε0 is the usual permittivity of the vacuum.

The dipole interaction Hamiltonian is then written as
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HInt =−µab (σ̂+σ̂−) · iE0
(
â− â†) . (4.37)

Here, µab is the dipole matrix element of the atomic transition. If we expand this scalar

product we find that the terms proportional to σ̂−â and σ̂+â† correspond to non-resonant processes

(transition from |b〉 to |a〉 with the annihilation of one photon, and transition from |a〉 to |b〉 with

the creation of one photon), and in the case that the cavity mode and atomic transition angular

frequencies are close, then we can neglect these terms. This corresponds to the rotating wave

approximation. The Hamiltonian then becomes, in a frame rotating with the laser frequency:

HInt =−ih̄
Ω0

2
[âσ̂+− â†

σ̂−], (4.38)

where

Ω0 =
2µabE0

h̄
(4.39)

is the vacuum Rabi frequency, which can be thought of as proportional to the interaction energy

of an atomic dipole with a classical field having an r.m.s. value of the vacuum field. Generally we

quantify the strength of coupling between the atom and the single field mode as

g =
Ω0

2
=

µabE0

h̄
. (4.40)

This is the rate at which single excitations are coherently exchanged between the atom and the

single field mode.

4.2.2 Dressed States

For the purposes of this experiment we consider a single ion and a single photon, so that the possible

states are |a,0〉, |b,0〉, and |a,1〉, with the 0,1 referring to the number of photons in the cavity mode.

For a resonant light field, the states |a,1〉 and |b,0〉 are degenerate. The interaction with the cavity

causes a mixing of the states—the cavity field ‘dresses’ the bare states—such that the eigenstates of

the coupled system become

1√
2
(|a,1〉± |b,0〉). (4.41)

The energy difference between the states is given by 2h̄g = h̄Ω0. This is the so-called vacuum Rabi

splitting [67].

In reality, there are dissipative processes in the system—spontaneous emission into modes other

than the cavity mode and the other loss processes shown in figure 4.4. We now move on to quantify

what we mean by a ‘large’ vacuum Rabi splitting, in terms of the size of the coherent coupling

parameter g relative to these losses.
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Figure 4.5: The ‘dressed state’ of the degenerate |a,1〉, |b,0〉 level at zero detuning resulting from the
atom-cavity interaction is a splitting of magnitude h̄Ω0.

4.2.3 Coupling Regimes

The proposal of Cirac and Zoller for a quantum network in [31] depends critically on the photon

generation process being reversible, that is, a photon is emitted from an atom in a trap, transmitted

along an optical fibre before entering an identical trap and mapping the state of the original atom

onto the new atom. The key is the reversibility of the emission of a photon into the cavity mode,

as compared to the irreversibility of the emission of the photon into the many alternative vacuum

modes, or the loss of a photon through the mirror coating (the cavity decay rate). The irreversibility

comes from the random coupling of the atom to the non-cavity modes—if a photon is emitted into

one of these modes, we can’t get it back. In the reversible regime, however, the atom emits a photon

into the cavity mode, it bounces back and forth between the cavity mirrors and is re-absorbed by

the atom, thus exactly reversing the emission process. Eventually the cavity photon must leak out

of the cavity due to the finite reflectivity of the mirrors, but if it leaks out into one end of an optical

fibre, the other end of which is connected to an identical cavity, then it can ‘leak in’ to the identical

cavity mode and be absorbed by an identical ion, thus reversing the emission but in a different ion.

We characterise three coupling regimes by comparing the coupling rate g with the cavity loss

rates to spontaneous emission Γ and the cavity decay rate κ of equation 4.19, which depends on the

cavity loss rates and the length of the cavity.

If the reversible emission of photons into the cavity mode is faster than κ and Γ, the spontaneous

emission rate, then we are in the strong coupling regime.3

The second regime of interest is the ‘bad-cavity regime’, in which κ � g� Γ. In this regime,

decay of the photon through cavity losses occurs faster than the atom can re-absorb a cavity photon,

and no vacuum Rabi splitting would be observed. However, emission into the cavity mode still

dominates spontaneous emission, and as such this regime could satisfy the requirements of a

quantum communication device.

If both the spontaneous emission rate and the cavity losses are greater than g, then we are in the

‘weak-coupling regime.’

Experimentally, the vacuum Rabi splitting could be observed in the transmission spectrum of

a cavity locked to the atomic resonance as we sweep the frequency of the input laser field to the

cavity. We would observe two peaks in the spectrum, as the laser sweeps over the two frequencies

of the split. To observe this, we need the split to be as large as possible, and so from equation

3One point worth mentioning regarding an N-atom case is that the splitting of the dressed states becomes 2g
√

N and
so the conditions for strong coupling are relaxed by a factor of

√
N.
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4.40, we require E0, or the dipole matrix element of the transion to be large. At optical frequencies,

this amounts to increasing E0, which in turn requires the cavity mode volume V to be decreased.

The reduction of the cavity mode volume is the motivation for the design of the experimental

apparatus described in chapter 5. We must also work to minimise loss mechanisms, which in

practice means making the quality of the mirror coatings as good as possible. By using specialist

coating companies4, it is possible to achieve mirrors with transmissivities of a few ppm. However,

since we want to transmit our photon, it must leak out of the cavity eventually, so the transmissivity

must be carefully chosen so that a high coupling rate is achievable, given what we know about the

spontaneous emission rate of the atom and the possible cavity volumes, whilst still allowing us to

extract a cavity photon. This process, along with calculations of potential cavity lengths, will be

covered in chapter 8. In general, along with highly-reflective mirror coatings, cavity lengths of a

few hundred microns are required.

Cavity parameters as a function of cavity-QED parameters are discussed in chapter 8.

4.2.4 Experimental realisation of strong coupling

A 2006 review of many significant experiments in both the weak and strong coupling regimes of

CQED concentrating mostly on single atoms can be found in [68].

Strong coupling was achieved in the microwave domain in 1987 by Rempe et al. in Garching. A

beam of Rubidium atoms was strongly coupled to the field in a superconducting microwave cavity.

Rydberg atoms such as these have been used because of their very large dipole matrix elements,

and long atomic lifetimes. One disadvantage to using Rydberg atoms is that it is harder to detect

microwave photons and the experiments have relied on detecting atoms exiting the cavity.

In general, the coupling parameter g varies throughout the cavity, as the electric field of the

cavity standing wave varies. For quantum information processing, we would like the coupling to

be constant and predictable, and this is one reason for pursuing strong coupling in the trapped ion

context, where we can localise an ion precisely in the centre of a node of the standing wave, where

the coupling is strongest. Strong coupling has been realised using trapped ion Coulomb crystals

by the group of Michael Drewsen in 2009 [69]. They were able to achieve strong coupling with

crystals of over 500 ions and a cavity length of 11.8 mm.

Strong coupling has been achieved with other systems, such as a single quantum dot (2004)

[70], and a micromechanical resonator (2009) [71], and the field is extremely active. An interesting

new approach just suggested by Chang and Kimble [72] proposes a cavity formed of a lattice of

atoms, with the cavity atom an impurity in the lattice.

To date, nobody has achieved strong coupling with single trapped ions, although the boundary

has been reached [73].

4Advanced Thin Films, Boulder, CO.



Chapter 5

Experimental Setup

We discussed in chapter 1 the idea of implementing a trapped-ion/single-photon system, and we

saw in chapter 4, how placing a very small optical cavity around the ion can produce the coupling

between the trapped ion and the cavity light field necessary for reversible single-photon production.

With the idea of a miniature optical cavity firmly in mind then we now move on to describe our

experimental setup.

Central to the experiment is a miniature ion trap of a unique design, such that an optical cavity

consisting of the end facets of two optical fibres can be introduced within around 200 µm of the

ion, critically with no degradation of the trapping potential.
This chapter describes the overall physical setup of the experiment. Firstly, the production

of the ions through photoionisation of calcium atoms is described, and a description of the lasers

used to address the ions is given. The ion trap itself is described, starting with the critical trapping

region and moving outwards through the supporting construction to the attendant rf electronics

and vacuum systems. Finally, fluorescence detection and computer control systems are described.

Where the setup differs from this basic layout, it will be described in the relevant chapter.

5.1 Overview

Figure 5.1 shows a top view schematic of the main components of the optical setup. At the centre

of the figure is the octagonal vacuum chamber housing the trap—see section 5.6. Also inside

the vacuum is a resistively-heated oven, filled with calcium powder. A current of around 1.8 A

is passed through the oven, causing evaporation of calcium atoms into the trapping region at the

centre of the trap. The direction of the atomic flux is indicated with an arrow. Lasers are directed

through the chamber windows into the central region where a two-stage photoionisation process

takes place followed by Doppler cooling of the resultant ions. The cooling lasers1 cause the

ions to emit fluorescence which we detect with a free-space photomultiplier tube (PMT)2, and

an electron-multiplying charge-coupled-device camera (EMCCD). For some experiments other

detection schemes were used, and these will be described where they arise.

1Labelled beams 1, 4, 6 and 7 as the 1st, 4th, 6th and 7th beams in our 397 nm laser system.
2‘Free-space’ here means the PMT is outside the vacuum—the photons are detected after passing through the chamber

windows to the atmosphere.

36
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Figure 5.1: A top view of the main optical setup.
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5.2 Fluorescence detection and computer control

5.2.1 Fluorescence detection

Fluorescence from a trapped ion is collected by two methods in our setup. The eight available

windows and excellent optical access of the trap means that we are able to ‘look’ from more than

one direction at the same time. We use a photomultiplier tube (PMT)3 to count photons, and an

electron multiplying charge coupled device (EMCCD) camera4 to image the ions. Referring again

to the optical table schematic shown in figure 5.1, let us refer to the window through which the

EMCCD camera looks as the front of the trap. The lens system used to collect light from the ion

is practically the same for the PMT and the EMCCD camera. A Nikon Measurescope objective

lens of ten times magnification is mounted on an translation stage allowing movement along the

optical axis and placed immediately in front of the front trap window and also the PMT window.

Attached to these lenses are 22 cm pieces of light-tight tubing. Inserted in each tube is a Semrock

FF01-395/11-25 bandpass filter. This ensures that only light of the fluorescence wavelength makes

it to the detector (the filter is not perfect—for an examination of its transmission of 866 nm light,

for example, see section 7.3.2 on page 104).

5.2.1.1 The PMT

On the PMT side of the trap, the tubing terminates in a small hole mounted in an adjustable

xyz-stage (visible in figure 5.2(a)). This allows us to focus more easily on the central trap area.

Once this is aligned a further pinhole is inserted, to block unwanted scattered light, followed by the

Semrock filter. Aligning the whole PMT setup then follows this procedure:

• Look at the pinhole mount with a CCD camera positioned very close to the mount (figure

5.2(a). Focus the CCD on the mount.

• Focus the image of the trap electrodes on the plane of the mount (figure 5.2(b)) by translating

the objective lens back and forth. Now, the electrodes are imaged onto the plane of the mount

(as can be seen in figure 5.2(b).

• Move the mount hole using the xyz-stage so that the image of the electrodes is in the centre

of the hole. That is, the centre of the trap is in the centre of the hole.

• Remove the camera, place a pinhole (150 µm in this case) and the Semrock filter into the

mount, and attach the PMT.

This procedure guarantees that the PMT can see the central trapping region, however, since

moving the pinhole by 1 mm corresponds to a moving a distance of 100 µm inside the trap it’s clear

that if the pinhole is even half a millimetre away from the optimal point on the outside, it could

be 50 µm away on the inside and as a result the PMT may entirely miss the ion’s fluorescence.

Consequently a considerable amount of effort has been expended in systematically searching for

ions by stepping the pinhole over the central trap region. We have found that over timescales of

3Hamamatsu H7360-02.
4Andor Luca S.
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weeks the pinhole position drifts and has to be realigned. As a result we have chosen not to use

pinholes smaller than 150 µm, although doing so would have resulted in lower background light.

Some important characteristics of this PMT are its sensitivity to our wavelength of light, its

dark count rate, and its dead time 5. The two-photon resolution of this PMT is quoted as 18 ns. This

corresponds to a possible count rate of around 55 MHz, which is well above the rates we measure

from a single ion. This feature, therefore, is not a concern. The dark count rate is specified to be

60–300 s−1. Turning to sensitivity, this is specified as 4.1×10−5s−1pW−1 at 400 nm, and so we

can define its quantum efficiency as:

Qeff =
count sensitivity at 397 nm in number of photons per second per pW

real number of photons in 1 second per pW

=
4.1×105 s−1pW−1

2.0×106 s−1pW−1

= 20% (5.1)

(a) (b)

Figure 5.2: The alignment setup for the PMT. (a) - an image of the trap is focused onto a plane formed by a
metal pinhole held in place on a xyz-stage, and (b) - the magnified image of the trap can be seen
through the hole.

The influence of the solid angle subtended by the window (more precisely the brass clamp

aperture—see section 5.4.8.1 dominates the collection efficiency of the setup, with the quantum

efficiency of the PMT a distant second. One suggestion for improvement of collection efficiency

would therefore be bigger windows (which means a bigger chamber). In order to take advantage of

bigger windows however, we would also need an objective lens with a bigger numerical aperture,

so the question comes down to machining costs and equipment costs.

5.2.1.2 The EMCCD Camera

For imaging trapped ions we have chosen to use an EMCCD camera. The significant advantage

of EMCCD over mainstream CCD technology is that signals are amplified before reaching an

amplifier, that is, on the CCD chip itself. This means that extremely low signal levels can be

amplified above the noise of the amplifier.

5Dead time is the length of time the detector is ‘dead’ after detecting one photon and before becoming ready to detect
another one.
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As with the PMT, a Nikon measurescope objective lens of ten times magnification produces

an image at the plane of the camera chip. A Semrock filter, as used in the PMT setup, is placed

in the tubing just before the camera to filter unwanted light. It was found that, especially at high

EM gain, spots of scattered 866 nm light were visible, so a small mirror, coated to reflect 866 nm

light (‘B’-coating), was placed in the tubing before the camera and reflects any stray 866 nm light

back into the chamber. It was found that with this objective lens, one pixel on the camera’s display

corresponded to approximately 1 µm in the plane of the ion.

The camera has been most useful during the times when the position of the PMT has drifted

over time. Locating an ion first with the camera then optimising the PMT position has proved

to be a relatively quick means of recovering from some misalignment or rearrangement of the

experiment.

5.2.2 Generation of calcium ions

4s2 1S
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4s3d 1D
2

4s4p 1P
1

4s5p 1P
1
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Figure 5.3: Energy levels and transition wavelengths in neutral calcium showing two possible photoionisation
schemes. In scheme 1 intense 272 nm light is used in a three-stage process including decay
on the 672 nm transition. Scheme 2, which we use, is a two-stage process on the 423 nm and
389 nm transitions. Energy levels are not to scale.
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Neutral calcium has an atomic number of 20, and is shown in the yellow column in figure 5.3,

with some of its neighbouring alkaline earth elements. Like these elements, for example beryllium,

magnesium or strontium, calcium has two valence electrons, and preferentially loses one or two

electrons to become singly or doubly ionised. The most abundant isotope—40Ca—has 20 protons

and 20 neutrons in its nucleus, and consequently no nuclear spin and no hyperfine structure. This

isotope represents 96.94% of naturally occurring calcium.[74]

Calcium atoms are generated in the trap oven as described in section 5.3. There are several

ways of generating ions from an atomic source in an ion trap. Electron bombardment, as its name

suggests, bombards the calcium atoms with high-energy electrons. A more efficient alternative is

the two-stage resonance-enhanced photoionisation process first demonstrated in 1999 by Kjaergaard

et al.[75]. This is the method used in our work. The 4s2 1S0↔ 4s4p 1P1 transition shown in figure

5.3 is excited by a 423 nm laser at 45◦ to the atomic beam. Exact wavelengths of all the lasers we

use are shown in appendix A. The electron is then promoted to the continuum by a 375 nm laser.

The exact wavelength of this laser is not critical, provided it is less than around 389 nm, and in fact

an incoherent source has been used for this purpose by Lucas et al. in 2003 [76]. The two lasers are

overlapped and focused to a spot size of approximately 200 µm at the trap centre.

Photoionisation has several benefits over electron bombardment ionisation, some of which are:

• The isotope shifts in calcium are larger than the 423 nm laser linewidth, meaning we can

selectively ionise only 40Ca.

• Atoms of other elements that may exist in the trap will not be (resonantly) ionised.

• It is around five orders of magnitude more efficient than electron bombardment [77].

• As a result of the increased efficiency, the atomic beam flux can be decreased.

• An electron beam can charge up dielectrics inside the trap.

Details of the lasers used and their configuration can be found in appendix A.

5.3 The endcap ion trap

The ion trap used in the work presented here is pictured in figure 5.4. It is a miniature three-

dimensional Paul trap [32] based on the endcap design originally described by Schrama et al. [78]

in 1993, and implemented since by, for example, Roberts et al. [79] and Wilson [80]. Our trap

differs from this plan in that the central rf electrodes are hollow, rather than solid, tubes. This

unique design allows the insertion of a fibre-based optical cavity into the actual trap electrodes.

A useful way of thinking of this design is as an extension of the ring trap design [81], which

consists of a ring, to which an rf voltage is applied, and two endcaps with hyperbolic surfaces of

revolution—in the endcap trap we can imagine the rf ring being split in two and pulled back over

the two endcaps. These two endcaps become the rf electrodes in the new trap, and the two halves

of the ring become ground electrodes. Alternatively, we can imagine the more extreme ring trap

demonstrated in [82], which consisted only of a ring, surrounded at a distance with metal plates to

which a dc voltage could be applied. We could imagine the ring in such a trap being split in two
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Figure 5.4: The Endcap Trap.

and pulled apart to form the two hollow electrodes, and then just adding ground electrodes around

them.

The effect of the outer electrodes is dramatically shown in the simulations of section 5.4.6 on

page 51, where we see that the trap depth is enhanced by their presence.

The geometry of the endcap trap means that the potential produced is not the ideal quadrupole

potential of equation 2.2 on page 8. For a non-ideal trap we must use a more general expression for

the potential distribution [81]:

Φ =
∞

∑
l=0

A2l(x2 + y2 + z2)lH2l(x,y,z), (5.2)

where H2l are spherical harmonics, and A2 are expansion coefficients.

Near the centre of the trap, the potential expansion is dominated by the quadrupole potential,

and so can be approximated by equation 2.2. Further from the centre, however, higher-order terms

in the potential become significant and a trapped ion’s motion at this point would no longer be
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entirely harmonic. Since in this work we are only concerned with single laser-cooled ions held

very close to the centre of the trap, we will neglect this concern and assume an approximately

quadrupole potential distribution.

The influence of the higher-order potential terms causes another concern in the endcap trap—we

must drive the trap with a higher rf amplitude to achieve the same secular frequencies as in an ideal

trap. This increase in voltage can be characterised as the ‘voltage loss factor’, which we can think

of as a loss of power to higher-order potential terms. Schrama et al. found the voltage loss factor of

a trap geometry consisting only of two cylinders to be 3.5, and of an endcap trap consisting of two

cylinders and two grounded electrodes to be 1.7 [78].

The relatively minor drawback of the voltage loss factor is outweighed in this case by the

improved optical access to the trap. We are able to address a trapped ion with lasers at angles of up

to 20% above and below the radial plane.6

5.4 Simulations

A number of simulations of the trap geometry and parameters have been carried out using the finite-

element program Femlab, controlled from a Matlab front-end. These have enabled us to predict the

effect on the trapping potential of parameters such as the distance the fibres are recessed within the

inner electrodes, the inner electrode separation and the rf amplitude. From these simulations we

can extract the trap depth, as defined in chapter 2.5 and the secular frequencies of the trap under

various conditions. These simulations were used to define the physical dimensions used in the trap.

5.4.1 The electric field and rf potential

Figure 5.5 shows a plot of selected electric field lines7 in the central area of interest within the

endcap trap. These are the lines along which the resultant force is directed. If we imagine the

direction of this force changing with every rf half-cycle, then we can easily see how a charged

particle is trapped at the centre.

Figure 5.6 shows a snapshot of the electric potential resulting from the field. In the cross-

sections we can see the quadratic nature of the potential quite clearly.

6That is, perpendicular to the axial plane of the electrodes.
7Of course there are electric field lines everywhere in the trap, but for clarity the figure is restricted to the central

trapping region.
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Figure 5.5: Selected simulated electric field lines in a cross-section through the endcap trap. These indicate
the direction of the force experienced by the positively charged ion.

(a) The instantaneous electric potential.
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(b) Electric potential cross-sections.

Figure 5.6: A simulation of the instantaneous electric potential in the trap resulting from an rf amplitude
of 200 V. Figure (a) shows a surface plot of the potential while figure (b) shows a cross-section
through the radial and axial potential.

5.4.2 The pseudo-potential

The pseudo-potential is simulated for a range of rf amplitude of 50–400 V. Figure 5.7(a) shows a

surface plot, while figures 5.7(b), 5.8(a) and 5.8(b) show cross-sections through the radial and axial

pseudo-potentials. As expected, the depth of the pseudo-potential well increases with increasing rf

amplitude.
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(a) The pseudo-potential.
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(b) Cross sections through the pseudo-potential. The points
where the fibres start are revealed in the sudden drop of the
axial potential.

Figure 5.7: (a) The pseudo-potential for an rf amplitude of 200 V and Ω/2π =15 MHz, and (b) axial and
radial cross-sections through the pseudo-potential.
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Figure 5.8: Cross-sections through the radial and axial pseudo-potential for rf amplitudes between 50 V and
400 V and a frequency Ω/2π =15 MHz, showing the increase in the depth of the potential well
at higher amplitudes.
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5.4.3 The effect of a dc-bias on the pseudo-potential

We now investigate the effect that a dc bias on the outer ground electrodes has on the simulated

trapping potentials and secular frequencies. Later we will do this experimentally, and compare the

measured secular frequencies with these simulations.

We refer to the dc-bias on the outer ground electrode as an a-value. The values of a are simply

numbers used by the LabView control software, but they correspond to the real voltages on the

electrodes via an empirically-determined linear relationship. We chose to investigate five a-values,

with the corresponding dc voltages:

• a = -2: -7.46 V

• a = -1: -3.76 V

• a = 0: -0.06 V

• a = 1: 3.64 V

• a = 2: 7.34 V

We assume a w-value of zero. This is reasonable because although the real w compensation

voltage varied throughout the day as the stray charges within the trap varied, this is balanced by

the stray charge to give the effectively ‘ideal’ w = 0 situation which we model in the simulation.

The voltages corresponding to our five a-values are shown in figure 5.9. Next, we will show the

effect of adding these potentials to the existing pseudo-potential in the trap. Figure 5.10 shows as

an example the combined rf and dc axial and radial pseudo-potentials for an rf voltages of 100 V.

The simulations were run for 8 voltages between 50 V and 400 V, and the trap depths calculated

from the combined potential. These are shown in figure 5.11. The ‘missing points’ indicate where

the potential was anti-trapping.

The simulations in this section were performed with identical dc voltages on upper and lower

electrodes, but for a more accurate simulation, the small gain and offset differences in the amplifiers

supplying the upper and lower electrodes should be taken into account.
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Figure 5.9: The radial and axial dc potentials corresponding to a-values of -2, -1, 0, 1 and 2.
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Figure 5.10: Radial and axial cross-sections of the combined rf and dc potentials for an rf-amplitude of
200 V.
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Figure 5.11: Trap depths extracted from combined dc and rf potentials.
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5.4.4 Secular frequencies

We can extract the secular frequency from the combined pseudo-potentials in the following way:

Consider the equation of motion of an ion:

m
d2x
dt2 =−e

dφ

dx
, (5.3)

and considering a parabolic potential φ = ax2 +b, we have

dφ

dx
= 2ax

⇒ ẍ =−2eax
m

. (5.4)

We know from simple harmonic motion theory that ẍ =−ω
2x, so substituting this in equation

5.4 we have

ω =

√
2ea
m

. (5.5)

Therefore, if we know the a-parameter of a parabolic confining potential, we can determine the

secular frequency, given the other constants (the electronic charge and the atomic mass of calcium in

this case). The central region of the pseudo-potential in the endcap trap is approximately parabolic,

so we first extract that region and fit the equation y = a(x− c)2 +b to it, as shown in figure 5.12.

The fit to the equation then, for this particular example gives the equation y = 174.8x2 +1.3, with c

negligibly small. Using equation 5.5 we obtain a radial secular frequency of 4.62 MHz. The secular

frequencies calculated for all rf and dc voltages are shown in figure 6.14(a).
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Figure 5.12: Extracting the secular frequency from the pseudo-potential. The pseudo-potential is shown for
an rf amplitude of 400 V and dc potential a = 2, with the central region extracted and fitted to a
parabola. See the text for further details.
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5.4.5 The separation of the electrodes

We now consider the effect of the separation of the electrodes on the trapping potential. We saw in

chapter 1 that the fibre separation, that is, the cavity, should be as small as possible, but we must

also have an acceptably high trapping potential8.

First, we simulate a range of separations of the whole (inner and outer) electrode structure.

That is, we move both electrodes up and down together with the inner electrode protruding a fixed

distance 0.42 mm from the outer. The simulation is shown in figure 5.13 for separations between

50 µ and 1 mm. We find that at very small separations the radial confinement is very strong, with

the axial almost non-existent. We can understand this if we consider that at small separations the

electric field lines are almost entirely radial at the ion.

The radial potential only starts to approximate a parabola at around a separation of 300 µm.

Below this point the potential becomes more like a square well, and so we cannot say that the

secular frequencies calculated from a parabolic fit in this region are reliable. This point is illustrated

in the sum of deviations plot of figure 5.14. Each point is the sum of the deviations of the fit from

the real data for that electrode separation. A high sum of deviations indicates a poor fit. The trap

depths, on the other hand, are not calculated from this fit and are a reasonable measure of the

potential well depth.
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Figure 5.13: The secular frequency and trap depth as the separation of the inner electrodes is varied over
a wide range of possible (and practically impossible) geometries. See the text for further
explanation.

8We have found that with trap depths of several eV we are able to trap for several hours.
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Figure 5.14: Figure (a) shows the highly non-parabolic radial pseudo-potential at an electrode separation of
50 µm, and (b) shows the sum of deviations taken from a parabolic fit to the central pseudo-
potential region for each electrode separation (see figure 5.12). The high values for the radial
fits for very small electrode separations indicate the region in which the potential is no longer
parabolic.

5.4.6 The recess of the outer electrodes

We now fix the inner electrode separation and examine the effect of moving the outer ground

electrodes relative to the plane of the inner electrode face. Again, we examine the anharmonicity of

the potential at each position in terms of the fit to a parabola. The results are shown in figure 5.15.

The sum of deviations plot shows that the radial potential becomes less parabolic as we approach

zero recess. However, trap depth increases, the closer the outer electrode comes to the inner. We

can understand the increase in the trap depth by considering the electric field lines, more of which

act on the ion as the outer electrodes approach the inner. Based on these models, a reasonable

compromise between optical access and trap depths was made and an inner electrode separation of

446 µm was chosen with the outer electrodes recessed by 420 µm. Our main reason for recessing

the outer electrodes from the inner at all is to improve optical access—the maximum angle available

to a laser increases as we move the outer electrodes further back.
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Figure 5.15: The variation in secular frequency and trap depth as we move the outer ground electrodes up and
down in terms of their recess from the plane of the inner electrode face. Therefore, a negative
value means the inner electrode is recessed inside the outer electrode. In this simulation we
move from a practically impossible region (where the inner electrodes are entirely enclosed by
the outer electrodes, meaning we have no way, in the current setup, of injecting an atomic beam
to the trapping region, or of introducing a cooling laser beam), to a far-recessed region. We see
that the potential more closely approximates a parabola as the outer electrode is moved further
from the inner, but that the deviation is not large relative to the trap depth.

5.4.7 The effect of the fibres on the pseudo-potential

We now consider the recess of the fibres from the plane of the inner electrode face. We find that as

we move the fibre closer to the face, the axial trap depth starts to increase by a very small amount.

We intuitively see that the fibre in this case is behaving as a ‘weak metal’. We considered, therefore,

that the possibility of stray charge accumulating on the fibre facet was the most significant factor

in our placement of the fibre, and decided to recess it by approximately 50 µm inside the inner

electrode.
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Figure 5.16: The fibre recess inside the inner electrode is plotted for a variety of realistic distances. We see
that the axial trap depth is affected by this parameter. In the experiment we chose to use a recess
of approximately 50 µm as a compromise between trap depth and ease of insertion, although
the main reason for recessing the fibres at all is to minimise the effect of stray charges on their
surfaces. These simulations were run with an rf amplitude of 200 V and no a-value.

5.4.8 The electrode structure

The critical central electrode region (hereafter referred to as ‘the trap’) is shown in close-up in

figure 5.17.

The trap is cylindrically symmetric and consists of two stainless steel tubes of outer diameter

0.457 mm and inner diameter 0.254 mm.9 An rf voltage of amplitude approximately 200 V and

frequency 15 MHz is applied to these electrodes. They are fixed inside two hollow ground electrodes

of outer diameter 1.22 mm and inner diameter 1.02 mm.10 A ceramic spacer11 insulates the inner

from the outer electrodes. The spacer is glued in place with UHV-compatible glue. The ceramic and

glue are recessed so as to prevent a direct line-of-sight to the trapped ion at the centre of the trap.

The inner electrodes protrude a distance of approximately 0.45 mm from the outer electrodes. See

chapter 6 for the simulations of the trapping potential which allowed us to choose these dimensions

and parameters.

A capacitor (which can be seen in figure 5.23 connects the electrode structure to the trap mount

structure, holding the outer electrodes at rf ground.

The unique feature of this trap is that we can introduce fibre-optic cables as close to the ion

as we like, limited practically only by the inter-electrode separation. Inside each of the top and

bottom electrodes is a Thorlabs BFH48-200 multimode fibre, designed for ultra-violet to visible

light. The fibre has a cladding diameter of 230 µm and so fits snugly inside the electrode. The

fibres are recessed by a distance of approximately 50 µm from the end of the electrode in order

to prevent any degradation of the trapping potentials12. The distance from the fibre to the ion is

277 µm. The top fibre is guided out of the electrode structure by a stainless steel hook attached to a

mount on the bottom flange. Both fibres pass down through the vacuum system underneath the trap

9Coopers standard size stainless steel tubing, gauge 26.
10Coopers Special Size Stainless Steel Tubing.
11Frialit-Degussit Technical Ceramics.
12By the accumulation of stray charge on the dielectric surface.
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Figure 5.17: Cutaway view of the electrode structure showing the inner rf electrodes, outer ground electrodes
and recessed fibres. All dimensions are in millimetres. Ceramic spacers separate the ground
and inner electrodes.

and are connected to feedthroughs on CF40 flanges. See section 5.6 for more details on this.

Calcium atoms are generated in a resistively-heated oven made of a 20 mm long tantalum tube

of outer diameter 1.02 mm and wall thickness 0.94 mm. From here, a vapour of calcium atoms

passes into the collimator tube, which is a 6 mm-long stainless steel tube of outer diameter 0.51 mm

and inner diameter 0.254 mm.13 This is positioned at a distance of approximately 2 mm from the

centre of the trap. It has been found that a current of approximately 1.7 A provides a sufficient flux

of atoms.

An alternative method of loading calcium atoms into the photoionisation region would be the

all-optical method used by, for example, Sheridan et al. [83]. In this scheme calcium atoms are

ablated from a target within the trap by a high-power laser. The resultant vapour is photoionised

in the usual way at the trap centre. Photoablation can also be used to generate ions without the

photoionisation step, if the laser intensity is high enough [84]. This method has the advantage

of being quickly switchable. When enough atoms have been loaded, the laser can be stopped

13Coopers Needleworks standard size stainless steel tubing: gauge 25.
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immediately, in contrast to a hot oven which takes some time to cool down, filling the trap with

unwanted atoms all the while.

The electrode mounting structure is shown in figure 5.18. It is attached to a custom-made CF63

flange, through which pass electrical feedthroughs to the atmosphere. These carry all the electrical

connections noted on figure 5.23.

Oven

Oven
collimator

rf electrodes

ground 
electrodes

Figure 5.18: A simplified drawing of the trap mount showing the electrodes, oven collimator and oven. The
top fibre is guided by the stainless steel hook.

All electrical connections to the trap pass through capacitative feedthroughs to atmosphere

underneath the custom CF63 flange which the trap sits on. Two copper wires carry the oven

current in and out. There are four dc connections to micromotion-compensation electrodes, which

are used to compensate for stray charge in the trap. These electrodes are the upper and lower rf

ground electrodes, a side electrode—simply a short wire pointing approximately horizontally at

the trap centre (hidden behind the trap in figure 5.23, and the oven. All these connections pass out

underneath the trap and into the metal box housing the resonator, from where they leave by various

BNC and other connectors.

The dc voltages to the compensation electrodes are passively filtered by low-pass RC filters

before entering the trap. The feedthrough to vacuum also acts as a low-pass filter.

5.4.8.1 The solid angle subtended by the fibres

One of the factors limiting the ability of the fibres to collect fluorescence from a trapped ion is

simply how much of the fluorescence the fibre surface can ‘see’ from its position. We can quantify

this in the solid angle subtended by the fibres at the ion.

In general, the solid angle which an area on the surface of a sphere subtends at the centre of the

sphere is given by

Ω =
A
r2 , (5.6)

where A is the area of the surface and r is radius of the sphere.
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The solid angle subtended by a conical surface is given by

Ω = 2π(1− cosθ). (5.7)

If we imagine a cone of light which the fibre is able to accept from an ion at the centre of the

trap (figure 5.19), we can calculate the solid angle subtended by the fibre at the ion.

The distance between the ion and the fibre surface is approximately 270 µm (approximately

because the fibre recess is only approximately known), and the radius of the fibre (core) is 100 µm,

and so the half-angle subtended by the fibre at the ion is 20.3◦. Then the solid angle is, from

equation 5.7, Ω = 0.39 steradians. For both fibres, we can double this: Ω = 0.78 steradians. This

is about 6% of the full 4π solid angle.

By a similar argument we can quantify the limitations of the chamber windows on fluorescence

detection by the PMT or camera by calculating the solid angle subtended by the windows at the ion.

This is constrained by the brass clamps outside the windows. The radius of the clamp aperture is

13 mm, and the radial distance from the ion to the window is the radius of the inscribed circle of

the octagonal chamber plus the thickness of the window, that is (38.5+6) mm, so the half-angle

subtended by the window at the ion is 18.7◦. The solid angle, then, is 0.33, or 2.6% of the full 4π

solid angle.

Figure 5.19: The solid angle subtended by the fibres at the ion.

5.5 RF drive and electrical connections

5.5.1 RF drive

Any system for generating the rf voltage for an ion trap should ideally produce a single frequency

with minimal noise. Harmonics of the rf frequency and noise can cause heating of the ion which

leads to low trapping lifetimes. A resonant circuit is used to filter out unwanted frequencies.

The oscillating trapping potentials are generated by a Rhode and Schwarz SMG signal generator.

From there the signal passes to a Mini Circuits LZY-1 +44 dB rf amplifier. The signal then passes
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to an autotransformer which steps up and filters the signal before it enters the trap.

5.5.1.1 The autotransformer

The components of the trap taken together have a total capacitance and resistance. If we place

an inductance in series with this we have a series LCR circuit (figure 5.20), and we can use the

properties of such a circuit at resonance to our advantage.

LCR circuits have a complex impedance which depends on the driving frequency, given by:

Z = R+ iωL+
1

iωC
, (5.8)

where ω is the angular frequency of the voltage source. At resonance, ω0 = 1/
√

LC; the impedances

of C and L cancel each other because the voltages across them are equal and opposite. So we can

say that at resonance the impedance is entirely real, that is, resistive.

TRAP

L
C

R

RESONATOR

Figure 5.20: A series LCR circuit.

The inductance that makes the LCR circuit with our trap is an autotransformer. This not only

steps up the rf amplitude, but in theory ensures only a single narrow frequency band is passed to

the trap (the resonant frequency of the circuit). An autotransformer is a transformer with just one

single winding—a single coil of wire forms both the primary and secondary winding. It has the

advantage of being simpler and more compact than a two-winding transformer, but there is no

electrical insulation between the windings. The autotransformer used in our ion trap consists of 30

turns of enamelled copper wire wound around a teflon cylinder of diameter 28.8 mm and length

156 mm. The first 2 turns form the primary coil and the last 28 turns form the secondary coil. One

end of the coil is connected to the common ground and the other end to the load—that is, the trap.

The rf input is connected as shown in figure 5.21. The ratio of primary to secondary voltage is given

by the ratio of number of turns on the coils, and so we expect an amplification of a factor of 14.

To firstly estimate the resonant frequency of our coil-trap system, we can simulate an LCR

circuit using a two-turn transformer. Calculating the inductance of each coil using the formula:

L =
µ0N2A

l
, (5.9)

where A is the (circular) area enclosed by the coil, µ0 is the vacuum permability, N is the number of

turns, and l is the length of the coil. This gives 0.02 µH and 4.9 µH respectively for the primary and

secondary coils. We measure the capacitance of the trap approximately, between the rf feedthrough

to vacuum and the vacuum chamber ground using an LCR meter14, as 40 pF. Modelling the circuit15

14ISO-TECH LCR 819.
15Using the circuit simulator QUCS.
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To ground

RF in

RF out

Figure 5.21: A drawing of the autotransformer used in our trap with its three electrical connections marked.

with an rf amplitude of 1 V shows a resonance at ν ≈ 13 MHz, with a FWHM ∆ν ≈0.35 MHz. The

results of the simulation are shown in figure 5.22(a). We quantify the narrowness of the resonance

with the quality factor or Q-factor of the resonator, given by:

Q =
ν

∆ν
, (5.10)

bearing in mind that this equation applies to power, not voltage, so instead of using the full width at

half maximum, we must use the full width at 1/
√

2× maximum, which in this case gives Q≈ 56.

We would now like to compare the real resonance of the trap/resonator setup with the simulation.
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(a) Simulated resonance.
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(b) Experimental resonance.

Figure 5.22: (a) The resonance of a simulated LCR circuit and (b) the resonance of the real trap, with
Lorentzian fits. The Q-value of the experimental resonance is determined from the fit to be 41,
while from the simulated resonance it is 56.

To measure the resonance of the circuit, two methods are employed—firstly we use a single

coil of wire around the end of the autotransformer core as an rf pickup to observe the changing

rf amplitude delivered by the transformer as we vary the frequency. This data is shown in figure

5.22(b). The data shows two peaks, at around 15 MHz and 19 MHz. The second peak may result
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from the influence of the monitor coil on the circuit.

The second method used is to place an rf reflectometer in the path of the rf signal to the trap.

For no power to be reflected back from the trap, the reactance of the trap must be zero, that is, the

impedance must be entirely resistive—the resonance condition. Also, that resistance must equal the

output resistance of the rf source. The power absorbed by an LCR circuit is Lorentzian in shape,

with a full width at half maximum (FWHM) γ = ν/Q.16 Fitting this data gives the centre of the

resonance to be at 15.4 MHz with a FWHM of 0.45 MHz. This gives a quality factor of Q≈ 34.

The two methods both give a good approximate idea of the resonance condition of the trap,

but the first method is possibly more useful for our purposes, since it is more representative of the

quantity - the voltage supplied by the coil - which we actually want to use. The second method

tells us essentially when the impedance of the circuit matches 50 Ω. Neither method necessarily

provides an accurate measurement of the resonance frequency of the trap, since both are influenced

by connecting wires and neighbouring components.

Since we only see a dip in the reflected power around 15 MHz, it seems reasonable to assume

that the 15 MHz peak in the monitor coil signal represents the ‘real’ resonance. To determine the

quality of this resonance, therefore, we fit to that part of the data and obtain a centre resonance of

approximately 15.03 MHz with a width at 1/
√

2× the amplitude of 0.37 MHz. This gives a quality

factor Q≈ 41.

There are a number of reasons why the quality of our resonator might differ from the expected

value. Chief amongst these may be imperfect impedance matching between the rf source and the

trap. We also do not know the coupling between the coils of the autotransformer.

Suggested improvements to the resonator design would be to to adjust the coupling between

the coils of the transformer, perhaps by using a two-coil device, so that the impedance-matching

condition is met.

The electrical connections to the trap are shown in figure 5.23. In addition to the rf connections

and the oven, there are four dc ‘compensation’ electrodes shown. These voltages are used for

micromotion-compensation purposes, and will be discussed in detail in section 6.2 on page 70.

16The shape is Lorentzian only for high-Q resonators, that is, resonators with narrow resonances.
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Figure 5.23: The electrical connections to the trap.

5.6 The Vacuum System

The term Ultra-High-Vacuum is not strictly defined by any regulatory body, nor is it used consist-

ently. However, for the purposes of our work we will use the definitions given by the National

Physical Laboratory.[85].

The following table summarises the various ‘degrees of vacuum’ in millibars.17

Degree of vacuum Pressure Range/mbar
Low vacuum 1000–30
Medium vacuum 30–1×10−3

High vacuum 1×10−3–1×10−6

Very high vacuum 1×10−6–1×10−9

Ultra-high vacuum (UHV) 1×10−9–1×10−12

Extreme ultra-high vacuum (EHV or XHV) < 1×10−12 mbar

Table 5.1: Degrees of vacuum

By these definitions then, our trap is held in ultra-high-vacuum. For the duration of most of the

work described here, the pressure was 1×10−10–1×10−11 mbar.

The octagonal vacuum chamber, pictured in figure 5.24, is 77 mm in diameter (inscribed circle),

17A note on pressures—1 bar = 1×105 Pascals = 750 Torrs. Atomospheric pressure is approximately 1 bar. We will
generally use millibars in this work.
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Figure 5.24: A drawing of the trap enclosed in its vacuum chamber.

and sits 140 mm above the optical table. It is welded to a CF63 flange, while the trap itself is

attached to a second CF63 flange below this. It has 8 anti-reflection-coated windows, and one top

window, held in place with an indium-wire seal and brass clamp. Three vacuum pumps bring the

chamber from atmospheric pressure to ∼ 10−10 mbar. All pumps are located under the table. First,

a roughing pump, so called because it produces a ‘rough’ vacuum—approximately 1×10−3 mbar.

Then, a turbomolecular pump, or ‘turbo’ pump takes over. This consists of a spinning turbine

which sucks gas from its inlet to the exhaust with successive spinning blades pushing the molecules

down and compressing them eventually to the roughing pressure. Finally, an ion pump reduces the

pressure to around 1×10−10 mbar and maintains it. Ion pumps work by creating clouds of electrons

by a very high voltage (∼1 kV) then trapping them using a very high magnetic field (∼1000 Gauss).

The clouds of electrons ionise gas molecules passing through the assembly by collision and the

resultant positive ion is accelerated towards a cathode. It is then removed from the vacuum by

reacting chemically with the material of the cathode. In our setup, once UHV has been achieved,

the roughing and turbo pumps are switched off and only the ion pump maintains the vacuum.

We have also used a titanium sublimation pump to reduce pressure when we have been unable

to reduce pressure using just the ion pump. This kind of pump is very simple—a current of tens

of Amps is passed through a titanium filament, causing sublimation. The chamber walls become

coated with the titanium produced. Since titanium is very reactive, it forms chemical bonds with

gas molecules in the chamber, causing a drop in pressure.

Another issue relevant to pressure is that of rf power dissipated in the trap. This causes heating

which causes the pressure to rise. Using an rf power meter, we have found that it is possible to

dissipate approximately 0.5 W of rf power in the trap before the pressure increases significantly.
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Underneath the CF63 trap flange a tube travels down through the metal rf autotransformer box,

through a hole in a removable breadboard attached to the optical table, and is welded to a custom

CF150 flange which is bolted to the underside of the table. Figure 5.25 shows from top to bottom

the chamber, the resonator box, the breadboard and optical table, the custom CF150 flange bolted

to the underside of the table, and finally the reducing cross leading down to the turbo pump beneath.

In principle, the breadboard and optics could be entirely removed from the optical table, giving full

access to the trap and chamber, for maintenance or bake-out work. In practice, however, some of

the optics extend onto the surrounding optical table, so this has not been possible. An improvement

for the next iteration of this trap would be to make sure that everything is included on the one

removable breadboard.

Resonator box

Optical table

Custom-made CF160
flange bolted to
underside of table

CF160 reducing cross
4 x CF40 half nipples

Tube fromchamber
down through table

CF63 flange

Figure 5.25: The chamber and vacuum flange assembly. Beneath this is the turbo pump.

The whole chamber and vacuum structure is baked for several days at around 100◦C to remove

any water molecules, cleaning agent residues, solvents and any other molecules that will inevitably
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be present on and in the metal surfaces inside the chamber and flanges. The temperature is restricted

to 100◦C because of the indium seals on the windows, but this has not had any detrimental effect

on our vacuum.

5.7 Magnetic Field Control

For reasons that will be explained in detail later, we would like to ensure that the magnetic field

surrounding the trap is of a known magnitude and direction. To this end we must first compensate

for the Earth’s ≈ 0.5 G (50 µT) magnetic field and then create a bias field of known magnitude and

direction.

We surround the trap with three pairs of coils, as shown in figure 5.26, their axes orthogonal

to each other. Above and below the trap are two circular coils of diameter 138 mm, separated

by approximately 110 mm. This provides an approximately homogeneous magnetic field along

the (cylindrical) axis of the trap. To provide an homogeneous field we would use the Helmholtz

configuration, in which we separate the coils by their radius. In our case the set of coils had already

been built for another experiment, and so we had to balance the potential inhomogeneity of the field

produced against the time required to machine and build a new set of coils. Since we were only

concerned with the homogeneity of the field in a very small central area of the trap, we decided

to use the existing coils, and characterised them as follows. For two concentric circular coils a

distance d apart and with N turns of wire, the magentic field on their axes at the midpoint between

them is given by

B = µ0NI
R2

[R2 +(d/2)2]3/2 , (5.11)

and the magnetic field produced on the axis of two rectangular coil of side lengths l and w at their

midpoint is given, using the Biot-Savart law, by

B =
µ0NI
4π

 l√
l2

2 +d2×
√

l2

4 +d2
+

w√
w2

2 +d2×
√

w2

4 +d2

 . (5.12)

The magnetic field produced was measured at the centre of each pair, and found to be 22 G/A

for the circular pair and 6 G/A for the rectangular pair. Using the above equations, there are

approximately 250 turns of wire on the circular coils and 300 turns on the rectangular coils.

The two radial dimensions are covered by two pairs of rectangular coils, which again provide

approximately homogeneous fields in the trapping region.
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Figure 5.26: A drawing of the trap surrounded by the magnetic field coils.

5.7.1 Experiment Control

Throughout the experiments reported in this thesis control has been provided by LabView running

on Windows XP. LabView vi’s have mainly been written by Dr. Hiroki Takahashi, and control most

of the devices we have used. This includes switching the oven on and off, switching the shutter

for the photoionisation lasers, reading, recording and cross-correlating signals from the PMTs,

automatically compensating for micromotion and measuring secular frequencies (chapter 6).

5.7.1.1 Controlling laser power—accousto-optic modulators

The 397 nm light from the Toptica system and the light from the 866 nm laser is split into several

‘arms’ using a series of half-wave plates and polarising beam splitter (PBS) cubes. A PBS essentially

splits linearly-polarised light into its orthogonal components, transmitting one and reflecting the

other. By altering the input polarisation one can alter the power passed to that arm of the setup. By

this method we divide the 866 nm and 397 nm laser power into the amount of beams we require for

our experiment, and for other experiments in the lab.

After power distribution, each 397 nm, 866 nm and 423 nm beam passes through an accousto-

optic modulator (AOM) in the double-pass configuration.[86, 87]. A typical arm of the 866 nm

laser setup is shown in figure 5.27. The efficiency of diffraction by the AOM into the first order

depends on the amplitude of the rf delivered to the crystal, and this allows us to control the power

of the beams at the trap (by simply varying the amplitude of the rf sent from the to the AOM),

and to shutter the beams (by setting the rf amplitude to zero). By varying the frequency of the rf

delivered to the AOM, one can vary the amount by which the diffracted light is shifted in frequency,

and so exercise control over the laser wavelength without tuning the main laser diode, and without

affecting the coupling of the laser to the fibre. This feature was not used for the work presented

here.
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Beam blocker
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Figure 5.27: A typical arm of the 866 nm laser AOM setup showing the main components and the beam
path.



Chapter 6

Characterisation of the endcap trap

Every ion trap has a unique set of parameters, or characteristics, that define its operation. These

depend mainly on elements of the trap geometry, for example the size and shape of the electrodes,

the proximity of dielectrics to the ion, or the rf supply. In this chapter a characterisation of the

endcap trap is presented, starting with some comments on trapping single ions, then moving on to

the problem of micromotion. We end with a thorough investigation of the secular frequencies of

the ions in the trap and the trap depth, with a comparison to the expected values from simulations.

The format of this chapter roughly follows the day-to-day procedure we followed in preparing

a single ion for the more advanced experiments to be described in later chapters. In outline, then,

this consists of:

1. Trapping a single ion.

2. Micromotion compensation.

3. Defining the magnetic field.

4. Performing laser spectroscopy on the trapped ion to ensure laser detuning is optimal.

The measurements of secular frequencies and trap depth are not a part of the preparation routine

for any particular experiment, but are included as figures of interest in describing the trap. We find

in the literature these figures often quoted in descriptions of ion traps, and their use gives the reader

a good general idea of the trapping potential of a particular trap.

6.1 Trapping ions

The procedure for trapping a single ion is as follows. First, the cooling and photoionisation lasers

are switched on and allowed a warm-up period of anything from one to several hours. Next, the

AOMs are switched on manually, and the voltages sent to their VCOs are adjusted using a LabView

vi until suitable laser powers are reached. Typical powers are:

1. 397 nm cooling lasers: ∼20 µW each.

2. Repumper lasers: ∼400 µW.

66
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3. Photoionisation lasers: ∼400 µW each.

The laser frequencies are set and locked using the methods described in section ?? on page ??.

Often, the temperature of the laser diodes will need to be adjusted to bring the wavelength close

enough for fine adjustment. For optimal Doppler cooling, we saw in chapter 3 that the detuning

should be ∆ = −Γ/2. We know that Γ for the S1/2↔P1/2 transition is around 20 MHz (section

3.1.1, page 17), and this translates to a detuning of approximately 0.01 pm1. In practice, however,

the wavemeter only has an stated accuracy of ±60 MHz, so when we need optimal detuning, we

determine it by examining spectroscopic lineshapes.

Once the lasers are ready, the calcium oven is switched on using a LabView vi signal to a

current power supply. A current of around 1.8 A for around 45 seconds usually provides sufficient

atomic flux across the trapping region to trap ions. The geomtry of the trap means that we rarely

trap more than two ions at a time, but should this occur we eject unwanted ions from the trap by

briefly heating them. This is done by blocking the repumper laser for a second or two. Cooling is

drastically reduced and ions far from the trap centre, that is, hotter ions, are preferentially heated

out of the trap. By this method we can usually reduce the number of ions to one very quickly.

Figure 6.1 shows a single ion in the trap with the top electrode visible. We are able to determine the

coordinates from knowing the magnification of the optics in front of the camera and the resolution

per pixel of the camera’s CCD chip.

In figure 6.2 we implement the alternative repumper method described in section 3.33, but

using an extremely low-power 850 nm laser on the D 3
2
↔P 3

2
transition. The sudden drops in

fluorescence reveal the failure of the weak 850 nm laser to pump the ion out of the metastable D 3
2

state, that is, the abrupt transition of the electron to and from the D 3
2

state. These fluorescence

spectra demonstrate nicely the phenomenon of quantum jumps.

1A note on detunings: We measure on our wavemeter the fundamental frequency of light from the Toptica frequency-
doubling diode laser system, not the doubled frequency. We have experimentally determined the resonance of the
S1/2↔P1/2 transition (as will be shown by spectroscopy later) to lie around a fundamental wavelength of 793.91835 nm.
In day-to-day ion trapping, where the cooling is not critical, we operate at a wavelength of around 793.91840 nm, that is,
a detuning of 0.00005 nm. Since ν = c/λ , we calculate the frequency detuning as ∆ν =−(c/λ 2)×∆λ , which amounts
to approximately 71 MHz. This means that the frequency-doubled light is detuned by twice this, or 142 MHz.
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Figure 6.1: A single ion in the trap. The upper electrode is visible bathed in scattered 397 nm laser light,
with the lower electrode slightly out of picture. The origin of coordinates has been set to the
ion’s position.
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Figure 6.2: Quantum jumps on the D 3
2
↔P 3

2
transition. Here we use an extremely low power 850 nm

repumper at 0.5 µW. The low repumping efficiency on this transition causes the ion to become
occasionally shelved in the metastable D 3

2
state, where it stays until pumped out by a 850 nm

photon (or naturally decaying after around a second).
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Figure 6.3 shows scans over the S 1
2
→P 1

2
397 nm resonance using each of the three principle

cooling lasers indicated in figure 5.1 on page 37. Spectroscopy using the low-scatter beam is shown

in section 7.2.1 on page 97.
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Figure 6.3: Spectroscopy of the S 1
2
→P 1

2
cooling transition in a single ion using the three main cooling beams:

‘beam 4’, ‘beam 6’ and ‘beam 7’, named for the numbering system of the AOM branches in the
Toptica 397 nm laser setup. Micromotion compensation had been optimised. The lineshapes are
fitted to a half-Lorentzian curve. The signal-to-background ratios and fluorescence at a detuning
of 30 MHz are as shown. The fluorescence was measured at the free-space side PMT.
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6.2 Micromotion minimisation

The ability to localise a trapped ion very precisely at the rf zero-point in a trap is an important

prerequisite to many cavity-QED experiments (see chapter 4). However, stray electric fields

resulting from build-ups of charge on dielectrics inside the trap structure can displace an ion away

from the trap centre. The effect of this is that the ion experiences a driven motion due to the ac

electric field at the new position. The further from the trap centre the ion moves, the greater is the

amplitude of the micromotion. This driven motion is termed excess micromotion, in contrast to the

intrinsic micromotion induced as the ion’s secular motion moves it back and forth through the rf

zero-point. Unlike intrinsic micromotion, excess micromotion cannot be reduced by laser cooling.

The Doppler shift in the ion’s resonance frequency, causing a spread of frequencies ∆ω = 2ω0/c,

is an unwanted extra factor in the experiments which will be described later, and in our work has

been significantly reduced by the two methods described in this section.

Compensation of stray fields in three dimensions is achieved using the four dc compensation

electrodes shown in figure 5.23 on page 60. In the radial plane, dc is applied to the oven collimator

and to a thin wire positioned approximately 90◦ radially from it (the ‘side’ electrode)2. In the

axial plane, dc is applied to the top and bottom ground electrodes (see section 5.4.8 on page 53).

Signals are sent from a LabView vi to a National Instruments data acquisition (DAQ) device3. This

generates analogue voltages which are sent on to the compensation electrodes.

We introduce four parameters: u, v, w and a4 to represent these voltages in our LabView control

software, and we will denote the dc voltages sent from the DAQ as:

• A0 = u: Oven

• A1 = v: Side

• A2 =
w+a

2
: Upper ground electrode.

• A3 =
−w+a

2
: Lower ground electrode.

In addition, before reaching the electrodes the signals pass through a high-voltage amplifier, so

there is a known gain and offset in the real compensation voltages realtive to those sent from the

DAQ.

The effect of u and v is to push the ion along the direction of the oven and side electrode

respectively, while w has the effect of moving the ion up or down (equal and opposite voltages are

applied to top and bottom). a provides an dc offset to the upper and lower ground electrodes. We

can think a as similar to the a-value described in equation 2.9 on page 11, although it differs in that

here the dc is on the ground electrodes, rather than the rf electrodes.

These, then, are the tools with which we move the ion to the rf-zero point using the following

methods.

2Note that the side electrode has a component in the axial direction. It was not possible make it entirely radial, for
optical access reasons.

3NI-USB 6229.
4Not to be confused with the a-parameter of chapter 2.
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6.2.1 Coarse micromotion minimisation

The principle of this method is that if the ion is sitting at some position far from the trap rf zero-point,

as illustrated in figure 6.4 with the parabola being the trap pseudo-potential, then if we reduce the

steepness (or ‘stiffness’) of the trapping potential (recall from chapter 2 that we can do this by

altering the rf amplitude), then the ion will ‘drop’ to a new position. The objective is to move the

ion to a position such that changing the rf amplitude causes no observable movement. We watch

the ion with the EMCCD camera, and mark its position on the screen. We then decrease the trap

stiffness. If the ion moves, we push it back to its original position with the compensation voltages.

We then decrease the trap stiffness and repeat the process until the ion’s position is independent

of the rf amplitude. We see from figure 6.4 that this happens at the rf zero-point. This method is

not sufficient, however, since we cannot use it to observe the micromotion in the direction of the

EMCCD camera. Plus, we cannot use it for particularly sensitive adjustments.

Tr
ap

 c
lo

se
d

Trap open

Figure 6.4: Coarse micromotion compensation. If the ion is at some point far from the trap rf zero point,
then if we suddenly decrease the rf amplitude (‘open’ or weaken the trapping potential), then the
ion will shift to a new position, and this movement will be obvious on a CCD camera.

6.2.2 RF-Photon correlation

In order to more precisely minimise the micromotion, we look at the correlations between the

arrival times of photons from the PMT positioned at the side of the trap, and a point in the phase of

the trap rf [88]. If we consider micromotion along the direction of one red-detuned cooling laser

first, we can see that the probability that the ion will scatter a photon increases as the ion moves

towards the laser, and decreases as it moves away. Thus there is a correlation between the phase of

the rf and the ion’s fluorescence and this manifests as a sinusoidal variation in fluorescence. The

objective of this method, then, is to detect this variation, and reduce the amplitude of the sinusoid as

much as possible. The device used to measure the times between photon arrivals and the rf signal is

an ACAM AM-GP2 time-to-digital converter.

We found that using the main trap signal generator to supply both the trap rf signal and the
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ACAM correlation signal introduced some noise to the trap which may have caused poor trapping

lifetimes. As a result we implemented the rf signal routing shown in figure 6.5.

Rhode & Schwartz
Signal Generator: 15 MHz

Inverting amplifier
DS3435
Signal Generator

ACAM

To trap

Figure 6.5: The rf-photon correlation signal path. To avoid splitting the signal from the trap rf signal
generator the following system is used. We take the 10 MHz timebase from the trap rf drive and
amplify it with an inverting amplifier. This drives a signal generator which generates a 15 MHz
rf signal in phase with the trap drive. This is then divided by four and the final signal sent to the
ACAM card. The inverting amplifier is used because the amplitude of the 10 MHz timebase
output of the Rhode & Schwartz is not enough to drive the DS345 signal generator. By dividing
the rf signal by four we give ourselves four times as much correlation data as we would have
otherwise had.

A typical series of rf-photon correlation spectra is shown in figure 6.6. These data are acquired

in the following manner: acquire 20,000 data points (a data point is one ∆t = trf− tphoton), plot a

histogram of the time differences (these will never exceed ∼0.26 µs because the rf frequency is

∼15 MHz and we observe correlations over four rf cycles), and fit a sine to this.

6.2.3 Automatic 3D micromotion minimisation

The electric field at a position x is given by (apart from a constant)

E(x) = (x,y,−2z), (6.1)

with C a constant. Consider the micromotion along the direction of one cooling laser, pointing in

the direction (k) = (k1,k2,k3), then that micromtion is minimised when there is no component of

the electric field along that direction. That is,

E(x) ·k = 0. (6.2)

We can write this as

k1x+ k2y−2k3z = 0. (6.3)

This is the equation of the plane
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x ·n = 0, (6.4)

with

n = (k1,k2,−2k3). (6.5)

The distance an ion is pushed is proportional to the voltage applied to the electrode5. Consider

the real-space directions u,v and w as defined by the directions of the compensation electrodes,

with a voltage determined by u, v, and w. Then the ion’s displacement is given by

x = Au(u−u0)u+Av(v− v0)v+Aw(w−w0)w, (6.6)

where Au, Av and Aw are the gains of the amplifiers used to supply the final voltages. u0, v0 and w0

represent stray electric fields in the trap. Substituting this into equation 6.4, we have

Au(u−u0)u ·n+Av(v− v0)v ·n+Aw(w−w0)w ·n = 0. (6.7)

Our scheme for automatic 3D micromotion minimisation uses a LabView vi and the above

theory, but operates entirely in uvw-parameter-space (‘uvw-space’). The program operates in the

following way:

1. Start with laser 1. By moving around in uvw-space, find a set of voltage triplets defining

a micromotion minimum plane P1. Let n1 be the normal vector to the plane in uvw-space

(figure 6.8(a)). From equation 6.5 we see that once we know this vector, provided the

direction of the laser never changes, it is fixed. In principle, then, we only need to empirically

determine this direction once, and we can then use it again and again. The position of the

plane P1 along this vector however can, and does, change, depending on stray charges inside

the trap. So if we move along a direction parallel to the normal vector, call it d1, we must

eventually encounter the plane P1 (figure 6.8(b)). The program does this by moving ‘up’ or

‘down’ a direction parallel to the normal vector, acquiring 20,000 data points in the manner

described above, for each set of uvw-values, and attempting to reduce the amplitude of the

sine fit for each set. The number of uvw-points attempted can be set at will, but generally 5

were used. It then performs a linear fit on the 5 points and moves to the zero-micromotion

point in uvw-space. A typical run of this program for one laser is shown in figure 6.7.

2. Repeat step 1 with laser 2 to determine n2.

3. Find the intersection of P1 and P2. This is the line L (figure 6.8(c)). Since this lies on the

planes P1 and P2, it must be perpendicular to both n1 and n2, so we can write L ‖ n1×n2. If

we move perpendicular to L, then we must eventually hit it, but we must also remain on one

5If a uniform electric field is created then F = eE. A greater electric field means a proportionally greater force,

therefore acceleration, and since φ =
∫

Edr, then distance travelled is proportional to potential difference.
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of the planes P1, or P2, so we can say that the direction to move, d2, must satisfy:

d2 ⊥ n1 (6.8)

d2 ⊥ L (6.9)

⇒ d2 ⊥ n1×n2 (6.10)

⇒ d2 ‖ n1× (n1×n2) (6.11)

4. The global micromotion minimum must lie somewhere along the line L. The third direction,

then, is just parallel to L (figure 6.8(d)).

We can summarise the three directions then, as:

d1 = n1 (6.12)

d2 = n1× (n1×n2) (6.13)

d3 = n1×n2. (6.14)
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Figure 6.6: Moving in uvw-space. RF-photon correlation spectra for six different sets of u,v, w compensation
voltage parameters. The sine fit gives the amplitude and phase of the micromotion for those
parameters. The flip in the phase of the sine as the micromotion passes over the zero micromotion
point is evident in (a) and (e). See the text for details.
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Figure 6.7: Automatic 3D micromotion minimisation. A plot of micromotion amplitudes taken from the
sine fit in figure 6.6. The ‘s-parameter’ of the axis refers to the distance, in uvw-space, along
the normal vector to the micromotion minimum plane. The distance along this direction that
the program has access to, in its attempts to find the micromotion zero-point, can be set by the
operator.

6.2.3.1 Sensitivities of the techniques

The first technique, that of monitoring the spatial motion of the ion as the trap stiffness is changed,

is less sensitive than that of rf-photon correlations. We find that after we have done what we can to

eliminate the ion’s spatial dependence on the rf amplitude, the rf-photon technique always shows a

measurable micromotion in the correlation spectra. This makes sense if we consider that we cannot

see the ion’s motion in the direction of the camera, and also that the technique cannot detect phase

differences in the rf applied to the top and bottom electrodes (considering the ion’s equation of

motion, we see that its average position would not change even if the phase of the rf did). The

relative merits of the techniques are discussed in much greater detail in [89].
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(a) Determining the normals (b) Laser 1.

(c) Lasers 1 and 2. (d) Lasers 1, 2 and 3.

Figure 6.8: Mapping the parameter space of the dc compensation voltages. (a): A real micromotion plane
fitted to, in this case, 9 uvw-triplets, each representing an empirically determined point of
minimum micromotion. This is performed for each laser. Once we know the normal for each
laser we follow the procedure outlined in the text and shown in the following three figures. (b):
A theoretical micromotion minimum plane for one laser. To find this plane we move along its
normal vector until we hit it. (c): A plane for laser 2 intersects plane 1. Now we need only move
along the intersection line to find the global minimum. (d): The intersection of the planes of all
three lasers. See the text for more details.

6.2.4 Sources of stray fields after loading

We would like to know whether build-up of stray charge on the fibres is a significant factor in

the displacement of the ion from the trap rf-minimum. By tracking the changing micromotion
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compensation voltages over time, we can determine from which direction the stray charge originates.

We consider first the micromotion compensation in the axial direction, and let the steady-state

compensation voltage be w0. Immediately after loading the trap, a stray field appears, which decays

exponentially and consequently requires an exponentially decreasing compensation voltage. The

top and bottom electrodes will require not only a different compensation voltage, but a voltage of

opposite sign. The total voltage required is then

w(t) = w0 +w+e−γ+t −w−e−γ−t . (6.15)

The parameters are all correlated, and so can’t be obtained by simply fitting to this function. To

allow us to extract useful fit parameters we make the following definitions:

w± = w̄±∆w (6.16)

γ± = γ̄±δ . (6.17)

We substitute these definitions into equation 6.15 and in the approximation that δ t� 1 we have

w(t)≈ w0 +2[w̄δ t +∆w]e−γ̄t . (6.18)

We see from this that if w+ and w− were the same, then ∆w = 0, and if the decay rates were the

same, then δ = 0 and w(t) = w0. However, if there is a difference in the quantity of charge on the

top and bottom electrodes (∆w 6= 0), or a difference in the decay rate (δ 6= 0), then exponentially

changing compensation voltages must be applied. A fit to equation 6.18 cannot give us w̄, and so

we cannot know the absolute amount of charge on the electrodes. However, we are more interested

in the direction of the stray fields, so we proceed towards that end.

There are four independent fitting parameters, making the fitting function

w(t) = p1 +[p2t + p3]e−t/p4 . (6.19)

For this model, we assume that the decay parameter γ is the same for all micromotion compens-

ation components, making three fit parameters for each compensation electrode, p1, p2, p3 and one

global parameter p4.

We tracked the change in the three micromotion compensation voltages over time. Figure 6.9

shows one such measurement, together with a fit to the model described in this section. In order

to extract the direction of the stray field source we first make a 3D finite-element calculation of

the electric field at the trap centre in response to voltages applied in the direction of the four dc

electrodes, which are the wire electrode in the +x-direction, the oven in the +y-direction, the top

ground electrode in the +z-direction, and the bottom ground electrode in the −z-direction. This

gives the following result:

Ex

Ey

Ez

=

 0.0 0.201 0.0

0.684 0.0 −2.45×10−3

0.0 −3.513×10−3 0.375


u

v

w

 mm−1. (6.20)
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Figure 6.9: A log of the variation in the three micromotion compensation voltages over time, together with a
fit to equation 6.19

At time t = 0, we have a steady-state field, given by u0, v0 and w0, and also the decaying

compensation field given by ∆u, ∆v, and ∆z. We can use the latter, with equations 6.19 and 6.20 to

calculate the angles of the source (θ0,φ0). At longer times, the source is given using ū, v̄, w̄, which

is given by parameter p2 in equation 6.19.

The long-term measurements shown in figure 6.9 were repeated to give six datasets, and the

angles calculated for each set. The azimuthal angle φ is consistently in the direction of the oven,

with only 3 degrees variation, whilst the angle θ varies slightly more, but is always in the direction

of the surface of the inner electrodes. None of the datasets give an angle within that subtended

by the fibre. If we assume that the source lies on the end facet of the inner electrode, then we can

calculate the position of the source, and this is shown in figure 6.10.
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Figure 6.10: The calculated positions of origin of the stray charge, based on the model in this section.

6.3 Magnetic field compensation

Many of the measurements reported in this thesis have some dependence on the magnetic field at

the ion, and so it is desirable that the field is of a known magnitude and direction. We have used the

set of coils described in 5.7 on page 63 to first null the Earth’s ≈50 µT field, and then provide a

known bias field. In addition, at very low magnetic fields, the axis of atomic polarisation of the ion

is defined by the polarisation vector of the laser—the electric dipole moment of the ion is aligned

with the polarisation of the laser. The result is shown in figure 6.11: On the 397 nm S1/2↔P1/2

cooling transition we see that linearly polarised light can always induce a ∆m j = 0 transition, so

we need only make sure our light is linearly polarised. On the D3/2↔P1/2 repumper transition,

however, we see that whatever polarisation of light we use, the P1/2 state can always decay to a

state from which it cannot be pumped. That is, the m j = ±1/2 state for σ±-polarised light and

the m j =±3/2 state for π-polarised light. This phenomenon is termed ‘optical pumping’ and the

resultant state, where it is an angular momentum eigenstate as shown here, is termed a ‘dark state’.

Light of an arbitrary polarisation can always be described as a supersposition of π and σ polar-

isations, and so for any polarisation of light there will always be some corresponding superposition

of D3/2 sublevels which will produce a dark state in the absence of a magentic field.

If we introduce a magnetic field, the energy of each sublevel changes, and since the time

dependence changes with the energy, we find that the dark state does not persist—even if the ion,

at some time, is in some superposition of states that would have constituted a dark state, the time

evolution of each individual state means that the superposition is quickly destroyed. The theory of

this destabilisation of the dark states by shifting the energies of the sublevels is laid out in [90], and

this is the method we use in this work.
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The method of shifting the energy levels only works when the laser is in a superposition of

polarisations. If its polarisation is a pure state, that is, π , σ±, then the dark state is one single

sublevel, not a superposition of m j〉 states, and its time-dependence has no effect.

P

S

___

(a) The 397 nm cooling transition.

P

D

(b) The 866 nm repumper transition.

Figure 6.11: Optical pumping to dark states in 40Ca+. In very low magnetic fields the axis of atomic
polarisation of the ion is aligned along the laser’s polarisation. In (a) this is not a problem
provided our light is linearly polarised, but if it is circularly polarised it will eventually land in
a ‘dark state’, and fluorescence will stop. Of more concern is the repumper transition shown in
(b)—here, any polarisation of light will eventually put the ion into a dark state.

The procedure for nulling the background field is as follows:

1. Align the repumper polarisation in some specific direction, call it x.

2. Scan the magnetic field y and z components, (which simply means scanning the current in

the coils), until a dip in fluorescence is noted. At the fluorescence minimum we can say we

have nulled the field for the y and z components. The field now only has an x-component.

Figures 6.12(a) and 6.12(b) show a typical iteration of this process.

3. Rotate the repumper polarisation by π/2. Now we only need to scan along the x-direction

since we know the field only has this component. At the fluorescence minimum the field is

minimised. Figure 6.12(c) shows this process, with a final fluorecence rate very close to the

background count rate for the PMT used.

4. Note that we can never entirely null the field because the polarisation of the repumper is

never entirely pure.

For our experiments, we perform several iterations of these scans before any critical measure-

ment, to find the global minimum, but we find that it does not change significantly, day-to-day. We

find that by nulling the field in three dimensions we are able to reduce the ion’s fluorescence to

approximately the background count rate for the free-space PMT located at the side of the trap,

that is, a rate of 4–5 kHz. Once this is done we can easily apply a bias magnetic field of a known

amplitude and direction.
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(b) Horizontal coils 2
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(c) Vertical coils

Figure 6.12: Compensating the Earth’s magnetic field in three dimensions. First we scan the current in one
horizontal set of coils until the fluorescence minimum is found. At this point the field from the
coils is approximately cancelling the Earth’s field in that direction. We repeat for the second set
of horizontal coils and then for the vertical coils until we have a global fluorescence minimum
where the Earth’s field is approximately compensated. Note that the values of the magnetic
field in the figures are derived from the linear scaling of current and magnetic field, which we
know for each coil.

6.4 Secular frequency measurements

To determine the secular frequency of a single trapped ion we apply an additional sinusoidal

rf voltage to the compensation electrodes and scan its frequency over a range within which we

expect the ion’s secular frequency to lie. The principle of the method is that an additional electric

field oscillating close to the resonant frequency of the ion in a particular direction will transfer

energy to the ion, exciting the amplitude of its oscillations. This heating effect results in a reduced

fluorescence. In our trap we have radial symmetry, and so we measure two clear secular frequencies:

radial and axial6. We vary the amplitude of the trap rf drive—the q-parameter of equation 2.10 on

page 11—and also the a-parameter of section 6.2 (recall that this gives a dc offset to the top and

6A splitting of the radial frequency into two components is also visible. We were able to directly observe the ion
oscillating in different radial directions as the rf voltage was scanned over the two peaks. The breaking of the rotational
symmetry of the trap here probably results from the influence of the oven collimator.
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bottom outer ground electrodes). We compare the results with secular frequencies derived from

finite-element simulations of the trap for a variety of rf amplitudes and similar dc offsets.

We used a TTi TGR2050 sythesised rf generator to provide the additional sinusoidal voltage,

controlled by LabView via RS232.

First, the dc offset on the ground electrodes was set to as close to zero as possible. This

corresponds to an a-value of zero. Then, the following steps were taken:

1. Connect the additional rf voltage to the side compensation electrode. This will preferentially

excite the radial secular frequency.

2. Compensate micromotion in 3-D.

3. Scan the additional rf voltage over a wide frequency range to approximately locate the

resonance. Try a variety of amplitudes—too much and the ion will be heated out of the trap,

too little and the dip in resonance will not be visible.

4. Zoom in on the resonance for a more detailed scan.

5. Repeat the detailed scan at 6 different main trap rf amplitudes from -26 dBm to -21 dBm to

see how the secular frequency shifts.

6. Repeat steps 2–5 for a =−2,−1,1,2.

7. Repeat steps 2–6 with the additional rf voltage applied to the upper ground electrode. This

will excite mainly the axial secular frequency.

Figure 6.13 shows a typical measurement of the secular frequencies. In this figure we scan

upwards over the resonance. This process was repeated for the range of parameters given above.

Figure 6.14 presents the range of secular frequencies calculated from simulations alongside the

experimental data. The experimental data have been fitted to equation 2.28 on page 14. The

simulations cover a wider range of rf amplitudes than are available to us experimentally. In day-to-

day operation of the trap, the rf amplitude was set at around 0.025 V and the a-value was zero. By

comparing these figures it is possible to say that the rf amplitude in the endcap trap, for the signal

generator level generally used, was approximately 200 V, and the corresponding q-value of the trap

was approximately 0.5–0.7. We note also a similar functional dependency in the simulation and

experimental results.
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(b) Axial scan.

Figure 6.13: Resonantly exciting the ion’s radial and axial secular frequencies with an additional rf voltage
on (a): the side electrode, and (b): the upper electrode. We interpret the double radial peak as a
splitting of the radial frequency into two components. See the text for details. For these plots
the trap rf amplitude was 22 dBm at the first function generator, and the a-value was 1.
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Figure 6.14: A comparison between (a) the secular frequencies derived from simulations and (b) the measured
values. Error bars can be determined from the width of the resonances. Since these are on the
order of 10 kHz they are not shown in this plot. See the text for further details.



Chapter 7

A fibre-coupled source of single-photons

This chapter presents the main results of the experiment, that is, the use of the endcap trap with

integrated fibres as a single photon source. Two main experiments were performed; the first to

excite a trapped ion with continuous light and observe the quantum nature of the fluorescence

collected through the fibres; the second to excite the ion with a series of laser pulses, such that

one photon is emitted for each pulse sequence. In both cases, the quantum nature of the light is

strikingly shown in correlation spectra of photon arrival times from the fibres.

As discussed in chapter 1, the controlled creation and absorption of single photons enables

schemes in quantum networking, cryptography, communication and computing. Prior to the

development of quantum optics, single photons were produced using a laser beam attenuated to

such an extent that the probability of more that one photon being emitted was negligible. This was

unsatisfactory for two reasons—firstly, the probability of no photon being emitted was higher than

that of one, and secondly the probability of two photons being emitted together was non-zero.

In the new field, then, of ‘real’ single-photon sources, we can identify two overarching schemes.

The first—coherent emitter/photon interaction through strong coupling cavity QED—has been

mentioned in the trapped-ion context in chapter 4. In this scheme, a single photon is emitted

into a single cavity mode, providing a reversible coherent exchange of excitation between emitter

and photon, as required by many quantum information processing proposals (for example, [31]).

Although strong-coupling has been achieved with an ensemble of ∼ 500 ions in a linear trap [69],

to date it has never been reached with a single trapped ion. At present, work towards this is a

highly active research area—see, for example [91]. A 2010 review of the theory and most important

implementations of cavity-based single photon schemes, (not only ion trap schemes), can be found

in [92]. Neutral atoms have also been used as a cavity-based single-photon source [93]. In this

thesis however we are concerned only with ion trap schemes and we can identify the work by

Keller et al.[54, 73] in 2004 to implement an ion-trap single photon scheme with calcium ions as a

milestone in the field. The experiments in this thesis have several similarities to this work. The

2004 experiment was the first to couple a single trapped ion to an optical cavity, and furthermore

the first to produce single photons from such a scheme. The ultimate goals of the experiments

reported in this thesis are to be the first single ion coupled to a fibre cavity, and from it to produce

single photons on demand. Further, due to the miniaturised cavity1, to strongly couple the ion to

the cavity field.

1The cavity used in the 2004 work was 8 mm long.

86
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In contrast to cavity-assisted schemes, the second distinct single-photon generation system is

to use an emitter in free space. Some implementations of this include single ions, where this was

first demonstrated by Diedrich et al. in 1987 [94], single molecules [95], nitrogen-vacancies in

diamond (colour centres) [96] and quantum dots [97]. In the context of trapped ions, the atom

emits into many different modes and as a result the amount of photons that can be captured by a

collection system of some fixed numerical aperture is limited, although the efficiency of single-

photon detection in such a scheme can approach that of the cavity-assisted scheme[98]. Review

articles covering many single-photon generation schemes can be found in [99]. In this chapter the

results of two non-cavity single-photon generation experiments are presented, as a prototype for

future cavity-assisted schemes.

7.1 Theory of the measurements

7.1.1 Classical theory of intensity fluctuations

The aim of this chapter is to show the quantum nature of the light emitted by our single-photon

source. That is, to prove the ‘singleness’ of the photons. We start, then, by outlining the classical

theory of optical intensity fluctuations, and show that a quantum-mechanical reformulation of the

theory predicts different results at the single-photon level—results which we can directly observe.

The results of our experiment are no less than a proof of this quantum theory.

We consider first a chaotic light source. Such light is termed ‘chaotic’ because the contributions

of the random phases emitted by the atoms of the source produces interference which results

in random intensity peaks and troughs. See, for example, the random-walk model of collision-

broadening in chaotic light, described in [59, Ch. 3]. It can be shown that the mean-square intensity

of such a beam is given by

〈Ī(t)2〉=
(

2− 1
v

)
Ī2, (7.1)

with v the number of radiating atoms and Ī the mean intensity over long-times (times much greater

than the coherence time), given by

Ī =
1
2

ε0cE2
0 v. (7.2)

In this and hereafter the overbar denotes the cycle average intensity, that is, the intensity averaged

over one cycle of the electric field, whilst the angle brackets denote the average of many values of the

cycle-averaged intensity, taken over times much greater than the coherence time (the time-averaged

intensity).

For a large number of atoms, equation 7.1 approximates to

〈Ī(t)2〉= 2Ī2. (7.3)

By contrast, coherent light exhibits no intensity fluctuations:

〈Ī(t)2〉= Ī2. (7.4)
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7.1.1.1 Second-Order Coherence

If we now consider pairs of intensity fluctuations of the sort described in section 7.1.1, but with

a fixed time delay τ between them. We define the intensity correlation function, g(2)(τ), of the

light as

g(2)(τ) = 〈Ī(t)Ī(t + τ)〉, (7.5)

and generally we use a normalised version:

g(2)(τ) =
〈Ī(t)Ī(t + τ)〉

Ī2.
(7.6)

which we can write in terms of the electric field as

g(2)(τ) =
〈E∗(t)E∗(t + τ)E(t + τ)E(t)〉

〈E∗(t)E(t)〉2
. (7.7)

We now consider the values of g(2)(τ) we might expect at τ = 0 and τ > 0. If we take a pair of

measurements of intensity, at times t1 and t2, then the following inequality must be true:

2Ī(t1)Ī(t2)≤ Ī(t1)2 + Ī(t2)2. (7.8)

Now, considering the statistical average of the two intensities, we find

[
Ī(t1)+ Ī(t2)

2

]2

≤ Ī(t1)2 + Ī(t2)2

2
, (7.9)

where we have replaced the cross terms in the left hand side of equation 7.9 with the inequality 7.8.

So we have that

〈Ī(t)〉2 ≤ 〈Ī(t)2〉, (7.10)

and since Ī2 = 〈Ī(t)2〉, then from equation 7.6 we can see that for zero time delay, τ = 0, classical

light gives

g(2)(0) =
〈Ī(t)2〉
〈Ī(t)〉2

⇒ g(2)(0)≥ 1. (7.11)

In addition, we can write

(
N

∑
i=1

Ī(ti)Ī(ti + τ)

)2

≤
N

∑
i=1

Ī(ti)2
N

∑
i=1

Ī(ti + τ)2, (7.12)

where the cross terms on the left hand side have again been replaced by the inequality 7.8. We can

see that if the tN are sufficiently large, then the two sums on the right hand side of equation 7.12 are

equal. Taking a statistical average again, as in equation 7.9, we find
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〈Ī(t)Ī(t + τ)〉 ≤ 〈Ī(t)2〉, (7.13)

and referring to equation 7.6, this means that

g(2)(τ)≤ g(2)(0). (7.14)

It can be shown [59, Ch. 3] that for Gaussian-Lorentzian light2

g(2)(τ) = 1+ exp
[
−2|τ|

τ0

]
, (7.15)

with τ0 the radiative lifetime of the spectral transition, or the collision time, depending on the

dominant broadening mechanism.

Similarly, for Gaussian-Gaussian light, such as Doppler broadened light:

g(2)(τ) = 1+ exp

[
−π

(
τ

τc

)2
]

, (7.16)

with τc the coherence time.

It follows from equations 7.15 and 7.16 that

g(2)(τ)→ 1, τ � τC, (7.17)

and

g(2)(0) = 2, (7.18)

and these relations apply to all forms of chaotic light.

For coherent light, which exhibits no intensity fluctuations, we find from equation 7.6 that

g(2)(τ) = 1, (7.19)

for all τ .

In equation 7.7 we have assumed a stationary beam of light3, with fixed linear polarisation,

measured at a fixed point; however, it can be extended to cover non-stationary light fields measured

at two points in the following way:

g(2)(r1, t1,r2, t2) =
〈E∗(r1, t1)E∗(r2, t2)E(r2, t2)E(r1, t1)〉

〈|E(r1, t1)|2〉〈|E(r2, t2)|2〉
, (7.20)

where for non-stationary beams, the two averages in the denominator could be different. With the

linearly-polarised, parallel beams we assume, we need only use one component of r, say z. We

2Gaussian-Lorentzian means that the distribution of the electric field amplitude is Gaussian, while the spread of
frequencies is Lorentzian, such as in homogeneously collision-broadened chaotic light. Conversely, Gaussian-Gaussian
light means that the broadening process produces a Gaussian frequency spread, such as in inhomogeneous Doppler
broadening.

3‘Stationary’ here means that the processes controlling the intensity fluctuations are constant in time, that is, the
photon statistics do not change. It doesn’t matter when we start measuring, the correlations only depend on the time
difference t2− t1. This contrasts with non-stationary sources, such as pulsed light, where the correlations would depend
on exactly where in the pulse we start measuring.
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can convert a measurement at two points (z1, t1) and (z2, t2) to a measurement at one point but two

times, to produce a correlation as in equation 7.7, by redefining τ as

τ = t2− t1− (z2− z1)/c, (7.21)

and we can then write

g(2)(z1, t1,z2, t2) = g(2)(τ), (7.22)

and all the relations for a single measurement point also apply to two separate measurement points.

7.1.1.2 The Hanbury Brown-Twiss Experiment

In 1956, two astronomers, Robert Hanbury Brown and Richard Twiss, published the results of

an experiment to test the time-dependent intensity correlations in the chaotic light emitted by a

mercury lamp [100–102]. They had previously used their technique to measure stellar diameters

[103]. Figure 7.1 shows a simplified schematic of their setup. The principle of the experiment is

that if the light falling on the two PMTs is coherent, then the output intensity fluctuations will be

correlated. Hanbury Brown and Twiss used a zero time delay, but changed the distance between

the PMTs. As the distance increased, the correlations dropped off, reflecting the decreasing spatial

coherence of the two light sources. In our experiments we are more concerned with the temporal

coherence of the light, that is, how the intensity correlations behave at difference time delays. For

example, if we set τ = 0, then the output of the experiment becomes

〈I(t)I(t + τ)〉= 〈I(t)2〉, (7.23)

which gives a non-zero result due to the random fluctuations of the light. If we make τ much

greater than the coherence time then the intensity fluctuations will be uncorrelated and 〈I(t)I(t +τ)〉
averages to zero. The drop-off in correlations in this case can be used to measure the coherence time

of the light. The principle of observing intensity correlations as a function of time delay is the main

theme of the experiments described in this chapter. Although Hanbury Brown and Twiss recorded

analogue correlations between continuous photocurrents, later experiments recorded coincidences

between discrete pulses in separate detectors [104].
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Figure 7.1: The main components of the Hanbury Brown-Twiss experiment to measure time-dependent
intensity correlations in light from a filtered mercury lamp. The photocurrents, i1,2 (not to be
confused with the intensity I discussed elsewhere in this chapter), measured by the photomulti-
plier tubes (PMTs) were AC-coupled, with the signal from one being delayed by an amount τ .
The resultant fluctuations were multiplied and averaged. Hanbury Brown and Twiss used this
apparatus to measure the spatial coherence of the light by placing PMT1 on a translation stage.
This way the correlations could be observed as the distance between the paths was changed.
They used this to measure the spatial coherence of the light.

7.1.2 Quantum theory of second-order coherence

The preceeding discussion of the classical degree of second-order coherence works well for the

ordinary light intensities of the macroscopic world; however, for quantum correlations between

single photons emitted from single ions we must formulate the theory in fully quantum-mechanical

terms. This was first laid out in 1963 by Roy Glauber [105] and a summary of the main points is

given here. Figure 7.2 shows a typical setup for investigating correlations in single photon arrival

times, that is, a quantum version of the Hanbury Brown-Twiss experiment. The source light is split

by a beam splitter. Photons arriving at detector D3 trigger a start event in the timer, while photons

arriving in detector D4 trigger a stop event. After many events a histogram of delay times between

start and stop events can be built up. In this case, since intensity is proportional to the number of

counts detected, g(2)(τ) can be written as

g(2)(τ) =
〈n3(t)n4(t + τ)〉
〈n3(t)〉〈n4(t + τ)〉

, (7.24)

with n3(t) and n4(t) the number of photons arriving at detector 3 and 4 at time t.

We can write this in quantum-mechanical terms in the following way.

Recall the photon number operator n̂ of section 4.2 on page 30. Using equation 4.22, and

re-ordering the operators into normal order,4 it is possible to write equation 7.24 in terms of the

creation and annihilation operators, as

4Placing the operators with all the creation operators to the left and all the annihilation operators to the right is called
normal ordering.
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Figure 7.2: A typical Hanbury Brown-Twiss setup for measuring correlations in arrival times of photons
from a source. In an ideal setup we would only need one detector which would measure each
photon’s arrival time accurately. In practice however detectors have a dead time after measuring
an event, during which they cannot measure anything. To compensate for this, two detectors are
used. This necessarily introduces the added complication of the beam splitter. The fields E1–E4
are the electric fields at the four ports of the beam splitter, with E1 the source, E2 the vacuum,
E3 and E4 the beamsplitter outputs.

g(2)(τ) =
〈â†

3(t)â
†
4(t + τ)â4(t + τ)â3(t)〉

〈â†
3(t)â3(t)〉〈â†

4(t + τ)â4(t + τ)
. (7.25)

Setting τ = 0, and for a photon number state |n〉 this equation can be simplified to [106, Ch. 8]:

g(t)(τ) =
〈n̂1(n̂1−1)〉
〈n̂1〉2

. (7.26)

This equation holds for any input field, but in the case that the input field is a photon number

state |n〉 then we have

g(2)(0) =
n(n−1)

n2 . (7.27)

So, for a source emitting single photons we obtain the non-classical result, g(2)(0) = 0.

It can be shown that the degree of second-order coherence for stationary chaotic light—

equations 7.15 and 7.16—and for coherent light—equation 7.19—is the same in the quantum

picture as in the classical picture. In the classical picture this describes the intensity fluctuations

of chaotic light, while in the quantum picture it describes the surprising phenomenon of photon

bunching, that is, the tendency of photons to clump together. For a more detailed explanation of the

quantum mechanics of the photon bunching effect, see [107].

7.1.3 Photon Antibunching

Light in which the inequality

g(2)(0) < g(2)(τ) (7.28)

holds, is known as antibunched light and implies that the probability of two photons occuring close

to each other is less than the probability of them occuring at greater separations. This kind of light

is in violation of the classical theory of intensity fluctuations and can be considered a signature of
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the quantum nature of light.

Antibunched light often exhibits sub-Poissonian photon statistics5, another signature of non-

classical light, but the two phenomena are distinct and can occur separately [108, 109]. In contrast

to inequality 7.28, sub-Poissonian statistics satisfy

g(2)(0) < 1. (7.29)

Antibunching was first observed in the resonance fluorescence of sodium atoms by Kimble et

al. in 1977 [110], and later from a single sodium atom in 1978 [111]. The sub-Poissonian nature of

the radiation in the above was shown by Short in 1983 [112]. In the experiments reported in this

thesis, antibunching in the resonance fluorescence from a single calcium atom is observed. In this

case it is clear that after a single atom has emitted a photon it must be re-excited before it can emit

a second. The resultant delay between photons is the cause of the antibunching.

(a) Bunched photons: g(2)(0) > 1.

(b) Antibunched photons: g(2)(0) < 1.

Figure 7.3: Photon streams corresponding to chaotic light (bunched photons), and non-classical light (anti-
bunched) photons.

7.1.3.1 The second-order correlation function for a two-level atom

In the following sections we describe the theoretical g(2)(τ) function for a two-level atom in two

separate ways—firstly using an analytical expression, and secondly by numerically integrating the

optical Bloch equations of section 3.2.2 on page 20. Carmichael and Walls [113] give an analytical

expression for g(2)(τ) in the case of light scattered at resonance from a two-level atom:

g(2)(τ) = 1−
(

cosΩ̃τ +
3Γ

4Ω̃
sinΩ̃τ

)
e−

3
4 Γτ , (7.30)

where

5The arrival times of photons from a source is governed by probabilities related to the Poissonian distribution.
Coherent light exhibits Poissonian photon statistics in which the square of its standard deviation (∆n)2, equals its mean
n̄. Super-Poissonian and Sub-Poissonian statistics, on the other hand, have the properties (∆n)2 > n̄, and (∆n)2 < n̄
respectively.
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Ω̃ =

√
Ω2 +

(
Γ

4

)
, (7.31)

with Ω the Rabi frequency6, and Γ the spontaneous decay rate of the transition. It is clear that the

presence of spontaneous decay places a damping exponential envelope on the Rabi oscillations.

Rabi oscillations depend on the evolution of the superposition between the two energy levels, and a

spontaneous decay event abruptly interrupts the phase of the superposition. This occurs in a random

way, at a rate determined by Γ, the decay rate. There may be other damping processes present

which interrupt the coherence of the Rabi oscillations such as collisions with other atoms, but in

the single-atom case we assume that spontaneous emission dominates. If we were to increase the

electric field of the exciting light, we would increase the Rabi frequency, and if this became much

greater than the damping processes, then we would in principle start to see clear Rabi oscillations.

So much for the situation where the exciting light is exactly on-resonance with the atomic

transition. For an arbitrary detuning, a more general form is given by Dagenais and Mandel [111]

in their work on photon correlations from a single sodium atom:

g(2)(τ) = 1−

(
A+ 1

3
B2 +9A2

) (1
9 −

4
3 A+4A2 +Θ2

)(1
2 Ω2/β 2 +1+Θ2

)(
Ω2

β 2

)(1
2 A− 1

3

) e(−
4
3 +2A)βτ−

4
(1

2 Ω2/β 2 +1+Θ2
)

Ω2/β 2

(
FH +GJ
H2 + J2 cos(Bβτ)− GH−FJ

H2 + J2 sin(Bβτ)
)

e(−
4
3 +A)βτ , (7.32)

with the following definitions:

β =
Γ

2

Θ =
(ωL−ω0

β

A =
1
2
(η+ +η−)

B =
1
2
(η+ +η−)

η± =
1
3

9Ω2

2β 2 −9Ω
2−1±

√(
9Ω2

2β 2 −9Ω2−1
)2

+
(

3Ω2

β 2 +3Ω2−1
)3


1
3

F =
2
27

+
1
3

A+
2
3

Θ
2−AΘ

2−A3 +3AB2

G =−1
3

B+BΘ
2−B3 +3A2B

H = 8AB2 +
8
3

B2

J = 8AB+6A2B−2B3. (7.33)

6See [59] or [106]. Recall that the Rabi frequency, giving the rate of population oscillation between the two electronic
energy levels, depends on the electric field amplitude of the exciting light as Ω = |2µE0/h̄|, with µ the dipole matrix
element describing the strength of coupling between the atomic transition and the light.
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(a) The g(2)(τ) function for three intensities of light as represented by the Rabi
frequency, Ω. Γ is the natural linewidth of the transition.
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(b) The g(2)(τ) function for three detunings, shown in terms of the natural
linewidth of the transition. The light intensity is fixed at Ω = Γ in this case.

Figure 7.4: The g(2)(τ) function as given by equation 7.32, shown for (a) three intensities of light, as
represented by the Rabi frequency Ω and the natural linewidth Γ, and (b) three different detunings
from the resonance frequency of the transition, shown again in terms of the natural linewidth Γ.

The effect of the light intensity and the detuning from resonance on the g(2)(τ) function is

shown in figure 7.4.

The optical Bloch equations presented in section 3.2.2 can be integrated numerically to show

the time evolution of the upper state. To close this section, figure 7.5 shows the solution for the

population of the upper and lower states of the optical Bloch equations for a two-level atom, by

numerical integration between 0 and 100 ns. From this the normalised g(2)(τ) function is shown

for varying Rabi frequencies and detunings. Note that the normalisation prevents us from seeing
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the expected drop in amplitude of the Rabi oscillations with increasing detuning. These solutions

are consistent with the plots obtained from the analytical expression 7.32.
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(a) Numerical solution of the OBE’s, Ω = 2×Γ.
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(b) Varying Ω, ∆ fixed at 20 MHz.
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(c) Varying ∆, Ω fixed at 20 MHz.

Figure 7.5: The normalised g(2)(τ) function calculated by numerical integration of the optical Bloch equa-
tions for a two-level atom. Shown as the Rabi frequency Ω and then the detuning ∆ is varied.

7.2 Results—Continuous Single-Photon Generation

Previous implementations of the HBT photon-correlation experiment have used a setup similar to

that shown in figure 7.2. See, for example, [91], for a typical setup—the light to be investigated is

sent to one of two detectors using a beam splitter, or mirror. In our case, however, this splitting is not

necessary, since photons from our light source can enter either the fibre in the top electrode, or the

fibre in the bottom electrode. Since the ion must be re-excited before emitting again, light collected

from the fibres should be anti-correlated. In addition, there is no need for further collection optics,

since the ends of the fibres can be directly coupled to PMTs.
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7.2.1 Spectroscopy with fibre-based detection

If we recall that the frequency of Rabi oscillations increases with detuning whilst the amplitude

decreases, then it is apparent that the detuning must be accurately determined, to ensure that Rabi

oscillations are visible. To this end the scanning cavity lock mentioned in section ?? on page ??
was used to scan the laser frequency over the resonance and so allowed us to choose an accurate

detuning. ‘Beam 1’, indicated in figure 5.1 on page 37 was used. In order to reduce light scattered

from surfaces inside the trap the beam was first ‘cleaned’ using a spatial filter and then focused

using a diffraction-limited, custom-made lens7. The setup is shown in figure 7.6. Using this setup

and with very low beam powers (hundreds of nanowatts) we were able to achieve count rates of

up to 55 kHz from a single ion, combining both fibres, against background rates of under 1 kHz.

Figure 7.7 shows a typical lineshape scan of the resonance using this beam and collecting the

fluorescence through the fibres. The signal-to-background is shown for a detuning of 30 MHz.

By way of completeness, signal-to-backgrounds for the three main cooling beams are shown in

figure 6.3 on page 69; however, these should not be compared with the low-scatter beam. Beam 1

is measured through the fibres, while the other cooling beams are measured at the free-space side

PMT. Count rates for the main cooling beams through the fibres were extremely high (∼MHz). To

summarise the discussion of this beam, its principal advantages over the other cooling beams were:

• Spatial filtering to remove high-frequency noise from the beam.

• Tight focusing at the trap centre (∼6 µm waist).

• High signal-to-background rate.

• Very low scatter rate from surfaces inside the trap.

7Manufactured by Bernhard Halle Nachfl. GmbH.
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Figure 7.6: The final ultra-low-scatter setup for the principal beam used in the correlation experiments—
‘beam 1’. See the text for more details.
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Figure 7.7: Beam 1—the y-axis shows combined fluorescence from the top and bottom fibres. The half-
width-at-half-maximum and the fluorescence at a detuning of 30 MHz are as shown. The scan
was taken using the scanning cavity lock (see chapter 5). The power in the beam was 390 nW,
and the 850 nm and 854 nm repumpers were used.

7.2.2 Saturation measurements of beam 1

In order to ascertain the optimum power to use in beam 1 we took a series of measurements

of the half-width at half-maximum of the fluorescence spectrum. The object being to find the

saturation power of the transition. Figure 7.8 shows a series of half-width at half-maximum

linewidth measurements of beam 1. The data are fitted to the equation
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γ
′ = γ

√(
1+2

P
PSat

)
, (7.34)

where γ ′ is the linewidth of the transition, broadened by power P, γ is the natural linewidth of the

transition8, and PSat is the saturation power of the transition.
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Figure 7.8: Linewidth measurements of beam 1 with the fitted saturation power shown. For these measure-
ments the 866 nm repumper was used, at a power of 520 µW.

7.2.3 The correlation signal path

The two multimode fibres inside the trap9 are connected to the atmosphere via vacuum feed-

throughs10 to further optical fibres11, then to two PMTs12. The general setup for a correlation

measurement is shown in figure 7.9.

The photon signals from the PMTs are received by a FAST 7072T time-to-digital converter,

which measures the the delay between a start and stop event at its inputs. This device has two

channels and we set these up such that each start event is also a stop event, and vice versa. This

means that every photon is correlated against all other photons. We set the 7072T to record time

differences up to 200 ns, with a conversion range of 2048. This means that the 200 ns range is

divided up into 2048 bins. We can specify the time resolution then, of the device in this state, as

(200×10−9/2048)≈ 98 ps.

We require that the arrival times of photons recorded by the PMTs be as close as possible to

the real photon arrival time (or at least to have a consistent offset); however, there is always some

variation in recorded arrival times relative to the real photon time. This is quantified in the ‘jitter’

820.6 MHz/2, taking a value from [50].
9Thorlabs BFH48-200, core diameter 200 µm, cladding diameter 230 µm.

10Core diameter 400 µm.
11Edmund Optics NT58-457, core diameter 600 µm, cladding diameter 660 µm.
12In this particular experiment, these are Hamamatsu H5773’s.
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Signal 
processing

Correlation

Figure 7.9: The setup for correlation measurements. The two fibres are coupled directly into the PMTs. The
PMT signal passes to various signal processing elements and from there to a computer which
records the arrival times of each photon event. The arrival times are processed later to obtain
correlation spectra.

of the PMTs. Jitter is an undesirable effect whereby the time difference between a photon event

and the resultant PMT pulse differs, or ‘jitters’, randomly, within some standard deviation. We can

see the reason why we would care about jitter if we consider the arrival times of photons around

g(2)(0). If the arrival times vary randomly, then the dip at zero time delay is ‘smoothed out’. The

effect of a number of dips, offset from each other by random amounts of time, at around the zero

point, would have the effect of making the resultant dip seem higher.

The jitter of the PMTs was determined by observing time differences between picosecond laser

pulses, 25 ns apart,13 and the resultant PMT pulses. A new PMT—Hamamatsu H5773, was found

to have the lowest jitter, with a standard deviation of photon arrival times relative to the nearest

picosecond pulse of 0.1 ns. Our previous PMTs—Hamamatsu H7360-02, had a standard deviation

of 1.2 ns.

7.2.4 Continuous Correlation Measurements

7.2.4.1 Correlation measurements with a high intensity

The following continuous correlation measurements were made using the alternative repumper

scheme of section 3.2.3 on page 23. A delay was inserted into one channel of the timing module, to

13Using a PicoQuant PDL 800-B picosecond pulsed diode laser.
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give us access to negative correlations. Plots have been shifted so that the centre of the plot is at

zero time. At high intensity, Rabi oscillations should be visible in the correlation spectrum, but it

was found that the extra random correlations from the scattered background obscured any clear

oscillations. An example of this is shown in figure 7.10. We subsequently concentrated on getting

the dip at zero time as close to zero as possible, and these measurements are shown in the following

sections. The fits to the following data are performed using a two-level model with the method

discussed in section 3.2.3 on page 23.
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Figure 7.10: Correlation measurements taken with a high intensity (770 nW) in beam 1. We hoped to see
clear Rabi oscillations by using a high intensity beam, as indicated by the fit, but a combination
of the high detuning and unwanted ion/background and background/background correlations
have obscured them. The detuning in this measurement was fixed and the Rabi frequency is
fitted to the two-level model of section 3.2.3.

7.2.4.2 Correlation measurements with a low intensity

In order to improve the quality of the single-photon source we now concentrate on getting the

background scatter rate as low as possible. In practice this means using as low an intensity in beam

1 as possible, and keeping the laboratory almost entirely dark for the duration of the measurement.

This reduces the unwanted ion/background and background/background photon correlations which

are responsible for the non-zero value of g(2)(0). Figure 7.11 shows a 40 minute correlation

measurement. For this measurement, we determined the signal-to-background ratios in the two

fibre channels to be SBR1 = 75 and SBR2 = 26, respectively, with the difference accounted for by

a small angle in beam 1 which caused slightly different amounts of light to be scattered into the

upper and lower fibres. We can now estimate the value of g(2)(0) from the signal-to-background

ratios, and compare it to the real value.
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Estimating the value of g(2)(0)

Let us temporarily describe a photon emanating from the ion as a ‘real’ photon event, and all other

photons as ‘background’ events.

Let us say we have definitely received a correlation event at time zero. There are three physical

ways this could happen:

1. A real photon in the first PMT, and a background photon in the second.

2. A real photon in the second PMT, and a background photon in the first.

3. A background photon in both PMTs.

If we say that a correlation event has definitely happened, and we know that both events cannot

be real photons, then we can assign P1 to the probability that a real event has occurred in the first

PMT, and 1−P1 to the probability that a background event has occurred in the second PMT, and

vice-versa.

So we can write the probability of a correlation event at τ = 0 as

g(2)(0) = P1(1−P2)+P2(1−P1)+(1−P1)(1−P2), (7.35)

where P1(1−P2) is the probability of receiving a real photon in detector 1 and a background photon

in detector 2; P2(1−P1) is the probability of receiving a real photon in detector 2 and a background

photon in detector 1, and (1−P1)(1−P2) is the probability of receiving two background photons

together.

If we write the probabilities P1 and P2 in terms of signal-to-background: S1 = P1/(1−P1) and

S2 = P2/(1−P2), then we can write

g(2)(0) =
S1 +S2 +1

(S1 +1)(S2 +1)
. (7.36)

If we use the signal-to-backgrounds, SBR1 = 75 and SBR2 = 26 of this measurement in equation

7.36, then we obtain a value of g(2)(0) ≈ 0.05, which agrees with the value of g(2)(0) = 0.05

obtained by normalising the y-axis of figure 7.11, and reading off the minimum.

A note on the two-level fit

It is clear that the two-level fit deviates somewhat from the real behaviour of the correlations. One

reason for this is that the two-level model does not take into account the full Zeeman structure of

the levels. In essence, there are two Rabi frequencies at work in our effective two-level system

here, because the S, and P-levels are both split into m = ±1/2 magnetic sub-levels. The two

Rabi frequencies result from the differing Clebsch-Gordan coefficients for the diferent transitions

between the S and P sub-levels, and this results in a deviation from the two-level fit.

The results of this experiment can also be found in [114].
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Figure 7.11: Correlation measurements taken at a low beam intensity and very low fixed detuning. Again,
the fit is to the two-level model of section 3.2.3. The fitted Rabi frequency, Ω, is as shown. The
power in beam 1 was 160 nW. The minimum of the y-axis is 4.

7.3 Results—Pulsed Single-Photon Generation

Our second implementation of a single-photon setup was a scheme to generate single photons at

regular intervals, defined by a controllable laser pulse sequence. In principle the scheme is a simple

one, consisting of the following steps:

1. ‘Shelve’ the ion in the metastable D-state using a pulse of 397 nm light of pre-determined

duration.

2. Inject a pulse of 866 nm light through one fibre—the ion emits a single photon and returns to

the ground state.

3. Detect the single photon, with some detection efficiency, via PMTs connected to the other

fibre.

4. Re-cool the ion with 397 nm and 866 nm light for a period, before repeating the sequence.

7.3.1 Outline of the setup

Recall from section 3.2.3 on page 23 that we used an 850 nm and 854 nm repumper setup to avoid

the dark resonance condition in continuous fluorescence that occurs when the detunings of the

397 nm and 866 nm lasers are equal. In the pulsed case, only the 866 nm laser is on during the

measurement period; that is, the single-photon emission phase of the pulse sequence. Therefore,

there is no possibility of a dark resonance and we can simplify the laser pulse sequence by only

using an 866 nm repumper.

For this experiment, we switched to a new timing card, a FAST Comtec P7888. The first PMT

is coupled directly to the bottom trap fibre using a custom-made light-tight aluminium cap. In our
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efforts to create as far as possible an all-fibre system, we decided to inject 866 nm light and detect

the resultant single photons through the fibres. Particular care was needed therefore to minimise

866 nm repumper light transmitted through the trap. The setup is illustrated in figure 7.12.

866 nm repumper 
IN

Dichroic mirror

Semrock filters

Free-space cooling

PMT 1

PMT 2

Single photon OUT

Beamsplitter

Figure 7.12: The setup for the pulsed correlation measurements.

7.3.2 The sensitivity of the PMTs to 866 nm light

The sensitivity of the PMT to 400 nm light is quoted in its specifications14, but we would also

like to know its sensitivity to 866 nm light. Since we would be not only triggering, but also

detecting, a single photon through the fibres, we particularly needed to know how much, if any, of

the 866 nm trigger light would make it through the trap and into the single-photon-detection setup.

We determined this by injecting 866 nm light into one fibre and extracting it through the other. This

light was then coupled directly to the PMT and the measured counts recorded. We placed one, and

then two, Semrock FF01-395 11 bandpass filters in a custom-designed light-tight cap attached to

the PMT lens. The results are shown in figures 7.14(b) and 7.14(c). The background light offset

that was present during the measurement has been subtracted from this measurement. From the

linear fits shown we know that the sensitivity of the PMT is:

• No filter: 2.65×10−3 s−1pW−1

144.1 ×105 s−1pW−1.
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• One filter: 4.52×10−5 s−1pW−1

• Two filters: 2.57×10−5 s−1pW−1
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(a) Calibrating the AOM to 866 nm power.
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(b) Transmission from the bottom to the top fibre.

Figure 7.13: (a) Here we calibrate the AOM voltage used for the 866 nm beam entering the trap via the
bottom fibre to the real beam power. The fourth-degree polynomial fit serves to guide the eye.
The calibration is used in all subsequent measurements of this beam’s power. In (b) we measure
how much of the power entering the bottom fibre makes it out the top fibre. From a linear fit to
the data we determine the transmission efficiency to be 3.45%. In both plots the background
count rate parameter of the fit has been subtracted.

Based on this data, we decided to use two Semrock filters in the PMTs shown in figure 7.12.
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(a) With no Semrock filter.
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(b) With one Semrock filter.

0 5 10 15
0

100

200

300

400

500

Power out of top fibre/µW

P
M

T
 c

o
u

n
ts

 a
t 

to
p

 f
ib

re
/H

z

(c) With two Semrock filters.
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(d) Transmission of the filter.

Figure 7.14: (a) The PMT’s sensitivity to 866 nm light with no filter. (b) The effect of one, and (c) two
Semrock filters. Sensitivities calculated from the linear fits are 2650 Hz/µW 45.2 Hz/µW
and 25.7 Hz/µW, respectively. Background light has been subtracted. Figure (d) shows the
transmission of the filter used at approximately the wavelengths of interest. Transmission data
provided by Semrock.

7.3.3 The pulse sequence and signal path

The laser pulse sequence was provided by an FPGA15, controlled via USB by a graphical Python

user interface. Figure 7.15 shows the pulse sequence used with details of the pulse durations.

Each timestamp recorded by the P7888 card consists of 32 bits, or 4 bytes, and we want to

ideally record 1 photon or 4 bytes per 4 µs cycle. This is 250×103 ×4 bytes s−1 = 1 Mb s−1. This

is 3.6 Gb per hour, just to record the single photons. To record all photon timestamps in the pulse

sequence, then, would be restrictive, in terms of storage, and processing time. For this reason we

gate the PMTs using a signal from the FPGA and so only record photons arriving within a specified

time window. This window is labelled ‘gate’ in figure 7.15. The gating process is controlled by the

signal path shown in figure 7.16. NIM level conversion modules are used to convert the TTL signal

output by the PMTs and FPGA to the NIM signal required by the P7888 card.

15Field Programmable Gate Array. This FPGA is a Xilinx Spartan 3, device:XC3S400, package: PQ208.
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Figure 7.15: The pulse sequence used in the pulsed single photon experiment. In this case the 397 nm
‘shelving’ pulse is on for 2500 ns before switching off, ensuring that the ion is shelved in the
metastable D-state with high probabillity. At 2500 ns, the 866 nm repumper pulse switches on,
generating the single photon. The third channel is the gate ‘window’, that is, the period during
which we actually count photons. It should be noted that a delay of around 500 ns was present
in the repumper pulse, introduced mainly by the AOM used, so in fact the gate window and
repumper pulse start at roughly the same time. This pulse sequence was used for the correlation
measurements shown in figure 7.19. The repetition rate is 250 kHz. The reference pulse shown
in the lower plot is used later in the single photon pulse shaping experiment.
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Fibre PMT 1: TTL IN and 
NIM OUT

Fibre PMT 2: TTL IN and 
NIM OUT

FPGA Gate window: TTL 
IN and NIM OUT

To P7888 'stop 1' input, 
when PMT 1 and gate 
coincidence is satisfied

To P7888 'stop 2' input, 
when PMT 2 and gate 
coincidence is satisfied

FPGA Gate signal 

Figure 7.16: The signal path used for the pulsed photon correlation measurements. The NIM module on the
left is a level adaptor. The P7888 counting card accepts NIM-level signals, so we first convert
the PMT and the FPGA gate TTL signals to NIM. The module in the middle is not used in
this measurement. The module on the right is a coincidence unit. It outputs a signal when a
coincidence is satisfied between the FPGA gate signal and the PMT signal. In this way we only
record counts inside the gate window.
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7.3.3.1 The timing of the shelving pulse

In order to determine the effect of the position of the 397 nm shelving pulse in relation to the

measurement window we looked at count rate in the window as a function of shelving pulse timing.

We found that count rates approached a steady background after around 3000 ns. We also tested

the effect of a ‘re-cooling’ pulse placed towards the end of a pulse sequence, but found that this

appeared to make little difference. We used the ‘shelving efficiency’ data in figure 7.18(a) to decide

on a beam power of 15 µW for our initial measurements.
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Figure 7.17: Background count rates in the measurement window as we move the relative timing of the
shelving pulse, and then the re-cooling pulse.
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Figure 7.18: (a) We look at the correlation counts received at the P7888 card in a 3500 ns period after the
onset of the shelving pulse. (b) We quantify the shelving efficiency in the time constant of an
exponential fit to the data in (a). This quantifies the decline of the P-state population as the ion
becomes shelved in the metastable D-state. At longer times we see less probability of finding
the ion in the P-state, as expected.

7.3.4 Subtracting the background

Denoting a photon emitted from an ion as a ‘real’ photon, and all others as background events, we

can formulate a more accurate method of background subtraction.
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Let us now denote the total number of counts at the first PMT as P1(t), and at the second PMT

as P2(t). We denote real photon events as p1(t) and p2(t), and the contribution from background

or dark count events as d1(t) and d2(t). Then the total counts registered at the first PMT are

given by P1(t) = p1(t)+d1(t), and at the second by P2(t) = p2(t) = d2(t). We want to know the

cross-correlation of real photon events only, that is, 〈p1(t)p2(t + τ)〉, and this is given by

〈p1(t)p2(t + τ)〉= 〈(P1(t)−d1(t + τ))(P2(t)−d2(t + τ)〉

= 〈P1(t)P2(t + τ)〉−〈d1(t)P2(t + τ)〉−〈P1(t)d2(t + τ)〉+ 〈d1(t)d2(t + τ)〉.
(7.37)

The background-contribution terms in equation 7.37 can be determined if we take a measure-

ment of the background under the same circumstances used for the real measurement, that is, the

same laser power, the same ambient lighting conditions, but with no ion, and then construct a

histogram of cross-correlations of the background measurement with the real measurement. This

will give us a histogram of

〈d1(t)P2(t + τ)〉−〈P1(t)d2(t + τ)〉+ 〈d1(t)d2(t + τ)〉 (7.38)

which we can then subtract from the main measurement. This technique is used to subtract the

background from the measurement shown in section 7.3.5.

7.3.5 Correlation Measurements

Our first measurements demonstrated clear antibunching around the zero time delay, but a non-zero

peak at zero time delay. An ideal single photon source must in principle be free of two-photon

contamination. Our effort, therefore, moved in the direction of getting scattered background light

to a minimum. We used the ultra-low scatter beam—beam 1—which we had employed for the

continuous correlation measurements of section 7.2.4. Due to the scatter in the tail of our shelving

pulse, we were unable to exceed 250 kHz in this experiment (considerable time and effort went

into trying to reduce this, by reducing the fall time of the AOM used while monitoring correlations

in the tail of the pulse). We were, however, able to reduce background correlations around zero

time considerably. Figure 7.19(a) shows the final result. In figure 7.19 the background has been

subtracted using the method of section 7.3.4. The mean number of correlations around the zero

delay peak, that is, between -1.5 µs and 1.5 µs, (chosen arbitrarily), is -0.12. Moreover, if we

normalise the plot using the average peak height, we obtain a value for the correlation function at

zero time delay of 0.005. This indicates a high-quality single photon source, almost entirely free of

multiple-photon events.
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(a) Correlation spectra obtained using beam 1 and the beamsplitter setup illustrated
in figure 7.12. The pulse sequence shown in figure 7.15 was used, with a repetition
rate of 250 kHz. This measurement was taken over a period of 28 minutes. The
rate on channel 1 was 147 Hz, and on channel 2 170 Hz. No background has been
subtracted from this plot. The bin size was 100 ns.
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(b) The correlation measurement of (a) with a background measurement taken
immediately afterwards subtracted. The background was taken over 25 minutes,
with beam 1 on, and had rates of 7.14 on channel 1 and 8.80 on channel 2. The
background was shuffled, and then removed using the method detailed in section
7.3.4. The random nature of the background subtraction results in some small
negativities. The bin size again was 100 ns. See the text for further details.

Figure 7.19
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7.3.6 Single Photon Pulse Shape

In this section we reconstruct the shape of a single photon pulse by correlating photon arrival times

with the reference pulse of the pulse sequence (channel four of figure 7.15). To reduce file sizes, we

divided the 250 kHz reference pulse by 100, to 2500 Hz. Our count rates are much smaller than this,

so this doesn’t cause any problems. The pulse shape of single photons has been studied in detail

in various atom-cavity contexts; see, for example [54, 73, 115, 116]. In creating a single-photon

pulse shape, the principle is to repeat the experiment (that is, the generation of one single photon)

many times, and record the arrival time in each case. When we record a photon’s arrival time, that

is, the time we receive a detector click, what we are actually detecting is the square modulus of

its electric field. This is essentially the square modulus of the photon’s wavefunction, which is

the probability of the photon occurring at that time. If the photons are indistinguishable, that is,

identical, then the distribution of arrival times can be said to represent the temporal shape of a

single photon. That the photons should be identical is quite generally a requirement for quantum

information processing applications. This is not the case in our experiment—we do not prepare our

ion in a specific Zeeman sub-level, such that the output polarisation is defined, and so our photons

are emitted with random polarisations. We can say that the pulse shape shown in figure 7.20 is a

combination of pulse shapes resulting from the differing Rabi dynamics of each transition between

Zeeman sub-levels, governed by the Clebsch-Gordan coefficients of the transitions.
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Figure 7.20: The single photon pulse shape reconstructed by correlating the arrival times of photons with
respect to the reference pulse. The ∼500 ns delay before the photon pulse is attributed to the
866 nm AOM.

7.3.7 Single Photon Efficiency

For the measurement of figure 7.19, we repeat the pulse sequence at a rate of 250 kHz, and we

ultimately detect rates of 147 Hz and 170 Hz in channel 1 and 2, respectively. Adding the channels,

we detect 317 counts/s. If we assume that one photon is created for every pulse sequence, then we

have a detection efficiency of 0.13%. We know, however, that the quantum efficiency of the PMTs
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is 20%, so the efficiency before the PMTs works out to be 0.63%. If we subtract the background

rates in channel 1 and 2 quoted in figure 7.19(b), we get a revised efficiency of 0.12% and 0.60%

after and before the PMTs, respectively.

Starting with 250,000 photons per second, the various losses contributing to the final detection

in this measurement are:

1. Fibre capture for one fibre (from the solid angle calculation of section 5.4.8.1 on page 55 =

0.03. 7500 photons captured.

2. Dichroic mirror = 0.86. 6450 photons passed.

3. Semrock filter = 0.932 (there are two). 5580 photons passed.

We attribute the subsequent drop to the ∼1580 photons which finally make it to the PMTs to

losses in the propagation between the inner and outer trap fibres, and losses in the beamsplitter.



Chapter 8

The Fibre Fabry-Pérot cavity

8.1 Laser machining the fibre facets

In 1994, it was found that normal ground glass optics could be polished by the application of a

pulse of CO2 laser light [117]. Glass, and in the case of optical fibres, fused silica, absorbs the

∼ 10 µm CO2 radiation strongly, and a very thin layer of melted material is produced. The surface

tension of the melt layer and the flowing material underneath it produces a smoothing effect, so

that imperfections on a scale of the depth of the melt layer are removed. It can also cause a global

contraction, producing a convex bulge. The technique has been used to repair damage in fused

silica optics [118], and much earlier, in 1975, to produce a lens on the end of a fibre [119]. At much

higher powers, material is evaporated away from the surface, and a depression is formed on the

fibre facet. Our technique of laser machining uses the same technique as that of Hunger et al., of

the Max-Planck Institut für Quantenoptik in Munich [120]. This section describes the process we

used to machine depressions of specific radii of curvature on the end of multimode fibres. A variety

of radii were manufactured, of around 200–600 µm, based on calculations of the range of most

suitable radii of curvature for a fibre cavity in our trap.

8.1.1 The CO2 laser setup

The laser itself is a Synrad 48-1KWL water-cooled CO2 laser, outputting up to 10 W of light. The

setup is shown in figure 8.1. CO2 lasers are widely commercially available in the high powers

required to melt silica glass. Special optical elements are required for these powers; for example,

instead of a normal optical isolator, the arrangement (marked ‘isolator’ in figure 8.1) is used. This

consists of a polarisation-selective mirror, which passes vertical linear polarisation, followed by a

reflective polarisation rotator, which acts like a quarter-wave plate for this wavelength, but only

when it is tilted at 45◦ to the plane of the optical table. The light is now circularly polarised. Any

reflections that make it back are converted to linear polarisation, but at 90◦ to the input polarisation,

so the polarisation-selective mirror rejects the returning polarisation.

The isolator helps to avoid unwanted laser power fluctuations. After the isolator setup, the beam

passes through a telescope, the purpose of which is to provide a waist (calculated to be 80 µm) at

the shutter. The shutter, visible between the two telescope lenses in figure 8.1 is actually a very

114
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Figure 8.1: The CO2 laser setup.

small loudspeaker with a piece of stainless steel glued to it1. In ‘closed’ mode the piece of metal

reflects the beam at 90◦ into a power meter. In ‘shoot’ mode, a short electrical pulse is sent to the

speaker, causing it to move down and up, allowing the beam to pass for the duration of the electrical

pulse. After this the beam hits a final focusing lens very close to the fibre tip. It is focused (to a

waist of a calculated 20 µm at the fibre) and aligned onto the fibre, which is held in a v-groove in a

stainless steel platform mounted on a xyz translation stage. The second telescope lens is mounted

on a z-stage, allowing us to alter the final focusing at the fibre tip.

For viewing the fibre tip we remove the final focusing lens. This is mounted on a magnetic

stage so it can be easily lifted off and on. We replace it with a small mirror which reflects the image

of the fibre tip into the vertically-mounted microscope. At the fibre end of the microscope is a 10×

1A cement glue which can withstand temperatures up to 800◦C was used.
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MPL APO objective lens. The microscope image is illuminated by a high-intensity white-light

illuminator2, and the images are recorded digitally by a Moticam 2500 USB camera mounted to the

microscope.

8.1.2 The fibres—etching and cleaving

The fibres are Oxford Electronics HPSIR200CB multimode copper-coated fibres. Copper coated

fibres were chosen for their low-outgassing properties under UHV.

The new copper-coated fibres have a core diameter of 200 µm, cladding diameter 212 µm and

copper coating diameter 280 µm. Since the electrodes (see figure 5.17 on page 54) are of inner

diameter 254 µm, we had to chemically etch away at least 13 µm of copper coating around the

fibres in order to fit them into the electrodes. The process is as follows:

• Etching crystals3 are dissolved in a beaker in the ratio 1.1 kg to 5 l.

• The beaker is placed on a magnetic stirrer4 and stirred at 200 RPM. It is heated to 50◦C.

• When the etching crystals are fully dissolved, four fibres are lowered a distance of 6 cm into

the solution for 2.5 minutes. This removes some of the copper coating. This etched section is

the part that will fit tightly into the electrode.

• The fibre-holder is then raised by 16 mm and the remaining 4.4 cm of fibre is allowed

to completely etch down to the bare fibre. This fully-etched section will be cleaved off—

described below5.

As an aside, an obvious way to supply the rf to the trap electrodes is to use the copper coating.

The skin depth of copper at 15 MHz is 17 µm. The copper coating is 34 µm thick around the

cladding, and after partial etching, 24 µm. So, this at least would not be an obstacle to such a

scheme. In fact, the skin depth would only become an issue for these fibres at frequencies of less

than 10 MHz.

2Edmund Optics MI-150.
3Farnell Fine Etch Crystals.
4Corning PC-420D.
5The cleaving process requires a certain length of bare fibre to operate.
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(a) The fibres in the etching solution.

Unetched fibre

Partially-etched fibre
 = 16 mm

Bare fibre > 2 cm

(b) The partially and fully-etched sec-
tions.

(c) The etched fibre being inserted into an electrode

Figure 8.2

Cleaving a fibre refers to the method of cutting the bare end of a fibre, such that a face is created

perpendicular to the longitudinal axis of the fibre. This is not done by cutting in the conventional

sense. Rather, a very sharp blade makes a tiny crack at one point in the fibre circumference. A

tension is then applied longitudinally to the fibre, causing the crack to propagate through the fibre.

The tension must be carefully selected—too low and the fibre may slip perpedicular to the blade,
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damaging the blade and sometimes not cleaving the fibre. Too-low tension can also result in an

excessive intrusion of the blade into the fibre—this is visible as a large chip in the fibre. On the

other hand, if the tension is too high the fibre can ‘spring back’ from the cut and the resultant

airborne specks of silica glass can land on the new fibre face. A too-high tension also results in a

rough texture around the fibre facet known as ‘hackle’, caused by the fibre tearing apart too quickly.

The hackle on a fibre facet is visible in the cleaved fibre in figure 8.3(a). The tension must be set to

minimise hackle and blade intrusion. We found that for our fibres a tension of 5 N was optimal,

although the cleaving process was not entirely predictable and sometimes more than one attempt

would be required to obtain an acceptable cleave. There are other more obvious hazards to the

newly-cleaved facet—water droplets and general dust can very quickly accumulate. Figure 8.3(c)

shows water droplets on the facet of a newly-cleaved fibre.

In fact, however, the quality of the cleave is not of critical importance for our purposes, since

most imperfections will be smoothed out by the shooting process later on.

We used a Nyfors Autocleaver LDF (large-diameter fibre) to cleave the long bare-fibre end of

the etched fibres. The machine needs the length of bare fibre to ‘hold onto’ when it is applying

tension.
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(a) Hackle on a cleaved fibre facet. (b) Specks of glass on a cleaved fibre facet.

(c) Water droplets on a cleaved fibre facet.

Figure 8.3: Three examples of fibre facets immediately after cleaving. In (a), hackle is visible around the top
of the facet. This is caused by excess tension on the fibre during cleaving, causing it to tear apart
too quickly. In (b) we see tiny specks of glass on the fibre facet. Again due to excess tension
during cleaving. In (c), water droplets have immediately accumulated on the fibre facet. In all the
fibres the chip from the cleaving blade is visible. The darker ring around the core is the cladding.

8.1.3 Shooting the fibres

In order to make sure the laser shot is aligned on the fibre tip we first shoot a piece of clear plastic

with one high-power shot. By moving the microscope on a xyz-stage we position the centre of the

shot at the centre of the computer screen. We then place a fibre on its xyz-platform, and move it so

that its image is in the centre of the screen. Now we know that the fibre is at the position of the

shot, and we can proceed.

There is some mechanical ringing when the loudspeaker shutter is switched, lasting for around

20 ms. To circumvent this, the laser switch-on is delayed by 20 ms from the shutter opening. The
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laser and shutter are controlled by a single LabView vi, from which we also control the length of

the laser pulse. Typically, we used a shot of 60 ms for our fibres, and a laser power of 1.2 W.

Laser-shutter delay

Shutter

Laser Pulse length

Closed

Open

Off

On

Time

Figure 8.4: The laser-shutter pulse sequence. To avoid any influence of the mechanical movement of the
shutter as it opens and closes, the laser is switched on at a predefined delay from the shutter.

In contrast to the single-shot process used in [120], we shot the fibre many times, rotating it by

various degrees with each shot6. This method gave us not only fine control over the final radius

of curvature of the shot, but also smoothed out any misalignment of the beam relative to the fibre

face, and any ellipticity or astigmatism of the beam, ensuring that the depression in the central

area was as symmetrical as possible. We also shot several flat fibres. For this purpose, we shot the

fibre once, at low power, to clean and polish the surface. This gave the approximately flat surface

shown in figure 8.9(a). Figure 8.5 shows a typical fibre-shooting process consisting of 37 shots.

The number of shots was varied depending on the radius of curvature we required. The rotation is

done by hand—the fibre is clamped several centimetres from the tip in a v-groove mounted to a

manual rotator. The fibre is kept secured to its platform with two small magnets. We shoot the fibre

at one angle, then remove the magnets and rotate to the next angle where we replace the magnets

and shoot again. This manual procedure causes the fibre tip to misalign, with respect to the CO2

beam, and so it must be optically inspected and returned to the correct position after each rotation.

6Hunger et al. shoot structures often smaller than ours; that is, the 1/e diameter of their single shot was 10–45 µm, as
compared to our average diameter, which was 89 µm. They also used very short cavities, around a factor of ten smaller
than the lengths we would probably consider. It seems that ellipticity concerns were less important for them in this
parameter regime.
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(a) After one shot. (b) After four shots at 0◦, 90◦, 180◦, 270◦.

(c) After a further 4 × 4 shots at 45◦, 135◦, 225◦, 315◦. (d) After a further 4 × 4 shots at 22.5◦, 112.5◦, 202.5◦,
292.5◦.

Figure 8.5: Shooting the fibre shown in figure 8.3(c) 37 times at various different rotations. The dark ring
around the fibre is not the cladding, rather it is a kind of ‘lip’ around the rim of the fibre—a
chamfer, caused by melting. Note that the single shot of figure (a) has removed all the water
droplets visible in figure 8.3(c).

8.1.4 Analysing the shot

In order to calculate the various parameters of a cavity, we need to know the radius of curvature

and quality of the mirrors. This section describes the process of determining the radius of curvature

of the surface using white-light interferometry, and gives the distribution of radii of curvature we

were able to produce in a batch of 48 fibres. The methods used to extract a detailed phase map of

the surface are detailed in [121–124], with [124] providing a general description of the process.
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8.1.4.1 White-light interferometry

The first step in mapping the height-variation over the fibre surface is to produce an interferometric

image of the facet. We use white-light interferometry for this purpose. A white-light interferometer

is defined by the following conditions—the position of the zeroth-order interference fringe, and

the spacing of the fringes, is independent of wavelength. It differs from a laser interferometer in

that the path lengths of the two interfering beams need to be very accurately matched. This is not

the case with lasers, because of their much longer coherence lengths. With short coherence-length

white light, high-contrast fringes only appear when the paths are close-to-perfectly matched. With

laser light, in a sense they appear too easily—unwanted laser reflections, for example from optics or

glass surfaces in the imaging system, can produce fringe patterns almost indistinguishable from the

pattern resulting from the sample surface. When the sample is highly-reflective, this may not be a

problem, but in our case the sample is essentially just glass, similar to many other optical elements

in the imaging path. It would be very difficult, therefore, with a laser interferometer, to distinguish

the correct fringe pattern from the many incorrect ones.

Fibre on platform

Mirror

White light in

50/50 beamsplitter

Telescope

Interference pattern

Figure 8.6: The interferometer setup for analysing the topography of the fibre surface. White light enters a
50/50 beamsplitter placed in front of the fibre. Half the light passes to the fibre (the grey beam),
where it is reflected back to the beamsplitter. Half is reflected downwards to the mirror (the red
beam), where it is reflected back up. Half of this beam interferes with half of the beam reflected
from the fibre facet, producing an interference pattern at the imaging system above. The dotted
line indicates a reflected beam, which is lost.
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Figure 8.7: (a) Interference fringes generated using the white-light interferometry setup of figure 8.6 and
the fibre shown in figure 8.5. Figure (b) shows the same image with the central area of interest
cropped out. Figure (c) shows a cross-section of the fringe amplitude at an angle of 0◦ through
the image. Finally, figure (d) shows the fringe amplitude normalised and ready for processing.

The process starts, then, with an interferometric image with as high a contrast between fringes

as possible. Interferometric images of the fibre shown in figure 8.5 are shown in figure 8.7. The red

layer only is extracted, and the image is cropped to 320 pixels square The fringe amplitude is then

extracted. In principle, we know that the spatial distance between fringes is λ/2, but we cannot

know anything about the spatial variation in between peaks. In addition, the fringe amplitude is

subject to fluctuations resulting from background ‘noise’. Instead of using the amplitude, then, we

use the phase of the pattern. We first remove noise, by applying a Gaussian filter, then extract the

phase by simply taking the arccosine of the normalised fringe amplitude. This is shown in figure

8.8(a). We know that the spatial depth between phase peaks is λ/2, but we would like to know the

depth at other points in the phase. In addition, we cannot know from the phase map whether an

adjacent peak is higher or lower. The phase map of 8.8(a) is a wrapped phase map, in the sense

that it repeats every 2π . We require a continuous phase map, and this is accomplished using the
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phase-unwrapping technique described in [122]. When we have a continuous phase map of the

surface, the depth is then very simply calculated from the unwrapped phase, φ , and the wavelength,

λ , of red light7 as

D =
λ

2
× φ

2π
. (8.1)

The analysis assumes that the shot and the depression formed have a Gaussian shape, and we

show here how the radius of curvature of the shot can be determined. Each point on a Gaussian

curve has some curvature. If we imagine a circle at the bottom of the Gaussian, then the slope of

the tangent to the circle at the bottom must equal the slope of the Gaussian at that point, and the

second derivative of the circle and Gaussian must likewise be the same here.

Recall the equation of a circle:

(x− x0)2 +(y− y0)2 = r2. (8.2)

Then the first derivative is, by implicit differentiation:

dy
dx

=−x− x0

y− y0
. (8.3)

And the second derivative is:

d2y
dx2 =

−1− y′2

y− y0
. (8.4)

The radius of a circle is:

r =
√

(x− x0)2 +(y− y0)2, (8.5)

where x0,y0 are the coordinates of the centre of the circle.

From 8.4 we have y− y0, and from 8.3 we have x− x0, so the radius is given by

r =

√√√√√−(1+ dy
dx

2
)3

d2y
dx2

2 . (8.6)

This equation gives the general radius of curvature at any point in a curve described by the

function y. So we can use it with a Gaussian function:

y = ae
−(x−b)2

2c2 +d. (8.7)

Recall that here b is the mean, c is the standard deviation, and a is the amplitude.

Then the first derivative is:

dy
dx

=−a
x−b

c2 e
−(x−b)2

2c2 , (8.8)

and the second:

7Which we take to be 611 nm. This number comes from a calibration of the red layer in the .TIFF images we use,
using a commercial mirror of known curvature.
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d2y
dx2 =

−a
c2 e

−(x−b)2

2c2 +a
(

x−b
c2

)2

e
−(x−b)2

2c2 . (8.9)

At the bottom of the Gaussian (right in the middle of it), x = b, so dy
dx = 0 and d2y

dx2 =− a
c2 , and:

r =
c2

a
, (8.10)

and this result is used to obtain the x and y radii of curvature from a fit of the 2-D Gaussian of

equation 8.11 to the reconstructed shape of each fibre. In general, we take the geometric mean of

the two radii for our final result. This is often used when taking the mean of values intended to be

multiplied together. This is the case with the 2-D Gaussian function, equation 8.11, which is the

product of two exponential functions.

g = Aexp
[
−a
(
(x− x0)2−b(y− y0)2 + c(x− x0)(y− y0)

)]
+d, (8.11)

with in this case a, b, and c equal to

a =

(
cos2(θ)

2s2
x

+
sin2(θ)

2s2
y

)
(8.12)

b =

(
sin2(θ)

2s2
x

+
cos2(θ)

2s2
y

)
(8.13)

c = 2cos(θ)sin(θ)

(
1

2s2
x
− 1

2s2
y

)
. (8.14)

The parameter θ refers to the rotation of the elliptical 2-D Gaussian relative to the xy-axis. The

parameters sx and sy control the width of the Gaussian in the x,y-directions, and d is a constant.

In addition to a variety of curved fibres, we also shot several flat fibres. The reason for this will

become clear in later sections.
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(d) 2-D Gaussian fit of the final shape.

Figure 8.8: Figure (a) shows the phase extracted from the fringe amplitude. We know that adjacent peaks
are spatially λ/2 apart, but the phase requires further processing before it can be used to map
the entire surface. See the text for details. Figure (b) shows the final, calculated depth through a
cross-section of the shot, while the final two figures show the shape of the shot, constructed from
a series of 12 cross-sections, and a 2-D Gaussian fit to the shape. The final radius of curvature
of this fibre was found from the fit to be: Rx = 340 µm and Ry = 355 µm. The FWHM was
39.8µm and 40.7 µm in the x and y-directions, respectively.
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(a) After one shot. (b) Interferometric image of the flat fibre.

Figure 8.9: (a) A fibre after one single shot to polish the surface, and (b) the rather beautiful interferometric
image of the ‘flat’ surface of the fibre. If we recall that moving between fringes corresponds to a
difference in depth of λ/2, then we see that in the central area of the facet, there is very little
variation. The greatest variation comes from the area of cleave chip. We are most concerned with
the central area in our cavities, and so this fibre is considered essentially flat for our purposes.
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8.1.5 Coating the fibres

48 fibres were produced in total, of which 40 were curved, 6 were flat, and 2 were plain cleaved

fibres. They were placed in two separate containers of 24 each. The fibres were coated by AT Films,

of Boulder, Colorado, using the technique of ion-beam sputtering. Alternate layers of Ta2O5 and

SiO2 are deposited in a vacuum chamber8 using a reactive process. A 1-inch diameter piece of

glass was coated with the fibres as a ‘witness’ piece, with which to characterise the coating. The

transmission measured by AT Films is shown in figure 8.10(b). The coating is specified to have

a transmissivity of ∼30 ppm. We also had some half-inch mirror substrates coated as part of the

same run.

The assembly of parts required to transport them safely was of critical importance. The technical

details of the transport assembly are shown in figure 8.11.
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Figure 8.10: (a) The distribution of the radii of curvature of our fibres, and (b) the transmission of the coating
as measured by a 1-inch ‘witness’ piece of glass, coated with the fibres. This data was supplied
by AT Films.

8A Veeco Spector coating chamber.
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(a) The fibre chuck. (b) The complete transport assembly.

Figure 8.11: (a) A drawing of the fibre chuck. This is a small aluminium cylinder, 25 mm long and 6 mm in
diameter. The fibre rests in the notch cut along its axis, protruding by around half a millimetre.
At the other end of the cylinder a teflon cylinder of diameter 3 mm and length 5 mm is inserted
into a recess in the aluminium, and a M1.2 grub screw is inserted radially. This has the effect of
‘closing’ the teflon on the fibre. A metal shim is pressed down into the notch, holding the fibre
in the notch along its length. The handle of the shim is visible protruding in figure (a). Figure
(b) shows the full transport assembly for each batch of 24 fibres. The 24 cylinders with fibres
are inserted into holes in an aluminium block and secured by screws from the side. The block is
screwed to an aluminium disc. The discs are designed to fit into hard plastic boxes without any
movement during transport. Strain reflief bars are provided on the disc for the fibre bunches.
which are then wrapped around the inside of the plastic box. The two boxes are then sealed
in heat-shrunk plastic before being packaged in layers of bubble-wrap and sent to the coating
company. The design of the fibre chuck and transport assembly is based on a similar design by
the group of Jakob Reichel at ENS in Paris.

(a) (b)

Figure 8.12: (a) A fibre in its aluminium cylinder and (b) the cylinders, block and disc secured in their plastic
box.

8.2 The fibre cavity

This section expands on the basic optical cavity material laid out in chapter 4, extending it to the

principles of the kind of cavity we are constructing using the coated fibre facets. Some of the cavity

and coupling parameters we hope to achieve will be discussed.
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The current state of the art in fibre Fabry-Pérot cavities (FFPCs) is the work by Hunger et al. in

2010 [125] and owes much to previous work in the field. The idea of placing mirrors on the tips of

fibre-optic cables is not new, but the method of creating the mirror surface has varied over time.

For example, mirrors have been bonded to the end facets of short lengths of fibre with epoxy resin,

to form an interferometer within the fibre [126]. Layers of dielectric coating have been deposited

by vacuum evaporation [127]. The mirrors have been transferred from another substrate onto the

fibre tip, to form an open cavity; that is, the cavity consists of the coated ends of two fibres, with

the cavity light field in free space rather than inside the fibre [128]. The finesse of the cavities

has increased over the years, from, for example 20 in 1982 [127], 300 in 1985 [126] and 500 in

1986 [129]. In 2006, Steinmetz et al. reported an open FFPC with a finesse of 1000 [128]; they

suggested that with the increasingly high-quality coatings becoming available, the only remaining

barrier to ultra-high finesses is the roughness of the fibre facet. This issue has, in effect, been solved

by the CO2 machining technology discussed in section 8.1. With losses due to the roughness of the

substrate extremely small[125], the path to finesses on the order of 100,000 is cleared.

8.2.1 Cavity parameters

The mirror coating on our fibres is of transmissivity T1,2 ≈30×10−6 at 866 nm. The finesse of the

cavity is given by equation 4.18 on page 29. If we neglect the unknown scattering and absorption

losses, then the maximum finesse we can expect is 104,000.

We consider the stability of the cavity types discussed in section 4.1.0.1 when selecting a

potentical cavity geometry for the fibre cavity.

Plane-parallel cavities are not considered at all, due to their alignment problems—the mirrors

must be very-nearly parallel to avoid the cavity field ‘walking’ off the cavity axis into free space

(out of the cavity).

Consider the concentric case. L = R1 +R2. From the stabillity criterion, 4.13 on page 28, we

have that g1g2 = 1, which is right at the limit of stability. It’s easy to see that a small change in

parameters could make the cavity unstable, and so this type of cavity is avoided.

Similarly for the confocal case, where g1g2 = 0, again at the edge of the stability region. If R1

and R2 are not exactly equal, the cavity will not be stable, and so this cavity is also avoided.

The half-symmetric, or ‘near-hemispheric’ cavity is a possible candidate. In this cavity one

mirror is planar and one is curved. The waist is at the planar mirror and the spot size at the spherical

mirror can be adjusted by changing the cavity length. We will consider in this section the various

CQED parameters of symmetric (that is, R1 = R2) and half-symmetric cavities.

8.2.1.1 Cavity waist and clipping losses

There are two reasons why we might be interested in the waist of the cavity mode. For CQED

purposes, to optimise the coupling of the ion to the field we would like the waist to be as small as

possible at the ion. We are also interested in the spot size at the mirrors, because if this exceeds

our mirror diameter then we incur clipping losses. In this section we calculate the cavity waist and

spot size at the mirrors, and determine whether clipping losses are likely to pose a problem for the

mirrors we have machined.
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Fortunately, simple expressions for the cavity waist and spot size are available for the symmetric

and half-symmetric cavities of interest. For a symmetric cavity, the waist is at the centre of the

cavity, and is given by [130, Ch. 19]:

w2
0 =

Lλ

π

√
1+g

4(1−g)
, (8.15)

with g = g1 = g2. The spot size at the mirrors are the same, and given by

w2 =
Lλ

π

√
1

1−g2 . (8.16)

Figure 8.13 shows the variation of cavity waist with radius of curvature, in a symmetric cavity

of several realistic lengths. This compares with half-symmetric cavities, where the position of the

mode waist is on the left mirror. In this case, g1 = 1 and g = g2. The waist is given by

w2
0 =

Lλ

π

√
g

1−g
, (8.17)

and the spot size at the other mirror by

w2
1 =

Lλ

π

√
1

g(1−g)
. (8.18)

The variation of waist with cavity length and radius of curvature for a half-symmetric cavity

is shown in figure 8.14. The cavity lengths have been chosen as candidate lengths based on our

simulations of trap depth vs. electrode separation (see figure 5.13 on page 50). The cavity should

be as short as possible, within the limits imposed by the trapping potential. If we consider a cavity

of around 350 µm, with mirrors of curvature around 300 µm, we see that the waist in a symmetric

cavity is around 7 µm, whereas in a half-symmetric cavity it is around 6 µm. Replacing the curved

mirror with a planar one has made little difference. However, the position of the waist at the planar

mirror and not in the centre of the cavity has implications for the coupling strength, which, since

the ion is trapped at the centre of the cavity, would be weaker in a half-symmetric cavity. We will

see shortly if this is an acceptable sacrifice.
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Figure 8.13: The variation in (a) cavity waist at the centre of a symmetric cavity with radius of curvature of
the two identical mirrors. Notice how the waist becomes vanishingly small as we approach the
concentric region wheren L = 2R. (b) shows the variation in spot size on the mirrors. Plots are
truncated at the limit of the cavity stability region.
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Figure 8.14: The variation in (a) cavity waist at the planar mirror of the half-symmetric cavity with radius of
curvature, shown for four cavity lengths. (b) shows the variation of the spot size at the curved
mirror for the same parameters. Plots are truncated at the limit of the stability region.

Clipping losses

The Gaussian intensity distribution is given by

I(r,z) = I0

(
w0

wz

)2

exp
(
−2r2

w2(z)

)
, (8.19)

with r the radial distance from the beam axis, w0 the beam waist and w(z) the ‘spot size’, that

is, the radial distance from the beam axis at which the intensity has dropped to 1/e of its initial

value. We would like to know how much of the Gaussian distribution ‘spills over’ the edge of our

finite-diameter mirrors. We can get an idea of this by integrating from D/2 to infinity and from 0 to

2π as follows, remembering to normalise:
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LClip =

∫ 2π

0
dθ

∫
∞

D/2
e
−2r2

w2m rdr∫ 2π

0
dθ

∫
∞

0
e
−2r2

w2m rdr
(8.20)

= e
−D2

2w2m . (8.21)

with wm the spot size at the curved mirror and D the mirror diameter. The average diameter of our

mirrors from one canister is 171 µm, and so performing the integral using this diameter gives the

results shown in figure 8.15(a). It seems that for spot sizes on the order of tens of microns, such

as shown in figure 8.14(b), clipping losses are extremely small. Following a similar argument to

[125], we can set a limit on clipping losses, and consequently consider the finesse achievable for

each spot size. If we state that clipping losses must contribute 10% of total losses, then we have

from equation 4.18 that

LClip =
2π

10F

⇒ F =
2π

10LClip
. (8.22)
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Figure 8.15: (a) Clipping loses as a function of spot size on the curved mirror for an average mirror diameter
of 171 µm. We see that for spot sizes of tens of microns clipping losses are very small. (b) The
finesse achievable if we fix clipping losses at 10% of total losses and vary the spot size at the
curved mirror.

So we see that clipping losses are not a significant barrier to achieving high finesse.

8.2.1.2 Mode volume and the CQED Coupling parameter

The cavity mode volume of equation 4.35 on page 32, is given by spatially integrating the full

cavity mode function of equation 4.4 over the cavity length. This gives us, for the TEM00 mode
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V =
π

4
w2

0L. (8.23)

The mode volume is shown in terms of cubic wavelengths, for symmetric and half-symmetric

cavities in figure 8.16.

0 200 400 600
0

5000

10000

15000

20000

25000

Radius of curvature/µm

C
a

v
it
y
 m

o
d

e
 v

o
lu

m
e

/λ
3

 

 

L
Cav

 = 200 µm

L
Cav

 = 300 µm

L
Cav

 = 400 µm

L
Cav

 = 500 µm

(a)

200 300 400 500 600
0

5000

10000

15000

20000

Radius of curvature/µm

C
a

v
it
y
 m

o
d

e
 v

o
lu

m
e

/λ
3

 

 

L
Cav

 = 200 µm

L
Cav

 = 300 µm

L
Cav

 = 400 µm

L
Cav

 = 500 µm

(b)

Figure 8.16: The mode volume in (a) symmetric and (b) half-symmetric cavities, given in terms of cubic
wavelengths at 866.45250 nm. The radius of curvature in (b) refers to the curved mirror.

We can write the rate of coherent exchange of single atomic and photonic excitations of equation

4.40 on page 33, for a two-level atom in free space at the maximum field intensity as [125]

g =

√
3λ 2cΓ

8πV
, (8.24)

with Γ the FWHM linewidth of the upper state.

Let us assume that the ion is trapped somewhere along the cavity axis, along the z-direction

of equation 4.8 on page 27, such that (x,y) = 0. Further, we assume that the ion is trapped at a

longitudinal antinode, such that the longitudinal mode function of equation 4.9 has the value of

unity. Then, to calculate g at an arbitrary z-position, such as the middle of a half-symmetric cavity,

we must multiply equation 8.25 by the mode functions ΨnΨm of equation 4.8, which amounts to

multiplying by w0/w(z). So, we have

g =
w0

w(z)

√
3λ 2cΓ

8πV
. (8.25)

The variation of the coupling parameter with radius of curvature of the mirrors is shown for

several cavity lengths in figure 8.17. As a point of interest, some predicted values of κ—the cavity

linewidth, are shown in figure 8.18.
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Figure 8.17: The projected coupling parameter g for (a) an ion at the centre of a symmetric cavity, and (b)
for an ion at the centre of a half-symmetric cavity. Plots are truncated at cavity stability limits.
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Figure 8.18: The variation in the cavity decay rate κ with total cavity losses, that is, the transmission,
absorption and scattering losses of both mirrors, shown for several cavity lengths.

8.2.1.3 Possible cavity geometries

Let us assume we have access to single-mode as well as multi-mode coated fibres. There are many

ways we might choose to set up a cavity. Figure 8.19 shows several possible geometries. In all

cases, the beam enters the cavity from the left, in the direction of the arrow, and exits on the right.

Of these, we consider (a) the most likely to be successful. The flat surface of the single-mode

fibre matches the radius of curvature of the plane waves exiting it. Using a multi-mode fibre on the

output channel gives a higher coupling efficiency than would a single-mode fibre [125], since it is

fixed by the numerical aperture of the fibre. The fibres in our experiment have a numerical aperture

of 0.22, giving an acceptance angle of 25◦. The divergence angle of the cavity mode is given by

2λ/(πw0) at distances much greater than the Rayleigh range zR = πw2
0/λ , which if we consider as
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an example the case of a half-symmetric cavity of length 300 µm and mirrors of radius 300 µm,

is 130 µm. So we see that the divergence is much less than the acceptance angle of the fibre for

this waist, and indeed the waist would need to be less than 1.3µm for the divergence to match the

fibre acceptance angle in this case. In addition, the multi-mode fibre makes the cavity much more

forgiving of misalignments. It is, however, a first step towards eventually using two single-mode

fibres.

L

(a) Single-mode flat, multi-mode curved.

L

(b) Multi-mode curved, multi-mode curved.

L

(c) Single-mode curved, single-mode curved.

L

(d) Multi-mode flat, multi-mode curved.

Figure 8.19: Some possible fibre-cavity options.

8.2.1.4 Conclusion

In conclusion for a cavity of a reasonable length, governed by possible trapping potentials, and

for mirrors of around 300–400 µm we should be able to enter the strong coupling regime, that

is, g > κ,Γ, with both symmetric and half-symmetric cavities. This assumes the coating, and

therefore finesse, is as expected. From figure 8.17 it is clear that this will be more difficult with a

half-symmetric cavity. The current status of the fibre cavity will be covered in chapter 9.

8.3 A new trap

The ion trap used for the work in this thesis successfully achieved its objective, that is, to test the

principle of placing optical fibres within the electrodes of the trap, extremely close to the trapped

ion. However, in several ways it is not suited to housing a high-finesse miniature optical cavity,

principally

• Poor vibration isolation

• No room to accommodate in-vacuum precision cavity manipulation devices

With these added points in mind a new trap has been designed and built, starting with the

electrode mounting structures, and working out finally to a new chamber and vacuum setup. The
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trap itself, that is, the inner and outer electrode assembly, is identical to the previous trap. All other

parts have been designed and built from scratch, with the stability and precision movement of the

fibre cavity foremost in mind. In this section, a description of the principal parts of the trap will be

given, along with the design decisions that produced them.

8.3.1 The new vacuum design

Figure 8.20 shows the new vacuum flange assembly which sits directly beneath the chamber. The

design differss from the original, shown in figure 5.25 on page 62 in that we have added a further

four CF40 flanges to the existing four-way reducing cross. This allows us to bring up to four rf

connections into the vacuum on two rf feedthroughs9, along with a dedicated 19-pin dc-connection

flange10 to carry all dc connections into the vacuum. Inside the vacuum a ribbon cable connects the

19-pin feedthrough to a 25-pin sub-D connector attached by a bracket to the trap. Two further CF40

flanges are taken up with the fibre feedthroughs11, and a final flange is used for the ion gauge. In

total, 6 of the 8 CF40 flanges on the cross will be in use. The customised CF160 flange is attached

with M6 bolts to the underside of the optical table.

Customised CF160 flange

CF160 rotatable flange - chamber sits on this

Fibre feedthrough on
 CF40 flange

Fibre feedthrough on
 CF40 flange

Flange for ion gauge 

rf feedthroughs
on CF40 flanges

To pumps

dc connections
feedthrough on 
CF40 flange

8-way reducing
cross

Studs to hold the trap in place

Figure 8.20: The new bottom flange assembly. See the text for details.

9Lewvac FHP5-50C2-40CF 5 kV 50 A copper 2-pin feedthroughs mounted on CF40 flanges.
10Lewvac C19-KIT40CF, supplied with UHV and air cables.
11Lewvac FO-SM800-40CF single-mode fibre feedthroughs for 800–900 nm, mounted on CF40 flanges.
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Figure 8.21: The new chamber sits on top of the vacuum assembly of figure 8.20. As with the old trap, the
windows are sealed with indium wire and secured with brass clamps.

8.3.2 The trap structure

Vibration isolation

To isolate the cavity from vibration, the trap sits on top of two stainless steel blocks, marked in

figure 8.22, which in turn sit on viton rubber feet. The top vibration block is hollow and contains

the cavity manipulation devices, which will be described later.
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Top vibration block

Bottom vibration block

Figure 8.22: The trap sits on top of two heavy stainless-steel blocks. The blocks sit on viton rubber blocks
to damp vibration. Two studs pass loosely through the customised flange beneath into the
vibration blocks, to prevent any gross movement of the blocks and trap.

The ‘cage’

Figure 8.23 shows the ‘cage’ surrounding the electrodes. For micromotion compensation we have

four dc electrodes—the top and bottom outer rf-ground electrodes, the oven collimator and the side

dc electrode. For the purpose of moving the rf-minimum, that is, the trap centre, to coincide with

the cavity mode we have two side rf electrodes in addition to the main rf inner electrodes. The oven

is held in place by a MACOR support, chosen for its high heat tolerance.
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MACOR oven support

Oven collimator and dc
electrode

Side rf electrodes

Side dc electrode

Outer rf-ground electrodes
and dc electrodes

Figure 8.23: The ‘cage’, which supports the top trap electrode structure.

The top and bottom electrode assemblies

Figure 8.24(a) shows the top electrode assembly. A ring piezo12 allows us to move the cavity axially

over a range of 4 µm. The operation of this assembly can be more clearly seen in the cross-section

of figure 8.25. The top electrode structure is held in the cone mount with a small grub screw. The

dc connection to the top ground electrode enters through one of the bolts holding the assembly

together.

Figure 8.24(b) shows the bottom electrode assembly. A manual xy-stage13 is attached to the

bottom of the top vibration block. This has a travel of 5 mm, and is accessed with an allen key

through the cutout in the vibration block visible in figure 8.22. On top of this sits a UHV-compatible

xy-piezo stage14 with a travel of 100 µm. This stage and the ring piezo provide the precision

cavity-alignment control we require. Both stages and the bottom of the vibration block have a

central bore of 9 mm diameter, and the bottom fibre passes up to the electrode through this, insulated

by a teflon cylinder. The dc connection to the bottom ground electrode enters at a small screw in

the bottom cone-shaped mount, which sits on top of the xy-piezo. The cone mount is insulated from

the piezo with polyether ether keton (PEEK) spacers. The electrode structure is held in the cone

mount with a small grub screw, as with the top assembly.

The fibre strain relief

The fibres come in through the vacuum feedthroughs of figure 8.20, and then up to the top and

bottom of the trap. We provide strain-relief to the fibres in the form of the three brackets shown

in figure 8.26. A copper shim connected to the rf supply makes contact with the copper fibres at

the middle bracket, and the rf is carried to the inner electrodes by the copper coating. To prevent

12Piezomechanik HPCh 150/15-8/3.
13Custom-made for UHV by our workshop.
14Piezosystem Jena PXY100, custom-built for UHV.
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Ring piezo

Viton o-ring

Cone mount for electrode

Outer electrode dc connection

Fibre

(a)

UHV-compatible
 xy-piezo

Cone mount for electrode

Manual xy-piezo

(b)

Figure 8.24: (a) The top and (b) bottom electrode assemblies.

Figure 8.25: A cross-section through the cage structure of figure 8.23 showing how the ring piezo moves the
top electrode up and down.

anything beneath this point receiving the rf voltage, we will chemically etch a small portion of the

copper fibre at a point between the bottom and middle brackets, as marked in figure 8.26. The top

two brackets are machined from PEEK, while the bottom bracket is aluminium.

To conclude this section, figure 8.27 shows the assembled trap with the electrical connections

about to be attached to the sub-D connector..
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Top fibre strain relief

Top and bottom 
fibre strain reliefs

Etched portion
of fibre

rf connection
at copper shim

Figure 8.26: Strain relief is provided for the fibres by the three brackets shown in this figure. The cylinders
are customised Swagelock devices. See the text for more details.

Figure 8.27: The new trap, fully built and ready for the electrical connections.



Chapter 9

Conclusion and outlook

9.1 Conclusion

A unique miniature ion trap has been designed and built with the express purpose of accommodating

two optical fibres within the electrodes of the trap. The electrodes consist of two opposing metal

tubes of outer diameter 458 µm and inner diameter 254 µm, separated by 446 µm, giving an ion-

electrode distance of 223 µm. With cleaved optical fibres recessed by 50 µm inside the electrodes

we are able to trap single 40Ca+ ions for several hours, proving that the fibres cause no significant

degradation of the trapping potential.

The trap has been fully characterised in simulation and experiment. Micromotion has been

compensated in three dimensions, and the location of stray fields after trap loading has been

calculated and determined to originate not from the fibres but from the electrodes. Continuous

single photons have been generated and the phenomenon of photon antibunching has been observed

in the correlations between the photons received at PMTs connected to the two fibres. The high

quality of the single-photon source has been verified in the value of the normalised second-order

correlation function g(2)(0) = 0.05±0.04.

In addition, pulsed single photons have been produced using a periodic trigger pulse injected

into one fibre, and antibunching has been observed in the photons emitted into the other fibre using

a Hanbury Brown-Twiss photon-correlation setup. Again, the lack of two-photon contamination of

the correlation spectrum around zero time delay has been verified in the absence of net positive

photon cross-correlations. A value of g(2)(0) = 0.005 at zero time was noted. The difference

between the continuous and pulsed measurements around zero time delay can be accounted for by

the much-reduced presence of 397 nm light during the measurement time window in the pulsed

measurement.

Using a CO2 laser, concave surfaces have been machined on the end facets of 48 multimode

fibres. The radii of curvature of the surfaces has been determined in each case using white-light

interferometry. The fibres have been treated with a high-reflectivity coating, specified to have a

transmissivity of 30 ppm at the wavelength of interest. A new trap and vacuum system has been

designed and built to accommodate the new fibre cavity and the precision positioning apparatus

required to manipulate it in vacuum.
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9.2 Outlook

The experiment is at a particularly interesting stage at present. Since the work of this thesis was

completed, work on producing a high-finesse cavity using the coated multimode fibres has been

ongoing. At present, cavities have been successfully built using a flat fibre as the input and a concave

fibre as the output, as well as concave-concave cavities. In both cases, finesses of approximately

60,000 have been measured (sidebands on an 854 nm input laser1 were used to measure the free

spectral range of the cavity, with the length of the cavity deterermined using a microscope). The

finesse remains at approximately this figure over a cavity length of 100–500 µm in both geometries.

A problem has been identified with using a curved fibre for the input in that there appears to be

some leakage of light out of the ‘lip’ of the end facet (this is the black ring visible on the facet in,

for example, figure 8.5(d)). The laser shots appear to have left a chamfer around the edge of the

fiber facet. Although this doesn’t affect the finesse of the cavity, it does produce an offset on the

cavity signal, such that the cavity transmission and more importantly the dressed state of section

4.2.2 on page 33 could potentially be obscured. It seems likely, therefore, that in the immediate

future we will use a flat-concave cavity.

Turning to progress on the new trap; the trap, vacuum system and electrical feedthroughs have

all been assembled and work has started on the process of inserting the very delicate fibre and

electrode assemblies.

Work has also begun preparing the CO2 laser shooting setup for shooting copper-coated single-

mode fibres2. This includes automating the fibre-rotation process. Assuming success with a

multimode fibre cavity, we will then test single-mode fibre cavities, probably in the configuration of

single-mode input and multimode output. It is likely that the leakage problem described above will

not occur in single-mode cavities, because the core is so small, and so far from the edge of the fibre.

1An 854 nm laser was chosen simply because it had higher power than our 866 nm laser.
2IVG Fiber Cu800 copper-coated single-mode fibre with custom 200 µm cladding.



Appendix A

The Lasers

As mentioned in chapter 5, the transitions of interest in the 40Ca+ ion are accessible by commercially-

available or home-built solid-state lasers. Most of the lasers we use are constructed by us using

commercial diodes and gratings. This section describes briefly the lasers and the methods used to

stabilise their frequencies.

Our suite of lasers consists of home-built extended-cavity diode lasers (ECDL’s) in the Littrow

configuration [131], addressing transitions in 40Ca+ at 866 nm, 850 nm, 854 nm, and in 40Ca at

423 nm and 375 nm, alongside a Toptica SHG110 frequency-doubled 794 nm tapered-amplifier

setup which is used to produce 397 nm light.

A small amount of light from each laser is picked off by a glass plate1 and sent to a wavemeter.2

We calibrate the wavemeter using the known wavelength of a commercial Helium-Neon laser3. A

Labview virtual instrument (vi) reads the wavemeter at regular intervals and feeds back a voltage to

the laser’s horizontal grating alignment piezo. In this way the wavelengths are kept approximately

within the linewidth of the relevant transitions. However, at a resolution of 60 MHz, a measured

wavelength of 866.45250 nm could be as high as 866.45265 nm or as low as 866.45235 nm and

for some experiments we must reduce and stabilise the linewidth still further. This is done using a

fast scanning cavity lock—an absolute reference frequency is generated by locking a diode laser to

a tunable cavity which is in turn locked to the D1 transition in atomic caesium using polarisation

spectroscopy. Our lasers are locked to the reference laser and an absolute stability of less than

100 kHz at 397 nm is achievable. The system, with performance measurements, is described in

detail in [132].

Figure 5.1 on page 37 shows the arrangement of the lasers around the trap. 423 nm and 375 nm

light is overlapped at a polarising beamsplitter and focused to a spot size of approximately 200 µm

at the trap centre. We have typically used powers of around 200 µW for each of these beams.

An electronically-controlled shutter is placed in the path of these beams, the control of which is

integrated into an automatic ion-loading LabView vi.

A cooling laser at 397 nm and a repumper laser at 866 nm are overlapped at a dichroic mirror

and focused to a spot size of around 100 µm at the trap centre. These enter the trap at an angle of

approximately 12◦ below the horizontal. Beams from the 850 nm and 854 nm lasers are overlapped

1For example, a Thorlabs WG11050 broadband precision window, which reflects about 5% of incident light.
2High Finesse WS-7—resolution ∼60 MHz.
3SIOS Messtechnik Gmbh model SL 02-1 at 633 nm.
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using half-wave plates and a beamsplitter, and the combined beam is overlapped with a second

397 nm beam. These beams enter the trap at an angle of approximately 6◦ above the horizontal. A

third 397 nm beam enters the trap at an angle of approximately 10◦ below the horizontal. Three

cooling beams are required for micromotion-compensation purposes (this process is described

in detail in section 6.2 on page 70 onwards). A fourth 397 nm laser (‘beam 1’) enters the trap

horizontally. Considerable care has been taken to reduce the spot size of this beam and to reduce

the amount of light scattered by the beam from elements of the trap. A spatial filter has been placed

in the beam path, and the beam is focused into the trap using a custom-made lens. This beam was

used where the experiment called for such low levels of scattered light, and its characteristics will

be discussed in the relevant section.

Beams from all the lasers are transported to the trap area of the optical table using single-mode

fibres.4 One advantage of using single-mode fibres are that the fibre acts as a spatial filter, ensuring

the beam emerging has an approximately Gaussian shape. Plus of course it makes it very easy to

transport the beam to wherever it may be needed.

4Typically Thorlabs P1-780PM for infra-red and Thorlabs PMS350HP for ultra-violet.
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“Then I started feeling bad for the photon, and I said maybe it wanted to continue but I got in
its way. But then I said, no, those are probably happier photons than the one that slammed into the
mountainside that will go unanalyzed and will not contribute to the depth of our understanding of
the universe.”

Neil DeGrasse Tyson
Beyond Belief: Science, Reason, Religion and Survival, Salk Institute for Biological Studies,

November 7, 2006
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