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Un laberinto es una casa labrada para confundir a los hombres; su arquitectura, pródiga en

simetŕıas, está subordinada a ese fin. En el palacio que imperfectamente exploré, la arquitectura

carećıa de fin.

[A labyrinth is a house built to confuse men; its architecture, rich in symmetries, is subordinated

to that end. In the palace which I imperfectly explored architecture had no end.]

Jorge Luis Borges, ’El Inmortal’

And God said, Let there be a firmament in the midst of the waters, and let it divide the waters

from the waters.

And God made the firmament, and divided the waters which were under the firmament from the

waters which were above the firmament: and it was so.

Genesis 1:6-7

At first there was neither Being nor Nonbeing.

There was not air nor yet sky beyond.

What was its wrapping? Where? In whose protection?

Was water there, unfathomable and deep?

[...] A crosswise line cut Being from Nonbeing.

What was described above it, what below?

Bearers of seed there were and mighty forces [...]

Who really knows? Who can presume to tell it?

Whence was it born? Whence issued this creation?

Even the Gods came after its emergence.

Then who can tell from whence it came to be? [...]

Nasadiya Sukta of the Rigveda
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Summary

This work investigates the hydrodynamics of the expansion of the bubbles of the broken
symmetry phase during the electroweak phase transition in the early universe, in which
SU(2) electroweak symmetry is broken and fundamental particles acquire mass through the
Higgs mechanism. The electroweak phase transition has received renewed attention as a
viable setting for the production of the matter-antimatter asymmetry of the universe. The
relevant mechanisms are strongly dependent on key parameters like the expansion velocity
of the walls of bubbles of the new phase. In addition, the key dynamical parameters of
the phase transition may generate signatures (like gravitational waves) which may become
detectable in the near future.

This work builds on existing hydrodynamical studies of the growth of bubbles of the
broken symmetry phase and adapts them to novel scenarios, producing predictions of
the wall velocity. The early universe at the time of the electroweak phase transition is
modelled as a perfect relativistic fluid. A fundamental problem is to account for the
interaction between the so-called cosmic ’plasma’ and the bubble wall, which may slow
down wall propagation and produce a steady state with finite velocity. This ’friction’ is
accounted for by a separate term in the hydrodynamical equations. This work adapts
existing microphysical calculations of the friction to two physical models chosen because
of their suitability as regards producing the baryon asymmetry of the universe: 1) An
extension of the Standard Model with dimension-6 operators (for which this is the first
calculation of the wall velocity ever produced) and 2) The Light Stop Scenario (LSS) of
the Minimal Supersymmetric Standard Model (MSSM) (for which this is the first 2-loop
calculation). The predicted values of the wall velocity are coherent and consistent with
previous studies, confirming, in particular, the prediction of a low wall velocity for the
LSS.
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Introduction

Ever since the existence of antimatter was predicted by Paul Dirac in 1931 [1], and con-

firmed experimentally a year later with the detection of the positron, the evidence for a

cosmic asymmetry between particles and antiparticles has accummulated. We have found

no evidence of the presence of significant amounts of antimatter in our solar system, as

confirmed by solar cosmic rays and all available planetary data. Galactic cosmic rays

show the same pattern, and the amount of antiprotons present (in a proportion of 10−4

compared to protons) is consistent with their having been produced through cosmic ray

collisions with the interstellar medium as opposed to indicating the presence of large an-

timatter regions. On the scale of galactic clusters the presence of intracluster gas could

be expected to create a sizeable gamma-ray background from annihilations if matter and

antimatter were both significantly present, but in fact the analysis of the cosmic diffuse

gamma ray (CDG) spectrum is consistent with no annihilation signals at distance scales

as large as the observable universe [2]. On the other hand, if matter and antimatter in

symmetric amounts had remained in thermal contact at early times until the time (at T

∼ 22 MeV1) when their abundances would have naturally ’frozen out’, the resulting ratio

between the baryon and entropy densities (chosen as a measure of the baryon abundance

because it is invariant with the expansion of the universe in the absence of additional

entropy release) would be approximately nb
s =

nb̄
s ≈ 7×10−20, some 9 orders of magnitude

smaller than the presently measured nucleon abundance of nb
s = (8.9± 0.4)× 10−11 [3,4].

This is the result known as the ’annihilation catastrophe’. To avoid this, if matter and

antimatter concentrations were perfectly symmetric, some mechanism would have to have

separated matter from antimatter at T ≈ 38 MeV to preserve the nucleon abundance we

see today, but the causal horizon at that time was far too small to account for the minimal

matter/antimatter separation scale required by present observations [5].

1We assume the expansion of the universe to be (to a good approximation) adiathermal and adiabatic

so that entropy is conserved. Thus, in the radiation-dominated conditions of the early universe, T ∼ a−1

with a the scale factor in the Friedman-Robertson-Walker metric.
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The conclusion is that no such symmetric situation could have existed at very early

times (T ≈ 1 GeV). Instead, a baryon-antibaryon asymmetry must have been present

which resulted, long after baryons and antibaryons fell out of thermal equilibrium and

annihilations ceased, in the present maximal asymmetry in which (we believe) we can

assume nb̄ ∼ 0.

Our knowledge of the present baryon asymmetry appears to be highly consistent and

stems from two independent sources: Firstly, Big Bang nucleosynthesis, since abundances

of 3He, 4He, D, 6Li and 7Li are sensitive to
nb−nb̄

s . More recently, the relative sizes of

the Doppler peaks of the temperature anisotropy of the Cosmic Microwave Background,

which are also sensitive to the asymmetry, have confirmed an approximate value of η =

nb−nb̄
nγ

∼ (6.14 ± 0.25) × 10−10 [6] (where nγ is the number density of photons).

The first suggestion that a microphysical mechanism could be devised to explain the

baryon asymmetry of the universe (as opposed to accepting it as an initial condition) is due

to Andrei Sakharov [7], who laid out his well-known three necessary conditions: Baryon

number violation, charge-parity violation, and departure from thermal equilibrium. The

need for B-violation is obvious, as is that for an arrow of time to drive the asymmetry

away from zero2. Slightly more involved is the need for CP violation, to make sure that

each reaction that produces a baryon is not exactly matched by an antiparticle-producing

reaction. To see this, consider, for example, a particle X which may decay into two

left-handed or two right-handed quarks, X → qLqL, X → qRqR. C violation would

imply Γ(X → qLqL) 6= Γ(X̄ → q̄Lq̄L), but if CP were conserved we would have Γ(X →
qLqL) = Γ(X̄ → q̄Rq̄R) and Γ(X → qRqR) = Γ(X̄ → q̄Lq̄L) and consequently Γ(X →
qLqL) + Γ(X → qRqR) = Γ(X̄ → q̄Rq̄R) + Γ(X̄ → q̄Lq̄L), so starting from an initial

symmetry between X and X̄ we would arrive at best at an asymmetry between left- and

right-handed quarks, not at a baryon asymmetry (see eg [8]).

The question then becomes which physical model not only satisfies these conditions

but produces a final value of the baryon asymmetry compatible both with observations

and with the ever-tightening experimental constraints on physical parameters. Some of

the suggested possibilities are:

• Planck-scale baryogenesis: The idea that Planck-scale (T ≈ 1032 K) baryon-number-

violating phenomena (in combination with the arrow of time provided by the Big

Bang and CP-violating mechanisms like the ones we already know of in the Standard

2In inflationary scenarios any preexisting baryon asymmetry is generally assumed to have been fully

diluted by inflationary expansion.
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Model) may have produced a net baryon number. As mentioned, and besides the

difficulty of investigating such mechanisms in any detail, the huge expansion of the

universe provided by inflation at a scale considered to be well below that of quantum

gravity would have wiped out any Planck-scale-generated B asymmetry.

• Baryogenesis in grand unified theories (GUTs): These provide a unification of the

strong, weak, and electromagnetic interactions in a single gauge group. The new in-

teractions violate baryon number and the decays of the corresponding gauge bosons

of masses m ∼ MGUT ∼ 1016 GeV could provide the necessary departure from

equilibrium [9]. However, these mechanisms are no longer considered attractive for

baryogenesis, fundamentally because they would require the reheating temperature

of inflation to be above the GUT energy scale (in order to avoid dilution of the

GUT-generated baryon asymmetry); Such a high reheating scale of inflation, how-

ever, would in turn fail to dilute cosmologically unwanted concentrations of heavy,

long-lived gravitinos (the fermionic superpartners of the graviton, in the context of

supersymmetric GUTs), magnetic monopoles etc.

• Electroweak baryogenesis: All three Sakharov’s conditions can actually be satis-

fied within the framework of the Standard Model. Baryon number is conserved at

low temperature, but in 1976 ’t Hooft [10] proved that B violation associated with

the vacuum structure of SU(N) theories was possible through so-called sphaleron

processes at high temperature. Sources of CP violation appear in the Kobayashi-

Maskawa matrix, and a first-order electroweak phase transition could have provided

the necessary departure from equilibrium. In this work we will analyse further the

limitations of electroweak baryogenesis within the Standard Model and the possibil-

ities offered by extended settings.

• Leptogenesis: This is presently considered one of the most promising scenarios for

baryogenesis and it is based on the production of a lepton asymmetry which is later

turned into a baryon asymmetry by sphaleron interactions, which preserve the differ-

ence between baryon and lepton numbers B−L (even though B+L is not conserved).

Because leptogenesis relies on the decays of right-handed heavy Majorana neutrinos

it may proceed without compromising the electric charge symmetry of the universe.

Right-handed neutrinos are predicted, for example, by SO(10) grand unified theories

and are allowed to have a large mass (∼ MGUT). Through couplings to left-handed

doublets they may decay into a lepton l plus a Higgs or an antilepton l̄ plus a Higgs,

3



processes which are strictly symmetric at tree level but which may produce a net

lepton number through quantum corrections thanks to CP-violating phases in the

Yukawa couplings [11]. From the moment heavy right-handed neutrinos decay out

of equilibrium as the universe expands the lepton asymmetry may become a baryon

asymmetry through sphaleron processes. Leptogenesis has gained new relevance as

a well-motivated baryogenesis mechanism due to the growing evidence for neutrino

masses [12] (a solar neutrino flux in opposition to theoretical predictions, the appar-

ent detection of atmospheric neutrino oscillations, and possible direct detection of

neutrino mixing at reactors and accelerators), most easily explained as a consequence

of lepton coupling to singlet neutrinos (the ’seesaw mechanism’).

• Affleck-Dine baryogenesis: This mechanism seeks to avoid the issues posed by the

need for the reheating temperature of inflation to be low enough to wipe out the ex-

cess of gravitinos and other cosmologically inconvenient entities. In supersymmetry

each fermion possesses an associated scalar field with the same quantum numbers.

A coherent field or condensate (a scalar field with a large vacuum expectation value)

can carry a large baryon number, and in the limit in which supersymmetry is un-

broken many of these scalar fields have relatively flat potentials and may have been

easily excited in the high energy conditions of the early universe. If the baryon num-

ber associated with the condensate freezes out as the universe expands, the scalar

fields can then decay into fermions resulting in a net baryon asymmetry [13].

Given that the Standard Model (SM) satisfies all three of Sakharov’s conditions the

first question we may ask is whether the baryon asymmetry of the universe could have

been generated without recourse to alternative settings. However, the consensus is that

the Standard Model is severely limited in its capacity to produce a large baryon asymme-

try and could not have produced the value that we observe today for presently acceptable

values of its physical parameters. As mentioned, the mechanism relied upon to provide

nonequilibrium conditions in Standard Model electroweak baryogenesis is a first-order

electroweak phase transition (the process by which the Higgs field acquires a nonzero

vacuum expectation value (VEV), SU(2)L × U(1)Y electroweak symmetry is broken and

massive SM particles acquire their masses through their couplings to the Higgs boson).

The concept of a first-order transition implies that differentiated regions (’bubbles’) of

nonzero Higgs VEV nucleate and grow at a given transition temperature, colliding, merg-

ing and eventually filling all space, thus completing the transition to the broken symmetry

phase [14]. However, seemingly insurmountable complications appear. Lattice analysis of

4



the electroweak phase transition at nonzero temperature [15] (necessary because of diver-

gences in perturbative calculations, see eg [8, 16]) make clear that the electroweak phase

transition in the SM is not first-order (but rather a smooth crossover) for Higgs masses

& 80 GeV, well below the recently confirmed experimental value of mh ≈ 125 GeV [17,18].

Even assuming that a first-order phase transition is possible there are further problems. In

this setting the baryon asymmetry is created by CP-violating interactions in the expand-

ing bubble wall. These reflexion and transmission processes create a particle/antiparticle

asymmetry on either side of the wall, with antiparticles becoming more plentiful outside

the bubble (even though the separation by itself does not create a global B-number asym-

metry). The particle/antiparticle imbalance is then turned into a net baryon asymmetry

by sphaleron transitions due to the fact that sphaleron rates differ greatly between the

unbroken symmetry phase (’false vacuum’) outside the bubbles and the broken symmetry

phase (’true vacuum’) inside. Inside the bubbles sphaleron rates carry an exponential sup-

pression ∼ e−Esph/T [19] (Esph being the energy of sphaleron configurations corresponding

to half-integer values of the so-called Chern-Simons number, NCS
3), absent from the rate

in the symmetric phase ahead of the advancing bubble wall [20]. If B-violating reverse

sphalerons are suppressed inside the bubbles they are only active outside, where they act

preferentially on the more abundant antiparticles, creating a net global baryon asymmetry

in favour of particles. As the bubble wall keeps advancing, the newly created baryon asym-

metry is transported into the broken symmetry phase inside the bubble. In the Standard

Model there are two obstacles for this mechanism to be effective: The broad consensus is

that there are not enough sources of CP violation to reproduce the observed baryon asym-

metry [21]; In addition, requiring the exponential suppression of the sphaleron rate in the

broken symmetry phase to be large enough (so that reverse sphalerons will not ’wash out’

the baryon asymmetry just created) leads to the bound usually expressed as vc
Tc

& 1 where

Tc is the temperature at which the finite-temperature Higgs effective potential develops

a second local minimum degenerate with the symmetric one, and vc is the nonzero VEV

at that temperature, see 1.2.1 [22]4. This in turn provides a bound on the Higgs mass

mh . 32 GeV, again far below present experimental constraints.

Having ruled out the Standard Model as a viable setting for the production of the

baryon asymmetry of the universe we must look for alternatives. A common approach has

3Integer NCS values correspond to sphaleron configurations with zero energy.
4Because it is in the symmetric phase inside the bubble where the washout of the newly created asym-

metry must be avoided, it is actually more interesting to study the value of ξ at that temperature (Tb)

instead of at Tc. That will be our choice in the course of our calculations.
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been to consider some minimal extension of the Standard Model with additional sources of

CP violation but which does not contradict experimental results, for instance through the

addition of a spin-0 singlet [14] or a second Higgs doublet [23,24]. In this work we focus on

two further possibilities: First, an alternative extension of the Standard Model containing

dimension-6 nonrenormalisable operators [25], and, second, the light stop scenario (LSS)

of the Minimal Supersymmetric Standard Model (MSSM) [26,27]. The production of the

baryon asymmetry of the universe in a first-order electroweak phase transition is a complex

issue investigated through many different approaches. In particular, the propagation of

the walls of bubbles of the new phase has received special attention [28–33]. This is

because the effects of the phase transition are generally dependent on the specifics of

the wall propagation and, in particular, on the wall velocity. In addition to the creation

of the baryon asymmetry, these effects may include the production of primordial cosmic

magnetic fields [34], topological defects [35], density inhomogeneities [36], and gravitational

waves [37,38], each one of which has a different dependence on the wall velocity according

to the relevant generating mechanisms. This work is based on the application of existing

hydrodynamic treatments of the wall propagation to the two models mentioned above. Its

main goal is the calculation of the electroweak bubble wall velocity in those models as a

function of the model parameters, in the regions in parameter space both relevant to the

production of the observed baryon asymmetry and compatible with present experimental

bounds. In such hydrodynamic treatments the wall velocity usually increases with the

ratio vc
Tc

mentioned above, commonly known as the ’strength’ of the phase transition.

The other crucial factor in determining the wall velocity is the so-called ’friction term’, a

slowing term which appears in the hydrodynamical equations and can be seen as analogous

to mechanical friction. It is because of friction effects that the walls of the growing bubbles

propagate at less than the speed of light, and thus, the determination of friction is central

to calculations of the wall velocity.

Our main results are as follows: We apply the results of the microscopic calculation

of the wall velocity for the Standard Model carried out in [30] to the extension to the

SM with dimension-6 operators. Extrapolating friction effects we produce predictions of

the wall velocity ranging from subsonic (wall velocities vw ≈ 0.3, lower than the speed of

sound in the medium) to supersonic (higher than the speed of sound in the medium and

reaching vw & 0.8 in some areas within parameter space). This is the first ever study of

the wall velocity in the dimension-6 extension to the SM. In the case of the LSS of the

MSSM, we build on the microscopic calculation carried out in [32]. Our study (the first

6



2-loop calculation ever carries out for this model) results in very subsonic (≈ 0.04-0.05)

bubble wall velocities, a value in accordance with previous studies of bubble propagation in

supersymmetric settings. As an extension to our calculations we also produce estimations

of the wall velocity in other supersymmetric settings of interest.
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Chapter 1

The electroweak phase transition

1.1 Phase transitions in the early universe

1.1.1 The early universe and thermal equilibrium

For much of the early history of the cosmos down from the Planck epoch (T ∼ 1019 GeV),

the only cause of departure from thermal equilibrium was the expansion of the universe

[5]. The only other significant sources of nonequilibrium were a number of spontaneous

symmetry breaking (SSB) transitions, assumed to have taken place in early cosmic history

and responsible for the shape of the physics we observe today. The Grand Unification

phase transition (at T ∼ 1015 GeV) separated the strong and the electroweak interactions.

Electroweak symmetry breaking then happened at T ∼ 100 GeV, splitting up the weak

and electromagnetic forces. At about T ∼ 200 MeV, the quark-hadron phase transition

gave rise to the formation of mesons and baryons out of strongly-interacting fundamental

particles. The epoch of primordial nucleosynthesis took place at T ∼ 1 MeV. At T ∼
10 eV matter density became equal to that of radiation, marking the beginning of the

present ’matter-dominated’ era and signalling the start of structure formation. Finally,

at T ∼ 1 eV, matter and radiation decoupled as ions and electrons combined to form

primordial atoms, bringing to an end the epoch of overall thermal equilibrium which

started with the Big Bang. It is useful to remember that, if we take the number of

effectively relativistic degrees of freedom1 g∗ =
∑

i=bosons gi

(

T i
T

)4
+ 7

8

∑

i=fermions gi

(

T i
T

)4
as

constant in the context of the radiation-dominated era, the temperature of the universe has

the dependence T ∝ a−1 in this setting (with a the scale factor in the Friedman-Robertson-

Walker metric) and the rate of change of T is set by the expansion rate, Ṫ /T = −H, with

1Note that unless otherwise specified we assume all particle species to have a common temperature so

g∗ = g∗S with g∗S =
P

i=bosons gi

`

Ti
T

´3
+ 7

8

P

i=fermions gi

`

Ti
T

´3
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H the Hubble parameter H = ȧ/a.

1.1.2 Symmetry restoration at high temperature. Classes of phase tran-

sitions

Spontaneous symmetry breaking is a key concept in modern particle physics and a central

pillar of the Standard Model through the Higgs mechanism [39]. It posits that there may

be underlying symmetries of Nature which we cannot observe at present but that may be

restored at high temperatures, having been ’broken’ in the course of the expansion of the

universe. Symmetry breaking transitions are also a key cosmological mechanism for the

production of ’topological defects’ associated with the structure of the vacuum after the

phase transition. The production of topological defects is due to the existence of a finite

causal horizon at the time of the phase transition (the ’Kibble mechanism’). This implies

that the structure of the vacuum after the phase transition cannot possibly be correlated

beyond the relevant cosmological horizon. Thus, for example [5], a spontaneously broken

scalar theory may result in two uncorrelated regions of space ’picking’ nonzero vacuum

expectation values equal but of opposite sign, with the regions forcibly separated by a

’domain wall’2. Other topological defects include cosmic strings and magnetic monopoles.

Cosmological symmetry-breaking transitions (including, as mentioned, the electroweak

phase transition) may also have left behind other signatures. These are highly dependent

on the specifics of the phase transition and may in some cases be observable or, at the

very least, constrained to various degrees by observations.

Cosmological phase transitions are generically classified as first- or second-order. As

mentioned, in a first-order phase transition differentiated regions of the new phase nucleate

and grow in the medium filled with the old phase until they take up all space and the

transition ends. At the boundary between the two phases thermodynamic quantities

change discontinuously. Any such quantity may be referred to as an order parameter

for the phase transition. In a second-order transition the shift happens throughout the

medium at all spatial scales, so that no particular scale exists where the medium is clearly

divided between the old and the new phases (see eg [8]).

2The existence of large-scale cosmological domain walls is no longer considered feasible as their energy

density would come to dominate that of the universe, violating the constraints of standard cosmology.
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1.2 The electroweak phase transition and the Higgs mech-

anism

The relevance of the electroweak phase transition (EWPT) lies in the breaking of the

SO(3)C × SU(2)L × U(1)Y symmetry of the SM Lagrangian via the Higgs field acquiring

a nonzero vacuum expectation value. This is the Anderson-Higgs mechanism [39,40]. The

symmetry becomes the SU(3)C × U(1)EM that we observe today.

At temperatures close to the electroweak scale the expansion rate of the universe is

small next to the rates of all processes involved in the electroweak transition, so the only

meaningful deviation from thermal equilibrium stems from the phase transition itself.

1.2.1 The finite-temperature effective potential for the Higgs field

The tool commonly employed [8, 14, 16] to investigate the electroweak phase transition

(appropriate to the electroweak scale, T ≈ 100 GeV) is the finite-temperature effective

potential for the Higgs field, meant to take into account quantum fluctuations through

all relevant interactions, including, through the temperature dependency, the effect of a

thermal bath of particles at temperature T . Thermal corrections are no longer relevant at

lower energy scales for which the zero-temperature potential is an appropriate description.

Since exact analytic calculations of the effective potential are difficult, perturbative meth-

ods are usually resorted to. The (temperature-dependent) shape of the effective potential

determines the behaviour of the Higgs field and, as we will see, the dynamics of symmetry

breaking (Fig 1.1). The minima of the potential determine the feasible ground states of

the theory. At high temperature the Higgs potential V (φ, T ) (φ being the field’s vacuum

expectation value) has only one minimum at φ = 0, corresponding to a situation in which

electroweak symmetry has been restored. The possibility of a first-order phase transition

is indicated by the potential developing a second minimum at φ 6= 0. This minimum is

energetically disfavoured at first, but as temperature drops further the second minimum

eventually becomes degenerate with the first. The temperature at which this happens is

known as the critical temperature for the phase transition. From that moment on the

system may shift from the symmetric minimum to the new one. Note that if no second

minimum appeared with a potential barrier between it and the first, the phase transition

would be second-order and no bubble nucleation would take place. As temperature keeps

descending the barrier eventually disappears, by which time if a first-order first transition

has not yet happened it once again becomes impossible.

10
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Figure 1.1: Finite-temperature effective potential for a first-order phase transition. If an

energy ’bump’ failed to develop as temperature descends the transition would be second-

order.

11



1.2.2 Bubble nucleation. Start and end of the phase transition

Given an effective potential, the phase transition may start from the moment the sec-

ond minimum of the potential becomes degenerate with the first. As temperature keeps

descending the second minimum becomes thermodynamically favourable but the system

still has to tunnel through the potential barrier in order to shift to the broken symmetry

phase. In a first-order phase transition configurations (’bubbles’) of the new phase must

be able to nucleate and grow, eventually filling up the whole medium [41, 42]. Whether

a newly-nucleated bubble will collapse or grow spontaneously depends on its radius. For

each temperature there exists a critical radius, so that the growth of bubbles nucleated

with an equal or larger radius is thermodynamically favourable whereas smaller bubbles

will diminish and disappear. In finite-temperature calculations the bubble nucleation rate

(of bubbles with at least the critical radius) per unit volume is related to the free energy of

the spherically-symmetric ’critical bubble’ with the critical radius. The free energy of the

critical bubble receives two contributions: One from the variation of the Higgs field across

the bubble wall, another from the inner volume of the bubble, filled with the energetically

favoured broken symmetry phase. It can be found through the integral

Fc ≡ S3 =

∫

V
d3x[

1

2
∂iφ∂iφ + V (φ, T )] = 4π

∫

r2dr [
1

2

(

dφ

dr

)2

+ V (φ, T )] (1.1)

(with the origin of r located at the centre of the bubble), carried out for the static (not

time-dependent) configuration of the field φ which extremises the action and is therefore

a solution to the equation of motion

d2φ

dr2
+

2

r

dφ

dr
=

∂V

∂φ
(1.2)

solved with boundary conditions

φ(r −→ +∞) = 0
[

dφ

dr

]

r=0

= 0.

The critical radius (the radius of the critical bubble) is infinite at the critical temper-

ature Tc and decreases with decreasing temperature. Therefore at T = Tc we are left with

a planar situation (with one coordinate z) in which the equation of motion reduces to

d2φ

dz2
=

∂V

∂φ
(1.3)
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with boundary conditions

φ(z −→ −∞) = 0

φ(z −→ +∞) = vc.

As a function of the critical free energy, the bubble nucleation rate per unit volume

can be written as

Γ/V = Λ4(T )e−Fc/T (1.4)

where Λ in the prefactor is a characteristic scale in the theory, which we will take as

Λ4 ≡ ωT 4, with ω ≈ 1 being a sufficient approximation as the nucleation rate is dominated

by the exponential [14]. It is crucial to determine at which temperature (lower than Tc) the

phase transition starts. To find this out we impose the condition that the integrated bubble

production rate per horizon volume reach unity. The cosmological horizon in the radiation-

dominated era scales as dH = 2t = 2κMPl
T 2 (with the Planck mass MPl = 1.22 × 1019

GeV and κ ∼= 0.3 × √
g∗ ≈ 1/34 at the time of the electroweak phase transition) and so

|dt| = 2κMPl
T 3 |dT |. The horizon volume is just VH = d3

H so that the number of bubbles

nucleated during a time interval dt (corresponding to a decrease in the temperature of the

universe of dT ) is

dP = (Γ/V) · VH · dt =
16κ4M4

Pl

T 5
e−Fc/T dT. (1.5)

Once T < Tc the phase transition starts at the nucleation temperature Tn at which a

critical bubble has been nucleated within the horizon volume, that is, when

P (T = Tn) =

∫ Tc

Tn

dP ≡ 1. (1.6)

We must now determine the finalisation temperature Tf < Tn < Tc at which the

whole medium has been taken over by the expanding bubbles and the phase transition is

complete. Assuming that a true-vacuum (broken phase) bubble nucleated at a temperature

T ′ expands within the plasma with a constant terminal velocity β (and ignoring the effects

of the expansion of the Universe) the bubble radius will increase in a time dt by dr = βdt).

Therefore its radius at a later temperature T (after a time t has elapsed) will be given by
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RB(T, T ′) =

∫ RB

0
dR′ =

∫ t

0
βdt′ =

∫ T

T ′

β
2κMPl

T ′′3 dT ′′ = 2βκ
MPl

T

(

1

T
− 1

T ′

)

. (1.7)

Consequently (and taking β ≡ 1 for simplicity3) the fraction f of the causal (horizon)

volume in the broken phase at a given temperature T < Tn will be given by

f(T ) =
1

VH

4π

3

∫ Tc

T
RB(T, T ′)3dP (T ′) =

=

(

2κMPl

T 2

)−3 4π

3

∫ T

Tc

(

2βκ
MPl

T

)3 (

1

T
− 1

T ′

)3 16κ4M4
Pl

T 5
e−Fc/T dT

T
=

=
4πβ3

3
(2κMPl)

4
∫ Tc

T

(

1 − T

T ′

)3 1

T ′5 e−Fc/T ′

dT ′. (1.8)

The phase transition is assumed to end at the temperature Tf for which f(Tf ) = 1.

The number of bubbles present in the horizon volume at any given temperature T < Tn

is, in the simplest approximation4, just the nucleation rate integrated over time:

N(T ) =

∫ T

Tc

dP =

∫ Tc

T

16κ4M4
Pl

T 5
e−Fc/T dT

T
. (1.9)

The average radius of the bubbles present at any given temperature T can be approx-

imated simply as the cubic root of the total volume occupied by the bubbles divided by

the number of bubbles present, 〈R〉 =
(

VH(T )
N(T )

)1/3
. Alternatively, the most likely radius

can be determined by looking for the maximum in the distribution RB(T, T ′)dP (T ′).

1.3 Modelling the phase transition

1.3.1 Introduction to bubble wall propagation

Different approaches have been extensively explored in order to model the growth of

bubbles of the new phase in a first-order electroweak phase transition [28–30, 32, 43–50].

As mentioned, such detailed modelling is key to understanding such parameters of the

transition as the bubble wall velocity on which electroweak baryogenesis, as well as other

signatures, depends.

3In our study of the Light Stop Scenario of the Minimal Supersymmetric Standard Model we will have

reason to question this assumption, see 3.3.2.
4Note that this expression overcounts the number of bubbles as it doesn’t take into account the pro-

portion of the volume already converted to the broken symmetry phase. A more precise expression would

require the substitution dP −→ f(T )dP with an appropriately chosen functional dependence f(T ).
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It was mentioned in the introduction that a key parameter is the ratio vc
Tc

(the ’strength’

of the phase transition), where Tc is the critical temperature and vc the nonzero Higgs

VEV at the second minimum developed by the effective potential as temperature descends

and which, at Tc, becomes exactly degenerate with the symmetric minimum (Fig 1.1).

Generally speaking, the stronger the phase transition, the higher the difference in free

energy per unit volume between the interior of the bubbles of the new phase and the

medium outside. This free energy difference ∆F equals the pressure difference between

the phases [29] and accelerates the propagation of the bubble wall. Working against

the pressure difference are various mechanisms dependent on the microphysics near the

bubble wall which slow down wall propagation and are generally referred to as friction.

The combination of pressure difference and friction is commonly assumed to produce a

steady-state bubble expansion with a fixed bubble wall velocity (at least until bubbles

collide or other phenomena, like turbulence, alter the picture). It must be noted, however,

that if ’friction’ is not strong enough a ’runaway’ regime is possible in which the bubble

wall accelerates without bound [33,43].

1.3.2 Basic description of bubble hydrodynamics

Most treatments of the bubble expansion focus on the hydrodynamics of the process to

study such aspects as the bulk motion of the medium on either side of the bubble wall,

the reheating caused by latent heat release, and the variation of thermodynamic variables

across the wall (the ’shape of the wall’). The starting point is to model the early universe

at the time of the phase transition as a perfect relativistic fluid. Conservation of the fluid’s

stress-energy tensor makes it possible to relate thermodynamic quantities on either side of a

discontinuity such as the advancing bubble wall. Friction is calculated from first principles

starting from the microphysics [30, 32], or, alternatively, it is sometimes introduced as a

new term in the conservation equations and dealt with through a phenomenological free

parameter (eg [29]). This will be our approach in the specific cases we shall deal with in

the following chapters.

The basic thermodynamic argument affecting the conservation equations can be easily

understood from the form of the energy-momentum tensor for a perfect fluid [28],

Tµν = (ρ + P )uµuν − Pgµν (1.10)

with ρ the energy density, P the pressure, uµ the relativistic 4-velocity,and gµν the usual

Minkowski metric. This is, of course, conserved: ∂µTµν = 0. Assume now a planar
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discontinuity moving with a steady velocity in an otherwise homogeneous medium as an

initial approximation to the electroweak bubble wall. The conservation equations reduce

to

∂zT
zz = ∂zT

z0 = 0. (1.11)

Now since the enthalpy density is w = ρ + P = Ts, from the conservation equations

we obtain

w+γ2
+v+ = w−γ2

−v− (1.12)

w+γ2
+v2

+ + P+ = w−γ2
−v2

− + P− (1.13)

where the subscripts +, − refer to the variables on either side of the discontinuity, v is the

bulk velocity of the fluid (in the direction perpendicular to the discontinuity), and γ is the

usual relativistic factor (1 − v2)−1/2. Assume now a simple choice of equations of state:

Let’s say that the − phase represents the broken symmetry phase with an equation of state

of pure radiation, P− = ρ−
3 , whereas the + phase is the ’false vacuum’, symmetric phase

with an added nonzero vacuum energy density (taken to be zero in the broken symmetry

phase) ǫ so that ρ+ = ρrad,+ + ǫ and P+ =
ρrad,+

3 − ǫ. The equation relating the velocities

is then

v+ =

1
6v−

+ v−
2 ±

√

(

1
6v−

+ v−
2

)2
+ α2 + 2

3α − 1
3

1 + α
(1.14)

where α is the ratio of vacuum to radiative energy density in the symmetric phase α =

ǫ/ρrad,+ [51]. The solutions with the + sign are known as detonations and those with the

− sign as deflagrations. The allowed velocities for a fixed α = 0.1 are reproduced in fig 1.2.

From this simple setup we can start to glean the main features of bubble wall propagation.

We see that for detonations v+ > v− and v+ > cs,+, where cs,+ is the speed of sound in

the medium, given simply in the case of a relativistic plasma (here, in both phases) by

cs =
(

dP
dρ

)1/2
= 1/

√
3. For a deflagration v+ < v− and v+ < cs,+. Note that so far the

treatment has been frame-independent. Consider now the ’frame of the universe’ in which

the medium far ahead of the bubble wall is at rest, as must be the medium far behind,

well inside the bubble, and consider boosting from the ’frame of the universe’ to the ’frame

of the wall’, in which the advancing front is stationary and the fluid moves past it. It is
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Figure 1.2: v+ vs v− from eq 1.14 for α = 0.1 (Figure from [28]).

immediately clear that a single, infinitely thin front cannot satisfy the boundary conditions

set by figure 1.2 unless v+ = v− = 0 or v+ = v− = 1, so the structure of the advancing

discontinuity must be more complicated. It turns out that a deflagration bubble wall is

preceded by a shock front which heats up the medium and sets it in motion. The bubble

wall itself brings the medium back to rest. On the other hand, a detonation bubble wall

hits the medium while at rest, sets it in motion, and is followed by a rarefaction wave that

brings the medium gradually back to rest. Note that, if we position ourselves in the frame

of the wall, the bubble wall velocity is given by vw = v− for a deflagration and vw = v+

for a detonation. From this we see that detonations are necessarily supersonic, while

deflagrations may in principle be either subsonic or supersonic. A habitual classification

in terms of the velocity of the outflow divides deflagrations into ’strong’ (|v−| > cs,−)

(strong deflagrations are supersonic), Jouguet (|v−| = cs,−), and ’weak’ (|v−| < cs,−)

(weak deflagrations are subsonic), while detonations are divided into ’strong’ (|v−| < cs,−),

Jouguet (|v−| = cs,−(, and ’weak’ (|v−| > cs,−).

As a further restriction on this description, it was argued originally that the so-called

Chapman-Jouguet hypothesis, applicable to a different kind of phase change called chemical
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combustion5, was also applicable to cosmological phase transitions. Under this hypothesis

detonation fronts are only able to propagate as Jouguet detonations. For a time it was

assumed that the Chapman-Jouguet hypothesis, which implies that bubble wall propaga-

tion was fully determined by the stress-energy conservation equations plus the appropriate

boundary conditions, made further hydrodynamic analysis unnecessary, and this approach

was employed in investigations of gravitational wave production. However the hypothesis

was eventually proven not to be valid for cosmological phase transitions [52].

Within this general picture, therefore, the prediction of a specific wall velocity depends

on the specifics of the model and, in particular, on friction. Generally speaking, the

larger the supercooling (the drop in temperature from the critical temperature Tc to the

nucleation temperature Tn at which the phase transition actually starts), and the smaller

the friction, the higher the wall velocity, which might shift from the deflagration into

the detonation regime. Another important (and not yet fully elucidated) aspect is the

stability of the expanding bubble walls. Some studies (eg [53]) predict that deflagration

fronts (the most likely to develop in relatively weak phase transitions, as predicted, for

example, for the Standard Model or the MSSM) would develop instabilities as the bubbles

grow which would increase the bubble surface, eventually make the bubble wall supersonic,

and even affect baryogenesis considerably; According to other studies, however, a more

careful analysis reveals the deflagration bubble wall in a relatively weak transition to be

hydrodynamically stable [31]. The stability criteria in [31] will be described further and

applied to our study in 2.2.2.

1.3.3 The hyperbolic tangent Ansatz

We shall now set down the hydrodynamic equations which will allow us to account for

friction and calculate the shape of the expanding bubble wall. Before we begin, however,

it is useful to introduce the 2-parameter Ansatz most commonly used to approximate the

shape of the wall without explicitly carrying out the hydrodynamic calculation. The vari-

ation of the Higgs VEV across the bubble profile (assumed planar) can be approximated

by an expression of the form (Fig 1.3)

5Chemical combustion requires the temperature of the medium to rise to a specific point for the reaction

to begin. If the reaction is exothermic enough it may be sufficient to rise the temperature of the medium

at a single point in order for the reaction to extend to the whole of the medium. As opposed to the case

of a cosmological phase transition, the combustion front velocity increases with temperature.
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Figure 1.3: Sample hyperbolic tangent Ansatz for the Higgs VEV across the bubble wall.

The broken symmetry phase is on the right hand side with an assumed VEV of φ0 = 100

GeV. We take Lw = 50 GeV−1, λ = 1.

φ(z) =
φ0

2

(

1 + tanh
z

Lw

)

. (1.15)

Here Lw is the wall thickness which is often expressed in dimensionless form as Lw · T
with T a reference temperature. φ0 gives the value of the Higgs VEV in the broken

symmetry phase behind the bubble wall as read from the effective potential. Note that this

Ansatz is written in the rest frame of the advancing steady-state bubble wall (which will be

the preferred reference frame for our calculations) and therefore has no time dependence.

A straightforward way to obtain a plausible value for Lw is suggested by the simplified 2-

parameter scalar potential V (φ) = λ
4φ2(φ−φ0)

2 with the equation of motion d2φ
dz2 = ∂V (φ)

∂φ .

Substituting the hyperbolic tangent Ansatz into the equation of motion it is easily shown
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that

L2
w =

8

λφ2
0

. (1.16)

Now it is easily checked that the simplified potential has a local maximum half-way

(at φ = φ0

2 ) between its two degenerate minima at φ = 0, φ = φ0 (fig 1.4) and that the

height of that potential barrier is Vb = V (φ0/2) =
λφ4

0
64 . Therefore

L2
w =

φ2
0

8Vb
(1.17)

which gives us a readily available approximation for the wall thickness for any effective

potential with two minima separated by a potential barrier, such as the Higgs finite-T

effective potential at the time of the electroweak phase transition (fig 1.1).

1.3.4 Equation of motion for the background Higgs field. The friction

term

In our example model in 1.3.2 we merely integrated the energy-momentum conservation

equations across the bubble wall without reference to the shape of the relevant variables

across the interface and no discussion of friction. In order to carry out a full hydrody-

namic analysis (and calculate the wall velocity for a specific model) we need the relevant

dynamical equations.

The equation of motion for the background Higgs field can be derived (as in eg [30])

as a function of the phase space population density function f(p, x) for all the particles

present in the plasma,

¤φ +
∂V (φ)

∂φ
+

∑ dm2

dφ

∫

d3p

(2π)32E
f(p, x) = 0 (1.18)

with V (φ) the renormalised vacuum potential. The sum is over massive degrees of freedom

so that for the appropriate couplings we may write, in the most general form possible,

m2 = y2φ2

2 for fermions, m2 = g2φ2

4 for bosons.

The population density can be expressed as an equilibrium part plus a deviation, f ≡
f0 + δf (with the equilibrium distribution for fermions/bosons in the rest frame of the

fluid being given by f0,fluid = 1
eE/T±1

). With this the equation of motion may be written

as
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Figure 1.4: Example simplified scalar potential of the form used to provide a readymade

expression for the wall thickness Lw from the height of the barrier Vb separating the two

local minima of the potential. For a potential of this form the barrier maximum is located

exactly half-way between the minima.
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¤φ +
∂V (φ, T )

∂φ
+

∑ dm2

dφ

∫

d3p

(2π)32E
δf(p, x) = 0 (1.19)

where V (φ, T ) is now the finite-temperature effective potential. Note that the derivative

of the finite-temperature potential is given by the sum of the derivative of the vacuum

potential from (1.18) and the momentum integral for the equilibrium distribution,

∂V (φ)

∂φ
+ Σ

dm2

dφ

∫

d3p

(2π)32E
f0(p, x) =

∂V (φ, T )

∂φ
. (1.20)

The integral term in (1.19) is the friction term. Thus friction effects are fundamentally

the result of the deviation of the particle populations in the plasma from equilibrium.

Microscopic calculations of friction must proceed by finding a suitable form for δf , and,

consequently, for the friction term.

1.3.5 The pressure on the wall

A direct application of eq (1.19) is the calculation of the pressure felt by the wall (see 1.3.1

and eg [30]). Assume a planar wall advancing with a steady velocity in the z direction.

(1.19) in the rest frame of the moving wall reduces to

d2φ

dz2
+

∂V (φ, T )

∂φ
+

∑ dm2

dφ

∫

d3p

(2π)32E
δf(p, x) = 0. (1.21)

We now multiply the whole expression by dφ
dz ≡ φ′ and integrate over z across the wall.

Note that at both ends of the wall we are at either of the zero/nonzero Higgs VEVs so

dφ
dz ≡ 0. Consequently

∫

φ′′φ′dz =
[

φ′2

2

]φ0

0
= 0. A fundamental point is that the finite-

temperature effective potential of the Higgs field equals the free energy density of the

whole system F, which is equal to minus the pressure. Thus the z-integration yields

∆V (φ, T ) +

∫

φ′dz
∑ dm2

dφ

∫

d3p

(2π)32E
δf(p, x) = 0 (1.22)

which tells us that, in a steady state, the pressure felt by the advancing wall balances out

with the integral of the friction term from (1.19) as mentioned in 1.3.1.

1.3.6 Calculating δf . Boltmann equations and relevant limits

The WKB approximation. Boltzmann evolution equations and the collision

integral

We now turn our attention to the friction term, and, specifically, the deviation of particle

populations from equilibrium which determines friction.
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Most friction calculations adopt the so-called WKB or semiclassical approximation,

which assumes that the background Higgs field varies slowly enough across the bubble wall

that the wall thickness Lw is significantly larger than the particles’ de Broglie wavelength,

p ≫ 1
Lw

. This condition is generally assumed to be satisfied for all except the most

infrared particles. A second condition for the semiclassical approximation is that particle

scatterings are not too frequent, so that particles can be taken to be on-shell [30].

Within the WKB approximation the evolution of particle distributions is described by

a Boltzmann equation,

df

dt
= ∂tf + ~̇x · ∂~xf + ~̇p · ∂~pf = −C[f ] (1.23)

where C[f ] is the collision integral. The full form of the integral is given in [30] as

C [f(x, p)] =
∑

i

1

2Ep

∫

d3k d3p′ d3k′

(2π)9 2Ek 2Ep′ 2Ek′

|M(s, t)|2

×(2π)2 δ4(p + k − p′ − k′)P [fi] (1.24)

where P [fi] = f1f2(1 ± f3)(1 ± f4) − f3f4(1 ± f1)(1 ± f2).

Here the sum is over all relevant four leg scattering diagrams. p and k are the incoming,

p′ and k′ the outgoing momenta. M is the scattering amplitude for the process. The fi

are population factors. The first (positive) contribution to P represents a particle with

momentum p being removed from the state by a collision, weighted by the populations of

colliding particles. The second (negative) contribution represents a particle being scattered

into the state. The (1± f) factors stem from particle statistics (− for fermions and + for

bosons) [30].

For the following it is useful to generalise the equilibrium distribution for fermions/bosons

given in 1.3.4 for the rest frame of the fluid, f0,rest = 1
eE/T±1

, to that in a general frame

in which the fluid has a uniform bulk motion with velocity v in, say, the z direction. The

equilibrium distribution becomes

f0 =
1

eβγ(E−vpz) ± 1
(1.25)

with β ≡ 1
T and γ = 1√

1−v2
. Note that by taking v = 0 we recover the version for a fluid at

rest. The relevant derivatives of the distribution which appear in the Boltzmann equation

become in this general frame

df0

dpz
= −βγ(pz

E − v)eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
(1.26)
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and

df0

dz
= −βγ (m2)′

2E eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
. (1.27)

In the rest of this study we shall often choose to work in the rest frame of the advancing

steady-state bubble wall (always assumed to move in the positive z-direction). A planar

wall will ’see’ the plasma as moving with a given bulk velocity. Note that, if the plasma

itself has a bulk motion induced by the passing of the wall, the plasma velocity ’seen’

by the wall at any given position may not coincide with the steady-state velocity of wall

propagation. In the rest frame of a steady-state wall ∂t ≡ 0 for all quantities. We now

write again f ≡ f0 + δf in the Boltzmann equation. We neglect the momentum derivative

of δf , ∂~pδf ≡ 0. Note also that vz ·∂zδf = pz

E ·∂zδf and ~̇pz = −∂E
∂z ~uz = − 1

2E
d(m2)

dz ~uz. With

this the Boltzmann equation finally becomes, in the rest frame of the advancing wall,

∂tf + ~̇x · ∂~xf + ~̇p · ∂~pf =

pz

E
∂z(f0 + δf) − (m2)′

2E
∂pzf0 =

[

(m2)′

2E
(
pz

E
− v) − pz

E

(m2)′

2E

]

βγ
eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
+

pz

E
∂zδf =

−(m2)′

2E
vβγ

eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
+

pz

E
δf ′ = −C[f ]. (1.28)

Simplified forms of the collision integral. The relaxation time approximation

Further simplifications are possible short of employing the full expression for C[f ]. The

free particle approximation [44,45] assumes C[f ] ≡ 0 and may represent the case in which

particle free paths are much larger than the thickness of the wall. In this approximation

the Boltzmann equations can be solved exactly (see eg [30]).

A further development, which constitutes the basis for this work, is known as the

relaxation time approximation. In this approximation we assume C[f ] ≡ δf
τ , where the

relaxation time τ is usually considered independent of momentum [44]. With this the

Boltzmann equation for δf becomes

−(m2)′

2E
vβγ

eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
+

pz

E
δf ′ = −δf

τ
. (1.29)

Note that it is possible to propose an analytic solution for this equation if we neglect

the spatial dependence of the exponentials, that is, if we assume that only δf and m2
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depend on position. With this simplification we can rewrite the Boltzmann equality in

the standard form

δf ′ +
Eδf

Pzτ
=

βγv

2Pz
(m2)′

eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
(1.30)

and integrate it via an integrating factor (again in the usual way) arriving at

δf(z) = e
− E

pzτ
(z−z01)

∫ z

z02

e
− E

pzτ
(z′′−z01) βγv

2pz
(m2)′

eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
dz′′ (1.31)

where z01, z02 depend on boundary conditions. Since the integration cannot be solved

analytically in a convenient way we shall look for further simplifications.

Relevant limits to the relaxation time approximation. Results for the friction

It is natural to consider under which conditions the δf and δf ′ terms become dominant.

The usual approach to the relaxation time approximation (see eg [30]) is to assume L ≫ τ

for the wall thickness L, with which δf ′ ≈ δf
L ≪ δf

τ . Note that this is a natural limit to

take for a relatively slow wall since, generally speaking and within any given model, slower

walls are thicker and not as sharp (quantities vary more slowly across the bubble profile)

and relativistic time dilation is not a factor in increasing the characteristic timescale for

particle interaction (the relaxation time) as seen by the wall. Adopting this approximation

and dropping the derivative term in (1.28) we have, in a general boosted frame (for one

degree of freedom),

δfslow wall = τ
(m2)′

2E
vβγ

eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
(1.32)

We have arrived at a form for the deviation from equilibrium that we can insert into

the equation of motion for the background Higgs field (1.21). Recalling the form of the

friction term in that equation (for one degree of freedom) and substituting the expression

for δf just derived we obtain

dm2

dφ

∫

d3p

(2π)32E
δfsw(p, x) =

dm2

dφ

∫

d3p

(2π)32E
τβγv

(m2)′

2E

eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
(1.33)

with which the equation of motion for the Higgs field in the rest frame of the advancing

wall, eq (1.21), becomes for a slow wall
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d2φ

dz2
+

∂V (φ, T )

∂φ
+

∑ dm2

dφ

∫

d3p

(2π)32E
τβγv

(m2)′

2E

eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
= 0. (1.34)

The pressure difference on the advancing wall as per eq (1.22) for one degree of freedom

becomes in this approximation

∆Psw =

∫

φ′dz
dm2

dφ

∫

d3p

(2π)32E
τβγv

(m2)′

2E

eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
. (1.35)

We can extract useful information as to the dependence of the pressure on the relevant

mass and temperature scales. Note that if we assume a slow, nonrelativistic wall and

make the approximation E ≈ m, then (m2)′

(2E)2
≈ E2

E2
1
L = 1

L (and 1
L ∼ T ) and with no

other spatial dependence outside the exponentials we can take
∫

dzφ′ dm2

dφ =
∫

dm2 = m2.

Note also that to extract the temperature dependence we can change variables in the

momentum integral in the form p → p′ = p
T so that the momentum part of the integrand

in spherical coordinates becomes βp2dp → T 3

T p′2dp′ and, finally, we obtain an ∼ m2T 2

pressure dependence on mass and temperature in this ’slow wall’, L ≫ τ case.

Let us turn now to the opposite limit, that of a fast, relativistic wall. This will naturally

be a thin, sharp wall and relativistic time dilation will lenghten the characteristic relaxation

time for plasma particles so we can assume L ≪ τ and δf ′ ≈ δf
L ≫ δf

τ . Thus in this case

we can neglect the δf term in the Boltzmann equation (1.29) and are left with

pz

E
δf ′ =

(m2)′

2E
vβγ

eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
(1.36)

which, adopting the relativistic assumption E ≈ pz in the exponentials, can be integrated

directly to

δffast wall =
m2

2Pz
vβγ

eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
. (1.37)

We can introduce this into the friction term in the Higgs equation of motion,

dm2

dφ

∫

d3p

(2π)32E
δffw(p, x) =

dm2

dφ

∫

d3p

(2π)32E

m2

2Pz
vβγ

eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2

(1.38)
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and obtain an equation of motion for the fast wall case

d2φ

dz2
+

∂V (φ, T )

∂φ
+

∑ dm2

dφ

∫

d3p

(2π)32E

m2

2pz
vβγ

eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
= 0. (1.39)

As we did for the slow wall limit, we can write the pressure on the wall for one degree

of freedom as

∆Pfw =

∫

φ′dz
dm2

dφ

∫

d3p

(2π)32E

m2

2pz
vβγ

eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
. (1.40)

With E ≈ pz the spatial integration can be done directly (
∫

dzφ′ dm2

dφ m2 = m4) and

the change of variable p → p′ = p
T does away with the temperature dependence of the

pressure,

∆Pfw ≈ vγm4

∫

dp′

(2π)3
eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
(1.41)

leaving us with an ∼ m4 dependence for the pressure on the wall in the relativistic limit.

Dependence of the pressure on the wall velocity in the relaxation time approx-

imation

We can glean crucial information through studying the pressure difference as a function of

the wall velocity. We do this in the slow wall limit of the relaxation time approximation,

the form of the friction term that will be most relevant to us in the remainder of this

work. In figure 1.5 we plot ∆Psw (for one degree of freedom) from (1.35) vs vw. We

calculate ∆Psw in two ways: 1) By integrating across the wall for each value of vw (we

write (m2)′ ≈ m2
b

Lw
with mb the particle’s mass in the broken symmetry phase and perform

∫ m2

0 dm2
∫ d3p

(2π)32E
τβγv

m2
b

2ELw

eβγ(E−vpz)

(eβγ(E−vpz)±1)2
, recalling that E =

√

m2 + |~p|2)6, and 2) By

assuming a constant particle mass which we set to mb and integrating over momentum only.

We write τ ≡ c
T and set c ≡ 1 for this example case, taking also general example values

for all other parameters. We see in the first place that assuming a constant mass across

the wall provides a fairly good approximation to ∆Psw, particularly in the fermionic case.

More importantly, we see from the plot how the factor vwγ in (1.35) causes the pressure

difference to diverge as vw −→ 1, γ −→ ∞. It may be argued that, as we just discussed,

the ’slow wall’ limit of the relaxation time approximation (the usual assumption in the

6In fact the momentum integral has only a very small dependence on velocity and can be solved most

easily by assuming v ≡ 0 in the exponentials as we show later on in 1.4.3.
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literature) is not necessarily an accurate description for high vw. Note, however, that if

we approximate E ≈ pz in what we termed the ’fast wall’ approximation (1.40) we end up

with the same integral dependence for high wall velocities.

The crucial point to remark is that this divergence of the pressure difference for vw −→
1 is, in fact, an artifact of our assumptions. We will see presently (1.3.7) that the pressure

difference in fact tends towards a finite limit for vw −→ 1. It is likely that a properly

formulated functional form for the relaxation time τ , which we have so far represented

in the simplest possible way (see above), would do away with the γ factor in (1.35), as

relativistic time dilation arguments would suggest.

1.3.7 Momentum exchange between the wall and the plasma

The momentum exchange description

We consider now an alternative approximation to the calculation of the pressure on the

wall. It consists of calculating the kinetic momentum exchange between the advancing

wall and the particles in the plasma (see eg [47]). This approximation will give us es-

sential information as to the behaviour of friction and the pressure on the wall in the

ultrarelativistic limit.

To avoid ambiguity it is important to remember that we described the ’pressure’ on

the advancing wall as the difference in the finite-temperature effective potential for the

background Higgs field on either side of the wall, ∆V (φ, T ). To this we opposed the ’fric-

tion’ or effect of the deviation from equilibrium of the particle populations in and near the

wall. Both contributions cancel out for a steady-state wall. The finite-T effective potential

has two parts, the ’vacuum’ (independent of temperature) potential and the temperature-

dependent additions which arise from the thermal bath. The temperature-dependent part

of the potential stems from the equilibrium part of the particle distributions.

The momentum-exchange approach aims to account for the effect of the particles in the

plasma (the ’thermal bath’), including the influence of the equilibrium and non-equilibrium

parts of the relevant particle distributions, independently from the effect of the vacuum

potential.

This approach is based on the idea that every plasma particle that interacts with the

advancing bubble wall experiences a force, and exerts an equal and opposite force on the

wall. The force per unit area exerted on/by the wall in this way is the pressure on the

wall due to the interaction with the plasma and does not include the vacuum pressure.

The momentum-exchange force per unit area equals the variation in kinetic momentum
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Figure 1.5: Pressure difference (in GeV4) vs wall velocity in the ’slow wall’ limit of the

relaxation time approximation for one fermionic (top) and bosonic (bottom) degree of

freedom for an assumed T = 100 GeV, Lw = 12
T , mb = 100 GeV, and a Higgs VEV in the

broken symmetry phase φ0 = 100 GeV. The calculation has been done through a double

integral over mass and momentum (solid line) and, for comparison, assuming a constant

mass across the wall (the particle mass in the broken symmetry phase) (dash-dot line).

The relaxation time approximation in the form we have adopted erroneously predicts the

pressure difference to diverge as vw −→ 1.
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experienced by the particles that interact with the wall per unit area per unit time.

Let us assume that the interaction between particles and the wall is limited to a plane

at the position of the wall, and let us place ourselves in the rest frame of the wall. The wall

acts on the particles, inducing a change in momentum, when, and only when, the particles

cross the plane of the wall from the symmetric to the broken symmetry phase or viceversa.

The advancing wall ’sees’ the distribution of kinetic momenta of particles on either side of

it. Per unit time and unit area, the amount of particles with kinetic momentum ~p which

interact with the wall is given by fincoming · vz, with vz the component of velocity directed

towards the wall. The interaction of a particle with the wall is determined by conservation

of energy (which holds in the frame of the wall, see [47]) in the semiclassical picture in which

particles are assumed to be on-shell. Particles are assumed to be massive on the broken

symmetry side of the interface, massless on the symmetric phase. Consequently for any

particle crossing the wall in either direction we have |~p|symmetric =

(

√

m2 + |~p|2
)

broken

.

There are two possibilities when the particle reaches the wall: It may cross over or be

reflected. Particles crossing from the broken symmetry phase will always cross over, losing

their mass and gaining kinetic momentum in the process. However, (massless) particles

hitting the wall from the symmetric phase may be reflected if the component of their kinetic

momentum perpendicular to the wall is not sufficient to provide the particle with its mass

while keeping some kinetic momentum in that direction7. If particles from the symmetric

phase do have enough kinetic momentum in the direction perpendicular to the advancing

wall they will cross over to the broken symmetry phase, gaining mass and losing momentum

in the process.

Let us assume that the wall propagates in the z direction. As said we operate in the

rest frame of the advancing steady-state, planar bubble wall. Looking at either side of the

wall, the total pressure due to interactions with the plasma is given by (for one degree of

freedom)

Pplasma =

∫

d3p

(2π)3
∆pz f(~x, ~p) vz, inbound (1.42)

for all values of vz directed towards the wall from either phase. This is not a straightforward

calculation because in general f(~x, ~p) is not an equilibrium distribution. We can divide

this integration into four contributions: 1. Particles reaching the wall from the symmetric

phase with total kinetic momentum lower than their mass in the broken symmetry phase,

7In the planar approximation the force induced by the wall on the particle is obviously in the direction

of wall propagation.
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Figure 1.6: Momentum diagram for plasma particles interacting with the planar bubble

wall. The broken symmetry phase is at the top, the symmetric phase at the bottom. The

wall advances in the negative z direction with velocity vw. Particles which would acquire

a mass m when crossing the wall from the symmetric to the broken symmetry phase will

be reflected instead if their momentum points away from the wall with θ ≥ arccos m

| ~Ps| .
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and which are therefore reflected (|∆pz| = 2 |pz|); 2. Particles reaching the wall from the

symmetric phase with total kinetic momentum higher than their mass but with pz lower

than their mass, also reflected; 3. Particles from the symmetric phase with pz higher

than their mass, and therefore transmitted into the broken symmetry phase (|∆pz| =

pz −
√

p2
z − m2); and 4. Particles reaching the wall from the broken symmetry phase, all

of which are transmitted into the symmetric phase. The total pressure due to interactions

(for one degree of freedom) becomes Pplasma = P1 + P2 + P3 + P4 with (in spherical

coordinates, see fig 1.6)

P1 =

∫ m

0

dp p2

(2π)2

∫ π
2

0
sin θ dθ 2p cos θ vz fs(~x, ~p)

P2 =

∫ ∞

m

dp p2

(2π)2

∫ π
2

arccos m
p

sin θ dθ 2p cos θ vz fs(~x, ~p)

P3 =

∫ ∞

m

dp p2

(2π)2

∫ arccos m
p

0
sin θ dθ

(

p cos θ −
√

p2 cos θ2 − m2
)

vz fs(~x, ~p)

P4 = −
∫ ∞

m

dp p2

(2π)2

∫ π

π
2

sin θ dθ
(

√

p2 cos θ2 + m2 + p cos θ
)

vz fb(~x, ~p)

(1.43)

The subscripts s, b refer respectively to the symmetric and broken symmetry phases.

Note that all four contributions have the same sign, that is, all tend to slow down the

advancing wall. This tells us that the sum of the temperature-dependent part of the

effective potential and friction effects (given by Pplasma, see above) actually contributes

’negative’ pressure on the wall, slowing it down in relation to the effect of the vacuum

potential.

We may investigate the dependence of Pplasma on vw by making a few simplifications.

The calculation is made easier by assuming an equilibrium distribution in the symmetric

phase and an empty broken symmetry phase, with no particles crossing back into the

symmetric phase. For comparison, we calculate, on one hand, the pressure difference (for

one degree of freedom, fermionic and bosonic) resulting from all particles being reflected

irrespectively of their mass; On the other hand we calculate the result of particles being

reflected or crossing over to the broken symmetry phase according to their mass and

momentum as described above (P1 + P2 + P3 in (1.43) ). The results are plotted in figure

1.78. We see that assuming total reflection leads to a divergent Pplasma as vw −→ 1.

8Note that, since we have assumed an equilibrium distribution in the symmetric phase and, therefore,

no particle interactions, the pressure calculated in this way and plotted in figure 1.7 represents an upper

bound on the real value, as interactions between plasma particles will result in decays and a decrease in
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However, considering reflections plus transmissions as above results in Pplasma = P1 +

P2 + P3 tending towards a finite limit as vw −→ 1. The explanation for this result, which

corrects the apparent conclusions drawn from the relaxation time approximation (1.3.6

and fig 1.5), is as follows: Consider a bubble wall advancing with v ≈ 1. We can assume in

that case that no particles cross over from the broken symmetry phase (behind the wall)

to the symmetric phase, and that all particles in the symmetric phase have enough kinetic

momentum to acquire mass and cross over to the broken symmetry phase, so that none

are reflected. In addition, since in this case (see 1.3.2) the wall hits the medium while at

rest, we may consider (with no simplifications applied) the distribution of the incoming

particles fs(~x, ~p) to be an equilibrium distribution. We may also take pz ≈ p so, for small

m
p , p −

√

p2 − m2 = p
[

1 −
√

1 − m2

p2

]

≈ p
[

1 − (1 − m2

2p2 )
]

= m2

2p . The contribution to

the pressure due to the plasma left in this case (always for one degree of freedom) can be

integrated exactly [33], giving, for bosons,

Pplasma = m2

∫ ∞

0

d3p

(2π)3 2p
fs(~x, ~p) =

m2T 2

24
(1.44)

(m2T 2

48 for fermions) (the reason for a finite Pplasma in this case can be understood intuitively

by taking E ≈ p in (1.44); Since E ∼ γ we are left with the equilibrium particle number

density
∫ d3p

(2π)3
fs(~x, ~p) which goes equally as ∼ γ [33]). Consequently the pressure on the

wall due to plasma interactions in the momentum exchange description (which tend to

slow down the wall, as we have seen, in opposition to the vacuum potential contribution)

approaches a finite limit as v → 1, γ → ∞, and therefore arbitrarily high wall velocities

are, in principle, possible [33] (put another way, since the vacuum contribution is finite,

if the slowing effect of plasma interactions tended to infinity as v → 1, as the relaxation

time approximation in the form that we considered suggested, we would already know

that there is an upper bound to the bubble wall propagation velocity)9.

The ’mean field’ criterion for runaway walls

Eq (1.44) from [33] provides a natural criterion to determine whether the wall may ’run

away’ with constant acceleration in a given setting, never reaching a steady state. Recall

friction.
9Note again that the pressure difference as calculated from the relaxation time approximation in 1.3.6

does not include the effect of the equilibrium part of the particle distributions. That contribution is,

however, finite, so it is still true that for that result to agree with the result from this subsection the

integral of the friction term in (1.35) would have to tend to a finite limit as vw → 1.
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Figure 1.7: Pressure difference (in GeV4) vs wall velocity in the momentum exchange ap-

proximation, assuming an equilibrium distribution in the symmetric phase and no particles

crossing back from the broken symmetry phase. Assuming total reflection for all particles

results in a diverging ∆P as vw −→ 1 (top left for fermions, top right for bosons). Taking

into account reflections plus transmissions, depending on the particle’s mass and momen-

tum, results in a finite limit to ∆P as vw −→ 1, in accordance with the theoretical limit

set in [33] (bottom left for fermions, bottom right for bosons). The downward falloff in

the reflection + transmission case as vw −→ 1 stems from integrating numerically with

finite p. We assume T = 100 GeV, m = 100 GeV.
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that the total pressure on the wall is the vacuum pressure (that is, minus the value of

the vacuum potential at its second minimum with nonzero VEV, taking its value at the

symmetric minimum to be zero) plus the sum of the Pplasma from all relevant particles in

the ’thermal bath’ through which the wall propagates. The total pressure thus defined

(which includes friction effects) must be zero for a steady-state wall. Consider now the

case of a wall moving with velocity vw = 1, for which Pplasma (for one degree of freedom)

is given by eq (1.44)10. If the total pressure is actually negative, or, as stated in [33], if the

’mean-field pseudopotential’ formed by the vacuum potential plus the total Pplasma from

eq (1.44) has a second minimum at nonzero VEV higher than the 0-VEV one, then that

case may not arise and the wall cannot run away. However, if the pseudopotential has a

second minimum lower than the 0-VEV one the opposite is the case and the wall will run

away with constant acceleration.

We will come back to this criterion in our study of the dimension-6 extension to the

Standard Model (see 2.2.3).

1.4 Project formalism

1.4.1 General hydrodynamic treatment

Thermodynamic relations and the energy-momentum tensor of the fluid-field

system

We are now ready to lay out the formalism that we shall use in this project. We follow

essentially the approach in [29] in which friction is described by a phenomenological pa-

rameter, included in a friction term introduced by hand in the stress-energy conservation

equations for the combined system formed by the background Higgs field and the cosmic

plasma. We will suggest an alternative choice of friction term to that found in [29] based

on our results in 1.3.

We start by writing the energy-momentum tensor of the system, which receives contri-

butions from both the Higgs scalar field (see eg [54]) and the ’cosmic plasma’ of the early

universe modelled as a perfect relativistic fluid. As mentioned, the finite-temperature ef-

fective potential of the Higgs field equals the free energy density of the whole system F,

which is equal to minus the pressure. The thermodynamic relations we shall use are (with

s the entropy density)

10With negative sign as discussed after eq (1.43). Pplasma tends to slow down the wall.
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P = −F (1.45)

ρ = Ts − P = T
∂P

∂T
− P = −T

∂F

∂T
+ F. (1.46)

As in our initial example in 1.3.2 it is convenient to divide the pressure and the en-

ergy density (both derived through the thermodynamic relations from the Higgs effective

potential) into a radiative (temperature- but not field-dependent) and a field-dependent

part. The ’radiative’, exclusively temperature-dependent contributions appear in the rel-

evant expansions of the potential and correspond to a pure radiation equation of state

Pr = ρr/3. Note that from now on when we write V (φ, T ) or refer to the effective poten-

tial of the Higgs field we will refer to the field-dependent part of the potential, chosen to

satisfy V (0, T ) ≡ 0. The contributions to the energy-momentum tensor are therefore

Tµν
field = ∂µφ∂νφ − gµν

(

1

2
∂αφ∂αφ

)

(1.47)

Tµν
plasma = (ρ + P )plasmau

µuν − gµν (Pr − V (φ, T )) (1.48)

where uµ is the 4-velocity of the fluid. Note that we have assigned all contributions from

the effective potential to the plasma part and that, as mentioned, Pr is temperature- but

not field-dependent. We can now equally split (ρ + P )plasma into a radiative- and field-

dependent part, so that, as per the thermodynamic relations, (ρ + P )plasma ≡ (ρ + P )r −
T ∂V (φ,T )

∂T = ωr − T ∂V (φ,T )
∂T , where the radiative enthalpy is ωr = ρr + Pr. With this we

have

Tµν = ∂µφ∂νφ − gµν

(

1

2
∂αφ∂αφ + Pr − V (φ, T )

)

+

(

ωr − T
∂V (φ, T )

∂T

)

uµuν (1.49)

We now parametrise the radiation pressure as its form for pure radiation, Pr = aT 4 =

π2

90 g∗T 4, g∗ being the number of effective degrees of freedom at the temperature T . Again

from the thermodynamic relations and with this parametrisation the radiative entropy is

sr =
(

∂P
∂T

)

r
= 4aT 3 and wr = 4Pr = 4aT 4.

Energy-momentum conservation equation. The friction term

We are now ready to work with the conservation equation for this energy-momentum ten-

sor, ∂µTµν = 0. We shall follow [29] in splitting the conservation equation into two and
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equating each part to plus or minus a suitable friction term with the proper Lorentz struc-

ture. Noting that ∂µ {gµνV (φ, T )} = ∂V (φ,T )
∂φ ∂νφ + ∂V (φ,T )

∂T ∂νT we write the conservation

equation as

∂µ

{

∂µφ∂νφ − gµν

(

1

2
∂αφ∂αφ

)

+

(

ωr − T
∂V (φ, T )

∂T

)

uµuν − gµνPr

}

+
∂V (φ, T )

∂φ
∂νφ +

∂V (φ, T )

∂T
∂νT = 0. (1.50)

We must now choose an appropriate form for the friction term. Different forms have

been proposed in previous studies, usually dependent on the covariant combination ∂µφuµ

and an adimensional free parameter which describes the effect of microphysics near the

bubble wall. An often-suggested form for the term is Tηuµ∂φ with T a characteristic

temperature and η a friction parameter [28,43]. To justify our choice of a different friction

term recall the form of the term we derived in the relaxation time approximation for a

’slow wall’ (see 1.3.6 and eq (1.32) ),

dm2

dφ
τβγv(m2)′

∫

d3p

(2π)3(2E)2
eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
≈ φ2φ′τβγv

∫

d3p

(2π)3(2E)2
eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2

(with β = 1
T ). The ’slow wall’ description is the choice usually made in the literature

(see eg [30]), and we expect it to hold (see Fig 1.5) for wall velocities up to vw ≈ 0.8. As

mentioned in 1.3.6 the integral in this form of the friction term can be made adimensional

through the change p → p′ = p
T which contributes a further T factor outside the integral.

With a characteristic dependence of the relaxation time τ ∼ 1
T , we are left with a prefactor

to the (adimensional) integral ∼ 1
T φ2φ′γv. For this reason we propose a friction term of

the form η φ2

T uµ∂µφ, with η our adimensional friction parameter.

Having made this choice we proceed formally by splitting the energy-momentum con-

servation equation:

∂µ

{

∂µφ∂νφ − gµν

(

1

2
∂αφ∂αφ

)}

+
∂V (φ, T )

∂φ
∂νφ = −η

φ2

Ts1
uµ∂µφ∂νφ (1.51)

∂µ

{(

ωr − T
∂V (φ, T )

∂T

)

uµuν − gµνPr

}

+
∂V (φ, T )

∂T
∂νT = +η

φ2

Ts1
uµ∂µφ∂νφ (1.52)

where we have picked a fixed reference temperature for the denominator of the friction

term (instead of the time and space-dependent variable T ) so as to simplify our calculations

later. As a reference temperature we pick Ts1 which is the temperature in the symmetric
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phase immediately ahead of the bubble wall (fig 1.8) 11.

We proceed in parallel to [29]. Manipulating the equations (for now in a frame-

independent fashion) it is easily shown that

∂µ∂µφ +
∂V (φ, T )

∂φ
= −η

φ2

Ts1
uµ∂µφ (1.53)

∂µ

{(

ωr − T
∂V (φ, T )

∂T

)

uµuν − gµν (Pr − V (φ, T ))

}

=

=

(

∂V (φ, T )

∂φ
+ η

φ2

Ts1
uµ∂µφ

)

∂νφ. (1.54)

As a note, from (1.54) it is possible to derive the entropy production equation for the

system (due to the presence of friction) by contracting both sides of the equation with the

fluid 4-velocity uν . We obtain

T∂µ

{(

sr −
∂V (φ, T )

∂T

)

uµ

}

= η
φ2

Ts1
(uµ∂µφ)2. (1.55)

1.4.2 Application to the expanding bubble profile

Up until now our formalism has been fully covariant. We shall now develop it further and

apply it to the study of the steady-state hydrodynamics of the expanding bubble.

As we saw in 1.3.2, a single planelike front is not enough to satisfy the boundary

conditions of the advancing bubble wall. We shall assume that a deflagration bubble front

is preceded by a shock front, and a detonation wall followed by a rarefaction wave.

We shall start by studying the shape of the variables across the bubble wall proper,

be it for a deflagration or a detonation bubble. By doing this we connect the values of

thermodynamic and hydrodynamic variables (as well as the Higgs VEV) in the symmetric

phase immediately ahead of the wall to the values in the broken symmetry phase imme-

diately behind it. This calculation, given our initial choice of values at one end of the

wall, gives us the wall velocity. For a deflagration bubble we then determine the variation

of the relevant quantities in the region between the bubble wall and the shock front (fig

1.8) 12. Lastly, we shall study how variables ’leap’ across the shock front and shall find

their values in the undisturbed universe ahead of the front. In this way we may relate

11We could make an alternative choice for this characteristic temperature, like the critical (Tc) or the

nucleation (Tn) temperature (see 1.2.1 and 1.2.2). However, as we shall see in the following chapters,

temperature variations across the bubble profile are in practice small (∆T ≪ Tn) unless the phase transition

is extremely strong and the choice of characteristic temperature for the friction term produces only a small

effect.
12The deflagration bubble wall and shock front move in general at different velocities. If both are assumed

to be planar the hydrodynamic variables do not change in the region between them, but they do if the
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conditions inside the bubble, in the broken symmetry phase, to those in the undisturbed

medium ahead of the shock front. In particular, we may link the wall velocity to the

temperature of the undisturbed universe, which, as a first approximation, we may identify

with the nucleation temperature Tn (see 1.2.2). Note that for a detonation wall (which

hits the medium while at rest) with no shock front the temperature of the undisturbed

universe is the temperature directly ahead of the bubble wall.

The bubble wall

We wish to apply the hydrodynamic equations (1.53)-(1.54) to the advancing bubble front.

Once the growing bubble reaches steady-state expansion we may neglect the curvature of

the wall, so we adopt the usual 1+1 dimensional approximation, with the spatial dimension

taken as perpendicular to the wall, along the direction of bubble expansion (here the x-

direction for simplicity). We place ourselves in the rest frame of the advancing wall, in

which a steady-state solution with constant wall velocity becomes time-independent. Note

that in this frame u0 = γ, u1 = γv and u2 = u3 = 0. Note also that in a steady state ∂x

is the only nonzero derivative. Eq (1.53) directly becomes

d2φ(x)

dx2
=

∂V (φ, T )

∂φ
+ η

φ2

Ts1
vγ

dφ(x)

dx
(1.56)

Eq (1.54) is a vector equality. In the wall rest frame only the components ν = 0,1 are

nontrivial. They become

∂x

{(

ωr − T
∂V (φ, T )

∂T

)

γ2v

}

= 0

∂x

{(

ωr − T
∂V (φ, T )

∂T

)

γ2v2 + Pr − V (φ, T ) +
1

2
φ′(x)2

}

= 0.

From these we write

(4aT 4 − T
∂V (φ, T )

∂T
)γ2v = C1 (1.57)

(4aT 4 − T
∂V (φ, T )

∂T
)γ2v2 + Pr − V (φ, T ) +

1

2
(
dφ

dx
)2 = C2 (1.58)

where, to sum up, v and T in addition to φ are functions only of the spatial coordinate

perpendicular to the wall, γ is the usual relativistic factor (1 − v2)−1/2, η is our phe-

nomenological friction parameter characterising the resistance of the plasma to the wall’s

calculation is refined by taking into account the sphericity of the bubble, as we shall do in this study. For

a previous calculation in which the sphericity of the bubble was taken into account see [43].
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movement, and Ts1 is the temperature of the plasma in the symmetric phase just ahead of

the wall. The value of the two arbitrary constants C1 and C2 is easiest to calculate in the

symmetric phase, where V (φ, T ) as well as φ and both their spatial derivatives vanish.

For the purposes of solving the coupled system of equations formed by (1.56), (1.57)

and (1.58) we define the wall as the region where the Higgs VEV φ varies from zero in

the symmetric phase to its value in the broken symmetry phase, as given by the effective

potential. The boundary conditions applicable to the field are

φ′(x) = 0 (at both ends of the integration interval) (1.59)

φ = 0 (at the symmetric end of the integration interval) (1.60)

We solve the coupled system numerically after calculating C1, C2 in the symmetric

phase. In order to do this we redefine the temperature and velocity in (1.56)-(1.58) as a

reference temperature and velocity plus a deviation, T ≡ T0 + ∆T , v ≡ v0 + ∆v with T0,

v0 chosen appropriately 13. Introducing this into (1.57)-(1.58) allows us to solve for ∆T

and ∆v as a function of the Higgs VEV φ (and its first spatial derivative). We can then

introduce those expressions into eq (1.56), which becomes a 2nd-degree ordinary differen-

tial equation for φ that can be solved by numerical methods. As regards interpreting the

solution note that for a deflagration bubble wall that brings the fluid back to rest the wall

velocity is given by vw = |vb| (the fluid velocity of the ’outflow’ at the broken symmetry

end of the integration interval, just behind the wall, fig 1.8), whereas for a detonation

bubble the wall velocity is given by vw = |vs1|, the velocity of the ’inflow’ at the intact

symmetry end of the integration interval. Since for a detonation solution the ’temperature

of the universe’ is just the temperature at the restored symmetry end of the integration

interval just ahead of the wall (Tu = Ts1), and since this already gives us the information

we are looking for, we shall not concern ourselves with the dynamics of the rarefaction

wave which follows the detonation front and brings the fluid back to rest.

Transforming between frames

It is useful to reflect now on the transformation laws between the different frames of

reference relevant to our calculation. We have already described the rest frame of the

bubble wall and the ’rest frame of the universe’, in which the fluid far ahead of and behind

13As noted, temperature and velocity deviations across the bubble profile are relatively small (∆T ≪

Tn, ∆v ≪ vw) unless the phase transition is extremely strong, a case we will seldom encounter in our

calculations.
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vfluid = 0vfluid = 0

vfluid,2 vfluid,1

vshock vfluid vw

vu vs1 vb

Tu

vs2

Ts2 Ts1 Tb

Figure 1.8: Schematic of a deflagration bubble. The vertical dashed line on the right is

the bubble wall, the dotted line on the left the shock front. Both propagate from right

to left. The relevant fluid velocities are expressed in the rest frames of reference of the

bubble wall (vs1, vb, dashed arrows), the shock front (vs2, vu, dotted arrows), and the

’universe’ (vfluid, vshock, vw, solid arrows). vfluid,1 and vfluid,2 are the fluid velocities in the

frame of the universe immediately ahead of the bubble wall and immediately behind the

shock front, respectively (as, if the sphericity of the bubble is taken into account, the fluid

velocity varies in the region between the two). By comparison, vs1 is the fluid velocity

immediately ahead of the bubble wall in the frame of the wall, and vs2 the fluid velocity

immediately behind the shock front in the rest frame of the front. Ts1 is the temperature

immediately ahead of the bubble wall, Ts2 the temperature immediately behind the shock

front. Because the rate of propagation of the bubble wall and the shock front are in

general different velocities must be transformed covariantly between these three frames as

necessary.
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the wall is at rest. We have just seen that, for a detonation bubble, vw = |vs1| (the

velocities of the fluid ahead of the wall in the wall frame and that of the wall in the frame

of the fluid are equal in module). For a deflagration bubble vw = |vb|. The third frame

of reference of relevance in a deflagration bubble is that of the shock front, which does

not in general move with the same velocity as the bubble wall. We call the velocity of

the fluid immediately ahead of the shock front in the shock front’s frame vu (in the frame

of the fluid this velocity is evidently zero). This is obviously the same as the velocity of

the shock front in the frame of the universe, vshock = |vu|. We already mentioned that

the shock front hits the medium while at rest, heats it up and sets it in motion (in the

same direction as the propagation of the bubble). The medium is therefore not at rest in

the frame of the universe in the region between the bubble wall and the shock front in

a deflagration bubble. We call the velocity of the medium in the frame of the Universe

vfluid. Because, as mentioned, we shall take the sphericity of the bubble into account, vfluid

is not constant in the bubble’s radial direction. We label as vfluid,1 the fluid velocity in

the frame of the universe immediately ahead of the bubble wall, and as vfluid,2 the fluid

velocity in the frame of the universe immediately behind the shock front. The relevant

relativistic transformations are then

vfluid,1 =
vb − vs1

1 − vbvs1
|bubblewall (1.61)

vfluid,2 =
vu − vs2

1 − vuvs2
|shock front (1.62)

where vs2 is the velocity of the fluid in the rest frame of the shock front (not of the

bubble wall) immediately behind the front. Figure 1.8 shows the fluid velocities in each

of the three frames of reference relevant for a deflagration bubble, as well as the fluid

temperatures.

From the bubble wall to the shock front (deflagration bubble)

We return now to the details of our hydrodynamical calculation. By solving the system

(1.56)-(1.58) we have found the values of Ts1, vs1 in front of the bubble wall. As mentioned,

we shall improve on previous calculations (eg [29]) by taking the sphericity of the region

between the bubble wall and the shock front (in a subsonic bubble) into account, as in [43].

This requires integrating the conservation equations up to the shock front. We do this in

the ’frame of the universe’, after transforming vs1 as shown above. In the frame of the

fluid the system is clearly not in a steady state. However, spherically symmetric solutions
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to the fluid equations are similarity solutions dependent only on the ratio ζ = r/t. The

stress-energy conservation equations ∂µTµν = 0 become [43]

ζ − v

w

∂ρ

∂ζ
= 2

v

ζ
+

∂v

∂ζ

(

1 − γ2(ζ − v)
)

1 − vζ

w

∂P

∂ζ
= γ2(ζ − v)

∂v

∂ζ
.

Applying our equations of state and isolating derivatives we obtain

dT

dζ
=

2vT

3ζ(1 − vζ)

[

ζ − v

1 − vζ
− 1 − vζ

3(ζ − v)

]−1

(1.63)

dv

dζ
=

2v(1 − v2)

3ζ(ζ − v)

[

ζ − v

1 − vζ
− 1 − vζ

3(ζ − v)

]−1

. (1.64)

We integrate numerically along the radial direction, starting at the bubble wall and

making an initial guess for the value of ζ at the shock front. At the shock front, ζ is the

shock front velocity so we transform the final value of the fluid velocity vfluid,2 given by

the integration (immediately behind the front) to its value in the frame of the front vs2,

then calculate the leap in variables (see below) to find the fluid velocity vu ahead of the

front. We keep taking guesses until vu matches our guessed ζ at the position of the front

and the solution becomes self-consistent. With the right ζshock front, the calculation of the

leap across the front gives us the temperature of the undisturbed universe Tu.

The shock front in a deflagration

The stress-energy conservation equations have a simple expression in the rest frame of the

steady-state shock front where (as for the case of the rest frame of the bubble wall) all

variables are time-independent. As we are in the restored symmetry phase the Higgs VEV

and the effective potential vanish. The two nontrivial stress-energy conservation equations

simplify to

∂x[(P + ρ)γ2v] = 0

∂x[(P + ρ)γ2v2 + P ] = 0

which integrate to

vu =
1√
3

√

3T 4
s2 + T 4

u

3T 4
u + T 4

s2

(1.65)

vs2 =
1

3vu
. (1.66)
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By finding Tu we have completed the calculation that we started by solving the energy-

momentum conservation equations across the bubble wall.

We have now outlined the basic formalism of our calculation and are ready to tackle

specific physical examples.

1.4.3 Validity of the modelling of friction through the friction parameter

Having described our treatment in detail it is worth pausing to consider whether it is fully

justified to model friction effects through a single numerical parameter. Following [29] we

have introduced our choice of friction term into the hydrodynamical equations written in

covariant form. This implies that the friction parameter η is a Lorentz scalar and thus

independent of the velocity of our rest frame relative to the cosmic fluid, that is, of the

wall velocity. Evidently the friction term as a whole (η 1
T γvφ2φ′) has an explicit velocity

dependence, as well as an indirect dependence as the wall velocity is likely to have an

effect on the shape of the wall which is given by the factors φ(z)2φ′(z). However, in our

formalism, the relevant physics (the particle content of the model as well as the interactions

between the particles and the wall) is parametrised by a fixed dimensionless number η for

a set of the relevant model parameters. We now attempt to verify that this is a reasonable

assumption by examining again the physical model for the friction that we set down in

1.3.

We must address two separate issues: First, is the physics of the interactions between

the wall and the plasma, as expressed by the friction parameter, independent of velocity

(notwithstanding the dependence on velocity of the friction term that we have just dis-

cussed)? Second, since we are studying the hydrodynamics of the expanding bubble by

integrating the equation of motion for the Higgs across the bubble wall, is parametris-

ing the friction by a single numerical parameter constant across the wall a good enough

approximation? If the answer to either question is no our formalism may be in danger.

Does the friction parameter depend on velocity?

Recall the model for the friction term suggested by the slow wall limit of the relaxation

time approximation (1.33),

dm2

dφ

∫

d3p

(2π)32E
τβγv

(m2)′

2E

eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
∼ φ2φ′τβγv

∫

d3p

(2π)3(2E)2
eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2

where we have assumed a general mass dependence m ∼ yφ with y the relevant coupling

constant. Comparing with the friction term we have chosen for our formalism, η 1
T γvφ2φ′,
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we see that the friction parameter η would, in this limit, be given by a combination of

constants times the momentum integrals for the relevant particle species. We may therefore

study the velocity dependence of the friction parameter by focusing on the behaviour of

the momentum integrals. Noting that E =
√

m2 + ~p2 and pz = p cos θ we may write14

∫

d3p

(2π)3(2E)2
eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
=

∫ π

0

∫ ∞

0

(2π)p2 sin θdθdp

(2π)34(m2 + p2)

eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
=

= T

∫ π

0

∫ ∞

0

1

4(2π)2
p′2 sin θdθdp′
(

(m
T )2 + p′2

)

e
γ

“q

((m
T

)2+p′2)−vp′ cos θ
”

(e
γ

“
q

((m
T

)2+p′2)−vp′ cos θ
”

± 1)2
(1.67)

where in the last equality we have made the change p → p′ = p
T . With this change,

as noted, the temperature dependence suggested by the relaxation time approximation

matches that of our chosen friction term from 1.4.1. Eq (1.67) can be solved numerically

as a function of (m
T ) for a given v. Comparing the results (Fig 1.9) we see that the

momentum integrals that determine the friction coefficient in our description show only

a very slow variation with v. Consequently (and particularly since in our calculations

we shall seldom encounter ultrarelativistic wall velocities) we may consider the friction

coefficient, for our purposes, as independent of the wall velocity.

The friction parameter across the bubble wall

Let us study the behaviour of the friction term across the bubble wall. We can do this

without referring to a specific hydrodynamic calculation using the hyperbolic tangent

Ansatz for the wall profile (1.3.3). As mentioned, our formal choice for the friction term

was suggested by the slow wall limit of the relaxation time approximation (1.4.1),

φ2φ′ τ

T
γv

∫

d3p

(2π)3(2E)2
eβγ(E−vwpz)

(eβγ(E−vwpz) ± 1)2
−→ η

1

T
φ2φ′γv

(here we place ourselves, as always, in the rest frame of the advancing planar bubble

wall and are thus left with a dependence on a single spatial dimension). Let us compare

both forms of the term for a simple example case, taking vw ≡ 0 in the exponentials in

accordance with our previous result. We adopt a VEV of 100 GeV in the broken symmetry

phase, a temperature T = 100 GeV, a wall thickness given by Lw ·T = 15 (a realistic value)

14Note that this integral is essentially the integrand of the pressure difference in the ’slow wall’ limit

of the relaxation time approximation. We shall see presently that it depends very slightly on vw, which

confirms our comments in 1.3.6 to the effect that the dependence of ∆Psw on vw is essentially given by the

overall γvw factor.
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Figure 1.9: Momentum integrals in (1.67) for bosons (left) and fermions (right) vs
(

m
T

)

for v = 0.05 (top row), 0.4 (middle) and 0.8 (bottom).
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and a mass coupling m ≡ 1√
2
φ. In the relaxation time approximation for a slow wall the

spatial dependence of the friction (that is, of the effect of the deviation of plasma particle

populations from equilibrium) is given by the momentum integral through the expression

for the energy E =
√

m(z)2 + ~p2. We may therefore plot
∫ d3p

(2π)3(2E)2
eβE

(eβE±1)2
φ2φ′ vs

C φ2φ′, with C an appropriately chosen (fermionic or bosonic) fitting constant. The

result is shown in figure 1.10.
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Figure 1.10: Spatially varying part of the friction term according to the relaxation time

approximation (slow wall), φ2φ′ ∫ d3p
(2π)3(2E)2

eβγ(E−vwpz)

(eβγ(E−vwpz)±1)2
(solid line), and the same term

with the momentum integral replaced by a fitted constant (dotted line), C φ2φ′, for

fermions (left) and bosons (right) in an example case. We use the hyperbolic tangent

Ansatz to approximate the bubble profile and assume φ0 = 100 GeV in the broken sym-

metry phase, T = 100 GeV, Lw · T = 15, and a mass dependence m ≡ 1√
2
φ.

Note that the fitting constant has been chosen to equalise the peaks of the two profiles.

As we can see it is possible to fit the momentum integral by a constant which, to a high

degree of precision, gives an identical behaviour for the friction term across the wall, for

any given wall velocity. In particular, it is clear that the constant fit would produce the

same result for the pressure integral, eq (1.35). We may conclude, therefore, that any given

result we may arrive at by explicitly accounting for the variation of friction effects across

the bubble wall may be reproduced by a properly chosen, invariant friction coefficient.

Having convinced ourselves that it is valid to account for friction in our treatment

through a single numerical parameter we are prepared to tackle specific physical cases.
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Chapter 2

The wall velocity in the Standard

Model with dimension-6

interactions

2.1 The dimension-6 model

2.1.1 Motivation

We have already noted (see Introduction) the limitations of the Standard Model as re-

gards replicating the observed baryon asymmetry of the universe in the context of a

first-order electroweak phase transition, and have mentioned some of the proposed alter-

natives. Several authors have investigated the possibility that new physics, showing up as

higher-dimensional, nonrenormalisable operators in the scalar potential, may get around

the constraints posed by present experimental bounds on the Higgs mass and provide ad-

ditional sources of CP violation [55–57]. Studies in recent years have suggested adding

dimension-6 operators to the Higgs potential [25, 58, 59] while noting that, as shown by

numerical calculations, further higher-order terms suppressed by the same low cut-off scale

give corrections of only a few percent to the strength of the phase transition vc
Tc

[58]. In

such a setting the dynamics of the electroweak phase transition are fully parametrised by

the Higgs boson mass mH and the cut-off scale M . It is interesting to note that in such

a situation the quartic coupling of the Higgs potential may assume negative values. As

to the origin of the dimension-6 operators, they could stem from integrating out a mas-

sive degree of freedom like a scalar singlet [58]. More exotic alternatives include strongly

coupled gravity [25]. A further motivation to investigate these models is that new physics
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Figure 2.1: High-temperature expansion of the finite-T Higgs effective potential in the

dimension-6 model for model parameters M = 800 GeV, mh = 115 GeV. The three

successive curves (from top to bottom) mark the potential at T = 111 GeV > Tc, at the

critical temperature Tc ≈ 108.14 GeV, and at the nucleation temperature Tn ≈ 105.49

GeV.

with a comparatively low cut-off may lead to non-standard signals which could be picked

up in the near future, such as modified Higgs self-couplings [25,58].

The behaviour of the effective potential V (φ, T ) near the critical temperature Tc for

M = 800 GeV, mh = 115 GeV can be seen in figure 2.1. The form of the potential is

given in detail in Appendix A.

2.1.2 Interest for baryogenesis

As mentioned, the Standard Model Higgs potential augmented by a dimension-6 contri-

bution allows for a 1st-order electroweak phase transition with sufficient sources of CP-

violation for presently acceptable values of the Higgs boson mass. In addition, figure 2.2

shows the strength of the phase transition as calculated at 1-loop in [25] as a function of

the Higgs mass and the cut-off scale for the dimension-6 term M .
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Figure 2.2: Strength of the phase transition ξc = vc
Tc

as a function of the Higgs mass

mH and the cut-off scale M (both in GeV) for the dimension-6 model (Figure from [25]).

Below the higher solid ’metastability’ line the tunneling probability becomes too small for

the phase transition to take place as outlined in 1.2. Below the lower solid line the second

minimum of the Higgs potential (with VEV 6= 0) at zero temperature is higher than the

VEV = 0 one.
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2.2 Calculation of the wall velocity

2.2.1 Strategy

We now present the results of carrying out the full hydrodynamic calculation for this model

as outlined in Chapter 1. We focus on the region in parameter space in which a sufficiently

strong (ξ & 1) phase transition can occur. For each relevant set of model parameters (M ,

mH) we compute the nucleation temperature. Provided we know the value of the friction

parameter η we may then calculate the steady-state bubble wall velocity.

We start our exploration of the dimension-6 model by studying the general behaviour

of the wall velocity for deflagration (subsonic) and detonation (supersonic) solutions as

a function of temperature and friction. We then turn to physically meaningful cases by

employing the microscopic calculation of the wall velocity carried out at 2-loop in [30] for

the Standard Model (without extensions). We do this by, firstly, calculating the values

of the friction parameter that reproduce the 2-loop results from that reference. We then

employ the relaxation time approximation (see 1.3.6) to the Boltzmann evolution equations

to extrapolate our findings to our dimension-6 extension to the SM, thus obtaining a

prediction for the friction1. We employ that prediction to investigate the steady-state wall

velocity within our model’s parameter space.

2.2.2 General behaviour of the wall velocity as a function of the model

parameters and friction

Calculation of the nucleation temperature

Figure 2.3 shows an example critical bubble profile (a solution to (1.2) ) for the dimension-6

model, in this case the solution at the nucleation temperature Tn for the model parameters

M = 800 GeV, mh = 115 GeV. After solving the equation of motion for a sufficient number

of critical bubbles and finding their free energies (as per 1.1) we may integrate numerically

to find the nucleation temperature as per (1.5)-(1.6). It can be seen from the plots in figure

2.4 that a good approximation to Tn is given by the temperature at which the free energy

of the critical bubble Fc satisfies Fc
T = 140.

Shape of the hydrodynamical solutions

As laid out in 1.4, we now calculate the variation of the relevant quantities across the

bubble profile for a choice of model parameters. Let us start with a deflagration bubble.

1The limitations of such a prediction and its reliability will be commented on later.
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Figure 2.3: Critical bubble solution for the φ6 model with M = 800, mh = 115 GeV at

T = 105.49 GeV.

105 105.2 105.4 105.6 105.8 106 106.2

10
−40

10
−30

10
−20

10
−10

10
0

10
10

T (GeV)

C
um

ul
at

iv
e 

nu
cl

ea
tio

n 
pr

ob
ab

ili
ty

105 105.2 105.4 105.6 105.8 106 106.2

120

140

160

180

200

220

T (GeV)

F
c T

Figure 2.4: Integrated nucleation probability (left) and free energy of the critical bubble

divided by temperature (Fc
T ) (right) vs temperature (in GeV) for the dimension-6 model

with M = 800 GeV, mh = 115 GeV. From this we adopt Tn ≡ 105.49 GeV for this case.

The plots illustrate the result that the condition Fc
T = 140 gives a good approximation to

∫

dP ≡ 1 at Tn.
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Figure 2.5 shows the result of integrating the system (1.56)-(1.58) numerically as a bound-

ary value problem assuming an initial value for either Ts1 or Tb and a value of the friction

coefficient η, and imposing the boundary conditions (1.59)-(1.60). We can see how the

Higgs VEV, acting as the order parameter for the phase transition, evolves from zero to

its nonzero value at the second minimum of the effective potential in the broken symmetry

phase. The medium, heated up and set in motion in the direction of wall propagation by

the shock front, is cooled down and brought back to rest by the passing bubble wall so

that vb gives us the wall velocity (see 1.4.2). After solving the hydrodynamic equations

across the wall profile, we transform the relevant quantities to the rest frame of the fluid

and calculate the variation of the temperature and fluid velocity across the region between

the bubble wall and the shock front. The boundary condition for this calculation consists

of the velocity of the fluid ahead of the shock front (in the shock front frame, found by

computing the ’leap’ across the front via (1.65)-(1.66) ) equalling ζ = r
t for the shock

front. The results of this integration are shown in figure 2.6. Finally, with (1.65)-(1.66)

we find the value of the variables in the undisturbed medium ahead of the shock front,

including the temperature of the undisturbed universe Tu.

Our calculation is easier for a detonation bubble (Fig 2.7). In this case there is no shock

front and the advancing bubble wall hits the medium while as yet undisturbed. Therefore

Ts1 as given by (1.56)-(1.58) is already Tu (1.4.2) and vs1 gives us the wall velocity. Since

this is the information we are after we do not investigate in detail the rarefaction wave

which follows the bubble wall proper and brings the medium back to rest.

The wall velocity as a function of temperature. Stable solutions.

Before tackling the problem of calculating the friction parameter for a realistic physical

situation we explore the general behaviour of the steady-state wall velocity as a function of

temperature and friction for a given choice of M , mh. Figure 2.8 shows the result of such a

study for the model parameters M = 800 GeV, mh = 120 GeV and a choice of η = 0.3, 0.4,

0.5. Our result shows the same general characteristics as previous studies (see eg [60]).

Deflagration (subsonic) steady-state solutions for a given value of the friction become

faster (approaching the speed of sound in the medium) with decreasing temperature. If

the temperature is low enough additional solutions appear in the form of two branches of

supersonic solutions (detonations). The consensus [60] is that the lower of these branches

is unphysical, as it would imply that the wall velocity decreases while both the pressure

difference ∆V (φ, T ) and the temperature difference between the symmetric and the broken
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Figure 2.5: Higgs VEV φ, velocity and temperature profiles across the (deflagration)

bubble wall for the φ6 model with M = 800 GeV, mh = 115 GeV at the temperature

of the universe (ahead of the shock front) Tu = 105.49 GeV and a value of the friction

coefficient η = 0.398. The broken symmetry phase is on the right and the bubble wall

propagates from right to left.
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Figure 2.6: Velocity and temperature profiles across the intermediate region between the

bubble wall and the shock front for the same deflagration bubble as in figure 2.5 with

M = 800 GeV, mh = 115 GeV at Tu = 105.49 GeV. Here the position of the bubble wall

is on the left end of the integration interval and that of the shock front on the right. If the

sphericity of the bubble is neglected (and a less realistic planar approximation adopted

instead) v and T do not vary across this region.
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Figure 2.7: Higgs VEV φ, velocity and temperature profiles across the (supersonic) bubble

wall for the φ6 model with M = 610 GeV, mh = 115 GeV at the temperature of the

universe (immediately ahead of the bubble wall for a detonation) Tu = 54.70 GeV and a

value of the friction coefficient η = 0.153. The broken symmetry phase is on the right and

the bubble wall propagates from right to left.
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symmetry phases become larger (with decreasing temperature). In general, and as we

would expect, lower values of η produce higher velocities except for the lower supersonic

branch (another reason for deeming it unphysical). As we can see, the values of the

nucleation and finalisation temperatures for a set of the model parameters tell us whether

supersonic solutions may exist for a given value of η. Because some treatments of the

bubble wall hydrodynamics (eg [29]) fail to take into account the sphericity of the bubble

when calculating the evolution of variables across the bubble profile (1.4.2), we plot by

comparison the deflagration bubble wall velocities found by adopting that simplification as

dotted curves in the subsonic part of the diagram. We see that the planar approximation

gives higher (by . 10%) wall velocities for a given η than does our full treatment. Lastly,

we refer briefly to the stability criterion for small wall velocities described in [31] and

mentioned in 1.3.2. That reference essentially establishes that the growing deflagration

bubble may be unstable to perturbations to the bubble wall larger than a critical scale λc

whenever the wall velocity decreases with decreasing Ts1 (more precisely, but in practice

nearly always equivalently given the strong dependence of vb on Ts1, whenever dvb
dTs1

> 1).

Figure 2.9 shows the dependence of Ts1 with Tu for the setting in figure 2.8. As we

have seen, the wall velocity for a deflagration increases monotonically with decreasing

temperature of the universe, so the stability criterion is fulfilled for high temperatures

down to the point when Ts1 starts rising with decreasing Tu. The point at which this

criterion would indicate possible instability to perturbations of the bubble wall is marked

(for each η) with a cross and an error bar in figure 2.8, the possible instability region lying

to the left of the mark. We can see that the appearance of instability as Tu descends,

according to this criterion, coincides roughly with that of supersonic solutions for that

value of η 2.

Figures 2.10 and 2.11 represent the case M = 900 GeV, mh = 120 GeV. As we can

see, the value of the nucleation temperature depends sensitively on the choice of model

parameters.

2.2.3 Calculation of the friction parameter based in existing results for

the Standard Model. The wall velocity in the dimension-6 model.

As mentioned, we now employ the microscopic, 2-loop calculation of the wall velocity

in [30] to obtain a realistic value for the friction coefficient in the parameter space of our

2It must be noted, however, that in some areas in parameter space a range of Tus appears to exist in

which deflagration bubbles are no longer stable but detonation solutions have not yet appeared for some

ηs. We did not probe this any further since our goal was to focus on physically meaningful cases, see 2.2.3.
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Figure 2.8: Steady-state bubble wall velocity vs temperature of the universe for three

values of the friction coefficient η, 0.3 (blue, right), 0.4 (green) and 0.5 (yellow, left) for

the dimension-6 model with M = 800 GeV, mh = 120 GeV. The horizontal dotted line

marks the speed of sound in the medium. The solid (dotted) lines below the speed of

sound limit are subsonic solutions found through taking into account (neglecting) the

sphericity of the bubble. At the horizontal error bars the stability criterion for subsonic

solutions proposed in [31] changes sign (the stability region lies to the right of the mark).

The crosses above the speed of sound show two branches of supersonic solutions (only the

upper one is physical, see eg [60]). The two vertical lines mark the nucleation (right) and

finalisation (left) temperatures for the phase transition for this choice of parameters. Note

that for this example and for these values of η supersonic steady-state solutions would be

excluded but (stable) subsonic ones allowed for the duration of the phase transition.
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Figure 2.9: Temperatures in the symmetric phase just ahead of the bubble wall vs plasma

temperature outside the bubble for the parameters of figure 2.8 and values of the friction

parameter η = 0.3, 0.4, 0.5 (blue, green and yellow, from top down). Right of the minimum

Ts1 for each η is the stability region for subsonic solutions according to the criterion in [31].
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Figure 2.10: Steady-state bubble wall velocity vs temperature of the universe for three

values of the friction coefficient η, 0.3 (blue, right), 0.4 (green) and 0.5 (yellow, left) for

the dimension-6 model with M = 900 GeV, mh = 120 GeV. The horizontal dotted line

marks the speed of sound in the medium. The solid lines below the speed of sound limit

are subsonic solutions. At the horizontal error bars the stability criterion for subsonic

solutions proposed in [31] changes sign. The crosses above the speed of sound show two

branches of supersonic solutions, only the upper one physical. The vertical lines mark

the nucleation (right) and finalisation (left) temperatures for the phase transition for this

choice of parameters.
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Figure 2.11: Temperatures in the symmetric phase just ahead of the bubble wall vs plasma

temperature outside the bubble for the parameters of figure 2.10 and values of the friction

parameter η = 0.3, 0.4, 0.5 (blue, green and yellow, from top down). Right of the minimum

Ts1 for each η is the stability region for subsonic solutions.
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model.

Calibration of the friction parameter in a Standard Model-like situation as a

function of the strength of the phase transition

To relate the existing SM calculation of the wall velocity to the dimension-6 model we

recall (see 1.3.6) the form of the friction term for a ’slow’ wall in the relaxation time

approximation (eq 1.33) (for one degree of freedom and in the rest frame of the advancing

wall),

dm2

dφ

∫

d3p

(2π)32E
δf(p, x) =

dm2

dφ

∫

d3p

(2π)32E
τβγv

(m2)′

2E

eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
∼

φ2φ′τβγv

∫

d3p

(2π)34E2

eβγ(E−vpz)

(eβγ(E−vpz) ± 1)2
,

(2.1)

where (as mentioned in 1.4.3) we go from the second to the third line by substituting the

appropriate (fermionic or bosonic) mass dependence on the Higgs VEV which we take

to be of the general form m = yφ. This form of the friction term is equivalent to that

introduced in our formalism and dependent on our phenomenological parameter η (eq

1.56), η
Ts1

φ2φ′γv.

As mentioned we may change integration variables from p → p′ = p
T . Since E =

√

m2 + p2, and since we may consider the friction parameter as independent of velocity

(see 1.4.3), the friction term in the relaxation time approximation becomes

dm2

dφ

∫

d3p

(2π)3(2E)2
δf(p, x) ∼

φ2φ′γv
1

T

∫

p′2dp′

8π2
(

(m
T )2 + p′2

)

eγ
√

(m
T

)2+p′2

(eγ
√

(m
T

)2+p′2 ± 1)2
.

(2.2)

Given the general field dependence of the mass (m = yφ), the integral now contains

factors of yφ
T . In order to relate the friction to the strength of the phase transition (com-

monly expressed in the literature by the parameter ξc = vc
Tc

, see 1.3.1) we could essentially

approximate these factors by φ
T −→ vc

Tc
and then carry out the integration over momentum

as a function of ξc. However, there are other choices as regards expressing the strength of
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the phase transition, namely as a function of the nucleation (ξn = vn
Tn

) or broken symmetry

phase (ξb = vb
Tb

) temperatures. Because, as mentioned, the difference between the three

temperatures turns out to be small in most cases, we may assume that the choice of ξ

does not make an enormous difference to the hydrodynamic calculation. Nevertheless, in

order to be as precise as possible, we choose to do the momentum integral and calculate

the friction parameter for each M , mh as a function of ξn, as a more representative value

of the strength of the phase transition than ξc. The prefactors to the integral (which we

must fix in order to calculate the wall velocity) are determined by the specific form of the

relaxation time τ and the relevant coupling constants. Recall that the contributions from

all relevant degrees of freedom (bosonic and fermionic) must be summed over to obtain

the total friction coefficient. We now turn to the results of the microscopic calculation of

the Standard Model wall velocity carried out at 2-loop in [30]. Our strategy is as follows:

We first reproduce those Standard Model results, as a function of the Higgs mass, em-

ploying the 2-loop Standard Model effective potential and seeking an appropriate value

of the friction coefficient η0 for each relevant case. The results of such a fit are given in

table 2.1 3. The authors of [30] estimate 60% of the Standard Model friction to come from

fermions, 40% from bosons. We call the values of the bosonic and fermionic integrals in

eq (2.2) for each case in [30] (calculated as a function of ξ) I0b(ξ), I0f (ξ). We consider

friction processes to be a function of the particle content of the model and the relevant

particle interactions. Thus, because we remain within a Standard Model-like situation, we

consider the prefactors to the momentum integrals (the relevant coupling constants and

the chosen form for the relaxation time parameter) to hold for our dimension-6 extension.

We therefore use the calibration from [30] to find the friction parameter for our calcula-

tion within the dimension-6 model (and for the corresponding value of the strength of the

phase transition) as

η(ξ) = η0

(

0.6
If (ξ)

I0f (ξ0)
+ 0.4

Ib(ξ)

I0b(ξ0)

)

(2.3)

3The full form of the Standard Model thermal effective theory, as well as the effective theory for our

dimension-6 extension, are given in Appendix A. We spotted an apparent mismatch between the values of

the quartic coupling λT in [30] and the corresponding Higgs masses, and corrected the latter on the basis

of the corresponding λT in the effective theory. The authors of [30] were also concerned that perturbation

theory might break down in the symmetric phase as the two-loop results were comparable to the 1-loop

contributions, and that the value of V (φ, T ) may be shifted away from zero for φ = 0 as a consequence.

To account for this they considered the case in which an additional term is added to the effective theory,

and computed the wall velocity for that case. We set that term to zero in our calculation.
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Table 2.1: Values of the quartic coupling λ, Higgs mass, strength of the phase transition

ξn, nucleation temperature and fitted friction coefficient η for relevant cases in [30].

λT mh (corrected) ξn vw (from [30]) Tn (GeV) η0 (fitted)

0.023 0 0.98 0.374 57.192 0.522

0.030 50 0.80 0.392 83.426 0.536

0.041 68 0.65 0.412 100.352 0.586

0.050 79 0.58 0.428 111.480 0.606

0.060 88 0.53 0.441 120.934 0.602

Thus, with this prediction for η, we may calculate vw for each set of model parameters

M , mh within our model.

Results of the calculation of the wall velocity.

The results of calculating the friction parameter (as per (2.3) ) and the wall velocity for

the two slices mh = 115, 150 GeV across parameter space are shown in table 2.2 and

represented in figures 2.12, 2.15. Note that for mh = 115 GeV physical solutions become

supersonic for M ≈ 630 GeV, the hydrodynamic equations becoming increasingly difficult

to solve as the solution approaches the speed of sound in the medium 4.

To illustrate the difference between describing the strength of the phase transition as

given by the effective theory at the critical (ξc = vc
Tc

), nucleation (ξn = vn
Tn

), or broken

symmetry phase (ξb = vb
Tb

) temperatures we show the three ratios as a function of M for

mh = 115, 150 GeV in figures 2.13, 2.16. Note that for most cases (except for very strong

transitions with ξn & 2.5 - 3.0) ξn and ξb can be taken as equivalent, but the difference

with ξc is always appreciable. In addition, figures 2.14 and 2.17 show the wall velocity as

a function of ξb, the strength of the phase transition at the temperature inside the bubble,

immediately behind the bubble wall, where it is most relevant to the possible washout of

the newly-created baryon asymmetry.

This is the first attempt to extend the existing (2-loop) microscopic calculation of the

wall velocity from [30] to the dimension-6 extension to the Standard Model.

4As shown in figures 2.8 and 2.10, when supersonic solutions exist, subsonic solutions should also be

present. However the argument regarding stability of deflagration solutions plus the increasing difficulty in

solving the hydrodynamic equations as the wall velocity approaches the speed of sound from below incline

us to prefer the supersonic solutions when they are present.
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Table 2.2: Fitted ηs and wall velocities vw for mh = 115, 150 GeV in the dimension-6

model.

mh M Tn ξ = vn/Tn η vw

115 900 115.92 1.26 0.477 0.34

800 105.49 1.74 0.398 0.38

700 88.86 2.47 0.305 0.45

650 75.10 3.14 0.240 0.53

630 67.00 3.56 0.207 -

610 54.70 4.44 0.153 0.74

600 45.65 5.35 0.110 0.83

150 700 144.64 0.92 0.539 0.35

650 136.62 1.19 0.490 0.36

600 126.46 1.48 0.438 0.39

550 112.71 1.87 0.380 0.43

500 91.61 2.53 0.298 0.50
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Figure 2.12: Wall velocity in the dimension-6 model for mh = 115 GeV. The horizontal

line marks the speed of sound in the medium.
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Figure 2.13: Strength of the phase transition as given by ξc (solid line), ξn (dashed) and

ξb (dashed-dotted) vs M (in GeV) for mh = 115 GeV.
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Figure 2.14: Wall velocity vs ξb for mh = 115 GeV.

A note of caution on our calibration and possible runaway walls

We see from table 2.1 that the strength of the phase transition ξn stays below unity for

all cases from [30] which we use as calibration for the friction in our dimension-6 model.

It is clear, however (Fig 2.2) that in our parameter space we are dealing with much higher

strengths of the phase transition. This calls for caution in accepting the values for the

friction parameter produced by our calibration ( eq (2.3) ). In particular, applying the

criterion for runaway walls described in 1.3.7 we find that for ξn & 2 the wall would appear

to run away (as opposed to reaching a steady state), even though the results from our

calibration are consistent with propagation with steady (subsonic or supersonic) velocity.

It appears that further investigation of this region in parameter space would be required

before we can reach fully authoritative conclusions.
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Figure 2.15: Wall velocity in the dimension-6 model for mh = 150 GeV.
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Figure 2.16: Strength of the phase transition as given by ξc (solid line), ξn (dashed) and

ξb (dashed-dotted) vs M (in GeV) for mh = 150 GeV.
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Figure 2.17: Wall velocity vs ξb for mh = 150 GeV.
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Chapter 3

The wall velocity in the Light Stop

Scenario (LSS) of the Minimal

Supersymmetric Standard Model

3.1 The LSS scenario of the MSSM

3.1.1 Supersymmetry and baryogenesis

The search for supersymmetric particles is one of the main goals of currently running

experiments like the Large Hadron Collider. The Minimal Supersymmetric Standard

Model (MSSM) solves the so-called ’hierarchy problem’ (that is, the fact that in the Stan-

dard Model the mass of the Higgs boson receives large quantum corrections which would

threaten the consistency of the theory in the absence of highly fine-tuned cancellations be-

tween independent contributions; Supersymmetry solves this issue because corrections to

the Higgs mass from Standard Model particles and their supersymmetric partners exactly

cancel each other out). In addition, supersymmetry leads to a natural unification of the

gauge couplings consistent with precision electroweak data, and provides a natural candi-

date for the Dark Matter of the universe in the form of the lightest neutralino [26]. The

possibility of a strong electroweak phase transition in a supersymmetric setting leading

to the production of a baryon asymmetry consistent with observations has been studied

extensively in the literature [61–64]. Electroweak baryogenesis has been shown to be fea-

sible in a specific region in the supersymmetric mass parameter space. This setting is

generally known as the Light Stop Scenario (LSS) [26,27,65–87]. It is important to point

out that the LSS is not the only supersymmetric setting compatible with the observed
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baryon asymmetry. An alternative possibility would be the out-of-equilibrium decay of

superheavy squarks [88]; Another, the next-to-Minimal Supersymmetric Standard Model

(nMSSM) with an added gauge singlet [89, 90]; Alternatively, adding an extra Z ′ gauge

boson (for a total SU(3)C × SU(2)L ×U(1)Y ×U(1)′ symmetry) has been suggested [91].

This study focuses exclusively on the hydrodynamic analysis of bubble expansion within

the LSS.

3.1.2 The Light Stop Scenario

The Light Stop Scenario of the MSSM is characterised by a (predominantly right-handed)

light stop with a mass comparable to that of the top quark. All other (bosonic) squarks

and sleptons are typically taken to be at a common, much higher mass scale m̃, in order

to accommodate present bounds on the Higgs mass and avoid excessively large flavour

and CP-violation and electric dipole moment effects [26, 92, 93]. Fermionic Higgsinos and

gauginos are taken to be at the electroweak scale in order to provide both the CP-violating

currents needed for baryogenesis [75] and a natural Dark Matter candidate [94,95]. Gluinos

are generally considered heavy and thus decoupled from the thermal bath in order to

suppress their potentially large contribution to the effective finite-T stop mass. Being

one more light bosonic species (in addition to the weak gauge bosons) that couples to

the Higgs, the light stop increases the upper bound on the Higgs mass compatible with

a strong phase transition to about 127 GeV [27]. In turn, the predominantly left-handed

stop must be heavy to agree with electroweak precision tests and with a sufficiently heavy

Higgs boson. The CP-odd Higgs mass is large to avoid potentially large contributions to

the electric dipole moments of the electron and the neutron. Therefore, at low energy, the

light Higgs emulates the Standard Model Higgs sector.

This split in the LSS between light and heavy particles (in relation to the electroweak

scale) makes it convenient to study the electroweak phase transition in this setting through

the appropriate effective theory below the common mass scale m̃ assumed for squarks and

sleptons other than the light stop [26,27].

3.2 Calculating the wall velocity

3.2.1 Strategy and parameter space

We wish to produce a reliable hydrodynamical prediction for the wall velocity in the Light

Stop Scenario of the MSSM. To this end we base ourselves in existing 2-loop calculations of
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the LSS finite-temperature effective theory and start by identifying the region in parameter

space compatible both with a sufficiently strong electroweak phase transition and presently

acceptable values of the mass of the SM-like Higgs boson. We base ourselves on the 2-loop

effective potential in [73] (see Appendix B for the full expression). On top of SM model

parameters, the relevant additional supersymmetric parameters are as follows: In the

absence of stop mass mixing (the most favourable situation as regards obtaining a strong

enough phase transition [73]) the left- and right-handed stop masses depend respectively on

the soft supersymmetry-breaking parameters mQ, mU . The other relevant supersymmetric

parameter is tan β = v2
v1

, with v1, v2 the 1-loop, zero temperature expectation values of

the real parts φ1, φ2 of the neutral components of the two supersymmetric Higgs doublets.

We restrict ourselves to low values of tan β (. 6) as most adequate to produce a strong

phase transition within presently acceptable Higgs mass bounds [32]. In figure 3.1 we show

the region in m2
U -mQ space (for fixed tanβ = 4) chosen for our calculations, plotting the

strength of the phase transition and the Higgs mass1.

3.2.2 Calibration of the friction parameter

In order to produce a meaningful prediction for the wall velocity within our parameter

space we need to estimate the friction. We do this as follows: A full, microscopic calculation

of the wall velocity in the MSSM was carried out (at 1-loop) in [32], through a procedure

similar to that followed in [30] for the Standard Model 2. Similarly to how we proceeded in

Chapter 2, we shall extrapolate the estimation of the friction implicit in [32] to the region

in LSS parameter space of interest to us. As in Chapter 2, we start by finding the fitted set

1Note that the author of [73], when writing the 2-loop finite-temperature effective potential for the

MSSM, envisaged only taking positive values of m2
U . The need to assume negative values of m2

U in the

context of the LSS was realised later (see eg [27]) because of the large finite-temperature corrections to

the light stop mass. On choosing the region of parameter space for our study we ran into difficulties with

values of the right-handed stop mass parameter m2
U . −12000 GeV2 due to negative values of the stop

mass mt̃R
. In addition, it became extremely hard or impossible to calculate the nucleation temperature

Tn in the lower left area of the region in fig 3.1 and beyond (for higher strengths of the phase transition),

the indications being that the high-temperature expansion of the effective theory was breaking down and

causing the free energy of the critical bubble divided by temperature, (Fc

T
), to reach a minimum and rise

again with decreasing temperature of the universe Tu. Note also that as this work was in progress there

was no indication yet that the values of the Higgs mass in fig 3.1 may lie outside experimental bounds,

as recent LHC results indicate. See below for an application of our results to Higgs masses as high as

mh ∼ 127 GeV.
2Those authors also assumed a low tan β and comparatively low (if not as low as ours) values of m2

U ,

see Fig 3.2.
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Figure 3.1: Values of the strength of the phase transition ξ = vc
Tc

and the Higgs mass

in the region of parameter space (with tanβ = 4) of interest for baryogenesis. For this

value of tanβ the right-handed stop mass (we assume no mixing) varies in this range from

mt̃R
∼ 135.2 to mt̃R

∼ 138.8 GeV and the left-handed-stop mass is given by mQ.
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Figure 3.2: MSSM wall velocity calculated microscopically in [32] as a function of tanβ

for mQ = 2000 GeV and m2
U = −602, 0, +602 GeV2 (assuming no stop mixing). The

lower bunch of graphs are obtained by neglecting the vector of the spatial derivatives of

the perturbations to the temperature, velocity and chemical potential, δT ′, δv′ and δµ′

(Figure from [32]).

of ηs which allows us to reproduce with our hydrodynamical approach the wall velocities

found in [32] (Figure 3.2). In order to extrapolate our findings to LSS parameter space

we recall that the friction parameter is fundamentally a function of the particle content

of the model (and the interactions between particles). Thus, and since we consider the

left-handed stop to be heavy and decoupled, it is safe to consider η as independent of the

mass parameter mQ, and therefore an exclusive function of tanβ and mU (and essentially

unaffected by the addition of 2-loop corrections to the effective potential). Consequently,

for each value of tanβ, we can carry out an extrapolation to our parameter space as a

function of only one variable, mU (or m2
U ). With the extrapolated values of η we are in a

position to produce a (2-loop) estimation of the wall velocity in the LSS.
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Table 3.1: Phenomenological friction coefficient η fitted to the 1-loop MSSM wall velocity

in [32] for mQ = 2000 GeV and different values of tanβ, mU (see fig 3.2).

tan β m2
U vw (John and Schmidt) Fitted η

2 -602 0.060 4.58

0 0.090 3.36

+602 0.160 1.92

4 -602 0.080 4.35

0 0.115 3.16

+602 0.140 2.72

6 -602 0.085 4.65

0 0.120 3.06

+602 0.155 2.55

3.3 Results

3.3.1 Fitting a friction parameter to existing results

Table 3.1 shows the results of reproducing the wall velocities in [32] through our hydrody-

namical method with a phenomenological parameter, for tanβ = 2, 4, 6 and m2
U = −602,

0, +602 GeV2. This has been done with the 1-loop version of our effective theory (see

Appendix B). The calibration points thus produced are plotted in figure 3.3.

3.3.2 Calculating the wall velocity in LSS parameter space

Extrapolating the friction linearly

Given the approximately linear disposition of the fitted ηs as a function of m2
U for a given

tan β, it seems to make sense to extrapolate linearly to the low m2
U region in parameter

space of interest to us. The results for tanβ = 4, 6 can be seen in figure 3.3. We see that,

in comparison with the Standard Model, the friction parameter η is enhanced roughly by

4-7, reflecting the increase in friction provided by the light stops. To estimate the error

implicit in our extrapolation we calculate the highest possible η variation found by taking

only two calibration points from [32] for the case tanβ = 4. We show the result of this

two-point calibration also in figure 3.3. The results suggest an uncertainty ∆η ∼ ±1-1.5.

Testing our extrapolation further through the relaxation time approximation

To further elucidate whether a linear extrapolation to low m2
U regions makes sense we

turn to our functional model for the friction, the ’slow wall’ form of the relaxation time

approximation (1.33). Our argument here is an extension of the calculation carried out in
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Table 3.2: Fitted constants to the bosonic momentum integral in the relaxation time

approximation model for η across the bubble wall (see fig 1.10) for the 1-loop data points

in [32] with tanβ = 4 (mQ = 2000 GeV).

m2
U (GeV2) Tc (GeV) φ0 (GeV) Fit (bosons)

-602 126.44 39.60 0.59

0 129.21 33.85 0.48

+602 131.41 30.90 0.41

1.4.3 to make sure that it made sense to represent friction across the bubble wall as a single

number. We saw then (Fig 1.10) that the (position-dependent) momentum integral in the

expression for η supplied by the relaxation time approximation can generally be fitted by

a constant which reproduces the shape of the friction term. Back then we simply assumed

a general mass dependence with the Higgs VEV m = yφ. We now repeat the calculation

through the bosonic form of the integral with the specific mass dependence of the light

stop, the species which dominates friction in the LSS of the MSSM. We do this for each of

the three calibration points available from [32] for the choice tan β = 4. Assuming a fixed

τ dependence our fitted constant will be proportional to the friction parameter η predicted

by our model. The results of such a calculation are shown in table 3.2. We see that the

fitted constants show an approximately linear dependence with m2
U , mirroring that of the

fitted ηs in table 3.1. The relaxation time approximation model therefore encourages us

to stick to our linear extrapolation to the region of lower m2
U in parameter space.

To further test that we are on the right track, we carry out a last check based on the

relaxation time approximation through the same procedure we employed to extrapolate

fitted ηs within the Standard Model to cases of interest within the dimension-6 extension

to the SM (2.2.3). Following the reasoning that led to equation (2.3), we may calculate η

for a point of interest through the expression

η(ξ) = η0
Ib

Iob
(3.1)

where, for the LSS, we require only one integral over momentum, that for the light stops,

which dominate friction in this case. The momentum integral is a function of the relevant

ratio (m
T ), which we take to be the light stop’s finite-temperature mass in the broken

symmetry phase divided by Tb. If we extrapolate thus to one of the points of interest in

our parameter space (see table 3.3 below) with ξc = 1, mh = 112 GeV, we find η = 5.12,

consistent with our results so far and compatible with an uncertainty ∆η ∼ ±1.
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Figure 3.3: Linear extrapolation of η values to m2
U region of interest for tanβ = 4 (solid

line, calibration values from [32] as triangles), tanβ = 6 (dashed line, calibration values

as crosses). mt̃R
∈ [135.2, 184.1] GeV (no dependence on β). Dot/dash lines mark the

extreme 2-point calibration lines for tanβ = 4.

We shall therefore adopt our original linear extrapolation with m2
U as our preferred

method to find η in our chosen parameter space.

The wall velocity in the LSS

With the extrapolated values of the friction parameter the coupled hydrodynamic equa-

tions can be solved at 2-loop. The results of the 2-loop calculation are shown in table 3.3

in two representative cases for tan β = 4, 6. The alternative wall velocities found with the

2-point calibration for the case mh = 112 GeV, ξc = vc
Tc

= 1, tanβ = 4 are also shown in

table 3.3. As can be seen, the influence of the choice of calibration on the wall velocity

is considerable. It is interesting to note that growing bubbles in this regime are stable

according to the criterion in [31] which we described in 1.3.1 and 2.2.2.
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Table 3.3: Results of wall velocity calculation at 2 loop for Higgs mass mh = 112 GeV,

tan β = 4,6 and strength of the phase transition vc
Tc

close to 1. The values of ξb = vb
Tb

in

the broken symmetry phase behind the bubble wall are given for comparison.

tan β ξc = vc

Tc
ξbs = vb

Tb

Fitted η vw

4 0.9 1.01 5.94 0.044

1.0 1.14 6.05 0.043

1.14 4.58 (2-point) 0.057

1.14 7.02 (2-point) 0.037

6 0.9 1.00 6.66 0.039

1.0 1.14 6.79 0.038

Keeping our original (3-point) calibration and sampling the most promising (as regards

baryogenesis and the Higgs mass) areas of parameter space we find that the wall velocity

varies less than 10% across the region in figure 3.1. Our results confirm previous values of

vw ∼ 0.05 used in calculations of the baryon asymmetry, eg in [86]. Notably, from table

3.3 we also find a near-perfect inverse proportionality between η and the wall velocity,

with η · vw ∼ 0.26. This makes it straightforward to produce an estimation of vw from η

in this regime. As an application we turn to the results in [27]. That study, working in a

separate region in parameter space within the LSS, found that a strong phase transition

may occur for a Higgs mass mh ∼ 125 GeV (with a light stop mass mt̃R
∼ 100 GeV). In

that setting our extrapolation produces an estimation of the friction parameter η ∼ 8.2,

and a wall velocity vw ∼ 0.03.

It is worth pointing out briefly that the relaxation time approximation may be em-

ployed to estimate the wall velocity in other supersymmetric settings. For example, mak-

ing a rough assumption for the nucleation temperature (Tn ∼ 100 GeV) for the Next-

to-Minimum Supersymmetric Standard Model (NMSSM), we obtain, for a much higher

value of the light stop mass mt̃R
∼ 350 GeV, a Standard Model-like η ∼ 0.2, which would

correspond to a wall velocity vw ∼ 0.3-0.4.

In addition to showing the ratio ξ = v
T (the strength of the phase transition) at the

critical temperature Tc, table 3.3 shows this parameter also at Tb < Tc, the temperature in

the broken symmetry phase immediately behind the advancing bubble wall. As mentioned,

the ξ parameter is quoted in most studies as ξc = vc
Tc

, which corresponds to the critical

temperature. As noted in Chapter 2, for each temperature of the universe, the value of v
T

is different in the broken symmetry phase inside the bubble, at the critical temperature,

and at the nucleation temperature. We show these three ξs (ξc, ξn, and ξb) in figure 3.4

as a function of m2
U for the slice tan β = 4, mQ = 14, 000 (note that in this particular case
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Figure 3.4: Values of ξ = v/T for the slice tan β = 4, mQ = 14, 000 GeV (mh ∼ 112 GeV)

at the critical (solid line) and nucleation (dashed line) temperatures and in the broken

symmetry phase (where reverse sphalerons must be suppressed to avoid washing out the

newly-generated baryon asymmetry) (dashed-dot line). Note that for this example Tn and

Tb turn out to be nearly identical.

the nucleation temperature and the temperature inside the bubbles happen to be nearly

identical). We see that the value of ξ is significantly higher (by ∼ 10%) in the new phase

inside the bubble, where it is relevant to the possible wipeout of the newly-created baryon

asymmetry.

Another issue raised by the low values of the wall velocity found for the MSSM is

whether they contradict some of the assumptions made at the start of our hydrodynamic

calculation. Note that the relatively slow expansion speed of the bubbles makes for a

broader gap between the nucleation temperature and the so-called finalisation temperature

Tf , at which the proportion of space occupied by the growing bubbles reaches unity and

the phase transition ends. As an approximation it is usually assumed in the calculation
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Table 3.4: Wall velocity for the case mh = 116 GeV, m2
U = −11900 choosing as the temper-

ature of the universe: 1) The nucleation temperature, Tn; 2) The finalisation temperature

calculated on the assumption vw = 1, Tf ; 3) Same with vw = 0.05, T
′

f

.

tan β T ξ = v
T

Fitted η vw

4 Tn 0.92 6.10 0.044

Tf 0.94 0.051

T
′

f 0.94 0.054

6 Tn 0.95 6.88 0.039

Tf 0.96 0.045

T
′

f 0.96 0.047

of Tf (eg [14]) that the bubbles expand at the speed of light, and that has also been

our assumption so far (recall that, in our original analysis of bubble nucleation and the

start and completion of the phase transition, see 1.2.2, we referred to the wall expansion

velocity as β and equated β ≡ 1). It seems reasonable in this case to question this

assumption. We start by proposing an alternative initial choice of eg vw = 0.05, which

results in a different finalisation temperature T
′

f . We then calculate the wall velocity by

taking as the temperature of the undisturbed universe outside the bubble a) The nucleation

temperature, Tn; b) The finalisation temperature calculated in the usual way, Tf ; and c)

The finalisation temperature found assuming a slow wall velocity, T ′
f . The results are

shown in table 3.4 for the case mh = 116 GeV, m2
U = −11900 GeV2 3 with tanβ = 4, 6.

As we can see, the choice of finalisation temperature does not introduce a huge variation

in vw but taking the temperature of the undisturbed universe as Tn or Tf does make a

significant difference.

We finish by recalling that our hydrodynamic treatment assumes bubble expansion at

a steady-state velocity. Therefore, in itself it cannot account for bubble wall acceleration,

due to the variation in temperature between the beginning and the end of the phase

transition or for any other reason (like, for instance, in the context of a runaway regime

in which friction fails to stabilise the wall velocity).

3Low values of m2
U are most favourable for baryogenesis.
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Conclusions

Out of the several mechanisms proposed to explain the baryon asymmetry of the Uni-

verse, electroweak baryogenesys has lately received renewed attention. This mechanism

relies on the creation of the matter-antimatter asymmetry in the context of the elec-

troweak phase transition, understood to be first-order and thus to proceed through the

nucleation of regions (’bubbles’) of the broken symmetry phase. Such a transition would

explicitly satisfy Sakharov’s conditions for the creation of a baryon asymmetry (depar-

ture from thermodynamic equilibrium, violation of baryon number, and the presence of

CP-violating processes). All necessary ingredients for generating a baryon asymmetry are

already present in the Standard Model, but the observed asymmetry cannot be replicated

in the context of the unaugmented SM. Consequently, for baryogenesys to be viable in the

context of the EWPT, new Physics must exist which couple significantly to the Standard

Model and is sufficiently thermally abundant at the electroweak scale. If so, we should be

able to probe this BSM Physics through an array of presently running and upcoming ex-

periments, including the Large Hadron Collider. This explains the recent theoretical and

phenomenological efforts to elucidate further the features of baryogenesis in the context

of the EWPT.

In Chapter 1 of this work we explain the concepts of cosmological phase transition and

symmetry breaking at finite temperature, and in particular the breaking of electroweak

symmetry through the Higgs mechanism. We describe the electroweak phase transition as

first-order. The main features of such a transition are: (a) The critical temperature Tc and

the nucleation temperature Tn at which the transition actually occurs; (b) the sphaleron

transition rate which determines the B-number generation rate; and (c) The rate of nucle-

ation of bubbles of the broken symmetry phase. These quantities can be studied through

a variety of methods, the most reliable being non-perturbative Monte Carlo computations

which, because of their complexity, have only been applied to a few specific settings. The

alternative is to resort to perturbative methods as we do here. To this effect we introduce

the concept of effective potential, from which Tc, Tn, and the bubble nucleation rate may
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be calculated. The generation of the baryon asymmetry is very sensitive to the profile and

propagation speed of the walls of the expanding bubbles, because as the advancing walls

induce a chiral asymmetry on both sides of the interface the generation of a net B number

through sphaleron transitions depends in turn on the interplay of the relevant processes

which affect the creation of the chiral asymmetry and diffuse it into the symmetric phase,

where sphalerons are active. Therefore, the determination of the wall velocity and pro-

file are the main goals of this study. To this effect we describe the propagation of the

bubble walls formally, starting from the conservation of the energy-momentum tensor of

the system and the equations of motion for the background Higgs field, whose vacuum

expectation value (VEV) is taken as the order parameter for the phase transition. We de-

scribe the friction term in the hydrodynamical equations, which stems from the deviation

from equilibrium of the populations of the particles present in the plasma and which couple

strongly to the Higgs. In order to account for this deviation from equilibrium we introduce

the Boltzmann evolution equations, dependent on the term known as the collision integral,

C[f ]. We introduce the full form of this term as well as the relevant simplified forms and,

in particular, the so-called relaxation time approximation, which assumes C[f ] ≡ δf
τ . We

reexpress the equations of motion and calculate the pressure on the advancing bubble wall

according to these approximations for the friction term. We note that the relaxation time

approximation in the form we have adopted breaks down for values of the wall velocity

close to 1, wrongly predicting a diverging pressure difference when, in fact, the pressure

difference approaches a constant value for vw −→ 1, which we show by introducing an

alternative description based on the exchange of kinetic momentum between the wall and

the particles in the plasma. This conclusion makes a ’runaway regime’ (in which the wall

accelerates without bound) possible in principle, as opposed to the usual assumption that

friction effects equilibrate with the pressure difference to produce a ’steady-state’ wall

propagation at a fixed velocity vw < 1. We then introduce the mathematical formalism

we employ in our calculations of the wall velocity and profile. We start from the conser-

vation of the energy-momentum tensor of the Higgs-plasma system (written in covariant

form) and introduce a friction term dependent on a dimensionless friction parameter η.

We develop and apply our formalism to the whole bubble profile in the subsonic (defla-

gration) and supersonic (detonation) cases, relating the temperature and fluid velocity

profiles to the variation of the Higgs VEV and to the temperature in the undisturbed uni-

verse outside the bubble, which we take to be the nucleation temperature Tn (at which,

as determined by the shape of the effective potential, bubble nucleation starts). We finish
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by investigating the accuracy of modelling friction across the bubble profile by a single

numerical parameter, concluding that it is indeed an adequate description.

In Chapter 2 we apply our formalism to an extension of the Standard Model with

dimension-6 operators. Ours is the first explicit calculation of the velocity of electroweak

bubble walls in this setting. We first investigate the general shape of the solutions to the

hydrodynamic equations as a function of the model parameters and friction, obtaining

results consistent with previous studies. We then look for realistic values for η basing

ourselves on the best existing perturbative calculations of the wall velocity for the Standard

Model. We first calculate the values of η which would reproduce the existing results for

the wall velocity, then use the relaxation time approximation to the collision integral as

a model for friction that allows us to produce new values of η for the parameter space

of the dimension-6 model, on the assumption that friction is determined by the particle

content of the model. We find subsonic wall velocities vw ≈ 0.4 for strengths of the phase

transition ξ ≈ 1 and supersonic solutions for larger ξs, including the possibility of runaway

walls.

It is interesting to reflect on the consequences of our findings for the broader aspects

of the electroweak phase transition. The first issue is whether our results may affect

the suitability of this model as regards replicating the observed baryon asymmetry of

the Universe. Existing studies [25] calculate the baryon asymmetry in this setting by

solving the relevant system of transport equations (as outlined above, detailing how the

relevant reactions affecting the chiral asymmetry induced by the advancing wall diffuse

into the symmetric phase) near the bubble wall, but they do not carry out, as we do,

a detailed calculation of the wall velocity. Those studies conclude that the model can

replicate the observed baryon asymmetry for a broad and natural range of the model

parameters including the recently determined mass of the Higgs boson mh ≈ 125 GeV,

and with only a very mild dependence on the wall velocity. However, along with most

existing studies of electroweak baryogenesis, they assume relatively low, subsonic values of

the wall velocity and make the corresponding simplifying assumptions in the treatment of

transport mechanisms. Strictly speaking it would therefore be necessary (and beyond the

scope of this work) to explore the implications of large, even supersonic, wall velocities in

the baryon asymmetry predicted by the Standard Model with dimension-6 interactions.

More broadly, the study of supersonic wall velocities (or indeed runaway walls) and their

larger impact on electroweak baryogenesis is generally accepted as in need of further

development, including, for example, the possible appearance of turbulence in the plasma.
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Another field of particular interest which may be probed by upcoming experiments is

the possible production of gravitational waves (GW) in the context of a first-order EWPT.

A stochastic background of gravitational waves may be produced as soon as expanding

bubbles collide and their spherical symmetry is broken. There are two contributions to

the GW background: the collisions between bubble walls, and the turbulent motions of

the plasma. Methodological differences in the treatment of the problem persist to this day

but researchers agree on the validity of the so-called envelope approximation, that is, the

principle that the energy spectrum of gravitational wave production depends not on the

detailed history of colliding bubbles but on the overall features of the problem, namely

the energy available in the form of latent heat and the typical size of bubbles at the

time of collision. It is also accepted that subsonic bubble propagation strongly suppresses

GW production, and therefore supersonic wall velocities are usually assumed and taken

as an upper bound on the predicted GW spectrum. Predictions of the GW background

usually study the peak frequency and the behaviour of the energy spectrum on either

side of the peak. In any given setting, stronger phase transitions with higher latent heats

result in larger bubbles at the time of collision and larger energy spectra, but lower peak

frequencies. This compromises possible GW detection because the peak sensitivity of the

proposed space-based experiments LISA and BBO occurs at higher frequencies than the

peaks predicted for EWPT GW production in most relevant settings. In any case, of

these two experiments only BBO is predicted to have a chance of picking up the high

frequency tail of an EWPT-generated GW spectrum. Given these complications (and

given the discrepancies among different research approaches) it is outside the scope of this

work to try to outline precise consequences of our wall velocity results for the Standard

Model with dimension-6 operators on the chances of detecting a GW background from a

first-order EWPT, even though the consensus seems to be that a strong phase transition

with a relatively flat high frequency tail might indeed produce a GW spectrum detectable

by BBO as long as the relevant backgrounds (eg from inflation or astrophysical sources

like white dwarf binaries) are properly understood.

With regard to the issue of gravitational wave production it is also worth noting that

there is no clear correlation between large GW production and the creation of a sufficiently

high baryon asymmetry in the context of a first-order EWPT. For example, highly super-

sonic wall velocities, as mentioned, favour in principle the production of gravitational

waves but may compromise the generation of a sufficiently large B-asymmetry through

suppression of the relevant diffusion processes into the symmetric phase. Conversely set-
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tings in which the baryon asymmetry of the Universe may be replicated might lead to

comparatively low (perhaps undetectable) GW production.

Chapter 3 of this work applies our formalism to the Light Stop Scenario (LSS) of

the Minimal Supersymmetric Standard Model (MSSM). We start again from existing

supersymmetric calculations of the wall velocity from first principles and find the values

of the friction parameter η which reproduce those results. Proceeding on the assumption

that friction is determined by particle content and particle interactions, and since we

know that the light right-handed stops dominate the friction in this case, we make a linear

extrapolation for the friction from the values of the friction parameter just calculated to

LSS parameter space based on the value of the light stop mass parameter m2
U . We test this

extrapolation with the help of the relaxation time approximation and find it to be robust.

With the values of the friction parameter we thus found we calculate the wall parameter

at 2-loop for the LSS, the first time such a calculation has been carried out. We extend

our extrapolation to estimate the wall velocity in a few other supersymmetric scenarios,

including for values of the Higgs mass ≈ 125 GeV, the value recently confirmed by LHC

results. Our findings for the wall velocity in the Light Stop Scenario are in accordance

with previous studies for the MSSM and therefore do not, in themselves, compromise the

capacity of the LSS to reproduce the observed baryon asymmetry of the Universe (whether

the LSS is still a valid setting for electroweak baryogenesis given recent LHC data is the

object of ongoing debate). Likewise, as regards the production of gravitational waves, our

results for the wall velocity are in accordance with previous assumptions which resulted in

the conclusion that a gravitational wave background from an EWPT in the MSSM would

in any case be too weak to be picked up by LISA, and would be suppressed even further

by very subsonic wall velocities.
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Appendix A: The Standard Model

effective potential with

dimension-6 operators

The high-temperature expansion of the Standard Model 2-loop, finite-T effective potential

is given in [30] as

Veff (φ, T ) = D(T 2 − T 2
0 )φ2 − CT 2φ2 ln(

φ

T
) − ETφ3 +

λ

4
φ4 (3.2)

with

λ =
m2

h

2v2
0

− 3

16πv4
0

[2m4
w ln(

m2
w

abT 2
) + m4

z ln(
m2

z

abT 2
) − 4m4

t ln(
m2

t

afT 2
)]

D =
1

8v2
0

(2m2
w + m2

z + 2m2
t )

C =
1

16π2
(1.42g4

w + 4.8g2
wλ − 6λ2)

E =
1

12π
[4(

mw

v0
)3 + 2(

mz

v0
)3 + (3 + 31.5)λ1.5]

B =
3

64π2v4
0

(2m4
w + m4

z − 4m4
t )

T0 =

√

1

4D
(m2

h − 8Bv2
0)

and

gw =
2mw

v0

mw = 80.4 GeV

mz = 91.2 GeV

mt = 174.0 GeV
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v0 = 246.0 GeV

ab = 49.78019250

af = 3.111262032

(3.3)

As dimension-6 effective potential we adopt [25]

Veff (φ, T ) =
1

2
(−µ2 + (

1

2
λ +

3

16
g2
2 +

1

16
g2
1 +

1

4
y2

t )T
2)φ2

− g3
2

16π
Tφ3 +

λ

4
φ4 +

3

64π2
y4

t φ
4 ln(

Q2

cF T 2
)

+
1

8M2
(φ6 + 2φ4T 2 + φ2T 4) (3.4)

where Q ≡ mtop = 178 GeV4 and cF ≈ 13.94. M and mh are the free parameters of

the model. µ and λ are found through the conditions for the zero-temperature potential

(v0 = 246 GeV)

Veff (φ, 0) = −µ2

2
φ2 +

λ

4
φ4 +

1

8M2
φ6 − 3

64π2
y4

t φ
4 ln(

y2
t φ

2

2Q2
) (3.5)

∂Veff (φ, 0)

∂φ φ=v0

= 0,
∂2Veff (φ, 0)

∂φ2
φ=v0

= m2
h

(3.6)

4Note the slightly different value of the top mass as opposed to that from [30]. We decided to respect

the respective conventions to help us reproduce existing results, as described.
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Appendix B: The effective theory

of the Light Stop Scenario

The existing 2-loop MSSM effective theory at the electroweak scale with one light Higgs

doublet can be expressed, as in the Standard Model, as a function of only one background

field. Only third-generation squarks are considered to be at the electroweak scale.

1-loop potential

The 1-loop portion of the effective potential is [73]

Vtree(ϕ) = −1

2
µ2ϕ2 +

1

32
ϕ4g2 cos2 2β

V1−loop,0−T (ϕ) =
∑ ni

64π2
m4

i (ϕ)[log
m2

i (ϕ)

Q2
− Ci]

V1−loop,thermal(ϕ, T ) =
T 4

2π2

∑

niJi[
m̄2

i (ϕ, T )

T 2
]

Note that we take g′ = 0. Since 1-loop contributions to the potential are comparable

to the tree-level portion, the parameter µ2 in the tree-level part is chosen so that the

minimum of the total 1-loop, non-thermal potential lies at ϕ0 = 245.7497 GeV.

Sums run over all species that contribute significantly. For the 1-loop part this includes

stops, tops and W and Z bosons, minus the contribution from the heavy and decoupled

left-handed stop in the thermal piece. The number of degrees of freedom for each species,

ni, is

nt = −12, nt̃R
= nt̃L

= 6, nW = 6, nZ = 3 (3.7)

We take Q = mZ and Ci = 5
6 for vector bosons, 3

2 for scalars and fermions. The

relevant expansion of the J functions in the 1-loop, thermal bit is of the form
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Jbosons

(

m̄2
i

T 2

)

≡
∫ ∞

0
dx x2 log

(

1 − exp

(

−
√

x2 + (
m̄2

i

T 2
)

))

=

= (2π2)

(

2

48

(m̄i

T

)2

− 1

12π

(m̄i

T

)3

− 1

64π2

(m̄i

T

)4

log

(

(m̄i

T

)2

− 5.408

))

Jfermions

(

m2
i

T 2

)

≡
∫ ∞

0
dx x2 log

(

1 + exp

(

−
√

x2 + (
m2

i

T 2
)

))

=

= −(2π2)

(

1

48

(mi

T

)2
+

1

64π2

(mi

T

)4
log

(

(mi

T

)2
− 2.635

))

The notation m̄i (for bosons) in the 1-loop, thermal piece indicates resummed masses.

m̄2
i are obtained from m2

i by adding the leading temperature-dependent self-energy con-

tributions (see below). An effect of the 2-loop calculation is to resum all masses in the

thermal piece of the 1-loop potential5.

The expressions for the particle masses are:

m2
top(ϕ) =

1

2
h2

t ϕ
2 sin2 β,

m2
t̃L

(ϕ) = m2
Q + m2

t (ϕ) + D2
t̃L

(ϕ),

m2
t̃R

(ϕ) = m2
U + m2

t (ϕ) + D2
t̃R

(ϕ)

assuming no mixing between left- and right-handed stops and taking

D2
t̃L

(ϕ) =
1

4

(

1

2
− 2

3
sin2 θW

)

g2ϕ2 cos 2β,

D2
t̃R

(ϕ) =
1

4

(

2

3
sin2 θW

)

g2ϕ2 cos 2β

Note that with the choice g′ = 0 D2
t̃R

≡ 0 for all ϕ.

As field-dependent mass for the W and Z gause bosons we take

m2
W (ϕ) = m2

Z(ϕ) =
1

4
g2ϕ2 (3.8)

5In the 1-loop version of our potential (which we use to reproduce the results of [32]) the masses in

the 1-loop, T-dependent piece are not resummed. Following [73] we do resum the bosonic masses (only

the longitudinal degrees of freedom for the gauge bosons, photons included) in the term cubic in m in the

expansion, through the addition of the piece ∆V (ϕ, T ) = −
T

12π
Σni[m̄

3
i (φ, T )−m3

i (ϕ, T )] running over the

relevant species with nWL
= 2, nZL

= nγL
= 1.
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2-loop contributions

Following the notation in [73] the relevant Standard Model 2-loop contribution to the

potential can be written as

V
(2)
SM =

g2

16π2
T 2

[

M2

(

3

4
log

ML

T
− 51

8
log

M

T

)

+
3

2

(

M2 − 4M2
L

)

log
M + 2ML

3T
+ 3MML

]

+

+
m2

t (ϕ)T 2

64π2

[

16g2
s

(

8

3
log 2 − 1

2
− cB

)

+ 9h2
t sin2 β

(

4

3
log 2 − cB

)]

where cB = log(4π) − γE , γE ≈ 0.577215665 being Euler’s constant. We take the

strong coupling and top Yukawa coupling respectively as gS ≈ 1.228 and ht ≡
√

2Mt
ϕ0 sin β

with the top mass Mt ≡ 150 GeV6. Here M2 = 1
4g2ϕ2 is the weak gauge boson mass and

M2
L = M2 + 7

3g2T 2 the longitudinal resummed mass (corrected by the self-energy).

We have retained the supersymmetric contributions which relate to non-decoupled

species in the plasma. The relevant diagrams are shown in [73]. We take as the total

supersymmetric, 2-loop part of the potential for our calculation

V2−loop, MSSM = −g2
s(N

2
c − 1) T 2

16π2

(

m̄2
t̃R

log
2m̄t̃R

3T

)

+

+
Ncϕ

2T 2

32π2

(

h2
t sin2 β

)2
log

m̄h + 2m̄t̃R

3T
−

−g2
sT

2

64π2
(N2

c − 1)(c2 − 1)m̄2
t̃R

+

+
3Nc

128π2
T 2h4

t sin4 βc2φ
2 +

+
NcT

2

16π2

[

g2
S

6
(Nc + 1)m̄2

t̃R
+

1

2
h2

t sin2 β
(

m̄hm̄t̃R
+ 3m̄χm̄t̃R

)

]

We take the number of colours Nc as 3, and c2 ≈ 3.3025.

Note that, given the large 1-loop corrections to the Higgs mass, m̄h and m̄χ are ex-

pressed on the basis on taking m2
h =

∂2V1−loop

∂ϕ2 at the minimum of the 1-loop potential.

6Note again the different convention as regards the top quark mass, which we respected.
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