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Abstract

Let φ be a conformal map from D ⊂ C onto a simply connected domain Ω, with its inverse

ψ = φ−1 : Ω −→ D. Brennan’s conjecture states that, for all such φ,∫ ∫
D
|φ′|2−pdxdy =

∫ ∫
Ω

|ψ′|pdxdy <∞, for
4

3
< p < 4. (1)

In connection with this conjecture, we generalize the formula I−1(r, φ′) = 1
2π

∫ 2π

0
dθ

|φ′(reiθ)| ,

(cf.[52]) to becomes I−p(r, φ
′) = 1

2π

∫ 2π

0
dθ

|φ′(reiθ)|p < ∞ for −1.1697 < p < 2
3
, where φ is

normalized by two conditions φ(0) = 0, φ′(0) = 1. In this respect, we show that the quantity

I−1(r, φ′) diverges, if we consider φ be a möbious transformation, where w(z) = 1√
φ′(z)

be a

solution of the second order of differential equation w′′(z) + q(z)w(z) = 0 for z ∈ D.

Also, we prove that if φ is an univalent function in D with |φ(z)| ≤ 1 for all z and φ(a) = b

for some a, b ∈ D. Then the range of the pth-power integrable function in (1) can be extended

depending on behaviour of self-conformal maps φ.

We show a nice expansion of the range of integral mean I (r, φ′) of univalent function under

the boundedness condition. Also, we prove that any holomorphic function on unit disk (|z| < 1)

with Re(zF ′(z)) > 0 in |z| < 1, generates a starlike function defined on the unit disk.

For conformal self-maps φ of the unit disk, we study weighted composition operator C
t
2
α ,

is defined as a mapping f −→ f ◦ φ · (φ′)b. We are interested in their boundedness prop-

erty as operators acting in weighted Bergman spaces A2
α,A

2
α−1. Our approach addresses how

to generate two types of an holomorphic functions, one of them defined on the cardioid do-

main and other belongs to Hardy space H
2nπ−θ
nπ (D), n ∈ N, depending on the range of angle θ,

nπ < θ ≤ (1 + n)π.
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Make yourself the measure ( for dealing) between you and others.

Thus, you should desire for others what you desire for yourself, and hate for others what do

you hate for yourself.

Do not oppress as you do not like to be oppressed, and do good to others as you would like

good to be done to you.

Imam Abu Alhassan( peace be upon him).
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Chapter 1

Introduction

Our starting point is the classical theory of conformal mappings which is a transformation w =

φ(z) “preserves angles” if any holomorphic map φ defined on non-empty open subset of C is

surjective( that is Univalent), then its derivative vanishes nowhere.

The conformal mapping has some elementary properties;

• the inverse is also a conformal mapping.

• A conformal mapping is a homeomorphism, that is; a continuous injective map with

continuous inverse.

• conformal maps are locally univalent, that is; the derivative does not vanish and there are

only simple poles.

• Angles between curves including their orientation are preserved by conformal amps.

• The conformal image of a ( measurable) subset A has the area

area φ(A) =

∫ ∫
A

|φ′(z)|2dxdy.

Conformal mappings involving best possible pointwise estimates of the derivative, thus sup-

plying a measure of the extremal expansion (contraction) possible for a conformal mapping .

It is natural to consider also the integral means of |φ′|p along circles |z| = r, where φ is the
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conformal mapping in question and p is a real parameter, 0 < r < 1 if φ is defined in the unit

disk D, while 1 < r < +∞ if φ is defined in the exterior disk.

The growth of the integral means as r → 1 in the classical pointwise estimates is by far

a very fast however, one can see some interesting results which have been proved by Clunie,

Makarov, Pommerenke, Bertilsson, Shimorin, J. Brennan, Hedenmalm, ([52],[5],[58],[9],[34]

respectively), and others.

In applications, if Ω ⊂ C is a simply-connected domain, then a conformal mapping φ of

the unit disk D = {z ∈ C : |z| < 1} onto Ω exists by the Riemann mapping theorem [48]( if

Ω 6= C), it seems not easy to compute conformal maps if the geometry of Ω is complicated,

therefore it is of interest to find a relation between properties of the Riemann map and the

geometry of Ω with general properties of conformal maps. Hence, the field which precisely

describes the conformal maps is the main part of geometric function theory, and in the beginning

of the century, initiated new horizons to this topic through the works of Koebe [5].

Theory of conformal mappings was introduced by Carathéodory in 1912 for variable re-

gions so that this map may be continuously extended from the boundary of Ω onto unit circle,

if Ω is bounded by aJordan curve, cf. Caratheodory extension theorem ([19, pp.12]) which was

employed by Montel in 1917 to study the properties of prime ends under conformal mappings,

that’s why the theory of conformal mappings has been used more in the study of boundary beha-

viour of conformal maps, according to the basic idea that uses the conformal maps to transform

the boundary- value problem, for the region R into a corresponding one for the unit circle or

half plane and then find the solution to solve the given problem by employing the inverse of

conformal mapping. 1

In general, there is a question raised about Riemann maps, namely; what is the image of

φ(z), where z is fixed? Surely, we need some normalization on φ to specify its image. Hence,

let us normalize φ under two conditions φ(0) = 0 and φ′(0) = 1, such that the set of conformal

maps of the unit disk with this normalization is denoted by S and is called class of univalent

functions 2 on unit diskD,which have an upper and lower bounds on |φ(z)| that are independent

1 We refer the reader to several excellent textbooks [11, 29] and [6].
2 Here, we refer that the univalent function is called Schlicht function.
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of φ ∈ S as proved by Koebe [50, pp.21] . This result implies that S is compact in the topology

of locally uniform convergence [65].

There exist bounds on the derivatives φ′(z), φ′′(z),..., valid for all φ ∈ S , where we have the

distortion estimates

1− r
(1 + r)3

≤ |φ′(z)| ≤ 1 + r

(1− r)3
, |z| = r < 1. (1.1)

The above estimates are sharp, as it is known by the example of an appropriate rotation of the

Koebe function

k(z) =
z

(1− z)2
= z + 2z2 + 3z3 + . . . , z ∈ D;

which maps the unit disk D to the complement of the ray (−∞, −1
4

]. Short calculations show

that

k′(z) =
1 + z

(1− z)3
, z ∈ D.

Hence, it will be helpful to have a better understanding of the behaviour of the sets in D, where

|φ′(z)| is either large or small. For example, |k′(z)| is large near the boundary of unit disk ( that

is, near |z| = 1), small near a point z = −1, and to be an unassuming elsewhere.

Integral means. In the following we consider one way to obtain measure of the overall size

of |φ|, Define the integral means

Ip(r, φ
′) =

1

2π

∫
|z|=r
|φ′(z)|pdθ (0 < r < 1), (1.2)

where dθ is the angular measure |dz|
r
. In cases p > 0 and p < 0, these quantities are measure

tools to how much the conformal map expands ( compresses, respectively ). Therefore, the main

problem is to estimate ∫
|z|=r
|φ′(z)|pdθ as r → 1, (1.3)

as

lim
p→+∞

(∫
|z|=r
|φ′(z)|pdθ

) 1
p

= max
|z|=r
|φ′(z)|.
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Hardy space on D. For 1 ≤ p ≤ ∞ let Hp be the Hardy space on the unit disk D equipped

with its usual norm

||φ||Hp = sup
0≤r<1

(
1

2π

∫ 2π

0

|φ(reiθ)|pdθ
) 1

p

<∞, for 0 < p ≤ ∞,

||φ||H∞ = sup
|z|<1

|φ(z)| for p =∞.

Denote by Hp(D) the normed vector space defined as the space of all holomorphic functions φ

in D = {z ∈ C : |z| < 1}.

While, hp(D) = {U ∈ h(D) : ||U ||p < ∞}, for p ∈ (0,∞] is the family of all complex

harmonic functions U on the open unit disk D such that for 0 < p ≤ ∞, 3

||U ||p = sup
0≤r<1

||Ur||p = sup
0≤r<1

(
1

2π

∫ 2π

0

|U (reiθ)|pdθ
) 1

p

, if p ∈ (0,∞)

||U ||∞ = sup
|z|<1

|U (z)| for p =∞.

The growth of the integral means of the derivative φ′(reiθ), where z = reiθ, is related with

Hardy spaces in case φ(z) is an holomorphic function in the unit disc {z = reiθ : |z| < 1},

univalent or not, to belong to Hardy spaceHp(D), if Ip(r, φ) remains bounded as r → 1, because

Ip(r, φ) < Iq(r, φ); p < q.

Hence, each φ(z) ∈ Hp(D), where z = reiθ has the property∫ 1

0

I∞(r, φ)dr <∞.

Which implies that φ(z) has radial limit

lim
r→1

φ(reiθ) = φ(eiθ) in almost every direction.

This fact is due to Fatou’s theorem which states that; for any holomorphic function φ : D→ C,

such that

sup
0<r<1

||φ(reiθ)||Lp(T) <∞, where T = {eiθ : θ ∈ [0, 2π]} = {z = eiθ ∈ C : |z| = 1},

3 we refer the reader to the book [39].
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φ(reiθ) converges for r → 1 to some function φ(eiθ) ∈ Lp(T) pointwise almost everywhere in

Lp(T), that is the limit being taken is along a straight line from the center of unit disk to the

boundary of the circle that’s why the pointwise limit is a radial limit, cf. [63, 26] and [56].

The boundary function φ cannot vanish on any set of positive measure unless φ is the zero

function, but the converse is not true, because it is possible to find an holomorphic function

which has a maximum modulus and increases arbitrary slowly to infinity but fails to have a

radial limit on any set of positive measure, that’s why there is a very close relation between

the mean growth of the φ′(reiθ) and the smoothness of the boundary function φ(eiθ) [19]. It

is reasonable to expect an holomorphic function to be smooth on the boundary if its derivative

grows slowly, and vice versa.

Further- more; each function φ(reiθ) ∈ Hp(D), (0 < p ≤ ∞) has a nontangential limit

φ(eiθ) at almost every boundary point and Littlewood’s theorem [19] shows uniform bounded-

ness of this quantity for 0 < r < 1, which gives rise to the well- known Hardy spaces Hp(D),

that’s why Hardy spaces is a good area to study the growth of Ip(r, φ) and Ip(r, φ
′), cf. [37, 35].

Boundary behavior of conformal maps. It is obvious that with Riemann mapping we will

have a definite condition for existence of a conformal map of the unit disk D onto any simply

connected domain Ω, but we have to be careful when the boundary ∂Ω of Ω is irregular, we

might expect the mapping and its derivative to have rough behaviours as they approach the

boundary of the unit disk. A conformal mapping φ : D → Ω can be extended continously to

∂D ( unit circle) exactly when ∂D is locally connected. Unfortunately this does not mean that

the extension will be well behaved in any way.

P. L. Duren [19] shows that the radial limit in Hardy spaces theory

lim
r→1

φ(reiθ) = φ(eiθ).

of any function φ ∈ S exists finitely almost everywhere in θ. On the other hand, G. Piranian

A. J. Lohwater and W. Rudin [42], prove that the radial limit of a meromorphic function and

bounded inD exists and is finite, for almost all points on ∂D, but the radial limit of the derivative

of a meromorphic function and bounded in D fails to exist and be finite.

Brennan’s conjecture. We now study one of the pillars of this thesis, Brennan’s conjecture,
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this conjecture is formulated as an estimate for conformal maps ψ : Ω→ D,∫ ∫
Ω

|ψ′|pdxdy <∞. (1.4)

for 4
3
< p < 4, and dxdy = dA is the area measure on the plane. Brennan’s idea for studying

the Lp- norm of |ψ′|p, had a significant impact in approximation theory. Changing the variables

will offer us the possibility to write (1.4) in terms of ψ−1 = φ :∫ ∫
D
|φ′|2−pdxdy <∞. (1.5)

Brennan [9], introduces an interesting result about increasing of upper bound to 3 + τ by using

a harmonic measure argument of Carleson. Pommerenke [52] shows that (1.5) holds for 3
4
<

p < 3.399. In [9] B. Dahlberg and J. Lewis prove that, if Ω is starlike domain 4or even close-to-

convex domain then (1.4) holds for 4
3
< p < 4.

Weighted composition operator Cb
φ on Bergman space At

α. Clearly, the inequality (1.1)

shows that there exists a positive number β, depending on t, such that

It(r, φ
′) = O

(
1

(1− r)β

)
as r → 1−. (1.6)

Let φ be univalent on D, the function βφ(t) is usually defined as the infimum of all β such that

(1.6) is valid. This is called the integral means spectrum of φ, and can be written as follows:

βφ(t) = inf

{
β :

∫
|φ′(reiθ)|tdθ = O(

1

(1− r)β
)

}
as r → 1−. (1.7)

which lead us to define the universal integral means spectrum for the class S which is defined

by

BS (t) = sup{βφ(t) : φ is univalent}. (1.8)

In this thesis, we introduce the weighted composition operator Cb
φ on the Bergman space At

α

of holomorphic functions on D, for positive integers b, then we shall define the classical com-

position operator Cφ associated with conformal self- maps φ of unit disk which is defined as

follows:

f 7−→ f ◦ φ = f(φ(z)),

4 We refer the reader to Appendix A, definition (A.0.12) for more details on starlike domain.
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so the weighted composition operator is defined as a mapping

Cb
φ : f 7−→ f ◦ φ · (φ′)b, for each b ∈ R,

where (φ′)b denotes the angular derivative of φ at the boundary of unit disk ∂D.

In fact, the properties of weighted composition operator Cb
φ are associated with estimating

the integral means of derivatives of univalent functions. Specially, the boundebness of the

operators Cb
φ, with b ∈ (−1, 0) in the classical Bergman space A2 contributes to reformulating

Brennan’s conjecture for conformal mappings ( cf. [58, Theorem 2.9.pp.7]).

Shimorin [58] proved a number of estimates for universal functionA(t) = sup
φ
αφ(t), which

correspond to known estimates for the universal integral means spectrum B(t), where

αφ(t) = inf{β > 0 : C
t
2
φ is bounded in A2

β−1},

depending on critical value t0, in the Carleson- Makarov theorem 5, his work is based on the

strong result obtained by D. Bertilsson [5, Theorem 3.7(e). pp.44]

He proved also that Brennan’s conjecture is equivalent to the equality A(t) = |t| − 1 for

t ≤ −2 ( as well- known as a property that (φ′)b ∈ A2 for any b ∈ (−1, 0) and φ conformal

mappings of D or the universal integral means spectrum function as B(t) = 1 for t = −2).

Concerning unknown values of t, Shimorin [58] confirmes that all the estimates of the uni-

versal integral means spectrum which is proven in [57] are valid also for the universal func-

tion A(t) with only a slight modification. Shimorin [57] found that the multiplier norm of the

Schwarzian derivative from the Bergman space A2
α to A2

α+4 can be estimated accurately by

applying the area methods directly rather than going through classical pointwise estimate∣∣∣∣∣φ′′′(z)

φ′(z)
− 3

2

[
φ′′(z)

φ′(z)

]2
∣∣∣∣∣ ≤ 6

(1− |z|2)2
, z ∈ D,

which leads to obtain a good estimate of the universal integral means spectrum function B(−1)

and B(−2) more than formerly known. Hedenmalm and Shimorin [34] found a collection

of estimates of multiplier norm type, parametrized by a real parameter θ, 0 < θ ≤ 1, via

5Carleson- Makarov theorem: There exists a t0 ≤ −2 such that BS b(t) = |t| − 1, for t = t0.
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Prawitz theorem 6 which generalizes the Grönwall area theorem and application of the diagonal

restriction operation on the bidisk and the use of sharp constants in norm estimates, also their

work includes numerical estimates of BS (τ), for real values of τ. In [62] Alan Sola studies the

behaviour of univalent functions in the mean and at the boundary and uses the similar methods

which applied by [34] to obtain that BS (−1) ≤ 0.388 and BS (−2) ≤ 1.206.

The objective of this thesis is to show how the Brennan’s conjecture which concerns in-

tegrability of the derivative of a conformal unit disk D onto the simlpy connected domain Ω

becomes a useful tool when we have to study the properties of Riemann map and geometry of

Ω with general properties of conformal maps through constructing several examples.

Next, we shall see later, some interesting results on the problem of estimating the integral

means of derivatives of univalent functions for instance :

Generalizing the value of power integrable function which have been addressed by Pommer-

enke [52].

As we show how to extend the range of the value of the pth- power integrable function of

Brennan’s conjecture up to become 4
3
< p < 5 depending on behaviour of self-conformal maps.

In connection with the problem of estimating the integral means of derivatives of univalent

functions, we show a nice expansion of the range of integral mean of univalent function under

the boundedness condition.

Also, we prove that any holomorphic function on unit disk with Re(zF ′(z)) > 0 in |z| < 1,

generates a starlike function on unit disk

We introduces a Theorem which comes as a corollary of the Koebe one-quarter theorem

and Koebe distortion theorem which considers a sharp result on the integrability of gradient of

Cauchy transform ĝ(z) over a non-decreasing sequence ∂Di in D, such that∫
∂Di
∇

(
|ĝ(z)|√
|z|

)
dµi exists and is finite on ∂Di

if the Cauchy transform ĝ(z) of g ∈ Lq(E, dA) for some 1 < q ≤ 2, is identically zero in C\E

and there exists a non-decreasing sequence ∂Di in D, where E is a compact subset of the plane

having connected complement, D is a connected domain D ⊂ E.

6For a straight- forward proof of Prawitz theorem, cf. Theorem A.0.8, Appendix A
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In another respect, we are interested in the boundedness of weighted composition operator

Cb
φ : f 7−→ f ◦ φ · (φ′)b, for each b ∈ R in the classical weighted Bergman space A2

α of

functions f ∈ H (D), where φ is an holomorphic self-map of the unit disk D ⊂ C depending

only on function of the form (1− λz)
−γ
2 and the convexity property of the function αφ(t).

We also show that the existance of cusp on the boundary of cardioid domain arising from

integrability of conformal maps through one of the polar functions in the general solution of

Laplace equation by proving that there is an holomorphic function defined on the boundary of

cardioid domain when φ′(0) = 0, for 0 < n ≤ 1, n ∈ N and another belongs to Hardy space

H
2nπ−θ
nπ (D), n ∈ N, on the boundary of unit disk.

1.1 Background

This section serves as motivation to the main results of this thesis. Appendices A, B are added

to give a full support.

1.1.1 Riemann’s mapping theorem

The theory of conformal mappings is inseparable from that of complex holomorphic functions.

One of the most remarkable results from complex analysis states that, for any simply connected

domain Ω ( other than the whole complex plane ) there is always an holomorphic function

φ : Ω→ D that maps the interior of Ω to that of unit disk D. For more details cf. [40].

Theorem 1.1.1. Let Ω be a simply connected domain (open and connected subset of C) which is

not the whole plane and a be a point in Ω. Then there is a unique holomorphic function of Ω onto

the unit diskD having the properties (φ(a) = 0;φ′(a) > 0;φ is one to one and φ(Ω) = D {z : |z| < 1}).

In other words, we can say (Ω is analytically isomorphic to the unit disk).7

Proof. :-

• (Uniqueness):- Fix a ∈ Ω.

7We refer the reader to excellent textbook [40].
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Now, we have to prove that there is a unique holomorphic function φ : Ω −→ D with

required properties as follows:

Let g : Ω −→ D be holomorphic function and satisfy the same properties of φ, that is, g

is (one to one), g′(a) > 0 and g(a) = 0.

So, g(z) has inverse function (by Inverse function theorem), such that φ ◦ g−1 : D −→ D

will be an holomorphic function which is one to one.

By Schwartz theorem, 8 we have φ ◦ g−1 is an automorphism of D, that fixes 0, such that

φ ◦ g−1(0) = 0.

Hence, we can deduce that φ ◦ g−1 is a rotation, namely there exist α, a constant, |α| = 1

such that φ(z) = αg(z). This implies that φ′(a) = α g′(a)⇒ α > 0, since φ′(a) > 0 and

g′(a) > 0.

It follows, ( as |α| = 1 and α > 0) or φ = g.

Finally, φ is an unique function.

• (Existence) :- Let us assume that

F = {φ : φ ∈ H(Ω)9 : φ is (one-to- one), φ′(a) > 0, φ(Ω) ⊆ D}.

We claim that F is non-empty.

Let w0 ∈ C\Ω.

Then there exists a holomorphic map φ : Ω −→ C such that φ(z)2 = z − w0.

Let z1, z2 ∈ Ω such that φ(z1) = φ(z2). Then z1 − w0 = φ(z1)2 = φ(z2)2 = z2 − w0,

hence z1 = z2. Therefore φ is injective.

Also, one sees that

φ(z1) 6= −φ(z2) (1.9)

8 We refer the reader to cf. Appendix B for more details on Schwartz theorem.
9 We refer to define each of the following vector spaces, the spaceH(Ω) is the class of all holomorphic function

defined on Ω. The space H∞(D) is defined as the vector space of bounded holomorphic functions on the unit disk,

with the norm ||φ||H∞ = sup
|z|<1

|φ(z)|.
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for each z1, z2 ∈ Ω with z1 6= z2.

By the Open Mapping theorem 10 φ is open. Thus, φ(Ω) contains a disc Dr(b) with

0 < r < |b|, for some b. Then equation (1.9) implies

D1(−b) ∩ φ(Ω) = ∅.

Since φ(Ω) is open, it follows that

Dr(−b) ∩ φ(Ω) = ∅.

Hence |φ(z) + b| > r, for all z ∈ Ω. Therefore the map

φ−1 :=
r

φ+ b
,

is in F. From the previous step we have

F = {φ : φ ∈ H(Ω) : φ is (one-to- one), φ′(a) > 0, φ(Ω) ⊆ D}.

such that it will be shown that the desired mapping is the unique in F whose derivative at

z0 is maximal, and has the required properties in F family.

Suppose first that F is non- empty; then clearly F = F ∪ {0}.

Now, since φ(Ω) ⊆ D ⇒ |F (z)| < 1, for each z ∈ Ω, and hence

sup{φ : |φ(z)| ≤ 1, z ∈ Ω}.

Hence, F is locally bounded; that is, if there exist r > 0 such that

sup{|φ(z)| : |z − a| < r, φ ∈ F} <∞,

which implies that F is normal set due to Montel’s theorem 11 , that is, every φn sequence

in F has a subsequence φnk that converges to φ uniformly on compact subset of Ω and

then

φ′nk(a) −→ φ′(a).

10Open Mapping theorem [3]: The image of an open set under a non- constant holomorphic mapping is an open

set.
11 Montel’s Theorem states : {A family F in H(Ω) is a locally bounded iff F is normal} [12].
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So, φ is an holomorphic function or a constant function ( by Weierstrass theorem), this

implies that F is closed set, therefore F is a compact set ( since, F is normal set iff it’s

closure is compact).

Therefore, there is f ∈ F such that, φ′(a) ≤ f ′(a) ,∀φ ∈ F.

Consider the function φ in F whose derivative at a maximum.

Let M be the least upper bound of the derivatives φ′(a) as φ ranges over F , then M > 0

but it may be the case that M =∞.

Pick a sequence φn ⊂ F such that φ′n(a) approaches M , and we know that F is a normal

family, hence φn contains a subsequence φnk which converges to a function φ uniformly

on every compact subset of Ω.

The function φ is an holomorphic function, and φ′nk converges to φ′ uniformly on compact

subsets of Ω due to Weierstrass Theorem, this implies that φ′(a) = M andM is a positive

real number, means, M is finite.

Now, we assert that φ ∈ F through out, that is φ not constant, since f ′(a) = M > 0 and

φ is holomorphic, the Open mapping Theorem implies |φ(z)| < 1 for all z ∈ Ω.

We have to show that φ is injective.

Let w ∈ Ω, consider the functions gw(z) = g(z)− g(w), where g ∈ F , such that gw(z)

are non -zero on Ω \ {w} as each g is injective .

Then φ(z)− φ(w) is a limit of such functions, we deduce that it is nowhere zero on

Ω\{w} due to Hurwitz’s Theorem, since w is chosen arbitrarily, it follows that φ is inject-

ive, thus φ ∈ F , and φ is an element of F with maximal derivative at a.

It remains to show that φ(Ω) = D.

As known, φ(Ω) ⊆ D holds; that is, we have to prove D ⊆ φ(Ω).

Let w ∈ D and w /∈ φ(Ω), then there is a Möbius transformation defined of D onto itself.

ϕw : D→ D such that ϕw(z) =
z − w
1− wz

, z ∈ D.
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Hence ϕw ◦ φ : Ω −→ D is a nowhere zero holomorphic function, hence ϕw ◦ φ has an

holomorphic square root ( that is, h2(z) = ϕw ◦ φ : Ω −→ D).

⇒ h2(z) = ϕw(φ(z)) =
φ(z)− w
1− wφ(z)

, ∀z ∈ Ω.⇒ h(z) ⊆ D.

Fixed h(a) in D, and define Möbius transformation

ϕh(a) =
z − h(a)

1− h(a)z
: D −→ D,

such that g := ϕh(a) ◦ h : Ω −→ D can defined by

ϕh(a)(h(z)) =
h(z)− h(a)

1− h(a)h(a)
= 0, for z ∈ Ω,

satisfies g(a) = 0, as g(Ω)⊆ D, and this, in turn, generates contradiction with uniqueness

of the function φ. Hence, φ(Ω) = D.

The following theorem establishes the correspondence of the boundaries ∂Ω of Ω and ∂D

of D in case ∂Ω is a Jordan curve.

Theorem 1.1.2. (Carathéodory- Osgood’s theorem)

Let Ω be a Jordan domain, that is, a domain bounded by a Jordan curve, and let φ be a

conformal mapping φ : Ω → D. Then, φ can be extended one-to-one continuously to the

closure Ω := Ω ∪ ∂Ω of the domain Ω.

Now, we give a group of theorems and corollaries that constitute the first sharp results in

univalent functions . For additional information the reader is referred to references [19, 53] and

[50].

Theorem 1.1.3. (Area theorem) [27]

If g ∈ Σ12, then
∑∞

n=1 n|bn|
2 ≤ 1, with equality if and only if g ∈ Σ̃ . 13

12Σ is the class of functions g(z) = z + b0 + b1z
−1 + b2z

−2 + · · · holomorphic and univalent in the exterior

of the unit disk ∆ = {z : |z| > 1}, except for a simple pole at infinity with residue 1, and which map ∆ onto the

complement of a compact connected set E [19].
13For a straight-forward proof of Area theorem, cf. Theorem A.0.5, Appendix A
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Corollary 1.1.4. If g ∈ Σ, then |b1| ≤ 1, and equality holds if and only if g = z+ b◦+ 2e2iθz−1

where b◦ ∈ C, θ ∈ R.

The following lemma gives a basic estimate which leads to the distortion theorem and re-

lated results.

Lemma 1.1.5. For each φ ∈ S 14,∣∣∣∣∣zφ′′φ′ − 2|z|2

1− |z|2

∣∣∣∣∣ ≤ 4|z|
1− |z|2

.

Theorem 1.1.6. (Distortion Koebe theorem) For each φ ∈ S defined on unit disc D,

1− r
(1 + r)3

≤ |φ′(z)| ≤ 1 + r

(1− r)3
, |z| = r < 1.

Equality holds if and only if φ is a suitable rotation of the Koebe function 15

Lemma 1.1.7. (Parseval formula)

let φ(z) be an holomorphic function in unit disk D such that it is represented there by Taylor

series expansion φ(z) =
∞∑
n=0

anz
n then 16

∞∑
n=0

|an|2r2n =
1

2π

∫ 2π

0

|φ(reiθ)|2 dθ.

1.1.2 Schwarz-Christoffel transformation

The Schwarz-Christoffel transformation is a conformal mapping from the upper half of the com-

plex plane to a polygonal domain. It allows many physical problems posed on two-dimensional

polygons. In specific case, one method of determining solutions is by taking the polygonal do-

main in the complex plane and determining a conformal map, which preserves the structure of

Laplace’s equation, that restarts the problem in a simpler domain. For such polygonal domains,

a method of determining the specific transform needed is provided by the following theorem:

14For a straight-forward proof of this assertion, cf. Theorem A.0.6, Appendix A
15For a straight- forward proof of Distortion Koebe theorem, cf. Theorem A.0.7, Appendix A
16For a straight-forward proof of Parseval Formula, cf. Lemma A.0.9, Appendix A
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Given a polygonal curve Γ, its interior P is a simply connected domain. Thus, by the

Riemann mapping theorem, there exist a function F that conformally maps the upper half plane

onto P . The Schwarz-Christoffel theorem provides a concrete description of such maps.

Theorem 1.1.8. (Schwarz-Christoffel theorem)

Let P be the interior of a polygon Γ having verticesw1, w2, . . . , wn and interior angles α1π, α2π, . . . , αnπ

in counterclockwise order. Let φ be any conformal map from the upper half- planeH+ to P with

φ(∞) = wn. Then

φ(z) = A+ C

∫ z n−1∏
k=1

(ζ − zk)αk−1dζ

for some complex constants A and C, where wk = φ(zk) for k = 1, . . . , n− 1.

Definition 1.1.9. (Bergman spaces) For 0 < p < +∞ and a given parameter −1 < α < +∞,

Bergman space Ap
α(D) is a function space of holomorphic functions f in the unit disk D with

the norm property

||f ||pp,α = (α + 1)

∫
D
|f(z)|p(1− |z|2)αdA(z) <∞, (1.10)

where dA(z) = dxdy
π
, (z=x+iy) is the normalized Lebesgue area measure on D, and the function

w(z) = (1− |z|2)α : D −→ (0,∞) is a radial weight. 17

In addition, for 1 ≤ p < ∞ and α > −1 fixed, Ap
α is a Banach space. For p = 2, Ap

α is a

Hilbert space.

1.1.3 Smirnov domain

Let φ(w) = z be a conformal mapping (one-to- one) from the unit diskD onto simply connected

domain Ω boundary by rectifiable Jordan curve in the complex plane C, then φ has a continuous

injection extension to closure of D with no cut points (cf. [53], Theorem 2.6, pp.24 ) so that the

length of the Jordan curve L(γ) to be L(γ) <∞⇔ φ′ ∈ H1(Ω) ( cf. [53], Section 6.3). Hence

17 A function w(z) : D→ (0,∞), integrable over D, is called a weight function or simply a weight. In addition,

it is radial if w(z) = w(|z|) for all z ∈ D.
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Ω is called a Smirnov domain if for |w| < 1 the harmonic function log |φ′(w)| can be written as

the Poisson integral of its non-tangential boundary values log |φ′(eiθ)| as follows:

log |φ′(w)| = 1

2π

∫ 2π

0

1− r2

1 + r2 − 2r cos(t− θ)
log |φ′(eiθ)| dθ.

Since φ′ as a non-zeros function belongs to H1(Ω), and as is known in Hardy spaces for

0 < p ≤ ∞, every non-zero function such that φ′ ∈ H1(Ω) can be written as the product

φ′(w) = M(w)G(w), where M(w) is a inner function18 and G(w) is an outer function 19(cf.

[18], Theorem 17.17, [61] and [67]).

Therefore, Ω is called a Smirnov domain when M(w) ≡ 1.

One thing that we need to mention here is that, Ep(Ω) is the set of all holomorphic functions

in Ω which is bounded by rectifiable Jordan curve γ, such that for 0 < p ≤ ∞ there is a

sequence of closed rectifiable Jordan curves γi ⊂ Ω, i = 1, 2, · · · , and satisfy the following:

i. γi tends to γ, as i → ∞ in the sense that, if Ωi is the bounded domain with boundary γi,

then Ω1 ⊂ Ω2 ⊂ · · ·Ωi ⊂ Ω and
⋃∞
i=1 = Ω;

ii. ∫
γi

|f(z)|p|dz| ≤ const <∞.

1.1.4 Comparison theorem for ODEs

This section involves some comparison theorems for ODEs which play an important role in

comparing the properties of the growth of the integral means of derivative of univalent function

with properties of differential equations to find differential inequalities which gives good estim-

ates refer to be the growth of the integral means of derivative of univalent function that exist

and is finite for some values of pth-power integrable function. For further details cf. [66, 15]

and [4].
18M(w) is an inner function if and only if |M(w)| ≤ 1 on the unit disk D and limr→1M(reiθ) exists at almost

all θ and it’s modulus is equal to 1
19G(w) is an outer (exterior) function if it takes the formG(w) = c exp

[
1
2π

∫ 2π

0
eiθ+z
eiθ−z log(φ(eiθ))dθ

]
for some

complex number c with |c| = 1, and some positive measurable function φ on the unit circle such that log φ is

integrable on the circle.
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Lemma 1.1.10. Let p, q be continuous functions in [a, b), such that p(x) ∈ R, q(x) > 0 for a ≤ x < b,

suppose u is twice differentiable and u′′ < pu′ + qu, v′′ = pv′ + qv, if

u(a) < v(a) and u′(a) < v′(a), then u(x) < v(x) for a ≤ x < b. (1.11)

Proof. Let φ = u− v such that,

u(a) < v(a) ⇒ u(a)− v(a) < 0 ⇒ φ(a) < 0

and

u′(a) < v′(a) ⇒ u′(a)− v′(a) < 0 ⇒ φ′(a) < 0

such that,
u′′ < pu′ + qu

v′′ = pv′ + qv

 ⇒ φ′′ < pφ′ + qφ (1.12)

Let us assume that,

u(x) < v(x); for x ∈ [a, b)

is false, this implies that there exists a point ζ ∈ [a, b) such that φ(ζ) = 0, and φ(x) < 0, for

all x ∈ (a, ζ).

Therefore, for any x ∈ (a, ζ) 3 a < x < ζ, we obtain

φ(a) < φ(x) < φ(ζ) ⇒ φ(x) < 0, for x ∈ (a, ζ).

And hence, φ(a) < 0 and φ′(a) < 0, which in turn implies that φ has a local minimum;

assume point xmin ∈ (a, ζ).

Clearly, φ(xmin) < 0⇒ φ′(xmin) = 0, and then φ′′(xmin) ≥ 0, this contradiction with

φ′′ < pφ′ + qφ,

showing that φ(x) < 0, or u(x) < v(x) is true for x ∈ [a, b).

Lemma 1.1.11. Let q(x) be continuous and positive (q(x) > 0) on [a, b), suppose u is four times

differentiable and u(4) < qu, v(4) = qv, u(k)(a) < v(k)(a) for k = 0, 1, 2, 3 then u(x) < v(x)

for a ≤ x < b.
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Proof. Let φ = u− v be such that,

u(a) < v(a) ⇒ u(a)− v(a) < 0 ⇒ φ(a) < 0 for k = 0. (1.13)

and

u(k)(a) < v(k)(a) ⇒ u(k)(a)− v(k)(a) < 0 ⇒ φ(k)(a) < 0. (1.14)

Also, we have

u(4) < qu

v(4) = qv

 ⇒ φ(4) < qφ (1.15)

Let us assume that

u(x) < v(x); for x ∈ [a, b)

is false, this implies that there exist a point ζ ∈ [a, b) such that u(ζ) = v(ζ) ⇒ φ(ζ) = 0.

Therefore, for any x ∈ (a, ζ) 3 a < x < ζ, we obtain

φ(a) < φ(x) < φ(ζ) ⇒ φ(x) < 0,

for x ∈ (a, ζ), since φ(a) < 0.

Hence, φ′(a) < 0; for k = 1 (cf. equation (1.14)).

So it is impossible that, φ′′(x) < 0, for a < x ≤ ζ, which gives φ′′ = ψ has zero in (a, ζ),

such that ψ(a) = φ′′(a) < 0 and ψ′(a) = φ′′′(a) < 0 by equation (1.14).

⇒ ψ has a local minimum x◦ ∈ (a, ζ).

In particular, if ψ is twice differentiable at stationary point x◦, that is, ψ′(x◦) = 0 such that

ψ′′(x◦) ≥ 0, which in turn implies that φ(4)(x◦) = ψ′′ ≥ 0, which leads to contradiction with

equation (1.15), since q(x) > 0, φ(x) < 0, such that u(x) < v(x), for a ≤ x < b is true.

1.1.5 Cauchy transform

The Cauchy transform of a positive measure plays an important role in complex analysis, and

especially in the approximation problem . We will highlight a bit in this respect and in chapter

3, cf. [55, 36].
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Let g ∈ C∞ be a complex smooth function defined on Ω, let z◦ be a point in the interior of

Ω.

Consider; complex 1- form,

w = g χ =
g(z)

(z − z◦)
dz.

so that χ = dz
z−z◦ is a closed 1-form because dχ = 0 and w is defined on Ω except at z◦, that

is; z◦ is a singularity of

w =
g(z)

(z − z◦)
dz. (1.16)

Now, we shall remove a small disk D(z◦, r) centered at z◦ and with the radius of so small r that

D(z◦, r) ⊂ Ω.

The remaining part of Ω which is an annulus like domain D′ = Ω�D(z◦, r), such that the

boundary of D′ is ∂Ω ∪ ∂D(z◦, r).

It is important to mention that the boundary of D(z◦, r) is oriented in the opposite way, that

is, in the negative oriented ( clockwise), such that

∂D′ = ∂Ω ∪ (−∂D(z◦, r)).

Moreover, w = g(z)
(z−z◦) dz has no singularity in D′

By appyling Stokes’ Theorem 20 we obtain,∫ ∫
D′

dw =

∫
∂D′

w

=

∫
∂Ω

w −
∫
∂D(z◦,r)

w. (1.17)

∂D(z◦, r) is a circle γ around z◦ such that γ(t) = z◦ + reit, 0 ≤ t ≤ 2π, such that

g(γ(t)) = g(z◦ + reit) convergent to g(z◦) as the radius r shrinks to 0.

The last integral in (1.17) gives∫
∂D(z◦,r)

w =

∫ 2π

0

g(z◦ + reit)

z◦ + reit − z◦
rieitdt.

= i

∫ 2π

0

g(z◦ + ieit)dt.

20we refer the reader to the in Appendix B, Theorem (B.0.20) for more information on Stokes’ Theorem.
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Hence,

i

∫ 2π

0

g(z◦ + reit)dt = i

∫ 2π

0

g(z◦) = 2πig(z◦).

So, equation (1.17) can be written as follows∫ ∫
D′

dw =

∫
∂Ω

w − 2πig(z◦) as r decreases to 0.

Letting r → 0 in equation (1.17), we will notice that the disk D(z◦, r) shrinks and D′ fills up Ω.

⇒
∫ ∫

Ω

dw =

∫
∂Ω

w − 2πig(z◦). (1.18)

Derive equation (1.16) to obtain,

dw =
∂g
∂z

z − z◦
dz ∧ dz. (1.19)

Substituting equations (1.16) and (1.19) in equation (1.18).∫ ∫
Ω

∂g
∂z

z − z◦
dz ∧ dz =

∫
∂Ω

g(z)

(z − z◦)
dz − 2πig(z◦).

⇒ 1

2πi

∫ ∫
Ω

∂g
∂z

z − z◦
dz ∧ dz =

1

2πi

∫
∂Ω

g(z)

(z − z◦)
dz − g(z◦).

⇒ g(z◦) =
1

2πi

∫
∂Ω

g(z)

(z − z◦)
dz − 1

2πi

∫ ∫
Ω

∂g
∂z

z − z◦
dz ∧ dz, (1.20)

which is called Cauchy Pompeiu’s formula.

Now, we shall discuss two special cases:-

• when g(z) is an holomorphic function⇒ ∂g
∂z

= 0.

Hence , we have

g(z◦) =
1

2πi

∫
∂Ω

g(z)

(z − z◦)
dz. ( Cauchy formula).

This formula tells us that :

i. The value of g(z) at z◦ in Ω is completely determined by the values of g(z) on the

boundary.
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ii. The formula:

1

2πi

∫
γ

w =
1

2πi

∫
γ

dz

z − z◦
= 1,

holds for any closed curve γ = z◦+re
it surrounding z◦, not just for a circle with z◦

as its center.

• when g(z) vanish on the boundary of Ω, that is g(z)|∂Ω = 0 then; equation (1.20) be-

comes,

g(z◦) =
1

2πi

∫
∂Ω

g(z)

(z − z◦)
dz − 1

2πi

∫ ∫
Ω

∂g
∂z

z − z◦
dz ∧ dz.

⇒ g(ζ) = 0− 1

2πi

∫ ∫
Ω

∂g
∂z

−(ζ − z)
2idx ∧ dy.

⇒ g(ζ) =
1

π

∫ ∫
Ω

∂g
∂z

ζ − z
dxdy.

⇒ g(ζ) =
1

π

∫ ∫
Ω

∂g
∂z

−(z − ζ)
dxdy.

⇒ −πg(ζ) =

∫ ∫
Ω

∂g
∂z

z − ζ
dxdy =

∂

∂z

∫ ∫
Ω

g

z − ζ
dxdy =

∂

∂z
ĝ.

Finally,

−πg(ζ) =
∂

∂z
ĝ.

where z◦ is switched to ζ , ζ ∈ Ω.

Now, the following question arises:-

Q:- Does Cauchy transform ĝ vanish identically in the unbounded complement of Ω ?

Ans:- By going back to the Cauchy Pompeiu’s Formula (cf. equation (1.20)). We will notice

that when g vanishes on the boundary of Ω, that is g(z)|∂Ω = 0, then

∂ĝ

∂z
= −πg.

⇒
∫
∂ĝ

∂z
dz = −

∫
Qπgdz = 0, for every polynomialQ

where Q = 1 is a non- zero constant function which is a polynomial function of degree zero.

This implies that ĝ = 0 and on the other hand; it is know that ∂ĝ
∂z

= 0 when ĝ is a holomorphic

function.
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Finally, ĝ = c ⇒ ĝ ≡ 0 in (Ω◦)c.

We shall indicate that Cauchy transform possesses two important properties [45]:

Let µ be a complex regular Borel measure with compact support Ω and define

µ̂(z) =

∫
Ω

dµ(ζ)

ζ − z

to be the Cauchy transform of µ. Then

i. ĝ converges almost everywhere in the plane depending on the area. Let z ∈ C\Ω, choose

X subset of the plane so that Ω ⊂ X and let R sufficiently large so that for any ζ ∈ Ω,

we notice that X is contained in the disk DR(ζ) = {z : |ζ − z| < R}, this implies that∫
X

dA

|ζ − z|
≤
∫ 2π

0

∫ R

0

1

r
rdxdy = 2πR <∞,

by Fubini’s theorem, we obtain∫
X

∫
Ω

d|µ|(ζ)

|ζ − z|
dA =

∫
Ω

∫
X

dA

|ζ − z|
d|µ|(ζ) ≤ 2πR|µ|(Ω).

ii. The Cauchy transform is also continuous and holomorphic in C\Ω choose z0 in C\Ω and

z in a neighborhood X of z0 such that X ∩ Ω = ∅, then we have that∣∣∣∣∫
Ω

dµ(ζ)

ζ − z0

−
∫

Ω

dµ(ζ)

ζ − z

∣∣∣∣ ≤ |z0 − z|
∫

Ω

d|µ|(ζ)

|ζ − z0||ζ − z|
≤ C|z0 − z|,

where the constant C depends on the distance between z0 and Ω.

Choose Γ to be a closed curve that lies in C\Ω which does not surround Ω and z0, since 1
ζ−z0 is

holomorphic function then
∫

Γ
1

ζ−z0 = 0, this implies that∫
Γ

(∫
Ω

dµ(ζ)

ζ − z0

)
dz =

∫
Ω

(∫
Γ

dz

ζ − z0

)
dµ(ζ) = 0

Since µ̂(z) is continuous and
∫

Γ
µ̂(z) = 0 over any closed curve Γ lies in C\Ω, hence µ̂(z) is

holomorphic by Moreras Theorem 21 [1].
21Moreras Theorem: If a single - valued function φ(z) of a complex variable z in a domain Ω is continuous and

if its integral over any closed rectifiable contour γ ⊂ Ω is equal to zero, that is, if∫
γ

φ(z)dz = 0, γ ⊂ Ω,

then φ(z) is an holomorphic function in Ω. This theorem was obtained by G. Morera
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1.2 Outline of the Thesis

It is time to outline in detail the plan of the thesis and discussion of the results.

Chapter 2: Brennan’s conjecture, higher integrability of gradient of conformal maps.

In this chapter we start with Brennan conjecture∫ ∫
D
|φ′|2−pdxdy =

∫ ∫
Ω

|ψ′|pdxdy <∞,

which 4
3
< p < 4, with ψ = φ−1 : Ω → D, as a main tool in this area, as introduced by

Pommerenke [52]. It was proved that

I−1(r, φ′) =
1

2π

∫ 2π

0

dθ

|φ′(reiθ)|
= O(1− r)−0.601.

We generalize the formula above to show that,

I−p(r, φ
′) =

1

2π

∫ 2π

0

dθ

|φ′(reiθ)|p
<∞ for − 1.1697 < p <

2

3

Also, we prove that the range of the pth-power integrable function can be extended, if φ

is an univalent function in D with |φ(z)| ≤ 1 for all z and φ(a) = b for some a, b ∈ D, as

presented in Theorem 2.1.5.

In connection with Brennan’s conjecture, we construct some interesting examples (2.2.4),

(2.2.5), (2.2.2) and (2.2.3) which show the behaviour of the boundary derivative of conformal

maps φ from polygon P onto unit disk D and the behaviour of the boundary derivative of the

inverse maps, where polygon P such as rectangular domain and triangular domain or simply

connected domains bounded by a circular arc polygon P = Ω such as crescent domain and

lens domain. This requires the usage of upper half-plane H+ in the construction of a composite

function, which in turn help to estimate the derivative of conformal map and the derivative

of the inverse maps easily through some quantities that belong to H+, in order to obtain a

good estimation, and to circumvent the difficulty in applying Schwarz- Christoffel formula (disk

version) directly in some examples, such as (2.2.2) and (2.2.3).

As part of this chapter, we construct several examples on the integrability of powers gradient

of conformal mapping over infinite sector W , when α = π
n

, for some integer n, which are

presented in the examples (2.2.6),(2.2.7) and (2.2.8).
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In addition, we present a full proof of Hardy identity, for being a fundamental tool to estim-

ate the integral means of univalent function on unit disk D as presented in Pommerenke’s work

[52]. Seemingly, there is no convenient reference, at least to our knowledge.

Chapter 3: Integral means of the derivative of univalent function. In connecton with

chapter 2, we show a good comparison between Theorems (3.1.2) and (3.1.3), where we prove

that the boundedness condition on the univalent function contributes to the expansion of the

range of pth-power integrable function.

In Theorem (3.1.4) we proved that there exists starlike function 22 φ in unit disk (|z| < 1)

such that

1

2π

∫ 2π

0

|φ′(reiθ)|dθ ≤
∫ r

0

M (r)

[
2(1 + ρ)2

ρ2(1− ρ)2
+

4ρ+ 2ρ2

ρ(1− ρ)2
+

1 + ρ

ρ2(1− ρ)

]
dρ

We also proved that the quantity

I−1(r, φ′) =
1

2π

∫ 2π

0

dθ

|φ′(reiθ)|

diverges , if we consider φ : D → D be a möbious transformation, such that w(z) = 1√
φ′(z)

be

a solution of the second order of differential equation w′′(z) + q(z)w(z) = 0 for z ∈ D.

Among other things, we assumed that φ : Ω → D, with a great role for each of Koebe

one-quarter theorem and Koebe distortion theorem to prove there is a constant K depending

on the modulus of z in Ω such that 1− |φ(z)| ≤ K
√
|z|, for some z ∈ Ω , see Theorem 3.2.6.

Theorem ( 3.2.6) generates a sharp result on the integrability of gradient of Cauchy trans-

form ĝ(z) over a sequence ∂Di which is getting larger in D, such that∫
∂Di
∇

(
|ĝ(z)|√
|z|

)
dµi exists and is finite on ∂Di

if the Cauchy transform ĝ(z) of g ∈ Lq(E, dA) for some 1 < q ≤ 2, is identically zero in C\E

and there exist a non-decreasing sequence ∂Di in D, where E is a compact subset of the plane

having connected complement, D be a connected domain D ⊂ E, see Theorem 3.2.8.

Also, Theorem 3.2.6 comes as a tool for proving the integrability of the derivative of con-

formal mappping over bounded domain by a class C 1 Jordan curve exists and is finite for all

p < 2, as presented in Theorem 3.2.7.
22 We refer the reader to Appendix A, definition (A.0.13) for more details on starlike function.
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Chapter 4: Weighted composition operator C
t
2
α in Bergman spaces A2

α,A
2
α−1. Through-

out this chapter, we assume that φ is a conformal self- map of D to study the boundedness of

weighted composition operators C
t
2
α in Bergman spaces A2

α,A
2
α−1.

The work’s idea throughout this chapter comes of S.Shimorin’s paper[58], so what is new

in the boundedness of weighted composition operator C
t
2
α ? The new thing in this work is

prove that, the weighted composition operator C
t
2
α is bounded in Bergman spaces A2

α without

depending on convexity property of the function αφ(t) and satisfies.∫
D

|φ′|t

|1− λφ|γ
(1− |u|2)αdA(u) ≤ Ct−s

1 (φ, t) · Cs
2(φ, t)

(1− |λ|2)γ−α−2t
, for some γ > α + 2t.

While that, the operator C
t
2
α is a bounded in A2

α−1 depending upon the convexity property of

αφ(t) and satisfies ∫
D

|φ′|t

|1− γφ|γ
(1− |u|2)α−1dA(u) ≤ C8

(1− |λ|2)λ−|t|−ε
,

is presented in Theorems 4.1.1 and 4.1.2 respectively.

Chapter 5: Integrability over cardioid domain, simply connected domain. In this

chapter, we consider Ω ⊂ R2 be a bounded domain for all 1 ≤ p < 4
3
, such that the boundary

of Ω is a smooth Jordan curve except the point (z = 0), and a harmonic function on Ω which

belongs to the Sobolev spaceW1,p
0 (Ω), whereW1,p

0 (Ω) is the closure of C∞0 (Ω) in theW1,p(Ω)-

norm, as put forward by P. Hajlasz in [28].

P. Hajlasz in ([28, Theorem 1. pp.80]), proved that u(z) = =(z−1/2 + i
2
) is a harmonic

function in Ω and belong to W1,p
0 (Ω) for all 1 ≤ p < 4

3
. Our work in last chapter is in part

an elaboration of P. Hajlasz’s idea, that’s why we consider Laplace’s equation with Dirichlet

conditions 23 on a bounded simply connected domain Ω ⊂ R2;

∆u = 0, x ∈ Ω;

u = 0, x ∈ ∂Ω.

 (1.21)

23Dirichlet conditions: in the sense, one can be specified only of values along the boundary of Ω, e.g. the

function ux takes prescribed values on the boundary ∂Ω, that is, u(x) = constant [46]
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Here, u ≡ 0 in the closure of Ω. Then, we chose one of the harmonic functions which belong

to the general solution of the Laplace’s equation

u(r, θ) = r−
√
µ sin

√
µθ, (1.22)

where u(r, θ) vanishes on ∂Ω under the condition r = φ(θ) = (sin
√
µθ)

1√
µ , µ is an eigenvalue,

to study the existence of cusp on the boundary cardioid domain, we classify it into (inward cusp,

outward cusp) on the boundary cardioid domain via an integrability of conformal maps at the

intersection point (z = 0) and its neighborhoods.

Consequently, we prove that the integrability of pth-power of the gradient of u(r, θ) =

r−
√
µ sin

√
µθ exists and is finite for p < 2√

µ+1
when µ = 1

n2 n ∈ N as follows:

i. In case n = 2, we have |∇u| ∈ Lp(Ω) for p < 4
3

and u(r, θ) vanishes on ∂Ω except z = 0

(discontinuity point).

ii. In case n ≥ 3, we have |∇u| ∈ Lp(Ω) for p < 2√
µ+1

, and u(r, θ) vanishes on ∂Ω except

at the neighborhoods of z = 0.

iii. Also, we show the existence of an outward-pointing cusp on the boundary of Ω when

n /∈ N; for instance, n =
√

2 /∈ N such that the tangent vector does not equal to zero.

see figures (5.1), (5.2) and table (5.1).

Our approach addresses how to generate two types of an holomorphic functions as follows:

i. u(r, θ) =
(
r−
√
µ cos

√
µθ
)
− 1, defined on cardioid domain Ω, vanishes on ∂Ω,

where r = (cos
√
µθ)

1√
µ which is fully settled in Theorem (5.2.1).

ii. We consider M. Keldysh, M. Laurentiev theorem ([18] Sec.10.1) as fundamental tool

to generate an holomorphic function belongs to H
2nπ−θ
nπ (D), n ∈ N, and does not

have poles on ∂D = T, depending on the range of angle θ, nπ < θ ≤ (1 + n)π,

where Ω is a Smirnov domain (cardioid type).

Our work is largely related to some results obtained by D. Khavinson [14, 38].

Theorem (5.2.4) gives the detail.
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Chapter 2

Brennan’s conjecture, higher

integrability of gradient of conformal

maps

Introduction

This chapter provides an overview on Brennan’s conjecture which is associated with es-

timating the integral means of derivatives of univalent functions via generalizing some

cases which have posed by Pommerenke [52]. We also show the behaviour of the bound-

ary derivative of conformal maps from polygon domain onto unit disk, and its inverse

maps. Moreover, we study the existence and finiteness the integrability of the derivative

of conformal maps over an infinite sectorW.

We must begin by assuming that Ω be a simply connected domain in complex plane C,

and let φ : D −→ Ω be a conformal mapping.

Brennan’s conjecture states that, for all such φ,∫ ∫
D
|φ′|2−pdxdy =

∫ ∫
Ω

|ψ′|pdxdy <∞. (2.1)
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holds for 4
3
< p < 4 with ψ = φ−1 : Ω → D, dxdy = dA is the area measure on the

plane.

This conjecture is justified, in the following respects:

(a) In case p = 2, the integral represents the unit disk area and is therefore finite. This

can be shown as follows:

Proof. :- Let φ−1 : Ω→ D, ψ = φ−1. So, by using the formula below

∫ ∫
D
|φ′|2−pdxdy =

∫ ∫
Ω

|ψ′|pdxdy (2.2)

⇒
∫ ∫

Ω

|ψ′|2dxdy =

∫ ∫
D
rdrdθ =

∫ 2π

0

∫ 1

0

rdrdθ = π.

(b) Equation (2.2) holds, for all 4
3
< p < 3. Proof can be given as follows:

Proof. :- Assume that, 2− p = q in (2.2) and then apply second Green’s identity.

1

2π

∫ 2π

0

∂|φ(reiθ)|q

∂r
r dθ =

1

2π

∫ ∫
D

∆(|φ|q) dxdy

=
q2

2πr

∫ ∫
{|w|<r}

|φ(w)|q−2|φ′(w)|2dxdy.

We substitute φ(w) = z, since φ is holomorphic and univalent.

So, φ(w) has a maximum modulus M∞(r, φ) = max
|w|=r
|φ(w)|, such that

∫
D
|φ′(w)|2dxdy =

∫
Ω

dxdy

|φ(w)| ≤ max
|w|=r
|φ(w)| = M∞(r, φ)
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By Prawitz’s theorem, this implies that

d

dr

(
1

2π

∫ 2π

0

|φ(reiθ)|qdθ
)

=
q2

2πr

∫ ∫
{|w|<r}

|φ(w)|q−2|φ′(w)|2dxdy

=
q2

2πr

∫ ∫
φ({|w|<r})

|z|q−2dA(z)

≤ q2

2πr

∫ ∫
φ({|w|<r})

max |z|q−2dA(z)

=
q2

2πr

∫ 2π

0

∫ M(r)

0

tq−2tdtdθ

=
q2

r

∫ M(r)

0

tq−1dt

=
q

r
Mq(r) ≤ q

r

rq

(1− r)2q
since M(r) ≤ r

(1− r)2

Taking integral of both sides over r gives

1

2π

∫ 2π

0

|φ(reiθ)|qdθ ≤ q

∫ r

0

tq

t(1− t)2q
dt

≤ q

∫ r

0

tq−1

(1− t)2q
dt

≤ q

[(∫ r

0

tq−1dt

)(
−
∫ r

0

−(1− t)−2qdt

)]
≤ [tq|r0

[
−(1− t)1−2q

1− 2q

∣∣∣∣r
0

.

When q > 0⇒ [tq|r0 <∞; r ≤ 1.

And when, 1− 2q > 0, we have[
−(1− t)1−2q

1− 2q

∣∣∣∣r
0

=
1

2q − 1

[
−(1− r)1−2q + 1

]
=

1

2q − 1

[
1− 1

(1− r)2q−1

]
=

1

2q − 1

[
(1− r)2q−1 − 1

(1− r)2q−1

]
=

(
(1− r)2q−1 − 1

2q − 1

)(
1

(1− r)2q−1

)
≤ Cq

(1− r)2q−1
since

(
(1− r)2q−1 − 1

2q − 1

)
≤ Cq as r → 1.
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Therefore we obtain

1

2π

∫ 2π

0

|φ(reiθ)|qdθ ≤ Cq
(1− r)2q−1

By Distortion theorem

1

2π

∫ 2π

0

|φ′(reiθ)|qdθ ≤
(

(1 + r)q

rq(1− r)q

)(
1

2π

∫ 2π

0

|φ(reiθ)|qdθ
)

≤
(

(1 + r)q

rq(1− r)q

)(
Cq

(1− r)2q−1

)
≤ Cq′

(1− r)3q−1
where

Cq(1 + r)q

rq
≤ Cq′ .

⇒ 1

2π

∫ 1

0

∫ 2π

0

|φ′(reiθ)|q drdθ ≤
∫ 1

0

Cq′

(1− r)3q−1
= −

∫ 1

0

Cq′dr

∫ 1

0

−dr

(1− r)3q−1

=

[
−
∫ 1

0

Cq′dr)(
(1− r)2−3q

2− 3q

∣∣∣∣1
0

.

so,when 2− 3q > 0⇒ 3q < 2. But, we have q = (2−p)⇒ 3(2− p) < 2 such that

p > 4
3
.

In the following, we present a full proof of hardy identity which is of course well known,

but there seems to be no convenient reference, at least to our knowledge.

Hardy Identity

Proposition 2.0.1. (First identity)

Let φ be holomorphic in D. If φ(z) 6= 0 in D then

r
∂

∂r
|φ|(z) = |φ(z)| <

(
z
φ′(z)

φ(z)

)
. (2.3)

Proof. :- Let φ(z) = u(r, θ) + iv(r, θ), z = reiθ. then

|φ|(z) =
√
u2 + v2.
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Differentiating φ(z) with respect to r, fixing θ then take limit along the ray where the

argument is equal to θ.

φ′(reiθ) =
∂φ(reiθ)

∂r
=

1

eiθ
(ur + ivr). (2.4)

Now;

z
φ′(z)

φ(z)
= reiθ

1
eiθ

(ur + ivr)

u+ iv
= r

uur + vvr
u2 + v2

+ ir
uvr − vur
u2 + v2

⇒ |φ(z)| <
(
z
φ′(z)

φ(z)

)
= r

uur + vvr√
u2 + v2

.

As is known that,

∂|φ|(z)

∂r
=
∂
√
u2 + v2

∂r
=
uur + vvr√
u2 + v2

.

So, this implies that

r
∂|φ|(z)

∂r
= |φ(z)| <

(
z
φ′(z)

φ(z)

)

Proposition 2.0.2. (Second identity)

Let φ be holomorphic in D. If φ(z) 6= 0 in D then

∂

∂θ
|φ|(z) = −|φ(z)| =

(
z
φ′(z)

φ(z)

)
. (2.5)

Proof. :-Let φ(z) = u(r, θ) + iv(r, θ), z = reiθ then

|φ|(z) =
√
u2 + v2.

Differentiating φ(z) with respect to θ, fixing r then take limit along the circle.

φ′(reiθ) =
∂φ(reiθ)

∂θ
=

1

reiθ
(uθ + ivθ)
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z
φ′(z)

φ(z)
= reiθ

1
reiθ

(uθ + ivθ)

u+ iv
=
vθu− vuθ
u2 + v2

+ i
−uθu− vvθ
u2 + v2

⇒ |φ| =
(
z
φ′(z)

φ(z)

)
=
−uθu− vvθ√

u2 + v2
.

As it is known that,

∂|φ|(z)

∂θ
=
∂
√
u2 + v2

∂θ
=
uθu+ vvθ√
u2 + v2

.

So,this implies that

∂|φ|(z)

∂θ
= −|φ(z)| =

(
z
φ′(z)

φ(z)

)

Proposition 2.0.3. (Third identity)

Let φ be holomorphic in D. If φ(z) 6= 0 in D then

r
∂

∂r
|φ(z)| <

(
zφ′(z)

φ(z)

)
− ∂

∂θ
|φ(z)| =

(
zφ′(z)

φ(z)

)
= |φ(z)|

∣∣∣∣zφ′(z)

φ(z)

∣∣∣∣2 (2.6)

Proof. :- As we stated earlier

|φ(z)|
∣∣∣∣zφ′(z)

φ(z)

∣∣∣∣2 =
√
u2 + v2

∣∣∣∣reiθ 1
reiθ

(vθ − iuθ)
u+ iv

∣∣∣∣2 =
(u2

θ + v2
θ)√

u2 + v2
.

In this case we have to prove that

r
∂

∂r
|φ(z)| <

(
zφ′(z)

φ(z)

)
− ∂

∂θ
|φ(z)| =

(
zφ′(z)

φ(z)

)
=

(u2
θ + v2

θ)√
u2 + v2

.

As follows

r
∂

∂r
|φ(z)| <

(
zφ′(z)

φ(z)

)
= r

∂

∂r

√
u2 + v2 r

uur + vvr
u2 + v2

= r
∂

∂r
(r
uur + vvr√
u2 + v2

)

A short calculation gives:

r
∂

∂r
|φ(z)| <

(
zφ′(z)

φ(z)

)
=
u2v2

θ + r2u3urr + u2u2
θ + r2u2vvrr + v2v2

θ + r2uv2urr + v2u2
θ + r2v3vrr√

u2 + v2(u2 + v2)

+
−u2v2

θ + 2uvuθvθ − v2u2
θ + u3vθ − vu2uθ + uv2vθ − v3uθ√

u2 + v2(u2 + v2)
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Next, to calculate − ∂
∂θ
|φ(z)| =

(
zφ′(z)
φ(z)

)
,

− ∂

∂θ
|φ(z)| =

(
zφ′(z)

φ(z)

)
= − ∂

∂θ

√
u2 + v2

[
−uuθ − vvθ
(u2 + v2)

]
∂

∂θ

[
uuθ + vvθ
(u2 + v2)

]
.

So,

r
∂

∂r
|φ(z)| <

(
zφ′(z)

φ(z)

)
− ∂

∂θ
|φ(z)| =

(
zφ′(z)

φ(z)

)
=

(u2
θ + v2

θ)√
u2 + v2

.

This implies that:

r
∂

∂r
|φ(z)| <

(
zφ′(z)

φ(z)

)
− ∂

∂θ
|φ(z)| =

(
zφ′(z)

φ(z)

)
= |φ(z)|

∣∣∣∣zφ′(z)

φ(z)

∣∣∣∣2

Theorem 2.0.4. (Hardy Identity for I (r, φ))

Let Φ(t) be a twice continuously differentiable function, Ψ(t) = t d
dt

[tΦ′(t)] , 0 ≤ t <∞,

let φ(z) be holomorphic in unit disk D and

I (r, φ) =
1

2π

∫ 2π

0

Φ(|φ(reiθ)|)dθ, z = reiθ; 0 ≤ r < 1.

which is the integral mean of the modulus of φ(z).

If φ(z) 6= 0 for |z| = r then

r
∂

∂r
[r I ′] =

1

2π

∫ 2π

0

Ψ(|φ(z)|)
∣∣∣∣zφ′φ

∣∣∣∣2dθ.

Proof. :- first we have to choose

Φ(t) = t ⇒ Φ′(t) = 1⇒ Ψ(t) = t
d

dt
[t] = t.

Let t = |φ(z)|, to obtain

r
∂

∂r
|φ|(z) = |φ(z)| <

(
z
φ′(z)

φ(z)

)
. (see equation (2.3))

∂

∂θ
|φ|(z) = −|φ(z)| =

(
z
φ′(z)

φ(z)

)
. (see equation (2.5))
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Multiplying both identities above by (r ∂
∂r

), ( ∂
∂θ

) respectively. we obtain,

(r
∂

∂r
)2 |φ|(z) = r

∂

∂r
|φ(z)| <

(
z
φ′(z)

φ(z)

)
. (2.7)

(
∂

∂θ
)2 |φ|(z) = − ∂

∂θ
|φ(z)| =

(
z
φ′(z)

φ(z)

)
. (2.8)

Adding equation (2.8) to (2.7) we obtain

(r
∂

∂r
)2 |φ|(z) + (

∂

∂θ
)2 |φ|(z) = r

∂

∂r
|φ(z)| <

(
z
φ′(z)

φ(z)

)
− ∂

∂θ
|φ(z)| =

(
zφ′(z)

φ(z)

)
(2.9)

Integrating (2.9) with respect to θ, when 0 ≤ θ ≤ 2π and using identity (2.6).

1

2π

∫ 2π

0

(r
∂

∂r
)2|φ|(z)dθ +

1

2π

∫ 2π

0

(
∂

∂θ
)2|φ|(z)dθ =

1

2π

∫ 2π

0

r
∂

∂r
|φ(z)|<

(
zφ′(z)

φ(z)

)
dθ

− 1

2π

∫ 2π

0

∂

∂θ
|φ(z)|=

(
zφ′(z)

φ(z)

)
dθ.

⇒ r
∂

∂r

[
r
∂

∂r

(
1

2π

∫ 2π

0

|φ(z)|dθ
)]

=
1

2π

∫ 2π

0

|φ(z)|
∣∣∣∣zφ′φ

∣∣∣∣2dθ.

In the attempt to prove Hardy identity with respect to the mean value of the modulus of

φ on the circle |z| = r, we have been led to prove a good deal more. In particular, for the

function Ip(r, φ),

Ip(r, φ) =
1

2π

∫ 2π

0

|φ(reiθ)|pdθ, z = reiθ; 0 ≤ r < 1.

where p is any positive number.

To this end, we will try to prove some more identities related to |φ|p.

Proposition 2.0.5. (Fourth identity)

Let φ be holomorphic in D. If φ(z) 6= 0 in D then

r
∂

∂r
|φ|p(z) = p|φ(z)|p <

(
z
φ′(z)

φ(z)

)
. (2.10)
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Proof. :- Let φ(z) = u(r, θ) + iv(r, θ), z = reiθ then

|φ(z)| =
√
u2 + v2 ⇒ |φ(z)|p = (u2 + v2)

p
2 .

Differentiating φ(z) with respect to r, fixing θ then taking limit along the ray where the

argument is equal to θ.

φ′(reiθ) =
∂φ(reiθ)

∂r
=

1

eiθ
(ur + ivr). (2.11)

Now;

z
φ′(z)

φ(z)
= reiθ

1
eiθ

(ur + ivr)

u+ iv
= r

uur + vvr
u2 + v2

+ ir
uvr − vur
u2 + v2

.

⇒ p|φ(z)|p <
(
z
φ′(z)

φ(z)

)
= r(u2 + v2)

p
2
−1(uur + vvr).

As we stated earlier,

r
∂|φ|p(z)

∂r
= r

∂

∂r
(u2 + v2)

p
2 = rp (u2 + v2)

p
2
−1 (uur + vvr).

This implies that

r
∂|φ|p(z)

∂r
= p |φ(z)|p <

(
z
φ′(z)

φ(z)

)

Proposition 2.0.6. (Fifth identity)

Let φ be holomorphic in D, If φ(z) 6= 0 in D then

∂

∂θ
|φ|p(z) = −p|φ(z)|p =

(
z
φ′(z)

φ(z)

)
. (2.12)

Proof. :- Let φ(z) = u(r, θ) + iv(r, θ), z = reiθ then

|φ(z)| =
√
u2 + v2 ⇒ |φ(z)|p = (u2 + v2)

p
2 .

Differentiating φ(z) with respect to θ, fixing r then taking limit along the circle.

φ′(reiθ) =
∂φ(reiθ)

∂θ
=

1

reiθ
(uθ + ivθ)
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z
φ′(z)

φ(z)
= reiθ

1
reiθ

(uθ + ivθ)

u+ iv
=
vθu− vuθ
u2 + v2

+ i
−uθu− vvθ
u2 + v2

⇒ p |φ|p(z) =
(
z
φ′

φ

)
= −p (u2 + v2)

p
2
−1 (uθu+ vvθ).

As we stated earlier,

∂|φ|p(z)

∂θ
=

∂

∂θ
(u2 + v2)

p
2 = p (u2 + v2)

p
2
−1 (uθu+ vvθ).

It leads to

∂|φ|(z)

∂θ
= −p |φ|p(z) =

(
z
φ′(z)

φ(z)

)

Proposition 2.0.7. (Sixth identity)

Let φ be holomorphic in D, If φ(z) 6= 0 in D then

r
∂

∂r
p |φ(z)|p <

(
zφ′(z)

φ(z)

)
− ∂

∂θ
p |φ(z)|p =

(
zφ′(z)

φ(z)

)
= p2|φ(z)|p

∣∣∣∣zφ′(z)

φ(z)

∣∣∣∣2. (2.13)

Proof.

p2 |φ(z)|p
∣∣∣∣zφ′(z)

φ(z)

∣∣∣∣2 = p2 (u2 + v2)
p
2

∣∣∣∣reiθ 1
reiθ

(vθ − iuθ)
u+ iv

∣∣∣∣2 = p2 (u2 + v2)
p
2
−1 (u2

θ + v2
θ).

Let us prove that

r
∂

∂r
p |φ(z)|p <

(
zφ′(z)

φ(z)

)
− ∂

∂θ
p |φ(z)|p =

(
zφ′(z)

φ(z)

)
= p2 (u2 + v2)

p
2
−1 (u2

θ + v2
θ).

As follows:

r
∂

∂r
p |φ(z)|p <

(
zφ′(z)

φ(z)

)
= r

∂

∂r
(u2 + v2)

p
2 r

uur + vvr
u2 + v2

= p r

[
∂

∂r
r (u2 + v2)

p
2
−1 (uur + vvr)

]
.

A short calculation gives

r
∂

∂r
p|φ(z)|p<

(
zφ′(z)

φ(z)

)
= r2p(u2 + v2)

p
2
−1(ur

2 + uurr + vr
2 + vvrr)

+ rp(uur + vvr)(u
2 + v2)

p
2
−1 + r2 p (

p− 2

2
) (uur + vvr)(u

2 + v2)
p
2
−2 (2uur + 2vvr).
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r
∂

∂r
p |φ(z)|p<

(
zφ′(z)

φ(z)

)
= p (u2 + v2)

p
2
−1(vθ

2 + ruvrθ − uvθ + uθ
2 − rvurθ + vuθ)

+p(uvθ−vuθ)(u2+v2)
p
2
−1+p2(u2+v2)

p
2
−2(uvθ−vuθ)2−2p(u2+v2)

p
2
−2(uvθ−vuθ)2.

Now, we calculate −p ∂
∂θ
|φ(z)|p =

(
zφ′(z)
φ(z)

)
as follows:

−p ∂

∂θ
|φ|p(z) =

(
zφ′(z)

φ(z)

)
= p

∂

∂θ
(u2 + v2)

p
2
−1 (uuθ + vvθ) .

This will produce:

⇒ −p ∂
∂θ
|φ(z)|p=

(
zφ′(z)

φ(z)

)
= p(u2 + v2)

p
2
−1(uθ

2 − ruvrθ + vθ
2 + rvvrθ)

− 2p(u2 + v2)
p
2
−2(uuθ + vvθ)

2 + p2(u2 + v2)
p
2
−2(uuθ + vvθ)

2.

So,

r p
∂

∂r
|φ(z)|<

(
zφ′(z)

φ(z)

)
− p ∂

∂θ
|φ(z)|=

(
zφ′(z)

φ(z)

)
= 2p(u2 + v2)

p
2
−1(vθ

2 + uθ
2)

+ p2(u2 + v2)
p
2
−1(vθ

2 + uθ
2)− 2p (u2 + v2)

p
2
−1(vθ

2 + uθ
2).

It implies that

rp
∂

∂r
|φ(z)|<

(
zφ′(z)

φ(z)

)
− p ∂

∂θ
|φ(z)|=

(
zφ′(z)

φ(z)

)
= p2(u2 + v2)

p
2
−1(vθ

2 + uθ
2)

⇒ rp
∂

∂r
|φ(z)|<

(
zφ′(z)

φ(z)

)
− p ∂

∂θ
|φ(z)|=

(
zφ′(z)

φ(z)

)
= p2|φ(z)|p

∣∣∣∣zφ′(z)

φ(z)

∣∣∣∣2.

Theorem 2.0.8. (Hardy Identity for Ip(r, φ))

Let Φ(t) be a twice continuously differentiable function and Ψ(t) = t d
dt

[tΦ′(t)] , (0 ≤

t <∞), let φ(z) be holomorphic in unit disk D and

Ip(r, φ) =
1

2π

∫ 2π

0

Φ(|φ(reiθ)|p)dθ, z = reiθ; 0 ≤ r < 1.

which is the integral mean of the |φ|p(z), where p is any positive number.

If φ(z) 6= 0 for |z| = r then

r
∂

∂r
[r I ′] =

1

2π

∫ 2π

0

Ψ(|φ(z)|p)
∣∣∣∣zφ′φ

∣∣∣∣2dθ.
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Proof. We can choose

Φ(t) = tp ⇒ Φ′(t) = ptp−1.

⇒ Ψ(t) = t
d

dt

[
p t tp−1

]
= p2 tp.

Let t = |φ(z)| ⇒ tp = |φ(z)|p, then:

r
∂

∂r
|φ|p(z) = p|φ(z)|p <

(
z
φ′(z)

φ(z)

)
(see equation(2.10)).

∂

∂θ
|φ|p(z) = −p|φ(z)|p =

(
z
φ′(z)

φ(z)

)
(see equation (2.12)).

Multiplying both identities above by (r ∂
∂r

), ( ∂
∂θ

) respectively. we get,

(r
∂

∂r
)2 |φ|p(z) = p r

∂

∂r
|φ(z)|p <

(
z
φ′(z)

φ(z)

)
. (2.14)

(
∂

∂θ
)2 |φ|p(z) = −p ∂

∂θ
|φ(z)|p =

(
z
φ′(z)

φ(z)

)
. (2.15)

Adding equation (2.15) to (2.14) produces:

(r
∂

∂r
)2|φ|p(z) + (

∂

∂θ
)2|φ|p(z) = p r

∂

∂r
|φ(z)|p<

(
z
φ′(z)

φ(z)

)
− p ∂

∂θ
|φ(z)|p=

(
zφ′(z)

φ(z)

)
(2.16)

Integrating (2.16) with respect to θ when 0 ≤ θ ≤ 2π, and using equation (2.13).

1

2π

∫ 2π

0

(r
∂

∂r
)2|φ|p(z)dθ +

1

2π

∫ 2π

0

(
∂

∂θ
)2|φ|p(z)dθ =

1

2π

∫ 2π

0

r
∂

∂r
|φ(z)|p<

(
zφ′

φ

)
dθ

− 1

2π

∫ 2π

0

∂

∂θ
|φ(z)|p=

(
zφ′(z)

φ(z)

)
dθ.

⇒ r
∂

∂r

[
r
∂

∂r

(
1

2π

∫ 2π

0

|φ|p(z)dθ

)]
=
p2

2π

∫ 2π

0

|φ(z)|p
∣∣∣∣zφ′φ

∣∣∣∣2dθ.

2.1 On the integral means of the derivative of an uni-

valent function

The aim of this section is to show some interesting results on the integral means of the de-

rivative of a univalent function by generalizing the following Theorem (2.1.1), according
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to the source [52].

Theorem 2.1.1. [52] If φ is univalent function in unit disk D then, as r → 1− 0,

I−1(r, φ′) =
1

2π

∫ 2π

0

dθ

|φ′(reiθ)|
= O((1− r)−0.601). (2.17)

Proof. :- Given that φ is univalent function in D. Therefore, φ is holomorphic function

and (one-to-one) such that φ′(z) 6= 0 this implies that (φ−1(z))′ = 1
φ′(z)

, is holomorphic

function ∀z ∈ D, except at a possible pole z0 of φ where 1
φ′(z0)

has a double zeros, which

can be written as follows

w(z) =
√

1
φ′(z)
⇒ w2(z) = (φ′(z))−1, is holomorphic function.

1

2π

∫ 2π

0

|φ′(reiθ)|−1dθ =
1

2π

∫ 2π

0

|w(reiθ)|2dθ ; z = reiθ

Let I−1(r, φ′) = I (r). So,

I−1(r, φ′) = I (r) =
1

2π

∫ 2π

0

|φ′(reiθ)|−1dθ =
1

2π

∫ 2π

0

|w(reiθ)|2dθ ; z = reiθ (2.18)

where w(z) has a Taylor series w(z) =
∑∞

n=0 anz
n ; z ∈ D.

By Parseval Formula (cf. Lemma 1.1.7).
∞∑
n=0

|an|2r2n =
1

2π

∫ 2π

0

|w(reiθ)|2dθ (2.19)

⇒ I (r) =
1

2π

∫ 2π

0

|φ′(reiθ)|−1dθ =
1

2π

∫ 2π

0

|w(reiθ)|2dθ =
∞∑
n=0

|an|2r2n (2.20)

Differentiating equation (2.20) gives,

I ′(r) =
∞∑
n=1

2n|an|2r2n−1

I ′′(r) =
∞∑
n=1

2n(2n− 1)|an|2r2n−2

I (3 )(r) =
∞∑
n=2

2n(2n− 1)(2n− 2)|an|2r2n−3

I (4 )(r) =
∞∑
n=2

2n(2n− 1)(2n− 2)(2n− 3)|an|2r2n−4
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And

w′(z) =
∞∑
n=1

nanz
n−1

w′′(z) =
∞∑
n=2

n(n− 1)anz
n−2

⇒ |w′′(z)|2 =
∞∑
n=2

n2(n− 1)2|an|2|z|2n−4

⇒ I (4 )(r) ≤ K|w′′(reiθ)|2 by lemma (1.1.11)

Let us find K by comparing the coefficients between I (4)(r) and |F ′′(reiθ)|2 to find K as

follows:

2n(2n− 1)(2n− 2)(2n− 3)|an|2r2n−4 ≤ Kn2(n− 1)2|an|2r2n−4

4(2n− 1)(n− 1)(2n− 3) ≤ Kn(n− 1)2

4(2n− 1)(2n− 3) ≤ Kn(n− 1)

4(2− 1

n
)(2− 1

n− 1
) ≤ K

So, K = 16 is smallest such constant as n→∞.

I (4 )(r) =
∞∑
n=2

2n(2n− 1)(2n− 2)(2n− 3)|an|2r2n−4 ≤ 16
∞∑
n=2

n2(n− 1)2|an|2|z|2n−4

⇒ I (4 )(r) ≤ 16

2π

∫ 2π

0

|w′′(reiθ)|2dθ (2.21)

Differentiating w(z) = (φ′)
−1
2 twice we get w′′(reiθ) as follows:-

w′(z) =
−φ′′

2φ′
√
φ′

w′′(z) = −1

2

[
(
φ′′′φ′ + φ′′2

φ′2
)− 1

2
(
φ′′

φ′
)2

]
w′′(z) = −1

2
(φ′)−

1
2

[
d

dz
(
φ′′

φ′
)− 1

2
(
φ′′

φ′
)2

]
w′′(z) = −1

2
w(z)

[
d

dz
(
φ′′

φ′
)− 1

2
(
φ′′

φ′
)2

]
; (|z| < 1)
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where,

{Sφ} =

[
d

dz
(
φ′′

φ′
)− 1

2
(
φ′′

φ′
)2

]
is so called Schwarzian derivative.

w′′(z) = −1

2
w(z) {Sφ}; it is known that {Sφ} ≤

6

(1− |z|2)2
.

We return to inequality (2.20) to find the final formula for the differential inequality of

Ip(r).

I (4 )(r) ≤ 16

2π

∫ 2π

0

|w′′(reiθ)|2dθ =
16

2π

∫ 2π

0

∣∣∣∣−1

2
w(z) {Sφ}

∣∣∣∣2 dθ

= 4 |{Sφ}|2
(

1

2π

∫ 2π

0

|w(z)|2dθ

)
.

≤ 4

(
36

(1− |z|2)4

) (
1

2π

∫ 2π

0

|w(z)|2dθ

)
.

= 144(1− r2)−4Ip(r) by equation (3.21)

⇒ I (4 )(r) ≤ 144(1− r2)−4Ip(r); for a ≤ r < 1 and suitable a < 1.

(2.22)

Now, we need to check if the inequality (2.22) bounded or not, that is,

I (4 )(r) ≤ 144(1− r2)−4Ip(r) < C(1− r)−4Ip(r)

such that,

⇒ 144(1 + r)−4 < C; a ≤ r < 1

144

(1 + r)4
< C.

If r = 1 then C > 9.

So, the value of C is slightly more than 9.( that is; C = 9.01 will do).

⇒ I (4 )(r) ≤ 144(1− r2)−4Ip(r) < 9.01(1− r)−4Ip(r)

This differential Inequality is corresponding to the differential equation below by lemma (1.1.11):

ν(4)(r) = 9.01(1− r)−4 ν(r) (2.23)
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Which has a solution

ν(r) = A(1− r)−β; whereAis a constant andβ > 0.

We attempt to find the value of β as follows:

ν ′(r) = Aβ(1− r)−β−1

ν ′′(r) = Aβ(β + 1)(1− r)−β−2

ν(3)(r) = Aβ(β + 1)(β + 2)(1− r)−β−3

ν(4)(r) = Aβ(β + 1)(β + 2)(β + 3)(1− r)−β−4

Substituting ν(r), ν(4)(r) in equation (2.22) we get,

Aβ(β + 1)(β + 2)(β + 3)(1− r)−β−4 = 9.01 (1− r)−4 (A(1− r)−β)

⇒ β(β + 1)(β + 2)(β + 3) = 9.01.

Is a quartic polynomial with the roots:

β1 = −3.6009, β2 = 0.6009, β3 = −1.5− 1.3834i, β4 = −1.5 + 1.3834i forj = 1, 2, 3, 4.

Hence, when j goes from 1→ 4,Re(βj) will be less than 0.6009, such thatReβ < 0.601.

Therefore,

ν(r) = A(1− r)−0.601

is the solution of (2.23).

Choosing a sufficiently large constant A in front of the (1 − r)−0.601- term, allow us to

apply Lemma (1.1.11) so that I (4 )(r0) > ν(4)(r0) for k = 0, 1, 2, 3. at r0 ≤ r < 1.

I (r) < ν(r) , ∀r, r0 ≤ r < 1

⇒ I (r) < ν(r) = A(1− r)−0.601 = O(1− r)−0.601.
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Theorem 2.1.2. [52] If φ is holomorphic and univalent in unit disk D, then

Ip(r, φ
′) = O((1− r)−β) as r → 1− 0 for p ∈ R (2.24)

and

β > −1

2
+ p+

√
1

4
− p+ 4p2 (2.25)

Proof. :- We have

Ip(r, φ
′) =

1

2π

∫ 2π

0

|φ′(reiθ)|pdθ (2.26)

Multiplying both sides of equation (2.51) by the (r2( ∂
∂r

)2) using Theorem (2.0.8) and

Lemma (1.1.5), and with a bit of calculations, we get differential inequality of Ip(r, φ′).

r2(
∂

∂r
)2Ip = r2(

∂

∂r
)2(

1

2π

∫ 2π

0

|φ′(reiθ)|pdθ)

r2(
∂

∂r
)2Ip = r

∂

∂r

[
r
∂

∂r

(
1

2π

∫ 2π

0

|φ′(reiθ)|pdθ
)]

.

r
∂

∂r
(rI ′p) =

p2

2π

∫ 2π

0

|φ′|p|zφ
′′

φ′
|
2

dθ

r2I ′′p (r) + rI ′p(r) =
p2

2π

∫ 2π

0

|φ′|p|zφ
′′

φ′
|
2

dθ

r2I ′′p (r) =

(
p2

2π

∫ 2π

0

|φ′|p
∣∣∣∣zφ′′φ′

∣∣∣∣2dθ

)
− rI ′p(r). (2.27)

Since I ′p(r) ≥ 0⇒−I ′p(r) ≤ 0.(
p2

2π

∫ 2π

0

|φ′|p|zφ
′′

φ′
|
2

dθ

)
− rI ′p(r) ≤

p2

2π

∫ 2π

0

|φ′|p
∣∣∣∣zφ′′φ′

∣∣∣∣2dθ

By inequality (2.27);

r2I ′′p (r) ≤ p2

2π

∫ 2π

0

|φ′|p
∣∣∣∣zφ′′φ′

∣∣∣∣2dθ (2.28)

Now, since φ is univalent, by lemma (1.1.5), we can write:∣∣∣∣zφ′′φ′
∣∣∣∣ =

∣∣∣∣zφ′′φ′ − 2r2

1− r2
+

2r2

1− r2

∣∣∣∣ ,
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and we obtain that

r2I ′′p (r) ≤ p2

2π

∫ 2π

0

|φ′|p
∣∣∣∣(zφ′′φ′ − 2r2

1− r2

)
+

2r2

1− r2

∣∣∣∣2dθ (2.29)

Simplifying the inequality (2.28) gives:∣∣∣∣zφ′′φ′ − 2r2

1− r2
+

2r2

1− r2

∣∣∣∣2 ≤ (∣∣∣∣zφ′′φ′ − 2r2

1− r2

∣∣∣∣+

∣∣∣∣ 2r2

1− r2

∣∣∣∣)2

=

∣∣∣∣zφ′′φ′ − 2r2

1− r2

∣∣∣∣2
+

∣∣∣∣ 2r2

1− r2

∣∣∣∣2 + 2

∣∣∣∣zφ′′φ′ − 2r2

1− r2

∣∣∣∣ ∣∣∣∣ 2r2

1− r2

∣∣∣∣ (2.30)

Using lemma (1.1.5), we have∣∣∣∣zφ′′φ′ − 2r2

1− r2

∣∣∣∣2 ≤ 16r2

(1− r2)2
.

Also, ∣∣∣∣ 2r2

1− r2

∣∣∣∣2 =
4r4

(1− r2)2

2

∣∣∣∣zφ′′φ′ − 2r2

1− r2

∣∣∣∣∣∣∣∣ 2r2

1− r2

∣∣∣∣ =

∣∣∣∣zφ′′φ′ − 2r2

1− r2

∣∣∣∣∣∣∣∣ 4r2

1− r2

∣∣∣∣
=

[
Re(z

φ′′

φ′
)− 2r2

1− r2

]
(

4r2

1− r2
); 0 ≤ r < 1

Equation (2.30) becomes∣∣∣∣zφ′′φ′ − 2r2

1− r2
+

2r2

1− r2

∣∣∣∣2 ≤ 16r2

(1− r2)2
+

4r4

(1− r2)2
+

[
Re(z

φ′′

φ′
)− 2r2

1− r2

]
(

4r2

1− r2
)

Hence, inequality (2.29) becomes

r2I ′′p (r) ≤ p2

2π

∫ 2π

0

|φ′|p
(

16r2

(1− r2)2
+

4r4

(1− r2)2

)
dθ +

p2

2π

∫ 2π

0

|φ′|p
[
Re(z

φ′′

φ′
)

]
(

4r2

1− r2
)dθ

− p2

2π

∫ 2π

0

|φ′|p
(

8r4

(1− r2)2

)
dθ (2.31)

Note that

Ip(r) =
1

2π

∫ 2π

0

|φ′|pdθ (2.32)
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Let φ(z) = u+ iv then φ′ =
∂φ

∂r
=

1

eiθ
(ur + ivr); (see equation (2.11))

⇒ |φ′| =
√
u2
r + v2

r

When |φ′| is raised to the power p, then

⇒ |φ′|p = (u2
r + v2

r)
p
2

⇒ ∂|φ′|p

∂r
=
p

2
(u2

r + v2
r)

p
2
−1 (2ururr + 2vrvrr).

= p (u2
r + v2

r)
p
2

(ururr + vrvrr)

(u2
r + v2

r)

= p |φ′|p <(
φ′′

φ′
).

and,

∂

∂r
Ip(r) =

1

2π

∫ 2π

0

∂

∂r
|φ′|pdθ

I ′p(r) =
p

2π

∫ 2π

0

|φ′|p<(
φ′′

φ′
)dθ

Multiplying both sides by r, we obtain

rI ′p(r) =
p

2π

∫ 2π

0

|φ′|pRe(z
φ′′

φ′
)dθ (2.33)

Substituting equations (2.32) & (2.33) in equation (2.31) we get

r2I ′′p (r) ≤
(

16p2r2

(1− r2)2
+

4p2r4

1− r2

)
Ip(r) +

(
4pr2

1− r2

)
rI ′p(r)−

(
8p2r4

(1− r2)2

)
Ip(r)

r2I ′′p (r) ≤
(

16p2r2

(1− r2)2
+

4p2r4

1− r2
− 8r4

(1− r2)2

)
Ip(r) +

(
4pr3

1− r2

)
I ′p(r)

r2I ′′p (r) ≤
(

16p2r2 − 4p2r4

(1− r2)2

)
Ip(r) +

(
4pr3

1− r2

)
I ′p(r) (2.34)

Equation (2.34) is a differential inequality. So, we have to compare (2.34) with the dif-

ferential equation (1.11) in lemma (1.1.10).

To apply lemma (1.1.10) we have to find r0 lies between 0 and r as we already have

0 ≤ r < 1.
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Given ε > 0 we find r0 = r0 < 1 such that, 0 < r0 ≤ r < 1 as follows:

Dividing equation (2.34) by r2 leads to

I ′′p (r) ≤
(

4pr3

r2(1− r2)

)
I ′p(r) +

(
16p2r2 − 4p2r4

r2(1− r2)2

)
Ip(r) (2.35)

We show that each term in equation (2.33) is bounded by ε.

4pr3

r2(1− r2)
=

4pr3

r2(1− r)(1 + r)
=

2p

(1− r)
≤ 2p+ ε

(1− r)
; when r → 1.

And the same thing with respect to the second term.

16p2r2 − 4p2r4

r2(1− r2)2
=

4p2r2(4− r2)

r2(1− r)2(1 + r)2
=

12p2

4(1− r)2
≤ 3p2 + ε

(1− r)2
; when r → 1.

⇒ I ′′p (r) ≤ 2p+ ε

1− r
I ′p(r) +

3p2 + ε

(1− r)2
Ip(r) (2.36)

Now, we compare equation (2.36) with DE below.

ν ′′(r) =
2p+ ε

1− r
ν ′(r) +

3p2 + ε

(1− r)2
ν(r), (2.37)

which is Cauchy − EulerEquation, the solution of this equation is defined as follows:

ν(r) = c(1− r)−α

ν ′(r) = αc(1− r)−α−1

ν ′′(r) = α(α + 1)c(1− r)−α−2

We can rewrite equation (2.35) as follows:

(1− r)2ν ′′(r) = (2p+ ε)(1− r)ν ′(r) + (3p2 + ε)ν(r)

(1− r)2[α(α + 1)c(1− r)−α−2] = (2p+ ε)(1− r)[αc(1− r)−α−1] + (3p2 + ε)c(1− r)−α.

⇒ [α(α + 1)− α(2p+ ε)− (3p2 + ε)](1− r)−α = 0

Knowning that (1− r)−α > 0, it is a positive solution to the equation (2.37)

α(α + 1)− α(2p+ ε)− (3p2 + ε) = 0

α2 + (1− 2p− ε)α− (3p2 + ε) = 0.
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Let’s look for its limit when ε −→ 0.

lim
ε→0

[α2 + (1− 2p− ε)α− (3p2 + ε)] = 0

α2 + (1− 2p)α− 3p2 = 0

⇒ α =
−(1− 2p)±

√
(1− 2p)2 + 12p2

2
= −1

2
+ p+

√
4p2 − p+

1

4

⇒ α tends to the quantity on the right - hand side of equation (2.25).

Choose the constant c in ν(r) = c(1− r)−α so large enough to make

ν(r0) > I (r0) and then ν ′(r0) = αc(1− r0)−α−1 > I ′(r0)

Then by lemma (1.1.10), we obtain

I (r) < ν(r) for r0 ≤ r < 1

I (r) <
c

(1− r)α

⇒ I (r) = O((1− r)−β).

Lemma 2.1.3. [41] Let φ be holomorphic on the unit disk D, and assume that |φ(z)| ≤

1 for all z, and φ(a) = b for some a, b in D, then

|φ′(a)| ≤ 1− |b|2

1− |a|2
.

Main results:

According to the theorem (2.1.2) above, there are questions to raise; Does the integral

means of the derivative of univalent function

I−p(r, φ
′) =

1

2π

∫ 2π

0

dθ

|φ′(reiθ)|p
, (2.38)

exist for some values of p? Theorem below is an answer to the questions raised, and

improving to what was proved by Pommerenke in [52].
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Theorem 2.1.4. If φ is an univalent function in unit disk D then, as r → 1− 0,

I−p(r, φ
′) =

1

2π

∫ 2π

0

dθ

|φ′(reiθ)|p
<∞ for − 1.1697 < p <

2

3
(2.39)

Proof. Given

1

2π

∫ 2π

0

dθ

|φ′(reiθ)|p
=

1

2π

∫ 2π

0

|φ′(reiθ)|−pdθ

Suppose that, p = −1 − α. It is worth to mention that this hypothesis was adopted by

Brennan [9], when 0 ≤ α < 0.399 to prove that∫ 2π

0

|φ′(reiθ)|pdθ <∞ for − 1− α < p <
2

3

.

Hence, we have

1

2π

∫ 2π

0

|φ′(reiθ)|−pdθ =
1

2π

∫ 2π

0

|φ′(reiθ)|1+αdθ

=
1

2π

∫ 2π

0

|φ′(reiθ)| (|φ′(reiθ)|)αdθ

= O(1− r)−3α 1

2π

∫ 2π

0

|φ′(reiθ)|dθ (Distortion theorem)

Now, we have to calculate the integral means

Mp(r, φ
′) =

1

2π

∫ 2π

0

|φ′(reiθ)|dθ

Applying Hölder inequality, we obtain

1

2π

∫ 2π

0

|φ′(reiθ)|dθ ≤
(∫ 2π

0

|φ′(reiθ)|pdθ
) 1

p
(∫ 2π

0

|φ′(reiθ)|qdθ
) 1

q

So, when 1
p

= 1−δ
2
, as known that 1

p
+ 1

q
= 1⇒ q = 2

1+δ
. This implies to

1

2π

∫ 2π

0

|φ′(reiθ)|dθ ≤
(∫ 2π

0

|φ′(reiθ)|2dθ

) 1−δ
2
(∫ 2π

0

|φ′(reiθ)|
2δ
1+δdθ

) 1+δ
2

(2.40)

We have to estimate two integrals on the right-hand side inequality (2.40) as follows:
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By lemma (3.1.1) we have

(∫ 2π

0

|φ′(reiθ)|2dθ

) 1−δ
2

= O((1− r)−1)
1−δ
2 .

By using theorem (1) in [52] when p = 2δ
1+δ

.

(∫ 2π

0

|φ′(reiθ)|
2δ
1+δdθ

) 1+δ
2

= O((1− r)−β)
1+δ
2 = O(1− r)

−β(1+δ)
2

Finally, ∫ 2π

0

|φ′(reiθ)|dθ = O(1− r)
−β(1+δ)

2 O((1− r))
−(1−δ)

2∫ 2π

0

|φ′(reiθ)|dθ = O(1− r)
−1
2

(1+δ)β− 1
2

+ δ
2

for every β satisfies;

β > −1

2
+ p+

√
(
1

4
− p+ 4p2) see Theorem 2.1.2.

by choosing δ = 0.0364; (0 < δ < 1), then the value of β as follows:

β > −1

2
+ p+

√
(
1

4
− p+ 4p2) = −1

2
+

2δ

1 + δ
+

√
1

4
− p+ 4(

2δ

1 + δ

2

)

It immediately follows that β > 0.0168898.

Suppose β = 0.0169

⇒
∫ 2π

0

|φ′(reiθ)|dθ = O(1− r)
−1
2

(1+δ)β− 1
2

+ δ
2

= O(1− r)
−1
2

(1.0364)(0.0169)−0.5+0.0182

= O(1− r)−0.00875758−0.4818

= O(1− r)−0.49055758

= O(1− r)−0.491.
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Hence,

∫ 2π

0

|φ′(reiθ)|−pdθ = O(1− r)−0.491 O(1− r)−3α∫ 1

0

∫ 2π

0

|φ′(reiθ)|−pdθdr =

∫ 1

0

O(1− r)−3α−0.491dr

This implies that −3α− 0.491 + 1 > 0⇒ α < 0.1697.

By assumption, we have p = −1− α⇒ p > −1.1697, this implies to −1.1697 < p < 2
3
,

depending on Brennan’s result.

Theorem 2.1.5. If φ is an univalent function in D with |φ(z)| ≤ 1 for all z and φ(a) = b

for some a, b ∈ D then, as r → 1− 0,

(a) The range of the pth-power integrable function in Brennan’s conjecture has in-

creased to be 4
3
< p < 5 depending on behaviour of self-conformal maps

(b) |an| ≤ e1, where e1 = 2.71828.

Proof. (a) The integral

∫ ∫
D
|φ′|pdxdy <∞, for −1− α < λ <

2

3
, (cf.[9]).
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Let λ = −1− α

∫ 1

0

∫ 2π

0

|φ′|λdθ =

∫ 1

0

∫ 2π

0

|φ′|−1−αrdrdθ

=

∫ 1

0

∫ 2π

0

|φ′|−α|φ′|−1rdrdθ

=

∫ 1

0

∫ 2π

0

O
(
(1− r)−1

)α |φ′|−1rdrdθ; Distortion theorem (1.1.6)

≤
∫ 1

0

∫ 2π

0

O(1− r)−α
(

1− |φ(z)|2

1− |z|2

)−1

rdrdθ; (Schwarz-Pick lemma (2.1.3))

≤
∫ 1

0

∫ 2π

0

O(1− r)−α
(

1

1− |z|

)−1

rdrdθ

=

∫ 1

0

∫ 2π

0

O(1− r)−α 1

(1− r)−1
rdrdθ

=C

∫ 1

0

rdr

(1− r)α−1

≤ C

∫ 1

0

dr

(1− r)α−1

=

∫ 1

0

(1− r)−α+1dr =

[
(1− r)−α+2

−α + 2

∣∣∣∣1
0

.

when −α + 2 > 0⇒ λ = −1− α > −3⇒−3 < λ < 2
3
.

Brennan’s conjecture stated that,

∫ ∫
D
|φ′|2−pdxdy =

∫ ∫
Ω

|ψ′|pdxdy <∞; whenever
4

3
< p < 4.

Hence, Let 2− p = λ⇒ p = 2− λ⇒ 4
3
< p < 5.

We notice that the range of the pth-power integrable function in Brennan’s conjecture has

increased depending on behaviour of self-conformal maps.

Proof. (b) Given φ(z) is bounded and univalent function in D, that is; φ(z) is a holo-

morphic function in D. Our aim is to estimate the coefficients of φ which are denoted |an|
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as follows:

φ(z) = a0 + a1z + a2z
2 . . .+ anz

n + . . .

φ′(z) = a1 + 2a2z . . .+ nanz
n + . . .

nan =
1

2πi

∫ 2π

0

φ′(z)

zn
dz

Let z = reiθ for 0 ≤ r < 1.

|nan| =|
1

2πi

∫ 2π

0

φ′(reiθ)

rneinθ
reiθdθ| ≤ 1

2π

∫ 2π

0

|φ′(reiθ)|
rn−1

dθ

rn|nan| ≤
r

2π

∫ 2π

0

|φ′(reiθ)|dθ (2.41)

As well-known that

l(r) = r

∫ 2π

0

|φ′(reiθ)|dθ; (0 ≤ r < 1), (2.42)

is the length of the curve {φ(z) : |z| = r}. and let r = 1− 1
n+1

= n
n+1

, Since

rn|nan| ≤
r

2π

∫ 2π

0

|φ′(reiθ)|dθ.

|nan| ≤
e1

2π
(

n

n+ 1
)

∫ 2π

0

(
1− |φ(z)|2

1− |z|2

)
dθ; (Schwarz-Pick lemma (2.1.3))

|nan| ≤
e1

n+ 1

(
1

1− |z|

)
|an| ≤

e1

n+ 1

(
1

1− r

)
.

|an| ≤ e1, where
1

1− r
= n+ 1
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2.2 Boundary behaviour for modulus of the derivative of

conformal mapping of polygon region to unit disk and its

inverse

We start this section with basic definition of the polygonal domain and we present some

typical examples to examine the boundary behaviour of the derivatives of conformal map-

ping of polygon to unit disk, as well as the boundary behaviour of the derivatives of the

inverse maps.

Definition 2.2.1 (Polygon). A polygon P is usually defined as a collection of n vertices

v1, v2, ..., vn and n edges v1v2, v2v3, ..., vn−1vn, vnv1 such that no pair of nonconsecutive

edges share a point. We deviate from the usual practice by defining a polygon as the

closed finite connected region of the plane bounded by these vertices and edges. The

collection of vertices and edges will be referred to as the boundary of P , denoted by ∂P,1

a polygon of n vertices will sometimes be called an n-gon.

Riemann mapping theorem guarantees the existence of a conformal map φ from polygonal

domain P ⊂ C conformally onto the unit disk D (|w| < 1), which can be extended

continuously to the boundary ( cf. Carathéodory’s theorem 1.1.2). Worth of a mention

that is not yet possible write down a simple formula for the conformal map from one

region to another. Hence, in case of a map from the (upper half-plane (=z > 0) or unit

disk D) to a polygon, then Schwarz- Christoffel formula [17]

allows to compute the conformal map φ defined as follows:

Consider φ : P −→ D, be a conformal mapping, where ∂P be a circular arc or straight

line segment γ, normalized by the conditions φ(z0) = 0 and φ′(z0) > 0 ( where z0 is

1The term “polygon” is often modified by “simple” to distinguish it from polygons that cross themselves,

Simple polygons are also called Jordan polygons, because such a polygon divides the plane into two regions. The

boundary of a polygon is a “Jordan curve” 2: it separates the plane into two disjoint regions, the interior and the

exterior of the polygon.
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some point in P ), and observe that φ maps γ onto an arc γ̂ of the unit circle |w| = 1 with

ψ(w) = φ−1(z) : D −→ P.

φ(z) = A+ C

∫ z n−1∏
k=1

(ζ − zk)αk−1dζ

where A and C are suitably chosen constants (cf. Theorem 1.1.8).

So, we deliberately construct φ as the composition of one Schwarz-Christoffel map from

P into upper half-plane (by applying Schwarz- Christoffel transformation) and another

map of the upper half-plane to unit disk , in the examples (2.2.2), (2.2.3) where φ maps

the P to unit disk.

This technique could help to study the behavior of conformal mapping by estimating some

quantities which belong to interior upper half-plane, which in turn will help to analyze

the boundary behaviour of the derivative of this map.

In the following some examples describe of the above:

Example 2.2.2. The derivative of the conformal mapping defined on Rectangular domain

to the Unit disk is bounded but the derivative of the inverse maps is unbounded.

Solution. Map the interior of the rectangular domain with vertices at points z1 = 1,

z2 = −1, z3 = −a, and z4 = a with a > 1 into upper half plane needs to define Schwarz-

Christoffel transformtion which maps H+ into rectangle as follows:

z = A+B

∫ ζ

ζo

ds

(s− 1)
1
2 (s+ 1)

1
2 (s− a)

1
2 (s+ a)

1
2

z = A+B

∫ ζ

ζo

ds

(s2 − 1)
1
2 (s2 − a2)

1
2

Suppose A = 0 and B = 1 for convenience.

z =

∫ ζ

ζo

ds√
(s2 − 1)(s2 − a2)

(2.43)

Suppose ζo = 0 and let a = 1
k
, then the integral (2.52) is transformed to

z =

∫ ζ

ζo

ds√
(s2 − 1)(s2 − ( 1

k
)2)

= k

∫ ζ

0

ds√
(s2 − 1)(k2s2 − 1)
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1
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unit disk

D

ζ = snz

z = arcsn(ζ, k)

φ
=
sn
z−
i

sn
z+
i

ψ
=

sn
z+
i

2i
cn
zd
nz

ζ
=
i w

+
1w−

1
w

=
ζ−
iζ+

i

Figure 2.1: Conformal mappings from rectangular domain onto unit disk

z = k

∫ ζ

0

ds√
(1− s2)(1− k2s2)

(2.44)

The integral (2.44) is called an elliptic integral of first kind and k is a modulus of the

elliptic integral with 0 < k < 1, denote by

z = sn−1(ζ, k). (2.45)

The inverse mapping of integral (2.44) is known as the Jacobi elliptic function denoted

by

ζ = sn(z, k).

⇒ φ =
ζ − i
ζ + i

=
snz − i
snz + i

: Rectangular domain −→ D

φ′ =
(snz + i)(cnz dnz)− (snz − i)( dnz)

(snz + i)2
=

2i cnz dnz

(snz + i)2
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such that; dnz =
√

1− k2sn2z , cnz =
√

1− sn2z.

|φ′| = |2i cnz dnz
(snz + i)2

| = 2|cnz dnz|
|snz + i|2

snz ∈ H+ ⇒ snz + i ∈ H+ that is; |snz + i| ≥ 1 ⇒ 1

|snz + i|
≤ 1

|cnz dnz| = |
√

1− k2sn2z| |
√

1− sn2z|

|1− k2sn2z| ≤ 1 + |snz|2

|1− sn2z| ≤ 1 + |k snz|2

⇒ |φ′| = 2|cnz dnz|
|snz + i|2

≤ 2(1 + |snz|2)(1 + |k snz|2)

⇒ |φ′| is bounded.

It remains to show that the inverse of the derivative of such function φ(z) is unbounded

as follows:

ψ = φ−1 : D −→ rectangular domain

ψ′ =
1

φ′
=

(snz + i)2

2i cnz dnz

⇒ ψ =
(snz + i)2

2i cnz dnz

|ψ′| = |snz + i|2

2|cnz dnz|

snz ∈ H+⇒ (snz + i) ∈ H+⇒ |snz + i|2 ≥ 1.

|ψ′| = |snz + i|2

2|cnz dnz|

≥ 1

2|cnz dnz|

⇒ |ψ′| is unbounded as |z| −→ 0.

Example 2.2.3. The derivative of the conformal mapping defined on Triangular domain

M to the unit disk is bounded but the derivative of the inverse maps is unbounded.
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H+

z-plane

w1 = 0

b

w2

w3 = b

w-plane

ζ-plane

D

φ1

φ−1
1

h(
w
)

φ
2

Figure 2.2: Conformal mappings from triangular domain onto unit disk

Solution. To construct conformal mapping defined on triangle domain to unit disk D. we

have to define conformal mapping on triangular domain to upper half plane H+ and then

define another mapping from H+ to unit disk D to achieve our aim.

To do so, First : we have to establish conformal mapping that maps upper half- plane H+

onto triangular domain M by Schwarz-Christoffel transformation as follows:

Let

φ1 = A

∫ z

zo

(s− x1)−k1 (s− x2)−k2ds+B.

be such that −ki = αi
π
− 1 ; ∀i = 1, 2 to be Schwars-Christoffel transformation that

maps H+ into the interior of the equilateral triangle M such that αi = π
3

; ∀i = 1, 2, 3.

Now, by assisstance that zo = 1, A = 1 and B = 0, we obtain Schwars-Christoffel
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transformation defined as follows:

φ1 =

∫ z

1

(s+ 1)
−2
3 (s− 1)

−2
3 ds. (2.46)

Which maps x1 = −1, x2 = 1 and x3 =∞ into M w1w2w3 as follows:

i. In case z = 1⇒ φ1(1) = 0 ; that is , w1 = 0 in H+.

ii. In case z = −1, we have

φ1(−1) =

∫ −1

1

(s+ 1)
−2
3 (s− 1)

−2
3 ds = w2. (2.47)

iii. In case z = ±∞, we have

lim
z→±∞

φ1 =

∫ ±∞
1

(s+ 1)
−2
3 (s− 1)

−2
3 ds = w3. (2.48)

To solve these integrals, let us consider first the equation (2.47) by choosing a path

of the integration z = x along the real axis in the positive sense, that is; by writing

s− 1 = |s− 1| eiθ1

s+ 1 = |s+ 1| eiθ2 .

The argument (θ1 + θ2) remains constant throughout integration from -1 to 1 since (s+ 1)

stays positive with zero argument, and (s− 1) has constant argument π. Therefore equa-

tion (2.47) yields

w2 = φ1(−1) = −
∫ 1

−1

(x+ 1)
−2
3 (1− x)

−2
3 (−e−

2πi
3 )ds.

w2 = φ1(−1) = e
πi
3

∫ 1

0

2dx

(1− x2)
−2
3

. (2.49)

By letting x =
√
t in equation (2.49), we obtain Beta function B(1

2
, 1

3
) and

w2 = φ1(−1) = e
πi
3 B(

1

2
,
1

3
).

⇒ w2 = b e
πi
3 .
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where b is the value of B(1
2
, 1

3
) Now, the vertex w3 lies on the positive u- axis.

So, w3 must be represented by the boundary integral 1 to∞ as follows:

w3 = φ1(∞) =

∫ ∞
1

(x+ 1)
−2
3 (1− x)

−2
3 dx

w3 = φ1(∞) =

∫ ∞
1

dx

(x2 − 1)
−2
3

. (2.50)

But w3 is also represented by integral (2.55) when z = −∞ along the negative real axis.

So,

w3 = φ1(−∞) =

∫ −∞
1

(x+ 1)
−2
3 (1− x)

−2
3 dx

=

∫ −1

1

(x+ 1)
−2
3 (1− x)

−2
3 e

−2πi
3 dx +

∫ −∞
−1

(x+ 1)
−2
3 (1− x)

−2
3 e

−4πi
3 dx.

w3 = w1 + e
−πi
3

∫ ∞
1

dx

(x2 − 1)
2
3

⇒ w3 = w1 + e
−πi
3 w3. (2.51)

Solving (2.51) for w3 we obtain:

⇒ w3 − e
−πi
3 w3 = w1.

w3 (1− e
−πi
3 ) = b e

−πi
3

w3 = b ; since (1− e
−πi
3 ) = e

−πi
3 .

In the end, we found the conformal mapping that maps upper half- plane H+ onto trian-

gular domain M.

It is known that φ2 = z−i
z+i

maps upper half- plane H+ onto unit disk D.

Hence, we have

φ1 =

∫ z

1

(s2 − 1)
−2
3 ds : upper half planeH+ −→ triangular domain M

and φ2 =
z − i
z + i

: upper half- planeH+ → unit diskD.
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Let

h(w) : triangular domain M−→ unit disk D.

defined as follows:

h(w) = (φ2 ◦ φ−1
1 )(w) = φ2(φ−1

1 )(w)

h′(w) = φ′2(φ−1
1 )(φ′−1

1 )

= (
φ−1

1 − i
φ−1

1 + i
)
′
(

1

φ′1
)

=
(φ−1

1 + i)(φ′−1
1 )− (φ−1

1 − i)(φ′−1
1 )

(φ−1
1 + i)

2

1

φ′1
.

⇒ h′(w) =
2i(z2 − 1)

2
3

(φ−1
1 + i)2

(z2 − 1)
2
3

=
2i(z2 − 1)

4
3

(φ−1
1 + i)2

.

|h′(w)| = |2i(z
2 − 1)

4
3

(φ−1
1 + i)2

| = 2i|z2 − 1| 43
|φ−1

1 + i|2
,

where (φ−1
1 )

′
= 1

φ′1
= (z2 − 1)

2
3 and φ−1

1 ∈ H+, so that (φ−1
1 + i) ∈ H+.

This implies to

|φ−1
1 + i|2 ≥ 1 ⇒ 1

|φ−1
1 + i|2

≤ 1

⇒ |h′(w)| ≤ 2(|z|2 + 1)
4
3 .

|h′(w)| is bounded.

What remains is to prove that the inverse of the derivative of h(w) is unbounded.

Note that; φ−1
2 = −i ζ+1

ζ−1
is the Möbius transformation, it maps the unit disk D to upper

half-plane H+, thus we have

(φ−1
2 )

′
=

(ζ − 1)(−i)− (−iζ − i)
(ζ − 1)2

=
2i

(ζ − 1)2
.

We use Schwarz-Christoffel transformation for mapping H+ into triangular domain M.

φ1 =

∫ z

1

(s2 − 1)
−2
3 ds.
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Therefore,

h−1(ζ) = (φ1 ◦ φ−1
2 )(ζ) : D −→M .

(h−1(ζ))
′
= φ′1(φ−1

2 (ζ)) (φ−1
2 (ζ))

′

= [(φ−1
2 (ζ))2 − 1]

−2
3

2i

(ζ − 1)2
.

=
2i
[
−( ζ+1

ζ−1
)2 − 1

]−2
3

(ζ − 1)2

=
2i
[
−2ζ2−2
(ζ−1)2

]−2
3

(ζ − 1)2
.

=
2i

(ζ − 1)2
[
−2ζ2−2
(ζ−1)2

]−2
3

=
2i

(ζ − 1)2 (−2ζ2 − 2)
2
3 (ζ − 1)

−4
3

=
2i

(ζ − 1)
2
3 (−2ζ2 − 2)

2
3

.

|(h−1(ζ))
′ | =

∣∣∣∣∣ 2i

(ζ − 1)
2
3 (−2ζ2 − 2)

2
3

∣∣∣∣∣ .
|(h−1(ζ))

′ | =

∣∣∣∣∣ 2

(ζ − 1)
2
3 (2ζ2 + 2)

2
3

∣∣∣∣∣ −→∞ as ζ −→ 1.

Example 2.2.4. The derivative of the conformal mapping defined on crescent domain to

unit disk is bounded but the derivative of the inverse maps is unbounded.

Solution. Compute the conformal mapping of a crescent domain onto unit disk by setting

a sequence of functions as follows:
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−2
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−4
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−1
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−1
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−π

−4π

H+

unit disk

D

φ1 φ2 φ3

φ4 φ5

Figure 2.3: Conformal mappings from crescent domain onto unit disk

Let

φ1 =
1

z
maps C1 → L1 and C2 → L2.

φ2 =
i

z
rotates the stripe in the left plane onto stripe in the lower half plane.

φ3 =
4πi

z
extends the stripe in the lower half plane H− between −π,−2π

φ4 = e
4iπ
z maps the stripe in the lower half plane H−into H+.

φ5 =
e

4iπ
z − i

e
4iπ
z + i

maps the H+ onto unit disk D.

So;

φ(z) =
e

4iπ
z − i

e
4iπ
z + i

: crescent domain −→ unit disk D.

Using short calculation we obtain



Chapter 2. Brennan’s conjecture, higher integrability of gradient of conformal maps 63

φ′(z) =
(e

4iπ
z + i)(−4iπ

z2
e

4iπ
z )− (e

4iπ
z − i)(−4iπ

z2
e

4iπ
z )

(e
4iπ
z + i)2

.

⇒ φ′(z) =
8π
z2
e

4iπ
z

(e
4iπ
z + i)2

=
8πe

4iπ
z

z2(e
4iπ
z + i)2

.

|φ′(z)| = 8π|e 4iπ
z |

|z|2|e 4iπ
z + i|2

.

Now;

|e
4iπ
z | = 1 ⇒ e

4iπ
z ∈ H+ ⇒ (e

4iπ
z + i) ∈ H+.

⇒ |e
4iπ
z + i| ≥ 1 ⇒ |e

4iπ
z + i|2 ≥ 1

⇒ 1

|e 4iπ
z + i|

2 ≤ 1.

⇒ |φ′(z)| = 8π|e 4iπ
z |

|z|2|e 4iπ
z + i|2

.

≤ 8π

|z|2

Hence, |φ′(z)| is bounded. We show that the inverse of the derivative of such function

φ(z) is unbounded as follows:

φ−1(w) = ψ(w) : D −→ crescent domain.

ψ = φ−1 =
1

φ
=
e

4πi
z + i

e
4πi
z − i

.

⇒ ψ′ =
1

φ′

⇒ ψ′ =
z2(e

4iπ
z + i)

8πe
4iπ
z

⇒ |ψ′| = |z|
2|e 4iπ

z + i|
8π|e 4iπ

z |
.

It is known, e
4iπ
z ∈ H+⇒ (e

4iπ
z + i) ∈ H+. Hence

|e
4iπ
z + i| ≥ 1 & |e

4iπ
z | = 1.

⇒ |ψ′| = |z|
2|e 4iπ

z + i|
8π|e 4iπ

z |
≥ |z|

2

8π
.
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In the end, we obtain |ψ′| is unbounded.

Example 2.2.5. The derivative of the conformal mapping defined on Lens- shaped do-

main to the unit disk is bounded but the derivative of the inverse maps is unbounded.

α β 0

H+

0-1 1

unit disk

D

-1 1

i

−i

φ1 φ2

φ3

Figure 2.4: Conformal mappings from lens domain onto unit disk

Solution. Compute the conformal mapping a lens domain onto unit disk by setting a

sequence of functions as follows:

Let

φ1 =
z − α
z − β

maps Lens-shaped domain to the first quarter plane

φ2 = z2 maps the first quarter plane to the upper half- plane.

φ3 =
z2 − i
z2 + i

maps upper half plane H+ to the unit disk D.

So,



Chapter 2. Brennan’s conjecture, higher integrability of gradient of conformal maps 65

φ(z) =
( z−α
z−β )2 − i

( z−α
z−β )2 + i

: Lens-shaped domain −→ unit disk D.

⇒ φ(z) =
(z − α)2 − i(z − β)2

(z − α)2 + i(z − β)2
.

Therefore when

z = α⇒ φ(z) = −1 in D

z = β ⇒ φ(z) = 1 in D.

When

(z − α)2 = −(z − β)2

⇒ φ(z) =
−(z − β)2 − i(z − β)2

−(z − β)2 + i(z − β)2
= i in D.

In the end, if

(z − α)2 = (z − β)2

⇒ φ(z) =
(z − β)2 − i(z − β)2

(z − β)2 + i(z − β)2
= −i in D.

⇒ φ′(z) =
4i(z − β)2(z − α)− 4i(z − β)(z − α)2

[(z − α)2 + i(z − β)2]2

⇒ |φ′(z)| = 4|α− β||z − β||z − α|
(z − α)4 + (z − β)4

.

where, 4|α− β| = c; c is a constant; (α < β).

Also,

|z − β| ≤ |z|+ |β| = M1

& |z − α| ≤ |z|+ |α| = M2

⇒ |φ′(z)| ≤ M

(z − α)4 + (z − β)4

⇒ |φ′(z)| is a bounded for every z in Lens-shaped domain. Again, we can show that the
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inverse of the derivative of such function φ(z) is unbounded as follows:

ψ′ =
1

φ′
=

[(z − α)2 + i(z − β)2]2

4i(z − β)2(z − α)− 4i(z − β)(z − α)2

⇒ |ψ′| = |(z − α)2 + i(z − β)2|2

4|(z − β)(z − α)(α− β)|

⇒ |ψ′| = (z − α)4 + (z − β)4

4|z − β||z − α||α− β|
.

If z −→ α or z −→ β, then |ψ′| −→ ∞, so |ψ′| is unbounded.

The following examples show the integrability of the derivative of conformal maps on

infinite sectorW exists and is finite for some pth-power integrable function φwhen α = π
n

is a number for some integer n. Further details can be found in the books of Di Francesco

[16] and of M. Stein [64].

Example 2.2.6. Let φ(z) be a conformal mapping defined on infinite sector W for the

angle α = π
2

onto unit disk D as follows:

φ(z) = (φ2 ◦ φ1)(z) =
z2 − i
z2 + i

: W → D so that φ1(z) = z2.

If maps the infinite sector onto upper half plane H+ and φ2(w) = w−i
w+i

maps the upper

half- plane H+ onto unit disk D (see Figure 2.5). Then the integrability of the derivative

of conformal mapping φ, is as follows:∫ ∫
W

|φ′(z)|p dxdy <∞; for each p >
2

3
.

Solution. Given

φ(z) =
z2 − i
z2 + i

: W → D

⇒ φ′(z) =
(z2 + i)(2z)− (z2 − i)(2z)

(z2 + i)2

=
i4z

(z2 + i)2

⇒ |φ′(z)| = 4|z|
|z2 + i|2

.

Now,W-plane is an infinite sector. that is; r = |z| → 0−∞.
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Figure 2.5: Infinite sector W for the angle α = π
2

• so, r = |z| → ∞ (i.e; |z| is large). We know that

|z2 + i| ≥ |z|2 − 1 ≥ 1

2
|z|2.

⇒ 1

|z2 + i|
≤ 2

|z|2
.

⇒ 1

|z2 + i|2
≤ 4

|z|4
,

refer to the behaviour of |z2 + i| at∞ with respect to the region.

⇒ |φ′(z)| = 4|z|
|z2 + i|2

≤ 16|z|
|z|4

= 16|z|−3.

• and r = |z| ∼ 0

⇒ |φ′(z)| = 4|z|
|z2 + i|2

⇒ |φ′(z)| = 4|z|
|i|2

= 4|z|.

⇒ |φ′(z)| ≤

 16|z|−3 ; |z| is large

4|z| ; |z| ∼ 0

∫ π
2

0

∫ ∞
0

|φ′|p dxdy ≤ 4

∫ π
2

0

∫ 1

0

|z|p r drdθ + 16

∫ π
2

0

∫ ∞
1

|z|−3p r drdθ.∫ π
2

0

∫ ∞
0

|φ′|p dxdy = 2π

[∫ 1

0

rp+1 dr

]
+ 8π

[∫ ∞
1

r−3p+1 dr

]
.

⇒
∫ π

2

0

∫ ∞
0

|φ′|p dxdy ≤ 2π

[
rp+2

p+ 2

∣∣∣∣1
0

+ 2π

[
r−3p+2

−3p+ 2

∣∣∣∣∞
1

(2.52)
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There are two definite integrals on the right-hand side of inequality (2.52).

The first one is clearly finite, and the second one is:

−3p+ 2 < 0⇒ −3p < −2⇒ p >
2

3
.

Example 2.2.7. Let φ(z) be a conformal mapping defined on infinite sector W onto unit

disk D as follows:

φ(z) = (φ2 ◦ φ1)(z) =
z4 − i
z4 + i

: W → D

such that φ1(z) = z4 maps the infinite sector onto upper half plane H+ and φ2(w) = w−i
w+i

maps the upper half plane H+ onto unit disk D (see Figure 2.6). then the integrability of

the derivative of conformal mapping is:∫ ∫
W

|φ′(z)|p dxdy <∞ ; for each p >
2

5
.

!"##!$#
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Figure 2.6: Infinite sector W for the angle α = π
4

Solution. Given

φ(z) =
z4 − i
z4 + i

: W → D

⇒ φ′(z) =
(z4 + i)(4z3)− (z4 − i)(4z3)

(z4 + i)2

=
i8z3

(z4 + i)2

⇒ |φ′(z)| = 8|z|3

|z4 + i|2
.

Now, W-plane is an infinite sector. that is; r = |z| → 0−∞.
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• so,when r = |z| → ∞ (that is; |z| be large). We know that

|z4 + i| ≥ |z|4 − 1 ≥ 1

2
|z|4.

⇒ 1

|z4 + i|
≤ 2

|z|4
.

⇒ 1

|z4 + i|2
≤ 4

|z|8
.

This is referring to the behaviour of |z4 + i| at∞ with respect to the region.

⇒ |φ′(z)| = 8|z|3

|z4 + i|2
≤ 8|z|3

|z|8
= 32|z|−5.

• and when r = |z| ∼ 0

⇒ |φ′(z)| = 8|z|3

|z4 + i|2
⇒ |φ′(z)| = 8|z|3

|i|2
= 8|z|3.

⇒ |φ′(z)| ≤

 8|z|−5 ; |z| is large

8|z|3 ; |z| ∼ 0

∫ π
4

0

∫ ∞
0

|φ′|p dxdy ≤ 8

∫ π
4

0

∫ 1

0

r3pr drdθ + 8

∫ π
4

0

∫ ∞
1

r−5pr drdθ

= 2π

[∫ 1

0

r3p+1 dr

]
+ 2π

[∫ ∞
1

r−5p+1 dr

]

⇒
∫ π

4

0

∫ ∞
0

|φ′|p dxdy ≤ 2π [
r3p+2

3p+ 2
|10 + 2π [

r−5p+2

−5p+ 2
|∞1 (2.53)

The first term on the right -hand- side of (2.53) is finite, and the second one is:

−5p+ 2 < 0⇒ −5p < −2⇒ p >
2

5
.

Example 2.2.8. Let φ(z) be a conformal mapping defined on infinite sector W onto unit

disk D as follows:

φ(z) = (φ2 ◦ φ1)(z) =
zn − i
zn + i

: W → D
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such that φ1(z) = zn maps the infinite sector onto upper half- plane H+ where α is of the

form α = π
n

for some integer n and φ2(w) = w−i
w+i

maps the upper half- planeH+ onto unit

disk D (see Figure 2.7). Then the integrability of the derivative of conformal mapping is

as follows: ∫ ∫
W

|φ′(z)|p dxdy <∞ ; for each p >
2

3π
α

+ 1
.

!"##!$#
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Figure 2.7: Infinite sector W for the angle α = π
n

Solution. Let α = π
n

be the angle of the infinite sector W which is mapped by φ1 =

zn onto upper half plane H+.

One can write φ1 = z
π
α . We define the power function φ1 = z

π
α to be the multivalued

function

z
π
α = e

π
α

log z ; z 6= 0.

⇒ z
π
α = e

π
α

log |z|+iargz

= r
π
α ei

π
α
θ e±i

2π2

α
k

Various values of z
π
α are obtained from the principal value e

π
α

log z by multiplying by the

integral power (ei
2π2

α )
k

of ei
2π2

α .

Let α = π
n

is a number for some integer n, then the integral powers ei
2π2

α
k of ei

2π2

α are
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exactly the nth roots of unity, and the values of z
π
α are the n nth roots of z.

⇒ φ(z) =
z
π
α − i
z
π
α + i

=
r
π
α ei

π
α − i

r
π
α ei

π
α + i

φ(z) =
r
π
α cos π

α
θ + ir

π
α sin π

α
θ − i

r
π
α cos π

α
θ + ir

π
α sin π

α
θ + i

. (2.54)

Simplify last equation (2.54) we get:

φ(z) =
r

2π
α − 2ir

π
α cos π

α
θ − 1

r
2π
α + 2r

π
α sin π

α
θ + 1

=
r

2π
α − 1

r
2π
α + 2r

π
α sin π

α
θ + 1

+ i
−2r

π
α cos π

α
θ

r
2π
α + 2r

π
α sin π

α
θ + 1

When θ = 0 or θ = 2π, it implies that:

φ(z) =
r

2π
α − 1

r
2π
α + 1

+ i
−2r

π
α

r
2π
α + 1

=
r

2π
α − 1− 2ir

π
α

r
2π
α + 1

The derivative of φ(z) can be calculated:

φ′(z) =
(r

2π
α + 1)[2π

α
r

2π
α
−1 − 2iπ

α
r
π
α
−1]− (r

2π
α − 1− 2ir

π
α )[2π

α
r

2π
α
−1]

(r
2π
α + 1)2

=
2iπ
α
r

3π
α
−1 + 4π

α
r

4π
α
−1 − 2iπ

α
r
π
α
−1

(r
2π
α + 1)2

=
4π
α
r

4π
α
−1 + i2π

α
(r

3π
α
−1 − r πα−1)

(r
2π
α + 1)2

|φ′(z)| =

∣∣∣4πα r 4π
α
−1 + i2π

α
(r

3π
α
−1 − r πα−1)

∣∣∣
(r

2π
α + 1)2

|φ′(z)| =

√
16π2

α2 r
8π
α
−2 + 4π2

α2 (r
3π
α
−1 − r πα−1)2

(r
2π
α + 1)2

Again, W-plane is an infinite sector. that is; |z| → 0−∞.
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i. In case r = |z| → ∞ (that is; |z| be large).

|φ′(z)| =

√
16π2

α2 |z|
8π
α
−2 + 4π2

α2 (|z|
3π
α
−1 − |z|

π
α
−1)2

(|z|
2π
α + 1)2

.

We know that,

|z|
2π
α + 1 ≥ |z

2π
α + 1| ≥ |z|

2π
α − 1 ≥ 1

2
|z|

2π
α

⇒ |z|
2π
α + 1 ≥ 1

2
|z|

2π
α

⇒ 1

(|z|
2π
α + 1)2

≤ 4

|z| 4πα
.

Hence,

|φ′(z)| =

√
16π2

α2 |z|
8π
α
−2 + 4π2

α2 (|z|
3π
α
−1 − |z|

π
α
−1)2

(|z|
2π
α + 1)2

≤
4

√
16π2

α2 |z|
8π
α
−2 + 4π2

α2 (|z|
3π
α
−1 − |z|

π
α
−1)2

|z| 4πα
.

|φ′(z)| ≤
4
√

16π2

α2 r
8π
α
−2 + 4π2

α2 (r
3π
α
−1 − r πα−1)2

r
4π
α

=
4
√

16π2

α2 r
8π
α
−2 + 4π2

α2 r
2π
α
−2(r

2π
α − 1)2

r
4π
α

=

4

√
4π2

α2 r
2π
α
−2
[
4r

6π
α + (r

2π
α − 1)2

]
r

4π
α

|φ′(z)| ≤
4

√
4π2

α2 r
2π
α
−2
[
4r

6π
α + (r

2π
α − 1)2

]
r

4π
α

=

8π
α
r
π
α
−1

√
4 r

6π
α + (r

2π
α − 1)2

r
4π
α

=
8π

α
r
−3π
α
−1

√
4 r

6π
α + (r

2π
α − 1)2

ii. In case r = |z| ∼ 0

|φ′(z)| =
√

16π2

α2
|z|

8π
α
−2 +

4π2

α2
(|z|

3π
α
−1 − |z|

π
α
−1)2.

⇒ |φ′(z)| =
√

16π2

α2
r

8π
α
−2 +

4π2

α2
(r

3π
α
−1 − r πα−1)2

=

√
16π2

α2
r

8π
α
−2 +

4π2

α2
r

2π
α
−2(r

2π
α − 1)2

=

√
4π2

α2
r

2π
α
−2
[
4r

6π
α + (r

2π
α − 1)2

]
=

2π

α
r
π
α
−1

√
4 r

6π
α + (r

2π
α − 1)2.
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In the end,

⇒ |φ′(z)| ≤


8π
α
r
−3π
α
−1

√
4 r

6π
α + (r

2π
α − 1)2 ; |z| is large

2π
α
r
π
α
−1

√
4 r

6π
α + (r

2π
α − 1)2. ; |z| ∼ 0

∫ π
n

0

∫ ∞
0

|φ′(z)|pdxdy ≤
∫ π

n

0

∫ 1

0

(
2π

α
)p r( π

α
−1)p

[
4 r

6π
α + (r

2π
α − 1)2

] p
2
.rdrdθ

+

∫ π
n

0

∫ ∞
1

(
8π

α
)p r(−3π

α
−1)p

[
4 r

6π
α + (r

2π
α − 1)2

] p
2
rdrdθ.

∫ π
n

0

∫ ∞
0

|φ′(z)|pdxdy ≤ (
2π

α
)p(
π

n
)

∫ 1

0

r( π
α
−1)p+1dr

∫ 1

0

[
4 r

6π
α + (r

2π
α − 1)2

] p
2
.rdr

+ (
8π

α
)p(
π

n
)

∫ ∞
1

r(−3π
α
−1)p+1dr

∫ ∞
1

[
4 r

6π
α + (r

2π
α − 1)2

] p
2

dr. (2.55)

such that, we have four terms . The first, second and fourth terms on the right -hand-side

of (2.55) becomes finite only when

(
−3π

α
− 1)p+ 2 ≤ 0⇒ (

−3π

α
− 1)p ≤ −2

⇒ −(
3π

α
+ 1)p ≤ −2

⇒ (
3π

α
+ 1)p ≥ 2

⇒ p >
2

3π
α

+ 1
.
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Chapter 3

Integral means of the derivative of

univalent function

This chapter is divided into two sections; the first section is connected with chapter 2,

through some results concerning the integral means of univalent function for some pth-

power integrable function, where 1 < p <∞.

Theorem 3.1.3 comes as a nice extension of Theorem 3.1.2 but with a stronger condition,

boundedness, which contributes to the expansion of the range of integrability.

Pommerenke in Theorem 2.1.1 proved that

1

2π

∫ 2π

0

|φ′(reiθ)|−1dθ = O(1− r)−0.601as r → 1− 0.

In this regard, we prove that the integral above diverges, if an holomorphic function

w(z) =
1√
φ′(z)

∈ H 2(D)

be a solution of the Cauchy-Euler differential equation w′′(z)+ q(z)w(z) = 0, for z ∈ D,

where φ is möbious transformation of unit disk D onto itself. Finally, we prove that any

holomorphic function on unit disk with Re(zF ′(z)) > 0 in |z| < 1, generates a starlike

function on unit disk such that

1

2π

∫ 2π

0

|φ′(reiθ)|dθ ≤
∫ r

0

M (r)

[
2(1 + ρ)2

ρ2(1− ρ)2
+

4ρ+ 2ρ2

ρ(1− ρ)2
+

1 + ρ

ρ2(1− ρ)

]
dρ.
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Which appears clearly in Theorem (3.1.4).

For detail about most of the results in this section, cf. [51, 52, 9].

Second section introduces Theorem (3.2.6) which comes as a corollary of the Koebe one-

quarter theorem and Koebe distortion theorem. This result together with Theorem (3.2.7)

establish the existence and finiteness of the integrability of the derivative of conformal

mappping for all p < 2. Further more Theorem (3.2.6) considers a sharp result on the

integrability of gradient of Cauchy transform ĝ(z) over a non-decreasing sequence ∂Di
in D, such that ∫

∂Di
∇

(
|ĝ(z)|√
|z|

)
dµi exists and is finite on ∂Di

if the Cauchy transform ĝ(z) of g ∈ Lq(E, dA) for some 1 < q ≤ 2, is an identically

zero in C\E and there exists a non-decreasing sequence ∂Di in D, where E is a compact

subset of the plane having connected complement, D is a connected domain D ⊂ E, to

produce Theorem (3.2.8).

3.1 Some results on the integral means of derivative of

univalent function

Lemma 3.1.1. [50]

Let T be an open subset of [0, 2π] and 0 ≤ r < 1. If φ ∈ S ,then

∫
T

|φ′(reiθ)|2|φ(reiθ)|p−2dθ ≤

K(p)(1− r)−1(MT (r))p if p > 0,

K(p)(1− r)−1 if p < 0.

such that

MT (r) = max
θ∈T
|φ(reiθ)| ; 0 ≤ r < 1 ; T ⊂ [0, 2π]

At this stage, we show that the boundedness condition in Theorem (3.1.3) contributes to

the expansion of the range of integrability, which in turn provides a good comparison

between Theorems (3.1.2) and (3.1.3).
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Theorem 3.1.2. If φ is holomorphic and univalent in unit disk D, then

I (r, φ′) = O((1− r)−2.914) as r → 1− 0 (3.1)

Proof. :- Let φ′(z) = (
√
φ′(z))2 such that (φ′(z))

1
2 = F (z) be holomorphic function in

unit disk since φ is univalent on unit disk such that F (z) =
∞∑
n=0

anz
n.

We notice that |φ′(z)| = |F (z)|2.

I (r, φ′) =
1

2π

∫ 2π

0

|φ′(reiθ)|dθ =
1

2π

∫ 2π

0

|F (reiθ)|2dθ ; z = reiθ (3.2)

So, F (z) has a Taylor series such that F (z) =
∑∞

n=0 anz
n ; z ∈ D.

By Parseval formula (1.1.7).

∞∑
n=0

|an|2r2n =
1

2π

∫ 2π

0

|F (reiθ)|2dθ (3.3)

Hence,

I (r) =
1

2π

∫ 2π

0

|φ′(reiθ)|dθ =
1

2π

∫ 2π

0

|F (reiθ)|2dθ =
∞∑
n=0

|an|2r2n (3.4)

By differentiating equation (3.4) we get,

I ′(r) =
∞∑
n=1

2n|an|2r2n−1

I ′′(r) =
∞∑
n=1

2n(2n− 1)|an|2r2n−2

I (3 )(r) =
∞∑
n=2

2n(2n− 1)(2n− 2)|an|2r2n−3

I (4 )(r) =
∞∑
n=2

2n(2n− 1)(2n− 2)(2n− 3)|an|2r2n−4
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And

F ′(z) =
∞∑
n=1

nanz
n−1

F ′′(z) =
∞∑
n=2

n(n− 1)anz
n−2

|F ′′(z)|2 =
∞∑
n=2

n2(n− 1)2|an|2|z|2n−4

I (4 )(r) ≤ K|F ′′(reiθ)|2 by lemma 1.1.11and Parseval formula 1.1.7

Let us find K by comparing the coefficients between I (4)(r) and |F ′′(reiθ)|2 to find K as

follows:

2n(2n− 1)(2n− 2)(2n− 3)|an|2r2n−4 ≤ Kn2(n− 1)2|an|2r2n−4

4(2n− 1)(n− 1)(2n− 3) ≤ Kn(n− 1)2

4(2n− 1)(2n− 3) ≤ Kn(n− 1)

4(2− 1

n
)(2− 1

n− 1
) ≤ K

So, K = 16 is smallest such constant as n→∞.

I (4 )(r) =
∞∑
n=2

2n(2n− 1)(2n− 2)(2n− 3)|an|2r2n−4 ≤ 16
∞∑
n=2

n2(n− 1)2|an|2|z|2n−4

I (4 )(r) =
∞∑
n=2

2n(2n− 1)(2n− 2)(2n− 3)|an|2r2n−4 ≤ 16

2π

∫ 2π

0

|F ′′(reiθ)|2dθ (3.5)

∴ I (4 )(r) ≤ 16

2π

∫ 2π

0

|F ′′(reiθ)|2dθ (3.6)
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Differentiate F (z) = (φ′)
1
2 twice to get F ′′(reiθ) as follows:-

F ′(z) =
1

2
(φ′)

1
2
−1φ′′

F ′′(z) =

(
1

2
(φ′)

1
2
−1

)
φ′′′ + φ′′

(
1

2
(
1

2
− 1)(φ′)

1
2
−2φ′′

)
=

1

2
(φ′)

1
2

[
1

2
(
φ′′

φ′
)2 +

d

dz
(
φ′′

φ′
)

]
.

=
1

2
(φ′)

1
2

[
(
φ′′

φ′
)2 +

{
d

dz
(
φ′′

φ′
)− 1

2
(
φ′′

φ′
)2

}]
.

=
1

2
(φ′)

1
2

[
(
φ′′

φ′
)2 + {Sφ}

]
.

where {Sφ} =
[

d
dz

(φ
′′

φ′
)− 1

2
(φ
′′

φ′
)2
]

is called Schwarzian derivative

|F ′′(z)| ≤ 1

2
|φ′|

1
2

∣∣∣∣(φ′′φ′ )2 + {Sφ}
∣∣∣∣ ≤ 1

2
|φ′|

1
2

[
|φ
′′

φ′
|2 + |Sφ|

]
.

|F ′′(z)|2 ≤ 1

4
|φ′|
[
|φ
′′

φ′
|2 + |Sφ|

]2

=
1

4
|φ′|
[
|φ
′′

φ′
|4 +

12

(1− r2)2
|φ
′′

φ′
|2 +

36

(1− r2)4

]
,

where {Sφ} ≤ 6
(1−|z|2)2

. (cf. [47], [19, pp.261-263]) 1.

⇒ |F ′′(z)|2 ≤ 1

4
|φ′|

[
1325.25

(1− r)4

]
= |φ′| 331.3125

(1− r)4
.

⇒
∫ 2π

0

|F ′′(z)|2dθ ≤ 331.3125

(1− r)4

∫ 2π

0

|φ′(reiθ)|dθ.

And hence,

I (4 )(r) ≤ 331.3125(1− r)−4I (r)

The differential Inequality corresponds to differential equation below by lemma (1.1.11):

ν(4)(r) = 331.3125(1− r)−4 ν(r) (3.7)

1 We refer the reader to Appendix A, ( Theorem (A.0.14) and Remark (A.0.15)) for more details on Schwarzian

derivative
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Which has a solution

ν(r) = A(1− r)−β; where A is a constant and β > 0

Now, we find the value of β as follows:

ν ′(r) = Aβ(1− r)−β−1

ν ′′(r) = Aβ(β + 1)(1− r)−β−2

ν(3)(r) = Aβ(β + 1)(β + 2)(1− r)−β−3

ν(4)(r) = Aβ(β + 1)(β + 2)(β + 3)(1− r)−β−4

Substitute ν(r) , ν(4)(r) in equation (2.22) to get,

Aβ(β + 1)(β + 2)(β + 3)(1− r)−β−4 = 331.3125 (1− r)−4 (A(1− r)−β)

then β(β + 1)(β + 2)(β + 3) = 331.3125 ; (Quartic Polynomial),

and the quartic roots for β are.

β1 = −5.9136

β2 = −1.5000 + 4.1206i

β3 = −1.5000 + 4.1206i

β4 = 2.9136

So, we notice that Re(βj) when j goes from 1→ 4 will be less than 2.9136. ⇒ β <

2.914. and then,

ν(r) = A(1− r)−2.914

is the solution of the equation (3.7). Therefor if we chooseA sufficiently large, we will be

able to use lemma (1.1.11) such that I (4 )(r0) > ν(4)(r0) for k = 0, 1, 2, 3. at r0 ≤ r < 1.

I (r) < ν(r) , ∀r, r0 ≤ r < 1

I (r) < ν(r) = A(1− r)−2.914

I (r) = O(1− r)−2.914.
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Theorem 3.1.3. If φ(z) is bounded and univalent in D then,∫ ∫
D

|φ′(z)|dxdy = O(1− r)−0.497. (3.8)

Proof. :- Given φ ∈ S a bounded function.

Hence, if δ > 0, then from Cauchy- Schwarz inequality we obtain the bound∫ 2π

0

|φ′|1+δdθ ≤
(∫ 2π

0

|φ′|2δdθ
) 1

2

︸ ︷︷ ︸
I1

(∫ 2π

0

|φ′|2dθ

) 1
2

︸ ︷︷ ︸
I2

Now, we have to estimate two integrals in the right-hand side as follows: Define,

I2(r) =

∫ 2π

0

|φ′|2dθ = O(1− r)−1 by lemma(3.1.1)

And then define,

I1(r) =

∫ 2π

0

|φ′|2δdθ.

Suppose [φ′]δ = F (z), where F (z) =
∞∑
n=0

cnz
n is holomorphic in unit disk since φ is

univalent in unit disk.

I1(r) =

∫ 2π

0

|F (z)|2dθ.

By Parseval formula (1.1.7)

I1(r) =

∫ 2π

0

|F (z)|2dθ = 2π
∞∑
n=0

|cn|2r2n

It follows that,

I ′1(r) = 2π
∞∑
n=1

2n|cn|2r2n−1.

I ′′1 (r) = 2π
∞∑
n=1

2n(2n− 1)|cn|2r2n−2.
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I ′′1 (r) = 8π
∞∑
n=1

n2|cn|2r2n−2 − 4π
∞∑
n=1

n|cn|2r2n−2 ≤ 8π
∞∑
n=1

n2|cn|2r2n−2

Hence,

⇒ I ′′1 (r) ≤ 8π
∞∑
n=1

n2|cn|2r2n−2 (3.9)

By lemma (1.1.5) we know that for any φ ∈ S , |φ′′
φ′
| ≤ 6

1−r ; |z| = reiθ. This implies to

2π
∞∑
n=1

n2|cn|2r2n−2 =

∫ 2π

0

|F ′(reiθ)|2dθ

= δ2

∫ 2π

0

|φ
′′

φ′
|2|φ′|2δdθ

2π
∞∑
n=1

n2|cn|2r2n−2 ≤ 36 δ2

(1− r)2

∫ 2π

0

|φ′|2δdθ (3.10)

If we combine inequalities (3.9) and (3.10); we obtain

I ′′1 (r) ≤ 8π
∞∑
n=1

n2|cn|2r2n−2 ≤ 144 δ2

(1− r)2
I1(r)

I ′′1 (r)

I1(r)
≤ 144 δ2

1− r)2

(log I1(r))′′ =
I ′′1 (r)

I1(r)
− (

I ′1(r)

I1(r)
)2 ≤ I ′′1 (r)

I1(r)
≤ 144 δ2

1− r)2
(3.11)

Integrating twice yields;

log I1(r)r0 ≤ −144 δ2 log(1− r).

⇒ log I1(r) ≤ log
2π

(1− r)144 δ2

⇒ I1(r) = O(1− r)−144 δ2 .

Consequently, we obtain∫ 2π

0

|φ′|1+δdθ = O(1− r)−
1
2 O(1− r)−72 δ2

= O(1− r)−
1
2
−72 δ2 as r → 1− 0.
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At this stage, we shall suppose that there is 0 < α < 1 with define the set

A = {θ : |φ′| > (1− r)−α}

then

|φ′(z)| = |φ′(z)|1+δ−δ = |φ′(z)|1+δ |φ′(z)|−δ ≤ |φ′(z)|1+δ (1− r)αδ.

Therefore
∫ 2π

0

|φ′(z)|dθ ≤ (1− r)−
1
2
−72δ2+αδ

If we set δ = α
144
⇒ −1

2
+ 0.00347α2 > −α and then α = 0.49915 w 0.4992. Finally,∫ 2π

0

|φ′(reiθ)|dθ = O(1− r)−0.497

Theorem 3.1.4. If F be an holomorphic function on unit disk D, and Re(zF ′(z)) > 0 in

|z| < 1, then there exist a starlike function φ in |z| < 1 such that

1

2π

∫ 2π

0

|φ′(reiθ)|dθ ≤
∫ r

0

M (r)

[
2(1 + ρ)2

ρ2(1− ρ)2
+

4ρ+ 2ρ2

ρ(1− ρ)2
+

1 + ρ

ρ2(1− ρ)

]
dρ

Proof. Let us assume F (z) = log φ with φ be an univalent function in |z| < 1, then

F ′(z) = (log φ(z))′ = φ′(z)
φ(z)

so that zF ′(z) = z φ
′(z)
φ(z)

.

Since Re(zF ′(z)) > 0 in |z| < 1, we obtain Re(z φ
′(z)
φ(z)

) > 0, this implies φ is a starlike

function in |z| < 1.

Let h(z) = zF ′(z)⇒ h(z) = zφ′

φ
, and suppose that G(z) = zφ′ then G(z) = φ(z)h(z),

to obtain

G′(z) = φ′(z)h(z) + φ(z)h′(z)

=
φ(z)h(z)

z
h(z) + φ(z)h′(z)

=
φ

z
h2(z) + φ(z)h′(z)

|G′(z)| =
∣∣∣∣φz h2(z) + φ(z)h′(z)

∣∣∣∣ ≤ r−1|φ(z)||h(z)|2 + |φ(z)||h′(z)|

≤ r−1 max
|z|=r
|φ(z)||h(z)|2 + max

|z|=r
|φ(z)||h′(z)|

= r−1M (r)|h(z)|2 + M (r)|h′(z)|
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where M (r) = max
|z|=r
|φ(z)|, is the maximum modulus of φ(z), and hence we obtain,

1

2π

∫ 2π

0

|G′(reiθ)|dθ ≤ r−1M (r)
1

2π

∫ 2π

0

|h(reiθ)|2dθ︸ ︷︷ ︸
I1

+M (r)
1

2π

∫ 2π

0

|h′(reiθ)|dθ︸ ︷︷ ︸
I2

.

(3.12)

Now, we have to estimate two integrals in inequality (3.12), but before that, we need

apply estimates of length such that we can write

|G(z)| ≤
∫ r

0

|G′(ρeiθ)|dρ.

L(r) =
1

2π

∫ 2π

0

|G(reiθ)| ≤ 1

2π

∫ 2π

0

[∫ r

0

|G′(ρeiθ)|dρ
]

dθ. (3.13)

Estimate the integrals I1, I2 and set h(z) = zF ′(z) to obtain

I1 = r−1M (r)
1

2π

∫ 2π

0

|h(reiθ)|2dθ.

= r−1M (r)
1

2π

∫ 2π

0

|zF ′(reiθ)|2dθ.

I1 ≤ r−1M (r)

(
1 + r

1− r

)2

(cf.[50, lemma1.3 and equation(1.2.13)]) (3.14)

and

I2 =
M (r)

2π

∫ 2π

0

|h′(reiθ)|dθ.

=
M (r)

2π

∫ 2π

0

|zF ′′(reiθ) + F ′(reiθ)|dθ.

≤ rM (r)

2π

∫ 2π

0

|F ′′(reiθ)|dθ +
M (r)

2π

∫ 2π

0

F ′(reiθ)|dθ.

I2 ≤
rM (r)

2π

∫ 2π

0

|F ′′(reiθ)|dθ + M (r)
1 + r

r(1− r)
(cf.[50, lemma1.3 and equation(1.2.13)]).

(3.15)
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Now, we have

|F ′′(z)| =
∣∣∣∣φ′′φ − (

φ′

φ
)2

∣∣∣∣ ≤ ∣∣∣∣φ′′φ
∣∣∣∣+

∣∣∣∣φ′φ
∣∣∣∣2 =

∣∣∣∣φ′′φ
∣∣∣∣+ |F ′(z)|2. (3.16)

Hence,
∣∣∣φ′′φ ∣∣∣ can be estimated and substitute it in equation (3.16) as follows:∣∣∣∣φ′′φ

∣∣∣∣ =

∣∣∣∣φ′′φ′ · φ′φ
∣∣∣∣ =

∣∣∣∣φ′′φ′
∣∣∣∣ ∣∣∣∣φ′φ

∣∣∣∣ ≤ (4 + 2r

1− r2

)(
1 + r

r(1− r)

)
(cf.[50, lemma(1.3)and equation(1.2.13)]),

to obtain

|F ′′(z)| =
∣∣∣∣φ′′φ
∣∣∣∣+ |F ′(z)|2 ≤

(
4 + 2r

1− r2

)(
1 + r

r(1− r)

)
+

(1 + r)2

r2(1− r)2
. (3.17)

In this stage, we shall substitute equation (3.17) in equation (3.15) to obtain

I2 ≤ rM (r)

[(
4 + 2r

1− r2

)(
1 + r

r(1− r)

)
+

(1 + r)2

r2(1− r)2

]
+ M (r)

1 + r

r(1− r)
.

I2 ≤ M (r)

[
(
4r + 2r2

1− r2
)(

1 + r

(1− r)
) +

(1 + r)2

r(1− r)2
+

1 + r

r(1− r)

]
. (3.18)

Substitute equations (3.18) and (3.14) in (3.12) we have

1

2π

∫ 2π

0

|G′(reiθ)|dθ ≤ r−1M (r)
1

2π

∫ 2π

0

|h(reiθ)|2dθ + M (r)
1

2π

∫ 2π

0

|h′(reiθ)|dθ.

≤ M (r)
(1 + r)2

r(1− r)2
+ M (r)

[
(
4r + 2r2

1− r2
)(

1 + r

(1− r)
) +

(1 + r)2

r(1− r)2
+

1 + r

r(1− r)

]
.

Integral tha last equation with respect to ρ→ 0− r.∫ r

0

[
1

2π

∫ 2π

0

|G′(reiθ)|dθ
]

dρ ≤
∫ r

0

M (r)

[
2(1 + ρ)2

ρ(1− ρ)2
+

4ρ+ 2ρ2

(1− ρ)2
+

1 + ρ

ρ(1− ρ)

]
dρ.

From equation (3.13) can be concluded that

1

2π

∫ 2π

0

|G(reiθ)|dθ ≤
∫ r

0

M (r)

[
2(1 + ρ)2

ρ(1− ρ)2
+

4ρ+ 2ρ2

(1− ρ)2
+

1 + ρ

ρ(1− ρ)

]
dρ

1

2π

∫ 2π

0

|zφ′(reiθ)|dθ ≤
∫ r

0

M (r)

[
2(1 + ρ)2

ρ(1− ρ)2
+

4ρ+ 2ρ2

(1− ρ)2
+

1 + ρ

ρ(1− ρ)

]
dρ.

1

2π

∫ 2π

0

|φ′(reiθ)|dθ ≤
∫ r

0

M (r)

[
2(1 + ρ)2

ρ2(1− ρ)2
+

4ρ+ 2ρ2

ρ(1− ρ)2
+

1 + ρ

ρ2(1− ρ)

]
dρ.

The proof is complete.
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Theorem 3.1.5. Let φ be a möbious transformation of unit disk D onto itself, and let

w′′(z) + q(z)w(z) = 0 for z ∈ D (3.19)

be the differential equation whose solution w(z) = 1√
φ′(z)
∈ H 2(D) then

1

2π

∫ 2π

0

|φ′(reiθ)|−1dθ ≥ (1− r2)3

kα

∞∑
n=2

n(2n− 2)(2n− 3) for z = reiθ. (3.20)

Proof. Assume w(z) is continuous in the closed unit disk D such that w(z) =
∞∑
n=0

anz
n.

Given w(z) = 1√
φ′(z)

, we have |w(z)|2 = |φ′(z)|−1.

And hence,

I−1(r, φ′) = I (r) =
1

2π

∫ 2π

0

|φ′(reiθ)|−1dθ =
1

2π

∫ 2π

0

|w(reiθ)|2dθ, (3.21)

where z = reiθ

By Parseval formula (1.1.7),

∞∑
n=0

|an|2r2n =
1

2π

∫ 2π

0

|w(reiθ)|2dθ (3.22)

⇒ I (r) =
1

2π

∫ 2π

0

|φ′(reiθ)|−1dθ =
1

2π

∫ 2π

0

|w(reiθ)|2dθ =
∞∑
n=0

|an|2r2n (3.23)

By differentiation equation (3.23) we obtain,

I ′(r) =
∞∑
n=1

2n|an|2r2n−1

I ′′(r) =
∞∑
n=1

2n(2n− 1)|an|2r2n−2

I (3 )(r) =
∞∑
n=2

2n(2n− 1)(2n− 2)|an|2r2n−3

I (4 )(r) =
∞∑
n=2

2n(2n− 1)(2n− 2)(2n− 3)|an|2r2n−4
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And

w′(z) =
∞∑
n=1

nanz
n−1

w′′(z) =
∞∑
n=2

n(n− 1)anz
n−2

⇒ |w′′(z)|2 =
∞∑
n=2

n2(n− 1)2|an|2|z|2n−4

I (4 )(r) ≤ K|F ′′(reiθ)|2 by lemma (1.1.11) and Parseval formula (1.1.7)

Let us find K by comparing the coefficients between I (4)(r) and |F ′′(reiθ)|2 to find K as

follows:

2n(2n− 1)(2n− 2)(2n− 3)|an|2r2n−4 ≤ Kn2(n− 1)2|an|2r2n−4

4(2n− 1)(n− 1)(2n− 3) ≤ Kn(n− 1)2

4(2n− 1)(2n− 3) ≤ Kn(n− 1)

4(2− 1

n
)(2− 1

n− 1
) ≤ K

So, K = 16 is smallest such constant as n→∞.

I (4 )(r) =
∞∑
n=2

2n(2n− 1)(2n− 2)(2n− 3)|an|2r2n−4 ≤ 16
∞∑
n=2

n2(n− 1)2|an|2|z|2n−4

⇒ I (4 )(r) ≤ 16

2π

∫ 2π

0

|w′′(reiθ)|2dθ (3.24)

Integrate the last inequality with respect to r as r → 0− 1.

Multiplying both sides of an equation 3.24 by r.∫ 1

0

I (4 )(r)rdr ≤ 16

2π

∫ 1

0

∫ 2π

0

|w′′(reiθ)|2rdrdθ

=
16

2π

∫ 1

0

∫ 2π

0

|q(z)w(z)|2rdrdθ

=
16

2π

∫ ∫
D
|q(z)|2|w(z)|2dAr
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There is an absolute constant α > 0 such that∫ 1

0

I (4 )(r)rdr ≤ kα

(1− r2)3

∞∑
n=0

|an|2 (cf. Theorem 2, pp.26,31 in [51]). (3.25)

Multiply the last inequality by r2n

∫ 1

0

I (4 )(r)r2n+1dr ≤ kα

(1− r2)3

∞∑
n=0

|an|2r2n =
kα

(1− r2)3

(
1

2π

∫ 2π

0

|φ′(reiθ)|−1dθ

)
(3.26)

This implies to

1

2π

∫ 2π

0

|φ′(reiθ)|−1dθ ≥ (1− r2)3

kα

∫ 1

0

∞∑
n=2

2n(2n− 1)(2n− 2)(2n− 3)|an|2r2n−4r2n+1dr

=
(1− r2)3

kα

∞∑
n=2

2n(2n− 1)(2n− 2)(2n− 3)|an|2
∫ 1

0

r4n−3dr.

Finally,

1

2π

∫ 2π

0

|φ′(reiθ)|−1dθ ≥ (1− r2)3

kα

∞∑
n=2

n(2n− 2)(2n− 3) holds.

3.2 Integrability of gradient of conformal mapping

The main result of this section is Theorem (3.2.6) which comes as a corollary of the

Koebe distortion theorem. Theorem (3.2.6) discusses existence of positive constant K,

depending only on the modulus of z in Ω, such that (1 − |φ(z)|) ≤ K
√
|z|, for some

z ∈ Ω, has been used this result as an essential tool to prove Theorems (3.2.7), (3.2.8).

Theorem (3.2.6) related closely with similar lemma 2 which is well-known in polynomial

approximation and plays important role to find conditions on Ω ⊂ C ( be a bounded

simply domain) and w be a positive measurable function defined on Ω which imply that

2 For interested reader, we refer to [33] as a more convenient reference
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H p(Ω, dA) = Lpa(Ω, dA) 3. for each p, 1 ≤ p <∞ in turn, helps to prove that polynomi-

als Q in Lp(Ω, dA) are said to be complete in Lpa(Ω, dA), we refer to ([31, 30] and [32])

for more details.

Definition 3.2.1. (Harmonic measure) Let Ω be a bounded, open domain in n-dimentional

Euclidean space Rn, n ≥ 2, and let ∂Ω denote the boundary of Ω. Any finite real- valued

continuous function f on ∂Ω, f : ∂Ω −→ R corresponds to a unique function u(x) on

the closure Ω of the region, is called a solution of the Dirichlet problem, if

i. u is a continuous on Ω.

ii. u is a harmonic in Ω, that is ∆u ≡ 0 in Ω.

iii. u|∂Ω = f.

A solution of the Dirichlet problem u corresponding to the continuous boundary function

f , is called a harmonic extension of f , let us call it, uf = u(f).

If the point x ∈ Ω is assumed to be fixed, then by Riesz representation theorem 4 and

the maximum principle, for u(f) defined on the compact set Cc(Ω) there exists a unique

Borel measure µ(x) at the point x on Ω, define uµ ∈ Cc(Ω)? by

uµ(f) =

∫
fdµ(x,Ω),

for all f in Cc(Ω), and the measure µ(x,Ω) is called the Harmonic measure.

In particular, if the solution of the Dirichlet problem u corresponding to a Boral measur-

able E ⊂ ∂Ω with the boundary data

f = χE =

1 if ζ ∈ E ,

0 if ζ /∈ E .

3H p(Ω,dA)- space consists of all the functions, that can be approximated arbitrarily in the Lp(Ω,dA)-norm by

a sequence of polynomials; Lpa(Ω,dA) denotes the class of all the functions in Lp(Ω,dA) which are holomorphic

in Ω
4 A straight-forward proof of Riesz representation theorem in Appendix B, Theorem (B.0.18)
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such that f = 1E that is, f takes the value 1 on the part E of ∂Ω and f = 0 on the

remaining ∂Ω, such that, this solution is called the harmonic measure ofE, and is denoted

by µ(x,E; Ω).

For much extra information about harmonic measure and other topic which are related to

it, we refer to [20, 60, 25] and [2].

Theorem 3.2.2. (Koebe One-Quarter theorem)5

The range of every function of class S 6 contains the disk {w : |w| < 1
4
}.

Lemma 3.2.3. [8]

Let E be a compact subset of the plane having connected complement and let g ∈

L(E, dA) for some q > 1. If ĝ = 0 identically in C\E then ĝ(z0) = 0 at every point

z0 ∈ ∂E, where ∫
E

|g(z)|q

|z − z0|
dA <∞.

Lemma 3.2.4. [8, 7]

Let E be a compact set with connected complement and let g ∈ L(E, dA) for some

1 < q ≤ 2. If ĝ = 0 identically in C\E and ζ is a point of E◦ ( the interior of E) at a

distance δ(z) = 1
e

from ∂E then

|ĝ(ζ)| ≤ C

{
g?(ζ0)δ log(

1

δ
) +

[
Γq(δ)

∫
|z−ζ0|≤4δ

|g(z)|qdA
] 1
q

}

where g?(ζ0) = supr(πr
2)−1

∫
|z−ζ|<r |g(z)|dA is the Hardy- Littlewood maximal func-

tion, Γq(δ) is equal to log(1
δ
) or δq − 2 according to whether q = 2 or q < 2 and, C is a

constant depending only on q and the diameter of E.

5A straight-forward proof of theorem Koebe One-Quarter Theorem in Appendix A.
6class S of functions φ holomorphic and univalent in the unit disk D = {z : |z| < 1}, normalized by the

conditions φ(0) = 0 and φ′(0) = 1.
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Lemma 3.2.5. 7 There exist positive constants K1 and K2, depending only on δ (φ−1(0)),

such that

K1
1− |φ(z)|
δ(z)

≤ |φ′(z)| ≤ K2
1− |φ(z)|
δ(z)

.

where φ−1(0) = z, and φ maps a simply connected domain Ω conformally onto unit disk

D.

Now, our starting point in this section will be with Theorem (3.2.6) and to indicate how

this theorem can be used to produce other results.

Main results:

Theorem 3.2.6. Let φ be a conformal mapping of a simply connected domain Ω onto the

unit disk D, then there is a constant K depending only on the modulus of z in Ω such that

1− |φ(z)| ≤ K
√
|z|, for some z ∈ Ω.

Proof. Let Ω be a bounded simply connected domain, and φ be a conformal map defined

as follows:

φ : Ω −→ D (|w| < 1)

So, the inverse function

ψ = φ−1 : D −→ Ω

Apply Distortion theorem (1.1.6) to the inverse function ψ = φ−1(w), to obtain that

φ−1(w) ∈ S , normalized by the conditions φ−1(0) = 0 and (φ−1)′(0) = 1.

Then, for w ∈ D;

|w|
(1 + |w|)2

≤ |φ−1(w)| ≤ |w|
(1− |w|)2

.

Fix w0 ∈ D

⇒ |φ−1(w0)| ≤ |w0|
(1− |w0|)2

(3.27)

7A proof of Lemma (3.2.5) can be found in [50, pp.21-22]
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Fix z0 ∈ Ω. Then apply Koebe one-quarter theorem (3.2.2) in order to show that the range

of the function φ−1(w) ∈ S contains the disk {φ−1(w) : |φ−1(w)| < 1
4
} ⊂ Ω◦, such that

z0 /∈ {φ−1(w) : |φ−1(w)| < 1
4
} which implies

|z0| ≥
1

4
in Ω (3.28)

Equation (3.28) can therefore be written as follows:

|z0| ≥
1

4
| (φ−1)′(0)| in Ω by condition (φ−1)′(0) = 1.

We can assume that w0 ∈ D is the image of −1, that is ; φ(−1) = w0.

By taking the inverse of both sides , we obtain

|φ−1(w0)| = 1 (3.29)

Distortion theorem which represents by equation (3.27) will now be applied to obtain

1 = |φ−1(w0)| ≤ |w0|
(1− |w0|)2

=
|w0| |(φ−1)′(0)|

(1− |w0|)2

1 ≤ |w0| |(φ−1)′(0)|
(1− |w0|)2

≤ 4|z0| |w0|
(1− |w0|)2

by equation (3.28).

Since, w0 and z0 are arbitrary points, this implies that

1 ≤ 4|z| |w|
(1− |w|)2

.

Hence

1 ≤ 4|z| |w|
(1− |w|)2

<
C |z|

(1− |w|)2
=

C |z|
(1− |φ(z)|)2

.

⇒ (1− |φ(z)|)2 ≤ C |z|.

Finally, we obtain

(1− |φ(z)|) ≤ K
√
|z|, for all z ∈ Ω.

The proof is complete.
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Theorem 3.2.7. Let Ω be a bounded simply connected domain, whose boundary is a class

C1 Jordan curve. If φ is a conformal map of Ω to the unit disk D(|w| < 1), then∫ ∫
Ω

|φ′|p dxdy <∞, for all p < 2.

Proof. We shall assume that z0 ∈ Ω and φ(z0) = 0. It can then be inferred from the

co-area formula.8.

Let φ be a conformal mapping of Ω (simply connected domain) onto the open unit disk D

(|z| < 1), that is; φ : Ω→ D with A be a measurable subset of D.

Let g(z) : B = {z ∈ Ω : |φ(z)| = r} ⊂ Ω → [0,∞) be a measurable function defined

on the measurable set B in Ω, as the following

g(z) =
χB(z)

|φ′(z)|
: Ω→ [0,∞)

where χB(z) : B ⊂ Ω→ {0, 1} is the characteristic function.

χB =

 1 if z ∈ B

0 if z /∈ B

Because we have to calculate the integral over B = {z ∈ Ω : |φ(z)| = r} and we know

that 0 < r ≤ 1⇒ χB = 1; z ∈ B we have then∫ ∫
Ω

χB
|φ′|
|φ′| dxdy =

∫ 1

0

(∫
B={z∈Ω:|φ(z)|=r}

χB(z)

|φ′|
rdθ

)
dr.

⇒
∫ ∫

Ω

dxdy =

∫ 1

0

(∫
B(z)={z∈Ω:|φ(z)|=r}

1

|φ′|
ds

)
dr.

Now, we have∫ ∫
Ω

|φ′(z)|pdxdy =

∫ 1

0

(∫
B={z∈Ω:|φ(z)|=r}

|φ′(z)|p 1

|φ′|
ds

)
dr.

=

∫ 1

0

(∫
B={z∈Ω:|φ(z)|=r}

|φ′(z)|p−1
ds

)
dr.

=

∫ 1

0

|φ′|p−1

(∫ 2πr

0

ds

)
dr

=

∫ 1

0

2πr|φ′|p−1 dr

8A straight-forward proof of this assertion is in Definition (B.0.16), Appendix B
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By Lemma (3.2.5) we have |φ′| ≤ C 1−|φ|
δ(z)

, so let us assume that δ(z) = |z| such that∫ ∫
Ω

|φ′(z)|pdxdy =

∫ 1

0

2πr|φ′|p−1 dr.

≤
∫ 1

0

2πr
(1− r)p−1

|z|p−1
dr.

In Lemma (3.2.6) we deduced that (1− |φ|) ≤ k1

√
|z| =⇒ k2

|z|p−1 ≤ 1
(1−r)2(p−1) .

Hence,∫ 1

0

2πr
(1− r)p−1

|z|p−1
dr ≤

∫ 1

0

2πr
(1− r)p−1

(1− r)2(p−1)
dr =

∫ 1

0

2πr(1− r)−(p−1)dr.

= 2πr

[
(1− r)−(p−1)+1

−(p− 1) + 1

∣∣∣∣1
0

when −(p− 1) + 1 > 0⇒ p < 2.

Theorem 3.2.8. Let E be a compact subset of the plane having connected complement,

D ⊂ E be a connected domain, let ĝ be a cauchy transform of a function g, where

g ∈ Lq(E, dA) for some 1 < q ≤ 2, if ĝ(z) is an identically zero in C\E and there exist

a non-decreasing sequence ∂Di in D then∫
∂Di
∇

(
|ĝ(z)|√
|z|

)
dµi exists and is finite on ∂Di

Proof. Let D be a connected domain D ⊂ E. Fix arbitrary point ζ ∈ D and assume µ be

the harmonic measure on ∂D representing ζ .

Choose Di be a non-decreacing sequence such that ζ ∈ Di for all i and
⋃
Di fill up D.

Given g ∈ Lq(E), and assume the property
∫
QgdA = 0 for every polynomial Q ∈

H p(E, dA), then ĝ vanishes identically9 in the unbounded complementary component of

E.

We obtain | ˆg(ζ)| is bounded in E at Euclidean distance δ(z) = dis(z, ∂E) < 1
e

(see

lemma 3.2.4), that is; | ˆg(ζ)| is bounded in D.
9 we refer the reader to ([8, pp.119] )
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Hence, multiply and divide |ĝ(z)| by
√
δ(z) where δ(z) = dis(z, ∂Di) = |z| this yield

the identity below:

log

√
|z| |ĝ(z)|√
|z|

= log
√
|z|+ log

|ĝ(z)|√
|z|

⇒ log |ĝ(z)| = log
√
|z|+ log

|ĝ(z)|√
|z|

Integrate the last quantity over ∂Di with respect to harmonic measure dµi this will imply,∫
∂Di

log |ĝ(z)|dµi =

∫
∂Di

log
√
|z|dµi +

∫
∂Di

log
|ĝ(z)|√
|z|

dµi.

Here, we will pay particular attention to the second integral.

As known in [8, pp. 145] that,∫
∂Di

log
|ĝ(z)|√
|z|

dµi <

∫
∂Di

|ĝ(z)|√
|z|

dµi (3.30)

It is known in measure theory 10

n∑
j=1

d

dxj

∫
∂Di

|ĝ(z)|√
|z|

dµi =

∫
∂Di

n∑
j=1

∂

∂xj

(
|ĝ(z)|√
|z|

)
dµi

=

∫
∂Di
∇

(
|ĝ(z)|√
|z|

)
dµi

Hence, we have∫
∂Di
∇

(
|ĝ(z)|√
|z|

)
dµi =

∫
∂Di
|ĝ(z)|∇

(
1√
|z|

)
dµi +

∫
∂Di

1√
|z|
∇|ĝ(z)| dµi.

(3.31)

This implies that∣∣∣∣∣
∫
∂Di
∇

(
|ĝ(z)|√
|z|

)
dµi

∣∣∣∣∣ ≤
∫
∂Di

∣∣∣∣∣|ĝ(z)|∇

(
1√
|z|

)∣∣∣∣∣ |dµi|︸ ︷︷ ︸
I1

+

∫
∂Di

∣∣∣∣∣∇|ĝ(z)|√
|z|

∣∣∣∣∣ |dµi|︸ ︷︷ ︸
I2

.

(3.32)

10 For interested reader we refer to [23] and definition (B.0.17) in Appendix B



Chapter 3. Integral means of the derivative of univalent functions 95

So we may direct out efforts toward finding a bounds for I1 and I2. In that endeavor we

have to define a Green function which is a harmonic function on Di and it is defined on

D′i as well. In this case should be define the harmonic function dµi = ∂Gi
∂n
|dz|.

i. Remove a small disk |z − ζ| ≤ r◦ from Di we obtain D′i such that |z − ζ| ≤ r◦

is contained in every Di, and its boundary is smooth, this lead to, any continuous

function on ∂Di to R will generate harmonic function on Di with singularity (pole)

at ζ .

ii. Let φi be a conformal map of Di onto unit disk D = {w : |w| < 1} with φi(ζ) = 0;

and as clear ψi = φ−1
i , which satisfies the following:

a. |∇Gi| ≤ C|φ′i| on D′i.

b. |ψ′i(w)| ≥ C(1− |w|).

An estimation on I1 can be obtained by applying Hölder inequality with short calculation

as follows:

I1 =

∫
∂Di

∣∣∣∣∣|ĝ(z)|∇

(
1√
|z|

)∣∣∣∣∣ |dµi|
=

∫
∂D′i
|ĝ(z)|∇

(
1√
|z|

)
∇GidA

≤

(∫
∂D′i
|ĝ|qdA

) 1
q
(∫

∂D′i

∣∣∣∣∣∇
(

1√
|z|

)
∇Gi

∣∣∣∣∣
p

dA

) 1
p

= ||ĝ||q

(∫
∂D′i

∣∣∣∣∣∇
(

1√
|z|

)
∇Gi

∣∣∣∣∣
p

dA

) 1
p

.
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And hence we obtain

I1
p ≤ C4

∫
∂D′i

∣∣∣∣∣∇
(

1√
|z|

)
∇Gi

∣∣∣∣∣
p

dA

= C4

∫
∂D′i

∣∣∣∣∣∇
(

1√
|z|

)∣∣∣∣∣
p

|∇Gi|pdA

≤ C4

∫
∂Di
|φ′i|p−2

∣∣∣∣∇ (
1

1− |φi|

)∣∣∣∣p |φ′i|2dA

= C4

∫
|w|<1

1

|ψ′i|p−2

∣∣∣∣∇ (
1

1− r

)∣∣∣∣p dA

= C4

∫
|w|<1

dA

(1− r)3p−2

= C4

∣∣∣∣(1− r)−3p+3

−3p+ 3

]1

0

such that when −3p+ 3 > 0 this implies to p < 1.

It is a consequence of Hölder inequality11 and Calderón-Zygmund theorem on the con-

tinuity of singular integral operators, ( cf.[32] &, [10, pp.564]), that

I2 =

∫
∂Di

∣∣∣∣∣∇|ĝ(z)|√
|z|

∣∣∣∣∣ |dµi|
=

∫
∂D′i
|∇|ĝ(z)||

∣∣∣∣∣ |∇Gi|√
|z|

∣∣∣∣∣ dA

≤ C||g||q

(∫
∂D′i

∣∣∣∣∣ |∇Gi|√
|z|

∣∣∣∣∣
p

dA

) 1
p

≤ C1

(∫
∂D′i

∣∣∣∣∣∇Gi√
|z|

∣∣∣∣∣
p

dA

)

≤ C1

∫
Di

|φ′i|p−2

1− |φi|
|φ′i|2dA by inequality (a)

= C1

∫
|w|<1

1

|ψ′i|p−2

1

(1− |w|)
dA by inequality (b)

= C2

∫
|w|<1

dA

(1− |w|)p−1

= C3

∣∣∣∣(1− r)−p+2

−p+ 2

]1

0

,

11 For further information about the role of Hölder inequality
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when −p+ 2 > 0 this implies to p < 2.

Finally, the quantity∫
∂Di
∇

(
|ĝ(z)|√
|z|

)
dµi exists and is finite on ∂Di.
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Chapter 4

Weighted composition operator

associated with holomorphic self -map

The aim of this chapter is to deal with the boundedness of weighted composition operator

Cb
φ for univalent function φ on classical weighted Bergman space A2

α and A2
α−1 depending

only on functions of the form (1 − λz)− γ/2 and the convexity property of the function

αφ(t).

We shall show the opertators Cb
φ as acting in classical weighted Bergman space Ap

α. Let φ

be an holomorphic self- map of the unit disk D ⊂ C. The classical composition operator

Cφ is defined as a mapping f 7→ f ◦ φ. One can define a weighted composition operator

Cb
φ as a mapping Cb

φ : f 7→ f ◦φ · (φ′)b for each b ∈ R in the classical weighted Bergman

spaces Ap
α.

1

The space Ap
α is equivalent to a finite, positive borel measure µ in D which is called an

Ap
α- Carleson measure if the inequality∫

D
|f(z)|pdµ(z) ≤ C

∫
D
|f(z)|p(1− |z|2)αdA(z),

holds for f ∈ Ap
α(D).

1 The interested reader is referred to chapter 1, definition (1.1.9) for further information on the classical

weighted Bergman spaces Apα.
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In addition, if we assume that D(z, r) is a disk of radius r centered at z, and for any

λ ∈ D, then a finite positive measure µ in D is an Ap
α -Carleson measure if and only if

µ

(
D(λ,

1

2
(1− |λ|))

)
≤ C(µ)(1− |λ|)α+2. (4.1)

One more equivalent condition is∫
D

dµ(z)

|1− λz|γ
≤ C(µ, γ)

(1− |λ|2)γ−α−2
(4.2)

for some γ > α + 2 and any λ ∈ D.

The property of a measure µ to be an Ap
α -Carleson measure depends only on α and the

product pb, which implies that Cb
φ to be bounded in Ap

α, as shown in the lemma below.

Lemma 4.0.9. Let φ be a conformal self-map of D. Then Cb
φ is bounded in Ap

α if and only

if the measure dµ defined as

µ(E) :=

∫
φ−1(E)

|φ′(z)|pb(1− |z|2)αdA(z), (4.3)

is an Ap
α -Carleson measure.

That’s why Shimorin [58] considered only Hilbert space case p = 2, to study the bounded-

ness of operators Cb
φ in A2

α, by applying the Carleson measure condition (4.2) to the

measure µ in (4.1) as follows.

Lemma 4.0.10. [58] The operator Cb
φ is bounded in A2

α if and only if for some γ > α+ 2∫
D

|φ′(u)|2b

|1− λ|φ(u)|γ
(1− |u|2)αdA(u) ≤ C(φ, γ)

(1− |λ|2)γ−α−2
∀λ ∈ D. (4.4)

Lemma above shows that it is enough to consider the function of the form (1 − λz)−γ/2

with γ > α+2, to prove boundedness of Cb
φ. This function contributes to the reproducing

kernel for the space A2
α (cf. [49, pp.131]).

Furthermore the operator Cb
φ, is bounded for fixed p and b in case α is sufficiently big but

not necessarily true for all α and p. That’s why he introduced two functions as follows:

αφ(t) = inf{β > 0 : C
t
2
φ is bounded in A2

β−1} (4.5)

A(t) := sup
φ
αφ(t) (4.6)
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with application the convexity property of the function αφ(t)

|αφ(t1)− αφ(t2)| ≤ |t1 − t2|. (4.7)

which is equivalent to two estimates

αφ(t+ ε) ≤ αφ(t) + ε and αφ(t− ε) ≤ αφ(t) + ε, valid for ε ≥ 0. (4.8)

Hence, this technique is enough to prove that A ≤ |t| − 1 for t ≤ t0, which is based on

the amazing result obtained by Bertilsson

Theorem 4.0.11. (Bertilsson[5]) For t ≤ t0, there exists a constant C = C(t) such that

for any φ ∈ S ∫
∂D=T

∣∣∣∣r2 φ
′(rζ)

φ2(rζ)

∣∣∣∣t dm(ζ) ≤ C

(1− r)|t|−1
. (4.9)

Corollary 4.0.12. [58] Let φ be a conformal self-map of D such that φ(0) = 0. The

function

f(z) =
φ′(0)−1φ(z)

(1− λφ(z))2
for some λ ∈ D,

is in the class S with

z2f ′(z)

f 2(z)
= φ′(0)

(
z

φ(z)

)2

φ′(z)(1 + λφ(z))(1− λφ(z)).

Then, for t ≤ t0, with inequality (4.9)∫
T

|φ′(rζ)|t

|1− λφ(rζ)||t|
dm(ζ) ≤ C(φ, t)

∫
∂D=T

∣∣∣∣r2 φ
′(rζ)

φ2(rζ)

∣∣∣∣2 dm(ζ) ≤ C1(φ, t)

(1− r)|t|−1
. (4.10)

Lemma 4.0.13. [58, pp.6] If φ is a conformal self-map of D satisfying φ(0) = 0, then

i. |1− λφ(z)| ≥ (1−|φ(z)|2)
2

, for any λ ∈ D.

ii.
∫
D
|φ′|t−ε

|1−λφ|γ |φ
′|ε(1− |z|2)α+ε−1dA(z) ≤

(
2
c2

)ε ∫
D

|φ′|t
|1−λφ|γ−ε (1− |z|

2)α−1dA(z).
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Our point of work, started from Shimorin’s paper and specifically from the convexity

property of the function αφ(t) which plays a main role in our work to prove the bounded-

ness of the operator C
t
2
φ , in weighted Bergman spaceA2

α if∫
D

|φ′|t

|1− λφ|γ
(1− |z|2)αdA(z) ≤ Ct−s

1 (φ, t) · Cs
2(φ, t)

(1− |λ|2)γ−α−2t
, for some γ > α + 2t, (4.11)

without depending on the convexity of αφ(t). But in case, when αφ(t) is convex then the

operator C
t
2
φ is bounded in A2

α−1 if∫
D

|φ′|t

|1− λφ|γ
(1− |u|2)α−1dA(u) ≤ C1(φ, t)(C8

(1− |λ|2)γ−|t|−1
.

These results are settled in theorems (4.1.1), (4.1.2) respectively.

4.1 Main results

Theorem 4.1.1. Assume that φ is a conformal self- map of D, then C
t
2
φ is bounded in A2

α

if∫
D

|φ′|t

|1− λφ|γ
(1− |u|2)αdA(u) ≤ Ct−s

1 (φ, t) · Cs
2(φ, t)

(1− |λ|2)γ−α−2t
, for some γ > α + 2t. (4.12)

Proof. Let s ∈ (0, 1) and assume t = t−s+s = (t−s)+s and α = α−1+1 = (α−1)+1,

then applying the Hölder inequality with 1
a

= t− s, and 1
b

= s, one obtains∫
D

|φ′|t

|1− λφ|γ
(1− |u|2)αdA(u) ≤

(∫
D

|φ′|
t
t−s

|1− λφ|
λ

2(t−s)
(1− |u|2)

α−1
t−s dA(u)

)t−s

.

·

(∫
D

|φ′| ts
|1− λφ| λ2s

(1− |u|2)
1
sdA(u)

)s

By Lemma (4.0.10)we obtain,

≤

(
C1(φ, t)

(1− |λ|2)
γ

2(t−s)−
α−1
t−s −2

)t−s

·

(
C2(φ, t)

(1− |λ|2)
γ
2s
− 1
s
−2

)s

=
Ct−s

1 (φ, t)

(1− |λ|2)
γ
2
−α+1−2t+2s

· Cs
2(φ, t)

(1− |λ|2)
γ
2
−1−2s

=
Ct−s

1 (φ, t) · Cs
2(φ, t)

(1− |λ|2)γ−α−2t
.
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Finally, when γ − α− 2t > 0⇒ γ > α + 2t.

Theorem 4.1.2. Let φ be a conformal self-map of D satisfying φ(0) = 0, and let αφ(t) be

convex. Then the operator C
t
2
φ is bounded in A2

α−1 if∫
D

|φ′|t

|1− λφ|γ
(1− |u|2)α−1dA(u) ≤ C1(φ, t)

(1− |λ|2)γ−|t|−1
,

where C1(φ, t) > 0 is a constant depends on φ and t .

Proof. Fix λ ∈ D, and pick some ε ∈ (0, 1)∫
D

|φ′(u)|t

|1− λφ(u)|γ
(1− |u|2)α−1dA(u) =

∫
D

|φ′(u)|t−ε+ε

|1− λφ|γ
(1− |u|2)α−1+ε−ε dA(u)

=

∫
D

|φ′(u)|t−ε

|1− λφ(u)|γ
|φ′(u)|ε (1− |u|2)α+ε−1

· (1− |u|2)−εdA(u)

by applying inequality (4.0.13(i)), and inequality (4.0.13(ii))

≤
(

2

c2

)ε ∫
D

|φ′(u)|t

|1− λφ(u)|γ−ε
(1− |φ(u)|2)ε

1− |u|2)ε
(1− |u|2)α−1−εdA(u)

=

(
2

c2

)ε ∫
D

|φ′(u)|t

|1− λφ(u)|γ
· (1− |u|2)α−1−2ε

|1− λφ(u)|−ε
(1− |φ(u)|2)εdA(u)

≤
(

4

c2

)ε ∫
D

|φ′(u)|t

|1− λφ(u)|γ
· (1− |u|2)α−1−2ε

|1− λφ(u)|−ε
|1− λφ(u)|εdA(u)

=

(
4

c2

)ε ∫
D

|φ′(u)|t

|1− λφ(u)|γ
· (1− |u|2)α−1−2ε

|1− λφ(u)|−2ε
dA(u)

Let γ = γ − |t|+ |t|, and then apply the corollary (4.0.12), to obtain.

(
4

c2

)ε ∫
D

|φ′(u)|t

|1− λφ(u)|γ
· (1− |u|2)α−1−2ε

|1− λφ(u)|−2ε
dA(u) =

=

(
4

c2

)ε ∫ 1

0

∫
∂D

|φ′(rζ)|t

|1− λφ(rζ)|γ+|t|−|t|
· (1− r2)α−1−2ε

|1− λφ(rζ)|−2ε
dm(ζ)2rdr

=

(
4

c2

)ε ∫ 1

0

∫
∂D

|φ′(rζ)|t

|1− λφ(rζ)||t|
· (1− r2)α−1−2ε

|1− λφ(rζ)|γ−|t|−2ε
dm(ζ)2rdr

≤ C3

(
4

c2

)ε ∫ 1

0

C1(φ, t)

(1− r)|t|−1
· (1− r2)α−1−2ε

(1− r|λ|)γ−|t|−2ε
dr
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For any φ, a trivial estimate of αφ(t) is αφ(t) ≤ |t|.

≤ C3

(
4

c2

)ε ∫ 1

0

C1(φ, t)

(1− r)|t|−1
· (1− r2)|t|−1−2ε

(1− r|λ|)γ−|t|−2ε
dr

≤ C4

(
4

c2

)ε ∫ 1

0

C1(φ, t)(1− r)−2ε

(1− r|λ|)γ−|t|−2ε
dr

= C5C1(φ, t)


∫ |λ|

0

(1− r)−2ε

(1− r|λ|)γ−|t|−2ε
dr︸ ︷︷ ︸

I1

+

∫ 1

|λ|

(1− r)−2ε

(1− r|λ|)γ−|t|−2ε
dr︸ ︷︷ ︸

I2


In this,

I1 =

∫ |λ|
0

(1− r)−2ε

(1− r|λ|)γ−|t|−2ε
dr ≤ (1− |λ|)−2ε

∫ |λ|
0

dr

(1− r|λ|)γ−|t|−2ε

≤ C6C1(φ, t)

(1− |λ|)γ−|t|−1

And then,

I2 =

∫ 1

|λ|

(1− r)−2ε

(1− r|λ|)γ−|t|−2ε
dr ≤ 1

(1− |λ|)γ−|t|−2ε

∫ 1

|λ|
(1− r)−2εdr

=
C7C1(φ, t)

(1− |λ|)γ−|t|−1
.

Finally ∫
D

|φ′|t

|1− λφ|γ
(1− |u|2)α−1dA(u) ≤ C1(φ, t)

(1− |λ|2)γ−|t|−1
,

where C1(φ, t) > 0 is a constant depends on φ and t .
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Chapter 5

Integrability over cardioid domain, and

simply connected domain

In this chapter, we begin with P. Hajlasz [28] in the case Ω is the image of the two

dimensional disk D = {z : |z − i| < 1} under the mapping z → z2, and the boundary of

Ω is a smooth curve except at the point z = 0, where we have an inward cusp, then

u(r, θ) =
1

2
− 1√

r
sin

θ

2

is harmonic in Ω and it vanishes on ∂Ω, except at the discontinuity point z = 0 and hence

u belongs toW1,p
0 (Ω) for all 1 ≤ p < 4

3
.

This motivates us to consider Laplace’s equation on a bounded simply connected domain

Ω ⊂ R2, with Dirichlet boundary conditions;

∆u = 0, x ∈ Ω;

u = 0, x ∈ ∂Ω.

 (5.1)

It is well known that, u ≡ 0 in the closure of Ω, if u belongs to the sobolev spaceW1,p
0 (Ω),

1 p ≥ 2 ( or p > 1 if ∂Ω is smooth). For non-smooth domain this is no longer true.

1W1,p
0 (Ω) is the closure of C∞0 (Ω) in theW1,p(Ω)- norm, cf. ([13, 54] and [59]).
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Let

u(r, θ) = r−
√
µ sin

√
µθ, (5.2)

one of the polar functions of the general solution of the Laplace equation under polar

coordinates (r, θ)

U(r, θ) = A1r
√
µcos
√
µθ︸ ︷︷ ︸

T1

+A2r
√
µ sin

√
µθ︸ ︷︷ ︸

T2

+A3r
−√µcos

√
µθ︸ ︷︷ ︸

T3

+A4r
−√µ sin

√
µθ︸ ︷︷ ︸

T4

,

(5.3)

in the circular sector {(r, θ) : 0 < θ < α, 0 < r < a} = Ω, where 0 ≤ θ ≤ π, and

µ =
(
nπ
a

)2
, n = 0, 1, 2, · · · is an eigenvalue, and r = φ(θ) = (sin

√
µθ)

1√
µ that makes

the equation (5.2) vanish on the boundary of Ω, in order to study the existance of cusp on

the boundary of cardioid domain, with classification into inward cusp, outward cusp via

an integrability of conformal maps at z = 0, and its neighborhoods.

In Section (5.2), we construct an holomorphic function on the cardioid domain Ω, where

φ′(0) = 0, for 0 < n ≤ 1 in Theorem (5.2.1), and another belongs to Hardy space

H
2nπ−θ
nπ (D), n ∈ N, on the unit disk in Theorem (5.2.4).

For more information regarding such kind of work, cf. D. Khavinson papers [14] ,[38]

and the books ([18] pp.168 -169), [22] are also excellent reference sources on this subject.

5.1 Existence of a cusp on the boundary of cardioid do-

main

Definition 5.1.1. [1],[44] Let Ω ⊂ Rn be a simply connected domain. Fix point z = 0

in Ω and let ∂Ω be the boundary of Ω, let γ in Ω be defined as a simple Jordan arc which

divides Ω into two subdomains.

LetK = (γn)∞n=1 , a sequence of γn in the given domain Ω, be called a chain, if it satisfies

all the following conditions :



Chapter 5. Integrability over cardioid domain, and simply connected domain 106

i. The diameter of γn tends to zero as n→∞.

ii. for each n the intersection γn ∩ γn+1 is empty.

iii. any path connecting z = 0 in Ω with arc γn for all n > 1 intersects with arc γn−1.

Moreover, any two chains K = (γn) and K ′ = (γ
′
n) in Ω are equivalent if the arc γn sep-

arates the point z = 0 from all arcs γ′n except for a finite number of them. An equivalence

class of chains in Ω is called a prime end.

Remark 5.1.2. [53] Let φ map unit disk D conformally onto simply connected domain

Ω ⊂ C with locally connected boundary ∂Ω. Let ζ = eiθ ∈ ∂D. Then ∂Ω has a corner of

opening πα(0 ≤ α ≤ 2) at φ(ζ) 6=∞ if

arg[φ(eit)− φ(eiθ)]→

γ as t→ θ+,

γ + πα as t→ θ−.

(5.4)

Hence, if φ maps the unit disk onto the domain Ω, this will induce a one-to-one mapping

between the points on the unit circle and the prime ends of Ω. That is, there may exist

another point ζ ′ ∈ ∂D with φ(ζ ′) = φ(ζ) where there may be a corner of opening πα′ or

none at all. Also, if α = 1 then we obtain a tangent of direction angle γ. If α = 0, then

we will obtain an outward-pointing cusp, and if α = 2, we will get an inward-pointing

cusp.

Theorem 5.1.3. [53]

Let φ maps D conformally onto the bounded domain Ω ⊂ C. Then the following four

conditions are equivalent:

i. φ has a continuous extension to D;

ii. ∂Ω is a curve, that is ∂Ω={ϕ(ζ) : ζ ∈ ∂D};

iii. ∂Ω is locally connected;

iv. C\Ω is locally connected.
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The main result of this section reads as follows:

Consider the two-dimentional Laplace equation in polar coordinates (r, θ)

Urr +
1

r
Ur +

1

r2
Uθθ = 0, (5.5)

in the circular sector {(r, θ) : 0 < θ < α, 0 < r < a} = Ω.

Let us start with the general solution of the Laplace equation under polar coordinates

(r, θ) [54] as follows:

U(r, θ) = A1r
√
µcos
√
µθ︸ ︷︷ ︸

T1

+A2r
√
µ sin

√
µθ︸ ︷︷ ︸

T2

+A3r
−√µcos

√
µθ︸ ︷︷ ︸

T3

+A4r
−√µ sin

√
µθ︸ ︷︷ ︸

T4

.

(5.6)

Choose u(r, θ) = r−
√
µ sin

√
µθ, a harmonic function on Ω, such that

u(r, θ) = r−
√
µ sin

√
µθ − 1 (5.7)

to be zero on the boundary of Ω, where r = (sin
√
µθ)

1√
µ , then the integrability

∫ ∫
Ω
|∇u|pdxdy

depends on the local behaviour at a point eiθ ∈ ∂Ω as follows:

|∇u|2 =

[
(
∂u

∂r
)2 + (

1

r

∂u

∂θ
)2

]
|∇u|2 = µr2(−√µ−1)sin2√µθ + µr2(−√µ−1)cos2√µθ

|∇u|p = µ
p
2 r(−√µ−1)p

Then, ∫ ∫
Ω

|∇u|pdxdy =

∫ ∫
Ω

µ
p
2 r(−√µ−1)p+1drdθ (5.8)

= µ
p
2

∫ nπ

0

dθ

[
r(−√µ−1)p+2

(−√µ− 1)p+ 2

∣∣∣∣a
0

(5.9)

such that (−√µ− 1)p+ 2 > 0 ⇒ p < 2√
µ+1

.

Hence, ∫ ∫
Ω

|∇u|pdxdy <∞ for p <
2

√
µ+ 1

. (5.10)
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It is clear that all the values of p depend on µ, which in turn depend on the condition

r = φ(θ) = (sin
√
µθ)

1√
µ , (5.11)

such that if 0 ≤ θ ≤ π then φ(θ) = 0 when θ = π√
µ

.

Calculate the tangent vector for the function r = φ(θ) in equation (5.11), by using the

formula below:

dy

dx
=

φ(θ) cos θ + sin θφ′(θ)

−φ(θ) sin θ + cos θφ′(θ)

such that when θ = π√
µ

this implies that φ(θ = π√
µ
) = 0

Hence we will get

dy

dx
=

sin θφ′(θ)

cos θφ′(θ)
= tan θ at θ =

π
√
µ
.

Suppose, tan θ = 0 at θ = π√
µ

, then π√
µ

= 0, π, 2π, . . . = nπ , n ∈ N, and it gives that

µ =
1

n2
, n ∈ N. (5.12)

Consequently, we deduce that∫ ∫
Ω

|∇u|pdxdy <∞ for p <
2

√
µ+ 1

, where µ =
1

n2
, n ∈ N.

Hence, we can classify this result, depending on n as follows:-

i. In case, n = 2 then |∇u| ∈ Lp(Ω) for all p < 4
3

and u(r, θ) vanishes on ∂Ω except

the discontinuity point z = 0.

ii. In case, n ≥ 3 then |∇u| ∈ Lp(Ω) for all p < 2√
µ+1

, and u vanishes on ∂Ω except

some inward cusps at the neighborhoods of z = 0.

iii. According to the above, the harmonic function u = r−
√
µ sin

√
µθ− 1 in Ω, belongs

to W1,p(Ω) for all p < 2√
µ+1

, where µ = 1
n2 , n ∈ N, that is, u = 0 on ∂Ω for

r = (sin
√
µθ)

1√
µ and we deduce that when we approach the vertex of the cusp
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z = 0 along the boundary of Ω we will have zero limit, whereas if we properly

approach the vertex of the cusp z = 0 from the interior of Ω we will have

lim
z→0

u = r−
√
µ sin

√
µθ − 1 = −∞.

For this we can say that u = 0 on the boundary of a given domain except at discon-

tinuity point z = 0.

Likewise, it can be carried out along the same lines for another harmonic function in the

general solution of Laplace equation which is:

u(r, θ) = r−
√
µ cos

√
µθ − 1, where r = (cos

√
µθ)

1√
µ , and µ is an eigenvalue.

In order to derive more information about the existence of inward-pointing cusp on the

boundary of Ω at the point z = 0 and its neighborhoods, see figure (5.1) and table (5.1)

below.
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Figure 5.1: Existence of inward cusp on the boundary Ω where r = (sin
√
µθ)

1√
µ .
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Table 5.1: Self intersection points for the polar function r = φ(θ) = (sin
√
µθ)

1√
µ .

n µ = 1
n2 r = (sin

√
µθ)

1√
µ (θ1, θ2) inward-pointing cusp

at the neighborhood of z = (r, θ) = 0

3 1
9

sin3 θ
3

(π
2
, 5π

2
) (0.125,π

2
)

(0.125,5π
2

)

4 1
16

sin4 θ
4

(π, 3π) (0.2500,π)

(0.2500,3π)

5 1
25

sin5 θ
5

(3π
2
, 7π

2
) (0.0028,π

2
)

(π
2
, 9π

2
) (0.0028,9π

2
)

6 1
36

sin6 θ
6

(2π,4π) (0.0156,π)

(π, 5π) (0.0156,5π)

7 1
49

sin7 θ
7

(5π
2
, 9π

2
) (0.4819,5π

2
)

(3π
2
, 11π

2
) (0.4819,9π

2
)

(π
2
, 13π

2
)

...
...

...
...

...
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At this stage, we consider n /∈ N for example, then∫ ∫
Ω

|∇u|pdxdy ≮∞ for p <
2

√
µ+ 1

, where µ =
1

n2
.

However there is no inward-pointing cusp on the boundary of Ω, that is, we have outward-

pointing cusp on the boundary of Ω.

For instance, let n =
√

2 /∈ N, then µ = 1
2
⇒ √

µ = 1√
2
, such that

u(r, θ) =

(
r
−1√
2 sin

θ√
2

)
− 1, 0 ≤ θ ≤

√
2π.

and u = 0 on ∂Ω where r = φ(θ) = (sin θ√
2
)
√

2.

Calculating the tangent vector for the function r = φ(θ) as follows:

dy

dx
=

φ(θ) cos θ + sin θφ′(θ)

−φ(θ) sin θ + cos θφ′(θ)

such that in case, θ = 0⇒ φ(θ = 0) = 0, which implies to

dy

dx
=

sin θφ′(θ)

cos θφ′(θ)
= tan θ

and dy
dx

= 0, however in case θ =
√

2π⇒ f(θ =
√

2π) = 0, then

dy

dx
= tan(

√
2π) = 3.6202

is a straight-line equation

y = 3.6202 x+ c, c is a constant.

Some figures in (5.2) which plotted in Matlab program help to locate more information

about the existence of outward-pointing cusp on the boundary of Ω at the point z = 0 and

its neighborhoods for the function r = φ(θ) = (sin
√
µθ)

1√
µ .
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Figure 5.2: Existence of outward cusp on the boundary Ω where r = (sin
√
µθ)

1√
µ .
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5.2 Generating an holomorphic function on cardioid do-

main, unit disk

This section is of great interest to illustrate how to generate an holomorphic function on

the cardioid domain Ω by a harmonic function defined on Ω, and vanishes on the boundary

of Ω, and another on the unit disk by holomorphic function belongs to Smirnov domain

(cardioid type), which is settled in Theorems 5.2.1 and 5.2.4.

Theorem 5.2.1. Let u(r, θ) =
(
r−
√
µ cos

√
µθ
)
− 1 be a harmonic function on cardioid

domain Ω and u(r, θ) = 0 on ∂Ω where r = (cos
√
µθ)

1√
µ , where µ is an eigenvalue.

Then the polar function r = (cos
√
µθ)

1√
µ generates holomorphic function on Ω for all

0 < n ≤ 1.

Proof. Let

z = ψ(ζ) = c(1 + ζ)n (5.13)

be a conformal mapping defined on the simply connected domain Ω onto unit disk {ζ :

|ζ| < 1}. To derive polar function we shall define ζ = eiα on the boundary of the unit

circle such that

z = ψ(ζ) = c(1 + eiα)n = c(1 + cosα + i sinα)n (5.14)

Since z = reiθ is a point on the curve C in the interior of Ω then equation (5.14) becomes

z = c(1 + cosα + i sinα)n

reiθ = c
[
2 cos2 α

2
+ 2i sin

α

2
cos

α

2

]n
= c

[
2 cos

α

2
(cos

α

2
+ i sin

α

2
)
]n
.

reiθ = c
[
2n cosn

nα

2

]
e
inα
2

Therefore θ = nα
2

and

r = c
[
2 cos

α

2

]n
(5.15)
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Substituting α = 2θ
n

into equation (5.15) we obtain

r = c1

[
cos

θ

2

]n
where c1 = 2nc is a constant (5.16)

This polar function will generate a cardioid domain when n = 2. Apply Fourier expan-

sion to the function

f(θ) = cos2n θ

n
, (−L ≤ θ ≤ L) where L =

nπ

2
. (5.17)

We obtain that

f(θ) =
1

2
a0 +

∞∑
k=1

akcos
kπθ

L
.

Figure 5.3: Cardioid domain, r =
[
cos θ

2

]2
We know that f(θ) being even implies bk = 0. Substituting equation (5.17) and L = nπ

2

into ak-Formula, ak = 2
L

∫ L
0
f(θ)coskπθ

L
dθ, we obtain

ak =
4

nπ

∫ nπ
2

0

cos2n θ

n
cos

2kθ

n
dθ. (5.18)

Assuming θ
n

= θ1 in equation (5.18), for convenience, gives

ak =
4

π

∫ π
2

0

cos2nθ1cos(2kθ1)dθ. (5.19)



Chapter 5. Integrability over cardioid domain, and simply connected domain 116

Now, we need to apply Cauchy’s formula which is related to Gamma function 2

Put ρ = 2n and β = 2k, to obtain

ak =
n

22n−2

Γ(2n)

Γ(1 + n+ k)Γ(1 + n− k)
, for k = 0, 1, 2, . . . (5.20)

Substituting equation (5.20) into the Fourier series expansion as follows

f(θ) =
1

2
a0 +

∞∑
k=1

akcos
kπθ

L
.

cos2n θ

n
=

1

2
a0 +

∞∑
k=1

n

22n−2

Γ(2n)

Γ(1 + n+ k)Γ(1 + n− k)
cos

2kθ

n
.

cos2n θ

n
=
nΓ(2n)

22n−1

[
1

n2Γ2(n)
+ 2

∞∑
k=1

cos 2kθ
n

Γ(1 + n+ k)Γ(1 + n− k)

]
(5.21)

We notice that cos2n θ
n

= r2 by equation (5.16) and[
1

n2Γ2(n)
+ 2

∞∑
k=1

cos 2kθ
n

Γ(1 + n+ k)Γ(1 + n− k)

]
= Re

[
1

n2Γ2(n)
+ 2

∞∑
k=1

eikα

Γ(1 + n+ k)Γ(1 + n− k)

]
(5.22)

where α = 2θ
n

. And hence, there exists function defined on the boundary of unit disk ∂D

in ζ-plane, which is

Φ(ζ) =
nΓ(2n)

22n−1

[
1

n2Γ2(n)
+ 2

∞∑
k=1

eikα

Γ(1 + n+ k)Γ(1 + n− k)

]
(5.23)

such that eiα = cos(α) + i sin(α) = η + iξ = ζ., that is

Φ(ζ) =
nΓ(2n)

22n−1

[
1

n2Γ2(n)
+ 2

∞∑
k=1

ζk

Γ(1 + n+ k)Γ(1 + n− k)

]
(5.24)

By equation (5.13) we obtain ζ = ( z
c
)

1
n − 1.

2we refer to Cauchy’s formula which is related with Gamma function∫ π
2

0

(cos t)ρcos(βt)dt =
πΓ(1 + ρ)2−ρ−1

Γ(1 + 1
2ρ+ 1

2β)Γ(1 + 1
2ρ−

1
2β)

.
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Consequently, we deduce

φ(z) = φ1(x, y) + iφ2(x, y)

⇒ φ(z) = φ(ψ(ζ)) = φ1(η, ξ) + iφ2(η, ξ) = Φ(ζ), where z = ψ(ζ)

such that,

φ(z) =
nΓ(2n)

22n−1

[
1

n2Γ2(n)
+ 2

∞∑
k=1

( z
c
)

1
n − 1

Γ(1 + n+ k)Γ(1 + n− k)

]
. (5.25)

It is clear that φ is holomorphic function at z = 0 whose derivative exists and is continu-

ous at z = 0, such that φ′(0) = 0 for 0 < n ≤ 1. However on the other hand, φ(z) is not

holomorphic at z = 0 for 1 < n ≤ 2, because φ′(z) at z = 0 does not exist.

Before moving on to a new theorem, we need just a little more background about Smirnov

classes and M.Keldysh, M. Laurentiev Theorem.

Definition 5.2.2. (Smirnov classes) [18]

Any holomorphic function defined on Ω is said to be of class Ep(Ω) for 0 < p ≤ ∞

if there exists a sequence of rectifiable Jordan curves γ1, γ2, . . . in Ω, approaching the

boundary Ω ( in the sense of γ) such that∫
γi

|f(z)|p|dz| ≤ const <∞.

Theorem 5.2.3. (M.Keldysh, M. Laurentiev)

f(z) ∈ Ep(Ω) if and only if F (w) = f(φ(w))[φ′(w)]1/p ∈ Hp(D) for some conformal

mapping φ(w) of the unit disk onto Ω.

Theorem 5.2.4. Let Ω be a domain bounded by a curve that is real holomorphic except

at the point z0 where it has a corner with interior angle θ. If nπ < θ ≤ (n+ 1)π, n ∈ N,

then for all p ≥ 2− θ
nπ

, n ∈ N every f(z) ∈ Ep(Ω), generates an holomorphic function

on unit disk D does not have poles on ∂D = T such that H
2nπ−θ
nπ (D) ⊆ Ep(Ω).
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Proof. Consider a simply connected domain Ω ⊂ C, bounded by a Jordan rectifiable

curve γ, let φ(w) = (1 − w)2 : D → Ω be a conformal mapping of the unit disk D onto

Ω ( cardioid type). Assume that there is a function F (w) = i1−w
1+w

which maps unit disk

onto the upper- half plane H+.

So, there is a function f(φ(w)) = F (φ−1(z)) which maps Ω( cardioid type) onto upper-

half plane H+, where φ−1(z) = w.

Given nπ < θ ≤ (n+ 1)π, that is, 1 < θ
nπ
≤ 1 + 1

n
where n ∈ N.

We will start to show that in such Ω there exists a function f(z) ∈ Ep(Ω) with real

boundary values for some values of p.

For this purpose, consider F (w) = i1−w
1+w

: D → H+ and according to M.Keldysh, M.

Laurentiev Theorem 5.2.3 and ([53], Theorem 3.9 pp.52 ), we obtain

f(φ(w))[φ′(w)]
1
p = f(φ(w))

[
(1− w)

θ
nπ
−1g(w)

] 1
p

= F (w)
[
(1− w)

θ
nπp
− 1
p g(w)

1
p

]
; since f(φ(w)) = F (w).

= i
(1− w)1+ θ

nπp
− 1
p

(1 + w)
g(w)

1
p

So, f(φ(w))[φ′(w)]
1
p ∈ Hp(D) for 1 < p < 1+ 1

n
, since p(1+ θ

nπp
− 1

p
) = p+ θ

nπ
−1 > 1,

which follows from the fact that, θ
nπ

< p + θ
nπ
− 1 < 1

n
+ θ

nπ
, and in addition; θ

nπ
> 1

implies p ≥ 2− θ
nπ

, n ∈ N.

Hence, there exists a function such f(z) ∈ Ep(Ω), for p ≥ 2− θ
nπ

.

At this stage we shall apply Theorem 5.2.3 and ([53],Theorem 3.9, pp.52) once again to

prove that, there exists an holomorphic function with pole at w = 1 of order greater than

1 on ∂D = T as follows:

f(φ(w))[φ′(w)]
1

2nπ−θ/nπ = f(φ(w))
[
(1− w)

θ
nπ
−1g(w)

] nπ
2nπ−θ

. (5.26)

= f(φ(w))
[
(1− w)

θ−nπ
2nπ−θ g(w)

nπ
2nπ−θ

]
∈ H

2nπ−θ
nπ (D). (5.27)
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Let

G(w) = f(φ(w))[φ′(w)]
nπ

2nπ−θ .

⇒ G(w) = f(φ(w))(1− w)1− 3nπ−2θ
2nπ−θ g(w)

nπ
2nπ−θ (5.28)

such that

⇒ G(w)(1− w)
3nπ−2θ
2nπ−θ

g(w)
nπ

2nπ−θ
= f(φ(w))(1− w) ∈ H

2nπ−θ
nπ (D).

Set,

G∗(w) =
G(w)(1− w)

3nπ−2θ
2nπ−θ

g(w)
nπ

2nπ−θ
= f(φ(w))(1− w).

The last equation can be written as follows:

G∗(w)(1− w) = f(φ(w))(1− w)(1− w).

⇒ G∗(w)(1− w) = f(φ(w))|1− w|2.

Set again,

K(w) = G∗(w)(1− w)

such that

K(w) = f(φ(w))|1− w|2 ∈ H
2nπ−θ
nπ (D), n ∈ N (5.29)

As we obtained f(z) ∈ Ep(Ω), for p ≥ 2− θ
nπ

, it can be set,

f(z) = u(x, y) + iv(x, y)

Now, we need to rewrite equation (5.29) as follows:

K(w) = f(φ(w))
w − α1

1− w
(1− α2w)(w − α2), where α1 ∈ ∂D = T & α2 ∈ D.

(5.30)

Hence, w−α1

1−w ∈ R on ∂D = T.
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Let us assume w = x+ iy, α1 = a+ ib and (1− α2w)(w− α2) = t, where t ∈ R, since

it gives real values. Then

K(w) = f(φ(w))
w − α1

1− w
(1− α2w)(w − α2)

= t [u(x, y) + iv(x, y)]
(x− a) + i(y − b)

(1− x)− iy

= t [u(x, y) + iv(x, y)]
[(x− a)(1− x)− y(y − b)] + i[(y − b)(1− x) + y(x− a)]

(1− x)2 + y2
.

Since w−α1

1−w is a real value on ∂D = T when a = 1, b = 0, then α1 = 1, so that

K(w) = t [u(x, y) + iv(x, y)]
w − 1

1− w
= tf(φ(w)), (5.31)

that is, K(w) does not have poles on ∂D = T.

Hence, by equations (5.29), (5.31) we obtain that, H
2nπ−θ
nπ (D) ⊆ Ep(Ω).
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Appendix A

Background material on univalent

functions

Theorem A.0.5. (Area theorem)

If g ∈ Σ, then
∑∞

n=1 n|bn|
2 ≤ 1, with equality if and only if g ∈ Σ̃.

Proof. Given E be a compact connected set such that E be a set omitted by g. Define,

g(z) : 4(|z| > 1) −→ E c

hence, for r > 0, let Cr be the image of boundary ∂D1 = |z| = r under the function g,

such that Cr be a boundary of the domain Er.

Let w = x+ iy ⇒ dw = dx+ idy and w = (x− iy) we get,

wdw = (x− iy)) (dx+ idy).

wdw = (xdx+ ydy) + i(xdy − ydx)

By applying Green theorem

∫
Cr

(xdx+ ydy) + i(xdy − ydx) =

∫
Er

2idxdy.

= 2i Ar.
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Hence,

2i Ar =

∫
Cr

wdw.

⇒ Ar =
1

2i

∫
Cr

wdw.

Let w = g(z)⇒ w = g(z), dw = g′(z)dz.

Ar =
1

2i

∫
Cr

wdw =
1

2i

∫
|z|=r

g(z) g′(z)dz.

=
1

2

∫ 2π

0

[
re−iθ +

∞∑
n=0

bnr
−neinθ

] [
1−

∞∑
n=0

nbnr
−n−1e−i(n+1)θ

]
reiθdθ

=
1

2

[
2πr2 − 2π

∞∑
n=1

n|bn|2r−2n

]
.

= π

[
r2 − 2π

∞∑
n=1

n|bn|2r−2n

]
. (r > 1).

Letting r decreasing. that is, r → 1.

⇒ Ar = π

[
1−

∞∑
n=1

n|bn|2
]
.

= m(Er) is outer measure of E

Since m(Er) ≥ 0. Then

π

[
1−

∞∑
n=1

n|bn|2
]
≥ 0.

⇒ 1−
∞∑
n=1

n|bn|2 ≥ 0

∞∑
n=1

n|bn|2 ≤ 1.

Lemma A.0.6. For each φ ∈ S ,∣∣∣∣∣zφ′′φ′ − 2|z|2

1− |z|2

∣∣∣∣∣ ≤ 4|z|
1− |z|2

.
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Proof. Given φ ∈ S , fix ζ ∈ D.

Now, we can define function

Fζ(z) =
φ( z+ζ

1−ζz )− φ(ζ)

(1− |ζ|2)φ′(ζ)
is disk automorphism belong to S .

⇒ F (z) = z + b2z
2 + b3z

3 + ...

Since F ∈ S ⇒ Fζ(0) =
φ(ζ)− φ(ζ)

(1− |ζ|2)φ′(ζ)
= 0.

and F ′ζ(0) =
[(1− |ζ|2)φ′(ζ)] [(1− |ζ|2)φ′(ζ)]

[(1− |ζ|2)φ′(ζ)]2
= 1

Now, b2 is a coefficient of z2 for the function F (z) such that F (z) has Tayler expansion

this means

b2 =
F ′′(z = 0)

2!

F ′′(z) =
[(1− |ζ|2)φ′(ζ)]

[
φ′ −2ζ(1−|ζ|2)(1−ζz)

(1−ζz)4 + 1−|ζ|2
(1−ζz)2φ

′′ 1−|ζ|2
(1−ζz)2

]
[(1− |ζ|2)φ′(ζ)]2

F ′′(z) =
φ′ −2ζ(1−|ζ|2)

(1−ζz)3 + φ′′ (1−|ζ|
2)2

(1−ζz)2

(1− |ζ|2)φ′(ζ)

F ′′(0) =
φ′′

φ′
(1− |ζ|2)− 2ζ

⇒ b2 =
1

2

[
φ′′

φ′
(1− |ζ|2)− 2ζ

]

By Biebarback’s theorem, |b2| ≤ 2.

⇒ 1

2

∣∣∣∣φ′′φ′ (1− |ζ|2)− 2ζ

∣∣∣∣ ≤ 2

⇒
∣∣∣∣φ′′φ′ (1− |ζ|2)− 2ζ

∣∣∣∣ ≤ 4

⇒
∣∣∣∣φ′′φ′ − 2ζ

(1− |ζ|2)

∣∣∣∣ ≤ 4

1− |ζ|2
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Multiply both of sides by |ζ|. ∣∣∣∣ζ φ′′φ′ − 2ζζ

(1− |ζ|2)

∣∣∣∣ ≤ 4|ζ|
1− |ζ|2

⇒
∣∣∣∣z φ′′φ′ − 2|z|2

(1− |z|2)

∣∣∣∣ ≤ 4|z|
1− |z|2

⇒
∣∣∣∣z φ′′φ′ − 2r2

(1− r2)

∣∣∣∣ ≤ 4r

1− r2
.

Theorem A.0.7. (Distortion Koebe theorem) : For each φ ∈ S defined on unit disc D,

1− r
(1 + r)3

≤ |φ′(z)| ≤ 1 + r

(1− r)3
, |z| = r < 1.

For each z ∈ D,z 6= 0, equality occurs if and only if φ is a suitable rotation of the koebe

function φ(z) = z
(1−z)2 .

Proof. :- Given φ(z) ∈ S , by lemma (1.1.5)

−4r

1− r2
≤ zφ′′

φ′
− 2r2

1− r2
≤ 4r

1− r2

⇒ −4r

1− r2
≤ zφ′′

φ′
− 2r2

1− r2
≤ 4r

1− r2

⇒ 2r2 − 4r

1− r2
≤ Re(

zφ′′

φ′
) ≤ 4r + 2r2

1− r2

Now φ′(z) is not vanish in D when z = 0, that is, φ′(0) 6= 0. so, there is an holomorphic

branch log φ′(z) will be vanish in D when z = 0 as r → 0

∂

∂r
(log φ′(z)) =

∂

∂z
(log φ′)

∂z

∂r
+

∂

∂z
(log φ′)

∂z

∂r

=
φ′′

φ′
eiθ + 0

=
φ′′

φ′
eiθ

Re(
∂

∂r
(log φ′(z))) = Re(

φ′′

φ′
eiθ)
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and we know,

Re(
∂

∂r
(log φ′(z))) =

∂

∂r
Re(log φ′(z))

⇒ ∂

∂r
Re(log φ′(z)) = Re(

φ′′

φ′
eiθ)

⇒ r
∂

∂r
Re(log φ′(z)) = Re(

zφ′′

φ′
)

⇒ 2r2 − 4r

1− r2
≤ r

∂

∂r
Re(log φ′(z)) ≤ 4r + 2r2

1− r2

By dividing both of sides on r and integrate each term of inequality with respect to r such

that 0 < r < R, we obtain

2r − 4

1− r2
≤ ∂

∂r
Re(log φ′(z)) ≤ 4 + 2r

1− r2∫ R

0

2r − 4

1− r2
≤
∫ R

0

∂

∂r
Re(log φ′(z)) ≤

∫ R

0

4 + 2r

1− r2∫ R

0

2r − 4

1− r2
≤
∫ R

0

∂

∂r
log |φ′(z)| ≤

∫ R

0

4 + 2r

1− r2∫ R

0

2r − 4

1− r2
≤ log |φ′(Reiθ)| ≤

∫ R

0

4 + 2r

1− r2

such that ∫ R

0

2r − 4

1− r2
= log(1−R)− log(1 +R)3 = log

1−R
(1 +R)3

and
∫ R

0

2r + 4

1− r2
= log(1 +R)− log(1−R)3 = log

1 +R

(1−R)3

⇒ log
1−R

(1 +R)3
≤ log |φ′(Reiθ)| ≤ log

1 +R

(1−R)3
.

By exponentiation

1−R
(1 +R)3

≤ |φ′(Reiθ)| ≤ 1 +R

(1−R)3
.

Theorem A.0.8. (Prawitz’s theorem) : Ifψ ∈ S such thatψ : D → Ω, then for 0 < p <∞,

Mp
p(r, ψ) ≤ p

∫ r

0

1

t
Mp
∞(t, ψ)dt, 0 < r < 1.
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Proof. :- Let φ−1:D → Ω, such that ψ = φ−1, GivenMp
p(r, ψ) be a growth of the integral

means of the function ψ(w) which define in unit disk.

Mp
p(r, ψ) =

1

2π

∫ 2π

0

|ψ(reiθ)|p dθ; (z = reiθ, 0 ≤ r < 1)

Multiply both of sides by (r ∂
∂r

) such that

r
∂

∂r
(Mp

p(r, ψ)) = r
∂

∂r
[

1

2π

∫ 2π

0

|ψ(reiθ)|p dθ] =
1

2π

∫ 2π

0

∂

∂r
|ψ(reiθ)|p rdθ

Now, by second Green’s identity,∫
∂D

∂ψ

∂n
dS =

∫
D

∆ψdV

We have

1

2π

∫ 2π

0

∂|ψ(reiθ)|p

∂r
rdθ =

1

2π

∫ ∫
D

∆(|ψ|p)dxdy

1

2π

∫ 2π

0

∂|ψ(reiθ)|p

∂r
dθ =

1

2πr

∫ ∫
D

∆(|ψ|p)dxdy

=
p2

2πr

∫ ∫
{|w|<r}

|ψ(w)|p−2|ψ′(w)|2dxdy

we can substitute ψ(w) = z and because ψ is holomorphic functions and one-to-one.

⇒ψ(w) is an univalent function.

So, ψ(w) has a maximum modulus

M∞(r, ψ) = max
|w|=r
|ψ(w)|.

such that

|ψ(w)| ≤ max
|w|=r
|ψ(w)| = M∞(r, ψ)

and it’s known that ∫
D

|ψ′(w)|2dxdy =

∫
Ω

dxdy
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This implies to

d

dr
(

1

2π

∫ 2π

0

|ψ(reiθ)|pdθ) =
p2

2πr

∫ ∫
{|w|<r}

|ψ(w)|p−2|ψ′(w)|2dxdy

=
p2

2πr

∫ ∫
ψ({|w|<r})

|z|p−2dA(z)

≤ p2

2πr

∫ ∫
ψ({|w|<r})

max |z|p−2dA(z) =
p2

2πr

∫ 2π

0

∫ M∞(r)

0

tp−2 t dt dθ

So, where

p2

2πr

∫ 2π

0

∫ M∞(r)

0

tp−2 t dt dθ =
p2

r

∫ M∞(r)

0

tp−1dt

=
p

r
Mp
∞(r, ψ)

We will get,

d

dr
(

1

2π

∫ 2π

0

|ψ(reiθ)|pdθ) ≤ p

r
Mp
∞(r, ψ)

Integrate both of sides with respect to r as follows:

Mp
p(r, ψ) =

1

2π

∫ 2π

0

|ψ(reiθ)|pdθ ≤ p

∫ r

0

1

t
Mp
∞(t, ψ)dt.

Lemma A.0.9. (Parseval formula)

If φ(z) be holomorphic function in unit disk D such that can be represent it by Taylor

series expansion φ(z) =
∑∞

n=0 anz
n then

∞∑
n=0

|an|2r2n =
1

2π

∫ 2π

0

|φ(reiθ)|2 dθ.

Proof. Given φ(z) =
∑∞

n=0 anz
n = a0 + a1z + a2z

2 + . . .+ anz
n + · · ·

So, by Cauchy Integral Formula

an =
1

2πi

∫ 2π

0

φ(z)

zn+1
dz
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⇒
∫ 2π

0

|φ(reiθ)|2dθ =

∫ 2π

0

φ(reiθ)φ(reiθ) dθ∫ 2π

0

|φ(reiθ)|2dθ =

∫ 2π

0

φ(reiθ) (
∞∑
n=0

an(reiθ)n) dθ

=
∞∑
n=0

∫ 2π

0

φ(reiθ)anr
n

eniθ
dθ

=
∞∑
n=0

2πanr
2n(

1

2πi

∫ 2π

0

φ(reiθ)

(reiθ)n+1
ireiθ dθ)

⇒
∫ 2π

0

|φ(reiθ)|2dθ =
∞∑
n=0

(2πanr
2n)an

= 2π
∞∑
n=0

ananr
2n

= 2π
∞∑
n=0

|an|2r2n.

This is implies to

1

2π

∫ 2π

0

|φ(reiθ)|2dθ =
∞∑
n=0

|an|2r2n.

Theorem A.0.10. (Bieberbach’s theorem)

If φ ∈ S , then |b2| ≤ 2, with equality if and only if φ is a rotation of the Koebe function.

Proof. :- Given φ(z) = z +
∑∞

n=2 anz
n in S , Since φ(z) = 0 only at the origin. then a

single valued branch of the square root can be chosen as follow

g(z) =
√
φ(z2)

which is a square- root transformation. such that

g(z) = φ(z2)
1
2 . = {z2 + a2z

4 + a3z
6 + · · · }

1
2 .

= z{1 + a2z
2 + a3z

4 + · · · }
1
2 .

= z{1 +
a2

2
z2 + (

a3

2
− a2

2

8
)z4 + · · · }.

= z + (
a2

2
)z3 + (

a3

2
− a2

2

8
)z5 + · · · .
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Now, we have to apply inversion transformation on the function g such that we get another

function h in Σ = {z : |z| > 1} which is defined as follows:

h(z) =
1

g(z)
.

such that

h(z) =
1

g(z)
=

1

z
− (

a2

2
)z + · · · = 1

z
+
∞∑
n=1

bnz
n.

Then h(z) is univalent in 0 < |z| < 1, and so the image of |z| = r by h(z) is a simple

closed curve for 0 < r < 1 this implies to the function h(z) of class Σ.

For this by corollary of the area theorem.

|−a2

2
| ≤ 1 ⇒ |a2

2
| ≤ 1 ⇒ |a2| ≤ 2.

and equality is possible only if bn = 0 (n > 1), and in this case

h(z) =
1

g(z)
=

1

z
− zeiθ =

1− z2eiθ

z
.

And then,

g(z) =
1

h(z)
=

z

1− eiθz2
.

Finally, we have

g(z) = φ(z2)
1
2 .

⇒ z

1− eiθz2
= φ(z2)

1
2 .

⇒ φ(z2) =
z2

(1− eiθz2)2
.

φ(z) =
z

(1− eiθz)2
.

Theorem A.0.11. (Koebe One-Quarter theorem)[19]. The range of every function of

class S contains the disk {w : |w| < 1
4
}.
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Proof. Given φ = z + a2z
2 + a3z

3 + · · · belongs to class S and it’s range omits value

w ∈ C, then by properties of univalent function ( cf. property (vi) in [19]).

h(z) =
w φ(z)

w − φ(z)
= z +

(
a2 +

1

w

)
z2 + · · ·

is holomorphic and univalent function in D.

Using Bieberbach theorem (A.0.10) gives∣∣∣∣a2 +
1

w

∣∣∣∣ ≤ 2

Combined with the inequality |a2| ≤ 2. we get | 1
w
| ≤ 4 which implies to |w| ≥ 1

4
.

So, every value omits of the range φ must lie outside the disk {w : |w| < 1
4
}.

Definition A.0.12. (starlike set) If A ⊂ C, then we could say that A is a starlik with

respect to the point z0 ∈ A, if the line segment joining z0 to any point of A is contained

in A.

Definition A.0.13. (starlike function) A function φ is said to be starlike, if it maps the

unit disk D(|z| < 1) conformally onto a set that is starlike with respect to the origin, or if

Re
(
zφ′(z)
φ(z)

)
≥ 0, |z| < 1. The class of starlike functions is denoted by S ? and contained

in class S .

Theorem A.0.14. (Nehari’s Theorem) Let φ be a regular function ( holomorphic and

single valued function (1-1)) in D and suppose its Schwarzian derivative satisfies

|Sφ| ≤ 2(1− |z|2)2, |z| < 1. (A.1)

Then φ is univalent in D.

Remark A.0.15. Inequality (A.1) is a necessary condition for univalent function by in-

version of the function

F (z) =
φ
(
z+ζ

1+ζz
− φ(ζ)

)
(1− |ζ|2)φ′(ζ)

= z + A2z
2 + A3z

3 + · · ·

to replace a constant 2 by 6. This result was rediscovered by Nehari [47].
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Appendix B

Some basic notions of analysis

Co-area formula

The following, termed to co-area formula which has proved to be essential tool in ana-

lysis with a wide range of applications. For smooth functions the formula considers as a

result in multivariate calculus and it follows from a simple change of variables, and has

established by Herbert Federer (1959) and Fleming & Rishel (1960) for Lipschitz func-

tions,Sobolev functions respectively, cf. [21], [24] and [43]. We will briefly review the

definition of Co-area formula as following.

Definition B.0.16. Let φ : Rn → R be Lipschtiz continuous assume that for a.e. r ∈ R,

assume that the level set {x ∈ Rn|φ(x) = r, r ∈ R} is a smooth and (n− 1)-dimentional

hypersurface in Rn. Also, suppose that there is g : Rn → R is continuous and summable.

Then ∫
Rn
g|∇u|dx =

∫ ∞
−∞

(∫
{φ=r}

gds

)
dr.

Theorem B.0.17. Let X be an open subset of R, andM be a measure space.

Suppose f : X ×M −→ R satisfies the following condations:

i. f(x,w) is a lebesgue- integrable function of w for each x ∈ X
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ii. For almost all w ∈ Ω, the derivative ∂f(x,w)
∂x

exist for all x ∈ X

iii. there is an integrable function Θ : M −→ R such that |∂f(x,w)
∂x
| ≤ Θ(w) for all

x ∈ X

Then d
dx

∫
M f(x,w)dw =

∫
M

∂
∂x
f(x,w)dw. for all x ∈ X.

Theorem B.0.18. (Riesz representation theorem) ([68], pp.5)

Let Ω is a compact metric space, let M(Ω) denote the space of probability measures on

Ω, that is, measure with µ(Ω) = 1. The map M(Ω) −→ C(Ω)?, µ −→ φµ, is a bijection

of M(Ω).

For µ ∈ µ(Ω), define φµ ∈ C(Ω)? = {φ ∈ C(Ω)?|φ(f) ≥ 0, for all f ≥ 0, φ(1) = 1}

by φµ(f) =
∫
fdµ.

Theorem B.0.19. (Schwartz theorem ) {if φ ∈ H∞(D), ‖φ‖ ≤ 1 , and φ(0) = 0. Then

|φ(z)| ≤ |z|, (z ∈ Ω = D), (B.1)

|φ′(0)| ≤ 1; (B.2)

if equality holds in (B.1) for one z ∈ Ω−{0}, or if equality holds in (B.2), then φ(z) = αz,

where α ∈ C is a constant , |α| = 1}.

Theorem B.0.20. (Stokes’ theorem) For w a differential (k − 1)-form with compact

support on an oriented k-dimensional manifold with boundary ∂Ω,∫
Ω

dw =

∫
∂Ω

w,

wher dw is the exterior derivative of the differential form w.
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[31] V. P. Havin and V . G. Maźja. Approximation in the mean by harmonic functions.
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