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Summary 

 
 Children learn words astonishingly skilfully. Even infants can reliably “fast map” 
novel category labels to their referents without feedback or supervision (Carey & 
Bartlett, 1978; Houston-Price, Plunkett, & Harris, 2005). Using both empirical and 
neural network modelling methods this thesis presents an examination of both the fast 
and slow mapping phases of children's early word learning in the context of object and 
action categorisation. A series of empirical experiments investigates the relationship 
between within-category perceptual variability on two-year-old children’s ability to 
learn labels for novel categories of objects and actions. Results demonstrate that 
variability profoundly affects both noun and verb learning. 
 A review paper situates empirical word learning research in the context of recent 
advances in the application of computational models to developmental research. Data 
from the noun experiments are then simulated using a Dynamic Neural Field (DNF) 
model (see Spencer & Schöner, 2009), suggesting that children’s early object categories 
can emerge dynamically from simple label-referent associations strengthened over time. 
Novel predictions generated by the model are replicated empirically, providing proof-
of-concept for the use of DNF models in simulations of word learning, as well 
emphasising the strong featural basis of early categorisation. 
 The noun data are further explored using a connectionist architecture (Morse, de 
Greef, Belpaeme & Cangelosi, 2010) in a robotic system, providing the groundwork for 
future research in cognitive robotics. The implications of these different approaches to 
cognitive modelling are discussed, situating the current work firmly in the dynamic 
systems tradition whilst emphasising the value of interdisciplinary research in 
motivating novel research paradigms.
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An Investigation of Fast and Slow Mapping: An Introduction 

 
“It is quite an illusion to imagine that one adjusts to reality essentially 
without the use of language and that language is merely an incidental 
means of solving specific problems of communication or reflection.” E. 
Sapir, “The Status of Linguistics as a Science”, 1929. 
 
 
 
“… perception, action and cognition are rooted in the … dynamic 
processes of pattern formation: patterns that are reflections of the 
experiences of acting in and perceiving the world.” E. Thelen & L. 
Smith, “A Dynamic Systems Approach to the Development of 
Cognition and Action”, 1996. 
 
 
 
“My contention is that machines can be constructed which will 
simulate the behaviour of the human mind very closely.  They will 
make mistakes at times, and at times they may make new and very 
interesting statements, and on the whole the output of them will be 
worth attention to the same sort of extent as the output of a human 
mind [… Then] instead of trying to produce a program to simulate the 
adult brain, why not rather try to produce one which simulates the 
child’s? If this were then subjected to an appropriate course of 
education one would obtain the adult brain.” A. Turing, “Intelligent 
Machinery, A Heretical Theory”, 1951. 

 

 

 Imagine you are an astronaut.  You finally arrive at an unexplored planet, after 

nearly a year of travelling.  But when you step out of your spaceship, you’re in for a 

shock: the planet is populated by little green men.  The light here is dazzlingly bright, 

and you find it difficult to pick out shapes and textures.  Even worse, because gravity 

here is different than it is on your spaceship, you can’t balance, walk, or interact with 

your physical environment.  And because the little green men communicate using 

sounds only barely comparable to any sound you have heard before, you can’t 

understand the signals they produce.  However, in a matter of twelve months, you have 

learned to move around, reach for and grasp objects and even understand and reproduce 
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some of the verbal and gestural elements the little green men use to communicate in 

their deep-space home.  Two years later, you are communicating almost as fluently as 

your extraterrestrial friends.  When you landed here, you knew almost nothing of this 

strange population and their alien environment; so how did you learn all this so 

incredibly quickly? 

 This daunting task is undertaken daily by human infants all over our planet.  

These little adventurers navigate their way from limited in utero experience to adult-like 

interaction and communication even before formal education gives them a glimpse at 

the map.  The paths children take through their complex perceptual, physical and 

linguistic environments have provoked philosophical and scientific enquiry for centuries 

(e.g., Aristotle 335BC/1992; Quine, 1960).  This thesis provides a signpost along the 

road to understanding cognitive development, and cognition in general, by presenting 

empirical and computational investigations of how children learn to categorise and label 

the world. 

 Research in categorisation provides rich insight into the ability to treat different 

entities as equivalent, from evidence for categories at birth (e.g., of emotion intonation, 

Mastropieri & Turkewitz, 1999), to category development in human infants (Cohen, 

2008) and nonhuman animals (e.g., Cangelosi, 2002), and the fundamental role of 

categorisation in adult cognition (Medin & Schaffer, 1978).  Similarly, an equally large 

language acquisition literature examines how children infer the referent of an unfamiliar 

label (Golinkoff, Mervis, & Hirsh-Pasek, 1994; Horst & Samuelson, 2008; Houston-

Price, Caloghiris, & Raviglione, 2010), how children might learn these labels (Akhtar, 

Jipson, & Callanan, 2001; Mather & Plunkett, 2009; Munro et al., 2012) and how 

children use labels refer to categories of events and objects (Brandone, Pence, Golinkoff, 
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& Hirsh-Pasek, 2007; Maguire, Hirsh-Pasek, Golinkoff, & Brandone, 2008; Perry, 

Samuelson, Malloy, & Schiffer, 2010).   

 Converging evidence suggests that in some contexts labels have a guiding effect 

on children’s – and indeed, adults’ – categorisation.  For example, Plunkett, Hu & 

Cohen (2008) familiarised children with two categories of novel objects and 

demonstrated that when all exemplars were unlabelled, children formed two distinct 

categories, whereas when all exemplars were accompanied by the same label, children 

formed a single category.   Similarly, Lupyan, Rakison & McClelland (2007) showed 

that adults’ categorisation of novel “aliens” in a classification task was significantly 

facilitated by labelled stimuli relative to unlabelled stimuli.  However, less is known 

about the effect of categorisation on labelling; that is, how does a category’s 

representational structure affect how children learn to label its members? Further, the 

means by which children learn categories and words remain controversial despite 

decades of research.  The current work therefore addresses the following overarching 

questions: 

a.   To what extent do categorisation and word learning influence each other? 

b.   Are fast mapping, word learning and categorisation governed by domain–

 specific or domain–general processes?  

c.   Can fast mapping, word learning and categorisation be accounted for by simple, 

 associative computational models, and if so, what does this tell us about these 

 behaviours in the real world? 

 This thesis offers empirical insight into children’s word learning and 

categorisation (Papers 1, 2 and 5), as well as contributing to the growing body of 

computational investigations of cognitive development (Papers 4, 5, and 6), in the 

context of the most recent methodological advances in cognitive psychology (Paper 3).  
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The following sections provide theoretical and methodological background to the 

papers presented in this thesis, before providing an overview of the current research. 

Terminology and Background. 

Categorisation 

 Categorisation is fundamental to adult and child cognition alike (J. D. Smith & 

Minda, 1998).  Categories are groups of discriminably different entities (or exemplars), 

which are treated equivalently for the purposes of a given task (Quinn, 1987), such that 

categorised entities can be quickly and efficiently processed.  Indeed, categorisation 

takes place in multiple domains, from abstract spatial orientation (Quinn, 2004), 

through phonemes (Rost & McMurray, 2009) and emotion expressions (Quinn, et al., 

2011) to the complex domains of objects and events (Jones & Smith, 1998; Oakes, 

Madole, & Cohen, 1991; Quinn, Eimas, & Rosenkrantz, 1993; Paper 1; Paper 2).  

Although some argue that categories are structured by a priori conceptual knowledge, 

(Booth, Waxman, & Huang, 2005; Markson, Diesendruck, & Bloom, 2008; Spelke & 

Kinzler, 2007), categories are nonetheless demonstrably flexible and can be formed 

online after just minutes of experience (Horst, Oakes, & Madole, 2005; Kovack-Lesh & 

Oakes, 2007; Oakes, Plumert, Lansink, & Merryman, 1996; Plunkett, Hu & Cohen, 

2008). 

Fast mapping and word learning 

 During their second year of life infants begin to learn labels for the categories 

they regularly encounter (Booth, et al., 2005; Halberda, 2003; Houston-Price, Plunkett, 

& Harris, 2005).  The initial stage in the word learning process is known as fast 

mapping (Carey & Bartlett, 1978).  For example, on encountering a novel label 

alongside a novel object, children associate that label with the object as a whole, rather 

than part of the object, the texture of the object, the background of the visual scene, and 
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so on (Quine, 1960).  Importantly, fast mapping is not restricted to nouns, but also 

forms the foundations of (lexical) verb learning (Golinkoff, Jacquet, Hirsh-Pasek & 

Nandakumar, 1996).  Note, however, that verbs are markedly later-acquired than nouns 

in English-learning children, possibly by virtue of the temporal and perceptual 

complexity of events and actions relative to objects (Golinkoff & Hirsh-Pasek, 2008; 

Maguire, Hirsh-Pasek, & Golinkoff, 2006). 

 Given the infinite number of potential referents for each new label, children’s 

skill in correctly fast mapping novel labels to their referents is impressive.  

Consequently, various biases or constraints by which children may limit the number of 

potential referents have been proposed: for example, pragmatic accounts based on 

shared knowledge between speaker and listener (Akhtar, et al., 2001; Diesendruck & 

Markson, 2001); taxonomic constraints, by which children assume that members of the 

same taxonomic category share a label (Markman & Hutchinson, 1984); the whole 

object assumption, by which children assume that labels refer to whole objects 

(Markman, 1990); and the shape bias, by which English-speaking children generalize 

labels for solid objects to object that share the same shape (Landau, Smith, & Jones, 

1988).   

 Papers 1, 4, 5 and 6 examine fast mapping in the context of referential ambiguity.  

Specifically, when young children know the label for all-but-one item in an array, they 

reliably map a novel label to the unlabelled, unknown object (Halberda, 2003; 

Merriman & Stevenson, 1997; Woodward & Markman, 1991).  Various explanations 

for this ability have been offered.  The novel-name-nameless-category principle (N3C) 

states that children know a priori that novel names map to novel categories (Golinkoff, 

et al., 1994).  The mutual exclusivity principle assumes that children use a process of 

elimination to reject any object that already has a label (Jaswal, 2010; Markman & 
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Wachtel, 1988), and is supported by studies demonstrating children’s (and adults’) 

attention to known competitors on hearing a novel label (Halberda, 2006; Horst, Scott, 

& Pollard, 2010).  The current research, in particular, suggests that low-level associative 

mechanisms, rather than explicit reasoning, underlie this expertise (Papers 4, 5 and 6). 

 Importantly, fast mapping is not word learning.  Tests of retention (recall of 

label-category mappings after a delay) and extension (generalisation of a category label 

to a new exemplar) suggest that encoding constraints limit children’s ability to learn 

words from a single exposure (Horst & Samuelson, 2008; Munro, et al., 2012).  Word 

learning – defined here as the ability to use new labels after a delay in a new context or 

in reference to a new exemplar – occurs after the slow mapping phase, during which 

repeated exposures to a label and multiple category exemplars category strengthen 

label-category associations (Capone & McGregor, 2005; Munro, Baker, McGregor, 

Docking, & Arculi, 2012). 

Theoretical accounts of categorisation 

 On encountering a new object (or animal, or event, or sound, and so on), a child 

must compare that object to stored memory representations of previously-encountered 

objects (or animals, etc.), in order to know how – or indeed, whether – to interact with it.  

For example, if something is small, round, made of plastic and bounces, it is probably 

safe to play with it, as with other small, round, plastic, bouncing things.  In contrast, 

small, black-and-yellow-striped flying things are unlikely to make good toys.  Thus, 

categorisation involves comparison.  Consequently, facilitating comparison also 

promotes categorisation (Gentner & Namy, 1999; Oakes, Kovack-Lesh, & Horst, 2009; 

Oakes & Ribar, 2005; but see Quinn & Bhatt, 2010). 

 However, the structure of category representations is contentious (see Murphy, 

2004 for a review).  Accounts of categorisation fall broadly into two camps: prototype 
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and exemplar theories.  According to prototype theories, across encounters with 

different category exemplars the learner abstracts commonalities between these 

exemplars and forms a single, schematic “prototype” representation.  Categories are 

therefore structured by “family resemblances”.  That is, the majority of members of the 

BIRD “family” have wings, feathers and a beak.  However, not all birds are “good” 

typical exemplars of the category; for example, in category judgement studies a robin is 

rated as a more typical member of BIRD than a flamingo (Mervis & Rosch, 1981; Rosch, 

1975; Rosch & Mervis, 1975).  Prototype accounts are supported by empirical studies 

with adults; for example, Posner & Keele’s (1968) seminal work demonstrates that after 

training with abstract dot patterns, adults more readily categorise novel prototypic 

stimuli than novel atypical stimuli (see also Posner, Goldsmith, & Welton Jr, 1967; 

Strange, Keeney, Kessel, & Jenkins, 1970).  Similar prototype effects have been 

demonstrated in infants from as young as 3 months (Bomba & Siqueland, 1983; Quinn, 

1987; Strauss, 1979).  Further, recent computational evidence suggests that prototype-

based algorithmic models reliably simulate adult categorisation of stimuli drawn from 

large, well-structured categories (Minda & J. D. Smith, 2001; J. D. Smith & Minda, 

1998). 

In contrast, according to exemplar-based accounts, a category consists of 

snapshot-like stored representations of each and every encounter with that category’s 

exemplars.  Rather than comparing new items to a prototype, then, items are compared 

to each stored representation in turn -- with overall similarity determining categorisation 

of novel objects (Medin & Schaffer, 1978; Nosofsky, 1984).  Exemplar theories are 

supported by empirical and computational research (Kruschke, 1992; Lamberts, 1994; 

Nosofsky & Johanson, 2000) and exemplar-based algorithmic models account for 
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category learning when training exemplars are drawn from small, poorly-structured 

categories, unlike their prototype-based counterparts (J. D. Smith & Minda, 1998).   

 At present, a tenuous consensus states that different categorisation strategies 

become relevant at different stages of learning, dependent on task and processing 

demands (Horst, Oakes & Madole, 2005; Iverson & Kuhl, 2000; Juslin, Olsson & 

Olsson, 2003; Minda & J. D. Smith, 2001; Quinn, 2005; J. D. Smith & Minda, 1998).  

Evidence from Paper 4 (and the pilot data presented in Paper 6) challenges the 

Exemplars-versus-Prototypes debate (see also Spencer, Blumberg, McMurray, 

Robinson, Samuelson & Tomblin, 2009): indeed, the overriding historical influence – 

and success – of the leading exemplar and prototype models may have given rise to a 

false dichotomy in theoretical accounts of categorization.  That is, representational 

structure in these models is explicitly (mathematically) predefined by the modeller.  In 

prototype models new exemplars are compared to an overall similarity measure (Minda 

& J. D. Smith, 2001; Murphy, 2004), whereas in exemplar models new exemplars are 

compared to individual representations (e.g., Generalised Context Model; Nosofsky et 

al., 2000).  Thus, because these models simulate rigid mathematical computations rather 

than flexible neuronal interactions they imply that categorisation must be either entirely 

exemplar-based or entirely prototype-based.  In stark contrast, neural network models 

such as the simulation presented in Papers 4, 5 and 6 demonstrate that a broad, graded 

category representation (that is, a prototype) can emerge from individual memory traces 

laid down over several encounters with category exemplars.  Thus, Paper 4 discusses an 

integrative view of categorisation in which exemplar and prototype effects emerge 

flexibly from the interaction of learning history and task demands (Ellis & Oakes, 2006; 

Mareschal & Quinn, 2001; Mareschal & Tan, 2007). 
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Empirical tests of categorisation and word learning 

 Categorisation has been tested in infants and children across development by 

measuring behavioural responses to a range of stimuli, based on the assumption that 

because categorisation results in equivalent responding to different stimuli, reliably 

different responding to a new stimulus indicates discrimination (that is, lack of 

categorisation).  However, not all tasks are relevant to all ages – pointing tasks, for 

example, are unsuitable for measuring newborns’ categorisation until sufficient motor 

control is acquired.  Likewise, recording increases in sucking rates in response to novel 

stimuli is not an appropriate measure of preschool children’s categorisation.  Thus, 

experimental paradigms have been developed in which infants’ and children’s 

categorisation responses can be demonstrated age-appropriately (for a review, see 

Mareschal & Quinn, 2001).  Here I will consider measures of object and verb 

categorisation, as they are most relevant to this thesis.  However, it is important to bear 

in mind that various innovative paradigms have been developed to test infant and adult 

categorical perception across modalities (e.g., change detection in colour categorisation, 

e.g., Franklin, Pilling, & Davies, 2005; conditioned leg-kick in newborn categorisation, 

Rovee-Collier & Dufault, 1991; event-related potentials in tone perception, e.g., Zheng, 

Minett, Peng, & Wang, 2012). 

Categorisation from birth is readily examined by recording infants’ looking time 

to a stimulus.  In preference procedures, two images are presented manually or via video, 

and looking time (or head turn) to each is recorded (Fantz, 1958; Fantz & Fagan, 1975; 

Fantz, 1964; Quinn, 1987).  Based on the assumption that very young infants display a 

familiarity preference (e.g., Maurer & Salapatek, 1976), an increase in fixation to one 

stimulus over another indicates that the preferred stimulus is an exemplar of a familiar 

category.  However, given sufficient familiarisation, infants will habituate to the 



Fast and Slow Mapping: An Introduction 11 
	  
	  
familiar stimulus and begin to prefer novelty (Houston-Price & Nakai, 2004).  Thus, 

increase in fixation to a given stimulus may not indicate a familiarity preference, but in 

fact a habituation artefact, with implications for the accurate interpretation of results 

(see also Hunter & Ames, 1988; Yurovsky, Hidaka, Yu, & Smith, 2010). 

However, the habituation phenomenon has formed in its own right the basis of 

habituation and familiarisation studies.  Here, children are presented repeatedly with a 

single stimulus for a fixed number of trials (familiarisation) or until looking time 

decreases below a predetermined threshold (habituation).  A novel stimulus is then 

presented.  Based on older infants’ documented novelty bias (Fagan, 1984; Horst, 

Samuelson, Kucker, & McMurray, 2011; Shinskey & Munakata, 2005) an increase in 

looking time indicates detection of a novel stimulus; lack of increase indicates 

categorisation of the novel stimulus with the habituated category.  Importantly, as with 

preference procedures, familiarisation/habituation studies must be carefully designed to 

avoid confounding in-task habituation effects with categorisation (Oakes, 2010).  

Despite the care required in interpretation, well-controlled experiments using looking-

time procedures are plentiful and enormously informative (e.g., Arias-Trejo, 2010; 

Bhatt & Quinn, 2011; Golinkoff, Hirsh-Pasek, Bailey, & Wenger, 1992; Horst, Oakes, 

& Madole, 2005; Houston-Price, Plunkett, & Harris, 2005; Rakison, Cicchino, & Aslin, 

2011). 

As children gain experience with objects in their environment and their motor 

control improves, tests of categorisation involving object manipulation can be employed 

(from around six months; Oakes, Madole, & Cohen, 1991).  In sequential touching 

studies (e.g., Oakes & Plumert, 2002; Rakison & Cohen, 1999) children are simply 

presented with an array of toys from two or more categories, and the order and manner 

in which the child touches the toys is recorded.  In the related object examining 
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paradigm (e.g., Oakes, Coppage, & Dingel, 1997; Oakes et al., 1991; Oakes & Spalding, 

1997), children are presented with category exemplars over several familiarization and 

test trials and the time spent manipulating or looking at the object is recorded.  Again, 

differences in time spent engaging with objects are taken to indicate categorisation (or 

lack thereof). 

Tests of word learning employ related techniques, not least because, as noted, 

words label categories (and categories and their labels are intimately linked).  Looking-

time procedures have been adapted to include auditory stimuli in the Intermodal 

Preferential Looking paradigm (IPL, Golinkoff, Hirsh-Pasek, Cauley, & Gordon, 1987).  

Because looking time (rather than label production or pointing) is the dependent 

variable in IPL this technique is particularly useful in noun learning studies with infants, 

and has provided evidence of verbal processing long before the onset of speech (Tincoff 

& Jusczyk, 1999; Xu, 2002).  However, studies using visual paradigms often have high 

attrition rates - up to  61.9% according to an analysis of studies carried out between 

1985 and 2005 (Slaughter & Suddendorf , 2007).  Thus, for older children, paradigms in 

which children can engage with stimuli and the experimenter rather than passively 

observe may be more suitable (e.g., Papers 1 & 5, this thesis).  Nonetheless, IPL and 

similar intermodal habituation/familiarisation designs are well-suited for the 

investigation of verb learning, where presentation of moving stimuli via video controls 

variability of stimuli between subjects (e.g.; Maguire et al., 2010; Maguire, Hirsh-Pasek, 

Golinkoff, & Brandone, 2008; Paper 2). 

Noun learning is also commonly studied using forced-choice trials (e.g., Jaswal 

& Markman, 2001; Markson & Bloom, 1997; Akhtar et al., 2001).  In fast mapping 

studies, children are familiarised with novel object labels via “referent selection” trials 

(e.g., Horst & Samuelson, 2008; Mervis & Bertrand, 1994, Wilkinson, Ross & Diamond, 



Fast and Slow Mapping: An Introduction 13 
	  
	  
2003).  Children are presented with an array of objects (frequently a single novel object 

and several known objects; e.g., Papers 1 and 5, this thesis; Horst, Scott, & Pollard, 

2010) and asked to choose known or novel exemplars as the referents of known or novel 

nouns (for example “which one’s the blicket?”).  Children’s retention of these novel 

nouns is then tested by presenting the just-encountered novel objects in a new context 

(e.g., alongside other novel objects; Horst, Scott & Pollard, 2010).  Importantly, this 

paradigm can be used not only to examine learning of single label-object mappings (e.g., 

Axelsson, Churchley & Horst, 2012) but also of label-category mappings, by presenting 

children with several category exemplars alongside the same novel label (see Papers 1 

and 5).  In this latter case, category generalisation can also be tested by presenting 

children with completely novel category exemplars and examining whether children 

extend newly-learned labels to them, giving insight into the inclusiveness of the 

category representation learned during the referent selection phase (see also Quinn, 

Eimas & Rosenkrantz, 1993). 

Computational simulations of categorisation and word learning 

 Recently, computational models have augmented the rich categorisation and 

word learning literatures.  These simulations are mathematical formalisations of the 

environment pertaining to a particular task, the task itself, and the processes or 

computations by which the task is completed (see also Simmering, Triesch, Deák & 

Spencer, 2010).  Behaviour in empirical tasks and longer-term developmental 

transitions have been simulated using networks of mathematically idealised neurons in 

neural network models (McMurray, Horst, & Samuelson, in press; Papers 4, 5 and 6; 

Rogers & McClelland, 2004), structured formalisation of statistical inference in 

probabilistic models (Shafto, Kemp, Mansinghka, & Tenenbaum, 2011; Xu & 

Tenenbaum, 2007), and mathematical descriptions of representational space in 
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algorithmic models (Minda & J. D. Smith, 2001; Nosofsky, 1986).  Importantly, 

computational models serve not only to replicate existing data, but also to generate 

novel, testable predictions, which provide new insights into the cognitive processes that 

support complex categorisation and word learning phenomena.  Neural network and 

probabilistic models, being highly prevalent in developmental research, are discussed in 

depth in Paper 3.   

 Papers 4 and 5 present a neural network model of the effect of category 

variability on children’s noun learning, specifically, a Dynamic Neural Field (DNF) 

simulation.  DNFs are a recently-developed family of neural networks which 

specifically implement Dynamic Field Theory (DFT; Spencer & Schöner, 2003), in turn 

a mathematical formalisation of Dynamic Systems Theory (DST; Thelen & Smith, 

1994).  At its outset, DST represented a radical new way of understanding cognitive and 

behavioural development, eschewing discrete developmental stages, and instead 

emphasising the emergence of stable behavioural and cognitive structure from the 

interaction of the brain, body and the environment across developmental timescales.  

DNFs have been used to simulate various aspects of development, offering strikingly 

simple accounts of formerly little-understood phenomena.  For example, children’s A-

not-B error has been shown to emerge from motor-visual associations formed over time, 

based not only on perceptual salience of the reached-for object, but also on where the 

child’s body is situated in space and time.  That is, the incorrect perseverative reaching 

observed in the A-not-B error is easily explained based on the dynamic formation and 

decay of memory traces formed during previous reaches (Schutte & Spencer, 2002; 

Smith, Thelen,Titzer & McLin, 1999).  As members of the neural network family, 

DNFs are based on biologically-plausible, bottom-up processing of low-level input 

(Spencer, Thomas & McClelland, 2009).   
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 Papers 4 and 5 describe the first DNF model of unsupervised (that is, without 

feedback) fast mapping under referential ambiguity without supervision representing an 

extension of the existing DFT literature to a new domain (but see McMurray, Horst, & 

Samuelson, in press, for a connectionist model of this phenomenon).  This simulation 

also replicates the data presented in Paper 1.  Thus, Paper 3 predicts that fast mapping 

and categorisation may arise from activation dynamics rather than explicit or higher-

level reasoning.  The model was then used to generate novel predictions about 

children’s categorisation and noun extension based on correlated perceptual features.  

The empirical replication of the model’s predictions described in Paper 4 bear this 

prediction out, confirming that DNFs can serve as informative models not only of 

children’s word learning, but also of their categorisation in fast mapping tasks (see 

Perone, Spencer, & Schöner, 2007 for a DNF simulation of categorisation in looking 

tasks). 

 The findings from the DNF simulation are further supported by the embodied 

model presented in Paper 6.  Here, a connectionist neural network architecture in an 

embodied system also exhibits unsupervised fast mapping under referential ambiguity.  

Inputs to this model are taken directly from auditory and video capture of the same 

stimuli and experimental context presented to the children in Paper 3, without 

preprogrammed instructions as to how to reason using, for example, a mutual 

exclusivity principle1  In line with Papers 3 and 4, then, this simulation exhibits 

complex behaviour with a simple associative substrate.  The paper presents pilot data 

for a second replication of the empirical data in Paper 1, and suggests  fruitful extension 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Although note that initial perceptual processing is dealt with by purpose-built camera 
and speech recognition “modules” and is therefore not biologically plausible).	  
	  

3 Preliminary analyses revealed a violation of the univariate assumption of sphericity 
(Mauchly’s W = .685, p =.006) and significant correlations between dependent variables (known 
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of the system to related fast mapping studies (e.g., Axelsson et al., 2012; Horst et al., 

2010) as well as addressing complementary connectionist investigations of word 

learning (e.g., Gliozzi, Mayor, Hu, & Plunkett, 2009). 

Developmental Robotics.   

 Current interdisciplinary work has seen the integration of developmental 

psychology and computational modelling with robotics in the emerging field of 

developmental or epigenetic robotics (e.g., Berthouze & Metta, 2005).  Historically, 

roboticists aimed to engineer machines to optimally perform a specific task (Asada, et 

al., 2009).  In contrast, developmental robotics focuses on the robot as a model of the 

developmental transitions observed in infants and children and emphasises the self-

organisation of new behaviours as the task environment changes.  The term epigenetic 

highlights the field’s emphasis on the emergence of behaviour over developmental time 

(Morse, Belpaeme, Cangelosi, Smith, Ohlsson & Catrambone, 2010).  Unlike purely 

computational models, robotic implementations of computational models allow 

researchers to investigate embodiment; that is, the assumption that the body 

fundamentally shapes cognition.   

 Humanoid robotic systems such as the iCub (Metta, et al., 2010) employ 

“cognitive” architectures which take proprioceptive (spatial location and movement) 

feedback from their actuators and sensors (e.g., limb position, gaze direction) as inputs 

to their cognitive architecture alongside the more commonly-included visual or auditory 

modalities (Morse, de Greeff, Belpeame, & Cangelosi, 2010).  Such robotic systems 

have successfully simulated embodied phenomena such as children’s use of spatial 

location to bind labels to objects (Morse et al., 2010), use of object function in adjective 

learning (Yürüten, Uyanik, Çalişkan, Bozcuoğlu, Şahnin & Kalkan, 2012), or the 

facilitatory effect of congruent body motion on verb recognition times (Farkaš, Malík, 
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& Rebrová, 2012).  Further, inputs to robotic systems are commonly less abstract than 

inputs to computational models – for example, video input from cameras rather than 

abstract feature vectors – addressing criticisms of lack of ecological validity sometimes 

directed at computational simulations (e.g., Diesendruck & Graham, 2010).  Paper 5 

describes an embodied model of the early stages of the slow mapping process and lays 

the groundwork for new investigations of embodied language acquisition. 

Overview of current research 

 This thesis takes a strongly interdisciplinary approach to investigating word 

learning, categorisation and, more broadly, cognitive development.  Consisting of six 

papers, it presents three empirical studies (Papers 1, 2 and 5), a review of computational 

models of word learning (Paper 3), two computational simulations of categorisation via 

fast mapping (Papers 4 and 5) and a robotic implementation of the fast mapping task 

(Paper 6). 

Paper 1.  That’s more like it: Multiple exemplars facilitate word learning 

 Although research indicates that noun learning facilitates object categorisation 

(e.g., Ellis & Oakes, 2006; Samuelson & Smith, 1999), evidence for the effect of 

categorisation on noun learning is contradictory.  Similarly, whether the well-known 

spaced learning effect (e.g., Childers & Tomasello, 2002) applies to children’s 

categorisation over the course of a single experiment is also unclear.  This study 

investigated whether within-category variability affects noun learning by familiarising 

30-month-old children with three novel categories via a referent selection task, in either 

blocked or mixed presentation, and testing their ability to retain (E1 and E2) and extend 

(E2 only) newly-encountered novel labels after a five-minute delay.  In Experiment 1, 

children fast mapped novel labels either to a single category exemplar repeatedly or to 

multiple category exemplars in blocked presentation.  In Experiment 2a, all children 
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encountered multiple exemplars in blocked presentation; however half the children 

encountered low-variability exemplars (narrow condition), and half encountered high-

variability exemplars (broad condition).  Experiment 2b explored the effect of 

presentation order on noun learning by presenting either narrow or broad categories in 

mixed presentation.  Overall, within-category variability affected children’s ability to 

retain or extend newly-fast-mapped labels for those categories.  Specifically, children 

who encountered low within-category variability retained novel labels (but did not 

extend them), and children who encountered high within-category variability extended 

novel labels (but did not retain them). 

 These results confirm that categorisation does indeed affect noun learning.  

However, it is not the case that findings concerning noun learning can simply be 

generalised to other types of word learning.  This provided the motivation for Paper 2, 

which investigated the effect of within-category variability on verb learning. 

Paper 2.  Twinkle twinkle little star: Exemplar variability facilitates verb learning 

 Infants’ verb learning and action categorisation are little understood relative to 

infants’ early noun learning and object categorisation.  Paper 1 demonstrates that 

within-category variability affects object category labelling, but the effect of such 

variability on infants’ action category labelling is unclear.  This paper addresses this 

issue by habituating 24-month-old children to a single action category paired with a 

novel label.  Importantly, during habituation infants either encountered the same 

exemplar repeatedly, or multiple exemplars from the same category.  Infants learned the 

action/verb mapping in both conditions, however only infants who encountered multiple 

exemplars formed a robust, perceptually-based category.  Overall, this paper 

demonstrates that category variability affects verb learning just as it does noun learning.  
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More broadly, this suggests that noun and verb learning emerge from domain-general 

perceptually-based processing. 

Paper 3.  Two households, both alike in dignity: Bayesian versus emergentist 

models of word learning and categorisation. 

 Computational models offer unprecedented flexibility in testing and refining 

existing accounts of cognitive processes.  Although such models have offered exciting 

new insights into cognitive development, at present the field is divided in terms of 

theoretical accounts of cognition.  For example, probabilistic Bayesian models are based 

on cognitive computation over a priori structure, assuming specific organisation for 

specific cognitive domains.  In contrast, emergentist neural network models are based 

on the simulation of simple neuronal interactions, assuming that a variety of cognitive 

structures can emerge from domain-general associative processes.   

 This review provides a historical, theoretical and implementational overview of 

these two established approaches to cognitive modelling, then compares two models of 

the shape bias (e.g., Landau, Smith & Jones, 1988): the phenomenon by which English-

learning children generalise labels for solid objects according to shape.  Although on the 

surface both models replicate the substrate empirical data, on closer examination only 

the emergentist model succeeds, and further, only the emergentist model generates 

novel, testable predictions.  The paper concludes that both emergentist and Bayesian 

models offer valuable insights into the processes and computations underlying cognition, 

but that these insights apply to very different domains.  As such, emergentist models 

currently contribute most to our understanding of word learning, categorisation, and 

cognitive development more generally. 

Paper 4.  All things considered: Dynamic Field Theory captures the effect of 

category variability on young children’s word learning 
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 Papers 1 and 2 demonstrate that within-category variability profoundly 

influences young children’s word learning and categorization.  This paper describes a 

Dynamic Neural Field simulation of data presented in Paper 1.  The model was 

presented with a simulated referent selection task and familiarised either with low-

variability categories (narrow condition) or with high-variability categories (broad 

condition).  Like the children in Paper 1, the model was better able to retain category 

labels in the narrow condition, and better able to extend category labels in the broad 

condition.  Simulation data suggest that simple associative mechanisms can underlie 

complex behaviours, specifically children’s ability to fast map novel labels to novel 

objects in cases of referential ambiguity, as well as their flexible and online 

categorisation.   

 However, as with any computational model of cognition, it is important to 

expose the model to a new task environment in order to generate novel, testable 

predictions about the behaviour in question.  Only when these predictions have been 

empirically replicated can it be inferred that the computational processes driving the 

model’s behaviour reflect the cognitive processes underlying the human behaviour.  

Thus, Paper 5 describes such a prediction, and presents its empirical replication. 

Paper 5.  Testing a Dynamic Neural Field model of children’s category labelling 

 This paper describes an empirical test of predictions generated by the DNF 

model of categorisation and labelling presented in Paper 4.  Given the same 

experimental design but new stimuli, the model predicted that children will extend 

novel labels to new exemplars that share many perceptual features with previously-

encountered category exemplars (many features condition), but not to exemplars that 

share few features (few features condition).  To test this prediction, 30-month-old 

children were familiarised with three novel categories in a referent selection task.  After 
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a five-minute delay, all children retained newly-encountered novel labels.  On extension 

trials, only children in the many condition extended novel names.  The empirical data 

therefore confirm the model’s prediction.   

 The empirical replication suggests that DNFs provide an informative model of 

infant categorisation and word learning.  Further, taken together with Papers 1 and 3, 

this work sheds new light on a behaviour often ascribed to higher-level, conscious 

reasoning  - for example, apparent use of mutual exclusivity in the fast mapping tasks 

described here (e.g., Markman & Wachtel,1988).  Here, this behaviour is driven by the 

inhibitory processes intrinsic to the neural network model.  Similarly, the model 

demonstrates the emergence of categories in real-time, from interactions between 

learning history, recent experience, and in-the-moment perceptual input.  Thus, this 

thesis provides evidence that apparently complex cognitive structure can in fact emerge 

bottom up from simple, perceptual-associative processes. 

Paper 6.  An embodied model of young children’s categorisation and word 

learning 

 Recent innovation in cognitive research has seen the implementation of 

computational models of cognitive development in embodied robotic systems (Morse, 

Belpaeme, Cangelosi, & Smith, 2010).  This paper presents a second exploration of 

children’s behaviour in Paper 1, this time using a connectionist neural network, 

implemented in the iCub robot (Metta, et al., 2010).  Given referent selection trials in 

the same manner as in Papers 1 and 5, the robot was able to correctly map novel labels 

to novel objects.  Further, pilot data suggest that the robot was capable of retaining 

novel labels after encountering a narrow category, and generalising novel labels after 

encountering broad category.  Thus, this study again demonstrates “mutual exclusivity” 

emerging from simple associations between labels and objects made in real-time.  
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Importantly, implementing the neural architecture in an embodied system provides a 

considerably more ecologically valid experimental setting: inputs to this model include 

real-time video and audio, as well as the environmental noise experienced by children in 

a laboratory setting. 

 These data again point to associative learning and dynamic systems accounts of 

children’s categorisation.  This demonstration of unsupervised learning of category 

labels in an embodied system pushes the boundaries of what has so far been achieved in 

developmental robotics, and provides the foundation for exciting future interdisciplinary 

research examining the influence of other cues (e.g., social) to word learning and 

categorisation, as well as the tantalising possibility exploring the emergence of 

grammatical structure from the same embodied associative processes.  Overall, this 

paper highlights the enormous benefits of integrating computational and robotic 

approaches with developmental science for a deeper understanding of cognition. 

Discussion 

 This thesis answers the questions posed earlier as follows: 

a.   To what extent do categorisation and word learning influence each other? 

 Categorisation and word learning are mutually influential and tightly coupled.  

Papers 1 and 2 provide evidence that visual variability helps word learning and support 

investigation of the effects of variability in other modalities on word learning.  Paper 5 

in particular suggests future empirical research into the specific perceptual status of 

labels when applied to objects, whilst Paper 2 points to specific investigation of the 

interaction between different types of verbs and their action-category referents.   

b.   Are fast mapping, word learning and categorisation governed by domain-

specific or domain-general processes?  
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 Fast mapping, word learning and categorisation clearly can emerge from 

domain-general processes: perceptual variability affects both noun and verb learning 

(Papers 1 and 2); fast mapping, word learning and categorisation are all underpinned by 

simple associations in both the DNF (Papers 4 and 5) and embodied (Paper 5) 

simulations.  Whether more abstract systems such as syntax in natural language can also 

emerge from such low-level process will be the focus of future empirical and 

computational work. 

c.   Can word learning and categorisation be accounted for by simple, associative 

computational models, and if so, what does this tell us about these phenomena in the 

real world? 

 Yes. Fast mapping, word learning and categorisation can be accounted for by 

emergentist computational models (Papers 4, 5 and 6), suggesting that complex real-

world behaviour is underpinned by the same dynamic-associative mechanisms that 

drive neural network models.   

 Taken together, the empirical and computational studies in this thesis 

demonstrate that categorisation and word learning emerge from domain-general 

associative learning mechanisms.  There is evidence here that children’s experience 

with labels influences their categorisation: for example, the relationship between 

vocabulary and verb categorisation in Paper 2 (see also e.g., Lupyan, 2005; Lupyan, 

Rakison, & McClelland, 2007; Plunkett, Hu, & Cohen, 2008).  There is also evidence 

that children’s experience with categories influences their labelling: for example, the 

facilitatory effect of within category variability on object category label learning in 

Paper 1 (see also, Perry, Samuelson, Malloy, & Schiffer, 2010; Vlach, Sandhofer, & 

Kornell, 2008).  The present work therefore illuminates the dynamic nature of 

categorisation and word learning (Colunga & Smith, 2008; Samuelson & Horst, 2007; 
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Smith, Colunga, & Yoshida, 2010).  Similarly, the computational simulations presented 

capture apparently high-level cognitive phenomena emerging from the temporal, 

physical, and environmental components of the dynamic cognitive system, extending 

existing paradigms to new domains and forming a solid basis for future research.   

 This integration of computational modelling and developmental robotics with 

empirical work in gives a fine-grained insight into the flexible, emergent processes 

underlying fast mapping, word learning and categorisation. This thesis therefore treads 

new methodological ground, pushing the boundaries of our existing conception of 

development, and pointing to exciting new research paths in the journey to 

understanding the complex dynamics of cognition. 
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Abstract 

Previous research indicates that learning words facilitates categorisation.  In the current 

study, we investigated whether learning about a category facilitates word learning by 

presenting 2-year-old children with multiple referent selection trials from the same 

object category.  In Experiment 1, children mapped novel names either to a single 

category exemplar repeatedly or to multiple category exemplars across trials.  All 

children did very well on the initial task.  However, only children who encountered 

multiple exemplars retained labels after a short delay.  Experiments 2A and 2B extended 

this finding by exploring the effect of within-category variability and presentation order 

both on retention and on extension of novel names.  Children encountered exemplars 

from either narrow or broad categories across trials, in either blocked (E2a) or mixed 

(E2b) presentation.  Across Experiment 2, all children did very well on the initial task.  

In E2a, only children who encountered narrow exemplars retained labels after a short 

delay.  Further, only children who encountered broad exemplars extended labels to a 

never-before-seen exemplar.  In E2b, children neither retained nor extended labels.  

Overall, these data suggest that comparison and within-category variability can 

profoundly affect children’s word learning.  The flexible interplay between word 

learning and categorisation discussed in terms of the dynamic systems approach to 

development and cognition more broadly. 
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That’s More Like It: Multiple Exemplars Facilitate Word Learning 

Categorisation is a fundamental cognitive skill.  The ability to group items in the 

world and respond to them equivalently allows children to interact efficiently with their 

complex environment (Quinn, Slater, Brown & Hayes, 2001).  In order to communicate 

with those who share that environment, children must also learn labels for their 

categories; their early vocabularies are consequently dominated by words for the 

categories of objects they encounter day-to-day (Samuelson & Smith, 1999; Waxman, 

2003).  Indeed, existing research demonstrates a close relationship between 

categorisation and vocabulary acquisition (e.g., Gopnik & Meltzoff, 1992; Nazzi & 

Gopnik, 2001; Thom & Sandhofer, 2009).  For example, infants with large vocabularies 

categorise more flexibly than infants with small vocabularies; that is, they are able to 

categorise objects on more than one dimension (Ellis & Oakes, 2006; Horst et al., 2009).  

Similarly, toddlers with larger productive vocabularies are better able to categorise 

objects at the basic level (Singer-Freeman & Bauer, 1997) and more likely to make 

adult-like object category judgements (Imai & Gentner, 1997; Samuelson & Smith, 

1999).  Further, toddlers’ productive vocabulary is positively correlated with their 

ability to categorise based on object labels, rather than based on perceptual information 

alone (Jaswal & Markman, 2007). Although evidence suggests a relationship between 

vocabulary and categorisation, however, how experience with object categories may 

influence word learning remains unclear.   

 Learning labels for object categories is a complicated process, involving both 

fast and slow mapping (Capone & McGregor, 2005; Horst, McMurray, & Samuelson, 

2006).  The first time a novel name is encountered, the child quickly forms an initial, 

rough hypothesis of the word’s meaning — hence the term fast mapping (Carey, 1978).  

For example, when presented with a boat, a cup and a novel kazoo and asked for the 
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cheem, a 2-year-old child can reliably determine that cheem refers to the KAZOO.  

However, simply forming this initial mapping does not mean that the child has really 

learned the word (Horst & Samuelson, 2008; Riches, Tomasello, & Conti-Ramsden, 

2005) and in some contexts processing demands might prevent young children from 

learning the correct referent after only a single exposure (e.g., Mather & Plunkett, 2009). 

 In fact, full word learning emerges gradually during a period of slow mapping 

(Capone & McGregor, 2005; Horst & Samuelson, 2008; Munro, Baker, McGregor, 

Docking & Arculi, 2012).  During this phase repeated encounters allow the child to 

strengthen the label-object association (Mather & Plunkett, 2009; see also Smith & Yu, 

2008).  Specifically, the statistical co-occurrence of the labels and their referents 

strengthens these associations (Horst, et al., 2006).  For example, the cheem-KAZOO 

mapping will be strengthened each time the child hears the word cheem and sees the 

kazoo in a new context, such as seeing the kazoo with a car and later with blocks.   

The effect of repetition: single versus multiple exemplars   

 However, children rarely encounter a single category exemplar repeatedly, but 

rather encounter multiple, different exemplars over time (Smith & Yu, 2008).  For 

example, a child might play with a green kazoo at nursery, then a red kazoo at home and 

later a yellow kazoo at Grandma’s.  Whether repeated exposure to a single exemplar 

leads to more robust word learning than exposure to several different exemplars is 

unknown.  On the one hand, encountering the same object repeatedly could facilitate 

word learning by providing children with more experience with that individual 

exemplar, thus strengthening the memory trace for the individual item.  On the other 

hand, experience with multiple exemplars from the same category could invite 

comparison between exemplars, highlighting category-general properties and triggering 
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the formation of a robust category representation (Nosofsky, 1984; Quinn, 2005; Rosch, 

1975). 

Although encountering multiple exemplars versus a single exemplar repeatedly 

has been shown to facilitate categorisation in various domains (Kovack-Lesh & Oakes, 

2007; Quinn & Bhatt, 2005; Rost & McMurray, 2009; Wilcox, Smith, & Woods, 2011; 

Younger & Cohen, 1983), it is unclear whether this effect extends to situations 

involving learning category labels: relatively few studies of children’s word learning 

have examined the effect of repetition.  However, a handful of recent studies have 

begun to explore whether single or multiple exemplars facilitate word learning – with 

mixed results. 

Some studies support the hypothesis that multiple exemplars facilitate word 

learning.  For example, toddlers taught a colour-word vocabulary that included six 

exemplars were better able to generalise novel colour labels to new instances than 

toddlers trained on vocabularies that included fewer exemplars (four or two, Thom & 

Sandhofer, 2009).  Similarly, preschoolers presented with two exemplars, rather than 

one exemplar, were better able to extend a novel superordinate category label to items 

from the same taxonomic category (Liu, Golinkoff, & Sak, 2001; see also Gentner & 

Namy 1999). 

In contrast, other recent results suggest that multiple exemplars are not essential 

for word learning: Mather & Plunkett (2009) demonstrated that children could learn 

novel labels for novel categories via mutual exclusivity with repeated exposures to 

single stimuli; and Maguire, Hirsch-Pasek, Golinkoff & Brandone (2008) found that 

encountering multiple actors in a verb learning task hindered children’s ability to recall 

and generalise novel verbs.  Further, in a word learning study focusing on the effect of 

spaced versus massed presentation, 3-year-old children reliably mapped novel labels to 
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their referents at test, but did so better after familiarisation with single rather than 

multiple exemplars (Vlach, Sandhofer, & Kornell, 2008).  However, children in the two 

conditions of this last study encountered identical objects at test, and test trials were 

therefore not equivalent between conditions; that is, half of the children were asked to 

recall a previously fast-mapped exemplar while half of the children were asked to 

extend a previously fast-mapped label to a new exemplar.  Comparison between groups 

in this study is therefore difficult. 

The scope of the effect of variability: narrow versus broad categories 

Evidently, the question of whether or not exposure to multiple exemplars helps 

or hinders noun learning remains open.  Even less well-understood is the extent of any 

effect of category variability on word learning; that is, is it easier for young children to 

learn a label for a high-variability category or a low-variability category? In a 

longitudinal category training study, toddlers who encountered perceptually variable 

exemplars experienced a significant acceleration in vocabulary growth and were able to 

make adult-like label generalisations, in contrast to children who encountered 

perceptually similar exemplars (Perry, Samuelson, Malloy, & Schiffer, 2010).  

Conversely, in a novel noun generalisation task, after being given novel labels for parts 

of novel objects or animals, preschool children prefer to generalise novel labels to 

highly similar test items than to highly variable test items (Gentner, Loewenstein, & 

Hung, 2007).  However, the effect of within-category variability on novel category label 

retention and extension has yet to be systematically explored. 

The effect of presentation order: blocked versus mixed presentation 

Just as questions remain as to the effect of variability on children’s word 

learning, little is known about the effect of the order in which exemplars are 

encountered.  Research in the adult domain has reached a consensus that spacing 



Multiple Exemplars Facilitate Word Learning 47 

learning events over time leads to more robust learning than a massed learning regime.  

Indeed, a meta-analysis of 63 adult studies concluded that the “spacing effect” was 

robust, albeit subject to task effects (Donovan & Radosevich, 1999).  Despite this 

substantial body of research, however, few studies have investigated the spacing effect 

in children.  Of the studies that do exist, results are contradictory.  Some are consistent 

with the adult findings: for example, two-year-old children have been shown to retain 

novel nouns and verbs more reliably when presented with an exemplar daily for eight 

days than when presented with eight exemplars in one day (Childers & Tomasello, 2002, 

see also Merriman, Rovee-Collier & Wilk, 1997).  Similarly, Vlach, Sandhofer and 

Kornell (2008) demonstrated that three-year-old children retained novel nouns 

significantly better when presented with three (identical or multiple) exemplars spaced 

by 30s breaks than when presented with the same three exemplars successively 

(although, as noted, interpretations of these results is difficult).  Finally, three-year-old 

children demonstrated better word learning in a fast mapping task in which they 

encountered two novel objects successively (that is, across trials) than concurrently (that 

is, two novel objects on a single trial; Wilkinson, Ross & Diamond, 2003) Thus, there is 

evidence that children’s word learning is facilitated not only by spacing presentation of 

exemplars over intervals of days, but also over intervals of seconds.   

Equally, however, categorisation studies suggest that children’s learning benefits 

from being able to compare simultaneously-presented stimuli.  For example, 4-month-

old children can discriminate between the categories DOG and CAT when familiarised 

with stimuli side-by-side in a paired comparison task, but not when familiarised with 

the same stimuli for an equal amount of time in a successive presentation task (Oakes & 

Ribar, 2005).  From this perspective, concurrent presentation allows children to rapidly 

compare between stimuli, reducing demands on visual short-term memory, drawing 
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attention to commonalities among objects and allowing quick encoding.  Stimuli 

presented at greater intervals are likely to place higher demands on visual short-term-

memory, and are consequently more difficult to compare and encode (Kovack-Lesh & 

Oakes, 2007).   

Clearly, the methods and empirical questions of existing studies vary greatly.  

The effect of encountering single versus multiple exemplars, or narrow versus broad 

categories, in mixed or blocked presentation is therefore difficult to predict.  In the 

current study we address this by systematically manipulating these factors across two 

experiments.  In Experiment 1, we ask whether children’s ability to learn labels for 

novel object categories is affected by exemplar repetition.  Children repeatedly mapped 

novel names to either the same or multiple exemplars.  Specifically, children 

encountered a novel category label three times during a block of six referent selection 

trials.  Half of the children were repeatedly presented with the same exemplar across 

trials, and half of the children were presented with multiple category exemplars across 

trials.  If encountering the same exemplar repeatedly facilitates word learning, then 

these children should demonstrate better retention of novel category labels at test.  In 

contrast, if encountering multiple exemplars facilitates word learning, then these 

children should demonstrate better retention.   

Experiment 2 addresses two issues in the word learning literature: variability and 

order of presentation.  In Experiment 2A, we ask how within-category variability affects 

children’s category label learning.  All children encountered multiple exemplars; 

however, half were presented with narrow categories and half were presented with 

broad categories.  If limited variability among category exemplars facilitates retention 

of newly-formed label-object mappings, then children in the narrow condition should 

retain better than children in the broad condition.  However, if higher variability 
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facilitates retention, children in the broad condition should retain better than children in 

the narrow category.   

Children were also asked to extend newly-learned category-label mappings to 

never-before-seen exemplars (see also Horst & Samuelson, 2008) to examine more 

whether variability and order of presentation also affect noun extension.  Because both 

recall and generalisation require children to store a representation of previously fast-

mapped labels, we predicted that variability should have a comparable effect during 

extension trials as during retention trials.  That is, if limited variability facilitates 

extension of newly-learned label-object mappings to never-before seen exemplars , 

children in the narrow condition should extend more accurately than children in the 

broad condition, and if high variability facilitates word learning, children in the broad 

condition should extend more accurately than children in the narrow condition. 

In Experiment 2b, we ask whether order of presentation affects children’s 

category label learning.  Children received the same referent selection trials as in 

Experiment 2a, but encountered these trials in pseudorandom (mixed) presentation.  If 

learning is facilitated by intervals between learning events from a given category, then 

children who encountered mixed trials should demonstrate better retention and 

extension than children who encountered blocked trials. 

Experiment 1 

Method 

 Participants.  Twenty-four typically developing, monolingual, English-

speaking 30-month-old children (13 girls, M = 30m, 17d, SD = 43.19 days; range = 28m, 

1d - 32m, 26d) with a mean productive vocabulary of 563 words (SD = 81.91 words, 

range = 391 - 668 words) and no family history of colourblindness participated.  

Children were from predominantly middle class homes.  Half of the children were 
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randomly assigned to the single condition, and the other half were randomly assigned to 

the multiple condition.  Children’s ages and productive vocabularies did not differ 

between conditions.  Data from two additional children were excluded from analyses 

due to fussiness and experimenter error.  Caregivers were reimbursed for travel 

expenses and children received a small gift for participating.   

Stimuli.  Eighteen toy objects, chosen because they are highly familiar to 2-

year-old children, served as known objects: six animals (bird, chicken, elephant, fish, 

giraffe, lion), six vehicles (boat, bus, car, motorcycle, plane, train), and six household 

objects (block, chair, comb, cup, toy mobile phone, spoon).   

 

Figure 1.  Novel objects used in Experiment 1. 

Nine novel objects from three categories, chosen because they are not easily 

named by 2-year-old children, served as the target objects (see Figure 1).  Consistent 

with other studies (e.g., Ankowski, Vlach & Sandhofer, 2021; Vlach et al., 2008), the 

objects in these categories varied in colour, but shared the same shape and 

material/texture.  The DOFF category consisted of transparent plastic, plus-sign shaped 

tops in green, red and yellow.  The CHEEM category consisted of blue, orange or yellow  
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plastic rods with small balls on one end in orange, blue or green, respectively.  The HUX 

category consisted of rubber balloons with elastic strings hanging down in blue/orange, 

green/white and yellow/blue.  The balloons contained foam balls and therefore kept 

their spherical shape.  Stimuli were presented on a 46cm x 24cm white, wooden tray 

divided into three even sections.  A digital kitchen timer was used to time the five-

minute delay.   

Procedure and Design.  Before the experiment began, the experimenter showed 

the caregiver a booklet of colour photographs of the known and novel objects to ensure 

they were familiar and novel, respectively (which they were for all children).  If the 

child knew a different label for an object (e.g., “kitty” vs. “cat”), the experimenter used 

that label. 

During the experiment, children were seated in a booster seat across from the 

experimenter at a white table.  Caregivers sat next to their children and completed a 

vocabulary checklist (Klee & Harrison, 2001) and were instructed to avoid interacting 

with their children, but to encourage them to respond during the warm-up trials if 

necessary.  None of the children needed encouragement after the warm-up trials.   

Warm-up trials.  Each session began with three warm-up trials to introduce 

children to the task.  On each trial, children were presented with three randomly selected 

known objects.  First, the experimenter placed the tray of objects on the table and 

silently counted for three seconds to give the child an opportunity to look at the objects 

(see Horst, Scott, & Pollard, 2011).  The experimenter then asked the child to select an 

object by naming it twice (e.g., “Can you find the block? Can you get the block?”) 

before sliding the tray forward.  Children were praised heavily for correct responses and 

corrected if necessary.  Between trials the experimenter replaced the tray on her lap and 

arranged the objects for the next trial out of the child’s view.  The same objects were 
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presented on each warm-up trial, but object positions (left, middle, right) were pseudo-

randomised across trials.  Thus, children were asked for a different object in a different 

position on each trial.  Warm-up stimuli were later used as known objects during the 

referent selection trials (see Horst & Samuelson, 2008). 

 Referent Selection Task.  Referent selection trials immediately followed the 

warm-up trials and proceeded in the same manner, except that children were neither 

praised nor corrected.  After each choice, the experimenter either said nothing or simply 

“OK” or “thank you.” Each child was presented with nine sets of stimuli and saw each 

set once on a known label trial and once on a novel label trial across a total of 18 trials.  

Each set included two familiar objects (e.g., boat and cup) and one novel object (e.g., 

top).  Children in the single condition saw the same exemplar in each set.  For example, 

a child might see the green top with the boat and cup, and again with the block and lion 

and once more with the car and spoon.  Children in the multiple condition saw a 

different novel exemplar in each set.  For example, a child might see the green top with 

the boat and cup, the red top with the block and lion and the yellow top with the car and 

spoon.  Thus, the only difference between conditions was whether children saw one or 

three exemplars for each category. 

 Referent selection trials were presented in three blocks.  For example, one 

child completed all trials with the top category, then all trials with the rod category and 

finally all trials with the balloon category.  Block order was counterbalanced across 

participants using a Latin Square design.  The order of known and novel trials was 

pseudorandomised in each block such that the same set was never presented on two 

consecutive trials and no more than two trials of either type (i.e., known or novel) were 

presented sequentially.  Object position (left, middle, right) was randomly determined 

on each trial.  Between the referent selection task and the retention task the child 
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remained at the table and coloured pictures from a colouring book during a five-minute 

delay period.   

 Retention Task.  The retention task was the same across conditions.  First, to 

re-engage children in the task, a new warm-up trial with three different known objects 

was presented.  This was immediately followed by three retention trials, during which 

children saw one novel exemplar from each novel category encountered during referent 

selection (top, rod, balloon).  The same exemplars were presented on each trial for a 

given child.  In the single condition, children were presented with the exemplars 

encountered during referent selection.  In the multiple condition, presentation of 

exemplars was counterbalanced across participants (i.e., which top, which rod, which 

balloon).  Object positions were randomised across trials such that children were asked 

for a different novel object in a different position on each trial.  

 For all test trials reported in this paper, children’s responses were included in 

analyses irrespective of whether they correctly mapped novel labels to novel exemplars 

during referent selection for that category. Theoretically, we argue that word learning 

via fast mapping is a slow process, and that children encode information about 

exemplars and labels even on incorrect referent selection trials (see Munro et al., 2012). 

However, analyses excluding test trials for a given category following (a) zero correct 

referent selection trials or (b) one or fewer correct referent selection trials generated the 

same overall pattern of results. 

 Coding.  Children’s responses were coded offline from DVD.  A second coder 

blind to the experimental hypotheses coded 20% of the sessions for reliability.  Inter-

coder agreement was high, M = 98.08%, SD = 3.44% (range = 92.31% – 100.00%).   

Results and Discussion 
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As can be seen in the left panel of Figure 2, children in both conditions were 

very accurate at choosing the target object during the referent selection task.  Thus, 

children’s proportion of target choices was the same in each condition and greater than 

would be expected by chance (.33), t(11) = 71.73, p <.0001, d = 20.60 (all ps are two-

tailed).  On novel label referent selection trials, children’s proportion of target choices 

was also greater than expected by chance (.33) both for children in the single condition, 

t(11) = 4.59, p <.001, d = .84 and for children in the multiple exemplars condition, t(11) 

= 6.57, p <.0001, d = 2.38.  Again, there was no difference between conditions, t(22) 

= .345, ns.  Thus, whether children encountered the same exemplar repeatedly or 

multiple exemplars during referent selection did not influence children’s performance 

on either known or novel label referent selection trials. 

 

 

Figure 2.  Children’s proportion of correct choices in Experiment 1.  Dotted line 

represents chance (.33).   Error bars represent one standard error.  ***p <.0001, **p 

<.001, *p =.05.  All ps are two-tailed. 

In contrast, seeing multiple exemplars during referent selection did influence 

children’s ability to retain previously fast-mapped novel labels after a five-minute delay.  
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As can be seen in the right panel of Figure 2, only children in the multiple condition 

retained more labels than expected by chance (.33), t(11) = 5.00, p <.001, d = 1.462.  

Children in the single condition failed to retain more words than expected by chance, 

t(11) = 1.47, ns, d = .44.  An unpaired t test confirmed that children who encountered 

multiple exemplars retained significantly more words than children who encountered 

the same exemplars repeatedly, t(22) = 2.06, p =.05, d = 0.89.  Note that children in the 

multiple condition were almost as accurate on the retention task (M = 72%, SD = 27%) 

as on the initial referent selection task (M = 74%, SD = 21%).   

Importantly, in the multiple condition, children encountered a category of novel 

objects, while those in the single condition encountered the same object repeatedly.  In 

the categorisation literature there has long been consensus that categories are collections 

of individual objects which share common features (Mandler, Fivush, & Reznick, 1987; 

Quinn & Eimas 1986; Rosch, 1975; Younger & Cohen 1985).  In the DOG category, for 

example, the majority of members bark and have fur and four legs.  Each individual 

exemplar, however, is discriminable from the other category members: a collie is a 

different shape and colour from a poodle or a dachshund.  E1 demonstrates that children 

learn more words via fast mapping when presented with a category rather than the same 

object multiple times.  However, the extent to which within-category variability 

influences word learning is unclear. 

Thus, in Experiment 2a, we presented all children with multiple exemplars 

during the initial referent selection task.  However, half the children were presented 

with narrow categories (i.e., low within-category variability) and the other half were 

presented with broad categories (i.e., high within-category variability).  Further, we 

added extension trials to explore how encountering multiple exemplars during referent 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  



Multiple Exemplars Facilitate Word Learning 56 

selection may also influence how children extend novel labels to completely new 

category members. 

Experiment 2A 

Method 

 Participants.  Twenty-four typically developing, monolingual, English speaking 

30-month-old children (12 girls, M = 30m, 5d, SD = 54.54 days; range = 27m, 12d - 

33m, 11d) with a mean productive vocabulary of 568 words (SD = 106.71 words, range 

= 294 - 665 words) and no family history of colourblindness participated.  Children 

were from predominantly middle class homes.  Half of the children were randomly 

assigned to the narrow condition and the other half were randomly assigned to the 

broad condition.  Children’s ages and productive vocabularies did not differ between 

conditions.  Data from four additional children were excluded from analyses due to 

fussiness (2) and caregiver interference (2).  Caregivers were reimbursed for travel 

expenses and children received a small gift for participating.   

Stimuli.  Eighteen toy objects, chosen because they are highly familiar to 2-

year-old children, served as known objects: seven animals (cow, chicken, elephant, fish, 

giraffe, lion, turtle), six vehicles (boat, bus, car, motorcycle, plane, train), and five 

household objects (block, cup, fork, phone, spoon).   

Eighteen novel objects from three categories, chosen because they are not easily 

named by 2-year-old children, served as the target objects (see Figure 3).  Children in 

the narrow condition encountered three novel objects for each of the three categories 

during the referent selection and retention tasks.  Like the objects shown to the children 

in the multiple condition in Experiment 1, the objects in these categories varied in 

colour but shared the same shape and material/texture (see Figure 3).  For these children, 

the DOFF category consisted of three wooden castanets in green, red or yellow.  The base 
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of each castanet matched the cover; each cover was patterned with flowers, hearts and 

hoops, respectively.  The CHEEM category consisted of three small plastic kazoos in 

yellow, red, or blue.  The HUX category consisted of three rubber pom-poms in purple, 

pink or blue with plastic caps on the fronds in purple, blue, yellow, pink and green. 

Children in the broad condition also encountered three novel objects for each of 

the three categories during the referent selection and retention tasks (see Figure 3).  For 

these children, the DOFF category consisted of three wooden castanets: one with a green 

base and a green, flowered cover, one with a red, pointed base with a yellow-and-black 

striped cover, and one with a pink, scalloped base with a yellow, pink-spotted cover.  

The CHEEM category consisted of three plastic kazoos: one small and yellow, one large 

and red and one large and blue with orange dots.  The HUX category consisted of three 

rubber pom-poms in purple, blue or yellow.  The purple pom-pom had caps on the ends 

in purple, blue, yellow, pink and green.  The blue pom-pom had the same number of 

fronds as the purple pom-pom, but only half the number of caps (all purple).  The 

yellow pom-pom had fewer fronds than the others but all the fronds had caps (green and 

pink). 

Importantly, one exemplar from each category was seen by children in both 

conditions: the green castanet (DOFF), the yellow kazoo (CHEEM) and the purple pom-

pom (HUX).  The only difference between conditions was the within-category variability 

of the novel categories.  For children in the narrow condition, the categories only varied 

in colour; however, for children in the broad condition the categories varied in colour, 

texture, size and slightly in overall shape.  All children saw the remaining three novel 

objects on the extension trials: a green castanet with a ladybird top (DOFF), a brass 

kazoo (CHEEM) and a purple pom-pom with a balloon on top (HUX). 
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Figure 3.  Novel objects used in Experiment 2. 

To confirm that the broad stimuli were more variable than the narrow stimuli, 18 

adults from the university community provided similarity judgements for the novel 



Multiple Exemplars Facilitate Word Learning 59 

objects used in both experiments.  Adults were tested individually in a quiet room and 

presented with the exemplar that was the same between conditions (e.g., the green 

castanet) and each of the other exemplars from that category (e.g., the red, yellow, 

flower-base and striped castanets) individually, one at a time.  Adults were asked to rate 

how similar the two objects were on a scale of 1 (very similar) to 11 (not similar at all).  

The order in which the sets and exemplars were presented was counterbalanced across 

participants.  Mean ratings are depicted in Table 1.  An ANOVA with average similarity 

ratings with Stimuli (E1/multiple, E2/narrow, E2/broad, E2/extension) as a repeated 

measure yielded a main effect of Stimuli, F(1.62, 27.59) = 143.98, p <.0001, ηp
2 = .89 

(Greenhouse-Geisser corrected).  Pairwise comparisons (Bonferroni corrected, α =.008) 

confirmed that the broad exemplars were less similar to each other than the narrow 

exemplars were to each other and also than exemplars used in Experiment 1 were to 

each other (both ps <.0001).  There were no differences in the similarity ratings between 

the novel objects used on the extension trials and the broad exemplars, but the extension 

objects were more variable than the narrow exemplars (p < .0001).  Finally, there were 

no differences in the similarity ratings between narrow exemplars used in Experiment 2 

and the novel objects used in Experiment 1. 

 

 Experiment 1 Experiment 2 

 

 
Multiple 

Exemplars 
Narrow 

Exemplars 
Broad 

Exemplars 

 
Extension  

Stimuli 

Mean 
 

 
2.87 

(0.99) 
2.54 

(0.81) 
7.30 

(1.61) 

 
7.11 

(1.54) 
 
Range 

 
1.83-5.00 

 
1.17-4.33 

 
4.17-9.50 

 

 
3.33-9.00 
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Table 1.  Adult similarity ratings for the stimuli used in both Experiments.  Standard 

deviations provided in parentheses.   

Procedure and Design.  All aspects of the experiment were identical to 

Experiment 1 with two exceptions.  First, different novel stimuli were used so that 

within-category variability could be controlled.  Second, after the retention trials 

children were presented with extension trials.  These trials were identical to the 

retention trials except that the completely new exemplars from the novel categories 

were presented (see Fig. 3).  As in previous studies, these trials always occurred after 

the retention trials (e.g., Horst & Samuelson, 2008). 

 Coding.  Children’s responses were coded offline from DVD.  A second coder 

blind to the experimental hypotheses coded 20% of the sessions for reliability.  Inter-

coder agreement was high, M = 97.80%, SD = 3.19% (range = 92.86% – 100.00%). 

Results and Discussion 

As can be clearly seen in the left panel of Figure 4, children in both conditions 

were very accurate at choosing the target object during the referent selection task.  On 

known label referent selection trials, children’s proportion of target choices were greater 

than would be expected by chance (.33) for both children in the narrow condition, t(11) 

= 10.56, p <.0001, d = 3.05, and children in the broad condition, t(11) = 17.51, p <.0001, 

d = 5.05.  There was no difference between conditions, t(22) = 0.28, ns.  On novel label 

referent selection trials, children’s proportion of target choices was also greater than 

expected by chance (.33) for both children in the narrow exemplars condition, t(11) = 

5.99, p <.0001, d = 1.73 and children in the broad exemplars condition, t(11) = 15.67, p 

<.0001, d = 4.52.  Again, there was no difference between conditions, t(22) = 0.63, ns.  

Thus, whether children encountered narrow or broad categories during referent selection 

did not influence performance on either known or novel label referent selection trials. 
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Figure 4.  Children’s proportion of correct choices in Experiment 2a.  Dotted line 

represents chance (.33).  Error bars represent one standard error.  ***p <.001, **p <.01, 

*p <.05. 

In contrast, encountering narrow categories during referent selection did 

influence children’s ability to retain previously fast-mapped novel labels after a five-

minute delay.  As can be seen in the right panel of Figure 4, only children in the narrow 

condition retained more labels than expected by chance (.33), t(11) = 4.76, p <.001, d = 

1.38 (cf.  E1, multiple).  Children in the broad condition failed to retain more labels 

than expected by chance, t(11) = 0.82, ns, d = 0.24.  An unpaired t-test confirmed that 

children who encountered narrow categories retained significantly more labels than 

children who encountered broad categories, t(22) = 2.98, d = 1.27. 

However, contrary to our prediction, the opposite pattern was found for 

children’s novel label extensions: encountering broad categories facilitated children’s 

ability to extend previously fast-mapped novel labels.  As can be seen in the right panel 

of Figure 4, children in the narrow condition failed to extend previously fast-mapped 
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novel labels to a never-before-seen category member, t(11) = 1.76, ns, d = 0.51.  In 

contrast, children in the broad condition extended significantly more labels than 

expected by chance, t(11) = 2.63, p <.05, d = 0.76.  However, the difference between 

conditions was not significant, t(22) = 0.43, ns., d = 0.76.  Taken together, these data 

indicate that encountering low within-category variability facilitates retention of newly-

encountered label-category mappings, and that high within-category variability 

facilitates extension of those mappings. 

Initially, results from the broad condition are surprising: children reliably extend 

novel labels without showing any evidence of having retained them.  To examine the 

possibility that the null result for retention in the broad condition constituted a Type 2 

error rather than a genuine null result, the mean for retention in the broad condition 

(0.39) was used to generate a Bayes Factor (Dienes, 2011).  The Bayes Factor 

represents the ratio between posterior probability (probability of a theory being true 

given observed data) and prior probability (expected probability of a theory being true 

before data collection, Dienes, 2008), calculated as in Equation 1: 

(1)  𝑃 ℎ 𝑑 =    ! ! !
! ! ! ! !

 

where 𝑃 𝑑 ℎ  is the posterior probability and 𝑃 ℎ  is the prior probability.  Bayes 

Factors of less than 1 suggest that the data support the null hypothesis; Bayes Factors of 

approximately 1 suggest that the experiment was not sensitive; Bayes Factors of greater 

than 1 support the experimental hypothesis over the null.  

Our hypotheses were as follows:  

H0 = children do not retain novel labels after encountering broad categories. 

H1 = children retain novel labels after encountering broad categories. 

 For our prior probability, we specified a normal distribution of plausible scores with a 

mean proportion of correct choices of 0.67 (the average of the mean proportion retained 



Multiple Exemplars Facilitate Word Learning 63 

in E1 multiple and E2a narrow) and a standard deviation of 0.16, ranging from 0.33 

(chance performance) to 1.00.  The data of interest (from the retention trials in the 

broad condition) were corrected for small sample size (Dienes, 2008) resulting in a 

sample SE of .097.  Sample mean difference was 0.06 (that is, meanobserved - meanexpected, 

0.39 – 0.33).  The resulting Bayes Factor of 0.22 supports the null hypothesis.  That is, 

children did not retain novel labels after encountering broad exemplars during referent 

selection.   

 Together, Experiments 1 and 2a demonstrate that within-category variability 

facilitates word learning, but only up to a point.  When children encounter too much 

variability their retention of newly-encountered labels is inhibited.  However, these 

findings may only hold when children encounter exemplars in blocked presentation; 

alternatively, encountering exemplars in mixed presentation may further support word 

learning via the spacing effect.   

 In Experiment 2b we examine the effect of temporally-distributed learning 

events by presenting novel label trials in a mixed order.  If encountering distributed 

learning events facilitates learning, as predicted by the spaced learning literature, then 

children in Experiment 2b should retain and extend novel labels better than children in 

Experiment 2a.  However, if encountering learning events in blocks facilitates 

comparison and encoding, as predicted by the categorisation literature, then children in 

Experiment 2a should retain and extend labels better than children in Experiment 2b. 

Experiment 2B 

Method 

 Participants.  Twenty-four typically developing, monolingual, English speaking 

30-month-old children (13 girls, M = 29m, 25d, SD = 46.13 days; range = 27m, 14d - 

32m, 30d) with a mean productive vocabulary of 543 words (SD = 128.76 words, range 
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= 213 – 668 words) and no family history of colourblindness participated.  Children 

were from predominantly middle class homes.  Half of the children were randomly 

assigned to the narrow condition and the other half were randomly assigned to the 

broad condition.  Children’s ages and productive vocabularies did not differ between 

conditions.  Data from one additional child were excluded from analyses due to 

fussiness (1).  Caregivers were reimbursed for travel expenses and children received a 

small gift for participating.   

Stimuli, procedure and design.  Stimuli and procedure were the same as those 

in Experiment 2a; the design differed only in trial order.  In contrast to Experiment 2a, 

children in Experiment 2b saw trials in a pseudorandom order such that they did not see 

more than two trials from the same category consecutively, or more than two familiar or 

novel trials consecutively.   

Results and Discussion 

As depicted in the left panel of Figure 5, children again performed at above-

chance (0.33) levels during referent selection.  On known label trials, children reliably 

selected the target exemplar in both conditions (narrow: t(11) = 19.16, p <.001, d = 5.31; 

broad: t(11) = 4.54, p <.01, d = 1.36).  Similarly, on novel label trials children also 

reliably selected the target in both conditions (narrow: t(11) = 9.17, p <.001, d = 3.15; 

broad: t(11) = 4.99, p <.001, d = 1.48).  However, children were unable to retain or 

extend newly-encountered label-category mappings after a five-minute delay (all 

ps >.17).  

To examine whether mixed presentation had an effect on children’s performance 

relative to blocked presentation, data from Experiment 2a and Experiment 2b were 

submitted to a MANOVA with Known Proportion Correct, Novel Proportion Correct, 

Retention Proportion Correct, and Extension Proportion Correct as dependent variables 
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and Variability (narrow, broad) and Presentation (blocked, mixed) as fixed factors3.  

The MANOVA revealed significant effects of Variability (F = 2.918, p <.05, ηp2
 = .22) 

and of Presentation (F = 3.60, p <.05, ηp
2 = .260).  Post-hoc univariate tests confirmed a 

significant effect of Variability on Retention Proportion Correct (F(1,44) = 11.01, p 

<.01, ηp
2 

=
 .20).  An unpaired t-test revealed that children who encountered narrow 

exemplars retained significantly more label-category mappings than children who 

encountered broad exemplars (t(46) = 3.204, p <.01, d = 0.944).  Post-hoc analyses also 

revealed a significant effect of Presentation on Novel Proportion Correct (F(1,44) = 

9.28, p <.05, ηp
2 = .17).  An independent samples t-test (Bonferroni corrected, α = .0125) 

revealed that children who encountered blocked presentation chose the target exemplar 

on novel referent selection trials significantly more often than children who encountered 

mixed presentation (t(46) = 3.10, p <.01, d = 0.91).   

 

Figure 5.  Children’s proportion of correct choices in Experiment 2b.  Dotted line 

represents chance (.33).  Error bars represent one standard error.  ***p <.001, **p <.01. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 Preliminary analyses revealed a violation of the univariate assumption of sphericity 
(Mauchly’s W = .685, p =.006) and significant correlations between dependent variables (known 
referent selection/novel referent selection, r = .295, p <.05; novel referent selection/extension, r 
= .404, p <.01, both 2-tailed).  MANOVA therefore constitutes a more appropriate test than 
ANOVA, as multivariate tests do not assume sphericity (Field, 2009) and remain sensitive 
where dependent variables are correlated (Tabachnik & Fidell, 2001). 
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These data indicate that presenting trials in a mixed presentation during referent 

selection impairs children’s ability to retain and extend novel category-label mappings, 

irrespective of the degree of within-category variability they encounter.  That is, in E2b 

we found no spaced learning effect.  However, in the context of the robust adult 

findings, this result may in fact suggest that the mixed presentation in Experiment 2b 

does not constitute spaced presentation.  Indeed, the between-trial interval in all 

experiments presented here is a matter of seconds, whereas intervals between learning 

events in comparable experiments consisted of days (e.g., Childers & Tomasello, 2002).   

Why, then, is word learning so much harder given mixed presentation? In the 

referent selection phases of the current experiment, blocked presentation allowed 

immediate comparison of representations across successive trials: that is, children 

needed only to retain a single exemplar-label mapping from one encounter to the next 

for any given category.  In mixed presentation, however, children had to maintain 

representations of exemplars from up to three separate categories before encountering a 

new exemplar from the initial category, thus preventing immediate comparison 

(Gentner & Namy, 1999; Oakes et al., 2009).  Further, children in the mixed conditions 

performed worse during novel referent selection than children in the blocked conditions.  

This is likely to be due to the reduced opportunity for learning from trial to trial: that is, 

children in the mixed condition may have had to solve each trial from scratch, rather 

than use existing representations of novel objects available in working memory from the 

previous trial.  Put another way, mixed presentation made label-category mappings not 

only more difficult to remember, but also more difficult to make in the first place.   

Overall, data from Experiment 2b suggest that the intervals between each 

encounter with a particular label-exemplar mapping were not sufficient to support the 
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spaced learning effect. Further, however, these intervals may also have been too long to 

allow children to maintain newly-formed label-exemplar mappings, preventing cross-

trial comparison, and resulting in children’s inability to retain or extend novel labels.  

Within-category variability helps word learning, then, but this effect is readily disrupted 

by changes in the task environment. 

General Discussion 

Across three experiments, we explored whether encountering multiple category 

exemplars facilitates word learning via fast mapping.  In Experiment 1, we exposed 2-

year-old children to three novel object categories via three blocks of referent selection 

trials.  Across trials, children either encountered the same category exemplar repeatedly 

or multiple exemplars.  Overall, all children did very well on the initial referent 

selection task.  However, only children who encountered multiple exemplars retained 

previously fast-mapped novel labels after a short delay.  Further, these children 

demonstrated significantly better retention than children who encountered the same 

exemplar repeatedly.  In Experiment 2a, all children were presented with multiple 

exemplars, from either narrow (low variability) or broad (high variability) categories.  

Again, all children did very well on the referent selection task, however only children 

who saw narrow exemplars retained the novel labels.  Moreover, only children who saw 

broad exemplars were able to extend the novel labels to never-before-seen category 

exemplars.  In Experiment 2b, we exposed children to the same referent selection trials 

as in Experiment 2a, but in mixed presentation.  Children were again successful in 

referent selection but unable to retain or extend the newly fast-mapped novel labels.   

Comparison facilitates word learning 

These data demonstrate that comparison of multiple exemplars facilitates word 

learning.  Other studies that have explored the relationship between vocabulary and 
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categorisation have typically tested children over a timescale of several weeks (Ellis & 

Oakes, 2006; Perry et al., 2010).  However, the current study reveals that exposing 

children to an object category, rather than a single category member, facilitates 

children’s ability to learn the label for that category within minutes (see also Kemler-

Nelson, O'Neil, & Asher, 2008).   

We contend that children who encountered multiple (E1) or narrow exemplars 

(E2) retained category labels because perceptual variability across trials facilitated 

comparison between exemplars.  Specifically, small amounts of perceptual variation 

(colour) highlighted the invariant features of the objects (shape, material and texture), 

whilst suppressing exemplar-specific features (Gogate & Hollich, 2010; Quinn & Bhatt, 

2010, Rogers & McLelland, 2006).  Thus in the multiple and narrow conditions, 

children were able to rapidly encode exemplars’ invariant features, and robustly map 

novel labels to these representations such that children retained these labels over a five-

minute delay.  The results of E2b strongly support the idea that comparison is important 

for categorisation.  Here, children did not have the opportunity to compare exemplars 

trial-by-trial, which clearly disrupted their ability to retain and extend novel labels. 

A similar effect has been observed in 6-7-month-old infants using the 

preferential looking paradigm.  Infants categorised stimuli organised in a bar 

configuration when familiarised with bar-shaped composites, the elements of which 

varied across trials (e.g., bars composed of crosses versus bars composed of circles, cf.  

multiple and narrow exemplars).  When variability was encountered within trials (e.g., 

bars composed of crosses and circles, identical across trials, cf. single exemplars), 

infants did not form a category (Quinn & Bhatt, 2010).  Thus, the current studies 

provide evidence for persistence of this phenomenon across development. 
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Data from extension trials in E2a are also in line with the categorisation 

literature (e.g., Quinn, Eimas & Rosenkrantz, 1993).  Specifically, lack of variability in 

the multiple and narrow conditions led to formation of a narrow category, which did not 

include shape or texture/material variation.  Representations of extension objects in E2a 

(which varied in shape and texture/material as well as colour) therefore fell outside the 

narrow category formed during referent selection, hence children’s unwillingness to 

extend novel names in the narrow condition 

However, data from the broad condition of E2a suggest that comparison may be 

a necessary but not sufficient condition for word learning: when within-category 

variability was high children were unable to retain category labels (but were able to 

extend labels to never-before-seen objects).  These data support exemplar-based 

accounts of categorisation (e.g., Nosofsky, 1984; see J. D. Smith & Minda, 1984, for a 

discussion).  According to these “exemplar theories”, each time an exemplar is 

encountered, a separate, new representation is stored.  Categories therefore consist of a 

set of individual representations, and new items are categorised via comparison with 

these stored representations.  Importantly, stored representations degrade, such that over 

time, a given representation may become very different to its original (i.e., real-world) 

exemplar (Murphy, 2004). 

From this perspective, during referent selection children formed novel categories 

consisting of six representations (one for each encounter with a novel exemplar), which 

degraded over the five-minute delay.  In the E2a broad condition, representations 

degraded to the extent that they no longer matched the previously-encountered 

exemplars presented during retention trials, hence children’s failure to apply newly-

encountered novel labels to these exemplars (that is, the apparent lack of retention).  In 

contrast, during extension trials, the degraded representations were similar enough to 
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the never-before-seen extension exemplars for children to generalise novel labels.  

Further, due to the lack of shared, invariant features in the broad exemplars, children in 

the broad condition likely formed more diffuse category representations during referent 

selection, further hampering their performance in retention, but supporting 

generalisation to completely new exemplars.   

Flexible categorisation 

Clearly, children’s word learning is influenced both in real time and across 

experience by different factors in different contexts.  Here, both comparison and 

perceptual ability play a role in facilitating – or indeed disrupting – children’s word 

learning abilities.  Figure 6 provides a schematic explanation of how exemplar theory 

and comparison-based explanations apply to the data in E1 and E2A.  In the top panel, 

depicting E1 single, no comparison occurs because exemplars are identical; encoding is 

therefore weak, and no words are retained.  In the centre panel, depicting E1 

multiple/E2a narrow, comparison highlights invariant features, promoting robust 

encoding and formation of a narrow category, and leading to successful retention but no 

extension.  In the bottom panel, depicting E2a broad, lack of invariance causes weaker 

encoding and formation of a broad category, leading to lack of retention but successful 

extension. 
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Figure 6.  Exemplar-based account of the data in E1 and E2a. 

 

Overall, these findings are consistent with the dynamic systems perspective on 

word learning (e.g., Elman, 2003; Samuelson & Horst, 2007; Samuelson, Smith, Perry, 

& Spencer, 2011), in which word learning emerges over a protracted period of slow 
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mapping from the interaction of multiple processes – in this case, previous experience 

with categories and in-task processes of comparison and encoding.  In the current 

experiments, task effects clearly mattered: although every child received nine novel 

label referent selection trials, precisely which novel objects a child encountered during 

referent selection, and in which order those objects were encountered, strongly 

influenced that child’s ability to learn and extend the object labels (see also Horst, et al., 

2010; Kovack-Lesh, Horst, & Oakes, 2008; Oakes, Kovack-Lesh, & Horst, 2009; Quinn, 

Eimas, & Rosenkrantz, 1993; Samuelson & Horst, 2007). 

The current studies add to a growing body of evidence that experience with 

variable categories influences young children’s word learning.  Importantly, these 

studies demonstrate that comparison and variability have a profound effect on children’s 

word learning over a short time scale.  The current studies are among the first to 

systematically investigate the dynamic interplay between category variability and word 

learning, and as such provide important groundwork for further research in the area, as 

well as inform our understanding of category learning and cognitive development, more 

generally. 
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Abstract 

Infants’ verb learning and action categorisation are little understood relative to their 

early noun learning and object categorisation.  Evidence from the noun learning 

literature suggests that within-category variability facilitates noun learning, but the 

effect of variability on verb learning remains unclear.  Across three experiments we 

demonstrate that noun and verb learning are subject to the same real-time, domain-

general processes.  In E1, adults rated the semantics of infants’ early-learned verbs. 

Results indicate that early verb categories commonly encode path-based information.  In 

E2, 24-month-old infants were familiarised with a single intransitive verb-action pair.  

At test, infants discriminated a new action from the same category, performed by the 

same actor.  In E3, 24-month-old infants were habituated to intransitive verb-action 

pairs, encountering either the same pair each time (single condition) or three different 

exemplars from the same action category (multiple condition).  At test, infants in both 

conditions showed evidence of having learned the mapping between verb and action.  

That is, infants discriminated the newly-learned mappings from novel exemplars. Taken 

together, these data suggest that exemplar variability affects verb categorisation, 

indicating that verb learning is governed by the same low-level perceptual processes as 

noun learning. 
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Twinkle Twinkle Little Star:  

Perceptual Variability Facilitates Early Verb Learning 

 Young children acquire language with astonishing speed and apparent ease, 

while simultaneously learning to parse their perceptual environment into categories of 

objects, actions and events.  Children are demonstrably adept categorisers from just a 

few months old (e.g., Arterberry & Bornstein, 2001; Bornstein & Mash, 2010; Quinn & 

Bhatt, 2009), and they begin the word learning task with substantial experience of using 

categories to structure their perceptual environment by generalising across exemplars 

(for a review, see Quinn, 2002).  Moreover, children’s remarkable ability to “fast map”, 

or rapidly infer associations between new words and their correct referents, is well-

documented (e.g., Carey & Bartlett, 1978; Childers & Tomasello, 2002; Markman, 1987; 

Seston, Golinkoff, Ma, & Hirsh-Pasek, 2009).   

 Word learning emerges from the interaction of fast mapping and categorisation 

over multiple timescales of development (Horst & Samuelson, 2008; Munro, Baker, 

McGregor, Docking, & Arculi, 2012).  In the longer term, young children’s vocabulary 

levels affect their categorisation (Ellis & Oakes, 2006), word learning (Gershkoff-Stowe 

& Hahn, 2007), and label generalisation (Jones, 2003; Smith, Jones, Landau, Gershkoff-

Stowe, & Samuelson, 2002; Thom & Sandhofer, 2009); and children’s experience with 

categories outside the lab affects categorisation in the experimental context (Kovack-

Lesh, Horst, & Oakes, 2008).  In the medium and short term, evidence from the noun 

learning literature suggests that within-category variability over time as well as in-task 

variability facilitate word learning (Perry, Samuelson, Malloy, & Schiffer, 2010; 

Twomey & Horst, Paper 1, this thesis). 
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The complexity of the verb learning task  

 Importantly, not all words are created equal: there are clear differences in noun 

and verb acquisition (Bornstein & Cote, 2004).  For example, English-learning children 

acquire verbs later than nouns (McDonough, Song, Hirsh-Pasek, Golinkoff, & Lannon, 

2011), leading some to suggest that children are initially biased to attend to objects over 

actions (Kersten & Smith, 2002), or that objects are “cognitively primitive” and easier 

to label than events or actions (e.g., the "Natural Partitions Hypothesis", Gentner, 1981).   

However, the precedence of nouns over verbs in order of acquisition is by no means 

universal.  A growing body of studies reveals correspondence between verb learning 

and language-specific variables such as word order, vocabulary structure and caregiver 

speech (Choi & Gopnik, 1995; Imai, Haryu, & Okada, 2005; Tardif, Shatz, & Naigles, 

1997).  Such cross-linguistic differences suggest verb learning is heavily contingent on 

environmental context. 

 However, differences between verb and noun learning may also depend on 

semantics.  In general, the referents of early-learned nouns are solid, bounded objects 

(Samuelson & Smith, 1999), visible in the environment, available for manual 

exploration and continuously perceptible.  Verbs describe relations between objects 

(Haryu, Imai, & Okada, 2011; Maguire, Hirsh-Pasek, Golinkoff, & Brandone, 2008), 

and as such the referents of early-learned verbs are in general actions or events, 

contingent on the participant(s) in those events, not independently visible, not available 

for physical exploration, and often only briefly perceptible.  Thus, relative to learning 

nouns, learning verbs is a challenging task. 

 Based on the existing language and categorisation literatures, then, a child’s verb 

learning may depend on internal (e.g., vocabulary), external (e.g., perceptual 

concreteness), and developmental (e.g., categorisation experience) factors.  However, 
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the mechanisms driving verb learning and action categorisation are less understood in 

comparison to the wealth of literature focusing on noun learning and object 

categorisation – and the question of whether nouns and verbs are learned via word-

class-specific or domain-general processes remains open (for a discussion, see Maguire, 

Hirsh-Pasek, & Golinkoff, 2006). 

The unclear effects of variability on verb learning 

 The current studies examine verb learning in the context of a recent investigation 

of the effect of variability on word learning, with the rationale that if word learning 

proceeds by domain-general processes, then verb categorisation should be affected by 

the same factors as noun categorisation.   Specifically, Twomey & Horst (Paper 1, this 

thesis) exposed 30-month-old children to novel label-category pairs in which the 

category exemplars were the same object repeatedly (single condition), objects that 

varied in colour (multiple condition) or objects that varied in shape, texture and colour 

(broad condition).  Children retained newly-learned word-category mappings in the 

multiple condition only, and generalised newly-learned mappings to completely novel 

exemplars in the broad condition only.  Therefore, moderate variability appears to 

support noun learning, whilst high variability triggers formation of a broad category that 

includes never-before-seen category exemplars.  Perry, Samuelson, Malloy & Schiffer 

(2010) examined exemplar variability in a longitudinal training study, with similar 

results: within-category variability facilitates word learning.  Indeed, variability has 

been shown to benefit learning in a variety of domains and ages.  For example, stimulus 

variability influences 6-7-month-old infants’ categorisation of abstract visual stimuli 

(Quinn & Bhatt, 2010); facilitates 14-month-old infants’ learning of lexical neighbours 

(Rost & McMurray, 2009); improves 13-month-old infants’ categorisation in object 
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examination tasks (Oakes, Coppage, & Dingel, 1997) and speeds the emergence of 

novel strategies from embodied problem-solving in adults (Stephen & Dixon, 2009). 

 However, whether exemplar variability facilitates verb learning is not known.  

Perhaps surprisingly, actor variability has been shown to hinder rather than facilitate 

verb learning and generalisation (Maguire, et al., 2008).  Specifically, in a pointing task, 

2.5 and 3-year-old children generalised a novel intransitive verb to a new exemplar of a 

familiarised novel action only when the action was repeatedly performed by a single 

actor, and not when the action was performed by four different actors (see also Kersten 

& Smith, 2002).  Similarly, in a test of the “similarity bootstrapping hypothesis”, 3- and 

4-year-old children generalised transitive verbs only when both actor and novel object 

remained constant across exemplars (Haryu, Imai, & Okada, 2011).  The authors argue 

that because actions (and verbs) are more complex than objects (and nouns), verb 

learning requires highlighting of relational similarity via consistency in lower-level 

perceptual features.   

 Unfortunately, however, comparison between existing studies is difficult, due to 

wide variation in terms of animacy and novelty of stimuli, and the argument structure of 

the verbs in question.  For example, stimuli have consisted of nonhuman, animate 

agents performing intransitive verbs on nonhuman patients, (Kersten & Smith, 2002), a 

human agent performing an intransitive verb while holding a novel object inanimate 

participant (Haryu, et al., 2011), a human agent performing a transitive verb on a human 

patient (Yuan & Fisher, 2009), and so on.  Clearly, it is difficult to compare the relative 

effects on verb learning of these different sources of variability. 

 Evidently, it is unclear whether or not exemplar variability helps children learn 

verbs, as predicted by the noun learning literature.  The current studies examine infants’ 

early-learned verbs and the effect of exemplar variability on 24-month-old infants’ verb 
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learning.  First, Experiment 1 examines the semantics of infants’ early-learned verbs, 

based on the Macarthur-Bates Communicative Vocabulary Inventory (British English 

Adaptation) (MCDI; Klee & Harrison, 2001).  Based on these findings, Experiments 2 

and 3 employ rigorously-controlled intermodal stimuli to ensure results can be 

unambiguously interpreted (Oakes, 2010).  Second, Experiment 2 demonstrates that 

infants can discriminate between exemplars from an intransitive verb category when the 

agent remains the same across exemplars.  Finally, in Experiment 3 children are 

habituated with either invariant (single condition) or variable (multiple condition) verb 

categories and demonstrate that within-category variability does indeed affect on verb 

learning.  A vocabulary analysis suggests that this effect emerges from the dynamic 

interaction between infants’ in-task experience and their longer-term experience with 

verbs and action categories.   

Experiment 1 

 Recent evidence suggests that children learning different languages may not 

encode aspects of a given action in the same way, due to cross-linguistic differences in 

verb semantics.  For example, in a study with English-, Spanish- and Japanese-speaking 

participants, children generalised newly-learned verb-action pairs differently depending 

on their age and linguistic environment (Maguire, et al., 2010).  Specifically, 24-month-

old infants generalised a new verb from an animated character moving along a given 

path to an animated character moving along the same path, regardless of the manner in 

which this action was performed. That is, young children generalised novel verbs on the 

basis of path.  However, older children (3-5 years old) had begun to generalise in line 

with their native verb semantics.  Thus, at 24 months, English-learning children 

generalised to novel actions with the same path, but by 5 years generalised to novel 

actions with the same manner, in line with the underlying semantics of the majority 
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English verbs.  These results suggest a developmental link between vocabulary structure 

and verb generalisation. 

 Similarly, in the noun learning literature, Samuelson and Smith (1999), 

conducted an analysis of the first 312 nouns in the MCDI (Fenson, Dale, Reznick, Thal, 

Bates, Hartung, et al., 1993).  Based on the well-established finding that English-

speaking children (and, indeed, adults) preferentially generalise novel nouns to new 

objects based on shape similarity (the "shape bias", Samuelson & Horst, 2008, but see 

also Markson, Diesendruck, & Bloom, 2008), the authors asked adults to rate each noun 

on three dimensions.  First, raters judged whether each noun was a count noun (i.e., can 

be pluralised, takes “a”, “the” or “those” as an article, and refers to a perceptually-

bounded entity, e.g., shoe,), a mass noun (i.e., cannot be pluralised, takes “some” as an 

article, and refers to a perceptually-unbounded entity, e.g., milk) or could be used in 

both senses, e.g., (some crayon, those crayons).  Second, raters judged whether nouns 

labelled a solid object (e.g., shoe), a nonsolid object (e.g., milk), both (e.g., ice cream), 

or neither.  Finally, raters judged whether nouns referred to objects that were 

categorised according to their shape (e.g., shoe), their material (e.g., milk), their colour 

(e.g., lemon), or any combination of these features.  Of children’s early-learned nouns, 

110 were classified as count nouns, labelling solid objects which belonged to shape-

based categories (for a replication with a UK sample see, Horst & Twomey, 2012).  The 

authors argue that English-learning children’s robust tendency to generalise novel nouns 

on the basis of shape was an emergent, probabilistic mechanism that had its roots in 

these statistical regularities in their early noun vocabularies (the “Attentional Learning 

Account”; see also Colunga & Smith, 2008). 

 Taking jointly the findings of Maguire et al. (2010) and Samuelson & Smith 

(1999) leads to two divergent predictions.  Maguire et al. (2010) demonstrated that the 
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tendency to generalise verbs by manner emerges over development.  Children’s earliest 

verb generalisations, then, may reflect an intrinsic bias to extend novel verbs to new 

exemplars on the basis of shared path.  Or, in line with the Attentional Learning 

Account, children’s path-based verb generalisations may emerge from the statistical 

regularities (specifically, a preponderance of path-based verbs) in their early verb 

vocabularies.   

 Thus, Experiment 1 applies Samuelson and Smith’s (1999) method to examine 

whether young children’s bias towards path-based verb generalisations (Maguire et al., 

2010) is reflected in their early-learned verbs.  We asked adults to rate children’s early-

learned verbs according to whether they encoded an event’s manner (for example, “the 

girl ran down the hill” vs. “the girl jogged down the hill”) or its path (for example, “the 

girl crossed the path” vs. “the girl followed the path”).    

Method 

 Participants.  Fifty-five native English speaking undergraduates (35 female, 

mean age = 18.89 y, SD = 1.03, range = 18 – 23y) participated for course credit.  Data 

from one additional participant were excluded due to bilingualism.  Participants were 

contacted via the University of Sussex online participant recruitment system. 

 Procedure.  Participants rated a corpus of 1074 verbs from the “Action Words” 

section of the British English adaptation of the MCDI (Klee, et al., 2001) via an online 

questionnaire.  Participants were asked to decide whether each verb encoded path, 

manner, neither, or any combination of these three options.  The following examples 

were provided: “Path refers to the course followed by the person or object carrying out 

the verb, with respect to another object.  For example, circling might be used to refer to 

how a dog moves around a fire hydrant (Maguire et al., 2010).  Similarly, crossing 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 Note that due to a programming error, data from one verb, “listen,” were excluded 
from the analysis. The MCDI - British English Adaptation lists 108 verbs. 
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might refer to how a woman moves from one side of a road to another.  Manner refers 

to the way in which the person or object moves.  For example, you could say ‘The 

woman walked/ran/scurried/jogged across the road’.” Order of presentation of words 

was randomised between participants, and words were presented in a single list. 

Results 

 Percentages of ratings for each verb type are shown in Table 1. 

Rating Path Manner Neither Ambiguous 

Percentage (count) of  

verbs rated 

53.28 

(57) 

26.17 

(28) 

14.95 

(16) 

5.61 

(6) 

 

Table 1.  Percentage (count) of verb ratings 

Samuleson & Smith (1999) rated nouns (e.g., “count nouns”) if and only if 85% 

of adults agreed on that rating.  However, our agreement levels were less clear-cut, 

likely due to the semantic complexity of verbs relative to nouns.  Thus, we classified 

verbs by frequency of rating.  Verbs that received no one rating most often were 

classified as “Ambiguous”.  No verbs were classified as Manner/Path, Manner/Neither, 

Path/Neither or Path/ Manner/Neither.  As can been seen in Table 1, 57 of the 107 rated 

verbs were classified as path-based.   

Overall proportion of rating types from the total of 5885 ratings obtained were 

submitted to a repeated measures ANOVA with Verb Type (path, manner, neither, 

path/manner, path/neither, manner/neither, path/manner/neither) as the within-subjects 

factor.  The ANOVA revealed a significant effect of Verb Type (F(1.982, 210.13) = 

431.315, p < .0001, ηp
2 = .803, Greenhouse-Geisser corrected).  Planned pairwise 

comparisons confirmed that participants rated a greater proportion of verbs as path-

based than as any other type (all ps <.05).  Overall, these results indicate that early-
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learned verbs predominantly encode motion path. 

Discussion 

According to adults’ ratings, children’s early learned verbs encode motion path 

significantly more frequently than they encode motion manner.  Taking Maguire et al.’s 

(2010) finding in this context, children’s path-based verb extensions may not be the 

result of a prelinguistic “path bias”. Rather, early path-based generalisations may be a 

product of statistical regularities in young children’s verb vocabularies: the path-

dominated structure of children’s early verb vocabularies may indicate to them that 

“new verbs are path-based” (see Smith, et al., 2002, for a corresponding account of 

noun generalisations).  However, unlike the shape bias, which increases with 

development (e.g., Horst & Twomey, 2012; Landau, Smith & Jones, 1988) verb 

generalisations do not remain path-based, because as noted, older English-speaking 

children and English-speaking adults generalise novel verbs on the basis of manner 

(Maguire et. al, 2010).  Indeed, English has been classified as an S-language, that is, one 

that categorises verbs according to manner (Slobin, 2003).  Although outside the scope 

of the current studies, these data point to fruitful future research into the factors 

influencing this change in the basis of verb generalisation. 

 Experiments 2 and 3 explore the effect of within-category variability on verb 

learning by either familiarising (E2) or habituating (E3) children to exemplars of actions 

paired with a novel verb.  In looking studies, children will look at a category of stimuli 

while encoding that category, and look away (or habituate) once the category has been 

learned.  At test, new stimuli are presented.  Low looking times indicate that the child 

has extended the learned category to include the new stimulus.  High looking times 

indicate that the child has discriminated the new stimulus.  Put differently, increases in 

looking to a given test stimulus are taken as evidence that the child perceives that 
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stimulus to be out-of-category (Oakes, 2010; Quinn, Eimas, & Rosenkrantz, 1993).  The 

habituation paradigm offers an ideal method for investigating verb categorisation, as it 

permits both moving and multiple exemplars. 

 As noted, verb learning appears to be a fragile process, and little is known about 

the nature of children’s verb categories.  While even young infants can discriminate 

visual stimuli (e.g., Quinn, Bhatt, & Hayden, 2008) and map labels to object categories 

(Halberda, 2003; Horst & Samuelson, 2008; Waxman & Booth, 2001; Waxman & 

Braun, 2005), infants’ ability to discriminate and map labels to action categories is 

comparatively fragile (Maguire, et al., 2006; Rakison, 2005).  Thus, in Experiment 2, to 

ensure that 24-month-old infants are able to discriminate between exemplars from a 

single, intransitive verb category performed by a novel agent, we familiarised them with 

a single exemplar-verb mapping and tested their ability to discriminate a novel exemplar 

from the same category. 

Experiment 2 

Method 

 Participants.  Twelve typically developing, English-learning 24-month-old 

infants (6 girls, M = 24m, 22d, SD = 23.73; range = 22m, 9d - 24m, 24d) took part.  

Participants had a mean productive vocabulary of 334.36 words (M = 334.36 words, SD 

= 107.86 words, range = 112 – 498 words) which included at least 1 verb (M = 52.00 

verbs, SD = 27.84 verbs, range = 12 – 101 verbs).  Data from five additional infants 

were excluded due to having no verbs in their productive vocabularies (2) and fussiness 

(3).  Infants were from predominantly white, middle-class homes.  Caregivers’ details 

were collected via visits to nurseries in East Sussex, UK, and caregivers were contacted 

via email or telephone when their child’s age approached 24 months.  Caregivers’ travel 

expenses were reimbursed and infants received a small gift for participating. 
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 Stimuli.  All familiarisation and test stimuli consisted of four five-second video 

clips.  Each clip was looped to play continuously for a maximum of six times (30 

seconds).  Clips consisted of cartoon-style animations produced in Adobe Flash CS4, 

converted to Apple Quicktime format. 

 Figure 1 depicts the stimuli used in Experiments 2 and 3.  Each clip consisted of 

a yellow star-shaped character with an orange outline and a smiling face, in the centre of 

a uniform grey screen.  Data from Experiment 1 suggest that English-learning children 

will categorise (rather than discriminate) verb exemplars when they share the same path.  

Therefore, to ensure visual stimuli constituted meaningful and learnable verb referents, 

path was held constant, while manner provided within-category variability.  Each five-

second clip therefore consisted of the character travelling horizontally across the 

display, whilst changing shape at a constant rate.  The character first travelled to the left 

extreme of the display, then returned to centre, then travelled to the right extreme of the 

display, and finally returned to centre again.   

 During this motion, the character shank and changed into one of the four 

secondary shapes depicted in Figure 1: a circle, a triangle, a square, or a pentagon.  

Thus, the character was a different shape when it was halfway between the centre and 

the edge of the screen, and returned to its original shape by the time it reached the edge 

of the screen.  Figure 2 depicts the time course of a single trial. 
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Figure 1.  Stimuli used in Experiments 2 and 3. 
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Figure 2.  Time course of a single trial. 

All familiarisation and test clips were accompanied by an auditory stimulus 

consisting of a recording of a British female voice saying “Look! He’s dacking! Watch 

him dacking!”. Auditory stimuli were recorded and edited for clarity using Audacity 

1.2.6 sound editing software.  The novel verb was chosen to be phonologically plausible 

in English and to follow CVC syllabic structure, which is readily discriminable by 

English infants from nine months (Saffran & Thiessen, 2003).   

 Two further video clips were used.  Pre-familiarisation and post-test trials 

consisted of video of a novel purple toy being inverted by a human hand, adapted from 

Horst, Oakes & Madole (2005).  The clip lasted six seconds and was looped to play 

continuously for a maximum of five times (30 seconds) per trial.  This clip was 

accompanied by a whistling noise that rose and fell as the toy was inverted.  Finally, an 

attention-getter was used between trials to reorient infants’ attention to the screen.  This 
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consisted of a red circle one a white background that expanded and shrank repeatedly, 

accompanied by a staccato whistle. 

 Procedure and design.  The experiment took place in a quiet, dark testing room 

and an adjoining coding room.  The testing room contained a chair facing the main 

display and a 42-inch Samsung PDP television mounted in a ceiling-to-floor black 

fabric backdrop.  The screen was raised 80cm from the floor.  Below the screen, a 

camera recorded the infant’s gaze.  The lens of the camera was visible in the black 

fabric.  Videos were displayed on the television screen in standard 4:3 format.  Auditory 

stimuli were played over the television speakers with a volume of approximately 50dB.  

The adjoining coding room contained an Apple iMac G5 running OSX 10.4.11, running 

Habit 2000 (Cohen, Atkinson, & Chaput, 2000) which was used to control stimulus 

display and record infants’ looking times.  A small television displayed real-time 

closed-circuit video of the infant’s visual responses to the stimuli. 

 Caregivers were seated in the testing room with the child on their lap, 

approximately 65cm away from the screen.  Caregivers wore sunglasses with blacked-

out lenses to prevent them from unconsciously of their child’s responses, and were 

instructed to avoid engaging with their child during the experiment.   

 The experiment began with the attention-getter.  Onset of the pre-familiarisation 

stimulus occurred immediately once the infant’s gaze was oriented towards the screen.  

The pre-familiarisation stimulus played for 30 seconds or until the infant looked away 

from the screen for a minimum of 0.1 seconds, at which point the attention-getter 

played automatically.  Looks away of less than 0.1 seconds were ignored and did not 

prompt the attention-getter to play.  Familiarisation trials commenced immediately once 

the infant’s gaze reoriented towards the screen, and proceeded in an identical manner.  
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Infants were familiarised with one of four action-verb pairs (see “Experiment 2” 

column, Fig. 1) over 8 trials.   

 Test trials immediately followed familiarisation trials, and again, proceeded in 

an identical manner.  Test trials consisted of a baseline trial, in which the familiarised 

stimulus was presented, and a novel trial, in which a novel exemplar was presented.  For 

example, a child might be familiarised with the “square” exemplar, and see the “circle” 

exemplar at test.  Familiarisation and test exemplars were counterbalanced across 

participants such that each exemplar appeared alongside every other exemplar twice. 

 Following the experiment, caregivers were asked to complete the MCDI (British 

English Adaptation; Klee & Harrison, 2001). 

 Coding and reliability.  Data were coded online by the experimenter.  In 

addition, 20% of recordings were re-coded offline by a second naïve experimenter.  The 

mean intercoder correlation was high, r = .96 (range =.97 –.99), and the mean absolute 

difference between coders was low (0.58s). 

Results 

Looking times for Experiment 1 are reported in Table 2. 

Mean looking time (s) 

Trial 1: 

Prefamiliarisation 

Trials 2 - 9: 

Familiarisation 

Trial 10 

Baseline 

Trial 11 

Novel 

exemplar 

Trial 12 

Post-test 

27.50 (4.76) 16.27 (5.87) 6.16 (3.94) 11.58 (7.96) 26.00 (8.53) 

Table 2. Mean looking times in seconds for Experiment 2. Standard deviations are 

reported in parentheses. 
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 Familiarisation phase.  By the final familiarisation trials, infants’ looking times 

had decreased: a paired t-test confirmed that looking during the first familiarisation trial 

was significantly greater than looking during the final familiarisation trial (all t-tests 

two-tailed, t(11) = 16.43, p <.001).  However, to ensure that this decrease was the result 

of learning rather than fatigue, we compared looking time at the baseline to looking at 

the post-test stimulus, with the rationale that looking to the post-test stimulus should 

increase if infants were engaged in the experiment.  A related-samples Wilcoxon’s 

Signed Rank test5 confirmed this increase (Z = -2.981, p <.01), confirming infants’ 

looking during familiarisation decreased due to learning. 

 Test phase.  To explore whether infants’ looking times recovered on 

encountering a novel stimulus, we compared looking times to the test trial with looking 

times to the baseline trial.  A paired t-test revealed that infants looked significantly 

longer during the test trial than the baseline trial, t(11) = 5.43, p <.05.  Thus, infants 

were able to discriminate between exemplars. 

Discussion 

 Experiment 2 demonstrated that 24-month-old infants are able to discriminate 

between exemplars drawn from the same intransitive verb category6.  Specifically, after 

familiarisation with an action category-verb pair infants’ looking time to a novel 

exemplar from that category increased.  Thus, children were able to discriminate 

between individual exemplars from the same category, confirming the validity of the 

stimuli for use in Experiment 3 (see Quinn, 1987). 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 As looking times to the completely novel stimulus were non-normal in both E2 and E3, 
appropriate nonparametric tests have been used for analyses including this variable. 
6 Note that an identical experiment was conducted to assess the discriminability of a different 
set of stimuli. After testing five children, no evidence of discrimination between exemplars was 
found, (baseline vs. novel exemplar, t(4) = 0.246, p = .81, d = .16) despite indications of 
increased looking to the post-test stimulus relative to the baseline (t(4) = 2.49, p = .07).These 
stimuli were discarded, with the exception of one, which served as the “new category” stimulus 
in Experiment 2 (see Fig.1). 
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 Experiment 3 examined the effect of category variability on infants’ ability to 

learn and generalise verbs.  Existing research demonstrates that category variability has 

a systematic effect on infants’ noun learning.  While too much variability interferes with 

infants’ ability to learn novel nouns, some within-category variability facilitates noun 

learning (Twomey & Horst, Paper 1, this thesis).  Further, Perry et al. (2010) 

demonstrated in a longitudinal study that training children with highly variable 

exemplars of object categories induced an increase in vocabulary relative to children 

trained with less variable exemplars.  Although a recent study examined the effect of 

actor variability on infants’ verb learning (Maguire, et al. 2008), the effect of exemplar 

variability on verb learning remains untested.  If variability facilitates verb learning as it 

does noun learning, then verb and noun learning may be part of the same attentional 

learning system.  If not, verbs and nouns may be acquired via different, specialised 

processes (for a discussion, see Maguire, et al., 2006). 

 Thus, in Experiment 3, we habituated infants to either single or multiple 

exemplars from a category of verbs, and tested their verb categorisation.  Specifically, 

we employed a switch design (Werker, Cohen, Lloyd, Casasola, & Stager, 1998) to test 

whether infants would generalise a habituated verb-category pair to a new exemplar 

from the familiar category, or whether they would generalise to a new exemplar from a 

novel category, in the presence of either the habituated verb or a novel verb. 

Experiment 3 

Method  

 Participants.  Thirty-six typically developing, English-learning 24-month-old 

infants (17 girls, M = 23m, 24d, SD = 46.35; range = 21m, 13d - 26m, 29d) took part.  

Participants had a mean productive vocabulary of 330.94 words (SD = 192.90, range = 

61 words – 663 words), which included at least one verb (M = 50.03 verbs, SD = 38.63, 



Exemplar Variability Facilitates Verb Learning 102 
	  

range = 1 verb - 124 verbs).  Infants were from predominantly white, middle-class 

homes, and had not taken part in Experiment 2.  Infants’ ages, productive vocabularies 

and verb vocabularies did not differ between conditions.  Caregivers’ travel expenses 

were reimbursed and infants received a small gift for participating. 

 Data from 12 additional infants were excluded due to failure to complete (9), 

fussiness (2), chronic ear infections (1) and failure to habituate (1).  Excessive fussiness 

was defined as crying, and/or refusal to remain still such that the child’s eyes were not 

visible to the experimenter.  The attrition rate of 25% is comparable to that reported in 

similar studies: a meta-analysis of 101 infant looking studies conducted between 1984 

and 2005 revealed a mean attrition rate of 22% (range = 0.00% to 86.70%).  Further, the 

meta-analysis found no correlation between exclusion rate and experimental outcome 

(Slaughter & Suddendorf, 2007).   

 Stimuli.  Stimuli are depicted in the right-hand column of Figure 1.  The same 

visual (same-category) stimuli and auditory stimuli (same-verb) stimulus used in 

Experiment 2 served as stimuli in Experiment 3.  In addition, one further video clip (the 

new-category stimulus) was used during test trials.  The new-category stimulus was 

identical to the same-category stimuli, except that rather than shrinking and changing 

global shape as it travelled across the display, the bottom two points of the star shape 

(its “legs”) grew downwards and sideways.  Speed and direction of movement as well 

as timing of the new-category stimulus were therefore the same as in the same-category 

stimuli.  Finally, an additional auditory stimulus served as the new-verb stimulus.  The 

novel verb keefing was recorded by the same female speaker and inserted into the same 

carrier phrase replacing the novel word dacking (again using Audacity 1.2.6).  The only 

difference between the same-verb and the new-verb stimuli was the novel verb. 
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 Procedure and design.  Procedure, stimulus duration and display of pre-

familiarisation stimulus, post-test stimulus and attention-getter were identical to 

Experiment 2, with the exception that children were habituated (rather than familiarised) 

to action-verb pairs via a maximum of 18 trials.  Habituation was determined by a fixed 

three-trial window with a habituation criterion of 50% (that is, infants were considered 

to have habituated once looking times during a given three-trial window totalled 50% or 

less of looking times to the previous 3-trial window. 

  During habituation, infants were habituated either to a single visual stimulus 

repeatedly (single exemplars) or to blocks of three of the four action stimuli from 

Experiment 2 (multiple condition).  Thus, in the single condition an infant might see the 

circle stimulus repeatedly, and in the multiple condition an infant might see the circle 

stimulus, then the square stimulus, then the triangle stimulus, then the square stimulus, 

and so on.  In both conditions, the video clips were paired with the same-verb stimulus 

during habituation.  All infants saw least six trials (and, in the multiple condition, 

infants saw each same-category exemplar at least twice).  Each exemplar was seen 

equally often by children in either condition.  In the multiple condition, each possible 

block of three exemplars (e.g., circle, square, triangle) was seen equally often across 

children.  Trial order within blocks was pseudo-randomly determined for each infant 

with the constraint that no infant saw the same exemplar on two consecutive trials.   

 Immediately following habituation, infants were presented with a baseline 

measure consisting of either the habituated stimulus (single) or one of the three 

habituated stimuli (multiple; note the baseline consisted of a different stimulus than trial 

18 for all infants in this condition).  Four test trials immediately followed the baseline 

trial: (1) a novel same-category stimulus paired with the same-verb stimulus (“SCSV” 

e.g., circle + “dacking”); (2) novel same-category stimulus paired with the new-verb 
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label (“SCNV” e.g., circle + “keefing”); (3) the new-category stimulus paired with the 

same-verb stimulus (“NCSV” i.e., new-category + “dacking”); (4) the new-category 

stimulus paired with the new-verb label (“NCNV” i.e., new-category + “keefing”).  

Order of presentation of test trials was counterbalanced across infants such that each 

trial type appeared in first, second, third or fourth position approximately equally often 

(e.g., the first test trial was SCSV five times, SCNV five times, NCSV four times, and 

NCNV five times).   

 Following the experiment, caregivers were asked to complete the MCDI (British 

English Adaptation; Klee & Harrison, 2001). 

 Coding and reliability.  Data were coded online by the experimenter.  In 

addition, 20% of recordings were re-coded offline by a second naïve experimenter.  The 

mean intercoder correlation was high, r = .94 (range = .82 – 1.00), and the mean 

absolute difference between coders was low (0.92s). 

Results 

 Preliminary analyses revealed no difference between conditions for total looking 

time. 

 Habituation phase.  All infants habituated.  A paired t-test comparing overall 

looking on the first block and overall looking on the last block confirmed the expected 

decrease in looking time over habituation, for both the single condition (t(17) = 11.71, p 

<.001) and the multiple condition (t(17) = 14.32, p <.001; all ps are two-tailed).  

Related-samples Wilcoxon’s Signed Rank tests demonstrated that infants’ looking also 

recovered to the post-test stimulus relative to the baseline stimulus in both the single 

condition (Z = -3.36, p <.01) and the multiple condition (Z = -3.46, p <.01), confirming 

that the decrease in looking times was due to habituation as opposed to fatigue. 
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It is possible that either single or multiple exemplars were easier to learn, as 

would be indicated by a difference in looking time during habituation between the 

single condition (M = 137.09 seconds, SD = 61.24) and the multiple condition (M = 

137.77 seconds, SD = 100.48).  No such difference was found, (t(34) = -1.32, ns.,           

d = -0.45).  Similarly, the number of trials taken to reach criterion did not differ between 

the single condition (M = 8.83 trials, SD = 3.33) and the multiple condition (M = 9.83 

trials, SD = 3.22), t(34) = -0.92, ns., d = -0.32).  Thus, despite the extra perceptual 

variation in the multiple condition, infants encoded multiple exemplars equally as 

quickly single exemplars.  Further, looking times to the post-test stimulus did not vary 

between the single condition (M = 24.71, SD = 7.44) and the multiple condition (M = 

27.93, SD = 6.49), Kolmogorov-Smirnov Z = 1.00, ns., r = .17, confirming that infants 

found single and multiple exemplars equally engaging. 

 Looking times during test trials.  To examine the relative effects of changes in 

the visual and auditory stimuli on infants’ looking times on individual test trials, we 

submitted looking times to a mixed ANOVA with Category (same, new) and Verb 

(same, new) as repeated measures and Condition (single, multiple) as a between-

subjects factor.  Mean looking times during baseline and test trials are depicted in 

Figure 3.  The ANOVA revealed a significant main effect of Verb (F(1,34) = 4.63, p 

<.05, ηp
2 = .12).  Planned comparisons (Bonferroni corrected) confirmed that overall, 

infants discriminated between test trials with the habituated verb “dacking” and test 

trials with the new verb “keefing” (p <.05), indicating that infants learned the verb 

presented during habituation. 
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Figure 3.  Looking times (seconds) to baseline and test trials.  Error bars represent one 

standard error. **p <.01, *p <.05. 

 

The ANOVA also revealed a significant Verb x Condition interaction (F(1, 34) 

= 8.07, p < .01, ηp
2 = .19).  Two follow-up ANOVAs with Test Trial (SCSV, SCNV, 

NCSV, NCNV) as the repeated measure were conducted on data from each condition 

separately.  The ANOVAs indicated that the interaction was driven by infants in the 

single condition (F(3, 51) = 3.24, p < .05, ηp
2 = .16).  Planned comparisons confirmed 

that infants looked longer during NCNV trials than during NCSV trials (p <.05): that is, 

infants in the single condition treated the new-category stimulus paired with the new-

verb stimulus as novel relative to the new-category stimulus paired with the same-verb 

stimulus.  Put differently, infants in the single condition learned that “any movement 

made by the star is labelled dacking (and not keefing)”. Children in the multiple 

condition looked equivalently at all trial types, F(3,51) = 1.92, ns. 
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 Verb discrimination.  Discrimination is indicated by an increase in looking 

relative to the baseline trial.  We therefore compared looking during each test trial to 

looking during the baseline trial for each condition.  

 There was no difference in looking times during the baseline trial between the 

single condition (M = 9.39s, SD = 7.23, range = 1.10s - 29.80s) and the multiple 

condition (M = 9.60s, SD = 7.69, range = 1.20s – 29.90s), t(34) = -0.09, ns., d = 0.03). 

However, planned, paired t-tests comparing looking to each test trial type against the 

baseline trial for each condition did reveal differences. 

 In the single condition, two comparisons were significant: infants looked longer 

at SCNV trials than at the baseline (t(17) = 3.75, p <.01), and longer at NCNV trials 

than at the baseline (t(17) = 3.27, p <.01).  Paired t-tests confirmed equivalent 

responding on the same-verb trials (t(17) = 0.617, ns.) and the new-verb trials (t(17) = 

0.132, ns.).  Infants in the single condition therefore learned the habituated verb, 

discriminating the completely novel verb, but did not discriminate changes to visual 

stimuli. 

 In the multiple condition, infants looked longer at the NCSV trials than at the 

baseline, t(17) = 2.38, p <.05.  Infants in the multiple condition discriminated the novel 

new-category stimulus but did not discriminate any other stimulus. Unlike the children 

in the single condition, these children did not discriminate new-verb stimuli. 

 To compare looking times during the four test trial types between conditions, 

baseline looking was subtracted from looking during each test trial type for each 

condition. An independent samples t-test demonstrated that children looked for longer 

at NCSV trials relative to baseline in the single condition (M = 6.28 seconds, SD = 6.29) 

than in the multiple condition (M = 13.60 seconds, SD = 8.60), t(34) = 2.91, p = <.01, d 

= 0.99).  
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 Effect of vocabulary.  Based on existing categorisation and noun learning 

literature (e.g. Samuelson & Smith, 1999), we predicted that infants’ prior experience 

with action categories would affect their verb categorisation.  Using amount of looking 

during habituation as a measure of the ease (or otherwise) of learning the verb-category 

mapping, we found a strong overall looking/verb vocabulary correlation in the multiple 

condition, Pearson’s r = .53, p <.05 (two tailed).  For infants in the single condition, the 

correlation between verb vocabulary and looking during habituation disappeared 

(Pearson’s r = .113, ns.) Thus, infants’ experience with verbs and the action categories 

they label made a difference to looking times during habituation. 

Discussion 

Twenty-four-month-old infants were habituated to verb-action pairs, 

encountering either the same pair each time (single condition) or three different 

exemplars from the same action category (multiple condition).  At test, infants in both 

conditions showed evidence of having learned the mapping between verb and action. 

However, encountering multiple versus single exemplars had a marked effect on 

infants’ ability to discriminate new exemplars from the habituated category. 

 Labels drive discrimination following single exemplars.  At test, infants in the 

single condition discriminated test exemplars which included a novel verb. 

Correspondingly, they did not discriminate test exemplars which included the 

habituated verb.  Thus infants responded equivalently to the two test exemplars that 

shared the habituated verb, and to the two exemplars that shared the novel verb.  One 

possibility for this behaviour is that in the single condition the change in the auditory 

stimulus was more salient than the change in the visual stimulus. 

In Experiment 2 infants were habituated with a single action-verb pairing, as in 

the single condition of Experiment 3. However, these infants discriminated a same-
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category/same verb exemplar relative to the baseline trial.  Why do they not do so in 

Experiment 3?  First, the single condition of Experiment 3 differs in a number of ways 

from Experiment 2.  In Experiment 3, children were habituated to a maximum of 18 

trials, rather than familiarised with exactly 8 test trials, giving more time for encoding if 

required, and allowing faster transition to the test phase if not.  Further, in Experiment 3 

infants encountered four test trials, allowing for comparison between stimuli across 

trials (an ability present in children as young as 6 months; Oakes & Ribar, 2005).  

Finally, in Experiment 3 infants additionally encountered a completely novel verb 

during test trials, introducing between-stimulus contrasts absent from Experiment 2.  

 Interestingly, recent evidence points to a dynamic interplay between 

categorisation and noun labelling.  For example, 10-month-old infants formed a single 

category in the presence of a shared label after familiarisation with exemplars that, in 

the absence of a label, were perceived as forming two distinct categories (Plunkett, Hu, 

& Cohen, 2008).  In Experiment 3, infants encounter a shared same-verb label across 

SCSV and NCSV trials, and a shared new-verb label across SCNV and NCNV trials.  

From this perspective, then, these data raise the possibility that that the shared label 

prompted infants in the single condition encode the same-category and new-category 

stimuli as exemplars from the same category.  However, the current data do not 

unequivocally support this interpretation, and future research is required to better 

understand the interaction between labelling and verb categorisation. 

 Multiple exemplars facilitate verb categorisation.  Overall, infants learned a 

novel verb category via habituation with both single and multiple exemplars.  However, 

infants who encountered multiple exemplars only discriminated exemplars which 

included a new action category paired with the habituated verb. It is possible that lack of 

discrimination here indicates verb generalisation. If so, experience with multiple 
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exemplars prompted formation of a broad category which infants generalised to all 

stimuli except. This account is in line with existing research suggesting that extra 

perceptual variability in the visual modality triggers formation of inclusive categories 

(Quinn, 2005; Twomey & Horst, Paper 1, this thesis). Equally, however, it is possible 

that other factors, for example fatigue or lack of experience with action categories, 

could underlie these results (although recovery of looking times to the post-test stimulus 

relative to the baseline suggest that decreases in looking across trials were not due to 

lack of attention).  Nonetheless, the current study demonstrates that just as in noun 

learning, exemplar variability affects verb categorisation. 

General Discussion 

These data provide evidence that verb learning is subject to the same influences 

as noun learning and, more generally that word learning is subject to the same domain-

general processes (perceptual variability, vocabulary) as those that underlie with other 

forms of learning (e.g., Gogate & Hollich, 2010; Thelen & Smith, 1996).  As such, the 

data support the dynamic systems account of cognitive development, in which 

behaviour of both infants and adults has been demonstrated to emerge online from 

nested timescales and the dynamic interaction between cognition, body and 

environment (Smith & Thelen, 2003).  In Experiment 1, we add weight to existing 

evidence of a developmental change in verb semantics, and contribute evidence to the 

dynamic-associative account of such these patterns of behaviour emerge.  In Experiment 

2, we demonstrate that 24-month-old infants can rapidly and robustly form verb 

categories, over a restricted number of temporally co-occurring visual and auditory 

stimuli (Gogate, Walker-Andrews, & Bahrick, 2001).  In Experiment 3, we demonstrate 

that infants’ verb categories emerge online from the multiple timescales of long-term 

learning history (here, vocabulary size), in-task experience (single vs. multiple 
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exemplars) and in-the-moment environmental context (visual and auditory differences 

in test stimuli). 

Taken together, these studies indicate that infants’ verb learning is not “special”. 

In fact, verb learning and action categorisation may be subject to the same general 

cognitive processes that underlie noun learning and object categorisation. The current 

studies therefore inform our understanding of verb learning, and as well as contribute to 

accounts of language as underpinned by flexible, domain-general, and dynamically 

interactive cognitive processes. 
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Abstract 

Although computational models offer exciting new insights into cognitive development, 

at present the field is divided in terms of theoretical accounts of cognition.  Some argue 

that it can be understood as optimal inference under uncertainty and modelled using top-

down hierarchical structures – the Bayesian approach.  Others contend that cognition 

emerges from interaction over nested timescales between the brain, the body, and the 

environment – the emergentist approach.  This paper attempts to reconcile the two 

accounts.  First, it situates each approach in its historical and theoretical context, then 

compares two models of the same word learning phenomenon: the shape bias.  Rather 

than reject one approach in favour of another, this review concludes that although 

emergentist models currently offer the most readily testable predictions, and therefore 

deeper insight into cognitive development, an integration of environmentally-grounded 

Bayesian research with existing emergentist models would be of great benefit not only 

to research in word learning, but also to our understanding of the unfolding of cognition 

across the lifespan. 
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Two Households, Both Alike in Dignity: 

Probabilistic Versus Emergentist Models of Cognitive Development 

 For decades, psychologists have painstakingly explored behavioural and 

developmental phenomena, using techniques ranging from the psychophysical to 

neuroimaging (e.g., Aslin & Salapatek, 1975; Cohen & Strauss, 1979; Fava, Hull & 

Bortfield, 2011; Oakes, Madole, & Cohen, 1991).  In recent decades, however, 

computational models have successfully made the conceptual leap from domains such 

as neurophysiology (McCulloch & Pitts, 1943), signal processing (Green & Swets, 1966) 

and thermodynamics (Kelso, Ding, & Schöner, 1993) to join the battery of investigative 

tools available to psychology providing exciting new insight into the hidden 

computations underlying human behaviour.  Computational models allow the researcher 

to examine change in a learner’s or neural system’s behaviour given a certain input, 

often over time (Elman, 1990), offering an unprecedented ability to pilot new 

experimental designs and facilitating quick and inexpensive testing of new theories. 

 However, progress in the field is hampered by a theoretical schism, perhaps best 

illustrated by the hotly-debated differences between two of the most common 

approaches to modelling cognitive development: probabilistic, Bayesian models 

(henceforth “Bayesian models”) and emergent, neural network models (henceforth 

“emergentist models”).  This review explores the theoretical and empirical context of 

each type of model, presents a comparison of a Bayesian and an emergentist model of a 

well-known word learning phenomenon in infants – the “shape bias” (e.g., Landau, 

Smith, & Jones, 1988) – and finally evaluates the contribution of each approach to our 

understanding of cognition.  The evidence presented here suggests that current 

neurologically-plausible emergentist models offer the most readily-testable predictions, 

and therefore, at present, contribute the most valuable insights to the field.  However, 
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taken as a whole, the modelling literature points to the benefits of a synergistic approach 

in which Bayesian and emergentist models are designed with the common goal of 

paying serious attention to the learner’s environment, as well as to the emergence of 

cognitive structure over time. 

The modeller’s challenge.  Computational models consist of mathematical algorithms 

that generate an output in response to an input.  Inputs to models of human cognition are 

schematised mathematical formalisms of some relevant aspect of a human learner’s 

environment.  Cognitive modellers aim to write algorithms that process input (e.g., 

visual images, auditory signals) and generate output (e.g., language, categories, motor 

behaviour), which reflect the inputs and outputs to real-world cognition.  For example, 

inputs to the seminal Rumelhart & McClelland (1985) connectionist model of the 

acquisition of the English past tense consist simply of strings of phonemes representing 

English verbs, encoded as patterns of activations across a layer of neurons (for 

terminology see section:  Emergentist models: Mathematical implementation and 

structure).  The model processes these inputs to generate an output consisting of another 

string of phonemes instantiated in a layer of output nodes.  Given inputs reflecting the 

structure of children’s early-learned verbs, this model reproduces the patterns of verb 

past tense overgeneralizations demonstrated by children learning English.  Thus, the 

algorithms governing these processes may reflect some cognitive substrate of children’s 

past tense acquisition.   

 The first and critical step in modelling is to select a target cognitive phenomenon, 

bearing in mind that the target data limit the situations to which a model’s findings can 

be generalised.   For instance, a model examining infants’ looking times to novel stimuli 

is unlikely to inform the modeller about the amount of time a school-age child will 

spend looking at printed words on the page of a story book.  Equally, a model of adult 
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decision making will be uninformative about babies’ behaviour in habituation 

experiments.  Thus, Hahn & Oaksford’s (2007) Bayesian model of adults’ ratings of 

reasoning fallacies must remain agnostic as to low-level perceptual learning in infants.  

Similarly, Gliozzi, Mayor, Hu & Plunkett’s (2009) model of infant word learning and 

object categorisation will not help the researcher understand adults’ acceptability 

judgements of different reasoning strategies.  Importantly, then, choosing an approach 

requires commitment to strong theoretical assumptions about both representational 

structure and the learner’s environment.   

Similarly, choice of model type also affects how different models inform our 

understanding of cognitive development.  If a model includes preprogrammed “rules”, 

then the implication is that the cognitive process under examination also depends on 

some kind of prior knowledge (e.g., Gopnik & Tenenbaum, 2007).  However, if a model 

learns from input alone, this implies that the cognitive process under examination is also 

learned purely from input (e.g., Elman, 1993).  Further, some models may be semi-

structured, incorporating assumptions based on existing knowledge from other domains, 

such as neuroscience (e.g., Chang, Dell & Bock, 2006).  The implications of such 

theoretical and implementational assumptions for both Bayesian and emergentist 

models are discussed in the following paragraphs. 

Bayesian Models 

Theoretical background   

 Bayesian models are inference calculators, computing the probability of all 

possible hypotheses being true given a particular task environment and observed data.  

Fundamental to this approach is a commitment to Marr’s (1982) “computational” level 

of analysis.  According to Marr, cognitive processes can be described at three levels.  At 

the top of Marr’s hierarchy, the “computational” level concerns the goal of the cognitive 
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process (e.g., picking up an object), and the way in which that goal might be achieved 

(e.g., a reach and a grasp).  Pre-specified constraints operating on the possible outputs 

of the process (e.g., which objects are within reach) are also defined at the 

computational level.  Moving down a step, the “representation and algorithm” level 

involves the selection of input/output representations and appropriate rules (i.e., 

algorithms) to achieve the desired outcome.  For example, the representation level might 

include rules such as “if an OBJECT is CURVED, hold fingers in curled position”, “If an 

OBJECT is THIN, hold fingers in pincer position”, operating over representational symbols 

such as OBJECT, CURVED, and THIN).  Finally, the lowest, “implementation” level 

describes the physical realisation of the components required to achieve the predefined 

goal (e.g., the neural response generating a motor action).   

 The problem space in Bayesian models is therefore defined top-down, from the 

highest, computational level.  Importantly, lower-level processes are not addressed.  For 

example, an infant chooses to reach towards a one toy rather than another in response to 

“Where’s your bear?” From a Bayesian perspective, this behaviour results from the 

probability of bear referring to the reached-to toy being greater than the probability of 

bear referring to the other toy.  Thus, infants’ behaviour is explained by inference-

making at the computational level (e.g., “reach for the toy that looks most like the other 

items called bear”).  The implementational and representational levels (e.g., the way in 

which visual input is processed and compared to existing representations of the BALL 

category) are not considered.  Perfors, Xu, Griffiths and Tenenbaum (2011) explicitly 

situate Bayesian models at the computational level, as do numerous other influential 

Bayesians (e.g.,  Chater, Oaksford, Nakisa, & Redington, 2003; Gopnik, et al., 2004; 

Gopnik & Tenenbaum, 2007; Kemp, Perfors, & Tenenbaum, 2007; Lee & Sarnecka, 

2010; Shultz, 2007; Xu & Tenenbaum, 2007).  Importantly, adhering to the 
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computational level means that all possible outputs in a Bayesian model are determined 

a priori by the modeller (see Mathematical Implementation and Structure, this section). 

 Implicit in a commitment to the computational level is a simultaneous 

commitment to the “information processing” view of cognition (e.g., Klahr & Wallace, 

1976; Lachman & Butterfield, 1979).  By this account, mental representations of real-

world entities consist of schematic symbols manipulated by a priori rules (for example, 

the “words and rules” account of language development, Berent & Pinker, 2008; Huang 

& Pinker, 2010; Pinker & Prince, 1988).  Understanding cognition, therefore, consists 

of understanding the computational-level rules that generate observed behaviour, rather 

than the underlying neurophysiology.  In this way, Bayesian modellers openly eschew 

the study of the brain structure and function (Daw, Courville, & Dayan, 2008).  

Consequently.  Bayesian approaches have been described as the “new Behaviorism” 

(e.g., Jones & Love, 2011).   

 Just as information processing has contributed its “rules” to Bayesian 

approaches, early models of inference under uncertainty have contributed the notion of 

probabilistic reasoning (Duda, Hart, & Nilsson, 1976; Rousseau, 1968; Weiss, 

Kulikowski, Amarel, & Safir, 1978).  Recent research suggests that cognitive 

development depends at least in part on learning the probabilistic (or statistical) 

structure of the perceptual and social environment (Gopnik & Tenenbaum, 2007; 

Oaksford & Chater, 2003; Yu, Smith, Klein, & Shiffrin, 2007).  Instead of “symbols”, 

then, modern Bayesian models define multiple hypotheses about the learner’s 

environment (the “hypothesis space”), assign a probability to each hypothesis, and 

continually update these probabilities on encountering new data.   
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Mathematical implementation and structure 

 As noted, Bayesian researchers do not generally address brain structure.  Instead, 

Bayesian models compute the probability of behavioural outcomes by calculating the 

probability of a hypothesis being true given data collected (Bayes’ rule; see below for 

more detail). 

Bayesian models consist of a structured “hypothesis space” (a set of mutually-

exclusive hypotheses), a formal definition of the relationship between each hypothesis 

and the observable data (the “likelihood”), and the set of prior probabilities of each 

hypothesis in the hypothesis space (or “priors”; Chater, Tenenbaum & Yuille, 2006; 

Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010).  The model is then presented 

with data in vector form and an adapted version of Bayes’ rule is used to calculate for 

each hypothesis the posterior probability given the data, 𝑃 ℎ! 𝑑 , as follows:  

 

𝑃 ℎ! 𝑑 =   
𝑃 𝑑 ℎ!
𝑃 𝑑 ℎ! 𝑃 ℎ!!!  ∈ℋ  

 

 

where 𝑃 𝑑 ℎ!  is the likelihood of observing the data given the hypothesis i (“likelihood 

function”), 𝑃 ℎ!  is the likelihood of prior hypotheses j (“priors”), and 

𝑃 𝑑 ℎ! 𝑃 ℎ!!!  ∈ℋ    represents the sum over all hypotheses of the product of the priors 

and likelihoods.  Bayes’ rule therefore attributes to the hypothesis in question a 

proportion of the total probability in the model, taking the data observed into account 

(Perfors, et al., 2011; see also Dienes , 2011).  Once the posterior probabilities have 

been updated in response to the data, the hypothesis with the maximum posterior 

probability is taken as the model’s “choice” or “inference”.  In this way, Bayesian 

models examine (probabilistically) optimal behaviour in a given task environment. 
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  Recent Bayesian models focus on the complexity of the learner’s environment 

by employing complex hypothesis spaces – that is, hypothesis spaces which reflect all 

possible hypotheses in a given task environment, rather than a smaller number of 

modeller-selected outcomes.  However, increased complexity brings with it problems of 

combinatorial explosion (Sanborn, Griffiths, & Navarro, 2010).  For example, evidence 

suggests that young infants’ categories can be based on clusters of co-occurring features 

(Baumgartner & Oakes, 2011; Plunkett, Hu, & Cohen, 2008; Younger & Cohen, 1983).  

Mathematically, the number of categories an object could belong to (however 

improbable that membership may be) is determined by the number of possible feature 

clusters.  For example, the features FEATHERS and BEAK combine to make three possible 

categories: FEATHERS, BEAK, and FEATHERS+BEAK.  Adding the single feature FLIES adds 

four new possible clusters, up to a total of seven.  Thus, the number of possible 

categories (and therefore the number of hypotheses) increases exponentially as new 

features are added.  Inevitably, therefore, the scope of Bayesian models is restricted by 

computational capacity (Perfors, et al., 2011).   

 To address this, recent models have employed Monte Carlo methods, in which 

computations are performed using a limited number of samples from a probability 

distribution, rather than the distribution in its entirety.  In Bayesian models, this entails 

using random samples from the likelihood functions to generate posterior probabilities 

(Chater, Tenenbaum & Yuille, 2006b; Sanborn, et al., 2010).  The consequences of 

these methods are double-edged.  On the one hand, Monte Carlo-based models naturally 

capture environmental stochasticity.  On the other, the algorithms used in Monte Carlo 

estimation came from nuclear physics (Liu, 2008; von Neumann, Metropolis, & Ulam, 

1951), leading some to question the extent to which such models reflect – and therefore 
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inform our understanding of – human  cognition (Jones & Love, 2011; but see also 

Chater, et al., 2011). 

Assumptions 

 Bayesian models are highly structured and require the modeller to make several 

decisions.  First, the modeller decides a priori which hypotheses are relevant to the 

model and how these hypotheses relate to one another.  Thus, the hypothesis space is 

structurally constrained – and whether these constraints are innate or learned is often 

left unaddressed (Chater, Tenenbaum & Yuille, 2006a).  This top-down structure means 

that the vast majority of Bayesian models generally cannot generate completely novel 

predictions (but see Tenenbaum & Griffiths, 2001).  Instead, Bayesian models express 

novelty in terms of choosing a never-before chosen hypothesis (although all hypotheses 

are modeller-defined).   

 Second, the modeller hand-picks the likelihood function; that is, the shape of the 

probability distribution over each possible hypothesis is therefore also chosen in 

advance.  Similar to the hypothesis space, how the modeller defines these likelihoods 

constrains what the model can do.  Likelihood functions are usually based on known 

probability distributions (e.g., normal, Dirichlet, e.g., Xu & Tenenbaum, 2007). 

 Finally, the prior probabilities (“priors”) of each hypothesis are also determined 

by the modeller.  Again, the choice of priors fundamentally affects the way in which a 

model instantiates “cognition”.  For example, the careful design of priors to reflect 

statistical regularities in the environment can contribute to an in-depth and informative 

model of the learner’s perceptual environment and learning history (“Enlightened 

Bayes”, Jones & Love, 2011; see also Anderson, 1991).  Alternatively, priors can be 

viewed as the learner’s cognitive environment or personal probability of a hypothesis 

being true; this type of prior is often based on existing empirical evidence (e.g., 
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Oaksford, Chater, & Larkin, 2000).  Finally, priors can be deliberately unstructured 

(that is, non-informative; for a discussion, see Myung & Pitt, 1997), although the extent 

to which such models reflect cognition and learning history is unclear (Jones & Love, 

2011). 

 The high degree of modeller control and large number of free parameters lends 

Bayesian approaches great flexibility.  Consequently, psychology alone has seen 

Bayesian models of cognitive structures as diverse as conditional inference spaces 

(Oaksford & Chater, 2003), causal relations (Gopnik, et al., 2004), hierarchical syntax 

in language and music (Dawson & Gerken, 2011; Eisner, 2002), and clusters of 

perceptual features in object categories (Xu & Tenenbaum, 2007) as well as models of 

complex hierarchical cognitive structure such as compositionality in syntax (Perfors, et 

al., 2011) – an ability currently outside the scope of connectionist models.    

 However, flexibility comes at a philosophical and practical price.  The 

emergentist camp have forcibly argued that Bayesian models risk design (or designer) 

bias (McClelland et al., 2011) due to the degree of influence the modeller has on the 

structures the model can represent.  Further, the abundance of degrees of freedom in 

Bayesian models allows the modeller to accurately fit almost any dataset obtained in 

almost any task environment, giving rise to Popperian problems of falsifiability 

(Bowers & Davis, 2012).  Correspondingly, in providing a perfect fit to a given dataset, 

some Bayesian models suffer from difficulties stemming from overfitting; that is, a 

model that very accurately reflects a single dataset will not generalise well to another 

(Gurney, 1997).  Compounded by the fact that the hypotheses are mutually exclusive (in 

order to obey the axioms of probability, that is, total probability in the model cannot 

exceed 1), some have argued that Bayesian models simply reframe datasets into the 
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language of probability and reveal little about cognition in any other context than the 

task environment specific to that model (e.g., Glymour, 2011). 

 Indeed, Bayesian modellers themselves acknowledge the problem of lack of 

generaliseabilty, and have tried to overcome it.  For example, Tenenbaum & Griffiths 

(2001) proposed a model in which the hypothesis space is associated to overlapping 

subregions of notional “psychological space”.  This permits a one-to-many relationship 

between a single subregion and several hypotheses, such that several different 

psychological computations could account for a single data set, and importantly, 

generating testable predictions.  However, this model also assumes the existence of 

“natural kinds” of real-world entity, a theory that is itself the source of impassioned 

debate (Booth, 2009; Colunga & Smith, 2008b; Gelman, 2003; Madole & Oakes, 1999; 

Mandler & McDonough, 1998; McCarthy, 2008; Rakison, 2007), thereby merely 

shifting, and not resolving, the debate. 

 Clearly, the Bayesian research program offers great flexibility, freeing the 

modeller from the restrictions of faithfully representing neuronal structure and thereby 

facilitating research into the complex hierarchical structures that permeate our world 

(Chater, et al., 2011).  However, Bayesian detractors argue that probabilistic models are 

underconstrained, and that the resulting literature is incoherent (McClelland et al., 2011). 

Emergentist models 

Theoretical background.  In contrast to the Bayesian emphasis on probabilistic 

inference, emergentist models of cognition simulate the function of the human brain.  

From this perspective, a focus on low-level neural processing is necessary, and, it is 

argued, sufficient to understand cognition (Crick, 1989; McClelland, et al., 2011).   

 The emergentist tradition began with neural network models, in which neural 

processing is simulated using a network of mathematically modelled neurons 
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(McCulloch & Pitts, 1943).  From the outset, influential researchers such as Hebb 

emphasised the importance of neurophysiology to psychological theory, rejecting the 

behaviourist “black box” view of cognition (Hebb, 1949/2002; McLeod, Plunkett, & 

Rolls, 1998).  Emergentist approaches thus explicitly eschew the rule- and structure-

based computations of Bayesian models, instead favouring flexible, emergent 

representations distributed over a network of units.  Nonetheless, the emergentist 

program began with probabilistic representations in mind: Rosenblatt, whose perceptron 

model was one of the earliest and most influential contributions to the field, stated: “The 

need for a suitable language for the mathematical analysis of events in systems where 

only the gross organisation can be characterised, and the precise structure is unknown, 

has led the author to formulate the current model in terms of probability theory” (1958, 

pp.  387-8).  Thus, both emergentist and Bayesian approaches have probability theory at 

their core – a striking historical similarity between two now distinct paradigms. 

 Emergentist models proliferated following the paradigm’s resurgence in the 

1980s catalysed by the Parallel Distributed Processing group (e.g., Rumelhart & 

McClelland, 1986).  The field made further progress with the development of Simple 

Recurrent Networks (SRNs, that is, networks with layer(s) of hidden units that serve as 

memory, such that output at time t serves as input at time t +1; Elman, 1990; Jordan, 

1986).  These recurrent emergentist models are members of the dynamical system 

family (Kelso, et al., 1993): complex physical systems of reciprocally coupled, 

continually interacting components.  Such systems may exhibit both stable, predictable  

behaviour and complex, difficult-to-predict behaviour (for example the behaviour of a 

weather system).  This behaviour can be modelled using mathematical functions; 

astonishingly, these functions describe the behaviour of an incredibly diverse range of 

physical system, from the stable, predictable behaviour of an oscillating pendulum, to 
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the complex, difficult-to-predict behaviour of a weather system.  The mathematical 

functions which describe dynamical systems may converge to “attractor states”, which 

describe a system’s stable behaviours.  Alternatively, functions may be at an 

“instability”, describing a system’s chaotic behaviours (Kelso et al., 1993).   

 Neural networks, being complex systems of reciprocally coupled, continually 

interacting artificial neurons, also exhibit such behaviour.  In cognitive science, 

therefore, attractor states are taken to represent stable cognitive structures, for example 

categories (Westermann & Mareschal, 2009), motor plans (e.g; Thelen & Spencer, 1998) 

or location memory (Schutte, Spencer & Schöner, 2003).  Because every component of 

a dynamical system is coupled to every other component, Marr’s (1982) levels of 

analysis are extraneous to the emergentist approach.  In neural networks, stable, lasting 

structure emerges from interactions between neurons as governed by the strength of the 

connections which link them: representation, computation and implementation are 

therefore one and the same (McLeod, et al., 1998).   

Outside psychology, neural network models have been implemented in countless 

domains requiring pattern recognition and prediction, for example finance (e.g., 

Brabazon & O'Neill, 2008), the military (e.g., H. Chen, Wu, Wang, Lin, & Cai, 2011), 

demographics (e.g., Dombi, Rosbolt, & Severson, 2010), computer vision (e.g., C.  

Chen, 2010), and robotics (e.g., Berthouze & Metta, 2005; Twomey, Horst & Morse, 

paper 6, this thesis).  Within psychology, emergentist models have successfully 

modelled various cognitive processes including aspects of development such as 

categorisation (e.g., French, Mareschal, Mermillod, & Quinn, 2004), fast mapping (e.g., 

Mayor & Plunkett, 2010) and word learning (e.g., McMurray, Horst, & Samuelson, in 

press). 
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Mathematical implementation and structure   

 The most widely-researched branch of emergentism is the diverse family of 

connectionist models (Gurney, 1997; McLeod et al., 1998).  The paradigm’s 

commitment to faithful simulation of neurophysiological structure is evident in its 

terminology: connectionist models are “neural” networks of discrete processing units, in 

the form of idealised artificial “neurons”.  Each neuron is connected to its neighbours by 

adaptable weights, via which neural “activity” spreads from neuron to neuron. 

 Arguably the most influential neuron model is the perceptron (Rosenblatt, 1958; 

see Fig. 1).  Artificial neurons sum activation input from neighbouring units.  The 

summed activation is processed by some function chosen by the modeller (commonly 

sigmoidal), and if the result is above a predetermined threshold, activation is output to 

neighbouring units.  A randomly-initialised network of neurons can be trained to reflect 

a given input pattern, via a process of error reduction over iterative weight adaptation, 

for example, “backpropagation” networks (Rumelhart, Hintont, & Williams, 1986). 

 

 

 

Figure 1.  An artificial neuron 

 More recently, neurologically-based connectionist principles have been adapted 

to formally embody the dynamic systems emphasis on the emergence of structure over 
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time in Dynamic Field Theory (DFT; Kelso, et al., 1993; Thelen, Schöner, Scheier, & 

Smith, 2001).  Where connectionist models simulate learning by increasing connection 

weights between discrete units, DFT employs spatially continuous fields of activation 

(“Dynamic Neural Fields”, or DNFs) which interact dynamically, feeding above-

threshold activation to a separate memory field.  Because DNFs are topologically 

meaningful, they have been successfully used to investigate spatial (amongst other) 

phenomena such as infants’ perseverative reaching (Schutte & Spencer, 2002), memory 

for object locations (Schutte & Spencer, 2009; Simmering & Spencer, 2008), and word-

object binding via spatial location (Samuelson, Smith, Perry, & Spencer, 2011). 

Assumptions  

 Just as in Bayesian models, the emergentist research program makes several 

assumptions about cognitive structure.  First, and fundamentally, cognitive structure 

emerges from neuronal and perceptual interaction (Riley, Shockley, & Van Orden, 2012; 

Samuelson, et al., 2011).  However, the structure of the simulated neurons and the 

nature of their interactions are designed a priori by the modeller.  Network architectures 

thus vary greatly, from backpropagation networks in which supervised learning depends 

on an error-reduction algorithm (e.g., Schlesinger & Parisi, 2004), to self-organising 

maps which evolve unsupervised to reflect statistical regularities in the input (e.g., 

Mayor & Plunkett, 2010).   

 Despite evidence from neuroscience of localised neurological function (although 

the extent of localisation is disputed, e.g., Kolb & Whishaw, 2003; Molfese & Burger-

Judisch, 1991), connectionist models often assume uniformity of neural structure and 

interactions, and simplify the neurotransmitter system into simple excitatory and 

inhibitory interactions (Cooper & Shallice, 2010).  Some Bayesian modellers argue that 

the level of abstraction in these mathematical formalisations of neural function is so 
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great as to render negligible the informative value of emergentist models (Griffiths, et 

al., 2010; Norris, 2011).  In response, however, emergentist modellers emphasise the 

importance of simplification to the discovery of the components necessary to complex 

behavioural systems (Simmering, Triesch, Deák, & Spencer, 2010).  Nonetheless, early 

choices with respect to model architecture clearly involve strong assumptions about the 

structure of the brain. 

 Second, and again as in Bayesian models, connectionist models make 

assumptions about environmental structure: for example, which inputs are relevant to 

the process under investigation and how those inputs are related.  In Rogers & 

McClelland’s (2004) Semantic Cognition model of categorisation, information about 

the properties of object category exemplars (e.g., labels such as “robin”, and features 

such as “feathers” and “sing”) is input via discrete units.  Relationships between these 

properties are expressed in terms of the adaptable weights between these properties, 

such as CAN (linking category-characteristic behaviours to exemplars) and ISA (linking 

labels to exemplars).  The structure of the “robin” category is therefore instantiated in 

linked semantic propositions such as ROBIN+CAN+SING and ROBIN+ISA+BIRD.  Thus, the 

model assumes that relationships between properties in different modalities are 

functionally identical, that individual properties are equally salient across perceptual 

modalities, and that elements of the environment such as BIRD and SING are no more 

related than elements such as CAT and FLY.  However, whether these assumptions 

accurately represent relationships between real-world entities is disputed (Gliozzi, 

Mayor, Hu, & Plunkett, 2009).   

 Third, connectionist models make strong assumptions about representational 

structure, an issue that Bayesian models, for better or worse, sidestep entirely.  For 

example, representations can be localist with an individual unit representing the visual 
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appearance of an entire object (e.g., Rogers & McClelland, 2004).  Alternatively, 

representations can be distributed, in which multiple units fire concurrently, forming 

unique patterns in response to different inputs (e.g., Samuelson, 2002).  Localist 

representations appeal to exemplar-based models of categorisation (e.g., Medin, 1978) 

and resist problems of catastrophic interference, in which learning new representations 

brings about “forgetting” of older representations (Mayor & Plunkett, 2010).  However, 

whether complex representations can be (or indeed, need be) represented with localist 

units is disputed (for a review, see Page, 2000). 

Important differences in modelling word learning. 

 Children’s word learning has long fascinated scientists and philosophers alike.  

Their ability to quickly and accurately assign referents to words in the absence of 

feedback is astonishing, given the complexity of perceptual environment (Quine, 1960).  

Nonetheless, environmental cues regularly co-occur, and children learn these 

regularities (Smith, 2000).  Learned associations between cues then allow the learner to 

accurately predict future co-occurrences (e.g., Wu, Gopnik, Richardson, & Kirkham, 

2011).  In the case of learning a new word, for example, a child may see a cylindrical 

item with a handle, whilst hearing the label cup, and form the rough, initial hypothesis 

that the label refers to the object.  This ability is known as “fast mapping” (Carey & 

Bartlett, 1978; Dollaghan, 1985; Heibeck & Markman, 1987).  Over repeated 

encounters with cylindrical objects with a handle alongside the label cup, the child 

learns that new exemplars of cylindrical objects with a handle are likely to also be 

called cup.  However, the cognitive processes that underpin learning are debated (e.g., 

McClelland et al., 2012).  Moreover, this debate is embodied by the contrasting 

theoretical priorities of the two families of model discussed here. 
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 Bayesian models view learning as inference over existing (often innate; Kemp, 

et al., 2007) structure.  Thus, based on prior knowledge that solid objects’ shape 

indicates their category membership, following several encounters with the label bird 

and a creature with wings and two legs, the probability of a new object with wings and 

two legs also being called bird is high.  On the Bayesian assumption that humans 

behave optimally, the optimal inference is that this new object is indeed called bird.  

Emergentist models, on the other hand, view learning as the strengthening of 

associations between learned representations stored as patterns of activation over time 

(McClelland, et al., 2011; Smith, 2000).  Thus, when the representation for the label 

bird is repeatedly activated alongside the representation for the winged, two-legged 

object, the two representations become associated.  After several encounters, 

encountering one item (e.g., object with wings and two legs) activates the representation 

for the other item (e.g., bird), even in the absence of that second item.   

 The theoretical assumptions discussed earlier have implications for Bayesian 

and emergentist definitions of learning alike.  Because Bayesian models ignore 

mechanism and focus on behaviour, they cannot separate behavioural changes due to 

physiological development from behavioural changes due to cognitive development (i.e., 

learning).  For example, when an infant begins to reach for objects, Bayesian models 

cannot tell us whether the infant has learned to move her arm stably towards a goal in 

the physical environment (physiological development, e.g., Thelen, Corbetta, & Spencer, 

1996; Thelen & Spencer, 1998) or has learned to represent objects as bounded, 

graspable entities (representational development, e.g., Johnson, 2010; Needham & 

Baillargeon, 1998).  Thus, relative to emergentist models, Bayesian models are 

uninformative as to the timescale of development.  As Jones & Love (2011) argue, “In 

rational [Bayesian] models…nothing develops” (p.182).   
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The lack of observable “learning” in Bayesian models, compounded by the 

assumption of optimality, is also problematic for models of atypical learning.  

Specifically, it is not possible to “lesion” a Bayesian model to examine various 

cognitive impairments; further, the assumption of optimality has attracted criticism from 

researchers who point out that human development is not globally optimal but rather 

locally optimal, that is, limited by some physiological or developmental variable – for 

example, in the case of visual short-term memory as the limiting factor in category 

development (Oakes, Ross-Sheehy, & Luck, 2006).  In contrast, the emergentist 

program has generated several informative connectionist models of atypical 

development (e.g, Mareschal & Thomas, 2007). 

Emergentist models, on the other hand, represent learning explicitly, either in 

adjustment over time of connection weights, in connectionist networks, or as traces of 

activation in a separate “long term memory” field, in DNFs.  Whether paying attention 

to the neuronal substrates of learning is always an advantage, however, is not clear.  

Arguably, Bayesian approaches imply a now-questioned Cartesian dualist perspective 

on cognition and the brain, in which cognition, or mind, is divorced from neural 

mechanism, or body. However, emergentism requires equally strong assumptions about 

the coupling of brain structure and cognition.  Due to the interconnectedness of a neural 

network, the presence of a node, even when that node’s activation does not reach 

threshold, affects the dynamics of the entire system.  This is borne out by work with 

constructivist neural networks, in which an initial network is trained until learning 

plateaus.  At this point, a new node is recruited into the network, allowing new patterns 

of interaction – and therefore new representations – to emerge (Westermann, Sirois, 

Shultz, & Mareschal, 2006).  The architecture of connectionist neural networks 

therefore means that effectively, structure is representation.  Confusingly, this lack of 
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distinction has been described both as a theoretically limiting by-product of an 

overemphasis on structure (Griffiths, et al., 2010), and as a theoretically innovative 

conceptualisation of cognition as fundamentally dynamic and emergent (Colunga & 

Smith, 2008a). 

Modelling the shape bias 

  This section compares a Bayesian and an emergentist model of the shape bias, a 

much-studied word learning phenomenon in which English-learning children with 

approximately 100 nouns in their vocabularies begin fast mapping labels to solid objects 

on the basis of shape similarity (Gershkoff-Stowe & Smith, 2004; Son, Smith, & 

Goldstone, 2008).  The shape bias is commonly tested using a Novel Noun 

Generalisation task (NNG; e.g., Horst & Twomey, 2012; Samuelson & Smith, 2000).  

Specifically, the experimenter presents children with an exemplar from a novel category, 

and gives it a novel label: “This is my blicket!” The experimenter then shows the child 

several novel test objects (e.g., two), each of which match the exemplar on at least one 

feature.  For example, one test object might be the same shape as the exemplar and the 

other might be made from the same material.  The experimenter then asks the child to 

choose one of the test objects: “Which one’s your blicket?”.  English-learning children 

with sufficient experience of categories and their labels will reliably choose the shape-

matching test object, leading some to posit a prelinguistic conceptual understanding that 

shape is a cue to category membership (“shape-as-cue”, Diesendruck & Bloom, 2003; 

Diesendruck & Graham, 2010), and others to argue that the shape bias emerges from 

statistical regularities in young children’s early vocabularies (“attentional learning”, 

Samuelson & Perone, 2010; Smith, et al., 2002).  The two models described here 

illustrate this conflict between top-down and bottom-up explanation of the shape bias. 
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A Bayesian shape bias model: Kemp, Perfors & Tenenbaum (2007)  

 In common with the vast majority of Bayesian models, Kemp, Perfors & 

Tenenbaum (2007; henceforth KP&T) simulate the shape bias at Marr’s (1982) 

computational level.  Specifically, the authors describe the shape bias as a form of 

inductive constraint learned via the formation of inferences-over-inferences or 

“overhypotheses”.   

 Figure 2 depicts the architecture and procedure.  The model consists of a 3-level 

hierarchy of hypothesis spaces, level 3 defining the hypotheses possible at level 2, 

which in turn define the hypothesis possible at level 1.  Thus, level 3 assumes a priori 

knowledge of what is possible at level 2, which could be either learned or innate. 

 During training, the model is presented with categories at level 1 via feature 

vectors (see panel (a) of Figure 2) sampled from a Dirichlet probability distribution (for 

a review, see J. Huang, 2005) defined by parameters α and β, that is, α and β describe 

the space of all possible exemplars.  Note, however, that viewed differently, α and β 

also represent overhypotheses, in that they contain the information the model “knows” 

about objects in general.  It is in this sense that the Bayesian model behaves in a top-

down fashion.   

 Categories consist of two exemplars, each represented by a unique feature vector.  

Each vector contains a category marker; individual feature values between 1 and 10 for 

shape, colour, and texture; and a size feature value of “1” or “2”7.  For category 1, for 

example, at the second level the model assigns a high probability to the overhypothesis 

“exemplars from category 1 have shape feature 1, but other features vary” (and a low 

probability to every other possible overhypothesis).  At level 3, the model assigns a high 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 KT&P do not discuss why this feature is included, although research suggests that size 
plays little role in children’s categorization of solid object (Landau, Smith & Jones, 
1988) 
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probability to the over-overhypothesis “exemplars with the same shape are members of 

the same category”.  Note that the authors do not explicitly discuss labels, but the 

category marker performs a comparable function (see “Training Vectors” panel of 

Figure 2). 

  

Figure 2.  Architecture and procedure used in Kemp, Perfors & Tenenbaum (2007) 
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Colour 9 10 10 9 
Size 1 1 1 1 
	  

Test vectors

...

...

...
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 Second, the model is presented with a second-order generalisation test, in which 

an entirely new exemplar is presented.  The model is then prompted to choose the most 

likely category match from three novel test objects – again, a shape match, a texture 

match and a colour match, but importantly, completely novel in all other features.  

Again, the probability of each test item sharing a category feature with the exemplar is 

calculated. 

 

Category 1 1 2 2 3 3 4 4 

Shape 1 1 2 2 3 4 5 6 

Material 1 2 3 4 5 5 6 6 

Size 1 2 1 2 1 2 1 2 

Solidity 1 1 1 1 2 2 2 2 

 

Table 1.  Feature vectors for the extended model, Kemp, Perfors & Tenenbaum, 2007. 

 

 In line with the empirical studies conducted by Smith et al. (2002), the authors 

found that their model was more likely to categorise objects by shape than would be 

expected by chance, showing no preference for texture or colour matches.  In an 

extended model, a “solidity” feature replaced colour in the feature vectors, and the 

training set included “non solid” exemplars in which material and solidity remained 

constant within categories, but shape and colour varied (see Table 1).  This model 

consistently categorised solid exemplars by shape, and nonsolid exemplars by material, 

demonstrating not only children’s shape bias and a bias to categorise nonsolid 

substances by material, but also reflecting their ability to learn about object/substance 
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ontology (Samuelson & Smith, 2000).  Note that the discovery of this distinction was 

enabled by a preprogrammed assumption that categories may be grouped into 

ontological kinds – that is, the model is told a priori that objects and substances may 

differ.  

 Although ostensibly a replication of the empirical data, the model’s apparent 

development of a shape bias and a subject-object ontology is perhaps less surprising 

when viewed in the context of the feature vectors for this second model (see Table 1), 

which specify that solid objects and nonsolid substances are different: the distinction is 

specifically encoded in the feature vectors.  In terms of modelling the input children 

receive, the model thus reflects a situation in which children come to the word learning 

task with an innate substance ontology, in explicit support of the shape-as-cue account 

(e.g., Diesendruck & Bloom, 2003).  Further, the model assumes that solid objects 

always share a shape and a label, that children encounter equally as many words for 

nonsolid substances as they do for solid object, that object/substance information is 

equally as influential of categorisation as other featural information, including labels.  

These assumptions do not have unequivocal empirical support (e.g., Imai & Gentner, 

1997; Gary Lupyan, 2012; Samuelson & Smith, 1999).  Specifically, solid objects do 

not always share a shape and a label (for example, a brush can be long, thin and 

cylindrical with narrow bristles, or broad and oval with wide bristles) and some objects 

share a shape but not a label (for example, a ball and an orange are both spherical; see 

also Bloom & Markson, 1998).  Further, children do not encounter as many words for 

nonsolid substances as solid objects, and words for nonsolid substances are less 

consistent in referring to items that share a material than are words for solid objects in 

referring to items that share a shape (Samuelson & Smith, 1999).  Clearly, then the 
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inputs to KP&T’s model do not accurately reflect the structure of the linguistic 

environment of English-learning children. 

The KP&T model highlights the importance of grounding Bayesian models in 

the environment: here, the model is weakened by assumptions made not about the 

learner but about the inputs – that all real-world entities are grouped into objects and 

substances before learning takes place.  This is perhaps most clearly demonstrated by 

the fact that in the real world, English-speaking children’s material bias for nonsolid 

substances is much more fragile than the bias demonstrated by this model (e.g., 

Samuelson & Horst, 2007).  Unfortunately, whether a more representative result would 

be generated if the model were given more strongly environmentally-grounded input set 

is not addressed. 

An emergentist shape bias model: Colunga & Smith (2005).   

 In contrast to the KP&T model, Colunga & Smith (2005; henceforth C&S) 

model the shape bias using a neurologically-inspired connectionist network, with 

learning specifically instantiated in a Hebbian algorithm that increases the excitatory 

weights between neurons that fire simultaneously.   

 Figure 3 depicts the architecture of the C&S model.  The model receives input 

from feature vectors via a perceptual layer, consisting of three networks representing an 

object’s shape, material (including colour) and solidity.  Shape and material inputs 

consist of patterns of activation distributed across the networks.  Solidity is represented 

locally, by the activation of one of two solidity units.  Labels are also represented 

locally in a separate word layer.  The perceptual and the word layers are both coupled 

reciprocally to a hidden layer 8, and all layers are recurrently connected to themselves. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 This layer is “hidden” in that it receives input internally via the perceptual and label 
layers, rather than externally via the perceptual layer.  Activation in the hidden layer is, 
however, available for inspection. 
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Figure 3.   Architecture and procedure used in Colunga & Smith (2005).  Arrows denote 

excitatory connections between layers. 

 

 During training, the model is presented with 20 categories, 10 from solid/shape 

categories and 10 from nonsolid/material categories.  For each solid/shape category, 

shape input for each category is first generated randomly and then held constant for 

each training exemplar from that category.  Material input is generated randomly for 

each exemplar.  Thus, for shape/solid categories, within each category, shape is constant 

but material is variable.  Shape and material inputs are presented simultaneously with 

(1) Inputs presented to word and 
perceptual layers, e.g, solid exemplars 
sharing shape and label, material 
varies:

(a) Training

Word layer

Hidden layer

Perceptual  layer

(2) Representation forms on hidden layer
Shape Solidity Material

(1)

(1)

(2) 

Word layer

Hidden layer

Perceptual  layer

(1) Novel exemplar and 2 test items 
presented to word and perceptual 
layers, e.g. solid exemplar, shape 
match, material match

(2) Hidden layer after shape match 
reflects hidden layer after exemplar

Shape Solidity Material

(1)

(1)

(2) 

(b) Test

“this is my hux”

“blicket!”

“blicket!”

“which one’s your 
hux?”
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the activation of the single “solid” node as well as the activation of a single label node.  

Both of these are also held constant for exemplars from the same category.  

Material/nonsolid exemplars are generated in a corresponding manner.  That is, material, 

nonsolid and label inputs are held constant within categories while shape varies.  

Training consists of 100 different exemplars for each of the 20 categories. 

 The model is tested with a simulated NNG task.  At test the model is presented 

with one completely novel exemplar followed by two completely novel test objects, one 

at a time (test objects could be solid or nonsolid shape matches, or solid or nonsolid 

material matches). The pattern of activation on the hidden layer for each test item is 

compared with the previous pattern of activation on the hidden layer for the exemplar, 

and the absolute difference between the two is calculated.  The probability of having 

chosen a shape match is then calculated across a total of 40 exemplars using Luce’s 

choice rule,  

 In line with Smith et al.’s (2002) empirical results and KP&T’s Bayesian model, 

C&S’s model demonstrated systematic patterns of generalisation, matching solid 

exemplars to test items of the same shape and nonsolid exemplars to test items of the 

same material.  Further, the average absolute difference between internal representations 

for shape/solid items and material/nonsolid items was smaller than the average absolute 

difference between representations for shape/nonsolid and material/solid items.  Put 

another way, representations for shape/solid exemplars (and material/nonsolid 

exemplars) were more similar to one another than representations for shape/nonsolid 

exemplars (and material/solid exemplars).  Thus, after training with a simple idealised 

vocabulary, the network formed the implicit higher-order generalisation that “solid 

things belong in shape-based categories” – without being explicitly programmed with 

the capacity to do so. 
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 In a second experiment the model was presented with a training set that more 

accurately reflected the statistical regularities in the early vocabularies of English-

learning children, as well as the wider perceptual variation in shape of solid objects 

relative to comparison to shape variation in nonsolid substances (Samuelson & Smith, 

1999).  The model showed a strong shape bias, and generated the novel prediction that 

infants should generalise novel names for nonsolid substances by material only when 

those materials were presented in “natural” formations like smears or heaps, a 

prediction borne out by a further empirical study. 

 The authors acknowledge that empirical evidence for differential processing of 

specific types of category may initially appear to point to dedicated cognitive modules 

for processing specific perceptual inputs (e.g., “representational” or “conceptual” 

primitives; Carey, 2011; Mandler, 2012).  However, this model learns substance 

ontology via a simple, unbiased associative mechanism.  C&S argue that seemingly 

propositional knowledge about the world, for example, “solid things are the same type 

of thing” can emerge from experience rather than a priori structure and can be 

represented in a graded, distributed manner. 

Evaluating Bayesian and emergentist shape bias models 

 Two distinct types of model have been presented that successfully model the 

same phenomenon.  Given an idealised vocabulary, in both cases a schematised learner 

acquired a shape bias, and even more strikingly, learned an ontological distinction 

between solid objects and nonsolid substances – an apparent triumph for both 

approaches.  However, the current models exhibit important structural and theoretical 

differences – with implications for our interpretation of their findings. 

 Modelling cognitive representation.  The KP&T (2007) model does not 

explicitly represent perceptual input.  In this sense, the model simply simulates 
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children’s categorisation behaviour whilst leaving to one side issues of representation: 

categorisation is established via the calculation of the probability of category 

membership for each new exemplar.  From this perspective, the Bayesian take on the 

shape bias simulates optimal behaviour in the NNG task.  In ignoring any other level 

than the computational, the authors were able to show a systematic behaviour arising 

purely from statistical regularities in the environment without having to make strong 

assumptions about the nature of perceptual input. 

In contrast, the C&S (2005) model does generate explicit representations, 

through the activation distributed in the hidden layer.  Categorisation is established via 

comparison of activation on this layer in response to different exemplars: similar 

activation is taken to reflect the model having recognised the exemplars as belonging to 

the same category.  However as KP&T argue, categorisation is context-dependent, and 

factors such as taxonomic relations and syntactic frame also affect children’s behaviour 

in NNG tasks (Gelman & Bloom, 2000; Subrahmanyam, Landau, & Gelman, 1999).  

On this view, the C&S model as described only examines one piece of the word 

learning puzzle.  However, the Bayesian model as reported also ignores these wider 

issues.  Of course, for both models, issues of parsimony and computational capacity 

would have rendered modelling the entire word learning process unfeasible. 

Unlike C&S’s model, KP&T’s model explicitly represents hierarchical structure.  

In contrast, C&S’s model learned an implicit substance ontology, or overhypothesis, by 

which shape/solid and material/nonsolid representations were more internally coherent 

than shape/nonsolid and material/solid, in line with children’s behaviour in the NNG 

task (see also Perry & Samuleson, 2011).  This representational distinction emerged, 

unsupervised, from the dynamics of the network coupled with the statistics of the 

vocabulary input alone.  Thus, KP&T’s criticism of the C&S model’s ability to 
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represent first- and second-order generalisations holds only on the assumption that such 

abstractions need be explicitly – that is, innately – represented. 

 Conversely, although the hierarchical structure of the Bayesian model neatly 

captures increasingly more abstract levels of category knowledge, this surface clarity 

comes at a price.  First, because the hierarchical structure is designed by the modeller, 

KP&T’s model does not address development over time – the model assumes that there 

is no structural difference between children’s and adults’ categories.  However, whether 

children’s categories are structured in the same way as adults is by no means established 

(Rakison, 2000).  Similarly, any model based on this assumption neglects the possibility 

that children’s representational taxonomies change qualitatively over development. 

 Second, in the Bayesian paradigm, the modeller – and not the model – guides 

what can be learned, top down.  As KP&T concede, the inevitable conclusion of current 

Bayesian approaches is that some cognitive structure must be innate; however, the 

nature/nurture problem has been lengthily and acrimoniously discussed.  Recent calls 

for a paradigm shift in cognitive science (e.g., Johnson, 2010; Spencer, et al., 2009) in 

order to move beyond this well-worn debate imply that a rigid adherence to innatism 

may serve only to limit Bayesian models’ ability to generate novel, informative and 

testable predictions with regard to cognition. 

 Modelling the environment.  Both KP&T and C&S claim their models learn 

structure from statistical regularities in the environment, in this case, the co-occurrence 

of labels with perceptual features.  To an extent, this is true: both models take input 

from vectors which analogically represent different features of the things young 

children encounter, for example, shape, material, and solidity. 

 However, a close comparison of the inputs to the two models reveals differences 

between the two models’ interpretation of the task environment; and despite the 
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argument that Bayes offers exceptional scope for modelling environmental regularities 

(Fernbach & Sloman, 2011; Jones & Love, 2011), of the two models under comparison, 

inputs to C&S’s model are clearly most strongly environmentally-grounded.   

 First, the two models simulate category labels very differently.  C&S’s model 

instantiates words separately from perceptual input, in line with recent categorisation 

studies, which demonstrate that words may drive categorisation over and above 

correlations between visual features (Mather & Plunkett, 2010; Plunkett, et al., 2008; 

but see Gliozzi, et al. for a contrasting account).  KP&T, however, employ a “category” 

property in their feature vectors, but do not clearly state what this represents.  The 

reader must therefore choose: in conjunction with the likelihood function this “category” 

property must either represent either the learner’s knowledge of category labels 

specifically, or the learner’s knowledge of categories in general.  If the “category” 

feature represents labels, then this model assumes that there is a one-to-one mapping 

between categories and labels, an assumption undermined by a large body of work on 

taxonomies categorical structure (Belchadha, 1996; Mandler & Bauer, 1988; Mayor & 

Plunkett, 2010; Pauen, 2002; Quinn & Johnson, 2000).  If the “category” feature does 

not represent labels, then the task environment in which KP&T’s model is situated does 

not reflect the task environment of the empirical study they attempt to replicate; that is, 

KP&T’s task cannot reflect the NNG task described by Smith et al.  (2002), because the 

model includes no “noun” input.  Thus, the remainder of this section assumes that the 

authors do intend to model labelling. 

 Second, because the structure of the inputs to KP&T’s extended model is 

markedly different to the observed structure of young children’s early vocabularies 

(Samuelson & Smith, 1999), KP&T in fact fail to replicate the empirical studies.  

Specifically, children in Smith et al., (2002) exhibited a strong shape bias and a much 
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weaker material bias (see also Samuelson, 2002).  KP&T’s model demonstrated a 

strong shape bias, but also an equally strong material bias.  This nonrepresentative 

pattern of responding stems from the perfect correlation between the “category” feature 

and the “shape” feature (for solid items) or the “material” feature (for nonsolid items; 

see Table 1) in the vocabulary presented to the KP&T model; that is, shape and material 

are perfect indicators of category membership.  Given the absence of stochasticity in 

KP&T’s feature vectors, not categorising solid objects by shape would perhaps be more 

surprising than the shape and material biases bias the authors describe.   

KP&T acknowledge that further research is needed to establish why their model 

fails to replicate Smith et al.’s (2002) data but do not attempt to address the question.  

Indeed, based on their current design it is difficult to see how this could be done without 

significant changes to the model’s architecture (e.g., modelling with labels separately 

from other perceptual features) – arguably, abandoning the existing model and 

developing a new one entirely. 

 C&S’s first simulation also employs a vocabulary with perfect correlations 

between shape/material and solidity, and their first model consequently exhibits the 

same pattern of generalisation as KP&T’s model: a strong shape bias and a strong 

material bias.  However, when the model was trained with a vocabulary closely 

reflecting the statistical regularities in young children’s early vocabularies, the model 

exhibited a weakened material bias, replicating the Smith et al. (2002) results.   

 Third, the two models exhibit substantial differences in the task procedure.  

During training, the C&S model encounters the equivalent of encountering 100 different 

exemplars of 20 distinct categories, alongside the relevant category label.  Although less 

than the 100-or-so nouns suggested by Gershkoff-Stowe & Smith (2004) as the 

threshold for the onset of the shape bias, the frequency of labelling goes some way to 
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reflecting the considerable amount of labelling experience amassed by young children.  

In stark contrast, KP&T’s model is presented with just two exemplars per category for a 

total of four categories.  Although designed to reflect the longitudinal training design 

employed by Smith et al. (2002) with 17-month-old children, this approach does not 

reflect children’s experience of categories and labels at that age.  Indeed, because 

several studies have demonstrated that English-speaking children only acquire a shape 

bias after substantial experience with categories and category labels (Gershkoff-Stowe 

& Smith, 2004; Perry, Samuelson, Malloy, & Schiffer, 2010; Samuelson, 2002; Smith, 

et al., 2002), KP&T’s swift acquisition of a shape bias suggests that the computations it 

carries out may be more efficient than, and therefore not reflective of, those carried out 

by young children. 

 Converging support for the emergentist approach.  Overall, both models 

inform our understanding of children’s categorisation, demonstrating that generalisation 

biases can be learned from regularities in input.  However, KP&T fail to replicate their 

target data, despite allowing their model considerable assumptions about a priori 

structure.  Further, the model is untested: the only prediction it makes is the presence of 

a strong shape bias in the absence of naming, for which, as noted, the empirical 

evidence is equivocal.  On the other hand, C&S successfully replicate the target data by 

increasing the ecological validity of their model (that is, providing it with a more 

representative vocabulary), and go on to generate and replicate novel predictions.  Thus, 

C&S present a rigorously tested, environmentally-grounded model of a word learning 

phenomenon, whilst KP&T, lacking a serious account of the task environment and 

failing to make any replicable predictions, can only claim with any confidence that they 

provide a proof-of-concept that hierarchical Bayesian models can make higher-order 

generalisations. 
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General Discussion 

Bridging the gap between Bayesians and emergentists.   

 Clearly, the Bayesian approach just described is less informative to our 

understanding of word learning and categorisation than is the emergentist approach.  

Dealing with the effect of fine-grained and graded perceptual inputs is not a Bayesian 

strength, and Bayesian models of implicit cognitive processes such as word learning 

seem unlikely to contribute anything new to the field.  However, Bayesian models do 

have their place, and in that place, can be highly informative.  For example, recent work 

in the Bayesian tradition has successfully captured adults’ reasoning in conditional 

inference tasks, as well as generated novel predictions, which have subsequently been 

empirically replicated (Oaksford & Chater, 2003, 2009, 2011).  These studies suggest 

that adults do use probabilistic reasoning for explicit problem-solving, and provide a 

strong foundation for further research into optimality in cognition.  In general, Bayesian 

models, with their a priori assumptions of a structured cognition, are invaluable in 

investigating the interaction between such structures and behaviour – although not, of 

course, in exploring from where such structures originate (Chater, Tenebaum & Yuille, 

2006). 

 So, how to heal the rift between the Bayesians and the emergentists? Borsboom, 

Wagenmakers and Romeijn (2011) emphasise that Bayesian and emergentist models 

attack different questions, and that this difference hinges on the subtle difference 

between process-based and mechanistic models.  Process-based models simulate how a 

system moves from one state to another, just as the boxes and arrows on a flow chart 

illustrate the different stages in a process.  Mechanistic models, in contrast, examine 

how different parts of a system influence each other in time (e.g.  Rogers & McClelland, 

2004).  Bayesian models, from this perspective, are process models, in that they 
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describe how an entity moves through a series of states (that is, the repeated updating of 

probabilities of hypotheses) as a result of encountering new data.  Thus, Bayesian 

models are not mechanistic precisely because they are process-based: they do not seek 

to answer how a process moves from one stage to another, but instead illustrate what 

these stages are, and in what order they can occur.  Essentially, the two camps are 

addressing orthogonal research programs: the emergentists focusing on algorithmic 

simulations of dynamically emergent cognitive structure, and the Bayesians focusing on 

inference in a probabilistically-structured environment.  Viewed this way, it is no 

surprise that computational models of cognitive development so often prove 

controversial; what is surprising is the degree of suspicion between the two camps, 

given that the techniques themselves need not be contradictory. 

 It is possible to envisage a future for computational models in which the two 

approaches reach a type of synergy (Jones & Love 2011).  For example, a Bayesian 

model could usefully describe a hierarchical process, the various stages of which could 

be modelled individually using emergentist, environmentally-grounded models, thus 

addressing emergentist models’ inability to simulate behaviours ostensibly contingent 

on hierarchical structure and Bayesian models’ lack of mechanism and learning.  Indeed, 

recently researchers have begun to focus on integrating inference with environmentally-

grounded emergence (Barsalou, 2009), or generating Bayesian priors via simulated 

neural activation (Köver & Bao, 2010).  Similarly, Jones & Love’s (2011) proposed 

Enlightenment Bayes proposes that the Bayesian research program could indeed inform 

cognitive research, providing it incorporates traditionally emergentist values such as the 

difference between representation and environmental input. 

 Clearly, the goal of a unified model of cognitive development lies some way off.  

Rather than the current theoretical entrenchment of either school, however, an 
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atmosphere of collaboration among proponents of Bayesian and emergentist models 

will undoubtedly generate novel accounts of cognition and development.  The 

development of computational modelling signposted a new era in cognitive science, and 

the integration of these two great traditions can only serve to deepen our understanding 

not only of cognition and behaviour, but also of their complex and fascinating 

interactions over development. 
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Abstract 

Recent research demonstrates that within-category variability profoundly influences 

young children’s word learning and categorisation (Twomey & Horst, Paper 1, this 

thesis).  This paper describes a Dynamic Field Theory (DFT) neural network simulation 

of these data.  The model was introduced to multiple category exemplars that were 

either moderately variable (narrow condition) or highly variable (broad condition).  The 

model captured the empirical data.  Like the children, the model was better able to learn 

category labels in the narrow condition and better able to extend category labels in the 

broad condition.  Novel insights into the cognitive processes underlying children’s 

ability to map novel words to novel objects are discussed.  Overall, these findings form 

the groundwork for future empirical research and add weight to dynamic-associative 

accounts of categorisation, word learning, and cognitive development, more generally. 
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All Things Considered: Dynamic Field Theory Captures the Effect of  

Category Variability on Young Children’s Word Learning 

 Young children learn to categorise their environment remarkably easily, despite 

its well-documented complexity (Mervis & Rosch, 1981).  Children start using 

categories to make sense of their world from as early as three months (Quinn, Eimas, & 

Rosenkrantz, 1993), and by 12 months children begin to learn labels for their categories 

(Fenson, et al., 1993).  However, word learning is no trivial task: as Quine (1960) 

famously noted, children must determine the referent of a label from a seemingly 

infinite array of candidates.  Nonetheless, children rapidly and reliably associate novel 

labels with novel referents ("fast mapping"; Carey & Bartlett, 1978; Gershkoff-Stowe & 

Hahn, 2007; Heibeck & Markman, 1987).  However, fast mapping is only the beginning 

of the word learning process (Munro, Baker, Mcgregor, Docking, & Arciuli, 2012).  

Full word learning requires repeated, cross-situational exposures, during which label-

category associations are strengthened (Smith & Yu, 2008), such that children can use 

labels in new contexts or after a delay (Horst & Samuelson, 2008; Kucker & Samuelson, 

2011; Smith & Yu, 2008; Twomey & Horst, Paper 1, this thesis). 

New insights into the word learning puzzle 

 Given this complexity, how do children learn to categorise and label with such 

proficiency? Despite decades of behavioral research and numerous proposed 

explanations (e.g., Gentner, 1983; Mandler, Fivush, & Reznick, 1987; Nelson, 1973; 

Rakison & Lupyan, 2008; Spelke & Kinzler, 2007), the answer is not straightforward.  

Indeed, because empirical studies cannot reveal underlying cognitive processes, the 

same datasets have been presented as evidence for conflicting accounts of word learning 

(Booth & Ware, 2010; Diesendruck & Graham, 2010; Samuelson & Perone, 2010).  

Recently, however, neural network models, with their explicitly-defined associative 
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mechanisms, have offered new insight into children’s label generalisations (Samuelson, 

2002; Samuelson & Horst, 2007) and category development (Mareschal, French, & 

Quinn, 2000; Westermann & Mareschal, 2009).  Nonetheless, the relationship between 

in-task experience, categorisation and word learning remains unclear. 

 Research in domains as diverse as motor development (Thelen & Spencer, 1998), 

phonological acquisition (Rost & McMurray, 2009), and visual categorisation (Younger 

& Cohen, 1983) as well as word learning (Mather & Plunkett, 2009; Perry, Samuelson, 

Malloy, & Schiffer, 2010) suggests that multiple, variable experiences facilitate learning.  

Recently, Twomey & Horst (Paper 1, this thesis) demonstrated that variability between 

category exemplars strongly influences word learning.  However, as with any empirical 

study, the data only tell us so much, and further work is required to elucidate the 

cognitive mechanisms underlying the relationship between word learning and category 

variability.  The following section briefly summarises the empirical study (see also 

Twomey & Horst, Paper 1, this thesis), which were simulated using the neural network 

model described below (see section Dynamic Neural Field Simulation) 

Supporting Empirical Data 

Method 

 Participants.  Twenty-four typically developing, monolingual, English speaking 

30-month-old children participated.  Children were randomly assigned to either the 

narrow or broad condition. 

 Stimuli.  Known stimuli for all conditions consisted of 18 toy objects known to 

30-month-old children.  Novel stimuli in each condition consisted of 12 toy objects 

unfamiliar to 30-month-old children.  Examples of novel stimuli are depicted in Figure 

1.   
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Figure 1.  Example novel stimuli used in Twomey & Horst (Paper 1, this thesis) 
 

 Procedure and design.  The experiment consisted of two phases: referent 

selection (18 trials) and test (six trials).  During referent selection children encountered 

three novel categories (see Fig. 1).  On each referent selection trial children saw an 

array of three toys (two known, one novel) and were asked to point to one of the objects 

(e.g., “Can you show me the hux?”).  Each category was encountered in the context of 

one novel label (i.e., hux, doff, or cheem), and each novel word was heard three times.  

Overall, children saw six trials for each category (three known, three novel) and 

received nine known and nine novel label trials (three per category for both trial types).  

Children either saw novel categories with moderately variable exemplars (narrow 

condition) or with highly variable exemplars (broad condition; see Figure 1). 

 After a five-minute delay the test phase began.  On each retention trial children 

saw an array of three previously-seen toys (one from each novel category) and were 

asked to point to one of the objects.  Extension trials immediately followed and were 

identical to retention trials except that new items from the novel category were shown 

(see Figure 1). 

Results 

 Referent selection.  Results are depicted in the left panel of Figure 2.  All 

children succeeded during referent selection.  Children in both conditions chose the 

target object at levels significantly greater than chance (0.33) on both known label trials 

Narrow exemplars - hux Variable exemplars - hux 

      
Extension trial stimuli 

     

hux doff cheem 
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(narrow: t(11) = 10.56, p <.0001, d = 3.05; broad: t(11) = 17.51, p <.0001, d = 5.05) 

and novel label trials (narrow: t(11) = 5.99, p <.0001, d = 1.7; broad: t(11) = 15.67, p 

<.0001, d = 4.52).  Unpaired t-tests revealed no difference between conditions for either 

known or novel referent selection trials (known: t(22) = 0.28, ns.; novel: t(22) = 0.63, 

ns.).  Within-category variability therefore did not affect referent selection. 

 

Figure 2.  Experimental results: Children’s proportion of correct choices.  Dotted line 

represents chance (.33).  Error bars represent one standard error.  *** p <.001, ** p <.01, 

* p <.05. 

 Test trials.  Results are depicted in the right panel of Figure 2.  Only children in 

the narrow condition retained novel labels at levels significantly above chance (0.33), 

t(11) = 4.76, p <.001, d = 1.38.  These children retained novel labels better than children 

in the broad condition, t(22) = 2.98, p <.01, η2 = 0.29.  In contrast, only children in the 

broad condition extended the novel labels at levels greater than chance, t(11) = 2.63, p 

<.05, d = 0.76; however no difference between groups was found for extension trials. 
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Discussion.  Only children in the narrow condition retained novel category labels; 

however, these children did not extend these labels to completely novel category 

exemplars.  In contrast, children in the broad condition did not retain novel category 

labels, but did extend them to completely novel category exemplars.  Thus, moderate – 

but not high – variability facilitates retention of novel category labels, and high – but 

not moderate – variability facilitates extension (cf. Perry, et al., 2010; Quinn, et al., 

1993). 

These empirical results pose several questions.  First, what real-time processes 

underlie children’s ability to infer the correct referent of the novel labels in this task? 

Second, why does low variability help retention but hinder extension? Finally, why does 

high variability hinder retention but help extension? We address these questions using a 

neural network model of children’s behaviour in the empirical task.  The model 

demonstrates that apparently complex reasoning can emerge from the low-level 

associative processes that drive learning in our model.  Further, the use of a 

computational simulation allows us to examine category formation moment-by-moment, 

shedding light on the interplay between variability and categorisation. 

Dynamic Neural Field Simulation 

 Dynamic Field Theory (DFT) is a formalisation of Dynamic Systems Theory 

(DST; Thelen & Smith, 1996) which has successfully captured data from both motor 

and perceptual tasks (Samuelson & Horst, 2008; Simmering, Schutte, & Spencer, 2008).  

According to DST, stable behaviours self-organise from interactions between the body 

and the physical environment taking place within nested timescales.  Cognition and 

sensorimotor input are inextricably coupled and embedded in real-time environmental 

input, as well as just-past experience and longer-term learning history.  Consequently, 

according to DST, “not all knowledge must be stored in the brain” (Spencer & Schöner, 
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2003, p. 406).  DST has been applied in a variety of domains to parsimoniously explain 

hitherto puzzling phenomena; for example, the sudden disappearance of young 

children’s stepping reflex, perseverative reaching in A-not-B tasks (Thelen & Ulrich, 

1991) and U-shaped behavior in goal-directed reaching (Thelen & Spencer, 1998). 

 Dynamic Field Theory (DFT) is a mathematical dynamical systems framework 

in which stable behaviours self-organise in-the-moment (Kelso, Ding, & Schöner, 1993; 

Spencer & Schöner, 2003).  A class of neural network with neurological plausibility and 

subsymoblic representation at heart, DFT has much in common with connectionism 

(Spencer, Thomas, & McClelland, 2009).  However, unlike connectionism, which 

focuses on simulating stimulus-response behaviour (McLeod, Plunkett, & Rolls, 1998) 

by iteratively updating association strengths between discrete processing units (Amari, 

1977), DFT focuses on developmental change as mediated in time by attractor states 

(that is, points of behavioural stability) and instabilities (that is, points of behavioural 

change).   

 DFT is implemented computationally in the Dynamic Neural Field (DNF).  At 

the mathematical level, DNFs model continuous neural populations and explicitly 

represent their input metrics (e.g., if a DNF represents colour input, “pink” will be 

nearer “red” on the input axis than will “green”).  Further, neuronal activation is 

updated continuously and asynchronously rather than iteratively and synchronously, 

reflecting the asynchronous update of neurons in the brain (Schneegans & Schöner, 

2008).  Thus, DNFs simulate online cognitive processes, from which representations 

emerge in real-time.  DNF models have successfully captured experimental data from 

looking tasks (Perone, Spencer, & Schöner, 2007), dimensional change card-sorting 

tasks (Buss & Spencer, 2008), spatial recall tasks (Lipinski, Simmering, Johnson, & 

Spencer, 2010) and novel noun generalisation tasks (Samuelson & Horst, 2007). 
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 The goal of this simulation was to replicate data from Twomey & Horst (E2a; 

Paper 1, this thesis) to examine the effect of exemplar variability on retention and 

extension of novel names.  We extend Faubel & Schöner’s (2008) embodied DNF 

model of object recognition to a word learning context and demonstrate that the 

apparently complex reasoning required for word learning via fast mapping can in fact be 

accounted for by low-level dynamic-associative mechanisms.   

Architecture.  Activation in DNFs is governed by local excitation, lateral inhibition 

and global inhibition.  Thus, locations close to an activated location also become 

activated via local excitation, while activations at more distant locations is suppressed 

via lateral inhibition.  These interactions generate localised, self-sustaining peaks of 

activation (Spencer, Simmering, Schutte, & Schöner, 2007).  Architecture of the model 

is depicted in Figure 3.  The current model consists of two 2-dimensional layers; 

specifically, an input DNF, which receives inputs representing labels and objects, 

coupled reciprocally to a Hebbian layer, which stores slow-decaying activation traces.  

Activation in the perceptual layer is generated by input along the label and object axes.  

Activation is governed by the general equation below:
	  
 

(1) xdtxuxxwtxShtxutxu lo
ʹ′ʹ′ʹ′−∫+++−= )),(()(),(),(),(, στ  

where uo,l(x,t) is the activation level along the object (o) and label (l) dimensions at 

location x, as a function of time (t), mediated by the timescale of the dynamics, τ.  

Current activation in the perceptual layer, -u(x,t), receives external input, S(x,t), and is 

subject to excitatory and inhibitory interaction defined by a Gaussian kernel with weight 

w, and width σ.  The resting level of the system is defined by h. 

 The formation of a peak in the perceptual layer represents an association 

between given locations along the object and label axes; that is, the child’s decision to 

map a label to an object.  Importantly, neighbouring locations are mutually excitatory, 
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whereas more distant locations are mutually inhibitory.  Peaks leave corresponding 

activation traces in the Hebbian layer, which in turn facilitate future object-label 

mappings at this location. 

 

Figure 3.  Architecture of the DNF model.  Depicts input and Hebbian layers after a 

single novel referent selection trial.  NB: “Perceptual layer” panel depicts total input for 

a single trial 
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Stimuli and procedure.  Variability in input along the object axis reflects variability in 

category structure in the experimental stimuli.  Specifically, the model is either 

presented with narrow or broad categories.  Narrow category input consists of a central 

exemplar at a given location along the object axis, and two further inputs at nearby 

locations.  Broad category input consists of the same central exemplar and two inputs at 

more distant locations.   

 Importantly, to ensure that the model stimuli accurately reflected the novel 

stimuli used by Twomey & Horst (Paper 1, this thesis), we asked 18 adults to rate the 

each category of novel exemplars from the empirical task for within-category similarity. 

In the empirical task, one “central” exemplar from each category appeared in both the 

narrow and broad conditions.  Participants used a Likert scale (1 = highly similar, 11 = 

highly dissimilar) to rate stimuli from each category relative to the “central” exemplar 

from that category.   

 These ratings generated the input values for the object stimuli presented to the 

model.  Central exemplars are located equidistantly along the object axis (total length = 

522 units) in order to avoid biasing the model’s categorisation.  Thus, central exemplars 

are positioned at locations 115, 265 and 415.  The location of the first additional novel 

exemplar was determined by subtracting the mean similarity rating for one of the 

remaining objects to the value of the central exemplar.  The location of the second 

additional novel exemplar was determined by adding the mean similarity rating for the 

remaining object from the value of the central exemplar.  For example, one narrow 

category consists of a central input at location 115object, with the other two exemplars 

located at 112 object (i.e., 115 – 3) and 117object (i.e., 115 + 2), while the corresponding 

broad category consists of a central input at location 115 object, with the other two 

exemplars located at 107 object (i.e., 115 – 8) and 122 object (i.e., 115 + 9).   
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Thus, for all trials, inputs reflect the experimental design employed by Twomey 

& Horst (E2a; Paper 1, this thesis).  Number of trials and trial order are identical to the 

empirical task.  The model was run 12 times per condition. 

 Referent selection.  On each referent selection trial the model receives two 

“known” inputs and one “novel” input.  Known inputs consist of a Gaussian hump of 

activation at predetermined locations along the object and label axes, reflecting the fact 

that children come to the experiment already having learned the names of the known 

objects.  For example, a known input at location (80object, 3label) represents a learned 

association between location 80 along the object dimension and location 3 along the 

label dimension.  From an empirical perspective, this input might represent a learned 

association between the label “car” and the object CAR.  Simultaneously, the model 

receives a ridge of novel input at a specific location along the object axis but generic 

along the label axis (see Figure 3).  For example, a ridge of input at (115object) represents 

a specific novel object (as depicted in Figure 1) but could correspond to any label.  

These inputs are presented to the model for the equivalent of three seconds.  This 

reflects the pause at the beginning of each trial during which children could look at, but 

not interact with, the objects, and allows self-stabilising peaks of activation to form at 

the known object locations. 

 Next, the model is presented with a label via a ridge of input along the label axis 

which intersects either with one of the known object inputs (reflecting “Can you show 

me the car?”) or with the novel object input (reflecting “Can you show me the hux?”). 

 During referent selection the model encounters three novel categories over 18 

referent selection trials.  Formation of a peak at any location is taken as the model’s 

response to the label stimulus. 
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 Test phase.  After 11 “empty” trials corresponding to the five-minute delay in 

the experiment9, in which no stimuli are presented, the test trials begin.  Object inputs 

consist of three generic ridges of activation at the previously encountered novel object 

locations along the object axis.  The model receives label input in the same manner as in 

referent selection.  The three subsequent extension trials are identical to retention trials 

except that the initial novel object inputs are given at locations close to but not identical 

to previously encountered  locations.  Thus, during extension trials the model associates 

novel labels with completely new novel objects.  

Results.  Simulation data are depicted in Figure 4.  The model is very accurate on 

referent selection trials, for both known referent selection (narrow: t(11) =  24.28, p 

<.001; broad: t(11) = 14.37, p <.001, d = 8.67) and novel referent selection (narrow: 

t(11) = 24.28, p <.001; broad: t(11) = 32.55, p <.001, d = 14.64).  When presented with 

narrow categories, the model correctly associated novel category exemplars with 

previously-encountered novel labels on retention trials, t(11) = 3.47, p <.01, d = 2.09.  

However, on extension trials the model did not associate completely novel exemplars 

with previously-encountered labels, t(11) = 1.04, ns., d = 0.62.  In contrast, when 

presented with broad categories, the model did not associate novel exemplars with the 

appropriate label on retention trials, t(11) = 1.80, ns., d = 1.09.  Finally, on extension 

trials the model associated completely novel exemplars with previously-encountered 

labels only when presented with broad categories t(11) = 2.63, p <.05, d = 1.5910.   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 11 trials corresponded approximately to the overall proportion of the experiment made 
up of the 5-minute break and allowed activation in the Hebbian field to decay. This 
figure generated the strongest results, however smaller numbers of “empty” trials 
yielded the same overall pattern. 
10	  Simulation data are statistically equivalent to the empirical data, as confirmed by a 
mixed ANOVA with trial type (known, novel, retention, extension) as a repeated 
measure and Data Type (empirical, simulation) and Condition (narrow, broad) as 
between-subjects factors.  No significant main effect or interaction involving Data Type 
was revealed.	  
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Figure 3.  Model results: proportion of correct responses.  Dotted line represents chance 

(.33).  *** p <.001, ** p <.01, * p <.05. 

 

Discussion.  Empirical data provided by Twomey & Horst (Paper 1, E2a, this thesis) 

were replicated using a 2-layer DFT model with stimuli closely based on those used in 

the original task and an identical experimental design.   

How, then, do these computational data address the questions posed by the 

empirical study? First, children’s remarkable ability to correctly infer the referent of a 

novel word when presented with an array of several known objects and a single novel 

object has previously been explained with constraint-based accounts.  For example, 

children may use a process of elimination to reason that because the two known objects 

have names, the novel word must refer to the novel object (“dysjunctive syllogism” or 

“mutual exclusivity”, e.g., Halberda, 2006).  Alternatively, children may assume that 

novel names refer to novel objects, without paying attention to any known objects in the 

array (the “Novel Name-Nameless Category” or N3C principle, Golinkoff, Hirsh-Pasek, 

Bailey, & Wenger, 1992).  Clearly, the model does not come pre-programmed with any 

high-level reasoning ability, or a priori lexical principles, yet it succeeds in accurately 
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mapping novel labels to novel referents.  But without any such higher-level biases, how 

does the model succeed in the referent selection task? 

Recall that activation in the DNF is governed by local excitation and lateral 

inhibition.  Therefore, peaks at a given location (xobject , ylabel) will inhibit the formation 

of new peaks at other locations (x±aobject, ylabel) or (xobject, y±alabel).  It is this mechanism, 

which supports fast mapping via “mutual exclusivity”.  Referring again to Figure 3, a 

trial might begin with known object peaks at (300object, 1label) and (510object, 8label) and a 

novel object at (115object).  A novel label ridge is presented at (5label) which intersects 

with every location along the object dimension.  At this point in the trial, if activation 

along the object axis were equal at all points, then a new peak could form at the 

intersection between the novel label and any object location.  However, the known 

peaks suppress formation of new peaks at the intersection between the novel label and 

the known object locations.  That is, the known object peak at (300object, 1label) inhibits 

formation of a new peak at (300object, 5label).  Correspondingly, the known object peak at 

(510object, 8label) inhibits formation of a new peak at (510object, 5label).   

The only location along the object dimension with above-threshold activation 

which is not already associated with a novel label is the location corresponding to the 

novel object, (115object, 5label).  The most likely location for a peak to form, then, is at the 

intersection of the novel object and the novel label (but note that due to the noise 

parameter, the model, in line with children, is not 100% accurate in matching novel 

objects to novel labels).  In the current model, then, behaviour that some have argued is 

contingent on complex metacognitive reasoning (Halberda, 2006; Markman, 1994; 

Markman, Wasow & Hansen, 2003) emerges in fact from simple associative processes 

interacting with longer-term learning history (known label-object assocations), in-task 

learning, and online input.  This also suggests that other neural networks with similar 
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excitatory and inhibitory mechanisms should also be able to achieve fast mapping via 

mutual exclusivity without recourse to higher-level reasoning (see Twomey, Horst & 

Morse, Paper 6, this thesis). 

 Second and third, the model also sheds light on how exemplar variability 

influences both retention and extension.  There is a direct relationship between 

perceptual similarity and category breadth (as demonstrated in the categorisation 

literature, e.g., Quinn, 1993), which gives rise to differences in label extensions 

dependent on perceptual similarity of novel exemplars to just-seen exemplars.  This 

prediction derives from the structure of the memory trace for novel objects formed 

during referent selection.  Figure 4 depicts an example memory trace for the “265” 

novel object category after the referent selection phase – that is, the after the model has 

encountered six exemplars from that category – for both the narrow condition (left 

panel) and the broad condition (right panel).  As can be seen in the figure, the memory 

traces for two conditions differ in activation strength and range.   

Specifically, the narrow memory trace has greater maximum activation (0.20) 

than the broad memory trace (0.12).  At retention, the model is presented with a 

previously-seen novel object input at location 265.  On presentation of a label (e.g., at 

location 11 on the label dimension) the memory trace in the narrow condition is 

sufficient to facilitate the formation of a peak at (265object, 11label), as one would expect 

if the label were learned.  The memory trace in the broad condition, however, is not 

sufficient to facilitate correct peak formation.   

 In contrast, the narrow memory trace has a smaller range (18 units, from 

location 256 to location 274) than the broad memory trace (31 units, from location 248 

to location 279).  At extension, the model is presented with a completely novel object 

input at location 274.  In the narrow condition, location 274 is at the edge of the 
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memory trace – with zero stored activation.  On presentation of a label (again at location 

11), there is insufficient activation in the narrow memory trace to facilitate formation of 

a peak at the correct location of (274object, 11label).   In the broad condition, however, 

location 274 falls within the memory trace, providing sufficient activation to facilitate 

formation of a peak at the correct location.  Thus, the model predicts that even small 

differences in relative exemplar similarity will determine whether or not children extend 

the label to the novel exemplar.   

 

Figure 4.  Activation in the Hebbian layer after 18 referent selection trials.  Panel A 

depicts the narrow condition, and Panel B depicts the broad condition. 

General Discussion 

The model presented here successfully captures data from an empirical word learning 

task using simple, associative mechanisms.  However, before we generalise these 

mechanisms from word learning to the wider context of cognitive development, future 

work must focus on testing the model’s novel predictions (see Twomey & Horst, Paper 

5, this thesis).  Nonetheless, the current data constitute the first DFT model of fast 

mapping via mutual exclusivity and as such provide proof-of-concept for the application 

of DFT to fast mapping paradigms.  Further, the data point firmly away from accounts 

of categorisation, word learning and cognitive development more generally which posit 
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fixed or specialised innate structure (e.g., Diesendruck & Bloom, 2003; Carey, 2011; 

Hauser, Chomsky & Fitch, 2002; Mandler, 2012).  Rather, this simulation supports a 

view of word learning and categorisation as flexible, emerging from simple associations 

made over time between label and object, in the context of cognition developing 

bottom-up from the dynamic coupling between brain, environment, and time.  
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Abstract 

Despite the complexity of their environment, children spontaneously learn to categorise 

and label.  Empirical research has created debate as to whether children achieve this 

through high-level reasoning or low-level associative processes.  Recently, 

computational simulations of cognitive development have generated novel insight into 

categorisation and labelling.  Here we present an empirical test of a Dynamic Neural 

Field (DNF) model of categorisation.  The model predicted that children will extend 

novel labels to new category-central exemplars, but not to new category-peripheral 

exemplars.  In the empirical task, 44 30-month-old children were asked to fast map 

novel labels to three novel categories over 18 fast mapping trials.  After a short delay, 

children were presented with retention trials with previously-encountered novel objects, 

and extension trials with completely novel which were either category central or 

category peripheral (Rosch, 1975).  In line with the model, only children who saw 

category central exemplars extended novel names, and children who saw category 

peripheral exemplars did not.  The empirical replication suggests that DNFs provide an 

informative model of infant categorisation and word learning.  The current study adds 

further weight to the dynamic systems view of development as the emergent product of 

low-level, dynamic interactions between perception, and the environment. 
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Testing a Dynamic Neural Field Model of Children’s Category Labelling 

 The puzzle of how young children learn to categorise and label objects is well-

known.  Countless empirical studies have provoked often impassioned debate as to the 

cognitive underpinnings of this impressive skill.  Born into an enormously rich 

perceptual environment, from an early age children parse objects into categories and 

treat exemplars from a single category equivalently.  By 18 months, children have 

begun to label these categories (e.g., Houston-Price, Plunkett, & Harris, 2005); that is, 

they can reliably infer the referent of a novel word despite the complexity of the space 

of potential referents (Quine, 1960).  This ability to form a quick, initial hypothesis 

about a word’s meaning is known as fast mapping (Carey & Bartlett, 1978).  Several 

theoretical accounts of categorisation and word learning have been offered, from low-

level associative learning (e.g., Smith, 2000) to a priori conceptual primitives (e.g., 

Carey, 2011), and recent research demonstrates that the two phenomena are intimately 

linked (Gliozzi, Mayor, Hu, & Plunkett, 2009; Plunkett, Hu, & Cohen, 2008).   

 Fast mapping and word learning have latterly been the focus of computational 

research, in which the potential underlying cognitive and/or neural structures are 

described mathematically.  These simulations use schematised inputs designed to reflect 

a particular experimental environment or developmental stage, and process them using a 

mathematical algorithm intended to be a simplified representation of some cognitive 

operation.  The output is taken to represent the outcome of the cognitive process in 

question, in the given environment.  For example, the relationships between numerical 

input vectors might reflect, for example, the relationship between objects and labels in 

an experimental situation before a learning phase (e.g., Gliozzi, Mayor, Hu & Plunkett, 

2009).  Over repeated iterations of the model (the learning phase), these relationships 

change, such that the numerical output vectors may reflect, for example children’s 
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developing associations between object categories and labels.  Importantly, however, 

models must be tested, by generating novel predictions about behaviour given a new 

environment or task.  Further, these predictions must also be replicated experimentally 

for findings to be generalised with any confidence.  For example, if providing the model 

with different label stimuli alters the categories formed by the model during the learning 

phase, this prediction can be tested be rerunning the original experiment and changing 

the label stimuli to reflect those given to the model.  If replication is successful, it is 

appropriate to conclude that the mechanisms driving the model reflect in some way the 

mechanisms driving cognition (see Colunga & Smith, 2005 for examples of successful 

empirical replications of model predictions).   

 One of the great benefits of computational models is that unlike in biological 

organisms cognitive structure is available for inspection: for example, modellers can 

watch associations between categories and words develop in-situ (that is, in the 

simulated neural/cognitive structure), and measure and compare these categories 

directly.  Thus, when rigorously tested by empirical replication, computational models 

greatly add to our understanding of cognition generally, and categorisation and word 

learning specifically. 

 The current paper presents just such an empirical test of a model’s explanation 

for a behaviour.  Twomey & Horst (Paper 4, this thesis) describe a Dynamic Neural 

Field model (for a review, see Spencer, Thomas, & McClelland, 2009) which has 

successfully replicated data from an empirical study examining the effect of category 

variability on 30-month-old children’s label learning.  The current paper presents a 

novel prediction generated by the model (Simulation) and an empirical replication of 

that prediction (Experiment). 

 



Testing a DNF Model of Categorisation 209 

Simulation 

Dynamic Neural Field models (DNFs).  DNFs (Spencer & Schöner, 2003) are 

emergentist simulations of changes in neural activation in response to external stimuli.  

In contrast to their more widely-applied connectionist cousins (McClelland, et al., 2011), 

DNFs model neural structure and time continuously; all representations are therefore 

distributed across activity in the input layer and a Hebbian “memory” layer.  They are 

also topologically functional, such that similar inputs are represented as close together 

along a given axis. 

 Dynamic Neural Field models consist of one or more input layers, which 

initially receive input in the form of a modeller-defined increase in activation at a 

certain location in the layers.  These inputs represent neural responses to external 

stimuli.  Over time, the dynamics of the DNF allow peaks of activation to emerge in the 

input field thanks to locally excitatory and laterally and globally inhibitory neural 

interactions; that is, activation spreads from a given location to its neighbours, whilst 

activation at more distant locations is suppressed.  These peaks represent associations 

between stimuli. 

 The input layer is coupled reciprocally to its “memory” – known as a Hebbian 

layer – such that when a peak forms in the input field, activation spreads to the Hebbian 

layer, where it is stored and decays slowly.  The term “Hebbian” thus derives from the 

fact that a memory trace corresponding to an association between features made in the 

input layer at time t facilitates the reappearance of that association at time t +1 (Hebb, 

1949; Munakata & Pfaffly, 2004).  The Hebbian layer therefore performs a “fire 

together, wire together” function similar to connection weights in connectionist models, 

simulating learning over time and repeated experience. 
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Categorisation by correlated features.  Existing empirical and behavioural research 

demonstrates that children may form categories based on co-occurrence of perceptual 

features, and that the “best” or most category-central exemplars are those that share 

most features with other category exemplars (Rosch, 1975).  For example, in a series of 

seminal studies, Younger and colleagues demonstrated that infants become increasingly 

adept across development at perceiving feature correlations between stimuli (Younger 

& Cohen, 1983, 1986; Younger & Fearing, 1998; see also Quinn, Eimas & Rosenkrantz, 

1993).  More recently, connectionist models have simulated the developmental 

differentiation of children’s categories based on the assumption that categories are 

scaffolded from covariation of shared perceptual features (Rogers & McClelland, 2004).  

For example, because SPARROW and PIGEON share some features (e.g., wings, beak, 

feathers), these shared features exhibit coherent covariation, in that things with wings 

often also have beaks and feathers.  Representations for exemplars with many 

coherently covarying features are close in representational space.  Clusters of such items 

in representational space constitute categories.  Taken together, these and other studies 

suggest that exemplars of a given category share perceptual features and are represented 

close together in representational space (see also, Sloutsky & Fisher, 2004). 

 That children can extend known category labels to novel exemplars is not in 

dispute (Diesendruck, Markson, & Bloom, 2003; Landau, Smith, & Jones, 1988; 

Samuelson & Horst, 2007; Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson, 

2002).  However, whether even perceptually very similar exemplars are category central 

or category peripheral seems likely to affect label extension.  We therefore hypothesised 

that, given two perceptually-similar novel exemplars, both of which are potential 

members of a previously-encountered category, the model would extend labels to 

category central novel exemplars, but not to category-peripheral novel exemplars. 
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Method 

 Architecture.  The model consists of a two-dimensional input layer, 

representing number of shared features on one axis and labels on the other, as depicted 

in Figure 1 (see also Twomey & Horst, paper 4, this thesis).  Pictured this way, feature 

inputs are orthogonal to label inputs, and simultaneous label and feature inputs therefore 

intersect.  The formation of a peak at this intersection represents an association between 

these two inputs.  In behavioural terms, peaks represent an association between a label 

and an object.  Peaks of activation in the input layer feed activation to a coupled 

Hebbian layer, which stores a slow-decaying “memory trace” of activation across trials.  

Thus, during the familiarisation phase, learning of associations between objects and 

labels is manifested in the slow-decaying Hebbian memory trace.  Stored activation at a 

given location in the Hebbian layer supports formation of peaks at that location later 

during the simulation. 

 Stimuli. The simulation represents the category centrality of novel stimuli via 

their proximity along the feature axis.  “Novel” object stimuli consist of input ridges 

along the feature axis, but generic along the label axis; that is, on the first presentation 

of a novel object, a peak could form at the intersection of that input and any location on 

the label axis, with equal probability, reflecting the fact that children in fast mapping 

tasks do not know the name of the novel objects they encounter.  “Known” object 

stimuli consist of Gaussian humps of activation at locations in the input field 

representing children’s previously learned associations between known labels and 

known objects.  Label stimuli consist of a ridge of activation along the label axis.  Label 

stimuli could therefore be associated with any position along the feature axis.  Locations 

for novel and known object stimuli, as well as labels are given in Table 1.   
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Figure 1.  Architecture of the Dynamic Neural Field model.  The input layer has locally 

excitatory and laterally and globally inhibitory dynamics, allowing activation “decision” 

peaks to emerge over time.  Activation in peaks spreads to the Hebbian layer, where it 

acts as a slow-decaying memory trace. 

 Procedure and design.  During the referent selection phase the model is 

familiarised with three novel categories (each consisting of three exemplars) and three 

novel labels, presented in blocks of six trials per category.  Each block consists of three 

known and three novel trials.  Each novel exemplar serves once as the target (during a 

novel trial), and once as a competitor (on a known trial).  The model is therefore 

presented with a total of 18 referent selection trials. 

A single referent selection trial consists of an initial presentation of two known 

object humps and a single novel object ridge.  This reflects the general empirical 

procedure used to test fast mapping of labels to 3D objects, in which an array of two or 

more known objects and one novel object are presented to children simultaneously (e.g., 

Axelsson, Churchley, & Horst, 2012; Horst & Samuelson, 2008; Horst, Scott, & Pollard, 

“Decision” peak
Input layer

Hebbian layer“Memory” trace

Reciprocal coupling
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2010).  Then, the model is given a label input ridge, reflecting the experimenter’s 

request for the child to “get the [novel label]”.  This ridge intersects with a known 

object peak and/or the novel object ridge.  A peak of activation may develop at one of 

these intersections, reflecting the child’s choice, which may or may not be correct. 

 

  

Table 1.  Locations along feature and label axes of inputs to the model. Inputs 

representing category-central extension exemplars are closer to exemplars seen during 

referent selection than inputs representing category-peripheral extension exemplars. 

  

 Immediately following referent selection the model is given eleven trials in 

which no stimuli are presented, designed to reflect the five-minute delay between 

referent selection and test in the empirical task (see also, Twomey & Horst, paper 1, this 
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thesis).  Then, the model receives three retention trials.  These proceed in an identical 

manner to referent selection trials, except that object stimuli consist of three novel 

object ridges, one from each previously-encountered category.  The model receives a 

different novel label on each retention trial.  Thus, the model can only accurately 

respond if the memory trace associating novel objects to novel labels is sufficiently 

robust.  Finally, the model is presented with three generalisation trials.  At this stage, the 

model either receives inputs that reflect either completely novel, category-central 

exemplars or completely novel category-peripheral exemplars (see Table 1).  The model 

was run 24 times per condition. 

 

Results and Discussion 

 Results from the simulation are depicted in Figure 2.  During referent selection 

the model mapped known labels to the correct referent at levels greater than expected by 

chance (0.33, all reported tests two-tailed), central: t(23) = 56.46, p < .001, d = 11.44; 

peripheral t(23) =  49.52, p <.001, d = 10.09.  Similarly, the model mapped novel labels 

to the correct referents at above-chance levels, central: t(23) =  28.58, p <.001, d = 5.81, 

peripheral: t(23) = 28.16, p <.001, d = 5.73.  At test, the model retained novel labels at 

above-chance levels in both conditions, central: t(23) = 5.46, p <.001, d = 1.12, 

peripheral: t(23) = 4.76, p <.001, d = 0.97 (note that no difference was anticipated 

between conditions for retention, as stimuli presented during referent selection and 

retention are identical across conditions).  In contrast, however, the model extended 

novel labels in the central condition, t(23) = 5.44, p <.001, d = 1.12; but did not extend 

novel labels in the peripheral condition, t(23) = -0.45, ns., d = -0.09.  A planned 

independent samples t-test confirmed a significant difference between conditions for 

extension, t(46) = 4.17, p <.001, d = 1.23.  Thus, as predicted, the model extended novel 
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names only to objects that shared many shared features with the categories encountered 

during referent selection. 

 

Figure 2.  Simulation results.  *** p <.001.  Chance = 0.33, all tests two-tailed. 

 

Empirical task 

Using the same architecture and procedure as a previous, successful DNF 

simulation of 30-month-old children’s behaviour in a fast mapping task (see Twomey & 

horst, paper 4, this thesis), the DNF model predicts that children will extend previously 

fast-mapped novel names to completely category entral – but not category peripheral – 

exemplars.  The current experiment tests this prediction empirically with 30-month-old 

children using a design identical to that used in the simulation just described.  

Importantly, the stimuli used during referent selection were identical across conditions 

until the extension trials when children were presented with category central or category 

peripheral exemplars.  This empirical study provides a robust test of the model, and a 
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successful replication serves as proof-of-concept of this architecture as an informative 

model of infant category label learning via fast mapping. 

Method 

 Participants.  44 typically developing, monolingual, English-speaking 30-

month-old children (23 girls, M = 29m, 2d, SD = 45.56 days; range = 24m, 0d - 32m, 

29d) with a mean productive vocabulary of 521 words (SD = 128.92 words, range = 263 

- 662 words) and no family history of colourblindness participated.  Children were from 

predominantly middle class homes.  Half of the children were randomly assigned to the 

central condition, and the other half were randomly assigned to the peripheral condition.  

Children’s ages and productive vocabularies did not differ between conditions.  Data 

from 10 additional children were excluded from analyses due to fussiness (7), 

experimenter error (2) and illness (1).  Caregivers were reimbursed for travel expenses 

and children received a small gift for participating.   

 Stimuli.  Known objects consisted of eighteen toys from categories familiar to 

2-year-old children: an apple, a banana, a bus, a bunch of carrots, a cow, a cup, an 

elephant, a fish, a fork, a frog, a bunch of keys, a phone, a plane, a pig, a sheep, a shoe, 

a pair of sunglasses and a train. 

Novel objects are depicted in Figure 3 and consisted of fifteen toys from three 

categories not familiar to 2-year-old children.  In order to test the simulation’s 

prediction, we designed novel exemplars that shared different numbers of perceptual 

features with exemplars from the same category.  We did so in two ways.  First, we kept 

the core shape of the objects the same across category members.  Preschool children and 

infants are able to differentiate shape components in 3D objects (or "geons"; Abecassis, 

Sera, Yonas, & Schwade, 2001; Fulkerson & Haaf, 2003; Haaf, Lundy, & Coldren, 

1996), and categorise solid objects on the basis of shared shape (the "shape bias", 
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Colunga & Smith, 2008; Landau, et al., 1988).  Second, we introduced minor variations 

in colour and shape.  Colour variation has been shown to facilitate novel label retention 

and, alongside small amounts of shape variation, extension (Twomey & Horst, Paper 1, 

this thesis).  Thus, we reasoned that variation in number of geons as well as number of 

colours shared between category exemplars would facilitate children’s categorisation 

and label extension.  Specifically, based on the DNF simulation, we predicted that 

children would retain novel labels after familiarisation with a novel category during 

referent selection, but would only extend novel labels to completely novel objects which 

shared many features with exemplars from the familiarised category.  Thus, in each 

novel category, each exemplar shared more or fewer geons and colours with every other 

exemplar in that category. Based on sharing more or fewer features with other 

exemplars, then, each exemplar from a given category exhibited graded category 

centrality. 

Specifically, the hux category consisted of a rigid string of small, coloured 

wooden blocks attached to a coloured, circular base.  Between exemplars, the number 

and length of the horizontal and vertical components of the string of blocks varied, as 

did the colour of the base (either blue or yellow).  The doff category consisted of an 

ovoid, natural wooden base with two coloured branches on one side.  Between 

exemplars, the number of branches varied, as did the colours of the branch segments 

(i.e., the first segments were red, the second orange, the third yellow and the fourth red).  

The cheem category consisted of a natural wooden bolt made up of a screw-thread with 

a large ball on one end, and coloured wooden blocks attached to the screw-thread.  

Although the five novel exemplars per category clearly did vary in number of shared 

features, it is important to bear in mind that, during referent selection, children in fact 

encountered six novel objects per category (that is, each novel object was encountered 
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twice: once on a known label trial, once on a novel label trial).  Across exemplars, 

number, colour and shape of the attached blocks varied.  Objects were approximately 

the same size (height = 30-79mm, width = 75-154mm, depth = 30-77mm).  

  

Label Referent Selection 

 
Extension 

 
 

Few shared 
features 

  

Many     
features 

Hux 

  
 

  

Doff 

  
   

Cheem 

     
 

Figure 3.  Novel objects used in the empirical study. 

 

With the goal of ensuring the extension objects were located either near (central) 

or far (peripheral) in representational space relative to the familiarised exemplars, we 

analysed the structure of each novel category as encountered during referent selection 

(i.e., three novel exemplars presented twice each, once labelled and once unlabelled).  

Multidimensional Scaling Analysis (or MSA; specifically the PROXCAL toolkit 

available in SPSS19) was performed for each novel category separately.  MSA allows 

object dissimilarity information to be projected onto two-dimensional “psychological” 

space such that representational distances between objects can be visualised on a pair of 
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axes.  MSA has been used to assess perceptual similarity of stimuli in both adult (e.g., 

Cohen, Nosofsky, & Zaki, 2001) and infant experiments (e.g., Abecassis, et al., 2001). 

For each category, every exemplar was compared to every other exemplar along 

three separate “shared feature” metrics: number of shared geons, a binary shared label 

value (that is, “labelled” or “unlabelled”), and number of shared colours.   Importantly, 

the three exemplars seen twice during referent selection were compared to every other 

exemplar twice, once as labelled and once as unlabelled.  For each novel category, three 

matrices of difference values (shared geons, shared labels and shared colours) were 

entered into the analysis as interval data.  Matrices were weighted 4, 4 and 1, 

respectively.  Matrix weights reflected existing research on the relative influence on 

categorisation of shape, labels and colour. For example, Gliozzi et al.’s (2009) model of 

object categorisation demonstrated that labels and shape features influence object 

categorisation equally strongly; further, research demonstrates that shape influences 

object categorisation over and above colour (Horst & Twomey, 2012). Analyses of the 

fit of a range of models confirmed that these matrix weightings offered the best fit to the 

data (see Appendix). 

The model provided a good fit to the data in three dimensions (mean normalised 

raw stress = 0.11, mean dispersion accounted for = 0.89, mean Tucker’s Coefficient = 

0.94; note that an excellent model fit is indicated by mean normalised raw stress of 

around 0.1, dispersion accounted for approaching 1, and Tucker’s coefficient 

approaching 1, Dugard, Todman, & Staines, 2009).  The MSAs confirmed that 

extension exemplars designed to share many shared features with the familiarised 

exemplars (see right panel of Figure 2) were closer in representational space to those 

exemplars than were extension exemplars designed to share few shared features (see 

Table 2). Importantly, however, these distances were relatively small, indicating that for 
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each category, the two extension objects were overall perceptually similar to the 

exemplars seen during referent selection and were therefore candidate members of those 

categories. 

Procedure and design.  Before the experiment began the caregiver was asked to 

complete the Macarthur-Bates Communicative Development Inventory (British 

Adaptation, Klee & Harrison, 2001).  Caregivers were also shown colour photographs 

of all stimuli to ensure that they were appropriately familiar (in the case of the known 

objects) or novel (in the case of the novel objects).  All children were familiar with all 

known objects, and no children were familiar with any of the novel objects. 

 

 Average distance  

 hux doff cheem Mean 

Central 0.529 0.522 0.526 0.526 

Peripheral 0.539 0.542 0.564 0.548 

 

Table 2.  Average distances between extension objects and referent selection exemplars, 

for each novel category, according to Multidimensional Scale Analysis based on shared 

geons, labels and colours. 

 

During the experiment, children were seated in a booster seat across from the 

experimenter at a white table.  Caregivers sat next to their child and continued to 

complete the MCDI (Klee & Harrison, 2001).  Caregivers were instructed not to label 

any object or influence or give feedback on their children’s responses.   

The experiment began with three warm-up trials to familiarise children with the 

task.  Stimuli were presented on a transparent plastic tray divided into three equal 
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sections.  Three known objects, chosen at random from the known objects used during 

the referent selection phase, were presented to the child on the tray in pseudorandomly-

determined position (i.e., left, middle or right).  First, the experimenter held the tray 

stationary on the table and silently counted for three seconds to allow the child to look 

at the objects (see Horst & Samuelson, 2008).  Then, the experimenter asked the child 

to select one of the objects (“Which one’s the cow? Can you show me the cow?”).  All 

objects were labelled twice, with up to two more labelling instances when children 

needed encouragement.  No object was labelled more than four times.  The 

experimenter then slid the tray towards the child and allowed the child to point to or 

hand her one of the objects.  All warm-up trials proceeded in an identical manner, using 

the same objects, except that a different object was asked for on each trial.  Children 

were heavily praised for correct responses, and prompted to choose again for incorrect 

responses.  100% of the children successfully chose the target on each warm-up trial. 

 Referent selection trials immediately followed the warm-up trials and 

proceeded in an identical manner, except that children were given no feedback 

following their choices, that is, the experimenter only said either “OK” or “thank you.”.  

Each child was presented with 18 referent selection trials across three blocks of six 

trials (one block per novel category).  In each block children saw three different sets of 

objects twice each: once on a trial with a novel target (“novel label trial”) and once on a 

trial with a known target (“known label trial”).  Each set included one novel and two 

known objects (e.g., cow, bus, novel object).  Each novel exemplar appeared once as a 

target object and once as a competitor; each novel word was therefore heard a minimum 

of three times.  Within each block, trial order was pseudorandomised such that no more 

than two trials of the same type would be presented successively.  Block order was 

counterbalanced across participants, and referent selection trials were identical across 
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conditions.  Referent selection trials were immediately followed by a five-minute delay, 

during which time children remained at the table and coloured pictures from a colouring 

book.  A digital kitchen timer was used to time the five-minute delay. 

 After the delay, children were presented with a new warm-up trial to re-

engage them with the task.  100% of children chose the target in this trial.   Three 

retention trials immediately followed the warm-up trial.  Retention trials proceeded in 

an identical manner to referent selection trials, except that children were presented with 

three novel exemplars on each trial: one previously-encountered exemplar from each 

novel category.  Which exemplar was presented was counterbalanced across 

participants using a Latin Square design.  Thus, referent selection trials were identical 

across conditions. 

 The three extension trials proceeded in an identical manner to the retention 

trials.  Children were presented with three completely novel exemplars, one from each 

novel category.  In the central condition, children were presented with the exemplars 

that shared many perceptual features with those encountered during referent selection.  

In the peripheral condition, children were presented with the exemplars that shared few 

shared features with those encountered during referent selection. 

 Coding.  Children’s responses were coded offline from DVD.  A second coder 

blind to the experimental hypotheses coded 20% of the sessions for reliability.  Inter-

coder agreement was high, M = 96.43%, SD =  0.04% (range = 89.29% – 1.00%).   

Results and Discussion 

 Results from the empirical study are depicted in Figure 4.  During referent 

selection children mapped known labels to the correct referent at levels greater than 

expected by chance (0.33, all reported tests two-tailed), central: t(21) = 50.56, p < .001, 

d = 10.78; peripheral: t(21) =  19.41, p <.001, d = 4.14.  Children also mapped novel 
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labels to the correct referent at levels greater than expected by chance (central: t(21) = 

20.75, p <.001, d = 9.06; peripheral: t(21) = 11.76, p <.001, d = 5.13). At test, children 

retained novel labels at above-chance levels in both conditions, central: t(21) = 2.46, p 

<.05, d = 0.53, peripheral: t(21) = 2.40, p <.05, d =  0.52 (as in the simulation, no 

difference was anticipated between conditions for retention, as stimuli presented during 

referent selection and retention were identical across conditions).  In contrast, however, 

children extended novel labels in the central condition, t(21) = 3.38, p <.01, d = 0.73; 

but did not extend novel labels in the peripheral condition, t(21) = 1.45, ns., d = 0.31.  

However, children’s proportion of correct choices on extension trials did not differ 

between conditions t(42) = 1.00, ns, d = 0.31.  Thus, children’s overall pattern of 

responding replicated the overall pattern generated by the model; the moderate effect 

size suggests that the lack of between-condition difference for extension in the child 

data is likely due to greater variance in the child data than in the model data.	  

 

Figure 4.  Children’s proportion of correct choices in Experiment 1.  Dotted line 

represents chance (.33).  Error bars represent one standard error.  *** p <.001, * p <.05. 
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These data support “correlated features” accounts of categorisation, for example 

the classic Younger & Cohen (1983; 1986) studies.  Here, 10-month-old infants were 

sensitive to correlations between configural and perceptual attributes in novel 2D 

animal stimuli (see also Plunkett, et al., 2008; Rakison & Cohen, 1999; Younger & 

Cohen, 1986; Younger, Hollich, & Furrer, 2004).  The current study demonstrates that 

older children can also generalise labels systematically based on correlations between 

perceptual features such as geons and colour.   

These data also contribute to the debate concerning the status of labels in 

categorisation.  Specifically, some argue for a “label-first” account, in which labels 

influence categorization more strongly than do perceptual features (e.g., Waxman & 

Braun, 2005; Lupyan, Rakison & McClelland, 2007).  Recall that although extension 

exemplars shared different numbers of features with other exemplars from their 

category, the overall perceptual similarity between extension and referent selection 

objects was still high, both visually (see Figure 3 and the Multidimensional Scaling 

Analysis reported in Table 2).  Thus, in the current study, the “labels-first” view 

predicts that children may extend novel labels in both conditions, because labels invite 

categorisation of perceptually-similar objects (Graham, Kilbreath & Welder, 2004; 

Jaswal, 2004; see Paper 2, this thesis, for similar results in action categorization). 

In contrast, others argue that labels function as perceptual features of category 

exemplars, and influence categorisation in a similar way to other perceptual features 

such as geons (e.g.  Gliozzi, et al., 2009; Sloutsky & Fisher, 2011).  Our data support 

this latter argument: if labels strongly drive categorisation, we would expect children to 

extend novel labels in both conditions, rather than solely in the central condition.  In the 

current study, category centrality of extension exemplars drove children’s categorisation.  

Moreover, the Multidimensional Scale Analysis of the novel stimuli also supports this 
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view.  The best-fitting model is generated when labels and geons are equally weighted, 

that is, when labels and geons influence category structure equally.  Re-running the 

MSA with labels weights lesser or greater than geon weights decreases model fit (see 

Appendix), suggesting that in this study at least, labels and geons have an equal impact 

on categorisation.   However, because there was no difference between groups for 

extension trials, this conclusion should be treated with caution; further research is 

required to resolve the debate as to the relative influence of labels and perceptual 

features on categorisation (see Sloutsky & Fisher, 2012).  More generally, these and 

other conflicting data suggest that the relationship between labels and categories is 

likely to be contingent on task and experimental design (e.g., Jaswal, 2004). 

Finally, the results of Experiment 1– that small differences in perceptual features 

can lead to significant differences in label extension – provide novel insight into 

existing tests of word learning, and counsel caution in interpretation.  Specifically, in 

analysing experiments using label generalisation/extension trials of any kind, it is 

critical to be aware that lack of generalisation may not indicate lack of word learning – 

children may simply be unwilling to generalise a learned label to an exemplar that is too 

perceptually different from trained exemplar(s). 

 

General Discussion 

 This paper presents an experimental replication of predictions generated by a 

computational model of young children’s word learning and categorisation.  Based on a 

Dynamic Neural Field model of infants’ word learning via mutual exclusivity (Twomey 

& Horst, Paper 4, this thesis), we simulated children’s behaviour in a fast mapping task 

to examine the nature of children’s noun extensions after familiarisation with an object 

category.  The model predicted that children would retain previously fast-mapped labels, 
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but would extend labels only to category central novel exemplars.  To test this 

prediction, 30-month-old children were familiarised with three novel object categories 

via 18 referent selection trials.  At test, children were able to retain previously fast-

mapped novel labels.  However, during extension trials, only children who encountered 

category central completely novel objects were able to extend novel labels (see right 

hand panel, Figure 4).  Children who encountered category peripheral completely novel 

objects did not generalise novel labels. 

 Along with the empirical data and computational replication presented in 

Twomey & Horst (2011), the computational data and empirical replication in the current 

study constitute the one of the first Dynamic Neural Field models to successfully 

simulate young children’s unsupervised fast mapping, word learning and categorisation.  

In line with earlier applications of DNFs to developmental phenomena such as the A-

not-B error (Simmering, Schutte, & Spencer, 2008), spatial binding of objects to labels 

(Samuelson, Smith, Perry, & Spencer, 2011) and the shape bias (Samuelson, Schutte, & 

Horst, 2009), this model successfully simulates apparently complex behaviour using 

simple low-level associative processes.  Importantly, during referent selection the model 

is able to map novel words to novel referents without any preprogrammed “reasoning” 

module.  

Dynamic Neural Field models are theoretically situated in Dynamic Systems 

theory, in which complex yet stable behavioural and cognitive structures emerge ad hoc 

from the interaction between components available at a given time (for example, the 

body, perceptual input, and the task environment) in the context of nested timescales of 

learning (for example, lifetime experience with categories and labels, exemplars and 

labels encountered earlier in the experiment, and the exemplar and label present on a 

given trial).  Thus, these data add weight to the growing body of work demonstrating 
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that cognition, behaviour and the environment are inextricably coupled and inseparable 

from their temporal context.  As such, the current study contributes not only to our 

understanding of young children’s fast mapping and categorisation, but also to a new 

conception of developing cognition as an emergent dynamic system.  
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Appendix 

 

 

 

Figure A5.  Increase in normalised stress as a function of label weight in the 

Multidimensional Scale Analysis.  Normalised stress lower than 0.15 indicates a good 

model fit (Dugard, et al., 2009).  Best fit occurs when labels are equally weighted with 

geons (label weight = 4) 
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Figure A6.  Decrease in Dispersion Accounted For and Tucker’s Coefficient as a 

function of label weight in the Multidimensional Scale Analysis.  For both measures, 

values close to 1 indicate a good model fit (Dugard, et al., 2009).  Best fit occurs when 

labels are equally weighted with geons (label weight = 4)
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all data, and wrote this paper. The third author, however, designed the Epigenetic 
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the equations which govern the neural networks in the ERA (page 20, paragraph 2 to 
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Abstract 

 Children learn words with remarkable speed and flexibility. However, the 

cognitive basis of young children’s word learning is disputed. Further, although 

research demonstrates that children’s categories and category labels are interdependent, 

how children learn category labels is also a matter of debate. Recently, biologically 

plausible, computational simulations of children’s behaviour in experimental tasks have 

investigated the cognitive processes that underlie learning. The ecological validity of 

such models has been successfully tested by deploying them in robotic systems (Morse, 

Belpaeme, Cangelosi, & Smith, 2010). We present a simulation of children’s behaviour 

in a word learning task (Twomey & Horst, Paper 1, this thesis) via an embodied system 

(iCub; Metta, et al., 2010), which points to associative learning and dynamic systems 

accounts of children’s categorisation. Finally, we discuss the benefits of integrating 

computational and robotic approaches with developmental science for a deeper 

understanding of cognition.  



An Embodied Model of Word Learning 241 

An embodied model of young children’s categorisation and word learning  

 From birth – indeed, even before birth (James, 2010; Shahidullah & Hepper, 

1994) – infants encode a myriad of complex perceptual stimuli.  The extent of this 

complexity cannot be overestimated: in the visual domain alone, the myopic newborn 

must segment the visual scene, distinguish between figure and ground, group surfaces 

into objects, represent temporal and spatial continuity of objects, and infer the physical  

characteristics of partially-occluded objects (Johnson, 2010a).  However, very young 

infants can make sense of the intricacies of their environment.  Even neonates can group 

aspects of their perceptual environment into early categories (Johnson, 2010b), 

systematically treating discriminably different exemplars as equivalent.  A few hours 

after birth, infants are able to discriminate their mothers’ faces from those of strangers 

(Field, Cohen, Garcia, & Greenberg, 1984) and by three months, infants discriminate 

male versus female and same- versus own-race faces (Slater et al., 2010).   

 By the end of their first year, infants have developed an impressive ability to 

categorise in multiple domains, and use a variety of criteria to do so.  For example, 

infants can use relative luminance to categorise patterns of horizontal or vertical black 

bars after familiarisation with arrays of light or dark shapes (3-4 months; Quinn, Burke, 

& Rush, 1993); head information to categorise pictures of animals (3 months; Quinn, 

Eimas, & Rosenkrantz, 1993); auditory statistical cues to categorise phonemes in the 

speech stream (6 months; Grieser & Kuhl, 1989); and visual spatiotemporal information 

to categorise event types (7.5 months; see Baillargeon & Wang, 2002 for a review). 

 Children’s remarkably early ability to detect patterns in their environment is not 

in dispute (Gogate & Hollich, 2010).  However, the processes underpinning children’s 

categorisation and the structure of the categories themselves are less clear-cut.  The 
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current chapter presents novel insights into the interplay between young children’s 

categorisation and word learning from an embodied computational model. 

A bidirectional relationship between categories and labels 

 The astonishing speed and ease with which very young infants form adult-like 

categories in “noisy learning environments” (Wu, Gopnik, Richardson, & Kirkham, 

2011) has led some to suggest that categorisation operates in a top-down fashion, based 

on innate biases, or core principles, which guide domain-specific developmental 

processes such as early face and object perception, and imitation (Carey & Spelke, 1994; 

Meltzoff & Moore, 1977; Slater et al., 1998; Spelke & Kinzler, 2007).  Others suggest 

that perceptual constraints may be co-opted from other domains, but rapidly become 

domain-specific (Markman, 1994; Waxman & Booth, 2001).  Still others argue that 

categorisation is a fundamentally associative, consistently domain-general process that 

emerges across development from dynamic interactions between environment, body and 

cognition (Kovack-Lesh, Horst, & Oakes, 2008; Rakison & Yermolayeva, 2011; Smith, 

Colunga, & Yoshida, 2010; see also Gogate & Hollich, 2010).  Moreover, Rakison 

(2000) has argued that infant categories are not (and need not be) adult-like.   

 By the onset of word production at approximately one year children are 

experienced categorisers.  However, learning labels for categories is still no easy task.  

For each new word that they encounter, children are faced with a dizzying array of 

possible referents (Quine, 1960).  When a child hears a new word for the first time, for 

example in the context of an object, the child must determine whether that word refers 

to the whole object, one of its parts, its texture, its colour, its position, its function, an 

event that the object is involved in, and so on across an infinite number of possibilities.   

 Echoing the debate surrounding categorisation, theories abound as to how 

children determine the referent of a novel word.  Again, at one end of the spectrum, 
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some accounts propose innate cognitive faculties (Bloom, 2000; Markman, 1994; 

Woodward & Markman, 1991).  Diesendruck and Bloom (2003), for example, argue 

that children’s a priori knowledge of object kinds guides them to use object shape as a 

guide to category membership and label extension when they encounter novel objects .  

From this perspective, a static, abstract and extralinguistic object ontology determines 

children’s categorisation behaviour. 

 In contrast, at the other end of the spectrum, proponents of associative accounts 

argue that language learning is contingent on domain-general cognitive processes.  

From this perspective, linguistic structure emerges from statistical regularities in the 

perceptual environment (Colunga & Smith, 2008; Rogers, Rakison, & McClelland, 

2004; Samuelson, 2002).  This dynamic systems account of categorisation is in sharp 

contrast to the nativist stance.  Here, behaviour and cognition are dynamically coupled 

and emerge out of interactions between the agent, the environment, and nested 

timescales: from long-term learning, to just-past experience to in-the-moment input 

(Thelen & Smith, 1996).  For example, Gershkoff-Stowe and Smith (2004) provide 

evidence that English-learning children’s emerging bias to categorise solid objects by 

shape reflects statistical regularities in their early-learned vocabulary.  They argue that 

children’s categorisation is assembled online as a product of their long-term linguistic 

experience, experience with object categories and labels, and the demands of the task in 

hand (see also Samuelson & Horst, 2008).  Thus, according to the dynamic systems 

perspective, understanding development is impossible without viewing cognition as 

embodied, interactive, and emergent.   

 Evidence is mounting for an intimate link between categories and their labels.  

Early in the word learning process children use previous experience with categories to 

extend newly-learned labels to new category exemplars (Smith, Jones, Landau, 
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Gershkoff-Stowe, & Samuelson, 2002).  For example, a child might learn that her large, 

furry, brown toy is called a “bear.” Then, experience with further exemplars reinforces 

that category: for example, learning that the TV animation of a large, brown animal 

called Yogi is called a “bear,” that the huge, white animal at the zoo is called a “bear,” 

and so on.  Existing knowledge about these categories (in this case, bear-shaped things 

are called “bear”) then influences future categorisation of novel objects, and in turn, 

new exemplars enrich existing category representations (Smith, 2000).  Thus, early in 

development, existing category knowledge affects children’s generalisation of labels to 

potentially new category members (Gershkoff-Stowe & Smith, 2004). 

 Recent empirical research, at different levels of analysis, suggests that the 

relationship between categories and labels is bidirectional; that is, that category 

structure and category labels interact dynamically.  For example, at the neurological 

level, hemispheric localisation of children’s categorical perception for colour changes 

alongside an increase in linguistic experience (Franklin, Drivonikou, Clifford, Kay, 

Regier, & Davies, 2008; see also Travis, et al.  (2011) for neural correlates of object 

label processing).  At the behavioural level, novel labels have also been shown to 

influence online categorisation, specifically of novel objects displayed to 10-month-old 

infants in a novelty preference task (Plunkett, Hu, & Cohen, 2008). 

 Conversely, category structure affects children’s ability to learn category labels.  

In a longitudinal training study, Perry, Samuelson, Malloy and Schiffer (2010) 

demonstrated that experience with variable categories facilitated 18-month-old 

children’s noun generalisations and accelerated vocabulary development.  Further, 

Twomey & Horst (Paper 1, this thesis) demonstrated that in-task category variability 

directly affects 30-month-old children’s ability to both recall and generalise novel 

category labels.  Children who encountered novel exemplars of low-variability 
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categories in a referent selection task (see Horst & Samuelson, 2008) learned labels for 

these categories but did not extend these labels to new category exemplars, while 

children who encountered high-variability categories did extend labels to new category 

exemplars.  Together these studies offer converging evidence that categorisation need 

not be contingent on core (or innate) structure; rather, it is a dynamic process in which 

new cognitive structure is softly assembled as a product of online input and previous 

experience (for similar arguments see Kovack-Lesh, Horst & Oakes, 2008; Ribar, 

Oakes & Spalding, 2004).   

A step forward in understanding cognitive development 

 The 1970s saw a boom in interest in cognitive development (e.g., Fantz & Fagan, 

1975).  Over the past four decades, a wide variety of ingenious experimental paradigms 

have been developed to investigate infant categorisation.  There exists a rich library of 

data from psychophysical measures such as habituation (Cohen & Strauss, 1979; for a 

review, see Oakes, 2010), preferential looking (Golinkoff, Hirsh-Pasek, Cauley, & 

Gordon, 1987) and eye tracking (Aslin & Salapatek, 1975; see also Gredebäck, Johnson, 

& von Hofsten, 2009); behavioural studies of manual object-examining (Oakes, Madole, 

& Cohen, 1991) and deferred imitation (Meltzoff & Moore, 1977); and neuroimaging 

such as EEG (Samuel, 1978), fMRI (Dehaene-Lambertz, Dehaene, & Hertz-Pannier, 

2002), and, more recently, NIRS (Aslin & Mehler, 2005; Fava, Hull & Bortfield, 2011).   

 Despite exciting progress toward understanding categorisation, however, 

empirical data can only take us so far: statistical models reveal much about the 

relationships between variables, but even longitudinal studies only provide a temporally 

cross-sectional view of those relationships (Simmering, Triesch, Deák, & Spencer, 

2010).  Hypotheses about the cognitive structures underlying a behaviour can be tested 

with varying degrees of success, but convincing process-based accounts of both infant 
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and adult categorisation remain comparatively few.  Recently, however, computational 

models have successfully simulated children’s learning in a variety of linguistic and 

nonlinguistic domains, lifting the metaphorical lid on previously inaccessible cognitive 

organisation.  From probabilistic, Bayesian networks modelling optimal reasoning via 

hypothesis elimination (e.g., Perfors, Tenenbaum, Griffiths, & Xu, 2011; Xu & 

Tenenbaum, 2007), to networks modelling associative learning (e.g., Colunga & Smith, 

2003; Johnson, Spencer, & Schöner, 2009; Mayor & Plunkett, 2010; Munakata & 

McClelland, 2003; Rogers & McClelland, 2004; Westermann & Mareschal, 2009), and 

hybrid models combining probabilistic function with neural plausibility (e.g., Feldman 

& Bailey, 2000; Rao, 2004) among a variety of formal models of psychological 

processes (e.g., Gaussian models of synchrony detection, Prince & Hollich, 2005; 

exemplar models of speeded classification, Nosofsky & Stanton, 2006), computational 

models offer much-needed insights into categorisation and linguistic phenomena.  The 

current chapter describes a step forward in this computational trend in developmental 

psychology: a demonstration of categorisation using a neural network model in an 

embodied robotic system. 

Empirical basis of the current project 

 Since Carey (1978) coined the term “fast mapping,” scores of studies have 

demonstrated children’s ability to quickly link a novel noun to a novel referent (e.g., 

Golinkoff, Hirsh-Pasek, Bailey, & Wenger, 1992; Jaswal & Markman, 2001; and see 

e.g., Childers & Tomasello, 2002; Heibeck & Markman, 1987; Namy, 2001 for fast 

mapping in other domains).  However, more recently, it has become clear that fast 

mapping alone does not constitute word learning (Horst & Samuelson, 2008; Munro, 

Baker, McGregor, Docking & Arciuli, 2012).  For example, in the laboratory setting, 

although 24-month-old children reliably determine the referent of a novel label from an 
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array of several objects, they do not reliably recall this label after a five-minute delay 

unless ostensive labelling is provided by the experimenter (Horst & Samuelson, 2008, 

see also Axelsson, Churchley & Horst, 2012).  Robust word learning occurs when the 

child is able to either use the label appropriately after a delay without scaffolding 

category judgment from other information in the environment, or to generalise the novel 

label to previously-unseen category exemplars (Horst & Samuelson, 2008; Munro et al., 

2012; Riches, Tomasello, & Conti-Ramsden, 2005). 

 The simulation presented in this paper is based on a recent study investigating 

the interaction between category variability and labelling (Twomey & Horst, Paper 1, 

this thesis) and focuses on two facets of word learning.  First, it is well-established that 

young children are able to infer the correct referent for a novel category label without 

supervision or feedback (Akhtar, Jipson & Callanan, 2001; Merriman & Bowman, 

1989).  This ability is readily demonstrated by presenting the child with an array 

consisting of one or two exemplars from categories for which the child knows a label 

(e.g., COW and SPOON and one exemplar from a novel (unlabelled) category.  Even very 

young children can reliably map a novel label to the novel exemplar and have been 

shown to have a bias to map labels to the most novel object in a given array (Halberda, 

2003, 2006; Horst, Samuelson, Kucker & McMurray, 2011; Mervis & Bertrand, 1994).  

However, this ability is susceptible to task, developmental and linguistic factors (Au & 

Glusman, 1990; Houston-Price, Caloghiris, & Raviglione, 2010; Markman & Wachtel, 

1988).  Children in the empirical task described by Twomey & Horst (2011) reliably 

recalled newly-fast-mapped novel category labels without supervision or feedback, 

despite increases in variability between novel category exemplars.  In this chapter we 

present computational evidence of word learning without supervision in an identical 

task context, demonstrating that this apparently inference-based behaviour can be 
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achieved from perceptual input alone. 

 Second, empirical studies indicate that children’s ability to retain novel category 

labels depends on both in-task and longer-term factors, such as the number of 

competitor objects the child sees alongside the novel target (Horst, Scott, & Pollard, 

2010), frequency of repetition (Mather & Plunkett, 2009), degree of prior familiarity 

with the exemplars (Kucker & Samuelson, 2011), presence of absence of ostensive 

labelling cues (Axelsson, Churchley, & Horst, 2012) or trial order (Childers & 

Tomasello, 2002; Vlach, Sandhofer & Kornell, 2008).  Clearly, multiple factors can 

affect whether children can learn words via fast mapping.  Twomey & Horst (2011) 

asked if children could generalise novel labels to never-before-seen exemplars, after 

encountering either moderately or highly variable categories in a fast mapping task. 

Empirical task.   

 Procedure.  Twenty-four 30-month-old children were familiarised with three 

novel object categories and their labels.  The experiment consisted of three phases: first, 

a referent selection phase consisting of three known and three novel trials per category 

(18 trials in total), second, a recall test consisting of one trial per category (three trials in 

total) and finally, a generalisation test consisting of one trial per category (three trials in 

total).  Children were seated opposite the experimenter across a white table; stimuli 

were presented equidistantly on a transparent tray.  Children were assigned to either the 

narrow (n = 12) or broad (n = 12) conditions. 

  On each referent selection trial the child was presented with two exemplars 

from categories for which that child knew a label (known exemplars) and one exemplar 

of a novel category for which that child did not know a label (novel exemplar).  After 

approximately three seconds during which the child was allowed to look at the objects, 

the child was then asked to select either to the novel or one of the known exemplars 
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(e.g., “can you show me the cheem?”).  Children heard each novel label three times.  

Following a five-minute delay, children were given three recall trials with three novel 

exemplars (one exemplar from each of the three novel categories).  Finally, children 

were given three generalisation trials with three completely novel exemplars (one never-

before-seen exemplar from each of the three categories) to further explore the 

robustness of the categories learned during familiarisation task.  No feedback, positive 

or negative, was given during or after referent selection or test trials. 

 Importantly, the design and procedure were held constant between conditions: 

within-category variability was the only difference between conditions.  Previous 

research indicates that, particularly in the context of a novel label, children will 

categorise discriminably different stimuli that vary in perceptual features (Plunkett, Hu, 

& Cohen, 2008; Quinn, Eimas, & Rosenkrantz, 1993; Younger & Cohen, 1986).  

Decades of research have also demonstrated that English-learning children categorise 

objects by shape rather than size or colour (e.g., Gershkoff-Stowe & Smith, 2004; 

Landau, Smith, & Jones, 1988; Smith, et al., 2002; Soja, Carey, & Spelke, 1991).  Thus, 

to ensure minimal variability in the narrow condition, exemplars varied in colour alone.  

To introduce additional variability in the broad condition, exemplars varied in colour, 

size and texture.  However, to facilitate categorisation, variation in the broad condition 

was kept low within each category; for example, the castanets varied only in colour and 

base-shape. 

 Results.  Table 1 depicts the results from the empirical task.  All children were 

able to recognise known exemplars at above-chance levels and were able to reliably 

map novel labels to novel exemplars.  In the recall test, children were able to reliably 

recall previously fast-mapped category labels when category exemplars varied in colour 

alone.  Children in the broad condition, however, were unable to recall previously 
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mapped category labels when exemplars varied in shape, texture and colour.  Children 

in the narrow condition were able to recall significantly more category labels than 

children in the broad condition.  In the generalisation test, children in the narrow 

condition did not generalise previously mapped labels to never-before-seen exemplars; 

however children in the broad condition were able to generalise previously mapped 

labels.  However, no difference was found between these two groups. 

 

 Referent selection (fast mapping) Test Phase (word learning) 

 
Known 

exemplar 
Novel exemplar Recall Generalisation 

Narrow 
0.91*** 

(0.19) 

0.77*** 

(0.26) 

0.69*** 

(0.26) 

0.50 

(0.33) 

Broad 
0.93*** 

(0.12) 

0.83*** 

(0.11) 

0.39 

(0.24) 

0.56* 

(0.30) 

 

Table 1.  Proportion of correct choices in the empirical task.  Standard deviations are 

shown in brackets.  **p <.01, *** p <.001 

 

Flexible categorisation 

 The empirical data illustrate children’s flexible, online categorisation.  The data 

also provide new evidence about the interaction between categorisation and category 

labels: clearly, some variability in category structure (e.g., exemplars of different 

colours) helps children recall category labels, but too much variability impairs this 

ability.  Thus, variability appears to help children learn words but, crucially, only up to 

a point.   
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 Children's behaviour in the generalisation test is consistent with findings from 

the categorisation literature.  Recall that lack of generalisation in the narrow condition 

is in line with findings demonstrating that young children familiarised with perceptually 

similar exemplars form narrow categories that exclude variable exemplars (e.g., Eimas, 

Quinn, & Cowan, 1994; Quinn, Eimas & Rosenkrantz, 1993).  Similarly, lack of recall 

alongside reliable generalisation in the broad condition is particularly consistent with 

exemplar-based models of categorisation (e.g., Medin & Schaffer, 1978; for a 

discussion, see J. D. Smith & Minda, 1998) according to which a delay between 

familiarisation and recall allows individual representations to degrade such that the 

memory trace may be more similar to a novel exemplar than to the original exemplar 

itself (for a discussion of similar findings see Murphy, 2004; Quinn, 2005; Quinn, 1987).   

 These markedly different categories emerged solely due to differences in 

variability of stimuli: across experiments, other sources of variation were held constant.  

In line with a dynamic systems account of categorisation, in which categories emerge as 

the product of the dynamic interplay between environment, body, cognition and 

timescales, these data lend support to the view of categorisation and cognitive 

development as an interactive, online process.   

iCub Implementation 

 Computational models developed under the umbrella of developmental 

psychology have successfully simulated categorisation and produced valuable novel 

insights into the mechanisms by which categories develop.  However, such models 

often (and by their nature) address a single area of interest, for example, modelling a 

single type of experiment (Mareschal, Quinn, & French, 2002; Twomey & Horst, 2011), 

or a single domain (Regier, Kay, & Khetarpal, 2007; Samuelson, 2002), often at a single 

level of analysis (French, Mareschal, Mermillod, & Quinn, 2004; but see McMurray, 
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Horst, Toscano, & Samuelson, 2009; Schutte & Spencer, 2010).  While focusing on a 

specific area undoubtedly reveals links between a model and its behavioural substrate, 

the extent to which some models simulate processes general to cognition is not clear.    

 Although computational models have replicated empirical data from several 

domains, they have been criticised for lacking ecological validity (Cowan, 2003; 

Diesendruck & Graham, 2010; Murphy, 2003; Hollich & Prince, 2009).  However, a 

large body of work suggests that action and perception, and therefore cognition and 

behaviour, are fundamentally embodied (e.g., Iiada, Pfeifer, Steels & Kuniyoshi, 2004; 

Pfeifer & Bongard, 2007; Samuelson, Smith, Perry & Spencer, 2011; Thelen & Smith, 

1996; Ziemke, 2003).  Embedding a computational model in a humanoid system, 

however, allows the modeller to directly address issues of embodiment (Morse, de 

Greeff, Belpaeme, & Cangelosi, 2010).   

 Robotic implementations of computational models are more than showcases for 

sophisticated engineering skills, then.  Rather, they are indispensible research tools that 

offer unprecedented insight into the real-time interactions between body and cognition.  

For example, humanoid robotic systems directly address the embodiment issue 

(Berthouze & Metta, 2005).  Further, a system in which perceptual input really does 

come from the environment ensures a focus on moment-by-moment perceptual 

processing as well as minute-by-minute and longer-term learning, forcing the 

integration of perception, cognition, and action.  Embodied models therefore have the 

potential to offer rigorous tests of theories of domain general cognition in an 

ecologically (that is, physically, environmentally, and temporally) valid context, 

allowing us to examine the emergence of complex cognitive processes across both time 

and experience (see also Morse, de Greeff, Belpeame, & Cangelosi, 2010). 
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The iCub  

 Building on the successful replication of the data described by Twomey & Horst 

(2011) with a Dynamic Neural Field model (cf.  Spencer & Schöner, 2003), and in the 

context of recent advances in developmental robotics (for a review, see Vernon, Metta, 

& Sandini, 2007), we asked if the findings could be further explored using a domain-

general hybrid neural network model in an embodied, robotic system.  To this end, we 

extended the experimental and theoretical scope of an existing architecture (Morse, et 

al., 2010b) recently used in the iCub (Metta, et al., 2010).   

 The iCub is depicted in Figure 1.  The iCub is an open-source, humanoid robot 

of approximately the same size and physical proportions as a three-year-old child with 

53 degrees of freedom.  Its sensors provide auditory, visual, tactile, force and 

proprioceptive (force, torque and joint angle) input.  The iCub’s sensory environment 

therefore provides some of the richness of that of a young child, though how to make 

use of this sensory information is left to the modeller.  The iCub enables the integration 

of crossmodal inputs and provides various ways to coordinate its own movements to 

produce a range of behaviours; for example, to bind haptic and visual information to 

grasp new objects; auditory, visual and spatial information to recognise and reach for 

objects; auditory, visual and proprioceptive information to imitate human actions, and 

so on.  As such, the iCub is the focus of numerous research directions, from language as 

an embodied system (Zeschel & Tuci, 2011) to the dynamics of human-robot interaction 

(Cangelosi, et al., 2008).  An iCub simulator and much of the software developed to 

control the iCub are freely available under open source licensing from the iCub 

repository (see http://eris.liralab.it/) including the models reported herein as part of the 
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Aquila cognitive robotics tool kit (Peniak, Morse, Larcombe, Ramirez-Contla, & 

Cangelosi, 2011). 

 

Figure 1.  The iCub humanoid robot looking at a fork, a tomato, and a novel object 

 

Neural architecture and inputs 

 The architecture employed in the current project was based on Morse et al.’s 

(2010a) ERA architecture previously used in a successful replication of a word-learning 

experiment (Morse, Belpaeme, Cangelosi & Smith, 2010; see also (Samuelson, Smith, 

Perry, & Spencer, 2011; Smith & Samuelson, 2010).  This experiment employed the 

iCub robot to investigate the central role of body in the orchestration of early cognitive 

development.  In line with children’s behaviour in the “modi” task (Smith & Samuelson, 

2010), the robot was able to learn labels for objects only when label and object were 

spatially correlated.   

 The current project exploited a similar architecture (see Fig.  2), in which 

perceptual input is processed by Self-Organising Maps (SOMs, Kohonen, 1998).  SOMs 
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are neural networks that self-organise over time via a winner-takes-all mechanism, such 

that the final organisation of output neurons reflects the topology of the input, with 

neighbouring neurons responding to similar input patterns.  SOMs therefore provide a 

classification mechanism, which lends itself to the categorisation of complex perceptual 

inputs.  It should be noted that the model is not simply a SOM, rather SOMs are used to 

adapt the model to whatever input space it is applied.  The model is a structured 

network of associative connections providing constant and dynamic spreading of 

activation and inhibition, resulting in the behaviour discussed herein.   

 Visual input to the network first passes through two SOMs representing colour, 

and height/width and edge complexity (hereafter, “shape”), which are each bi-

directionally coupled to a central connectionist “hub” of 36 neurons.  Visual input is 

pre-processed from the images provided by the iCub’s cameras. 

 

Figure 2.  Model architecture. 
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 Colour information for an object in a particular region is extracted by 

determining the location in HSV colour space (Alvy Ray, 1978) of each pixel in that 

region.  All pixels with a saturation value greater than a threshold of 0.2 (thereby 

ignoring the white background of the table; henceforth “coloured pixels”) are allocated 

to one of 36 “bins” each representing 10 degrees of the 360 degree HSV hue continuum, 

generating a histogram-like colour profile for each object.  As each profile is unique, 

and based on the entire range of colours visible in each object, the model takes into 

account differences between uniformly and multicoloured objects.  The resulting colour 

profile values provide input to the colour SOM. 

 Inputs to the shape SOM take into account both height/width and edge 

complexity.  Height and width are calculated for a particular object in a particular 

region by locating the first and last coloured pixels along the vertical and horizontal 

axes, giving an approximation of an object’s aspect ratio.  Note that these values are 

susceptible to variation from placement of the objects across trials; this reflects the fact 

that size alone has been found to be a poor primary indicator of category membership in 

English-speaking children (Landau, Smith, & Jones, 1988).   

 Edge complexity is an additive measure calculated by applying an edge-

detecting Laplacian filter to the camera image, a technique commonly used for edge 

detection in computer vision.  The resulting filtered image is then thresholded to reduce 

noise and non-black pixels are counted for each region, generating a value representing 

the overall edge complexity for each object.  Thus, smooth objects with few edges give 

rise to a lower value than complex objects with many edges.  Both the height/width and 

edge information provide the input to the shape SOM.  In contrast to existing models of 
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categorisation, then, the current model’s visual inputs were taken directly from the real-

world referents encountered by children during the empirical task.   

 Similarly, auditory input consists of words spoken by the experimenter.  Dragon 

Dictate speech recognition software is used during an initial training session to learn to 

recognise labels for known objects over several repetitions.  For each taught label, a 

pool of nodes (in place of a SOM) responds uniquely.  As new words are presented to 

the network, additional nodes are recruited.  Critically, the model is not exposed to 

novel words before the experiments commence; thus, degree of the model’s familiarity 

with labels reflects the degree of children’s familiarity with labels.  Every effort was 

made to ensure differences between external inputs to the iCub and the auditory and 

visual inputs encountered by children in Twomey & Horst (Paper 1, this thesis) were as 

similar as possible; however, obvious differences between the robot’s sensors and 

actuators and children’s perceptual and motor systems inevitably moderate results in 

any cognitive robotic study. 

 Input SOMs were initialised with random connection weights as per Equation 1: 

Equation 1. 

𝐴! =    𝑣! − 𝑤!"
!

!

!!!

 

 

where 𝐴! is the activity of a given unit after each iteration, 𝑣!is input to that neuron, and 

𝑤!" is the connection weight between the input unit and the current (output) unit.  The 

SOMs were initialised with random inputs in same range as the real input objects.  For 

example, as mentioned above, colour input from the robot is processed into 36 bins 

(each representing a 10 degree section of HSV colour space) containing the relative 

proportion of pixels from an object with colours in that section of HSV space.  Thus in 
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pre-training the SOM is shaped by generating random sequences of 36 numbers, which 

are then normalised.  Each SOM is pre-trained to a neighbourhood size of 1 but remains 

plastic in subsequent use.  On each pass, the Euclidean distance between a given input 

vector and each weight vector is calculated and its weights are modified to be more 

similar to that input vector.  The output unit associated with the weight vector closest to 

the input vector is then activated.  The weights of all output units are updated as 

follows: 

Equation 2. 

𝑤! =   𝑤! +   𝛩 𝑖, 𝑡 𝛼 𝑡 (𝑥 −   𝑤!) 

where 𝑤! is the weight vector of output neuron j, 𝛼(t) is a learning rate that decreases 

monotonically over time, and 𝛩 𝑗, 𝑡 defines the neighbourhood size (neighbourhood is 

a term defined by Kohonen referring to an area of the neural population physically 

surrounding j to which Equation 2 is applied).  Note that the neighbourhood size also 

decreases over time to produce a winner-takes-all selection of a single output unit. 

 The three SOMs are linked to a central “hub” via Hebbian learning as in 

Equation 3: 

Equation 3. 

∆𝑤!" =   λ𝑥!𝑥!(1− 𝑤!") 

 The normalised Hebbian update function where λ is a constant learning rate 

(0.05), xi and xj are two different unit values and Δwij is the change in the strength of the 

connection between them.  Note that adaptive connections exist only between colour 

SOM units and word pool units, and between shape SOM units and word pool units.  

Inhibitory connections within the word pool and within each SOM are not adaptable. 

 Nodes within each SOM are connected by inhibitory weights with fixed weight 

values of -0.8.  The spread of activation between the SOM units is governed by the 
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following equations: 

Equation 4.  The summation of internal and external input. 

𝑛𝑒𝑡!"#$% = 𝛼 𝑤!"𝑥! + (𝜀𝑒!) 

Equation 5.  The positive update rule, if netinput > 0. 

∆𝑥! = (𝑚𝑎𝑥−  𝑥!)𝑛𝑒𝑡!"#$% −   𝑑𝑒𝑐𝑎𝑦(𝑥! −   𝑟𝑒𝑠𝑡) 

Equation 6.  The negative update rule, if netinput < 0 

∆𝑥! = 𝑥! −   𝑚𝑖𝑛 𝑛𝑒𝑡!"#$% −   𝑑𝑒𝑐𝑎𝑦  (𝑥! − 𝑟𝑒𝑠𝑡) 

where α is the internal bias (0.1), and ε is the external bias (1.0), ei is the external input 

to the jth unit, max is a constant maximum (positive) level of activation for any unit 

(1.0), min is a constant minimum (negative) level of activation for any unit (-0.2), decay 

is the rate of decay relative to the difference from rest (0.5), rest is the resting level of 

activity for any unit (-0.1), xi and xj are two different unit values and wij is the 

connection weight between them.  While the network is fairly robust to parameter 

variation, the values used here were chosen to be consistent with earlier work using 

similar, though hand designed rather than autonomously learned, structures (Burton, 

Bruce & Hancock, 1999; Burton, Bruce & Johnston, 1990; Burton, Young, Bruce, 

Johnston & Ellis, 1991). 

Procedure, robot task 

 Prior to the experiment, to simulate the productive vocabulary of 30-month-old 

children, the SOMs were initially taught a label-exemplar pair for each known exemplar 

the robot would encounter during the experiment.  Just as the children in the empirical 

task came to the experiment knowing that the COW was called “cow” and the SPOON was 

called “spoon,” the model was able to activate the correct label in response to 

presentation of the known exemplars it would see on each trial.   

 To this end, each known exemplar was placed individually in the center of 
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robot’s field of vision on a white tabletop.  The SOMs were allowed to settle, forming a 

unique “object” profile of winning neurons from the colour and shape SOMs for that 

object (equivalent to allowing children to look at the objects before asking “can you 

show me the blicket?”) With the object still in view, the label SOM was presented with 

the appropriate label input for that exemplar.  Associations between the visual and label 

input were formed and reinforced for each known exemplar.  The amount of training 

given on each known object approximated a child hearing that object labeled 10,000 

times in that context.   

 Figure 3 depicts the procedure for the robot task.  The procedure was kept as 

close as practicably possible to that used in the empirical task, with the exception that 

for the purposes of this preliminary study, the robot encountered a single category (the 

cheem category, see Figure 3).  In each condition, the robot was familiarised with the 

same stimuli encountered by children.  Similarly, the robot task consisted of three 

phases: referent selection (six trials), recall test (three trials) and generalisation test (one 

trial).  The robot received three known label trials and three novel label trials during 

referent selection. 

 On each referent selection trial (Trials 1 – 6, Fig.  3) the robot was presented 

with two known exemplars and one novel exemplar.  Each known object activated the 

corresponding node in the label SOM (and no label node was activated for the novel 

object).  With all three exemplars in view, the experimenter then presented the robot 

with either a known label (that is, pretrained, e.g., fork) or a novel label (that is, not 

trained, i.e.  cheem.)  Note that novel labels were completely novel; that is, the first time 

the robot was presented with a novel label was during referent selection.  The robot’s 

response was then determined by restricting the robot’s field of vision to the target 

exemplar and examining the label node activated in response to the target.  On any 
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given trial, the robot’s response was considered correct if the activated label node 

matched the label previously given by the experimenter (e.g., if the “cow” node was 

activated when the cow was the target, or if the “cheem” node was activated when the 

novel exemplar was the target).  When the target was novel, this in-the-moment linking 

of the novel label to the novel object was considered referent selection.   

 

 

Figure 3.  Procedure for robot task 
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 Test trials in the robot task differed slightly from test trials presented to children.  

Because the robot encountered a single category, rather than three categories, it was not 

possible to give trials including three exemplars, one from each familiarised category.  

However, as noted above, the architecture allows the experimenter to query which label 

node is activated in response to a given stimulus.  Thus, on the three recall test trials 

(trials 7-9, Fig.  3), the robot was presented with each familiarised novel exemplar 

individually, and the activated label node was recorded.  Proportion of correct responses 

was then calculated.  On the single generalisation trial (trial 10, Fig.  3), the 

generalisation object was presented individually, and again, the activated label node was 

recorded. 

 Novel category exemplars used in the robot task were identical to novel category 

exemplars used in the empirical task.  Manipulations of category structure therefore 

reflected those in the empirical task.  That is, in the narrow condition the robot was 

given three exemplars that differed in colour alone, and in the broad condition the robot 

was given exemplars that varied in colour, shape and size (see Fig. 4). 

 As in the child experiment, no feedback was given during or after referent 

selection and test trials.  Thus, any learning that occurred did so in a non-ostensive 

context.  Finally, the robot was run through each condition 12 times, to reflect the 12 

children in each condition in the empirical task.  In some models, in order to obtain a 

robust result, the simulation of an experiment is run many more times than the 

experiment itself, or similarly, the simulation is presented on with stimuli many more 

times on a single run than is a single participant in the experiment. Importantly, the 

robot did not require more exposures to the stimuli than the children in order for it to 

exhibit comparable behaviour.  That is, both children and the robot encountered three 

novel exemplars per category. 
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Figure 4.  Novel stimuli used in the robot task 

Results 

  Results from the robot task are depicted in Figure 5.  Data from the referent 

selection phase of the robot task reflect data obtained by Twomey and Horst (2011).  

Specifically, during referent selection, in both narrow and broad conditions, the robot 

was able to reliably select the correct exemplar on known category trials (narrow: t(11) 

= 16.40, p <.001, d = 9.89; same results for broad: t(11) = 16.40, p <.001, d = 9.89).  

The robot also reliably selected the correct exemplar on novel category trials (narrow: 

t(11) = 6.54, p <.001, d =3.94; broad: t(11) = 2.44, p <.05, d = 1.47).  Thus, these 

preliminary data give evidence of referent selection in a non-ostensive context using a 

purely associative system.   

 At test, in the narrow condition, the robot selected the correct exemplar in 

response to newly fast-mapped novel names at levels approaching chance (0.33 for all 

known, novel and retention trials; t(11) = 1.99, p =.071, d = 1.20) but was unable to 

reliably generalise novel names to completely new exemplars (Wilcoxon W = 33, ns; 

note that a nonparametric test was used to analyse this binary variable).  This pattern 

broadly reflects the empirical results and a computational dynamic neural field 
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replication (Twomey & Horst, Paper 1 & Paper 4, this thesis), however a full replication 

is required to establish whether the result for the retention trials is robust.  

 Finally, in the broad condition, the robot did not recall or generalise newly fast-

mapped category labels (narrow: t(11) = 1.34, ns; broad: Wilcoxon W = 63, p =.057).  

Generalisation trials approached significance, however, and again, it is possible that 

given a full replication of the empirical task with three categories and 18 trials, the 

model would show robust word learning.   

 

Figure 5.  Results from the robot task.  ***p <.001, *p <.05, + p <.08. 

 

Discussion 

 The results from this preliminary study reflect the results reported by Twomey 

and Horst (2011).  The robust demonstration of referent selection without supervision 

lays the foundation not only for a full replication of Twomey and Horst (2011), but also 

for further research into the mechanisms underlying fast mapping, word learning and 

categorisation.   
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 Moreover, during the referent selection phase the model demonstrated in-the-

moment categorisation.  We go a step further than many existing models of 

categorisation, however, by embedding our simulation in an embodied system situated 

in a perceptual and temporal environment that closely reflects the environment of the 

child.  Importantly, because of the differences in test trial design between the empirical 

and robot tasks any interpretation of these data must remain cautious.  Nonetheless, the 

results point toward the exciting possibility of object category learning using an 

embodied, dynamic-associative system. 

General Discussion 

 What does this robotic demonstration offer that existing empirical data or 

computational models do not? First, the project described here suggests a process-based 

account of the much-debated mechanisms underlying fast mapping: we have 

demonstrated that apparently inference-based referent selection (that is, using a strategy 

such as mutual exclusivity) can emerge for free from the dynamic interaction of the 

SOM-based architecture and the model’s learning history (for a similar demonstration in 

a different dynamic connectionist model see Horst, McMurray & Samuelson, 2006; 

McMurray, et al., 2009).   

Specifically, referent selection in this task context depended on inhibition.  That 

is, in the central hub, strong excitatory connections between known labels and known 

exemplars inhibited the formation of new connections between novel labels and known 

exemplars, and between known labels and novel exemplars.  When the model 

encountered a novel label, then, the only connection that was not the subject of 

inhibition was the potential mapping between novel label and novel object.  This was 

the mapping that the model formed, reflecting children’s ability to learn novel category 

labels in the absence of explicit teaching of labels via positive/negative feedback and/or 
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ostensive labelling.  Thus, the robot exhibits a cognitive behaviour softly assembled 

from perceptual input (the stimuli presented to the robot) processed in the context of 

multiple timescales (pretrained vocabulary, in-task word learning), an account of fast 

mapping that would not be possible if only tested empirically. 

 Second, the iCub provides an appreciably more ecologically valid environment 

in which to situate what is fundamentally a model of neural dynamics.  Specifically, the 

visual inputs to the system consist of image data, rather than the more abstract “neural 

activation” found in some purely computational models of cognitive development (e.g., 

Mareschal, French & Quinn, 2000; Rogers & McClelland, 2004; Twomey & Horst, 

Papers 4 & 5, this thesis; Samuelson, Perry & Spencer, 2011; amongst many others).  

Further, the stimuli presented to the iCub’s cameras were the same objects presented to 

the children by Twomey and Horst (2011) in the same physical context (on a white table, 

presented by the same experimenter), in the same testing timescale, following longer-

term previous experience with known category exemplars and their labels.  Thus, not 

only did we observe the emergence via simple associations of reliable referent selection 

and categorisation, but we also observed it in in an environment much closer to that 

experienced by children than purely computational models can offer (Papers 4 and 5, 

this thesis). It is important to note, however, that “embodiment” as instantiated in this 

model is limited. Specifically, due to limitations imposed by time constraints, the robot 

did not receive proprioceptive feedback from the positioning of its limbs and torso, 

unlike children. This is problematic for the current paper, given that a similar system 

has shown an effect of body position on the robot’s (and children’s) ability to map 

words to objects via spatial locations. For a truly embodied replication, future work 

should focus on including proprioceptive feedback in the current system. 
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 Third, in terms of categorisation, this model shows how categories can be 

scaffolded from the input and firmly grounded in environmental and temporal contexts.  

All the categories learned by the iCub were learned purely via real-time association of 

auditory labels with visual input: the robot had no in-built conceptual structure.  So, for 

example, we had not programmed it to know that “spoon” was a utensil, or that “cow” 

was an animal; it simply learned to associate a cow-shaped object with the label “cow” 

(see also Horst et al., 2006; McMurray et al., 2009) Similarly, when the robot formed 

categories based on the novel exemplars it encountered during the familiarisation phase, 

it did so purely on the basis of visual similarity and a shared label.  In line with existing 

research, these data suggest that children’s object categories can be perceptually-based 

(Gliga, Mareschal, & Johnson, 2008; Gogate & Hollich, 2010; Kovack-Lesh & Oakes, 

2007; Rakison, 2000).    

 In order to firmly ground future projects in current work, initial research must 

focus on replicating the empirical data.  However, the model as described here provides 

a foundation for future research, which will contribute to a number of research threads 

that have emerged in the field of cognitive development in recent years.  Unlike most 

computational models, embodied robots allow us to investigate how cognitive abilities 

are shaped by and develop in the context of physical and social interaction with the 

environment.  As such, the current project provides a methodological bridge between 

data from the word learning, categorisation and embodied cognition literatures.  While 

the current work does not directly address social cueing, we believe the categorisation 

and fast mapping skills demonstrated here represent a crucial step toward such 

investigations. 

 The model presented here is perhaps the simplest example of the ERA 

architecture, yet the phenomena demonstrated are equally apparent in more complex 
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versions.  Current and ongoing work with more complex examples of the model 

demonstrate the combination of cross-situational learning, bodily/spatial biases, fast-

mapping, mutual exclusivity, and simple grammar learning to produce a learning system 

that is more than the sum of its parts (work in preparation).  Further work is planned to 

explore developmental transitions (Morse, Belpaeme, Cangelosi, Floccia, 2011), social 

learning, and long-term learning. 

 In conclusion, increasing interest in computational models and cognitive 

processes has coincided with cognitive robotics’ growing emphasis on the need to 

understand development.  The converging interests of the two formerly remote fields 

have begun to produce exciting interdisciplinary collaborations such as the project 

presented here.  Specifically, this chapter described an embodied robotic replication of a 

categorisation experiment conducted with young children which demonstrated that 

embodied computational approaches to understanding cognition can go far in resolving 

longstanding debates as to the processes that drive cognitive development.  The 

preliminary data presented here are just one example of the benefits to be gained from 

the integration of research in cognitive development, computational modelling and 

developmental robotics (Simmering, et al., 2010).  In embarking on interdisciplinary 

projects, each discipline stands to gain from the focus on the dynamic and temporally-

contingent coupling of cognition, body and environment.   
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Afterword 

 Mapping the journey from languageless infant to fluent adult has been the 

objects of centuries of philosophical and scientific investigation (Aristotle, 

335BC/1984; Quine, 1960; St Augustine, 397/1986). The papers presented in this 

thesis address the beginnings of this fundamentally human adventure – children’s 

early word learning. Earlier studies have focused on children’s ability to fast-map 

labels to entities in the real world (Carey & Bartlett, 1978). More recently, the 

interplay between labels and children’s environment have been the focus of both 

empirical and computational investigations (Axelsson, Churchley, & Horst, 2012; 

Houston-Price, Caloghiris, & Raviglione, 2010; McMurray, Horst, & Samuelson, 

2012; L. K. Samuelson, Smith, Perry, & Spencer, 2011). These studies take up this 

thread, investigating the effect of variation in what children see and the labels they 

learn for categories of object and action. 

 The empirical data presented here are in line with a dynamic systems view of 

word learning, in which in-the-moment fast mapping, word learning, environmental 

context and learning history all constitute components of one constantly interactive 

system, operating over different timescales and supporting the emergence of stable 

behaviours (Colunga & Smith, 2008; Larissa K. Samuelson & Horst, 2008; Thelen & 

Smith, 1994). On this view, “knowledge is process” – what children appear to know 

at a given time is the emergent product of the interactions-in-time between these 

component. In the context of this thesis, dynamic systems theory makes several 

testable predictions.  

 First, the DNF model suggests that word learning is a slow and two-stage 

process (see also Munro, Baker, McGregor, Docking, & Arculi, 2012). Children must 

encode both label and object across encounters. Although children may not robustly 
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learn a label-object mapping after a single exposure, then, they learn something – 

perhaps explaining children’s ability to extend novel labels without retention in Paper 

1. This subtle difference between word learning and generalization, as well as the 

extent of children’s learning on each exposure, remain unaddressed. Understanding 

the moment-by-moment development of a word-label mapping is important for our 

interpretation of the existing word learning literature – what this thesis does show, 

however, is that lack of retention need not indicate lack of learning, 

 Second, DST states that cognition is situated both in the environment and in 

the body. In terms of the environment, this thesis demonstrates that perceptual 

variability does affect category label learning – indeed, in line with noun 

generalization studies, Paper 1 demonstrates that moderate exemplar variability helps 

object category label learning. Paper 2 hints at a similar phenomenon in action 

category label learning, pointing to interesting future work in comparing the processes 

underlying noun and verb learning. What these papers do not address, however, is 

how other environmental variability might affect word learning. Specifically, 

according to DST, stable behaviour emerges after a period of instability, or chaotic 

behaviour. Evidence from the adult domain suggest that manipulating the amount of 

environmental variability precipitates faster emergence of stable behaviours such as 

short-cut solution to solving simple puzzles. If learning – and specifically, word 

learning – can be described as a dynamic system, a comparable increase in 

environmental variability should facilitate the emergence of stable word learning 

behaviour in adults. What, then, would the effect be in word learning in children? 

Further, would variability in different modalities have differential effects?  

 Paper 7 presented pilot data from an embodied simulation of word learning. 

Although limited by time constraints, the paper provides exciting evidence that an 
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embodied robotic system can learn labels for object categories using low-level 

associative processes. However, although a similar system has been used to simulate 

children’s spatial binding of labels to single objects (Morse, Belpaeme, Cangelosi, & 

Smith, 2010), the current system did not receive haptic feedback, so did not constitute 

the most stringent test possible of embodied categorization. This paper therefore 

provides the groundwork for an exciting future challenge: can a fully-embodied 

humanoid robotic system learn to label object categories?  

It appears this thesis raises as many questions as it answers – and rightly so. In 

light of recent rapid advances in means of studying cognition and development and 

new insights from the integration of computational and empirical research, new 

questions emerge every day. The answers to these questions, however, will not only 

bring us a step closer to understanding how and where language acquisition begins, 

but will also provide a rich and informative picture of the temporal, cognitive and 

environmental landscape through which the journey takes us. 
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