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Summary

The temporal structure of neural oscillations has become a widespread hypothetical
“mechanism” to explain how neurodynamics give rise to neural functions. Despite the
great number of empirical experiments in neuroscience and mathematical and computa-
tional modelling investigating the temporal structure of the oscillations, there are still
few systematic studies proposing dynamical explanations of how it operates within closed
sensorimotor loops of agents performing minimally cognitive behaviours. In this thesis
we explore this problem by developing and analysing theoretical models of evolutionary
robotics controlled by oscillatory networks. The results obtained suggest that: i) the in-
formational content in an oscillatory network about the sensorimotor dynamics is equally
distributed throughout the entire range of phase relations; neither synchronous nor desyn-
chronous oscillations carries a privileged status in terms of informational content in relation
to an agent’s sensorimotor activity; ii) although the phase relations of oscillations with
a narrow frequency difference carry a relatively higher causal relevance than the rest of
the phase relations to sensorimotor coordinations, overall there is no privileged functional
causal contribution to either synchronous or desynchronous oscillations; and iii) oscilla-
tory regimes underlying functional behaviours (e.g. phototaxis, categorical perception) are
generated and sustained by the agent’s sensorimotor loop dynamics, they depend not only
on the dynamic structure of a sensory input but also on the coordinated coupling of the
agent’s motor-sensory dynamics. This thesis also contributes to the Coordination Dynam-
ics framework (Kelso, 1995) by analysing the dynamics of the HKB (Haken-Kelso-Bunz)
equation within a closed sensorimotor loop and by discussing the theoretical implications
of such an analysis. Besides, it contributes to the ongoing philosophical debate about
whether actions are either causally relevant or a constituent of cognitive functionalities by
bringing this debate to the context of oscillatory neurodynamics and by illustrating the
constitutive notion of actions to cognition.
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Chapter 1

Introduction

1.1 Overview

The so-called artificial-life-route-to-AI (Steels and Brooks, 1995), originally emphasized

the situated, emergent, self-organized, often non-representational, and dynamic nature of

cognition. Design principles were also claimed to be biologically inspired. Such biological

inspiration was mostly limited to state that cognitive systems had to be built from the

bottom-up (from the simplest to the more complex, like evolution proceeded for natural

cognition) and to favour insect-like behavioural patterns. In some cases “biological inspi-

ration” meant also the use of artificial neural networks as control systems but rarely did

such networks bear much relevance to neuroscience. The scientific context has radically

changed since those early years of Artificial Life (AL). Neuroscience has made considerable

progress developing empirical and theoretical frameworks where self-organization, emer-

gent patterns, phase-synchrony, and oscillatory rhythms are now common issues in studies

of brain dynamics (Haken, 1978; Buzsaki, 2006; Traub and Whittington, 2010; Fell and

Axmacher, 2011; Aviyente et al., 2011; Dubovik et al., 2012; Kaliukhovich and Vogels,

2012). Whereas the AL approach to cognitive science still has much to explore within this

framework, large-scale neuroscience has yet to be integrated with insights into the situ-

ated and embodied nature of cognitive dynamics. The current work aims to help fill this

gap, merging situated and evolutionary robotics with some current trends in large-scale

neuroscience.

The last two decades have witnessed an increasing focus on oscillatory brain dynamics

as essential for a variety of cognitive phenomena. In neuroscience, oscillatory phenomena

are present in different levels of the nervous system’s activity. At the individual neu-

ral level, neurons undergo cyclic alterations on its membrane potential following different
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dynamical regimes depending on the cell properties (Izhikevich, 2007). At higher levels,

global oscillations is a collective phenomenon generated by groups of neural cells that fire

synchronously – entrained by pacemaker cells or as a result of recurrent network activ-

ity with inhibitory-excitatory connections (Buzsaki, 2006). Different recording techniques

have provided experimental results that are consistent with the oscillatory nature of neural

activity, among them: intracellular recording; extracellular single unit recording; multiu-

nit recording; and intracortical and scalp electroencephalography (Vertes and Stackman,

2011). While intracellular and extracellular single unit recordings capture the membrane

potential and neural action potentials (spikes) of individual neurons, respectively; the

other upper level recordings mainly capture action potentials and the local field potential

of neuronal groups. By investigating these oscillatory signals, coherent dynamical proper-

ties can be found and systematically related to sensory and motor coordination (Buzsaki,

2006; Singer, 2011; Hipp et al., 2011; Perfetti et al., 2011; Cohen and van Gaal, 2012;

Parameshwaran et al., 2012).

The temporal structure of the oscillations is a property that has been consistently

revealing the dynamic mechanisms underlying sensory and motor coordination. It can be

investigated by the following different approaches, such as the inter spike intervals from

individual neurons or neuronal populations (Mainen and Sejnowski, 1995; Bair and Koch,

1996; Reich et al., 1997; Reinagel and Reid, 2002), the timing of the first spike related to

a stimulus onset (Heil, 2004; VanRullen et al., 2005; Gollisch and Meister, 2008), the spike

of a neuron related to the local field potential on its background (Sinclair et al., 1982;

Fries et al., 2007; Denker et al., 2007; Montemurro et al., 2008; Kayser et al., 2009), the

time-locked spiking activity of locally or spatially distributed neurons (Izhikevich, 2006;

Izhikevich and Hoppensteadt, 2009), and the synchronisation of spikes from local and

distant neurons (Hipp et al., 2011; Perfetti et al., 2011; Cohen and van Gaal, 2012).

Generally speaking, this thesis explores the temporal structure of neural oscillations

underlying sensorimotor coordination and is based on two central issues: i) informational

content and causal relevance of the temporal structure of neural oscillations in relation

to the sensorimotor dynamics, and ii) dynamical analysis of oscillatory dynamics within

sensorimotor loops. These issues are explained in details in sections 1.1.1 and 1.1.2, re-

spectively.
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1.1.1 Informational content and causal relevance of oscillatory dynamics

in relation to the sensorimotor loop

A relevant property of the temporal structure of neural oscillations that has been receiving

a lot of attention from the cognitive science community is the synchronisation between os-

cillatory signals. Synchrony has become the hypothetical “mechanism” that is repeatedly

invoked to explain how spatially segregated neural oscillators get integrated into func-

tional transient clusters giving rise to cognitive functions such as coherent sensorimotor

coordination, perception and conscious experience (von der Malsburg, 1981; Gray and

Singer, 1989; Engel et al., 1990; Tononi and Edelman, 1998; Varela et al., 2001; Fries,

2005; Uhlhaas et al., 2009; Pockett et al., 2009; Singer, 2011; Hipp et al., 2011). Syn-

chrony refers only to one aspect of the temporal relation among oscillatory signals: i.e.

that in which the phase relation between oscillatory signals remains (relatively) constant.

A dynamical description of an oscillatory network in terms of its synchronous transient

clusters is a reduced description from its entire phase relation dynamics; that is, it does

not take into consideration how the phase relations between desynchronised oscillators are

changing over time. Such a reduction in the dynamical description might be leaving out

of the equation moments of oscillatory dynamics that are relevant for neural functions.

In this thesis, rather than studying synchrony we focus on desynchronous oscillations

and investigate their relevance in the context of an embodied oscillatory network generating

functional sensorimotor coordinations. Particularly, the first question we tackle regarding

the role of desynchronous oscillations is the following: how does the informational content

of the sensorimotor coordination present in a complete dynamical description of phase

relations change as such a description is reduced to the phase relations of synchronous

oscillations? That is, we study how the amount of information available about the sen-

sorimotor coordination changes as the phase relations of desynchronous oscillations are

left out of the dynamical description of the oscillatory network. Although it is expected

that the amount of information in a reduced description is smaller or equal than the infor-

mation in a more complete one, it is relevant to analyse how this amount of information

changes. By doing this analysis it is possible to identify whether there are ranges of phase

relations – during synchronised activity, for instance – that carry more information than

others about the sensorimotor dynamics.

The second question regarding the role of desynchronous oscillations is the following: to

what extent are desynchronous oscillations as causally relevant as synchronous oscillations

for the generation of functional sensorimotor coordination? The causal relevance is quan-
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tified by the effects on the sensorimotor coordination after applying perturbations to the

underlying oscillatory network during moments of synchronisation or desynchronisation.

This study identifies whether there are ranges of phase relations - during synchronous oscil-

lations, for instance – that carry a higher functional causal contribution to the generation

of coherent sensorimotor coordination.

The analyses of informational content (first question) and causal relevance (second

question) of the phase relations during synchronous and desynchronous oscillations con-

tribute to the understanding of oscillatory dynamics underlying sensorimotor coordination;

it might as well provide insights for the assessment of research programs that attribute a

privileged explanatory status to synchronous oscillations over desynchronous ones. Both

problems are addressed with models of agents behaving in simulated environments and

controlled by networks of phase-coupled oscillators.

The second central issued approached in this thesis is presented in the next section.

1.1.2 Dynamical analysis of oscillatory dynamics within sensorimotor

loops

Despite the great amount of empirical experiments in neuroscience and mathematical and

computational modelling investigating the temporal structure of the oscillations (Izhike-

vich et al., 2004; Zhang et al., 2008; Aviyente et al., 2010; Ceguerra et al., 2011; Skardal and

Restrepo, 2012), there is still little systematic exploration of how the temporal structure

of oscillatory signals is modulated by and depends on the dynamics of closed sensorimotor

loops. The empirical, theoretical and mathematical approaches for analysing oscillatory

signals have mostly worked under the assumption that the temporal structure of neural os-

cillations can be understood without incorporating the sensorimotor loop into the picture

(that is, the continuous and recurrent interaction with the environment, the online cou-

pling of brain and environment through sensory and motor activities). Most approaches

have focused on how oscillations can carry information within the brain (Sauseng et al.,

2002; Rubino et al., 2006; Neymotin et al., 2010). Models are generally built leaving out

the body and the environment and often assuming a representational theory of brain func-

tioning (that is, assuming that the main job of the brain is to create a representation or

model of the environment and focusing on neuronal mechanisms capable of supporting the

processing of such a model, independently from its environment). Despite the significant

progress achieved under this assumption, we believe it might be limiting future develop-

ment while the role of sensorimotor loops still remains underexplored. In this way, in
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this thesis we develop computational models of embodied oscillatory network controlling

agents behaving in simulated environments and analyse the dynamics of co-modulation

between the agents’ internal oscillations and their sensorimotor loops. Particularly, this

problem is investigated from three different perspectives, which are described below.

From spontaneous oscillations to functional oscillatory regimes

A neural system is an active system that constantly regenerates its internal oscillatory

activity which is modulated by the interaction with the environemnt. In its resting-state

(i.e. when it is not engaged in a cognitive task), a neural system does not operate in a

silent mode waiting for stimuli from the environment, rather it constantly oscillates and

regenerates its own internal activity (Buzsaki, 2006; Sporns, 2010). Functional oscillatory

regimes (or the neural dynamics underlying a cognitive task) are then generated as the

result of a network’s spontaneous oscillations combined with the modulation from the

sensorimotor dynamics.

Contrary to this view of an active neural system, the majority of modelling in theoreti-

cal neuroscience has focused on stimulus-driven neural models where neurons are typically

silent in the absence of input (Vogels et al., 2005). Although this approach has achieved

significant progress in understanding brain operations – specifically in the sensory areas –

it does not account for the majority of neural dynamics where the sensory activity works

as perturbations to the ongoing internally generated oscillations (Vogels et al., 2005). In

this way, this thesis develops a model where an agent performs a minimally cognitive task

(the discrimination of two objects in an environment) controlled by a network of Kuramoto

phase-coupled oscillators (Kuramoto, 1984) and study how the sensorimotor loop interacts

with the network’s spontaneous oscillations so that functional oscillatory regimes emerge

and the agent correctly performs the task. We will provide a dynamical explanation of

how functional dynamics in the embodied oscillatory network are generated from the net-

work’s spontaneous oscillations (decoupled from the sensorimotor loop) by analysing the

modifications on attractor landscape of phase relations.

The dependency of functional oscillatory regimes on an agent’s motor-sensory

dynamics: a case study with the HKB equation

The temporal structure of oscillatory components has been carefully investigated within

the empirically grounded theoretical framework of Coordination Dynamics (Kelso, 1995);

a prominent work in cognitive science that has motivated many empirical studies of neu-
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ral oscillatory dynamics underlying sensory and motor activities (Meyer-Lindenberg, 2002;

Swinnen, 2002; Jantzen, 2004; Aramaki, 2005; Lagarde and Kelso, 2006) and has opened up

discussions in different areas such as philosophy of cognitive science (Chemero, 2009; Bech-

tel and Abrahamsen, 2010; Kaplan and Bechtel, 2011; Stepp et al., 2011) and theoretical

neuroscience (Kelso and Tognoli, 2009). The main illustrative model for the Coordination

Dynamics framework is that described by the HKB (Haken-Kelso-Bunz) equation which

captures the temporal structure between the activity of coupled oscillatory elements. This

equation has been studied by manipulating a control parameter that modifies the oscilla-

tors’ natural frequencies or their coupling factor (Kelso, 1995). One of its main dynamical

properties is the metastable regime in which the variable representing the temporal rela-

tion between two oscillators (i.e. their phase relation) engages when the control parameter

crosses a certain threshold.

The metastable regimes have been hypothesized to be the dynamical signature of the

nervous system underlying sensorimotor coordination (Kelso and Tognoli, 2009; Tognoli

and Kelso, 2009; Bressler and Kelso, 2001). Empirical evidence favouring this hypothesis

comes, for instance, from studies showing correlations between sensory stimulation and

transiently synchronised networks in the brain of animals performing perceptual and motor

coordination tasks (Rodriguez et al., 1999; Varela et al., 2001; Buzsaki, 2006; Pockett

et al., 2009; Singer, 2011; Hipp et al., 2011). And yet, despite the evidence supporting

the existence of metastable oscillations in the nervous system of behaving animals, to our

knowledge there are still very few models (if any) where the HKB equation generates the

motor behaviour of an agent interacting in an environment and, at the same time, has

its control parameter modulated, through sensory feedback, by the motor behaviour it

generates.

In order to fill this gap we analyse the HKB equation within the sensorimotor loop by

implementing it as the controller of an agent performing a functional behaviour (gradient

climbing) in a simulated two-dimensional environment. The “output” of the HKB equation

(the phase relation variable) generates the agent’s motor behaviour and, at the same time,

its control parameter (in our particular case, the variable representing the oscillators’

frequency difference) is modulated by the agent’s behaviour through its sensory activity.

The analysis of the HKB equation within a closed sensorimotor loop not only contributes to

the Coordination Dynamics framework but also gives theoretical insights to understand the

interplay between the temporal structure of neural oscillations and sensorimotor dynamics.

Particularly, this model allows us to show (in a theoretical level of abstraction) how the
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temporal structure of functional oscillatory regimes is tightly dependent on a fine grained

coordinated coupling of the agent’s motor-sensory dynamics (the term “motor-sensory”

is being used to emphasize the modulation of the sensors by the motors through the

environment).

Accommodating oscillatory dynamical regimes within homeostatic boundaries

Another related area that deserves more detailed understanding is the analysis of how os-

cillations are affected by a mechanism of adaptation that changes the network connectivity

on a ontogenetic timescale. A problem that arises when connections are modified is that if

the network is completely integrated (without functional modules), the modifications can

interfere in the network dynamics under conditions to which it had previously adapted –

i.e. a problem known as “the neural interference” (Di Ferdinando et al., 2001).

In this thesis we study the problem of neural interference in the context of an oscil-

latory network within a sensorimotor loop, particularly we i) analyse how a completely

integrated, embodied network acquires a new functional oscillatory regime without affecting

the functionality of pre-existing regimes and ii) show how these regimes tightly depend on

the closed sensorimotor loop dynamics. We develop a model where a simulated agent is

performing phototaxis maintaining its homeostatically stability (i.e. its oscillations are

maintained within homeostatic boundaries). When the agent’s visual field is inverted, it

becomes homeostatically unstable and does not perform phototaxis. The instability acti-

vates synaptic plasticity changing the connectivity of oscillatory network towards a con-

figuration that accommodates functional, stable oscillations under normal and inverted

visions. The implementation of this task was motivated by an experiment carried out

by Taylor (1962); Kohler (1963) where a subject adapts his/her sensorimotor behaviour

to distorted visual field (by intermittently wearing a pair of spectacles). The mechanism

of adaptation is implemented following Ashby’s work on homeostatic adaptation (Ashby,

1947, 1960; Di Paolo, 2000). We will investigate how functional oscillatory regimes are

generated and sustained within the sensorimotor loop; how the mechanism of adaptation

changes the attractor landscape without affecting the functionality of the network under

previously adapted conditions; and also whether homeostatic stability is necessary for the

transition between the dynamical regimes underlying normal and inverted visions.

A summary of the thesis organisation is presented in the next section.
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1.2 Thesis organisation

Chapter 2 contains the theoretical background of this thesis, it presents some properties

of the temporal structure of neural activity that have been consistently revealing the

dynamical mechanisms underlying sensory and motor activities; chapters 3, 4, 5 and 6

contain the computational models and their dynamical analyses; and chapter 7 presents

the conclusions and discussions. The content of the experimental chapters are described

in more details in the following paragraphs.

Chapter 3 contains a computational model where we analyse in details: a) how the

informational content about an agent’s sensorimotor behaviour that is present in the tem-

poral structure of its internal oscillations changes when the temporal structure is gradually

reduced to the dynamics of synchronous oscillations by removing the information present

in desynchronous oscillations; and b) whether either synchronous or desynchronous os-

cillations carries a privileged functional causal contribution to the generation of coherent

sensorimotor behaviour. These problems are addressed by implementing an agent perform-

ing phototaxis controlled by a network of phase-coupled Kuramoto oscillators Kuramoto

(1984). The analysis of informational content is done by using the standard measures

of entropy and mutual information from information theory (Shannon, 1948; Cover and

Thomas, 2005). For the analysis of causal relevance we perform experiments with con-

trolled perturbations applied to synchronous and desynchronous oscillations while the

agent is interacting with its environment.

Chapter 4 provides a computational model where we explore: a) how functional os-

cillatory patterns (patterns underlying the agent’s correct behaviours) are generated from

the combination of the network’s spontaneous oscillations and the agent’s sensorimotor

loop dynamics; particularly, we focus on the analysis of how the agent’s sensory activity

dynamically shapes the attractor landscape of phase relations as the agent behaves in the

environment; and b) how the informational content present in the temporal structure of

the agent’s internal oscillations changes as the desynchronous oscillations are removed from

the dynamical description of phase relations – which is similar to the problem investigated

in chapter 3, but with the agent performing a different task and controlled by a different

network (in terms of number of oscillators, connectivity and natural frequencies). The

agent’s controller is implemented with phase-coupled Kuramoto oscillators and the anal-

yses are carried out by using dynamical system tools and information-theoretic measures.

This chapter is the only one where we explore both central issues of the thesis, namely i)

the information and causal relevance of oscillatory dynamics in relation to sensorimotor
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loops, and ii) the dynamical analyses of oscillatory dynamics within sensorimotor loops.

Chapter 5 contains a computational model where we study the dependency of func-

tional oscillatory regimes on an agent’s motor-sensory dynamics. This study is carried

out by implementing an agent’s performing phototaxis controlled by the HKB equation

and by analysing the coordinated coupling between the inward and outward arms of the

sensorimotor loop (i.e. the coupling between “sensor → controller → motor” and “motor

→ environment → sensor”). The implementation of the agent’s controller with the HKB

equation makes the dynamical analysis relatively simple and yet explanatorily powerful to

approach the problem investigated in this chapter. Besides, the analysis of this equation

within the sensorimotor is a contribution to the theoretical framework of Coordination

Dynamics proposed by Kelso.

Chapter 6 contains a computational model where we study the problem of “‘neural

interference” by analysing how a completely integrated network acquires a new functional

oscillatory regime without affecting the functionality of pre-existing ones, and also how

these functional oscillatory regimes depend on the dynamics of a closed sensorimotor loop.

Specifically, we analyse how the attractor landscape and the dynamics of a network con-

trolling a phototatic agent under normal vision changes after it adapts to perform photo-

taxis under inverted vision. The agent’s controller is implemented using a continuous-time

recurrent neural network (CTRNN) (Beer, 1995), a well-known equation in field of evo-

lutionary robotics which, to our knowledge, has never been studied in terms of its phase

dynamics1. The phase relations are obtained from the CTRNN dynamics by using Em-

pirical Mode Decomposition and Hilbert Transform (Huang et al., 1998), which will be

explained in details chapter 6.

In sum, chapters 3, 4, 5 and 6 contain the computational models we have developed

and analysed in this thesis. The analyses of informational content and causal relevance

of the phase relations (one of the central issues of the thesis) are approached in chapter 3

and 4 (with more details in the former). The dynamical analyses of oscillatory dynamics

within sensorimotor loops (the second central issue of this thesis) is approached in chapters

4, 5 and 6. Chapter 4 focuses on the generation of functional oscillatory regimes from

modulation of the network’s spontaneous oscillations by the sensorimotor loop; chapter 5

focuses on the dependency of functional oscillatory regimes on the motor-sensory dynamics;

and chapter 6 focuses on how a completely integrated network that is constantly modulated

by an agent’s sensorimotor loop accommodates a new functional oscillatory regime without

1The CTRNN does not necessarily oscillate. The analysis of phase dynamics was only possible as the

network presented a rhythmic dynamics when coupled to the agent’s body.
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affecting the functionality and stability of pre-existing regimes.

1.3 Summary of original contributions

This work contributes to the understanding of oscillatory dynamics underlying sensorimo-

tor activity. Most contributions were drawn from the analyses of computational, theoreti-

cal models of brain-body-environemnt systems at a high level of abstraction and, as such,

they should be taken as proofs of concept that show how neural oscillatory activity could

modulate and be affected by sensorimotor coordination dynamics. As the informational

content and causal relevance of desynchronous oscillations in relation to the sensorimotor

dynamics are concerned, this thesis helps answer the questions:

• How does the informational content of the sensorimotor activity present in a com-

plete dynamical description of phase relations change as such a description is reduced

to the dynamics of synchronous oscillations? In the context of the model developed,

we showed that the informational content about the sensorimotor activity is equally

distributed throughout the entire range of phase relations; the more the dynamical

description is reduced the less information it carries about the sensorimotor coordi-

nation. Neither synchronised nor desynchronised oscillations was found to carry a

privileged status in terms of informational content in relation to the agent’s senso-

rimotor activity.

• To what extent are desynchronous oscillations as causally relevant as synchronous

ones for the generation of functional sensorimotor coordination? In the context of

the model developed, we have shown that although the phase relations of oscillations

with a narrow frequency difference carry a relatively higher causal relevance than the

rest of the phase relations to sensorimotor coordinations, overall there is no privileged

functional causal contribution to either synchronous or desynchronous oscillations.

In essence, the analyses of the models suggest that the high level of synchronisation

found by empirical experiments might only represent part of the explanatory picture that

involves the entire phase relations; the reduction of phase relations to synchrony might be

hindering relevant information about the neural oscillatory activity underlying functional

sensorimotor coordination.

As the dynamical analyses between the temporal structure of the oscillations and the

dynamics of closed sensorimotor loops are concerned, the contributions of this thesis are

the following.
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• We have provided a dynamical explanation of how an agent’s sensory dynamics shape

the spontaneous oscillations of a network generating oscillatory patterns that under-

lie an agent’s functional behaviours. This dynamical explanation helps understand

how the dynamics of a neural system in a resting state differ from its dynamics when

it is engaged in a sensorimotor task.

• The analyses of the models suggested that the emergence of functional oscillatory

patterns (e.g. patterns that generate gradient climbing behaviour) depends not only

on the structure of the agent’s sensory input but also on the coordinated coupling of

the agent’s motor-sensory dynamics. The modulation of an agent’s sensory dynam-

ics by its motor activity assures that the agent’s controller converges to functional

oscillatory regimes that underlie coherent sensorimotor behaviours; in the absence of

this modulation, the oscillations and the motor-sensory activity might become unco-

ordinated and consequently generate a non-functional interaction between the agent

and its environment. More generally, the results suggest that functional oscillatory

regimes are tightly dependent on the agent’s sensorimotor contingencies, as when

what the agent is doing is not coordinated to what it is sensing, then the internal

oscillations might converge to non-functional regimes.

• We have implemented and analysed the HKB equation within an agent’s sensori-

motor loop. This equation is well-known in embodied cognitive science; however,

it had never been implemented and analysed in the context where it generates an

agent’s behaviour and, at the same time, is modulated by the behaviour it gener-

ates (through sensory feedback). In this way, such implementation not only helps

to understand the interplay of neural oscillations and sensorimotor activity, but also

contributes to the theoretical framework proposed by Kelso.

• We have provided a dynamical explanation of how a completely integrated network

can accommodate a new oscillatory regime without affecting the functionality of pre-

existing ones. This explanation gives some insights on how the brain might solve the

problem of neural interference and also has practical implications to the development

of artificial neural networks that should learn a multiplicity of behaviours without

the implementation of a functionally modular architecture.

• The analyses of the models contribute to the philosophical debate about whether ac-

tion (and consequently the sensory stimuli resultant from an action) is either a cause

or a constituent of a cognitive functionality (e.g. perception). This contribution is
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done by bringing this discussion to the context of embodied oscillatory dynamics

and illustrating that a functionality is not a standalone entity in a neural system

that depends on external stimuli to be activated, rather it is a process that emerges

from the coordinated coupling between the brain-body-environemnt system where

the actions and the sensory stimuli are constituents of the functionality itself.
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Chapter 2

Background on neural oscillations

Neural oscillations are present in different spatial and temporal scale in nervous system,

from the membrane potential of a single neuron to cortical oscillations (Buzsaki, 2006;

Izhikevich, 2007; Traub and Whittington, 2010); however it is still unknown which prop-

erties of these oscillations (if any) consistently reveal the dynamical mechanisms underlying

an agent’s sensory and motor activities. The rate of a spike train within a time window

is one of the first properties that has been investigated (this property is briefly reviewed

in section 2.1). More recently, the temporal structure of the oscillations (e.g. temporal

pattern within a spike train) is another property that has been carefully investigated by

carrying out empirical experiments (which are reviewed in section 2.2) and developing

computational models (which are reviewed in section 2.3).

2.1 Spiking rate

One of the earliest works that proposes spiking rate as a relevant property to understand

neural oscillations underlying sensory and motor activity was developed by Adrian (1926).

Adrian measured the activity of the nerve in a frog’s knee by stretching its leg holding dif-

ferent weights attached to a thread. He found that the number of action potentials, which

he called “oscillations”, was correlated to the weight used to stretch the leg. Particularly,

he observed that the heavier the weight the more frequent were the oscillations.

This correlation of spiking rates to environmental stimuli has also been observed in

cold and mechanical receptors in the skin (Darian-Smith et al., 1973; Mountcastle et al.,

1966) and in the olfactory system (Getchell, 1986). Two important observations regarding

the relation between a stimulus and a neural firing rate are the following: a) the spiking

rate remains unchangeable for values of stimulus above or below a threshold which defines
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a window of neural sensitivity; b) the lower and the upper boundaries of such a sensitivity

window are context dependent and can change through an habituation process (Kandel

et al., 2000).

A more sophisticated interpretation for the neural spiking rates was proposed by Hebb

(1949). Hebb extends the role of spiking rates from sensory and motor areas to higher

order functional areas across the nervous system. He stated that elevated firing rates of

neurons located throughout the nervous system constitute a functional neural assembly

which gives to the subject the perception of a particular object in the environment. His

proposal is criticized for not dealing with the situation where there are multiple objects

in the environment. As an assembly is constituted by neurons with elevated firing rates

and, at each moment, there is only one whole indistinct assembly activated, how could the

perception of multiple objects (multiple assemblies) co-exist in the nervous system? This

problem is referred to as “the superposition catastrophe” (von der Malsburg, 1987).

Two possible methods to measure spiking rates are averaging over time and averaging

over different trials (Gerstner, 1999). In the first one, the number of spikes in a time

interval T is counted and divided by T. Although the length of T may vary depending

on the stimulus and on the type of neuron being recorded, typical values for T are within

[100, 500] ms (Gerstner, 1999). The second method consists of performing the same ex-

periment many times and averaging the spikes across the trials aligned with the stimulus

onset. The main critics of the spiking rate approach is that by averaging spikes within a

time window the timing of the spikes is lost (for a further discussion about spiking rates

see Shadlen and Newsome (1994) and Rieke (1999)).

In the next section we review some approaches that investigate the temporal structure

of the neural oscillations at different spatial and temporal scales.

2.2 The temporal structure of neural oscillations

The temporal structure of neural activity can be investigated by following different ap-

proaches, namely: i) the timing of the first spike related to a stimulus onset (reviewed in

section 2.2.1); ii) the interspike interval within a neuron spike train (section 2.2.2); iii) the

spike of a neuron related to the local field potential on its background (section 2.2.3); and

iv) the locally and spatially distributed synchrony of neural oscillations (section 2.2.4);
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2.2.1 Time-to-first-spike

In this approach the time of the first spike related to a reference signal (e.g. the onset of

visual stimulus) is hypothesized to carry more information about the external world than

the subsequent spikes (Thorpe, 1990; VanRullen et al., 2005). One motivation to take the

time-to-first-spike as a relevant variable of the neural dynamics comes from the observation

that the recognition of a stimulus (e.g. a familiar object in the visual field) takes place in

a relatively short time – less than 150 ms for visual images (Thorpe et al., 1996) – which is

not enough time for the flow of many spikes to travel throughout the nervous system. The

information contained in the first spikes have been studied in the auditory (Heil, 2004),

somatosensory (Johansson and Birznieks, 2004) and visual (Vanrullen, 2003; Gollisch and

Meister, 2008) systems.

Gollisch and Meister (2008), for instance, presented a uniform square-wave grating in

the salamander visual field and recorded the neural activity near its retina surface (ganglion

cells). Typically, the neural activity presented bursts of spikes after the stimulus onset. In

certain types of cells (fast and biphasic OFF cells) the number of spikes within a burst was

similar during the presentation of different gratings, indicating a limitation of the spiking

rate. On the other hand, the spike latency of the same cells varied across different stimuli

and was very reproducible for repeated presentation of the same stimulus. They also found

that the amount of information conveyed by the number of spikes about a visual stimulus

is considerably smaller than the amount of information conveyed by the spike latency.

2.2.2 Interspike interval

The general idea of the interspike interval approach is that different environmental condi-

tions produce different spike trains in a neuron or neuronal group (Mainen and Sejnowski,

1995; Bair and Koch, 1996; Reich et al., 1997). One way to visualize patterns of spike

trains for a given stimulus is by plotting the distribution of interspike intervals grouped

in bins of fixed width. de Ruyter van Steveninck et al. (1997) measured the activity of a

motion-sensitive neuron in a fly’s visual system during the presentation of random bars

moving across its visual field and reported that the motion-sensitive neuron efficiently

transmits information about the bar movements by establishing precise temporal relation

between individual spikes. In another experiment, Reinagel and Reid (2002) found that

neurons in the thalamus of a cat’s brain also engage in temporal patterns of spike intervals

during visual stimulation.
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2.2.3 Phase between spikes and the LFP

Another property of the oscillations that has been studied is the temporal relation between

local spiking activity and oscillatory cycles generated by neuronal populations (Sinclair

et al., 1982; Fries et al., 2007; Denker et al., 2007; Kayser et al., 2009), see illustration in

Fig. 2.1. O’Keefe and Recce (1993) found that the phase relation between the spiking

bursts of place cells and theta oscillations in the hippocampus changes systematically as a

rat runs through a place field. In another experiment, Montemurro et al. (2008) recorded

the spiking activity and the local field potential (LFP) from neuronal populations in

the visual area V1 of anaesthetized macaque monkeys watching film and reported that

the phase of a spike in relation to the phase of the LFP on its background carried an

additional information about the visual scenes that was not present in the spiking rate

alone. This additional information was found only in oscillatory frequencies smaller than

24 Hz. For higher frequencies the phase relation between the spikes and the LFP did not

provide extra information about the visual scene.

Figure 2.1: Phase lags between spikes and the local field potential on its background.

A neuronal group is represented by a set of grey dots on the left. The activity of this

neuronal group is represented by the oscillatory signal. A trace of black dots below the

oscillatory signals represents the spike train of a single neuron within the neuronal group.

The spikes of this neuron are 3 ms delayed in relation to the trough of the oscillatory

signal. The phase of this neuron in relation to the oscillatory cycle has been proposed to

carry relevant information about sensory signals.

2.2.4 Neural synchrony

In the context of this thesis, neural synchrony is a very important property as one of

the main contributions of the current work is the analysis of informational content and

causal relevance of synchronous and desynchronous oscillations in relation to sensorimotor

dynamics (which were explained in the previous chapter and will be studied in chapters 3

and 4).
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Synchronization has become a widespread hypothetical “mechanism” that is repeat-

edly invoked to explain cognitive phenomena such as perception, functional behavior and

conscious experience (von der Malsburg, 1981; Gray and Singer, 1989; Engel et al., 1990;

Tononi and Edelman, 1998; Rodriguez et al., 1999; Varela et al., 2001; Lutz, 2002; Buzsaki,

2006; Pockett et al., 2009; Singer, 2011; Hipp et al., 2011). The core idea of this approach

is that neurons form dynamical transient functional neural assemblies by synchronising

their activities; such assemblies last for long enough, usually fraction of seconds, to ac-

complish an elementary cognitive act. The synchronisation takes place in several spatial

scales, ranging from individual neuronal groups to a set of neuronal groups located across

different brain hemispheres.

The root of the approach that privileges synchrony as being functionally relevant to

neural functions dates back to von der Malsburg (1981) who pointed out a deficiency in

existing brain theory – how integration occurs among functionally distinct brain areas –

and discussed at a conceptual level how to fill this gap. He proposed that fast synaptic

modulation is the mechanism through which functionally different active cells become inte-

grated and express the whole set of different features of an external object; the integrated

cells are defined by their synchrony activity in a temporal fine structure of [2,5] msec.

resolution. Since then, von der Malsburg’s hypothesis has been extended and empirically

tested; some experiments and variations of his idea are presented bellow.

Synchronization in the visual cortex: the visual binding problem

The first evidence supporting von der Malsburg’s hypothesis came from empirical studies

of integration in the visual cortex, a research field denoted as the visual binding problem

(Eckhorn et al., 1988; Gray and Singer, 1989; Engel et al., 1990; Roskies, 1999). This

problem can be stated as follows: “how are the different attributes of an object brought

together in a unified representation given that its various features (edges, color, motion,

texture, depth and so on) are treated separately in specific visual areas?” (Varela et al.,

2001, p.231). By carrying out multiunit recordings on the primary visual cortex Gray

et al. Gray and Singer (1989) found the presence of gamma oscillations in the local

field potential (LFP) and the synchronised activity of adjacent neurons. These findings

suggested that oscillations, defined as recurrent synchronous spiking bursts of neuronal

groups1, could be the building blocks for cortical representations, and synchronisation

could be the mechanism for binding spatially separated neuronal groups Engel et al. (1992).

1See Burns et al. (2010) for a study comparing oscillations in local field potential and spiking activity

measured by multiunit recordings.
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Following up the discovery of oscillations in individual neuronal groups using multiu-

nit recordings, researchers found stimulus-evoked synchronised oscillations among different

neuronal groups in the primary visual cortex of anaesthetized and awake cats by record-

ing neural activity using multiple electrodes (Gray and Singer, 1989; Engel et al., 1990).

Besides that, at a higher spatial resolution, synchronised oscillations were also observed

among primary, secondary and associative areas of the visual cortex (Eckhorn et al., 1988)

and also among visual cortex areas in both cerebral hemispheres (Engel et al., 1991a).

Coexistent assemblies of synchronised activity were also observed among neuronal

groups in the primary visual cortex when two independent stimuli were presented at

the same time to anaesthetized cats. This result indicates that scene segmentation and

integration of the features of an individual object might be accomplished by the formation

of transiently synchronised assemblies (Engel et al., 1991b; Gray, 1999).

Synchronization across the brain

At a larger scale neural synchrony has also been found and hypothesized as the binding

mechanism of neuronal groups spatially distributed in the cortex – not only the visual

ones – of animals (Bressler et al., 1993; Roelfsema et al., 1997) and humans (Rodriguez

et al., 1999) performing a motor behaviour according to the perception of sensory stim-

uli. Roelfsema et al. (1997), for instance, trained a cat to either press or release a lever

according to the rotation of a grating presented on his visual field. They found that syn-

chronised activity was higher when the animal was engaged in the task (paying attention

to the grating, pressing and releasing the lever) than when it was being rewarded or at

rest. They also observed that the pattern of synchronised activity among visual areas

changed when the stimulus switched from stationary to moving grating. These results

indicate that synchronisation patterns are correlated to perception of visual stimuli and

functional behaviour.

In another early experiment, Bressler et al. (1993) trained a macaque monkey to co-

ordinate its motor response (either releasing or keeping depressed a lever with its hand)

according to visual stimuli (lines and diamonds) and recorded the local field potential at

15 sites in one cortical hemisphere. Regarding the synchronisation activity, they observed

that a) during the perception of the visual stimulus, which was ≈[100,250] ms after the

stimulus onset, there was a high level of frequency correlation between the striate and pari-

etal cortex; and b) during the motor response the correlation was higher when the monkey

released the lever than when keeping it depressed. These results also indicate that visual
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stimuli and motor coordination are correlated with synchronised neural activity.

In humans, Rodriguez et al. (1999) analyze how gamma oscillations relate to synchro-

nisation by recording scalp EEG signals of a subject performing a cognitive task. In the

task a subject coordinates his/her motor movements by pressing one of two buttons with

different fingers in order to indicate either ‘perception’ or ‘no-perception’ of a face in an

image presented to him/her (upright and upside-down Mooney face). On average, each

trial took ∼1 sec. from the stimulus onset and with the subjects pressing either buttons

at ∼800 ms. For both ‘perception’ and ‘no-perception’ trials, oscillations in gamma fre-

quency were spatially homogeneous and presented two peaks at ∼200 and ∼800 ms with

a small difference in amplitude. Despite similarities in gamma frequency, the synchroni-

sation dynamics were different. While during ‘perception’ trials the signals presented two

synchronisation patterns at ∼200 and ∼800 ms, respectively; during ’no-perception’ trials

a synchronisation pattern emerged only during motor commands at ∼800 ms. According

to the authors these findings show that: a) the presence of gamma oscillations do not

indicates synchronised activity; and b) only face perception, as opposed to meaningless

images, correlates to a synchronised pattern.

The aforementioned works represent a small sample of early research favouring syn-

chrony as a fundamental property of neural oscillations underlying cognitive phenomena.

Since then, different methods of analysing synchrony have been proposed and empirical

evidence has been found (Rilk et al., 2011; Perfetti et al., 2011). Hipp et al. (2011), for

instance, provide further evidence supporting the existence of dynamic functional large-

scale synchronised networks in human beings underlying cross-modal perception. They

developed an unbiased methodological framework to identify such networks and applied

it to analyse EEG signals recorded from a subject performing a cognitive task. The task

consists of a subject who is presented to an identical ambiguous audiovisual stimulus of

two vertical bars approaching each other, overlapping and then moving apart with a click

sound played at the overlapping moment. The subjects indicated whether after the click

sound they perceived bars crossing one another or bouncing off each other. They showed

the presence of transiently synchronised oscillatory network at beta and gamma frequen-

cies across distributed brain areas and also found that the magnitude of synchronisation

in the beta and gamma networks could predict the subject’s perception (bounce or pass

trials); particularly, the bounce trials presented more cross-modal integration than pass

trials.

This section has presented some empirical experiments that focus on the analyses of
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neural oscillations in relation to sensory and motor activities. The next section presents

a theoretical framework and some computational tools to study oscillatory systems.

2.3 Computational models to study oscillatory dynamics

Oscillatory dynamics at different spatial and temporal scales in neural systems is a complex

dynamic phenomenon. Computational models can help deal with this complexity by

providing theoretical insights to explain the generative mechanisms underlying oscillations,

by allowing the modeller to more easily test the behaviour of the system under different

parameter configurations and by allowing hypotheses and predictions about the behaviour

of the real system to be raised. This section presents some computational models that

have been developed to investigate oscillatory dynamics. Specifically, section 2.3.1 presents

the HKB equation which is a computational model developed within the Coordination

Dynamics framework. This model has been developed to investigate the coordination

of oscillatory components at undetermined level of abstraction and has provided many

theoretical insights about neural functioning. Section 2.3.2 presents the Kuramoto model

of phase-coupled oscillators, a mathematical model that has been extensively used to study

the behaviour of oscillatory systems.

2.3.1 The Coordination Dynamics framework

Coordination dynamics is a consistent framework which can be used to investigate the

neural oscillatory temporal structure underlying sensorimotor behaviour. It was proposed

and developed by Kelso (1995) based on Haken’s work on synergetics (Haken, 1978) and

combines experiments and theoretical models formulated mathematically to study how

oscillatory components of a system interact and produce coherent coordination patterns.

This framework is aimed at studying the coordination of living systems acting in their

environments and can be applied to describe the interaction of oscillatory components at

different levels of observation. For instance, it offers a means to relate the coordination

dynamic of parts of the brain to the stimuli and responses given by a living system inter-

acting with its environment (Kelso, 1995; Jirsa and Kelso, 2004). As Kelso and Jirsa put

it:

Coordination dynamics - the science of coordination - describes, explains

and predicts how patterns of coordination form, adapt, persist and change in

natural systems. [...] [It] seeks to identify laws, principles and mechanisms
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underlying coordinated behavior in different kinds of system at different level

of description. [...] [It] aims to characterize the nature of the coupling within

a part of a system (e.g. the firing of cells in the heart or neurons in a part

of the brain), between different parts of a system (e.g. parts of the brain,

parts of the body, members of an audience) and between different kinds of

systems (e.g. stimuli and responses, organisms and environments, perception

and action, etc.). Ultimately Coordination dynamics is concerned with how

things come together in space and time, and how they split apart (Jirsa and

Kelso, 2004, p.VIII).

The main illustrative model for the Coordination Dynamics framework is that de-

scribed by the HKB equation (Haken-Kelso-Bunz) which captures the temporal relation

between the activity of coupled oscillatory elements (Haken et al., 1985). This model was

originally designed to replicate the type of phase relation dynamics observed in an em-

pirical experiment involving rhythmic behaviour of human fingers. In this experiment a

subject rhythmically moves his right and left index fingers in a horizontal plane at the same

frequency of a pacing metronome. The HKB model replicates how the angle between the

left and right fingers changes over time (the phase relation dynamics) given different initial

conditions – fingers in-phase or anti-phase – and at an increasing metronome frequency

(Kelso, 1995, p.46). This model was mainly used to explore the in-phase and anti-phase

stable synchronisations, the transition between them, and their basins of attraction.

Later on, Kelso extended the HKB model by adding a parameter of symmetry-breaking

in order to replicate a type of phase relation dynamic between non identical oscillatory

components, i.e. components with different natural frequencies, which is a more realistic

phenomenon in nature . As Kelso and Engstrm (2008) put it:

After over 20 years of detailed study, it is probably time to put the more

idealized HKB model of coordination to bed. It has served its purpose well.

By explicitly showing that crucial observations about the stability and change

of human behaviour could be understood in terms of self-organizing dynam-

ical systems, the HKB model stimulated a great deal of empirical research

and theoretical development. But biological coordination seldom deals with

identical components and pure symmetry. The newer, still quite elementary

version of the coordination law presented here [based on the extended model]

not only is able to handle all the previously observed phenomena treated by the

HKB model, it also embraces both symmetry and broken symmetry (symmetry
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creating symmetry breaking) and leads to altogether novel effects and totally

unexpected consequences, both of a scientific and epistemological nature.

One of the main properties of this model is the existence of metastable dynamics

where the variable representing the temporal relation (i.e. phase relation) constantly

moves in a transient dynamics through regions of the phase space with low potential

energy (representing moments of transient synchronisation) followed by regions with high

potential energy (representing moments of desynchronisation) and without settling down in

point attractors (representing moments of stable synchronisation). The equation governing

the dynamic of the relative phase is presented in Eq. (2.1).

φ̇ = δω − a sin φ− 2 b sin(2φ) (2.1)

where φ is the phase relation between two interacting oscillatory components; δω is

the intrinsic difference between oscillators (parameter of symmetry-breaking); a and b are

the coupling strength. The graphic in Fig. 2.2 depicts the stable and unstable points of

the phase relation and its derivative for different values of δω and constant coupling (a=1;

b=1). Observe that, for small values of the intrinsic difference between the components

(δω), the system is multistable with stable points (φ̇ = 0) near the in-phase (φ = 0)

and anti-phase (φ = π). These points define regions where the oscillators are stable

synchronised. As the intrinsic difference increases the fixed points move and eventually

disappear. As the parameter of symmetry breaking increases and crosses a threshold

(δω > 3), the phase relation no longer presents fixed points and the relative phase engages

in a metastable dynamical regimes with moments of metastable synchronisation in the

regions where the stable points (φ̇ = 0) used to be. A numerical analysis of this equation

for a specific set of parameters will be presented in Chapter 5.

Bressler and Kelso (2001) describe the presence of metastable dynamical regimes of

phase relations in oscillatory brain signals by recording the LFP from up to 15 sites in one

cortical hemisphere of a macaque monkey performing a visual discrimination task. They

analyzed the density distribution function of phase relations between pairs of LFP sig-

nals and detected that two cortical sites transiently synchronised with phase relation near

−54 degrees during the interval [105, 155]ms after the stimulus onset. Apart from that

time window, during the whole task ([−70, 400]ms) the same cortical sites did not present

any other significant peaks on the distribution phase relations, which according to them

indicates the functional involvement of these sites at a specific stage of the visual discrim-

ination task. Other cortical sites presented different temporal patterns of coordination
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Figure 2.2: Schematic representation of the HKB equation attractor landscape. Each curve

depicts the derivative of phase relation (y axis) throughout its state space (x axis) given 3

different values for the symmetry breaking parameter (lower, middle, and upper curves).

Stable points are represented by filled circle and unstable ones by open circles. The phase

relation dynamics changes from multistable (lower curve) to monostable (middle curve)

and eventually metastable (upper curve).

presumably reflecting different functional involvement during the task.

Besides the metastable dynamic depicted by this model, coordination variable and

control parameter are also important concepts in the coordination dynamics framework. A

coordination variable is an “upper level” variable which captures the collective dynamics of

“lower level” interacting components; in Eq. (2.1) it is represented by the relative phase φ.

In Haken’s framework this variable is denoted as order parameter. A control parameter is a

variable which qualitatively changes the collective dynamics of the system when a threshold

is crossed. In Eq. (2.1) the control parameter can be either the coupling strengths (a, b)

or the parameter of symmetry breaking δω. Two variables are coordination variable and

control parameter when varying the latter leads to collective dynamic transitions which

are captured by the former (Kelso, 2002, p.118)

Despite its simplicity, the extended-HKB has been capable of capturing the dynamics of

different behavioural, neural and social coordination dynamics (Jirsa et al., 1998; Bressler

and Kelso, 2001; Kelso et al., 2009) and still remains a paradigmatic example of dynamical

and embodied cognitive science (Chemero, 2009). The region in the model where the

system is metastable is of particular interest as in it the system achieves a compromise

between the intrinsic dynamics of its individual oscillators and the global dynamics of the

network, allowing for a flexible trade-off between segregation and integration (the hallmark

of brain complexity (Tononi and Edelman, 1998)) and for the emergency of transiently

synchronised networks.
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2.3.2 The Kuramoto model of phase-coupled oscillators

Kuramoto phase-coupled oscillators (Kuramoto, 1984) have been used to study biological

phenomena of collective synchronisation such as pacemaker cells in the heart, circadian

pacemaker cell in the brain and flashing fireflies (Strogatz, 2000a). They are based on

a previous model of coupled oscillators proposed by Winfree (1967, 1980) that describes

the dynamics of oscillators with different natural frequencies interacting by a function

representing their sensitivity to the phase of each other. The dynamics of each Kuramoto’s

oscillator is governed by the equation defined in (2.2) (Kuramoto, 1984):

θ̇i = ωi +
N∑
j=1

kjisin(θj − θi) (2.2)

where θi is the phase of the ith oscillator, ωi is the oscillator’s natural frequency, N is

the number of oscillators in the network, and kji is the coupling factor from the jth to the

ith oscillator. Notice that this equation does not describe the oscillatory signal itself, but

its phase dynamics. Networks of Kuramto’s oscillators have been studied under different

configuration, such as a scale-free topology (Moreno and Pacheco, 2004), with time delays

(Yeung and Strogatz, 1999), with discrete time and delays (Triplett et al., 2006). They

have been used to explore mechanisms underlying oscillations in the human cortex (Break-

spear et al., 2010) and different aspect of brain dynamics such as self-organized criticality

(Kitzbichler et al., 2009).

Kuramoto oscillators have also been used with evolutionary robotics to study the

role of neural synchronisation for embodied cognitive behaviours (Moioli et al., 2010,

2012). Moioli and colleagues have studied the effects of different degrees of coupling in

the agents oscillatory neural network, which encourages more or less synchrony in the

network dynamics, on the performance of the agent’s behaviour, and the circumstances in

which more (or less) synchrony is better suited to the generation of adaptive behaviour.

Kuramoto oscillator based models will be studied in Chapters 3 and 4.

2.4 Summary

The temporal structure of neural oscillations at different temporal and spatial scales (e.g.

synchrony, interspike interval) has been providing dynamical explanations of brain func-

tioning underlying sensory and motor activities. Such explanations have been proposed

based on the basis of empirical experiments – as explained in section 2.2 – and compu-

tational models – as explained in section 2.3. In this thesis we develop minimal models
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of oscillatory networks controlling an agent performing minimal cognitive tasks (e.g. a

gradient climbing behaviour) and explore i) the information and causal relevance of the

oscillations in relation to the agent’s sensorimotor loop (chapters 3 and 4) and ii) how

the temporal structure of the oscillations interact (in terms of dynamics) with the agent’s

sensorimotor loop (chapters 4, 5 and 6). The models do not target any specific level

of abstraction; i.e. the oscillators do not describe the dynamics of a single neuron nor

of a neuronal group; our purpose is to develop theoretical models that allow us to raise

theoretical issues about neural oscillations in the context of situated, embodied cognitive

behaviour.
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Chapter 3

Synchrony and phase relation

dynamics underlying sensorimotor

coordination

3.1 Introduction

Synchronous oscillations have been hypothesized to be a mechanism of large-scale inte-

gration and communication that allows the brain areas to coordinate their activity giving

rise to coherent behaviour and cognition (von der Malsburg, 1981; Gray and Singer, 1989;

Engel et al., 1990; Tononi and Edelman, 1998; Fries, 2005; Uhlhaas et al., 2009; Pockett

et al., 2009; Singer, 2011; Hipp et al., 2011), as stated by Varela et al. (2001):

“The experimental evidence consistently shows that synchronous networks

emerge and disappear in waves that last 100−300 ms; these transients represent

a meaningful temporal scale of brain operation.” (p.237)

“There is some evidence that phase synchronisation is accompanied by

phase scattering in other bands or between different neuron pairs. We suggest

that this novel observation is crucial for the understanding of large-scale in-

tegration, which must implicate not only the establishment of dynamic links,

but also their active uncoupling to give way to the next cognitive moment.”

(p.237)

Desynchronisation is then left with the role of undoing the preceding “meaningful”

synchronised cluster for the emergence of the next one. Such a role is also mentioned
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by Rodriguez et al. (1999): “transition between two distinct cognitive acts (such as face

perception and motor response) should be punctuated by a transient stage of undoing

the preceding synchrony [by active desynchronisation] and allowing for the emergence of

a new ensemble” (p.432).

It is undeniable that research in oscillatory neurodynamics has made significant progress

in understanding brain operation by focusing on synchrony. In this work, however, we focus

on desynchronous oscillations comparing its relevance to synchronous ones. In particu-

lar, we address the questions: a) how does the informational content of the sensorimotor

activity present in a complete dynamical description of phase relations change as such a

description is reduced to the dynamics of synchronous oscillations? and b) to what extent

are desynchronous oscillations as causally relevant as synchronous ones to the generation

of functional sensorimotor coordination? These questions are addressed with a model of a

simulated agent performing a functional sensorimotor coordination task controlled by an

oscillatory network.

The results suggest that: i) desynchronised phase relations carry as much informa-

tion about sensorimotor activity as synchronised ones; and ii) phase relations between

oscillators with near-zero frequency difference carry a relatively higher causal relevance

than the rest of the phase relations to the sensorimotor coordination; however, overall a

privileged functional causal contribution can not be attributed to either synchronous or

desynchronous oscillations. The analyses of these questions contribute to the understand-

ing of oscillatory dynamics underlying sensory and motor activities and provide theoretical

insights to works that attribute a privileged explanatory status to synchronous oscillations

over desynchronous ones.

The next section formalises the concepts of complete and reduced dynamical descrip-

tions of an oscillatory network. This formalization will make clearer the problem and

methods approached in this chapter. The following up sections present the computational

model, analyses, results and conclusions.

3.2 Complete and reduced dynamical descriptions

Consider a network of N phase-coupled oscillators where the periodic phase θi of an

oscillator i is given by θi(t) = fi(θ1, θ2, ..., θN ). The phase relation dynamics between two

oscillators i and j can be analysed by the absolute value of their phase difference, as shown

in Eq. (3.1):

φi,j(t) = |θi(t)− θj(t)| , (3.1)
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where φi,j(t) ∈ R : [0, 2π) radians and represents how the phase relation between i and

j is changing over time. A complete dynamical description of an oscillatory network is

given by the phase relations between all oscillatory components, as shown in (3.2), where

P is a vector function containing all the dynamics of phase relations between all pairs of

oscillators i and j.

P (t) = 〈φ1,2(t), φ1,3(t), ..., φi,j(t)〉 , (3.2)

Before presenting the reduced dynamical description of P , we discuss two approaches to

study synchronisation, namely zero-lag synchronisation and phase synchronisation. While

in the former oscillators are said to be synchronised only when they are phase-locked at

zero (or near zero) radian, in the latter synchronisation takes place when oscillators are

phase-locked at any phase. Formally, we can say that i and j are zero-lag synchronised

if φ̇i,j = 0 and φi,j = 0; and phase synchronised if φ̇i,j = 0 and φi,j = cp, where cp is a

constant ∈ [0, 2π) radians. Note that zero-lag synchrony is only a particular case of phase-

synchronisation. An important difference between these approaches is that π-phase-locked

oscillators (i.e. φ̇i,j = 0 and φi,j = π) are considered completely desynchronised in the

zero-lag synchronisation approach and completely synchronised in the phase synchroni-

sation one. Oscillators could also be considered synchronised when their frequency ratio

is constant (e.g. Ωi = 10Hz and Ωj = 20Hz with frequency ratio 1:2); which, in this

case, φi,j linearly changes over time. In our work we consider that a pair of oscillators

is synchronised when their frequency ratio is 1:1 and when they are phase locked at any

phase φi,j = cp, which is the most studied case of synchrony in the brain (Varela et al.,

2001). For more details about synchrony see (Pikovsky et al., 2003; Strogatz, 2000b, p.96).

Given this definition of synchrony, a simple dynamical description that represents how

clusters of synchronised oscillators change over time can be defined as in (3.3).

Sa(t) = 〈x1,2(t), ..., xi,j(t)〉; xi,j(t) =

1 if φ̇i,j(t) ≤ ts

0 otherwise,
(3.3)

where Sa represents how the synchronised state between each pair of oscillators is

changing over time; xi,j(t) is a step function which gives 1 when i and j are phase syn-

chronised and 0 otherwise. Notice that the synchronised condition has been changed from

φ̇i,j(t) = 0 to φ̇i,j(t) ≤ ts. The parameter ts is a threshold for φ̇i,j(t) up to which two os-

cillators are considered synchronised. This relaxation of the strict φ̇i,j(t) = 0 condition for

synchrony better represents what is generally considered synchronisation between neural

oscillators.
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The vector function Sa is a reduced dynamical description of P that only informs

whether a pair of oscillators is either synchronised or not. A richer description of the

synchronised oscillations would contain the phase relation dynamics during moments of

synchronisation; i.e. it would contain the actual phase relation φ when φ̇i,j ≤ ts, as shown

in Eq. (3.4).

Sb(t) = 〈y1,2(t), ..., yi,j(t)〉; yi,j(t) =

 φi,j(t) if φ̇i,j(t) ≤ ts

shuffle otherwise,
(3.4)

where Sb is the vector function containing the phase relation dynamics between all

synchronised oscillators. If the oscillators i and j are synchronised then the vector function

contains their phase relations – i.e. if φ̇i,j(t) ≤ ts, then yi,j(t) = φi,j(t). On the other

hand, when the oscillators i and j are desynchronised during a time window T – i.e.

φ̇i,j(t) > ts∀ t ∈ T –, their actual values of phase relations φi,j during T – i.e. φi,j(T )

– will be shuffled. The shuffling algorithm picks each value of phase relation in T and

swaps it with another one from a random position in T . The lack of information about

the phase relation dynamics – or the reduced descriptions of phase relations – is then

modelled by shuffling the actual values of phase relation φi,j . By doing that, potential

correlations between the φi,j and any other time series are removed; this will be important

for measuring how the informational content of a reduced dynamical description changes

in relation to a more complete one.

Both vector functions Sa and Sb are particular ways to represent how the core of

synchronised oscillators are changing over time. While Sa is a sharp reduction, Sb can be

continuously reduced by decreasing the parameter ts. Notice that if ts is greater or equal

than the maximum value of φ̇i,j in a time window T then the content of Sb is equal to P .

3.3 Theoretical model and methods

We present an evolutionary robotic model that performs phototaxis controlled by a net-

work of 5 phase-coupled Kuramoto oscillators.

Phototaxis requires the agent to approach a light source from different starting po-

sitions and can be taken as a paradigmatic example of a minimal (yet not completely

trivial) “goal-directed” sensorimotor coordination task. It was chosen for simplicity as a

minimal coordination task where the problems considered in the previous section could be

addressed.
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3.3.1 The agent and its network of coupled oscillators

The model consists of a two-dimensional simulated environment, an agent and a light

source. The agent’s movement is controlled by a network of phase-coupled oscillators

which receives signals from two sensors and controls the activation of two motors. The

agent has a circular body of 5 units diameter; two sensors s1 and s2 separated by 120 ◦±10 ◦

and whose output signal is given by sq = e−0.04dq , where q represents each sensor, and d

is the distance from sensor q to the light source. The agent has two diametrically opposed

motors m1 and m2 whose activation is given by (3.5) and (3.6), respectively.

m1 = (sin(θ4 − θ3) + 1)/2 (3.5)

m2 = (sin(θ5 − θ3) + 1)/2 (3.6)

where θn is the phase of the oscillator n. The agent’s behaviour is controlled by a

network of five phase-coupled oscillators (Kuramoto, 1984), defined in Eq. (3.7):

θ̇i = (ωi + sqwqi) +

N∑
j=1

kjisin(θj − θi), (3.7)

where θi is the phase of the ith oscillator which is integrated with time-step 15 ms. using

the Euler method, ωi is the oscillator’s natural frequency (range for the genetic algorithm

[9, 18] hertz), sq is the qth sensory signal (out of 2), wqi is the sensory input strength from

the sensor qth to the oscillator ith (range [1,20]), N is the number of oscillators (here 5),

and kji is the coupling factor from the jth to the ith oscillator with kj,i = 0 ∀ i = j (range

[0,20]). The sensors s1 and s2 are connected to the oscillators θ1 and θ2, respectively; the

other oscillators do not receive sensory signals.

3.3.2 Optimization with a genetic algorithm

A total of 27 network parameters encoded in a genotype as a vector of real numbers in

the range [0,1] (linearly scaled, at each trial, to their corresponding range) were evolved

using the microbial genetic algorithm (Harvey, 2001). There is no specific reason why this

algorithm was chosen; the system is relatively simple and could have been optimized with

other genetic algorithms. The genetic algorithm setup is: population size (80); mutation

rate (0.05); recombination (0.60); reflexive mutation; normal distribution for mutation(
µ = 0, σ2 = 0.1

)
; trial length (180 s); and trials for each agent (30). At the end of the
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30th trial the worst fitness (out of 30) is used as the selective fitness of the agent. The

fitness function is defined by (3.8):

F =

1− df
di

; if df < di;

0; otherwise;
(3.8)

where F is the fitness; di and df are the initial and final distances to the light source,

respectively. The analysis of the model is done using the fittest agent found by the genetic

algorithm.

It was possible to optimized the parameters of the system in order to obtain an agent

doing phototaxis using 3 and 4 oscillators. However, the dynamics obtained using less

oscillators were not adequate to analyse the relevance of desynchronised oscillations as

most of the time the oscillatory network was completely synchronised. Specifically, while

the agent was approaching the light the oscillators were totally synchronised and while

it was moving around the light there were some short time windows of desynchronised

oscillations.

3.3.3 Methods of analysis

Our first problem is to analyse how the information about the sensorimotor dynamics

in the oscillatory network changes as the description of phase relations is reduced. The

agent’s sensorimotor dynamics is given by a vector function shown in (3.9).

SM(t) = 〈s1(t), s2(t),m1(t),m2(t)〉 , (3.9)

where SM is the sensorimotor activity, s1, s2, m1 and m2 are the agent’s sensors and

motors. We are interested in analysing how the mutual information between SM and Sb

changes as the threshold ts decreases; i.e. I(SM,Sb) for different values of ts. As both

time series are multidimensional, the mutual information will be measured between pairs

of components from each time series – e.g. I(SM(s1), P (φ1,2)) and I(SM(m2), P (φ3,4)).

The analysis is done by using the standard measures of entropy and mutual information

from information theory, as described in (5.5) and (5.6), respectively (Shannon, 1948;

Cover and Thomas, 2005).

H(X) = −
N∑
i=1

p(xi)logb(xi), (3.10)

where X is a set of discrete random variables and p(xi) is the probability mass function
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of the outcome xi.

I(X;Y ) = H(X) +H(Y )−H(X,Y ), (3.11)

where H(X), H(Y ) are the entropies of the sets X and Y , respectively, and H(X,Y )

is the joint entropy of both sets. The entropies are measured based on a time window T of

6 seconds length. In order to obtain more robust measures of the probability distributions

all time series are linearly interpolated from a time-step of 15 ms (Euler step integration

of the simulation) to 1 ms. In this way, a time window of 6 seconds length contains 6000

points. In order to define the length of T the probability distributions of all individuals

and pairs of components – e.g. H(s1) and H(m1, φ3,4) – were measured using different

lengths from 100 ms to 7.0 s. Due to the stationarity of the time series the distributions

do not change for time windows greater than 5.0 seconds. By shifting the time window

T we capture how the entropies change as the agent interacts with the environment. As

the values of phase relations φi,j are continuous in the interval [0, 2π) they are discretized

into 50 equally spaced bins. The sensors and motors are also discretized into 50 equally

spaced bins according to their minimum and maximum value within each time window T .

The second problem we are interested in studying is the causal relevance of the infor-

mation transferred during desynchronised φ̇i,j > ts and synchronised φ̇i,j ≤ ts oscillations

for the generation of functional sensorimotor dynamics SM . The causal relevance is anal-

ysed by perturbing the information transferred in either of the conditions φ̇i,j > ts or

φ̇i,j ≤ ts and measuring the functionality SM using the fitness function in (3.8). More

details about this problem will be presented during the presentation of the results.

3.4 Results

The results are divided into three main parts. In the first one, the dynamical analyses of

SM , P , Sa, and Sb are presented. In the second one, the analysis of mutual information

between SM and the reduced descriptions of phase relations Sb is shown. In the third

one, the causal relevance of synchronisation and desynchronisation for the generation of

functional SM is analysed.
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3.4.1 Dynamical analyses

Sensorimotor dynamics (SM)

Fig. 3.1 shows the agent’s trajectory during a single trial of phototaxis. During T1 =

[50, 55] s the agent’s trajectory is characterized by a movement towards the region of

highest light intensity at an average linear speed of 0.76 units/s and slowly turning to the

right at an average angular speed of 5.2 deg/s (not shown in the graphic). In T2 = [90, 95]

s the agent is returning to the region of highest light intensity at an average linear speed

of 0.62 units/s and turning to the left at an average angular speed of 12.7 deg/s. The

sensorimotor dynamics SM for the time windows T1 and T2 are presented in Fig. 3.2 and

will be referred to as SMT1 and SMT2, respectively.

In the next subsections the oscillatory dynamics underlying SMT1 and SMT2 are

analysed. These time windows were chosen to represent two reasonably well separated

periods in the overall behaviour and to reflect the two main ’phases’ of the behaviour

(approaching the light from a distance and then moving around it). There is nothing

particularly special about these two periods, the main purpose is only to present the

dynamical descriptions on P , Sb Sa manifolds underlying two moments of the agent’s

sensorimotor coordination during a trial of phototaxis.

Phase relation dynamics (P )

We shall start by presenting the complete phase relations of a single pair of oscillators (see

Fig. 3.3). The transient synchronisation between θ1 and θ5 takes places at different phases

during different periods, namely: T1a = [−48,−33], T1c = [33, 40] and T2a = [−26, 11]

degrees, as shown in the graphics A and C or B and D (Fig. 3.3).

In dynamical system terms, we can say that the attractor landscape of φ1,5 during

SMT1 has low potential energy at [-48, -33] and [33, 40] degrees and during SMT2 these

regions of low potential energy collapse into a single one around [-26, 11] degrees. The

difference in the attractor landscape is represented in graphic E (Fig. 3.3); where: a)

positive values represent regions that have had their potential energy decreased ([−26, 26])

and became more attracting; b) negative values represent regions that have had their

potential energy increased ([−70,−26] and [26, 70]) and lost their attraction; and c) values

near zero represent regions that did not have a significant change on their potential energy.

As P has ten dimensions, we use density distributions, as shown in Fig. 3.3-B and

D, to show statistical properties of the components in P (see Fig. 3.4). The lower the

entropy (shown on the top of the graphic) the longer the oscillators i and j (x-axis) keep
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Figure 3.1: Graphic A shows an agent’s trajectory in the environment during its lifetime

(180 seconds). The light intensity throughout the environment is represented by the grey

scale, where the whiter the area the higher the light intensity. The agent moves towards

the region of highest light intensity (position X=0, Y=0) and then starts moving around

it. Graphic B zooms into the agent’s trajectory during t=[50,95] s;. The star at X=0 and

Y=0 indicates the position of highest light intensity. The highlighted black trajectories

indicate the agent’s trajectory during two short time windows of 5 seconds: T1=[50,55]

s and T2=[90,95] s. Graphics C and D show the angle of the agent’s body in T1 and

T2, respectively. The agent’s body continuously oscillates to the right and left following

different patterns at each time window. Graphics E and F show the agent’s average

linear speed for a moving time window of 200 ms in T1 and T2, respectively. The agent’s

average linear speed is 0.76 units/s in T1 and 0.62 units/s in T2.

synchronised at a particular phase indicated by peaks in the density distribution (the

whiter areas of the graphics). In other words, the lower the entropy the smaller the

potential energy at the phase relations represented by whiter areas.

Some differences between the phase relation dynamics underlying SMT1 and SMT2

are: a) while in SMT1, φ1,2 is relatively spread (H(φ1,2) = 0.81) across ≈ [0, 90], in SMT2

it has a higher phase coherence (H(φ1,2) = 0.34) within ≈ [30, 60]; b) while in SMT1,

φ2,3 is relatively spread (H(φ2,3) = 0.82) across ≈ [50, 140], in SMT2 it is concentrated

(H(φ1,2) = 0.34) within ≈ [85, 115]. Note that though both pairs of oscillators (θ3,θ4) and

(θ3,θ5) that send signals to the motors have low phase coherence (indicating low level of
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Figure 3.2: Graphics A and B show the sensorimotor dynamics SM(t) =

(s1(t), s2(t),m1(t),m2(t)) during T1 and T2. The x-axis shows the time in seconds, the

y-axis shows the difference in activation of the right and left motors (m1−m2) and z shows

the difference in activation of the right and left sensors (s1 − s2). The black trajectories

in both graphics highlight the first 600 ms of each time window.

synchrony) – as shown by high entropies H(φ3,4) = 0.97 and H(φ3,5) = 0.94 in SMT1 and

H(φ3,4) = 0.93 and H(φ3,5) = 0.90 in SMT2 – the agent’s behaviour is still completely

functional.

Synchronization dynamics (Sb)

The multidimensional synchronisation dynamics Sb is also shown for the single pair of

oscillators θ1 and θ5, see Fig. 3.5. The synchronisation dynamics were generated for a

threshold ts = 15 rad/s (see Eq. 3.3), meaning that two oscillators are considered syn-

chronised when their frequency difference is within [−15,+15] rad/s or [−2.39,+2.39]Hz.

During moments of desynchronisation – which can be interpreter as φ̇1,5 > 15 rad/s for this

specific case – there is no information about how the phase relation is changing, shown

by the shuffled phase relations in T1b and T2b. The oscillators get synchronised during

T1a, T1c and T2a with phase difference in between [−48,−33], [33, 40], [−26, 11] degrees,

respectively.

Notice that the density distributions are the same as those of the complete phase

relations P (φ1,5) shown in graphics 3.4-B and D. This is important for the measure of

mutual information as the shuffled data maintains the entropy of the time series and

increases its joint entropy in relation to others. This guarantees that any variation in the

mutual information between components of SM and Sb – e.g. I(SM(s1), Sb(φ2,3)) – is

caused by changes in their statistical correlations measured by the joint entropy (see Eq.

5.6).
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Figure 3.3: Phase relations between θ1 and θ5 (P (φ1,5)) underlying sensorimotor regimes

SMT1 (graphic A) and SMT2 (graphic C). The relation φ1,5 is shown in the y-axis and

time in the x-axis. The color bar shows φ̇1,5 in rad/s, where the darker the color the lower

the derivative. For ease of description we highlight four small time windows during T1:

T1a, T1b, T1c and T1d of 180, 200, 150 and 150 ms, respectively (see dashed lines in graphic

A) and other two time windows during T2: T2a and T2b of 150, 100 ms, respectively (see

dashed lines in graphic C). Note that the x-axis depicts only 2 s ([50,52]) rather than 5 s

([50,55]). While underlying SMT1 the phase relation φ1,5 has two regions where it slows

down (see T1a and T1c); underlying SMT2 it has only one around 0 degree (see T2a). This

difference can be seen by the peaks of density distributions of φ1,5 shown in graphics B

and D. These distributions were generated for the two-seconds time window [50,52] s and

[90,92] s, respectively. Graphic E shows the difference between the density distributions

shown in B and D.

Synchronization dynamics (Sa)

The synchronisation dynamics Sa(t) = 〈x1,2(t), ..., x4,5(t)〉 underlying SMT1 and SMT2

are shown in Fig. 3.6-A and 3.7-A. In T1a, all five oscillators form a single synchronised

cluster. At the end of T1a, θ4 and θ5 start decreasing their real frequencies towards their

natural ones (w4 = 10.9Hz, and w5 = 10.6Hz, not shown in the graphic). In T1b, θ4 and

θ5 no longer participate in the synchronised cluster, which now consists of θ1, θ2 and θ3.

At the end of T1b, the frequency of θ5 is increasing and, at the beginning of T1c, θ5 joins

the synchronised cluster, which now consists of θ1, θ2, θ3 and θ5. The frequency of θ4

starts increasing at the beginning of T1c and during the second half of this time window it

is ≈ 15Hz, which is near the frequency of the others oscillators. In T1d two synchronised
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Figure 3.4: Density distribution φi,j for all pairs of oscillators (x-axis) during SMT1

(graphic A) and SMT2 (graphic B). Y axis shows the phase relation from -180 to

180 degrees. The grey scale (see color bar) represents the density of a particular phase

relation (y-axis) between a pair of oscillators (x-axis). Data are normalized so that the

densest phase for each φi,j is equal to 1. The space from -180 to 180 is divided into 50

equally spaced bins. The number on the top of the graphics represent the Shannon entropy

of each distribution of phase relations normalized to 1 (see Eq. 5.5).

clusters emerge; the first one consisting of θ1 and θ3 at [16, 20]Hz and the second one

consisting of θ4 and θ5 (see their frequency regimes in graphic B). The oscillator θ2 also

joins the second synchronised cluster delayed by a small time lag (see the real frequency

of θ2 in graphic B). In this time window θ2 leaves the area near its natural frequency

(w2 = [14.5, 15.2]Hz, not shown in the graphic) and joins the second cluster at a lower

frequency (≈ 10Hz). At the end of T1d, all oscillators synchronize again and a similar

regime of transiently synchronised clusters (as in T1a, T1b, T1c and T1d) repeats over and

over until the end of T1.

The synchronisation dynamics underlying SMT2 is simpler than the one underlying

SMT1 (see Fig. 3.7). In T2a, all five oscillators form a single synchronised cluster with

θ4, θ5 joining the assembly slightly delayed. In T2b, θ4 and θ5 fall apart leaving the

synchronised cluster with θ1, θ2 and θ3. Similar regime of synchronisation (as in T2a, T2b)

repeats over and over until the end of T2.

In this section we have analysed the dynamics of the embodied oscillatory network un-

derlying short intervals of the agent’s sensorimotor coordination. It was presented three
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Figure 3.5: Synchronization dynamics for θ1 and θ5 (Sb(φ1,5)) underlying sensorimotor

regimes SMT1 (graphic A) and SMT2 (graphic C). The relation φ1,5 is shown in the

y-axis and time in the x-axis. The color bar shows φ̇1,5, where the darker the color the

lower the derivative. Dashed lines highlight the small time windows T1a, T1b, T1c and

T1d (graphic A) and T2a and T2b (graphic C). These graphics were generated for ts = 15

rad/s. Disperse grey dots represent phase relations that were shuffled. The derivative φ̇1,5

is greater than 15 rad/s during the entire time windows T1b and T2b. Graphics B and

D show the density distribution of each regime of phase relation. Graphic E shows the

difference on the density distributions.

dynamical descriptions of the oscillatory dynamics: P , Sa and Sb. The phase relation

dynamics P provided a complete description of the oscillations, we have studied particu-

larly P (φ1,5). The synchronisation dynamics Sb provided the dynamics during moments

of synchrony and left out the information about the phase relations during moments of

desynchronisation. The binary synchronisation dynamics Sa provided only the informa-

tion of whether a pair of oscillators was either synchronised or not and left out the phase

of synchrony. In the next section we analyse how the information present in Sb about SM

varies as the value of ts decreases.

3.4.2 Informational content in reduced descriptions of P

Fig. 3.8-A presents the individual entropies of the sensorimotor components s1, s2, m1

and m2. During the whole trial the entropies maintain around 5 and 5.5 bits with higher

variations from 80 seconds, which corresponds to moment where the agent starts moving

around the light. The mean entropies for each component over the whole trial are H(s1) =
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Figure 3.6: Graphic A shows the synchronisation dynamics for the multivariate time

series Sa underlying SMT1. The y-axis contains all pairs of oscillators and each black point

in the graphic corresponds to a moment of synchrony. Graphic B shows the frequency

dynamics of all 5 oscillators (see legend).
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Figure 3.7: Graphic A shows the synchronisation dynamics Sa underlying SMT2. Each

black point corresponds to a moment of synchrony between the pair of oscillators depicted

in the y-axis. Graphic B shows the frequency dynamics of all 5 oscillators (see legend).

5.34, H(s2) = 5.38, H(m1) = 5.03 and H(m2) = 5.21 bits (values not shown in the

graphic).
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The mutual information between a component from SM and another from the com-

plete description P are presented in Fig. 3.8-B. Although the sensor s1 has a mean

entropy H(s1) = 5.34 bits, the highest mutual information between s1 and the network

phase relations is given by I(SM(s1);P (φ5,4)) which has a peak of 1.74 bits at the be-

ginning of the agent’s lifetime – see the dark black line in graphic 3.8-B – and a mean

I(SM(s1);P (φ5,4)) = 1.17 bits over the trial. The highest mutual information between

s2 and the phase relations is given by I(SM(s2);P (φ5,1)) with a peak of 2.05 bits at 90

seconds – see the grey line in graphic 3.8-B – and a mean I(SM(s2);P (φ5,1)) = 2.05 bits

over the trial. The high values of H(s1) and H(s2) (around 5 bits) and the low values

I(SM(s1);P (φi,j)) and I(SM(s2);P (φi,j)) suggest that the information about the sensory

dynamics is distributed over the network.

The mutual information between motors and phase relations is high in the relation

φ4,3, as shown by I(SM(m1);P (φ4,3)) in graphic 3.8-B. This high value is expected as m1

is controlled by φ4,3, as in Eq. (3.5). The value of I(SM(m2);P (φ5,3)) (not shown in the

graphic) is also high as m2 is controlled by the relation φ5,3. Despite the predominance

of information about m1 and m2 in φ4,3 and φ5,3, respectively; the others phase relations

also contain information about the motor dynamics. I(SM(m2);P (φ3,2)), for instance,

maintains near 2.5 bits during the first ∼75 seconds and then it decays to [0.5, 1.5] bits

with a peak around 145 s, see dashed line in graphic 3.8-B.

We have shown the mutual information between 4 different pairs of components, but

in total there are 40 possible combinations considering 4 elements in SM and 10 in P (or

Sb). In order to capture how the mutual information in the phase relations decreases as

P is reduced to Sb, we take the mean of all 40 possible combinations of mutual informa-

tions, which will be referred to as I(SM,P ) and I(SM,Sb) for the complete and reduced

dynamical descriptions, respectively. Fig. 3.9 presents I(SM,P ) and I(SM,Sb) for three

different values of ts. The highest mean mutual information over the trial is given by the

complete description I(SM,P ) = 1.50 bits. As P is reduced by decreasing the threshold

ts, the mutual information also decreases. For the values of ts analysed ts = 18, ts = 9

and ts = 3, the mutual information reduced to I(SM,Sb1) = 1.05, I(SM,Sb2) = 0.74, and

I(SM,Sb3) = 0.40 bits, respectively.

In order to analyse the relation between mutual information and different values of

threshold, the mean I(SM,Sb) is used. The maximum value of I(SM,Sb) is 1.50 bits,

which is obtained with a high value of ts that makes Sb = P (in our model, Sb = P when

ts = 90). In order to get a better visualization of the decay in mutual information as the
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Figure 3.8: Graphic A shows the entropy (y-axis) of each sensorimotor component (see

legend) during the agent’s lifetime (x-axis). Straight dotted line at the top (y=5.64 bits)

represents the maximum possible value for the entropies. Graphic B shows the mu-

tual information between four combinations of components from SM and P , namely

I(SM(s1);P (φ5,4)), I(SM(s2);P (φ5,1)), I(SM(m1);P (φ4,3)) and I(SM(m2);P (φ3,2)),

see legend.

value of ts decreases, the maximum mutual information I(SM,Sb) = 1.50 bits for ts = 90

was rescaled to 1 (see Fig. 3.10-A).

As the threshold decreases from 90 to 40, the phase relations lose only 10% of its

information about the sensorimotor dynamics, as shown by I(SM,Sb) = 1 for ts = 90,

and I(SM,Sb) = 0.9 for ts = 40 rad/s. As ts decreases, the rate of decay for I(SM,Sb)

increases. For ts = 20 rad/s the phase relations still carry 0.73 of the total information

and from ts = 20 to ts = 1 the information drops to 0.21. The rapid decay of information

for low values of ts initially suggests that the more synchronised the phase relations the

more information they carry about sensorimotor dynamics.

This result, however, should be analysed together with the amount of (de)synchronised

phase relations for each threshold. If the values of φ̇i,j were uniformly distributed in the

range [0,90], then just by moving the threshold we would know the amount of synchronised

and desynchronised phase relations. As in our model this distribution is not uniform, as
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Figure 3.9: Mean mutual information between all 40 pairs of sensorimotor and phase rela-

tion components. I(SM,P ) shows the maximum mutual information in the phase relations

throughout the trial (see time in the x-axis). I(SM,Sb1), I(SM,Sb2) and I(SM,Sb3) rep-

resent the mutual information from 3 reduced descriptions with thresholds ts = 18, ts = 9

and ts = 3 rad/s respectively. The lower the ts the less information present in the re-

duced descriptions. The numbers highlighted with grey background at the end of each

line represent the mean mutual information over the whole trial, namely I(SM,P ) = 1.50,

I(SM,Sb1) = 1.05, I(SM,Sb2) = 0.74, and I(SM,Sb3) = 0.40 bits.

represented by the grey line in Fig. 3.10-A, it is important to analyse how the mutual

information I(SM,Sb) changes in relation to the amount of data in the reduced description

(i.e. the amount of phase relations considered to be synchronised), as presented in 3.10-B.

As the amount of data in the dynamical description increases – by increasing the threshold

– the mutual information I(SM,Sb) also increases. When 0.5 of the most synchronised

oscillations are included in the dynamical description then I(SM,Sb) = 0.51, meaning that

half of the phase relation dynamics carry half of the information about the sensorimotor

dynamics.

The reason why I(SM,Sb) is not zero when all phase relations are shuffled (see in

graphic 3.10-B that I(SM,Sb) = 0.17 when the amount of data in the dynamical descrip-

tion is zero) is that the joint entropy between a sensorimotor component and a phase

relation dynamics is slightly smaller than the sum of their individual entropies due to

the number of data points in the time series. In one of the time windows of 6 seconds

(with 6000 data points), for instance, I(SM(m2);Sb(φ3,2)) = 0.296 bits for ts = 0 with

H(SM(m2)) = 5.043, H(Sb(φ3,2)) = 5.111 and H(SM(m2), Sb(φ3,2)) = 9.858. The value

of the joint entropy H(SM(m2), Sb(φ3,2)) should be equal to the sum of the individual

entropies (i.e. 5.043 + 5.111 = 10.154); however, by using 6000 data points this value

is slightly smaller (i.e. 9.858), which gives a residual mutual information of 0.296 (i.e.
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Figure 3.10: Mutual information between the phase relations and the sensorimotor dy-

namics different values of ts. The black line in graphic A shows how I(SM,Sb) changes

as the threshold ts decreases (notice inverted x-axis). The values of I(SM,Sb) are nor-

malized in [0,1] with 1 representing the maximum I(SM,Sb) = 1.50 bits. The grey line

shows the cumulative function distribution (cdf) of φ̇i,j . It represents the amount of φ̇i,j

greater than a ts; for instance, 20% of φ̇i,j are greater than 30 rad/s Graphic B shows how

I(SM,Sb) (y-axis) changes in relation to the amount of data in the dynamical descriptions

(i.e. the amount of phase relations considered to be synchronized), where 1 (x-axis) repre-

sents the complete description and smaller values represent reduced descriptions obtained

by decreasing the threshold. For instance, when Sb contains 0.3 of the dynamics of phase

relations (the other 0.7 are desynchronised oscillations) then I(SM,Sb) = 0.34; i.e. 30%

of the most synchronised oscillations carry 34% of the total amount of information about

sensorimotor dynamics; the other 70% of oscillations, which are desynchronised, carry the

rest of 66% of the total information.

10.154− 9.858). We have done the same analyses of mutual information, but subtracting

the residual mutual information obtained when ts = 0 from the mutual information when

ts > 0. The results were qualitatively the same; particularly, the mutual information in

graphic 3.9 decreased and the slope of the line in graphic 3.10-B increased. We have also

used more data points (up to 10000) and also divided the intervals [0, 2π) (for the phase

relations) and [0, 1] (for the sensors and motors) in less bins (40, rather than 50). The re-

sults were qualitatively the same and, more importantly, the take-home message (that we

explain in the following paragraph) has hold under these different parameters of analysis.



44

The relationship between the mutual information and the amount of data in the dynam-

ical description suggests that neither synchronised nor desynchronised oscillations carry

a privileged status in terms of informational content about sensorimotor dynamics. The

informational content is equally distributed throughout the entire range of phase relations.

The more a dynamical description leaves phase relations in the oscillatory network out of

the equation, the less information it carries about the sensorimotor coordination, indepen-

dently whether the left out phase relations represent either synchronous or desynchronous

oscillations.

3.4.3 Causal relevance of synchronous and desynchronous oscillations

In this section we present the experiment we carried out to investigate the causal relevance

of desynchronous and synchronous oscillations in the generation of functional sensorimotor

dynamics. In the experiment we compare the agent’s behavioural performance using the

fitness function in (3.8) after applying perturbations to its oscillatory network in either

of the situations: a) during moments of synchronisation (φ̇i,j(t) ≤ ts), or b) during mo-

ments of desynchronisation (φ̇i,j(t) > ts). The perturbation is applied to the connections

between the oscillators i and j (ki,j and kj,i) by adding a random number from a gaussian

distribution (µ = 0, σ2 = α ki,j), where α is a perturbation level parameter. If the agent’s

performance equally drops under the same perturbation level α applied to synchronous

and desynchronous oscillations then it indicates that both oscillatory dynamics have the

same relevance to the generation of functional sensorimotor coordinations. On the other

hand, if the performance does not decay equally then the oscillatory dynamics that causes

a greater decay is the more relevant.

A critical point of this experiment is the threshold from which an oscillation is con-

sidered to be either synchronised or desynchronised. If we consider, for instance, that

synchronous oscillations are below 2 rad/s then perturbations applied to desynchronous

oscillations will probably cause a greater decay in the agent’s performance as the range of

perturbations is wider (φ̇i,j > 2 rad/s). Fig. 3.11 presents the agent’s fitness for three dif-

ferent values of thresholds ts and perturbation levels α. Each fitness represents an average

over 200 trials.

For ts = 1, desynchronised oscillations are more relevant than synchronised ones to

the agent’s performance, which can be seen by the fitness difference (grey line) and by

Fs − Fd = 0.24. Notice that for ts = 1 and α < 0.1 (see graphic A) the agent’s performance

is not affected when perturbations are applied to synchronous oscillations. As α increases
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from 0.1 to 0.2 both fitnesses decay, and for α > 2 the perturbations to desynchronous

oscillations have a greater effect on the agent’s fitness, as shown by an increase in the

fitness difference. For ts = 9, both types of oscillations are equally important as the

fitness difference maintain near zero for all levels of perturbation which gives a mean

Fs − Fd = 0. For ts = 80, all levels of perturbation to desynchronous oscillations do not

affect the agent’s performance (the dark grey line maintains near 1 for all perturbations).

The reason for that is that there are very few occurrence (≈ 0.04%) of φ̇i,j > 80 rad/s.
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Figure 3.11: Agent’s fitness (y-axis) for different levels of perturbations α (x-axis) and

thresholds ts = 1 (graphic A), ts = 9 (graphic B), and ts = 80 (graphic C). Black

and dark grey lines show the fitnesses of the agent when perturbation is applied to syn-

chronous and desynchronous oscillations, respectively (see legend). Light grey line is the

fitness difference Fitness(synchronisation)−Fitness(desynchronisation) (see legend). The num-

bers highlighted with a grey background show the mean of the fitness difference over all

perturbation levels. This mean will be referred to as Fs − Fd.

In order to analyse how the relevance of desynchronous oscillations changes in relation

to the threshold, the mean of the fitness difference (Fs − Fd) is used (see Fig. 3.12). The

values of Fs − Fd vary within ≈ [−0.4, 0.4], where -0.4 indicates that desynchronisation is
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not relevant for sensorimotor behaviour and 0.4 indicates its maximum relevance. This

interval is also presented in a scale [0, 1] – right y-axis in graphic 3.12 – and from now

on we are going to use this scale to discuss the relevance of desynchronous oscillations.

For values of threshold below ≈ 7 rad/s desynchronous oscillations are more relevant than

synchronous ones, which can be seen by Fs − Fd > 0.5. Both types of oscillations are

equally relevant when ts ≈ [7, 11] and above this range the relevance of desynchronous

oscillations is smaller. For ts = 40, for instance, desynchronisation has ≈ 0.125 of rele-

vance to agent’s sensorimotor coordination. The relevance of desynchronous oscillations

measured only in terms of the threshold do not take into account the distribution of φ̇i,j

over the range [0,90] rad/s. Similarly to the analysis of mutual information presented in

the previous section, a more robust measure of causal relevance should also consider the

distribution of φ̇i,j .
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Figure 3.12: Mean of fitness difference Fs − Fd (y-axis on the left) for different thresh-

olds ts (x-axis). Positive values indicate that desynchronisation is more relevant than

synchronisation for the generation of functional sensorimotor coordination. The y-axis on

the right side represents Fs − Fd rescaled to [0,1]. When the rescaled Fs − Fd is 0.5, for

instance, both types of oscillations are equally relevant. The rescaled Fs − Fd works as

an index of relevance for desynchronous oscillations, where 0 indicates no relevance and 1

maximum relevance.

As the threshold increases, the quantity of phase relations that are considered desyn-

chronised decreases, this relation is represented by distribution function of φ̇i,j shown in

Fig. 3.13-A. This result is similar to the one presented for the single agent we have anal-

ysed in the previous section; here, however, we perturbed the desynchronous oscillations

with α ∈ [0, 0.6] and for each pair (α, ts) we ran 200 trails. When ts = 20, 0.30 of the

total amount of phase relations are desynchronised, and when ts increases to ts = 40, for

instance, the amount of desynchronised phase relations decreases to 0.13 of the total phase

relations.
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Graphic 3.13-B shows the relevance of desynchronised oscillations – i.e. Fs − Fd – in

relation to the quantity of phase relations considered desynchronised – i.e. φ̇i,j > ts. When

0.5 of the total number of phase relations – which includes all φ̇i,j > 10 – are considered

desynchronised then these oscillations will have 0.48 of relevance for the agent’s fitness;

and when 0.95 of the total amount of phase relations – which includes all φ̇i,j > 1 – are

considered desynchronised then these oscillations will have 0.82 of relevance. Notice that

the synchronised phase relations below 1 rad/s actually carries an important role in the

generation of the agent’s behaviour. While 0.95 of phase relations – which includes all

φ̇i,j > 1 – has 0.82 of relevance, the rest 0.05 of phase relations – which includes all φ̇i,j ≤ 1

– has 0.18 of relevance.

This result indicates that oscillations synchronised with a narrow window of frequency

difference – in our model this window was of 1 rad/s in a range of frequency differences

from 0 to 90 rad/s – are relatively more causal relevant for the generation of functional

sensorimotor coordination than the rest of oscillations with higher frequency differences.

That is not to say that the “rest” of oscillations are not relevant, as they still carry 0.82

of relevance. Apart from the range of φ̇i,j ≤ 1, the causal relevance of the phase relations

are distributed over the range of possibles φ̇i,j without any privileged status of causal

relevance to either synchronous or desynchronous oscillations

3.5 Discussion

As far as methodological aspects are concerned, we have combined evolutionary robotics

with Kuramoto oscillators to study the roles played by synchronous and desynchronous

oscillations in the context of a sensorimotor coordination task. We have used information-

theoretic measures and dynamical system concepts to analyse the system. The model

was not meant to target any specific level of abstraction from individual neurons and

very small circuits (Izhikevich, 2007) to the whole cortex and brain activity (Varela et al.,

2001; Buzsaki, 2006). Our goal was rather to reproduce at a merely conceptual level

of generality the type of data from which the significance of synchronisation is generally

privileged and to show how a system does in fact functionally exploit the whole phase

dynamic to achieve a coherent sensorimotor coordination. Such a proof of concept should

not be taken as an empirical model – see Barandiaran and Moreno (2006), for a distinction

between conceptual and empirical models.

The results obtained from the analysis of the model give some insights to help answer

the question: how does the informational content of the sensorimotor activity present in a
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Figure 3.13: Graphic A shows how the amount of desynchronous phase relations changes

(y-axis) for different thresholds (x-axis). Bars represent the standard deviations. Near 50%

of the phase relations have their derivative φ̇i,j < 10 rad/s. Graphic B shows how the

relevance of desynchronised oscillations – i.e. Fs − Fd rescaled to [0,1] – changes in relation

to the amount of phase relations considered desynchronised (x-axis).

complete dynamical description of phase relations change as such a description is reduced

to the dynamics of synchronous oscillations? In our particular model, the informational

content was equally distributed throughout the entire range of phase relations; the more

the dynamical description was reduced the less information it carried about the sensorimo-

tor coordination. Neither synchronised nor desynchronised oscillations was found to carry

a privileged status in terms of informational content in relation to the agent’s sensorimotor

activity. It is important to notice that the analysis we have presented not only suggests

that the phase relations of desynchronous oscillations carry relevant information about

sensorimotor behaviour but, more importantly, it shows how the informational content

changes as the dynamical description of the oscillatory network is reduced by gradually

removing the phase relation dynamics of desynchronous oscillations.

The results also gave some insights to address the questions: to what extent are desyn-

chronous oscillations as causally relevant as synchronous ones to the generation of func-

tional sensorimotor coordination? In our particular model, although the phase relations of

oscillations with a narrow frequency difference carried a relatively higher causal relevance

than the rest of the phase relations to sensorimotor coordinations, overall there was no
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privileged functional causal contribution to either synchronous or desynchronous oscilla-

tions. Notice that the analysis we have presented not only suggests that desynchronised

neural activity has functional significance to sensorimotor behaviour but, more impor-

tantly, it shows the relevance of desynchronous oscillations in relation to synchronous ones

considering a gradual reduction of the threshold delimiting both types of oscillations.

It is not a surprise that desynchronous oscillations carry some information about and

have causal contribution to sensorimotor coordinations. However, what was not expected

in our studies, could not have been predicted in advance, and what our results have

suggested is that i) the information and the causal contribution are evenly distributed

throughout the whole range of phase relation dynamics (note that we have analysed how

the information and the causal contribution were distributed in the phase relations).

It is important to notice that the experiment studied here start to shed some light

on roles of neural oscillations in sensorimotor behaviour, particularly it provides results

that suggest we should rethink the traditional approach that privileges synchronous over

desynchronous oscillations. In the future, to help make this contribution more empiri-

cally compelling further investigations are required. Firstly, the model developed here

is relatively simple (with only 5 oscillators), in a more complex system with thousands

of neurons, the oscillatory network could engage in independent oscillatory regimes, each

one causally contributing to different neural functions and independently related in terms

of informational content. Secondly, the motor behaviour of the agent developed here is

controlled by the phase relation of the oscillators (as described in Eq. (3.5) and (3.6));

alternatively, it could be controlled by the frequency of the oscillators – i.e. by the deriva-

tive of the phase or by the number of cycles of an oscillator within a moving time-window.

By using the frequency to control the motors, the timing between the oscillatory activity

would not be directly related to the motor activity. In both cases – in a more complex sys-

tem and in a model where the motor is controlled by the frequency – the results could come

out differently with other distributions of information and causal contribution throughout

the phase relation dynamics. Thus, despite the fact that the results found here are a first

step towards a wider investigation (with variations of the experiment), the current model

has consistently contributed to the understanding of neural oscillatory dynamics by raising

the discussion about whether we should carry on privileging synchrony (e.g. searching for

synchronous dynamics correlated to sensory and motor activities, as is the norm in many

parts of the literature (Fries, 2005; Uhlhaas et al., 2009; Pockett et al., 2009; Singer, 2011;

Hipp et al., 2011; Sharafi et al., 2012; Huyck and Passmore, 2013; Sakurai et al., 2013;



50

Stanley, 2013)) or add desynchronous oscillations into the equation and take the whole

regime of phase relation as the explanatory unit of neural oscillatory dynamics as we have

attempted to do here.

3.6 Summary

In this chapter we have compared the functional role and the informational content be-

tween synchronous and desynchronous oscillations in relation to the agent’s sensorimotor

behaviour. In the next chapter we develop a model where an agent is performing a differ-

ent task (discrimination of objects in the environment) and analyse i) the informational

content in the oscillations about the sensory dynamics – similar to the analysis we have

presented in the current chapter – and ii) how an agent’s sensory dynamics modulate its

network’s spontaneous oscillations generating oscillatory patterns that underlie the agent’s

coherent behaviours. The results presented in the next chapter support the claims made

in the current one and also provide dynamical explanations of how an agent’s oscillatory

network operates within a sensorimotor loop.
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Chapter 4

From spontaneous oscillations to

functional oscillatory regimes

within a sensorimotor loop

4.1 Introduction

A neural system is not an on- and off-system activated by external stimuli; instead, it

is an active system that constantly regenerates its internal oscillatory activity which is

modulated by environmental perturbations (Buzsaki, 2006; Sporns, 2010). This view of

an active nervous system has its roots in the work of Brown (1914) and contrasts with the

view of a nervous system primarily reflexive and driven by stimulus from the environment,

which dates back to Sherrington (1906), (Raichle, 2010). The majority of modelling in

theoretical neuroscience has focused on stimulus-driven neural models where neurons are

typically silent in the absence of sensory input (Vogels et al., 2005). Although the stimulus-

driven approach has achieved significant progress in understanding the brain operation

mainly in the sensory areas, it does not account for the majority of neural dynamics

where the sensory activity works as perturbations to the ongoing internally generated

oscillations (Vogels et al., 2005).

In this chapter we implement and study an oscillatory network that spontaneously

oscillates in the absence of sensory stimulation and, when it is coupled to an agent’s body,

generates a coherent sensorimotor activity that enables the agent to perform a minimally

cognitive task – namely the discrimination between the shapes of a circle and a triangle.

The network will firstly be analysed in its “resting state” – i.e. without receiving sensory

stimulation from the environment and without generating motor behaviour – and then
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under the continuous modulation of the agent’s sensorimotor loop. The results provide a

dynamical explanation of how a continuously changing sensory activity shapes the tempo-

ral structure of a network’s spontaneous oscillations generating oscillatory patterns that

underlie the agent’s coherent behaviour.

Apart from this dynamical analysis, we further explore the process of modulation

by measuring the statistical correlations between the sensory and the network dynamics.

Particularly, we will measure i) the mutual information between the phase relations in

the network and the sensory activity, and ii) how the amount of information in the phase

relations about the sensory activity changes as the phase relation dynamics are reduced

to the dynamics of synchronised oscillations (similar to the problem we have analysed in

the previous chapter). These measures help to support the claims made in the previous

chapter and also to understand the information dynamics between the environment and

the network during the process of modulation.

Notice that this chapter contributes to both central issues of this thesis by analysing

i) how the temporal structure of a network’s spontaneous oscillations changes within an

agent’s sensorimotor loop, and ii) how the informational content about the sensory activity

present in the temporal structure changes as the dynamical description of phase relations

is reduced to synchronous oscillations.

The model developed and the dynamical analyses are presented in the following sec-

tions.

4.2 Theoretical model and methods

4.2.1 The agent and the task

The model minimally replicates, at a conceptual level of abstraction, a behavioural phe-

nomenon where a subject has to identify the shape of an object by actively scanning it

in order to get sensory stimuli which will eventually lead to a coherent sensation of the

object’s shape. Specifically, the model consists of an agent moving back and forth along a

horizontal line in a two-dimensional environment reading the distance from its sensor to

an object placed in fixed position in the environment (see Fig. 4.1). In each trial of the

experiment, a total of 20 objects (10 triangles and 10 circles) are presented to the agent

in a random sequence. Each object is presented during 6 seconds and the whole trial lasts

120 seconds. The agent should actively scan the object and move either to the right if it

is interacting with a circle or to left if it is interacting with a triangle. Notice that, the
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agent has to keep interacting with the object during the whole trial (without moving far

away to the left or to the right) in order to detect the shape transition that might happen

at every 6 seconds. The sensor activation is zero when the agent is vertically aligned with

the centre of the object and increases as the agent moves either to the right or the left;

its maximum value is one when the agent is not touching the object.

Figure 4.1: Schematic representation of the simulated environment where the agent is

performing the discrimination task. The agent is represented by the small black circle.

Both the base of the triangle and the diameter of the circle have 6 units. The agent moves

along the horizontal line and has a distance sensor (represented by the grey line).

4.2.2 The agent’s controller

The agent is controlled by a network of 3 phase-coupled oscillators. Only the oscillator θ1

(described below) is connected to the distance sensor. The agent has two lateral motors

mR and mL, where the subscripts R and L stand for right and left. The activation of

each motor is defined by mR = c1(cos((θ2 − θ1) + (2πc2))) + 1) and mL = c3(cos((θ3 −

θ1) + (2πc4))) + 1), respectively; where θn is the phase of the oscillator n, c1 = 12.61,

c2 = 0.7873, c3 = 18.81 and c4 = 0.8678 are constant parameters evolved by a genetic

algorithm (explained below). The agent’s horizontal movement is given by (mR −mL).

Each node of the agent’s oscillatory network is governed by the Kuramoto’s equation

defined in (4.1) (Kuramoto, 1984):

θ̇i = (ωi + sic5) +
N∑
j=1

kjisin(θj − θi) (4.1)

where θi is the phase of the ith oscillator which is integrated with time step 0.001

seconds using the Euler method, ωi is the oscillator’s natural frequency, si is the sensory

input from the distance sensor, c5=6.83 is a constant representing the sensory input

strength (the sensor is connected only to the oscillator θ1), N is the number of oscillators

(here 3), and kji is the coupling factor from the jth to the ith oscillator.
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4.2.3 Methods to obtain an agent for the dynamical analysis

The microbial genetic algorithm (Harvey, 2001) was used to adjust the parameters of

the model, namely the motor strengths c1, c2, c3 and c4; the sensory strength c5; the

natural frequencies ωi ∈ [8, 17.5]Hz; and the connections ki,j ∈ [0, 20] (numbers in brackets

represent the search space for the genetic algorithm). There is no specific reason why

this genetic algorithm was chosen; the system is relatively simple and could have been

optimized with other genetic algorithms. The parameters are encoded in a genotype as

a vector of real numbers in the range [0,1] and linearly scaled, at each trial, to their

corresponding range. The genetic algorithm setup is: population size (30); mutation

rate (0.05); recombination (0.60); reflexive mutation; normal distribution for mutation(
µ = 0, σ2 = 0.1

)
.

Each agent ran for 20 trials starting at a random initial position within a distance

of [−3, 3] units from the centre of the object and with random value of θi within [0, 2π)

radians. A total of 10 circles and 10 triangles were presented to the agent at a random

sequence during each trial. Each object was presented for 6.0 seconds giving a total 120

seconds for a trial. At the end of each trial, the fitness of the agent was measured by the

Eq. (4.2):

Ftrial = FtriangleFcircle

Ftriangle = 1
10

∑10
p=1

1; if df < −0.5;

0; otherwise;

Fcircle = 1
10

∑10
p=1

1; if df > 0.5;

0; otherwise;

(4.2)

where Ftrial is the fitness of the agent at the end of a trial, Fcircle and Ftriangle are the

mean fitnesses over 10 presentations of circles and triangles, respectively; and df is the

final distance from the agent to the centre of the object at the end each six-second section.

The final fitness of the agent was given by the mean of Ftrial over 20 trials.

After evolving the parameters we ran each individual of the population for an additional

500 trials (without evolving the parameters) and selected the fittest one. In total, the fittest

agent interacted with 10000 objects (500 trials and 20 presentations at each trial). In 6

trials the agent presented an erratic behaviour by moving far away from the object. In

9880 object presentations (494 trials) the agent correctly responded to the object’s shape
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in 92.2% of cases. The rest 7.8% of object presentations, the agent incorrectly responded

to a circle and triangle in 4.2% and 3.6% of the cases, respectively. The fittest agent was

selected for the analyses of behaviour and internal dynamics, which are presented in the

next sections.

4.3 Agent’s behaviour and its internal oscillations

Figure 4.2-A shows the agent’s behavioural response during a single trial of the experiment.

During the first 24 s, the agent is interacting with a circle (see black line) continuously

moving back and forth along the horizontal line within range [0.77, 2.3]. When the object’s

shape switches to a triangle, at t=24 (see grey line), the agent goes to the left side of the

object and keeps moving back and forth in the range [-3.04, -0.26]. From t=48 to t=66 s,

the agent correctly responds to a sequence of shape transitions at every 6 s. In the rest of

the trial (t=[66,120] s), the agent interacts with a triangle for 12 s, then with a circle for

24 s, and finally with a triangle again during the last 18 s.

The underlying oscillatory dynamics corresponding to the agent’s behaviour when it is

interacting with a triangle and a circle are presented in Figure 4.2-B and C, respectively.

During the interaction with a circle (graphic 4.2-B), the oscillatory network is in a transient

dynamics during the first ≈ 6 s (grey line) and converges to a stable the limit cycle in

t = [6, 24) s. During the interaction with a triangle (graphic 4.2-C), the oscillatory network

is all the time in a transient dynamics within the basin of attraction of a stable limit cycle.

As we will see, when the agent interacts with a triangle for longer periods of time (no longer

than t = 210 s) its oscillatory network settles down in the limit cycle attractor.

The graphics 4.2-B and 4.2-C give us a qualitative overview of the functional oscillatory

regimes underlying the agent’s interaction with circle and triangle, respectively. In the

next sections we show in details how these regimes are generated from the modulation of

the network spontaneous oscillations (section 4.4), and also show the informational content

they carry about the agent’s sensory activity (section 4.5).

4.4 Modulation of the network spontaneous oscillations

The analysis of how the ongoing oscillations are modulated by the sensory activity is car-

ried out in three parts. In section 4.4.1 we analyse the coupling strength of the oscillatory

network. This analysis helps understand the generative mechanism of the network’s oscil-

lations and also the sensitivity of the network to sensory stimuli – e.g. the spontaneous
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Figure 4.2: Agent’s behaviour and its internal dynamics. Graphic A shows the agent’s

position in relation to the centre of the object (x-axis) over a trial (time is shown in the y-

axis). The behaviour of the agent during the interaction with a circle is represented by the

black line and during the interaction with a triangle by the grey line. Graphics B and

C show the agent’s internal oscillatory dynamics corresponding to t=[0,24) s (graphic B)

and t=[24,48) s (graphic C). The axes show the sin function of the phase relations between

each pair of oscillators. In graphic B, the grey line highlights t=[0,6) s and the black one

t=[6,24) s. In graphic C, the grey line highlights t=[24,42) s and the black one t=[42,48)s.

oscillations of a weakly coupled network can be easily perturbed by sensory stimuli. In

section 4.4.2 we analyse the network dynamics decoupled from the sensorimotor loop. The

main point of this analysis is to show the spontaneous dynamics of the network and to

understand how a controlled input (“manually” changed) affects the attractor landscape

of phase relations. This analysis sets the ground to understand the process of modulation

when the network is coupled to the sensorimotor loop, which is presented in section 4.4.3.

4.4.1 Coupling strength of the oscillatory network

The strength of the coupling is relative to the difference in the oscillators’ natural frequen-

cies; that is, the same value for the coupling factor ki,j might be weak when the difference
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between the oscillators’ natural frequencies is relatively high, or it might be strong when

this difference is relatively low. The values of the coupling factors ki,j are shown in Figure

4.3-A. The connections between θ1 and θ2 have the highest value of ki,j , namely k1,2 = 0.92

and k2,1 = 0.44 (k1,2+k2,1 = 1.36); and the connections between θ1 and θ3 have the lowest

ki,j , namely k1,3 = 0.06 and k3,1 = 0.02 (k1,3 + k3,1 = 0.08).

The natural frequencies of the oscillators are given by ω1 = 8.06, ω2 = 13.23 and

ω3 = 16.14 Hz. In the particular case of θ1, which is the only oscillator connected to the

agent’s sensor, its frequency is influenced by s according to: (ω1 + sc5), as described in

Eq. (4.1). In order to analyse the difference in natural frequencies between the oscillators,

the term (ω1 + sc5) is going to be interpreted as the natural frequency of the oscillator θ1.

Figure 4.3-B shows the difference in natural frequency between the oscillators considering

different values for the sensor s within [−3, 20]. The difference between θ2 and θ3 maintains

constant at 2.09 Hz as the natural frequencies of these oscillators are not affected by

s. The lowest value of the mean frequency difference takes place when s = [4.8, 7.4]

(see black dashed line). When s = [0, 1], which is range of sensory activity when the

agent is behaving in the environment, the frequency differences are ∆(θ1,θ2) = [5.17, 4.08],

∆(θ1,θ3) = [8.07, 6.99] and ∆(θ2,θ3) = 2.09 Hz (see the interval highlighted by the vertical

dashed lines in 4.3-B).
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Figure 4.3: Coupling factors and natural frequencies of the oscillatory network. Graphic

A shows the coupling factor ki,j (y-axis) for each pair of oscillators (i, j) (x-axis) in a scale

from 0 to 1. Graphic B shows the absolute value of the difference in natural frequencies

between each pair of oscillators (see legend) for s within [−3, 20] (x-axis). The black

dashed line shows the mean of all frequency differences. Vertical dashed lines highlight

the interval where s = [0, 1], which is the range of sensory input when the agent is behaving

in the environment.

We are interested in knowing the strength of the coupling factors shown in graphic

4.3-A in relation to the frequency differences shown in graphic 4.3-B when s = [0, 1] –
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we are plotting the s = [−3, 20] just to give a bigger picture of parameter space. As the

oscillators have different natural frequencies, the coupling strength can be quantified by

the Shannon’s entropy (Shannon, 1948) of the phase relations φi,j . When the network is

decoupled from the agent’s body, two oscillators i and j will get synchronised only if they

interact via their coupling. If the coupling strength is null, the oscillators will be all the

time desynchronised, generating a uniform distribution of phase relations φi,j (maximum

entropy). On the other hand, if the coupling strength is strong, the oscillators will be all

the time synchronised at a constant phase relation producing a degenerate distribution of

φi,j with H(φi,j) = 0 (minimum entropy).

The entropies of the phase relations for the sensor values s = [−3, 20] are shown in

Fig. 4.4-A. When s ≈ [1, 7], the oscillators θ1 and θ2 are more synchronized than the

others (H(φ1,2) ≈ 0.5). The highest synchronisation level of the network takes place

when s ≈ [7, 9] with H(φi,j) ≈ [0.1, 0.2]. When s > 9, the oscillators θ1 and θ2 and the

oscillators θ1 and θ3 are highly desynchronised (high entropy). Figure 4.4-B zooms into the

entropies of the phase relations in the range s = [0, 1]. The oscillators θ1 and θ3 are highly

desynchronised (H(φ1,3) = 1, ∀ s ∈ [0, 1]), and θ1 and θ2 are the ones most synchronised.

When s = 0, H(φ1,2) = 0.86 and H(φ2,3) = 0.91; as s increases up to 0.3 the entropies

H(φ1,2) and H(φ2,3) also increase (i.e. the oscillators become more desynchronised). When

s=0.3, H(φ1,2) = 0.97 and H(φ2,3) = 0.99 (i.e. the oscillators are highly desynchronised)

and, from s=0.3 to s=1, H(φ1,2) decreases (i.e. θ1 and θ2 become more synchronised) and

H(φ2,3) maintains high (i.e. θ2 and θ3 maintain highly desynchronised). The high values

of entropies within the range s = [0, 1] show that the oscillatory network is weekly coupled

for the range of sensory input when the agent is behaving the environment.

4.4.2 Oscillatory network decoupled from the sensorimotor loop

In this section we analyse the oscillatory network outside the agent’s sensorimotor loop;

particularly, we will “manually” change the variable s, corresponding to the agent’s sensor

when the network is coupled to the sensorimotor loop, and study its effects on the vector

field of phase relations.

Frequency dynamics under constant sensory input

We shall start by showing the frequency dynamics of θ1, θ2 and θ3 for three constant

values of s (see Figure 4.5). For s = 0 (graphic 4.5-A), the frequency of θ2 oscillates
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Figure 4.4: Graphic A shows the entropy of the phase relations φ1,2, φ1,3 and φ2,3 (see

legend) for different constant values of sensory input in the range [−3, 20] (x-axis). The

entropy values were rescaled to the range [0,1] representing the minimum and the maximum

values of entropy (see y-axis). Vertical dashed lines highlight s = [0, 1]. Graphic B zooms

into the entropies for the range s = [0, 1].

within the range ≈ [8, 18] Hz synchronising with θ1 at ≈9 Hz and with θ3 at ≈16 Hz1. For

s = 0.3 (graphic 4.5-B), most of the time the frequency of θ2 is at around ≈12 Hz (see

the density distribution) with short moments of synchrony with either θ1 or θ3. For s = 1

(graphic 4.5-C), θ1 and θ2 oscillate in a similar frequency range, namely θ1 ≈ [8, 10.5]

and θ2 ≈ [8, 13] Hz, and θ3 at a higher frequency around 16 Hz. Notice that θ1 or θ3 do

not synchronise at any time for the three values of s shown. Next we present the same

dynamics as shown in graphics 4.5-A, B and C, but in the state space of phase relations.
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Figure 4.5: Frequency dynamics of the oscillators θ1, θ2, and θ3 (see legend) for s=0

(graphic A), s=0.3 (graphic B) and s=1 (graphic C). Notice different x-axis in graphic B.

The vertical histograms represent the distributions of frequency dynamics for the oscillator

θ2.

1In the context of this work, two oscillators are considered to be synchronized when they have similar

frequencies.
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Phase relation dynamics under constant sensory input

The state space of phase relations consists of the three dimensions φ1,2, φ1,3 and φ2,3,

but it can be reduced to only two dimensions as one of them can be obtained from the

other two. We have chosen to analyse φ1,2 and φ2,3 as their dynamics describe the phase

relations of oscillators that get transiently synchronised. The phase relations between θ1

and θ3 are less interesting to be studied as they are all the time desynchronised, as we

have seen in the previous section that H(φ1,3) = 1 ∀ s ∈ [0, 1].

Fig. 4.6 shows the vector fields and the trajectories in the state space of phase relations

φ1,2 and φ2,3 for s = 0, s = 0.3 and s = 1. The magnitudes of the vectors are greater than

zero for s = 0, s = 0.3 and s = 1, showing that θ1, θ2 and θ3 do not get synchronised

altogether at any time. For s = 0, synchronisation either takes place between θ1 and θ2 or

between θ2 and θ3; in both cases the oscillators get synchronised with a phase difference at

around 1.57 radians (see the peaks on the density distributions). For s = 0.3, the oscillators

do not get synchronised (see the distributions of phase relations with H(φ1,2) = 0.97 and

H(φ2,3) = 0.99). For s=1, θ1 and θ2 get transiently synchronised at around 1.57 radians,

and θ2 and θ3 are most of the time desynchronised (H(φ1,2) = 0.98).
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Figure 4.6: Vector fields and trajectories in the state space of phase relations for s = 0

(graphic A), s = 0.3 (graphic B) and s = 1 (graphic C). The state space is defined by φ1,2

(x-axis) and φ2,3 (y-axis). For ease of visualisation, the arrows are three times greater than

their original magnitudes. The grey line shows a trajectory in the vector field during a 10

second time-window starting at the initial state φ1,2 = 5.0 and φ2,3 = 3.5 radians (pointed

to by an arrow in graphic A). The black line highlights the first 300 ms of each trajectory.

The histograms on the top and on the right of each graphic show the distributions of phase

relations for φ1,2 and φ2,3, respectively, for the ten-second trajectory. The number near

each distribution represents its entropy.
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The black trajectory shown in each graphic depicts the first 300 ms of the phase

relation dynamics starting from the same initial state (pointed to by the arrow in graphic

A). The main difference between the trajectories can be seen in the range φ1,2 = [0, 1.57]

and φ2,3 = 0 (bottom left part of the graphics). For s = 0 (graphic 4.6-A), the trajectory

turns to the right side (≈ 180 degrees in relation to the x-axis) showing that θ2 and θ3 are

synchronised and θ1 and θ3 desynchronised. For s = 0.3 (graphic 4.6-B), the trajectory

follows a diagonal line as φ̇1,2 = φ̇2,3 > 0 and later on it turns to the right showing θ2 and

θ3 is more synchronized than θ1 and θ3. For s = 1 (graphic 4.6-C), the trajectory moves

upwards (≈ 90 degrees in relation to the x-axis) showing that θ1 and θ2 are synchronised.

Next we zoom into two specific vectors in the vector field and study how s modifies their

angle and magnitude.

Modulation of the vector field by the parameter s

Fig. 4.7 shows how s modifies the angle and the magnitude of the vectors v1 at (φ1,2 =

1.57, φ2,3 = 0) and v2 at (φ1,2 = 3.14, φ2,3 = 0). The magnitude and the angle change

differently for each vector (see graphics 4.7-A2, A3, B2 and B3). The magnitude of v1

decreases from 0.0357 when s = 0 to 0.0354 when s = 1; and the magnitude of v2 decreases

from 0.0325 when s = 0 to 0.0257 when s = 1. The angle of the v1 changes from 82.3

degrees when s = 0 to 93.4 degrees when s = 1 (an increase of 11.1 degrees), and the

angle of v2 changes from 29.3 when s = 0 to 35.4 degrees when s = 1 (an increase of 6.1

degrees). While v1 and v2 change differently, their components vφ1,2 and vφ2,3 undergo

the same transformation. The component vφ1,2 linearly decays 0.0068 from s = 0 to s = 1

for both v1 and v2 (see graphics 4.7-A4 and B4), and the component vφ2,3 maintains

constant for both v1 and v2 (see graphics 4.7-A5 and B5). The components vφ1,2 and

vφ2,3 of all vectors in the vector field undergo the same transformation; i.e. vφ1,2 linearly

decreases and vφ2,3 maintains constant for all vector in the vector field; despite that, the

transformation in the resultant vector (e.g. v1 and v2) is different as it depends on the

angle and magnitude of the vector (as exemplified by v1 and v2 in graphics 4.7-A1 and

B1).

So far, the important points of the dynamical analysis can be summarized as follows:

i) the oscillatory network is weekly coupled when s = [0, 1] (the range of sensory input

when the agent is behaving the environment); ii) as s increases, the component vφ1,2 lin-

early decreases and vφ2,3 maintains constant; and iii) despite a linear change in vφ1,2 and a

constant vφ1,2 , the transformation in the vector field vector is not linear as it depends on
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Figure 4.7: Modulation of two vectors by the parameter s. Vectors v1 at (φ1,2 =

1.57, φ2,3 = 0) (graphic A1) and v2 at (φ1,2 = 3.14, φ2,3 = 0) (graphic B1) for s=0,

s=0.5 and s=1 (see values near the head of each vector). The small graphics on the right

side show how the magnitude and angle of v1 and v2 change for s = [0, 1] (see graphics

A2, A3, B2, B3). The magnitude of the components of each vector are shown in graphics

A4 and A5 (for the vector v1) and B4 and B5 (for the vector v2), see the title of the

graphics.

the current angle and magnitude of each vector. In the next section we show how a con-

tinuously changing s modulates the vector field in a structured way generating functional

oscillatory dynamics corresponding the agent’s coherent behaviours.

4.4.3 Oscillatory network coupled to the sensorimotor loop

The agent’s sensory activity continuously modulates the phase relation dynamics in a

such a way that coherent oscillatory regimes are generated and the agent performs a

correct behaviour. In the following, we analyse the structure of this modulation under the

interaction with circle and triangle, respectively.

Figure 4.8-A shows the agent’s behaviour under interaction with a circle and within

a short time-window of 550 ms (this time-window corresponds to t = [9, 9.55] s of the

trial we have presented in Fig. 4.2-A). The agent’s behaviour repeats in cycles of 275 ms

– note that the agent’s movement in the first half of the time-window (t = [9, 9.275] s)

and in the second one (t = [9.275, 9.55] s) are similar. The underlying phase relation and



63

frequency dynamics of the oscillators are presented in Figure 4.8-B and C. The agent’s

internal oscillations engage in a stable dynamics characterised by a pattern of alternated

synchrony between θ1 and θ2 or between θ2 and θ3. The synchrony between θ1 and θ2

takes place in t = [9, 9.091] s, at ≈ 9 Hz, and with a phase difference of ≈ 0.8 radians.

The synchrony between θ2 and θ3 takes place just after t = 9.183 s, at ≈ 16 Hz, and with

a phase difference of ≈ 2.8 radians. This regime of phase relations is the signature of the

oscillatory dynamics underlying the agent’s interaction with a circle. Next we analyse the

structure of the modulation that generates the stable oscillatory regime shown in graphic

4.8-B. The point of this analysis is to understand how the sensory activity modulates the

ongoing network intrinsic oscillations.
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Figure 4.8: Agent’s behaviour and its internal dynamics within a short time-window t =

[9, 9.55] s. Graphic A shows the agent’s behavioural response (see position in the x-axis)

during 550 ms (y-axis) of interaction with a circle. Graphic B shows the trajectory

of phase relations corresponding to behaviour presented in graphic A. The grey scale

shows the derivative of the phase relation dynamics (see colorbar). Numbers next to the

trajectory of phase relations indicate the time in seconds. The phase relation dynamics

starts at t=9 s and returns to the same point 275 ms later (at t=9.275 s). Graphic C

shows the frequency (y-axis) of the oscillators (see legend) over time (x-axis).

In order to present the structure of the modulation, we obtained φ̇1,2(t) and φ̇2,3(t) for

all phase relations φ1,2(t) and φ2,3(t) and the sensory input s(t); where t is a time step

of the agent’s lifetime (i.e. we obtained the magnitude of each vector component during

the agent’s behaviour). Then we calculated φ̇1,2(t) and φ̇2,3(t) for same states φ1,2(t) and

φ2,3(t), but for a constant sensory input s = 0 (i.e. we obtained the magnitude of each

vector component considering that s = 0). We then subtracted the magnitudes of the

vector components under s = 0 from the magnitudes under a continuously changing s

(during the agent’s behaviour). The result of this operation is a resultant vector repre-
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senting the difference in the phase relation dynamics under coupled and decoupled (with

s = 0) conditions. The magnitude and angle of the resultant vector are shown in Fig. 4.9.
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Figure 4.9: Modulation of the oscillatory network when it is coupled to the agent’s body

and under interaction with a circle. Graphic A shows the difference in angle (left y-axis)

and magnitude (right y-axis) between the vectors in the vector field under coupled and

decoupled (s = 0) conditions (see the main text body for explanation of how these graphics

were generated). While graphic A shows the angle and the magnitude over time, graphics

B and C show how these variables change in relation to the state of the network – defined

by φ1,2 (x-axis) and φ2,3 (y-axis). The colour bars in graphics B and C represent the angle

and magnitude, respectively.

At t = 9 s, for instance, the state of the oscillatory network is φ1,2 = 0.64 and φ2,3 =

3.30, and the state of the agent’s sensor is s = 0.076 (not shown in the graphic). This

value of sensory input increases the angle of the vector with origin at φ1,2 = 0.64 and

φ2,3 = 3.30 in 0.039 degrees and decreases its magnitude in 0.0002 in relation to vector

in the same position but with s=0. At t = 9.183 s, the state of the phase relation is

φ1,2 = 2.92 and φ2,3 = 2.57, and the agent’s sensor is s = 0.356. For this state, the sensor

modulates the tangent vector by increasing its angle in 0.82 degrees and decreasing its

magnitude in -0.0022 in relation to the same vector but with s = 0. Graphics 4.9-B and

C, then, represent the pattern of modulation that generates the stable dynamical regime

of phase relations (shown in graphic 4.8-B) under the interaction with a circle.

Under the interaction with a triangle, the oscillatory network takes a longer time

to settle down in a stable regime of phase relations; however, the agent is still able to

perform the correct behaviour when its network is in a transient dynamics within the

basin of attraction of the stable attractor underlying the interaction with a triangle. See

the agent’s behaviour and its internal dynamics in Fig. 4.10. The periodicity of the

network dynamics after approaching the limit cycle attractor is of 2.6 s – more than 9
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times greater than the periodicity of the network during the interaction with a circle

(0.275 s). The phase relation dynamics cross the state φ1,2 = 3.14 eight times at different

values of φ2,3 (some states are near to each other in the order of 10−3, as the points 2 and

6 shown in the Poincare map in graphic 4.10-C) before it returns to the same state closing

the cycle. The length of time taken for the network to converge to the stable limit cycle

will be analysed in section 4.5.
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Figure 4.10: Agent’s behaviour and its internal dynamics during the interaction with a

triangle. Graphic A shows the agent’s behaviour during a 2.6 s time-window (see y-axis).

Graphic B shows the phase relation dynamics of the oscillatory network during a 100

s time-window. The grey lines represent the transient dynamics of the oscillations and

the black lines the stable attractor to which the network converges. The arrows next to

the dashed line at φ1,2 = 3.14 point to 8 different values of φ2,3 when φ1,2 = 3.14 and

after stabilisation in the attractor. Note that the stable trajectory has a period of 2.6 s.

Graphic C is a Poincare map showing the values of φ2,3 when φ1,2 = 3.14. The dark

black line with black dots highlights the pattern to which the phase relations converge,

and the numbers from 1 to 8 show the sequence of how the state is changing in the map.

In sum, we have seen that the oscillatory network has two limit cycle attractors corre-

sponding to the agent’s interaction with a circle and a triangle, respectively. While during

the interaction with a circle the oscillatory network quickly converges to the attractor,

during the interaction with a triangle the phase relations maintain in a transient dynam-

ics for a longer period of time before settling down in the attractor. We have also shown

how the agent’s sensory activity modulates the oscillatory network in a structured way –

as presented in graphics 4.9-B and C – so that the functional patterns of phase relations

are generated and the agent performs a coherent behaviour.

It is important to notice that the functional patterns of phase relations are generated

and sustained by a coordinated dynamics of the closed sensorimotor loop. At each time
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t during the task, the state of the oscillatory network maps onto a motor behaviour and,

depending on the shape of the object and on the position of the agent in relation to the

object, the motor behaviour produces a particular sensory input that modulates the vector

field in a such way that the network converges to the functional patterns of phase relations.

Without a coherent coordination of this closed sensorimotor loop (if the network and the

sensory dynamics are not coordinated due to a sensor delay, for instance) the system might

converge to non-functional oscillatory regimes. In this analysis we are focusing on how the

sensory dynamics shapes the network’s intrinsic oscillations, but we should keep in mind

that the network is generating the agent’s motor behaviour which in turn is changing the

agent’s sensory activity – in the next chapter (chapter 5) we will add into our analysis the

modulation of the sensory dynamics by the motor behaviour.

4.5 Sensory information in the oscillatory network

During the process of modulation, information flows from the agent’s sensor to the network

and vice-versa. In this section, we analyse i) how much information the phase relations

carry about the sensory activity; ii) how the amount of information in the phase relations

about the sensory activity changes as the phase relation dynamics are reduced to the

dynamics of synchronised oscillations – which will inform us whether the information in the

phase relations about the sensory activity is higher during synchronised or desynchronised

oscillations. The results presented in this section support the claim made in the previous

chapter (chapter 3) about the importance of desynchronous oscillations for the agent’s

sensorimotor dynamics.

4.5.1 Mutual information between phase relations and sensory activity

Firstly we analyse the information that each phase relation carries about the agent’s

sensory activity during a single trial of the experiment (see Fig. 4.11). The Shannon’s

entropy and the mutual information are measured at the end of each time-window of 6

s (when the object’s shape can change), which gives a total of 6000 data points for each

time series. At the end of the first time-window (at t = 6 s), the mutual information in

each phase relation is below 1 bit and the entropy of the sensor is ≈ 3.8 bits. From t = 6

to t = 24 s, the mutual information of the phase relations increases and maintains stable

at ≈ 2.7 bits. The mutual information increases because during the first 6 s the oscillatory

network spends some time in a transient dynamics, and from t = 6 s onwards the oscillatory

network settles down in the stable limit cycle underlying the agent’s interaction with a
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circle. Observe a similar phenomenon from t = 84 to t = 102 s.

When the agent is interacting with a triangle the entropy of the sensor is ≈ 5.1 bits.

At t = 30 s, the information in the phase relations about the triangle is around 1 bit.

During the next time-windows, the the mutual information slowly increases and, at t = 48

s, I(s, φi,j) ≈ 1.5 bits. A similar phenomenon can be seen from t = 108 to t = 120. The

mutual information keeps increasing until the oscillatory network stabilises in the limit

cycle underlying the agent’s interaction with a triangle.
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Figure 4.11: Information about the agent’s sensory activity present in each phase relation.

The information is measured based on a single trial of the experiment (the same trial

presented in Fig. 4.2). H(s) represents the entropy of the sensor and I(s, φi,j) the mutual

information between the sensor s and a phase relation φi,j (see legend). The letters “C”

and “T” in grey background indicate whether the agent is interacting with a circle or a

triangle, respectively.

In order to show how the mutual information increases over a long period of interaction

with either of the objects we left the agent interacting with the same object for 300 s (50

sections of 6 s each). The average mutual information over 50 trials of interaction with

either a circle or a triangle are presented in Fig. 4.12. The mutual information during the

interaction with a circle (graphic 4.12-A) stabilise in I(s, φ1,2) = 2.87, I(s, φ1,3) = 2.70

and I(s, φ2,3) = 2.59 bits from the third time-window of 6 s (from 18 s). During the

interaction with a triangle (graphic 4.12-B) the mutual information slowly increases over

time and stabilises only after the 20th section of 6 s (120 seconds). The stabilisation of the

mutual information takes longer during the interaction with a triangle due to the transient

dynamics of the phase relations.
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Figure 4.12: Average mutual information during the interaction with either a circle

(graphic A) or a triangle (graphic B). Graphic A and B show the average mutual

information between the sensor and the phase relations (see legend) during 50 sections of

interaction (300 s). Bars represent the standard deviation of I(s, φ1,2). The other stan-

dard deviations are similar to the standard deviation of I(s, φ1,2), for ease of visualisation

they are not shown.

4.5.2 Mutual information without desynchronised oscillations

We have seen how much information each phase relation carries about the sensory ac-

tivity, we now analyse how the amount of information in the phase relations about the

sensory activity changes as the phase relation dynamics are reduced to the dynamics of

synchronised oscillations. In this work we are considering that i) a phase relation φi,j is

completely synchronised when φ̇i,j = 0; and ii) the higher the |φ̇i,j | the more desynchro-

nised is the phase relation φi,j . In order to remove the information of the desynchronised

phase relations, all φi,j whose |φ̇i,j | > threshold are shuffled2.

The black lines in graphics 4.13-A, B and C show how the mutual information changes

as the information present in desynchronous oscillations is removed from the dynamics

of phase relations during the interaction with a triangle. The derivative of the phase

relations φ1,2 (in graphic 4.13-A), for instance, changes from 0 to 0.068 (see x-axis). The

phase relations φ1,2 whose absolute value of derivatives are smaller than 0.04 carry 0.84

of the total amount of information (see grey line in graphic 4.13-A), which means that

the desynchronized phase relations (|φ̇i,j | > 0.04) carry 0.16 of the information about the

sensory activity. The grey lines in graphics 4.13-A, B and C show how the amount of

phase relations changes (in a scale from 0 to 1, see y-axes) in relation to their derivatives

(x-axes). For instance, the phase relations φ1,2 whose |φ̇1,2| ≤ 0.04 represent 0.85 of the

2In this analysis we are using the same methods used in the previous chapter (see Eq. 3.4)
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total amount of phase relations, i.e. 0.85 of the most synchronized phase relations carry

0.84 of the information about the sensory activity.

The relation between the mutual information and the amount of phase relations is

shown in graphic 4.13-D. Notice that 0.5 of the most synchronised oscillations between

θ1 and θ2 carry ∼ 0.42 of the total information, whereas 0.5 of the most synchronised

oscillations between θ2 and θ3 carry 0.57 of the total information. The same analyses

of mutual information for the interaction with a circle is presented in Fig. 4.14. What

the results from both analyses (interaction with triangle and circle) suggest is that there

is no privileged status to either synchronous or desynchronous oscillations regarding the

amount of information they carry about the sensory activity.
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Figure 4.13: Distribution of information throughout the phase relation dynamics during

the interaction with a triangle. The black lines in graphics A, B and C show the mutual

information I(s;φi,j) for the phase relations φ1,2, φ1,3, and φ2,3, respectively (see legend).

The values of I(s;φi,j) are in a scale from 0 (minimum) to 1 (maximum), see y-axes.

The grey lines in these graphics show the amount of φi,j (in a scale from 0 to 1) whose

|φ̇i,j | ≤ threshold. Graphic D shows how I(s;φi,j) changes with the amount of φi,j . Each

line represent a phase relation (see legend). The dashed line in the diagonal highlights a

linear relationship between the amount of phase relations and the mutual information.
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Figure 4.14: Distribution of information throughout the phase relation dynamics during

the interaction with a circle. See caption of Fig. 4.13.

4.6 Discussion

We have analysed a model of an oscillatory network that spontaneously oscillates outside

a sensorimotor loop and, when it is coupled to an agent’s body, generates a functional

sensorimotor behaviour. We have firstly shown that the agent’s internal oscillations are

generated by a weakly coupled network. The strength of the coupling was quantified by

the entropy of the phase relations. It is important to notice that it would not be possible to

interpret the entropy of the phase relations as the strength of the coupling if the oscillators

had similar natural frequencies as the probability distributions of phase relations would

be degenerate even in the absence of coupling.

We have analysed how s modulates the vector field of phase relations and shown that

as s increases from 0 to 1, the component vφ1,2 linearly decreases and vφ2,3 maintains

constant. Despite this linearity, the transformation in the entire vector field is not linear

as it depends on the angle and magnitude of each vector. This analysis has contributed

to understand how the sensory input can affected the network’s spontaneous oscillations.

The analysis of the oscillatory network coupled to the agent’s body has shown that the

interaction with a circle and a triangle correspond to different limit cycles in the network.

The convergence to the limit cycle under the interaction with a circle is quicker than the

convergence under the interaction with a triangle. We have seen that it is sufficient for the
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network to be in the basin of attraction of a limit cycle – moving in a transient dynamics

towards the limit cycle – for the agent to perform a correct behaviour.

Notice that the limit cycle dynamics and the transient dynamics towards the limit

cycle depend on a fine grained coordination between the temporal structure of the agent’s

internal oscillations and the sensory dynamics. If the sensory and the network dynamics

are not well coordinated (due to a sensor delay, for instance) the network could converge

to a non-functional oscillatory regimes due to a different modulation of the vector field.

It is important to notice as well that although we have been focusing on the mod-

ulation of the network’s spontaneous oscillations by the agent’s sensory dynamics, the

network activity also modulates the sensors by moving the agent in the environment (the

sensory dynamics depends on the position of the agent in relation to the object, on the

object’s shape and also on the agent’s motor behaviour). That means that the limit cycle

dynamics and the transient dynamics do depend not only on a fine grained modulation

of the oscillations by the sensory dynamics, but also on the modulation of the sensors by

the motors. The dynamics underlying the coherent behaviours (e.g. limit cycle dynamics

underlying the agent’s interaction with a triangle) are not “standalone” functional enti-

ties in the oscillatory network waiting for the correct input to be activated, instead they

depend on and exist as part of the entire sensorimotor loop coordinated dynamics.

The information analysis has shown that the information about the sensory activity is

evenly distributed in the phase relations without a privileged status to either synchronous

or desynchronous oscillations – which supports the results presented in the previous chap-

ter. An interpretation of this result is that the modulation of the network by the sen-

sory dynamics has similar effects on both modes of oscillatory dynamics (synchronous and

desynchronous), i.e. none of them is more stimulus-driven than the other, they are equally

generated from self-sustained oscillations in the network combined with perturbations from

the sensory dynamics.

The results and conclusions presented in this chapter could not have been predicted

without a careful analysis of the model. Firstly, it was not possible to predict that the

agent would be able to perform the correct behaviour controlled by such a weakly-coupled

oscillatory network (the coupling strength was quantified by the entropy of the phase re-

lations, as shown in Fig. 4.4). The agent’s left motor, for instance, was controlled by a

weakly-coupled and highly desynchronised pair of oscillators (H(φ1,3) ≈ 1 ∀ s ∈ [0, 1]).

This result has suggested that functional neural activity can be obtained from completely

desynchronized oscillations, which differs from the traditional approach where synchro-
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nized oscillatory activity is essential for the generation of neural functions as it establishes

the communication between functionally distinct and spatially distributed neural areas

(Uhlhaas et al., 2009; Singer, 2011; Hipp et al., 2011; Sharafi et al., 2012; Sakurai et al.,

2013).

Secondly, it was not possible predict in advance which types of oscillatory dynamics

would generate the agent’s correct behaviour. While during the interaction with a circle

the network quickly converges to a stable limit cycle, during the interaction with a triangle

it operates in a transient dynamics in the basin of attraction of a stable limit cycle. In

the latter case, the agent performs the correct behaviour even before the dynamics settle

down in the limit cycle attractor. These types of dynamics are not the only way the

agent could perform the correct behaviour. Alternatively, the dynamics could be given by

two different clusters of synchronized oscillators, one for each type of interaction (circle

and triangle). The results presented here have contributed to understand how functional

sensorimotor behaviours can be generated by different types of sensorimotor dynamics.

Thirdly, it was not possible to predict that the system evolved would present a tight

dependence between the agent’s sensorimotor loop and its internal oscillations. We have

shown that the functional limit cycles underlying the interaction with circle and triangle

would not exist without a fine-grained coordination between the oscillatory network and

the agent’s motor-sensory dynamics. This result has shown a proof of concept that func-

tional neural dynamics are not necessarily standalone entities in a neural system waiting

for a stimulus to be activated (as in the stimulus-driven approach discussed in the In-

troduction (Vogels et al., 2005)). In sum, the model developed in this chapter could

have multiple possible outcomes and without a carefully analysis of it, the results and

conclusions could not have been predicted in advance.

The results presented in this chapter helps understand how the temporal structure of an

oscillatory network changes within an agent’s sensorimotor loop and how the informational

content present in the temporal structure about the sensorimotor dynamics changes as the

temporal relations are reduced to the dynamics of synchronous oscillations.

4.7 Summary

The content of this chapter encompassed both central issues of the thesis, namely i) the

informational content of synchronous and desynchronous oscillations, and ii) the dynamical

analysis of the oscillatory dynamics within sensorimotor loops. The next chapters focus

exclusively on latter; particularly, chapter 5 explores how the sensory dynamics modulates
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the temporal structure of an agent’s internal oscillations – similar to what we have studied

in the current chapter – and additionally it explores how the oscillations modulate the

sensory dynamics through the agent’s motor behaviour. Chapter 6 explores how functional

oscillatory regimes are sustained by an agent’s sensorimotor loop under the presence of

plastic changes in the structure of the network and also how a network accommodates

functional oscillatory regimes (regimes that generate an agent’s coherent sensorimotor

coordination) by modifying its connectivity without affecting the functionality of pre-

existing regimes.
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Chapter 5

The dependency of functional

oscillatory regimes on an agent’s

motor-sensory dynamics: a case

study with the HKB equation

5.1 Introduction

One of the simplest, yet explanatorily powerful, models of oscillatory coordination dynam-

ics is the extended HKB (Haken-Kelso-Bunz) model which captures the temporal relation

between the activity of coupled oscillatory elements (Kelso, 1995; Kelso et al., 1990). This

model has been carefully studied by manipulating a control parameter that modifies the

oscillators’ natural frequencies or their coupling factor. One of its main dynamical proper-

ties is the metastable regime in which the phase relation variable engages when the control

parameter crosses a certain threshold. Metastable dynamics have been hypothesized to

be the dynamical signature of the nervous system underlying sensorimotor coordination

(Kelso and Tognoli, 2009; Tognoli and Kelso, 2009; Bressler and Kelso, 2001). Empirical

evidence favouring this hypothesis comes, for instance, from studies showing correlation

between sensory stimulation and transiently synchronized networks in the brain of animals

performing perceptual and motor coordination tasks (Rodriguez et al., 1999; Varela et al.,

2001; Buzsaki, 2006; Pockett et al., 2009; Singer, 2011; Hipp et al., 2011). Despite such

evidence supporting the existence of metastable regimes in the brain of behaving animals,

to our knowledge there are still very few models (if any) where the HKB equation gen-

erates the motor behaviour of an agent interacting in a spatial environment and, at the
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same time, has its control parameter modulated, through sensory feedback, by the motor be-

haviour it generates. Thus, in this work we investigate the dynamics of the extended HKB

equation within a closed sensorimotor loop by implementing it as the controller of an agent

performing a functional behaviour (gradient climbing) in a simulated two-dimensional en-

vironment. The “output” of the extended HKB equation (the phase relation variable)

generates the agent’s motor behaviour and, at the same time, its control parameter (in

our particular case, the variable representing the oscillators’ frequency difference) is mod-

ulated by the agent’s behaviour through its sensory activity. The extended HKB equation

within the agent’s sensorimotor loop will be referred to as the situated HKB model.

The HKB equation has been used to model cases of sensorimotor coupling such as in

Kelso et al. (2009), where a human subject receives sensory feedback from a computer

screen and the human’s behaviour in turn affects the computer. The novelty of the model

we study here is that the coupling is spatial and the HKB is not meant to capture the global

feedback dynamics but is used directly as a robotic controller. The resulting dynamics

will be shown to have special properties (e.g. multiple metastable regimes).

Briefly, we will show i) how different metastable dynamical patterns in the HKB equa-

tion are generated and sustained by the continuous interaction between the agent and its

environment; and ii) how the emergence of functional metastable patterns in the HKB

equation – i.e. patterns that generate gradient climbing behaviour – depends not only

on the structure of the agent’s sensory input but also on the coordinated coupling of the

agent’s motor-sensory dynamics. The analysis of the extended HKB equation within a sen-

sorimotor loop is a contribution to the Coordination Dynamics framework and, as such,

it provides theoretical insights to understanding the interplay between neural oscillations

and sensorimotor behaviour.

Some theoretical aspects of the HKB model are briefly reviewed in section 5.2 (for more

details refer to section 2.3.1). The computational model and its analysis are presented in

sections 5.3 and 5.4, respectively.

5.2 Preliminary considerations on the HKB model

The HKB model has been proposed in the context of the Coordination Dynamics frame-

work (Haken et al., 1985; Kelso, 1995). It was originally proposed to account for exper-

imental observations on rhythmical finger and hand coordinations in human beings, and

aimed to investigate: i) the formation of ordered states of coordination in human beings,

ii) the multistability of these observed states; and iii) the conditions that give rise to
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switching among coordinative states (Kelso, 1995, 2008). The model describes the phase

relation dynamics of oscillatory components at a high level of abstraction without specific

references to underlying mechanisms that generate its dynamics. Such a phenomenological

modelling approach of the HKB has been useful for investigating general laws of coordina-

tion in oscillatory systems (Haken et al., 1985). The dynamical phenomena described by

this model (e.g. metastability and transition between phase and anti-phase coordinative

patterns) have been validated with a variety of empirical data from experiments on human

rhythmic movement coordination at the behavioural (Forrester and Whitall, 2000; Robert-

son, 2001; Russell et al., 2010) and neural levels (Bressler and Kelso, 2001; Aramaki et al.,

2006; Jantzen et al., 2009). Since its proposal (Haken et al., 1985), the HKB model and

the dynamical phenomena it describes have been extensively studied (Jirsa et al., 1998;

Fuchs and Jirsa, 2008; Tognoli and Kelso, 2009), and remains an explanatorily powerful

model in the field of cognitive science (Kelso, 2012).

Notice that the level of abstraction described by the HKB equation is different from

the Kuramto’s equation that we have studied in previous chapters. Whereas the HKB de-

picts the phase relation dynamics between oscillatory components, the Kuramoto’s equa-

tion depicts phase dynamics. In the previous models the phase relations were obtained

from Kuramoto’s equation by subtracting the phase between the network’s oscillators (i.e.

φi,j(t) = |θi(t) − θj(t)|, as presented in Eq. (3.1)). The use of the HKB equation, rather

than Kuramoto’s one, to implement the agent’s controller allows us to discuss the dy-

namical analysis of phase relations within the sensorimotor loop (one of the central issues

of this thesis) in the context of the well-established Coordination Dynamics framework

developed by Kelso. Besides, the implementation and analysis of this equation within the

sensorimotor loop can contribute to Kelso’s framework with new theoretical insights to

develop the general laws of coordination in oscillatory systems.

5.3 Theoretical model

5.3.1 The agent and its controller

The model consists of a two dimensional simulated environment and a circular agent whose

task is to climb a linear gradient towards the centre of the environment where the peak

is located. The agent has a body of of 5 units diameter with two diametrically opposed

motors and a sensor randomly positioned at 90 ◦ ± 5 ◦ relative to the motor axis1. The

1Although the variation of 5 degrees in the sensor’s position increases the likelihood of the optimization

algorithm (explained below) to obtain a more robust solution for the gradient climbing behaviour, it is not
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agent’s sensor is connected to a controller and the latter connected to both motors, as

shown in Fig. 5.1. The controller’s dynamics are governed by the extended HKB equation

where the difference in natural frequencies (ω) is modulated by the agent’s sensory input

(s), as defined in (5.1).

mr

ml
HKB

d

I

Figure 5.1: Agent and its environment. The agent has a sensory input, two motors mr and

ml and is controlled by the HKB equation, see Eq. (5.1). The gradient in the environment

is represented by the grey scale, where the darker the color the higher the gradient. The

highest gradient is positioned at the coordinates x = 0 and y = 0 in the two-dimensional

environment.

φ̇ = sω − a sin φ− 2 b sin(2φ), (5.1)

where φ is the phase relation between two oscillators at an undetermined level of

abstraction, s is the sensor activation given by s = c1ḋ, where c1 is a constant and ḋ

is the derivative of the distance from the agent to the centre of the environment; ω is

a constant representing the difference in natural frequencies between two oscillators; a

and b are constants representing the coupling factor. By sensing the derivative of the

distance ḋ, the agent is able to perceive a linear radial gradient with its peak at the

centre of the environment. We have chosen this type of derivative sensing because many

organism’s behaviour is based on interactions with different types of gradients3. Also,

for a minimal model, sensing the derivative has the advantage that the agent does not

perceive a continuously increasing input, making the dynamics more regular throughout

necessary for evolving the parameters of the model.
3Most of small scale adaptive behaviour occurs along chemical gradients. The microscopic world is a

world of gradients (like thermal gradients or light gradients but mostly chemical gradients). The adaptive

behaviour of small animals (e.g. C. elegans) and individual motile cells (e.g. bacteria but also animal cells

migrating during development) is mostly a gradient-related adaptive behaviour. Navigating smell or heat

gradients is also a stereotypical adaptive task for higher animals.
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the behaviour of the agent.

The equation is integrated with time step 0.001 seconds using the Euler method. The

right and left motors of the agent are governed by Eq. (5.2) and (5.3), where c2, c3 and

c4 are constants.

mr = c2(cos(φ+ c3) + 1) (5.2)

ml = c2(cos(φ+ c4) + 1) (5.3)

5.3.2 Optimization with a genetic algorithm

In order to obtain an agent performing gradient climbing, a total of 7 parameters (c1,

c2, c3, c4, ω, a, b) were optimized with the microbial genetic algorithm (Harvey, 2001).

These parameters were encoded in a genotype as a vector of real numbers in the range

[0,1] linearly scaled, at each trial, to their corresponding range (a = [0.1, 10], b = [0.1, 10],

ω = [17, 22], c1 = [0, 3], c2 = [0, 0.4], c3 = [0, 2π], and c4 = [0, 2π]). The genetic algorithm

(GA) setup was: population size (50); mutation rate (0.05); recombination (0.60); reflexive

mutation; normal distribution for mutation
(
µ = 0, σ2 = 0.1

)
; trial length (150 seconds);

and trials for each agent (20). At the end of the 20th trial the worst fitness (out of 20)

was used as the selective fitness of the agent. The fitness function was defined by (5.4):

F =

1− df
di

; if df < di;

0; otherwise;
(5.4)

Where F is the fitness; di and df are the initial and final distances from the agent

to the centre of the environment where the peak of the gradient is located. This fitness

function selects the agents that perform gradient climbing in an environment with a peak

at its centre. The optimized parameters found by the GA were the following: c1 = 2.72,

c2 = 0.36, c3 = 3.44, c4 = 3.21, ω = 19.67, a = 0.99 and b = 7.94. The GA ran for 150

tournaments (equivalent to 6 generations) and the best agent got a fitness of 0.98. Most

solutions found by the GA were monostable controllers. In order to obtain metastable

dynamics we had to run different instances of GAs, each one with different ranges of ω.

There is no specific reason why the microbial genetic algorithm was used, any other

optimization method would probably work as the problem is relatively simple. Neither is

there a specific reason why c1 and ω are two different parameters, they could have been

optimized as a single variable since their product is what is actually relevant. We have
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used two parameters to keep the model coherent in the sense that c1 represents the sensor

strength and the ω the frequency difference.

Notice that the purpose of the model developed here is not to solve the problem of

gradient climbing (which could be solved by a simple Braitenberg vehicle), but to raise

and discuss theoretical issues about the interplay between oscillatory and sensorimotor

dynamics based on the analysis of the HKB equation controlling an agent’s behaviour

under a metastable regime. In this sense, we are not looking for optimum nor general

solutions for the gradient climbing behaviour but for a solution where the controller is

metastable while the agent is performing the desired behaviour.

The next sections present the analysis of the fittest agent found the by the GA.

5.4 Results

In section 5.4.1 we briefly present two distinct sensorimotor behaviours that the agent

engages in during its interaction with the environment and their underlying metastable

regimes in the situated HKB model. In section 5.4.2 we analyse how the metastable

regimes are generated and how the transition between them takes place. In section

5.4.3 we perform an experiment to compare the effects of motor-sensory coupling on the

dynamical and informational properties of the situated HKB model.

5.4.1 Metastable regimes underlying sensorimotor behaviours

Fig. 5.2-A presents the behaviour of an agent during a single trial of gradient climbing.

Fig. 5.2-B shows how the distance from the agent to the region of highest gradient (the

centre of the environment) changes for 20 trials of the experiment; the agent’s position,

orientation and the controller’s phase relation (φ) have a random value at the beginning

of each trial. The agents take from 80 up to 105 seconds to move towards the centre

of the environment and then they start moving around it. The patterns of sensorimotor

behaviour that the agents engage in when they are approaching the centre and when they

are moving around it are shown in Fig. 5.3. These patterns are defined by different

(repeatedly observed) closed orbits in the state space of sensory and motor activities and

will be referred to as SM1 and SM2, respectively (SMn standing for SensoriMotor pattern

n).

Underlying the sensorimotor behavioural patterns SM1 and SM2 there are two dis-

tinct metastable regimes of the phase relation (φ). The regimes are defined as the distinct

regions of the agent’s dynamics that correspond directly to the empirically observed be-
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Figure 5.2: Graphic A. Single trial of an agent’s behaviour in the environment. The

agent starts at the position (x=-30,y=12) and moves up the gradient towards the centre

(x=0,y=0). When the agent approaches the region of highest gradient it starts moving

around it, as shown in the inset that zooms into the agent’s behaviour in the interval

t = [80, 90] seconds. Graphic B. Distance from the agent to the centre of the environment

for 20 trials starting at random initial conditions. The inset zooms into the distance from

80 to 90 seconds for the trial shown in graphic A. The agents tested take at least 80

seconds to approach the region of highest gradient.

haviours SM1 and SM2. As the following analysis shows, the dynamics in these regions

have clear differences. Fig. 5.4-A shows such regimes for 20 successful trials – those pre-

sented in Fig. 5.2-B. Notice that these regimes are depicted by showing the state space

of the agent’s controller (φ ∈ [0, 2π) in the x-axis) and the derivative of φ throughout the

state space (in the y-axis). The derivative φ̇ is calculated by Eq. 5.1 at each time step of

the simulation. For any initial conditions all controllers converge to the metastable regimes

R1 and R2 of φ for the sensorimotor patterns SM1 and SM2, respectively. In both regimes

the derivative of the phase relation is always greater than zero showing that the state of

the controller never reaches a fixed point. Fig. 5.4-B shows the density distributions of

φ for R1 and R2. These distributions were generated by dividing the state space [0, 2π)

into 48 equally spaced bins and using the values of φ from the time windows [10, 50] s

and [110, 150] s (a total of 40000 data points for each time window) considering a single

trial of gradient climbing. The regimes R1 and R2 have two regions where φ slows down,

which can be seen by two peaks in the density distribution of each regime (φ spends more

time in the regions with low derivative, that is why there are peaks in the density distri-

butions). The difference between distributions (represented by the line without marks in

the graphic) maintains a level slightly below zero and has a peak in between [π, 3π/2].

Basically, the purpose of the next section is to understand the coordination between

the agent’s metastable oscillatory regimes – R1 and R2 – and its sensorimotor behaviours –
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Figure 5.3: Patterns of sensorimotor behaviour in which the agents engage in when they

are moving towards the region of highest gradient (A) and when they are moving around

it (B). The agent’s sensor is shown in the x axis and the difference in speed between its

right and left motors (mr −ml, defined in Equations 5.2 and 5.3) is shown in the y axis.

Black lines highlight the sensorimotor dynamics within the time intervals [10, 50]s and

[110, 150]s in graphic A and B, respectively. All agents converge to the same pattern of

sensorimotor behaviour during those time intervals.

SM1 and SM2. We will study how these oscillatory regimes are generated and maintained

during the agent’s interactions with its environment and also how the transition between

them takes place.

5.4.2 Generation and transition between metastable regimes

We shall start by analysing the extended HKB equation without the sensorimotor loop.

This analysis does not present any new result that has not been previously presented by

Kelso et al. (1990) and Kelso (1995). However, it is important in the context of this paper

to set the ground to study the situated HKB model. The purpose here is to understand

how the control parameter s affects the derivative of φ throughout its state space [0, 2π).

The controller is studied within the parameter range s = [−3.92, 3.92], which is the interval

of sensory activation when the agent is behaving in the environment.

Fig. 5.5-A shows φ̇ throughout the state space of φ given three constant values of s.

When s = −3.92 the state space contains an attractor (black-filled circle) and a repeller

(white circle). When s = 0 and s = 3.92 there are no fixed points and the dynamics of φ
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Figure 5.4: Metastable regimes of phase relation (φ) that the agent engages in while it is

moving towards the centre of the environment and while it is moving around it. Graphic

A shows the metastable regimes in terms of φ (x axis) and φ̇ (y axis) underlying SM1 (black

line) and SM2 (grey line). These regimes will be referred to as R1 and R2, respectively

(see legend). Graphic B shows the density distributions of R1 (line with circles), R2 (line

with crosses) and the difference between the distributions (line without markers).

are metastable. By keeping s constant the derivative φ̇ always presents a global minimum

at φ = 0.796 and a local minimum at φ = 3.916 radians. From now on these two points will

be referred to as φG and φL, respectively. Fig. 5.5-B shows how s changes the derivative

at minima φG and φL; note the linear relationship between these variables. For s < −3.09

(see vertical dashed line) the derivative is negative at global minimum φG and positive at

the local minimum φL, showing that the state space has at least two fixed points. Above

s > −3.09 the derivative is positive at φG, showing that the state space does not have

fixed points. Fig. 5.5-C shows the bifurcation diagram of φ for the independent variable

s. As s increases within the range [-3.92, -3.09) both fixed points (attractor and repeller)

approach each other; when s ≈ −3.09 both points merge into a single half-stable point;

and when s > −3.09 this single point disappears and φ’s dynamics become metastable.

Summing up, s affects the dynamics of the agent’s controller by linearly changing the

derivative of φ throughout the entire state space [0, 2π); additionally, a) within a certain

range of s the attractor landscape presents two fixed points (an attractor and a repeller)

that approach each other as s increases; and b) above this range the fixed points disappear

and the phase relation dynamics fall into a metastable regime.

We now move to the analysis of the situated HKB model which has its control param-
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Figure 5.5: Graphic A. Phase relation φ (x axis) and its derivative φ̇ (y axis) for 3

different values of constant inputs s = −3.92 (lower curve), s = 0 (middle curve) and

s = 3.92 (upper curve). When s = −3.92 the state space contains an attractor (black-

filled circle) and a repeller (white circle). When s = 0 and s = 3.92 there are two points of

minima at φ = 0.796 and φ = 3.916, respectively. Graphic B. Relation between s and the

derivative at the points of minima φ = 0.796 (black line) and φ = 3.916 (grey dashed line).

For s < −3.09 (see vertical dashed line) the derivative at φ = 0.796 is negative, and for

s > −3.09 both points of minima are positive. Graphic C. Bifurcation diagram of φ (see

y axis) for the independent variable s (x axis). Vertical dashed line is at s = −3.09. The

black-filled circles represent point attractors and the white circles represent the repellers.

When s > −3.09 the phase relation dynamics are metastable.
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eter s and phase relation φ co-modulating each other through the sensorimotor loop. We

selected a small time window of 1.5 seconds during a single trial of gradient climbing in

order to start presenting the dynamics of s and φ (see Fig. 5.6). Graphic 5.6-A shows how

the derivative φ̇ at the points of minima φG and φL are changing over time. The sensor

dynamics s (in graphic 5.6-B) and the derivative at φG and φL (in graphic 5.6-A) move

up and down together due to their linear relationship. Although the fixed points appear in

the state space around the minimum φG during t1 = [10.53, 10.60] and t2 = [11.18, 11.25]

seconds, the phase relation does not reach the attractor. The reason for that is that during

t1 and t2 the phase relation φ is away from the minimum φG moving in the region near

the local minima φL = 3.916 (see horizontal line in graphic 5.6-C) and when φ reaches

the region near φG the sensor value has increased and the fixed points have disappeared.

The main point to understand from this analysis is that the control parameter s linearly

changes the derivative throughout the entire state space of φ, as a result, although for

some values of s the state space shows one or two attractors, the continuous sensorimotor

modulation of s in coordination with φ never allows the system to settle down on such

attractors.

By looking at the values of s shown in Fig. 5.7 we can see how the derivative throughout

the state space of φ is changing during R1 and R2. The greatest difference in the derivative

takes place when φ is around the local minima φL; exactly at φL, for instance, the values

of s are ≈ −1.94 and ≈ 1.55 during R1 and R2, respectively; showing that when φ is at

the point of local minima, the derivative throughout the entire state space is lower during

R1 than during R2. This difference explains why there is a peak in between π and 3π/2

in the graphic of density distribution shown in Fig. 5.4-B. The state space has its lowest

derivative and also fixed points around the global minimum φG in two situations: a) when

φ is within [3.69, 3.82] during R1, and b) when φ is within [2.65, 3.12] during R2; both

shown in the graphic by the values of s below the horizontal dashed line. Despite the

presence of fixed points, φ dynamics never reaches a stable or unstable state as the state

space changes when φ is around the global minimum φG (see that the values of s are above

the horizontal dashed line when φ is around the global minimum φG = 0.796). The main

point to understand from this analysis is how s changes the derivative of the state space

of φ in different ways during the regimes R1 and R2.

We have been describing how s modulates φ by changing the derivative of the latter;

however, φ also modulates the dynamics of s by moving the agent in the environment

– i.e. the dynamics of s and φ are generated by a process of co-modulation between
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Figure 5.6: Graphic A shows how the derivative φ̇ at points of minima φG (black line)

and φL (grey line) are changing over time. The horizontal line highlights φ̇ = 0. Graphic

B shows how s (y axis) is changing over time. The horizontal line highlights s = −3.09,

the threshold at above which the fixed points disappear. Note the linear relation between

the dynamic of s (in graphic B) and the derivatives at the points of global φG = 0.796

and local φL = 3.916 minima (in graphic A). Graphic C shows how φ is changing over

time. The horizontal lines highlight the points φG and φL. Vertical dashed lines highlight

the time intervals t1 = [10.53, 10.60] and t2 = [11.18, 11.25] seconds where the fixed points

appear in the state space.

these variables. Thus, the regimes R1 and R2 are generated and sustained by continuously

modifying the derivative throughout the state space of φ in a structured way through s

and, at the same time, by continuously modulating s through mr and ml. Notice that

as φ maps onto mr and ml according to Eq. (5.2) and (5.3), respectively, it is possible

to analyse the system by considering only s and φ; that is, the dynamics of the loop

s → φ → (mr,ml) → s can be reduced to the co-modulation dynamics s ↔ φ. Briefly,

the main message of the analysis we have presented so far is that the regimes R1 and R2

are generated and sustained by different dynamics of co-modulation s ↔ φ. Having seen

how R1 and R2 are generated, in the rest of this section we analyse the transition between

these regimes in terms of the stability of the co-modulation s↔ φ.

The stability of s ↔ φ during a single trial of gradient climbing is presented in Fig.

5.8 by using the Poincare map. At t = 0.2 and t = 0.7 seconds the co-modulation is
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Figure 5.7: Relations between s and φ that generate the dynamical regimes R1 (black

line) and R2 (grey line), respectively. Horizontal dashed line highlight the value of s

below which the fixed points appear in the state space of φ.

unstable but moving towards the region of stability represented by the diagonal line; at

t = 1.2 seconds it is near the stable region with s = −2.3; at t = 7.7 seconds it stabilizes

with s = −1.98, corresponding to R1 (some values are not shown in the graphic). The

co-modulation dynamics maintains stability while the agent is moving towards the centre

of the environment engaged in the sensorimotor behaviour SM1. As soon as the agent

approaches the centre, at t = 80 seconds, the co-modulation starts losing its stability, as

shown by the sequence of grey points near the region pointed at by the arrow R1. At

t = 101 seconds the co-modulation is totally unstable and transiting to another stable

region; after t = 104 seconds it is near the stable region, and at t = 107 seconds it

stabilizes with s = 1.2. The stabilization completes the transition from R1 to R2. In sum,

the dynamics of s ↔ φ starts unstable, converges to the stable pattern corresponding to

R1, becomes unstable again, and then converges to another stable pattern corresponding

to R2.

The Poincare map can also be interpreted in an alternative way. This map was gen-

erated for the phase relation φ = π/2 which corresponds to the motor activity mr = 1.16

and ml = 0.96 – according to Eq. (5.2) and (5.3), respectively. We can read the Poincare

map as being the representation of the agent’s sensory input when its motor states are

mr = 1.16 and ml = 0.96. In this case, when the agent is moving towards the centre of the

environment these motor states map onto a sensory input s ∼ −1.98 (point of stabilization

in the Poincare map corresponding to the regime R1); and when it approaches the centre

the motor-sensory dynamics become unstable and eventually settle down in a different

stable pattern with s ∼ 1.2 (point of stabilization in the Poincare map corresponding to

the regime R2). For both values of s (s ∼ −1.98 and s ∼ 1.2) there is a micro variation in
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the order of 10−2 as the agent’s movement and consequently the derivative of the distance

to the centre of the environment, which is measured by the agent’s sensor, do not vary

smoothly (shown by the small oscillations in the distance depicted in graphic 5.2-B).
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Figure 5.8: Poincare map showing the values of s at every time φ = π/2. The diagonal

line highlights the region of the map where s remains constant at φ = π/2. The numbers

near the black points show the approximated time in seconds of the value of s shown on

the y axis. The arrows indicate the regions to where the co-modulation dynamics s ↔ φ

converge during R1 and R2. These regions are highlighted by the black points.

Notice that the topology of the state space underlying R1 is different from the one

underlying R2; more specifically, the transition from R1 to R2 is not characterized by

a movement of the system to a different region of the state space (e.g. movement to a

different basin of attraction), but by a modification on the topology of the state space

[0, 2π) caused by a different dynamic structure of s.

Also notice that whereas the agent’s internal dynamics operates in a metastable regime,

the agent as a whole operates in a stable limit cycle dynamics – represented by the trajec-

tories in state space defined by s and φ depicted in Fig. 5.7. These regimes are compatible

with each other as the fact that the variable φ is metastable – characterized by the passage

near saddle node bifurcation points (φG and φL) – does not exclude the existence of stable

limit cycles in the whole system consisting of s, φ, mr and ml.

Basically, so far we have shown two patterns of sensorimotor behaviours SM1 and SM2

and their underlying metastable dynamical regimes R1 and R2, we have shown that these

dynamical regimes are generated and sustained by the continuous co-modulation between

s and φ; and have analysed how the transition between regimes takes place in relation to

the stability of the co-modulation s↔ φ.
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5.4.3 Effects of the motor-sensory coordinated coupling on the HKB

model

In this section we perform an experiment to analyse how the dynamical and informational

properties of the agent’s internal oscillatory dynamics change when the modulations s→ φ

and φ → s are not coupled with each other. A single trial of the experiment consists of

an agent performing gradient climbing starting from a random position and orientation in

the environment and with random initial phase relation. We record the sensory dynamics

of this agent and then play it back to the same agent starting from the same position

and random initial phase relation. By doing that the controller of both agents (normal

and recorded) are modulated by the same control parameter dynamics – i.e. s→ φ is the

same for both agents – however only the first agent is able to modulate its own control

parameter – i.e. only the first agent has φ → s coupled to s → φ. These agents will be

referred to as “coupled” and “decoupled”, respectively.

For all initial conditions tested (10000 trials) the dynamics of the internal oscillatory

dynamics of the coupled agent always converges to R1 and then it switches to R2 (such

dynamical pattern transition will be written as R1  R2). This result is exactly what

we have shown in the previous section. On the other hand, the internal dynamics of the

decoupled agent might converge either to the same pattern R1  R2 or to a different one

R3  R4, see the density distributions of phase relations for these patterns in Fig. 5.9.

Accordingly, the dynamics between s and φ in the coupled and decoupled agents may also

differ from each other, as shown in Fig. 5.10.

The probabilities of convergence to either R1  R2 or R3  R4 depend on the

difference between the initial values of φ in the coupled and decoupled agents, as shown

in Fig. 5.11. The initial distance from the agent to the centre of the environment and the

angle of the agent’s body in relation to the centre do not affect the regimes to which the

controller converges. The probability of the decoupled agents to converge to R1 R2 given

a initial phase lag within (0,0.17] is 97.6% (see first bar on the left of the graphic); and for

a lag within (6.11,6.28] the probability is 99.3% (see last bar on the right of the graphic).

The probability of the decoupled agents to converge to R3 R4 given an initial phase lag

within (2.62,2.79] is 98.2% (see the longest grey bar in the region before π radians). When

the agent converges to R3 R4 the agent’s behaviour is totally non-functional as it keeps

moving in circles around its starting position.

Summing up, the dynamical properties of the agent’s controller depends on whether φ

modulates s; when there is modulation, the controller always converges to R1  R2. In
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Figure 5.9: Density distributions of the oscillatory regimes that the decoupled agents (those

that receive the recorded input of an agent with full sensorimotor coupling—see text for

details) might converge to. The oscillatory dynamics converges either to R1  R2 or to

R3  R4 (see legends). Lines without markers show the difference between R1 and R3

(graphic A) and R2 and R4 (graphic B).
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Figure 5.10: Trajectories in the state space of s and φ for the decoupled agent. Initially

s and φ converge to either a pattern that generates R1 or to another one that generates

R3 (shown in graphic A). Then, they switch either to a pattern that generates R2 or R4

(shown in graphic B).

the absence of modulation the controller might converge either to the functional R1  R2

or to the non-functional R3  R4. This result suggest that the emergence of functional
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metastable patterns in the situated HKB model – i.e. patterns that generate gradient

climbing behaviour – depend not only on the structure of the agent’s sensory input but

also on a coordinated coupling of the agent’s motor-sensory dynamics.
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Figure 5.11: Percentage of agents (y axis) that converge to either R1  R2 (black bars)

or R3  R4 (grey bars) according to the difference between the initial φ in coupled and

decoupled agents. The state space [0, 2π) was divided into 36 equally spaced intervals

represented by the bars.

Finally, we study how the informational properties of the system change when the

modulations s→ φ and φ→ s are not coupled to each other. The amount of information

that the controller of the decoupled agent carries about sensory stimulation is equal or

smaller than the amount of information carried by the controller of the coupled agent. The

amount of information is equal when the controller converges to R1  R2 and smaller

when it converges to R3  R4. This difference is analyzed with information-theoretic

measures applied to s and φ dynamics considering 20 trials of the experiment in which

the coupled agent converges to R1  R2 and the decoupled one to R3  R4 (methods

are described in the Appendix). Particularly, we measured: a) the Shannon entropy of

the sensor – referred to as H(s) – which gives the amount of bits needed to “codify” the

sensory dynamics; b) the mutual information between s and φ of the decoupled agent –

referred to as I(s;φd) – which gives the amount of information the controller has about

the sensory dynamics; and c) the conditional mutual information between s and φ of the

coupled agent given φ dynamics of the decoupled agent – referred to as I(s;φc|φd) – which

gives the amount of information carried by the controller of the coupled agent that is

not already present in the controller of the decoupled agent. In essence these measures

will inform us about how the information present in the controller about sensory activity

changes with and without the modulation φ→ s – see Fig. 5.12.



91

The agent’s sensory dynamics needs ≈ 5 bits to represent all its possible states, as

shown by H(s). The controller of the decoupled agent carries ≈ 3.5 bits of information

about the sensory dynamics, as shown by I(s;φd); and by adding the modulation φ → s

the amount of information increases by ≈ 0.5 bits (≈ 14%), as shown by I(s;φc|φd). This

result suggests that the informational content that the agent’s controller carries about

its control parameter s is greater when φ and s modulates each other than when only s

modulates φ or, in other words, the modulation of sensory activity by motor behaviour

increases the amount of information present in the agent’s oscillatory network.
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Figure 5.12: Information-theoretic measures for the agent’s controller with and without

the modulation φ → s. All measures represent the mean over 20 trials and error bars

their standard deviation. On average the agent’s sensor entropy H(s) remains around 5

bits. Under open-loop, the mutual information between the decoupled agent’s controller

and its sensor I(s;φd) stays at ≈ 3.3 bits while the agent is approaching the centre of

the environment (time in seconds is represented on the x axis) and slightly increases to

≈ 3.6 when the agent is moving around the centre of the environment. The controller of

the coupled agent carries 0.5 bits of additional information about the sensor that is not

present in the controller of the decoupled agent, shown by I(s;φc|φd).

5.5 Discussion

The contribution of this chapter is twofold, it presents a dynamical analysis of the HKB

equation within a closed sensorimotor loop and also gives theoretical insights into the

interplay of sensorimotor behaviour and neural oscillatory dynamics.

In the experiment carried out by Kelso, the phase relation φ (described by Eq. 5.1)

models the angle between the right and left fingers, as described in section 5.2. This

variable has also been interpreted as the phase relation between neural oscillatory com-

ponents underlying the fingers’ coordination (Kelso and Tognoli, 2009). In the context of
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this work, φ describes the phase relation of oscillatory components at an undetermined

level of abstraction (it can be interpreted, for instance, as the phase relation between

individual neurons, or neuronal groups). Our goal here was not to develop a model with

empirical accuracy, but to raise theoretical issues about oscillatory dynamics underlying

sensorimotor coordination.

We have shown qualitatively different sensorimotor behaviours – SM1 and SM2 –

and their underlying metastable regimes of phase relations – R1 and R2, respectively.

This result is relevant mainly in the context of the Coordination Dynamics framework

as it presents a simple case of the relation between metastability in the HKB model and

sensorimotor behaviour. We have also shown that the regimes R1 and R2 are generated

and sustained by continuously modifying the derivative throughout the state space of φ in

a structured way through s and, at the same time, by continuously modulating s through φ

via mr and ml. In the context of Coordination Dynamics, this result helps to understand

how different metastable regimes can be generated and sustained by the HKB model

when it is within a sensorimotor loop. More generally, this result suggests that an agent’s

internal oscillations depend on sensorimotor dynamics to engage in functional metastable

regimes; that is, the ongoing interaction involving an agent and its environment generates

and sustains the agent’s coherent metastable oscillatory regimes.

Another result we have shown is that the transition from R1 to R2 takes place when

the co-modulation between s and φ becomes unstable. This result suggests that an agent’s

internal oscillations switches between functional metastable regimes when the dynamics

of interaction involving the agent and its environment becomes unstable. While a pattern

of motor activity is mapped onto another pattern on the agent’s sensory activity – i.e. the

interaction is stable – then the agent’s internal dynamics settles down into a metastable

pattern (e.g. R1); but once the same motor activity starts generating a different sensory

stimulation – i.e. the interaction becomes unstable – then agent’s internal dynamics makes

a transition to another metastable pattern (e.g. R2). This result shows how the transition

between dynamical regimes in the situated HKB model depends on the stability of the

agent’s sensorimotor contingencies.

The experiment with recorded input further investigates the continuous mutual coor-

dination and interdependence between the agent’s sensorimotor behaviour and its internal

oscillatory dynamics. It shows that the dynamical properties of the agent’s controller de-

pends on whether φ modulates s; when there is modulation the controller always converges

to R1  R2 and in the absence of modulation the controller converge to either R1  R2
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or R3  R4. In other words, the modulation of the agent’s sensory dynamics by its

motor activity (φ→ s) assures that the controller converges to the functional metastable

regimes R1 and R2 that generate coherent sensorimotor behaviours for the agent to per-

form gradient climbing. In the absence of this modulation the agent’s internal oscillations

and its motor-sensory dynamics might become uncoordinated and consequently generate

a non-functional interaction between the agent and its environment. More generally, this

experiment suggests that functional metastable oscillatory regimes are tightly dependent

on the agent’s sensorimotor contingencies, as when the agent’s sensory activity is not co-

ordinated to what the agent is doing then the internal oscillations might converge to a

non-functional regime.

The modulation of the agent’s sensor by its motor behaviour through the environment

not only influences the dynamical properties of the agent’s controller, but might as well

increase the mutual information between the agent’s controller and its sensory dynamics.

Particularly, we have shown that the mutual information between φ and s is greater when

there is co-modulation s ↔ φ than when only s modulates φ. This result should be

more carefully investigated with more variations of the experiment as it could be only by

chance that the regimes R3 and R4 presented a mutual information lower than R1 and R2;

however, it still remains interesting for opening the discussion on whether the uncertainty

of neural oscillations about sensory stimuli decreases under modulation of motor activity.

Generally speaking, one contribution of the model studied in this chapter is the dy-

namical analysis of the HKB equation in a completely different context from that studied

by Kelso. This is an important theoretical contribution to the Coordination Dynamics

framework as it provides a proof of concept that helps to illustrate the notion of senso-

rimotor coordination coupling and multiple metastable regimes in the HKB model. The

outcome of the dynamical analysis could not have been predicted in advance as there are

a multiplicity of strategies to achieve the same behavioural and internal phase relation

dynamics. The agent’s correct behaviour could have been achieved by a monostable or

multistable HKB equation (rather than metastable); and the agent’s internal metastable

dynamics could have been achieved by maintaining the control parameter over a thresh-

old where the point attractors would never appear (differently from our model where

the point attractors appear during short time-windows). In sum, our analysis has shown

how an agent can perform functional behaviours under metastable regimes generated by

a dynamic sensory input constantly reshaping the attractor landscape. This result has

shed some light on how sensorimotor coordination can operate together with metastable
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oscillatory dynamics; and it could not have been predicted before studying the model.

The metastable regimes that the HKB model can illustrate have been hypothesized to

be the signature of brain functioning. Despite evidence of metastability in empirical ex-

periment of animals performing perceptual motor coordination tasks (as described in the

introduction), to our knowledge there was no previous model of a situated HKB system

that operates in a metastable region, coupling internal metastable oscillations to sensori-

motor coordination dynamics through a control parameter. The model we have developed

and analyzed in this paper has contributed to fill this gap and has shown the tight depen-

dency that can be established between an agent’s neural oscillatory metastable regimes

and the sensorimotor contingencies they make possible when coupled to the environment.

Conditional mutual information

Shannon’s entropy (Shannon, 1948) is shown in Eq. (5.5), where p(xk) is probability mass

function of the outcome xk.

H(X) = −
b∑

k=1

p(xk)log(xk), (5.5)

The mutual information (Shannon, 1948; Cover and Thomas, 2005) is shown in Eq.

(5.6), where H(X), H(Y ) are the entropies of the sets X and Y respectively, and H(X,Y )

is the joint entropy of both sets.

I(X;Y ) = H(X) +H(Y )−H(X,Y ), (5.6)

The standard measure of conditional mutual information (Cover and Thomas, 2005)

is shown in Eq. (5.7).

I(X;Y |Z) =
∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z)log2
p(x, y|z)

p(x|z)p(y|z)
(5.7)

where X, Y and Z are sets of discrete random variables; and p is the probability mass

function for the given subscripts (x,y and z).

The temporal dynamics of the information-theoretic measures were captured by us-

ing a moving window of 10 seconds; i.e. the probability mass functions were calculated

considering a moving window containing 10000 data points. The continuous value of s

∈ [−3.92, 3.92], φc and φd ∈ [0, 2π) were discretized into 50 equally spaced bins.
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5.6 Summary

In this chapter we have shown the that functional oscillatory regimes depend not only

on the modulation of the network by the sensory activity, but also on a coordinated

coupling between the agent’s sensory and motor activities. In the next chapter we explore

how functional oscillatory regimes are sustained by an agent’s sensorimotor loop under

the presence of plastic changes in the structure of the network and how a completely

integrated network accommodates oscillatory regimes (adapts to new conditions) without

affecting the functionality of pre-existing regimes.
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Chapter 6

Accommodating functional

oscillatory regimes within

homeostatically stable boundaries

6.1 Introduction

The temporal structure of neural oscillations is affected not only by an agent’s ongoing sen-

sorimotor dynamics – as we have studied in previous chapters – but also by a mechanism of

adaptation that changes the network connectivity in an ontogenetic timescale. A common

problem that arises when the connectivity of a completely integrated network changes so

that an agent adapts to a new situation is that the modification of the network structure

(its connections) might interfere in the network dynamics under situations to which it had

previously adapted – a problem known as “the neural interference” (Di Ferdinando et al.,

2001). In this chapter we explore the problem of neural interference by developing a model

where a simulated agent is performing phototaxis and is homeostatically stable – which,

in this context, means that its internal oscillations are maintained within homeostatically

stable boundaries. When the agent’s visual field is inverted, its internal dynamics become

homeostatically unstable and the agent does not perform phototaxis. The instability acti-

vates synaptic plasticity changing the connectivity of the network towards a configuration

that accommodates functionally stable oscillations under normal and inverted vision (i.e.

the agent adapts to perform phototaxis under both conditions).

Particularly, the problems we tackle with this model are the following. Firstly, we ap-

proach the problem of neural interference by studying how the oscillatory regime in which

the agent engages when it is under normal vision changes after adaptation to inverted
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vision. We will show how the process of adaptation moves and reshapes the attractor

landscape of the network in a such a way that it accommodates a stable dynamical regime

to deal with inverted vision without affecting the functionality and stability of the dy-

namical regime under normal vision. Secondly, we provide a dynamical explanation of

the interplay between the network and the sensorimotor loop dynamics. This explanation

works as a proof of concept to show how the network dynamics underlying coherent be-

haviours (e.g. phototatic behaviour under normal and inverted vision) are generated by

and depend on the entire sensorimotor loop coordination. Thirdly, we explore the mecha-

nism of transition between dynamical regimes (i.e. the transition from normal to inverted

vision after adaptation) and show that homeostatic instability is not necessary for switch-

ing between dynamical regimes. Shortly, the first problem concerns the operation of the

mechanism for adaptation, the second one concerns the interplay between the network and

the sensorimotor loop dynamics, and the third one the mechanism for switching between

dynamical regimes.

6.2 Preliminary considerations

6.2.1 Homeostasis and homeostatic adaptation

The concept of homeostasis coined by Cannon (1932) refers to a condition in which co-

ordinated physiological processes maintain certain variables within limits. Although this

concept was introduced by Cannon, an earlier work by Bernard (1927) had already iden-

tified regulatory systems in the organism’s internal environment (milieu interieur). From

these pioneering works, research in animal physiology found and studied homeostatic mech-

anisms controlling body temperature, heart rate, levels of blood sugar, breathing rate and

others, see Cooper (2008) for a historical review. More recently, Turrigiano (1999) ob-

served that neurons also have a mechanism of homeostatic regulation which increases or

decreases the strength of their synaptic inputs ensuring the maintenance of their firing

rates within boundaries. She has also reported the presence of homeostatic regulations of

activity in cortical networks (Turrigiano, 1999; Turrigiano and Nelson, 2004).

Rather than working directly with physiology, Ashby (1947, 1960) focused on more

abstract dynamical system models of homeostasis in the context of adaptive behaviour.

According to him, an animal’s behaviour is adaptive if it maintains essential variables

within physiological limits. These variables are closely related to survival; they can be

lethal (e.g. amount of oxygen in the blood), or only represent some approaching threat
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(e.g. heat on the skin). When essential variables cross certain boundaries, a mechanism

that changes the system configuration is activated until these variables return to home-

ostatically stable regions. The mechanism that pushes the variables back to their stable

regions selects those configurations that not only recover stability at the current moment,

but also leave the system stable in the presence of environmental conditions to which the

system had previously adapted.

To illustrate the operation of this mechanism, consider an animal “A” interacting with

its environment “E”, see Fig. 6.1. When the environment changes (at t2) the animal’s

dynamic becomes homeostatically unstable (the homeostatic boundary is represented by

the dashed line in “A”). Due to this instability, the mechanism that changes the animal’s

internal organisation is activated (see downstrokes in “M”). The new organisation found

by “M” leaves the animal stable in the presence of both environmental conditions, as it

is shown by the animal’s dynamic at t4 and t5.

Figure 6.1: Schematic representation of homeostatic adaptation. Each line represents:

(E)nvironment, (A)nimal, (M)echanism of homeostatic adaptation, and (T)ime. Adapted

from Ashby (1960) p.116.

Ashby also postulated that different environmental conditions can move the state of

the system to different regions in state space and that, within each region, the system

can have different dynamical regimes – this is illustrated by different dynamical regimes

presented by the animal at t4 and t5. Summing up Ashby’s main points in the context of

our work, we can say that: an adaptive system interacting with its environment switches

and engages in different dynamical regimes and, when a regime becomes homeostatically

unstable, the system reconfigures itself so that: 1) it accommodates a stable dynamical

regime that deals with the condition that triggered instability; and 2) it maintains the

stability of pre-existing dynamical regimes that deal with previously adapted conditions.

Notice that the homeostatic characteristic of a system does not impose any constraints

on the dynamics inside the stable regions. As long as the state of the system is inside a

homeostatic region, the system can be in an attractor or moving in a transient dynamics; it

can also be monostable, bistable, multistable, or even without attractors inside the stable
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regions.

6.2.2 The computational model

The computational model developed in this chapter is based on a related model imple-

mented by Di Paolo (2000). In his model, Di Paolo minimally replicated a psychological

experiment carried out by Taylor (1962) where a human being adapts his/her sensorimo-

tor coordination under distortion of his/her visual field by continuously wearing a pair of

spectacles. Di Paolo replicated this experiment by evolving a simulated agent to perform

phototaxis. During the agent’s lifetime, he inverted the agent’s visual field (by switching

the right and left sensors) and studied the process of behavioural adaptation. The agent’s

mechanism of adaptation was implemented by using homeostatic stability and synaptic

plasticity1.

Following Di Paolo, we implement an agent performing phototaxis using homeostatic

stability and synaptic plasticity. However, our experimental setup differs from his in two

points. Firstly, we replicate another experiment carried out by Taylor where a subject

adapts his/her behaviour to intermittently (rather than continuously) wearing of specta-

cles. Secondly, in our model the inversion of the agent’s visual field is done both during

its lifetime and during evolution; that is, our agent is evolved to adapt during its lifetime

to inverted vision, differing from Di Paolo’s one which was evolved to perform phototaxis

exclusively under normal vision.

The methodology to develop our computational model is based on four assumptions

which are grounded on Ashby and Taylor’s works. The assumptions are the following:

1) an agent’s behaviour is adaptive if it maintains its internal dynamics homeostatically

stable; 2) modifications on the network connectivity is a mechanism to recover homeostatic

stability; 3) an agent is adaptive when its network connectivity is adjusted in such a way

that the homeostatic stability of the networks is maintained in the presence of similar

conditions that triggered instability in the past, and 4) a condition to which the agent is

not adapted triggers homeostatic instability.

The dynamics of the agent’s controller is governed by the Continuous-Time Recurrent

Neural Network (CTRNN) (Beer, 1995). The CTRNN is an universal approximator of

smooth dynamics (Funahashi and Nakamura, 1993; Kimura and Nakano, 1998) meaning

that it can approximate the dynamics of a continuous neural oscillatory signal, such as

non-spiking neural signals from the nematode worm C. elegans (Davis and Stretton, 1989;

1For a theoretical discussion of Di Paolo’s model see Di Paolo (2003).
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Goodman et al., 1998; Izquierdo and Lockery, 2010) and central pattern generators in the

nervous system (Ijspeert, 2008; Santos and Campo, 2012). The CTRNN has been carefully

studied by Beer (1995), is very well-known in the field of evolutionary robotics (Harvey

et al., 2005; Floreano et al., 2008) and has been extensively analysed under learning con-

ditions and plastic changes (Phattanasri et al., 2007; Iizuka and Paolo, 2008). The model

developed in this chapter builds on this body of previous works related to the CTRNN

by looking at its dynamics from a different angle; that is, by analysing it in terms of

phase relations, by studying how it can learn a new dynamical regime without affecting

the functionality of old ones, and by analysing the roles of homeostatic stability in the

transition between dynamical regimes.

Whereas the models in previous chapters described either the phase (in the case of the

Kuramto’s equation) or the phase relation (in the case of the HKB equation), the CTRNN

depicts the dynamics of a (oscillatory) signal itself. The dynamics of CTRNN nodes do

not necessarily oscillate, they may saturate or converge to fixed points. Centre crossing

(Mathayomchan and Beer, 2002) and homeostatic plasticity (Williams and Noble, 2007)

are two techniques that have been used to increase the likelihood to obtain oscillations in

CTRNN dynamics.

6.3 Theoretical model and methods

6.3.1 The task, the agent and its controller

The implementation of the agent and its controller follows, as much as possible, that one

carried out by Di Paolo (2000). The main differences lie in the number of nodes used to

implement the controller and in the evolutionary setup.

A genetic algorithm (GA) is used to evolve the parameters of our model. The range of

each parameter, which defines the search space for the GA, is presented throughout the

methodology together with the description of each variable.

The task involves an agent that moves in a simulated environment and has to perform

phototaxis on a sequence of light presentations (one by one) for 15000 secs. During its

lifetime, the agent’s right and left sensors are switched at every 250 secs. The light is

repositioned between 40 and 80 units away from the agent when either the sensors are

switched or the agent spends 50 consecutive seconds at a distance smaller than 10 unit to

the source of light.

The agent, shown in Fig. 6.2, has a circular body of 8 units diameter, two diametrically
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opposed motors that receive a continuous signal in the range [-1,1] from the controller

(nodes y2 and y3, respectively), and two light sensors separated by 120 ◦ ± 10 ◦ whose

output signal is given by Ik = 1/
√
dk, where k represents each sensor, and d is the

distance from the sensor k to the light source. Ik = 0 when the agent’s body occludes the

light and Ik = 1 when d < 1.

Figure 6.2: The agent and its controller.

The agent’s behaviour is controlled by a fully-connected, 3 nodes, continuous-time

recurrent neural network (Eq. 6.1) (Beer, 1995).

τiẏi = −yi +
N∑
j=1

wjizj +
M∑
k=1

skiIk,

zi = 1
1+e−(yi+bi)

(6.1)

where y is the state of each node which is integrated with time step of 0.1 using the

Euler method , τ is its time constant (range [0.4,4]), N is the number of CTRNN nodes

(here 3); wj,i is the connection strength from the jth to the ith node (range [-8,8]), zj

is the node output signal defined by a sigmoid function, bj is a bias (range [-3,3]), M

is the number of inputs (here 2); Ik is the sensory signal, and ski is a constant that

represents the sensory strength from the kih sensor to the ith node. The values for ski are:

s11 = s21 = α; s12 = s23 = β; s13 = s22 = γ, where α, β and γ are in the range [0.01,10]

(see representation of the sensory strengths in Fig. 6.2). Each connection between nodes

(wj,i) is adjusted by one out of four different homeostatic plastic rules, shown in (6.2).

The rule used by each connection is defined by the genetic algorithm.

R0 : ∆wji = δ ηji pi zj zi,

R1 : ∆wji = δ ηji pi (zj − zoji)zi,

R2 : ∆wji = δ ηji pi (zi − zoji)zj ,

R3 : ∆wji = 0,

(6.2)

where ∆wji is the change in wji, δ is a linear damping function that constrains the

weights between allowed values ([-8,8]), ηji is the rate of change (range [-0.9,0.9]), and pi
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is the plastic facilitation defined by the function shown in the Fig. 6.3. Rule 0 is the

Hebbian and anti-Hebbian rules (depending on pi and nji); rules 1 and 2 potentiate or

depress the connection depending on how the presynaptic or postsynaptic node activity

relates to a threshold zoji. This threshold linearly depends on wji (zoji = 0 if wji=-8 and

zoji = 1 if wji=8).

Figure 6.3: Local plasticity facilitation pi. When the node activation minus its bias (yi−bi)

is in the stable region ([−2, 2]), then plasticity is not activated as pi = 0. Out of this region,

pi changes either positively or negatively according to the function.

The agent’s right and left motors are controlled by 2z2 − 1 and 2z3 − 1, respectively.

At each time step, a random noise from a normal distribution with mean 0 and standard

deviation 0.02 is added to the motors and to the sensors.

6.3.2 Optimization with a genetic algorithm

A total of 36 network parameters encoded in a genotype as a vector of real numbers

in the range [0,1] are evolved using the microbial genetic algorithm (Harvey, 2001) and

linearly scaled, at each trial, to their corresponding range. The genetic algorithm setup is

the following: population size (100); mutation rate (0.05); recombination (0.60); reflexive

mutation; normal distribution for mutation
(
µ = 0, σ2 = 0.1

)
; and trials for each agent

(8). At the end of the 8th trial the worst fitness (out of 8) is used as the fitness of the

agent.

The agent’s lifetime is 15000 seconds and its sensors are inverted every 250 seconds. In

total, the sensors are inverted 60 times, where 30 times the agent is under normal vision

and 30 under inverted vision. At the end of each timeslot (at every 250 secs) a partial

fitness of the agent is measured according to Eq. (6.3):

Fts =
Fb + Fs

2
(6.3)

where ts is the timeslot (out of 60), Fb is the behavioural-fitness, described in Eq.

(6.4), and Fs is the stability-fitness, described in Eq. (6.5).
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Fb =

(
P +

(
1−

df
di

))
R

T
(6.4)

where di and df are initial and final distances to the light source, respectively, and df

is clipped at 0 when df > di; P is the number of times the agent approaches the light in

the current timeslot (the agent can approach the light more than once as the light moves

when the agent completes 50 consecutive seconds near it); T is the timeslot length (250

secs) and R (250 secs) is the required time given to the agent to approach a light source.

During evolution, as T=R the agent should approach the light at least once in order to

obtain Fb = 1. When the agent approaches the light more than the number of times

required, Fb is clipped at 1. The stability-fitness is measured according to Eq. (6.5).

Fs =
1

1 + e(
u
70
−7)

(6.5)

where u is the number of times the nodes activate out of the stable region (at each

Euler step, it can be incremented by 3 when the three nodes activate out of the stable

region); the constants 70 and 7 define the shape of the function.

The final fitness of an agent is given by the weighted mean over the fitnesses at each

timeslot.

F =
1

3K

K∑
t=1

qt; qt =


Fts; if normal vision and ∀ ts

2(1− Fst); if inverted vision and ts ≤ 30

2Fts; if inverted vision and ts > 30

(6.6)

where K is the total number of timeslots (60 here); t the number of the time slot; and

Fts is defined in Eq. (6.3). Under normal vision the agent should get high fitness (Fts)

during its whole lifetime (∀ ts). Under inverted vision the agent should have low fitness

(Fts) during the first 30 inversions (ts ≤ 30) and high fitness during the last 30. By using

this fitness function we expect the genetic algorithm to optimise the parameters in a such

a way that: 1) the agent should perform phototaxis maintaining homeostatic stability

under normal vision during the whole trial (30 timeslots under normal vision); 2) the

agent should be homeostatically unstable and not perform phototaxis when its visual field

is inverted; and 3) over time, after a sequence of inversions (normal→ inverted → normal

→ inverted, and so on), the agent should maintain stability and perform phototaxis under

inverted vision (the last 30 timeslots). Notice that the model obtained by using this fitness

function replicates the behavioural adaptation from the experiment carried out by Taylor
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(1962) and the proposed assumptions about how the underlying mechanism of adaptation

might operate (Ashby, 1960; Taylor, 1962).

Apart from using homeostatic boundaries – which increases the likelihood to obtain

oscillations in the CTRNN network (Williams and Noble, 2007) – we have not implemented

any other constraint to obtain a CTRNN that oscillates.

6.3.3 Methods of analysis

Empirical Mode Decomposition and the Hilbert transform

In order to obtain the phase dynamics of CTRNN nodes, we have used the Hilbert trans-

form method, which is defined in (6.7) (Zygmund, 1988):

H[f(t)] = − 1

π
lim
ε→∞

∫ ∞
ε

f(t+ τ)− f(t− τ)

τ
dτ (6.7)

The Hilbert Transform is basically a π/2 phase-shift operator in the original signal

f(t). The analytical signal is then obtained by (6.8):

fa(t) = f(t) + iH(f)(t) (6.8)

When the centre of an oscillatory signal deviates from zero the Hilbert Transform

gives an inaccurate result. In order to guarantee a well-behaved Hilbert Transform we have

obtained the first Intrinsic Mode Function (IMF) using the Empirical Mode Decomposition

(EMD) algorithm (Huang et al., 1998), as follows:

I1(t)← s(t)

i← 1

while Ii has nonnegligible local mean do

U(t)← spline through local maxima of Ii

L(t)← spline through local minima of Ii

Av(t)← 1
2(U(t) + L(t))

Ii(t)← Ii(t)−Av(t)

i = i+ 1

end while

IMF1(t)← Ii(t)

A critical point of the EMD method is to find the points of local minima and maxima.

By using the zero-crossing of the first derivative, noise in the time series might be wrongly

detected as oscillations; and by using a filter to remove noise, real oscillations might be
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destroyed. To deal with this problem, before obtaining the first IMF we have used an

algorithm to detect “real” troughs and peaks. The trick of the algorithm is the use of a

threshold variable delimiting the minimum distance from a peak to the troughs around

it (Billauer, 2012). When the threshold is zero, the algorithm works as the zero-crossing

of the first derivative; for thresholds greater than 0, only those points of zero-crossing

preceded by troughs lower than the threshold are considered a peak. After running this

algorithm, the noise left in the time series were removed by interpolating the troughs and

peaks using a piecewise cubic interpolation (Fritsch and Carlson, 1980). The resulting

time series – generated from the interpolation of the troughs and peaks – were used as

inputs for the EMD algorithm. The EMD algorithm stopped when the standard deviation

of the average between the maximum and minimum envelopes was 10−5. The input for

the Hilbert transform was the first IMF obtained from the EMD method because this IMF

preserves the frequency components of the time series – allowing the analysis of phase over

time.

Attractor landscape

In order to find the attractors of the network while the agent was interacting with its

environment, we took a snapshot of the system at each Euler step of the agent’s lifetime

and numerically estimated the limit limt→∞ 〈y1(t), y2(t), y3(t)〉. The snapshot consisted

of states of the CTRNN nodes y1,y2,y3, which are the initial conditions to find the limit;

the connection weights wji; the inputs I1 and I2, which are maintained fixed during the

numerical estimation; the sensor strengths ski, the biases bi; and time constants τi. The

limit was found using Euler integration with time step 0.1 and 900000 steps. When

the system did not converge to a point attractor, the Euler integration ran for a further

100000 steps in order to capture at least some points of either the limit cycle or the strange

attractor the system was assumed to be following.

6.4 Results

6.4.1 The agent’s sensorimotor behaviour

The best agent obtained from the evolutionary process was selected for the dynamical

analysis. The agent’s lifetime was changed from 15000 s (which was the lifetime during

evolution) to 30000 s. During this extra time, the agent’s sensors were switched at different

frequency, as shown in Fig. 6.4-C.
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The mean fitness of the population evolved was 0.77 and the fitness of the best agent

0.86. We ran the best agent for 10000 trials to analyse how the behavioural-fitness and

stability-fitness change over the agent’s lifetime (see Fig. 6.4). Under normal vision the

behavioural-fitness and the stability-fitness maintain near 1 over the whole trial. Under

inverted vision the behavioural-fitness increases during the first 5000 s while the stability-

fitness maintains near 0. The reason for that is that the stability-fitness only increases

when the dynamics of the nodes cross the discrete boundaries of stability |yn − bn| < 2 –

which starts after 5000 s – and the behavioural-fitness increases as the dynamics of the

nodes is moving towards the stable region.
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Figure 6.4: Fitnesses for the agent’s behaviour (y-axis in graphic A) and internal stability

(y-axis in graphic B) over time. Each point represents the mean fitness for a specific

timeslot and the vertical bars the standard deviation over 10000 trials. Graphic C depicts

the sensory configuration (1 for normal, and -1 for inverted). From t=0 to t=15500 the

sensors are switched at every 250 s; from t=15500 to t=21500 at every 1000 s, from

t=21500 to t=25100 at every 600 s, and the last 5000 s at every 250 s.

The distances from the agent to the light source before and after adaptation are pre-

sented in Fig. 6.5-A and B, respectively. After the first inversion, at t = 250 s, the agent

keeps turning around itself without getting near the light within the timeslot given. After
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adaptation the agent approaches the light under both conditions. Fig. 6.6 shows the

agent’s sensorimotor dynamics during the time-window highlighted by the black lines in

graphic 6.5. In the case of the agent under inverted vision and before adaptation, the

sensorimotor dynamics are shown for t = [250, 350] s. From now on, the agent under

Normal vision Before adaptation we will be referred to as NB; the agent under Inverted

vision Before adaptation as IB; the agent under Normal vision After adaptation as NA;

and the agent under Inverted vision After adaptation as IA.
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Figure 6.5: Distance from the agent to the light source before (graphic A) and after

adaptation (graphic B). In graphic A, the agent is under normal vision during the first

250 s. Just after 200 s, the position of the light changes and agent starts moving towards

it again. At t=250 s, the agent is under inverted vision and does not approach the light.

After adaptation (graphic B) the agent approaches the light under both conditions. The

black lines highlight how the distance is changing from the moment the agent crosses

d = 40 until it gets to d = 20.

6.4.2 Oscillatory dynamics underlying sensorimotor behaviours

In this section we study the oscillations underlying the agent’s sensorimotor dynamics.

The main purpose here is investigate whether and how the oscillatory regime in which the

agent engages under normal vision changes after adaptation to inverted vision. Firstly, we

analyse the phase relation dynamics between the CTRNN nodes considering a single trial

of the experiment and a specific time-window of the agent’s lifetime. This analysis provides

an overview of how the phase relations were obtained from the CTRNN oscillations. Next,
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Figure 6.6: Agent’s sensorimotor dynamics. The x and y-axes in the graphics show the

agent’s sensors (I1 and I2) and the z-axis the difference in the agent’s motor activity

(M1 −M2). Graphic A: agent under normal vision and before adaptation. Graphic B:

agent under inverted vision and before adaptation. Graphic C: agent under normal vision

and after adaptation. Graphic D: agent under inverted vision and after adaptation.

we analyse the phase relation dynamics underlying the agent’s sensorimotor behaviour

when it is moving towards the light from d = 40 to d = 20 (d is the distance to the light)

and also considering many trials of the experiment.

Phase relations within a specific time-window of a single trial

Fig. 6.7 presents the (phase) dynamics of y1 and y2 for a specific time-window in a single

trial where the agent is under normal vision before adaptation, namely t = [85.8, 137]

s (highlighted by the black line in Fig. 6.5-A). Graphic 6.7-A presents the dynamic of

y1 and its first imf. Notice that the imf captures the oscillations of the node, does not

contain the noise from the real signal and is centred in 0. All peaks lower than 0.05 were

considered as noise in the time series. Graphic 6.7-B is similar to 6.7-A apart from the

fact that it shows the dynamics and the imf for the node y2, rather than y1. Graphic

6.7-C presents the phase dynamics of the nodes y1 and y2, which were obtained with the

Hilbert Transform from the imfs shown in graphics 6.7-B and C. Graphic 6.7-D presents

the phase relations φ1,2 between the nodes y1 and y2, which is given by φ1,2 = θ1 − θ2. In

order to keep the phase relations in the range [0, 2π), the value of φi,j was incremented in

2π every time the phase difference was negative; i.e. φi,j = φi,j + 2π ∀ φi,j < 0.
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Figure 6.7: Phase relation dynamics between y1 and y2. In graphics A, the left y-axis

shows the dynamics of y1 in a scale from 0 to 1 and the right y-axis the first IMF of y1,

see legend. Graphic B is similar to graphic A, but for the node y2. Graphic C shows the

phase dynamics of the nodes y1 (referred to as θ1) and y2 (referred to as θ2), see legend.

Graphic D shows the phase relation dynamics between y1 and y2 (referred to as φ1,2).

The other phase relations dynamics φ1,3 and φ2,3 for the same time window t =

[85.8, 137] s are presented in Figures 6.8 and 6.9, respectively. A preliminary analysis

of the phase relations (graphics D of Figures 6.7, 6.8 and 6.9) suggests that φ1,3 is more

synchronised than the other nodes – note how the dynamics of φ1,3 maintain around 0

radians, while the dynamics of φ1,2 and φ2,3 are constantly changing from 0 to 2π. It also

suggests that y1 and y2 are the most desynchronised nodes – note how the rate of change

of φ1,2 is higher than the rate of change of the other phase relations. A more precise

analysis of the phase relations is presented in the following subsection.

Phase relations and the agent’s behaviour when it is moving towards the light

We have shown the phase relations for a specific time-window in a single trial of the

experiment. In this subsection, the phase relations are studied based on a 100 trials and

on the dynamics of the nodes from the moment where the agent crosses d = 40 (where d is

the distance to light) until it crosses d=20 for the last time before approaching the light. As
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Figure 6.8: Phase relation dynamics between y1 and y3. See caption of Fig. 6.7.
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Figure 6.9: Phase relation dynamics between y2 and y3. See caption of Fig. 6.7.

after the first inversion the agent does not approach light, the phase relations are analysed

during the first 100 seconds after the inversion (rather than when the agent is moving from
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d=40 to d=20). Fig. 6.10 presents the density distributions of the phase relations φ1,2, φ1,3

and φ2,3. The distribution in graphic 6.10-A was generated based on the network dynamics

underlying agent’s behaviour before the first inversion, i.e. the 1st timeslot of 250 s; the

distribution in graphic 6.10-B was generated based on data from the first 100 seconds after

the first inversion i.e. the 2nd timeslot of 250 s; and the distributions in graphic 6.10-C and

D were generated based on data from the 29th and 30th timeslots, respectively. The 29th

and 30th timeslot correspond to the agent’s behaviour after adaptation under normal and

inverted vision, respectively. Note that the 1st, 2nd, 29th and 30th timeslots are the same

as those presented in Fig. 6.5. The distributions are divided into 40 equally spaced bins in

the range [0, 2π). The entropies were calculated using the standard measure described in

Equation (5.5) (Shannon, 1948; Cover and Thomas, 2005) and used in previous chapters.
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Figure 6.10: Density distributions of phase relations (see legend in graphic A) underlying

agent’s behaviour under normal vision before adaptation (graphic A), inverted vision be-

fore adaptation (graphic B), normal vision after adaptation (graphic C), and inverted

vision after adaptation (graphic D). The Shannon’s entropy of each distribution is indi-

cated by H(φi,j). The entropies are in a scaled from 0 (minimum entropy) to 1 (maximum

entropy). Notice different y-axis in graphic B.

Under normal vision before adaptation (graphic 6.10-A), the entropy H(φ1,2) = 0.99

shows that y1 and y2 are highly desynchronised. The nodes y1 and y3 are the ones most

synchronised with H(φ1,3) = 0.89. The synchronisation between y1 and y3 takes place

around 0 radians, as shown by the peak in the density distribution of φ1,3 and by the

phase relation dynamics for a single trial presented in graphic 6.8-D. The nodes y2 and y3

present a higher level of phase coherence in the phase range [1.57, 3.14] than in the other

ranges – this phase coherence is quantified by H(φ2,3) = 0.93.
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The highest synchronisation level takes place during inverted vision before adaptation

(graphic 6.10-B). See how the entropies of the phase relations are lower during IB than

during the other conditions (i.e. NB, NA, IA). The highest level of synchrony takes

place between y1 and y3 – quantified by H(φ1,3) = 0.6 – at a phase difference within

≈ [5.5, 6.28]. After adaptation and under normal vision (graphic 6.10-C), y1 and y2 are the

most synchronised nodes with H(φ1,2) = 0.9, and y2 and y3 are the most desynchronised

ones with H(φ1,3) = 0.99. After adaptation and under inverted vision (graphic 6.10-D),

y2 and y3 are the most synchronised nodes with H(φ2,3) = 0.92, and y1 and y2 are the

most desynchronised ones with H(φ1,2) = 0.97.

Whereas under normal vision after adaptation y1 and y2 are the most synchronised

nodes and y2 and y3 the most desynchronised; under inverted vision after adaptation y1

and y2 become the most desynchronised and y2 and y2 the most synchronised - as shown

in graphics 6.10-C and D. The difference between these two conditions (i.e. normal and

inverted vision after adaptation) can be better visualised by taking the difference of their

density distributions, as shown in Fig. 6.11-A. Positive values in the y-axis indicate that

the corresponding range of phase relations depicted in the x-axis is more synchronised

during inverted vision than during normal vision. The phase relation φ2,3, for instance, is

more synchronised in the range ≈ [4.71, 6.28] during inverted vision than during normal

vision. On the other hand, φ1,2 is less synchronised in the range ≈ [0, 1.57] during inverted

vision than during normal vision.
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Figure 6.11: Difference between the density distributions of phase relations. Graphic A

shows the difference between the density distributions of phase relations under inverted

vision after adaptation (IA) and normal vision after adaptation (NA), see graphic title.

Graphic B shows the difference NA-NB.

The process of adaptation to inverted vision changes the dynamics of the network under

normal vision. The nodes y1 and y2 become more synchronised, as shown by H(φ1,2) =

0.99 before adaptation and H(φ1,2) = 0.90 after adaptation (see graphics 6.10-A and C).
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On the other hand, the other pairs (y1, y3) and (y2, y3) become more desynchronized, as

shown by their entropies in graphics 6.10-A and C. The difference between normal vision

before and after adaptation can be better visualised by the difference of their density

distributions, as shown in Fig. 6.11-B. The nodes y1 and y2 increase their synchrony

in the range ≈ [0, 1.57] and lose synchrony in ≈ [1.57, 6.28]. The nodes y1 and y3 gain

synchrony in ≈ [0, 3.14] and lose synchrony in ≈ [3.14, 6.28]. The nodes y2 and y3 become

more desynchronised in ≈ [1.57, 3.14] and more synchronised in the other ranges of phase

relations.

Effect of different thresholds on the phase relation dynamics

The dynamics of phase relations and the shape of the density distributions of phase re-

lations are sensitive to the threshold used to detect oscillations in the time series. If the

threshold is low, then noise in the time series will be detected as oscillations; on the other

hand, if the threshold is high, real oscillations will be considered noise. The density dis-

tributions of phase relations presented in graphic 6.10 were generated using a threshold

of 0.05. We now analyse how the density distributions of phase relations change as the

threshold varies from 0.1 to 0.11. We took the density distributions for threshold = 0.05

as “references” (those distributions shown in graphic 6.10) and measured the correlation

coefficient between these “reference distributions” and the distributions for different values

of threshold (see Fig. 6.12).

The correlation coefficient is maximum (1) when threshold = 0.05 as the correlation is

measured between the same distributions. Under normal vision before adaptation (graphic

6.12-A), the distributions for φ1,3 are highly correlated for all thresholds. For φ1,2 and

φ2,3 the correlation is low when threshold = 0.01, meaning that the phase relations φ1,2

and φ2,3 obtained with threshold = 0.05 are different from the same phase relations

obtained with threshold = 0.01. Under inverted vision before adaptation (graphic 6.12-

B), all phase relations have high correlations (rφi,j > 0.8) for threshold = [0.03, 0.11].

Under normal vision after adaptation (graphic 6.12-C), the phase relation φ2,3 is highly

sensitive to threshold > 0.06. Under inverted vision after adaptation (graphic 6.12-D),

the correlation of φ1,2 is low for threshold < 0.03, but high for threshold ≥ 0.03.

In essence, what these graphics tell us is that the phase relation dynamics analysed

in this section hold for values of threshold within [0.03, 0.06]; i.e. the results do not

change for any threshold within such range. The lower boundary of 0.03 is limited by

the phase relation φ1,2 under inverted vision, see graphics 6.12-B and D; and the upper
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Figure 6.12: Correlation coefficient (y-axes) between the density distribution of phase

relations (see legend) for threshold = 0.05 and the density distribution of phase relations

for threshold = [0.01, 0.11] (x-axes). Each graphic (A, B, C and D) shows the correlation

coefficient under different conditions (see titles).

boundary of 0.06 is limited by φ1,3 under normal vision after adaptation, see graphics 6.12-

C. Thresholds lower than 0.03 might wrongly detect noise as oscillations; and thresholds

higher than 0.06 might miss real oscillations with low amplitude.

Some considerations

Briefly, so far we have presented the agent’s sensorimotor behaviour under the conditions

NB, IB, NA and IA and analysed the oscillatory dynamics underlying such behaviours.

We have presented how the phase dynamics was obtained from the node’s oscillations by

using the threshold to detect oscillations, the Empirical Mode Decomposition to centre

the time series in zero, and the Hilbert transform to obtain the phase dynamics from the

first imf. We have shown the oscillatory regimes underlying the sensorimotor coordina-

tions together with the synchronisation level between the oscillators (quantified by the

Shannon’s entropy of the density distributions of phase relations) and the range of phase

in which synchronisation takes place.

The main point of the analyses we have done so far is that the process of adaptation

to inverted vision has changed the previously adapted oscillatory dynamics under normal

vision without affecting its functionality (i.e. the generation of phototatic behaviour). The

modification of the oscillatory dynamics under normal vision was shown by the difference
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in the density distributions of phase relations depicted in graphic 6.11-B.

This result helps answer the first problem we are tackling in this chapter, namely

whether and how the network accommodates dynamical regimes without affecting the

functionality of previously adapted regimes. In the next section we carry on with this

analysis by showing how plasticity moves and reshapes the attractor landscape of the

network. We will provide a dynamical explanation of how the CTRNN dynamics interacts

with the sensorimotor loop dynamics (the second problem we are tackling in this chapter)

and also analyse whether homeostatic instability play a role during the transition between

dynamical regimes (third problem we are tackling in this chapter).

6.4.3 Generating oscillatory dynamics in the CTRNN

In this section we show that: i) oscillations in the CTRNN are generated by a transient

dynamics towards an attractor that continuously moves in the state space; ii) adaptation to

inverted vision reshapes the network attractor landscape; and iii) homeostatic instability

is not necessary for the transition between dynamical regimes in the CTRNN.

Transient dynamics of the nodes in the state space

Fig. 6.13 shows the rhythmic dynamics of the CTRNN underlying the agent’s sensori-

motor behaviours under the conditions NB, IB, NA and IA. These regimes correspond to

the network dynamics underlying the sensorimotor behaviours presented in Fig. 6.6; i.e.

regimeNB, regimeNA, and regimeIA underlie the agent’s sensorimotor behaviours from

d = 40 to d = 20; and regimeIB underlies the sensorimotor behaviour during 100 s after

the first inversion. Under normal vision and before the first inversion, the network engages

in the homeostatically stable dynamical regime regimeNB. Just after the first inversion,

the agent switches to the unstable regime regimeIB. After a sequence of visual field inver-

sions, the instability of the dynamical regime under inverted vision decreases and changes

from the unstable regimeIB to the stable regimeIA. As the dynamics under inverted vi-

sion becomes stable, the stability of the dynamics under normal vision is not affected (as

previously shown in Fig 6.4-B); however the shape of the dynamical regime under normal

vision changes from regimeNB to regimeNA as a side effect of the adaptation to inverted

vision.

The rhythmic dynamical regimes in which the CTRNN engages are generated by an

attractor that continuously moves in the state space. The continuous movement of the

attractor leaves the network in a transient state while the agent is behaving (see Fig. 6.14).
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Figure 6.13: Rhythmic dynamics of the CTRNN underlying the agent’s behaviour. The x,

y and z-axes of each graphic represent the nodes y1, y2 and y3 (minus their biases). Graph-

ics A, B, C and D show the dynamical regimes under normal vision before adaptation

(NB), inverted vision before adaptation (IB), normal vision after adaptation (NA) and

inverted vision after adaptation (IA), respectively. For ease of description these regimes

will be referred to as regimeNB, regimeIB, regimeNA and regimeIA, respectively.

The system engages in a transient dynamics because different sensor values (generated by

the agent’s movement) define a different set of parameters for the CTRNN equations and,

for each parameterisation the point attractor has a different position. In other words, the

dynamics of the sensors continuously move the attractor leaving the state of the CTRNN

in a transient dynamics moving towards the attractor.

We now analyse the surface on which the attractor is moving and also how the move-

ment of the attractor on such surface generates the rhythmic regimes in the CTRNN.

The attractor surface

While the agent is engaged in a stable dynamical regime (e.g. regimeNA), the point

attractor moves on a fixed 3D surface. At the beginning of the agent’s lifetime, this surface

resembles a rectangle with attractors lying on its corners, see the grey dots in Fig.6.15.

The process of adaptation reshapes and moves this surface to a different position in the

state space, see the black dots in Fig.6.15. The new position and shape of the attractor

landscape accommodate the stable dynamical regimes under normal and inverted vision,

meaning that both dynamical regimes regimeNA and regimeIA are generated by moving
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Figure 6.14: Transient dynamics that generate oscillations in the CTRNN. These graphics

depict four snapshots of the trajectory in the state space of the CTRNN (see the black line)

for the time interval t = [14753.0, 14761.9] s (see graphic titles) corresponding to regimeIA.

The star represents the state of the network at the time shown in the title of each graphic.

The black point represents the point attractor towards which the state of the network is

moving. The position of point attractors are represented by P(y1 − b1, y2 − b2, y3 − b3) in

each graphic.

the attractor on the same surface.

Figure 6.15: Attractor surfaces for the regimes regimeNB and regimeNA represented by

the grey and black dots, respectively.

The points on the surfaces in Fig. 6.15 represent the position of the attractors during

the regimes regimeNB to regimeNA. In order to quantify the difference between the sur-

faces for all regimes regimeNB, regimeIB, regimeNA and regimeIA we identified clusters

of attractors and their centroids on each surface by using the K-means method (Mac-
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Queen, 1967), as presented in Fig. 6.16-A1, B1, C1, and D1, respectively. By comparing

the centroids for regimeNB and regimeNA (graphics 6.16-A1, C1) we see how the surface

under normal vision changes with the process of adaptation to inverted vision. By com-

paring the centroids for regimeNA and regimeIA (graphics 6.16-C1, D1) we see that the

surfaces after adaptation are qualitatively the same under normal and inverted vision.

Although the attractor surfaces are qualitatively the same after adaptation (as shown

in the graphics 6.16-C1 and D1), the way the attractors move on the surface is different

under normal and inverted vision, see the movement of the attractor between the clusters

in Fig. 6.16-C2, and D2. While regimeNA is generated by moving the attractor in the

clusters 4 → 3 → 2 → 1, regimeIA is generated by the movement in the reverse order,

i.e. 1→ 2→ 3→ 4. Notice that the rhythmic dynamic in the CTRNN is generated by a

periodic movement of the attractor between the clusters.

We finish up the analysis of this model by showing that homeostatic instability is not

necessary for the transition between the rhythmic regimes in the CTRNN. Fig. 6.17 shows

the network dynamics, the movement of the attractor between clusters, and the number

of homeostatically unstable activations in a time-window where there is a transition from

normal to inverted vision. This single transition suffices to show that transition between

the oscillatory regimes does not require homestatic instability.

In sum, in this section we have seen that the adaptation to inverted vision moves and

reshapes the attractor landscape under normal vision (as shown in graphic 6.15). This

result helps understand how a completely integrated network is able to accommodate a new

dynamical regimes (e.g. the stable regime to deal with inverted vision) without affecting

the functionality of previously adapted regimes (e.g. stable regime under normal vision).

We have seen that the CTRNN dynamics moves in a transient towards a continuously

moving attractor, and that the attractor moves due changes in the sensory values (variable

Ik) caused by the agent’s movement towards the light. This result contributes to show that

a functional network dynamics depends on and is generated by a coordinated dynamics of

the entire sensorimotor loop. Finally, we have also shown that homeostatic instability is

not necessary for the transition between dynamical regimes.

6.5 Discussion

We minimally replicated the psychological experiment described by Taylor based on as-

sumptions drawn from Ashby and Taylor’s works (see assumptions in sec. 6.3). While

Taylor’s experiment shaped the desired behaviour, the assumptions constrained the dy-
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Figure 6.16: Centroids on the attractor surfaces and the rhythmic movement of the at-

tractor on the surfaces. Graphics A1, B1, C1, and D1 show the regimes regimeNB,

regimeIB, regimeNA and regimeIA (the grey lines), the position of the attractors that

have generated the transient regimes (the black dots) and the centroid of four clusters of

attractors on the surface – indicated by the numbers from 1 to 4 in each graphic and by

their position on the state space (numbers in parentheses). Graphics A2, B2, C2, and

D2 show the temporal sequence of how the attractor is moving between the clusters. The

y-axis represent the number of the cluster (from 1 to 4).
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Figure 6.17: Transition between dynamical regimes without homeostatic instability.

Graphic A and B show the dynamical regimes under normal and inverted vision, re-

spectively. Graphic C depicts the movement of attractors between the clusters for each

dynamical regimes shown in graphics A and B. Notice the transition between regimes in

the middle of the time-window (represented by the vertical dashed line). Graphic D shows

the number of homeostatically unstable activation of the CTRNN nodes (y-axis) over time

(x-axis).

namics of the mechanism underlying behaviour. In this way, the methodology to obtain

the model incorporated restrictions on the task and on the agent’s internal dynamics. Once

the model was obtained we studied its dynamic in order to help answer the problems we

are tackling in this chapter, as explained in the following.

As the problem of neural interference is concerned, we have shown that the oscillatory

regime in which a system engages when it is under normal vision changes after adaptation

to inverted vision (as shown in graphic 6.11-B). Although the oscillatory regime under nor-

mal vision changed as a side-effect of the adaptation to inverted vision, its functionality

was not affected by the adaptation process. While the difference in the density distribu-

tions of phase relations shown in graphic 6.11-B provides a dynamical description of the

modifications on the oscillatory regimes under normal vision before and after adaptation,

the difference on the attractor surfaces shown in graphic 6.15 sheds some light on the

operation of the underlying mechanism that accommodates new stable dynamical regimes

without losing the functionality and stability of the old ones. Notice that we are not

proposing a solution for the problem of “neural interference”, but only showing a proof
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of concept that this problem can be solved by a completely integrated system without

functional modularity, and giving some insights of how this problem could be solved (i.e.

by moving and reshaping the attractor landscape and by different dynamical regimes on

the same attractor surface).

Note that as the system is relatively simple (only 3 CTRNN nodes) and fully-connected,

even a small reorganization to accommodate a new stable regime is expected to affect the

pre-existing dynamics. For this reason, we can not generalize our results by saying that pre-

existing stable regimes always change when the system adapts to a new condition. More

complex system, such as the nervous system, probably engages in independent oscillatory

regimes under different environmental conditions.

As the problem of how the network dynamics interact with the sensorimotor loop

is concerned, we have provided a dynamical explanation of how homeostatically stable

oscillations are generated by the CTRNN operating within a closed sensorimotor loop.

Particularly, we have shown that i) oscillations in the CTRNN are generated by a transient

dynamics towards an attractor that continuously moves in the state space, and ii) different

periodic movement of this attractor in the manifold generates different oscillatory regimes,

e.g. the regimes regimeNA and regimeIA are generated by the periodic movement of the

attractor in the clusters 4 → 3 → 2 → 1 and 1 → 2 → 3 → 4, respectively (as show in

graphic 6.16).

Notice that functional oscillatory regimes in the controller (e.g. regimeNA and regimeIA)

are generated and sustained by the dynamics of a closed sensorimotor loop, they depend

on the coordinated coupling of the brain-body-environment system, and do not exist in

the controller as a standalone functional entity. The sensors (variables Ik) change with the

agent’s movement in the environment; due to a different parametrisation of the CTRNN

(different values of Ik), the attractor moves in the state space; the direction to which the

attractor pulls the state of the system generates a coherent motor dynamics that move the

agent towards the light and consequently modifies its sensors, which closes the sensorimotor

loop dynamics. The dynamics of this closed loop is essential to sustain the transient dy-

namics that will eventually generate functional oscillations (e.g. regimeNA and regimeIA).

Without a well-coordinated coupling of controller-body-environment the agent’s internal

oscillations could settle down into the point attractor or move to a non-functional transient

dynamics (i.e. a dynamics that does not generate phototatic behaviour).

Finally, we have shown that homeostatic instability is not necessary for switching be-

tween dynamical regimes. This result contributes to research on neural dynamics as it
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complements a theoretical claim that instability (in the Lyapunov sense2) is a generic

mechanism for flexible switching among multiple attractive states; that is, for entering

and exiting patterns of behaviours (Kelso, 1995). Indeed Ashby has already demonstrated

that a system can switch between dynamical regimes without homeostatic instability. The

difference is that while Ashby uses the homeostat, we use a more complex model where the

homeostatic mechanism is intertwined with the mechanism that coordinates the behaviour

of an agent that is continuously interacting with its environment. Our investigation con-

firms Ashby’s demonstration in a more complex environment and also complements Kelso’s

hypothesis about the importance of Lyapunov instability as a mechanism for transition

between oscillatory regimes.

It is important to notice that the outcome of our analysis could not have been predicted

in advance. Firstly, the optimization algorithm could have produced different solutions for

the phototaxis task and for the agent’s internal dynamics. Each functionality – phototaxis

under normal and inverted vision – could correspond to different point attractors rather

than different transient dynamics over the same attractor surface. Secondly, it was not

possible to predict how the system would change in order to accommodate a new dynamical

regimes to deal with inverted vision without losing the functionality of the old one under

normal vision. We have seem that the attractor surface has moved and reshaped to ac-

commodate a new dynamical regime, but alternatively a new point attractor in a different

region of the state space could have been created without affecting the transient dynamics

under normal vision. Thirdly, we have seem that the dynamical regimes regimeNA and

regimeIA are characterized by different movements of the attractor on a fixed surface

(i.e. by moving in the clusters 4 → 3 → 2 → 1 and 1 → 2 → 3 → 4). Alternatively,

these regimes could have been characterized by different limit cycles in different regions

of the state space. Lastly, we have seen that the oscillations in the CTRNN are tightly

dependent on the agent’s sensorimotor loop; outside the sensorimotor loop the CTRNN

dynamics settles down in a point attractor. Alternatively, the CTRNN could operate as

a central pattern generator oscillating even outside a sensorimotor loop. In this case,

the sensorimotor loop could operate only as perturbations to the network’s self-sustained

oscillations. In sum, there are a multiplicity of possible dynamical strategies that the

system could operate in and the conclusions we draw regarding i) how the system changes

in order to accommodate different dynamical regimes maintaining the functionality of the

old ones, ii) how the system can have different functionalities just by moving differently

2A fixed point x* is Lyapunov stable if all trajectories that start sufficiently close to x* remain close to

it for all time. For a formal definition of Lyapunov stability see Strogatz (2000b) p.141
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in a fixed attractor surface; and iii) how the agent’s controller exploits the sensorimotor

loop dynamics to engage in functional oscillations; all are far from obvious and could not

have been predicted without a careful dynamical analysis of the system.

6.6 Summary

This chapter contributes to the overall story of the thesis by providing some dynamical

explanations of how an agent’s sensory and motor activities interacts with its internal

oscillatory dynamics under the presence of plasticity in the connections of its controller.

Whereas in the previous chapters we have used models describing the phase and phase

relation dynamics (by using the Kuramoto and the HKB equations), in this chapter the

phase dynamics had to be obtained from the oscillatory signal of the CTRNN equation

by using EMD and Hilbert Transform. This equation allowed us to show, from a different

perspective, a proof of concept that functional oscillatory dynamics depend on the coor-

dinated coupling with the sensorimotor loop. We were also able to show how rhythmic

dynamics can be sustained and generated within a closed sensorimotor loop – i.e. by a

periodic movement of the attractor between the clusters maintained by a motor behaviour

that constantly changes the sensory activity (variables Ik).

In sum, the model where the agent discriminates between the objects controlled by

Kuramoto’s equation (chapter 4), the models of the agents performing phototaxis con-

trolled by the HKB equation and by the CTRNN, respectively (chapters 5 and 6), they all

provide proof of concepts about the dependency of functional oscillatory neural dynamics

on the sensorimotor loop. The overlapping take-home message obtained from all these

models is explained in the conclusions.
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Chapter 7

Conclusions

In section 7.1 we discuss some methodological issues about the models developed in this

thesis. In the next sections we discuss the contributions of this thesis to each of the

central issues approached in this thesis, namely the informational and causal relevance

of oscillatory regimes to the sensorimotor dynamics (discussed in section 7.2), and the

interplay between neural oscillatory dynamics and the sensorimotor loop (discussed in

section 7.3).

7.1 Methodological issues

As far as methodological aspects of the models developed in this thesis are concerned, we

have combined evolutionary robotics with oscillatory networks to study the roles played by

synchronous and desynchronous oscillations in the context of a sensorimotor coordination

task and also to provide dynamical explanations about the co-modulation involving the

temporal structure of the oscillations and the sensorimotor dynamics. The combination

of evolutionary robotics and oscillatory networks allowed us to explore current issues in

neuroscience in the context of situated and embodied cognitive dynamics. As far as the

analysis of the model is concerned, we have mainly used tools from Information Theory

(e.g. entropy, mutual information) and Dynamical System Theory (e.g. vector fields, point

attractors, limit cycles).

The goal of our models was not to target any specific biological mechanism nor to show

the potential of oscillatory controllers for complex adaptive tasks, but rather to use the

model as an exploratory tool to address theoretical questions by using an embodied oscil-

latory network within a continuous-time closed sensorimotor loop and without assuming

any a priori functional decomposition of oscillatory components. Each oscillator of the
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robot’s controller can be interpreted in various ways: a) as chemical oscillatory dynamics

controlling unicellular motility, b) as individual oscillatory neurons, c) as the activity of

neuronal groups, tissues or brain regions d) as the macroscopic result of the activity of

interactions between such regions, like EEG recordings. It is not necessary, however, to

adhere to any of these levels of interpretation, we take the oscillators to be theoretical

entities at an undetermined level of abstraction. What mattered to us was not the level of

empirical accuracy of the model but its capacity to raise theoretical issues and its potential

to open new insights into dynamical modelling and analysis of neural oscillatory dynamics

and sensorimotor activity.

7.2 Informational content of causal relevance of oscillatory

regimes

As the informational content and causal relevance of desynchronous oscillations are con-

cerned, the analyses of the models – in chapters 3 and 4 – have indicated that the in-

formational content about the sensorimotor activity is equally distributed throughout the

entire range of phase relations; the more the dynamical description is reduced the less

information it carries about the sensorimotor coordination. Neither synchronised nor

desynchronised oscillations was found to carry a privileged status in terms of informa-

tional content in relation to the agent’s sensorimotor activity. Besides, the results have

also suggested that although the phase relations of oscillations with a narrow frequency

difference carry a relatively higher causal relevance than the rest of the phase relations to

sensorimotor coordinations, overall there is no privileged functional causal contribution to

either synchronous or desynchronous oscillations.

Some contemporary cognitive neuroscience studies focus on synchronised activities

between different brain areas after a given stimuli onset and assume that such activities

are functional units representing the stimuli. The high level of synchronisation found by

empirical experiments represent only part of the explanatory picture that involves the

entire phase relation dynamics and, as our results have suggested, the reduction of phase

relations to synchrony might be hindering relevant information about neural oscillatory

activity underlying sensory and motor dynamics. Thus, an alternative procedure should

consider the entire regime of phase relations between distinct brain areas as the functional

unit correlated to the stimuli.
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7.3 Sensorimotor and oscillatory dynamics

As the the interplay between sensorimotor and oscillatory dynamics is concerned, we have

analysed how the spontaneous oscillations of a weakly coupled network are modulated

by an agent’s sensory dynamics generating stable limit cycles underlying the agent’s be-

havioural response under the interaction with a circle and a triangle (chapter 4). This

analysis was carried out by comparing the structure of the vector field under a constant

sensory input equals zero with the same vector field under a continuous sensory input

generated as a result of the agent’s movement in the environment.

We have also analysed how the metastable regimes of the HKB equation are modulated

by the agent’ sensorimotor loop and showed how different metastable dynamical patterns

in the HKB equation are generated and sustained by the continuous interaction between

the agent and its environment (chapter 5). Apart from raising theoretical issues about

neural oscillatory dynamics, this model has also contributed to Kelso’s Coordination Dy-

namics framework. The metastable regimes that the HKB model can illustrate have been

hypothesized to be the signature of brain functioning. Despite the evidence of metastabil-

ity in empirical experiments of animals performing perceptual motor coordination tasks,

to our knowledge there was no previous model of a situated HKB system that operates

in a metastable region, coupling metastable oscillations to sensorimotor coordination dy-

namics. The model we have developed and analysed in this thesis has contributed to fill

this gap and has shown the tight dependency that can be established between an agent’s

neural oscillatory metastable regimes and its sensorimotor dynamics; a dependency that

has passed unnoticed along many studies of the HKB equation.

We have shown how the oscillatory regimes and the attractor landscape of a completely

integrated network change over a process of homeostatic adaptation to the visual field

inversion of an agent performing phototaxis. We have also shown how the sensorimotor

loop is essential to sustain a network’s rhythmic dynamics by keeping it in a transient

towards a continuously moving attractor (chapter 6). Some important implications of

these results are the following. Firstly, it has practical importance for the design of

artificial neural network systems that can learn different behaviours. It is commonly

believed that when a network system learns a new behaviour, the activation of neural

plasticity will perturb the existing weight configuration of previously acquired behaviours

and therefore will have a detrimental effect on the system’s overall performance. One

traditional way to address this so-called “problem of neural interference” is by taking

inspiration from the modular computer architecture, namely by dividing the neural system
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into non-overlapping neuronal groups. However, here we have demonstrated that this kind

of structural modularity is not the only way for one system to realise different types of

behaviour. Even a completely integrated system can achieve behavioural differentiation

by different transient dynamical regimes on a fixed attractor surface.

Accordingly, this model also has important implications for our scientific understanding

of the neural system. It is a widely held belief in neuroscience that different cognitive

functions map onto distinct regions of the brain, a belief reinforced by the advent of

various brain imaging methods. This appeal to structural localizability may be valid to

some extent. However, the model presented in this paper is a proof of concept that this is

not the only way of realising functional differentiation. Rather than focusing on anatomical

divisions alone, it is also possible to take the nervous system as one integrated system which

can realise a multiplicity of behaviours by transiting between different dynamical regimes.

Overlapping take-home message

The results obtained from the analyses of the models in chapters 4, 5 and 6 contribute to

the ongoing philosophical debate about whether actions are either causally relevant or a

constituent of cognitive functionalities such as perception and coherent sensorimotor coor-

dination. Whereas proponents of the former (Clark, 2006; Prinz, 2006) claim that actions

are causally relevant but not necessary for cognitive functionalities to occur, proponents

of the latter (O’Regan and Noe, 2001b,a; Noe, 2004; Myin and O’Regan, 2008) concede

that actions are constituents of a process involving the entire brain-body-environment

system from which the functionality emerges. The models we have developed in this the-

sis contribute to this debate by illustrating the constitutive notion of action to cognitive

functionalities in the context oscillatory neurodynamics, as explained below.

In all models, the oscillatory regimes underlying the agent’s coherent behaviours (e.g.

the limit cycles underlying the discrimination of circles and triangles, the metastable

regimes underlying gradient climbing behaviour, and the transient oscillatory dynamics

underlying the agent’s phototatic behaviour with normal and inverted vision) were not

generated as a network response to a specific sensory pattern, but from the ongoing coor-

dinated coupling involving the entire sensorimotor loop (sensor → oscillatory network →

motor → environment → sensor). Note, for instance, that as the agent controlled by the

CTRNN (chapter 6) moves in the environment, its sensors change and, due to a different

parametrisation of the CTRNN, the attractor moves in the state space. The direction

to which the attractor pulls the state of the system generates a coherent motor dynam-
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ics that move the agent towards the light and consequently modifies its sensory activity

closing the sensorimotor loop. The dynamics of this closed loop is essential to sustain the

transient dynamics that generate the oscillatory regimes underlying the agent’s phototatic

behaviour. Note that the CTRNN does not process the input in order to generate a “cor-

rect” output; instead the whole system is evolving together in an ongoing dynamics where

the motors are constantly shaping the sensory activity, the sensory activity constantly

shaping the network, and the network constantly generating the motor output.

Notice as well that it is essential to have a closed and coordinated sensorimotor loop to

assure that the network will converge to a coherent oscillatory regime. This was illustrated

by the HKB model where we have seen that it was not sufficient to present a sensory input

pattern to the agent for its network to converge to functional oscillatory regimes, such

pattern had to be generated by the motor dynamics. The motor-sensory coordination

assured the convergence of the network to functional oscillatory dynamics. It is in this

sense that our models illustrate that a cognitive functionality is not a standalone entity in

the neural system that is activated by a specific sensory stimulation, instead we have seen

that it is tightly dependent on on the entire sensorimotor loop where the oscillatory network,

the agent’s body and the environment are the constituents of an interaction process from

which a functionality emerges. As a result, if one is to interpret a particular oscillatory

regime as a neural correlate of a cognitive functionality, she/he should be aware that the

oscillations are only part of the explanatory picture and that they have been achieved with

the right sensorimotor coordination being generated-by and, in turn, modulating the very

oscillatory regime. Whether these observations can be generalized to natural cognition is

open to empirical investigation. In this thesis we have provided conceptual, mathematical

and computational tools to help carry out this task.

We need richer methods to analyse oscillatory phenomena in order to systematically

relate behavioural and neural oscillatory dynamics capable of producing a coherent picture

of situated cognition. As we have seem in this thesis, artificial Life models, more specifically

Evolutionary Robotics, can provide the means to explore such methods contributing with

proofs of concept, testing empirical assumption and building minimal scenarios that can

improve our conceptual and mathematical understanding of the complex interplay between

brain, body and world that gives rise to cognitive functionalities.
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