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“God made the bulk; surfaces were invented by the devil.”
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Summary

Quantum electrodynamics is the spectacularly successful theory of the interaction of
light and matter. Its consequences are well-understood, and have been experimentally
verified to extreme precision. What is not generally known is how these predictions change
when the theory is considered in anything other than free space – near a surface, for
example. A material boundary causes vacuum fluctuations of the electromagnetic field to
be different from their counterparts in free space, causing the electromagnetic environment
of a microscopic system sitting near the boundary to differ from that if the surface were
not present. This causes a variety of surface-dependent shifts in the properties of the
microscopic system – this work investigates these shifts for a free electron. First using
explicit normal mode expansion and analytic continuation of the wave-vector in the complex
plane, and then using a semi-phenomenological ‘noise current’ approach, the work presents
derivations of formulae for the shifts in the mass and magnetic moment of an electron near
a dispersive and absorbing surface. The formalism is also extended to the case where the
electron is subject to a harmonic potential. It is noted that results for different models
of the surface do not agree in the expected limiting cases due to their differing behaviour
at low frequency, which leads to the conclusion that one must be very careful to use
an appropriate model of a particular surface when considering quantum electrodynamic
surface effects. Analysis of the results shows that use of a realistic model of the surface
can make these shifts orders of magnitude larger than previous calculations had suggested,
since they all relied on the somewhat unrealistic assumption that the surface is perfectly
reflecting. This is shown to be particularly relevant to experiments which aim to measure
the anomalous magnetic moment of an electron.
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Chapter 1. Thesis outline 1

Chapter 1

Thesis outline

Quantum electrodynamics is the extraordinarily successful theory of the interaction of light

and matter – its predictions are well-understood and have been experimentally verified to

extreme precision. Perhaps surprising is that the interaction of quantum electrodynamic

systems with objects in their vicinity is relatively poorly understood, even though this is an

unavoidable scenario in any real experiment. Such objects modify the quantum-mechanical

fluctuations of the electromagnetic vacuum field that exists throughout space, meaning

that any quantum system coupled to that field will experience effects that are due to the

presence of objects in its vicinity.

This thesis aims to quantify some of these effects for a free electron near a surface. We

will begin by discussing the general properties of the quantum-mechanical vacuum state in

Chapter 2, before moving on to a discussion of the quantization of the electromagnetic

vacuum field. Following this we will outline the challenges one faces when trying to describe

the quantized electromagnetic field in the presence of dielectric materials. In Chapter 3 we

will detail two specific models of the surface which allow one to derive an explicit mode

expansion for the quantized electromagnetic field in its vicinity, and then in Chapter 4 we

will use this to calculate the shift in the mass of an electron near such surfaces. We will

then extend our model to arbitrary surfaces, and discuss the experimental relevance of our

calculation.

The mass shift acts as an introduction to the methods that we will employ – a more

involved and physically relevant calculation is that of the shift in the magnetic moment

of an electron near a surface. In Chapter 5 we will use perturbation theory in the Dirac

equation to derive an expression that delivers the shift in the magnetic moment in terms

of the normal modes of the quantized electromagnetic field near an interface. We will then

use our explicit expressions for the mode expansions near various materials to calculate the



Chapter 1. Thesis outline 2

magnetic moment shift of an electron near a selection of surfaces. We will then generalize

our results to arbitrary surfaces and discuss the experimental consequences thereof, with

particular reference to precision measurements of the anomalous magnetic moment of the

electron. We will show that under favorable conditions a measurement of the surface-

dependent part of the magnetic moment may be on the verge of experimental viability,

which is of distinct importance because of the anomalous magnetic moment’s role as one

of the most accurately measured quantities in all of physics. In Chapter 6 we will bring

our work closer to experiment by considering surface-induced shifts in the properties of an

electron subject to harmonic confinement near an interface, which is a common scenario in

real experiments that aim to measure the anomalous magnetic moment of the electron.

Finally, in Chapter 7 we will dispense with the mode expansion and use an entirely

different method based on the so-called ‘noise-current’ description of quantum electro-

dynamics in media to calculate the same quantities as in Chapters 4 and 5, namely the

mass and magnetic moment of an electron near a surface. These noise-current calculations

were done because much of the work in Chapters 4 and 5 is based on entirely new methods,

so comparison with an existing formalism is of obvious importance. We will show that

the results of Chapters 4 and 5 can be reproduced using the noise-current approach, and

provide some insight into its relationship with the mode expansion method.
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Chapter 2

Introduction

2.1 Vacuum fluctuations

The origin of the present understanding of the vacuum is largely the pioneering work of Max

Planck in the first years of the 20th century, in which he resurrected Newton’s idea that light

exists only in discrete lumps (called ‘quanta’) in order to develop a theory which successfully

explained the experimentally observed spectrum of black body radiation. Planck did not

immediately realize that this represented a revolution in physics, dubbing it “a purely formal

assumption” [1]. Each quantum was defined to possess energy hν = ~ω, where ~ is now

known as the reduced Planck’s constant h/2π and ω is the angular frequency of radiation

with frequency ν. In order to recover the continuous, classical theory from a quantized

theory, one should take the limit of large quantum numbers, which is mathematically

equivalent to taking ~ → 0. A 1913 paper of Einstein and Stern [2] noted that average

energy of a harmonic oscillator of frequency ω at temperature T in Planck’s theory is

E =
~ω

e~ω/kBT − 1
≈ kBT −

1

2
~ω +O(~2) (2.1)

as ~ → 0. The equipartition theorem states that the above energy should be equal to

kBT , so we must add an energy of 1
2~ω in order to satisfy the theorem to first order in ~.

They named this addition the Nullpunktsenergie (“zero-point energy”). Einstein and Stern

concluded their paper by stating that “the existence of zero-point energy of magnitude

1
2~ω is probable”.

The development of quantum mechanics in the 1920s culminated in Schrödinger’s

famous equation, which is succinctly represented as

i~
∂

∂t
Ψ(x, t) = ĤΨ(x, t) , (2.2)

where Ĥ is the Hamiltonian operator which acts on the state Ψ(x, t) and whose eigenvalue
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for a stationary state Ψ(x) is the energy of that state. For a particle of mass m moving in

potential in one dimension, the (classical) Hamiltonian reads

H =
p2

2m
+ V (x) . (2.3)

Position x and momentum p are canonically conjugate variables. The Poisson bracket for

functions of f and g of the canonical variables p and q is defined as

{f, g} =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
. (2.4)

It is clear that if f and g are themselves canonically conjugate co-ordinate and momentum

(f = q, g = p), their Poisson bracket will be unity. In particular, we have for the harmonic

oscillator described by (2.3):

{x, p} = 1 . (2.5)

Canonical quantization consists of promoting the canonical variables to operators and

replacing the Poisson bracket (2.5) with the commutator

[x̂, p̂] = i~, (2.6)

so that the Hamiltonian H becomes the Hamiltonian operator Ĥ

Ĥ =
p̂2

2m
+ V (x̂) . (2.7)

The commutator (2.6) leads to the famous Heisenberg uncertainty relation

∆x∆p ≥ ~
2
, (2.8)

where ∆x and ∆p are the standard deviations of position and momentum, respectively.

This shows that one cannot simultaneously observe the position and momentum of a

quantum system to arbitrary accuracy, or, equivalently, very accurate measurement of the

position of a particle introduces significant uncertainty into its momentum. In fact, the

relation holds for any pair of conjugate variables [3], for example energy E and time t

∆E∆t ≥ ~
2
. (2.9)

Since, in quantum mechanics, time is a actually a parameter not a variable, the interpreta-

tion of ∆t above is not without controversy (see, for example [4]). However, the relation

provides a heuristic justification of the way in which quantum mechanics predicts the exist-

ence of vacuum fluctuations – if a process happens over a very short timescale, a significant

uncertainty is introduced into its energy. Or, very loosely, processes which happen over
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very short timescales have a ‘fuzziness’ in their energy, meaning that conservation of energy

is not strictly imposed.

The next question is how, if at all, these heuristic discussions can be formalized in

such a way as to lead to the zero-point energy that Einstein and Stern postulated. The

answer is provided by solution of the Schrödinger equation for a single particle moving in a

one-dimensional harmonic potential, for which the (classical) Hamiltonian is

H =
p2

2m
+

1

2
mω2x2, (2.10)

where ω is the angular frequency of the harmonic motion. The position and momentum are

of course still the canonically conjugate variables, as can be easily verified by checking that

Eq. (2.10) satisfies Hamilton’s equations of motion. Thus we may immediately canonically

quantize to give

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 . (2.11)

The Schrödinger equation (2.2) with this Hamiltonian can be solved relatively easily by

using an analytical method, with the resulting wave functions being expressed in terms

of Hermite polynomials (see, for example, [5]), from which one can extract the energy

eigenvalues. However, it is in fact possible to extract these eigenvalues purely algebraically,

i.e. without solving the differential equation. To do this, one uses Dirac’s ‘ladder operator’

method. Since this method is of huge utility in the more complex problems considered

later (as well as across all of physics), it is the approach we follow here. We begin by

introducing the following non-Hermitian operators

â =
1√

2~mω
(p̂− imωx̂), (2.12a)

â† =
1√

2~mω
(p̂+ imωx̂), (2.12b)

which, as a consequence of (2.6), have the commutator

[â, â†] = 1 . (2.13)

These can be used to write the Hamiltonian as

Ĥ = ~ω
(
â†â+

1

2

)
. (2.14)

The energy levels are specified by the eigenvalues n ∈ N of the (Hermitian) operator â†â

acting upon the state |n〉. It is well-known that acting the operators â and â† on a state,

defining a ground state â |0〉 = 0 and enforcing a normalization gives the following algebra
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for the operators

â |n〉 =
√
n |n− 1〉 , (2.15a)

â† |n〉 =
√
n+ 1 |n+ 1〉 , (2.15b)

which immediately gives the energy levels as

En = ~ω
(
n+

1

2

)
, n = 0, 1, 2, ... (2.16)

which, of course, is the same result one gets from explicitly solving the Schrödinger equation.

In the lowest state (n = 0), we have non-zero energy ~ω
2 , just as Einstein and Stern predicted.

We have reached this conclusion by beginning from a classical model (2.10), identifying

the canonically conjugate position and momentum (which was trivial in this case) and

promoting these to operators that obey the canonical commutation relation (2.6). The

same approach will be taken in discussion of electromagnetism in the next section.

2.2 The electromagnetic vacuum

To demonstrate the real world consequences of vacuum fluctuations, we explore their role

in electromagnetism. An obvious starting point is to write down Maxwell’s equations in

vacuum without any charges or currents

∇ ·E(r, t) = 0, ∇×E(r, t) = − ∂

∂t
B(r, t),

∇ ·B(r, t) = 0, ∇×B(r, t) =
∂

∂t
E(r, t), (2.17)

from which we hope to identify canonically conjugate variables so that we may quantize the

free electromagnetic field along the same lines as in the previous section. From here onwards

we work in a system of natural units where c, ~ and ε0 are all equal to 1. Introducing the

usual electromagnetic potentials A and φ as the objects that satisfy

B(r, t) = ∇×A(r, t), E(r, t) = −∂A(r, t)

∂t
−∇φ(r, t), (2.18)

eqs. (2.17) can be reduced to a pair of coupled differential equations

∇× [∇×A(r, t)] +
∂2

∂t2
A(r, t)− ∂∇φ(r, t)

∂t
= 0 , (2.19a)

∂

∂t
∇ ·A(r, t) +∇ ·∇φ(r, t) = 0 . (2.19b)

These may be decoupled by astute choice of gauge. In this section we choose the Coulomb

gauge, ∇ ·A = 0. It is easy to see on inspection of eq. (2.19b) that this gauge condition

means φ(r, t) may be set to zero, meaning that eq. (2.19a) becomes

∇× [∇×A(r, t)] +
∂2

∂t2
A(r, t) = 0, (2.20)
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and we note in particular from eqs. (2.18) that

E(r, t) = −∂A(r, t)

∂t
. (2.21)

Using a vector identity and the Coulomb gauge condition to simplify eq. (2.20), we obtain

a wave equation for the vector potential A:

∇2A(r, t)− ∂2

∂t2
A(r, t) = 0, (2.22)

The solutions to this equation are monochromatic waves, which for a single field mode are

given by

Ak(r, t) = α(0)e−iωtfk(r) + α∗(0)eiωtf∗k(r), (2.23)

where fk(r) satisfies the Helmholtz equation

(
∇2 + ω2

)
fk(r) = 0 . (2.24)

Defining

q(t) = i [Nα(t)−N∗α∗(t)] , (2.25a)

p(t) = k [Nα(t) +N∗α∗(t)] , (2.25b)

where N is a normalization constant, the Hamiltonian for this single electromagnetic field

mode satisfies

Hk =
1

2

∫
d3r(E2 + B2) =

|N |2

2
(p(t)2 + ω2q(t)2) . (2.26)

The Hamilton equations that follow from this are

q̇(t) = p(t), ṗ(t) = −ω2q(t) . (2.27)

These can also be derived from eqs. (2.25), showing that q and p are canonically conjugate

co-ordinate and momentum variables, meaning that on promotion to operators they obey

the canonical commutation relation

[q̂(t), p̂(t)] = i, (2.28)

with q̂(t) and p̂(t) representing operator-valued versions of eqs (2.25)

q̂(t) = i
[
Nâ(t)−N∗â†(t)

]
, (2.29a)

p̂(t) = k
[
Nâ(t) +N∗â†(t)

]
, (2.29b)

The single-mode classical vector potential Ak becomes the operator Âk

Âk(r, t) = Nâ(0)e−iωtfk(r) +N∗â†(0)eiωtf∗k(r), (2.30)
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and the Hamiltonian H for the electromagnetic field becomes the Hamiltonian operator Ĥ

Ĥk =
|N |2

2
(p̂(t)2 + ω2q̂(t)2) . (2.31)

We now choose a normalization such that this Hamiltonian can be written in the canonical

form

Ĥk = ~ω
(
â†â+

1

2

)
, (2.32)

which corresponds to choosing N = 1/
√

2ω. The commutation relation becomes[
â(t), â†(t)

]
= 1 , (2.33)

completing the quantum description of a single mode of the electromagnetic field.

The extension of this to a multi-mode field is straightforward. The multi-mode field

must satisfy the Helmholtz equation (2.24), and the Coulomb gauge condition ∇ ·A. The

simplest choice of fk(r) that satisfies these is

fk(r) = êλ(k)eik · r, (2.34)

where êλ(k) is some vector that obeys

k · êλ(k) = 0 . (2.35)

This has two independent solutions corresponding to the two possible polarizations of the

electromagnetic field, other than that the choice of êλ(k) is arbitrary. A convenient choice,

used throughout this thesis, is the TE (transverse-electric) and TM (transverse-magnetic)

polarization vectors listed appendix A.1.1. The linearity of Maxwell’s equations means

that we can simply sum over all the modes to find the expression in the Heisenberg picture

for the electromagnetic field in Coulomb gauge:

Â(r, t) =
1

(2π)3/2

∑
λ

∫
d3k

1√
2ω

[
âkλe

−iωkteik · r + â†kλe
iωkte−ik · r

]
êkλ(k) , (2.36)

where âkλ ≡ âkλ(0) and λ = TE, TM. The operators âkλ and â†kλ represent creation and

annihilation operators for the harmonic oscillator corresponding to each Fourier mode of the

electromagnetic field. The normalization is obtained by demanding that the electromagnetic

field Hamiltonian (2.26) is written in the canonical form

ĤEM =
∑
λ

∫
d3k ω

(
âkλâ

†
kλ +

1

2

)
. (2.37)

This corresponds to an infinite continuum of uncoupled harmonic oscillators, meaning that

the different modes of the field are independent and obey the commutation relation[
âkλ, â

†
k′λ′

]
= δ(3)(k− k′)δλλ′ , (2.38)
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where δ(3)(k− k′) ≡ δ(kx − k′x)δ(ky − k′y)δ(kz − k′z). For our purposes it proves convenient

to rewrite (2.36) as

Â(r, t) =
∑
λ

∫
d3k

[
âkλe

−iωktfkλ(r, ω) + â†kλe
iωktf∗kλ(r, ω)

]
, (2.39)

with

fkλ(r, ω) =
1

(2π)3/2

1√
2ω
eik · rêkλ, (2.40)

which is called a mode function. The expression (2.40) is the mode function for free

space – throughout this thesis we will consider analogues of (2.40) for systems that impose

boundary conditions on the electromagnetic field.

An important property of the mode functions is their completeness. To see that they

are complete, we rewrite eq. (2.20) in frequency space

∇× [∇×A(r, ω)] = ω2A(r, ω) . (2.41)

The operator ∇ × ∇× is Hermitian, so this is a Hermitian eigenvalue problem. This

means that the vector potential A may be expanded into mode functions, and those mode

functions must be complete. The completeness relation is∫
d3k (2ω)f ikλ(r, ω)f j∗kλ(r′, ω) = δ⊥ij(r

′ − r), (2.42)

where δ⊥ij(r
′ − r) is the transverse delta function, expressed through its Fourier transform

as

δ⊥ij(r
′ − r) =

∫
d3k

(2π)3
eik · (r−r′)

(
δij −

kikj
k2

)
. (2.43)

This is the unit operator in the space of transverse vector functions. The transverse δ

function also appears in the equal-time commutation relations for the fields, for example

[Ai(r), Ek(r)] = −iδ⊥ik(r− r′) . (2.44)

Finally, we note that the orthogonality and normalization relation is∫
d3r fkλ(r, ω) · f∗k′λ′(r, ω) =

1

2ω
δλλ′δ

(3)(k′ − k) . (2.45)

The normalization is fixed by our stipulation that the electromagnetic field Hamiltonian

should be written in the canonical form (2.37).

We began this section with the goal of demonstrating the real-world consequences of

vacuum fluctuations. We have from (2.37) that the vacuum energy is the sum over the

zero-point energies of all the modes of the electromagnetic field

Evac =
∑

all modes

ωk
2
, (2.46)
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which is of course infinite. It seems as if this energy must be irrelevant to observations

since no absolute energy measurement can be made1, we can only measure energies relative

to some reference which one might as well take as the vacuum energy. However, this is

not the case – the vacuum energy is relevant to observations. The reason for this is that

the zero point energy (2.46) depends on the mode structure, not simply the magnitude

of the corresponding energy. Thus altering the mode structure of the vacuum will have

real, observable consequences, even though we can only measure energy differences. One

way that this alteration can be actually realized is by the introduction of macroscopic

objects which modify the electromagnetic field by imposing boundary conditions upon it.

In the next section we discuss the most famous way that this alteration can be observed –

the Casimir effect. We will also discuss a related fluctuation-induced force known as the

Casimir-Polder effect.

2.3 Observing the vacuum

2.3.1 The Casimir effect

The usual example of the ‘reality’ of vacuum fluctuations is the experimental confirmation of

the Casimir effect – the attraction between two material bodies due to the restrictions they

place upon the electromagnetic vacuum. If we consider two parallel, perfectly conducting

plates separated by vacuum we can avoid many of the complications associated with field

quantization in real media. The only way the electromagnetic field ‘sees’ the plates is via

the boundary conditions they impose upon it, which are that the parallel electric field and

perpendicular magnetic fields both vanish. Following [6], we begin by decomposing the k

vector into components parallel to the surface (k‖) and perpendicular to it (kz), giving for

the vacuum energy

Evac =
1

2

∑
all modes

|k| = 1

2

∑
all modes

√
k2
‖ + k2

z , (2.47)

The boundary conditions mean that the modes are restricted, in particular kz may only

take on values nπ/a, where a is the separation of the plates and n = 0, 1, 2, .... Thus the

energy EC contained between plates of area L2 for one polarization of the electromagnetic

field becomes

EC(single polarization) =
L2

2

∞∑
n=0

∫
d2k‖

(2π)2

√
k2
‖ +

(nπ
a

)2
, (2.48)

1An exception is in general relativity, where energies can be inferred by measurement of the curvature of

spacetime.



Chapter 2. Introduction 11

If n is zero only one polarization survives, so we may write for the sum of the two

polarizations

EC =
L2

2

∫
d2k‖

(2π)2

[
k‖ + 2

∞∑
n=1

√
k2
‖ +

(nπ
a

)2
]
. (2.49)

This is infinite, so we renormalize by a process which is repeated many times in this thesis

– we subtract the energy that would have been in the system if the bounding surfaces were

not present. In this case, this is the electromagnetic vacuum energy contained within in a

simple box of volume L2a. This is

E0 =
L2a

2

∫
d2k‖

(2π)2

∫ ∞
−∞

dkz
(2π)

2
√
k2
‖ + k2

z . (2.50)

Changing variables to kz = nπ/a, this becomes

E0 =
L2

2

∫
d2k‖

(2π)2

∫ ∞
0

dn 2

√
k2
‖ +

(nπ
2

)2
, (2.51)

giving the energy per unit area as

∆EC =
EC − E0

L2
=

1

2π

∫ ∞
0

dk‖k‖

[
k‖

2
+

∞∑
n=1

√
k2
‖ +

(nπ
a

)2
−
∫ ∞

0
dn

√
k2
‖ +

(nπ
2

)2
]
,

(2.52)

where we have transformed to spherical polar co-ordinates and carried out the trivial

angular integration. This expression is still divergent at large k‖ and must be regularized,

which we achieve by introducing a smooth cutoff function f(k‖), where

f(k‖) =


1 if k‖ . kcrit

‖

0 k‖ � kcrit
‖ .

(2.53)

Changing variables to u = a2k2
‖/π, this leads to:

∆EC =
π2

4a3

[
1

2
F (0) +

∞∑
n=1

F (n)−
∫ ∞

0
dnF (n)

]
, (2.54)

with

F (n) =

∫ ∞
n2

du
√
uf(π

√
u/a) . (2.55)

Equation (2.54) is convergent. Using the Euler-MacLaurin summation formula (see, for

example, [7] sec. 23.1.30) and the properties of f(k‖), the energy evaluates to

∆EC = − π2

720a3
, (2.56)

where it should be noted that all reference to the regulator has disappeared. Taking the

negative gradient of this and restoring factors of ~ and c finally gives the pressure

F

L2
= − ~cπ2

240a4
≈ 0.001(µm)−4Pa . (2.57)
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Figure 2.1: (Reproduced from [8]) Measurements of the Casimir effect

using a torsion pendulum showing good agreement with theoretical pre-

dictions (solid line). However, later analyses showed that at separations

below 1µm the error bars are significantly underestimated [9].

as found in Casimir’s original paper [10]. So, we have a measurable attraction between

the plates which originates from their modification of the mode structure between them,

namely restricting the wave vector in the direction perpendicular to the plates to discrete

values. The result has been rederived in a wide variety of other ways, most notably in

the generalization to bulk dielectrics accomplished by by Landau and Lifshitz [11]. Other

approaches include scattering theory [12], geometrical optics [13] and consideration of the

plates as δ function potentials [14], amongst numerous others.

It is clear from (2.57) that even for micrometer separations the effect is small. However,

a pioneering experiment attempting to measure the Casimir effect was undertaken as early

as 1958 by Sparnaay [15], who found results which “do not contradict Casimir’s theoretical

prediction”, although this experiment had significant problems due to stray charges on

the plates. The first modern experiment which measured the effect to reasonable accuracy

was done by Lamoreaux [8, 16, 17] as shown in fig. 2.1. The extreme difficulty of such

measurements has led to continuing controversy [9] over the validity of these results. Later

measurements by Decca et. al are shown in fig. 2.2.

The serious experimental problems encountered with measurements of the Casimir

effect have meant that it is worthwhile considering a family of closely related phenomena,

chiefly the Casimir-Polder effect.
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Figure 2.2: (Reproduced from [18]) Measurements of the Casimir pressure

at various separations using a micromachined mechanical oscillator com-

pared to two theoretical models of the surfaces. The horizontal error bars

represent uncertainty in the measurement of the distance between the sur-

faces, and the vertical error bars represent uncertainty in the measurement

of the pressure.

2.3.2 The Casimir-Polder effect

It is well-known that in free space the degeneracy of the 2S1/2 and 2P1/2 hydrogen orbitals

is lifted due to the interaction of the atomic electron with the quantized electromagnetic

vacuum field. This is known as the Lamb shift, and was discovered in a 1947 experiment

of Lamb and Rutherford [19]. It stands to reason that modification of the vacuum field by

imposition of external boundary conditions (such as those applied by a material surface)

should produce a further shift in the transition frequency between atomic orbitals. This

‘shift in the Lamb shift’ was first described in 1948 by Casimir and Polder [20], and is now

known as the Casimir-Polder effect.

Calculation of the effect is most conveniently done by in the multipolar coupling

approach to QED, where the sources appearing in Maxwell’s equations are replaced by

the polarization P(r) and magnetization M(r) that the atomic electron generates. For

example, the polarization for an atom with its nucleus at r and an electron at q is:

P(r) = −eq
∫ 1

0
dλδ(3)(r− λq) . (2.58)

Assuming that the electron co-ordinate q is by far the smallest length scale in the problem,

this may be approximated to

P(r) = −eq
∫ 1

0
dλδ(3)(r− λq) ≈ −xδ(3)(r), (2.59)
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Figure 2.3: (Reproduced from [21]) Measurements of the Casimir-Polder

shift in the micrometer regime

where x = −eq is the electric dipole moment of the electron. This is known as the dipole

approximation. For neutral atoms one can the apply the Power-Zienau transformation [22]

which allows the Hamiltonian describing the interaction of the atomic electron and the

quantized field to be written in a very simple form, namely

Hint = −x ·E . (2.60)

Casimir and Polder’s original calculation [20] was somewhat complicated due to the fact

that it was done without the aid of the multipolar coupling technique. More modern

calculations are in agreement with Casimir and Polder’s, and proceed much more simply

using the dipole approximation. The now well-known dependence of the frequency shift

∆ν from the ground state to the first excited state in two asymptotic cases (known as the

‘non-retarded’ and ‘retarded’ regimes) as

∆ν ∝ 1

z3
for τγ � τa, ∆ν ∝ 1

z4
for τγ � τa, (2.61)

where τγ is the typical time needed for a virtual photon to make the round trip from the

atom to the surface and back, and τa is the time associated with the atomic transition

under consideration. The shift was measured in the 1990s [21, 23], and, as shown in fig. 2.3,

found good agreement with experiment.

2.4 Free electron vs atom

The main limiting factor on precise measurements of the Lamb shift (and consequently

the Casimir-Polder shift) is the large uncertainty in the charge radius rp of the proton
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[24]. The current accepted CODATA value obtained by precision spectroscopy of atomic

hydrogen is rp = 0.8775(51)fm [25] – the error is around 0.6%, which is extremely large

compared to that for other fundamental quantities. The consequences of this for the Lamb

shift δν are that its error is relatively large, for example the best theoretical estimate of the

2S Lamb shift in hydrogen based on the CODATA proton radius is δν = 1.045003(4)kHz

[26], which is an error of around 4 parts per million. Further to this, the method used to

obtain the CODATA radius relies on bound-state QED calculations, and thus is vulnerable

to insufficiencies in these – the results of some two-loop effects in hydrogen have recently

been questioned [27]. A recent experiment [28] found a proton radius which differs from

the CODATA value by five standard deviations. Since a free electron is, by definition, not

in a bound state, no such errors can arise in measurements of its properties. In fact, the

magnetic moment of the electron is one of the most accurately known quantities in all of

physics. The latest value has an uncertainty of 0.76 parts per trillion [29] – the uncertainty

in the magnetic moment of an electron is around a million times less than that of the Lamb

shift of atomic energy levels. This shows that measurements of the properties of a free

electron can provide much more stringent tests of QED than the analogous measurements

of an atom (although with extra experimental complications due to the electron’s non-zero

net charge). This why we choose to investigate the effects of a surface upon a free electron

– even tiny shifts caused by the influence of the environment can be of importance in

measurements of the electron’s properties.

The most closely analogous quantity to the Lamb shift of an atom for a free electron is

its self-energy – the difference is that the electron’s excitation spectrum is continuous rather

than defined by discrete atomic energy levels. However, any attempt at calculating the

self-energy in the same manner as the Casimir-Polder shift breaks down almost immediately

since one cannot apply the Power-Zienau transformation to a free electron since it is not

neutral. Then we will move on to the magnetic moment, precision knowledge of which

is important because of its role as the most stringent test of QED. We will tackle these

problems by finding a representation of the medium-dependent quantized electromagnetic

field (a task which is non-trivial, as discussed in the next section) and then allow this field

to interact with the electron. We consider the interaction as a perturbation, which allows

us to calculate the shifts that are due to the interaction of the electron with the surface.
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2.5 Approaches to electromagnetic field quantization in the

presence of media

The given examples of the Casimir and Casimir-Polder effects both relied on vast oversim-

plification of the influence that a medium can have upon the quantized electromagnetic

field. The assumption of perfect reflector boundary conditions meant that we never needed

to consider the form of the fields inside the plates themselves, meaning that all we had to

do was apply boundary conditions to the vacuum field in-between. In fact, the process of

electromagnetic field quantization in the presence of a dielectric or conducting material

turns out to be much more complicated and nuanced than its counterpart in free space

(or indeed with perfect reflector boundary conditions). The problem seems simple – one

needs to consider the interactions of the electromagnetic field with the ensemble of atoms

that makes up the material. However, the material is necessarily made up of an astro-

nomically large number of these. To ‘exactly’ investigate the field even in a small sample

of the medium one would have to consider its interaction with ∼ 1023 interacting atomic

systems – this is not computationally possible, not even approximately. Thus, the usual

approach to this problem is to define a macroscopic response function ε(ω) known as the

permittivity2, which multiplies the electric field. The resulting quantity is known as the

electric displacement D(r, ω) and satisfies

D(r, ω) = ε(r, ω)E(r, ω), (2.62)

Maxwell’s equations in frequency space in terms of this quantity are

∇ ·D(r, ω) = 0, ∇×E(r, ω) = iωB(r, ω),

∇ ·B(r, ω) = 0, ∇×B(r, ω) = −iωD(r, ω) . (2.63)

Introducing the scalar potentials A and φ in an analogous way to eqs. (2.18) means

eqs. (2.63) reduce to

∇× [∇×A(r, ω)]− ω2ε(r, ω)A(r, ω) + iωε(r, ω)∇φ = 0, (2.64a)

−iω∇ · [ε(r, ω)A(r, ω)] +∇ · [ε(r, ω)∇φ] = 0 . (2.64b)

For a spatially homogenous permittivity ε(r, ω) = ε(ω), we choose the Coulomb gauge

∇ ·A = 0 which means we can combine these into a single equation in terms of the vector

2In principle one also needs to define a permeability µ(ω), but here and throughout we limit ourselves

to non-magnetic media µ(ω) = µ0.



Chapter 2. Introduction 17

potential A(r, ω) in the same way as was done to obtain eq. (2.20)

∇× [∇×A(r, ω)]− ω2ε(ω)A(r, ω) = 0 , (2.65)

which, as with eq. (2.22), reduces to the wave equation

∇2A(r, ω) + ω2ε(ω)A(r, ω) = 0 . (2.66)

The precise form of ε(ω) can be determined empirically, or by the use of simple models

of the response the atoms in the material to an electromagnetic field. Beginning from a

general response relation in real space and Fourier transforming, it can be shown that

ε(ω) must be a complex-valued function which satisfies the well-known Kramers-Kronig

relations

Re ε(ω) = 1 +
2

π
P
∫ ∞

0

ω′ Im ε(ω′)

ω′2 − ω2
dω′ , (2.67a)

Im ε(ω) = −2ω

π
P
∫ ∞

0

ω′Re ε(ω′)− 1

ω′2 − ω2
dω′ , (2.67b)

where P denotes the Cauchy principal value.

All that then remains is to quantize the field that obeys (2.66). This seemingly simple

task is in fact quite complicated due to the fact that the permittivity is complex and

frequency dependent, meaning that the procedure of canonical quantization cannot proceed

in the usual way [30, 31, 32, 33, 34]. The reason for this is related to the fact that canonical

quantization makes use of equal-time commutation relations, but the response of a medium

necessarily depends on the electric field at previous times.

This thesis avoids this issue in different two ways. The first of these is to approximate

real materials as non-absorbing, which corresponds to ignoring the imaginary part of the

permittivity. This approach has the advantage that for some simple choices of ε(ω) the

electromagnetic field can be explicitly canonically quantized through its decomposition into

normal modes, meaning that we can use the resulting quantized field to produce physically

transparent and rigorous calculations of radiative corrections near surfaces. The results of

this method are amenable to a posteriori extension to more complicated choices of ε(ω),

as we will explain later. This approach forms the basis of the mass shift and magnetic

moment calculations found in Chapters 3 to 6, which are the main work presented here.

The second way of avoiding these issues with canonical quantization is to introduce a

source term corresponding to the current that is induced in the material by the propagation

of a damped electromagnetic wave [35, 36, 37, 38]. Introduction of this term produces the

correct field commutator (2.44), but cannot be regarded as a rigorous canonical quantization.
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However, the advantage of this approach is that it explicitly includes absorption from the

start of the calculation, but relies upon the introduction of quantities with no clear physical

interpretation and so does not have the same intuitive qualities as the mode expansion

method. This approach will be investigated in Chapter 7, in which the results for the mass

shift and magnetic moment are rederived so that the two methods can be compared.
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Chapter 3

Field quantization in the presence

of surfaces

3.1 Introduction

The process of electromagnetic field quantization in free space detailed in the previous

chapter is elementary and well-understood, and even the presence of a perfectly reflecting

boundary does not complicate matters too much. A derivation of the normal mode expansion

of the electromagnetic field near such an idealized surface is straightforward [39], meaning

that it is often used as an initial test-case in calculations of surface-induced corrections.

However, the physical relevance of this model is somewhat limited. Its first major deficiency

is that it does not exhibit high-frequency transparency like any real material would. On top

of this it completely ignores modes which are evanescent (exponentially damped) outside

the material. As we shall explain, the latter issue can be remedied by modeling a material

as non-dispersive with a finite refractive index ε(ω) = n2 > 1. This model is superior to

the perfect reflector, but is still highly simplified. However, we will show that use of this

simple model demonstrates that the perfect reflector model is not even a ‘good-enough’

approximation to any real material. In this chapter we will determine the explicit normal

modes for a non-dispersive dielectric, and then add an additional level of realism by doing

the same for the simplest dispersive material – an undamped plasma.

3.2 Non-dispersive dielectric

A non-dispersive medium is characterized by a single number n > 1, defined through

ε(ω) = n2. We would like to determine the quantized electromagnetic field in a system
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where such a medium fills the region z > 0, and z < 0 is vacuum. The dielectric function

ε(r, ω) = n2(r) for this geometry reads

n2(r) = 1 + Θ(z)(n2 − 1), (3.1)

where Θ(z) is the Heaviside step function. We will determine the quantized electromagnetic

field in a similar way to that found in our general discussion of field quantization in

dielectric media in section 2.5, with one crucial difference relating to a choice of gauge.

Maxwell’s equations which a general frequency and space-dependent dielectric function

ε(r, ω) are given by eqs. (2.64)

∇× [∇×A(r, ω)]− ω2ε(r, ω)A(r, ω) + iωε(r)∇φ = 0 , (3.2a)

−iω∇ · [ε(r, ω)A(r, ω)] +∇ · [ε(r, ω)∇φ] = 0 . (3.2b)

In section 2.5 we simplified these by assuming that the permittivity was not spatially varying.

Clearly, our use of the dielectric function for a non-dispersive half space ε(r, ω) = n2(r)

shown in (3.1) means that we cannot make that assumption here. However, we would still

like to eliminate the scalar field φ in a similar way to that done for the homogenous case

in section 2.5. Previously we achieved this by choosing Coulomb gauge ∇ ·A(r, ω) = 0,

however eqs. (3.2) clearly show that this is not an appropriate choice when the permittivity

varies with space. To effect the elimination of φ we must choose a different gauge – we

choose the generalized Coulomb gauge, defined by

∇ · [ε(r, ω)A(r, ω)] = 0, (3.3)

which, via (3.2b), allows us to dispense with φ as required. Using this gauge condition we

can simplify eq. (3.2a) to

∇× [∇×A(r, ω)] = ω2n2(r)A(r, ω), (3.4)

where we have also used the fact that ε(r, ω) = n2(r) for the non-dispersive half-space.

Using a vector calculus identity, (3.4) becomes

∇ [∇ ·A(r, ω)]−∇2A(r, ω) = ω2n2(r)A(r, ω) . (3.5)

In Coulomb gauge, the first term on the left hand side of (3.5) would be eliminated and

we would have a wave equation as usual, but now we are in generalized Coulomb gauge

so we cannot make this simplification. Using the half-space dielectric function (3.1) the

generalized Coulomb gauge condition becomes

∇ ·
[
n2(r)A(r, ω)

]
= n2(r)∇ ·A(r, ω) +Az(r, ω)

∂

∂z
n2(r)

= n2(r)∇ ·A(r, ω) + (n2 − 1)Az(r, ω)δ(z), (3.6)
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so that the generalized Coulomb gauge differs from standard Coulomb gauge by a surface

term. This means that the two gauge conditions coincide only if z 6= 0. Thus, we may

simplify eq. (3.5) to

∇2A(r, ω) + n2(r)
∂2

∂t2
A(r, ω) = 0 for z 6= 0, (3.7)

so that we can work with the wave equation as long as we are away from the interface.

This suffices for our purposes since we will consider each side of the interface separately

and then match solutions across the boundary using the well-known Maxwell boundary

conditions. The subtle differences between Coulomb gauge and generalized Coulomb gauge

are considered in depth in [40].

Restating eq. (3.4),

∇× [∇×A(r, ω)] = ω2n2(r)A(r, ω), (3.8)

and following our previous approach of writing the quantized field in terms of mode

functions fkλ(r, ω) via eq. (2.39), we have

∇× [∇× f(r, ω)] = ω2n2(r)f(r, ω) . (3.9)

This is not a Hermitian eigenvalue problem, so the modes fkλ(r, ω) do not form an orthogonal

and complete set, meaning that to quantize the field we cannot simply repeat the analysis

found in section 2.2. We note from [41] that if we substitute fkλ(r, ω) = gkλ(r, ω)/n(r)

into (3.9) we have
1

n(r)
∇×

[
∇× g(r, ω)

n(r)

]
= ω2g(r, ω) . (3.10)

This is a Hermitian eigenvalue problem, so the functions gkλ(r, ω) = n(r)fkλ(r, ω) neces-

sarily form an orthogonal and complete set. This means that if we want to continue to

write the field through (2.39) we need to weight the functions fkλ(r, ω) by appropriate

factors of n in order for them to satisfy orthogonality and completeness relations. The

explicit form of the completeness relation is [40]1∫
d3k (2ω)n(r)f ikλ(r, ω)n(r′)f j∗kλ(r′, ω) = δεij(r, r

′) , (3.11)

where δεij(r, r
′) is a version of the transverse delta function relevant to generalized Coulomb

gauge, defined as

δεij(r, r
′) = (δij +∇i∇′j∇−2)δ(3)(r− r′) . (3.12)

1The factor of 2ω in our completeness relation (3.11) does not appear in the expressions found in ref. [40]

due to the use of differing conventions in eq. (2.39). As we shall see later, the choices made in this work are

much more convenient for calculations which are undertaken for several different models of the surface,

which is to be contrasted to ref. [40]’s restriction to the non-dispersive case.
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The inversion of the operator ∇−2 provides the Green’s function of the scalar potential in

the particular system described by ε(r, ω). The orthogonality relation is∫
d3rn2(r)fkλ(r, ω)f∗k′λ′(r, ω) =

1

2ω
δλλ′δ

(3)(k′ − k) , (3.13)

where we have chosen a normalization that ensures the electromagnetic Hamiltonian is

written in its canonical form

Hrad =
1

2

∫
d3r

[
n2(r)Ȧ2 + (∇×A)2

]
=

1

2

∑
λ

∫
d3kω

(
âkλâ

†
kλ + â†kλâkλ

)
. (3.14)

Later on we will see that generalizations of eq. (3.9) allow one to determine which models

of the surface admit an explicit mode expansion.

The fact that eq. (3.7) is the usual Helmholtz equation as long as z 6= 0 means that we

can solve it separately on either side of the interface and then stitch the solutions together

using the Maxwell boundary conditions at the interface of two non-magnetic materials

n2(r)E⊥(r)|z=0− = n2(r)E⊥(r)|z=0+ (3.15a)

E‖(r)|z=0− = E‖(r)|z=0+ (3.15b)

B(r)|z=0− = B(r)|z=0+ . (3.15c)

We envisage incident (i), reflected (r) and transmitted (t) modes for each direction, which

form the so-called ‘triplet’ modes [42]. Decomposing the wave vector into its z component

kz and its component parallel to the interface k‖, one can derive a set of reflection and

transmission coefficients that multiply plane waves for each incidence direction L or R

and polarization λ, as shown in fig. 3.1. These turn out to be the well-known Fresnel

z

x,y

i

r

i

r

t

t

Figure 3.1: Non-dispersive half-space geometry with mode labelling

prescription.

coefficients R
L/R
kλ [ε(kz, k‖)] and T

L/R
kλ [ε(kz, k‖)] for radiation incident on a planar interface
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listed in appendix A.2 [42]. The modes that satisfy the normalization relation (3.13) are:

fLkλ(r, ω) =
1

(2π)3/2

1√
2ω

[
Θ(−z)

(
eik · rêkλ +RLkλ(n2)eik̄ · rˆ̄ekλ

)
+ Θ(z)TLkλ(n2)eik

d · rêkdλ
]
, (3.16a)

fRkλ(r, ω) =
1

(2π)3/2

1

n

1√
2ω

[
Θ(z)

(
eik

d · rêkdλ +RRkλ(n2)eik̄
d · rˆ̄ekdλ

)
+ Θ(−z)TRkλ(n2)eik · rêkλ

]
, (3.16b)

where we have abbreviated

RLkλ
[
ε(kz, k‖)→ n2

]
≡ RLkλ(n2) , (3.17)

and similar for the remaining Fresnel coefficients. A superscript d denotes k vectors that

belong to modes that exist inside the medium, and barred quantities have undergone a

reflection so the sign of their z component is reversed. The constraint sgn(kz) = sgn(kdz ) is

applied to ensure that each triplet mode has a consistent direction of propagation. The

vector potential is obtained from these via:

ÂL(r, t) =
∑
λ

∫
d2k‖

∫ ∞
0

dkz

[
âkλe

iωktfkλ(r, ω) + â†kλe
−iωktf∗kλ(r, ω)

]
, (3.18)

ÂR(r, t) =
∑
λ

∫
d2k‖

∫ 0

−∞
dkdz

[
âkλe

iωktfkλ(r, ω) + â†kλe
−iωktf∗kλ(r, ω)

]
. (3.19)

The restriction of the range of the k
(d)
z integrals ensures the modes are counted correctly.

Eqs. (3.16) are known as ‘triplet’ modes, and can be explicitly shown to satisfy eq. (3.13),

but the derivation is somewhat tedious [42, 43].

The main new feature of this model as compared to the perfect reflector is the possibility

of medium-incident modes being totally internally reflected at the interface, resulting in

exponentially decaying (evanescent) modes on the vacuum side. That this can happen is

easily seen by noting that Snell’s law dictates

ω = |k| in vacuum, ω =
|k|
n

in the medium, (3.20)

which, alongside the requirement from conservation of energy that ω be continuous means

k2
z + k2

‖ =
kd2
z + k2

‖

n2
, (3.21)

where we have also noted that k‖ must also be continuous as demonstrated by the boundary

condition (3.15b). From (3.21) we derive the useful relations

kz =
1

n

√
kd2
z − k2

‖(n
2 − 1) , (3.22a)

kdz =
√
n2k2

z + k2
‖(n

2 − 1) . (3.22b)
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Using fact that n > 1 it is easy to see from (3.22a) that kz may become imaginary for

certain values of kdz – this leads to total internal reflection and the production of a mode

which is evanescent on the vacuum side. Naive inspection of (3.22a) in isolation would lead

one to suggest that if kdz is imaginary then so is kz. This is true, but such a combination

of kz and kdz in fact violates the Maxwell boundary condition (3.15a), as will be shown

explicitly in section 3.3.2 where we will discuss this as a counterexample to a situation where

kz and kdz can be simultaneously imaginary without violating the boundary conditions.

Thus, the conclusion of our discussion of (3.22a) is that for kz and kdz consistent with the

boundary conditions, there is a range of kdz for which kz is imaginary, and all such values

of kdz are real.

Similarly, it follows from (3.22b) that for kz and kdz consistent with the boundary

conditions, there is not any value of kz for which kdz is imaginary, meaning that vacuum-

icident modes cannot become evanescent on the medium side. The consequences of

eqs. (3.22a) and (3.22b) are shown schematically in fig. 3.2.

z

x,y

or

Figure 3.2: Schematic illustration of evanescent modes for a non-

dispersive surface

3.3 Plasma

The idea of a non-dispersive dielectric represents a significant step up in realism compared

to the perfect reflector, but is still somewhat idealized due to, for example, its exclusion of

dispersion. In this section we will remedy this by deriving the normal mode expansion of

the quantized electromagnetic field near a half-space consisting of the simplest dispersive

material – an undamped plasma. We will see that the field is made up of TE and TM

modes, just as in previous sections, but that we also have an additional type of mode – the

surface plasmon.
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The dielectric function for this type of material can be derived microscopically by

considering the equation of motion of electrons within the medium to be

mẍ(ω, t) = −eE(ω, t). (3.23)

where x is the electron’s displacement away from its parent nucleus. Assuming harmonic

time-dependence E(ω, t) = E0(ω)e−iωt, we have a polarization P(ω, t) = P0(ω)e−iωt =

−Nex0(ω)e−iωt given by

P0(ω) = −Ne
2

mω2
E0(ω), (3.24)

where N is the number density of electrons in the material. Using the general relation

P0(ω) = (ε(ω)− 1)E0(ω) we have for the plasma dielectric function εp(ω)

εp(ω) = 1 +
P0(ω)

E0(ω)
= 1− Ne2

mω2
≡ 1−

ω2
p

ω2
, (3.25)

where the plasma frequency ω2
p ≡ Ne2/m has been defined. Thus a system with plasma

filling the region z > 0 and vacuum otherwise has the dielectric function

εp(r, ω) = 1−Θ(z)
ω2
p

ω2
. (3.26)

Using this dielectric function Maxwell’s equations (2.63) we find

∇× [∇×A(r, ω)] = ω2εp(r, ω)A(r, ω) , (3.27)

which follows directly from eq. (2.65). Just as in the non-dispersive case, we must carefully

consider which gauge we wish to work in. The determination of this is much more

complicated than for the non-dispersive half space, however it has been shown [44] that

one may use the generalized Coulomb gauge and, via a suitable unitary transformation,

eliminate the scalar field φ. This is precisely the result of our discussion of the non-dispersive

dielectric in section (3.2), which means that we can write the wave equation for a plasma

surface in the same way as (3.7) for the non-dispersive dielectric, giving

∇2A(r, t) + ω2A(r, t) = Θ(z)ω2
pA(r, t) for z 6= 0, (3.28)

which we will henceforth write as

∇2A(r, t) + ω2A(r, t) =


0 if z < 0

ω2
pA(r, t) if z > 0,

(3.29)

where, we emphasize, z = 0 is specifically excluded.
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3.3.1 TE and TM modes

We begin by considering the analog of wave equation (3.9) with the plasma permittivity

εp(r, ω) given by (3.26):

[
∇×∇×+ ω2

pΘ(z)ω2
p

]
fkλ(r, t) = fkλ(r, t) . (3.30)

The left hand side is a Hermitian operator acting on f(r, t). This means that in contrast

to the non-dispersive case we do not need to apply a weighting to satisfy the completeness

relation (2.42). This means that the choice of normalization that ensures the Hamiltonian

is written in the canonical form (3.14) is∫
d3r fkλ(r, t)f∗k′λ′(r, t) =

1

2ω
δλλ′δ

(3)(k′ − k) . (3.31)

The reflection and transmission coefficients derived via the Maxwell boundary conditions

(3.15) are all identical to the non-dispersive case, except of course with n2 → εp(ω). Thus,

the only difference between the plasma modes and the non-dispersive modes is that those

for the plasma do not require the overall factor 1/
√
εp(ω) in the right-incident part. Their

explicit form is then

fLkλ(r, ω)=
1

(2π)3/2
1√
2ω

[
Θ(−z)

(
eik · rêkλ +RLkλ(εp)e

ik̄ · rˆ̄ekλ
)

+ Θ(z)TLkλ(εp)e
ikd · rêkdλ

]
,

(3.32a)

fRkλ(r, ω)=
1

(2π)3/2
1√
2ω

[
Θ(z)

(
eik

d · rêkdλ +RRkλ(εp)e
ik̄d · rˆ̄ekdλ

)
+ Θ(−z)TRkλ(εp)e

ik · rêkλ
]
,

(3.32b)

where we have abbreviated

RLkλ
[
ε(kz, k‖)→ εp(kz, k‖)

]
≡ RLkλ(εp) , (3.33)

and similar for the transmission coefficients.

We now explore the circumstances under which modes may be evanescent using the

same method we used for the equivalent discussion for the non-dispersive dielectric. The

same continuity conditions which produced eq. (3.21) for the non-dispersive dielectric

produce for the plasma surface

k2
z + k2

‖ =
kd2
z + k2

‖

εp(kz, k‖)
. (3.34)

Using the explicit plasma dielectric function (3.26), this can be rearranged to

kd2
z = k2

z − ω2
p . (3.35)
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Since ωp is real, this relation tells us that it is possible for modes incident from the vacuum

to be evanescent on the material side (kdz imaginary, kz real), but it is not possible for

medium-incident modes to become evanescent on the vacuum side (kz imaginary, kdz real),

which is the opposite of what was found for the non-dispersive surface. Just as in the

corresponding relations (3.22a) and (3.22b) for the non-dispersive surface, equation (3.35)

also shows that kz and kdz can in principle be simultaneously imaginary. However, as we

shall show in the next section, for the plasma surface this does not result in a violation of

the boundary condition (3.15b). This is the origin of the previously mentioned additional

type of mode – the surface plasmon.

3.3.2 Surface plasmon modes

In order to investigate the solutions of (3.35) with kz and kdz both imaginary, we write

down an ansatz for a mode which decays exponentially on both sides of the interface. To

ensure the right asymptotic behavior far from the interface, we must specify the signs of

the imaginary parts of the wave-vector in such a way that the modes decay away from the

interface, rather than exponentially rise. Defining κ, κd > 0, our ansatz is

f sp
τ = Θ(−z)NL(k)eik‖ · r‖+κzeL(κ) + Θ(z)NR(k)eik‖ · r‖−κdzeR(κd), (3.36)

where NL and NR are normalization constants, e(κ(d)) are as-yet undetermined polarization

vectors. The vector potential corresponding to this is

Âsp(r, t) =
∑

all modes

[
âsp
τ e

iωsptf sp
τ (r, ω) + âsp†

τ e−iωsptf sp∗
τ (r, ω)

]
, (3.37)

where âsp
τ and its conjugate are the annihilation and creation operators for a surface

plasmon τ of frequency ωsp. Our task is then to determine the normalization constants and

the polarization vectors, while ensuring that the boundary conditions (3.15) are obeyed at

the interface. The overall normalization is taken care of by NL and NR, so the choice of

normalization for the polarization vectors is arbitrary. We choose

e(κ(d)) =
1

k‖
(k‖ + λ(d)ẑ). (3.38)

Letting k
(d)2
z = −κ(d)2, we have

ω2
sp = k2

‖ − κ
2, (3.39a)

ω2
sp = k2

‖ − κ
d2 + ω2

p, (3.39b)
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where ωsp is the frequency of the surface plasmon. We can use the Coulomb gauge

condition2 ∇ ·A to derive

λ = −i
k2
‖

κ
, λd = i

k2
‖

κd
, (3.40)

giving

eL(κ) = k̂‖ − i
k‖

κ
ẑ, eR(κd) = k̂‖ + i

k‖

κd
ẑ. (3.41)

The boundary condition (3.15b) states that the parallel component of E = −Ȧ must be

continuous across the interface. This sets NL(k) = NR(k) ≡ N(k).

The dispersion relation for the surface plasmon modes can be found from the boundary

condition (3.15a), which states that ε(ω)Az should be continuous across the surface. Using

this condition in eqs. (3.36) and (3.37) we find

1

κ
+
εp(ωsp)

κd
= 0, (3.42)

which is known as the surface plasmon condition. This equation only has a solution if the

system at hand admits a surface plasmon excitation. For example, if one takes ε(ωsp)→ n2

in (3.42), it is easy to see that this requires κ and κd to have different signs – a restriction

which contradicts the way they were defined in eq. (3.36). This shows that a non-dispersive

surface does not admit a surface plasmon mode, proving the assertion in the discussion

following eqs. (3.22). Using eqs. (3.39) the surface plasmon condition can be written

k2
‖ − εp(ωsp)ω2

sp = ε2p(ωsp)(k2
‖ − ω

2
sp) . (3.43)

The solution of this with the plasma permittivity (3.25) is

ω2
sp = k2

‖ +
ω2
p

2
−

√
k4
‖ +

ω4
p

4
, (3.44)

where the sign of the square root term is a consequence of the fact that κ, κd > 0. This

relation shows an important property of the surface plasmon modes, which is that their

frequency depends only on their momentum parallel to the surface. This means that the

sum over all surface plasmon modes consists of an integral over d2k‖, and that the arbitrary

plasmon label τ can be replaced by k‖. The surface plasmon vector potential is then given

by

Âsp(r, t) =

∫
d2k‖

[
âsp
k‖
eiωsptf sp

k‖
(r, ω) + âsp†

k‖
e−iωsptf sp∗

k‖
(r, ω)

]
. (3.45)

2We remind the reader that while we are in generalized Coulomb gauge ∇· [ε(r, ω)A(r, ω)] = 0, in the

present geometry this coincides with the standard Coulomb gauge ∇·A(r, ω) = 0 provided z 6= 0, which is

satisfied here since we are considering each side of the interface separately.
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We normalize the modes by ensuring that their electromagnetic energy Hsp is written in

the canonical form

Hsp =
1

2

∫
d3r

[
εp(r, ω)Ȧ2 + (∇×A)2

]
!

=
1

2

∫
d2k‖ ωsp

(
âsp
k‖
âsp†
k‖

+ âsp†
k‖
âsp
k‖

)
. (3.46)

The normalization N(k) = N(k‖) is most easily found by using the harmonic time-

dependence of A and the explicit plasma dielectric function (3.26), giving for the field

Hamiltonian

Hsp =
1

2

∫
d3r

[
Ȧ2 + ω2

pΘ(z)A2 + (∇×A)2
]
. (3.47)

The explicit vector potential (3.45) is then inserted into this equation, and the spatial integ-

ration carried out. The resultant expressions contain various products of the polarisation

vectors e(κ(d)), listed in appendix A.1.2. One eventually finds

Hsp =(2π)2

∫
d2k‖|N2(k‖)|

(
âsp
k‖
âsp†
k‖

+ âsp†
k‖
âsp
k‖

)
ω2

sp

×

[
1 + k2

‖/κ
2

2κ
+

1 + k2
‖/κ

d2

2κd
+

(
1 +

k2
‖

κd2

)
ω2
p

ω2
sp2κd

+
ω2

sp

2κ3
+

(ω2
sp − ω2

p)
2

2ω2
spκ

d3

]

=(2π)2

∫
d2k‖N

2(k‖)
(
âsp
k‖
âsp†
k‖

+ âsp†
k‖
âsp
k‖

)
ωsp

ε2p(ωsp)
√
−(1 + ε2p(ωsp))

ε4p(ωsp)− 1
, (3.48)

where the second line follows from the first via simple but tedious algebra. Comparing

with (3.46), it is easy to see that the correct normalization is given by

|N2(k‖)| =
1

(2π)2

ε4p(ωsp)− 1

ε2p(ωsp)
√
−(1 + ε2p(ωsp))

≡ 1

(2π)2

1

p(k‖)
, (3.49)

giving for the final expression of the surface plasmon modes

f sp
k‖

=
1

2π

1√
p(k‖)

[
Θ(−z)

(
k̂‖ − i(k‖/κ)ẑ

)
eik‖ · r‖+κz

+ Θ(z)
(
k̂‖ + i(k‖/κ

d)ẑ
)
eik‖ · r‖−κdz

]
. (3.50)

Thus the entire quantized electromagnetic field in the plasma half-space geometry is given

by eqs. (3.50) and (3.32).

3.4 Summary and conclusions

In this chapter we have described explicit mode expansions for the quantized electromagnetic

field subject to the boundary conditions imposed by a non-dispersive dielectric, given by

eq. (3.16). We then extended this to the corresponding description of an undamped plasma,

with the results give by eqs. (3.50) and (3.32). These expressions completely describe the

quantized electromagnetic field in the two situations, so we are now ready to investigate

the consequences of their coupling to an electron in the vicinity of the interface.
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Chapter 4

Mass Shift

4.1 Introduction

The first and simplest radiative correction that we wish to investigate is the shift in the

mass of the electron caused by its interaction with the quantized electromagnetic field

(known as the self-energy)1. This effect is relatively straightforward to calculate, and paves

the way for our calculation of the shift in the magnetic moment in Chapter 5. We will

see that its physical relevance lies in accurate prediction of the cyclotron frequency of a

trapped electron.

The effect arises due to the analytic structure of the two-point correlation function for

an electron, which represents the probability for an electron to travel from y to x. For an

electron with with spinor ψ this is

〈0| >ψ(x)ψ̄(y) |0〉 =
x

p�
y

+
x

pFf
p−k

ya
k
f pF

y
+ · · · (4.1)

where > is the time-ordering symbol2, and, as usual,
pF and

pg represent electrons

and photons respectively, each with four-momentum p. Using the Fourier-space version of

the two point function, the contribution from each diagram may be written down using the

standard Feynman rules for quantum electrodynamics (see, for example, [45] app. A.1.). If

1The mass shift is usually described in field-theoretic terms as a renormalization of the electron mass,

however we use the term ‘mass shift’ to avoid confusion with discussion of our unrelated approach to

renormalization.
2For fermion fields the time-ordering symbol is defined as

>(ψ(x)ψ̄(y) =

ψ(x)ψ̄(y) for x0 > y0

−ψ̄(y)ψ(x) for x0 < y0.

(4.2)
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we consider the electron as non-interacting, the whole series is given by the bare propagator

k p�k =
i(�p+m)

p2 −m2 + iε
, (4.3)

where m is the mass of the electron. In the non-interacting theory, the ‘bare’ mass and

the observed mass are the same thing since there are no extra interactions to take into

account. This expression has a simple pole at p2 = m2 – the position of this pole is the

observed mass of the electron. If we now let the electron interact with the photon field,

each term in the perturbation series will shift the pole slightly, so to find the observed mass

we must sum all the terms, which corresponds to summing all the diagrams. This means

we must make the distinction between the mass we observe resulting from an infinite series

of diagrams, and the mass that appears in the first diagram. We term the former m and

the latter m0 (often called the ‘bare’ mass), giving the bare propagator for the interacting

theory

k p�k =
i(�p+m0)

p2 −m2
0 + iε

. (4.4)

Applying the Feynman rules, the one-loop diagram is

pFf
p−k

ya
k
f pF =

i(�p+m0)

p2 −m2
0

[−iΣ2(p)]
i(�p+m0)

p2 −m2
0

, (4.5)

with

− iΣ2(p) = (−ie)2

∫
d4k

(2π)4
γµ

i(�k +m)

k2 −m2
0 + iε

γµ
−i

(p− k)2 + iε
. (4.6)

This can be simplified using a Feynman parameterization, the resulting dimensionally

regularized expression is [45]

Σ2(p) =
α

2π

∫ 1

0
dx(2m0 − x�p) ln

(
xΛ2

(1− x)m2
0 + xµ2 − x(1− x)p2

)
, (4.7)

where Λ and µ are fictitious masses used in the regularization procedure, and α is the fine

structure constant. The mass is delivered by the pole of the propagator, the position of

which (to one loop) is not obvious from (4.7). To find the position of this pole, we employ

the an elegant way of summing the entire series.

First we let −iΣ(p) be equal to the sum of all one-particle irreducible diagrams with

two external electron lines:
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−iΣ(p) =fpf
=kfyfk + kfyfzfk + ...

The momentum-space two point function can now be written as:∫
d4x 〈0| >ψ(x)ψ̄(y) |0〉 eip ·x =ff+fpf+fpfpf+ · · ·

=
i(�p+m0)

p2 −m2
0

+
i(�p+m0)

p2 −m2
0

(−iΣ(p))
i(�p+m0)

p2 −m2
0

+ · · · (4.8)

=
i

�p−m0
+

i

�p−m0
(−iΣ(�p))

i

�p−m0
+ · · · (4.9)

which follows since (�p)
2 = p2 and Σ(p) commutes with �p. This is a geometric series of the

form:
i

a− b
=
i

a
+
ib

a2
+
ib2

a3
+ · · · (4.10)

with a = �p−m0 and b = Σ(p). This means the entire series can be written as∫
d4x 〈0| >ψ(x)ψ̄(y) |0〉 eip ·x =

i

�p−m0 − Σ(�p)
, (4.11)

which does display the expected property of containing a simple pole shifted away from m0.

Thus, the interaction of the electron with the quantized electromagnetic field produces a

shift in the mass, which is identified as the solution of the equation

[�p−m0 − Σ(�p)]�p=m
= 0 . (4.12)

Thus we may find the mass shift to one-loop order by evaluating Σ2(�p = m0), which from

(4.7) is

Σ2(�p = m0) =
α

2π
m0

∫ 1

0
dx(2− x) ln

[
xΛ2

(1− x)2m2
0 + xµ2

]
, (4.13)

which contains a divergent term of the form

lim
Λ→∞

3α

4π
m0 ln

(
Λ2

m2
0

)
. (4.14)

Thus the physical mass differs from the bare mass by an infinite quantity. This is not

surprising from the viewpoint of classical electrodynamics due to the energy of a point

charge also being divergent

Ecl ∼
∫

all space

d3r|E|2 ∼
∫ ∞

0

dr

r2
. (4.15)
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where E is the electric field of the charge. The divergent self-energy (4.14) is best studied

through the use of renormalized perturbation theory, which we shall not discuss here. For

our purposes it is enough to note that

1. The interaction of the electron and the photon field produces a shift in the mass of

the electron.

2. The shift in the mass contains infinite quantities which must be carefully dealt with.

Bearing these two facts in mind, the question is then how should one proceed to modify

the above analysis to a calculation of the mass shift near a surface. This was done for a

non-dispersive dielectric in [46], where the authors calculate the mass shift by determining

the modified photon propagator. Their approach was to compare the terms of the half-space

propagator with those of the free-space propagator, in order to determine a correction

to the propagator that is solely attributable to the surface. This sidesteps the need to

deal with regularization and renormalization since these are already taken care of by the

free-space part of the photon field, and the calculation is also simplified by restriction to

the dipole approximation whereby the electromagnetic field is assumed not to vary over

the position of the electron3. Even with these simplifications, the calculation still contains

significant technical hurdles, largely stemming from the loss of translation invariance in

the direction perpendicular to the interface. Another complication is that one needs to

enforce a localization upon the electron in order to have a meaningful idea of its position

relative to the interface.

For these reasons we will dispense with the usual field-theoretic description of radiative

corrections and borrow some of the techniques of quantum optics in order to produce an

intuitive and manageable calculation of the mass shift4. The method that we will describe

is relatively easily generalizable to realistic surfaces, and can be extended to calculations

of other radiative corrections besides the mass shift.

3Henceforth the terms ‘dipole’, ‘quadrupole’, ‘multipole’ etc. refer to approximations made about the

variation of the photon field across the position of the electron, not those mentioned when describing the

multipolar coupling approach to QED in section 2.3.2, which deal with the variation of the field across the

electron-nucleus separation.
4The calculation presented in the following sections is an expanded version of the published work [47].
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4.2 Interaction with a surface

The fundamental physical assumption we make in our calculation of the surface-dependent

mass shift (and throughout this thesis) is that the electron is localized well away from the

surface – there is no wave function overlap. The lifting of this assumption would require a

treatment which describes the specific atomic structure of the interface, which would lead

a wholly different type of calculation since our approach to field quantization relies upon

the material being adequately described by its bulk properties. In field-theoretic terms

the assumption means that to leading order the electron line does not gain a boundary

dependence, so that its propagator coincides with that for an electron in free space. The

one-loop diagram and a selected two-loop diagram are shown in figure 4.1 where double

+ +...

(a) (b)

Figure 4.1

lines indicates boundary dependent quantities. We will consider a first-quantized electron

sitting in a second-quantized electromagnetic field, which loosely corresponds to considering

a non-relativistic analogue of diagram 4.1a. This simplification breaks down if one looks

for effects like that shown in figure 4.1b, which are of quadratic or higher order in the fine

structure constant α, we will not consider these. The non-relativistic Hamiltonian for such

a system is

H =
(p− eA)2

2m
+ eΦ =

p2

2m
+

e2

2m
A2 − e

m
p ·A + eΦ, (4.16)

where we have neglected the electron’s spin. The electron ‘sees’ the surface in two ways.

These are via the boundary-dependent quantized field A and the electrostatic image

potential Vimage = eΦ . The term in A2 contributes the same energy to every state of

the electron because it appears in first-order perturbation theory only. Thus it does not

affect observable frequency shifts, so can be ignored. So the interaction Hamiltonian which

delivers the boundary-dependent shift is

Hint = − e

m
p ·A + Vimage . (4.17)

Taking as an example the case where the electron’s motion is perpendicular to the interface

p→ p⊥ẑ and excluding the (infinite) term in e2

2mA2, the energy of the system is

E + Vimage =
〈p2
⊥〉

2m
+ ∆E⊥ + Vimage , (4.18)
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where ∆E⊥ is the energy shift due to the coupling p⊥Az. This may be rewritten as

E + Vimage = 〈p2
⊥〉
(

1

2m
+

∆E

〈p2
⊥〉

)
+ Vimage =

〈p2
⊥〉

2(m+ ∆m⊥)
+ Vimage . (4.19)

The quantity ∆m⊥ is the shift in the mass, and is given by5

∆m⊥ = − 2m2∆E

〈p2
⊥〉+ 2m∆E

= −2m2∆E

〈p2
⊥〉

+O(∆E)2 . (4.20)

with a similar relation for motion parallel to the surface p→ p‖r̂‖ (where r̂‖ is a unit vector

parallel to the surface).

To evaluate ∆E = ∆E⊥ + ∆E‖, we write a one-photon state of momentum k and

polarization λ as |1kλ〉 and the momentum state of the electron as |pint〉, then calculate the

energy shift due to vacuum-vacuum transitions via a one-photon intermediate composite

state |pint〉 ⊗ |1kλ〉 = |pint; 1kλ〉. Writing the vacuum state as |p; 0〉, the expression for this

energy shift in second-order perturbation theory is

∆E =
e2

m2

∑
k,λ

∑
pint

| 〈pint; 1kλ|p ·A |p; 0〉 |2
p2

2m −
(
p2
int

2m + ω
) . (4.21)

The matrix element in the numerator is the non-relativistic analogue of diagram 4.1a,

as shown in figure 4.2. We make the no-recoil approximation, which entails taking the

p pp
int

Figure 4.2

electron’s momentum in the intermediate state pint to be equal to its initial and final

momenta p. This is a reasonable assumption because we are dealing with a low energy

effect, so the mass of the electron is by far the largest quantity in the calculation. This

assumption simplifies the expression to

∆E = − e2

m2
〈p2
i 〉
∑
k,λ

1

ω
| 〈1kλ|Ai |0〉 |2 . (4.22)

Substituting the quantised field A as given by eq. (2.39), this becomes

∆E = − e2

m2
〈p2
i 〉

∑
all modes

1

ω

∣∣∣〈1kλ| âkλeiωktfkλ,i(r, ω) + â†kλe
−iωktf∗kλ,i(r, ω) |0〉

∣∣∣2 . (4.23)

We have that âkλ |0〉 = 0, so on application of the operators we have

∆E = − e2

m2
〈p2
i 〉

∑
all modes

1

ω

∣∣f∗kλ,i(r, ω)
∣∣2 . (4.24)

5∆E will of course turn out to be proportional to 〈p2⊥〉 so that m∗ is independent of the momentum
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4.2.1 Non-Dispersive

For a non-dispersive dielectric, we have TE and TM modes only, so the sum over all modes

is given simply by ∑
all modes

→
∫
d3k

∑
λ=TE,TM

(4.25)

We wish to calculate the mass shift for an electron localized in the z < 0 region of a system

described by the following dielectric function

ε(r, ω) = 1 + Θ(z)(n2 − 1), (4.26)

with n2 > 1. This is a non-dispersive material that fills the entire space z > 0, with z < 0

being vacuum, as shown in figure 4.3. We first calculate the contribution proportional to

z

x,y
p

p

Figure 4.3: Physical setup for calculation of the surface dependence of

the mass shift of an electron near a non-dispersive half-space.

〈p2
⊥〉, given by

∆E⊥ = − e2

m2
〈p2
⊥〉
∫
d3k

∑
λ

1

ω

∣∣f∗kλ,z(r, ω)
∣∣2 . (4.27)

The vector character of the mode functions is inherited from A, and ultimately E. Since

TE modes are defined by the lack of a z component of electric field in the direction of

propagation, it is expected that the z component of the TE mode function will vanish.

This is seen explicitly in our choice for the polarization vectors (A.1). Thus, eq. (4.27) may

be evaluated by considering TM modes only. The modes for this system were determined

in section 3.2, and are given by equations (3.16). Substituting these into eq. (4.27) and

specializing to the region z < 0 we have for the energy shift near a non-dispersive dielectric

∆Enondisp
⊥ = − 1

(2π)3

e2

m2
〈p2
⊥〉
∫
d2k‖

[∫ ∞
0
dkz

∣∣∣eik · r +RLk,TM(n2)eik̄ · r
∣∣∣2

+
1

n2

∫ ∞
0

dkdz

∣∣∣TRk,TM(n2)eik · r
∣∣∣2 ] k2

‖

2k4︸︷︷︸
coeff.

, (4.28)
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where the polarization vectors specified in eqs. (A.1) have been used, k = |k| = ω and

we have highlighted part of the expression for later use. The wave vector k = k‖ + kz ẑ

appearing in the kdz integral depends on kdz via

kz =
1

n

√
kd2
z − k2

‖(n
2 − 1), (4.29)

where k‖ = |k‖|. As discussed in section 3.2, this shows that there exists a certain range of

kdz for which kz is imaginary, corresponding to modes which are totally internally reflected

and thus become evanescent on the vacuum side. The critical value of kdz below which the

modes are totally internally reflected is

kdz,crit = k‖
√
n2 − 1 ≡ Γ , (4.30)

meaning we can rewrite the shift as

∆Enondisp
⊥ = − 1

(2π)3

e2

m2
〈p2
⊥〉
∫
d2k‖

×

{∫ ∞
0

dkz

[
1 +RLk,TM(n2)(e2ikzz + e−2ikzz) + |RLk,TM(n2)|2

]
+

1

n2

∫ 0

−Γ
dkdz |TRk,TM(n2)|2ei(kz−k∗z)z +

1

n2

∫ −Γ

−∞
dkdz |TRk,TM(n2)|2

}
k2
‖

2k4
. (4.31)

Using eq. (4.29) we can change variables from kdz to kz in the final term to obtain an

integral which runs over kz = 0..∞. Additionally, we can combine the integrals over the

two exponentials in the term proportional to RLk,TM(n2) by changing variables kz → −kz in

one of them. Noting that for kz purely imaginary, kz − k∗z = 2kz and rearranging, we have:

∆Enondisp
⊥ =− 1

(2π)3

e2

m2
〈p2
⊥〉
∫
d2k‖

{∫ ∞
0

dkz

[
1 + |RLk,TM(n2)|2 +

kz
kdz
|TRk,TM(n2)|2

]

+

∫ ∞
−∞

dkzR
L
k,TM(n2)e2ikzz +

1

n2

∫ 0

−Γ
dkdz |TRk,TM(n2)|2e2ikzz

}
k2
‖

2k4
. (4.32)

In order to evaluate the final term we need to choose which branch of the square root

function we take in eq. (4.29). The physical requirement that the energy shift should vanish

as z → −∞ means Im(kz) < 0 is the appropriate choice. We can now change variables

from kz to kdz in the final term, giving∫ −iΓ/n
0

dkz
kz
kdz
|TRk,TM(n2)|2e2ikzz . (4.33)

It is very useful to note that the following relation holds for either polarization λ for

imaginary kz

RLkλ(n2)|kdz=−K −RLkλ(n2)|kdz=K =
kz
kdz
TRkλ(n2)TR∗kλ (n2)|kdz=−K . (4.34)
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where K > 0. This means we can manipulate eq. (4.33) into

lim
δ→0

[∫ −iΓ/n−δ
−δ

dkzR
L
k,TM(n2)e2ikzz +

∫ δ

−iΓ/n+δ
dkzR

L
k,TM(n2)e2ikzz

]
, (4.35)

where we have introduced δ > 0 to displace the integration paths either side of the imaginary

axis branch cut in order to fulfill the constraint sgn(kz) = sgn(kdz). This can be combined

with the term proportional to RLTM in eq. (4.32) to give

∆Enondisp
⊥ = − 1

(2π)3

e2

m2
〈p2
⊥〉
∫
d2k‖

{∫ ∞
0

dkz

[
1 + |RLk,TM(n2)|2 +

kz
kdz
|TRk,TM(n2)|2

]

+

∫
C
dkzR

L
k,TM(n2)e2ikzz

}
k2
‖

2k4
. (4.36)

with the contour C shown in fig. 4.4.

-

-

Figure 4.4: Integration contour in the complex kz plane required to

evaluate the mass shift near a non-dispersive surface.

We now turn our attention to the first term in eq. (4.36). It is not hard to show that

the following relation holds for either polarization λ for real kz

|RLkλ(n2)|2 +
kz
kdz
|TRkλ(n2)|2 = 1 (4.37)

so that∫
d2k‖

∫ ∞
0

dkz

[
1 + |RLk,TM(n2)|2 +

kz
kdz
|TRk,TM(n2)|2

]
= 2

∫
d2k‖

∫ ∞
0

dkz . (4.38)

which is manifestly infinite. This is not surprising based on the discussion of the free space

contribution in section 4.1, but is not a problem for our purposes. This is because we only

seek the shift in the magnetic moment that is attributable to the surface, not its absolute

value. To isolate surface-dependent quantities we remove the surface by letting reflection

and transmission coefficients go to zero and unity respectively, and see which parts of the

shift remain. These will be the boundary-independent parts of the energy shift, so can be
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dropped. In this case, it is clear that the term shown in eq. (4.38) is the only one which

remains, so this is discarded. Thus, the renormalized shift is given by

∆Enondisp
⊥ren = − 1

8π2

e2

m2
〈p2
⊥〉
∫ ∞

0
dk‖

∫
C
dkz

k3
‖

(k2
z + k2

‖)
2
RLk.TM(n2)e2ikzz. (4.39)

where we have introduced polar co-ordinates defined by kx = k‖ sinφ, ky = k‖ cosφ and

carried out the trivial φ integral. The mass shift attributable to motion parallel to the

interface is found in exactly the same way, the result is

∆Enondisp
‖ren =

1

16π2

e2

m2
〈p2
‖〉
∫ ∞

0
dk‖

∫
C
dkz

k‖k
2
z

(k2
z + k2

‖)
2

×
[
RLk,TM(n2) + (k2

z + k2
‖)R

L
k,TE(n2)

]
e2ikzz. (4.40)

It is worth noting that none of the preceding analysis relied on the specific form (aside

from its analyticity along the contour) of the quantity labelled ‘coeff.’ in eq. (4.28), and

that all of the manipulations done inside the square brackets of eq. (4.28) are valid for

both TE and TM modes. This observation will be used later in evaluating shifts which are

given by the sum of several integrals of the form (4.27).

The integral (4.39) is most conveniently evaluated by the method of residues. We close

the contour in the lower half-plane using a semicircle with a large radius. By Jordan’s lemma

the contribution from this semicircle vanishes as its radius is sent to infinity, meaning the

desired integral is found by summing over the residues of all the poles in the lower half-plane.

The reflection coefficients have no poles because of the constraint sgn(kz) = sgn(kdz), so

the only contribution to integrals (4.39) and (4.40) is from the (double) pole at kz = −ik‖.

The residue theorem gives the energy shift as

∆Enondisp
⊥ren =

i

4π

e2

m2
〈p2
⊥〉
∫ ∞

0
dk‖ Res

kz→−ik‖

k3
‖

(k2
z + k2

‖)
2
RLk.TM(n2)e2ikzz, (4.41)

∆Enondisp
‖ren = − i

8π

e2

m2
〈p2
‖〉
∫ ∞

0
dk‖ Res

kz→−ik‖

k‖k
2
z

(k2
z + k2

‖)
2

×
[
RLk,TM(n2) + (k2

z + k2
‖)R

L
k,TE(n2)

]
e2ikzz. (4.42)

Evaluating the residues, we find for our final results for the mass shift near a non-dispersive
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surface

∆Enondisp
⊥ren = − e2

16πm2
〈p2
⊥〉
∫ ∞

0
dk‖k‖e

2k‖z

[
i
dRLTM(n2)

dkz
+RLTM(n2)

(
1

k‖
− 2z

)]
kz→−ik‖

,

(4.43)

∆Enondisp
‖ren = − e2

32πm2
〈p2
‖〉
∫ ∞

0
dk‖k‖e

2k‖z

[
2RLTE(n2)

k‖
+ i

dRLTM(n2)

dkz

−RLTM(n2)

(
2z +

1

k‖

)]
kz→−ik‖

, (4.44)

with

RLk,TE(n2) =
kz −

√
n2k2

z + k2
‖(n

2 − 1)

kz +
√
n2k2

z + k2
‖(n

2 − 1)
, RLk,TM(n2) =

n2kz −
√
n2k2

z + k2
‖(n

2 − 1)

n2kz +
√
n2k2

z + k2
‖(n

2 − 1)
,

(4.45)

as shown in appendix A.2. We have also utilized the explicit form of kdz shown in eq. (3.22b).

As an initial check on our results, we take the n→∞ limit of the reflection coefficients

(RLTE = −1, RLTM = 1) before the limit kz → −ik‖, which corresponds to taking the

‘perfect mirror’ limit of the dielectric model. The derivative terms all vanish and the

remaining integrals are trivial, giving for the total energy shift ∆EPM
ren = ∆Enondisp

⊥ren (n→

∞) + ∆Enondisp
‖ren (n→∞) of an electron near a perfect reflector as

∆EPM
ren = − e2

32m2πz
〈p2
‖〉+

e2

16πm2z
〈p2
⊥〉 . (4.46)

For finite n the integrals (4.43) and (4.44) are also trivial, the shift ∆Enondisp
ren = ∆Enondisp

⊥ren +

∆Enondisp
‖ren for an electron near a non-dispersive interface is

∆Enondisp
ren =

e2

32m2πz

n2
(
n2 − 1

)
(1 + n2)2 〈p

2
‖〉+

e2

16πm2z

2n4 − n2 − 1

(n2 + 1)2
〈p2
⊥〉. (4.47)

The n→∞ limit of this is

∆Enondisp
ren (n→∞) =

e2

32m2πz
〈p2
‖〉+

e2

8πm2z
〈p2
⊥〉 6= ∆EPM

ren , (4.48)

which is not in agreement with the perfect reflector result (4.46). Eqs. (4.46) and (4.47)

together reproduce the result of the far more involved calculation found in [46, 48], where

the reason for the discrepancy between the dielectric and perfect reflector results is discussed

in detail. We postpone such a discussion until dispersive models have been considered

because the inclusion of dispersion turns out to clarify the issue that causes the discrepancy.
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4.2.2 Plasma

We now calculate the magnetic moment of an electron near a plasma surface, for which we

derived the mode expansion of the quantized electromagnetic field in section (3.3). Here

we have three types of mode; TE, TM and surface plasmon (SP), so the mode sum is∑
all modes

→
∫
d3k

∑
λ=TE,TM

+

∫
d2k‖

∑
λ=SP

, (4.49)

where the modes are given by eqs (3.50) and (3.32). The energy shift that is attributable

to the surface plasmon is

∆Esp = − e2

m2
〈p2
i 〉
∫
d2k‖

1

ωsp

∣∣∣f sp∗
k‖,i

(r, ω)
∣∣∣2 , (4.50)

which can easily be derived by repeating the analysis that takes eq. (4.21) to eq. (4.24)

but instead acting with the surface plasmon field operator (3.45) on the vacuum state to

produce a one-surface plasmon state |1sp
k‖
〉. Combining this with the bulk contribution

(4.27), the component of the plasma mass shift that is proportional to 〈p2
⊥〉 is given by:

∆Eplasma
⊥ = − e2

m2
〈p2
⊥〉

{∫
d3k

∑
λ

1

ω

∣∣f∗kλ,z(r, ω)
∣∣2 +

∫
d2k‖

1

ωsp

∣∣∣f sp∗
k‖,z

(r, ω)
∣∣∣2}

= ∆Ebulk
⊥ + ∆ESP

⊥ . (4.51)

where we have split the energy shift into bulk and surface-plasmon contributions given by

the first and second terms of (4.51), respectively. Inserting the bulk modes (3.32) into

∆Ebulk
⊥ and again localizing the electron in the region z < 0 we have

∆Ebulk
⊥ = − 1

(2π)3

e2

m2
〈p2
⊥〉
∫
d2k‖

(∫ ∞
0

dkz

∣∣∣eik · r +RLk,TM(εp)e
ik̄ · r

∣∣∣2
+

∫ ∞
0

dkdz

∣∣∣TRk,TM(εp)e
ik · r

∣∣∣2) k2
‖

2k4
. (4.52)

From eq. (3.35) we have

kz =
√
kd2
z + ω2

p . (4.53)

In contrast to the corresponding relation (4.29) for the non-dispersive dielectric, this

relation shows that for real kdz , kz must also be real. So, in a similar fashion to eq. (4.32),

we rewrite the second term of (4.52) by changing variables from kz to kdz , giving

∆Ebulk
⊥ = − 1

(2π)3

e2

m2
〈p2
⊥〉
∫
d2k‖

{∫ ∞
0

dkz

[
1+|RLk,TM(εp)|2 +

kz
kdz
|TRk,TM(εp)|2

]

+

∫ ∞
−∞

dkzR
L
k,TM(εp)e

2ikzz

}
k2
‖

2k4
,

(4.54)
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where eq. (4.53) has been used to change variables in the transmission term. Appeal to

eq. (4.38) shows that the first term is that which would remain if there were no surface

present, so is dropped. This leaves simply

∆Ebulk
⊥ren = − 1

8π2

e2

m2
〈p2
⊥〉
∫ ∞

0
dk‖

∫ ∞
−∞

dkz
k3
‖

k4
RLk,TM(εp)e

2ikzz . (4.55)

Again we evaluate the integral through the residue theorem, however this time the TM

reflection coefficient has a simple pole on the imaginary kz axis at kz,sp =
√
ω2

sp − k2
‖.

Consequently we split the energy shift into the contribution ∆Ebulk
⊥,0 from the pole at −ik‖,

and ∆Ebulk
⊥,R from the pole in the TM reflection coefficient;

∆Ebulk
⊥ren = ∆Ebulk

⊥,0 + ∆Ebulk
⊥,R . (4.56)

Evaluation of ∆Ebulk
⊥,0 proceeds in exactly the same way as (4.41) and (4.42) were obtained

from (4.40) in the calculation for the non-dispersive surface, namely by evaluation of the

residue at kz = −ik‖, giving

∆Ebulk
⊥,0 =

i

4π

e2

m2
〈p2
⊥〉
∫ ∞

0
dk‖ Res

kz→−ik‖

k3
‖

(k2
z + k2

‖)
2
RLk.TM(εp)e

2ikzz, (4.57)

∆Ebulk
‖,0 = − i

8π

e2

m2
〈p2
‖〉
∫ ∞

0
dk‖ Res

kz→−ik‖

k‖k
2
z

(k2
z + k2

‖)
2

×
[
RLk,TM(n2) + (k2

z + k2
‖)R

L
k,TE(εp)

]
e2ikzz. (4.58)

Moving on to the contribution ∆Ebulk
⊥,R from the pole in the TM reflection coefficient,

we find for the residue of the reflection coefficient at kz,sp

Res
kz→kz,sp

[
RLk,TM(εp)

]
= −2i

ω2
sp

ω2
p

(ω2
p − ωsp)2

√
ω2
p − 2ω2

sp

ω4
sp + (ω2

p − ω2
sp)2

≡ −iS , (4.59)

so that the contribution from the pole at kz,sp is

∆Ebulk
⊥,R =

1

4π

e2

m2
〈p2
⊥〉
∫ ∞

0
dk‖

k3
‖

ω4
sp

Se2κz . (4.60)

This completes the evaluation of the the bulk contribution (4.56) to the mass shift (4.51),

so we now move on to the surface plasmon part.

From eq. (4.51) we have for the surface plasmon part of the energy shift

∆ESP
⊥ = − e2

m2
〈p2
⊥〉+

∫
d2k‖

1

ωsp

∣∣∣f sp∗
k‖,z

(r, ω)
∣∣∣2 . (4.61)

Recalling that our electron is localized in the region z < 0, we substitute the z < 0 part of

the surface plasmon modes (3.50) into this to find

∆ESP
⊥ = − 1

2π

e2

m2
〈p2
⊥〉
∫ ∞

0
dk‖

1

p(k‖)

k3
‖

κ2ωsp
e2κz = ∆ESP

⊥ren , (4.62)



Chapter 4. Mass Shift 43

where we note that the renormalization of this term is trivial since the surface plasmon

has no counterpart in free space.

We have now evaluated the entire energy shift of an electron near a plasma surface

∆Eplasma
⊥ren = ∆Ebulk

⊥ren + ∆ESP
⊥ren

= ∆Ebulk
⊥,0 + ∆Ebulk

⊥,R + ∆ESP
⊥ren . (4.63)

The crucial observation is that contributions (4.60) and (4.62) exactly cancel each other

∆Ebulk
⊥,R + ∆Esp

⊥ = 0 . (4.64)

This type of cancellation has been noted in a similar calculation [49], and is a consequence of

the fact that the modes form a complete set. It is also seen to happen in the corresponding

calculation for motion parallel to the surface. This means that our final results for for the

total energy shifts arising from motion in both directions are

∆Eplasma
⊥ren = ∆Ebulk

⊥,0 , ∆Eplasma
‖ren = ∆Ebulk

‖,0 . (4.65)

The right hand sides of the above two expressions are given by explicitly by eqs. (4.57)

and (4.58), so we finally have

∆Eplasma
⊥ren =

i

4π

e2

m2
〈p2
⊥〉
∫ ∞

0
dk‖ Res

kz→−ik‖

k3
‖

(k2
z + k2

‖)
2
RLk.TM(εp)e

2ikzz , (4.66)

∆Eplasma
‖ren = − i

8π

e2

m2
〈p2
‖〉
∫ ∞

0
dk‖ Res

kz→−ik‖

k‖k
2
z

(k2
z + k2

‖)
2

×
[
RLk,TM(εp) + (k2

z + k2
‖)R

L
k,TE(εp)

]
e2ikzz. (4.67)

Comparison of eqs. (4.41) and (4.42) which give the mass shift near a non-dispersive

surface with eqs. (4.66) and (4.67) which give the mass shift near a plasma surface shows

that results for the two models can be obtained from the same expressions, just with the

appropriate dielectric function inserted into the reflection coefficients. The fact that our

calculations have this quality is of particular use later on, when we consider more complex

models of the surface.

Proceeding with our calculation for the plasma, we now evaluate the integrals (4.66)

and (4.67) which deliver the mass shift near a plasma surface. We begin by evaluating the

residues, which give expressions identical to (4.43) and (4.44) but with n2 → εp. Noting

that the kz → −ik‖ limits of the plasma reflection coefficients coincide with those for the

perfect mirror, we find that we can write the plasma shifts as corrections to the perfect
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mirror shifts via

∆Eplasma
⊥ren = ∆EPM

⊥ren + ∆⊥ , (4.68a)

∆Eplasma
‖ren = ∆EPM

‖ren + ∆‖ , (4.68b)

with

∆⊥ = − e2

4πm2ω2
p

〈p2
⊥〉
∫ ∞

0
dk‖k‖

√
k2
‖ + ω2

pe
2k‖z , (4.69a)

∆‖ = − e2

4πm2ω2
p

〈p2
‖〉
∫ ∞

0
dk‖k‖

(√
k2
‖ + ω2

p −
k‖

2

)
e2k‖z . (4.69b)

The integrals ∆⊥,‖ can be evaluated analytically in Mathematica, the results for ∆⊥ is

∆⊥ = − e2〈p2
z〉

48m2πω2
pz

3

{
3J0(2ωpz) + 2ωpz [3J1(2ωpz)− ωpz(2ωpz − 3J2(2ωpz) ln(−ωpz))]

+ 3ω2
pπz

2H2(2ωpz) + 6
∂

∂a

[
0F1(−a,−ω2

pz
2)/Γ(−a)

] ∣∣∣
a=1

}
, (4.70)

where 0F1(a, z) is a confluent hypergeometric function (see, for example, section 9.14 of

[50]), defined by

0F1(a, x) =

∞∑
n=0

zn

(a)nn!
(4.71)

where (a)n is the nth Pochhammer symbol Γ(a+n)/Γ(a). Jn(x) is the nth Bessel function

of the second kind, and Hn(x) is the nth Struve function. Doing the elementary integral

given by the second term of (4.69b), we have that ∆‖ can be obtained from ∆⊥ through

∆‖ = 〈p2
‖〉
[
− e2

32m2πω2
pz

3
+

∆⊥
〈p2
⊥〉

]
. (4.72)

The form of these functions is shown in fig. 4.5, which indicates that the |ωpz| → ∞ limit

of both ∆‖ and ∆⊥ is zero. To prove this from the expression (4.70) is not a simple matter,

so we go back to the integral form of ∆⊥ (4.69a) and change variables to x = −k‖z, giving

∆⊥ =
e2

4πm2z

〈p2
⊥〉

(ωpz)2

∫ ∞
0

dk‖x
√
x2 + (ωpz)2e−2x . (4.73)

The integrand may then be expanded for small |ωpz| and integrated term-by-term. The

result is

∆⊥(|ωpz| � 1) = − e2

4πm2z
〈p2
⊥〉
[

1

ωpz
+O (1/z3)

]
, (4.74)

which, in combination with the relation (4.72) linking ∆⊥ and ∆‖, confirms that

lim
|ωpz|→∞

∆⊥ = 0 , lim
|ωpz|→∞

∆‖ = 0 . (4.75)
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Figure 4.5: The functions ∆⊥ and ∆‖ as a function of |ωpz| (note the

log scale on the horizontal axis).

Inserting these into eqs. (4.68a) and (4.68b) to find the large |ωpz| approximation of the

mass shift near plasma, we see that that the plasma and perfect mirror results agree at

|ωpz| → ∞, which is expected because both models have |ε(ω)| → ∞ at this point. Both

of the models exclude evanescent modes, in contrast to the non-dispersive dielectric. Thus,

we are beginning to see that evanescent modes play a decisive role in the calculation of

radiative corrections near a surface – a phenomenon which will be discussed in detail after

the consideration of some more realistic models of the response of the surface.

4.2.3 More realistic models of the surface

The use of the plasma model represents a significant advance over previous perfect-reflector

and non-dispersive calculations. However, real surfaces have more complicated dielectric

functions. Writing a general dielectric function for a vacuum-medium half space in terms

of the susceptibility of the medium χ(ω) = ε(ω)− 1, we have

ε(r, ω) = 1 + Θ(z)χ(ω) . (4.76)

Inserting this into Maxwell’s equations (2.64) we find in generalized Coulomb gauge

∇ · [ε(r, ω)A(r, ω)] = 0

∇× [∇×A(r, ω)] = ω2ε(r, ω)A(r, ω) . (4.77)

Writing this in terms of general mode functions fkλ(r, ω) defined by (2.39)

A(r, ω) =
∑
λ

∫
d3k

[
âkλe

−iωktfkλ(r, ω) + â†kλe
iωktf∗kλ(r, ω)

]
, (4.78)

and using the explicit half space dielectric function (4.76), we find

∇× [∇× fkλ(r, ω)]−Θ(z)ω2χ(ω)fkλ(r, ω) = ω2fkλ(r, ω) . (4.79)
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It is well known that if the wave equation is a Hermitian eigenvalue problem, the modes

necessarily form a complete set, which means that one can write down a mode expansion

and choose a normalization such that the field is canonically quantized. Since our approach

relies on being able to explicitly work with the mode expansion, it is worth investigating

under what conditions (4.79) represents a Hermitian eigenvalue problem. This happens if

χ(ω) obeys one of two conditions

• χ(ω) is independent of ω, so that χ(ω) may be written in the form χ(ω) = n2 − 1

(with n > 1) and (4.79) rearranged to coincide with eq. (3.9),

or,

• ω2χ(ω) is independent of ω, so that the second term on the left hand side of eq. (4.79)

becomes independent of ω.

The non-dispersive model discussed in section 4.2.1 satisfies the first condition, and the

plasma model discussed in section 4.2.2 satisfies the second. Combining the second condition

with the definition that χ(ω) = ε(ω) − 1, we have that the only permissible dielectric

function for the half-space is of the form

ε(ω) = 1 +
constant

ω2
, (4.80)

which shows that the plasma is the only dispersive model that admits a mode expansion

(with, of course, the constant being equal to −ω2
p). Since our method is reliant on the

existence of an explicit mode expansion, it seems that this sets a limit of the applicability

of our approach.

However, we obtain results for surfaces which do not admit a mode expansion by taking

what seems like an unjustified leap of faith and consider our formulae (4.43) and (4.44) as

being correct for any choice of dielectric function ε(ω) for the half space. In Chapter 7 we

approach this and related problems from a different direction in such a way as to explicitly

justify this step, but for now we note several indications that hint towards the validity

of this procedure. The first is of course that the non-dispersive and plasma results can

both be obtained by insertion of the relevant dielectric function into (4.43) and (4.44), so

it is not unreasonable to expect that other models will work in the same way. The second

is that the electromagnetic Green’s function for the half-space geometry can be written

entirely in terms of the reflection coefficients of a surface with arbitrary dielectric function

[51], so that if one worked with the Green’s function one would necessarily get the same

formulae (4.43) and (4.44) for the mass shift. In Chapter 7 we use a completely different
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approach based on a so-called ‘noise current’ as a final and explicit justification for this

step.

Proceeding, we write eqs. (4.66) and (4.67) with an arbitrary dielectric function ε(kz, k‖),

∆E⊥ren =
i

4π

e2

m2
〈p2
⊥〉
∫ ∞

0
dk‖ Res

kz→−ik‖

k3
‖

(k2
z + k2

‖)
2
RLk.TM

[
ε(kz, k‖)

]
e2ikzz, (4.81a)

∆E‖ren = − i

8π

e2

m2
〈p2
‖〉
∫ ∞

0
dk‖ Res

kz→−ik‖

k‖k
2
z

(k2
z + k2

‖)
2

×
{
RLk,TM

[
ε(kz, k‖)

]
+ (k2

z + k2
‖)R

L
k,TE

[
ε(kz, k‖)

]}
e2ikzz. (4.81b)

Using the explicit forms of the reflection coefficients (A.5), we find upon evaluation of the

residues show in the integrands of (4.81a) and (4.81b)

∆E⊥ren =
e2

16πm2
〈p2
⊥〉
∫ ∞

0
dk‖

e2k‖z[
1 + ε(−ik‖, k‖)

]2 [1− 2k‖z + 2ε(−ik‖, k‖)

+ (2k‖z − 3)ε2(−ik‖, k‖)− 2ik‖ε
′(−ik‖, k‖)

]
, (4.82a)

∆E‖ren = − e2

32πm2

∫ ∞
0

dk‖
e2k‖z[

1 + ε(−ik‖, k‖)
]2 [1 + 2k‖z − 2ε(−ik‖, k‖)

+ (1− 2k‖z)ε
2(−ik‖, k‖) + 2ik‖ε

′(−ik‖, k‖)
]
, (4.82b)

where ε′(kz, k‖) denotes the derivative6 of ε with respect to kz. These equations reproduce

the non-dispersive and plasma results (4.47) and (4.68) upon insertion of the appropriate

dielectric functions.

Using the loose a priori (and strong a posteriori) justification detailed at the start

of this section, we are now free to insert any dielectric function into into eqs. (4.82) and

evaluate the shift. But what should we use as the dielectric function which best captures

the physics of dispersion? For a non-magnetic substance the equation of motion for the

electrons within the material is (see, for example, sec. 7.5 of [52])

m(ẍ + γẋ + ω2
Tx) = −eE(x, t) , (4.83)

where x is the position of an atomic electron relative to its parent nucleus, γ is a damping

parameter and ωT describes a restoring force. These two parameters respectively define

the position and width of an absorption resonance of the medium. If the amplitude of the

oscillation is small enough to permit the use of the dipole approximation, and the field

varies harmonically with time, we can use identical steps to those which took eq. (3.23) to

6Here and throughout we use primes to denote derivatives of ε – this should not be confused with the

common notation ε′ = Re ε and ε′′ = Im ε.
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eq. (3.26) in our derivation of the dielectric function for a plasma half-space to derive the

corresponding dielectric function for this model, giving

ε(r, ω) = 1−Θ(z)
ω2
p

ω2 − ω2
T + iωγ

≡ εγ(r, ω) . (4.84)

The dielectric function to be inserted into eqs. (4.81a) and (4.81b) is εγ(r, ω) in terms of

kz and k‖, which is

εγ(kz, k‖) = 1−Θ(z)
ω2
p

k2
z + k2

‖ − ω
2
T + iγ

√
k2
z + k2

‖

. (4.85)

We initially consider the case γ = 0, a model which will we will refer to as the ‘undamped

dispersive dielectric’, with dielectric function εdisp(kz, k‖) given by

εdisp(kz, k‖) ≡ εγ(kz, k‖, γ → 0) . (4.86)

The validity of the use of this particular dielectric function in our formulae (4.82)

is reinforced by the fact that the introduction of the parameter ωT does not affect the

post-deformation contour in the kz plane, as shown in figure 4.6, where the positions of

the various poles and branch points are given by

Kz,± =
1√
2

√
ω2
p + ω2

T − k2
‖ ±

√
k4
‖ + 2k2

‖
(
ω2
p − ω2

T

)
+
(
ω2
p + ω2

T

)2
, (4.87a)

kz,± =

√
1

2
(ω2
p + ω2

T )±
√
k4
‖ − k

2
‖ω

2
T +

1

4

(
ω2
p + ω2

T

)2
. (4.87b)

Proceeding, we insert the dielectric function (4.86) into our formulae (4.82), which leads to

integrals which are, surprisingly, much simpler than for the plasma case. The result is

∆Edisp
ren =

e2

16πm2

ω2
p(

ω2
p + 2ω2

T

)2
{[

1

2z3
+

1

2z

(
ω2
p + ω2

T

)]
〈p2
‖〉

+

[
1

z3
+

1

z
(2ω2

p + 3ω2
T )

]
〈p2
⊥〉

}
. (4.88)

The ωp →∞ (‘perfect reflector’) limit of this is

∆Edisp
ren (ωp →∞) =

e2

32m2πz
〈p2
‖〉+

e2

8πm2z
〈p2
⊥〉 . (4.89)

Comparing this with eqs. (4.46), (4.48) and (4.68), we have that{
∆Edisp

ren (ωp →∞) = ∆Enondisp
ren (n→∞)

}
6=
{

∆Eplasma
ren (ωp →∞) = ∆EPM

ren

}
. (4.90)

which shows that the models of the surface naturally separate into two classes, as discussed

in the next section.
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Figure 4.6: Complex kz plane for 1/ω2 multiplied by the dispersive

dielectric reflection coefficient, with labels as defined in eqs (4.87). The

energy shifts ∆E⊥ren and ∆E‖ren are given by the residue around kz = −ik‖

4.2.4 Comparison of results

In order to better investigate the disagreements between each model, we characterize each

in terms of its static susceptibility χ(ω → 0) ≡ χ(0)

χ(0) ≡ ε(0)− 1 =


∞ (perfect mirror, plasma)

n2 − 1 (non-dispersive dielectric)

ω2
p/ω

2
T (undamped dispersive dielectric)

so that, for example, the perpendicular component of the mass shift for the undamped

dispersive dielectric is given by

∆Edisp
⊥ren =

e2

16πm2z

χ(0)

(ωT z)2

1 + (ωT z)
2(3 + 2χ(0))

(2 + χ(0))2
〈p2
⊥〉. (4.91)

The results for three of the four models considered so far are shown in fig. (4.7) The plasma

result cannot be shown in fig. (4.7) since its static susceptibility is infinite; however it can
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Figure 4.7: Energy shift vs static susceptibility for various models in

units of the perfect reflector shift. The dispersive dielectric is shown for

ωT z = 0.2

be compared to the dispersive shift via a plot against the dimensionless parameter ωpz, as

shown in fig. (4.8). In both plots we show energy shifts in units of the perfect reflector

shift.

A notable feature of fig. (4.7) is the peak near χ(0) = 2 in the dispersive model. By

differentiating the dispersive energy shift (4.91) with respect to ωT z, it is easy to show

that the peak emerges only when |ωT z| < 1/
√

5. It moves towards χ(0) = 2 for decreasing

|ωT z|, and its height scales as (ωT z)
−2. Thus, for small values of |ωT z| we see that the

shift can be made considerably larger than in the previously considered perfect reflector

model. We note in particular that the shape of the peak shown in fig. (4.7) would not be

easily measurable in a single experiment since it would require the parameters describing

the surface to be continuously varied. The peak simply shows which types of material

should give a large shift. The experimental consequences of such a large shift in the mass

turn out to be to the cyclotron frequency of the electron, which we discuss in section 4.3.

Here we focus on the reasons for the apparent discrepancies between the models.

Mathematically, the disagreements arise because of non-commutation of limits in the

reflection coefficients (or their derivatives), namely kz → −ik‖ (required for finding the

residue at this point) and whatever limit one has to take to get from dielectric function to

another. For example, the ωT → 0 limit of the result for the dispersive dielectric should

take us to the plasma result, but it does not. This is because the ωT → 0 and kz → −ik‖
limits of the derivative of the dispersive TM reflection coefficient do not commute. A

similar problem causes the perfect reflector and non-dispersive results to disagree in the
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Figure 4.8: Energy shift in units of the perfect reflector shift vs the

dimensionless parameter ωpz for the plasma and dispersive dielectric models

for various ωT z. The values of ωT z shown are 0.2 (solid line), 0.4 (dashed),

and 0.6 (dotted).

limit n → ∞; namely that the n → ∞ and kz → −ik‖ limits of the non-dispersive TE

reflection coefficient listed in Appendix A.2 do not commute, as can be easily seen via

lim
n→∞

[
RLk,TE(n2)

]
= −1 → lim

kz→−ik‖

[
lim
n→∞

[
RLk,TE(n2)

]]
= −1

lim
kz→−ik‖

[
RLk,TE(n2)

]
= 0 → lim

n→∞

[
lim

kz→−ik‖

[
RLk,TE(n2)

]]
= 0 , (4.92)

This issue has been encountered in previous work [46, 48], we confirm this in the context of

a dispersive medium. A summary of the various commutation properties of the reflection

coefficients for the considered models is shown in fig. (4.9).

Physically, the differences between models that disagree with each other are down to a

number of reasons. One of them is the exclusion of part of the photon phase-space, namely

the evanescent modes. Previous workers have shown that exclusion of evanescent modes is

not an adequate approximation to real materials [46, 48], again we have confirmed this

conclusion for a dispersive medium. The other main reason for the discrepancies is the

different response of conductors and dielectrics to electric fields at low frequencies: ε(ω)

has a pole at ω = 0 for a conductor but not for a dielectric. The discrepancies between the

results for the mass shift show that one has to decide whether the material at hand should

be modelled as a metal (no restoring force for the charge carriers) or as a dielectric (with a

restoring force parametrized by ωT ), since these two classes of model for the surface are

not obtainable as limiting cases of one another, demonstrating the different nature of the

electromagnetic response of conductors and dielectrics.
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Figure 4.9: Commutation properties of the various models discussed here.

Each arrow indicates a limit which takes one dielectric function to another.

Solid (dashed) arrows indicate a limit that, when applied the reflection

coefficients, commutes (does not commute) with the limit kz → −ik‖. The

consequence of this is that the mass shift results for two models connected

by solid (dashed) arrows are (are not) obtainable as limiting cases of one

another.

To find conductors and dielectrics giving rise to different results on account of their

different response to electromagnetic fields is of course not surprising – different models

should give different results. This is, however, in contrast to what one might have expected

from the closely related Casimir-Polder energy shift in an atom close to a conducting or

dielectric boundary, which was briefly discussed in section 2.3.2. In both the retarded

and non-retarded regimes the Casimir-Polder shift of an atom in front of a dielectric [53]

reproduces the original result for an atom close to a perfect reflector [54] in the limit of

infinite dielectric constant, and so does the level shift for an atom near a plasma surface

[49] in the limit of infinite plasma frequency, ωp → ∞. The crucial difference between

an atom and a free particle in this context is that the excitation spectrum of a bound

electron has a gap at low frequencies corresponding to the nearest energy level whereas

a free particle admits excitations of arbitrarily low frequency. As a consequence, the

low-frequency behavior of the electromagnetic response of the material, in particular the

pole at ω = 0 in the dielectric function of a conductor, play a decisive role for the mass

shift of a free particle, but not for the Casimir-Polder shift of an atom. An interesting
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intermediate case would be an electron that is weakly bound in a Rydberg atom, but any

investigation would have to ensure that our assumption of there being no wave function

overlap between the surface and the (highly delocalized) atomic wave function remains

valid.

The decisive importance of the pole at ω = 0 in the dielectric function of a conductor

is made obvious by the fact that the energy shifts (4.68a) and (4.68b) do not vanish in the

limit ωp → 0, despite ε(ω) reducing to the vacuum value of 1 in that case. The limit ωp → 0

is non-analytic because the choice of a dielectric function of the form (3.26) necessarily

describes freely moving charge carriers at ω = 0, which is obviously not true for vacuum

with ε ≡ 1. Mathematically speaking, eq. (3.26) is ill-defined if both ω → 0 and ωp → 0;

in line with the physical interpretation, the fact that ε(ω) has a pole at ω = 0 is more

important than the strength of this pole.

4.2.5 Damping

The final step in the investigation of the effect for realistic materials is to take γ 6= 0 in

eq. (4.85)

εγ(kz, k‖) = 1−Θ(z)
ω2
p

k2
z + k2

‖ − ω
2
T + iγ

√
k2
z + k2

‖

. (4.93)

This introduces the additional complication that the reflection coefficient has branch points

at kz = ±ik‖, causing the formulae (4.81a) and (4.81b) to become ambiguous, which is

why we have separated our discussion of it from the previous (undamped) models. As we

will show in Chapter 7, we can obtain unambiguous results for a damped dielectric by

using a Green’s function approach to the whole problem. One of the differences between

the mode expansion calculation and the Green’s function calculation is that the latter is

naturally done in terms of ω and k‖ rather than kz and k‖, so it stands to reason that

transforming our mode expansion integrals over kz and k‖ to be over ω and k‖ may remove

the ambiguity introduced by the branch points in the reflection coefficient. To do this, we

go back a few steps and consider eqs. (4.81a) and (4.81a) with any undamped dielectric

function εγ→0(kz, k‖) inserted into the reflection coefficients.

∆E⊥ren = − 1

8π2

e2

m2
〈p2
⊥〉
∫ ∞

0
dk‖

∫
C′
dkz

k3
‖

(k2
z + k2

‖)
2
RLk,TM

[
εγ→0(kz, k‖)

]
e2ikzz, (4.94)

∆E‖ren =
1

16π

e2

m2
〈p2
‖〉
∫ ∞

0
dk‖

∫
C′
dkz

k‖k
2
z

(k2
z + k2

‖)
2

×
{
RLk,TM

[
εγ→0(kz, k‖)

]
+ (k2

z + k2
‖)R

L
k,TE

[
εγ→0(kz, k‖)

]}
e2ikzz, (4.95)

where the contour C ′ is that shown in fig. 4.10. These formulae are unambiguous because
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Figure 4.10: Transformation of the contour C ′ in the kz plane to the

contour C ′ω in the ω plane

the dielectric function has been specifically chosen to be undamped. Transforming the kz

integral from (4.94) to be over ω via kz =
√
ω2 − k2

‖ gives

∆E⊥ren = − e2

8π2m2
〈p2
⊥〉
∫ ∞

0
dk‖

∫
C′ω

dω
k3
‖

ω3
√
ω2 − k2

‖

RLk,TM [εγ→0(ω)] e
2i
√
ω2−k2‖z, (4.96a)

∆E‖ren =
e2

16π2m2
〈p2
‖〉
∫ ∞

0
dk‖

∫
C′ω

dω
k‖(ω

2 − k2
‖)

ω3
√
ω2 − k2

‖

×
{
RLk,TM [εγ→0(ω)] + ω2RLk,TE [εγ→0(ω)]

}
e2ikzz, (4.96b)

where the contour is that shown in is shown in fig. 4.10b. The only contribution to eqs. (4.96)

is from the pole at ω = 0, which we evaluate using the residue theorem, reproducing our

previous results that were found in the kz plane. Crucially, we find that on replacing

εγ→0(ω) with εγ(ω), the integral does not gain any new behavior near ω = 0 (unlike in the

kz plane where one introduces an additional branch cut). So what we are seeing is that if

we had undertaken our calculation in the ω plane from the start, we would have extended

our results beyond the non-dispersive and plasma models with the same justification as

shown in section 4.2.3, and that the inclusion of damping would not have caused any extra

problems. Thus, our reasoning that making the replacement εγ→0(ω)→ εγ(ω) in eqs. (4.96)

gives the correct results is of the same strength as our reasoning making the argument that

extension past the plasma model is valid. Moreover, we shall see in Chapter 7 that this

result is reproduced using an entirely different method.

We now evaluate (4.96) using the residue theorem to find results for the mass shift near

a surface described by εγ(ω). Expressing this in terms of the static susceptibility χ(0) and
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Figure 4.11: Mass shift in units of the perfect reflector shift vs the

dimensionless parameter
√
χ(0) for a damped surface. The plot takes

|ωT z| = 0.2 in order to facilitate comparison with fig. 4.8. The region

corresponding to physically reasonable choices of γz has been labelled.

in units of the respective perfect reflector shifts (4.46), eqs. (4.96) give

∆Eγ⊥
∆EPM

⊥
=
χ(0)

[
1 + (ωT z)

2(3 + 2χ(0))
]

(ωT z)2(2 + χ(0))2
− 2(γz)2χ(0)

[2 + χ(0)]3(ωT z)4
, (4.97a)

∆Eγ‖

∆EPM
‖

= −
χ(0)

[
1 + (ωT z)

2(1 + χ(0))
]

[2 + χ(0)]2(ωT z)2
+

2(γz)2χ(0)

[2 + χ(0)]3(ωT z)4
. (4.97b)

From these it is easy to show that if γz > ωT z
√

1 + 3(ωT z)2 = (γz)crit the shift may

change sign and become much larger, as shown by the dashed curve in figure 4.11. This

seems to suggest that damping introduces a new peak of the type discussed in section

4.2.4, although of the opposite sign. However, the model underlying the damped dielectric

function (4.84) is only sensible if γ is small relative to ωT . This is because ωT represents the

frequency of an absorption line of the material, while γ represents its linewidth. This only

makes physical sense if γ � ωT , which in practice places us in the region (γz)� (γz)crit,

as indicated in fig. 4.11. Thus damping has no dramatic effect, but only serves to slightly

reduce the height of the peak shown in figure 4.7.

4.3 Cyclotron Shifts

Our results are intimately related to the shift in the cyclotron frequency of an electron near

a surface. As shown in Appendix C, if the external magnetic field is directed perpendicular

to the surface the calculations coincide, so that a measurement of the cyclotron frequency
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is in effect a measurement of the mass shift of an electron moving parallel to the surface.

We can use our formula (4.97b) to provide rough estimates of the magnitude of the effect.

In S.I. units, the shift (4.97b) is

∆Eγ‖ =
e2

32m2ε0c2πz

[
χ(0)

[
1 + (ωT z/c)

2(1 + χ(0))
]

[2 + χ(0)]2(ωT z/c)2
− 2(γz/c)2χ(0)

[2 + χ(0)]3(ωT z/c)4

]
〈p2
‖〉, (4.98)

where the shift in the mass is given by

∆m‖

m
= − 2m∆Eγ

〈p2
‖〉+ 2m∆Eγ

= −2m∆Eγ

〈p2
‖〉

+O(∆Eγ)2 . (4.99)

Taking gold as an example, we have for the parameters [55, 56]

ωp ≈ 1.3× 1016 Hz ωT ≈ 4× 1015 Hz γ ≈ 1.3× 1014 Hz (4.100)

which corresponds to χ(0) = ω2
p/ω

2
T ≈ 10.5. For distances of around of a micron, this gives

ωT z/c ≈ 13 and γz/c ≈ 0.4. Inserting all these values into (4.98) gives for (4.99)∣∣∣∣∆m‖m

∣∣∣∣ ≈ 2m∆Eγ‖ /〈p
2
‖〉 ≈ 5× 10−10 , (4.101)

so that the mass and the shifted mass differ from each other by approximately one part in

ten billion. Later on we will see that this shift is actually more relevant to measurements

of the magnetic moment than the magnetic moment shift itself because of the specific

techniques used in contemporary g − 2 experiments, so we postpone discussion of the

experimental relevance of this shift until then. We also note that for these parameters the

peak height discussed in the previous section becomes

(γz/c)crit = (ωT z/c)
√

1 + 3(ωT z/c)2 ≈ 293 . (4.102)

In order for there to be a peak like that shown in fig. 4.11, we need γz/c� (γz/c)crit, so

it is evident that for gold this condition is nowhere near being satisfied.

Finally we note from Appendix C that for magnetic fields directed parallel to the

surface, the additional electrostatic interaction skews the orbit, and much more so than

the mass anisotropy [39]. Thus, a measurement of the cyclotron frequency in a parallel

field does not deliver the mass shift.
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4.4 Summary and conclusions

We have calculated the mass shift of an electron near various different kinds of surface. It

is cumbersome to quote all the final results here again, so the reader is directed to their

location via table 4.1. We have explicitly shown that the perfect reflector, non-dispersive

and plasma results can be obtained from precisely the same formulae (4.96) consisting

of a contour integral in the complex ω plane. We have provided strong justification of

the validity of our formula for a dispersive dielectric, and then extended this to damped

surfaces. We will provide further justification for this generalization in Chapter 7, where

we shall reproduce all the above results using a different method that is suited from the

outset to include both dispersion and absorption.

Model Result

Perfect reflector (4.46)

Non-dispersive dielectric (4.47)

Plasma surface (4.68)

Dispersive dielectric (4.88)

Damped dispersive dielectric (4.97)

Table 4.1: Locations of mass shift results.

We have shown that is it crucial that one decides whether the material that induces the

mass shift should be modeled as a metal or a dielectric, since the results for the two classes

of material are not obtainable as limiting cases of one another in the final results. We have

also demonstrated that measurement of the surface-dependent mass of an electron coincides

with a measurement of its cyclotron frequency for a magnetic field directed perpendicular

to the interface, and undertaken an initial investigation into the experimental relevance of

such an effect.
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Chapter 5

Magnetic moment

Chapter 4 provided an introduction to the calculational methods needed to find radiative

corrections near surfaces. However, while the mass shift is important in its own right, a

much more obviously physically relevant calculation is that for the magnetic moment of the

electron1, or indeed the muon. Measurements of the electron’s magnetic moment represent

one of the most accurate precision tests of QED, while the muon’s larger mass means that

measurement of its magnetic moment is a potential low-energy route to new physics [57].

The magnetic moment’s importance across physics means that any systematic effects in

experiments which aim to measure it must be carefully enumerated. In this chapter we

will calculate one of these, namely the surface-dependence of the magnetic moment of a

spin 1/2 particle.

5.1 Introduction

5.1.1 Interaction of the photon field with a spin 1/2 particle

We are interested in the interaction of the quantized photon field with an electron, or other

spin 1/2 particles. In order to include spin, we must begin from the Dirac equation

(iγµ∂µ −m)ψ(x) = 0 , (5.1)

where γµ are matrices satisfying {γµ, γν} = 2ηµνI4 where ηµν is the metric tensor and I4 is

a four-dimensional unit matrix. This equation describes an isolated electron, however we

will need to couple it to the photon field. This is done via the minimal coupling prescription

∂µ → ∂µ + ieAµ(x) , (5.2)

1The calculation presented in this chapter is a combination of the short account already published in

[58] and an extended paper [59] currently in review.
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which describes all electromagnetic interactions. This gives us the Dirac equation coupled

to a field Aµ(x)

[−iγµ(∂µ + ieAµ) +m]ψ = 0 . (5.3)

5.1.2 The Dirac magnetic moment

The existence of a magnetic moment for the electron can be inferred by taking a non-

relativistic expansion of the Dirac equation for an electron coupled to a field Aµ = (Φ,−A).

We begin by writing (5.1.2) in its non-covariant form via γ0 = β, γi = βαi

i
∂

∂t
ψ = [α · (p− eA)] + eΦ + βm]ψ, (5.4)

where αi and β may be represented as

αi =

 0 σi

σi 0

 , β =

 12 0

0 −12

 , (5.5)

where σi are the Pauli matrices. Splitting the 4-spinor ψ into two 2-spinors φ and χ and

solving the resulting pair of coupled differential equations yields in the non-relativistic

approximation

χ ≈ σ · (p− eA)

2m
φ, (5.6)

where, since the non-relativistic approximation entails m being much larger than any other

energy, χ and φ are known as the ‘small’ and ‘large’ components respectively. This implies

the following non-relativistic approximation of the Dirac equation:

i
∂

∂t
φ =

(
[σ · (p− eA)]2

2m
+ eΦ

)
φ . (5.7)

Multiplying out the factor [σ · (p− eA)]2 (noting that p does not commute with A) gives

the Pauli equation

i
∂

∂t
φ =

(
(p− eA)2

2m
− e

2m
σ ·B + eΦ

)
φ, (5.8)

where B = ∇×A is the magnetic field. Through the definition of the magnetic moment

∆E = −µ ·B, we have in the non-relativistic approximation:

µ =
e

2m
σ =

g

2

e

2m
σ , (5.9)

where g is exactly 2. However, it is well-known that the value of the g-factor is shifted

slightly away from 2 by the interaction of the electron with the quantized electromagnetic

field. The leading correction to g was calculated by Schwinger in 1948 [60, 61] and found
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Figure 5.1: Electron scattering from a heavy particle

Figure 5.2: Electron-photon one-loop vertex

to be equal to α
2π . The usual formalism for calculating these corrections does not lend itself

to surface-induced effects. To see why, we briefly outline the (relatively) straightforward

free-space calculation of the leading order correction α
2π .

5.1.3 The anomalous magnetic moment

Following the general approach of [45], we consider electron scattering from a very heavy

particle, as shown in fig. 5.1. where the grey circle represents the sum of all electron-photon

vertices. The form of the vertex function Γµ can be deduced from general considerations,

namely Lorentz invariance and the Ward identity [62]. This allows one to write:

Γµ(p′, p) = γµF1(q2) +
iσµνqν

2m
F2(q2) , (5.10)

where σµν = i
2 [γµ, γµ] and F1 and F2 are known as the form factors. Viewing the process

as scattering from an applied classical field it can be shown that the g factor is given by

g = 2 + 2F2(0), (5.11)

Then, direct consideration of the one-loop diagram (fig. 5.2) using the Feynman rules of

quantum electrodynamics (see, for example, [45]) allows one to derive

F2(q2 = 0) =
α

2π
. (5.12)

as required.
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5.1.4 Surface dependence

The obvious way to extend this method to calculate a surface-dependent correction is to

simply replace the free-space photon propagator entering into the Feynman rules with the

boundary-dependent photon propagator (see, for example, [63]). However, this approach

runs into significant technical and conceptual difficulties. The principle difficulty is the loss

of translation invariance, which, amongst other effects, destroys the simple structure of the

vertex in terms of form factors. Further to this, mass and charge renormalization are usually

taken into account by using renormalized parameters. However, as we saw in Chapter 4,

the mass is subject to additional renormalization in the presence of a surface. Charge

renormalization is usually effected by summing an infinite series of vacuum polarization

diagrams, but at two-loop and higher these contain internal photon lines, meaning that

charge is also subject to additional renormalization in the presence of a surface.

These problems were a source of great confusion in the literature, causing early cal-

culations to go wrong in a wide variety of ways. Early attempts all produced a distance

dependence of 1/z, either by trying to directly consider the vertex diagram as one does in

free space [64, 65], or by calculating the shift in energy of the lowest Landau level [49, 66]2.

These calculations were later shown to be incorrect [39, 67]. Vertex calculations yielded

answers which were later found to be gauge dependent [68, 69, 70], and Landau level

calculations fell foul of an elementary mistake whereby a term was wrongly identified as

being linear in the applied magnetic field [39]. These errors were largely cleared up by [71],

who showed that the distance dependence should be 1/z2.

The state-of-the-art calculation for a surface-dependent magnetic moment at time of

writing was Barton and Fawcett’s 1988 paper [39], where the authors calculate a variety of

surface dependent quantities for an electron near a perfect reflector, as well as repeating

the calculations for parallel mirrors. Their results are shown in fig. 5.3, where the ‘spin-

precession shift’ has been highlighted since this corresponds to the magnetic moment we

wish to calculate. The inverse quadratic distance dependence predicted in [71] does indeed

appear. It is worth noting that Barton and Fawcett’s results are categorized into ‘retarded’

and ‘non-retarded’ regimes, corresponding to, essentially, the relative sizes of the distance z

and an applied magnetic field B0. Loosely speaking, the retarded regime is when a photon

takes long enough to make a round electron-mirror trip that the electron’s state may

have changed by the time it is reabsorbed, with non-retarded corresponding the photon

2Additionally, the Landau level calculation found in [66] assumes a distance dependence of 1/z from the

outset, so was always doomed to fail
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Figure 5.3: Direct reproduction of the summary of results of [39], with

the magnetic moment shift highlighted.

returning so quickly that the electron’s state has not changed. Since, as noted above the

table, magnetic moment shifts are only properly defined in the latter, it is assumed from

here onwards that our system is in the non-retarded regime, which manifests itself in the

calculation as the restriction to the weak-field limit.

Our calculation will differ from [39] in many respects, not least of which is the avoidance

of the approach that the authors term the ‘Paris Method’. This consists of a unitary

transformation which gives an effective Hamiltonian suitable for the calculation of the

effects of high-frequency modes upon the electron. As we saw in section 4.2, low frequency

(evanescent) modes turn out to be important to these kinds of shifts when the surface is

imperfectly reflecting, so this approach is not suitable for our purposes.

For this reason we take a more generally applicable approach. In section 5.1.2 we

calculated the leading-order term in the magnetic moment of the electron by finding

a non-relativistic approximation of the Dirac equation that decoupled the ‘small’ and

‘large’ components χ and φ. An obvious approach to finding the same shift for a surface-

dependent electromagnetic field A is to simply substitute the modified A into eq. (5.3),

take a non-relativistic approximation and extract the coefficient of σ ·B0. However, the

leading-order distance-dependent effects only appear in terms of higher order in e/m than

that obtained in section 5.1.2, meaning that it is necessary to include some higher order

terms to investigate the distance dependence of the magnetic moment. If one takes the

same approach as in section 5.1.2 but to a higher order, the calculation runs into a variety of

problems, including the fact that the quantity that would be identified as the Hamiltonian
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turns out to be non-Hermitian [72].

A superior way to proceed is via the unitary Foldy-Wouthuysen (FW) transformation

[72] which, via repeated application, can systematically produce the non-relativistic expan-

sion of the Dirac equation to any desired order in e/m. Our calculations will eventually

require terms up to e3/m3, meaning that the FW transformation needs to be applied twice,

which makes the calculation somewhat lengthy and prone to errors (see Appendix D).

Additionally, since the only previous comparable literature [39] takes the FW-transformed

Hamiltonian and then applies another unitary transformation to move into the regime

specified by the ‘Paris Method’, using the FW Hamiltonian does not even provide a useful

point of contact with previous work. Consequently, in this chapter we completely dispense

with applying any kind of unitary transformation, and simply work directly with the Dirac

equation by using the Dirac eigenstates of an electron in a constant magnetic field, which

can be obtained from the corresponding Schrödinger eigenstates as detailed in the next

section. However, we do not completely eschew the FW transformation – in Chapter 6

we consider a confined electron where we will use the FW transformation since the Dirac

eigenstates for the situation we consider there are not known.

Once the Schrödinger eigenstates are known, we can find an energy shift using standard

second-order perturbation theory by treating the quantized field as a perturbation. This

will enable us to extract the terms that cause the energy difference between the two spin

states to change – these give us the spin magnetic moment. Then, subtracting the free-space

value of the magnetic moment we will find the shift that is solely due to the presence of

the surface.
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5.2 Schrödinger and Dirac equations for a particle in a con-

stant magnetic field

In order to derive the eigenstates of the Dirac equation for a particle in a constant classical

magnetic field B0 one first solves the corresponding Schrödinger problem and then uses

its solutions to generate the Dirac eigenstates [73]. The Schrödinger Hamiltonian for a

particle of charge e = −|e| coupled to a classical vector potential A0 is

HS =
(p− eA0)2

2m
. (5.13)

In Coulomb gauge a constant magnetic field B0 can be generated by a vector potential

A0 = −1

2
(r×B0) A0i = −1

2
εijkrjB0k, (5.14)

which may easily be checked by showing that the conditions ∇ ·A0 = 0 and ∇×A0 = B0

are satisfied. We choose to set the magnetic field along the ẑ direction so that B0 = B0ẑ,

which means we can set B0x = 0 = B0y, giving

A0i = −1

2
εijzrjB0z A =

B0

2
(−yx̂+ xŷ) . (5.15)

Thus the Hamiltonian may be written as:

HS =
(px + eB0

2 y)2

2m
+

(py − eB0
2 x)2

2m
+

p2
z

2m
. (5.16)

One can reduce this to a harmonic oscillator by introducing annihilation and creation

operators and rewriting the positions and momenta in terms of those. Following [74], we

write

x =
1

β0

√
2

(b̂x + b̂†x), px =
iβ0√

2
(b̂†x − b̂x),

y =
1

β0

√
2

(b̂y + b̂†y), py =
iβ0√

2
(b̂†y − b̂y), (5.17)

where β0 =
√
−eB0/2. The operators b̂x, b̂

†
x, b̂y and b̂†y are then combined to form creation

and annihilation operators for right and left-circular quanta

b̂R =
1√
2

(b̂x − ib̂y) , b̂†R =
1√
2

(b̂†x + ib̂†y) ,

b̂L =
1√
2

(b̂x + ib̂y) , b̂†L =
1√
2

(b̂†x − ib̂†y) . (5.18)

In terms of these the canonical momenta are then given by

π̂x = p̂x +
eB0

2
ŷ = iβ0(b̂†R − b̂R), (5.19a)

π̂y = p̂y −
eB0

2
x̂ = β0(b̂†R + b̂R), (5.19b)

π̂z = p̂z, (5.19c)
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so that the Hamiltonian reads

HS = −eB0

m

(
b̂†Rb̂R +

1

2

)
+

p2
z

2m
. (5.20)

Thus the Hamiltonian is equivalent to a harmonic oscillator of right-circular excitations

and possesses infinite degeneracy with respect to the left-circular quanta. Eigenstates |ν〉

of the Schrödinger Hamiltonian HS can therefore be generated by repeated application of

the creation operator b̂†R to the ground state |ν = 0〉 which is defined by b̂R|ν = 0〉 = 0.

The states |ν〉 are known as the Landau states.

We can now use the Schrödinger eigenstates to derive the corresponding Dirac eigen-

states. Following [73], we start by noting that eigenfunctions of the Dirac equation

(α ·π + βm)ψ ≡ H0ψ = Eνψ, (5.21)

may be obtained from solutions of

(H2
0 − E2

ν)X = (H0 − Eν)(H0 + Eν)X = 0 . (5.22)

If a state X satisfies the above equation, then

ψ = (H0 + Eν)X, (5.23)

is a solution of eq. (5.21). To find the eigenvalues E2
ν of H2

0 we calculate H2
0 . Using

(α ·π)2 = π2 − eσzB0 and {αi, β} = 0 one finds

H2
0 = π2 − eσzB0 +m2 . (5.24)

This means we can express H2
0 in terms of the Schrödinger Hamiltonian HS as

H2
0 = 2mHS − eσzB0 +m2 . (5.25)

The eigenvalues E2
ν of H2

0 are found from eq. (5.20), and from the eigenvalues s of the spin

operator Sz = σz/2,

E2
ν = m2 + p2

z − 2eB0

(
ν + s+

1

2

)
. (5.26)

We now choose the states X in such a way that they distinguish spin-up and spin-down

states, and particle and anti-particle states, i.e. we choose them to be eigenfunctions of

σz with eigenvalues s = ±1/2, and of β with eigenvalues 1 for a particle and −1 for an

antiparticle. Equation (5.25) implies that the Dirac eigenstates can be expressed in terms

of a product state of the non-relativistic eigenstates |ν〉 and the spin state |s〉, which we

choose to write as |ν, s〉 ≡ |ν〉 ⊗ |s〉,

|Ψe〉 =
H0 + Eν√

2Eν(Eν +m)
|ν〉χ(↑,↓) for s = ±1/2, (5.27)
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where χ(↑)† = (1, 0, 0, 0), χ(↓)† = (0, 1, 0, 0). For antiparticle eigenstates the negative root

of (5.26) applies, the normalization factor in the denominator of eq. (5.27) turns into√
−2Eν(−Eν +m), and we use χ(↑)† = (0, 0, 1, 0), χ(↓)† = (0, 0, 0, 1).

For calculations it is useful to express momentum components in terms of

π+ = πx + iπy = 2iβ0b̂
†
R , (5.28a)

π− = πx − iπy = −2iβ0b̂R . (5.28b)

Thus, for a general vector Q we have

Q ·π = iβ0Q
(−)b̂†R − iβ0Q

(+)b̂R +Qzpz , (5.29)

with

Q(+) = Qx + iQy, (5.30a)

Q(−) = Qx − iQy . (5.30b)
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5.3 Shift in terms of mode functions

5.3.1 Setup

The Dirac Hamiltonian for an electron coupled to a classical field A0 is

H0 = α · (p− eA0) + βm+ eΦ, (5.31)

and the Hamiltonian for the interaction with the quantized field AQ is

Hint = −eα ·AQ , (5.32)

with AQ given by eq. (2.39). The scalar potential eΦ shifts all states uniformly, meaning it

has no impact on the magnetic moment. So we do second order perturbation theory on

Hint only

∆Eint = e2
∑
j′k,ν

′,s′

∑
λ

∫
d3k
| 〈1kλ,Ψ′e|α ·AQ |0,Ψe〉 |2

E − E′ − ω
. (5.33)

Since the spin magnetic moment is obtained from the coefficient of terms linear in σzB0,

one must carefully account for all the possible effects which may generate additional B0

dependence. Bearing this in mind, we find that in some terms we have to go beyond the

dipole approximation for the field AQ

AQ(r) = AQ(r0) + [(r− r0) · ∇]AQ(r0) +
1

2
(r− r0)i(r− r0)j

∂2AQ(r0)

∂ri∂rj
+ ... (5.34)

since the position operator (r−r0) generates additional factors of B0, as shown in appendix

B eqs (B.5). Each term in the multipole expansion of AQ(r) is given by

ρ∑
α=0

1

α!

[
(r− r0)i(r− r0)j ...(r− r0)α

] ∂αAQ(r0)

∂ri∂rj ...∂rα
≡ DρAQ(r) , (5.35)

then the sum over ρ gives the full multipole expansion. Henceforth we absorb the operator

Dρ into the mode functions fkλ, taking

DρAQ(r, t) =
∞∑
ρ=0

∑
λ

∫
d3k

[
fρkλ(r, ω)âkλe

−iωt + fρkλ(r, ω)â†kλe
iωt
]
. (5.36)

Each term in the multipole expansion contains a term (r− r0)ρ, so we have that

〈ν ′| (r− r0)ρ |ν〉 ∝ 1/βρ ∝ B−ρ/20 . (5.37)

Since ρ ≥ 0, we have that it is only possible for the multipole expansion to preserve or

reduce order in B0. Rewriting ∆Eint in terms of mode functions rather than fields

∆Eint = e2
∑
ν′,s′

∑
λ

∫
d3k
| 〈Ψe|α · fρkλ |Ψ

′
e〉 〈Ψ′e|α · f

ρ∗
kλ |Ψe〉 |2

E − E′ − ω
, (5.38)
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and substituting |Ψe〉 as given by eq. (5.27) into ∆Eint we find

∆Eint = e2
∑
ν′s′

∑
λ

∫
d3k
| 〈ν, s| (H0 + Eν)α · fρkλ(H0 + Eν′) |ν ′, s′〉 |2

(Eν − Eν′ − ω)2Eν(Eν +m)2Eν′(Eν′ +m)
. (5.39)

Using the explicit form of the matrix α shown in eq. (5.5), the unperturbed Hamiltonian is

H0 = α ·π + βm =

 m α ·π

α ·π −m

 . (5.40)

which gives

(H + Eν′)(α · fρkλ)(H + Eν) =

 Hee Heē

Heē Hēē

 , (5.41)

where

Hee = (Eν′ +m)(σ · fρkλ)(σ ·π) + (Eν +m)(σ ·π)(σ · fρkλ), (5.42a)

Heē = (σ ·π)(σ · fρkλ)(σ ·π) + (Eν′ −m)(Eν +m)(σ · fρkλ), (5.42b)

Hēē = (Eν −m)(σ ·π)(σ · fρkλ) + (Eν′ −m)(σ · fρkλ)(σ ·π). (5.42c)

The subscripts e and ē distinguish particle or antiparticle transitions. Here, only particle-

particle and particle-antiparticle transitions are required because our initial state is that of

an electron, so Hēē can be discarded. Finally we remind the reader that since we consider

the electron to be in vacuum, the generalized Coulomb gauge ∇ · [ε(r, ω)A(r, ω)] = 0 and

standard Coulomb gauge ∇ · [A(r, ω)] = 0 are identical for the purposes of this part of the

calculation. Consequently, we use the Coulomb gauge condition to simplify expressions

found in throughout the remainder of section 5.3.

5.3.2 Particle-particle transitions

Using the fact that the Pauli matrices satisfy σiσj = δij + iεijkσk and the Coulomb gauge

condition in terms of mode functions (∇ · fkλ = 0) we can simplify eq. (5.42a) to

(σ · fρkλ)(σ ·π) = fρkλ ·π + iσ · (fρkλ × π), (5.43a)

(σ ·π)(σ · fρkλ) = fρkλ ·π + σ · (∇× fρkλ)− iσ · (fρkλ × π) . (5.43b)

Substituting this into Hee and rearranging:

Hee = (Eν + Eν′ + 2m)fρkλ ·π + (Eν′ − Eν)iσ · (fρkλ × π) + (Eν′ +m)σ · (∇× fρkλ),

(5.44)
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Using eq. (5.29), this becomes

Hee = b†R

{
iβ0(Eν + Eν′ + 2m)fρkλ

(−) − (Eν′ − Eν)β0(σ × fρkλ)
(−)
}

+ bR

{
− iβ0(Eν + Eν′ + 2m)fρkλ

(+)
+ (Eν′ − Eν)β0(σ × fρkλ)

(+)
}

+ (Eν + Eν′ + 2m)fρkλ,zpz + (Eν′ − Eν)(σ × fρkλ)z + (Eν′ +m)σ · (∇× fρkλ) .

(5.45)

The expression we need to consider in order to evaluate the contribution of Hee to the

energy shift is

∆Eeeint = e2
∑
ν′,s′

∑
λ

∫
d3k

| 〈ν, s|Hee |ν ′, s′〉 |2

4(Eν − Eν′ − ω)Eν(Eν +m)Eν′(Eν′ +m)
. (5.46)

The fact that (5.45) is made up of terms which are of zeroth or first order in a creation or

annihilation operators b
(†)
R suggests that one should proceed by splitting Hee into three

parts, one for each of ν ′ = ν − 1, ν and ν + 1. But, the mode functions fρkλ in Hee contain

the multipole operator Dρ, which itself contains any number of operators bR and b†R.

Attempting to immediately isolate terms linear in B0 is dangerous on account of equations

(5.37). The only simplification we can unambiguously make is to take a large m expansion

and discard terms of order 1/m4 or higher. We find that on multiplying out the constants

in the expression 〈ν, s|Hee |ν ′, s′〉 〈ν ′, s;|Hee |ν, s〉 and dividing by the energy denominator

that any term that originates from any of the terms proportional to (Eν′ −Eν) in eq. (5.45)

cannot contribute due to its order in 1/m. All the terms in eq. (5.45) that are proportional

to (Eν + Eν′ + 2m) are spin-independent, so these multiplied by each other also cannot

contribute. These considerations together yield three spin-dependent terms which are of

the correct order in 1/m, meaning that we writ the energy shift as

EDee = ∆Eint
q− + ∆Eint

q+ + ∆Eint
s +O(1/m4), (5.47)

where

∆Eint
q− =

∑
ν′s′

∑
λ

∫
d3k

e2

EDee
〈ν, s| b†Riβ0(Eν + Eν′ + 2m)fρkλ

(−) |ν ′, s′〉

× 〈ν ′, s′| (Eν′ +m)(σ · (∇× f∗ρ
′

kλ )) |ν, s〉+ H.c., (5.48a)

∆Eint
q+ =

∑
ν′s′

∑
λ

∫
d3k

e2

EDee
〈ν, s| bR(−iβ0)(Eν + Eν′ + 2m)fρkλ

(+) |ν ′, s′〉

× 〈ν ′, s′| (Eν′ +m)(σ · (∇× f∗ρ
′

kλ )) |ν, s〉+ H.c., (5.48b)

∆Eint
s =

∑
ν′s′

∑
λ

∫
d3k

e2

EDee
| 〈ν, s| (Eν′ +m)(σ · (∇× fρkλ)) |ν ′, s′〉 |2, (5.48c)
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where we have defined

EDee ≡ 4(Eν − Eν′ − ω)Eν(Eν +m)Eν′(Eν′ +m) . (5.49)

The reason for the choice of labels in eqs. (5.48) will become clear later on. We have

immediately set set pz = 0 in eqs. (5.48), which corresponds to dropping terms proportional

to 〈pz〉 and 〈p2
z〉. The former is easily justified because we have 〈pz〉 = 0 due to our electron

being localized a fixed distance from the interface. There is no a priori reason for dropping

the terms in 〈p2
z〉, but these all turn out give spin-independent contributions. Explicit

inclusion of such terms proves quite cumbersome, so we do not quote them here.

We are now ready to extract terms proportional to B0 from eqs. (5.48). First considering

the large m expansion of ∆Eint
q−,

∆Eint
q− = ie2

∑
ν′s′

∑
λ

∫
d3k

√
−eB0

2

(Eν + Eν′ + 2m)(Eν′ +m)

4(Eν − Eν′ − ω)Eν(Eν +m)Eν′(Eν′ +m)

× 〈ν, s| b†Rf
ρ
kλ

(−) |ν ′, s′〉 〈ν ′, s′|σ · (∇× f∗ρ
′

kλ ) |ν, s〉+ H.c.,

= −ie2
∑
ν′s′

∑
λ

∫
d3k

√
−eB0

2

(
1

2m2ω
− eB0

2m3ω2
(n− n′ + s− s′) +O

(
B0

m4

))
× 〈ν, s| b†Rf

ρ
kλ

(−) |ν ′, s′〉 〈ν ′, s′|σ · (∇× f∗ρ
′

kλ ) |ν, s〉+ H.c. . (5.50)

Since the multipole operator either preserves or reduces order in B0, it can never cause

the first term of (5.50) to become linear in B0, so this term is discarded. Equation (5.37)

tells us that the second term can become linear in B0 if the ρ = 1 (‘quadrupole’) term

in the multipole operator is present in one of the multipole-expanded mode functions

entering into the matrix element, so we have a contribution for either {ρ = 1, ρ′ = 0} or

{ρ = 0, ρ = 1}. For ρ+ρ′ ≥ 2, eq. (5.37) tells us that contribution of the multipole operator

is to reduce order in B0 by at least a factor of B0, so the first and second terms of (5.50) do

not contribute, and no other terms contribute because they are order 1/m4 or higher. First

considering the case ρ = 1, ρ′ = 0, we have for the second term in ∆Eint
q− ≡ ∆Eint

q−(ρ, ρ′)

∆Eint
q−(1, 0) =ie2

∑
ν′s′

∑
λ

∫
d3k

√
−eB0

2

eB0

2m3ω2
(ν − ν ′ + s− s′)

× 〈ν, s| b†R(r− r0) · ∇fkλ(−) |ν ′, s′〉 〈ν ′, s′|σ · (∇× f∗kλ) |ν, s〉+ H.c. (5.51)

The matrix elements found in Appendix B.1 tell us that 〈ν, s| b†R(r− r0) · ∇fkλ(−) |ν ′, s′〉 is

only non-zero when ν = ν ′ and s = s′. However, whole term is proportional to ν−ν ′+s−s′

so integral (5.51) does not contribute to the magnetic moment.



Chapter 5. Magnetic moment 71

Now considering ρ = 0, ρ′ = 1, we have

∆Eint
q−(0, 1) = ie2

∑
ν′s′

∑
λ

∫
d3k

√
−eB0

2

eB0

2m3ω2
(ν − ν ′ + s− s′) 〈ν, s| a†Rfkλ

(−) |ν ′, s′〉

× 〈ν ′, s′| (r− r0) · ∇(σ · (∇× f∗kλ)) |ν, s〉+ H.c.

The matrix element is only non-zero when ν ′ = ν−1 and s = s′. The prefactor (ν−ν ′+s−s′)

is 6= 0 at these values, so on substitution of the explicit matrix elements (B.5) we have a

contribution

∆Eint
µ,q−(0, 1) = ie2

∑
λ

∫
d3k

eB0

4m3ω2
νfkλ

(−)

(
∂

∂x
+ i

∂

∂y

)
(σ · (∇× f∗kλ)) + H.c. , (5.52)

where the subscript µ reflects the fact that this is an energy shift from which the magnetic

moment can be directly extracted. Since we are only interested in terms proportional to

σz we can let

σ · (∇× f∗kλ)→ σz

(
∂

∂x
f∗kλ,y −

∂

∂y
f∗kλ,x

)
, (5.53)

which means eq. (5.52) can be expressed as

∆Eint
µ,q−(0, 1) =

e3σzB0

4m3
ν
∑
λ

∫
d3k

1

ω2
(fy + ifx)

×
(
∂2

∂x2
f∗kλ,y −

∂2

∂x∂y
f∗kλ,x + i

∂2

∂x∂y
f∗kλ,y − i

∂2

∂y2
f∗kλ,x

)
+ H.c. (5.54)

The simplification of ∆Eint
q+ works in exactly the same way, the result is

∆Eint
µ,q+(0, 1) =− e3σzB0

4m3
(ν + 1)

∑
λ

∫
d3k

1

ω2
(fy − ifx)

×
(
∂2

∂x2
f∗kλ,y −

∂2

∂x∂y
f∗kλ,x − i

∂2

∂x∂y
f∗kλ,y + i

∂2

∂y2
f∗kλ,x

)
+ H.c. (5.55)

Further simplification can be achieved by noticing that, for plane wave mode functions,

some terms are zero under
∫
d3k. The mode functions get their vector character from the

polarisation vectors specified in eq. (A.1), writing these in spherical polar co-ordinates

defined by kx = k sin θ cosϕ, ky = k sin θ sinϕ

eTE =


sinϕ

− cosϕ

0

 , eTM = cos θ


cosϕ

− sinϕ

− tan θ

 , (5.56)

and using an integral identity for integers m and n∫ 2π

0
dϕ sinn ϕ cosm ϕ = 0 if either n or m are are odd, (5.57)
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it is easy to show that the only terms surviving are those where the sum of the number

of factors of f
(∗)
kλ,x and ∂

∂x is even3. In light of this, the sum of ∆Eint
µ,q = ∆Eint

µ,q−(0, 1) +

∆Eint
µ,q+(0, 1) can be simplified to

∆Eint
µ,q = −e

3σzB0

4m3

∑
λ

∫
d3k

1

ω2

(
fkλ,y

∂2f∗kλ,y
∂x2

− fkλ,y
∂2f∗kλ,x
∂x∂y

+ fkλ,x
∂2f∗kλ,x
∂y2

− fkλ,x
∂2f∗kλ,y
∂x∂y

)
+ H.c. (5.58)

where it is worth noting that the result is independent of the Landau level ν due to a

cancellation between eqs (5.54) and (5.55).

Moving on to ∆Eint
s as specified in eq. (5.48c)

∆Eint
s = e2

∑
ν′s′

∑
λ

∫
d3k

(Eν′ +m)2

EDee
| 〈ν, s| (σ · (∇× fρkλ)) |ν ′, s′〉 |2 , (5.59)

and expanding for large m, we find

∆Eint
s = e2

∑
ν′s′

∑
λ

∫
d3k

[
− 1

4m2ω
+
eB0(n− n′ + s− s′)

4m3ω2
+O

(
B0

m4

)]

× | 〈ν, s| (σ · (∇× fρkλ)) |ν ′, s′〉 |2. (5.60)

Since the multipole operator can only reduce order in B0, the first term of (5.60) cannot

be proportional to B0. Thus, the only contribution is from the second term, and only for

ρ = 0 = ρ′. The factor of (ν − ν ′ + s− s′) removes any ν ′ = ν, s′ = s contribution, and the

fact that the operator σ · (∇× fρkλ) in the dipole approximation cannot change ν removes

any ν ′ 6= ν terms. So the only contribution is from the second term in eq. (5.60) with

ν = ν ′, s 6= s′.

∆Eint
µ,s =

e3B0

4m3
(s− s′)

∑
s′

∑
λ

∫
d3k

1

ω2
| 〈s|σ · (∇× fkλ) |s′〉 |2 . (5.61)

Since we necessarily have s 6= s′, this part of the shift is due to spin flips (hence the

label ‘s’), which makes physical sense as the curl of the mode function corresponds to the

quantized magnetic field (not to be confused with the applied classical field B0). Using

eq. (5.29) we can rewrite the operator as:

σ · (∇× fkλ) =
1

2

[
σ(−)(∇× fkλ)(+) + σ(+)(∇× fkλ)(−)

]
+ σzfkλ,z , (5.62)

with the spin operators having non-zero matrix elements

〈s′|σ(+) |s〉 = 2 for s = −1/2, (5.63a)

〈s′|σ(−) |s〉 = 2 for s = +1/2. (5.63b)

3This of course implies that the sum of the number of factors of fy and ∂
∂y

is also even since there are

four such factors per term.
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Substituting these into eq. (5.61) gives for s′ = 1/2:

∆Eint
µ,s(s

′ = 1/2) = −e
3B0

4m3

∑
λ

∫
d3k

1

ω2
|(∇× fkλ)(+)|2, (5.64)

and for s′ = −1/2:

∆Eint
µ,s(s

′ = −1/2) =
e3B0

4m3

∑
λ

∫
d3k

1

ω2
|(∇× fkλ)(−)|2 . (5.65)

So, defining ∆Eint
µ,s(σz) = σz

2

[
∆Eint

µ,s(s
′ = −1/2)−∆Eint

µ,s(s
′ = 1/2)

]
we arrive at

∆Eint
µ,s(σz) =

e3σzB0

8m3

∑
λ

∫
d3k

1

ω2

[
|(∇× fkλ)(−)|2 + |(∇× fkλ)(+)|2

]
. (5.66)

Using the definitions (5.29), this finally reduces to4 :

∆Eint
µ,s(σz) =

e3σzB0

8m3

∑
λ

∫
d3k

1

ω2

[
|(∇× fkλ)x|

2 + |(∇× fkλ)y|
2
]
. (5.67)

5.3.3 Particle-antiparticle transitions

We begin by restating the term for particle-antiparticle transitions as given by eq. (5.42b)

Heē = (σ ·π)(σ · fρkλ)(σ ·π) + (Eν′ −m)(Eν +m)(σ · fρkλ) . (5.68)

This expression contains a π operator acting upon another π operator, so contains con-

siderable hidden structure stemming from the fact that the canonical momentum π is a

function of the physical momentum p, whose quantum-mechanical operator is a derivative.

Using the properties of the Pauli matrices and a permutation tensor identity, the first term

can be written component-wise as

(σ ·π)(σ · fρ)(σ ·π) = (δijσk + iεijk − δikσj + δjkσi)πifjπk , (5.69)

where the subscript kλ has been dropped from the mode function for notational convenience.

Using the definition (5.19) of π and the commutator [∇i, fj ] = (∇ifj) one can derive

πifjπk = −i(∇ifj)πk + fjπiπk . (5.70)

Substituting this into (5.69) and using the Coulomb gauge condition ∇ · fρ = 0 gives

(σ ·π)(σ · fρ)(σ ·π) =(fρ ·π)(σ ·π)− (σ · f)π2 + fj(σ ·π)πj − ifρ · (π × π)

+ i(∇ifj)σjπi − iσi∇ifjπj + (∇× fρ) ·π . (5.71)

4Energy shifts depend on the state being spin-up or spin-down. Here and throughout we abbreviate this

dependence by writing energy shifts as proportional to the Pauli spin matrix σz which should be understood

as a shorthand for 〈s|σz |s〉.
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Some terms in (5.71) can be simplified further. Using

[πi, πj ] = ie(∇iA0j −∇jA0i),

we can simplify the third term of eq. (5.71) to

fj(σiπi)πj = ieσ · (fρ ×B0) + (fρ ·π)(σ ·π) . (5.72)

Again using the definition (5.19) of π, the fourth term of eq. (5.71) can be simplified to:

(π × π) = ieB0. (5.73)

We can also combine the first two terms in the second line of (5.71)

(∇ifj)σjπi − iσi∇ifjπj = σ × (∇× fρ) ·π. (5.74)

Inserting the simplifications (5.72), (5.73) and (5.74) into eq. (5.71) finally gives

(σ ·π)(σ · fρkλ)(σ ·π) = 2(fρ ·π)(σ ·π)− (σ · fρ)π2 + ieσ · (fρ ×B0) + e(fρ ·B0)

+ i[σ × (∇× fρ) ·π] + (∇× fρ) ·π . (5.75)

The terms of the form Q ·π can be rewritten using eq. (5.29) and the relations b̂Rb̂
†
R =

1 + b̂†Rb̂R and fρkλ
(−)
σ(+) + fρkλ

(+)
σ(−) = 2(fxσx + fyσy). The first term becomes:

(fρkλ ·π)(σ ·π) = −b̂†Rb̂
†
Rβ

2
0f

ρ
kλ

(−)
σ(−) − b̂Rb̂Rβ

2
0f

ρ
kλ

(+)
σ(+)

+ 2b̂†Rb̂Rβ
2
0(fxσx + fyσy) + β2

0f
ρ
kλ

(+)
σ(−) + fkλ,zσzp

2
z

+ ib̂†Rβ0pz(σzf
ρ
kλ

(−)
+ fkλ,zσ

(−)) + ib̂Rβ0pz(−σzfρkλ
(+) − fkλ,zσ(+)), (5.76)

and the two terms in the second line of eq. (5.75) become

(∇× fρkλ) ·π = iβ0(∇× fρkλ)
(−)
b̂†R − iβ0(∇× fρkλ)

(+)
b̂R + (∇× fρkλ)zpz, (5.77)

i[σ × (∇× fρkλ)] ·π = −β0[σ × (∇× fρkλ)]
(−)
b̂†R + β0[σ × (∇× fρkλ)]

(+)
b̂R

+ i[σ × (∇× fρkλ)]zpz . (5.78)

These simplifications allow Heē to be written in the form

Heē = H(++) +H(−−) +H(+) +H(−) +H(+−) +HE , (5.79)
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where

H(++) = −2b̂†Rb̂
†
Rβ

2
0f

ρ
kλ

(−)
σ(−), (5.80a)

H(−−) = −2b̂Rb̂Rβ
2
0f

ρ
kλ

(+)
σ(+), (5.80b)

H(+) = b̂†Rβ0

{
i(∇× fρkλ)

(−) − [σ × (∇× fρkλ)]
(−)
}
, (5.80c)

H(−) = b̂Rβ0

{
−i(∇× fρkλ)

(+)
+ [σ × (∇× fρkλ)]

(+)
}
, (5.80d)

H(+−) = 4β2
0 b̂
†
Rb̂R(fxσx + fyσy) + 2β2

0f
ρ
kλ

(+)
σ(−)

− (σ · fρkλ)π2 + efρkλ ·B0 + ieσ · (fρkλ ×B0), (5.80e)

HE = (σ · fρkλ)(Eν′ −m)(Eν +m), (5.80f)

where pz has been set to zero for the same reasons as detailed just after (5.49). Since we

are considering an intermediate antiparticle state, we must take Eν′ → −Eν′ in the energy

denominator, so that

EDeē = 4(Eν − Eν′ − ω)Eν(Eν +m)Eν′(Eν′ −m)] = O(m5) . (5.81)

Noting that eqs. (5.80a)-(5.80e) do not contain any factors of m, the fact that EDeē = O(m5)

means that the only contributions to

∆Eint
eē = e2

∑
ν′s′

∑
λ

∫
d3k
| 〈ν, s|Heē |ν ′, s′〉 |2

EDeē
. (5.82)

with the correct order in m are those that include HE , as given by eq. (5.80f), meaning

that the only contributions to the magnetic moment must come from

∆Eint
eē,E2 = e2

∑
ν′s′

∑
λ

∫
d3k
| 〈ν, s|HE |ν ′, s′〉 |2

EDeē
, (5.83)

and

∆Eint
eē,E± = e2

∑
ν′s′

∑
λ

∫
d3k
| 〈ν, s|HE |ν ′, s′〉 〈ν ′, s′|H(+−) |ν, s〉

EDeē
+ H.c. (5.84)

On expansion for large m, the first of these becomes

∆Eint
eē,E2 = e2

∑
ν′s′

∑
λ

∫
d3k

[
1

2m
+

ω

4m2
+
eB0(1 + ν + ν ′ + s+ s′)

2m3
+

ω2

8m3
+O

(
1

m4

)]

× 〈ν, s|σ · fρkλ |ν
′, s′〉 〈ν ′, s′|σ · fρ∗kλ |ν, s〉 .

(5.85)

Eq. (5.37) tells us that we must have ρ = 0 = ρ′, and that only the third term of the

expansion contributes to the magnetic moment. The lack of higher multipole powers means
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we can set ν = ν ′ since, in the dipole approximation, the operator fρkλ cannot change the

Landau level. Using eq. (5.29) we write this as

∆Eint
eē,E2 =

e3B0

4m3

∑
s′

∑
λ

∫
d3k(1+2ν+s+s′)| 〈s|σ(−)fkλ

(+) +σ(+)fkλ
(−) +2σzfkλ,z |s′〉 |2,

(5.86)

The spin matrix elements given in eqs. (5.63) can be used to evaluate the contributions for

s′ = ±1/2.

∆Eint
eē,E2(s′ = +1/2) =

e3B0

4m3

∑
λ

∫
d3k

[
(1 + 2ν)|fkλ(−)|2 + (2 + 2ν)|fkλ,z|2

]
, (5.87a)

∆Eint
eē,E2(s′ = −1/2) =

e3B0

4m3

∑
λ

∫
d3k

[
(1 + 2ν)|fkλ(+)|2 + 2ν|fkλ,z|2

]
. (5.87b)

Using the same reasoning that took the spin-up and spin-down contributions (5.64) and

(5.65) to the corresponding energy shift (5.66), we have

∆Eint
eē,E2 =

e3σzB0

8m3

∑
λ

∫
d3k

[
(1 + 2ν)(|fkλ(−)|2 − |fkλ(+)|2) + 2|fkλ,z|2

]
. (5.88)

Using definition (5.29) and the fact that some terms vanish under
∫
d3k [see discussion

between eqs. (5.55) and (5.58)], this simplifies to

∆Eint
eē,E2 =

e3σzB0

2m3

∑
λ

∫
d3k|fkλ,z|2 . (5.89)

Now considering ∆Eint
eē,E±, we have from have eq. (5.84)

∆Eint
eē,E± =e2

∑
ν′s′

∑
λ

∫
d3k

[
− 1

8m3
+O(1/m4)

]{
〈ν, s| 4β2

0 b̂
†
Rb̂R(fxσx + fyσy)

+ 2β2
0f

ρ
kλ

(+)
σ(−) − (σ · fρkλ)π2 + efρkλ ·B0 + ieσ · (fρkλ ×B0) |ν ′, s′〉

× 〈ν ′, s′|σ · fρ∗kλ |ν, s〉
}

+ H.c. (5.90)

Appeal to eq. (5.37) shows us that we must have ρ = 0 = ρ′ in order for there to be any

magnetic moment contributions. Once the π operators in eq. (5.90) have been applied, the

result can be simplified considerably by using eq. (5.29) and the fact that B0 = B0ẑ. The

result is:

∆Eint
eē,E± =

β2
0e

2

4m3

∑
ν′s′

∑
λ

∫
d3k

{
〈ν, s|

[
(2ν ′ + 1)σzfkλ,z + fkλ,z

]
|ν ′, s′〉

× 〈ν ′, s′| 1
2

[
σ(−)f (+) + σ(+)f (−)

]∗
+ σzf

∗
kλ,z |ν, s〉

}
+ H.c. (5.91)

The only non-zero contribution arises for ν = ν ′ and s = s′

∆Eint
eē,E± =

β2
0e

2

4m3

∑
λ

∫
d3k
[
(2ν + 1)σzfkλ,z + fkλ,z

]
σzf

∗
kλ,z + H.c. (5.92)
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Since σzσz is equal to a unit matrix, the only spin-dependent term from above is:

∆Eint
eē,E± =

β2
0e

2

4m3

∑
λ

∫
d3kσz|fkλ,z|2 + H.c. (5.93)

giving finally

∆Eint
eē,E± = −e

3B0

4m3
σz
∑
λ

∫
d3k|fkλ,z|2 . (5.94)

The sum of this and eq. (5.89) gives the final answer for the particle-antiparticle shift:

∆Eint
eē =

e3B0

4m3
σz
∑
λ

∫
d3k|fkλ,z|2 . (5.95)

5.3.4 Summary

The sum of eqs. (5.58), (5.67) and (5.95) yields the energy shift of an electron coupled to

a quantized electromagnetic field described through mode functions fkλ. The magnetic

moment shift ∆µ⊥ for B0 normal to the interface is extracted from this via ∆E =

−∆µ⊥(σzB0). The result is:

∆µ⊥ = − e3

4m3

∑
λ

∫
d3k

[
|fkλ,z|2 +

|(∇× fkλ)x|2

ω2
+
|(∇× fkλ)y|2

ω2

+
1

ω2

(
fkλ,x

∂2f∗kλ,y
∂x∂y

+ fkλ,y
∂2f∗kλ,x
∂x∂y

− fkλ,y
∂2f∗kλ,y
∂x2

− fkλ,x
∂2f∗kλ,x
∂y2

+ H.c.

)]
. (5.96)

Some of the terms may be assigned a physical meaning as follows. The terms containing

the curl operator originate from the magnetic part of the quantized field inducing a change

in the electron’s spin state, while the terms containing derivatives are shifts induced by

the spatial variation of the quantized field across the cyclotron orbit of the electron.

We note that our derivation and the resulting eq. (5.96) can of course not be used to

calculate the anomalous magnetic moment in free space. While one could obtain a crude an

estimate by cutting off the integral over photon frequencies at ω ∼ m, which would give the

correct order of magnitude e3/m, a correct calculation would require second-quantization

of the electron, not just the photon.

Finally, we note that the corresponding shift ∆µ‖ for B0 directed parallel to the

interface can be obtained from the above by cycling indices (i.e. rotating the surface). The

modes for the non-dispersive surface shown in eq. (3.16) or those for the plasma surface

shown in eqs. (3.50) and (3.32) can now be used directly in this equation. While this looks

a formidable task, we shall see in the next section that analytic continuation in the kz plane

along the lines of that used in Chapter 4 allows one to evaluate the integrals relatively

easily, and furthermore that this analytic continuation provides a unique perspective on

the physics of the vacuum field near an interface.
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5.4 Calculation of shift

5.4.1 Non-dispersive dielectric

We are now ready to substitute the modes (3.16) into the magnetic moment shift (5.96).

Before doing this, we make a few simplifications to make the calculation shorter. Firstly,

our system is xy symmetric, so we can freely change x↔ y in any particular term. Secondly,

the contributions of the terms in the second line of (5.96) turn out to be purely real, so the

effect of adding the Hermitian conjugate is just to multiply these terms by two. Making

these simplifications, we have

∆µ⊥ = − e3

4m3

∑
λ

∫
d3k

[
|fkλ,z|2 +2

|(∇× fkλ)x|2

ω2
+

4

ω2

(
fkλ,x

∂2f∗kλ,y
∂x∂y

− fkλ,x
∂2f∗kλ,x
∂y2

)]
.

(5.97)

This means we have, in principle, eight integrals to do (the four terms above for each of the

two polarizations). This is in contrast to the mass shift calculated in Chapter 4 where we

just had one (since the TE polarization dropped out for the case considered). In appendix

A.3, we consider each of these terms and show that the method we used in section 4.2.1 to

determine the mass shift means the contribution of each term can be completely described

by a very simple function of the wave vector5. Using the functions listed in appendix

A.3, after some algebra we find for both components of the magnetic moment shift near a

non-dispersive surface

∆µnondisp
⊥ = − e3

32π2m3

∫ ∞
0

dk‖k‖

∫
C
dkz

1

k3

[ (
2k2
‖ − k

2
z

)
RLk,TE(n2)

+
(

2k2
‖ + k2

z

)
RLk,TM(n2)

]
e2ikzz, (5.98a)

∆µnondisp
‖ = − e3

32π2m3

∫ ∞
0

dk‖k‖

∫
C
dkz

1

2k3

[ (
3k2
‖ + 2k2

z

)
RLk,TE(n2)

+
(

3k2
‖ − 2k2

z

)
RLk,TM(n2)

]
e2ikzz, (5.98b)

where the angular integration in the polar co-ordinate system {kx = k‖ cosφ, ky = k‖ sinφ}

has been carried out immediately, and the curve C is that shown in figure 5.4. The shift

(5.98b) for B0 directed parallel to the interface was doing by cycling indices in (5.96). We

note in particular that since the calculation that led to these exactly follows the method

shown in section 4.2.1, eqs. (5.98) are already the renormalized magnetic moment shifts6

5And, as we shall see, the set of functions shown in table A.1 of appendix A.3 provides a useful point of

contact with the noise current approach considered in Chapter 7
6Throughout this chapter, Chapter 6 and Chapter 7 we will not explicitly include the subscript ‘ren’

for notational simplicity. It is to be understood that all magnetic moment shifts from here onwards are

renormalized.
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C

C’

-

-

Figure 5.4: Integration paths in the complex kz plane to be used for

calculation of the magnetic moment shift near a non-dispersive surface of

refractive index n.

obtained by subtracting the free-space magnetic moment.

The odd power of k =
√
k2
z + k2

‖ in the denominators of the integrands of eqs. (5.98)

means we have branch points in the complex kz plane at kz = ±ik‖ for both expressions.

We choose to place the corresponding branch cuts in the regions |kz| > k‖, as shown in

figure 5.4. This choice is made so that we may do an analytic continuation of the integrals

in the same fashion as for the mass shift described in Chapter 4.

In section 4.2.1 we evaluated the integrals for the mass shift by deforming C into the

lower complex plane and picking up a double pole at kz = −ik‖. The presence of the

branch cut in the integrand of (5.98a) complicates the analogous process for the magnetic

moment matters. As a first naive approach we simply deform the contour C to C ′, giving

∆µnondisp
⊥ = − e3

32π2m3

∫ ∞
0

dk‖k‖

∫
C′
dkz

1

k3

[ (
2k2
‖ − k

2
z

)
RLk,TE(n2)

+
(

2k2
‖ + k2

z

)
RLk,TM(n2)

]
e2ikzz, (5.99a)

∆µnondisp
‖ = − e3

32π2m3

∫ ∞
0

dk‖k‖

∫
C′
dkz

1

2k3

[ (
3k2
‖ + 2k2

z

)
RLk,TE(n2)

+
(

3k2
‖ − 2k2

z

)
RLk,TM(n2)

]
e2ikzz, (5.99b)

as shown in figure 5.4. However, the evaluation of the integral over the vanishingly small

circle around kz = −ik‖ proves technically awkward, so we take a different approach.

Initially specializing to ∆µnondisp
⊥ , we subtract the point kz = −ik‖ from the reflection

coefficients and evaluate its contribution separately via

∆µnondisp
⊥ = ∆µnondisp

⊥,main + ∆µsep
⊥,main , (5.100)
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with

∆µnondisp
⊥,main =− e3

4m3

1

(2π)2

∫ ∞
0

dk‖k‖

∫
C′
dkz

1

2k3

×
{(

2k2
‖ − k

2
z

) [
RLk,TE(n2)−RLk,TE(n2)(kz → −ik‖)

]
+
(

2k2
‖ + k2

z

) [
RLk,TM(n2)−RLk,TM(n2)(kz → −ik‖)

]}
e2ikzz , (5.101a)

∆µnondisp
⊥,sep =− e3

4m3

1

(2π)2

∫ ∞
0

dk‖k‖

∫
C′
dkz

1

2k3

{(
2k2
‖ − k

2
z

)
RLk,TE(n2)(kz → −ik‖)

+
(

2k2
‖ + k2

z

)
RLk,TM(n2)(kz → −ik‖)

}
e2ikzz . (5.101b)

Using the explicit form of the reflection coefficients (A.5), we have for the non-dispersive

dielectric

RLk,TE(n2)(kz → −ik‖) = 0, RLk,TM(n2)(kz → −ik‖) =
n2 − 1

n2 + 1
, (5.102)

giving

∆µnondisp
⊥,sep = − e3

4m3

1

(2π)2

n2 − 1

n2 + 1

∫ ∞
0
dk‖k‖

∫
C′
dkz

1

2k3

(
2k2
‖ + k2

z

)
e2ikzz . (5.103)

The branch cut between kz = ±ik‖
√
n2−1
n was present due to the appearance of kdz in the

reflection coefficient. Since this has been eliminated we can now deform the contour C ′

appearing in eq. (5.103) to be straight along the real kz axis. This allows the integral to

be written as

∆µnondisp
⊥,sep = − e3

4m3

1

(2π)2

n2 − 1

n2 + 1

∫ ∞
0
dk‖k‖

∫ ∞
0

dkz
1

k3

(
2k2
‖ + k2

z

)
cos(2kzz) , (5.104)

where the parity properties of the integrand have been used. The integral can be evaluated

exactly through Bessel functions (see sections 8.432 and 8.561 of [50]) provided that one

does the kz integral first, the result is

∆µnondisp
⊥,sep = − e3

16π2m3

n2 − 1

n2 + 1

3

4z2
. (5.105)

Turning our attention to the main integral (5.101a), the first task is to investigate how

the square root function behaves on either side of the branch cut in the lower complex kz

plane. Writing kz = −iκ (κ > 0), one can show that the following holds∫
C′
dkz
√
k2
z + k2

‖ = −2

∫ ∞
k‖

dκ
√
κ2 − k2

‖ +

∫
circle

dkz
√
k2
z + k2

‖ , (5.106)

with the integral over circle corresponding to that around the circular path around kz = −ik‖
shown in fig. 5.4. The fact that we have subtracted the singularity at kz = −ik‖ means
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that on restoration of the full integrand the second term of (5.106) is zero. Using this and

eqs. (5.102) we then have

∆µnondisp
⊥,main =

e3

4m3

1

(2π)2

∫ ∞
0

dk‖k‖

∫ ∞
k‖

dκ
1

(κ2 − k2
‖)

3/2

{(
2k2
‖+κ

2
)
RLk,TE(n2)

+
(

2k2
‖ − κ

2
)[
RLk,TM(n2)− n2 − 1

n2 + 1

]}
e2κz .

(5.107)

Defining a complex frequency ξ = −iω and writing κ2 = k2
‖ + ξ2 in polar co-ordinates

{ξ = κ cosφ, k‖ = κ sinφ}, this can be manipulated to

∆µnondisp
⊥,main =

e3

16π2m3

∫ ∞
0

dξ ξ

∫ ∞
1
dη

{(
3η2 − 2

)
RLk,TE(n2)

+
(
η2 − 2

)(
RLk,TM(n2)− n2 − 1

n2 + 1

)}
e2ξηz , (5.108)

where η = kz/ω is the complex angle of incidence of radiation upon the surface. This

form is particularly useful because, for isotropic media, the reflection coefficients depend

only on ξ. The subtracted term is, in these variables, given by the two-dimensional limit

{η →∞, ξ → 0} of the TM reflection coefficient, so in order for the above to hold these

two limits must commute in both7 reflection coefficients. This turns out to be true for all

but one case, which we shall discuss in section 5.4.2. Combining this with the result of the

separate integral (5.105), we reach the final result for the magnetic moment shift when the

applied magnetic field B0 is directed perpendicular to the interface

∆µnondisp
⊥ =

e3

16π2m3

{∫ ∞
0

dξ ξ

∫ ∞
1

dη

[ (
3η2 − 2

)
RLk,TE(n2)

+
(
η2 − 2

)(
RLk,TM(n2)− n2 − 1

n2 + 1

)]
e2ξηz − n2 − 1

n2 + 1

3

4z2

}
. (5.109)

An identical calculation beginning from (5.99b) yields the result for the situation when the

magnetic field is directed parallel to the interface:

∆µnondisp
‖ =

e3

16π2m3

{
1

2

∫ ∞
0

dξ ξ

∫ ∞
1

dη

[ (
η2 − 3

)
RLk,TE(n2)

+
(
5η2 − 3

)(
RLk,TM(n2)− n2 − 1

n2 + 1

)]
e2ξηz − n2 − 1

n2 + 1

1

z2

}
. (5.110)

7See eq. (5.101a) – the TE reflection coefficient also has the point kz = −ik‖ subtracted from it. We

could have chosen to transform RLk,TE(n2) to the new variables ξ and η, in which case we would have had

to subtract the {η → ∞, ξ → 0} limit. In the case of the non-dispersive reflection coefficient the limits

commute and the value of the limit is zero so eq. (5.108) still stands, but this will not always be the case

when we consider other models of the surface.
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The non-dispersive reflection coefficients in the integration variables ξ and η are

RLk,TE(n2) =
η −

√
(n2 − 1) + η2

η +
√

(n2 − 1) + η2
, RLk,TM(n2) =

ηn2 −
√

(n2 − 1) + η2

ηn2 +
√

(n2 − 1) + η2
. (5.111)

which is an advantageous form since these are independent of ξ. The integrals (5.109) and

(5.110) can be carried out exactly. Evaluating them using Mathematica we find

∆µnondisp
⊥ =− e3

32π2m3z2

1

(n4 − 1)3/2

[√
n4 − 1(5− 2n+ n2 − 2n3 − 3n4 + n5)

− n4
√
n2 − 1

(
1 + 2n2

)
arctanh

(
(n− 1)

√
1 + n2

1 + (n− 1)n

)

+ 2
(
n2 − 1

) (
1 + n2

)5/2
ln
(
n+

√
n2 − 1

)]
, (5.112a)

∆µnondisp
‖ =− e3

192π2m3z2

1

(n4 − 1)3/2

[√
n4 − 1(26− 9n+ 8n2 − 23n3 − 3n4 + n5)

+ 3n4
√
n2 − 1

(
2− 3n2

)
arctanh

(
(n− 1)

√
1 + n2

1 + (n− 1)n

)

+ 9
(
n2 − 1

) (
1 + n2

)5/2
ln
(
n+

√
n2 − 1

)]
. (5.112b)

All previous literature on the surface dependence of the magnetic moment uses the

idea of a ‘perfect reflector’ (n → ∞) the describe the surface [39]. So, as a consistency

check with these we take a large n expansion of our results (5.112), finding

∆µnondisp
⊥ = − e

2

4π

e

2m

[
n

4πm2z2
− 1

4πm2z2
+O(1/n)

]
, (5.113a)

∆µnondisp
‖ = − e

2

4π

e

2m

[
n

24πm2z2
+

1

4πm2z2
+O(1/n)

]
. (5.113b)

We have leading terms which rise linearly in n. This appears to be unphysical, as it

would suggest that the magnetic moment could be increased arbitrarily by increasing the

refractive index n of the surface. However, as we shall explain in section 5.4.3, this apparent

problem is an inevitable consequence of the unrealistic assumption of a dispersionless

medium. A curious observation to note is that the next-to-leading terms independent of n

in eqs. (5.113), if taken on their own, do in fact reproduce the results of the perfect-reflector

case, which are the highlighted terms in fig. 5.38.

To track down the source of the discrepancies between the results of perfect reflector

model and those of the large refractive-index limit of the non-dispersive model, we use a

similar approach to that taken in section 4.2.1 and evaluate the integrals with the limit

8The extra factor of 4π arises from ref. [39]’s use of CGS units.
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n→∞ taken before the limit kz → −ik‖. Going back to eq. (5.98a) and taking the n→∞

limits of the reflection coefficients, we have for the perpendicular component of the shift

∆µPM
⊥ = − e3

4m3

1

(2π)2

∫ ∞
0

dk‖k‖

∫
C
dkz

k2
z

k3
e2ikzz . (5.114)

Just as in eq. (5.103), the branch cut due to the presence of kdz in the reflection coefficients

has now been eliminated, so we may deform the contour to run along the real kz axis.

Thus the shift is given by

∆µPM
⊥ = − e3

4m3

2

(2π)2

∫ ∞
0

dk‖k‖

∫ ∞
0

dkz
k2
z

k3
cos(2kzz) . (5.115)

The integral is evaluated in the same way as eq. (5.104). An identical calculation yields

∆µPM
‖ , the results are

∆µPM
⊥ =

e2

4π

e

2m

1

4πm2z2
= −∆µPM

‖ . (5.116)

This reproduces the next-to-leading terms in eqs. (5.113a) and (5.113b), and the results of

[39] highlighted in fig. 5.3. We emphasise that this does not agree with the result if the

n→∞ limit is taken after the limit kz → −ik‖.

5.4.2 Plasma

In this section we will calculate the shift in the magnetic moment of an electron that is

localized near a plasma surface described by the model discussed in section 3.3. We neglect

the influence of the magnetic field upon the charge carriers inside the medium, which

is justified as we ultimately consider the weak-field limit. Just as in the corresponding

calculation for the mass shift found in section 4.2.2, we begin by splitting the magnetic

moment shift near a plasma surface ∆µplasma
⊥ into contributions from the bulk (TE and

TM) modes and those from the surface plasmon

∆µplasma
⊥ = ∆µbulk

⊥ + ∆µsp
⊥ . (5.117)

Substituting the surface plasmon modes (3.50) into the expression for the magnetic moment

shift (5.96), we find for the contribution of the surface plasmon

∆µsp
⊥ = − e3

8πm3

∫ ∞
0

dk‖k‖
2k2
‖ − κ

2

p(k‖)κ2
e2κz, (5.118a)

∆µsp
‖ = − e3

8πm3

∫ ∞
0

dk‖k‖
3k2
‖ + 2κ2

2p(k‖)κ2
e2κz, (5.118b)

where the second equation follows from cycling Cartesian co-ordinates in (5.96). The

contribution from TE and TM modes is found by substituting the modes (3.32) into the
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-

Figure 5.5: Integration paths in the complex kz plane to be used for

calculation of the magnetic moment shift near a plasma surface.

magnetic moment shift in terms of mode functions (5.96) and following an identical method

to that shown in section 5.4.1. The result is

∆µbulk
⊥ = − e3

4m3

1

(2π)2

∫ ∞
0

dk‖k‖

∫
C
dkz

1

2k3

[ (
2k2
‖ − k

2
z

)
RLk,TE(εp)

+
(

2k2
‖ + k2

z

)
RLk,TM(εp)

]
e2ikzz , (5.119)

where the contour C runs under the cut from −ωp to ωp, as shown in fig. 5.5. Following

the approach we took for the non-dispersive dielectric, the contour C shown in fig. 5.5

is deformed to C ′ running along the cut and around the point kz = −ik‖, however this

time we pick up a pole contribution along the way. Splitting the result into ‘cut’ and ‘pole’

contributions

∆µbulk
⊥ = ∆µbulk

⊥cut + ∆µbulk
⊥pole . (5.120)

The pole is the same one we already discussed in section 4.2.2, and whose residue is shown

in eq. (4.59). Thus we may use the residue theorem to find

∆µbulk
⊥pole = − e3

4m3

1

(2π)

∫ ∞
0

dk‖k‖
1

2ω3
sp

[(
2k2
‖ − κ

2
)
S
]
e2κz , (5.121)

where S is as defined in eq. (4.59). The contribution along the cut is

∆µbulk
⊥cut = − e3

4m3

1

(2π)2

∫ ∞
0

dk‖k‖

∫
C′
dkz

1

2k3

[ (
2k2
‖ − k

2
z

)
RLk,TE(εp)

+
(

2k2
‖ + k2

z

)
RLk,TM(εp)

]
e2ikzz , (5.122)

with C ′ as shown in fig. (5.5). This, combined with the cut contribution (5.121) and the

surface plasmon contribution (5.118a) gives us the whole magnetic moment shift for a
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magnetic field directed perpendicular to the interface

∆µplasma
⊥ = ∆µbulk

⊥cut + ∆µbulk
⊥pole + ∆µsp

⊥ . (5.123)

Just as in the calculation for the mass shift in section 4.2.2, we find that the contribution

of the pole in the bulk modes cancels with the contribution of the surface plasmon mode:

∆µbulk
⊥pole + ∆µsp

⊥ = 0. This gives for the entire energy shift

∆µplasma
⊥ = ∆µbulk

⊥cut , (5.124)

finally giving via eq. (5.122),

∆µplasma
⊥ = − e3

32π2m3

∫ ∞
0

dk‖k‖

∫
C′
dkz

1

k3

[ (
2k2
‖ − k

2
z

)
RLk,TE(εp)

+
(

2k2
‖ + k2

z

)
RLk,TM(εp)

]
e2ikzz, (5.125a)

∆µplasma
‖ = − e3

32π2m3

∫ ∞
0

dk‖

∫
C′
dkz

k‖

2k3

[ (
3k2
‖ + 2k2

z

)
RLk,TE(εp)

+
(

3k2
‖ − 2k2

z

)
RLk,TM(εp)

]
e2ikzz, (5.125b)

where

RLk,TE(εp) =
kz −

√
k2
z − ω2

p

kz +
√
k2
z − ω2

p

, RLk,TM(εp) =

kz

(
1− ω2

p

k2z+k2‖

)
−
√
k2
z − ω2

p

kz

(
1− ω2

p

k2z+k2‖

)
+
√
k2
z − ω2

p

, (5.126)

and the result ∆µplasma
‖ for B0 directed parallel to the surface was obtained in an identical

way to ∆µplasma
⊥ . We note in particular that these can be obtained from the magnetic

moment shifts (5.99) for a non-dispersive surface by making the replacement n2 → εp.

The next step is to evaluate the integrals (5.125). In the non-dispersive calculation we

subtracted the point kz = −ik‖ from the reflection coefficients and evaluated its contribution

separately. In the final expression for our results (5.108) this manifested itself as the need

to take a two-dimensional limit of both reflection coefficients, with the condition that these

limits must commute. Writing the TE plasma reflection coefficient in terms of the variables

η and ξ defined immediately prior to (5.108), we find

RLk,TE(εp) =
ξη −

√
ω2
p + ηξ2

ξη +
√
ω2
p + ηξ2

. (5.127)

The limits η →∞ and ξ → 0 of this object do not commute – these were precisely the limits

on which the validity of equation (5.108) and the calculation preceding it were dependent.

This means that attempting to evaluate the TE part of eqs. (5.125) via our subtraction

method is not appropriate. Consequently, we use an alternative method to evaluate the
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TE contribution to the magnetic moment near a plasma surface. We emphasize that this

complication is a purely technical aspect of how we actually evaluate the integrals (5.125)

– this is not a demonstration of any violation of our observation that the results for the

plasma model can be obtained from the non-dispersive integrals simply by replacing the

dielectric function.

The TE reflection coefficient for plasma takes a particularly simple form so we proceed

to directly evaluate the TE term from eq. (5.119), in which the contour is directly along

the real axis. The term is

∆µplasma
⊥,TE = − e3

32π2ω2
pm

3

∫ ∞
0

dk‖

∫ ∞
−∞

dkz
k‖(2k

2
‖ − k

2
z)

(k2
‖ + k2

z)
3/2

(
2k2

z − ω2
p − 2kz

√
k2
z − ω2

p

)
e2ikzz,

(5.128)

where the reflection coefficient has been written out explicitly using eq. (5.126) and the

branch cut is placed between the branch points at ±ωp, as shown in fig. 5.5. Care must be

taken when evaluating this integral due to the physical constraint that sgn(kz) = sgn(kdz).

The order of integration matters – the integral is convergent only if the kz integration is

done first. To circumvent this restriction we introduce a cutoff Λ in the k‖ integral. This

improves the convergence of the double integral so that we are allowed to interchange the

order of integrations. The k‖ integral can then be calculated exactly and yields:

∆µplasma
⊥,TE = − e3

32π2ω2
pm

3
lim

Λ→∞

∫ ∞
−∞

dkz

×
[
(2Λ− 5|kz|)

(
2k2

z − ω2
p − 2kz

√
k2
z − ω2

p

)
e2ikzz +O(1/Λ)

]
. (5.129)

We first consider the term with the square root. For the contribution from the region

|kz| > ωp, we have

− e3

32π2ω2
pm

3

{∫ −ωp
−∞

dkz +

∫ ∞
ωp

dkz

}
(2Λ− 5|kz|)

(
−2kz

√
k2
z − ω2

p

)
e2ikzz . (5.130)

Noting that kz
√
k2
z − ω2

p is even in kz because of the physical constraint sgn(kz) =

sgn
√
k2
z − ω2

p, we can simplify this to

= − e3

16π2ω2
pm

3

∫ ∞
ωp

dkz cos(2kzz)(2Λ− 5|kz|)
(
−2kz

√
k2
z − ω2

p

)
. (5.131)

Next we consider the region |kz| < ωp, where kdz =
√
k2
z − ω2

p is imaginary. As shown

in fig. 5.5, the integration path runs underneath the cut, which means that the factor

kz
√
ω2
p − k2

z is now odd in kz. Applying the constraint sgn(kz) = sgn
√
k2
z − ω2

p to the

vicinity of kz ≈ ωp, we are directed to choosing the sign of the square root such that in
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the lower half-plane
√
k2
z − ω2

p = −i
√
ω2
p − k2

z . This leads to the integral analogous to

eq. (5.131) but from the region |kz| < ωp as

− e3

16π2ω2
pm

3

∫ ωp

0
dkz (2Λ− 5kz)

(
−2kz

√
ω2
p − k2

z

)
sin(2kzz) . (5.132)

The rest of eq. (5.129) is a trivial integral, and combining this with eqs. (5.131) and (5.132)

gives:

= − e3

16π2m3
lim

Λ→∞

{
1

ω2
p

∫ ωp

0
dkz

[
(2k2

z − ω2
p) cos(2kzz)− 2kz

√
ω2
p − k2

z sin(2kzz)
]

(2Λ− 5kz)

+
1

ω2
p

∫ ∞
ωp

dkz cos(2kzz)
(

2k2
z − ω2

p − 2kz

√
k2
z − ω2

p

)
(2Λ− 5kz)

}
. (5.133)

The integrals proportional to Λ each give expressions with the Bessel function J2(2ωpz),

sin(2ωpz), and cos(2ωpz), but all together they conspire to add up to zero. Defining

ITE ≡
1

ω2
p

{∫ ωp

0
dkzkz

[
(2k2

z − ω2
p) cos(2kzz)− 2kz

√
ω2
p − k2

z sin(2kzz)
]

+

∫ ∞
ωp

dkz kz cos(2kzz)
(

(2k2
z − ω2

p)− 2kz

√
k2
z − ω2

p

)}
, (5.134)

we therefore have

∆µplasma
⊥,TE =

5e3

16π2m3
ITE and ∆µplasma

‖,TE =
e3

8π2m3
ITE , (5.135)

where the case for B0 parallel to the interface has been evaluated in exactly the same way.

The integral ITE may be evaluated analytically in Mathematica; one finds

ITE =
1

4z2
+

3

4z4ω2
p

−
4zω3

p

15
+
πωpY1(−2ωpz)

2z

+
3πY2(−2ωpz)

4z2
− πH2(2ωpz)

4z2
+
πωpH3(2ωpz)

2z
, (5.136)

where Yn is the nth Bessel function of the second kind, and Hn is the nth Struve function.

This result displays the expected behaviour that limz→−∞ ITE = 0, i.e. that there is no

magnetic moment shift due to a surface that is infinitely far away. The ‘perfect-mirror’

limit of this object is

lim
|ωpz|→∞

ITE =
1

4z2
, (5.137)

which means that for the plasma surface the TE modes do not result in unlimited growth

of the magnetic moment shift as one tends towards the perfect reflector limit, in contrast

to what was observed for the non-dispersive dielectric in eqs. (5.113a) and (5.113b).

The TM contribution can be found from eq. (5.125a) in precisely the same way as

for the non-dispersive case, namely by subtracting the kz → −ik‖ limit of the reflection
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coefficient, changing variables to complex frequency ξ = −iω and writing (ikz)
2 = k2

‖ + ξ2

in polar co-ordinates {ξ = (ikz)η, k‖ = (ikz)
√

1− η2}. The result is

∆µplasma
⊥,TM =

e3

16π2m3

{∫ ∞
0

dξ ξ

∫ ∞
1

dη
(
η2 − 2

) (
RLk,TM(εp)− 1

)
e2ξηz − 3

4z2

}
. (5.138)

Replacing the integration over η with one over κ = ηξ we find

∆µplasma
⊥,TM =

e3

16π2m3

{∫ ∞
0

dξ

∫ ∞
ξ

dκ
κ2 − 2ξ2

ξ2

(
RLk,TM(εp)− 1

)
e2κz − 3

4z2

}
, (5.139)

where

RLk,TM(εp) =
κε(ξ)−

√
ξ2(ε(ξ)− 1) + κ2

κε(ξ) +
√
ξ2(ε(ξ)− 1) + κ2

=
ω2
pκ+ ξ2(κ−

√
ω2
p + κ2)

ω2
pκ+ ξ2(κ+

√
ω2
p + κ2)

. (5.140)

We now change the order of integration, which means that
∫∞

0 dξ
∫∞
ξ dκ →

∫∞
0

∫ κ
0 dξ.

Then, the ξ integration is elementary, the result after scaling κ to s = κ/ωp is

∆µplasma
⊥,TM =

e3

16π2m3

{
− 3

4z2
+ 2ω2

p

∫ ∞
0

ds e2sωpz 1 + t2(s)

t2(s) [2 + t2(s)]3/2

×
[
2t(s)−

(
1 + 2t2(s)

)
arccot(t(s))

]}
, (5.141a)

∆µplasma
‖,TM =

e3

16π2m3

{
− 1

z2
+ ω2

p

∫ ∞
0

ds e2sωpz 1 + t2(s)

t2(s) [2 + t2(s)]3/2

×
[
3t(s)−

(
5 + 3t2(s)

)
arccot(t(s))

]}
, (5.141b)

with the abbreviation

t(s) ≡

√√
1 +

1

s2
− 1 , (5.142)

and where the analogous result for B0 parallel to the surface is also shown. We now

have the entire magnetic moment shift of an electron near a plasma surface given through

eqs. (5.141) and (5.135) by

∆µplasma
⊥ =

5e3

16π2m3
ITE + ∆µplasma

⊥,TM , (5.143a)

∆µplasma
‖ =

e3

8π2m3
ITE + ∆µplasma

‖,TM . (5.143b)

The integrals (5.141) which constitute the TM part are done numerically – the results for

B0 perpendicular to the interface are shown in fig 5.6 alongside the perfect reflector shift

for comparison.

The asymptotic behavior of the integrals (5.141) for small and large ωpz shows some

of the important physical qualities of the plasma model. Beginning with large ωpz, the
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Figure 5.6: Magnetic moment shift for B0 directed perpendicular to the

interface for the plasma and perfect reflector models as a function of the

dimensionless parameter |ωpz|.

integrals from eqs. (5.141) contribute terms of order 1/(ωpz
3), meaning that the dominant

TM contributions are given by the 1/z2 terms outside the integrals in (5.141). The TE

contribution for large ωpz is easily found from eqs (5.135) via eq. (5.137). Combining the

TE and TM contributions gives

∆µplasma
⊥ (|ωpz| → ∞) =

e3

16π2m3

(
5

4z2
− 3

4z2

)
=

e3

32π2m3z2
, (5.144a)

∆µplasma
‖ (|ωpz| → ∞) =

e3

16π2m3

(
1

2z2
− 1

z2

)
= − e3

32π2m3z2
, (5.144b)

in agreement with the perfect-mirror calculation, and also of course with the n-independent

terms from eqs. (5.113). We are seeing that, just as in the self-energy calculation, the

shifts for the plasma and perfect reflector models agree in the limit |ωpz| → ∞, and both

disagree with the n→∞ limit of the non-dispersive model. This is another demonstration

of the fact that exclusion of evanescent modes from the start of the calculation will give

different results to a taking a ‘no-evanescent-modes’ limit of the shift using a model which

explicitly includes them, which as we argued in section 4.2.4 is down to the fundamentally

different low-frequency response of conductors and dielectrics.

To find the small |ωpz| asymptotics we first note from [50] that (5.136) may be written

ITE(|ωpz| � 1) = −
ω2
p

16
[1 + 4γE + 4 ln(−ωpz)] , (5.145)

where γE is the Euler constant ≈ 0.577. To find the small |ωpz| asymptotics of the TM

contribution we scale the integration variable s in eqs. (5.141a) and (5.141b) to a new

variable equalling sωpz, and then expand for small ωpz. The resulting series may then be

integrated term-by-term and turns out to be dominant over the TE part, giving for the
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total magnetic moment shift

∆µplasma
⊥ (|ωpz| � 1) =

e3

4m3z2

{
1

16
√

2π

1

ωpz
+O(ωpz)

}
, (5.146a)

∆µplasma
‖ (|ωpz| � 1) =

e3

4m3z2

{
5

32
√

2π

1

ωpz
+O(ωpz)

}
. (5.146b)

This 1/z3 dependence is not seen when no surface plasmons are present (in the non-

dispersive case, for example), so it is reasonable to suppose that appearance of a 1/z3 term

arises from the interaction of the electron with the surface plasmon. We have an explicit

expression (5.118) for the contribution of surface plasmon modes, so we can check this

supposition by looking at the magnetic moment shift that is attributable to these modes

only. Taking eq. (5.118a) and substituting in the explicit expressions (3.39a) and (3.44)

for the imaginary z component of the wave-vector κ ≡ ikz, we find

∆µsp
⊥ =

1

4π
√

2ω4
p

∫ ∞
0

dk‖k‖


(

2k2
‖ + ω2

p −
√

4k4
‖ + ω4

p

)(√
4k4
‖ + ω4

p − 2k2
‖

)
4k4
‖ + ω4

p


1/2

×
(

2k4
‖ + k2

‖

(
ω2
p +

√
4k4
‖ + ω4

p

)
+ 2ω2

p

(
ω2
p +

√
4k4
‖ + ω4

p

))
e

2z

√√
k4‖+ω

4
p/4−ω2

p/2
,

(5.147)

Letting

α = −z
√√

k4
‖ + ω4

p/4− ω2
p/2 , (5.148)

this becomes

∆µsp
⊥ =

1

4πz5ω3
p

∫ ∞
0

dα e−2α

√
α
(
α2 + z2ω2

p

) (
α+

√
α2 + z2ω2

p

)
×
[
3α
(
−α+

√
α2 + z2ω2

p

)
− 2z2ω2

p

]
. (5.149)

Expanding for small |ωpz|, we find the leading term of the above is given by a trivial

integral,

∆µsp
⊥ (|ωpz| � 1) =

e3

16m3
√

2πz3ωp

∫ ∞
0

dxx2e−2x = − e3

64m3
√

2πz3ωp
, (5.150)

reproducing eq. (5.146a), which confirms the fact that at small distances the interaction

is dominated by the electrostatic interaction of the electron with the surface plasmon.

The corresponding shift for B0 parallel to the surface behaves in exactly the same way –

taking the surface plasmon part of the shift given by eq. (5.118a) on its own and evaluating

the integral asymptotically for small |ωpz| reproduces that found from the small |ωpz|

asymptotics of the entire shift (5.146b).
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5.4.3 Dispersive dielectric

We would now like to consider the magnetic moment shift near more realistic surfaces.

The first surface we will investigate is that described by the dispersive dielectric function

discussed in section 4.2.3, which is

εdisp(kz, k‖) = 1−Θ(z)
ω2
p

k2
z + k2

‖ − ω
2
T

. (5.151)

As discussed in section 4.2.3, a surface described by this dielectric function does not admit

a mode expansion of the electromagnetic field, so we cannot derive a mode expansion in the

same way as we did for the non-dispersive dielectric in section 3.2, or the plasma surface

in section 3.3. However, we note that our expressions (5.99) for the magnetic moment

shift near a non-dispersive surface ε(ω) = n2 and (5.125) for that near a plasma surface

ε(ω) = εp(ω) are the same upon insertion of the appropriate dielectric function n2 or εp(ω).

This leads one to strongly suspect that the formulae may have more general applicability,

as we discussed in detail in section 4.2.3. Proceeding, we write down an expression for an

arbitrary dielectric function ε(kz, k‖)

∆µ⊥ = − e3

32π2m3

∫ ∞
0

dk‖k‖

∫
C′
dkz

1

k3

{(
2k2
‖ − k

2
z

)
RLk,TE

[
ε(kz, k‖)

]
+
(

2k2
‖ + k2

z

)
RLk,TM

[
ε(kz, k‖)

]}
e2ikzz, (5.152a)

∆µ‖ = − e3

32π2m3

∫ ∞
0

dk‖k‖

∫
C′
dkz

1

2k3

{(
3k2
‖ + 2k2

z

)
RLk,TE

[
ε(kz, k‖)

]
+
(

3k2
‖ − 2k2

z

)
RLk,TM

[
ε(kz, k‖)

]}
e2ikzz, (5.152b)

which reproduces the non-dispersive shifts (5.109) and (5.110) for ε(kz, k‖) → n2, and

the plasma shifts (5.125) for ε(kz, k‖) → εp(kz, k‖). As discussed in section 4.2.3, there

is strong justification for that validity of integrals (5.152) as expressions for the shift in

the magnetic moment near a general surface. In particular, we would like to insert the

dispersive dielectric function εdisp(kz, k‖) given by eq. (5.151) into these, the validity of

which is facilitated by the fact that the integration path in the kz plane is unchanged by

the introduction of the parameter ωT , as shown in figure 5.7. This means we have for the
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Figure 5.7: Complex kz plane for 1/ω multiplied by the dispersive

dielectric reflection coefficient, with branch points and poles written via

eqs. (4.87).

magnetic moment shift near a dispersive dielectric described by the permittivity (5.151)

∆µdisp
⊥ = − e3

32π2m3

∫ ∞
0

dk‖k‖

∫
C′
dkz

1

k3

{(
2k2
‖ − k

2
z

)
RLk,TE

[
εdisp(kz, k‖)

]
+
(

2k2
‖ + k2

z

)
RLk,TM

[
εdisp(kz, k‖)

]}
e2ikzz, (5.153a)

∆µdisp
‖ = − e3

32π2m3

∫ ∞
0

dk‖k‖

∫
C′
dkz

1

2k3

{(
3k2
‖ + 2k2

z

)
RLk,TE

[
εdisp(kz, k‖)

]
+
(

3k2
‖ − 2k2

z

)
RLk,TM

[
εdisp(kz, k‖)

]}
e2ikzz. (5.153b)

Defining a complex frequency ξ = −iω, writing (ikz)
2 = k2

‖ + ξ2 in polar co-ordinates

{ξ = (ikz)η, k‖ = (ikz)
√

1− η2} and taking our usual approach of considering the {ξ →
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0, η →∞} limit of the reflection coefficients separately, we manipulate eqs. (5.153) to

∆µdisp
⊥ =

e3

16π2m3

{∫ ∞
0

dξ ξ

∫ ∞
1

dη

[ (
3η2 − 2

)
RLk,TE [εdisp(ξ)]

+
(
η2 − 2

)(
RLk,TM [εdisp(ξ)]−

ω2
p

ω2
p + 2ω2

T

)]
e2ξηz −

ω2
p

ω2
p + 2ω2

T

3

4z2

}
, (5.154a)

∆µdisp
‖ =

e3

16π2m3

{
1

2

∫ ∞
0

dξ ξ

∫ ∞
1

dη

[ (
η2 − 3

)
RLk,TE [εdisp(ξ)]

+
(
5η2 − 3

)(
RLk,TM [εdisp(ξ)]−

ω2
p

ω2
p + 2ω2

T

)]
e2ξηz −

ω2
p

ω2
p + 2ω2

T

1

z2

}
, (5.154b)

where the dielectric function and reflection coefficients are given by

εdisp(ξ) = 1 + Θ(z)
ω2
p

ξ2 + ω2
T

, (5.155a)

RLk,TE [εdisp(ξ)] =
η −

√
εdisp(ξ)− 1 + η2

η +
√
εdisp(ξ)− 1 + η2

, (5.155b)

RLk,TM [εdisp(ξ)] =
ηεdisp(ξ)−

√
εdisp(ξ)− 1 + η2

ηεdisp(ξ) +
√
εdisp(ξ)− 1 + η2

. (5.155c)

We evaluate eqs. (5.154) numerically, and find a peak in the magnetic moment shift relative

to the perfect-reflector result. To facilitate the discussion of this peak and the comparison

of different models, we now choose to write the dielectric function in terms of the static

limit of the dielectric susceptibility,

χ(0) = ε(0)− 1 = ω2
p/ω

2
T . (5.156)

We find peaks in ∆µ⊥ and ∆µ‖ at
√
χ(0) ≈ 2, with the height of the peak being inversely

proportional to ωT z, as shown in fig. 5.8 for the case where the external magnetic field B0

is perpendicular to the interface. We also plot the corresponding shift for the non-dispersive

case, where χ(0)nondisp = n2 − 1. If the plot were continued to very large values of χ(0),

the graphs for the two models would very slowly converge into one linearly-rising curve.

By contrast, the result for the perfect reflector, also shown in fig. 5.8, is much smaller and

has the opposite sign.

The peak appears if the choice of parameters is such that |ωT z| . 0.07 for B0 perpen-

dicular, and . 0.25 for B0 parallel to the surface. For smaller values of |ωT z|, the peak

moves closer to
√
χ(0) ≡ ωp/ωT ≈ 2, and increases in height. To gauge the enhancement

that dispersion brings to the shift we calculate the ratio of the height of the dispersive

peak to the non-dispersive result at the same χ(0), and find

∆µdisp
⊥

∆µnondisp
⊥

≈ 30.3 eVnm

|ωT z|
,

∆µdisp
‖

∆µnondisp
‖

≈ 81.6 eVnm

|ωT z|
. (5.157)
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Figure 5.8: Magnetic moment shift for dispersive and non-dispersive

dielectric models as a function of static susceptibility, for the case of the mag-

netic field B0 perpendicular to the surface and |ωT z| = {0.01, 0.015, 0.02.}

A typical value for the frequency ωT in a metal is on the order of a few eV (see, for example,

[75]), meaning that a significant enhancement relative to the non-dispersive case would be

observed only at extremely small (sub-nanometer) distances z. However, restricting oneself

to considering the properties of only elemental solids would be short-sighted. Structures

engineered on the nanoscale can have transverse resonance frequencies ωT significantly

smaller than any ordinary material — examples include an InSb semiconductor grating

with ωT (and ωp) in the range of a few meV [76]. These types of materials are at a focal

point of strong contemporary interest in low-frequency plasmonics. With appropriate

assumptions about the approximation of a part of such a structure as a planar surface9 we

find that for distances z of a few tens of nanometres one may get an enhancement factor

on the order of 103 relative to the non-dispersive case. While such distances are on the

very edge of experimental feasibility, the constantly-improving level of sophistication of

manipulation and control of microscopic objects means that these effects may come to the

fore in the near future.

The apparent problem of the behaviour of the non-dispersive result in the limit of

large refractive index, n → ∞, can be clarified by comparing it with the behaviour of

the dispersive shift at large χ(0). In this regime the shift for the dispersive dielectric

model becomes linear in
√
χ(0) and agrees with the non-dispersive results; so for large

9Since the size (Compton wavelength) of the electron is by far the smallest length scale in the problem,

almost any surface in close proximity to an electron could be viewed as being planar.
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Figure 5.9: Magnetic moment shift for dispersive dielectric and plasma

models as a function of scaled distance |ωpz| from the surface, for the

case of the magnetic field B0 perpendicular to the surface and ωT /ωp =

{0.02, 0.04, 0.06.}

χ(0) the two models are equivalent. The crucial additional observation is to note that

for a non-dispersive dielectric with large χ(0) we have χ(0) ≈ n2, which is to say that a

large refractive index necessarily implies a large static susceptibility. Therefore, in the

non-dispersive model one cannot sensibly make a distinction between an arbitrarily large

refractive index and an arbitrarily large static susceptibility. Investigation of the dispersive

dielectric has shown that the latter interpretation is the correct one — the magnetic moment

shift grows with increasing static susceptibility, but an arbitrarily large static susceptibility

is, of course, physically impossible. So while the shift in the non-dispersive case does indeed

increase without bound as the refractive index n is increased, this is not due any problem

with the calculation, but is in fact the result of the static susceptibility growing without

bound and an inevitable consequence of the unrealistic exclusion of dispersion from the

model.

Consideration of the shifts in terms of the static susceptibility also emphasizes the close

relationship between plasma and perfect reflector models. In both of these models the

static susceptibility is infinite right from the start, which means that their results do agree

in the limit ωp →∞.

The differences between the four models discussed above very clearly show that in

order to predict the magnetic moment shift for a given set-up, one must choose a model

which is physically appropriate for the low-frequency behaviour of electromagnetic response

of the material at hand, just as we found with the mass shift in Chapter 4. In other
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words, it matters whether the material is a conductor or an insulator. These two classes of

material are not obtainable as limiting cases of each other because the conductor models

ignore the existence of evanescent modes (which is a direct consequence of their static

susceptibilities being infinite). The calculations for each class of model diverge from each

other because of non-commutation of a variety of limits of the reflection coefficient, namely

between the static limit (kz → −ik‖) and whichever limit we have to take in order to

compare models. For example, we note that the n → ∞ and kz → −ik‖ limits of the

non-dispersive TE reflection coefficient do not commute, which leads to the n→∞ limit

of the result for a non-dispersive dielectric to disagree with the perfect reflector result. A

further important example is that the limit of vanishing transverse resonance frequency,

ωT → 0, and the static limit kz → −ik‖ of the dispersive TE reflection coefficient do not

commute, which means that taking ωT → 0 (χ(0)→∞) in the dispersive dielectric results

will not reproduce the plasma results, while naive comparison of the dielectric functions

(3.26) and (4.86) suggests that they should. The commutation (or lack thereof) between

the various limits of the reflection coefficients was summarized in Chapter 4 by fig. 4.9 –

the same analysis applies here, except of course now results connected by solid arrows have

magnetic moment shifts which agree as limiting cases, rather than mass shifts.

For the plasma model, we found a 1/z3 dependence of the magnetic moment shift at

small distances, i.e. small |ωpz|, and that the leading 1/z3 term can be found either by

determining the asymptotics of the complete shift, or by considering only the part due to

the interaction with just surface plasmons. The asymptotics of the integrals for the shift

in the dispersive dielectric case are too awkward to analyse directly. Instead we give the

results one obtains by considering only the interaction with the surface polariton, in the

same way as was done for the surface plasmon in the plasma model. In order to do this,

one needs to know the dispersion relation for the surface polariton, which we obtain by

solving eq. (3.42) with the dispersive dielectric function (5.151). We find

ω̃2
sp = k2

‖ +
1

2
(ω2
p + ω2

T )−
√
k4
‖ − k

2
‖ω

2
T +

1

4
(ω2
p + ω2

T )2 . (5.158)

Repeating the normalization process detailed in section 3.3.2 but with the dispersive

dielectric function (5.151), the normalization factor p̃(k‖) analogous to that shown in

eq. (3.49) is found to be

p̃(k‖) =
ε2p(ω̃sp)

√
−(1 + ε2p(ω̃sp))

ε4p(ω̃sp)− 1
, (5.159)

which is then inserted into eqs. (5.118a) and (5.118b). Following the method by which we

determined (5.150), we evaluate these integrals for small |ωpz| by changing variables such
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that the z-dependence is brought out of the integrals, Taylor expanding for small |ωpz|

and the integrating term-by-term. We find

∆µ⊥(|ωpz| � 1) ≈ e3

64π
√

2m3z3

1√
2ω2

T + ω2
p

, (5.160a)

∆µ‖(|ωpz| � 1) ≈ 5e3

128π
√

2m3z3

1√
2ω2

T + ω2
p

. (5.160b)

Surprisingly, for these short-distances |ωpz| � 1, we find that the ωT → 0 limits of

eqs. (5.160) do agree with the corresponding results for the plasma, eqs. (5.146), unlike

the results for general distances ωpz & 1. This is because these results depend only on

the surface plasmon part of the mode functions and electrostatic interactions, but there is

no reflection of travelling photon modes, and hence any non-commutation of limits in the

reflection coefficient does not come into play.

5.4.4 Damped dispersive dielectric

The final model we wish to consider is the damped dispersive dielectric, whose dielectric

function is given by eq. (4.84)

εγ(r, ω) = 1−Θ(z)
ω2
p

ω2 − ω2
T + iωγ

. (5.161)

As discussed in section 4.2.5 for the mass shift, our integrals in the kz plane become

ambiguous for such a dielectric function, so we proceed by transforming our integrals from

the kz plane to the ω plane. Taking our integrals for the magnetic moment shift (5.152) for

any undamped dielectric function εγ→0(kz, k‖) and transforming to the ω plane we find

∆µ⊥ = − e3

32π2m3

∫ ∞
0

dk‖

∫
C′ω

dω
k‖

kzω2

{(
3k2
‖ − ω

2
)
RLTE [εγ→0(ω)]

+
(
k2
‖ + ω2

)
RLTM [εγ→0(ω)]

}
e2ikzz , (5.162a)

∆µ‖ = − e3

32π2m3

∫ ∞
0

dk‖

∫
C′ω

dω
k‖

2kzω2

{(
k2
‖ + 2ω2

)
RLTE [εγ→0(ω)]

+
(

5k2
‖ − 2ω2

)
RLTM [εγ→0(ω)]

}
e2ikzz , (5.162b)

where the contour C ′ω is that shown in fig. 5.10. The formulae (5.162) can be simplified

by subtracting the principal part of the integrand’s Laurent expansion around ω = 0 and

re-adding it as a separate integral. For example, the separate integral for ∆µ⊥ as shown in

eq. (5.162a) is given by

∆µsep
⊥ = − e3

32π2m3

∫ ∞
0

dk‖

∫
C′ω

dω
k2
‖

ω2
RLTM(0)e2k‖z (5.163)
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cut from

Figure 5.10: Contour C ′ω required to evaluate magnetic moment shifts

in the ω plane.

The integrand of ∆µsep
⊥ at ω = 0 has no poles or branch cuts in the right hand side of the

ω plane. Thus we may close the contour C ′ω in either the right half plane using a semicircle

of a large radius R, the contribution from which vanishes as R→∞. The closed contour

encircles no poles, so the value of the integral is zero. The same result is found for the

subtraction ∆µsep
‖ from eq. (5.162b).

Using the fact that the integrands of (5.162) are even in ω and re-writing the integrals

in terms of the complex frequency ξ = iω, we obtain

∆µ⊥ =
e3

16π2m3

∫ ∞
0

dk‖

∫ ∞
0

dξ
k‖

ξ2

{
e

2
√
k2‖+ξ

2z√
k2
‖ + ξ2

[ (
3k2
‖ + ξ2

)
RLTE [εγ→0(ω)]

+
(
k2
‖ − ξ

2
)
RLTM [εγ→0(ω)]

]
− e2k‖zk‖R

L
TM(0)

}
, (5.164a)

∆µ‖ =
e3

16π2m3

∫ ∞
0

dk‖

∫ ∞
0

dξ
k‖

2ξ2

{
e

2
√
k2‖+ξ

2z√
k2
‖ + ξ2

[(
k2
‖ − 2ξ2

)
RLTE

[
εγ→0(ω)

]

+
(

5k2
‖ + 2ξ2

)
RLTM [εγ→0(ω)]

]
− 5e2k‖zk‖R

L
TM(0)

}
. (5.164b)

If we attempt to include damping by making the replacement [εγ→0(ω)]→ [εγ(ω)] in the

same manner as for the mass shift in section 4.2.5, the integrands of (5.162) are no longer

even in ω. One then needs to evaluate an integral over both positive and negative imaginary

frequency. The damped reflection coefficient has poles in the lower-half plane, which means
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that the portion of the integral over negative imaginary frequency does not represent an

absorbing medium. This is clearly problematic; it is related to the way in which one

includes absorption. Our investigation of the magnetic moment using the noise current

technique Chapter 7 turns out to have the same kind of problem, which ultimately suggests

that one may need to carry out a full Huttner-Barnett description of the medium [32] where

each degree of freedom is individually canonically quantized in order to unambiguously

calculate the magnetic moment of an electron near a dispersive and absorbing surface.

5.5 Experimental relevance

Expressing magnetic moment shifts as relative shifts ∆µ/µ to the Dirac magnetic moment

µ = e/2m, we have for the perpendicular component of the non-dispersive shift in SI units:

∆µnondisp
⊥
µ

=
~
c3ε0

e2

16π2m2z2
f(n) ≈ 10−11nm2

z2
, (5.165)

where f(n) is the remaining part of Eq. (5.112a), and is of order unity. For a distance

z ≈ 1nm, eqs. (5.157) (and the discussions following them) show that the enhancement due

to the inclusion of dispersion can be of order 104 under favourable conditions. Thus, we

have a magnetic moment shift of up to one part in 107. The current experimental accuracy

for g/2 in free space is on the order of one part in 1012 [29], so that the shift calculated

here would compare very favourably to this. As the distance increases to the order of

a micron the effect decreases towards the limits of current experimental accuracy. For

example, an electron 0.1µm away from the same surface as above would have its magnetic

moment shifted by only one part in 1011.

This leads one to ask if the current best techniques for measuring the g factor would

be suitable for making a measurement of the surface dependent shift of the magnetic

moment. Since one of the sticking points in such experiments is that sufficiently accurate

measurement of the externally applied magnetic field B0 is mostly impossible, g-factor

experiments usually do not measure the magnetic moment directly, but instead they

find its ratio to either a known magnetic moment, or to the cyclotron frequency of the

particle under consideration. In case of the latter for surface-dependent magnetic moments

shifts one would need to take into account the shift in cyclotron frequency of a particle

near a surface, which arises due to the position-dependent self-energy of the particle as

shown in Chapter 4 and reported elsewhere [39, 48, 47]. Crucially, the leading term of the

surface-dependent cyclotron frequency shift is of order α/(mz) and thus much bigger than

the magnetic moment shift which is of order α/(mz)2. So, an experiment which adapts
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the techniques used for measuring the free-space g factor to find its surface dependent part

would effectively be measuring the change due to the surface in its self-energy, not in its

magnetic moment. While direct experimental confirmation of a shift in the self-energy

would, of course, be interesting in its own right, its existence represents a significant

obstacle to isolation and observation of the magnetic moment shift. We will discuss some

additional aspects of the experimental viability of either measurement in Chapter 6, where

we consider a more realistic situation, namely an electron in a trap.

5.6 Summary and conclusions

Beginning from perturbation theory in the Dirac equation, we have found an expression

(5.96) for the magnetic moment of an electron in a quantized field in terms of the mode

functions fkλ of that field, as defined through eq. (2.39). The formula (5.96) is

∆µ⊥ = − e3

4m3

∑
λ

∫
d3k

[
|fkλ,z|2 +

|(∇× fkλ)x|2

ω2
+
|(∇× fkλ)y|2

ω2

+
1

ω2

(
fkλ,x

∂2f∗kλ,y
∂x∂y

+ fkλ,y
∂2f∗kλ,x
∂x∂y

− fkλ,y
∂2f∗kλ,y
∂x2

− fkλ,x
∂2f∗kλ,x
∂y2

+ H.c.

)]
. (5.166)

Using the mode functions (3.16) for a non-dispersive dielectric, and the mode functions

(3.32) and (3.50) for a plasma surface, we have calculated a shift in the magnetic moment

for each surface that is attributable to a surface by finding the difference between the

free-space value of the above expression and that with the surface present. Importantly, we

found that each shift can be obtained from the same equation (5.164) simply by inserting

the appropriate dielectric function, and hence appropriate reflection coefficients RLkλ. We

have then reasoned that our formula is also applicable to an undamped dispersive dielectric

defined by dielectric function (5.151), as well as investigating the relationship between

our work and the previously considered ‘perfect reflector’ models [39]. Our results for the

various models can be found as outlined in table (5.1).

Model Result

Perfect reflector (5.116)

Non-dispersive dielectric (5.112)

Plasma surface (5.143)

Dispersive dielectric (5.154)

Table 5.1: Locations of magnetic moment results.
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For the dispersive dielectric we found a peak in the magnitude of the shift which can be

tuned by judicious choice of parameters, as shown in fig. 5.8. We have shown that under

favorable conditions the magnetic moment shift may be significant to current and future

precision measurements of the electron’s anomalous magnetic moment, however we remind

the reader that the mass shift obtained in Chapter 4 is likely to be a more significant effect

in real g-2 experiments such as those being done at Harvard [29].

Finally we outlined an issue with extracting results for the magnetic moment shift near

a damped dispersive surface, which we will discuss in greater detail in Chapter 7.
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Chapter 6

Confinement

“The electron is not completely stupid...”

- Prof. Wolfgang Lange

1962-2012

6.1 Introduction

In Chapter 5 we found the shift in the spin magnetic moment of an electron near a variety of

surfaces. Aside from the magnetic field that we apply in order to find the energy shift that

is due to the magnetic moment, the electron was a free particle. Precision measurements of

the magnetic moment are not made under such conditions – the electron is usually confined

by some trapping potential (see, for example, [29]).

In this chapter we address this by extending our method to investigate the magnetic

moment shift of an electron that is subject to harmonic confinement in the directions

parallel to a non-dispersive interface. We again subject the electron to constant magnetic

field in order to be able to obtain the magnetic moment as the coefficient of the terms in

the energy shift that are linear in this field, so our physical setup is that shown in fig. 6.1,

where we have chosen to direct the magnetic field perpendicular to the plane in which the

electron is trapped.

We will calculate the energy shift of the two spin states that is attributable to the

surface. Just as in Chapter 5, our restriction to one-loop effects for an electron whose wave

function does not overlap with the surface means that we can work with a first-quantized

electron sitting in a second-quantized photon field. We will again work in the non-relativistic

approximation, which means that we must find the eigenstates of the Schrödinger equation

for this system.
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Figure 6.1: Physical setup for an electron confined near a surface, with

the horizontal axis representing both the z co-ordinate (solid lines) and

the potential (dashed lines)

6.2 Schrödinger eigenstates

We would like to take a non-relativistic approximation of the Dirac equation eq. (5.3) so

that we can work with the Schrödinger eingenstates of the electron. In Chapter 5 we used

the Dirac Hamiltonian HD directly within second-order perturbation theory using the

Dirac eigenstates for an electron in a constant magnetic field [73]. The Dirac eigenstates for

an electron which is confined within a harmonic potential as well as a constant magnetic

field are not known – finding the eigenstates for even the special case with no magnetic

field is fraught with difficulty [77]. Consequently, we begin this calculation by taking the

Foldy-Wouthuysen transformation [72] of the Dirac Hamiltonian, which will furnish us

with the relevant Schrödinger Hamiltonian to any desired order in 1/m, to which we can

add the well-known Schrödinger Hamiltonians for the interaction with the magnetic field

and the confining potential. Care must be taken since several successive applications of

the transformation must be applied. As shown in Appendix D the result, in agreement

with [39], is

HS ≡ H0 +H1 +H2, (6.1)

with

H0 =Hrad +
π2

2m
− e

2m
σ ·B0 + Vimage, (6.2)

H1 =
e2

2m
A2
Q +

e3

4m3
A2
Qσ ·B0, (6.3)

H2 =− e

m
AQ ·π −

e

2m
σ ·BQ +

e

8m2
σ · (π ×EQ −EQ × π), (6.4)
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where EQ = −∂AQ

∂t and BQ = ∇ × AQ are the electric and magnetic fields associated

with the quantized vector potential, π = p− eA0 is the canonical momentum and Vimage

is the electrostatic image potential of the electron. H0 is the unperturbed Hamiltonian,

H1 and H2 are the parts contributing in first-order and second-order perturbation theory

respectively.

Equation (6.1) can be used to derive the magnetic moment shift for a free electron,

with results in agreement with [39, 58]. Here we additionally apply a harmonic confinement

VH =
mω2

H

2
(x2 + y2), (6.5)

as shown in fig. (6.1). This means that the unperturbed Hamiltonian is now

HH
0 = Hrad +

π2

2m
− e

2m
σ ·B0 + Vimage + VH , (6.6)

and the second-order perturbative expansion is

∆E =
∑
λ

∫
d3k

[
〈Ψe, 0|H1 |Ψe, 0〉+

∑
Ψ′e

〈Ψ′e, 1kλ|H2 |Ψe, 0〉 |2

E − E′

]
, (6.7)

where as usual 1kλ indicates a photon with wave vector k and polarisation λ, and Ψe

represents the state of the electron which is coupled to the classical field B0 and confined

by VH . The states Ψe are the Schrödinger eigenstates of an electron subject to a constant

magnetic field and a confining potential.

We consider an electron sitting in a magnetic field B0 directed along the z direction.

The electron is also subjected to a harmonic confinement in the xy plane, with frequency

ωH . From eq. (5.16) the Schrödinger Hamiltonian is then

HH =

(
px + eB0

2 y
)2

2m
+

(
py − eB0

2 x
)2

2m
+

p2
z

2m
+
mω2

H

2
(x2 + y2)

=
p2
x + p2

y + p2
z

2m
+
mΩ2

2
(x2 + y2)− eB0

2m
Lz , (6.8)

where Lz is the z-component of the angular momentum operator Lz = xpy − pxy, and we

define

Ω2 = ω2
H +

(
eB0

2m

)2

. (6.9)

As an aside we note that if the electron were confined in the z direction (VH →
mω2

H
2 z2)

very little would change in (6.8) relative to the case with no trapping potential. The

Hamiltonian would be separable into an xy-dependent part identical to the unbound case

and a part which depends on z. This means that the only modification of the wave function

would be multiplication by a z dependent part. We are only interested in the energy shifts
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of the spin states, so the precise wave function in the z direction (i.e. that which is along

the magnetic field) does not matter, as long as the electron is confined far enough away

from the surface that there is no wave function overlap.

Proceeding, we follow [74] by introducing

x̂ =
1√

2mΩ
(b̂x + b̂†x), p̂x = i

√
mΩ

2
(b̂†x − b̂x),

ŷ =
1√

2mΩ
(b̂y + b̂†y), p̂y = i

√
mΩ

2
(b̂†y − b̂y), (6.10)

which are analogous to the operators (5.17) used in the unbound case. Using eqs. (6.10),

the Hamiltonian may be written as

HH =
Ω

2
(b̂†xb̂x + b̂xb̂

†
x + b̂†y b̂y + b̂y b̂

†
y)−

ieB0

2m
(b̂xb̂

†
y − b̂y b̂†x) +

p̂2
z

2m
,

where pz has been promoted to an operator p̂z, with eigenvalue pz. Further defining the

operators for right and left-circular quanta

b̂R =
1√
2

(
b̂x − ib̂y

)
b̂L =

1√
2

(
b̂x + ib̂y

)
, (6.11)

one finds

HH =
Ω

2
(b̂†Rb̂R + b̂Rb̂

†
R + b̂†Lb̂L + b̂Lb̂

†
L) +

eB0

2m
(b̂Lb̂

†
L − b̂Rb̂

†
R) +

p̂2
z

2m
. (6.12)

Taking advantage of the commutation relation [b̂R, b̂
†
R] = 1 = [b̂L, b̂

†
L] this can be written as

HH =

(
Ω− eB0

2m

)
b̂†Rb̂R +

(
Ω +

eB0

2m

)
b̂†Lb̂L + Ω +

p̂2
z

2m
. (6.13)

Since our e < 0, the limit ωH → 0 is equivalent to the limit Ω→ − eB0
2m . In this limit, the

above Hamiltonian becomes

HH(ωH → 0) = −eB0

m

(
b̂†Rb̂R +

1

2

)
+

p̂2
z

2m
= HS , (6.14)

which is the usual statement of the Landau-quantized Schrödinger Hamiltonian HS , given

by eq. (5.20). The energy eigenvalues of Hc for an eigenstate |nL〉 ⊗ |nR〉 = |nL, nR〉 are

EH =

(
Ω− eB

2m

)
nR +

(
Ω +

eB

2m

)
nL + Ω +

p2
z

2m
. (6.15)

It is useful to define

∆R ≡ Ω− eB0

2m
, ∆L ≡ Ω +

eB0

2m
→ ∆i ≡ Ω− hi

eB0

2m
, (6.16)

where hi denotes the handedness of the Landau states via

hR = +1, hL = −1, (6.17)
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so that the Hamiltonian may be written as

HH = ∆Lb̂Lb̂
†
L + ∆Rb̂Rb̂

†
R + Ω +

p2
z

2m

= Ω +
p2
z

2m
+
∑
i=L,R

∆ib̂ib̂
†
i . (6.18)

The canonical momenta can be written in terms of b̂R and b̂L via eqs. (6.10)

π̂x = p̂x +
eB0

2
ŷ =

i

2

√
m

Ω

[
∆R(b̂†R − b̂R) + ∆L(b̂†L − b̂L)

]
, (6.19a)

π̂y = p̂y −
eB0

2
x̂ =

1

2

√
m

Ω

[
∆R(b̂†R + b̂R)−∆L(b̂†L + b̂L)

]
, (6.19b)

and of course π̂z = p̂z. These equations deliver the non-zero matrix elements

〈n′R, n′L|πx |nR, nL〉 , 〈n′R, n′L|πy |nR, nL〉 , with (n′R = nR ± 1, n′L = nL ± 1), (6.20)

listed in appendix B.2. The electromagnetic field is, as usual, written in terms of mode

functions fkλ via (2.39)

Â(r, t) =
∑
λ

∫
d3k

[
âkλe

−iωktfkλ(r, ω) + â†kλe
iωktf∗kλ(r, ω)

]
, (6.21)

where âkλ and â†kλ are creation and annihilation operators for photons of wavenumber k

and polarization λ. They are normalized so that the Hamiltonian for the radiation field is

in the canonical form

Hrad =
∑
λ

∫
d3kωk

(
â†kλâkλ +

1

2

)
. (6.22)

The mode functions fkλ for the quantized field near a non-dispersive dielectric are shown

in eqs (3.16). Using second order perturbation theory, we can use the modes to derive the

energy shift (3.16) of the vacuum state that is attributable to the quantized field. While in

previous calculations we found a magnetic moment shift by simply Taylor-expanding the

energy shift for small B0 and extracting the linear term, here there are difficulties stemming

from the additional confinement by the harmonic potential. The main consequence of this

is that there is a proliferation of terms of different types, many of which turn out to be of

no interest to any real experiment. For these reasons we consider which asymptotic regime

we are interested in before doing any explicit calculations.

6.3 Asymptotic regimes

In section 5.1.4 we noted that our calculations for the free electron are always in the

non-retarded regime
eB0

m
� c

z
, (6.23)
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where we have temporarily switched back to S.I. units meaning that both sides of the above

equation are in Hz. Typical magnetic field strengths used in experiments with trapped

electrons are relatively strong, usually of Tesla order [78, 79], giving

eB0

m
∼ 1011Hz . (6.24)

Combined with eq. (6.23), this constrains z to be � 3mm, which is comfortably within

the reach of modern trapping technology. The only other frequency scale in the problem

the trap frequency ωH , which we will estimate for two possible settings. The first of these

is an electron in a Penning trap, for which the closest analogue of our trap frequency is the

magnetron motion, which is of order 100kHz (see, for example, [29]). The second is an

electron bound to a nucleus, for a hydrogen atom the frequency of the ‘trap’ is a few eV

∼ 1015Hz. We then have three cases to look at

1. ωH � eB0
m � c

z

The constraint ωH � eB0
m means that Penning traps are the most relevant type of

binding potential, as explained above. But, since ωH is necessarily small, the trapping

potential is very weak so one expects no significantly new behavior relative to the

free space case.

2. eB0
m � ωH � c

z

We now have ωH � eB0
m , meaning that an electron bound to an atom is the most

relevant physical system. But we now have the additional condition that ωH � c
z

which, for the atomic trap frequency of 1015Hz corresponds to a distance z � 100nm,

which is a much less realistically obtainable atom-surface distance than that in the

next regime discussed.

3. eB0
m � c

z � ωH

Again the most relevant physical system is an atomic electron. But we now have trap

frequency vs distance constraint is now ωH � c
z which corresponds to a distance

z � 100nm. This means we can consider larger distances which are within reach

of experiments. The upper limit on the distance is imposed by the fundamental

constraint eB0
m � c

z , which corresponds to z � 3mm as noted above.

For these reasons we choose to consider our integrals in the third asymptotic regime

( eB0
m � c

z � ωH), which we shall express in natural units as |ωHz| � 1 or, equivalently,

|∆iz| � 1 .
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6.4 Evaluation of the energy shift

As in previous calculations, it is important to note the multipole expansion of AQ given

by (5.34) is significant since it may generate additional factors of B0, which of course is

important when attempting to extract a magnetic moment.

The only first term in H1 has no σz dependence so is discarded. Taking the second

term only, we find:

∆E(1)
σz =

e3

4m3
σzB0 〈0, nL, nR, s|A2

Q |0, nL, nR, s〉

=
e3

4m3
σzB0

∫
d3k

∑
λ

(
|fx|2 + |fy|2 + |fz|2

)
. (6.25)

Using Maxwell’s equations in the absence of sources we can manipulate the second-order

contribution H2 to

H2 = − e

m
AQ ·π −

e

4m2
σ · (EQ × π)− e

2m
σ ·BQ +

ie

8m2
σ ·

∂BQ

∂t
. (6.26)

In the dipole approximation (where the field operators AQ, EQ and BQ do not act on the

Landau levels) the first two terms of eq. (6.26) can only contribute when s = s′, and the

second two can only contribute when s 6= s′. The contribution of the first two terms of

eq. (6.26) in second-order perturbation theory is

∆E
(2)
dip =

e2

m2

∫
d3k

∑
λ

∑
n′R,n

′
L

| 〈n′R, n′L; 1k,λ|
(
AQ + σ×E

4m

)
·π |nR, nL; 0〉 |2

−ω + EnL,nR − En′L,n′R
. (6.27)

Evaluating the four contributions to the sum over Landau levels (n′R = nR±1, n′L = nL±1),

and defining a generalized summation symbol∑̃
≡
∫
d3k

∑
λ=TE,TM

∑
i=L,R

, (6.28)

the part of the energy shift proportional to σz may be written as

∆E
(2)
dip,σz

= − e2

8m2
σz
∑̃

ωhi(|fx|2 + |fy|2)
∆2
i

Ω

(
∆i(2ni + 1)− ω

ω2 −∆2
i

)
, (6.29)

where, along the lines of eqs. (5.56) and the discussions following them, some terms have

been discarded because their polarization vectors mean they are trivially zero under the

angular part of d3k when written in the system of spherical polar co-ordinates shown in

eqs. (5.56).

Moving on to the second two terms of eq. (6.26)

∆E
(2)
spin =

e2

2m2

∫
d3k

∑
λ

∑
s′=↑,↓

| 〈1k,λ, s′| i
4mσ ·

∂BQ
∂t − σ ·BQ |0, s〉 |2

−ω − Es′ + Es

=
e2

4m2

∫
d3k

1

ω

∑
λ

∑
s′=↑,↓

| 〈s′|
(
i

4m
∂
∂t − 1

)
σ · (∇× f) |s〉 |2

−ω − Es′ + Es
, (6.30)
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where

E↑ = −eB0

2m
, E↓ =

eB0

2m
. (6.31)

We require the shift in the difference in energies between the two spin states, which is

∆E
(2)
spin,σz

=
σz
2

[
∆E

(2)
spin(s = ↓)−∆E

(2)
spin(s = ↑)

]
. (6.32)

It is useful to use eq. (5.28) to rewrite the operators appearing in eq. (6.30) as

σ · (∇× f) =
1

2

[
σ(−)(∇× f)(+) + σ(+)(∇× f)(−)

]
+ σzfz . (6.33)

Using this to evaluate the shifts for s′ =↑, ↓, we find

∆E
(2)
spin(s′ = ↑) =

e2

4m2

∫
d3k

∑
λ

1

−ω + eB0/m

(
1 +

ω

4m

)2 ∣∣(∇× f∗)x − i(∇× f∗)y
∣∣2
(6.34)

∆E
(2)
spin(s′ = ↓) =

e2

4m2

∫
d3k

∑
λ

1

−ω − eB0/m

(
1 +

ω

4m

)2 ∣∣(∇× f∗)x + i(∇× f∗)y
∣∣2 .
(6.35)

Inserting these into eq. (6.32) and again dropping some terms which are odd under
∫
d3k,

we find

∆E
(2)
spin,σz

= −σz
e3B0

4m3

∫
d3k

∑
λ

(
1 +

ω

4m

)2 1(
eB0
m

)2 − ω2

[
|(∇× f∗)x|2 + |(∇× f∗)y|2

]
.

(6.36)

We have now found all the terms which, in the dipole approximation, are proportional

to σz. We can check for consistency with the unbound case by taking the limits ωT → 0

and B0 → 0 of (6.29) and (6.36), extracting the coefficient of B0 and comparing to the first

line of (5.96) (i.e. the magnetic moment shift excluding the quadrupole terms). Beginning

with the same-spin (s = s′) transitions, the prefactor of eq. (6.29) becomes

lim
ωH→0

[
− e2

8m2
σz
∑
i=L,R

ωhi
∆2
i

Ω

(
∆i(2ni + 1)− ω

ω2 −∆2
i

)]

= − e3

16m3
σzB0

∑
i=L,R

hi(1 + hi)
2 = − e3

4m3
σzB0 , (6.37)

with the same result if small B0 is taken before small ωH . So we have for the unbound

limit of the magnetic moment arising from (6.29)

∆E
(2)
dip,σz

(unbound limit) = − e3

4m3

∫
d3k

∑
λ

σzB0(|fx|2 + |fy|2) (6.38)
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The first order term (6.25) is independent of ωH and already linear in B0, so we can

combine this with the unbound limit of the dipole terms (6.38) to find

∆Edip,σz = − e3

4m3
σzB0

∫
d3k

∑
λ

|f2
z | , (6.39)

in agreement with eq. (5.95), which is the part of the magnetic moment shift that is due to

same-spin transitions in the dipole approximation. Similarly, taking a small B0 expansion

of (6.36) yields the spin flip part of the unbound magnetic moment eq. (5.67).

We now check for terms that contribute beyond the dipole approximation. Expanding

each term of H2 via eq. (5.34), one finds two additional contributions. The first of these

comes from application of the multipole operator to the term in σ ·BQ.

∆E
(2)
quad,1 =

e2

2m2

∑̃ 1

ELR

[
〈nR, nL; 0|AQ ·π |n′R, n′L; 1k,λ〉

× 〈n′R, n′L; 1k,λ| [(r− r0) · ∇]σzBQ,z |nR, nL; 0〉+ C.C.
]
, (6.40)

where ELR ≡ −ω+EnL,nR−En′L,n′R and σ ·BQ → σzBQ,z has been taken since the term in

AQ ·π cannot change the spin state. Similarly, there is a contribution from the application

of the multipole operator to the term in AQ ·π

∆E
(2)
quad,2 =

e2

2m2

∑̃ 1

ELR

[
〈nR, nL; 0| [(r− r0) · ∇] AQ ·π |n′R, n′L; 1k,λ〉

× 〈n′R, n′L; 1k,λ|σzBQ,z |nR, nL; 0〉+ C.C.
]
. (6.41)

Inserting the vector potential (6.21) into eqs. (6.40) and (6.41) we find for the contributions

proportional to σz

∆E
(2)
quad,1,σz

=
e2σz
8m2

∑̃
hi

∆i

Ω

∆i − (2ni + 1)ω

ω2 −∆2
i

×

(
fy
∂2f∗y
∂x2

+ fx
∂2f∗x
∂y2

− fx
∂2f∗y
∂x∂y

− fy
∂2f∗x
∂x∂y

)
+ C.C. (6.42)

∆E
(2)
quad,2,σz

=
e2

2m2
σz
∑̃ eB0

2mΩ

(
ni +

1

2

)
|(∇× f)z|2

ω
, (6.43)

where we have discarded terms independent of B0. We now have the entire expression of

the part of the energy shift that is proportional to σz

∆Eσz = ∆E(1)
σz + ∆E

(2)
dip,σz

+ ∆E
(2)
spin,σz

+ ∆E
(2)
quad,1,σz

+ ∆E
(2)
quad,2,σz

, (6.44)

in terms of the mode functions fkλ. We split the shift (6.44) into

∆Eaσz = ∆E
(2)
dip,σz

+ ∆E
(2)
quad,1,σz

, (6.45)

∆Ebσz = ∆E(1)
σz + ∆E

(2)
spin,σz

+ ∆E
(2)
quad,2,σz

, (6.46)
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where ∆Eaσz contains the terms that contribute at {n′L, n′R} 6= {nL, nR} (i.e. those which

have a transition between Landau levels) and ∆Ebσz contains the terms that contribute

only within the same Landau level {n′L, n′R} = {nL, nR}.

6.4.1 Transitions between Landau levels

To evaluate ∆Eaσz , we substitute the non-dispersive modes (3.16) into eqs. (6.29) and

(6.42), giving

∆Eσzdip =− e2

8m2

1

(2π)3
σz
∑
λ,i,ϑ

∫
d2k‖

{∫ ∞
0

dkz α
ϑ
λ[1 + |RLλ |2]

+
1

n2

∫ −Γ

−∞
dkdzα

ϑ
λ|TRλ |2 + ϑ

∫ ∞
0

dkz α
ϑ
λR

L
λ (e2ikzz + e−2ikzz)

+
ϑ

n2

∫ 0

−Γ
dkdzα

ϑ
λ|TRλ |2e2ikzz

}
hi

∆2
i

Ω

∆i(2ni + 1)− ω
ω2 −∆2

i

, (6.47)

∆Eσzquad =
e2

8m2

1

(2π)3
σz
∑
λ,i,ϑ

∫
d2k‖

{∫ ∞
0

dkz β
ϑ
λ [1 + |RLλ |2]

+
1

n2

∫ −Γ

−∞
dkdzβ

ϑ
λ |TRλ |2 + ϑ

∫ ∞
0

dkz β
ϑ
λR

L
λ (e2ikzz + e−2ikzz)

+
ϑ

n2

∫ 0

−Γ
dkdzβ

ϑ
λ |TRλ |2e2ikzz

}
hi∆i

ωΩ

∆i − (2ni + 1)ω

ω2 −∆2
i

, (6.48)

with

α+
TE =

k2
y

2kk2
‖
, α−TM =

k2
xk

2
z

2k3k2
‖
, β+

TE =
k2
xk

2
y

2kk2
‖
−

k4
y

2kk2
‖
,

{α−TE, α
+
TM,β

−
TE, β

+
TM, β

−
TM = 0} . (6.49)

and where Γ as defined in eq. (4.30) is the critical value of kdz for which medium-incident

modes are totally internally reflected and thus become evanescent on the vacuum side. The

summation symbol is ∑
λ,i,ϑ

≡
∑

λ=TE,TM

∑
i=L,R

∑
ϑ=±1

.

Exactly following the method used in Chapters 4 and 5, we use the relation dkdz =

n2(kz/k
d
z)dkz to manipulate the first two of the four terms of eq. (6.47) to∫ ∞

0
dkz α

ϑ
λ

[
1 + |RLλ |2 +

kz
kdz
|TRλ |2

]
= 2

∫ ∞
0

dkz α
ϑ
λ , (6.50)

where the equality follows since kz and kdz are here both real. The second two terms in

eq. (6.47) contain the z dependent terms and can be written as:

ϑ

∫ ∞
0

dkz α
ϑ
λR

L
λ (e2ikzz + e−2ikzz) + ϑ

∫ iΓ/n

0
dkz

kz
kdz
αϑλ|TRλ |2e2ikzz . (6.51)
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Restating equation (4.34) (which holds for imaginary kz only)

RLkλ(n2)|kdz=−K −RLkλ(n2)|kdz=K =
kz
kdz
TRkλ(n2)TR∗kλ (n2)|kdz=−K , (6.52)

we find that we can manipulate the second integral in (6.51) in such a way that it can be

combined with the first, as discussed in detail in section 4.2.1. This means that eq. (6.51)

becomes

ϑ

∫
C
dkz α

ϑ
λR

L
λe

2ikzz , (6.53)

with the contour C as shown in Fig. (6.2). Rearranging eq. (6.48) in precisely the same

way, we arrive at

∆Eσzdip =− e2

8m2

1

(2π)3
σz
∑
λ,i,ϑ

∫
d2k‖

{
ϑ

∫
C
dkz α

ϑ
λR

L
λe

2ikzz + 2

∫ ∞
0

dkz α
ϑ
λ

}

× hi∆
2
i

Ω

∆i(2ni + 1)− ω
ω2 −∆2

i

(6.54)

∆Eσzquad =
e2

8m2

1

(2π)3

∑
λ,i,ϑ

∫
d2k‖

{
ϑ

∫
C
dkz β

ϑ
λR

L
λe

2ikzz + 2

∫ ∞
0

dkz β
ϑ
λ

}

× hi∆i

Ωω

∆i − (2ni + 1)ω

ω2 −∆2
i

. (6.55)

The second term in the brackets in eqs (6.54) and (6.55) are independent of z, so that they

can be seen as the same electromagnetic field fluctuations but in vacuum (i.e. without the

dielectric present). For this reason we subtract them as free-space counterterms, leaving

for the renormalized position dependent energy shifts

∆Eσzdip,ren =− e2σz
8m2

1

(2π)3

∑
λ,i,ϑ

ϑ

∫
d2k‖

∫
C
dkzhi

∆2
i

Ω

∆i(2ni + 1)− ω
ω2 −∆2

i

αϑλR
L
λe

2ikzz, (6.56)

∆Eσzquad, ren =
e2σz
8m2

1

(2π)3

∑
λ,i,ϑ

ϑ

∫
d2k‖

∫
C
dkz

hi∆i

Ωω

∆i − (2ni + 1)ω

ω2 −∆2
i

βϑλR
L
λe

2ikzz. (6.57)

Just as in Chapter 5 we will leave subscript ‘ren’ for renormalized quantities implicit from

here onwards. All energy shifts quoted for the rest of this chapter are renormalized unless

we specifically state otherwise. The structure of the complex plane is shown in fig. (6.2).

There is a branch cut due to k =
√
k2
z + k2

‖ in the denominators of all but one of the

terms in (6.56) and (6.57); we place this branch cut in the region kz = ±ik‖...± i∞. The

reflection coefficients have branch points at kz = ±ik‖
√
n2−1
n , we place the corresponding

branch cut in between. There is also a pole at k2
z = ∆2

i + k2
‖ whose position moves through

three distinct regions as k‖ is integrated over.

For k‖ < ∆i it is split between two poles on the real axis, for ∆i < k‖ < n∆i it is

split either side of the cut due to kdz and finally for k‖ > n∆i it is between −ik‖
√
n2−1
n and
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1 1

2

3

some terms

all terms

Branch cuts:

Figure 6.2: Complex kz plane corresponding to the various terms in

eqs. (6.56) and (6.57). The pole at k2z = ∆2
i −k2‖ can appear in one of three

regions depending on the relative values of k‖, ∆i and n. These regions

are the real axis (shown as points ‘1’), split either side of the cut due to

kdz (2), or the imaginary axis between the two cuts (3)

−ik‖, as shown in fig. (6.2). On deformation of the contour into the lower-half plane, it

is expedient to write the results as contributions from the cut due to k and the pole at

k2
z = ∆2

i + k2
‖

∆Eσzdip = ∆Epoles
dip + ∆Ecut

dip , ∆Eσzquad = ∆Epoles
quad + ∆Ecut

quad. (6.58)

We further split the contributions from the pole at kz =
√

∆2
i − k2

‖ into those from real axis

(k‖ < ∆i, denoted as a superscript <) and the imaginary axis poles (k‖ > ∆i, superscript

>). Writing the contributions in terms of the variables

x =

√
∆2
i − k2

‖

∆i
y =

√
k2
‖ −∆2

i

∆i
, (6.59)

we find

∆E<dip, TE =
∑
i

Γi
z2

∫ 1

0
dxR+

TE(x) sin(2ζix), (6.60)

∆E>dip, TE = −
∑
i

Γi
z2

Re

∫ ∞
0

dyR−TE(y)e−2ζiy, (6.61)

∆E<dip, TM = −
∑
i

Γi
z2

∫ 1

0
dxx2R+

TM(x) sin(2ζix), (6.62)

∆E>dip, TM = −
∑
i

Γi
z2

Re

∫ ∞
0

dy y2R−TM(y)e−2ζiy, (6.63)
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where

ζi ≡ −∆iz Γi ≡
e2

32πm2Ω
σzhi∆

2
i ζ

2
i ni, (6.64)

and

R±TE(x) =
x−

√
x2 ± (n2 − 1)

x+
√
x2 ± (n2 − 1)

,

R±TM(x) =
n2x−

√
x2 ± (n2 − 1)

n2x+
√
x2 ± (n2 − 1)

.

and similar for R±λ (y). The TM part of eq. (6.56) also has a contribution from a pole at

kz = −ik‖, which is the zero frequency or ‘static’ limit. This turns out to be an elementary

integral, the result is

∆Estatic = − e2

256πm2z3Ω

n2 − 1

n2 + 1

∑
i

hi∆i(1 + 2ni), (6.65)

These deliver the dipole part of the shift via:

∆Epoles
dip =∆E<dip, TE + ∆E>dip, TE + ∆E<dip, TM + ∆E>dip, TM + ∆Estatic

dip , (6.66)

We do not quote the cut contribution ∆Ecut
dip here for two reasons. Firstly, up to some

prefactors, it is obtained in precisely the same way as in the integrals found in Chapter 5.

Secondly, it is negligible in the asymptotic regime considered later on, making its explicit

inclusion unnecessary. Moving onto the quadrupole part, we have that the TM polarization

does not contribute since {β+
TM, β

−
TM = 0}. Writing the contributions from the pole at

kz =
√

∆2
i − k2

‖ in the same way as the dipole part we find

∆E<quad = −2
∑
i

Γi
z2

∫ 1

0
dx(x2 − 1)R−TE(x) sin(2ζix), (6.67)

∆E>quad = −2
∑
i

Γi
z2

Re

∫ ∞
0
dy(y2 + 1)R+

TE(y)e−2ζiy. (6.68)

There is no equivalent of (6.65) for the quadrupole terms since the TM polarization does

not contribute to them, leaving for ∆Eσzquad

∆Eσzquad = ∆E<quad + ∆E>quad. (6.69)

and again we do not quote ∆Ecut
quad. We then have the entire pole contribution

∆Epoles = ∆Epoles
dip + ∆Epoles

quad . (6.70)

The integrals (6.60)-(6.63), (6.67) and (6.68) are done asymptotically for large ζi. For

integrals with k‖ < ∆i this is achieved via repeated integration by parts, and for integrals
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with k‖ > ∆i via a change of variables to ξi = ζix and then Taylor expansion for large ζi.

The result is

∆Epoles(ζi � 1) =
1

4π

e2σz
8m2z2

n− 1

n+ 1

∑
i

∆2
i

Ω
hini

[
ζi cos(2ζi) +O(ζ0

i )

]
. (6.71)

Finally, one can show that the cut contributions are of higher order in 1/ζi

∆Ecut(ζi � 1) =
1

z2
O
(

1

ζ4

)
. (6.72)

6.4.2 Transitions within the same Landau level

Repeating the above analysis for ∆Ebσz as defined in eq. (6.46), we first note that the term

∆E
(2)
quad,2,σz

is identically zero. This can be seen by noting that, up to constants, eq. (6.43)

is

∆E
(2)
quad,2,σz

∝
∫
d3k
|(∇× f)z|2

ω
. (6.73)

The square of any particular component (fkλ)i of the non-dispersive mode functions (3.16)

contains a factor 1/ω, which shows that eq. (6.73) is given entirely by a pole at kz = −ik‖.

The polarization vectors (A.1) show that (∇× fTM)z = 0, so we are left with expressions

of the same form as (6.56) and (6.57) but with TE contributions only. One can then use

the residue theorem to calculate the resulting integral, but the TE reflection coefficient

vanishes at kz = −ik‖, so the shift is zero.

Repeating the analysis found in section 6.4.1 on the remaining terms of ∆Ebσz as defined

in eq. (6.46), we find for the renormalized position-dependent energy shifts

∆E(1)
σz =

1

8π2

e3

4m3
σzB0

∫ ∞
0

dk‖

∫
C
dkz

1

k

[
RLTE +

1

k2

(
k2
‖ − k

2
z

)
RLTM

]
e2ikzz , (6.74a)

∆E
(2)
spin,σz

=− 1

8π2
σz
e3B0

4m3

∫ ∞
0

dk‖

∫
C
dkz

(
1 +

ω

4m

)2 1

ω

× 1(
eB0
m

)2 − ω2

[
−RLTEk

2
z + (k2

z + k2
‖)R

L
TM

]
e2ikzz, (6.74b)

which together constitute ∆Ebσz as defined in eq. (6.46) via

∆Ebσz = ∆E(1)
σz + ∆E

(2)
spin,σz

+ ∆E
(2)
quad,2,σz

= ∆E(1)
σz + ∆E

(2)
spin,σz

, (6.75)

where we have used the fact that ∆E
(2)
quad,2,σz

is identically zero as shown in the discussion

immediately following (6.73). The results (6.74) are of course independent of any of the

trap parameters, so we do not have the problem seen in section 6.4.1 where the double

confinement makes it dangerous to take limits too early. Thus we go ahead and expand
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eqs. (6.74) for large m (since we are in the non-relativistic approximation) up to order

1/m3. This means that eq. (6.74b) becomes

∆E
(2)
spin,σz

=− 1

8π2
σz
e3B0

4m3

∫ ∞
0

dk‖

∫
C
dkz

1

ω3

[
−RLTEk

2
z + (k2

z + k2
‖)R

L
TM

]
e2ikzz , (6.76)

and we also trivially see that

∆Ebσz(ζi � 1) =
1

z2
O
(
ζ0
i

)
. (6.77)

6.4.3 Total Energy Shift

The cut contributions are all of higher order in ζi, so we have for the whole energy shift:

∆Eσz(ζi � 1) = ∆Epoles(ζi � 1) +O(ζ0
i ), (6.78)

giving for our final result

∆Eσz(ζi � 1) =
1

4π

e2σz
8m2z2Ω

n− 1

n+ 1

∑
i

hi∆
2
ini

[
ζi cos(2ζi) +O(ζ0

i )

]
. (6.79)

Using the definition of ζi and evaluating the sum over i, the leading term from the above is

∆E(0)
σz (ζi � 1) =

1

4π

e2σz
8m2zΩ

n− 1

n+ 1

[
nR∆3

R cos(2∆Rz)− nL∆3
L cos(2∆Lz)

]
. (6.80)

This decays with distance from the surface, as of course it must. However, when one

attempts to extract a magnetic moment from this, the result behaves in an unexpected

way. Expanding this for small B0 and extracting the coefficient of σzB0, we find for the

magnetic moment shift

∆µ(0)(|ωHz| � 1) = −e
3(nL + nR)

64πm3

n− 1

n+ 1
ωH

[
2ωH sin(2ωHz)−

3 cos(2ωHz)

z

]
, (6.81)

which has the unexpected and unphysical property of oscillating indefinitely as |z| → ∞.

To track down the source of this problem, we define Λ ≡ −eB0/2m > 0, giving

Ω =
√
ω2
H + Λ2, ∆i =

√
ω2
H + Λ2 + hiΛ , (6.82)

and look at the behavior of the relevant part of (6.79), namely ζi cos(2ζi)/(Ωz
2)

ζi
Ωz2

cos(2ζi) = −

√
ω2
H + Λ2 + hiΛ

z
√
ω2
H + Λ2

cos

[
2

(√
ω2
H + Λ2 + hiΛ

)
z

]
. (6.83)

This shows that as Λ varies, both the amplitude and frequency of the oscillation change.

This is the source of the term which does not vanish – if the frequency of the oscillatory term

were independent of B0, the linear term in its small B0 expansion would vanish at |z| → ∞.



Chapter 6. Confinement 117

A similar B0 dependence was found in [39] for the energy shift in the retarded regime

eB0
m � c

z of an electron near a perfect reflector, the results are shown in expressions 8.14

and 8.15 in our reproduction 5.3 of [39]’s summary of results. We are in the nonretarded

regime eB0
m � c

z , but simultaneously in a type of retarded regime with respect to the trap

frequency ωH and the distance z since we have ωH � c
z . Loosely speaking, this type of

retarded regime ωH � c
z corresponds to the time it takes for a photon to make a round

trip from the electron to the interface and back being long enough for the electron to have

moved significantly along its oscillatory path within the trap. This means that the phase

is important, which is why we get oscillatory terms. We have already noted that magnetic

moments are only strictly defined in the nonretarded regime (see figure 5.3), so what we

are seeing in (6.81) is an indication that magnetic moments are also not strictly defined

for a trapped electron with ωH � c
z . For this reason we consider the energy shift (6.80) as

our final result and will not discuss magnetic moments any further.

We can extract from eq. (6.80) an expression for the shift in the difference of the

energies1 of the two spin states by using the spin eigenvalues ±1/2.

E(0)
σz (ζi � 1) =

1

8π

e2

4m2zΩ

n− 1

n+ 1

[
nR∆3

R cos(2∆Rz)− nL∆3
L cos(2∆Lz)

]
, (6.84)

We can then express this in units of the unperturbed energy level difference E = eB0/m

E
(0)
σz (ζi � 1)

E
=

1

8π

e

4mzB0Ω

n− 1

n+ 1

[
nR∆3

R cos(2∆Rz)− nL∆3
L cos(2∆Lz)

]
, (6.85)

Noting that the defined quantities ∆i and Ω are frequencies, eq. (6.85) in S.I. units is

E
(0)
σz (ζi � 1)

E
=

1

8π

~
ε0c4

e

4mzB0Ω

n− 1

n+ 1

[
nR∆3

R cos(2∆Rz)− nL∆3
L cos(2∆Lz)

]
. (6.86)

As discussed in section 6.3, parameters which are consistent with our choice of asymptotic

regime are

B0 ∼ T, z ∼ 10µm, ωH ∼ 1015Hz, (6.87)

for which ∆Lz/c ≈ ∆Rz/c ≈ 30, meaning that we are at the low end of the region

∆iz/c� 1. Nevertheless, we substitute the values for B0 and ωH into (6.86) to find the z

dependence for such distances

E
(0)
σz (ζi � 1)

E
≈−(nR−nL)

n− 1

n+ 1
· 10−11µm

z
cos(6µm−1z), (0.1µm� z � 3mm) (6.88)

where z is measured in µm. This z dependence is shown in fig. 6.3, which shows that

1It is worth emphasizing the notational trap that E is an energy difference while ∆E is a shift in an

energy difference
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Figure 6.3: Energy shift of the spin states of an atomic electron as a

function of distance from a non-dispersive surface with (nR − nL)n−1n+1 ≈ 1,

alongside its envelope.

taking (nR − nL)n−1
n+1 ≈ 12 and a distance z of 10µm gives for the amplitude of the shift

∣∣∣∣∣E(0)
σz (ζi � 1)

E

∣∣∣∣∣ ≈ 10−12 . (6.89)

This could in principle be measured in the same fashion as the anomalous Zeeman effect,

the energy splitting for which depends on the Bohr magneton µB and the strength of the

applied magnetic field. Even if one could know the magnetic field to arbitrary accuracy,

the current uncertainty in the size of µB is around one part in 108 [25], so that our shift

is around four orders of magnitude smaller than what even an unrealistically perfect

experiment could measure. Decreasing the distance to the very edge of our asymptotic

regime we could produce a shift which is only two orders of magnitude lower than the

uncertainty in µB, but these are the conditions under which our approximations begin to

break down.

6.5 Summary and conclusions

In this chapter we have calculated the shift in the energy difference between the two spin

states of an electron that is confined at a distance z = −|z| away from a non-dispersive half

space. We have shown that the most relevant asymptotic regime is where the frequency of

2This is justified because the difference between nR and nL corresponds to the orbital magnetic quantum

number of the electron [74], as can be shown using eqs. (6.10) and the definition L̂z = x̂p̂y − p̂xŷ.
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the trap ωH is much larger than |c/z|, under which conditions we found for the energy shift

E
(0)
σz (|ωHz/c| � 1)

E
=

1

8π

~
ε0c4

e

4mzB0Ω

n− 1

n+ 1

[
nR∆3

R cos(2∆Rz)− nL∆3
L cos(2∆Lz)

]
,

(6.90)

where

Ω2 = ω2
H +

(
eB0

2m

)2

, ∆R = Ω− eB0

2m
, ∆L = Ω +

eB0

2m
, (6.91)

as given by eqs. (6.9), (6.16) and (6.86). We have described a problem where the oscillatory

behavior of the most relevant asymptotic regime of the energy shift means that it is not

possible to use such an energy shift to obtain a magnetic moment shift. We have provided

estimates of the size of the effect, showing that a measurement is not realistically within the

reach of immediately available experiments, but is also not so far out of reach (two to four

orders of magnitude) that there is no chance of measurement as experimental techniques

and technology continue to improve.
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Chapter 7

Noise-current approach

The derivation of the anomalous magnetic moment of an electron near a realistic surface

detailed in the previous section represents both a new method and a new result (with the

same being partially true for the mass shift). Many different formalisms already exist for

the calculation of quantum electrodynamic corrections due to the presence of dielectric

media, most notably the Huttner-Barnett model whereby the medium is modeled as a

continuum of oscillators coupled to a reservoir that facilitates absorption [32]. In this part

of the thesis, we will link our work to that of others by taking another alternative approach

based in the macroscopic formulation of Maxwell’s equations and their coupling to matter,

which we shall call the noise-current approach. This will serve as both a reinforcement of

our previous calculations, as well as a hint towards their extension to more realistic media.

7.1 Introduction

The starting point for noise-current quantization of the electromagnetic field in dielectric

media is Maxwell’s equations in the presence of a homogenous medium

∇ ·D(r, t) = 0, ∇×E(r, t) = − ∂

∂t
B(r, t),

∇ ·B(r, t) = 0, ∇×B(r, t) =
∂

∂t
D(r, t), (7.1)

where it has immediately been assumed that the medium is non-magnetic (relative per-

meability of unity). Further assuming that the response of the material to an applied field

is linear, the electric displacement is related to the electric field through

D(r, t) = E(r, t) +

∫ ∞
0

dτχ(τ)E(r, t− τ), (7.2)

where τ corresponds to the temporal delay in the response of the material to the field, χ(τ)

is a linear response function. Causality requires that the lower limit of the τ integral is
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zero, and τ can never be negative. Using Maxwell’s equations (7.1), we find the following

relation for the vector potential A, in Coulomb gauge1

∇2A(r, t)− ∂

∂t2
A(r, t)−

∫ ∞
0

dτχ(τ)
∂2

∂t2
A(r, t− τ) = 0 . (7.3)

The fields are Fourier transformed according to the convention2

X(r, t) =

∫ ∞
0

dω e−iωtX(r, ω) + c.c. (X = E,D,B,A), (7.4)

which delivers the Fourier-transformed version of eq. (7.2)

D(r, ω) =

(∫ ∞
0

dτχ(τ)eiωτ + 1

)
E(r, ω) ≡ ε(ω)E(r, ω) , (7.5)

and the wave equation in Coulomb gauge

∇2A(r, ω) + ω2ε(ω)A(r, ω) = 0 . (7.6)

The task is, as usual, to quantize this theory. When the permittivity is real, the theory

can be quantized in the same fashion as in Chapter 3. However, if the permittivity is

complex, eq. (7.6) becomes damped, destroying the fundamental equal-time commutator

[A(r),E(r′)] = −i~δ⊥(r− r′) [36]. This can be remedied by the introduction of a source

on the right hand side of (7.6), interpreted as quantum noise associated with damping.

This interpretation is in line with the fluctuation-dissipation theorem [80], which is a very

general result from statistical physics concerning the irreversible dissipation of energy into

small fluctuations in the properties of a system. The introduction of the source term means

that the fundamental commutator is preserved, and the theory may be quantized.

In order to deduce the specific form of the source term, we make a brief detour to

the Huttner-Barnett model [32]. This describes the medium-dependent electromagnetic

field via its interaction with a harmonic oscillator field representing the polarization of the

medium. This polarization field is, in turn, coupled to a continuum of harmonic oscillators

representing a reservoir into which energy may flow – this is the means by which absorption

is included in the model. The resulting Hamiltonian for the composite matter-field system

can be diagonalized, giving [32]

HHB =
∑
λ

∫
d3k

∫ ∞
0

dω ωĈ†λ(k, ω)Ĉλ(k, ω), (7.7)

1In this section we are dealing with homogenous media, under which conditions the generalized Coulomb

gauge condition ∇· [ε(r, ω)A(r, ω)] = 0 becomes ∇·A(r, ω) = 0, which is identical to the standard Coulomb

gauge condition.
2It may seem strange that the Fourier transform shown is defined only for positive frequency. This is

unavoidable as this will lead to the definition of noise-current quanta, which are coupled to polaritons and

therefore exist only for positive frequencies.
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where Ĉλ(k, ω) and Ĉ†λ(k, ω) obey the bosonic commutation relations[
Ĉλ(k, ω), Ĉ†λ′(k

′, ω′)
]

= δλλ′δ
⊥(k− k′)δ(ω − ω′), (7.8a)[

Ĉλ(k, ω), Ĉλ′(k
′, ω′)

]
= 0, (7.8b)

and are made up of linear combinations of polariton creation and annihilation operators.

The vector potential at t = 0 is [32]

Â(r, ω) =
1

(2π)3/2

1√
π

∑
λ

∫
d3k

∫ ∞
0

dω

[
ω
√

Im[ε(ω)]

ω2ε(ω)− k2
Ĉλ(k, ω)eik · r + H.c.

]
eλ(k). (7.9)

Applying the operator ∇2 + ω2ε(ω) we have:

[
∇2 + ω2ε(ω)

]
Â(r, ω) =

1

(2π)3/2

1√
π

∑
λ

∫
d3k

∫ ∞
0

dω

×
[
ω
√

Im[ε(ω)]Ĉλ(k, ω)eik · r + H.c.
]
eλ(k), (7.10)

which does not in general satisfy eq. (7.6). Defining the operator

F̂(r, ω) = − 1

(2π)3/2

∫
d3k

∑
λ

eλ(k)Ĉλ(k, ω)eik · r, (7.11)

which satisfies [
f̂i(r, ω), f̂ †j (r′, ω′)

]
= δij(r− r′)δ(ω − ω′), (7.12a)[

f̂i(r, ω), f̂ †j (r′, ω′)
]

= 0 =
[
f̂ †i (r, ω), f̂ †j (r′, ω′)

]
, (7.12b)

we have

[
∇2 + ω2ε(ω)

]
Â(r) = −ω

√
Im[ε(ω)]

π
F̂(r, ω) . (7.13)

This means that the introduction of a term ĵ(r, ω) = −ω
√

Im[ε(ω)]
π F̂(r, ω) on the right

hand side of eq. (7.6) will preserve the fundamental commutator and allow the field to

be quantized. To see how this works, we rewrite the wave equation (7.6) in terms of the

operator Â(r, ω) as

∇2Â(r, ω) + ω2ε(ω)Â(r, ω) = ĵ(r, ω) . (7.14)

The solution to the inhomogeneous differential equation (7.14) can be written in terms of

the Green’s function, defined as the solution to

∇2G(r, r′, ω) + ω2ε(ω)G(r, r′, ω) = δ(3)(r− r′). (7.15)

Causality is assured by choosing the retarded Green’s function. Since the dependent

variable Â is a vector, the Green’s function has the form of a dyadic tensor with the
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properties outlined in appendix (E.1). This delivers the Fourier-transformed field Â(r, ω)

as

Â(r, ω) =

∫
d3r′G(r, r′, ω) · ĵ(r′, ω) , (7.16)

giving for the configuration-space field

Â(r, t) =

∫ ∞
0

dω

∫
d3r′G(r, r′, ω) · ĵ(r′, ω)e−iωt + H.c. . (7.17)

where the product is defined via eq. (E.4). The Green’s function has a useful property

ω2

∫
d3rεI(ω)Gil(r

′, r, ω)G∗jl(r
′′, r, ω) = − Im Gij(r

′, r′′, ω) , (7.18)

as proved in appendix E.2. We wish to show that ĵ(r, ω) = −ω
√

Im[ε(ω)]
π F̂(r, ω) is the

correct choice of noise operator, i.e. that which ensures the equal-time commutation

relation

[Â(r), Ê(r′)] = −i~δ⊥(r− r′) (7.19)

is preserved. Using the commutation relations (7.12) and the component-wise statements

of the vector potential and the electric field at t = 0,

Âi(r) =

∫ ∞
0

dω

∫
d3r′Gij(r, r

′, ω)ĵj(r
′, ω) + H.c. , (7.20)

Êi(r) = i

∫ ∞
0

dω ω

∫
d3r′

[
Gij(r, r

′, ω)ĵj(r
′, ω)−H.c.

]
, (7.21)

it is easy to show that the following holds

[Âi(r), Êk(s)] =− i
∫ ∞

0
dω

∫ ∞
0

dω′ω′
∫
d3r′

∫
d3s′ωω′

√
Im[ε(ω)]

π

√
Im[ε(ω′)]

π

×
[
G∗ji(r

′, r, ω)Gkl(s, s
′, ω′)δ⊥ij(s

′ − r′)δ(ω − ω′)

+Gij(r, r
′, ω)G∗lk(s

′, s, ω′)δ⊥jl(s
′ − r′)δ(ω − ω′)

]
. (7.22)

Carrying out the integrals over ω′ and s′ we have

[Âi(r), Êk(s)] = − i
π

∫ ∞
0

dωω

∫
d3r′ Im[ε(ω)]

[
G∗ji(r

′, r, ω)Gkj(s, r
′, ω)

+Gij(r, r
′, ω)G∗jk(r

′, s, ω)
]

= − i
π

∫ ∞
0

dωω

∫
d3r′ Im[ε(ω)]

[
G∗ij(r, r

′, ω)Gkj(s, r
′, ω)

+Gij(r, r
′, ω)G∗kj(s, r

′, ω)
]
. (7.23)

This is now suitable for simplification via eq. (7.18), the result is

[Âi(r), Êk(s)] =
1

π

∫ ∞
−∞

dω
1

ω
Gij(r, s, ω) (7.24)
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where the property G∗ij(r, s, ω) = Gij(r, s,−ω) of the retarded Green’s function has been

used. In order to evaluate this integral we need to know the specific form of the Green’s

function, which we shall take to be that for a bulk dielectric, in accordance with the

assumptions made in writing down Maxwell’s equations (7.1) at the start of this section. The

Green’s function that satisfies eq. (7.15) for an infinite bulk dielectric may be represented

as [81]

Gij(r, r
′, ω) =

[
∂i∂j + δijω

2ε(ω)
] 1

ω2ε(ω)

∫
d3k

(2π)3

eik · (r−r′)

k2 − ω2ε(ω)
, (7.25)

Comparison of this with (7.24) shows that we require the following ω integrals∫ ∞
−∞

dω
1

ω

1

k2 − ω2ε(ω)
,

∫ ∞
−∞

dω
ω

k2 − ω2ε(ω)
, (7.26)

where, to conform with the definition of G as a retarded Green’s function, the poles at

ω2 = k2/ε(ω) are displaced below the real ω axis. The first integral in (7.26) has a pole at

ω = 0, which must be treated as a principal part. Closing the contour in the upper half

plane, we find that the large semicircle does not contribute due to the physical requirement

that the medium become transparent at high frequencies ε(ω → ∞) = 1. Since ε(ω) is

analytic and without zeroes in the upper half-plane, the only remaining contribution is

from the residue at ω = 0 ∫ ∞
−∞

dω
1

ω

1

k2 − ω2ε(ω)
=
iπ

k2
, (7.27)

The second integral in (7.26) has no poles, but the contribution around the large semicircle

is non-zero. Parameterizing the integral via ω = Reiθ we find∫ ∞
−∞

dω
ω

k2 − ω2ε(ω)
= −i lim

R→∞

∫ π

0
dθ

R2e2iθ

k2 −R2e2iθε(Reiθ)
= iπ, (7.28)

giving

[Ai(r), Ek(s)] = i

[
∂i∂k
k2

+ δik

] ∫
d3k

(2π)3
eik · (r−s) = −iδ⊥ik(r− s), (7.29)

as required. So, introduction of a current source

ĵ(r, ω) = −ω
√

Im[ε(ω)]

π
F̂(r, ω) (7.30)

on the right hand side of eq. (7.6) ensures preservation of the fundamental commutator

[Ai(r), Ek(s)] = −iδ⊥ik(r− s), in agreement with [36]3. Consequently, the final expression

of the field at time t = 0 to be used in calculations of radiative corrections is

Â(r) =
1√
π

∫ ∞
0

dω ω

∫
d3r′

√
εI(ω)G(r, r′, ω) · âp(r′, ω) + H.c., (7.31)

3Care must be taken when comparing to ref [36] due to a different sign convention for ĵ(r, ω)
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where εI(ω) = Im[ε(ω)] and we have renamed F̂(r, ω) → âp(r, ω) in order to reflect its

interpretation as the annihilation operator for the (transverse) polariton excitations. It

is possible to generalize (7.31) to multilayer systems since these can be subdivided into

elements where the permittivity does not vary with space [81]. The generalization is

achieved by introducing the Green’s function satisfying

∇2G(r, r′, ω) + ω2ε(r, ω)G(r, r′, ω) = δ(3)(r− r′), (7.32)

and introducing noise sources in each layer, meaning that the commutation relation (7.19)

is preserved within each element, and the vector potential (7.31) becomes [36]

Â(r) =
1√
π

∫ ∞
0

dω ω

∫
d3r′

√
εI(r′, ω)G(r, r′, ω) · âp(r′, ω) + H.c. . (7.33)

7.2 Mass Shift

We can now couple the vector potential (7.33) to an electron in order to derive radiative

corrections of the same type as in Chapters 4 and 5. Starting with the mass shift, we need

to consider

∆E =
e2

m2

∑
pint

| 〈pint; 1j(r, ω)|p ·A |p; 0〉 |2
p2

2m −
(
p2
int

2m + ω
) (7.34)

as shown in section 4.2. The intermediate one-polariton state generated by the application

of the operator âp†j (r, ω) is written as |1j(r, ω)〉. In the no-recoil approximation eq. (7.34)

becomes

∆E = − e2

m2
〈p2
i 〉| 〈1j(r, ω)| Âi(r) |0〉 |2 1

ω
. (7.35)

Using eq. (E.4), the component-wise version of eq. (7.33) is:

Âi(r) =
1√
π

∫ ∞
0

dω ω

∫
d3r′

√
εI(r′, ω)Gij(r, r

′, ω)âpj (r
′, ω) + H.c. , (7.36)

giving for the energy shift

∆E = − e2

m2
〈p2
i 〉| 〈1j(r′, ω)| Âi(r) |0〉 |2 1

ω

= − e2

πm2
〈p2
i 〉
∣∣∣∣∫ ∞

0
dω ω

∫
d3r′

√
εI(r′, ω)Gij(r, r

′, ω)

∣∣∣∣2 1

ω

= − e2

πm2
〈p2
i 〉
∫ ∞

0
dω ω

∫
d3r′εI(r

′, ω)Gij(r, r
′, ω)G∗ji(r

′, r, ω) , (7.37)

where the third line follows from the second via orthogonality of the polariton states. This

may be simplified using symmetry relation (E.11) and eq. (7.18). The result is:

∆E =
e2

πm2
〈p2
i 〉
∫ ∞

0

dω

ω
Im Gii(r, r, ω) . (7.38)



Chapter 7. Noise-current approach 126

Using the property G∗ij(r, s, ω) = Gij(r, s,−ω) of the retarded Green’s function we may

also write (7.38) as

∆E =
e2

2πm2
〈p2
i 〉
∫ ∞
−∞

dω

ω
Gii(r, r, ω) . (7.39)

Thus, all we need to find the mass shift in a particular system is the Green’s function for

that system. The determination of the electromagnetic Green’s function is, in general, a

very complex problem. However, three geometries have Green’s functions which may be

expressed in reasonably compact analytical forms. These are: planar surface, cylinder,

sphere and symmetrically layered versions thereof. Since we have already obtained results

via explicit mode expansion for the mass shift and magnetic moment of an electron near

a single-layered planar surface, it is instructive to re-derive these using the noise-current

approach, which means we need the Green’s function for the same system considered in

section 4.2.1, namely a medium filling the space z > 0 and vacuum in the region z < 0.

We place an electron in the region z < 0. In order to calculate the effects of the coupling

of the vector potential (7.33) to this electron we require only the z < 0 part of the Green’s

function, which is most naturally and usefully written as [36, 37, 81, 82]

Gij(r, r
′, ω) =


Gvac
ij (r, r′, ω) + GR

ij(r, r
′, ω) if z, z′ < 0

GT
ij(r, r

′, ω) if z < 0, z′ > 0

, (7.40)

where Gvac is the Green’s function for unbounded vacuum, and GR and GT are Green’s

functions describing medium-influenced propagation from vacuum to vacuum (reflection)

and dielectric to vacuum (transmission), respectively. GR and GT collectively comprise

the so-called scattering Green’s function.

We begin by calculating the component of the mass shift proportional to 〈p2
⊥〉. From

eq. (7.38) we have

∆E⊥ =
e2

πm2
〈p2
⊥〉
∫ ∞

0

dω

ω
Im Gzz(r, r, ω) . (7.41)

We note from eq. (7.40) that at r = r′ we may immediately ignore GT . Additionally, Gvac

is, by construction, z-independent so is also dropped, leaving only GR

∆Eren⊥ =
e2

πm2
〈p2
⊥〉
∫ ∞

0

dω

ω
Im GR

zz(r, r, ω) . (7.42)

The Green’s function is compactly expressed by taking advantage of translational invariance

parallel to the interface by defining

G(r, r′, ω) =
1

(2π)2

∫
d2k‖e

ik‖ · (r‖−r′‖)G(k‖, z, z
′, ω) . (7.43)
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We require Gzz(r, r
′, ω) only, which we will express via Gzz(k‖, z, z

′, ω), which is [37, 51, 81]4

GR
zz(k‖, z, z, ω) = − i

2kz(ω, k‖)

k2
‖

k2
RLk,TM(ω, k‖)e

2ikz(ω,k‖)z (7.44)

with the reflection coefficient as listed in appendix A.2, and where the notation kz(ω, k‖)

emphasizes the fact that kz is here simply a shorthand for kz =
√
ω2 − k2

‖. Thus the mass

shift is

∆Ez = − e2

πm2

〈p2
z〉

(2π)2
Im

∫ ∞
0

dω

ω

∫
d2k‖

i

2kz(ω, k‖)

k2
‖

k2
RLk,TM(ω, k‖)e

2ikz(ω,k‖)z . (7.45)

Transforming to spherical polar co-ordinates defined by kx = k‖ sinφ, ky = k‖ cosφ, doing

the angular integration and simplifying, this becomes

∆Ez = − e2

4π2m2
〈p2
z〉Re

∫ ∞
0

dω

ω3

∫ ∞
0

dk‖
k3
‖

kz(ω, k‖)
RLk,TM(ω, k‖)e

2ikz(ω,k‖)z . (7.46)

If we had begun this calculation using the formulation (7.39) of the mass shift, we would

have had to specify carefully around which side to circumvent the pole at ω = 0. The

same pole in (7.46) should be treated by considering the ω integration to start at some

infinitesimal value of ω as in

∆Ez = − e2

4π2m2
〈p2
⊥〉 lim

δ→0
Re

∫ ∞
δ

dω

ω3

∫ ∞
0

dk‖
k3
‖

kz(ω, k‖)
RLk,TM(ω, k‖)e

2ikz(ω,k‖)z . (7.47)

While formula (7.47) looks cumbersome, it is advantageous with respect to that which

we would have found using (7.39) because it explicitly includes the taking of a real part,

which turns out to be useful in showing its relation to the mode expansion approach to

the mass shift. In the formulation based on (7.39) we would not have a real part, rather

we would have to consider the parity properties of the ω integrand, which turns out to be

much more awkward.

7.2.1 Non-dispersive

We would like to show that formula (7.47) reproduces the kz plane contour integral (4.39)

found through mode expansion. The non-dispersive dielectric has ε(ω) = n2, in which case

the reflection coefficient is

RLTM(ω, k‖) =
n2
√
ω2 − k2

‖ −
√
n2ω2 − k2

‖

n2
√
ω2 − k2

‖ +
√
n2ω2 − k2

‖

=
n2kz(ω, k‖)− kdz(ω, k‖)

n2kz(ω, k‖) + kdz(ω, k‖)
. (7.48)

4Care must be taken when comparing this work with [37] because we have Im kz < 0, while they have

Im kz > 0.
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The integrand of eq. (7.47) can be real or imaginary depending on the value of ω. As a

consequence of this it proves useful to split the integral over ω into three parts. First we

have the region δ < ω < k‖/n

∆Enondisp
z,1 = − e2

4π2m2
〈p2
z〉 lim
δ→0

Re

∫ k‖/n

δ

dω

ω3

∫ ∞
0

dk‖
k3
‖

kz(ω, k‖)
RLk,TM(ω, k‖)e

2ikz(ω,k‖)z.

(7.49)

In this region kz is imaginary and the reflection coefficient is real, so the real part of this

integral is zero. The next region is k‖/n < ω < k‖

∆Enondisp
z,2 = − e2

4π2m2
〈p2
z〉Re

∫ k‖

k‖/n

dω

ω3

∫ ∞
0

dk‖
k3
‖

kz(ω, k‖)
RLk,TM(ω, k‖)e

2ikz(ω,k‖)z, (7.50)

where taking the limit δ → 0 is trivial since the integral is manifestly independent of δ.

Here kz is imaginary and kdz is real, meaning the reflection coefficient is complex. Letting

kz = −iκ = −i
√
k2
‖ − ω2, we have

∆Enondisp
z,2 = − e2

4π2m2
〈p2
z〉Re

∫ k‖

k‖/n

dω

ω3

∫ ∞
0

dk‖
ik3
‖

κ(ω, k‖)
RLTM(κ, k‖)e

−2κ(ω,k‖)z

= − e2

8π2m2
〈p2
z〉
∫ k‖

k‖/n

dω

ω3

∫ ∞
0

dk‖
k3
‖

κ(ω, k‖)

[
RLTM(κ, k‖)−RL∗TM(κ, k‖)

]
e2κ(ω,k‖)z. (7.51)

Since kz is here imaginary, we have kz = −iκ where the branch is chosen to preserve

the physical constraint that the shift must vanish as z → −∞. Changing variables via

ω =
√
k2
‖ + k2

z =
√
k2
‖ − κ2 gives

∆Enondisp
z,2 = − e2

8π2m2
〈p2
z〉
∫ −k‖√n2−1

n

0
dκ

∫ ∞
0

dk‖
k3
‖

(k2
‖ − κ2)2

×
[
RLTM(κ, k‖)−RL∗TM(κ, k‖)

]
e2κz. (7.52)

Inspection of the reflection coefficient (7.48) shows that for kz imaginary and kdz real, taking

the conjugate is equivalent to taking kdz → −kdz .

∆Enondisp
z,2 = − e2

8π2m2
〈p2
z〉
∫ −k‖√n2−1

n

0
dκ

∫ ∞
0

dk‖
k3
‖

(k2
‖ − κ2)2

×
[
RLTM(κ, kdz)−RLTM(κ,−kdz)

]
e2κz. (7.53)

Remembering that Im kz < 0, we have that the first term represents an integral running

from the origin down to −ik‖
√
n2−1
n in the complex kz plane, which we displace slightly

to the left so that it may be considered as an analytic continuation of the integral along

the real kz axis which we will determine next. Similarly, the second term represents an

integral running from −ik‖
√
n2−1
n to zero, displaced slightly to the right.
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Finally, we have for ω > k‖

∆Enondisp
z,3 = − e2

4π2m2
〈p2
z〉Re

∫ ∞
k‖

dω

ω3

∫ ∞
0

dk‖
k3
‖

kz(ω, k‖)
RLk,TM(ω, k‖)e

2ikz(ω,k‖)z

= − e2

8π2m2
〈p2
z〉
∫ ∞
−∞

dkz

∫ ∞
0

dk‖
k3
‖

(k2
z + k2

‖)
2
RLk,TM(ω, k‖)e

2ikzz, (7.54)

where the change of variable ω =
√
k2
z + k2

‖ has been made.

Thus, the entire mass shift is given by the sum of integrals (7.52) and (7.54), which

together are identical to the contour integral (4.39) derived through mode expansion.

7.2.2 General surface

For reasons that will become clear, we begin our discussion of dispersive models with the

dielectric function introduced in the discussion of realistic models of the response of the

surface found in sec. 4.2.3, namely

εγ(ω) = 1−
ω2
p

ω2 − ω2
T + iγω

, (7.55)

where ωp is the plasma frequency, ωT is the position of an absorption resonance, and γ > 0

is the damping parameter which determines the width of this resonance. The integral we

wish to evaluate is given by eq. (7.47), which we restate here for convenience

∆Ez = − e2

4π2m2
〈p2
⊥〉Re

∫ ∞
δ

dω

ω3

∫ ∞
0

dk‖
k3
‖

kz(ω, k‖)
RLk,TM(ω, k‖)e

2ikz(ω,k‖)z, (7.56)

The dielectric function εγ is part of a broader class of dielectric functions which satisfy

the Kramers-Kronig relations (2.67), for which the poles in RLTM are in the lower half of

the complex ω plane. Thus, our contour is as shown in fig. (7.1). We close the contour

Figure 7.1: ω-plane contour for integral (7.56) for a damped, dispersive

dielectric.
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in the first quadrant so that we have contributions from the imaginary axis and from the

quarter-circle around the pole at ω = 0. The former does not contribute since in that

region we have for imaginary ω = iξ (ξ > 0):

∆Eξz =− e2

πm2

〈p2
z〉

(2π)2

[
Re

∫ ∞
δ

dξ

ξ3

∫ ∞
0

dk‖
k3
‖

i
√
ξ2 + k2

‖

RLTM(iξ, k‖)e
2
√
ξ2+k2‖z

]
, (7.57)

where

RLTM(iξ, k‖) =
ε(iξ)

√
ξ2 + k2

‖ −
√
ε(iξ)ξ2 + k2

‖

ε(iξ)
√
ξ2 + k2

‖ +
√
ε(iξ)ξ2 + k2

‖

, (7.58)

and δ is the radius if the small circle around ω = 0. All dielectric functions that we will

consider have ε(iξ) ∈ R+, so the reflection coefficient is real on the imaginary ω axis,

showing that ∆Eξz = 0. The contribution at ω = 0 is evaluated through the residue

theorem. Carrying out the k‖ integral as well, we have for the result

∆Ez =
e2

16πm2z

{
[ε(0)− 1][1 + 2ε(0)]

[1 + ε(0)]2
+

[1 + ε(0)]ε′′(0)− 2ε′(0)2

2z2[1 + ε(0)]3

}
〈p2
z〉, (7.59)

where the primes denote derivatives5 with respect to ω. This formula represents a gen-

eralization of our previous work to damped media, and also reproduces the undamped

models considered before. The latter fact warrants further investigation since inspection of

eq. (7.33) shows that if an undamped dielectric function (εI(ω) = 0) were inserted at that

point in the calculation, there would be no polariton excitations and the shift would vanish,

in clear disagreement with the results of eq. (7.59) upon insertion of a real permittivity.

This means that it is instructive to investigate precisely how and why undamped results can

be obtained from a formalism whose foundations rest entirely on the inclusion of damping,

and how this relates to Chapter 4 where we used a direct first-principles mode expansion

to obtain results for undamped media.

7.2.3 Undamped dispersive dielectric

An undamped dispersive dielectric is described by the following permittivity

εdisp(ω) = 1−
ω2
p

ω2 − ω2
T

, (7.60)

which we insert into eq. (7.56) to give the mass shift near an undamped dispersive dielectric

∆Ez = − e2

4π2m2
〈p2
⊥〉Re

∫ ∞
δ

dω

ω3

∫ ∞
0

dk‖
k3
‖

kz(ω, k‖)
RLk,TM(εdisp)e2ikz(ω,k‖)z, (7.61)

5We remind the reader that here and throughout we use primes to denote derivatives of ε – this should

not be confused with the common notation ε′ = Re ε and ε′′ = Im ε.
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The TM reflection coefficient RLk,TM(εdisp) listed in (A.5) has two positive frequency poles,

the positions of which are given by

ω± =

{
k2
‖ +

1

2
(ω2
p + ω2

T )±
[
k4
‖ − k

2
‖ω

2
T +

1

4

(
ω2
p + ω2

T

)2]1/2
}1/2

, (7.62)

where ω−(ωT = 0) = ωsp is the surface plasmon frequency of the material. The reflection

coefficient also has three positive-frequency branch points, located at ω = ωT and

Ω± =
1√
2

{
k2
‖ + ω2

p + ω2
T ±

[
k4
‖ + 2k2

‖
(
ω2
p − ω2

T

)
+
(
ω2
p + ω2

T

)2]1/2
}1/2

. (7.63)

The various possible relative positions of the poles and branch points are summarized in

fig. (7.2) – we place the branch cuts in the shaded areas, as shown in fig. (7.3).

Branch cut regions

Figure 7.2: Positions of the poles and branch points of RL
k,TM(εdisp) along

the real ω axis for an undamped dispersive dielectric.

Figure 7.3: ω-plane contour for an undamped dispersive dielectric

The subtlety is in precisely how the poles (7.62) should be dealt with. The pole at ω = 0

was dealt with by restricting the range of integration, which we deduced was the correct

way to proceed based on what one would have to do in alternative formulation of the whole
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problem, namely the full-range ω integral (7.39) rather than its half-range counterpart

(7.38). However, there is nothing to say that the poles (7.62) should be treated the same

way as that at ω = 0 – in fact they should not. This is because of a previously mentioned

quality that the noise-current approach has, which is that it necessarily requires a damped

surface. This means that the undamped cases can only be viewed as particular limits of

the damped case, which means that these poles must be displaced an infinitesimal amount

below the real axis, or, equivalently, the contour must be displaced the corresponding

amount above the real axis, as shown in figure (7.3). Closing the contour into the upper

half-plane, then discarding the contribution along the imaginary axis and evaluating the

quarter residue around ω = 0 of course gives the same result as obtained by inserting the

dielectric function (7.60) into eq. (7.59). We emphasize that eq. (7.59) was derived using a

method which specifically relied on the material in question being damped, but we have

shown that by using the correct pole prescription the formula (7.59) is equally applicable

to undamped media.

An important part of our previous work obtaining the mass shift via mode expansion

was that we included specific and separate expressions of the surface plasmon modes.

Analytic continuation of the integrals over TE and TM modes in the complex kz plane

led to a cancellation of the surface plasmon modes with the pole in the TM reflection

coefficient at the surface plasmon frequency. The noise-current method seems to completely

circumvent this step, so the question is then precisely how this happens. We shall see that

the contour integral in the ω plane encapsulates this step, without ever explicitly referring

to surface plasmon modes.

To show this we transform the integral (7.56) from the complex ω plane into the

complex kz plane, giving

∆Ez = − e2

4π2m2
〈p2
⊥〉 lim

δ→0
Re

∫
C
dkz

∫ ∞
0

dk‖
k3
‖

(k2
z + k2

‖)
2
RLk,TM(kz, k‖)e

2ikzz, (7.64)

where the curve C is that shown in fig. 7.5. The poles kz,± and branch points Kz,± of

RLk,TM(εdisp) in the kz plane are located at

kz,± =
√
ω2
± − k2

‖, Kz,± =
√

Ω2
± − k2

‖, (7.65)

so it is evident that under certain conditions these may move onto the imaginary axis, as

shown in figs 7.4, which together correspond to the form of the kz plane shown in figure 7.5.

Taking initially the case where k‖ > ωT , in a similar way to the non-dispersive dielectric

we have that the act of taking the real part removes all contributions which run directly

along the imaginary axis, leaving only those parts which are displaced slightly (i.e. those
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Branch cut region

(a) Real axis

Branch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut region

Branch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut region

Branch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut regionBranch cut region

(b) Imaginary axis

Figure 7.4: Positions of the poles and branch points of RL
k,TM(εdisp) along

the real and imaginary kz axes for an undamped dispersive dielectric.

-

-

-

-

-

-
CC

Figure 7.5: kz-plane contour for an undamped dispersive dielectric.

around poles or branch cuts), as shown in fig. 7.6(b). We have that the real-axis integral is

even in kz, so we may extend it over the whole real axis and introduce a factor of 1
2 as

shown in fig. 7.6(c). This integral represents the contributions of the TE and TM travelling

modes previously encountered in the mode expansion, and the integrals around poles and

branch cuts on the imaginary axis represent the contribution of bound states of the system

(surface plasmons, for example), previously considered as entirely separate types of mode.

In order to actually evaluate the energy shift, we deform the real axis integral into the

lower half plane where of course it picks up contributions from encirclement of the pole and

the branch cut. However, due to opposite winding and the introduction of the factor of 1
2

from extension of the real axis integral over the whole real line, these contributions cancel

with the explicit bound state contributions arising from the original contour as shown in

fig. 7.6(d), leaving only the contribution from the residue at kz = −ik‖ shown in fig. 7.6(e).

This cancellation is the analogue of the surface plasmon cancellation detailed in section

4.2.2. The case with k‖ < ωT is simplified in an identical way, again resulting in the whole
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+ ==

(a)

Imaginary part

(b)

(c) (d) (e)

Figure 7.6: (continuation of fig. 7.5) Schematic illustration of the method

by which the mass shift derived via the noise-current approach for a

dispersive dielectric reproduces that found by mode expansion for the case

k‖ > ωT .

contribution being from the residue at kz = −ik‖.

7.2.4 Summary

We have shown that the noise-current approach to calculation of the mass shift of an

electron near a surface reproduces the corresponding results found through mode expansion.

Further to this, we have demonstrated that the contour in the ω plane required to calculate

the mass shift in the noise-current approach contains all the various mode structure

(cancellation of surface plasmon modes, etc) that we observed in the mode expansion

method.

7.3 Magnetic Moment

7.3.1 Introduction

We will now calculate the magnetic moment shift of an electron near a surface using the

noise-current approach, so that we may compare the results to those obtained by mode

expansion in Chapter 5. From eqs (5.33) and (5.39), we have for the interaction energy
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that gives rise to the magnetic moment

∆Eint = e2
∑
ν′s′

| 〈ν, s; 0| (H0 + Eν)α ·A(r)(H0 + Eν′) |ν ′, s′; 1j(r
′, ω)〉 |2

(Eν − Eν′ − ω)2Eν(Eν +m)2Eν′(Eν′ +m)
, (7.66)

where αi is given by eq. (5.5). Using eq. (7.33) and introducing an infinitesimal δ in the

same way as in (7.47), this becomes

∆Eint =
e2

π
lim
δ→0

∑
ν′s′

∫ ∞
δ

dω ω2

∫
d3r′εI(r

′, ω)

×
| 〈ν, s; 0| (H0 + Eν)α ·

[
GR(r, r′, ω) · âp(r, ω))

]
(H0 + Eν′) |ν ′, s′; 1j(r

′, ω)〉 |2

(Eν − Eν′ − ω)2Eν(Eν +m)2Eν′(Eν′ +m)
. (7.67)

Using eq. (E.4), the operator part is written in component form as

GR(r, r′, ω) · âp(r, ω) = GRij(r, r
′, ω)âpj r̂i ≡ F(r, r′, ω)âpj , (7.68)

where F(r, r, ω) ≡ GRij(r, r, ω)r̂i is a vector, and throughout we leave the sum over j

implied. Through orthogonality of the polariton eigenstates, we must have r = r′. However,

in contrast to the mass shift calculation, we will see that we have to take derivatives of

F(r, r′, ω) with respect to r. We could do the entire calculation before applying the operator

âp(r, ω), but this is very cumbersome. We avoid this issue by saying that derivatives of

F(r, r, ω) with respect to the components of r act only on the first argument, i.e.

∂F(r, r, ω)

∂ri
≡ lim

r′→r

[
∂F(r, r′, ω)

∂ri

]
. (7.69)

With this definition, the shift is obtained from

∆Eint =
e2

π
lim
δ→0

∑
ν′s′

∫ ∞
δ
dωω2

∫
d3rεI(r, ω)

| 〈ν, s| (H0 + Eν)α ·F(r, r, ω)(H0 + Eν′) |ν ′, s′〉 |2

(Eν − Eν′ − ω)2Eν(Eν +m)2Eν′(Eν′ +m)
.

(7.70)

The matrix element and energy denominators are identical to eq. (5.39) with fkλ(r, ω)→

F(r, r, ω). Thus, we can significantly shorten the calculation by appealing to the fact that

much of the analysis in section 5.3 holds for any vector in place of fkλ(r, ω). The only step

which relies on the specific form of the mode functions is the elimination of various terms

due to their being zero under
∫
d3k. This section concerns layered planar media only, for

which the Green’s function is analytically known. For these calculations all the same terms

can be dropped. That this must happen can be seen by comparing the Green’s function

(E.17) with the table of coefficients A.1 used to streamline the process of taking products

of mode functions. Taking, for example, the |fkλ,z(r, ω)|2 term we have from A.1

|fkλ,z(r, ω)|2 ∝
k2
‖

k2
. (7.71)
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We note also the following property of the zz component of the reflected part of the Green’s

function (E.17)

GR
zz(k‖, z, z

′, ω) ∝
k2
‖

k2
, (7.72)

which demonstrates that the product of component i and (the conjugate of) component j

of the mode functions has the same function of k multiplying it as component Gij of the

Green’s function. In other words, the Green’s function can be constructed from the mode

functions fkλ(r, ω). Thus, we can say by direct analogy to eq. (5.96) that the shift in terms

of the vector F(r, r, ω) is given by

∆µ⊥ = − e3

4m3

1

π

∫ ∞
δ
dω ω2

∫
d3r εI(r, ω)

[
|Fz|2 +

|(∇× F)x|2

ω2
+
|(∇× F)y|2

ω2

+
1

ω2

(
Fx
∂2F ∗y
∂x∂y

+ Fy
∂2F ∗x
∂x∂y

− Fy
∂2F ∗y
∂x2

− Fx
∂2F ∗x
∂y2

+ H.c.

)]
, (7.73)

where we have abbreviated F(r, r, ω) ≡ F. As was done in section 5.4 we can simplify by

noting that pairs of terms that differ by x↔ y must give the same contribution due to the

xy symmetry of the problem, and we also note that each term in (7.73) contributes a real

number, so that we can replace the Hermitian conjugation with a factor of two. Making

these simplifications we are left with

∆µ⊥ = − e3

4m3

1

π

∫ ∞
δ

dω ω2

∫
d3r εI(r, ω)

×

[
|Fz|2 + 2

|(∇× F)x|2

ω2
+

4

ω2

(
Fx
∂2F ∗y
∂x∂y

− Fx
∂2F ∗x
∂y2

)]
. (7.74)

From eq. (7.68), we have

F(r, r, ω) ≡ Gij(r, r, ω)r̂i, (7.75)

so that, for example,

Fz(r, r, ω) = Gij(r, r, ω)r̂i · ẑ = Gzj(r, r, ω). (7.76)

Due to the tensor nature of G it is more transparent to write the curl out in terms of its

constituent derivatives rather than leave it as a curl as was done in section 5.4. Inserting

(7.76) into eq. (7.74) and expanding out the curl term we have

∆µ⊥ = − e3

4m3

1

π

∫ ∞
δ

dω ω2

∫
d3r εI(r, ω)

×

[
|Gzj |2 +

2

ω2

(∣∣∣∣∂Gzj∂y

∣∣∣∣2 +

∣∣∣∣∂Gyj∂z

∣∣∣∣2 − ∂Gzj
∂y

∂G∗jy
∂z
− ∂Gyj

∂z

∂G∗jz
∂y

)

+
4

ω2

(
Gxj

∂2G∗jy
∂x∂y

−Gjx
∂2G∗xj
∂y2

)]
, (7.77)
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where we have again abbreviated Gij(r, r, ω) ≡ Gij . Further abbreviating

∂(l)
γ ≡

∂

∂xi

∂

∂xj
...

∂

∂xl

(
e.g. ∂3

xyz =
∂

∂x

∂

∂y

∂

∂z

)
(7.78)

the magnetic moment shift is finally written as

∆µ⊥ = − e3

4m3

1

π

∫ ∞
δ

dω ω2

∫
d3r εI(r, ω)

×

[
|Gzj |2 +

2

ω2

(
|∂yGzj |2 + |∂zGyj |2 − (∂yGzj)(∂zG

∗
yj)− (∂zGyj)(∂yG

∗
zj)

)

+
4

ω2

(
G∗xj∂

2
xyGyj −Gxj∂2

yyG
∗
xj

) ]
, (7.79)

where the symmetry relation (E.11) has been used. This is an expression which is nearly

suitable for simplification via the integral relation (7.18), however there is one subtlety

that needs to be addressed. The main difference between eq. (7.79) and the corresponding

expression for the mass shift (7.37) is the presence of spatial derivatives. This means that

in order to apply (7.18) we have to apply the derivative operator first. To do this we assume

that the electron is sitting in vacuum. This is not just to make the calculation simpler

– consideration of radiative corrections to microscopic systems embedded in macroscopic

materials would necessitate the inclusion of local field effects [83]. This assumption has the

useful consequence that the spatial dependence of the Green’s function on the vacuum side

of the interface must be either a plane wave or a damped exponential, meaning that the

components of the reflected Green’s function are necessarily eigenfunctions of any spatial

derivative operator.

The final step in the simplification of (7.79) is to note that for real kz one has to take

kz → −kz in the reflected part of the Green’s function upon interchange of the indices

r and r′, which is essentially the analogue of the process by which an extra minus sign

is generated in products of mode functions as detailed in appendix A.3 eqs. (A.17) and

(A.18). As an aside, we note that if one happens to miss this subtlety when taking the

mode expansion approach, the entire process of transformation of the integrals into a single

contour integral breaks down. The fact that this always works is a consequence of the

completeness of the modes (as shown explicitly for non-dispersive and plasma media),

so if this does not work one is naturally led to realize that there has been a mistake. If

one misses this subtlety in the noise-current approach the only consequences are a few

different signs in the simplification of (7.79), which will lead one to get reasonable-seeming

but wrong results. This is a telling example of the mode expansion approach being more

physically transparent and intuitive than other approaches.
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Proceeding, we use the assumptions above to rewrite the shift as

∆µ⊥ =
e3

4m3

1

π

∫ ∞
δ

dω Im

[
Gzz +

2

ω2

(
Gzzk

2
y −Gyyk2

z +Gzykykz −Gyzkykz
)

− 4

ω2

(
Gxykxky −Gxxk2

y

) ]
. (7.80)

We now let G(r, r′, ω)→ GR(r, r′, ω) for the same reasons as that which took eq. (7.41)

to eq. (7.42) in the calculation of the mass shift, which were that the vacuum component

of G(r, r′, ω) is independent of z, so is subtracted to effect our usual approach to renormal-

ization via subtraction of terms which would remain without the presence of the surface.

We then have

∆µ⊥ =
e3

4m3

1

π

∫ ∞
δ

dω Im

[
GRzz +

2

ω2

(
GRzzk

2
y −GRyyk2

z +GRzykykz −Gyzkykz
)

− 4

ω2

(
GRxykxky −Gxxk2

y

) ]
. (7.81)

This cannot be extended over the whole frequency axis in the same way as (7.39) for the

mass shift because its extra power of ω means it has different parity properties.

We are now ready to substitute the explicit dyadic Green’s function for planar media,

found in appendix E.3.2. After some algebra, the result is found to be

∆µ⊥ = − e3

4m3

1

2π2

∫ ∞
δ

dω

∫ ∞
0

dk‖Re
{ k‖

2kzω2

[ (
2k2
‖ − k

2
z

)
RLTE(ω)

+
(

2k2
‖ + k2

z

)
RLTM(ω)

]
e2ikzz

}
, (7.82)

where the angular integration over φ defined by {kx = k‖ cosφ, ky = k‖ sinφ} has been

evaluated already.

7.3.2 Evaluating the shift

The principal difference between the expressions for the magnetic moment shift (7.82)

and the mass shift (7.46) is the extra power of ω appearing in the denominator. This

is completely inconsequential in the reproduction of the kz plane contour. For example,

in the case of a non-dispersive dielectric the above expression can be easily shown to be

equivalent to the contour integral (5.98a) obtained from mode expansion by an identical

method to that used to show that the noise-current mass shift result (7.47) in section 7.2

is equivalent to the contour integral (4.39) obtained by mode expansion. The extra power

of ω only has an effect once the contour is deformed into the lower half-plane where it

introduces a branch point at kz = −ik‖, whence the method is identical to section 5.4.
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The extra power of ω does however have significant consequences in the ω plane,

which, as we have seen in section 4.2.5, is the most appropriate setting in which to

calculate radiative corrections near absorbing surfaces. Completing the contour in the

upper half-plane and changing variables to ξ = −iω, we have for the magnetic moment

shift

∆µ⊥ = − e3

4m3

1

(2π)2
Re

∫
Cδ

dξ

∫ ∞
0

dk‖k‖
e

2
√
ξ2+k2‖z

ξ2
√
ξ2 + k2

‖

×
[(

3k2
‖ + ξ2

)
RLTE(ξ) +

(
k2
‖ − ξ

2
)
RLTM(ξ)

]
=

∫
Cδ

dξf(ξ), (7.83)

where the contour Cδ is that shown in fig. 7.7(a). All the dielectric functions that we

= +

(a) (b) (c)

Figure 7.7: Illustrations in the complex ω plane of the process by which

we deal with the pole at ω = 0 in magnetic moment calculations. The

colors emphasize the fact that the integrands are different for each contour.

consider have ε(iξ) ∈ R+, so the portion of the integral that is along the imaginary

frequency axis is not zero, in contrast to the mass shift. This makes the treatment of

the pole at ω = 0 considerably more awkward. As shown in figure 7.7(b), we begin by

subtracting from the integrand the part which diverges as ξ → 0, which corresponds to

subtracting the principal part of its Laurent series about ξ = 0. For undamped dielectric

functions (we will come back to this point) the integral over the subtraction fsub(ξ) is

∫
Cδ

dξfsub(ξ) = − e3

4m3

1

(2π)2
Re

∫
Cδ

dξ

∫ ∞
0

dk‖
k2
‖

ξ2
RLTM(0)e2k‖z . (7.84)

The residue of this at ξ = 0 is zero, which means that the integral is not suitable for

evaluation through the residue theorem. Instead we parameterize the quarter circle Cq

by letting ω = δeiϕ, with ϕ = π/2...0. In terms of ξ, this corresponds to letting ξ = −iδeiφ
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with φ = 0...−π/2 so that the quarter circle part of (7.84) becomes∫
Cq

dξfsub(ξ) =
e3

4m3

1

(2π)2
Re

∫ −π/2
0

dφ δ

∫ ∞
0

dk‖
k‖e

iφ

δ2e2iφ
RLTM(0)e2k‖z

=
e3

4m3

1

(2π)2

∫ −π/2
0

dφ δ

∫ ∞
0

dk‖
k‖

δ2
cos(φ)RLTM(0)e2k‖z

=
e3

4m3

1

(2π)2

1

4δz3
RLTM(0) . (7.85)

The part of integral (7.84) that is straight down the imaginary axis (contour Cs in fig. 7.7(b))

is ∫
Cs

dξfsub(ξ) =
e3

4m3

1

(2π)2
Re

∫ ∞
δ

dξ

∫ ∞
0

dk‖
k2
‖

ξ2
RLTM(0)e2k‖z

= − e3

4m3

1

(2π)2

1

4δz3
RLTM(0) . (7.86)

Thus we find for the integral along the whole contour Cδ∫
Cδ

dξfsub(ξ) =

∫
Cq

dξfsub(ξ) +

∫
Cs

dξfsub(ξ) = 0 , (7.87)

for all δ. So we have shown that the integral shown in fig. 7.7(b) is zero, meaning that the

whole contribution is given by the integral shown in fig. 7.7(c). Since the pole at ω = 0 is

not present in the integral shown in 7.7(c), we may freely deform the contour Cδ to run

straight along the imaginary frequency axis, as shown fig. 7.8(c).

= +

(a) (c)

= 0

Figure 7.8: (continuation of fig. 7.7) Illustrations in the complex ω plane

of the process by which we deal with the pole at ω = 0 in magnetic moment

calculations. Part (b) has been removed as a consequence of (7.87).

In summary, we have shown that the pole in eq. (7.83) should be treated by subtracting∫
Cδ
dξfsub(ξ) from eq. (7.83) and then deforming the contour Cδ to run straight along the

imaginary axis, giving

∆µ⊥ =
e3

4m3

1

(2π)2

∫ ∞
0

dξ

∫ ∞
0

dk‖k‖

×

 e
2
√
ξ2+k2‖z

ξ2
√
ξ2 + k2

‖

[(
3k2
‖ + ξ2

)
RLTE +

(
k2
‖ − ξ

2
)
RLTM

]
−
k‖

ξ2
RLTM(0)e2k‖z

 , (7.88)
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where it has been observed that the integrand is real for all dielectric functions with

ε(iξ) ∈ R+, and is integrated directly over real ξ, so the result is necessarily real. This

agrees with the result (5.164a) found through mode expansion.

7.3.3 Damping

In our derivation of (7.88) we assumed in eq. (7.84) that the surface does not have a damping

parameter γ in its permittivity. If we lift that assumption and take the permittivity to be

εγ(r, ω) = 1−Θ(z)
ω2
p

ω2 − ω2
T + iωγ

, (7.89)

we have for eq. (7.83)

∆µ = − e3

4m3

1

(2π)2
Re

∫
Cδ

dξ

∫ ∞
0

dk‖k‖
e

2
√
ξ2+k2‖z

ξ2
√
ξ2 + k2

‖

×
[(

3k2
‖ + ξ2

)
RγLTE(ξ) +

(
k2
‖ − ξ

2
)
RγLTM(ξ)

]
=

∫
Cδ

dξf(ξ), (7.90)

where we have written RLλ (ξ)→ RγLλ (ξ) to emphasize that we are considering a damped

surface. Following the method we used in the previous section, we subtract from the

integrand the principal part of its Laurent series about ξ = 0, giving for the subtracted

part of the integral∫
Cδ

dξfγsub(ξ) = − e3

4m3

1

(2π)2
Re

∫
Cδ

dξ

∫ ∞
0

dk‖
k2
‖

ξ2

(
RγLTM(0) + ξRγL

′

TM(0)
)
e2k‖z, (7.91)

where the prime denotes a derivative with respect to ξ. The contour Cδ is given by the

sum of Cq and Cs, as shown in fig. (7.7). Considering the part of the second term of (7.91)

that is integrated over Cs, we have

− e3

4m3

1

(2π)2
Re

∫ ∞
δ

dξ

∫ ∞
0

dk‖
k2
‖

ξ
RγL

′

TM(0)e2k‖z, (7.92)

which diverges logarithmically at its upper limit, so making a subtraction along the lines of

that done in section 7.3.2 does not work if the dielectric function has γ 6= 0. This problem

was not seen in the mass shift (7.56) because of its differing overall power of ω which meant

that the integral along the imaginary frequency axis vanished when we took the real part of

the integrand. This, alongside the related problems detailed in section 5.4.4, may indicate

that one needs to do a full Huttner-Barnett quantization [31, 32] in order to calculate the

magnetic moment of an electron near an absorbing surface.
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7.4 Born series approach

The main utility of the noise-current approach is its description of the surface solely through

its electromagnetic Green’s function. This makes it amenable to extension to more complex

systems than an infinite half-space. In this section we outline how the Green’s function for

the electromagnetic field near an arbitrarily shaped object can be calculated perturbatively

through the use of a Born series, and then compare this with the exact results obtained

thus far.

7.4.1 The Born series

It is familiar from scattering theory that amplitudes can be calculated perturbatively

through the use of the Born series. For example, the Schrödinger equation

(
∇2 + k2

)
ψ(r) = 2mV (r)ψ(r) (k2 = 2mE), (7.93)

has a solution which is the sum of the general solution to the corresponding homogeneous

differential equation (
∇2 + k2

)
ψ0(r) = 0, (7.94)

and of a particular solution, here written in terms of the Green’s function G(r− r′)

ψS(r) = 2m

∫
d3r′G(r− r′)V (r′)ψ(r′), (7.95)

where G(r− r′) is defined as the solution to

(
∇2 + k2

)
G(r− r′) = δ(3)(r− r′), (7.96)

giving for the whole solution

ψ(r) = ψ0(r) + 2m

∫
d3r′G(r− r′)V (r′)ψ(r′). (7.97)

This is an integral form of the Schrödinger equation. Its advantage over the differential

form is that it can be solved iteratively. The zeroth order solution (no scattering) is given

simply by ψ(r) = ψ0(r). The first order solution is obtained by inserting the zeroth order

solution into eq. (7.97), which gives:

ψ1(r) = ψ0(r) + 2m

∫
d3r′G(r− r′)V (r′)ψ0(r′). (7.98)

The second order solution is obtained by inserting the first order solution into eq. (7.97).

This procedure can be repeated an arbitrary number of times, meaning that full the solution
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can be written

ψ(r) = ψ0(r) + 2m

∫
d3r′G(r− r′)V (r′)ψ0(r′)

+ (2m)2

∫
d3r′

∫
d3r′′G(r− r′)V (r′)G(r′ − r′′)V (r′′)ψ0(r′′) + ... (7.99)

Thus, to obtain ψ(r) to a specified order in the scattering potential V (r), we only require

knowledge of the Green’s function G(r− r′), and the solution of the homogenous equation

(7.94).

7.4.2 Application to noise-current QED

In section 7.1 we saw that the noise-current approach to QED in media is based upon the

following differential equation

∇2Â(r, ω) + ω2ε(r, ω)Â(r, ω) = ĵ(r, ω), (7.100)

which is solved via the Green’s function

∇2G(r, r′, ω) + ω2ε(r, ω)G(r, r′, ω) = δ(3)(r− r′). (7.101)

Since, in general, the Green’s function for a particular geometry is not known analytically,

it is worth finding a way of expressing the Green’s function in terms of a perturbation

from one of the very few geometries for which the exact Green’s function can be written

down. Following [84], this can be done by considering the Green’s function G(r, r′, ω) as

being made up of an analytically known Green’s function G(0)(r, r′, ω) and an additional

contribution resulting from the difference between the two. This implies the relations

∇2G(r, r′, ω) + ω2ε(r, ω)G(r, r′, ω) = δ(3)(r− r′), (7.102a)

∇2G(0)(r, r′, ω) + ω2ε(0)(r, ω)G(0)(r, r′, ω) = δ(3)(r− r′), (7.102b)

where ε(0)(r, ω) is the dielectric function which describes the geometry for which the Green’s

function is analytically known, and ε(r, ω) is the dielectric function of the whole system.

Subtracting these equations from each other, we get:

∇2δG(r, r′, ω) + ω2ε(0)(r, ω)δG(r, r′, ω)

= −ω2δε(r, ω)
[
δG(r, r′, ω) + G(0)(r, r′, ω)

]
, (7.103)

where δG(r, r′, ω) = G(r, r′, ω)−G(0)(r, r′, ω), and δε(r, ω) = ε(r, ω)− δε(0)(r, ω). This is

an inhomogeneous differential equation for some function δG(r, r′, ω), formally similar to

eq. (7.93). Thus we can solve it using the method of the Green’s function (even though the
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function we are solving for is itself another Green’s function), and construct a Born series

expansion for δG(r, r′, ω). The Green’s function G̃(r, r′, ω) for the differential equation

(7.103) satisfies

∇2G̃(r, r′, ω) + ω2ε(0)(r, ω)G̃(r, r′, ω) = δ(3)(r− r′), (7.104)

which, on comparison with eq. (7.102b) shows that

G̃(r, r′, ω) = G(0)(r, r′, ω) . (7.105)

Thus the solution to eq. (7.103) may be written as

δG(r, r′, ω) = −ω2

∫
d3sG(0)(r, s, ω)δε(s, ω)

[
δG(s, r′, ω) + G(0)(s, r′, ω)

]
, (7.106)

so for the whole Green’s function G(r, r′, ω) = G(0)(r, r′, ω) + δG(r, r′, ω) we have

G(r, r′, ω) = G(0)(r, r′, ω)− ω2

∫
d3sG(0)(r, s, ω)δε(s, ω)G(s, r′, ω), (7.107)

which is of the same form as eq. (7.97). This means we can solve it in the same iterative

way, giving for the Born series

G(r, r′, ω) = G(0)(r, r′, ω)− ω2

∫
d3s1 G(0)(r, s1, ω)δε(s1, ω)G(0)(s1, r

′, ω)

+ ω4

∫
d3s1

∫
d3s2 G(0)(r, s1, ω)δε(s1, ω)G(0)(s1, s2, ω)δε(s2, ω)G(0)(s2, r

′, ω) + ...

(7.108)

This shows that the Green’s function representing propagation from r to r′ in a region

with an arbitrarily spatially varying dielectric function ε(r, ω) is represented by a sum

of multiple scatterings from a ‘potential’ given by the difference between ε(r, ω) and the

dielectric function ε(0)(r, ω) of a system for which the Green’s function is analytically

known. Equation (7.108) is exact, but in order to only have to deal with a tractable number

of terms it is necessarily to consider a system whose geometry deviates only slightly6 from

that with an analytically known Green’s function. We also note that since the dielectric

contrast δε(s, ω) is necessarily zero in the region where the Green’s function is analytically

known, the integral over d3s shown in eq. (7.107) may be restricted to the region where an

arbitrarily shaped perturbing body exists.

6Precisely how far the geometry should be allowed to deviate is not easily quantifiable. One would need

to define a ‘geometric deviation’ as a function of both permittivity and spatial extent, since either (or both)

of these properties are desirable in the approximation of a Green’s function.
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7.4.3 Slab

As an initial demonstrative case, we consider a slab of material which extends from z = 0

to z = L, and which is infinite in the x and y directions. An electron sits in the region

z < 0. In the limit L → ∞ this system is the same half-space as previously considered.

The Green’s function for all L is analytically known, but we shall consider it perturbatively

to demonstrate the method. The dielectric function is:

ε(r, ω) =


1 if z < 0,

εs(ω) if 0 < z < L,

1 if z > L,

(7.109)

which is considered as a perturbation to a vacuum background ε(0)(r, ω) = 1. So the

dielectric contrast is

δε(r, ω) = ε(r, ω)− 1 =


0 if z < 0,

εs(ω)− 1 if 0 < z < L,

0 if z > L,

(7.110)

From eq. (7.108), the first-order correction to the Green’s function is given by

∆(1)G(r, r′, ω) = −ω2

∫
d3s G(0)(r, s, ω)δε(s, ω)G(0)(s, r′, ω). (7.111)

On substitution of the explicit dielectric contrast, this reduces to

∆(1)G(r, r′, ω) = −ω2(εs(ω)− 1)

∫
d2s‖

∫ L

0
dsz G(0)(r, s, ω)G(0)(s, r′, ω), (7.112)

where G(0)(r, r′, ω) is the vacuum Green’s function. We shall consider only the zz com-

ponent because this is a short calculation which gives a Green’s function that can be used

to determine a physical quantity, namely the component of the mass shift proportional to

〈p2
⊥〉 as given by eq. (7.42). We have:

∆(1)Gzz(r, r
′, ω) = −ω2(εs(ω)− 1)

∫
d2s‖

∫ L

0
dsz G

(0)
zi (r, s, ω)G

(0)
zi (r′, s, ω), (7.113)

where the symmetry relation (E.11) has been used. Defining

G2
ij(r, r

′, ω) ≡
∫
d2s‖

∫ L

0
dsz G

(0)
ij (r, s, ω)G

(0)
ij (r′, s, ω), (7.114)

we note from eq. (7.113) that we need G2
zx(r, r′, ω) and G2

zz(r, r
′, ω) (with the contribution

from G2
zy(r, r

′, ω) being necessarily equal to G2
zx(r, r′, ω) through xy symmetry). We are
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only interested in the region rz < sz, since that is where the electron is, so from appendix

E.3 we have for the required Green’s functions

G(0)
zx (r, s, ω) =

1

ω2

∫
d2k‖

(2π)2
eik‖ · (r‖−s‖)(−kxkz)

ieikz(rz−sz)

2kz
, (7.115a)

G(0)
zz (r, s, ω) =

1

ω2

∫
d2k‖

(2π)2
eik‖ · (r‖−s‖)k2

‖
ieikz(rz−sz)

2kz
, (7.115b)

First considering the zx contribution we have

G2
zx(r, r′, ω) = − 1

4ω4

∫
d2s‖

∫ L

0
dsz

∫
d2k‖

(2π)2

∫
d2p‖

(2π)2
eik‖ · (r‖−s‖)eip‖ · (r

′
‖−s‖)

× kxeikz(rz−sz)pxe
ipz(r′z−sz), (7.116)

where pz ≡
√
ω2 − p2

‖. The s‖ integration is trivial and results in a factor of (2π)2δ(2)(k‖ +

p‖), which can be used to do the p‖ integral. The result is

G2
zx(r, r′, ω) =

1

4ω4

∫ L

0
dsz

∫
d2k‖

(2π)2
e
ik‖ · (r‖−r′‖)k2

xe
−2ikzszeikz(rz+r′z). (7.117)

The sz integral is elementary, giving the final result for the zx contribution as

G2
zx(r, r′, ω) =

i

8ω4

∫
d2k‖

(2π)2
e
ik‖ · (r‖−r′‖)k

2
x

kz
(e−2ikzL − 1)eikz(rz+r′z). (7.118)

Calculation of the zz contribution works in exactly the same way, the result is

G2
zz(r, r

′, ω) = − i

8ω4

∫
d2k‖

(2π)2
e
ik‖ · (r‖−r′‖)k

4
‖

k3
z

(e−2ikzL − 1)eikz(rz+r′z). (7.119)

We have from eq. (7.113)

∆(1)Gzz(r, r
′, ω) = −ω2(εs(ω)− 1)

[
G2
zx(r, r′, ω) + G2

zx(r, r′, ω)|kx→ky + G2
zz(r, r

′, ω)
]

=
i(εs(ω)− 1)

8ω2

∫
d2k‖

(2π)2
e
ik‖ · (r‖−r′‖)k

2
‖

kz

(
k2
‖

k2
z

− 1

)
(e−2ikzL − 1)eikz(rz+r′z). (7.120)

Writing this in the same form as eq. (7.43), we finally have:

∆(1)Gzz(k‖, rz, r
′
z, ω) =

i(εs(ω)− 1)

8ω2

k2
‖

kz

(
k2
‖

k2
z

− 1

)
(e−2ikzL − 1)eikz(rz+r′z). (7.121)

We now check this for agreement with the exact Green’s function for this system.

Similarly to eq. (7.40) we write the exact Green’s function as

Gslab
zz (r, r′, ω) =


Gv
zz(r, r

′, ω) + GR,slab
zz (r, r′, ω) for rz, r

′
z < 0,

GT,slab
z (r, r′, ω) for rz < 0, r′z > 0.

(7.122)

While in principle the transmitted component should be taken into account, all our

calculations of radiative corrections have only required the Green’s function at r = r′, with

both points being located away from the surface in vacuum. Thus we only need

Gslab
zz (r, r, ω) = Gv

zz(r, r, ω) + GR,slab
zz (r, r, ω) for rz, r

′
z < 0. (7.123)
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From eq. (7.108) our approximate Green’s function is

Gzz(k‖, rz, rz, ω) = Gv
zz(k‖, rz, rz, ω) + ∆(1)Gzz(k‖, rz, rz, ω) +O

[
(εs(ω)− 1)2

]
. (7.124)

Since we have found the approximate Green’s function only in the region rz < 0, we expect

GR,slab
zz (k‖, rz, rz, ω) = ∆(1)Gzz(k‖, rz, rz, ω) +O

[
(εs(ω)− 1)2

]
. (7.125)

From appendix E.3.2, we have the zz component of the reflected Green’s function for

general layered media as

GR
zz(k‖, rz, rz, ω) = − i

2kz
e2ikzrzR̃LTM

k2
‖

k2
. (7.126)

Comparing eqs. (7.121) and (7.126), the relation we expect to find is

R̃LTM =
εs(ω)− 1

4

(
1−

k2
‖

k2
z

)
(e−2ikzL − 1) +O

[
(εs(ω)− 1)2

]
. (7.127)

The reflection coefficient is given by eq. (A.6) as

R̃LTM =
RvsTM +RsvTMe

2ikszL

1 +RvsTMR
sv
TMe

2ikszL
, (7.128)

where RvsTM and RsvTM represent the TM reflection coefficients for modes travelling vacuum-

to-slab and slab-to-vacuum respectively. ksz is the z component of the wave vector inside

the slab,

ksz =
√
εs(ω)(k2

z + k2
‖)− k

2
‖. (7.129)

Expanding R̃LTM for small values of εs(ω)− 1 yields eq. (7.127), as expected.

Reproduction of the exact Green’s function in the half-space limit {l1 → 0, l2 →∞} is

slightly trickier. As l2 →∞, eq. (7.121) oscillates rapidly. To deal with this we subtract

a small imaginary part q > 0 from kz and let q → 0 at the end of the calculation. For

example, eq. (7.117) becomes

G2
zx(r, r′, ω, half-space) =

1

4ω4
lim
q→0

∫ ∞
0

dsz

∫
d2k‖

(2π)2
e
ik‖ · (r‖−r′‖)k2

xe
−2i(kz−iq)szeikz(rz+r′z)

=
1

4ω4
lim
q→0

∫
d2k‖

(2π)2
e
ik‖ · (r‖−r′‖)k2

x

1

2i(kz − iq)
eikz(rz+r′z)

= − i

8ω4

∫
d2k‖

(2π)2
e
ik‖ · (r‖−r′‖)k

2
x

kz
eikz(rz+r′z). (7.130)

Taking the same approach with G2
zz, and using eq. (7.120) we arrive at

∆(1)Gzz(r, r
′, ω,half-space) = − i(εs(ω)− 1)

8ω2

∫
d2k‖

(2π)2
e
ik‖ · (r‖−r′‖)k

2
‖

kz

(
k2
‖

k2
z

− 1

)
eikz(rz+r′z).

(7.131)
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From appendix E.3.2, the zz component of the reflected part of the exact Green’s function

of the half-space is

GR
zz(k‖, rz, rz, ω) = − i

2kz
e2ikzrzRLTM

k2
‖

k2
. (7.132)

Comparing this and eq. (7.131), the approximation is valid if the following holds

RLTM =
εs(ω)− 1

4

(
k2
‖

k2
z

− 1

)
+O

[
(εs(ω)− 1)2

]
, (7.133)

which can be shown to be true using the explicit form of the reflection coefficient listed in

eqs. A.5. Since physical quantities such as the mass shift and magnetic moment depend only

on a frequency integral over the Green’s function, the agreement between the approximate

Green’s function found via the Born series and the exact Green’s function in the appropriate

limit necessarily means that the mass shift and magnetic moment results for non-dispersive

media found in sections 4.2.1 and 5.4.1 can be obtained from the approximate Green’s

function (7.131). This is not true in general for dispersive media because the calculation of

physical quantities requires an integration over all ω, where εs(ω)−1 is not necessarily small.

For a non-dispersive dielectric there is no problem, one can simply let εs(ω) = n2 ≈ 1, but

for dispersive media the issue is more complicated. The method is clearly unsuitable for a

plasma

εs(ω)→ εp(ω) = 1−
ω2
p

ω2
, (7.134)

due to its pole at ω = 0. Because of this, we consider an undamped dispersive dielectric as

the test-case for a dispersive medium

εs(ω)→ εdisp(ω) = 1−
ω2
p

ω2 − ω2
T

with ωp � ωT . (7.135)

Our (unrenormalized) expression (7.41) for the perpendicular component of the mass shift

in terms of the Green’s function is

∆E⊥ =
e2

πm2
〈p2
⊥〉
∫ ∞

0

dω

ω
Im Gzz(r, r, ω)

=
e2

πm2
〈p2
⊥〉
∫ ∞

0

dω

ω
Im
[
G(0)(r, r′, ω) + ∆(1)G(r, r′, ω) + ...

]
. (7.136)

As usual, we renormalize by subtracting all quantities which would be present in free space.

Here this corresponds to subtracting G(0)(r, r′, ω), giving

∆Eren⊥ =
e2

πm2
〈p2
⊥〉
∫ ∞

0

dω

ω
Im
[
∆(1)G(r, r′, ω) + ...

]
. (7.137)

We now insert the Green’s function (7.121) into the expression for the mass shift (7.41) to
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find a first-order approximation to the perpendicular part of the mass shift

∆Eren⊥(εs(ω) ≈ 1) =
e2

16π2m2
〈p2
⊥〉Re

∫ ∞
0

dω
εs(ω)− 1

ω3

×
∫ ∞

0
dk‖

k3
‖

kz

(
k2
‖

k2
z

− 1

)
(e−2ikzL − 1)e2ikzrz . (7.138)

This may be evaluated through the residue theorem in an identical way to that shown in

section 7.2.2, the result is

∆Eren⊥(εs(ω) ≈ 1) =
e2

128πm2z3(L− z)3

[
6Lz2(L− z)2(εs(0)− 1)

+ L
(
L2 − 3Lz + 3z2

)
ε′′s(0)]

]
〈p2
⊥〉. (7.139)

A consistency check is to take a non-dispersive slab (εs(0) = n2, ε′′s(0) = 0) and L→∞,

giving

∆Eren⊥(n2 ≈ 1, L→∞) = 〈p2
⊥〉

3e2

64πm2z
(n2 − 1) , (7.140)

so that we may check for agreement with the mass shift near a non-dispersive half-space

obtained in Chapter 4, the result being given by eq. (4.47) as

∆Enondisp
ren⊥ = 〈p2

⊥〉
e2

16πm2z

2n4 − n2 − 1

(n2 + 1)2
, (7.141)

which for n2 ≈ 1 becomes

∆Enondisp
ren⊥ (n2 ≈ 1) =

[
∂

∂(n2)
∆ENonDisp,z

]
n2=1

+O(n2 − 1)2

= 〈p2
⊥〉

3e2

64πm2z
(n2 − 1) +O(n2 − 1)2 , (7.142)

in agreement with (7.140). Similarly, we can insert the dispersive dielectric function (7.135)

into (7.139) to find:

∆EDisp,⊥(εdisp(0) ≈ 1) =
ω2
pz

3 + ω2
p(L− z)2

(
L− z + 3Lω2

T z
2
)

64πω4
T z

3(L− z)3
〈p2
⊥〉+O(εdisp(0)− 1)2.

(7.143)

In the limit of large L, this becomes

∆EDisp,⊥(εdisp(0) ≈ 1, L→∞) =
ω2
p(1 + 3ω2

T z
2)

64πω4
T z

3
〈p2
⊥〉. (7.144)

The corresponding exact result was obtained in Chapter 4 and is given by eq. (4.88)

∆Edisp
ren =

e2

16πm2

ω2
p(

ω2
p + 2ω2

T

)2 [ 1

z3
+

1

z
(2ω2

p + 3ω2
T )

]
〈p2
⊥〉. (7.145)

As we have already noted, the Born series approximation is only valid when ωp � ωT .

Under these conditions the exact result becomes

∆Edisp
ren (ωp � ωT ) =

ω2
p(1 + 3ω2

T z
2)

64πω4
T z

3
〈p2
⊥〉+O(ω2

p). (7.146)

in agreement with the Born series approximation (7.144).
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7.5 Summary and conclusions

In this chapter we have shown that the mass shift calculated in chapter Chapter 4 and the

magnetic moment shift calculated in Chapter 5 can be rederived using the noise-current

approach to QED in dielectric media. In sections 7.2 and 7.3 we showed the method

by which our previous results for undamped media may be recovered as limiting cases

of formulae whose derivations relied on the medium being damped. In section 7.3.3 we

encountered the same difficulty concerning the calculation of a magnetic moment near a

dispersive surface that we found using the mode expansion in section 5.4.4. Finally, in

section (7.4), we provided a brief discussion of how the noise-current approach can be used

to calculate, under suitable conditions, the effects of an arbitrarily shaped medium upon

an electron in its vicinity.
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Chapter 8

Summary

In this thesis we have derived shifts of the mass and magnetic moment of an electron near

a realistic surface, relevant to ultra-precise experimental tests of fundamental physics. We

noted that results for different models of the electromagnetic response of the surface do

not agree in the expected limiting cases due to their drastically different behavior at low

frequency, which led to the conclusion that one must carefully choose an suitable model of

the surface when considering quantum electrodynamic surface effects. As a consequence

of this, we have shown that obtaining rough estimates by modeling a surface as a perfect

reflector is not necessarily appropriate. We have found that the use of a dispersive surface

may make the magnetic moment shift significantly larger than previous perfect-reflector

estimates suggest, so much so that its measurement is on the verge of experimental viability.

We then extended our model to calculation of radiative corrections to an electron bound

in a harmonic potential near a surface, finding that the notion of a magnetic moment is

not particularly well-defined in such a system. This caused us to consider the change in

the energy difference of the spin states instead, in which we found an oscillatory behavior

stemming from retardation effects between the oscillator potential and the surface.

We then reinforced our mode expansion results by recalculating them using a semi-

phenomenological ‘noise-current’ approach, with agreement in all cases. On comparison of

the two methods we found that the mode expansion approach has the advantage of being

more physically intuitive and traceable, but the noise-current approach has the advantage

of being purpose-built around dispersive media.

Possible extensions to this work would be consideration of non-planar surfaces, perhaps

with a view to specifically tuning the shape of a surface in order to maximize radiative

corrections to an electron (or atom) held near it. This could lead to novel devices for

controlling and enhancing the properties of microscopic systems.
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Appendix A

Modes

A.1 Polarization vectors

A.1.1 TE and TM modes

The polarization vectors referred to throughout this thesis are:

êTE =
1

k‖
(ky,−kx, 0), êTM =

1

kk‖
(kxkz, kykz,−k2

‖). (A.1)

A.1.2 Surface plasmon modes

The polarisation vectors for the surface plasmon modes are given by eq. (3.41)

eL(κ) = k̂‖ − i
k2
‖

κ
ẑ, (A.2a)

eR(κd) = k̂‖ + i
k2
‖

κd
ẑ . (A.2b)

The following products are used in the simplification of eq. (3.48)

|eL(κ)|2 = 1 +
k2
‖

κ2
, |eR(κd)|2 = 1 +

k2
‖

κd2
,

|kL × eL(κ)|2 =
ω4

sp

κ2
, |kR × eR(κ)|2 =

(ω2
sp − ω2

p)
2

κd2
, (A.3)

where

kL = ikxx̂+ ikyŷ + κ, kR = ikxx̂+ ikyŷ − κd . (A.4)
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a b c

L

z
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z

Figure A.1: Layered reflection coefficient example

A.2 Fresnel Coefficients

The full set of reflection and transmission coefficients for an interface with vacuum on the

left and a medium described by dielectric function ε(kz, k‖) on the right are

RLk,TE =
kz − kdz
kz + kdz

, TLk,TE =
2kz

kz + kdz
,

RLk,TM =
ε(kz, k‖)kz − kdz
ε(kz, k‖)kz + kdz

, TLk,TM =
2
√
ε(kz, k‖)kz

ε(kz, k‖)kz + kdz
,

RRk,λ = −RLk,λ, TRk,λ =
kdz
kz
TLk,λ . (A.5)

These can be combined to form a reflection coefficient for a layered medium [81, 85, 86].

For example, the reflection coefficient for the interface shown in fig. (A.1) is

R̃ak,λ =
Rabk,λ +Rbck,λe

2ikbzL

1 +Rabk,λR
bc
k,λe

2ikbzL
e−2ikazz0 , (A.6)

where media a and c extend infinitely in the direction normal to the surface of b, which

is a slab of thickness L. Rijλ denotes the reflection coefficient for λ-polarised radiation

propagating from medium i to medium j, which are given by generalized versions of

eqs. (A.5)

Rijk,TE =
kiz − k

j
z

kiz + kjz
, Rijk,TM =

εj(kz, k‖)k
i
z − εi(kz, k‖)k

j
z

εj(kz, k‖)kiz + εi(kz, k‖)k
j
z

. (A.7)

Since any layered system can be broken down into smaller systems such as this, a reflection

coefficient for an arbitrary number of layers can be found by repeated use of eq. (A.6). It is

worth noting that while the phase factor e−2ikazz0 is arbitrary, its counterpart in the layered

transmission coefficient T̃k,λ (see, for example, [85]) means that conservation of energy

|R̃k,λ|2 + |T̃k,λ|2 = 1, (A.8)

is preserved independently of any particular choice of z0.
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A.3 Products of Mode Functions

The non-dispersive modes are (3.16)

fLkλ(r, ω) =
1

(2π)3/2

1√
2ω

[
Θ(−z)

(
eik · rêkλ +RLkλe

ik̄ · rˆ̄ekλ
)

+ Θ(z)TLkλe
ikd · rêkdλ

]
,

(A.9a)

fRkλ(r, ω) =
1

(2π)3/2

1

n(r)

1√
2ω

[
Θ(z)

(
eik

d · rêkdλ +RRkλe
ik̄d · rˆ̄ekdλ

)
+ Θ(−z)TRkλeik · rêkλ

]
,

(A.9b)

We are only ever interested in the region z < 0, so it is of obvious utility to define

f Ikλ(r, ω) =
1

(2π)3/2

1√
2ω

(
eik · rêkλ +RLkλe

ik̄ · rˆ̄ekλ
)
, (A.10a)

fTkλ(r, ω) =
1

(2π)3/2

1√
2ω
TRkλe

ik · rêkλ. (A.10b)

We require mode sums over products of the form:∑
λ=TE,TM

∫
d3k|fkλ,i|2, i = {x, y, z}. (A.11)

Taking, for example, the first term in eq. (5.97) and considering only the region z < 0, we

need ∑
λ=TE,TM

∫
d3k|fkλ,z|2 =

∑
λ=TE,TM

∫
d3k

[
|f Ikλ,z(r, ω)|2 +

1

n2
|fTkλ(r, ω)|2

]
. (A.12)

Using the explicit polarization vectors (A.1) we have that in this case there is no TE

contribution, and the TM contribution is given by:

|f Ikλ,z(r, ω)|2 =
1

(2π)3

1

2ω

k2
‖

k2

[
1 + |RLk,TM|2 +RLk,TM(e2ikzz + e−2ikzz)

]
, (A.13)

|fTkλ,z(r, ω)|2 =
1

(2π)3

1

2ω

k2
‖

k2
|TRk,TM|2


1 if kz is real

e2|kz |z if kz is imaginary,

(A.14)

where the possibility of a right-incident mode suffering total internal reflection at the

boundary has been considered. All the various terms in eq. (5.97) can be written in the

same way, but terms that contain factors of kz require a little more care. To show this, we

consider the TE part of the |(∇× fkλ)x|2 term in eq. (5.97). One finds

|(∇× f Ikλ)x,TE|
2 =

1

(2π)3

1

2ω

k2
x

k2
‖

[
1 + |RLk,TE|2 −RLk,TE(e2ikzz + e−2ikzz)

]
, (A.15)

|(∇× fTkλ)x,TE|
2 =

1

(2π)3

1

2ω

k2
x

k2
‖
|TRk,TE|2


k2
z if kz is real,

|kz|2e2|kz |z if kz is imaginary.

(A.16)



Appendix A. Modes 155

The minus sign next to RLk,TE appears to be troublesome, since the method outlined in

section 4.2.1 is reliant on the coefficients of RLk,TE and e2|kz |z being equal. The simple (but

easy to miss) resolution of this is found by noting that for kz pure imaginary, |kz|2 = −k2
z .

So

|(∇× f Ikλ)x|
2 =

1

(2π)3

1

2ω

k2
xk

2
z

k2
‖

[
1 + |RLk,TE|2 −RLk,TE(e2ikzz + e−2ikzz)

]
, (A.17)

|(∇× fTkλ)x,TE|
2 =

1

(2π)3

1

2ω

k2
xk

2
z

k2
‖
|TRk,TE|2


1 if kz is real,

−e2|kz |z if kz is imaginary.

(A.18)

So we have that the coefficients of RLk,TE and e2|kz |z are equal, meaning the method outlined

in section 4.2.1 still applies. That method also shows that this coefficient completely specifies

the shift once the free-space counter term as been subtracted. So, we can summarize the

contribution of each term by this coefficient, i.e.

|fkTM,z(r, ω)|2 is summarized by
k2
‖

k2
,

|(∇× fkTE)x|
2 is summarized by − k2

xk
2
z

k2
‖
,

and then to get the shift due to a term of polarization λ we simply multiply the coefficient

by 1
(2π)3

1
2ωR

L
k,λe

2ikzz, insert it into eq. (5.97) and evaluate the integral. The full set of

coefficients are shown in table A.1.

Term Polarization Coefficient

|fkλ,z(r, ω)|2
TE 0

TM
k2‖
k2

|(∇× fkλ)x|2
TE −k2xk

2
z

k2‖

TM
k2yk

2

k2‖

fkλ,x
∂2f∗kλ,y
∂x∂y

TE
k2xk

2
y

k2‖

TM
k2xk

2
yk

2
z

k2k2‖

fkλ,x
∂2f∗kλ,x
∂y2

TE −k4y
k2‖

TM
k2xk

2
yk

2
z

k2k2‖

Table A.1: Coefficients that summarize the contribution to the magnetic

moment shift of each term in (5.97).
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Appendix B

Matrix Elements

B.1 Free electron

The matrix elements of the canonically conjugate momentum (5.19) are

〈ν + 1|πx |ν〉 = iβ0

√
ν + 1, (B.1a)

〈ν − 1|πx |ν〉 = −iβ0

√
ν, (B.1b)

〈ν + 1|πy |ν〉 = β0

√
ν + 1, (B.1c)

〈ν − 1|πy |ν〉 = β0

√
ν . (B.1d)

and those for the defined quantities (5.28) are

〈ν + 1|π+ |ν〉 = 2iβ0

√
ν + 1, (B.2a)

〈ν − 1|π− |ν〉 = −2iβ0

√
ν . (B.2b)

We also need the matrix elements of the position operator. Noting that [87]

x =
1

2β0
(bR + bL + b̂†R + b̂†L) = x0 +

1

2β0
(bR + b̂†R) , (B.3)

y =
i

2β0
(bR − bL − b̂†R + b̂†L) = y0 +

i

2β0
(bR − b̂†R) , (B.4)

we have

〈ν + 1| (x− x0) |ν〉 =
1

2β0

√
ν + 1, (B.5a)

〈ν − 1| (x− x0) |ν〉 =
1

2β0

√
ν, (B.5b)

〈ν + 1| (y − y0) |ν〉 = − i

2β0

√
ν + 1, (B.5c)

〈ν − 1| (y − y0) |ν〉 =
i

2β0

√
ν . (B.5d)
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B.2 Confined electron

Using

π̂x = p̂x +
eB0

2
ŷ =

i

2

√
m

Ω

[
∆R(b̂†R − b̂R) + ∆L(b̂†L − b̂L)

]
, (B.6a)

π̂y = p̂y −
eB0

2
x̂ =

1

2

√
m

Ω

[
∆R(b̂†R + b̂R)−∆L(b̂†L + b̂L)

]
, (B.6b)

we have

〈ni + 1|πx |ni〉 =
i

2

√
m

Ω
∆i

√
ni + 1,

〈ni − 1|πx |ni〉 = − i
2

√
m

Ω
∆i
√
ni,

〈ni + 1|πy |ni〉 = hi

√
m

Ω
∆i

√
ni + 1,

〈ni − 1|πy |ni〉 = hi

√
m

Ω
∆i
√
ni, (B.7)

where definition (6.17) of hi has been used. It is also useful to have the matrix elements of

the displacement operator in the directions parallel to the surface:

〈ni + 1| (x− x0) |ni〉 =
1

2
√
mΩ

√
ni + 1,

〈ni − 1| (x− x0) |ni〉 =
1

2
√
mΩ

√
ni,

〈ni + 1| (y − y0) |ni〉 = −hi
i

2
√
mΩ

√
ni + 1,

〈ni − 1| (y − y0) |ni〉 = hi
i

2
√
mΩ

√
ni. (B.8)
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Appendix C

The Schrödinger equation with an

anisotropic mass

We wish to investigate the cyclotron frequency of the electron, which means we must

consider its eigenstates in a constant magnetic field B0. In section 5.2 we saw that the

Schrödinger Hamiltonian for an electron in a magnetic field B0 directed along ẑ can be

written as

HS =
(px + eB0

2 y)2

2m
+

(py − eB0
2 x)2

2m
+

p2
z

2m
. (C.1)

In Chapter 4 we saw that the presence of a surface can change the mass of the electron,

and that this change in mass is dependent upon the direction of the electron’s momentum

– the electron has an anisotropic mass. We would like to investigate how this anisotropy

affects the cyclotron frequency, so we modify the Hamiltonian (C.1) to

HA
S,z =

(px + eB0
2 y)2

2mx
+

(py − eB0
2 x)2

2my
+

p2
z

2mz
, (C.2)

where the subscript z specifies that the magnetic field is directed along z. Just as in

section 5.2 we introduce annihilation and creation operators and rewrite the positions and

momenta in terms of those. We write

x =
1

βx
√

2
(b̂x + b̂†x), px =

iβx√
2

(b̂†x − b̂x),

y =
1

βy
√

2
(b̂y + b̂†y), py =

iβy√
2

(b̂†y − b̂y), (C.3)

where

β2
x = −eBx

2

√
mx

my
, β2

y = −eBy
2

√
my

mx
. (C.4)
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The operators b̂x, b̂
†
x, b̂y and b̂†y are combined to form creation and annihilation operators

for right and left-circular quanta

b̂R =
1√
2

(b̂x − ib̂y) , b̂†R =
1√
2

(b̂†x + ib̂†y) ,

b̂L =
1√
2

(b̂x + ib̂y) , b̂†L =
1√
2

(b̂†x − ib̂†y) . (C.5)

in exact analogy to the isotropic case considered in section 5.2. The Hamiltonian which

results from combination of (C.3), (C.4) and (C.5) is

HA
S,z = − eB0

2
√
mxmy

(
2b̂†Rb̂R + 1

)
+

p2
z

2mz
= ωxyc

(
b̂†Rb̂R +

1

2

)
+

p2
z

2mz
, (C.6)

where the cyclotron frequency ωxyc has been identified as the eigenfrequency of the Landau

levels

ωxyc =

∣∣∣∣ eB0√
mxmy

∣∣∣∣ . (C.7)

None of the above discussion made explicit reference to the orientation of the surface, so

we may cycle indices to find the corresponding relation for a magnetic field directed along

the x̂ direction

HA
S,x = ωyzc

(
b̂†Rb̂R +

1

2

)
+

p2
x

2mx
, (C.8)

with

ωyzc =

∣∣∣∣ eB0√
mymz

∣∣∣∣ . (C.9)

We now introduce the surface, with, as usual, its normal directed along ẑ. This introduces

an asymmetry between (C.6) and (C.8) because the electrostatic image potential Vimage

cannot depend on x or y since the system is translation invariant in these directions, giving

HA
S,⊥ = ωxyc

(
b̂†Rb̂R +

1

2

)
+

p2
z

2mz
+ Vimage(z) , (C.10)

HA
S,‖ = ωyzc

(
b̂†Rb̂R +

1

2

)
+

p2
x

2mx
+ Vimage(z) . (C.11)

For a magnetic field directed perpendicular to the interface, the cyclotron frequency is ωxyc

as given by (C.7). Translational invariance along the surface means that the shifts in the

masses mx and my must be equal, meaning that eq. (C.7) becomes

ωxyc =

∣∣∣∣eB0

m‖

∣∣∣∣ . (C.12)

Equation (C.10) then makes the Schrödinger equation separable into parallel (x, y) and

perpendicular (z) co-ordinates meaning that the image potential Vimage(z) decouples.

Conversely, eq. (C.11) is separable only into x and (y, z) co-ordinates, but the Vimage(z)

affects the latter, so that the image potential does not decouple from the cyclotron motion.
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The electrostatic potential Vimage(z) varies as the electron moves under the influence of

the magnetic field, so that the path it takes is skewed relative to the circular cyclotron

orbit found for magnetic fields directed perpendicular to the interface. As shown in [39],

this extra distortion from Vimage(z) has much more of an effect than the mass shift itself, so

one cannot claim that a measurement of the cyclotron frequency in a field directed parallel

to the interface is a measurement of the mass shift.
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Appendix D

Foldy-Wouthuysen Transformation

The Foldy-Wouthuysen (FW) transformation [72] is a unitary transformation to be applied

to the Dirac Hamiltonian (5.31) which delivers a non-relativistic approximation up to

arbitrary order in e/m.

The Dirac equation for a particle coupled to a field AQ given by eq. (5.31) as

i
∂

∂t
Ψ = [α · (p− eAQ)] + eΦ + βm]Ψ. (D.1)

The electron near the dielectric is coupled to two fields: A0, which is the magnetic vector

potential corresponding to the classical magnetic field B0 applied along the z axis, and

AQ, which is the quantized field described by the mode functions, so that AQ = A0 + A0.

The potential term eΦ becomes the image potential V . Also, the Hamiltonian of the

photon field must be added, this is denoted Hrad and is given by eq. (3.14). So, the Dirac

Hamiltonian H to be considered is:

H = βm+ V +α · (p− eA0 − eAQ) +Hrad. (D.2)

The Hamiltonian can be written as a sum of ‘even’ (E) and ‘odd’ (O) parts as:

H = βm+O + E ,

where E = V +Hrad, and O = α · (p− eA0 − eAQ) ≡ α ·π, (D.3)

where as usual the π operator has been defined. An ‘odd’ operator couples the upper

two components of a Dirac spinor to the lower two, while an ‘even’ one does not. The

FW transformation aims to eliminate this coupling by removing odd operators. This

means that through the FW transformation, the four component Dirac spinor can be

reduced to its upper two components and the Dirac Hamiltonian is transformed into a

Schrödinger Hamiltonian that contains appropriate relativistic corrections. This can be
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done exactly for a free particle. For a particle in a field there is in general no representation

for which the Hamiltonian is exactly even [72]. However, the odd part of the Hamiltonian

can be eliminated to the required order by the use of successive applications of the FW

transformation.

The required unitary transformation U1 is [72]

U1 = e
βO
2m U †1 = e−

βO
2m . (D.4)

One can show by taking a unitary transform of the Schrödinger equation that the unitary-

transformed Hamiltonian is given by

H1 = U1HU
†
1 − iU1

∂U †1
∂t

. (D.5)

In the Schrödinger picture U1 is time independent, so this reduces to

H1 = U1HU
†
1 = U1(βm+O + E)U †1 = U1(βm+O)U †1 + U1EU †1 . (D.6)

Using the definitions of E and O, the following commutation and anticommutation relations

can be shown to hold

{βm+O, βO} = 0, (D.7a)

[βO, E ] = β[O, E ], (D.7b)

[βO, [βO, E ]] = −[O, [O, E ]], (D.7c)

[βO, [βO, [βO, E ]]] = −β[O, [O, [O, E ]]]. (D.7d)

Expressing the exponential as a power series and using the commutation relation (D.7a), a

short calculation shows that the odd part of eq. (D.6) satisfies

U1(βm+O)U †1 = (βm+O)

[
1− βO

m
+

1

2!

(
βO
m

)2

+ ...

]
, (D.8)

Using the fact that (βO)2 = −(α ·π)2 = −O2, this series is can be written as the sum

of two series, one with even powers of O and one with odd powers of O; these are the

expansions of trigonometric functions

U1(βm+O)U †1 = (βm+O)

[
1− 1

2!

(
O
m

)2

+
1

4!

(
O
m

)4

+ ...− βO
m

+ β
1

3!

(
O
m

)3

+ ...

]

= (βm+O)

[
cos

(
θ

m

)
− β sin

(
θ

m

)]
. (D.9)

Expanding to order 1/m3 we have

U1(βm+O)U †1 ≈ βm−
1

2
β
O2

m
+

1

24
β
O4

m3
+ β
O2

m
− 1

6
β
O4

m3
+O − 1

2

O3

m2
−O +

1

6

O3

m2

= βm+
1

2
β
O2

m
− 1

3

O3

m2
− 1

8
β
O4

m3
, (D.10)
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where, importantly, the terms lowest order in 1/m (aside from βm which is the part of the

Hamiltonian to which corrections are being applied) have cancelled out - the lowest order

odd terms have been eliminated.

The even part of eq. (D.6) is

U1EU †1 = e
βO
2m Ee−

βO
2m . (D.11)

This can be expanded using the Baker-Campbell-Hausdorff relation:

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + ... (D.12)

(see, for example, [88]). Then, to order 1/m3

U1EU †1 = E +
1

2m
[βO, E ] +

1

8m2
[βO, [βO, E ]] +

1

48m3
[βO, [βO, [βO, E ]]]. (D.13)

Using the commutation relations (D.7b) to (D.7d), this can be written:

U1EU †1 = E +
β

2m
[O, E ]− 1

8m2
[O, [O, E ]]− β

48m3
[O, [O, [O, E ]]]. (D.14)

The total Hamiltonian H1 shown in eq. (D.6) can then be written using eqs (D.10) and

(D.14):

H1 = U1(βm+O)U †1 + U1EU †1 =βm+
1

2
β
O2

m
− 1

3

O3

m2
− 1

8
β
O4

m3
+ E +

β

2m
[O, E ]

− 1

8m2
[O, [O, E ]]− β

48m3
[O, [O, [O, E ]]]. (D.15)

Grouping terms by the power to which O is raised

H1 = βm+E +
1

2
β
O2

m
− 1

8m2
[O, [O, E ]]− 1

8
β
O4

m3

+
β

2m
[O, E ]− 1

3

O3

m2
− β

48m3
[O, [O, [O, E ]]], (D.16)

shows that H1 can be written as H1 = βm+O1 + E1 where:

O1 =
β

2m
[O, E ]− 1

3

O3

m2
− β

48m3
[O, [O, [O, E ]]], (D.17)

is odd, and

E1 = E +
1

2
β
O2

m
− 1

8m2
[O, [O, E ]]− 1

8
β
O4

m3
, (D.18)

is even.

Another unitary transformation U2 = e
βO1
2m is then applied to H1 to further eliminate

odd operators into higher order terms. This will yield a Hamiltonian H2 = βm+O2 + E2.

This can be done by exact analogy with the first unitary transformation U1 since it is just

the replacements O → O1, O1 → O2, E → E1 and E1 → E2. Any odd or even operators
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Oi or Ei must, by definition, have exactly the same properties with respect to the above

analysis, so we can immediately write:

H2 = βm+O2 + E2, (D.19)

where

O2 =
β

2m
[O1, E1]− 1

3

O3
1

m2
− β

48m3
[O1, [O1, [O1, E1]]], (D.20a)

E2 = E1 +
1

2
β
O2

1

m
− 1

8m2
[O1, [O1, E1]]− 1

8
β
O4

1

m3
. (D.20b)

O1 contains a factor of 1/m throughout, so the final two terms of both O2 and E2 are of

order higher than 1/m3, meaning they can be dropped. This gives:

O2 =
β

2m
[O1, E1], (D.21a)

E2 = E1 +
1

2
β
O2

1

m
. (D.21b)

Substituting equations (D.17) into (D.21a) gives

O2 =
β

2m

[(
β

2m
[O, E ]− 1

3

O3

m2
− 1

48m3
[O, [O, [O, E ]]]

)
, (D.22)

(
E +

1

2
β
O2

m
− 1

8m2
[O, [O, E ]]− 1

8
β
O4

m3

)]
. (D.23)

Dropping terms of order 1/m3 or higher this becomes

O2 =
1

4m2
[[O, E ], E ] +

β

8m3

[
[O, E ],O2

]
− β

6m3
[O3, E ] . (D.24)

Repeating the analysis for E2 gives

E2 = E1 +
β

8m3
(β[O, E ])2 . (D.25)

We have now obtained the even part of H up to order 1/m3. We could keep applying

the FW transformation to (D.24) in order to eliminate all the terms of lower order than

1/m3, but this of course would not affect the even part (D.25). So, the Hamiltonian H

can be approximated as the even operator H = βm+ E2. which is:

H = βm+ E +
1

2
β
O2

m
− β

8

O4

m3
− 1

8m2
[O, [O, E ]] +

β

8m3
(β[O, E ])2. (D.26)

This Hamiltonian needs to be written in terms of the fields and potentials as set out in

eq. (D.2). The βm + E part evaluates trivially. The term 1
2β
O2

m may be simplified by

noting that

αiαj = iσkεijk12 + δij , (D.27)
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giving

O2 = (p− eA0 − eAQ)2 + iα · ((p− eA0 − eAQ)× (p− eA0 − eAQ)), (D.28)

Since p and AQ do not commute, the second term is not zero, rather we find

1

2
β
O2

m
=

β

2m
[(p− eA0 − eAQ)2 − eσ ·B0 − eσ ·B]. (D.29)

Similarly, the fourth term in eq. (D.26) (−β
8
O4

m3 ) follows immediately from the square of

this

− β

8

O4

m3
= − β

8m3
[(p− eA0 − eAQ)2 − eσ ·B0 − eσ ·B]2. (D.30)

The next term in eq. (D.26) ( 1
8m2 [O, [O, E ]]) contains a large amount of hidden structure.

Firstly considering [O, E ], we have:

[O, E ] = [α ·π, V +Hrad]

= [α · (p− eA0 − eAQ), V ] + [α · (p− eA0 − eAQ), Hrad]. (D.31)

A0 and AQ do not contain any operators which act on V , so they commute with V .

p = −i∇ does not commute with V because it contains a derivative which acts on V as

detailed below. Similarly, p and A0 commute with Hrad, but AQ does not. Loosely, this is

because AQ and Hrad both contain the photon creation and annihilation operators, which

do not commute. For these reasons, [O, E ] reduces to:

[O, E ] = [α ·p, V ]− e[α ·AQ, Hrad]. (D.32)

A short calculation shows that [α ·p, V ] = −iα ·ϕ∇V . When considering the second term

of (D.32), it is useful to invoke Ehrenfest’s theorem and write ȦQ = −i[AQ, Hrad] = −EQ.

So [AQ, Hrad] = −iEQ, meaning equation (D.32) can be written as:

[O, E ] = iα · (eEQ −∇V ) (D.33)

The whole commutator [O, [O, E ]] is then

[O, [O, E ]] = ie[α ·π,α ·EQ]− i[α ·π,α · ∇V ]. (D.34)

The following identity holds for F and G which commute with the αi but not with each

other

[α ·F, α ·G] = iσ · (F ×G)− iσ · (G× F ) + [Fi, Gi]. (D.35)

This, alongside the facts that [pi, EQi] = 0 and [A0i, EQi] = 0 can be used to simplify the

first term of eq. (D.34), giving

[α ·π, α ·EQ] = iσ · (π ×EQ −EQ × π)− e[AQi, EQi]. (D.36)
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Similarly, the second term of eq. (D.34) simplifies to

[α ·π,α · ∇V ] = iσ · (π ×∇V −∇V × π)− i∇2V, (D.37)

where [pi,∇iV ]ϕ = −i∇2V ϕ has been used. Thus the whole term is:

− 1

8m2
[O, [O, E ]] =

e

8m2
σ · [(π ×EQ)− (EQ × π)]

+
e

8m2
σ ·
[(
π ×−∇V

e

)
−
(
−∇V

e
× π

)]
+

1

8m2
(∇2V + ie2[AQi, EQi]). (D.38)

The final term of eq. (D.26) to be considered is β
8m3 (β[O, E ])2. From eq. (D.33), [O, E ] =

iα(eEQ −∇V ). Recalling that {α, β} = 0 we find

β

8m3
(β[O, E ])2 =

βe2

8m3

(
EQ −

∇V
e

)2

. (D.39)

Inserting eqs (D.29), (D.30), (D.38) and (D.39) into (D.26) gives

H =βm+ E +
β

2m
[(p− eA0 − eAQ)2 − eσ ·B0 − eσ ·BQ]

− β

8m3
[(p− eA0 − eAQ)2 − eσ ·B0 − eσ ·BQ]2

+
e

8m2
σ · [(π ×EQ)− (EQ × π)] +

e

8m2
σ ·
[(
π ×−∇V

e

)
−
(
−∇V

e
× π

)]
+

1

8m2
(∇2V + ie2[AQi, EQi]) +

βe2

8m3

(
EQ −

∇V
e

)2

, (D.40)

which is the required Hamiltonian (D.26) in terms of the electromagnetic fields and image

potential.

To simplify the term from (D.40) that contains a commutator, we note from [40] that

the following relation holds in generalized Coulomb gauge

[Ai(r), Ei(r
′)] = −iδ(3)(r− r′) + i∇i∇′iG(r, r′), (D.41)

where G(r, r′) is the Green’s function of the Poisson equation

∇2G(r, r′) = δ(3)(r− r′), (D.42)

which, for a half space with both r and r′ on the vacuum side, can be written

G(r, r′) = G(0)(r, r′) +GR(r, r′), (D.43)

where G(0)(r, r′) is the Green’s function for the free Poisson equation and GR(r, r′) is the

reflected part of the Green’s function. Substituting this into eq. (D.41) and using (D.42),

we find

ie2[Ai(r), Ei(r
′)] = −e2∇i∇′iGR(r, r′), (D.44)
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giving for the term of (D.40) that contains the commutator

1

8m2

(
∇2V + ie2[AQi, EQi]

)
=

1

8m2

(
∇2V − e2∇2GR(r, r)

)
. (D.45)

The reflected part of the electrostatic Green’s function is the image potential. We are

considering the interaction of an electron with its image, so the interaction energy is found

by multiplying the image potential by e2, meaning that eq. (D.45) vanishes:

1

8m2

(
∇2V + ie2[AQi, EQi]

)
= 0. (D.46)

Proceeding, we group the terms by their contributing order in perturbation theory

of the quantized electromagnetic field – i.e. by their order in AQ and EQ. The terms

contributing in first-order perturbation theory are

H1 =
e2

2m
A2
Q +

e3

4m3
A2
Qσ ·B0, (D.47)

and those contributing in second-order perturbation theory are

H2 = − e

m
AQ ·π −

e

2m
σ ·BQ +

e

8m2
σ · (π ×EQ −EQ × π), (D.48)

The remaining terms are denoted Velectrostatic,

H = H1 +H2 + Velectrostatic. (D.49)
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Appendix E

Dyadic Green’s Functions

E.1 Dyads

In a Cartesian co-ordinate system, a vector is denoted by:

F = Fir̂i, (E.1)

Following [89], we may specify in three dimensions a set of three vector functions F j ,

j = {1, 2, 3} through a nine-component object Fij

Fj = Fij r̂i, (E.2)

and from that we can define

F = Fj x̂j = Fij r̂ir̂j , (E.3)

which is known as a dyadic. In the main text we use the posterior scalar product, defined as

F ·a = Fijaj r̂i. (E.4)

It is worth noting that in general F ·a 6= a ·F, the right hand side being known as the

anterior scalar product. This difference is of no consequence to our calculations. In the

main we text we drop the bars F→ F since whether a quantity is a dyadic or not is easily

inferred from context, or is explicitly stated.

E.2 Proof of a useful integral relation

In this section we prove eq. (7.18). We begin by noting that the dyadic Green’s function

delivers the solution to eq. (7.14), which in component form is

∂k∂kAi(r, ω) + ω2ε(r, ω)Ai = ji(r, ω), (E.5)
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where the solution is obtained from

Âi(r, ω) =

∫
d3r′Gij(r, r

′, ω)ĵj(r
′, ω), (E.6)

implying [
∂k∂k + ω2ε(r, ω)

]
Gij(r, r

′, ω) = δijδ
(3)(r− r′). (E.7)

To prove eq. (7.18) we follow the general approach of [37]. We begin by multiplying both

sides of (E.7) by G∗il(r, r
′′, ω) and integrating over d3r

∫
d3r

[
∂k∂k + ω2ε(r, ω)

]
Gij(r, r

′, ω)G∗il(r, r
′′, ω) = G∗jl(r

′, r′′, ω) . (E.8)

We then integrate parts in the first term on the left hand-side, giving

−
∫
d3r

[
∂kGij(r, r

′, ω)
] [
∂kG

∗
il(r, r

′′, ω)
]

= G∗jl(r
′, r′′, ω)

− ω2

∫
d3rε(r, ω)Gij(r, r

′, ω)G∗il(r, r
′′, ω). (E.9)

Taking the complex conjugate, making the replacements r′ ↔ r′′ and j ↔ l and subtracting

the resulting equation from the above causes the left hand side to vanish, leaving

ω2

∫
d3r [ε(r, ω)− ε∗(r, ω)] Gij(r, r

′, ω)G∗il(r, r
′′, ω) = −

[
Gjl(r

′, r′′, ω)−G∗lj(r
′′, r′, ω)

)
],

(E.10)

where real frequency has been assumed. The Green’s function has the symmetry property

[90]

Gij(r, r
′, ω) = Gji(r

′, r, ω), (E.11)

so that we are left with

ω2

∫
d3rεI(r, ω)Gij(r, r

′, ω)G∗il(r, r
′′, ω) = − Im Gjl(r

′, r′′, ω), (E.12)

as required. The works because the integral kernel K(r, r′, ω) defined by eqs. (E.5) and

(E.6) is reciprocal: K(r, r′, ω) = KT (r′, r, ω) [91]. Changing the notation slightly we are

left with the form (7.18) used in the main text

ω2

∫
d3rεI(r, ω)Gil(r

′, r, ω)G∗jl(r
′′, r, ω) = − Im Gij(r

′, r′′, ω) . (E.13)
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E.3 Specific dyadic Green’s functions

E.3.1 Vacuum

We now need the explicit vacuum Green’s function, which we will put into the form of

eq. (7.43) for convenience. This is found from [37]

Gv
ij(r, r

′, ω) =
[
∂ri ∂

r
j + δijω

2ε(ω)
] 1

ω2ε(ω)

∫
d3k

(2π)3

eik · (r−r′)

k2 − ω2

=
[
∂ri ∂

r
j + δijω

2
] 1

ω2

∫
d2k‖

(2π)2
e
ik‖ · (r‖−r′‖)

∫ ∞
−∞

dkz
2π

eikz(z−z′)

k2
‖ + k2

z − ω2
.

For z > z′ (z < z′), the kz contour can be closed in the upper (lower) half plane.

Remembering that the pole in the lower half plane is encircled clockwise (thus generating

an additional minus), the residue theorem gives

Gv
ij(r, r

′, ω) =
[
∂ri ∂

r
j + δijω

2
] 1

ω2

∫
d2k‖

(2π)2
e
ik‖ · (r‖−r′‖) ie

−ikz |z−z′|

2kz
. (E.14)

The required components are

Gvzx(r, r′, ω) =
1

ω2

∫
d2k‖

(2π)2
e
ik‖ · (r‖−r′‖) [kxkzsgn(z − z′)

] ie−ikz |z−z′|
2kz

, (E.15a)

Gvzz(r, r
′, ω) =

1

ω2

∫
d2k‖

(2π)2
e
ik‖ · (r‖−r′‖)k2

‖
ie−ikz |z−z

′|

2kz
, (E.15b)

where the fact that, in vacuum, ω2 − k2
z = k2

‖ has been used. We are usually interested in

the case z < 0, z′ > 0, for which |z − z′| = z′ − z, and sgn(z − z′) = −1

Gvzx(r, r′, ω) =
1

ω2

∫
d2k‖

(2π)2
e
ik‖ · (r‖−r′‖) [−kxkz]

ieikz(z−z′)

2kz
, (E.16a)

Gvzz(r, r
′, ω) =

1

ω2

∫
d2k‖

(2π)2
e
ik‖ · (r‖−r′‖)k2

‖
ieikz(z−z′)

2kz
. (E.16b)

E.3.2 Planar media

Writing the Green’s function via eq. (7.43), we have from [37] the reflected part of Green’s

function in vacuum (z < 0) where the space z > 0 is filled with a one-layered medium (i.e.

a half-space):

GR
xx(k‖, z, z

′, ω) = − i

2kz
eikz(z+z′)

(
RLTE

k2
y

k2
‖
−RLTM

k2
xk

2
z

k2k2
‖

)
, (E.17a)

GR
xy(k‖, z, z

′, ω) =
i

2kz
eikz(z+z′)

(
RLTE

kxky
k2
‖

+RLTM

kxkyk
2
z

k2k2
‖

)
, (E.17b)

GR
xz(k‖, z, z

′, ω) =
i

2kz
eikz(z+z′)RLTM

kxkz
k2

, (E.17c)

GR
zz(k‖, z, z

′, ω) = − i

2kz
eikz(z+z′)RLTM

k2
‖

k2
, (E.17d)
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where, in contrast with [37], Re kz > 0, Im kz < 0. The remaining five components of GR
ij

may be derived through the symmetry relations

GR
yx = GR

xy, GR
yy = GR

xx(kx ↔ ky), GR
zx = −GR

xz,

GR
yz = GR

xz(kx ↔ ky), GR
zy = −GR

yz . (E.18)

We do not list the transmitted part of the Green’s function since it does not enter into any

of our calculations, however we note from [37] that the z component of the wave vector in

the medium must obey the same constraints as that in vacuum, in particular Re kdz < 0. We

also note that the Green’s function for multilayered systems can be obtained by replacing

the reflection coefficients appearing in eqs. (E.17) by the layered reflection coefficients (A.6)

[38].
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[76] J. Gómez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sánchez-Gil.

Low-frequency active surface plasmon optics on semiconductors. Appl. Phys. Lett.,

88(8):082106, 2006.
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and G. Werth. High-accuracy measurement of the magnetic moment anomaly of the

electron bound in hydrogenlike carbon. Phys. Rev. Lett., 85:5308–5311, Dec 2000.

[79] S. Sturm, A. Wagner, M. Kretzschmar, W. Quint, G. Werth, and K. Blaum. g-factor

measurement of hydrogenlike 28Si13+ as a challenge to QED calculations. Phys. Rev.

A, 87:030501, Mar 2013.

[80] H. Nyquist. Thermal agitation of electric charge in conductors. Phys. Rev., 32:110–113,

Jul 1928.
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