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Abstract

Models of inflation with more than one active field are an important class where it

is not fully understood how to compute predictions. This problem can be understood in

terms of two characteristics of these models: the sensitivity to initial conditions and the

superhorizon evolution of the primordial density perturbation ζ. This thesis seeks to make

significant progress in understanding how to overcome these two issues.

To track the superhorizon evolution of ζ in general requires numerical techniques. By

extending the transport method first proposed by Mulryne, Seery and Wesley, here, a

computationally efficient and highly versatile method for computing the statistics of ζ is

developed. The increased efficiency and versatility allows models that were previously

unaccessible to be studied.

Utilising this new capability two models are explored. A new toy model of inflation

in the Landscape and a 6-field D-brane model of inflation first proposed by Agarwal,

Bean, McAllister, and Xu. The nature of these models allows for a statistical analysis

of inflationary realisations to be performed. We conclude that the fundamental ability to

constrain models of this kind is determined by the scale of features in the potential. We

also show the D-brane model is under considerable pressure from current observations of

the spectral index and may be ruled out by future observations.

Finally, I show that there exists a class of models for which the probability distribution

of observables may be computed analytically. I show the peak of the density function is

largely dominated by the geometry of the potential and comparatively insensitive to the

distribution of initial conditions. I argue that this characteristic should be expected in a

broader range of models and for such models, it is possible to make robust predictions.
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Introduction

0.1 Prelude

Observations of the Cosmic Microwave Background (CMB) have provided significant evid-

ence in favour of an inflationary phase taking place in the very early stages of the Uni-

verse. As well as providing an elegant solution to a number of important problems with

the standard model of cosmology, inflation also predicts the existence of small temperat-

ure fluctuations in the CMB which have now been observed and shown to be in striking

agreement. As such, inflation has emerged as the leading candidate to describe the early

stages of the universe and the origin of structure.

With a number of high precision observational projects underway and more planned for

the future, it is clear we live in an exciting time. More than refining the standard model

of cosmology, by constraining our description of the early universe when it was both hot

and dense, we are constraining particle physics at energies that will never be achieved by

terrestrial experiments.

At present, the best means of constraining models of inflation is via the statistics of

the primordial curvature perturbation ζ. It is therefore essential that we understand how

to compute these statistics to a high precision for any model we wish to confront with

observation. For the simplest models of inflation, where inflation is driven by a single

scalar field with canonical kinetic terms, the method for computing ζ is well understood

and so models of this kind are straightforward to constrain. However as our understanding

of particle physics has evolved, so have models of inflation and it is no longer clear that the

simplest models are the ones best motivated from the perspective of fundamental physics.

A broad class of models well motivated by our current knowledge of string theory, is the

class where inflation is driven by more than one scalar field. In these models the inflationary

dynamics can be much richer than in models with just a single field and hence computing

the prediction for ζ is considerably more complex. The subject of this thesis is to address

1
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this issue.

In order to compute the prediction for ζ in multifield models of inflation, broadly

speaking, two challenges must be overcome.

The first challenge is that unlike a single field model of inflation where there is only

one possible inflationary trajectory, a given multifield model permits an infinite number

of inflationary trajectories. In principle, each inflationary trajectory gives rise to a differ-

ent outcome for ζ and hence the prediction of the model is not a set of single values for

observable quantities such as the power spectrum, spectral index, running, etc. but a mul-

tivariate probability distribution. The ability to constrain a multifield model is therefore

not just limited by the accuracy of observations but also by the model itself. It is of critical

importance we learn how to handle this characteristic.

This challenge is made substantially more problematic when considering inflation in

the context of the Multiverse. The Multiverse picture of string theory predicts a landscape

potential for the effective theory of inflation, consisting of many, possibly hundreds, of

scalar fields and a very large number of metastable vacua.

The second challenge is perhaps less formidable than the first but nevertheless crucial if

multifield models of inflation are to be confronted with observation. In a single field model

of inflation ζ is conserved on superhorizon scales but this is not the case for multifield

models. In a multifield model ζ can continue to evolve throughout the duration of inflation

and in some cases even through reheating. It is therefore essential to find a method of

tracking this evolution.

The superhorizon evolution of ζ is the result of the richer inflationary dynamics made

possible by the presence of more than one active field. A natural question to ask is if

this will give rise to some kind of signature – some observable characteristic not possible to

generate in a single field model of inflation. The search for inflationary signatures is central

to the idea of constraining models. The most famous signature of multifield inflation is the

possible creation of a non-Gaussian ζ distribution of the local type. This type of deviation

from Gaussianity is parameterised by the amplitude fNL, which if observed to be non-zero,

rules out all the simplest models of inflation.

This thesis seeks to address these issues and does so in the following way: In collab-

oration with Andrew Liddle, the first two papers study a toy model of inflation in the

landscape. Using standard cosmological perturbation theory, the first paper tracks the

evolution of quantities relating to the two-point function of ζ for an ensemble of inflation-

ary realisations. This paper introduces the model and performs a first attempt at analysing
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the range of inflationary behaviour capable within the model and its consequences for ob-

servable quantities.

The second paper performs a considerably more thorough analysis. By abandoning

the use of standard perturbation theory in favour of the transport method, the significant

increase in computational efficiency enables a much larger ensemble to be studied and for

a broad range of model parameters. We also extend the analysis to include the evolution

of fNL.

The aim of these papers is two-fold. By studying the superhorizon evolution of ζ for a

large number of trajectories we can gain some insight on the relation between inflationary

dynamics and evolution of the ζ statistics. The second objective is to study how features

of the potential affect the distribution of observables quantities, i.e what characteristics of

the potential affect the ability to constrain the model.

The third paper came from a collaboration with David Seery, David Mulryne and

Raquel Ribeiro and is about the transport method. As can be seen in the second paper,

the transport method was initially proposed as a computationally efficient method for

computing the superhorizon evolution of ζ but was only applicable to models satisfying

the slow-roll conditions. In this paper we substantially extend the method’s capability as

well as making clear its relation to other methods in the literature. We also explain the

equivalence of the separate universe assumption to geometrical optics in field space and

hence provide a set of intuitive tools for understanding superhorizon evolution. Some of

these tools were already made use of in the second paper.

The fourth paper is the result of a collaboration with Andrew Liddle and Mafalda

Dias. We study a 6-field model of D-brane inflation, where contributions from the bulk

are modelled by spherical harmonics with random coefficients. The approach taken in this

paper is similar to that of the first two but this time the model is much more sophisticated.

By performing this analysis we were able to compute the distribution for the spectral index

and show that it was in mild tension with results fromWMAP 7 and that it may be possible

to rule out the model with future data.

In the final paper of this thesis I return to the problem of computing the distribution

of observables but I take a very different approach to that taken in the other papers. The

other models under investigation in this work are constructed with some contributions to

the potential receiving random coefficients. The key question to address with such models

is how these random coefficients give rise to different inflationary realisations and hence

what is the range of values of observables generated by the model. For simpler models
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containing a single minimum one can do somewhat better. In such models the main issue

is the sensitivity to initial conditions. In the final paper of this thesis I show that for a

particular class of models of this kind it is possible to compute the probability distribution

for observables analytically. I show that the distribution function will in general be highly

predictive and that this characteristic should be common to a much broader class of models

than those studied in the paper.

0.2 The universe is homogeneous on large scales

Current observations are in striking agreement with the standard model of cosmology but

it is straightforward to show that if the expansion history of the universe is dominated by

familiar matter alone, then there is a serious issue. This point will be discussed in some

detail but do to so, first it is necessary to mention some of the standard assumptions which

are required in order to make an account of this expansion history. This section is largely

a summary of discussions that can be found in Refs. [1–4] to which the reader is referred

for more detailed discussion.

0.2.1 Basic ingredients

The Cosmological Principle states that on large scales the universe is both homogenous

and isotropic. If this is true then the universe may be described by a time-ordered sequence

of homogeneous and isotropic three-dimensional slices. There are only three types of space

that respect these symmetries:

Flat space. This has the Euclidean metric

dl2 = dx2 = δijdx
idxj (1)

A sphere embedded in four-dimensional Euclidean space. This has the metric

dl2 = dx2 + dz2, z2 + x2 = a2, (2)

where a is the radius of the 3-sphere.

A hyperbolic sphere embedded in four-dimensional Euclidean space. This has the metric

dl2 = dx2 − dz2, z2 − x2 = a2, (3)



5
Introduction

where a2 is a positive constant. The induced metrics on the three surfaces of the latter

two metrics inherit the symmetries of the four-dimensional line element.

Moving into polar coordinates, under a suitable rescaling of the radial direction these

three metrics may be expressed as

dl2 = a2
[
dχ2 + S(χ)2dΩ

]
, (4)

where Ω is the angular coordinates dΩ = dθ2 + sin2 θdφ and

S(χ) ≡


sinhχ hyperbolic sphere

χ Euclidean space

sinχ sphere

. (5)

The space-time metric follows immediately. Simply by including time and making a an

arbitrary function of time t, one obtains the Robertson–Walker metric

ds2 = dt2 + a(t)
[
dχ2 + S(χ)2dΩ

]
. (6)

An equation determining the form of a(t) may be obtained from Einstein’s equation

Rµν = Tµν −
1

2
gµνT (7)

Where Rµν is the Ricci tensor, gµν is the metric, Tµν is the stress-energy tensor and T is

its trace. By imposing the Robertson–Walker metric and modelling matter and energy by

a perfect fluid, one obtains the Friedmann equation

3H2 = ρ, (8)

where ρ energy density of the universe and

H ≡ ȧ

a
(9)

is the Hubble parameter. To make contact with the known matter constituents one more

equation is required. This is the conservation of energy equation ∇µTµ0 = 0, where ∇µ

represents covariant differentiation with respect to space-time coordinates. Taking an

equation of state relating the pressure p to the energy density ρ to be of the form

p = (γ − 1)ρ, (10)

where γ is a constant, the conservation of energy equation becomes

ρ̇

ρ
= −3γH. (11)
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There are three types of perfect fluid relevant to cosmic history, matter, radiation, and the

vacuum. Each has a different value for γ. Any non-relativistic particle is simply referred

to as matter and has essentially zero pressure and so γ = 1. Radiation refers to relativistic

particles. The equation of state of any relativistic particle should be indistinguishable

from that of photons and hence the equation of state can be obtained from the energy-

momentum tensor for electromagnetism. This is traceless due to conformal symmetry and

so γ = 4/3. Finally, Lorentz invariance implies the vacuum energy is proportional to the

metric and hence γ = 0.

With these equations to hand we are now able to discuss the causal structure of the

universe and it is here that one encounters what is arguably the most serious problem with

the standard model of cosmology.

0.2.2 The horizon problem

Since photons travel along null geodesics ds2 = 0, a particularly simple picture of the

problem presents its self if the metric in Eq. (6) is expressed in terms of conformal time

τ =

∫
dt

a(t)
. (12)

Under the assumption that the universe is isotropic, without loss of generality we can

neglect the angular coordinates and consider only the radial direction. The Robertson–

Walker metric written in terms of conformal time then becomes

ds2 = a(τ)
[
dτ2 − dχ2

]
. (13)

and so light rays form straight lines at 45◦ in the τ − χ plane

χ(τ) = ±τ + const. (14)

We can relate the comoving horizon to the expansion history. First express the comoving

horizon as

χh(τ) = ∆τ =

∫ a

ai

(aH)−1d ln a, (15)

where ai ≡ 0 is the initial singularity and (aH)−1 is the comoving Hubble radius. Then

by integrating the conservation of energy equation (11) to get

(aH)−1 = c a
3
2
γ−1, (16)
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Figure 1: The horizon problem of the standard model of cosmology. There exist regions of the CMB whose past

light cones do not overlap and yet are observed to have the same temperature to a high accuracy.

where c is a constant, we can substitute this into Eq. (15) to obtain

χh = ∆τ =
2c

3γ − 2

[
a

3
2
γ−1 − a

3
2
γ−1

i

]
. (17)

This is the problem. Both matter and radiation satisfy what is known as the strong energy

condition (SEC), 3γ − 2 > 0. If the expansion history is determined by perfect fluids

satisfying the SEC alone then the comoving time between now and the initial singularity

is finite.

τi =
2c

3γ − 2
a

3
2
γ−1

i = 0 if γ >
2

3
. (18)

If this is the case, then how is the homogeneity of the CMB justified? As illustrated in

Fig. 1, the finite time between the initial singularity and decoupling means that, as we

view the CMB on the sky, two regions separated by more than a certain angle (this angle

turns out to be about 2.3◦) will be causally disconnected.

To express the problem slightly differently we can rewrite the equation for the particle

horizon in terms of the Hubble sphere

χh(t) =
2c

3γ − 2
(aH)−1 if γ >

2

3
. (19)

This equation is particularly helpful as it unites two conceptually different horizons. Two

events separated by a distance greater than χh can never have communicated with each

other, whereas the Hubble radius is the distance over which particles can travel in one

expansion time and so, if two events are separated by a distance greater than the Hubble

radius, it means they can not communicate now.
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Figure 2: The horizon problem is solved if a period dominated by a fluid violating the SEC took place prior to

decoupling. Expansion dominated by a fluid violating the SEC means that there is no longer a finite

conformal time between decoupling and the initial singularity. With our choice of normalisation this

means conformal time can go to negative values and hence the past light cones of all observed points

on the CMB overlap.

0.2.3 A possible solution

Given the above the discussion, the solution to this problem may be defined in two equi-

valent ways: A mechanism to extend the conformal time between the initial singularly and

decoupling must be found. If this time difference can be made sufficiently large, such that

the past light-cones of all locations of the observed CMB overlap, then there is no longer a

problem. Equivalently, if we can find a mechanism that enables scales entering the Hubble

sphere now to have been inside the Hubble sphere some time in the past, then there is no

longer a problem.

One solution is to postulate an era dominated by a fluid violating the strong energy

condition. This gives the required causal structure since

τi =
2c

3γ − 2
a

3
2
γ−1

i = −∞ if γ <
2

3
. (20)

So if such a period lasts sufficiently long, since the conformal time can go to negative

values, as shown in Fig. 2, all areas of the CMB turn out to be causally connected.
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Figure 3: The horizon problem of the standard model is solved if a period where the comoving Hubble sphere

decreases took place prior to decoupling. The dotted blue line separates scales inside the Hubble

sphere (blue region) from regions outside the Hubble sphere (white region). A given scale λ that has

only recently entered the Hubble sphere can still have been in causal contact in the past provided an

era where the Hubble sphere shrinks took place.

According to Eq. (16), postulating a violation of the SEC is equivalent to postulating a

period of decreasing Hubble radius. This is perhaps a more intuitive way of visualising the

solution. Consider some scale of cosmological interest which has only recently entered the

Hubble radius. If the era of expanding Hubble radius was preceded by an era of shrinking

radius, then such a scale can have been inside the Hubble radius at some point in the past.

This postulated phase of shrinking Hubble radius is what is usually referred as inflation

and is the subject of this thesis.

Probably the most straightforward way to achieve inflation is by a positive vacuum

energy [5], which as discussed above has an equation of state γ = 0. However, classically

such a phase would never end. Quantum mechanically, the mechanism could be terminated

by tunnelling but this turns out to be in disagreement with observation. In what follows,

the next simplest option will be discussed [6–8]. There are of course other mechanisms

though. Some can be understood as a relatively straightforward extension of the slow-

roll single scalar field model that will be introduced here. Other interesting alternatives

however are more distinct yet are not discussed in this work.

The action for a single scalar field is

Sφ =

∫
d4x
√
−gL(φ, ∂µφ) (21)

where g = det gµν and

L(φ, ∂µφ) =
1

2
∂µφ∂

µφ− V (φ). (22)
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Varying the action with respect to φ gives the Klein–Gordon equation

�φ+
dV

dφ
= 0, (23)

where �φ = 1√
−g∂µ(

√
−ggµν∂νφ) is the D’Alembertian operator acting on φ. Imposing

homogeneity implies that the background field φ can only be a function of time and not of

spatial coordinates and so the Klein–Gordon equation becomes

φ̈+ 3Hφ̇+
dV

dφ
= 0, (24)

where here and throughout the rest of this thesis, reduced Planck units are used, 8πG =

c = ~ = Mpl = 1.Varying the action with respect to the metric gives the stress energy

tensor, which under homogeneity gives

ρφ =
1

2
φ̇2 + V (25)

pφ =
1

2
φ̇2 − V. (26)

Substituting this equation for ρφ into the Friedmann equation we can then see how the

field affects the expansion history

3H2 =
1

2
φ̇2 + V. (27)

The question now is what forms of V (φ) give rise to inflation. Recalling the definition

of inflation as a period where the Hubble radius is decreasing, it is straightforward to derive

a couple of constraints:

d

dt
(aH)−1 = − ȧH + aḢ

(aH)2
= −1

a
(1− ε) (28)

where

ε ≡ Ḣ

H2
(29)

and so inflation requires ε < 1. Also, inflation needs to persist for a sufficiently long time,

which requires that the fractional change per Hubble volume is small

η ≡ |ε̇|
Hε

. (30)

Applying these constraints to the Klein–Gordon equation (24) and Friedmann equation

(27), one can obtain approximate analogous parameters constraining the form of the po-

tential. Denoting differentiation with respect to the field with a prime ′, inflation occurs

when

εV ≡
1

2

(
V ′

V

)2

� 1, (31)

|ηV | ≡
|V ′′|
V
� 1. (32)



11
Introduction

0.3 The Universe has structure

Our existence is proof that the universe is not perfectly homogenous. Even the CMB, whose

remarkable homogeneity resulted in the postulation of a whole new cosmic era, dominated

by exotic matter, actually has minute temperature fluctuations. Arguably the greatest

success of inflation, and a major reason for why it has become the leading candidate for

a description of the early universe, is its ability to predict these fluctuations to a high

accuracy [9–16].

A beautiful consequence of a shrinking Hubble radius is that the zero-point fluctuations

of the inflaton field become cosmologically relevant. It is the fact that we can essentially

observe fossils of microphysical processes in the early universe, that makes studying the

CMB such a central tool in cosmology and a promising probe of particle physics.

0.3.1 Classical Perturbations

To understand the origin of the temperature fluctuations observed in the CMB one must

study perturbations to the background evolution. Assuming only scaler perturbations to

the metric, the perturbed Robertson–Walker metric may be written as

ds2 = a2(τ)
{

(1 + 2Ψ)dτ2 − 2Bidx
idτ − [(1− 2Φ)δij + 2Eij ] dxidxj

}
. (33)

where Ψ(τ, x) is the lapse, Bi(τ, x) is the shift, Φ(τ, x) is the spatial curvature perturbation

and Eij(x, τ) is the spatial shear. However, not all of these perturbations are physical.

Consider a gauge transformation of the form

xµ → xµ
′

= xµ + ξµ = xµ + (ξ0, ξi). (34)

We see there are four functional degrees of freedom in the perturbations to the metric

and two gauge functions (ξ0, ξi) so by the correct choice of gauge it is possible to set two

of the functional degrees of freedom to zero. Considering a gauge transformation to the

perturbed field δφ→ δφ+ φ̇ξ0, it is possible to derive a gauge invariant quantity

v = δφ+ φ̇
Φ

H
, (35)

where for this section dots represent derivatives with respect to conformal time and H =

da
dτ /a has the same form as the Hubble parameter but for conformal time. This is the
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famous Mukhanov–Sasaki variable. A convenient choice when considering perturbations

during inflation therefore is the flat gauge,

Φ = E = 0, (36)

and so v = δφ. Substituting φ→ φ+ δφ and the perturbed metric into Eq. (23) we get

δ̈φ+ 2H ˙δφ− (∇2 − a2V ′′)δφ = (Ψ̇−∇2B)φ̇− 2a2V ′Ψ. (37)

Einstein’s equations provide constraints such that Ψ and B may be expressed solely in

terms of δφ and background quantities. Rather remarkably, after implementing these

constraints, and making the substitution

f ≡ aδφ (= av), (38)

it is possible to obtain, without use of slow-roll approximations, a surprisingly simple

equation of motion for δφ. This is the Mukhanov–Sasaki equation

f̈ +

(
k2 − z̈

z

)
f = 0, (39)

where z ≡ aφ̇/H.

To quantise the theory we will need the momentum conjugate to fk so as to be able

to construct commutation relations. There are a number of ways of finding an expression

for the momenta. A simple method is to realise that the Mukhanov–Sasaki equation is the

equation of motion for a collection of harmonic oscillators with frequencies

ω2
k(τ) ≡ k2 − z̈

z
(40)

and so the quadratic action takes the form

Sf =
A

2

∫
dτd3k

[
ḟ2
k − ω2

k(τ)f2
k

]
(41)

and hence

πk ≡
∂L
∂ḟk

= Aḟk. (42)

All that is required is to fix the normalisation constant A. This can be done by considering

the subhorizon limit k & H where the mixing with metric perturbations is negligible and

hence the equation of motion simplifies to

δ̈φ+ 2H ˙δφ−∇2δφ = 0, (43)

which has the quadratic action

Sk�H =
1

2

∫
dτd3xa2

[
( ˙δφ)2 − (∇δφ)2

]
(44)

which to be consistent with the full action requires A = 1.
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0.3.2 Quantisation

To quantise f the standard procedure is analogous to that of the harmonic oscillator –

Promote the field f and its momentum conjugate to quantum operators f̂ and π̂ and write

the perturbation as a superposition of creation and annihilation operator

f̂(τ, x) =

∫
d3k

(2π)3/2

[
fk(τ)âke

ik.x + f∗k (τ)â†ke
−ik.x

]
, (45)

where f̂ and π̂ satisfy the equal-time commutation relations

[f̂(τ, x), π̂(τ, y)] = iδ(x− y) (46)

[f̂(τ, x), f̂(τ, y)] = [π̂(τ, x), π̂(τ, y)] = 0, (47)

and hence the creation and annihilation operators respect

[âk, â
†
k′ ] = δ(k − k′) (48)

[âk, âk′ ] = [â†k, â
†
k′ ] = 0. (49)

There is a well motivated choice for the vacuum state known as the Bunch–Davies vacuum.

At early times all modes of interest were deep inside the horizon and so we can choose to

solve the Mukhanov–Sasaki equation in this limit where the modes have time-independent

frequencies

f̈k + k2fk = 0. (50)

i.e. the initial conditions are that of a free field in Minkowski space.

lim
τ→−∞

fk(τ) =
1√
2k
e−ikτ (51)

As mentioned, it seems difficult to obtain a general solution to the Mukhanov–Sasaki

equation, but it is possible to obtain an analytical solution for the case of H = const,

namely for pure de Sitter expansion, which for many models is a good approximation. For

de Sitter space, the Mukhanov–Sasaki equation is

f̈ +

(
k2 − 2

τ2

)
f = 0, (52)

which for Bunch–Davies initial conditions has the solution

fk(τ) =
e−ikτ√

2k

(
1− i

kτ

)
. (53)
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At this stage it is now possible to calculate the effect of quantum fluctuations

〈0|f̂ †k f̂k′ |0〉 = |f |2δ(k − k′) = Pf (k)δ(k − k′). (54)

We are interested in effects on scales leaving the horizon kτ → 0 and so

lim
kτ→0

Pf =
1

2k3

1

τ2
=

1

2k3
(aH)2. (55)

An exceedingly important quantity for observation, and indeed the central quantity of in-

terest in this thesis, is the curvature perturbation ζ, since for reasons that will be discussed

in due course, for single field models of inflation, it is conserved on superhorizon scales.

By observation of this variable it is possible to know about the state of the universe dur-

ing inflation without detailed knowledge of the history in between. In the flat gauge the

curvature perturbation is related to the field perturbation by

ζ = −H
φ̇
δφ (56)

and so ζ = −f
z . Importantly, we can relate the power spectrum of ζ to the fluctuations

during inflation by

Pζ(k) =
1

z2
Pf . (57)

Evaluated at horizon crossing k = aH this is purely a function of k

Pζ(k) =
1

4k3

H2

ε

∣∣∣∣
k=aH

. (58)

It is by observation of this quantity that it is possible to test inflation. It is by studying

the details of this power spectrum that it is hoped we can probe particle physics at energy

scales that may never again occur in the history of the universe.

0.3.3 Conservation of ζ on superhorizon scales

As mentioned one of the key characteristics of ζ as an observable is that it ceases to evolve

on superhorizon scales. Since this is an important point for every paper included in this

thesis, it is probably worth discussing this in a little more detail.

The proof by Weinberg [17] that ζ is conserved in the large wavelength limit is quite

long and technical so is not included here. Instead we describe the separate universe

argument as given by Wands et al [18].
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The key concept is that superhorizon sized patches of space will evolve independently

of one another. One can understand ζ as parameterising the local rescaling of the scale

factor relative to the background evolution

a(t, x) = a(t)eζ(t,x) (59)

and so considering the evolution of spatial patches smoothed on these scales, one essentially

wishes to compute the difference in the expansion of these patches. When there is only

one field φ acting as the inflaton, the energy density and pressure are a unique function

of φ and so the expansion of each patch is also a unique function of that field. In other

words, since there are only adiabatic perturbations present, each patch undergoes identical

evolution up to a time shift. In this situation, constant density surfaces differ by a fixed

expansion and hence ζ is conserved.

When there is more than one field, as will be the case for all work done in this thesis,

in addition to adiabatic perturbations, isocurvature perturbations are also present. This

means that constant density slicings are no longer simply related by a time shift. Remem-

bering that under the slow-roll approximation, the energy density is well approximated by

the “altitude” on the potential; when there is more than one field, two regions of space may

have equal energy density at some stage, but if the field constituents are different, then

they will undergo distinct field space evolution resulting in the expansion being different

in each region. This means that in order to compute ζ one must track this superhorizon

evolution. How this can be achieved and its effect on specific observables is one of the

central topics of the papers included in this thesis. For this reason further discussion will

be left for later chapters.

One approach to learning about inflation is to strive to make model independent state-

ments; essentially seeking to place constraints on the effective Lagrangian via observations

of ζ. The generality of such an approach is highly appealing but progress can be slow.

Another way is to take a “top down” approach and try to study inflation by deriving it

from fundamental theory. This ultimately is the goal of inflation; to achieve a found-

ation in fundamental theory thereby providing a means of confronting this theory with

observation. Unfortunately any prospect of achieving such a goal is a long way off and at

present it is difficult to say anything concrete about inflation from a top down perspective.

Nevertheless attempts at such an approach have already proven to be exceedingly useful.

Trying to connect inflation with something more fundamental highlights conceptual issues

of inflation that may not be apparent without considering explicit models. One issue I find
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particularly troubling is the idea that there can be an intrinsic and significant uncertainty

in the prediction for observables for a given model. This uncertainty is manifest in all mul-

tifield models of inflation and in the context of string theory this problem is particularly

acute. For this reason, I now turn to the discussion of inflation in string theory as a means

of introducing this topic.

0.4 There may be more than one universe

Historically it has been hoped that fundamental theory will provide a unique description of

reality. Specifically it was thought that such a theory would contain a unique description

of the early universe and hence of inflation, if it occurred.

To date, the leading candidate for such a fundamental theory is string (or M) theory.

However, string theory has not turned out to be what was first envisaged. Rather than

giving a single theory of reality, as will be discussed in more detail in what follows, string

theory has emerged as being more like a continuum of theories. The question then is how is

this to be interpreted. Some would argue that reality still corresponds to a unique theory

which must somehow be selected from this larger mathematical framework. From this

point of view, assuming inflation is correct, the ability to derive a description of inflation

from string theory simply awaits further developments of the underlying theory.

However there is another interpretation. An increasingly popular picture of string

theory is that it gives rise to what is often referred to as the string landscape. If this

picture is to be taken seriously then the implications for inflation are profound. Such a

picture calls for a very different approach to studying inflation. Conversely, an interesting

question is whether or not inflation may be used to test this model. Indeed, currently the

question of whether or not such a theory can be tested at all is an open question. It seems

that inflation may be one approach to shedding light on this issue.

This section is a non-technical review of the basic ideas of inflation in string theory

and particularly in the context of the string landscape. It is important to emphasise that

the subject of this thesis is not to derive models of inflation from string theory, however

ideas relating to the landscape are explored in the earlier papers of this thesis and even

when not being discussed directly, the possible existence of a landscape will affect many

of the key results of this work. It is also important to bear in mind that the discussion in
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this section is highly speculative. Despite this, I feel it is important that this discussion is

raised.

0.4.1 Basic inflationary mechanisms in string theory

It is interesting to note that substantial challenges have had to be overcome to achieve

inflation in a string motivated setup. The phrase “string motivated” is used here rather

than “derived” because significant leaps of faith need to be made in order to achieve a setup

with any kind of analytic control. Nevertheless, it is clear that these stringy examples

represent significant progress and bring with them valuable lessons.

We observe 3 spatial dimensions and time but string theory requires 11 dimensions.

To achieve the (3 + 1)-dimensions we observe the other dimensions must be compactified.

There is a continuum of ways of achieving this, where the parameters distinguishing com-

pactifications are synonymously referred to as the moduli. These moduli describe things

like the size and shape of the compactified space and appear as scalar fields in the low

energy effective field theory. The central issue in trying to construct a string model of

inflation is the ability to obtain a successful stabilisation of moduli. For instance, a typ-

ical 4d effective potential obtained by compactification in type IIB string theory takes the

form [19]

V (ϕ, ρ, φ) ∼ e
√

2ϕ−
√

6ρṼ (φ), (60)

where ϕ and ρ are canonically normalised scalar fields representing the dilaton and volume

of the compactified space respectively and φ represents all other fields. In principle Ṽ (φ)

can drive inflation but the steep potential experienced by ϕ and ρ push them to arbitrarily

large values and hence the radius of the compactified space rapidly expands meaning that

the 4d space decompactifies to 10D. In the last decade there has been significant develop-

ments in finding ways of obtaining stable compactifications. It is this progress which has

allowed for the currently existing models of string inflation to be developed and it is the

limitations of the methods used which stifle further progress.

Once a stable compactification is achieved, broadly speaking there are two types of

commonly studied string inflation. Inflation driven by the moduli fields themselves, and

inflation driven by the motion of branes in the compactification.

Specific examples of moduli inflation in general require considerable fine tuning but

have the appealing characteristic of not requiring any additional ingredients beyond those
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which go into obtaining a stable compactification. Furthermore, all permit chaotic inflation

and hence provide a mechanism for bringing about the right initial conditions for inflation

to take place. The significance of this fine tuning will be discussed in due course as will

chaotic inflation.

String theory permits the existence of extended d-dimentional objects referred to as

branes. In d-brane inflation, the inflaton in the effective 4d action actually represents the

physical separation of a pair, or stack of branes. These models require carefully constructed

configurations of branes moving in what are only semi-realistic compactifications and so

it is hard to see how such models could be considered in any sense a natural setup. That

said, they have proved incredibly valuable. As an example, d-brane inflation can involve

dynamics that are drastically different to the slow-roll scenario described in the previous

section. This has been particularly educational in the context of the search for inflationary

signatures.

0.4.2 The inflationary landscape of string theory

The currently known methods for stabilising moduli may severely limit our ability to con-

struct explicit models but the construction of such models is not the only way to make

progress. Clearly significant development of these techniques is sorely needed but neverthe-

less a very interesting trend seems to have emerged. Modern approaches to compactifying

the extra dimensions seem to give rise to an abundance of scalar fields. These include, but

are not exclusively, the moduli fields; for the purposes of this discussion they may all be

treated equally.

The fields are not in general associated with any symmetry of the theory and so varying

a field will in general give rise to a change in potential energy. In this work it is assumed

that the low energy properties of string theory may be well approximated by field theory

such that in this context we can simply picture the existence of some number of scalar fields

and a potential. We cannot assume a great deal about the couplings of these fields but it

seems reasonable to assume that the potential will be complicated – a multidimensional

landscape with multiple hills and valleys.

Before proceeding it should be noted that even at this stage the picture presented may

be the wrong interpretation. What is well established is the existence of a large class of

models with cosmological constant that may be tuned by varying fluxes [20]. What is less
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Figure 4: The string landscape picture comes about by the existence of moduli space. There is no explicit sym-

metry and so varying a moduli field φ gives rise to a change in energy V . A given location in moduli

space correspond to a specific compactification of the extra dimensions. Our observable universe re-

quires stabilised moduli and so must be located in a suitable minimum, somewhere in this landscape.

The “scribbles” represent different stable compactifications of the extra dimensions located at the min-

ima of V

clear is whether this gives rise to a single low energy effective field theory with a potential

possessing many minima, or rather, many different effective field theories with different

potentials. This distinction will be returned to in due course. For now, it will be assumed

that a single low energy effective field theory exists with some complicated potential.

As illustrated in Fig. 4, different minima in this potential correspond to different stable

compactifications. Each minimum with positive energy will give rise to regions of space

undergoing de Sitter expansion, where “fundamental constants” such as the charge of the

electron etc. will be different.

In the landscape picture, the thought is that all of these regions of the potential are

actually realised in space-time, and give rise to what is often referred to as the multiverse.

Minima with larger energy will give rise to space undergoing more rapid expansion than

a minimum with lower energy. We should therefore expect that the vast majority of

space-time is drastically different to our observable patch. From time to time, regions of
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Figure 5: Conformal diagram of how the string landscape gives rise to bubbles. The different shades of blue

represent different vacua in the landscape. Regions of space in the parent vacuum (lighter blue) can

can tunnel to another vacuum (darker blue).

this larger space-time will quantum tunnel to another minimum in the landscape and will

thereby undergo a different expansion or, if the minimum is at negative energy, collapse.

If the energy of the new vacuum is sufficiently close to zero, that region may turn out to

resemble our observable patch. We should therefore picture something like Fig. 5, bubbles

or “verses” which may or may not be similar to our observable patch, causally disconnected

as a result of being separated an inflationary region of space-time.

0.4.3 Predictions in the landscape

One might ask the question of whether we should care about distinguishing between string

theory giving rise to many causally disconnected verses described by different regions of

the potential of one effective field theory, or string theory giving rise to many different

effective field theories. Especially given that at present neither picture allows us to expli-

citly compute anything. One important distinction is that the landscape comes with some

powerful conceptual tools that are not obviously applicable in the non-landscape picture.

These tools may allow for more progress to be made despite our ignorance and so, although

it is hard to constrain string theory with our current understanding, there is a small hope

that it may be possible to test the existence of the landscape.

The key difference is that in the landscape picture different vacuum states are dy-

namically related. This means that there is the possibility of an attractor solution – a

mechanism for preferring some vacua over others, which may provide a solution to fine
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tuning arguments. For instance, a consequence of being able to move from one vacuum

state to another is that it provides an obvious means of anthropic selection.

There are a number of values we observe in nature, such as the charge of the electron,

the number of spatial dimensions, the value of the cosmological constant etc. which we

have no explanation but if their values were very different, life could not exist. This

observation has given rise to what is known as the weak anthropic principle, “The conditions

an observer observes must allow for an observer to exist to observe them”. With regard to

the landscape, all this means is that we only need to worry about regions of the landscape

which are capable of sustaining life. Or to take things from another perspective, provided

there exists a diverse range of conditions in the landscape, then there is an answer of sorts

for why we observe such apparently fine tuned values. Exactly how much one can extract

from such a line of reasoning is fraught with controversy. One must tread carefully in

the vicinity of tautologies. However, in the context of the landscape it clearly acts as an

additional selection factor to any dynamical effects and so in that sense it is an important

consideration.

A famous example of the use of anthropic reasoning in the context of the landscape is

in determining the small value of the cosmological constant. It is well known that from

the perspective of quantum field theory, every known contribution to the cosmological

constant is much larger in magnitude than the observed value, and so it seems miraculous

that they should cancel against each other to such a high precision. To date, one of the

most compelling explanations of the small value is the anthropic argument. In the original

proposal by Weinberg [21], he argued that if all other parameters remained constant and

the cosmological constant was much larger, then structure formation would be inhibited

and if it was larger in magnitude but negative, then our universe would collapse before life

would have time to evolve. The string landscape provides a setting in which it makes sense

to use such an argument. It is expected that there is an enormous number of vacua (an

often quoted number is 10500) where for sensible estimates of the range of allowed vacuum

energies the spectrum is dense. Provided the spectrum is sufficiently dense, the conclusion

is that our observed vacuum energy should be a random value drawn from this spectrum

but truncated at the anthropic bounds.

This provides a rather striking solution1 to the cosmological constant problem but

perhaps it is possible to do even better. If one can make more precise estimates of the
1The term “solution” is used loosely here. There is ongoing debate over the merit of such an approach

and in any case the argument has been refined considerably since Weinberg’s original proposal.
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distribution of vacua, then this is one way it may be possible to confront the landscape

with observation!

The ability to go beyond anthropic bounds and actually try and compute probability

distributions clearly requires a number of significant developments. However, even without

detailed knowledge of the string landscape, it may be possible to make significant progress.

Many of the important challenges, at this stage, are problems of statistics, which can

be worked on independently of detailed knowledge of the landscape. Indeed, as already

alluded to, some of these problems are not only applicable to the string landscape, but to

a number of much simpler effective field theories as well.

One such problem which has received considerable attention is what is known as the

measure problem. The issue here is that according to the string landscape, we live in an

infinite universe containing an infinite number of bubble verses, each of which is infinite.

Borrowing the description of Ref. [22], in order to make a prediction, one is essentially

asking to compare the relative probability p1/p2 of seeing one observable over another.

This can be found by counting the number of times N each occur

p1

p2
=
N1

N2
. (61)

The problem for making a prediction in the landscape is that both the numerator and

denominator are infinite and so the ratio is ill-defined. With a choice of measure one can

regulate this divergence but since the answer is sensitive to this choice, one can not make

a prediction until the correct measure is identified.

0.5 Overview of the papers

Having introduced some basic ideas we are now suitably equipped to discuss some of the

concepts directly relating to the papers of this thesis.

A central feature of the previous section is that string theory seems to point towards

there being an abundance of scalar fields. At present string theory does not tell us a great

deal about the nature of these fields but the very idea that inflation may have been driven

by not one but many fields, already begs a number of questions. This work is primarily

interested in one particular question

How does one compute predictions when there is more than one field?
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As already mentioned, regardless of the underlying theory, there are two characterist-

ics which make multiple field inflation different from the single field case. One trait is that

ζ is not conserved on superhorizon scales. The second trait is that multifield models are

sensitive to initial conditions in a way that single field models are not.

The superhorizon evolution of ζ can be computed in a number of ways. However, in

general, it is necessary to use numerical techniques which for complicated models possessing

multiple fields can quickly become very computationally expensive. Furthermore, some

techniques can be a bit of a “black box”; one can compute the superhorizon evolution,

but it is not necessarily straightforward to trace the source of this evolution. This is

particularly problematic in the search for signatures. An important question is whether

or not multifield inflation can be distinguished from single field inflation. To address this

question necessarily requires a deep understanding of the generation of perturbations and

so one requires not one, but a number of tools for studying these perturbations,2 each

providing a new perspective on the issue.

A theme that runs throughout all these papers is the pursuit of a more intuitive un-

derstanding of the generation of perturbations. This is done in two ways: By studying

a large number of inflationary realisations, we start to get a better understanding of the

types of behaviour that can occur, then equipped with this better understanding, an im-

proved technique for computing the perturbations is developed; improved in the sense of

being computationally more efficient as well as providing a new geometrical picture of the

underlying dynamics. This in turn is used to further study inflationary realisations.

The problem with initial conditions is less well understood and how best to handle it

seems to depend on the model in question.3 In this work two approaches are taken:

One approach is heavily influenced by the landscape. If the potential is complicated and

possesses many minima, then it seems that the best way to progress is with an inherently

statistical approach. Little was known about models of this kind when this work began

and so, as is apparent in the first two papers, it was sensible to start out by taking a highly

explorative approach. In work done in collaboration with Andrew Liddle, we constructed

a toy model of inflation in the landscape and explored how random realisations of the
2“...every theoretical physicist who is any good knows six or seven different theoretical representations

for exactly the same physics” [23].
3It should also be noted that relatively little work in the literature seeks to address this issue and so

this work may in some sense be considered early steps in trying to rectify the situation.
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potential gave rise to different inflationary outcomes. Familiarising ourselves with the

landscape, the goals of our exploration crystallised – it seems the best way to approach

such systems is by looking for emergent simplicity. As pointed out in Ref. [24], this is a

well known phenomena in random matrix theory and one can hope for something similar

to occur in the inflationary landscape. Understanding such behaviour, it seems, would be

a promising approach to understanding the predictive capability of models of this kind.

In the final paper of this work, inflation in the vicinity of a single minimum was con-

sidered. Working with models of this kind allowed for a very different approach to be

taken. Here it seems one can understand the predictive capabilities of the model in terms

of the existence of dynamical attractors. The existence of such attractors, by definition,

reduces the sensitivity to initial conditions, and hence it can be possible to make robust

predictions even without knowledge of the measure.

By addressing these aspects of multifield inflation and inflation in landscape-like poten-

tials it seems we can make substantial progress in understanding the relationship between

details of the theory and the ability to make predictions. After the papers this discussion

will be returned to.
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Paper 1

Exploring a string-like landscape

Jonathan Frazer and Andrew Liddle

We explore inflationary trajectories within randomly-generated two-dimensional po-

tentials, considered as a toy model of the string landscape. Both the background

and perturbation equations are solved numerically, the latter using the two-field form-

alism of Peterson and Tegmark which fully incorporates the effect of isocurvature

perturbations. Sufficient inflation is a rare event, occurring for only roughly one in

105 potentials. For models generating sufficient inflation, we find that the majority

of runs satisfy current constraints from WMAP. The scalar spectral index is less than

1 in all runs. The tensor-to-scalar ratio is below the current limit, while typically

large enough to be detected by next-generation CMB experiments and perhaps also

by Planck. In many cases the inflationary consistency equation is broken by the effect

of isocurvature modes.

1.1 Introduction

Historically researchers have hoped that there is a fundamental physical theory uniquely

describing what we observe. More than that, many have hoped that it has a signature

allowing us to distinguish it from any other theory we might have imagined along the way.

While string theory may or may not be the answer to all our questions, what is exciting

is that for the first time it gives us a theory that might be (see ref. [1] for a nice review of

string theory in cosmology). But string theory has surprised those who work with it time

and time again. First there was one string theory, then there were five, then it turned out

there was a continuum of theories [2, 3]!

27
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How are we to interpret this? Susskind coined the term landscape [3]. He described what

he called the megaverse (now more commonly referred to as the multiverse), where in the

low-energy approximation, different regions may be characterized by the values of a large

number of scalar fields. The consequence of this is that we have some very complicated

potential V (φ1, ..., φD), with a very large number of minima, each corresponding to a

different metastable vacuum energy. This implies that instead of trying to predict the

values of observables, we should be trying to predict probability distributions.

An early study of the possible consequences of this landscape picture for inflation was

carried out by Tegmark [4], who generated a large number of random one-dimensional

potentials and explored the inflationary outcomes. However a one-dimensional approach

gives a very limited view as compared to the possible dynamics of the landscape, in par-

ticular limiting the effect of the choice of initial conditions and restricting the observable

outcome to adiabatic perturbations. In this article we take further steps towards a more

realistic rendition of the landscape, while remaining quite rudimentary, by carrying out a

similar analysis in a two-dimensional field space. This broadens the effect of initial condi-

tions, as there are now a family of possible trajectories passing through each point in field

space, and permits isocurvature perturbations which can modify the form of the late-time

adiabatic spectrum. Our aim is to characterize the spread of observational predictions for

such models. In future work we will extend further to a D-dimensional landscape, which

adds computational complexity but no new issues of principle, unlike the extension from

one to two dimensions.

1.2 Approach

1.2.1 Where we intend to explore

Ideally we would like to explore the landscape potential V (φ1, ..., φD) directly but sadly

the explicit form is currently unknown. So to be getting on with we construct an artificial

potential. The hope is we can explore how certain characteristics expected to be manifest

in the true potential give rise to a probability distribution for observables. Adapting the

approach taken in ref. [4], we define a potential

V (φ1, .., φD) = m4
vf

(
φ1

mh1

, ..,
φD
mhD

)
, (1.1)
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Single Feld Two-Field Multi-field

Motivation All that inflation

asks for

Richer behaviour yet

still simple

Natural consequence

of many fundamental

theories

Surfaces Maxima, Minima,

Slopes

Maxima, Minima,

Saddles, Valleys,

Ridges

Maxima, Minima,

Saddles, Valleys,

Ridges

Perturbations Curvature Curvature and Iso-

curvature

Curvature and Iso-

curvature

Issues Requires very flat

potentials that may

be hard to realize in

fundamental theory

Initial Conditions Initial conditions

Table 1.1: Summary of some of the differences between single scalar field models and more scalar fields.

where f is a well-behaved dimensionless function and mv and mhi
, (i ∈ 1..D), are the

characteristic vertical and horizontal mass scales. Ultimately mv is to be adjusted to

give the correct amplitude of observed perturbations. Adjusting this mass does not affect

anything other than the distribution of vacuum energies, so for now we will not concern

ourselves with it.

In ref. [4] the case whereD = 1 was extensively investigated. We wish to move to higher

D as it allows for a broader range of behaviour, particularly isocurvature perturbations

which will be one of the main focuses of this paper. In this paper we only take the step

of increasing D from 1 to 2; however we believe this is the biggest step as there are no

further qualitative differences to go beyond D = 2. We reserve analysis of that case to

future work.1 Table 1.1 summarizes some of the changes as the number of scalar fields is

increased.

To construct our landscape, following an approach similar to ref. [4] we use a random

function of the form

f(x, y) =

m∑
j=1

n∑
k=1

[aj,k cos (jx+ ky) + bj,k sin (jx+ ky)] (1.2)

where in practice we truncate the series at the values m = n = 5 and the Fourier coeffi-
1An exception may be the distribution of the vacua, which changes in an interesting way both classically

and particularly with regard to tunnelling [5–7] .
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cients aj,k, bj,k are independent Gaussian random variables with zero mean and standard

deviation

σ = e−(j2+k2)/2n, (1.3)

With this form, the potentials we simulate are periodic with periodicity scale 2πmhi
, and

we can only expect reasonable results if the evolution spans a distance in the x–y plane

less than the periodicity of the function. For our choice of the horizontal mass mhi
, which

we are about to discuss, the periodicity is large enough to have no effect.

The precise form of our potential clearly has no theoretical motivation and as such we

are free to tinker with it as we please. We are interested in how features of the landscape

affect the evolution of the power spectrum and observables, so what we need to consider is

on what scale these features occur. If any, it is this quality of our landscape which should

be motivated by fundamental theory. Our choice of potential allows us to adjust this

in three ways; the truncation number, the standard deviation of the Fourier coefficients,

and the choice of mhi
. The truncation number and tuning of the standard deviation are

specific to our potential, but the mass scale is a rather more general feature of potentials.

Thus, to try and focus on this sense of scale, we fix the deviation and truncation number

as stated above and discuss our options in terms of adjusting the horizontal mass with

respect to some reference mass, taken to be the reduced Planck mass MPl. If we think

of features in the landscape as being anything that can cause a change in direction of the

inflationary trajectory, then we are essentially asking how many of these features we expect

the trajectory to encounter during an evolution giving rise to a sufficiently large number of

e-folds of inflation. There are many interesting mass scales that we will not be attempting

to explore here, but crudely speaking they fall into four categories:

mhi
�MPl: This mass choice is poorly motivated by theory but was nonetheless explored

as one of many cases for single scalar field in ref. [4]. More generally speaking, this

case corresponds to a trajectory on a nearly flat, almost featureless potential. The

advantage of this is that it is highly predictive since all trajectories look pretty much

the same and in the single-field case can readily be in agreement with observation.

Also, it is easy to get lots of inflation.

mhi
�MPl: This mass choice corresponds to something akin to an egg box.2 The main

issue with this choice is that it becomes difficult to achieve sufficient inflation without
2Allowing a high truncation number when mhi & MPl introduces small-scale power into the potential

to similar effect.
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getting eternal inflation, since the trajectory will almost always roll straight into a

minimum. That said, one might imagine that if the number of scalar fields was

sufficiently large then the chance of getting sufficient inflation would increase. This

is a particularly important effect if tunnelling is taken into consideration [5–7], but

to keep things simple we will not be doing so in this paper.

mhi
�MPl and mhj

�MPl: While our choice of potential would require additional terms

to investigate this scenario, we are referring to the sort of case where there is more

than one kinematically significant scale. An example of this kind of situation was

investigated in refs. [8, 9]. The setup they considered could be imagined as a sort of

multi-dimensional version of a board with nails stuck in it. The trajectory has a slow-

roll drift velocity with what the authors describe as a brownian motion imposed on

top of this. Depending on the scales involved, this could lead to interesting features in

the power spectra and, for a given suitable background evolution, the extra distance

covered due to the random motion will increase the number of e-folds.

mhi
∼MPl: Finally we have the beginners’ ski slope, an example of which is shown in

Fig. 1.1. This is what we will be investigating. There are no jumps and the features

are gentle so an advanced skier or snowboarder would probably be rather bored in

our landscape, but for inflation we feel this is an interesting scale on which to begin

our exploration. This mass scale is well motivated by theory and it also gives rise

to quite a broad range of behaviour, since in order to obtain a sufficient number of

e-folds of inflation, the trajectory generally has to take a non-straight path. The

downside is that the broad range of behaviour will make the model less predictive

but then again, it is interesting to see how robust the values of certain parameters

are under such variations. Also, while the variability in a two scalar field model may

be large, one can easily imagine that the deviation might decrease as more scalar

fields are introduced. This tendency was seen in ref. [10] for Nflation models with

random initial conditions on many uncoupled fields.

1.2.2 How we explore it

As we discussed, any model of inflation where the potential has multiple minima predicts

a probability distribution for the cosmological parameters. We wish to compute this dis-
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Figure 1.1: An example of our landscape, shown on two scales together with the trajectory taken during infla-

tion. The first scale corresponds to the periodicity of the function, and the second shows the fea-

tures relevant to the inflationary trajectory. The “water level" indicates the height of the minima

determining the vacuum energy. We see this is very close to V = 0; this, together with the fact that

this trajectory gives a sufficient number of e-folds of inflation (in this case N = 173), means that we

have an anthropically suitable bubble universe.

tribution for the potential described above. To do this we perform essentially the same

experiment that was performed in ref. [4]:

1. Generate a random potential V (φ) and start at φ = (0, 0).

2. If V (0, 0) < 0 then reject model, otherwise evolve to find the field trajectory.

3. If model gets stuck in eternal inflation, reject.

4. Once the model stops inflating, if the number of e-folds of inflation N < 60 we reject

as insufficient inflation occurred. Otherwise find the local minimum to calculate ρvac,

and if ρvac < 0, reject. If N ≥ 60 and ρvac ≥ 0, calculate observables.

5. Repeat many times to obtain a statistical sample.
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6. (Change some assumptions and do it all again.)

We start the evolution at V (0, 0) for practical purposes. Instead of viewing this as start-

ing at the same position in many different potentials, since the statistics of our landscape

are invariant under translation, one could equally view this as starting at random positions

in one infinite potential. An alternative choice of initial conditions would be to start only

at maxima. This relates to the choice of measure, a problem we will discuss shortly but

which in reality is an issue well beyond the scope of this paper. Step 2 is there since it

would make no sense to do otherwise; generally we are not interested in the statistics of

initial conditions that don’t give rise to regions of space. Step 3 rejects trajectories that

get stuck in minima that lead to eternal inflation. We will not be considering tunnelling

in this paper, so once again we give no statistical weighting.

Step 4 describes what we do when we finally do encounter a potentially viable trajectory.

The rejections that take place here are more debatable since they are essentially anthropic

rejections. In ref. [11] it was shown that anthropic arguments place an incredibly strong

bound on the vacuum energy. This was and still is a very important result and the

realization that it sits so naturally with string theory is more than a little exciting. We do

not explore this idea in our current work; indeed we ignore it since the extremely narrow

permitted range for the present vacuum energy is not computationally accessible. Instead

we place only an approximate lower bound, rejecting universes with a negative vacuum

energy on the grounds that they will recollapse shortly after inflation ends. Technically

very slightly negative vacuum energies are anthropically acceptable but this does not affect

what we are interested in here. Rejecting inflation of less than 60 e-folds comes from

arguing that this is a requirement for the formation of galaxies on a smooth cosmological

background [4]. Steps 5 and 6 follow trivially.

In constructing our experiment in this way we have inadvertently chosen a measure.

We do not wish to go into it in any depth here but it is important to realize that what

is known as The Measure Problem [4, 12–17] directly affects this work. If we subscribe to

Bayesian statistics then one can describe the current situation as follows: Define P (U) to

be the probability of finding yourself in a particular region of space-time where inflation

has ended which we now define as a bubble universe U , from now on simply referred to

as a universe. Then define P (O) to be the probability of making an observation O in

any bubble universe. What one defines as an observation changes the results dramatically.

One could simply decide observation meant finding protons for instance. Here, observation
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corresponds to an observer measuring a particular set of cosmological parameters. The

conditional probability of making an observation O in a universe U is P (O|U), called the

likelihood. Meanwhile, the probability that we are in a universe U given that we have the

observation O is P (U |O), called the posterior probability. Bayes’ theorem then gives us

P (U |O) =
P (O|U)P (U)

P (O)
. (1.4)

Our experiment essentially makes an attempt at calculating P (O) but this can be written

as

P (O) =

∫
M
P (O|U)P (U)dU (1.5)

where M is the multiverse, and dU is the measure. So as you can see we have issues. The

probability of making an observation O given U is where anthropic arguments come in. For

example, the probability of making an observation in a universe that can’t form galaxies

is, we guess, not very high. We also have the problem of counting infinities and this is

the measure problem. We have possibly an infinite number of universes, infinite in extent

and yet we need to count the probability of making observations in them. We do not wish

to discuss this in any detail but we need to remember that our experiment, for the time

being, uses a measure where initial conditions are weighted equally (step 1) to start with

but then we give zero weighting to universes that are invalid on anthropic grounds (step

4).

1.3 Calculating observables

In this section we lay down the theoretical framework involved in calculating observables.

Much of this section follows ref. [18], which gives an extremely thorough and comprehensive

review of how to make two-field model calculations. We therefore only give a summary

of the calculations involved, operating in a simplified setting where we assume the fields

are canonically normalized and working to lowest order in the perturbations (since the

effect of higher-order terms would be much smaller than the uncertainty of our overall

implementation). First we introduce the unperturbed equations. In the context of our

work these are the equations used to perform the experiment described in the previous

section. Next we move on to the background kinematics. These will prove invaluable in our

attempts to understand what aspects of the potential are important in affecting observables
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and how these characteristics extend to a larger number of scalar fields. We then move on

to the perturbed equations which finally lead us to calculating observables. We use reduced

Planck units (MPl = 1) throughout and the vector notation φ = (φ1, .., φD). In practice

we will often simply have φ = (φ1, φ2) but where it will be helpful in later discussion, we

write down explicitly how this extends to D scalar fields.

1.3.1 Background equations

We take the background spacetime to be flat, (3 + 1)-dimensional, homogeneous and iso-

tropic and thus described by the Robertson–Walker metric,

ds2 = −dt2 + a2(t)
[
dx2 + dy2 + dz2

]
, (1.6)

where a(t) is the scale factor. We are investigating inflation driven by D scalar fields with

canonical kinetic terms. The non-gravitational part of the action is

S =

∫ [
−1

2

D∑
i=1

∂µφi∂µφi − V (φ1, .., φD)

]
√
−g d4x, (1.7)

and thus we have the standard field equation

φ̈+ 3Hφ̇+∇†V = 0, (1.8)

where H is the Hubble parameter, whose dynamics are found from the (0, 0) component

of Einstein’s equations,

3H2 = ρ. (1.9)

From eq. (1.7) we also obtain

ρ =
1

2
|φ̇|2 + V , P =

1

2
|φ̇|2 − V (1.10)

and so eq. (1.9) becomes

3H2 =
1

2
|φ̇|2 + V. (1.11)

Working in terms of comoving time t is not particularly convenient for our current

work. Instead it is much more helpful to make the transformation

dN ≡ Hdt, (1.12)

where N is the logarithmic growth of the scale factor and represents the number of e-

foldings of inflation. Using N is useful since it is directly related to observables; it also
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simplifies all the equations and renders them dimensionless, thus making it simpler to

compare the relative size of terms. From now on we will use the notation

′ ≡ d

dN
(1.13)

to represent differentiation with respect to N .

To further simplify the equations we introduce the slow-roll parameter

ε ≡ − Ḣ

H2
. (1.14)

Inflation ends when ä ≤ 0 ⇐⇒ ε ≥ 1. If we combine the field equation (1.8) with the

comoving time derivative of eq. (1.11) we see that the slow-roll parameter can also be

interpreted in terms of the field speed;

v ≡ |φ′| =
√

2ε. (1.15)

Making the transformation given in eq. (1.12) and substituting eq. (1.14), the field and

Friedman equations simplify to

φ′ +∇† lnV = − φ′′

3− ε
(1.16)

and

H2 =
V

3− ε
(1.17)

respectively.

Equation (1.16) together with eq. (1.14) give the evolution of the fields. To solve

them we need to provide initial conditions. We choose these to be φ = (0, 0) and φ′ =

(−V,φ1 /V,−V,φ2 /V ).

1.3.2 Relating kinematics to the potential via the slow-roll slow-turn ap-

proximations

This subsection is predominantly a summary of ref. [18], although our case is simpler in

that we are only concerned with canonical kinetic terms. We also make the extension to a

larger number of scalar fields a little more explicit.

We wish eventually to investigate the evolution of perturbations. As summarized in

Table 1.1, when there is only one scalar field, the only type of perturbation that exists

is density perturbations, generated by perturbing the field along the trajectory. When



37
Exploring a string-like landscape

there are more scalar fields however, for every extra scalar field there is another direction

perpendicular to the trajectory in which perturbations can also arise. The perturbations

perpendicular to the trajectory correspond to isocurvature perturbations but these in turn

can fuel the evolution of the density perturbations. Decomposing the perturbations in this

way leads us to introduce a new basis. If we think of the old basis as B = {e1, .., eD} where

e1 points in the direction φ1, e2 points in the direction φ2 and so on, then we can think

of the new basis K = {e‖, e⊥1 , .., e⊥D−1
} as a rotation of the old basis such that the first

basis vector now points along the trajectory and we label it e‖. The other basis vectors

will then point perpendicular to the the trajectory and we label them e⊥i . We refer to this

as the kinematic basis3 and we denote the components of a general vector A and matrix

M as, for instance

A‖ = e‖ ·A , M‖⊥i = e†‖Me⊥i . (1.18)

Using the kinematic basis we can now introduce the slow-roll slow-turn (SRST) ap-

proximations. There is more than one way to interpret the well-known single-field slow-roll

approximations and as discussed in ref. [18], this affects how the slow-roll approximations

generalize to multiple scalar fields. With regard to how slow-roll extends, probably the

minimal requirement is to say:

• Expansion is nearly exponential.

• Deviation from this expansion changes slowly.

If we take this as our definition then our slow-roll conditions become

ε =
1

2
v2 � 1 ,

∣∣∣∣∣φ
′′
‖

v

∣∣∣∣∣� 1. (1.19)

Although these are sufficient to guarantee the above requirements, it is helpful to have a

slow-turn approximation which we define as∣∣∣∣φ′′⊥iv
∣∣∣∣� 1. (1.20)

There are D− 1 of these slow-turn conditions and violation of any one of these conditions

would render the trajectory no longer slowly turning, so one might prefer to instead write

1

D − 1

∣∣∣∣φ⊥′′v
∣∣∣∣� 1, (1.21)

3For a fully kinematic basis, one could also define one of the perpendicular fields such that the direction

of the turning of the field is entirely along it, but we choose not to do that here since our basis will make

it clearer how to extend our statistics to D fields.
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but for our purpose we find the former more useful. If the field is both slowly rolling and

slowly turning we say it satisfies SRST.

Returning to eq. (1.16) we see that the left-hand side represents deviations from the

SRST limit and so under SRST conditions we can write

φ′ ' −∇† lnV (1.22)

and the Friedman equation becomes

3H2 ' V. (1.23)

When trying to understand how various features of the potential affect observables,

sometimes it is nice to interpret things in terms of the kinematics of the scalar field and

at other times perhaps it is better to look directly at the underlying geometry. For this

reason, amongst others, it is helpful to be able to approximately jump from one approach

to the other. Direct from eq. (1.22) we have

ε ' 1

2
|∇† lnV |2 (1.24)

and differentiating eq. (1.22) one obtains

φ′′ ' −M∇† lnV, (1.25)

where M is the Hessian of lnV , otherwise known as the mass matrix,

M ≡ ∇†∇ lnV. (1.26)

We therefore arrive at approximations relating the kinematic quantities directly to the

potential: (
φ′′‖

v

)
' −M‖‖, (1.27)

termed the speed-up rate, and (
φ′′⊥i
v

)
'
∣∣M‖⊥i∣∣ , (1.28)

known as the i-th component turn rate.

We don’t look at the second-order equations here but we refer the reader to ref. [18]

should they need them.
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1.3.3 The perturbed equations

Continuing to adopt the same approach as that chosen in ref. [18] it can be shown that

by using a multifield version of the Mukhanov–Sasaki variable [19], the field perturbations

decouple from perturbations in the metric and thus we are able to focus solely on the

curvature and isocurvature perturbations. The evolution of the field perturbations can be

found by perturbing the equation of motion for the background. The standard result in

Fourier space is

δφ̈+ 3Hδφ̇+

(
k

a

)2

δφ = −

[
∇†∇V −

(
3− Ḣ

H2

)
φ̇φ̇† − 1

H
φ̈φ̇† − 1

H
φ̇φ̈†

]
δφ, (1.29)

where k is the comoving wavenumber. Substituting Eqs. (1.12), (1.14) and (1.16) one

eventually reaches

1

3− ε
δφ′′ + δφ′ +

(
k2

a2V

)
δφ = −

[
M +

φ′′φ′′†

(3− ε)2

]
δφ (1.30)

and we see that mode evolution is primarily governed by the mass matrix with small

corrections.

Rotating to the kinematic basis, we can separate eq. (1.30) to find evolution equations

for the adiabatic (δφ‖) and entropy modes (δφ⊥). Starting with the adiabatic mode,

projecting in the e‖ direction, then solving the resulting equation in the super-horizon limit

(k/aH)2 � 1, one finds that the growing super-horizon adiabatic modes are described by

δφ′‖ =

(
φ′′‖

v

)
δφ‖ + 2

D−1∑
i

(
φ′′⊥i
v

)
δφ⊥i , (1.31)

or equivalently (
δφ‖

v

)′
= +2

D−1∑
i

(
φ′′⊥i
v2

)
δφ⊥i , (1.32)

or when SRST holds

δφ′‖ 'M‖‖δφ‖ − 2
D−1∑
i

M‖⊥iδφ⊥i . (1.33)

So we see that the evolution of adiabatic modes can be inferred directly from the back-

ground kinematics. The first term of eq. (1.31) tells us that the faster the speed-up rate,

the faster the evolution of the mode. The second term tells us about the sourcing of the

adiabatic modes from the entropy modes. We see that for a given size of entropy mode,

the faster the turn rate, the more the adiabatic mode will be sourced by that entropy

mode. For our experiment we will see there is a distribution associated with the likelihood
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of encountering a given turn rate. This means that as we extend to a larger number of

scalar fields, it becomes increasingly likely that the fuelling from entropy modes will be a

significant effect.

Following the same procedure for the entropy modes we find that

δφ′′⊥i
3− ε

+ δφ′⊥i = −µ⊥i
δφ⊥i
v

, (1.34)

where µi is the effective entropy mass

µ⊥i ≡M⊥i⊥i +
9− ε

(3− ε)2

(
φ′′⊥i
v

)2

(1.35)

and so is well approximated by µ⊥i 'M⊥i⊥i . The great news here is that eq. (1.34) tells us

that each of the entropy modes evolves independently of the others. This means we can find

their amplitude and determine the evolution of adiabatic modes without solving a massive

set of fully coupled equations. We also see that the evolution of a given entropy mode is

dominated by the curvature of the log of the potential along that entropic direction. This

makes sense intuitively as when the curvature is positive, a given trajectory is stable in the

sense that a perturbed trajectory will be redirected back onto the background trajectory.

Conversely, when the curvature is negative, the trajectory is dispersive and perturbations

will evolve, fuelling the growth of that entropy mode.

From here we are in a position to discuss curvature and isocurvature perturbations.

The curvature perturbation represents the perturbation in the curvature of constant-time

hypersurfaces. In the comoving gauge we have the gauge-invariant quantity, R, which

during inflation can be shown to be

R =
δφ‖

v
. (1.36)

Isocurvature perturbations represent relative fluctuations in the different fields that leave

the total curvature unchanged and hence are related to entropy perturbations, here defined

as4

Si ≡
δφ⊥i
v

. (1.37)

Using eq. (1.32) then gives us

R′ = +2

D−1∑
i

(
φ′′⊥i
v

)
Si (1.38)

4This definition, following refs. [18, 20], is chosen so that the isocurvature mode typically has the same

amplitude as the adiabatic one at horizon crossing, and differs from the alternative convention where the

isocurvature perturbations are normalized like massless field perturbations.
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M‖‖ > 0 M‖‖ < 0

M⊥⊥ > 0 Playoff Damping

M⊥⊥ < 0 Fueling Playoff

Table 1.2: Origins of evolution of isocurvature modes.

and so we see that the super-horizon evolution of the density perturbation is independent

of the speed-up rate; instead it depends on the sum of the isocurvature perturbations, each

multiplied by their corresponding turn rate. We also see that when there is no turn rate

(in any of the directions), the single-field result that the density perturbation is conserved

on super-horizon scales is recovered.

For the isocurvature perturbations we use the approach of ref. [20] and parameterize

the isocurvature modes as

S′i = βiSi. (1.39)

We then find that β can be well approximated in the SRST limit as

βi 'M‖‖ −M⊥i⊥i (1.40)

So interpreting this from the geometrical point of view we see that the evolution of a given

set of isocurvature modes depends on the integral of the difference between the curvature

along the adiabatic and entropic directions in a very intuitive manner. As summarized

in Table 1.2, negative curvature in the adiabatic direction and positive curvature in the

entropic direction corresponds to maximum damping of isocurvature modes, while posit-

ive curvature in the adiabatic direction and negative curvature in the entropic direction

corresponds to maximum fuelling.

Plugging eq. (1.39) into eq. (1.38) we have the result

R ' R∗ +
D−1∑
i

∫ N

N∗

2
φ′′⊥i
v
e
∫ Ñ
N∗M‖‖−M⊥i⊥id

˜̃NdÑ. (1.41)

and the total isocurvature perturbation S is given by

S =

D−1∑
i

Si '
D−1∑
i

S∗ie
∫N
N∗M‖‖−M⊥i⊥idÑ , (1.42)

where ∗ denotes that a given quantity is to be evaluated at horizon crossing. Continuing
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with the approach of ref. [20] it will be helpful to rewrite eqs. (1.41) and (1.42) as
R

S1

...

SD−1

 =


1 TRS1 · · · TRSD−1

0 TSS1

...
. . .

0 TSSD−1




R∗

S1∗
...

SD−1∗

 (1.43)

where the transfer functions TRSi and TSSi are given by

TRSi(N∗, N) ≡
∫ N

N∗

2
φ′′⊥i
v
Si(N∗, Ñ)dÑ. (1.44)

and

TSSi(N∗, N) ≡ e
∫N
N∗M‖‖−M⊥i⊥idÑ (1.45)

respectively. To reduce computational effort we substitute the approximation of eq. (1.28)

when calculating TRS (1.44). In the cases we tested we found this approximation to be

more than satisfactory.

1.3.4 Power spectra and cosmological parameters

We are now finally ready to discuss the evolution of the power spectra. For a general

quantity X , the power spectra and cross spectra are defined as

PX δ
3(k− k̃) ≡ k3

2π2
〈X (k),X †(k̃)〉 (1.46)

and

CXYδ
3(k− k̃) ≡ k3

2π2
〈X (k),Y†(k̃)〉 (1.47)

respectively. We do not go into details here but quantizing and solving the perturbed

equations (see e.g. ref. [18]) leads us to

PR∗ '
(
H∗
2π

)2 1

2ε∗

[
1 + 2(C − 1)ε− 2CM‖‖

]
∗ , (1.48)

PSi∗ '
(
H∗
2π

)2 1

2ε∗
[1 + 2(C − 1)ε− 2CM⊥⊥]∗ (1.49)

and

CRSi∗ '
(
H∗
2π

)2 1

2ε∗

[
−2CM‖⊥i

]
∗ (1.50)

where C = 2− ln 2− γ ≈ 0.7296 and γ is the Euler–Mascheroni constant. For future use

we also introduce the tensor power spectrum which takes the usual form

PT∗ ' 8

(
H∗
2π

)2

[1 + 2(C − 1)ε]∗ , (1.51)
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which is conserved for super-horizon modes. We used the above second-order expressions

in our computation but as one would expect, there would have been almost no difference

had we used first-order approximations.

Applying the transfer matrix eq. (1.43) we finally arrive at one of our most important

destinations, namely the power spectra at the end of inflation

PR = PR∗ +
D−1∑
i

(
2TRSiCRSi∗ + T 2

RSiPSi∗
)
, (1.52)

PS =
D−1∑
i

PSi =
D−1∑
i

T 2
SSiPSi∗ (1.53)

and

CRSi = TSSiCRSi∗ + TRSiTSSiPSi∗ . (1.54)

We see most of our previous comments on super-horizon evolution apply in much the same

way to the power spectra. It is now also easy to see one of the reasons why we chose

to break our exploration down into two stages. The interesting super-horizon behaviour

predominantly comes from the transfer functions. We have seen that the super-horizon

modes associated with entropy perturbation evolve independently of one another, each

separately affecting the evolution of the adiabatic power spectrum. This means that by

making a statistical analysis of one set of entropy perturbations, we can easily see how the

statistics will generalize to a larger number of scalar fields.

Now that we finally have the power spectra the hard work is over. From here it is

straightforward to find approximations for what we consider the key observables, namely

the tensor-to-scalar ratio, spectral indices, and the running. We will evaluate these 55

e-foldings before the end of inflation, taken to be the time that the observed scales crossed

the horizon during inflation. We call this the pivot scale Npivot. All observable quantities

are henceforth assumed evaluated at this scale.

The tensor-to-scalar ratio r is defined as the ratio of the tensor power spectrum

eq. (1.51) to the scalar (curvature) power spectrum eq. (1.52)

r ≡ PT
PR

. (1.55)

Note that since the tensor power spectrum is conserved on super-horizon scales, the single-

field result provides an upper bound for the multi-field case. We define the spectral index

of a power spectrum PX as

nX ≡
d lnPX
d ln k

. (1.56)
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Note however that the common definition of the scalar spectral index is related to this

definition by

ns = 1 + nR. (1.57)

We find calculating TRS to be computationally demanding so in practice when calculating

the spectral index we do the following:

d lnPX
d ln k

'
lnPX (Npivot + ∆N

2 )− lnPX (Npivot − ∆N
2 )

∆N
;

' ln
PX (Npivot) + PX (Npivot + 1)

PX (Npivot − 1) + PX (Npivot)
. (1.58)

The running of the spectral index αX is a straightforward extension of the spectral

index, defined as

αX ≡
dnX
d ln k

, (1.59)

and hence we approximate it using the same technique,

dnX
d ln k

' nX (Npivot + 1/2)− nX (Npivot − 1/2) . (1.60)

The minimum number of computations of TRS required to obtain the running in this way

is three, which is why we take averages when calculating the spectral index.

We do not consider non-gaussianity in this paper. A methodology for computing it

within the same formalism has now been given in ref. [21]; however, as for instance shown

in that paper, it would typically be expected to be small in these types of models.

1.4 Findings

1.4.1 Two scalar fields

We performed 5 × 106 runs and obtained 75 successful outcomes in terms of sufficient

inflation achieved without subsequent collapse. Table 2.2 summarizes some of the mean

values accumulated and shows that our model is in good agreement with observation in

all parameters so far tested. Figure 1.2 shows histograms of the curvature spectral index

and tensor-to-scalar ratio, a histogram of the number of e-folds and a plot of r against ns,

colour-coded with the number of e-folds. The last plot also shows the present observational

limits from a data compilation including WMAP7 results [22].
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Quantity Result Observed Agreement

nR −0.06± 0.02 −0.027± 0.014 Y

αR −0.0003± 0.0009 −0.022± 0.020 Y

niso 0.001± 0.13 N/A N/A

αiso −0.02± 0.22 N/A N/A

r 0.05± 0.03 < 0.24 (95% c.l.) Y

TSS 0.06± 0.43 N/A N/A

TRS 0.8± 0.9 N/A N/A

Table 1.3: Some cosmological parameter constraints.

Planck hopes to measure the tensor-to-scalar ratio with an accuracy of a few hun-

dredths, hence has discovery potential if it is of order 0.1 or so. For this reason it is

interesting to note that of the universes not already rejected by the ns–r plot, there seems

to be a preference for universes with larger r. We also note that all large e-fold universes

(green points) lie within the 95% confidence limit and only a couple of blue points are

rejected, but more data are needed to conclude whether or not large e-fold universes are

favoured within our model. We find this potential trend quite intriguing since it is easy

to conceive of measures which give strong weighting to universes with a large number of

e-folds, but will not pursue this further in this paper.

We need to clarify what agreement actually means in this context. Both the observed

data and the results of our experiment are given in terms of a distribution of values for

the observables. As it happens, the statistical spread of each is comparable at present,

with a substantial area of overlap; one can therefore conclude that there is a good chance

of a single realization from our model giving predictions in accord with the observations.

If a model data point lies outside the range observed, then it simply indicates that we

do not live in that universe and such data would not necessarily act against the model.

Future observations hope to home in on a single value for each observable to ever increas-

ing accuracy, which will clearly soon have higher precision than our model predictions.

Provided the observationally-favoured region remains within the envelope predicted by the

model, however, such higher-precision measurements will not in themselves be able to ar-

gue against the model, at least without further model refinements for instance around the

choice of measure and anthropic arguments. At this point we then must invoke the Coper-

nican principle over this remaining anthropically reduced landscape and say we expect to
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Figure 1.2: Histograms of the curvature spectral index, tensor-to-scalar ratio, and e-folds, plus a plot of the

tensor-to-scalar ratio against the spectral index where the points have been colour-coded accord-

ing to the number of e-folds. The blue line on the ns–r plot is the 95% confidence contour from

WMAP+BAO+H0.

observe values according to the statistics of the model distribution. It is in this sense that

we say our results are in agreement with observation.

The histogram of e-folds, Fig. 1.2, shows that the number of universes drops off rapidly

with the number of e-folds. We rejected universes with less than 60 e-folds of inflation

but in the process of doing so we found that sufficient inflation was a very rare process,

testing millions of universes to find tens of candidates. This is not a new result for “stringy”

models. For instance ref. [23] investigated one of the most rigorously derived inflationary

models from string theory, namely brane–anti-brane inflation, and found much the same

thing, while ref. [24] found the same result for tunnelling landscape models. For our model

though this is of no concern at all. We are not worried about what proportion of field

space allows for anthropically suitable conditions, only that there exists some proportion.

Moving on to the results of the calculations done in the previous section, we look at

the role played by isocurvature perturbations in modifying the adiabatic perturbations

from their horizon-crossing value. Figure 1.3 confirms that the curvature power spectrum

always increases, and for a non-negligible proportion of the time the fractional change is

very large. Looking at the histograms for the transfer functions we see that the isocurvature

perturbations are an important source, since at horizon exit they are of the same order as
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Figure 1.3: Histograms of the fractional change in the curvature and isocurvature power spectra accompanied

by histograms for the transfer functions. Arrows indicate Universe 1832942.
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Figure 1.4: Plot of r against ε, demonstrating the consistency relation r = −8nT = 16ε becoming an inequality.

the curvature power spectrum and it is not particularly uncommon for TRS to be significant

or even greater than one.

One consequence of the super-horizon fuelling of adiabatic perturbations is that we

have explicit violation of the consistency relation, as demonstrated in the plot of r against

ε in Fig. 1.4 (the tensor spectral index in these models is given by nT = −2ε as usual).

Substituting eqs. (1.51) and (1.52) into eq. (1.55), we have

r =
16ε

1 + 4CTRSφ′′⊥/v + T 2
RS

. (1.61)

So we see we have a line of points corresponding to r = 16ε as in the single scalar field

case but with many points dropping below the line where TRS and the turn rate have



48
Exploring a string-like landscape

Figure 1.5: Example potential giving rise to TRS = 3.6, and the corresponding evolution in the φ–χ plane.

suppressed the value of r. Hence the relation becomes an inequality when there are extra

degrees of freedom, as first described in ref. [25].

As an example of the sort of situation that can give rise to large TRS values we include

Fig. 1.5. As mentioned earlier, generally the dominant effect is the turn rate and while

there are a number of types of trajectory that lead to large TRS , in this case we see that

it is the cumulative effect of a fairly continuously curved trajectory spiralling its way to a

minimum.

As pointed out in ref. [1] (see refs. [22, 26–30] for primary references), the CMB places

strong observational constraints against the existence of isocurvature perturbations. As

such, any multi-field model must either generate no isocurvature perturbations at horizon

exit, or must find a way to make them disappear after horizon exit but before horizon entry.

Our model falls nicely into the second category. Fig. 1.3 shows that the transfer function

TSS consistently causes the isocurvature power spectrum to go to zero after horizon exit

(except in one case which we will discuss in a moment). Referring back to eq. (1.45) and

Table 1.2, we see that pure damping occurs when M‖‖ < 0 and M⊥⊥ > 0; we find that

this scenario is typically the case, an example of which is shown in Fig. 1.6. This result is

not particularly surprising since one consequence of our choice of measure is that hilltop

inflation is a very rare process, thus most inflation scenarios occur in the vicinity of a

minimum. In such cases, at least to some extent the trajectory will be moving towards

that minimum. We then have that perpendicular curvature will usually be positive and

since the minimum must be very close to V = 0, the log of the potential will have negative
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Figure 1.6: Example plot of lnV , the trajectory, and the relevant mass matrix components, showing why TSS

tends to be so small.

curvature in the direction of motion.

1.4.2 The curious case of Universe 1832942

Figure 1.3 shows one dramatic exception to the damping of the isocurvature perturbations

just described. In one case the isocurvature perturbations were actually fuelled rather than

damped. Fig. 1.7 shows plots of the potential, its logarithm, the trajectory, and a plot of

the parallel and perpendicular components of the mass matrix near the end of inflation

for this case which we call Universe 1832942. Remembering Table 1.2, we see that for the

majority of the evolution the isocurvature perturbations are damped but near the end of

the evolution the trajectory overshoots the minimum causing a sharp reversal in direction

as it reaches the far side of the valley. As the trajectory goes through this sharp turn at

low V the arguments above reverse, but we see that the dominant effect in this case seems

to be the change in curvature as the trajectory traverses the minimum.

We have severe violation of SRST so our calculations of observables are no longer reli-
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Figure 1.7: Plots of the potential, log of the potential, trajectory and relevant components of the mass matrix

(M‖‖ is blue, M⊥⊥ is red) for the one case we found, Universe 1832942, where the isocurvature

perturbations were fuelled rather than going to zero. The arrow indicates where the trajectory turns

back on itself.

able, but we find the values ns = 0.94 and r = 0.005, with the low r value resulting from

a significant evolution of the power spectrum after horizon exit of 108%. We see that Uni-

verse 1832942 sits within the 95% confidence contour of Fig. 1.2, but we remind the reader

that this confidence limit does not take surviving isocurvature modes into consideration.

1.4.3 How will observables change with D?

As was mentioned at the beginning of this paper, we feel much of the phenomenology of

a D scalar field landscape is manifest with just two scalar fields. This is true in terms of

the types of phenomena that exist, but can we make any comments on how the values of

observables might change with D?

The short answer is no. From a statistical standpoint we know that the mean values
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Figure 1.8: Correlations of ns with ε and TRS .

of ε and TRS will both increase with D, so one might think that parameters such as ns

and r could tend to some value as a result of one parameter coming to dominate. This

may well be true but how so is not obvious. The lack of any strong correlation in Fig. 1.8

for ns with respect to ε or TRS leads us to think that predicting how ns will change with

D is non-trivial. That said, there is an important distinction between how ε and TRS will

change with D. TRS is unbounded, in that as you increase D you just get an increasing

sum of TRSi terms; this has both a cumulative effect and increases the statistical chance

of encountering a large TRSi . The value of ε in contrast is capped, if for no other reason

because inflation will end if ε is too large, but it may not ever even increase that much.

There are a number of examples in the literature where a large number of scaler fields

can actually lead to a decrease in ε, one example being assisted inflation [31]. So for cases

where the absolute values of ε and TRS are important we can hazard a guess and say that

for sufficiently large D eventually the dominant effect will be TRS . This is the case for

the tensor-to-scalar ratio and remembering Fig. 1.4 and eq. (1.61) we would thus expect

increasingly severe violation of the consistency relation, with a suppression of r as we move

to higher D. We will investigate this as part of a future study of the D-dimensional case.

1.5 Discussion

We have investigated the properties of inflationary trajectories in a toy-model landscape

with two scalar fields, in which we fully track the effects of isocurvature perturbations. We

have focussed on the well-motivated case where the variations in the potential correspond

to masses of the order of MPl. Trajectories with sufficient inflation are rare, with one
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successful run per roughly 105 randomly generated potentials, but the successful runs are

typically in good accord with observational constraints on the perturbations, mostly lying

within the region of the ns–r plane delineated by the WMAP+BAO+H0 95% confidence

contour.

We find that isocurvature perturbations naturally go to zero after horizon exit. This

is a direct result of the typical geometry of the landscape in the vicinity of an inflationary

trajectory. For isocurvature perturbations to not go to zero one requires an unstable

trajectory, which happened only in one of our successful realizations. Nevertheless, in

many cases the isocurvature perturbations have a lasting consequence as we find significant

fueling of the adiabatic perturbations from the entropy perturbations to be a fairly common

occurrence. Because of this, we find that the tensor-to-scalar amplitude often lies below

the level that would be predicted by the single-field consistency equation. One might

speculate that this effect is likely to become more prominent as the number of scalar fields

is increased, both from a statistical standpoint and as a purely cumulative effect, since

such evolution is closely linked with turns in the trajectory. We plan to investigate this

dependence in future work.

While our work significantly extends previous comparable analyses in the literature,

such as ref. [4], it nevertheless remains rudimentary and many further steps are needed if it

is to become more realistic, beyond the issue of the number of scalar fields. Most pressing

is a proper treatment of the way the measure problem affects our work, particularly in

combination with anthropic selection. At the moment we have largely ignored this and

obtained results which are based on a uniform distribution of initial conditions, rather

than as drawn from random late-time observers. It would be reasonable to believe that

this would typically enhance the likelihood that our Universe emerged from the vicinity of

a hilltop region, as those are the regions which subsequently undergo the most inflation.
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Paper 2

Multi-field inflation with random potentials: field

dimension, feature scale and non-Gaussianity

Jonathan Frazer and Andrew Liddle

We explore the super-horizon evolution of the two-point and three-point correlation

functions of the primordial density perturbation in randomly-generated multi-field

potentials. We use the Transport method to evolve perturbations and give full evol-

utionary histories for observables. Identifying the separate universe assumption as

being analogous to a geometrical description of light rays, we give an expression for

the width of the bundle, thereby allowing us to monitor evolution towards the adia-

batic limit, as well as providing a useful means of understanding the behaviour in

fNL. Finally, viewing our random potential as a toy model of inflation in the string

landscape, we build distributions for observables by evolving trajectories for a large

number of realisations of the potential and comment on the prospects for testing such

models. We find the distributions for observables to be insensitive to the number of

fields over the range 2 to 6, but that these distributions are highly sensitive to the

scale of features in the potential. Most sensitive to the scale of features is the spectral

index, with more than an order of magnitude increase in the dispersion of predictions

over the range of feature scales investigated. Least sensitive was the non-Gaussianity

parameter fNL, which was consistently small; we found no examples of realisations

whose non-Gaussianity is capable of being observed by any planned experiment.

56
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2.1 Why random potentials?

2.1.1 First reason

With the prospect of improved data from the Planck mission fast approaching, there has

been a lot of interest in finding inflationary models exhibiting specific observable foot-

prints. Large non-Gaussianity signals peaking at various shapes is one example, another

being features in the primordial power spectrum. While this is a crucial step towards

understanding what observables are specific to a particular model, often the set-up can be

somewhat contrived and to gain understanding as to whether such behaviour is a general

feature of the model, one may need to invoke Monte Carlo techniques. In such a situation

it may be helpful to employ some element of ‘randomness’ at the level of the construction

of the model.

For example, a popular model of inflation coming from string theory is Dirac–Born–

Infeld inflation. The Lagrangian describing DBI-inflation is

L = −T (φ)

√
1− 2X

T (φ)
+ T (φ)− V (φ), (2.1)

where X = −1
2gµν∂

µφ∂νφ and T (φ) is the brane tension. If the D3-brane velocity ap-

proaches its limiting speed

1− 2X

T (φ)
→ 0, (2.2)

then a period of inflation can occur. This model has interesting observational consequences

as the sound speed can become small and hence, since f (eq)
NL ∼ 1/c2

s , lead to large equilateral

f
(eq)
NL . However the above Lagrangian also admits inflation by other means. In Ref. [1] a

rather sophisticated model of brane inflation was investigated, where to simulate the effect

of the bulk in different compactifications, random coefficients were used. In this set-

up, conditions for DBI inflation were never encountered; instead inflection-point slow-roll

inflation was vastly more common. We therefore see that while the DBI effect certainly

gives an interesting observational footprint, there is no reason to believe this is a generic

feature of brane models of inflation.1

1As pointed out in Ref. [1], this result is not conclusive since, rather importantly, their investigation

did not go all the way to the tip of the throat. Nevertheless we feel this example illustrates the point in

hand.
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2.1.2 Second reason

On a more ambitious note, string theory seems to predict the existence of a landscape [2,

3], where, in the low-energy approximation, different regions may be characterised by the

values of a large number of scalar fields. The consequence of this is that we have some very

complicated potential V (φ1, ..., φd) with a large number of minima each corresponding to

a different metastable vacuum energy. This implies that instead of trying to predict the

values of observables, we should be trying to predict probability distributions for them.

Indeed, as we will now discuss, this is the case not just for string theory but for any model

with multiple light fields.

Most work on the consequences of a landscape has focussed on the measure problem

(see Ref. [4] for a recent overview) but if the observational consequences of such a model

are ever to be understood, then there are other challenges to contend with. In order for

a landscape model (any model where the scalar potential has more than one minimum,

or for the purposes of this discussion, even just one minimum but multiple fields) to be

predictive, three questions need to be addressed:

1. What are the statistical properties of the landscape

2. What are the selection effects from cosmological dynamics

3. What are the anthropic selection effects

The measure problem relates to the question of handling the numerous infinities which

turn up. Taking the example of slow-roll inflation,2 any model of multi-field inflation suf-

fers from an uncountably infinite set of choices for initial conditions. In general one needs

to assume that, one way or another, at some point our region of spacetime experienced

field values displaced from our local minimum. This corresponds to a single realisation of

initial conditions (plus quantum scatter) that gave an anthropically suitable inflationary

trajectory, which subsequently found its way to our local minimum. In order to make

predictions we need to ask what proportion of the whole universe finds itself in this situ-

ation, i.e. what proportion of an infinite space finds itself in one of an infinite set of initial

conditions. The ratio is ill-defined without a measure.
2Most discussion in this area focuses on the scenario of inflation coming from tunnelling between meta-

stable vacua but as we discuss here, the problem is much more general than that, affecting even the most

pedestrian of inflationary set-ups.
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However overcoming this formidable task is not the end of it. Even with a solution to

this measure problem we are still left with a considerable challenge. A solution to this issue

is likely not to give us a specific set of initial conditions for a given model but a probability

distribution for them. If all we can hope for is a statistical description of initial conditions,

then in turn we only have a statistical description of inflationary trajectories and so, rather

than calculating single values for observables, we should be calculating their distributions!

The shape of these distributions will in part be determined by the model. This last point

can, at least in some respects, be studied in its own right without a detailed knowledge

of the string landscape or the measure problem. In this paper we take inspiration from

the string landscape and study characteristics of these distributions in the context of a

potential with multiple fields, containing a large number of vacua.

An early study of the possible consequences of this landscape picture for slow-roll

inflation was carried out by Tegmark [5], who generated a large number of random one-

dimensional potentials and explored the inflationary outcomes. In Ref. [6] we extended

this to two fields to investigate the effect of entropy modes on super-horizon evolution.

As already mentioned, in Ref. [1] a similar analysis was done for a six-field brane inflation

model with random terms arising in the contribution coming from the bulk, where although

the super-horizon effects were not analysed, both reassuringly and rather excitingly, qual-

itatively similar emergent behaviour was identified to that found in Ref. [6]. In this paper

we further extend our work in Ref. [6] to a larger number of fields and a broader range of

potentials, as well as obtaining results for the non-Gaussianity fNL. The aim is to gain

insight into the origin and limits of emergent behaviour.

2.2 Architecture

2.2.1 Not the most general Fourier series

We construct our potential following an approach similar to Refs. [5, 6]. We use a random

function of the form

V (φ) = m4
v

∑
1<ki<kmax

[
ak cos

(
k.φ

mh

)
+ bk sin

(
k.φ

mh

)]
(2.3)

where φ is the vector φi with i running from 1 to d, as is the vector k andmv andmh are the

vertical and horizontal masses respectively. The summation in ki means d summations take
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Figure 2.1: Example trajectories for our potential (blue) and Fourier series (red) for two-field model with

kmax = 3.

place where in each case the summation runs from ki = 1 to ki = kmax. The amplitudes

ak ≡ ak1,...,kd are independent Gaussian random variables with zero mean and standard

deviation

σ = e−k.k/kmax d, (2.4)

Due to computational limitations we cannot make kmax sufficiently large to see the effect

of the central limit theorem come into play. So rather than having a variance of order

unity, we control the variance in the above manner. While this is a helpful thing to do

computationally, one needs to bear this in mind when considering principles of effective

field theory. We will return to this discussion shortly.

The potentials we simulate are periodic with periodicity scale 2πmh, and we can only

expect reasonable results if the field trajectory spans a distance in field space less than the

periodicity of the random function. This turns out to always be the case.

Note that summing the potential this way means we are not using the most general

Fourier series. As shown in Fig. 2.1, by restricting the summations over each ki to non-

negative values we sacrifice statistical d-spherical symmetry but in doing so we are able

to build an observationally indistinguishable potential out of a fraction of the number of

terms (see Table 2.1 for the number of terms in the series for various d and kmax values).
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Our Potential Fourier Series

Fields d 2 2 4 4 6 6 2 2 4 4 6 6

kmax 3 5 3 5 3 5 3 5 3 5 3 5

# of terms 18 50 162 1250 1458 31250 98 242 4802 29282 235298 many

Table 2.1: Summary of how the number of terms in the potential changes with the truncation kmax and number

of fields d for Fourier series potential and our reduced version.

2.2.2 Experiment-specific considerations

As discussed, any model of inflation where the potential has multiple minima predicts a

probability distribution for the cosmological parameters. We wish to compute this distri-

bution for various potentials of the above form. To do this we perform the same experiment

as that performed in Refs. [5, 6]:

1. Generate a random potential V (φ). Start at φ = (0, 0) with initial field velocity set

by the slow-roll condition.

2. If V (0, 0) < 0 then reject model, otherwise evolve to find the field trajectory.

3. If model gets stuck in eternal inflation, reject.

4. Once the model stops inflating, if the number of e-folds of inflation N < 60 we reject

as insufficient inflation occurred, otherwise calculate observables.

5. Repeat steps 1-4 many times to obtain a statistical sample.

6. (Change some assumptions and do it all again.)

Note that due to our potential being statistically invariant under translation, generating

multiple realisations of the potential and starting at the origin is equivalent to taking

a single realisation and scanning over initial conditions. If we abandoned the slow-roll

condition for the initial velocity there would be additional degrees of freedom, but we have

tested that these have no impact by carrying out runs with zero initial velocity.

In Ref. [6], taking the final minimum as the ultimate vacuum energy, to give an ap-

proximately anthropically suitable solution [7] we had an additional cut stipulating the

final vacuum energy must be positive to avoid subsequent collapse. This, in conjunction

with the rejection of eternally inflating vacua, was found to be an extremely severe cut,

in some cases reducing the proportion of otherwise viable solutions from 0.06 to more like
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Figure 2.2: Example of two-field potentials with mh = 15.8MPl and mh = 2.0MPl respectively.

2 × 10−5. In this paper we abandon this cut, to enable us to explore more featured po-

tentials which would not otherwise be computationally accessible. We found this to be

of little consequence for observables. An explanation for this is that the two models may

differ only in the nature of the post-inflationary evolution of the trajectory, which has no

effect on the evolution of observable quantities.

The other consideration regarding the experimental set-up is at what value to set the

vertical and horizontal mass scales mv and mh. The vertical mass has little dynamical

impact and only affects the amplitude of the observed power spectrum by a factor and not

other observables. For this reason, rather than fixing mv we adjust it on a case-by-case

basis such that the amplitude at horizon exit is P ∗ζ = 2× 10−5.

The horizontal mass mh is more interesting. As previously discussed, motivated by the

aim of minimising the number of terms in the potential for a given dynamical behaviour, the

random coefficients are chosen in such a way as to make the potential essentially insensitive

to truncation. This set-up means that mh is our key parameter in adjusting how featured

the potential is. As the examples in Fig. 2.2 show, adjusting the scale of features affects

the length scale ∆φ of the inflationary distance in field space. We will discuss motivation

from theory for this length scale next, but it is important we understand its implications

for predictability and thus we shall be showing results for a range of mh values.
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2.2.3 Basic considerations from effective field theory

Generally one expects that the inflationary potential can be well described by an effective

theory containing non-renormalizable contributions coming from integrating out massive

fields.3 For instance, for a single-field model one can write

V (φ) = V0 +
1

2
m2φ2 +Mφ3 +

1

4
λφ4 +

∞∑
d=5

λdM
4
Pl

(
φ

MPl

)d
, (2.5)

where the terms in the summation are non-renormalizable. One expects the masses in the

summation to be at or even well below the Planck mass as, in analogy to the argument

from W–W scattering for a Higgs around 1 TeV, there needs to be something to unitarize

graviton–graviton scattering. There is no good reason to assume the inflaton does not

couple to these extra degrees of freedom. To do so is to make a strong assumption about

quantum gravity which is hard to justify, and thus we expect λd ∼ 1. If we categorise

inflation models as large field, |∆φ| � Mpl, medium field |∆φ| ∼ Mpl and small field

|∆φ| �Mpl, then this sort of reasoning indicates small and perhaps medium field models

should be considered more realistic as terms in the summation are suppressed, while to have

a large-field model, one needs to justify additional symmetries to protect the flatness of the

potential against the otherwise increasingly large series contributions. Crudely speaking

we can think of our choice of mh as corresponding to a decision on what energy scales we

are integrating out.

Finally, we would like to consider the number of fields to be included in the model.

Historically a lot of focus has been given to single-field models simply because they are the

most basic inflationary set-up, but this is not what is best motivated from the field theory

perspective. As already mentioned, a single-field model occurs when one degree of freedom

is much lighter than all the others. This means one can integrate out the other degrees of

freedom provided they are sufficiently massive, but there is no good reason to believe this is

necessarily the case. For example, in string theory the contributing massive fields include

stabilised moduli. Work on flux compactifications is still very much in development but

typically masses correspond to around the Hubble scale. This strongly motivates models

with tens if not hundreds of active fields [10].

It therefore seems quite reasonable to model the final inflationary phase in a landscape
3Discussion along these lines can be found in Ref. [8] and of course Ref. [9] but we would particularly

like to thank Liam McAllister and Sam Rogerson for very helpful clarifications and additional comments

on this matter.
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as a truncated d-field Fourier series with random coefficients, provided we are dealing with

small- to medium-field models. However, for computational reasons we are forced to work

with something less realistic. Ideally we would work with more fields, and push to smaller

field excursions than we will be working with. For the purposes of our investigation we will

at times be working with inflationary trajectories that are not particularly well motivated

as genuine models of inflation, yet we still find them to be quite informative when it comes

to understanding inflationary dynamics.

2.3 The Transport equations

In this paper, we improve on our previous work [6] by calculating the perturbations us-

ing the Transport method of Mulryne et al. [11, 12]. This gives improved computational

efficiency for the power spectrum, while still including all isocurvature effects, and addi-

tionally allows us to compute the non-Gaussianity parameter fNL. We compared results

from this method with the geometric approach (see Ref. [13–15] for early work in this area;

see Ref. [16–18] for some more recent work) used in our previous paper [6], and they were

found to agree for all models tested, as well as giving the same distributions of observables

when tested on our landscape model.

With regard to calculating fNL, compared to other methods (for instance Ref. [19–22]),

the Transport approach has the benefit of being computationally more efficient, as well

providing a new means of understanding contributions to fNL by having explicit source

terms. Equivalent to all other methods in the literature (including cosmological perturb-

ation theory), it is simply an implementation of the separate universe assumption, but

instead of evolving many perturbed trajectories, as is done in the popular δN approach

[19–26], one evolves probability distributions.

What follows is largely a summary of the work done in Refs. [11, 12]. We focus on

explicitly showing how the Transport formalism is implemented for a general d-field model

of inflation and refer the reader to Refs. [11, 12] for the details.
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2.3.1 Moments of ζ

In calculating the statistical properties of the curvature perturbation we invoke the separate

universe assumption and consider a collection of space-time volumes whose mutual scatter

will ultimately determine the microwave background anisotropy on a given scale. Each

space-time volume follows a slightly different trajectory in field space, whose position at a

given time we label φ∗, the scatter of which is determined by the vacuum fluctuations at

horizon exit. Here and in what follows the superscript “∗" indicates that the quantity is

evaluated on a spatially-flat hypersurface. If we know the distribution P (φ∗) then, among

other things, we can study the statistical properties of the deviation of these trajectories

from their expectation value Φ, δφ∗i = φ∗i − Φ∗i , where i indexes the components of the

trajectory φ, namely the species of light scalar fields. The two-point correlations among

the δφi are expressed by the covariance matrix Σ(t), where

Σij ≡ 〈δφiδφj〉 (2.6)

and the third moment is given by

αijk ≡ 〈δφiδφjδφk〉 (2.7)

The covariance matrix, third moment and centroid Φ are all functions of time, but in our

notation we will be suppressing the explicit time dependence.

A consequence of the separate universe assumption [23–26] is that the curvature per-

turbation ζ evaluated at some time t = tc is equivalent on large scales to the perturbation

of the number of e-foldings N(tc, t∗, x) from an initial flat hypersurface at t = t∗, to a final

uniform-density hypersurface at t = tc,

ζ(tc, x) ' δN(tc, t∗, x) ≡ N(tc, t∗, x)−N(tc, t∗) (2.8)

where

N(tc, t∗) ≡
∫ c

∗
Hdt. (2.9)

Expanding δN in termschap2 of the initial field perturbations to second order, one obtains

ζ(tc, x) = δN(tc, t∗, x) = N,iδφ
∗
i +

1

2
N,ij(δφiδφj − 〈δφiδφj〉)∗, (2.10)

where repeated indices should be summed over, and N,i, N,ij represent first and second

derivatives of the number of e-folds with respect to the fields φ∗i . We remind the reader

that it is necessary to subtract the correlation function in the second term. This is because
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one can interpret the covariance matrix as the contribution from disconnected diagrams

which gives the vacuum energy. In Fourier space one only considers connected diagrams

from the outset and thus the subtraction is already implicitly taken care of.

Combining Eq. (2.6) and Eq. (2.7) with Eq. (2.10) we get expressions for the two- and

three-point functions in terms of the moments of P (φ∗). The two-point function is

〈ζζ〉 = N,iN,jΣij . (2.11)

It is useful to decompose the three-point function as

〈ζζζ〉 = 〈ζζζ〉1 + 〈ζζζ〉2, (2.12)

where

〈ζζζ〉1 = N,iN,jN,kαijk, (2.13)

and

〈ζζζ〉2 =
3

2
N,iN,jN,km [ΣikΣjm + ΣimΣjk] . (2.14)

Eq. (2.13) is the intrinsic non-linearity among the fields, while Eq. (2.14) encodes the non-

Gaussianity resulting from the gauge transformation to ζ; as one evolves from one flat

hypersurface to another, turns in the trajectory will contribute to the non-Gaussianity.

This, as well as any non-Gaussianity present at horizon exit, is what is encapsulated in

Eq. (2.13). However, this super-horizon evolution also causes the hypersurface of con-

stant density to change and so the gauge transformation from the flat hypersurface to

the coinciding surface of constant density also contributes to the non-Gaussianity and this

contribution is taken into account in Eq. (2.14).

2.3.2 Derivatives of N

From Eq. (2.13) and Eq. (2.14), it is clear that in order to calculate moments of the power

spectrum we need a method for calculating derivatives of N . In general when using the

δN technique it is difficult or impossible to find an analytic expression for the derivatives

of N . It is therefore necessary to run the background field equations many times from

perturbatively different initial conditions, stopping at some value for H which is the same

for all the runs. One then calculates the derivatives of N with respect to the initial

conditions. In using the Transport equations, however, this process is replaced by solving

a set of coupled ordinary differential equations. Instead of taking the surfaces “∗” and
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“c" to be at horizon crossing and time of evaluation4 respectively, instead the surfaces are

taken to be infinitesimally separated and the transport equations evolve the field values

at horizon crossing forward to the time of evaluation. The upshot of this is two-fold. As

we will see, the use of ordinary differential equations to evolve the moments of the field

perturbations allows us to see the source of super-horizon evolution and hence the various

contributions to fNL. The second and more immediate benefit to our current discussion is

that we can find a general expression for the derivatives of N . To leading order in slow-

roll, for a given species “i", the number of e-folds N between the flat hypersurface and a

comoving hypersurface is given by

N(tc, t∗) ≡ −
∫ φc

φ∗

V

V,i
dφi , no sum on i . (2.15)

and so if the two surfaces are infinitesimally separated, then we can write

dN =

[(
V

V,i

)∗
−
(
V

V,j

)c ∂φcj
∂φ∗i

]
dφ∗i . (2.16)

To handle ∂φcj/∂φ
∗
i the method used in Refs. [22, 27] for sum-separable potentials is also

now applicable and we introduce d− 1 integrals of the form

Ci ≡ −
∫
dφi
V,i

+

∫
dφi+1

V,i+1
, (2.17)

where in this case i = 1 . . . d− 1. these integrals enable us to write

dφci =
∂φci
∂Cj

∂Cj
∂φ∗k

dφ∗k (2.18)

which after some algebra gives the expression

∂φci
∂φ∗j

= −
(
V

V,j

)∗(V,i
V

)c( V c
,j

V c
,kV

c
,k

− δij

)
(2.19)

Hence we find

N,i =

(
V

V,i

)∗( V 2
,i

V,kV,k

)c
, no sum on i (2.20)

and

N,ij =
V,iV,j
V,kV,k

+
V V,ij
V,kV,k

−
2V V,ikV,kV,j

(V,kV,k)2
−

2V V,jkV,kV,i
(V,kV,k)2

+
2V V,iV,kV,klV,lV,j

(V,kV,k)3
, (2.21)

where in Eq. (3.72) the limit c→ ∗ has been taken.
4Time of evaluation is often taken to be the end of inflation but with regard to calculating observables,

any time after isocurvature modes have decayed away will give the same result. A problem arises when

isocurvature modes are still present at the end of inflation. In this case the power spectrum will continue

to evolve and without a model of reheating this renders the model non-predictive. We will return to this

in greater detail later on.
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2.3.3 Transporting the moments

Finally, we need a method for evolving the moments of the scalar perturbations. The

probability distribution P (φ∗) is conserved and so, as described by the standard continuity

equation, the rate of change of P is given by the divergence of the current,

∂P

∂N
+
∂(uiP )

∂φi
= 0, (2.22)

where ui ≡ φ′i is the field velocity and primes represent differentiation with respect to

the number of e-folds N . The key achievement of Ref. [11] was to develop a method for

extracting the evolution equations of the moments of P from the continuity equation. In

Ref. [12] an alternative method was introduced, generalising to any number of fields on

arbitrary slicing. We do not go into the techniques here; instead we just quote the resulting

evolution equations for the centroid, variance and skew which collectively we refer to as

the Transport equations,

Φ′i = φ′i +
1

2
ui,mnΣmn + ... , (2.23)

Σ′ij = ui,mΣmj + uj,mΣmi +
1

2
ui,mnαjmn +

1

2
uj,mnαimn + ... , (2.24)

α′ijk = ui,mαmjk + ui,mnΣjmΣkn + (cyclic i→ j → k) + · · · . (2.25)

The equation for the centroid Eq. (2.23) says that the mean field value evolves as the

velocity of the fields but can be affected by evolution of the wings of the distribution.

The evolution equations for the variance and skew, as one might guess from the continuity

equation Eq. (2.22), give evolution as the divergence of the field velocity but now also with

source terms coming from the other moments.

2.3.4 Cross-sections of the bundle

As will be discussed in more detail in due course, an important consideration in our analysis

will be whether or not evolution of observables is still taking place at the time of evaluation.

Evolution stops when the trajectory becomes effectively single field [28]. This is to say the

trajectory has reduced to a caustic [29], so for this reason we would like a description for the

evolution of the cross-section of the perturbed trajectories. Such a description has recently

been developed in Ref. [30], to which we refer the reader for more detailed discussion. For

simplicity we only describe the broad concept here and quote results that will be needed

in future discussion.
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Cross-sections within the bundle are focused, sheared and rotated by the flow. These

distortions can be characterised by the evolution of connecting vectors describing the dis-

placement between nearby trajectories in the bundle. If δxi is an infinitesimal connecting

vector, then assuming ui,j is sufficiently smooth, δxi is transported as

δx′i = δxj
∂ui
∂φj

(2.26)

It follows that changes in the cross-section of the bundle can be determined in terms of the

expansion tensor ui,j . We can decompose this in terms of a dilation θ = trui,j , a traceless

symmetric shear σij , and a traceless antisymmetric twist ωij ,

ui,j ≡
θ

d
δij + σij + ωij (2.27)

Dilation describes a rigid rescaling of δxi by 1+θ, representing a global tendency of the

trajectories to focus or defocus. The shear encapsulates the tendency for some trajectories

to flow faster than others while conserving the cross-sectional area of the bundle. The

twist represents a rotation of the bundle with preserved volume, such as the tendency of

trajectories to braid. The dilation, shear and twist act as sources for one another and so

one expects a bundle will typically exhibit all of these behaviours at some point.

We refer the reader to Ref. [30] for a more formal description of this formalism and its

applications, but for the purposes of this paper all we need is the result that the focussing

of the bundle is given by

Θ(H,H0) = exp

[
1

d

∫ H

H0

θ(h)dh

]
. (2.28)

2.4 Findings

Having set up our models and the machinery necessary to compute the observables, we now

proceed to our results. The principal variables of interest to vary are the number of fields

d and the horizontal mass scale mh. Large values of the latter correspond to relatively

smooth potentials, and small values to heavily featured potentials. We refer to individual

realizations giving sufficient inflation as ‘verses’.

We discuss our results in the following sequence:

1. Dynamical properties of trajectories.
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Figure 2.3: How the mean ∆φ and percentage increase in ∆φ due to bending of the trajectory changes with the

number of fields, for mh = 15MPl. The bars show how the standard deviation of these quantities

changes over this range.

2. Perturbation evolution along individual trajectories.

3. Distribution of observables over ensembles of trajectories.

2.4.1 Trajectory dynamics

Minimal d dependence Fig. 2.3 summarises the qualitative behaviour found during

our exploration of the properties of multi-field trajectories. We see that ∆φ, the length of

the trajectory in field space, and Bφ, the percentage increase in ∆φ due to turns in the

trajectory, defined as

Bφ ≡ 100
∆φ−

√
φend · φend − φ∗ · φ∗

∆φ
(2.29)

show only a mild sensitivity to the number of fields. In fact, for all observables and

inflationary parameters we looked at, the sensitivity to changing the number of fields was

small over the range d = 2 to d = 6 compared to the spread of results. This was true

even for the relatively predictive large-field case of mh = 15MPl. Least sensitive of all, we

found no change whatsoever in the distribution of slow-roll parameters at horizon crossing

with ε∗ = 0.002± 0.002 and η∗ = 0.0012± 0.0004.

e-fold distributions One instance where we did find sensitivity to d was in the e-fold

distributions, where we saw a decrease in the proportion of trajectories with more than 60

e-folds from 0.08 for two fields down to 0.01 for six fields. Fig. 2.3 hints at a tendency for

trajectories to become shorter and more curved as the number of fields increases. So given

that the trajectory will seek the route of steepest descent, it appears that for our model,
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increasing the number of fields increases the chance of the trajectory encountering a slope

sufficiently steep to kill inflation.

In Refs. [1, 31] slightly different parameterisations of the inflationary region of the

potential were used to show the probability of obtaining a given number of e-folds of

inflation was

P (N) ∝ 1

Nα
, (2.30)

where α = 4 and α = 3 were found respectively. Bearing Eq. (2.5) in mind, it seems

reasonable that Eq. (2.30) might apply more generally and indeed we find it to be a good

fit to our e-fold distributions, with α increasing as the potential becomes more featured from

α = 2 through to α = 5 over the range of mh we investigated. To illustrate the implication

of this, consider the popular idea that inflation was preceded by a tunnelling event. Using

the (perhaps somewhat arbitrary) values of Ref. [31], we place an anthropic lower bound

on the number of e-folds at 59.5 coming from structure formation and an observational

lower bound at N = 62 on the curvature from tunnelling. Then for α = 2, the probability

of the model achieving sufficient inflation to be in agreement with observation is roughly

92%, while for α = 5 it is more like 81%. However, remember we are working in the range

of ∆φ which is not best motivated theoretically. While not accessible with the techniques

used here, our results lead us to expect that for small-field models, α should be larger. This

has the potential to cause tension with observation, as by α = 18 the chance of finding

ourselves in the observed universe falls to 49%, i.e a typical observer would expect to see

evidence of curvature.

2.4.2 Perturbation evolution: Pζζ , fNL and the adiabatic limit

Having seen that our model is insensitive to the number of light fields, for simplicity we

only give results for two-field potentials in the remaining sections of this paper, focussing

mainly on the dependence on the feature scale of the potential. But we would like to

emphasise that the results hold more generally.

Pζζ and Θ

The key difference between single-field and multi-field inflation is that the latter admits

evolution of the power spectrum on super-horizon scales. This means that in order to make

a prediction from multi-field inflation one needs to know the full evolutionary history up
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Figure 2.4: Example plots showing the super-horizon evolution of the power spectrum for modes exiting 55 e-

folds before the end of inflation. mh = 3MPl corresponds to a highly-featured potential, and in all

such cases evolution stops long before the end of inflation. mh = 15MPl is a comparatively smooth

landscape, and then a significant proportion of verses are still evolving at the end of inflation. In

almost all cases evolution is monotonic but not always.

until the model becomes effectively single field, i.e. the adiabatic limit is reached [28,

29]. Once this happens the power spectrum stops evolving and one can evaluate observable

quantities at a subsequent time of one’s pleasing. The problem is that there is no guarantee

that such an adiabatic limit will be reached before the end of inflation, and if this is not

the case making a prediction requires knowledge of reheating and so forth.

As can be seen in Figs. 2.4, 2.5 and 2.6, the ability to reach the adiabatic limit, where

the perturbation on a given scale becomes constant, is strongly dependent on how featured

the landscape is. For the more featured landscapes such as mh = 3MPl, we found the

adiabatic limit was reached in all cases (even the trajectories disappearing off the top of

the plots), while for the smoother landscapes likemh = 15MPl the proportion of trajectories

achieving this clearly drops significantly.

There is a very intuitive reason for why this should be the case. Rewriting Eq. (4.42)

in terms of e-folds N we find

Θ(N,N∗) = exp

[
−1

d

∫ N

N∗

(3ε− 2η̄ + trMij)dN

]
(2.31)

where Mij is the Hessian of lnV and η̄ is the generalised slow-roll parameter

η̄ ≡ V,iV,jV,ij
V V,kV,k

(2.32)
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Figure 2.5: Example plots showing the super-horizon evolution of fNL for modes exiting 55 e-folds before the

end of inflation. Again we see that for the more featured landscape evolution stops early on, while

for the smoother example, evolution often continues to the end of inflation.

Figure 2.6: Θ at the end of inflation for mh = 3MPl (blue), mh = 9MPl (yellow) and mh = 15MPl (red). All

trajectories essentially reach a caustic in the most featured example, less for mh = 9MPl and least

for the smoothest landscape mh = 15MPl.

We therefore see that in a valley, strong focussing will occur, while on a ridge or a hilltop the

bundle will dilate. With this picture it is quite easy to see why we should expect evolution

as seen in Fig. 2.4. The treacherous landscape of mh = 3MPl typically gives exactly the

conditions required for a very strong focusing, while in contrast the comparatively mild,

undulating meadows of mh = 15MPl give very little incentive for trajectories to focus to a

caustic.

fNL is always small

Much of this kind of discussion carries over to understanding the results of Fig. 2.5. First

and foremost it should be noted there was not a single example of a trajectory that gave

sufficient non-Gaussianity to be detected by any future planned experiment. Methods

to get around this disappointingly generic feature of multi-field inflation were recently
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addressed in Ref. [29] and the special case of sum-separable potentials was also discussed

in Refs. [18, 32]. In the case of sum-separable hilltop potentials which reach an adiabatic

limit during inflation, what is known as the horizon-crossing approximation [33] gives a

good estimate of the final value for fNL.

fNL ≈ −
5

6

V ′′φ
Vφ

∣∣∣∣∣
∗

, (2.33)

where in this instance φ represents one or at most a few fields where Ni is large. From

this we see that provided there are enough fields to keep η small, with the right initial

conditions, a ridge can give rise to a large fNL.

What we find in our analysis is that the problem of obtaining a large fNL is made

particularly acute by the need to obtain sufficient inflation. When we have a very smooth

landscape, sufficient inflation is easily achieved but the lack of features means there is

nothing to give rise to a large fNL. On the other hand, when the potential is very featured,

it is difficult to start close enough to a ridge to get a large fNL without falling off it, thereby

killing inflation. In some models, such as axion N-flation [34], a sufficiently large number

of fields can make it possible to overcome this problem [35, 36], as the large damping term

makes it easier to be close to a ridge without falling off too soon. For our model, while

we do not have the computational power to explore this possibility, with enough fields we

would expect to see some examples with a large fNL, but they would constitute only a very

small proportion. This is because if many fields have a large N,i, their contributions to

fNL will, through a manifestation of the central limit theorem, cause fNL to be vanishing

in the limit of many contributing fields. Thus on average we would always expect fNL to

be small.

Trends in fNL evolution

While we found no examples of large fNL we did find a very diverse range of behaviour.

This diversity is indicative of why detection would be such a powerful constraint on models.

That said we did find some common trends. Fig. 2.7 shows two examples of evolution of

fNL together with the corresponding evolution in the width of the bundle. We chose these

two examples, Verse 113147 and Verse 253911, in particular as each shows characteristics

that were common to most trajectories, but also demonstrate that counter examples were

found.
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Figure 2.7: Plots of Verse 113147 (left) and Verse 253911 (right) showing very distinctive fNL evolution. In the

plots on the top row, fNL is blue, the intrinsic component, fNL1, is red and the gauge contribution,

fNL2, is yellow. The bottom row gives the corresponding evolution in the bundle width.

The gauge contribution determines the peak Analogous to Eq. (2.13) and Eq. (2.14)

we can define non-Gaussianity parameters

fNL1 ≡
5

18

〈ζζζ〉1
〈ζζ〉2

, fNL1 ≡
5

18

〈ζζζ〉2
〈ζζ〉2

(2.34)

such that fNL = fNL1 + fNL2 and fNL1 is the intrinsic contribution and fNL2 the gauge

contribution to fNL. As is particularly well demonstrated by Verse 113147, in all examples

we found fNL2 determined any peaks in fNL. Typically it was the case that the intrinsic

non-Gaussianity played a highly subdominant role in the feature, but we did find the

exception that is Verse 253911 which clearly received an important contribution from the

intrinsic part. In Ref. [11] it was noted that for the double quadratic potential and quadratic

exponential potential this behaviour was present. Here we show this characteristic applies

much more generally.

fNL grows when the bundle dilates Features in fNL occur whenever Θ grows. This

seems very reasonable since at this point the perturbed trajectories will be exploring dif-

ferent parts of the potential. Typically the peak in fNL occurred very close to the time

of the peak in Θ but again, Verse 253911 shows this need not be the case precisely. We

see features in fNL2 are intimately related to features in θ. We attribute this to common

terms involving V,ij .
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Asymptotic behaviour of fNL is not straightforward A result that continues to

elude us is a simple way of understanding what the final value of fNL in the adiabatic limit

will be. For sum-separable hilltop potentials, the horizon-crossing approximation works

well, but for more general potentials there is no equivalent. As the examples in Fig. 2.7

show, the asymptotic value can be reached in dramatically different manners. Worse still is

the fact that in the adiabatic limit the intrinsic and gauge transformations need not settle

to constant values. This indicates that a different set of parameters should be considered

if we are to make progress with this question.

2.4.3 Interlude: The Lyth bound

Before moving on to discuss distributions of observables, we would like to take a brief

moment to discuss the relation between field trajectories and the tensor-to-scalar ratio, as

it will be helpful to bear in mind in the subsequent discussion.

Taking NCMB to be the number of e-folds between when fluctuations on CMB scales

left the horizon and the end of inflation, we can obtain a d-field version of the Lyth bound

by writing

NCMB =

∫ φend

φCMB

1√
2ε
dφ‖, (2.35)

where we are integrating along the field trajectory. If we assume ε is either constant or

increasing over this period, then we have

2ε <
∆φ

NCMB
. (2.36)

For single field inflation r = 16ε but when there are more fields the curvature perturbation

evolves on super-horizon scales, suppressing r and so r < 16ε [6]. We therefore see that the

Lyth bound remains essentially the same for multi-field models as in the single-field case

r < 16ε < 0.03

(
55

NCMB

)2( ∆φ

MPl

)2

(2.37)

Planck hopes to measure the tensor-to-scalar ratio with an accuracy of a few hun-

dredths, hence has discovery potential if it is of order 0.1 or so. Comparing the Lyth

bound with the discussion in section 2.2.3 we therefore see that a detection would exclude

practically all small- and medium-field models if only one field is admitted.5 However as
5In principle one can evade this bound even in the single-field case by breaking the assumption that ε

is monotonically increasing, though in practice this is rather difficult to achieve [37].
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Figure 2.8: n–r plots for a range of mh, beginning with the more featured potentials. The curve shows the

WMAP7+all 95% confidence limit [38].

previously discussed, multi-field models are strongly motivated by fundamental theory. If

we consider the extreme case of sum-separable potentials then the discussion of Section

2.2.3 requires each ∆φi � MPl but there is no restriction on the number of fields con-

tributing during inflation; this was for instance the motivation of the N-flation proposal

[34]. Therefore, if we are to stay in the field theory favoured regime of small-field models,

a detection of r would place a lower bound on the number of fields! Rewriting Eq. (2.37)

in a more suggestive form we have

r < 0.03d

(
55

NCMB

)2 ∆φi∆φi
M2

Pl

. (2.38)
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mh(MPl) ∆φ Bφ(%) n r, 95% conf. fNL

3 4.3± 1.7 17± 18 1.03± 0.15 0.036, r < 0.1981 −0.008± 0.078

6 7.6± 1.8 16± 18 0.93± 0.07 0.036, r < 0.172 0.029± 0.034

9 8.4± 1.8 10± 13 0.93± 0.03 0.023, r < 0.081 0.028± 0.022

12 8.6± 1.4 5± 7 0.94± 0.02 0.024, r < 0.066 0.022± 0.010

15 9.0± 1.3 4± 7 0.95± 0.01 0.032, r < 0.074 0.018± 0.007

18 9.2± 1.2 4± 9 0.96± 0.02 0.039, r < 0.079 0.016± 0.009

Table 2.2: Table of the mean distance in field space travelled in the last 55 e-fold of inflation for a given mh,

Bφ, the mean percentage increase coming from bends in the trajectory, and corresponding results for

observables.

2.4.4 Distribution of observables: n and r

Fig. 2.8 shows our findings for n and r at the end of inflation, also summarised in Table

2.2. As the landscape becomes more featured the viable trajectories become shorter and

increasingly bendy. The Lyth bound tells us the distance travelled in field space places

an upper bound on the tensor-to-scalar ratio. Furthermore, bends in the trajectory cause

super-horizon evolution of the curvature power spectrum, while the tensor power spectrum

is conserved, and so as Fig. 2.8 shows, we see an increasingly strong suppression in r as we

move to lower mh.

As summarised in Fig. 2.6, a less featured potential reduces the chance of trajectories

reaching their adiabatic limit. It is noteworthy that, despite this, the plots of the n–r plane

for mh = 15MPl and mh = 18MPl show remarkable consistency for n and r at the end of

inflation. This might lead one to think that the super-horizon evolution is having negligible

effect, but if we take the example of mh = 15MPl, as Table 2.2 shows, the mean increase in

the field trajectory from turning is only 4%, yet if we assumed a single-field approximation

was valid we would obtain n = 0.98± 0.01 which is significantly different from the actual

result of 0.95± 0.01. If nothing else, these results show one should be exceedingly careful

when making single-field approximations. Fig. 2.9 compares distributions for the spectral

index with those obtained using a single-field approximation.

The central concern regarding the possible existence of a landscape is whether or not

such a model can be tested. As we have mentioned, a key challenge is the measure prob-

lem, another being our very limited understanding of fundamental theory. Once these

problems are better understood though, we will still be left with distributions for observ-
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Figure 2.9: Example plots comparing spectral index as obtained using single-field approximation (red) and as

calculated taking evolution up to the end of inflation into account (blue).

able quantities. No matter how well developed our understanding, it seems reasonable to

assume that at some level our ability to make predictions will be fundamentally limited

by the details of the theory. Our toy landscape illustrates this in a very explicit way. In a

sense mh gives a way of quantifying the complexity of each landscape. For our model, we

see the spread of results for the spectral index dramatically increases as we move to more

featured landscapes, while for the tensor-to-scalar ratio the spreading is considerably less

dramatic due to a suppression coming from the inevitable decrease in the length of the

field trajectory ∆φ. As we have seen fNL by contrast remains consistently small.

2.5 Conclusions

We explored inflationary dynamics in randomly-generated potentials as well as the con-

sequences for super-horizon evolution of perturbations. We found this exploration to be

interesting primarily on two fronts.

First, by exploring a very large number of inflationary trajectories, we encountered

a wide range of super-horizon evolution behaviour for Pζζ and fNL. The benefit of this

was that it became easy to see what characteristics are generic and which are not. We

found that peaks in fNL tend to be determined by the gauge contribution but behaviour

was rather more broad in the adiabatic limit, showing few trends. Understanding of non-

Gaussianity is still in rapid development and so exploration of this kind can be very helpful

in gaining insight in how to progress towards something more concrete such as Ref. [30].

We also found that keeping track of the easy-to-compute bundle width was extremely

informative. By following how Θ changes along the trajectory, we were generally able
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to understand what qualities of the potential gave rise to super-horizon evolution. In

particular, we found that peaks in fNL occur during regions of the potential that give

rise to a dilation of the bundle. However, a more quantitative description awaits future

development. We emphasise that in order to make predictions in any multi-field model,

one needs to perform an equivalent analysis to ensure no evolution is taking place at the

time of evaluation. We found that as the mean length of the field trajectory in field space

increased, the chances of reaching an adiabatic limit drastically decreased, rendering the

larger field models essentially non-predictive without a model of reheating.

Second, we looked at how varying the scale of features and the number of light fields

affected the ensembles produced for a given parameter. We found that landscapes where

the mean length of the field trajectory was large typically gave results consistent with

current observational data (despite not necessarily reaching their adiabatic limit). However

for more featured landscapes where the mean field trajectory was smaller, the spread in

the spectral index increased significantly. The spread in the tensor-to-scalar ratio did

not increase so dramatically. This can be understood in terms of the Lyth bound which

places an upper bound on the tensor-to-scalar ratio according to the length of the field

trajectory. We found varying the number of fields between 2 and 6 to have negligible

effect on the distributions for observables. Amongst all trajectories we found no examples

of detectably large non-Gaussianity. In absence of motivation for why we would be an

atypical observer, this result is sufficiently strong to conclude that an observation of local-

type non-Gaussianity by Planck would rule out models of this kind.
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Paper 3

Inflationary perturbation theory is geometrical optics

in phase space

David Seery, David J. Mulryne, Jonathan Frazer, and Raquel H. Ribeiro

A pressing problem in comparing inflationary models with observation is the accurate

calculation of correlation functions. One approach is to evolve them using ordinary

differential equations (“transport equations”), analogous to the Schwinger–Dyson hier-

archy of in–out quantum field theory. We extend this approach to the complete set

of momentum space correlation functions. A formal solution can be obtained using

raytracing techniques adapted from geometrical optics. We reformulate inflationary

perturbation theory in this language, and show that raytracing reproduces the familiar

“δN ” Taylor expansion. Our method produces ordinary differential equations which

allow the Taylor coefficients to be computed efficiently. We use raytracing methods

to express the gauge transformation between field fluctuations and the curvature per-

turbation, ζ, in geometrical terms. Using these results we give a compact expression

for the nonlinear gauge-transform part of fNL in terms of the principal curvatures of

uniform energy-density hypersurfaces in field space.

3.1 Introduction

Our current theories of the early universe are stochastic. They do not predict a definite

state today: rather, their predictions are statistical. To compare these predictions with

observation it must usually be supposed that we are in some sense typical. This brings

two challenges. First, what is typical under some circumstances may be atypical under
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others. Therefore we must be precise about the type of observer of which we are a typical

representative. This leads to the “measure problem,” about which we have nothing new

to say. In this paper we are concerned with the second challenge: after fixing a class of

observers, to estimate the observables typically measured by its members.

Inflation is the most common early-universe paradigm for which we would like to com-

pute observables. In this context we usually take ourselves to be ordinary observers of the

fluctuations produced on approach to a fixed vacuum. The challenge is to calculate the

typical stochastic properties of these fluctuations.

The most important fluctuation generated by inflation is the primordial density per-

turbation, ζ. Correlations in the temperature and polarization anisotropies of the mi-

crowave background are inherited from ζ and provide a clean probe of its statistical char-

acter. Therefore, both present-day constraints [1] and the imminent arrival of high quality

microwave-background data [2, 3] make accurate estimates of its statistical properties a

pressing issue. Meanwhile, large surveys of the cosmological density field will provide

information about its properties on complementary, smaller scales [4]. To compare this

abundance of data to models we require an efficient tool with which to estimate the n-

point functions 〈ζn〉.

Taking ζ to be synthesized from the fluctuation of one or more light scalar fields during

an inflationary era, several computational schemes exist which enable the n-point functions

to be studied. Many of these schemes employ some variant of the separate universe picture

[5–10]. Taking H to be the Hubble parameter, this asserts that—when smoothed on some

physical scale, L, much larger than the horizon scale, so that L/H−1 � 1—the average

evolution of each L-sized patch can be computed using the background equations of motion

and initial conditions taken from smoothed quantities local to the patch. Working from a

Taylor expansion in the initial conditions for each patch, Lyth & Rodríguez showed how this

assumption could be turned into a practical algorithm for calculating correlation functions

[11]. This “δN method” has become the most popular way to explore the predictions of

specific models, both analytically and numerically, and has developed a large literature

of its own. The principal difficulty arises when calculating the coefficients of the Taylor

expansion, sometimes called the “δN coefficients.” We shall discuss this difficulty in §3.4.2.

Alternative approaches exist. Rigopoulos, Shellard & van Tent [12, 13] evolved each

correlation function using a Langevin equation. Yokoyama, Suyama & Tanaka [14–16]

decomposed each δN coefficient into components which could be computed using ordinary

differential equations. Later, a systematic method to obtain ‘transport’ equations for the
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entire hierarchy of correlation functions (rather than simply the δN coefficients) was intro-

duced [17, 18]. A more longstanding approach uses the methods of traditional cosmological

perturbation theory (“CPT”) to produce “transfer matrices” [19]. This has recently been

revived by a number of authors [20–26]. Numerical approaches have been employed by

Lehners & Renaux-Petel [27], Ringeval [28, 29], and Huston & Malik [30, 31].

The relationship of these different methods to each other has not always been clear.

Nor is it always obvious how to relate the approximations employed by each technique. In

this paper we study the connections between many of these approaches using the formalism

of Elliston et al. [32]. This is a statistical interpretation of the separate universe picture.

In what follows we briefly summarize the construction. (See also Ref. [17, 18].)

The separate universe approximation as statistical mechanics.—Fix a large space-

time box of comoving side µ containing the region of interest. The scale µ should be much

larger than the separate universe scale, requiring µ � L, but not superexponentially lar-

ger [33–35]. After smoothing on the scale L, the fields within the large box pick out an

ensemble or cloud of N ∼ (µ/L)3 points in the classical phase space. The condition that

µ/L is not superexponentially large means that the typical diameter of the cloud will be

roughly of order the quantum scatter 〈δφ2〉1/2 ∼ H. Because N is still large, N � 1, it is

convenient to describe the ensemble by an occupation probability ρ on phase space.1 The

correlation functions of ζ on the scale L are then determined by the classical statistical

mechanics of this ensemble, which is encoded in the Boltzmann equation.

In familiar applications of statistical mechanics, the evolution of the ensemble may

be complicated. Small-scale interactions scatter members of the cloud between orbits on

phase space, represented by the collisional term in the Boltzmann equation. However,

the separate universe assumption requires causality to suppress those interactions which

would be required for scattering between orbits. Therefore the evolution is trivial. Each

point in phase space is assigned an occupation probability by the initial conditions, which

is conserved along its orbit. All that is required is a mapping of initial conditions to

the final state, which is obtained by carrying the initial conditions along the phase space

flow generated by the underlying theory. It follows that the Boltzmann equation can be
1To be certain that we are estimating only the observables measured by a typical observer living within

a single terminal vacuum, we should demand that ρ has support only on points whose orbits eventually

converge in some neighbourhood of that vacuum. This requires that all horizon volumes reheat almost

surely in the same minimum. If some horizon volumes reheat in different minima then the resulting

correlation functions are not measurable by a local observer who sees only a single vacuum.
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Figure 3.1: Jacobi fields. Characteristic curves are labelled by arrows, and the red characteristic is the fiducial

curve. A conserved probability density is dragged along the flow. At any point, the Jacobi fields

span the space infinitesimal displacements to neighbouring characteristics.

integrated using the method of characteristics.

A similar conclusion applies to the correlation functions of interest, 〈ζn〉. These probe

information about the distribution function over the cloud, giving a weighted average over

many characteristics. Alternatively, if the cloud has only a small phase-space diameter,

we can exchange information about the entire set of characteristics for the details of a

single fiducial characteristic and a description of how nearby characteristics separate from

it. In differential geometry this description is provided by the apparatus of Jacobi fields;

see Fig. 3.1. We shall see that the differing implementations of the separate universe

approximation can be understood as alternative methods to compute these Jacobi fields.

In applications we are frequently interested in correlation functions associated with

mixed scales, rather than a single scale L. To do so we construct multiple ensembles

associated with different smoothing scales. The separate universe approximation couples

the evolution of all these ensembles in a specific way, which we describe in §4.4.

Outline.—In this paper we develop and refine the statistical-mechanical interpretation of

the separate universe picture summarized above. Because the final distribution of occu-

pation probabilities is an image generated by dragging along the phase space flow, it can

be calculated in precisely the same way that geometrical optics enables us to calculate the

image generated by a source of light rays. In §3.2 we show that, at least within the slow-roll

approximation, this parallel is exact; the scalar field equation can be interpreted as the

eikonal equation for a light ray in a medium with varying refractive index—or equivalently

as Huygens’ equation for a wavefront.

In §§3.2.3–3.2.4 we introduce the idea of Jacobi fields and explore their connection with

the “adiabatic limit,” in which all isocurvature modes decay and the curvature perturbation

becomes conserved. Such limits are important because an inflationary model is predictive

on its own only if the flow enters such a region [32, 36–39]. Jacobi fields are familiar from
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the description of congruences of light rays in general relativity [40, 41]. In this case, as

shown in Fig. 3.1, they describe fluctuations between the L-sized patches which make up

the ensemble. Their evolution enables the adiabatic and isocurvature modes to be tracked.

In particular, decay of isocurvature modes means decay of the corresponding Jacobi fields,

which occurs when the bundle of trajectories undergoes focusing.

In §4.4 we use these ideas to develop evolution (“transport”) equations for each correla-

tion function, and in §3.4 we show that the Jacobi fields can be used to formally integrate

the system of transport equations. This gives a practical method to identify regions where

the flow becomes adiabatic. The analysis can begin from either the separate universe

principle or traditional cosmological perturbation theory. As a by-product, our formal

solution demonstrates that the transport equations are equivalent to the Taylor expansion

algorithm introduced by Lyth & Rodríguez.

In §3.4.2 we use this solution to derive a closed set of differential equations for the Taylor

coefficients, and in §3.4.3 we explain how the transport equations can be manipulated to

obtain evolution equations for the coefficients of each momentum “shape”. These shapes

will be an important diagnostic tool when comparing inflationary models to observation [42,

43]. Together with the transport hierarchy of §4.4, the equations of §§3.4.2–3.4.3 represent

the principal results of this paper. Either set can be used to obtain the correlation functions

of a given theory, and we discuss their comparative advantages.

In §3.4.4 we give more a more general discussion of the relationship between the trans-

port equations and other formulations of perturbation theory.

In §4.4.3 we specialize to the slow-roll approximation and use ray-tracing methods to

derive the gauge transformation between field fluctuations and the curvature perturbation,

ζ. As a result, we obtain the gauge transformation in terms of geometrical quantities—

in particular, the extrinsic curvature of constant density hypersurfaces. We separate the

gauge contribution to fNL into a number of effects, corresponding to these geometrical

quantities. For some models, we show that the largest of these can be attributed to a

strong relative enhancement of the power in isocurvature fluctuations. We briefly discuss

what conclusions can be drawn regarding the asymptotic magnitude of |fNL|.

Finally, we provide a brief summary of our results in §5.5.

Notation and conventions.—We use units in which c = ~ = 1, and work in terms of

the reduced Planck mass, M−2
P = 8πG. We use a number of index conventions which are

introduced in the text. See especially the paragraph Index convention on p. 94, and the
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discussion of primed indices below Eq. (3.32) on p. 105.

3.2 Geometrical optics in phase space

Throughout this paper, our discussion will apply to an inflationary phase which can be

described by a collection of canonical scalar fields φα coupled to Einstein gravity. We

initially use Greek labels α, β, . . . , to label the different species of fields. The action for

this system is

S =
1

2

∫
d4x
√
−g
(
M2

PR− ∂aφα∂aφα − 2V
)
, (3.1)

where V = V (φα) is an interaction potential depending only on the scalar fields, and

indices a, b, . . . , run over space time dimensions. We take the background geometry to be

flat Friedmann–Robertson–Walker with scale factor a(t).

3.2.1 Slow-roll approximation: rays on field space

In this subsection we impose the slow-roll approximation. This requires ε = −Ḣ/H2 � 1

where H = ȧ/a is the Hubble parameter. We introduce an ε-parameter for each species of

light field,

εα ≡
1

2M2
P

φ̇2
α

H2
, (3.2)

in terms of which one can write ε =
∑

α εα. The slow-roll approximation therefore entails

εα � 1.

Huygens’ equation.—Combining (3.2) and the field equation for φα, and making use of

the slow-roll approximation, we find

dφα
dN

= ±MP

√
2εα = −M2

P∂α lnV, (3.3)

where dN ≡ d ln a measures the number of e-foldings of expansion experienced along the

trajectory, and ∂α denotes a partial derivative with respect to φα. Eq. (3.3) constrains the

canonical momenta ∼ φ̇α to lie on a submanifold of the classical phase space coordinatized

by the fields φα. This simplification is a consequence of the slow-roll approximation. In a

theory with M scalar fields, it implies that we may work with the simpler M -dimensional

field space instead of the full 2M -dimensional phase space. This is convenient, although

when we later abandon the slow-roll approximation we will have to return to phase space.
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In what follows we often rewrite (3.3) in the form

dφα
dN

= uα, where uα ≡ −M2
P∂αf and f ≡ ln

V

V∗
, (3.4)

and interpret the solution φα(N) as an integral curve of the vector field uα, parametrized

by N . The scale V∗ is arbitrary. Since f is a gradient, these integral curves correspond to

pure potential flow.2

The unit vector parallel to uα is

n̂α ≡
uα
MPν

, (3.5)

where we have defined

ν ≡
√

2ε. (3.6)

It follows that the arc length along an integral curve, labelled s and measured using a flat

Euclidean metric on field space, satisfies ds = MPν dN . Reparametrizing each curve in

terms of s, the flow equation (3.4) can be rewritten

ν
dφα
ds

= −MP∂α lnV = ∂αS, (3.7)

where S ≡ −MPf is Hamilton’s characteristic function. Eq. (3.7) is Huygens’ equation.

Under the assumptions of geometrical optics, it describes the propagation of a light ray in

a medium of spatially varying refractive index ν.

Snell’s law.—We conclude that the inflationary trajectories in field space are precisely

the light rays of geometrical optics, for which Huygens’ equation can be thought of as a

generalization of the Ibn Sahl or Snell–Descartes law. The wavefronts correspond to level

sets of the characteristic function S and are therefore equipotentials, or surfaces of constant

energy density in field space. Each light ray is locally orthogonal to these surfaces, so the

vector n̂α is locally the unit vector normal to a surface of constant energy density.

When slow-roll is a good approximation ν is small, ν � 1, and increases to ν ∼ O(1)

near the end of inflation.

3.2.2 Rays on phase space

In some circumstances the slow-roll approximation is not available. This may be the case

during inflation if slow-roll is temporarily violated—perhaps during a turn in field space,

to be studied in §3.5.2—or on approach to the end of inflation, where ε ∼ 1.
2Since df/dN = uα∂αf = −‖uα‖2/M2

P, it follows that f is monotone decreasing along each integral

curve. Therefore one may loosely think of f as a Lyapunov function (or Morse function) for the flow.
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In such cases we must return to the full second-order field equation, which cannot be

written in the form of Eq. (3.3). To obtain an analogue of geometrical optics one must

pass to a Hamiltonian formalism. We define

pα =
dφα
dN

. (3.8)

This plays the role of Huygens’ equation for φα. In terms of pα, the scalar field equation

becomes
dpα
dN

= [ε(p)− 3]pα −
Vα(φ)

H(φ, p)2
. (3.9)

We must also rewrite ε and H in terms of pα, obtaining

ε(p) ≡ − Ḣ

H2
=
pαpα
2M2

P

(3.10a)

H(φ, p)2M2
P =

V (φ)

3− ε(p)
. (3.10b)

Note that ε is purely a function of pα, whereas H is a function of both φα and pα.

Eqs. (3.8)–(3.9) show that, beyond slow-roll, the precise analogy with Huygens’ equa-

tion is lost. Although these equations define a congruence of rays in phase space, it is not

possible to find a characteristic function S so that these rays are everywhere orthogonal

to equipotentials of S. Such a function would have to satisfy ∂φαS = pα, and therefore

S = pαφα + g(p) for arbitrary g. Unfortunately, there is no choice for g which reproduces

the right-hand side of Eq. (3.9).

The majority of our analysis requires only the first-order evolution equations (3.8)–

(3.9), and at this level the formalism we develop will apply to evolution in phase space

without imposing slow-roll. For that purpose it is convenient to combine φα and pα into a

single phase-space coordinate. We continue to write this φα, with the understanding that

α now ranges over the 2M dimensions of phase space. The velocity vector is likewise uα.

3.2.3 Jacobi fields and beam cross-sections

To proceed, we must carry the initial distribution of occupation probabilities along the

flow, forming the “image” distribution of interest. In optical language, our task is to

understand how images generated from a source of light rays are distorted by passage

through a medium.

It was explained above that the typical spacing between arbitrarily selected members

of the ensemble should be roughly of order the quantum scatter, σ ∼ 〈δφ2〉1/2. Because
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σ/MP ∼ 10−5 � 1, this is small in comparison with the natural scale MP. Therefore the

orbits traversed by the cloud trace out a narrowly-collimated spray or “bundle” of light rays

in phase space. In canonical models of inflation, setting initial conditions near horizon-

crossing will make the initial profile close to Gaussian [44]. Therefore the evolution of the

ensemble is similar to the evolution of tightly-focused Gaussian laser beam propagating in

an optical cavity.

Connecting vectors.—Cross-sections within the laser beam may be focused, sheared or

rotated by refraction. These possibilities are familiar from the study of weak gravitational

lensing.

To obtain a quantitative description we slice the laser beam open, generating a cross-

section. The precise slicing is arbitrary. For applications to inflation we will often slice

along surfaces of fixed energy density, or after a fixed number of e-folds. Distortions of the

cross section can be studied if we know how an arbitrary basis is transported from slice to

slice. In general relativity this would be Fermi-Walker transport [40].

Jacobi used this method to study geodesic deviation on Riemannian manifolds. For this

reason an infinitesimal vector propagated along the beam is called a Jacobi field. Taking

δφα to be such a field and the flow vector uα to be sufficiently smooth, it will be transported

by the equation
dδφα
dN

= δφβ∂βuα = uαβδφβ. (3.11)

The quantity uαβ ≡ ∂βuα is the expansion tensor. It can be expanded in terms of a dilation

θ = truαβ , a traceless symmetric shear σαβ and an antisymmetric twist ωαβ ,

uαβ ≡
θ

d
δαβ + σαβ + ωαβ, (3.12)

where d = M for flows on field space, or d = 2M if we do not impose the slow-roll

approximation and work on the full phase space. In either case δαβ is the Kronecker δ.

Optical scalars.—Dilation describes rigid, isotropic rescaling of δφα by 1+θ. It represents

a global tendency of the light rays to focus or defocus. The shear σαβ is a symmetric square

matrix and can therefore be diagonalized, yielding d eigenvalues ξi and corresponding

eigenvectors sα,i representing the principal shear directions (here i is a label taking values

1, . . . , d; see §3.5.2). The shear describes a rescaling of the component of the connecting

vector in the direction sα,i by a factor 1 + ξi. Tracelessness of σαβ implies
∑

i ξi = 0, so

expansion in one direction must be accompanied by contraction in another. Therefore shear

preserves cross-sectional area. Finally, the twist ωαβ describes a rigid volume-preserving
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rotation of δφα, representing a tendency of neighbouring trajectories to rotate around each

other.

It is useful to define σ2 to satisfy

σ2 ≡ 1

2
σαβσαβ. (3.13)

Imposing the slow-roll approximation and working on field space, the flow is orthogonal

to equipotentials of Hamilton’s characteristic function. Therefore it is a pure potential

flow, for which ωαβ = 0. On the full phase space this property is lost and the twist can

be non-zero. In such cases it is helpful to define 2ω2 = ωαβωαβ . Together, θ, σ2 and ω2

comprise the optical scalars introduced by Sachs and Penrose [45, 46].

van Vleck matrix.—Eq. (3.11) has a well-known formal solution in terms of an ordered

exponential [47]. This method was used Rigopoulos, Shellard & van Tent [48, 49], and later

by Yokoyama et al. [14]. It yields an explicit (but formal) expression for transport of any

Jacobi field along the beam,

δφα(N) = Γαβ(N,N0)δφβ(N0), (3.14)

where δφβ(N0) is the Jacobi field on some initial slice N = N0. Eq. (3.14) describes the

evolution of this Jacobi field at any later time N . The matrix Γαβ(N,N0) satisfies

Γαβ(N,N0) ≡ P exp

∫ N

N0

uαβ(N ′) dN ′, (3.15)

where the path-ordering operator P rewrites its argument with early times on the right-

hand side, and later times on the left. We will occasionally refer to Γαβ as the propagator

matrix. It is closely related to a Wilson line.

Index convention.—Eq. (3.15) can be simplified with the aid of an index convention. Up

to this point we have been labelling field-space indices using Greek symbols α, β, etc. To

avoid writing the time of evaluation explicitly, we adopt the convention that Greek indices

denote evaluation at the late time of interest, N . Latin indices i, j, etc., denote evaluation

at the early time N0. Therefore Γ can be written as a mixed index object, Γαi.

Eq. (3.14) immediately implies

Γαi =
∂φα
∂φi

, (3.16)

and endows this derivative with a geometric interpretation. It plays an important role in

the Lyth–Rodríguez implementation of the separate universe approximation [11], where it

appears due to a Taylor expansion in the initial conditions local to each L-sized patch. In
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this formulation, one often projects on to equipotential surfaces in field space. We define

hαβ = ∂φcα/∂φβ to obtain
∂φcα
∂φi

= hαβΓβi. (3.17)

The notation ‘c’ indicates that dφcα can be thought of as the variation of a field φcα defined on

a fixed comoving spacetime hypersurface [50–52]. It follows from geometrical aguments that

hαβ = δαβ − n̂αn̂β , where n̂α is the unit normal to phase-space slices of constant potential

energy, defined in (3.5). The tensor hαβ is the induced metric (or “first fundamental form”)

on these surfaces. Eq. (3.17) shows that choice of gauge is associated with projection onto

an appropriate hypersurface in phase space. Moreover, Eqs. (3.16)–(3.17) show that partial

derivatives with respect to φi are associated with propagation of Jacobi fields along the

bundle.

Caustics.—The matrix Γαi appears whenever it is necessary to track the distortion of a

line element along a flow, and has applications in fluid dynamics, general relativity and

elsewhere [40, 53]. DeWitt–Morette observed that, considered as a matrix of Jacobi fields,

Eq. (3.16) was related to the inverse of the van Vleck matrix, introduced in the construction

of semiclassical (“WKB”) approximations to the path integral [54–56].3 We define

Γ−1
iα = δiβ P exp

(
−
∫ N

N0

uβα(N ′) dN ′
)
. (3.18)

The van Vleck matrix is ∆iα ≡ (N − N0)dΓ−1
iα , and has a well-known interpretation in

geometrical optics as a measure of focusing or defocusing: in particular, | det ∆| → ∞ at a

caustic, where light rays converge. Since (N −N0) is nonzero for N 6= N0, a singularity in

the van Vleck determinant implies a singularity in det Γ−1. Applying (4.20), we conclude

1

det Γ−1
= det Γ ≡ Θ(N,N0) = exp

∫ N

N0

θ(N ′) dN ′. (3.19)

Therefore Θ → 0 at a caustic. This happens after finitely many e-folds only if θ → −∞

during the flow. Otherwise, Θ is decreasing in regions where θ is negative, with large
3In DeWitt–Morette [54] the proof is ascribed to B.S. DeWitt. DeWitt–Morette noted that the relation

between Jacobi fields and variation of a general solution of the field equations with respect to its constants

of integration had been known to Jacobi (ultimately leading to his development of what is now Hamilton–

Jacobi theory), and suggested that this technique could be used to simplify the long calculations which

arise when solving Jacobi’s equation. Applied to inflationary correlation functions, the history has been

reversed: the variational formulae came first, in the form of the Lyth–Rodríguez algorithm. This often

leads to simple analytic results, as DeWitt–Morette foresaw. But, as we explain in §3.4.2, this method

is unsuited to numerical implementation, because of the small numerical tolerances required to reliably

determine variation with respect to the initial conditions. It is preferable to solve an ordinary differential

equation, such as Jacobi’s equation (3.11) or (3.26).
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negative θ implying strong focusing. Large positive θ implies strong defocusing. More

generally the propagator matrix can be rewritten in terms of Θ, giving

Γαi = Θ(N,N0)1/M P exp

(∫ N

N0

(σ + ω)αβ(N ′) dN ′
)
δβi. (3.20)

The ordered exponential has determinant unity and therefore does not change the cross-

sectional area of the bundle.

3.2.4 Adiabatic limit

Caustics have an important interpretation in the flows describing an inflationary model.

If the bundle of trajectories has finite cross section, then the ensemble contains members

which are evolving along multiple phase space trajectories. These are the eponymous

“separate universes” with their individual initial conditions.

Under these circumstances one or more isocurvature modes exist. These are connecting

vectors which relate the different φα within the bundle which all lie on a surface of fixed

energy density, say Σρ. Their number is determined by the rank of hαβΓβi. In the special

case where the bundle cross-section decays to a point, there is a unique intersection between

the bundle and Σρ. Therefore hαβΓβi has rank zero and all isocurvature modes disappear.

In this limit, each member of the ensemble traverses the same orbit, differing from the

others only by its relative position, which corresponds to the adiabatic mode, ζ. It follows

that, when the cross-section collapses to a point, the fluctuations become purely adiabatic.

Elliston et al. [32] described this as an ‘adiabatic limit’. After this limit has been reached

ζ is conserved [57, 58].

Flows which reach an adiabatic limit during inflation are no more or less likely—or

natural—from the viewpoint of fundamental physics. But flows reaching an adiabatic

limit are more predictive, because a perturbation in the purely adiabatic mode remains

adiabatic long after inflation ends [59, 60], even during epochs for which we are ignorant of

the relevant physics. Contrariwise, if any isocurvature modes remain then members of the

ensemble may rearrange their relative positions until these modes decay. This possibility

was emphasized by Meyers & Sivanandam [61, 62]; see also Ref. [32]. If the flow does not

reach an adiabatic limit during inflation then the model is not predictive until we supply

a prescription for the post-inflationary era, and observational predictions can depend on

this choice.
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Trivial, adiabatic and nonadiabatic caustics.—The outcome of this discussion is that

approach to an adiabatic limit can be associated with convergence to a caustic. An early

discussion of this principle, phrased almost precisely in these terms, was given by Wands

& García-Bellido [38]. We conclude that Θ → 0 is a necessary condition for an adiabatic

limit to occur, but as we now explain it is not sufficient.4 A caustic can be classified by the

number of dimensions lost by the flow, or equivalently the number of null eigenvalues of

the propagator Γαi at the caustic. An adiabatic limit is the special case where Γαi retains

a single non-null eigenvalue, but hαβΓβi has no non-null eigenvalues. We describe caustics

which satisfy this condition as adiabatic.

Eq. (3.20) shows that, were the integrated shear and twist to remain bounded while

Θ → 0, then Γαi → 0. In this case no perturbations would survive, and we describe the

caustic as trivial. An example is the case where uαβ is pure dilation. But barring an

accurate cancellation of this kind, at least some component of (σ+ω)αβ will typically scale

proportionally to θ on approach to the caustic.5

Shear opposes focusing.—If the perturbations are not to vanish completely, then some

anisotropic effect of shear and twist must oppose the isotropic contraction due to Θ→ 0.

First suppose the twist is negligible. We assume that the eigenvectors of σ stabilize in

the vicinity of the caustic. If the shear has some number of positive eigenvalues λi for which

λi/θ has a finite, nonzero limit, then perturbations may survive in the subspace spanned by

their corresponding eigenvalues. Tracelessless of σ implies that at least one eigenvalue must

be negative, and perturbations in the subspace spanned by the corresponding eigenvectors

will disappear. Hence, at least one dimension will be lost by the flow. In practice it is

often simpler to work directly with the eigenvalues of the expansion tensor uαβ .

If more than one eigenvalue of σ is positive, then perturbations may survive in a

two- or higher dimensional subspace. In this case the caustic does not describe approach

to an adiabatic limit, and we call it nonadiabatic. To obtain predictions for observable

quantities the evolution must be continued. In practice this would require introduction
4One may have some reservations about this conclusion, because it seems to violate the Liouville

theorem which guarantees conservation of phase-space volume. However, it should be remembered that

the canonical phase space coordinate to which Liouville’s theorem applies are not the field-space position

and momenta which we are using. In particular, the canonical momenta will typically include powers of

the scale factor a.
5In principle uαβ could contain off-diagonal terms which grow faster than the diagonal terms, and

therefore θ. In this case there could be a subspace of growing perturbations. If the growth is exponential

this usually signals an instability, and the formalism we are describing becomes invalid.
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of a reduced phase space describing only the surviving perturbations. The flow can then

be followed in this reduced phase space until a further focusing event occurs. This may

itself be an adiabatic limit, or might simply describe further reduction in the phase space.

One should continue in this way until an adiabatic limit is finally achieved. An example

of this behaviour could occur soon after the onset of slow-roll inflation. In the early

stages, independent fluctuations in the field velocities survive. But when slow-roll is a

good approximation these will be exponentially suppressed, making Θ become very small.

One should therefore replace the full description by a reduced phase space which includes

only field perturbations. In doing so one arrives at the field-space description of slow-roll

inflation given in §3.2.1.

Twist opposes focusing.—In slow-roll inflation, which we discuss in §3.2.5 below, a diver-

ging shear is the only mechanism by which perturbations can survive on approach to a

caustic. Where the twist is non-zero, which occurs when we do not impose the slow-roll

approximation, more possibilities exist. Ultimately these must be addressed, to describe

approach to an adiabatic limit when slow-roll is no longer a good approximation, but we

defer this discussion for future work.

3.2.5 Focusing in the slow-roll approximation

In this subsection we give a more detailed discussion of the approach to a caustic during

an era of slow-roll inflation.

Raychaudhuri equations.—Parametrizing each trajectory by e-folding numberN , Eq. (3.4)

constitutes an autonomous dynamical system. Therefore a derivative along the flow can

be written d/dN = uα∂α. In the absence of a nontrivial field-space metric all derivatives

commute, and therefore [∂γ , ∂β]uα = 0. Contracting with uγ and rearranging terms, one

finds
duαβ
dN

= ∂βaα − uαγuγβ, (3.21)

where aα is the acceleration vector, defined by aα = duα/dN = uβ∂βuα. For a potential

flow, this can be simplified; comparison with Eq. (3.4) shows that

aα =
M2

P

2
∂αν

2, (3.22)

where, as above, ν is the local refractive index.

The evolution equations for the dilation and shear can be written
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dθ

dN
= M2

PH−
θ2

M
− 2σ2 (3.23)

dσαβ
dN

= M2
P

(
Hαβ −

H
M
δαβ

)
− 2θ

M
σαβ −

(
σαγσγβ −

2σ2

M
δαβ

)
. (3.24)

These are commonly known as the Raychaudhuri equations. An equation for the evol-

ution of the twist could be found in the same way, but is not needed in the slow-roll

approximation.

We have defined Hαβ to be the Hessian of ν2,

Hαβ ≡
1

2
∂α∂βν

2, (3.25)

and H is its trace. Because the Hessian measures the local curvature of a function, one

can regard Hαβ as a measure of the curvature of surfaces of constant refractive index in

field space.

Jacobi equation.—Eq. (3.11) shows that Jacobi fields oriented along eigenvectors of uαβ

with positive eigenvalues grow, whereas those oriented along eigenvectors with negative

eigenvalues decay.

We can find an alternative description in terms of the refractive index ν. Taking a

derivative of (3.11) along the flow and using the Raychaudhuri equations to eliminate

derivatives of the dilation and shear yields the Jacobi equation,6

d2δφα
dN2

= M2
PHαβδφβ. (3.26)

It follows that the behaviour of the Jacobi fields is determined by the curvature of ν2,

considered as a function in field space. (Note this is related to, but not the same as,

the curvature of surfaces of constant ν.) Qualitatively, Jacobi fields oriented along ei-

genvectors of Hαβ with negative eigenvalues—directions of negative curvature—will have

quasi-trigonometric solutions. These will pass through zero, corresponding to the collapse

of some Jacobi fields to zero length. Fields oriented along eigenvectors with positive eigen-

values will have exponential solutions. Unless the initial conditions are precisely adjusted,

these will typically grow.

Focusing theorem.—By adapting the geodesic focusing theorem of general relativity [40]

we can determine the circumstances under which focusing will occur after finitely many
6When using Jacobi fields to study geodesic deviation on a Riemannian manifold, this equation takes the

form δφ̈α = −Rαn̂βn̂δφβ , where Rαn̂βn̂ = n̂ρn̂σRαρβσ is a component of the Riemann curvature projected

along the tangent to the geodesic.
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e-folds. Pick a point on the flow where the expansion is negative, with value θ? < 0.

Inspection of (3.23) shows that, if H < 0, then θ → −∞ within ∆N = M/|θ?| e-folds,

where M is the dimension of field space. Any point where θ = −∞ is a caustic, because

on arrival at this point Θ = 0.

Since Morse’s lemma implies that H is negative in a neighbourhood of any local max-

imum of the refractive index, ν2 = 2ε, one might hope to associate such local maxima with

terminal points for inflation at which an adiabatic limit would be nearly achieved.

However, the conditions of the focusing theorem are not satisfied for typical potentials.

More usually the slow-roll approximation forces all fields to settle into a terminal vacuum

increasingly slowly, requiring an infinite number of e-folds to reach Θ = 0. Moreover, in

practical examples the slow-roll approximation will break down and inflation will terminate

long before the caustic is reached. Therefore we should not expect to achieve precisely

Θ = 0 during inflation. Nevertheless, a model may be sufficiently predictive if the flow

spends enough e-folds in a region of large negative θ that Θ is exponentially suppressed

before inflation ends.

In simple potentials it is often clear when ζ ceases to evolve. But for more complicated

potentials the situation may not be so clear. Within the slow-roll approximation, this

discussion shows that Θ & 1 can be taken as a clear indication that isocurvature modes

are still present. Their future decay is likely to influence ζ and the outcome of any calcu-

lation which terminates with Θ & 1 should not be considered a prediction for observable

quantities. Conversely, Θ� 1 is an indication that some decay of isocurvature modes has

taken place. The precise nature of the decay must be deduced from the behaviour of the

shear and twist. If perturbations survive only in a one-dimensional subspace than we can

infer that the isocurvature modes have decayed to the point that ζ will be approximately

conserved.

Example: quadratic Nflation.—We illustrate these ideas using the quadratic approx-

imation to Nflation [63–66]. The potential is

V =
∑
α

1

2
m2
αφ

2
α. (3.27)

This model is of interest in its own right, but also describes the approach to a generic

stable minimum after suitable choice of field space coordinates. We suppose that there

is at least a modest hierarchy among the masses, and order these so that mα < mβ if

α < β. The most massive field will settle into its minimum first, followed by the next most

massive field. Therefore approach to the final minimum will be described by a trajectory
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on which only φ1 is dynamical, with all other φα approximately zero. We describe this as

the “inflow” trajectory.

On the inflow trajectory, the dilation satisfies

θinf ≈ −2
M2

P

φ2
1

∑
α≥2

m2
α

m2
1

− 1

 . (3.28)

The minimum φ1 = 0 is a caustic, but as discussed above it cannot be reached after finitely

many e-folds (within the slow-roll approximation). The expansion tensor satisfies

uinfαβ ≈



2
M2

P

φ2
1

. . .

−2
m2
α

m2
1

M2
P

φ2
1

. . .


. (3.29)

This has one positive eigenvalue and the rest negative, so we expect it will correspond to

an adiabatic limit.

The (1, 1) component of Γinf diverges near the caustic. This does not signal an instabil-

ity, but only that δφ1 grows at precisely the required rate to give constant ζ ∼ (H/φ̇1)δφ1.

Ordered exponentials such as (3.15) satisfy a composition property, allowing the integral

over the inflationary trajectory to be broken in two. (See Fig. 3.2.) The first component

is an integral from the initial point until the onset of the inflow trajectory. We take this

to occur at φ1 = φ∗1, and choose φ∗1 so that (3.29) is a good approximation there. The

propagator at this point is Γ∗αi. It is a complicated weighted average over the trajectory,

and cannot usually be calculated analytically. The second component is an integral over

the inflow trajectory, which we denote Γinf
αβ . Therefore Γαi = (ΓinfΓ∗)αi. The inflow part

can be computed from (3.29),

Γinf ≈



φ∗1
φ1

. . . (
φ1

φ∗1

)m2
α/m

2
1

. . .


. (3.30)

Except perhaps for special choices of initial conditions, Eq. (3.30) gives rank r = 1 at the

caustic. Therefore this is an example of an adiabatic caustic.

In more general circumstances, it may be necessary to diagonalize uinfαβ before integrating

over the inflow trajectory. This is reminiscent of the introduction of scaling operators in
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Γ∗

Γinf

initial point

φ∗1

focus point φ1 = 0

Figure 3.2: Decomposition of propagator along an inflationary trajectory. Trajectories flowing into the min-

imum from most initial points join an “inflow trajectory” (represented by a dashed line) at φ1 = φ∗1.

The precise location of the junction is initial-condition dependent. The inflow trajectory sinks into

the caustic, which here is a focus point, giving nearly-universal behaviour in the final stages of ap-

proach. This parallels the discussion of universality in critical phenomena; however, here, the uni-

versal region is often physically inaccessible because the slow-roll approximation breaks down in

the vicinity of the focus point. The remaining part of the trajectory (represented by a solid line) is

non-universal, and typically cannot be calculated analytically.

a renormalization-group framework. Indeed, the entire analysis, and the emergence of

rational but non-integer power-law scaling near the caustic, parallels a renormalization

group analysis in the neighbourhood of a fixed point [67]; compare also Eq. (79) of Vernizzi

& Wands [50].

Focusing in double quadratic model.—Away from the inflow trajectory it is usually necessary

to proceed numerically. In Fig. 3.3 we show the evolution of the focusing parameters in the

well-studied model of double quadratic inflation [36, 37, 39, 48–50, 68, 69]. The potential

is V = m2
1φ

2
1/2 +m2

2φ
2
2/2. We choose the mass ratio m1/m2 = 9 and set initial conditions

φ1 = 8.2MP and φ2 = 12.9MP.

Initially the evolution is mostly in the φ2 direction. When φ2 reaches the vicinity of

its minimum there is a turn in field-space, which generates a spike in fNL. After the turn,

the inflow trajectory is reached along the φ1 direction.

This evolution is reflected in the evolution of the bundle. Initially θ > 0 and the

cross-section slowly dilates. It reaches a maximum at roughly three times the original

cross-sectional area. After the turn, θ rapidly drops to a negative value, and thereafter

diverges exponentially to −∞. Therefore the bundle-cross section very rapidly diminishes

to almost zero cross-sectional area. This corresponds to an approximate caustic, and leads

to an adiabatic limit.

Eventually the divergence in θ would be cut off by a breakdown of the slow-roll ap-

proximation, but for typical parameter choices Θ will already be exponentially small at

this point.
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Figure 3.3: Dilation, integrated dilation and focusing parameters in the double quadratic inflation model V =

1
2
m2

1φ
2
1 + 1

2
m2

2φ
2
2. The mass ratio is m1/m2 = 9, and the initial conditions are φ1 = 8.2MP,

φ2 = 12.9MP. All plots are against the e-folding number N , measured from horizon exit of the mode

in question.

Example: axion-quadratic model.—Elliston et al. [32] introduced an approximation to the

hilltop region of axion N-flation [65, 66]. The Hubble rate is dominantly supported by

many axions in the quadratic region of their potential, and can be approximated by a

single field. A few axions remain in the vicinity of the hilltop, where their contribution

to H is negligible but their contribution to the three- and higher n-point functions in the

adiabatic limit is large.

The potential is V = m2φ2/2 + Λ4(1 − cos 2πχ/f). We set Λ4 = 25m2f2/4π2 and

choose f = MP. In Fig. 3.4 we show the evolution for initial conditions φ = 16MP and

χ = (f/2− 0.001)MP.

The evolution is similar to the double quadratic model. Initially θ is positive and the

cross-sectional area grows. At its peak, it is more than 200 times the original cross-section.

Eventually φ approaches its minimum and the Hubble friction decreases to the point that

χ can evolve. It rolls away from the hilltop, eventually ending inflation. During this

phase θ switches sign, ultimately diverging exponentially to −∞. Therefore we approach

an adiabatic limit. However, Fig. 3.4c shows that the rate of approach is quite slow.

The cross-section decays softly, and by the end of inflation Θ ∼ 10−3. Therefore an

approximate adiabatic limit is reached and we can expect the observables to be roughly

conserved through the post-inflationary evolution.

3.3 Transport equations

We now apply these ideas to obtain evolution (or “transport”) equations for the correlation

functions in a fixed, comoving spacetime volume. In this section our analysis will be general,
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Figure 3.4: Dilation, integrated dilation and focusing parameters in the axion-quadratic model V = 1
2
m2φ2 +

Λ4(1 − cos 2πχ/f). We have set Λ4 = 25m2f2/4π2 and f = MP. The initial conditions are φ =

16MP, χ = (f/2 − 0.001)MP. In (c), the inset panel shows the evolution of Θ near the end of

inflation. All plots are against the e-folding number N , measured from horizon exit of the mode in

question.

and can be applied to any perturbations whose evolution equations can be expressed in

the form of Eq. (3.32). If necessary this can be achieved as described in §3.2 by passing

to a Hamiltonian framework. It follows that the transport of correlation functions is most

naturally expressed in phase space.

Connecting vectors.—Consider the set-up described in §3.1, in which a comoving space-

time region of size µ is smoothed into separate universes of size L. Pick any one of these

L-sized regions, which we take to be at spatial position x. The separate universe approx-

imation asserts that the evolution of the smoothed fields in this region is given by the flow

equation (3.4). We denote the difference between these values and those in some other

region, located at position x + r, by δφα(r). This is a connecting vector in the sense of

Eq. (3.11). Taylor expanding uα, the corresponding deviation equation is

dδφα(r)

dN
= uαβ[φ(x)]δφβ(r) +

1

2
uαβγ [φ(x)] {δφβ(r)δφγ(r)− 〈δφβ(r)δφγ(r)〉}+ · · · .

(3.31)

We assume 〈δφα(r)〉 = 0 and have subtracted a zero-mode to preserve this throughout the

motion.7 The tensor uαβ was defined in (3.11), and uαβγ ≡ ∂γuαβ . We describe them,

together with higher-index counterparts obtained by further differentiation, as u-tensors.

They inherit a dependence on x through evaluation at φα = φα(x). After transformation

to Fourier space, the subtractions in Eq. (4.19) correspond to discarding disconnected

correlation functions. Therefore statistical properties of the ensemble do not depend on

our choice of fiducial point.
7In the language of Feynman diagrams, this would correspond to removing contributions arising from

disconnected pieces. This procedure is routine in applications of the separate universe principle.
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If µ/L is not superexponentially large, we can typically expect |δφα(r)| to be small

and slowly varying. In Fourier space, this implies that δφα(r) is constructed from only

a few soft, infrared modes which we label k. The remaining modes have been integrated

out in the smoothing process used to obtain this effective, separate-universe description.

Working explicitly in terms of these modes, Eq. (4.19) yields a connecting vector and

deviation equation for each combination of species and k-mode8

dδφα′

dN
= uα′β′(x)δφβ′ +

1

2
uα′β′γ′(x)

{
δφβ′δφγ′ − 〈δφβ′δφγ′〉

}
+ · · · . (3.32)

Eq. (3.32) has been written in an abbreviated “de Witt” notation, in which the primed,

compound index α′ carries both an unprimed species (or “flavour”) label α and a momentum

kα. Contraction over primed indices implies summation over the flavour label and integra-

tion over the momentum label with measure d3k. The 2- and 3-index u-tensors appearing

here satisfy

uα′β′(x) ≡ δ(kα − kβ)uαβ(x) (3.33a)

uα′β′γ′(x) ≡ (2π)−3δ(kα − kβ − kγ)uαβγ(x). (3.33b)

Eq. (4.19) was given by Yokoyama et al. [14, 15] in real space, and used to obtain

evolution equations for the momentum-independent Lyth–Rodríguez Taylor coefficients.

We explore the relationship between our approaches in Appendix 3.A. However, Yokoy-

ama et al. did not interpret uαβ as the expansion tensor of the flow or give the k-space

equations (3.32) and (3.33a)–(3.33b). As we will see, this k-dependent information is neces-

sary to obtain transport equations for the full set of coupled k-space correlation functions.

One can arrive at the same conclusions using cosmological perturbation theory. Taking

the background value of φα to be the average field over the µ-sized box, the perturbations

within the box are δφα(r). One should now interpret r as a coordinate relative to the

box. Restricting attention to the infrared modes in δφα(r), for which k/a is negligible, we

recover Eqs. (3.32) and (3.33a)–(3.33b).

Correlation functions.—The full set of connecting vectors contains all information re-

quired to determine evolution of the bundle, and therefore the evolution of all statistical

quantities. In Eq. (3.32) this data is carried by the u-tensors. The transport equations

for correlation functions are simply a reorganization of this information. Therefore they

must also be expressible purely in terms of u-tensors. Since (3.32) shows that these tensors
8In Eq. (3.32) we are keeping nonlinear terms in the evolution equation. We use the term “Jacobi field”

to refer to infinitesimal connecting vectors, for which only the linear term need be kept.
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can be obtained by the separate universe argument or traditional perturbation theory, it

follows that they will make equivalent predictions.

There are multiple ways to organize the u-tensors to produce evolution equations. In

Ref. [17, 18], transport equations were obtained after postulating a conservation equation

for a probability density P ,
dP

dN
+ ∂α(uαP ) = 0. (3.34)

Evolution equations for the moments of P were extracted using both a Gauss–Hermite

expansion, and generating functions. Here we describe a third, simpler method. Provided

the perturbations can be treated classically, we expect d〈O〉/dN = 〈dO/dN〉 for any

quantity O.9

Two-point function.—We write the two-point function as Σα′β′ ≡ 〈δφα′δφβ′〉. Eq. (3.32)

implies

dΣα′β′

dN
=

〈
dδφα′

dN
δφβ′ + δφα′

dδφβ′

dN

〉
= uα′γ′Σγ′β′ + uβ′γ′Σγ′α′ + [≥ 3 p.f.]

≡ {u,Σ}α′β′ + [≥ 3 p.f.]

(3.35)

where {A,B} is the matrix anticommutator of A and B, and [≥ 3 p.f.] denotes terms

including three-point functions or above which have been omitted. In general, the transport

equations will couple correlation functions of all orders. They can be thought of as a

limiting case of a Schwinger–Dyson hierarchy, applied to expectation values rather than

the in–out amplitudes of scattering theory. Calzetta & Hu argued that the result could be

interpreted as a Boltzmann hierarchy [70, 71].

As in any effective theory, the transport equations will be useful only if a reason can

be found to systematically neglect an infinite number of terms. Applied to inflation,

the statistical properties of the ensemble are nearly Gaussian: in the simplest models,

an n-point function will typically be of order Hm(n), where m(n) is the smallest even

integer at least as large as n [72]. This is suppressed compared to the natural scale MP

by (H/MP)m(n) � 1. However, this is not necessary; all that is required (or suggested

by observation) for (4.21) to be valid is that the three- and higher n-point functions are

substantially smaller than the two-point function.

Eq. (4.21) was given in Ref. [17, 18] for an arbitrary n-field model, but with Σα′β′

interpreted as the real-space correlation function. The single-field case is discussed by
9This equation both implies and is implied by conservation of probability, Eq. (3.34)
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Gardiner [73]. With the u-tensors given in (3.33a)–(3.33b), Eq. (4.21) applies for the full

k-dependent correlation function.

Three-point function.—We write the three-point function as αα′β′γ′ ≡ 〈δφα′δφβ′δφγ′〉.

Keeping contributions of order O(Σ2) and O(α), we conclude

dαα′β′γ′

dN
= uα′λ′αλ′β′γ′ + uα′λ′µ′Σλ′β′Σµ′γ′

+ cyclic (α′ → β′ → γ′) + [≥ 4 p.f.].
(3.36)

In simple models, the scaling estimate 〈δφn〉 ∼ Hm(n) makes both terms the same order of

magnitude. For (4.22) to be valid requires the 4-point function to be substantially smaller,

which is also supported by observation [74, 75].

3.4 Evolution of correlation functions

3.4.1 Solution of the transport hierarchy by raytracing

The transport equations (4.21) and (4.22) can be solved using the machinery developed

in §3.2. The key ingredients are the phase-space flows which describe evolution of individual

“separate universes,” and the Jacobi fields which connect them. The solution is formal

and depends only on the structure described in §4.4. Therefore there is no requirement

to impose the slow-roll approximation, and when written over the full phase-space our

equations apply quite generally. When truncated to field-space they reproduce the slow-

roll evolution.

Two-point function.—We write the two-point function Σα′β′ in the form

Σα′β′ ≡ Γα′i′Γβ′j′Σi′j′ , (3.37)

where Γ is to be determined. This notation has been chosen because Γ will turn out to

be the propagator matrix (3.15) for the primed indices. Indeed, (3.37) is a solution of the

transport equation (4.21) if

dΓα′i′

dN
= uα′γ′Γγ′i′ (3.38a)

dΣi′j′

dN
= O(H4) ≈ 0. (3.38b)

Eq. (3.38a) is the equation for a Jacobi field, Eq. (3.11).
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In writing (3.38b) we have assumed approximate Gaussianity, so that contributions

from higher-order correlation functions are suppressed by at least a power of H2 compared

to the terms which have been retained. Keeping these terms would yield the “loop correc-

tions” of the Lyth–Rodríguez formalism [33, 35, 76–78]. To the order we are working, Σi′j′

should be identified as a constant: it is the value of the two-point function evaluated at

N = N0, where N0 is the initial time which appears in the propagator (3.15). We write

this constant value Si′j′ .

The primed propagator satisfies

Γα′i′ = δ(kα − ki)Γαi, (3.39)

where Γαi is the flavour propagator (3.15). Therefore, written more explicitly, Eq. (3.37)

becomes

〈δφα(kα)δφβ(kβ)〉 = ΓαiΓβj〈δφi(kα)δφj(kβ)〉0, (3.40)

where our usual convention—that Latin indices denote evaluation of the correlation func-

tion at some initial time N0—continues to apply. For the two point function, practical

calculations usually simplify if this is taken to be the horizon-crossing time associated with

scale k = |kα| = |kβ|. We have indicated this by attaching a subscript ‘0’ to the correlation

function. With this understanding, and recollecting the identification (3.16), Eq. (3.40) is

the familiar “δN ” result [5, 7, 11].

Three-point function.—Similar methods can be used to solve for the three- and four-

point functions. We write αα′β′γ′ ≡ Γα′i′Γβ′j′Γγ′k′αi′j′k′ . As for the two-point function,

the propagator matrices absorb contributions from the uαβ-tensors. In the case of Σα′β′

there were no other terms, making the “kernel” Σi′j′ time independent. Here, the presence

of terms involving u 3-tensors provides a source for αi′j′k′ . We find10

dαi′j′k′

dN
= (Γ−1

i′α′uα′β′γ′Γβ′m′Γγ′n′)Sm′j′Sn′k′ + cyclic

+ O(H6),

(3.41)

where, as above, Sij is the initial value of the two-point function introduced in (3.37). The

estimate O(H6) for the truncation error, beginning with contributions from the four-point

function, again assumes that the correlation functions order themselves in even powers
10We are allowing αi′j′k′ to be a function of N , which means our index convention must be interpreted

more abstractly. The expressions for Γ-matrices to which Eq. (3.41) leads, such as Eqs. (3.50a)–(3.50b),

can be interpreted in the original sense.
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of H. We define the matrix Γ−1
i′α′ to be the left-inverse of the propagator, Γ−1

i′α′Γα′j′ =

δ(ki − kj)δij . Inspection of (3.39) shows that it can be written

Γ−1
i′α′ = δ(ki − kα)Γ−1

iα , (3.42)

where Γ−1
iα is the conventional matrix inverse of the flavour propagator, Eq. (3.15). In what

follows it is useful to define a projected u 3-tensor, ũi′j′k′ , by

ũi′j′k′ = Γ−1
i′α′uα′β′γ′Γβ′j′Γγ′k′ . (3.43)

Combining (3.39) and (3.42), it follows that the explicit k- and flavour-dependence can be

written

ũi′j′k′ = δ(ki − kj − kk)ũijk, (3.44)

where the tensor ũijk is the obvious flavour projection of uijk, so that ũijk = Γ−1
iα uαβγΓβjΓγk.

With these definitions, Eq. (3.41) can be solved by quadrature. Up to loop corrections,

we find

αi′j′k′ = Ai′j′k′ +
∫ N

N0

ũi′m′n′(N
′)Sm′j′Sn′k′ dN ′ + cyclic, (3.45)

where Ai′j′k′ should be regarded as the value of the three-point function at N = N0. The

complete solution can be written (again up to loop corrections)

αα′β′γ′ = Γα′i′Γβ′j′Γγ′k′Ai′j′k′

+
(

Γα′m′n′Γβ′j′Γγ′k′Sm′j′Sn′k′ + cyclic
)
,

(3.46)

where the cyclic permutations exchange α′ → β′ → γ′.

One can regard Eqs. (3.38a)–(3.38b) and (3.45) as analogous to the “line of sight”

integral which is used to obtain a formal solution to the Boltzmann equation in calculations

of the cosmic microwave background anisotropies.

The quantity Γα′m′n′ is defined by

Γα′m′n′ ≡ Γα′i′

∫ N

N0

ũi′m′n′(N
′) dN ′. (3.47)

Observe that Eq. (3.47) is symmetric in the indices m′ and n′. With our choices for the k-

and flavour-dependence of its constituent quantities, it can be written

Γα′m′n′ = δ(kα − km − kn)Γαmn, (3.48)

where Γαmn is the flavour-only object obtained by exchanging primed for unprimed indices

in (3.47). Comparing with (3.15), it follows that (up to matrix ordering ambiguities) Γαmn

is the derivative of the propagator,

∂2φα
∂φm∂φn

= Γαmn. (3.49)
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Eq. (3.46) can now be recognized as the Lyth–Rodríguez formula for the three-point func-

tion [11].

3.4.2 Flow equations for “δN” coefficients

We conclude that the transport equations (4.21) and (4.22) are equivalent to the Taylor

expansion algorithm of Lyth & Rodríguez for the three-point function. Also, because the

u-tensors could equally well be derived using the methods of cosmological perturbation

theory, all these methods will give answers which agree. Within this narrow reading, our

analysis can be interpreted as a demonstration that these methods are interchangeable.

Therefore we believe that statements to the effect that any particular method currently in

use has an intrinsic drawback when compared with another, as a matter of principle, are

wrong.

Nevertheless it is true that some approaches have advantages in practice, although no

one approach outperforms the others in all applications. For example, as explained in §3.1,

in some models the Taylor expansion algorithm leads to very simple analytic formulae.

This property has encouraged a large literature studying models to which the method can

be applied.

In this broader context our analysis is not simply a reformulation of existing results.

First, as a byproduct of the raytracing method we have obtained explicit (but formal)

expressions for the Lyth–Rodríguez Taylor coefficients,

∂φα
∂φi

= Γαi = P exp

(∫ N

N0

uαβ(N ′) dN ′
)
δβi (3.50a)

∂2φα
∂φi∂φj

= Γαij = Γαm

∫ N

N0

ũmij(N
′) dN ′. (3.50b)

Analytically, the Taylor expansion method is useful only when a solution to (3.50a) can

be found in closed form. This has been achieved only for a limited class of potentials

obeying some form of separability criteria; a summary appears in Ref. [32] together with

references to the original literature. Eq. (3.50a) clarifies the difficulty encountered in

obtaining analytic formulae as the difficulty of computing closed-form expressions for a

path-ordered exponential. A sophisticated theory is available [79] but explicit expressions

can usually be obtained only in special cases, or where the expansion tensor commutes with

itself at different times. It is possible that Eq. (3.50a) could be used to extend analytic

progress beyond the separable cases, but we have not investigated this possibility in detail.
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Eqs. (3.50a)–(3.50b) were given, in slightly different notation, by Yokoyama et al. [14,

15]. Because of its close relation to the present discussion we review and extend the Yokoy-

ama et al. approach in Appendix 3.A.

Second, a naïve numerical implementation of the Taylor expansion formula is unfa-

vourable. Beginning with fractionally displaced initial conditions one must evolve the

equations of motion over many e-folds, during which numerical noise is accumulating.

Taking differences between these evolved solutions requires high-accuracy integration in

order that the small displacement in initial conditions is not swamped by noise. The expli-

cit solutions (3.50a)–(3.50b) allow this naïve approach to be replaced by a simple system

of ordinary differential equations for Γαi and Γαij . The Γαi equation is the Jacobi equa-

tion (3.38a), after dropping primes on indices. The initial condition is Γαi = δαi. The Γαij

equation can be obtained by differentiation of (3.50b). It is

dΓαij
dN

= uαβΓβij + uαβγΓβiΓγj , (3.51)

with initial condition Γαij = 0.

The same approach can be applied systematically to deduce transport equations for

any of the Taylor coefficients. Yokoyama et al. wrote the transport equation (3.38a) for

Γαi, but did not write (3.51) for Γαij which they computed directly from (3.50b). See

Appendix 3.A for a comparison.

3.4.3 Transport of “shape” amplitudes

The results of §3.4.1 apply for arbitrary initial conditions Si′j′ , Ai′j′k′ for the two- and

three-point functions. But for application to inflation, we will usually wish to apply them

to the correlation functions produced in a specific model. In this case the fields φα will

be a collection of light scalars for which Si′j′ and Ai′j′k′ can be computed using the in–in

formulation of quantum field theory [44]. These yield very specific k-dependences whose

amplitudes we wish to track.

In this section, our analysis remains general and continues to apply to the full phase

space.

Two-point function.—The two-point function is straightforward. For a nearly scale-

invariant spectrum we have

Σα′β′ ≡ (2π)3δ(kα + kβ)
Σαβ

k3
, (3.52)
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where k = |kα| = |kβ| and the flavour matrix Σαβ should be nearly independent of k.

Transport of Σαβ can be accomplished using (3.40), or simply by solving the transport

equation (4.21) with an appropriate initial condition after dropping primes on indices.

That gives

Σαβ = ΓαiΓβjSij , (3.53)

where Sij is the initial value of Σαβ . The mild k-dependence of (3.53) can also be obtained

using transport techniques [80].

Three-point function.—Here, more possibilities exist. It is known that the O(S2) terms

in (3.46) dominate whenever the bispectrum is large enough to be observed [50, 81].

Eq. (3.46) shows that these contributions add incoherently to the contribution from Aijk,

so they can be studied separately. Using (3.52) and overall symmetry of the correlation

function under exchange of indices, we can write

αα′β′γ′ ⊇ (2π)3δ(kα + kβ + kγ)

(
αα|βγ

k3
βk

3
γ

+
αβ|αγ

k3
αk

3
γ

+
αγ|αβ

k3
αk

3
β

)
, (3.54)

where the notation “⊇” indicates that the three-point contribution contains this contri-

bution among others. The amplitudes aα|βγ are symmetric under exchange of β and γ,

but not otherwise. Using Eqs. (3.33a), (3.33b), (4.22) and (3.52), we find the transport

equation

dαα|βγ

dN
= uαλαλ|βγ + uβλαα|λγ + uγλαα|βλ

+ uαλµΣλβΣµγ .

(3.55)

If desired, we can apply the same method of formal solution described in §3.4.1. This yields

αα|βγ = ΓαmnΓβjΓγkSmjSnk. (3.56)

In combination with (3.54) this reproduces our earlier formula (3.46), neglecting the initial

contribution Ai′j′k′ .

3.4.4 Connections between the transport and other approaches

Up to this point we have shown that the Jacobi fields which connect “separate universe”

trajectories in phase space can be used to solve the transport equations for the full set of

k-space correlation functions. But as we have explained, the transport hierarchy is just

one of many techniques for handling correlation functions. We now pause to examine the

connections between these approaches.
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δN formalism.—In the Lyth–Rodríguez approach, or “δN formalism”, one makes a Taylor

expansion of the field values on a final hypersurface in terms of field values on some initial

hypersurface. Following the discussion surrounding Eq. (4.19), and with the same meaning

for the vectors x and r, this can be written

δφα(r) = Γαi(x)δφi(r) +
1

2
Γαij(x) {δφi(r)δφj(r)− 〈δφi(r)δφj(r)〉}+ . . . . (3.57)

Note that, despite appearances, we are making no assumption that the evolution of δφ is

close to an attractor. Therefore there is no requirement to invoke the slow-roll approx-

imation. It is true that the existence of an attractor would make the canonical momenta

purely a function of the fields, yielding an equation with the appearance of Eq. (3.57). But

as we have explained, by working in a first-order Hamiltonian formalism we can obtain

expressions such as (3.57) without this limitation. Therefore we allow the δφi to include

perturbations of the canonical momenta if necessary, in which case the indices α, i, etc.

range over the 2M dimensions of phase space. Where slow-roll is a good approximation

we can revert to a simpler formulation based on field space.

We have already remarked that the Γ-tensors are the derivatives (3.16) and (3.49).

In Eq. (3.57) the δφα are all defined on spatially flat hypersurfaces. More commonly, an

analogous expansion is made for the total e-folding number N , measured from a flat slice

to a final comoving slice; we give an explicit relation in §4.4.3. The choice of slicing simply

corresponds to the gauge in which we wish to work [18].

For (3.57) to be useful, some means must be found to compute Γαi and Γαij .

Flow equations.—As a by-product of the raytracing solution, or “line of sight” integral,

we obtained the evolution equations (3.38a) and (3.51). These allow the Γ-tensors to be

computed easily. However, the same equations can be obtained directly from the separate

universe formula, Eq. (3.57). Substituting (3.57) into both the right- and left-hand sides

of (4.19) and separating the resulting expansion order-by-order, we immediately arrive at

Eqs. (3.38a) and (3.51). This still does not require the slow-roll approximation.

Transfer matrices.—We have observed that Eq. (4.19) arises in the k/aH → 0 limit of

cosmological perturbation theory (“CPT”). Within that framework, at least in the first-

order theory, it is common to introduce “transfer matrices” which relate field perturbations

at different times [19]. Typically these are chosen to be the adiabatic and isocurvature

directions, but in principle any basis can be used.
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Restricting to first-order, the transfer matrix is determined precisely by the leading

term of (3.57), or a gauge transformation of it. It follows that Eq. (3.57) represents the

extension of the transfer matrix to second-order (and beyond), and Eqs. (3.38a) and (3.51)

give the evolution of the transfer tensors Γαi, Γαij . Therefore the transfer-matrix form-

alism is precisely equivalent to the separate universe picture and traditional cosmological

perturbation theory. Note that if the perturbations are projected onto adiabatic and iso-

curvature modes this requires use of the correct u tensors at each time step.

CPT implies transport equations.—Finally, we show that cosmological perturbation

theory implies the transport hierarchy with which we began. We write

Σαβ = ΓαiΓβjSij , (3.58)

which, neglecting “loops,” follows from (3.57) and therefore either CPT or a transfer-

matrix approach. Differentiating both sides with respect to time, recalling that Sij is

time-independent, and make use of (3.38a) we find

dΣαβ

dN
= (uαµΓµiΓβj + uβµΓαiΓµj)Sij . (3.59)

This gives the transport equation for Σαβ , Eq. (4.21). A similar procedure leads to the

transport equation for ααβγ , Eq. (4.21). It follows that each of these approaches implies

and is implied by the others.

3.5 Gauge transformations

To this point, the formalism we have developed enables the correlation functions of fluc-

tuations in the fields and their momenta, δφα and δpα, to be evolved along the bundle of

trajectories picked out by an ensemble of smoothed regions. However, by themselves these

fluctuations are not observable. Only specific combinations are observable, of which the

most important is the primordial curvature fluctuation ζ. Therefore to proceed we require

expressions for the gauge transformation between the δφα, δpα and ζ.

In this section we impose the slow-roll approximation throughout, enabling us to work

on field space and make use of the hypersurface-orthogonal property of the flow. We intend

to return to the general case in a future publication.
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(b) Second order

Figure 3.5: Gauge transformations in field space

3.5.1 Explicit transformations

In the slow-roll approximation there is no need to track the momentum fluctuations δpα,

which are purely determined by the field fluctuations δφα. Therefore ζ can be written

purely in terms of the field fluctuations.

On superhorizon scales, the appropriate gauge transformation can be written as a

Taylor expansion,

ζ = Nαδφα +
1

2
Nαβ(δφαδφβ − 〈δφαδφβ〉) + · · · , (3.60)

where all fields are evaluated at the same spatial position and a constant has been subtrac-

ted to set 〈ζ〉 = 0. The Taylor coefficients Nα and Nαβ have been given by various authors

[17, 82]. Working in field space, we give a purely geometrical derivation. This argument

relies on the property that the flow is orthogonal to surfaces of constant density in field

space, and therefore will not generalize directly to the full phase space.

Linear term.—Consider Fig. 3.5a. We wish to compute the coefficient Nα at a field-

space point x, which can be taken to lie on a hypersurface of fixed energy density ρ. We

denote this hypersurface Σρ. According to the separate universe approximation, Nα can

be computed from the number of e-folds required to flow back to Σρ after making a generic

(“off-shell”) displacement from x. Anticipating the discussion of second-order contributions,

we denote this displacement δφ1 and write z = x+ δφ1.

The number of e-folds required to return to Σρ must be computed along the inflationary

trajectory which passes through z. In Fig. 3.5a, this trajectory intersects Σρ at y. The

tangent to the trajectory at y is the normal vector n̂(y). Therefore the (“on-shell”) field-

space displacement along this trajectory, to first order in δφ1, is δφflow
α ≈ −n̂αn̂βδφ1

β . The

symbol ‘≈’ denotes equality up to higher-order terms in δφ1 which have been omitted, and
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we have adopted a convention in which quantities evaluated at x—such as the unit vector

n̂—are written without an argument. Combining Eqs. (3.3) and (3.5), we conclude

δN ≈ − 1

MP

n̂αδφ
1
α√

2ε
(3.61)

and therefore
∂N

∂φ1
α

= − 1

MP

n̂α√
2ε

= − 1

MP

n̂α
ν
. (3.62)

where we have reintroduced the refractive index ν =
√

2ε defined in §3.2.1. Eq. (3.62) is

the term Nα in (3.60).

Quadratic term.—The quadratic Taylor coefficient can be obtained from the variation

in ∂N/∂φ1
α under a second generic displacement δφ2. Under this displacement the origin

is shifted to x′ = x+ δφ2. Because the energy density at x′ will typically differ from ρ, it

lies on a displaced hypersurface Σρ′ . However, the definition of N is unchanged and must

still be measured to the intersection with Σρ at y. We should compute the flow along the

trajectory passing through z. The path z → y′ → y is a discrete approximation to an

integral along this flow. The calculation should be carried to linear order in δφ1 and δφ2

independently.

In Fig. 3.5b, the on-shell flow from z = x′ + δφ1 back to Σρ′ is δφa. Repeating the

analysis above, we find

δφaα ≈ −n̂′αn̂′βδφ1
β, (3.63)

where n̂′α ≡ n̂α(x′) ≈ n̂α + δφ2
β∂βn̂α. (It is only necessary to work to first order in δφ2,

since (3.63) is proportional to δφ1.) The on-shell flow from y′ back to Σρ is

δφbα ≈ −n̂′′αn̂′′β∆β − n̂′′α
(Kβγ

2
− ∂βn̂γ

)
∆β∆γ . (3.64)

We have defined ∆α to be the displacement to y′,

∆α ≡ δφ1
α + δφ2

α + δφaα, (3.65)

and n̂′′α ≡ n̂α(y′). The symmetric tensor Kαβ is the extrinsic curvature of Σρ, or “second

fundamental form,” and is defined by Kαβ ≡ hαγhβδ∂γn̂δ [40]. It is related to the dilation

and shear of the expansion tensor via

Kαβ =
1

MPν

(
θ

d
hαβ + σisoαβ

)
, (3.66)

where σisoαβ is the projection of the shear onto the isocurvature subspace, σisoαβ ≡ hαγhβδσγδ.

The first term in (3.64) is a linear, trigonometric approximation. The second is a correc-

tion for the curvature of Σρ. A similar construction could be used to obtain the Taylor

coefficients at any desired order.
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After computing all appropriate variations, we find

∂2N

∂φ1
α∂φ

2
β

= − 1

MP

(
Kαβ√

2ε
+ n̂α∂β(2ε)−1/2 + n̂β∂α(2ε)−1/2 − n̂αn̂βn̂γ∂γ(2ε)−1/2

)
= − 1

MPν

(
Kαβ − n̂αDβ ln ν − n̂β Dα ln ν −

n̂αn̂β
MP

η

2ν

)
,

(3.67)

where η = d ln ε/dN is the natural generalization of the single-field η-parameter. It meas-

ures the variation of ε along the adiabatic direction. To yield sufficient e-foldings, it must

typically be small while observable scales are leaving the horizon. Defining Dσ ≡ n̂α∂α to

be a derivative along n̂α, it can be written

η ≡ 2MP

ν
Dσ ε. (3.68)

In addition, Dα ≡ hαβ∂β is a derivative in the plane tangent to Σρ at x. This tangent

space can be interpreted as the subspace of isocurvature modes. Only the η-component

of (3.67) depends purely on the local behaviour of the adiabatic direction, and therefore

the direction in field space restricted by the slow-roll approximation. The remaining terms

all probe details of the isocurvature subspace.

Dropping the distinction between δφ1 and δφ2, Eq. (3.67) is equal to Nαβ . It is sym-

metric even though we have not treated the displacements δφ1 and δφ2 equally. This is

a consequence of associativity of vector addition, which makes z the same no matter in

which order we apply the displacements. The inflationary trajectory passing through z is

unique, so Nαβ can only depend on a symmetric combination of δφ1 and δφ2.

Eq. (3.67) shows that Nαβ depends on the anisotropy of ε—or, in the optical interpret-

ation, the refractive index ν. It also depends on the extrinsic curvature of Σρ, which is a

function of the shape of the hypersurfaces of constant energy density. In particular, be-

cause n̂αKαβ = 0, this term can be interpreted as a metric on the subspace of isocurvature

modes.

3.5.2 Local mode fNL

Two-point function.—These results can be combined to obtain the usual formulae for the

amplitude of the local mode, fNL. With our usual assumptions about the amplitude of

those correlation functions we neglect, the two-point function of ζ satisfies

〈ζ(k1)ζ(k2)〉 = (2π)3δ(k1 + k2)NαNβΓαiΓβj
Sij
k3

+ O
(H4

M4
P

)
,

(3.69)
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where k is the common amplitude of k1 and k2 and Nα is the first-order component of

the gauge transformation, Eq. (3.62). Application of the chain rule to the contractions

in (3.69) allows the Lyth–Rodríguez Taylor coefficients to be identified,

Ni ≡
∂N

∂φi
= NαΓαi. (3.70)

It follows that (3.69) is the standard result [11].

Three-point function.—Neglecting the initial three-point function Ai′j′k′ , the bispectrum

can be computed by similar methods. There is an added complication from second-order

terms in the gauge transformation (3.60). Working from (3.46) (or (3.54) and (3.56)) gives

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δ(k1 + k2 + k3)(NαΓαmn +NαβΓαmΓβn)NiNjSmiSnk

×
(

1

k3
1k

3
2

+
1

k3
1k

3
3

+
1

k3
2k

3
3

)
+ O

(
H6

M6
P

)
.

(3.71)

We can make the identification

Nij ≡
∂2N

∂φi∂φj
= NαΓαij +NαβΓαiΓβj , (3.72)

where Nαβ is the second-order term (3.67). The familiar approximation for the amplitude

of the local mode, fNL, follows immediately,

6

5
fNL =

NmnNjNkSmjSnk
(NqNrSqr)2

=
NαΓαmnNjNkSmjSnk

(NqNrSqr)2
+
NαβΓαmΓβnNjNkSmjSnk

(NqNrSqr)2
.

≡fφNL + fgaugeNL .

(3.73)

In the final step we have divided the contributions into an intrinsic term, fφNL (which

contains Γαmn), and a gauge contribution fgaugeNL (which does not). The intrinsic term

depends on the bispectrum of the fluctuations δφα. Eq. (3.47) shows that it depends on

uαβγ , and therefore has a memory of the nonlinear evolution of the connecting vectors

along the trajectory. However, it has no dependence on the nonlinear part of the gauge

transformation. Vice versa, the gauge term depends on the nonlinear part of the gauge

transformation, and only on the linear evolution of the connecting vectors—that is, the

Jacobi fields, in the guise of the van Vleck matrix (3.16).

This separation was first made in Ref. [17], where it was shown that the gauge con-

tribution dominated in a class of models known to generate large |fNL| [83, 84]. We will

sharpen this division slightly in Eqs. (3.85a)–(3.85b) below.

The outcome of this discussion is that fNL could be computed efficiently by decom-

posing (3.73) into the component gauge transformations and Γ-symbols, which can be
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obtained using ordinary differential equations. An alternative approach is to work from

the explicit formula (3.54), yielding

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δ(k1 + k2 + k3)
(
NαNβNγαα|βγ +NαβNγNδΣαγΣβδ

)
×
(

1

k3
1k

3
2

+
1

k3
1k

3
3

+
1

k3
2k

3
3

)
+ O

(
H6

M6
P

)
.

(3.74)

It then follows that

fφNL =
5

6

NαNβNγαα|βγ

(NλNµΣαβ)2
=

5

18

NαNβNγααβγ
(NλNµΣαβ)2

. (3.75)

In the final equality we have defined ααβγ by symmetrization,

ααβγ ≡ αα|βγ + αβ|αγ + αγ|αβ. (3.76)

Note that this combination is not normalized to give weight unity. Eq. (3.55) shows that

it obeys the transport equation (4.22) for the three-point function after dropping primes

on all indices. It was in this form that fNL was quoted in Refs. [17, 18], although the

derivation was given in real space and is not the same as the one given here.

Gauge contribution.—There is some interest in isolating the gauge contribution to |fNL|.

As explained above, this is known to dominate in some models, including examples where

large |fNL| is generated during a turn in field space [32, 83, 84]. Comparison with (3.74)

shows that it can be written

6

5
fgaugeNL =

NαβNγNδΣαγΣβδ

(NλNµΣλµ)2
. (3.77)

Combining (3.62) and (3.67) gives an explicit expression,

6

5
fgaugeNL =

η

2
−MPν

(
〈σδφα〉Kαβ〈δφβσ〉

〈σσ〉2
− 2
〈σδφα〉Dα ln ν

〈σσ〉

)
, (3.78)

where we have defined 〈σσ〉 = n̂αn̂βΣαβ , and 〈σδφα〉 = n̂βΣαβ . This expression is co-

variant under rotations of the isocurvature plane. However, its form suggests a natural

coordinate basis in which its content is more transparent. Since Kαβ is symmetric, it can

be diagonalized. Its eigenvectors form an orthonormal basis directed along the principal

curvature directions of the fixed energy-density hypersurface in field space. We label these

eigenvectors with an index m and denote them ζmα , which can be considered as a vielbein.

We can refer to the corresponding isocurvature directions as the principal isocurvature

modes. The corresponding eigenvalues of the second fundamental form are the principal

curvatures km.
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Next, we define a correlation coefficient ρm between the mth principal isocurvature

mode and the adiabatic direction,

ζmα 〈σδφα〉 ≡ 〈σm〉 = ρm〈σσ〉1/2〈mm〉1/2. (3.79)

It is also useful to define analogues of the η-parameter for the isocurvature directions. It

is a matter of convention how this is done. By analogy with our definition of η in the

adiabatic direction we set

ηm ≡
2MP

ν
ζmα Dα ε. (3.80)

Unlike the adiabatic η-parameter, these isocurvature ηm-parameters need not be small

even if slow-roll is an excellent approximation. In this basis we find

fgaugeNL =
η

2
+
∑
m

ηmρm
〈mm〉1/2

〈σσ〉1/2
−MPν

∑
m

kmρ
2
m

〈mm〉
〈σσ〉

. (3.81)

As has been explained, these depend only on the Jacobi fields and geometrical quantities

at the time of evaluation for fNL. We have not displayed the k-modes associated with

these objects. Eq. (3.81) strictly applies for roughly comparable |k|.

There are three contributions. First, there is the adiabatic η-parameter. As ex-

plained above this will almost always be negligible. Second, there is a weighted sum

of ηm-parameters associated with the isocurvature directions. These may be individu-

ally large. Their contribution is suppressed by the correlation coefficient ρm between the

adiabatic mode and fluctuations in the mth direction, and also by the “anisotropy factor”

(〈mm〉/〈σσ〉)1/2 which measures their relative amplitude. Third, there is a weighted

sum of the principal curvatures. These are weighted by the combination ρ2
m〈mm〉/〈σσ〉.

Therefore, this term is typically dominant when the bundle has exaggerated extent in at

least one isocurvature direction.

In a two-field model, Eq. (3.81) becomes especially simple. There is only one principal

isocurvature mode, and it is orthogonal to the adiabatic direction. Also, the second funda-

mental form Kαβ has a null eigenvector and therefore the principal curvature k is simply

its trace. Comparison with (3.66) shows that

k = trKαβ =
1

MPν

(
M − 1

M
θ − n̂αn̂βσαβ

)
. (3.82)

As in §3.2, we have set M to be the dimension of field space.

Non-Gaussianity at the adiabatic limit.—There has been considerable interest in the fate

of non-Gaussianity if an adiabatic limit is reached during slow-roll inflation. Meyers &
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Sivanandam [61, 62] studied a class of models in which fNL, gNL and τNL decay to negli-

gible values when all isocurvature modes decay, and argued that this behaviour is generic.

However, explicit examples exist in which an observable value of fNL persists even after all

isocurvature modes are extinguished [32, 65, 66, 85]. The separation of fNL into intrinsic

and gauge contributions allows us to shed further light on this issue.

At an adiabatic limit we expect 〈mm〉 → 0, and therefore Eq. (3.81) implies fgaugeNL ≈

η/2. The same conclusion can be obtained from (3.78) because any tensor projected onto

the isocurvature plane (such as Kαβ or Dα) is orthogonal to Σαβ in this limit. This is an

advantage of the tensorial approach we have described, based on associating isocurvature

modes with the tangent plane to surfaces of constant energy density in phase space.

One can also show that the intrinsic fNL satisfies

fφNL = fφ,AL
NL +

ηAL

2
− η

2
, (3.83)

where ‘AL’ denotes evaluation just after the adiabatic limit is reached. In the language of

§3.2.5 this may coincide with the onset of an inflow trajectory. We conclude that, at any

subsequent time, fNL has value

fNL = fφ,AL
NL +

ηAL

2
, (3.84)

which is constant as we expect. If the adiabatic limit is reached during slow-roll inflation,

where ηAL must be small, this enables us to give a more precise formulation of Meyers &

Sivanandam’s argument: if fNL is large in the adiabatic limit, it must be because a large

intrinsic three-point function is developed during the evolution. This is indeed the case in

known examples where a large fNL is reached in the “horizon-crossing approximation” [32,

64, 65].

Eqs. (3.81), (3.83) and (3.84) also enable us to sharpen the division between “gauge”

and “intrinsic” contributions. We define

fANL = fφNL +
η

2
(3.85a)

fBNL = fgauge
NL − η

2
. (3.85b)

The advantage of this redefinition is that the A- and B-type contributions are constant

at an adiabatic limit; indeed, fBNL is zero there because it captures only transient effects

caused by the evolving isocurvature modes. However, when |fNL| is large the A- and B-type

terms approximately correspond to the intrinsic and gauge fNL.
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This division is not unique, because a total derivative can always be added to the time

integral in Γαij . However, the division in Eqs. (3.85a)–(3.85b) seems phenomenologically

useful because all models (of which we are aware) which generate large non-gaussianity do

so in one of two ways: either fANL becomes large at the adiabatic limit, or fBNL is large some

time before the adiabatic limit is reached. As the following examples show, the underlying

reason seems to be that the B-type term responds immediately to strong distortions of the

shape of bundle, whereas the A-type term does not.

Example: Byrnes et al. model.—We illustrate Eqs. (3.78), (3.81) and (3.85a)–(3.85b) using

examples drawn from the literature.

Consider the model V = V0φ
2e−λχ

2 introduced by Byrnes et al. [83]. We follow their

choices, setting λ = 0.05M−2
P and fixing initial conditions φ = 16MP and χ = 0.001MP.

The first phase of evolution is descent from a ridge, during which a large spike in fNL is

generated by the gauge term. An interpretation of this contribution was given in Ref. [32].

In Fig. 3.6a we plot fNL during the inflationary phase. For most of the evolution it is

dominated by fgaugeNL . In turn fgaugeNL is dominated by the extrinsic curvature term Kαβ .

In Fig. 3.6b we plot the difference between the full fNL and the Kαβ-term, demonstrating

explicitly that it is small.

In Figs. 3.6c–3.6f we plot the bundle parameters which determine the Kαβ-term and

the other contributions to fgaugeNL . The correlation constant is initially zero but approaches

−1, making the curvature and isocurvature mode (anti-) correlated, as first discussed

by Langlois [39]. The principal curvature k and isocurvature η-parameter exhibit only

modest evolution over the entire range of e-folds. In comparison, the anisotropy factor

(〈mm〉/〈σσ〉)1/2 grows dramatically. Its evolution is the dominant factor which determ-

ines the evolution of fNL. A large fNL arises because the ensemble of separate universes

becomes highly anisotropic, with nearly twenty-five times as much power in the isocurvature

direction as in the adiabatic direction. Evidently this must arise from a large contribution

to the integrated shear in the propagator matrix.

Note that, although fBNL ≈ f
gauge
NL responds immediately to this strong anisotropy factor,

there is no corresponding significant enhancement of the intrinsic three-point function.

In Fig. 3.6g and 3.6h we plot the bundle dilation, θ, and the focusing Θ. The dilation is

always positive, so the bundle cross-section grows monotonically. Hence the total power in

the isocurvature mode also grows monotonically. Evidently, the spike in fNL is not due to

the total isocurvature power, but to its relative growth compared with the adiabatic power.

The large Θ implies that this model does not reach an adiabatic limit, and some other
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mechanism must be invoked to end inflation and determine the value of each observable.

In Ref. [83] it was assumed that sudden destabilization of a waterfall field could play this

role.

Example: axion quadratic model.—A similar phenomenon occurs in the axion–quadratic

model discussed above. We plot the evolution of fNL in Fig. 3.7a. It exhibits three distinct

components. The first is a negative spike, generated by the axion rolling off its hilltop.

The second is a smaller positive spike produced by the axion rolling into its minimum.

These two spikes come from the gauge contribution to fNL, as clearly shown in Fig. 3.7b.

Fig. 3.7c shows that each spike is inherited from a spike in the anisotropy factor. This

is consistent with the analysis of Elliston et al. [32], in which the spikes were interpreted

as due to strong deformations in the shape of the bundle. In the present interpretation,

the differing signs arise because the principal curvature changes sign in the intermediate

evolution.

As for the Byrnes et al. model, the intrinsic term fANL ≈ fφNL does not respond imme-

diately to this strong anisotropy, growing only later on approach to the adiabatic limit.

The anisotropy is due to a strong shearing effect arising near the turn from dominantly

φ-evolution to dominantly χ-evolution. Near the deep negative spike in fNL, there is an en-

hancement in the shear oriented parallel to the principal isocurvature mode. This enhances

the fluctuations in the isocurvature direction.

The third feature is the flat plateau at late times, associated with the adiabatic limit.

Fig. 3.7b shows that this comes from growth in the intrinsic term fφNL; see the discussion

in Refs. [32, 65, 66].

3.6 Summary

In this paper we have developed an analogy between inflationary perturbation theory and

geometrical optics. Here we summarize the main steps in the discussion.

Background.—In inflationary perturbation theory, we are interested in following the stat-

istical properties—as measured by the correlation functions—of an ensemble of spacetime

regions. This ensemble can be constructed equally well within the separate universe picture

or traditional cosmological perturbation theory.

The ensemble picks out a cloud of points in phase space. In the limit k/aH � 0,
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Figure 3.6: Bundle parameters for the Byrnes et al. model V = V0φ2e−λχ
2
. The initial conditions are φ =

16MP and χ = 0.001MP, and λ = 0.05M−2
P . All plots are against the e-folding number N , measured

from horizon exit of the mode in question.
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Figure 3.7: Bundle parameters for the axion–quadratic model; for the potential and initial conditions, see

Fig. 3.4. All plots are against the e-folding number N , measured from horizon exit of the mode in

question.

interactions between members of the ensemble are suppressed and each point moves along a

phase space orbit of the unperturbed system. Therefore the ensemble traces out a narrowly-

collimated “spray” or bundle of trajectories. Where slow-roll applies, the momenta are

determined in terms of the fields and we can work in terms of a simplified flow on field

space.

Optical quantities.—Geometrical properties of the bundle of trajectories can be used to

describe its evolution and determine its statistical properties. The quantities of principal

importance are obtained by decomposing the expansion tensor, yielding the dilation, shear

and twist. These are well-known from the description of light rays in general relativity.

Jacobi fields and van Vleck matrix.—The dilation, shear and twist determine the evol-

ution of Jacobi fields, which describe infinitesimal vectors connecting nearby trajectories.

At any point in the flow, the van Vleck matrix aggregates the linearly independent Jacobi

fields. The Jacobi fields themselves are measured from a fiducial trajectory, which can be

thought of as the eikonal of geometrical optics. This analogy is exact within the slow-roll

approximation.

We have argued that different implementations of the separate universe assumption—

such as the Lyth–Rodríguez Taylor expansion, or the transport equations of §4.4—can be

thought of as different methods to compute the Jacobi fields, in the form of the van Vleck

matrix (3.16). More generally, the same is true for all approaches to perturbation theory in

the limit k/aH → 0. The most familiar implementation of the separate universe assump-

tion, the “δN formalism” or Taylor expansion approach, follows from Jacobi’s method of

varying a solution with respect to its constants of integration. Conversely, the transport

equations arise more naturally from Jacobi’s differential equation.
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On approach to a caustic, some number of Jacobi fields decay. At an adiabatic caustic,

defined in §3.2.4, all but one of the Jacobi fields decay. The single remaining field represents

fluctuations along the caustic. In inflation this mode is the adiabatic fluctuation. The other

Jacobi fields represent isocurvature fluctuations between the spacetime regions which make

up the ensemble. Therefore, focusing at an adiabatic caustic can be interpreted as decay

of isocurvature modes, or approach to an adiabatic limit in the sense of Elliston et al. [32].

Transport equations.—The “u-tensors” encode evolution of the connecting vector fields.

We have argued that these tensors can be computed using either cosmological perturbation

theory or the separate universe approximation. More generally, any formalism which can

reproduce the k-space deviation equation (3.32) will reproduce the correct correlation

functions, because the u-tensors uniquely determine the transport equations. Therefore

the u-tensors may be used as an objective way to compare competing formalisms.

The transport equations obtained in this way are generalizations of the transport equa-

tions previously introduced in Ref. [17, 18]. Because they are expressed in terms of u-

tensors, it follows that they can be integrated in terms of the Jacobi fields and their

derivatives. Therefore the correlation functions can be expressed using the van Vleck mat-

rix and its derivatives. (Technically it is the inverse of the van Vleck matrix which appears,

in the form of the propagator matrix (3.15).)

In turn the van Vleck matrix can be expressed in terms of the integrated dilation,

shear and twist. This makes it possible to diagnose regions where the flow may become

adiabatic by tracking the behaviour of the focusing parameter Θ, defined in Eq. (5.13),

and the behaviour of the shear and twist.

Working within the slow-roll approximation we have argued that Θ & 1 implies the

presence of remaining isocurvature modes. To be compatible with experiment, these must

almost certainly decay before the surface of last scattering. The consequent transfer of

power into the adiabatic mode can change the value of ζ.

Flow equations.—The Jacobi fields yield a formal solution for each correlation function,

analogous to the “line of sight” used to simplify integration of the Boltzmann equation in

CMB codes.

This formal solution demonstrates explicitly that the transport equations reproduce

the Taylor expansion algorithm of Lyth & Rodríguez. In doing so we also obtain explicit

expressions for the Taylor coefficients Γαi and Γαij in terms of integrals of the expansion

tensor and its derivatives along the flow. Similar expressions had previously been obtained
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by Yokoyama et al. [14, 15].

These explicit expressions can be manipulated to obtain a closed set of evolution equa-

tions for the Taylor coefficients. These are Eqs. (3.38a) and (3.51). Such equations are

extremely helpful in practice, because it means the Taylor coefficients can be obtained

without the challenging problem of extracting a variational derivative after numerical in-

tegration: without a sufficiently accurate integration algorithm, the small variation of

interest can be swamped by numerical noise.

Transport of shape coefficients.—Even after obtaining the Taylor coefficients, it is

necessary to extract coefficients for each type of momentum dependence (or “shape,” in

inflationary terminology) which occurs in a correlation function. An alternative is to return

to the full k-space transport equations and derive evolution equations for these coefficients

directly. The first nontrivial case is the three-point function, whose shape coefficients are

determined by Eq. (3.55).

Gauge transformations.—Specializing to the slow-roll approximation, where the flow

can be described in field space, ray-tracing techniques can be used to obtain the gauge

transformation to ζ. In this way the gauge transformation is expressed using geometrical

quantities in field space, rather than merely derivatives of the potential.

In models where a large fNL is obtained from the gauge transformation, this gives

a geometrical interpretation of its magnitude. The contributory factors are: (1) the η-

parameters of the adiabatic and principal isocurvature modes; (2) the principal curvatures

of uniform-density hypersurfaces in field space; (3) the correlation coefficient between the

adiabatic fluctuations and the fluctuations in each principal isocurvature mode; and (4) an

anisotropy factor which measures distortions in the cloud of field-space points representing

the ensemble.

In two cases where a large, transient contribution to fNL has been observed, we show

this principally arises from a strong enhancement in the anisotropy factor.

Comparison with other geometrical formulations.—In common with all other ap-

proaches to the evolution of correlation functions, the interpretation described in §§4.4–

4.4.3 is a reformulation of perturbation theory. All approaches carry the same physical

content. Therefore, aside from practical considerations, the merit of each reformulation

arises from the insight gained by emphasis on different structures.

The formulation we have given emphasizes the background phase space manifold, which

encodes the structure of the theory in its geometry. This geometrical structure is mapped
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out by the behaviour of the trajectories flowing over it. Globally, this connection is made

precise by the methods of Morse theory. Locally, it is encoded in the Jacobi fields whose

role we have highlighted.

Attempts to reformulate perturbation theory in terms of geometrical objects have

already attracted attention by various authors. Gordon et al. [86] and Nibbelink & van

Tent [20] formulated perturbation theory for the two-point function in terms of the Frenet

basis, which they called the “kinematical basis.” (See also Achúrcarro et al. [25].) Peterson

& Tegmark later extended this approach to the three-point function [22–24]. A Frenet basis

can be defined for each trajectory, and the Frenet–Serret equation describes how this basis

is transported along the trajectory. In Refs. [20, 22–25, 86] these equations are used to

describe transfer between the adiabatic and isocurvature modes.

In the Frenet formulation, the isocurvature modes are identified with the normal, binor-

mal, . . . , vectors. In our formulation these modes arise from the eigenvectors of the extrinsic

curvature, Kαβ , which we have described as the principal isocurvature modes. The tangent

plane spanned by the Frenet normal, binormal, . . . , is the same as the subspace spanned

by the eigenvalues of Kαβ , so the physical content of these formulations is the same. More

generally, in our formulation the properties of the isocurvature modes are expressed using

the familiar mathematical apparatus used to describe hypersurfaces—normal vectors, first

and second fundamental forms, and so on.

In addition, we explicitly separate a “local” contribution to each ζ correlation function,

arising from a gauge transformation and depending on the precise orientation of the Frenet

basis, from the “integrated” contributions, obtained by solving the transport equations.

Although it is clear that one can equally well express the integrated contributions in any

suitable basis, it requires extra effort to rotate to the Frenet basis at each step in the

integration. We feel it is preferable to express the evolution equations of perturbation

theory in terms of the original basis on field space.

Future directions.—This formalism can be extended in several directions.

First, at some points in the discussion we specialized to the slow-roll approximation,

to take advantage of certain simplifications—such as the twist-free and hypersurface-

orthogonal character of flow. However, as we have presented it, the underlying formalism is

independent of slow-roll. It can be used to evolve both field and momentum perturbations.

This is desirable because future data from microwave background or galaxy surveys will

be highly accurate, demanding commensurate accuracy in our theoretical calculations.
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Second, in this paper we have interpreted the decay of isocurvature modes, and ap-

proach to an adiabatic limit, as focusing of the bundle to an “adiabatic” caustic. Our

detailed discussion was restricted to field space. It should also be possible to study focus-

ing and decay of isocurvature modes on the full phase space, providing a framework for the

study of kinetically dominated scenarios, such as descent through the waterfall of hybrid

inflation, where focusing may also occur.

Third, the existence of explicit expressions for the Taylor coefficients Γαi and Γαij may

enable new analytic solutions to be found.

Finally, the entire formalism can be extended to higher n-point functions. The case of

principal interest is the four-point function. In contrast to the three-point function, this

requires two shape parameters which determine τNL and gNL.
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3.A Appendix: Yokoyama et al. backwards formalism

In §3.4.2 we presented integral formulae for the “δN ” coefficients, Eqs. (3.50a)–(3.50b), and

noted that essentially identical expressions had been presented by Yokoyama et al. [14–16].

(However, Yokoyama et al. obtained their results by very different means.) Since their

work is closely related to our own in content and outlook, we take this opportunity to

review and extend their results.

Their aim is to develop evolution or “transport” equations (in our terminology) for ob-

jects closely related to observation, such as the derivatives Ni—defined in section §4.4.3—

and the fNL parameter. They proceed as we do, first fixing a flat initial hypersurface. In

our notation this is distinguished with lower case Roman indices. Unlike us, they also fix

the final slice to be the precise time at which we wish to know the value of each observ-

able quantity. In our notation this slice is labelled with Greek letters, and we obtain the

matrices Γαi and Γαij as a function of it. Observables can be obtained after evaluating

these functions at the time of interest. Instead, Yokoyama et al. consider intermediate

flat slices between the initial and final slices, and express their answers as a function of

the intermediate time. As we now explain, observables are to be obtained by setting this

intermediate slice equal to the initial hypersurface.

For convenience we extend our index notation, and label quantities evaluated on the

intermediate slice with upper case Roman indices. Yokoyama et al. introduce the quantity

NI = NαΓαI , (3.86)

where Nα was defined in §4.4.3. NI is the derivative of the number of e-folds between an

intermediate flat hypersurface and the final uniform density hypersurface, with respect to

the field values on the intermediate slicing. Yokoyama et al. introduce a further quantity

ΘI = ΓIiNi. Note that ΘI is not to be confused with the focusing parameter Θ defined

in the text, which is the exponential of the integrated dilation. NI and ΘI obey the

autonomous transport equations

dNI

dN
= −uJINJ , (3.87)

dΘI

dN
= uIJΘJ , (3.88)

Evaluating NI at the final hypersurface gives Nα, which provides a boundary condition for

the differential equation. One can then evolve backwards in time until we reach the initial
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slice. At this point NI will equal Ni, which is the Taylor coefficient we set out to calculate.

After this has been done, ΘI can be evolved forwards from the initial hypersurface with

boundary condition Θi = Ni.

We describe this as the “backwards” formalism, to be contrasted with the “forwards”

formalism we have described in the text.

The introduction of these quantities is ingenious. Employing Eq. (3.72) together with

Eq. (3.50b) yields

Nij = NαΓαl

∫ N

N∗
Γ−1
lσ uσβγΓβiΓγjdN

′ +NαβΓαiΓβj , (3.89)

In turn this leads to

NiNijNj =

∫ N

N∗
NIuIJKΘJΘkdN

′ + ΘαΘβNαβ. (3.90)

Therefore, fNL can be evaluated with knowledge only of NI , ΘI and uIJK .

In performing this calculation, Yokoyama et al. traded a three-index object (either

Γαij or αα|βγ , depending which formulation is in use) for two one-index objects, NI and

ΘI . This involves fewer equations and therefore can be numerically advantageous.

Nevertheless, the backwards formalism has some disadvantages. First, because it com-

putes only the Taylor coefficients, information about isocurvature modes is discarded. The

evolution equations for Σαβ and αα|βγ , or Γαi and Γαij , allow the isocurvature modes to

be retained.

Second, to obtain information about the time-evolution of any observable it is necessary

to recalculate NI and ΘI with multiple final times. Although the method yields NI , which

is apparently related to the gauge transformation at an intermediate time, this is not

quite correct. NI is defined for a fixed future rather than past boundary condition, and

therefore gives information about a range of scales at a fixed time of observation, rather

than a fixed scale at a range of final times. The past-defined objects required for the latter

are automatically provided by the forwards formalism, meaning that multiple integrations

are not required.

If the time of observation is known then the backwards formalism gives an efficient

means to treat multiple scales at once.

To extend the backwards formalism to the trispectrum, one needs to separate the

observables τNL and gNL. For this purpose Nij and Nijk themselves would be required.

Therefore, given the potential utility of this method, we conclude by extending it to include

a backwards evolution equation for NIJ . As for the spectrum, this can be used to obtain
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information about fNL and τNL over a range of scales at a fixed time of observation. It

still requires the solution for only a two-index object. The transport equation for NIJ can

be shown to be
dNJK

dN
= −uIJKNI − uIJNIK − uIKNIJ . (3.91)

This is to be solved backwards from the final hypersurface where NIJ is equal to Nαβ .
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Paper 4

Multifield consequences for D-brane inflation

Mafalda Dias, Jonathan Frazer and Andrew Liddle

We analyse the multifield behaviour in D-brane inflation when contributions from the

bulk are taken into account. For this purpose, we study a large number of realisa-

tions of the potential; we find the nature of the inflationary trajectory to be very

consistent despite the complex construction. Inflation is always canonical and occurs

in the vicinity of an inflection point. Extending the transport method to non-slow-roll

and to calculate the running, we obtain distributions for observables. The spectral

index is typically blue and the running positive, putting the model under moderate

pressure from WMAP7 constraints. The local fNL and tensor-to-scalar ratio are typ-

ically unobservably small, though we find approximately 0.5% of realisations to give

observably large local fNL. Approximating the potential as sum-separable, we are able

to give fully analytic explanations for the trends in observed behaviour. Finally we

find the model suffers from the persistence of isocurvature perturbations, which can

be expected to cause further evolution of adiabatic perturbations after inflation. We

argue this is a typical problem for models of multifield inflation involving inflection

points and renders models of this type technically unpredictive without a description

of reheating.

4.1 Motivation

Inflation (for recent reviews see Ref. [1–3]) is widely viewed as the most elegant paradigm

to understand the very early universe, but despite being a simple set-up, it is hard to

141
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fully describe it within an ultra-violet complete theory. The main reason for this is that

its dynamics are highly sensitive to Planck-scale physics. Generally speaking, Planck-

suppressed contributions arise by integrating out heavy fields, which are present as extra

degrees of freedom necessary for the ultra-violet completion of a theory. Unless protected

by some specific symmetry, the inflaton will couple to these heavy fields, which results in

a radiative instability of its mass and of the flatness of the potential. It is therefore of

enormous interest to try to study inflation in an effective action that takes into account

contributions of high energy physics.

In string theory, the important degrees of freedom to take into consideration are the

heavy moduli that arise from stabilized compactifications of the extra dimensions. To com-

pute the detailed contributions that their coupling to the inflaton induces in the effective

action requires full knowledge of the stabilized compactification, which is rarely possible.

In this sense, it is important to identify and work with string set-ups that present a suffi-

cient level of computability. This is the main motivation to look at inflation arising from

the dynamics of D3-branes in warped throats. This scenario is not expected to be generic

but it allows some major simplifications that make the task of building the effective action

more achievable.

The flux compactification causes warping of the manifold, giving rise to regions of

the bulk with warped throats. Inflation can occur in this scenario when a D3-brane,

corresponding to our four-dimensional space-time, is Coulomb attracted to an anti-D3-

brane that sits at the infra-red tip of the throat, where it minimizes its energy. Inflation

is driven by the dynamics of the D3-brane, and it behaves like a multi scalar field system,

where the fields can be viewed as the physical coordinates separating the branes. The

inflationary epoch ends when the branes collide and annihilate.

What is special about these warped throat regions is that they can be approximated by

a finite region of a non-compact conifold geometry, for which the metric and background

fluxes are well known. This finite segment is then glued to the compact bulk at some

ultra-violet scale. Corrections to this non-compact approximation will arise from the effect

of fields on the throat, like stabilized moduli of the compact bulk, and are clearly examples

of the Planck-suppressed contributions to the effective action mentioned above.

Even working in this ‘simple’ set-up, the effective action cannot be fully computed.

At most, it is possible to calculate the form of the Planck-suppressed contributions, but

they will come necessarily with an unknown Wilson coefficient. For this reason, to study

the inflationary potential that arises from the D-brane scenario one needs to sample over
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a lot of realisations of random Wilson coefficients. Observational predictions need to be

understood in the light of this statistical nature.1

Another issue to keep in mind is that the conifold approximation for the throat does not

hold at the infra-red tip. This implies that, if using such an approximation, the dynamics

can only be analysed before the tip, ignoring everything that occurs around and just before

the collision of the branes. One can hope that this regime will not significantly affect the

curvature perturbation ζ, otherwise the predictions made are useless for comparisons with

observations at decoupling time or after. To check if this is a reasonable assumption, it

is necessary to keep track of isocurvature modes as they transfer power to the curvature

perturbations. If they have not completely decayed by the end of the analysis, the curvature

perturbation will continue to evolve as the brane moves into the tip. The inflationary

trajectory is said to have not yet reached its ‘adiabatic limit’. The observable properties of

ζ will then depend on unknown details of the tip, including reheating, making the model

incomplete.

In this paper, our aim is to exhaustively study the possible D-brane dynamics above

the tip and understand the consequent inflationary behaviour. For this purpose, we follow

the most sophisticated set-up in the literature [4]. This includes the sampling over Wilson

coefficients and assumptions like the ones described above. The throat is approximated by

a conifold parameterized by one radial and five angular directions that can be effectively

viewed as the scalar fields driving inflation; this approximation only holds for a fixed range

in the radial direction and it can be shown that within it DBI effects can be neglected.

The framework and details of the construction of the potential are reviewed in §4.2.

Since the potential that describes the motion of the D-brane is sensitive to all 6 co-

ordinates, multifield effects have a profound impact on the dynamics of the inflationary

trajectory and consequent curvature perturbations ζ. To compute observables within this

multifield superhorizon dynamics, we use the transport equations method originally intro-

duced in Refs. [5, 6] along with an extension to non-slow-roll that will be described fully in

a forthcoming paper [7]. This technique is a realisation of the separate universe assumption

in which the values of correlation functions of ζ and their tilts can be directly transported
1This issue is analogous to the challenge of making predictions in models of the string landscape. In

order to compare predictions from this model with observation we must assume we are a typical observer.

Of what class of observer we are typical is however a very difficult question to address and brings with

it an inherent measure problem. We make no attempt to address this interesting challenge here, but it

should be noted that a resolution of this problem will add a weighting to the distributions we present in

this work.
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from horizon-crossing to the desired time of evaluation, as described in §4.4. Since this

is framed in terms of ordinary differential equations, it allows for a clean and efficient

numerical implementation as well as a means of explicitly keeping track of the evolution

of isocurvature modes.

As a consequence of our analysis, we obtain the probability of getting inflation, found

to be in agreement with Ref. [4], and the statistical distributions of observables predicted

by our set-up. But the most interesting results of this work come from our understanding

of the peculiarities of the multifield dynamics of the D-brane potential. By looking in detail

at the resulting inflationary trajectories, we are able to map trends in the distributions of

observables to generic features of the potential. Moreover, we can see if these features allow

the trajectories to reach their adiabatic limit. The outcome of our work is then more than

the computation of predictions, being an investigation on the limitations of our set-up as

a predictive and useful toy model for the D-brane scenario.

4.2 D-brane inflation

4.2.1 D-branes in a warped throat

As mentioned earlier, in the D-brane inflation scenario, our Universe lives in a D3-brane and

experiences inflation due to its dynamics in a warped throat region of a stabilized compact

space; the D3-brane is attracted by an anti-D3-brane that sits at the tip of the throat

where its energy is minimized. When the two branes collide, they annihilate, inflation

ends and reheating occurs [8, 9].

The throat region, excluding the tip, can be well approximated by a non-compact

conifold geometry; the conical singularity that would arise at the tip is smoothed by fluxes

such that the radial coordinate at this point is finite. For the purpose of this work, only the

region above the tip will be considered. In this case, and ignoring logarithmic corrections

to the warp factor, the background geometry can be approximated by:

ds2 =

(
R

r

)2

gijdφ
idφj =

(
R

r

)2 (
dr2 + r2ds2

T 1,1

)
, (4.1)

where r is the radial conical coordinate and T 1,1 is the coset space (SU(2)× SU(2)) /U(1)

that describes the angular directions of the cone. The radius R is approximately rUV, the

coordinate at which the throat is glued to the compact bulk, as illustrated in Fig. 4.1.
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Figure 4.1: The non-compact conifold approximation for the warped throat. This approximation holds between

x = 1, where the throat is glued to the compact bulk, and x = 0.02, where the tip that cannot be

described by our approximated geometry starts.

In agreement with Ref. [4] we use the value rUV = 1 throughout this work. It is useful

to define a rescaled radial coordinate as x ≡ r/rUV that in the cone region is always

0 � x < 1. To ensure that the non-compact approximation always holds, we restrict our

analysis to the regime comfortably above the tip, where 0.02 < x < 1. The value x = 0.02

was chosen in agreement with Ref. [4].

The T 1,1 space is parameterized by 5 angles Ψ = {θ1, θ2, ϕ1, ϕ2, ψ} where 0 ≤ θ1 ≤ π,

0 ≤ θ2 ≤ π, 0 ≤ ϕ1 < 2π, 0 ≤ ϕ2 < 2π and 0 ≤ ψ < 4π.

Throughout this paper we will use units M−2
Pl = 8πG = 1. Also, in agreement with

Ref. [4], we use the value rUV = 1. In this throat the D3-brane experiences a DBI infla-

tionary Lagrangian like

L = a3

−T (φ)

√
1− T3gijφ̇iφ̇j

T (φ)
− V (φ) + T (φ)

 , (4.2)

where a is the scale factor, T3 is a constant representing the brane tension and, within

the approximation where the logarithmic corrections to the warp factor can be ignored,

T (φ) = T3x
4. The value of the warp factor at the tip is determined by the parameter a0

such that T (φ)|tip ≡ T3a
4
0. Some physical arguments concerning the consistency of the

set-up enforce a limit on how small T (φ) can get [10]; in this work, following Ref. [4], we

use the values T3 = 10−2 and a0 = 10−3.

As mentioned in Ref. [4], for our specific realisations of the D-brane action, the brane

velocity is always very small compared to T (φ), making

T3gijφ̇
iφ̇j

T (φ)
� 1. (4.3)
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This is equivalent to saying that DBI effects are negligible, as we can rewrite the Lagrangian

as

L = a3

(
1

2
T3gijφ̇

iφ̇j − V (φ)

)
(4.4)

and identify the canonical kinetic term rescaled by the constant T3.

The fact that this simplification can be made is related not only to the choice of T3

and a0 but also to the fact that our analysis only includes the throat region above the tip.

Condition (4.3) breaks if T (φ) gets very small and, in fact, T (φ) decreases with x. Possible

DBI inflation in this regime can have strong repercussions in the value of observables at

the end of inflation; the inclusion of the whole throat in the computation of perturbations

is then potentially very interesting but beyond the scope of this work.

4.2.2 D-brane potential

In the simplest form of this scenario, the potential that induces inflation has two contri-

butions [9]. First, there is the Coulomb interaction between the pair of branes, which is

a multipole expansion where high-multipole terms are suppressed by powers of a0. The

leading terms are:

VC = D0

(
1− 27D0

64π2T 2
3 r

4
UV

1

x4

)
(4.5)

where the parameter D0 ≡ 2T3a
4 determines the overall scale of inflation.

Second, the coupling to the curvature induces, at leading order, a mass term like:

VM =
1

3
µ4x2 (4.6)

where the scale µ4 ≡ D0T3r
2
UV/M

2
Pl.

In this basic picture, inflation would actually be single-field, with the inflaton being

the radial separation between brane and anti-brane, x. However, if the dynamics was

determined by these two terms only, sufficient inflation couldn’t be achieved [8]. Such a

potential has a single inflection point; this feature will be shown in the next sections to

have strong consequences for the phenomenology of the full model.

This simplified picture ignores some important contributions to the potential experi-

enced by the D-brane. One needs to take into account that the throat is finite and glued

to a compact manifold, and as such, moduli stabilization from the bulk will necessarily

have an impact on the throat geometry. These contributions can be viewed as corrections

to the non-compact approximation, and will be denoted by Vbulk.
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Ideally, one would like to have the full knowledge of the 4-dimensional potential induced

by the compactification flux on the brane dynamics, but this is not possible to achieve for

a general Calabi–Yau bulk. However, it is known [10] that such a potential, in the non-

compact background of the conifold, respects the Laplace equation:

∇2Vbulk = 0. (4.7)

Since we know completely the geometry of the conifold, this equation can be explicitly

solved. We refer to these contributions, following the notation of Ref. [10], as the homo-

geneous contributions to Vbulk.

Deviations from this expression, which holds for the non-compact background, can be

obtained by allowing a source from the bulk. In this case, the Poisson equation looks like

[10]

∇2Vbulk =
gs
96
|Λ|2 , (4.8)

where gs is the string coupling constant and Λ is proportional to the imaginary anti-self-

dual three-form flux from the bulk. We will refer to these contributions as the inhomogen-

eous contributions to Vbulk. To solve this equation, a simplification can be used. Since these

contributions are perturbations to the non-compact approximation, they can be assumed,

up to a good approximation, to have the same structure as the homogeneous contributions.

So the idea is to express them as an expansion of harmonic terms from the homogeneous

solution. In other words, the solutions to the Laplace equation dictate the structure of the

bulk contribution to the potential.

Homogeneous contributions: The Laplace equation (4.7) for our non-compact

conifold can be written in the form of the expansion [11]:

Vhom bulk(x,Ψ) = µ4
∑
LM

CLMx
∆(L)YLM (Ψ) (4.9)

where CLM are constant coefficients, YLM (Ψ) are the angular eigenfunctions of the Lapla-

cian of the T 1,1 space and the subscripts L ≡ {l1, l2, R} and M ≡ {m1,m2} represent

the quantum numbers under the T 1,1 isometries. The powers ∆(L) are related to the

eigenvalues of the Laplacian and are given by

∆(L) ≡ −2 +
√

6l1(l1 + 1) + 6l2(l2 + 1)− 3R/4 + 4. (4.10)

The magnitudes of CLM are highly dependent on details of specific compactifications,

so they need to be considered unknown parameters. Using the scale µ4, considerations of
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Ref. [12] suggest that CLM ∼ O(1), so a way to deal with this lack of knowledge is to

scan randomly over values in this range. To take the leading contributions of this term,

one needs to consider the lower values of ∆(L). The maximum value desired for ∆(L)

determines the truncation of the summation.

Inhomogeneous contributions: To solve Eq. (4.8) as an expansion of the type of

Eq. (4.9), one needs to identify the radial scaling of the flux Λ in terms of the quantum

numbers L and M of T 1,1. It is possible to classify the flux in 3 different series, I, II and

III, regarding their different radial scaling [10]. The radial scaling of |Λ|2 is given by 2

∆(Lα, Lβ)inhom bulk ≡ ∆α(Lα) + ∆β(Lβ)− 4 (4.11)

where α and β run over the 3 different series I, II and III and

∆I(L) ≡ −1 +
√

6l1(l1 + 1) + 6l2(l2 + 1)− 3R/4 + 4, (4.12)

∆II(L) ≡
√

6l1(l1 + 1) + 6l2(l2 + 1)− 3R/4 + 4, (4.13)

∆III(L) ≡ 1 +
√

6l1(l1 + 1) + 6l2(l2 + 1)− 3R/4 + 4. (4.14)

It is then possible to write the inhomogeneous contributions as:

Vinhom bulk(x,Ψ) = µ4
∑

LαMα,LβMβ

CLαMαLβMβ
x∆(Lα,Lβ)YLαMα(Ψ)YLβMβ

(Ψ). (4.15)

To write this expression with the same structure as Eq. (4.9), the angular part needs to

be expanded in terms of YLM of T 1,1 as

YLαMα(Ψ)YLβMβ
(Ψ) =

∑
LM

AαβYLM (Ψ) (4.16)

such that finally,

Vinhom bulk(x,Ψ) = µ4
∑
Lα,Lβ

∑
LM

CLMx
∆(Lα,Lβ)AαβYLM (Ψ). (4.17)

The constants CLM correspond to the random parameters associated to each YLM from

the homogeneous contribution, and, just as in that case, the maximum value desired for

∆(Lα, Lβ) determines the truncation of the summation.

2Some contractions of flux series vanish following the considerations of Ref. [10].
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Figure 4.2: A typical realisation of the D-brane potential with only one angular direction, ψ, active.

The total potential experienced by the D-brane in the throat is then

V (x,Ψ) = VC + VM + Vhom bulk + Vinhom bulk

= D0

(
1− 27D0

64π2T 2
3 r

4
UV

1

x4

)
+

1

3
µ4x2

+ µ4
∑
LM

CLMx
∆(L)YLM (Ψ) + µ4

∑
Lα,Lβ

∑
LM

CLMx
∆(Lα,Lβ)AαβYLM (Ψ)

(4.18)

A specific realisation of this potential, with only one angular direction being taken into

account, is shown in Fig. 4.2.

4.3 Experimental procedure

Having established that the brane potential necessarily has a level of randomness to be

able to encompass complex contributions, it is important to construct a useful sample of

realisations for the study of the emergent inflationary behaviour.

The first thing to specify is the maximum values of ∆(L) and ∆(Lα, Lβ) in the potential.

Since the mass term has power ∝ x2, it makes sense to include at least all terms with ∆ ≤ 2.

For computational reasons, and in accordance with Ref. [4], we looked at potentials with

∆ ≤ 3 and with ∆ ≤
√

28− 3/2. This corresponds to a total of 121 and 390 independent
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Figure 4.3: Distributions for the scalar spectral index for the model with 2 active fields. The distributions were

taken with different values of Q and show very similar behaviours (∆MAX = 3 in all distributions).

terms in the potential, respectively.3 The values taken by ∆ are: 1, 3/2, 2, 5/2,
√

28 −

5/2, 3,
√

28− 2, 7/2,
√

28− 3/2.

The second thing to decide is how to generate the random CLM coefficients. Following

Ref. [4], we define CLM ≡ QĈLM such that ĈLM is a distribution with unit variance,

encapsulating the information on the distribution, and Q is the root mean square size of

CLM , encapsulating the information on its magnitude.

Drawing conclusion on the predictions of the model would be problematic if the infla-

tionary behaviour emerging from our sample was dependent on the type of distribution

of ĈLM . Fortunately, as shown in Ref. [4], this is not the case. In this work, we use a

Gaussian distributed ĈLM .

Regarding the choice of Q, a similar argument could be invoked. As mentioned in the

previous section Q ∼ O(1), but the probability of inflation is very sensitive to its precise

value [4]. If the emergent behaviour, given that inflation occurs, was also sensitive to this

choice of Q, it would be hard to make general predictions. To ensure that no issue would

arise from this effect, we tested the dependence of the inflationary phenomenology on the

choice of Q and found it to be independent. This is demonstrated in Fig. 4.3, where, as an

illustrative example, the distribution of the spectral index for a two-field sample is plotted

for five different values of Q.

The last thing to fix before constructing the sample is the choice of initial conditions, for
3Note that these numbers differ slightly from those of Ref. [4]. The origin of this discrepancy lies in

details of the expansions performed on Vbulk.
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which we follow Ref. [4] precisely. Since the potential is statistically invariant under angular

translation in T 1,1, generating multiple realisations starting always at the same angular

coordinate automatically encompasses the statistical effect of varying initial conditions

within a single realization. We hence consider just one initial condition per realization,

arbitrarily taken as the angular coordinates being Ψ0 = {1, 1, 1, 1, 1}. Regarding the initial

radial direction, and following arguments from Ref. [4], we chose x0 = 0.9. We set all the

initial velocities to zero, ẋ0 = Ψ̇0 = 0, leaving the study of the possible impact of initial

velocities on inflationary phenomenology for future work.

We can now present our experimental procedure for the building of a statistical sample

of inflationary trajectories. This procedure was first used in Ref. [13] and more recently in

Refs. [4, 14, 15]:

1. Generate a random potential V (x,Ψ) starting at (x0,Ψ0) = (0.9, 1, 1, 1, 1, 1) and

evolve to find the field trajectory.

2. If the model gets stuck in eternal inflation, i.e. does not reach x = 0.02, reject.

3. If the brane gets ejected from the throat, i.e. x gets larger than 1, reject.

4. Once the brane has reached x = 0.02, if the number of e-folds of inflation N < 60,

reject, as insufficient inflation occurred, otherwise calculate observables.

5. Repeat steps 1-4 many times to obtain a statistical sample.

Several sets of samples were generated by changing some parameter, either ∆MAX, Q or the

number of active fields. When mentioning two-field samples, we are referring to a model

with the radial direction and one angular direction active. When we discuss more active

fields, we are referring to models with additional angular directions.

The probability of achieving successful inflation in this set-up is in agreement with

Ref. [4]. If Q is too small, most of the trajectories do not produce 60 e-folds of inflation; if

Q is too large, most of the trajectories lead to an ejection of the brane. The optimum value

of Q lies between these two regimes. As the number of active fields increases, just as when

∆MAX increases, P (N > 60) becomes more sensitive to the choice of Q, and decreases

slightly. Illustrative values are shown in Table 4.1. It is interesting to note that even for

the optimum Q, more than half of the rejections are due to the brane being ejected from

the throat, in agreement with Ref. [4].

Regarding the value of ∆MAX, we noticed that the inflationary phenomenology does

not depend strongly on the chosen value. An illustrative example is shown in Fig. 4.4, for
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Fields 2 2 3 3 4 6

∆MAX 3
√

28− 3/2 3
√

28− 3/2 3 3

P (N > 60) 3× 10−4 3× 10−4 2× 10−4 9× 10−5 6× 10−5 3× 10−5

Table 4.1: Probability of getting successful trajectories (N > 60) as a function of the number of active fields and

∆MAX.

Figure 4.4: Distributions for the scalar spectral index for the model with 2 active fields, left, and 3 active fields,

right. The distributions were taken with ∆MAX = 3 and ∆MAX =
√

28 − 3/2 ≈ 3.8 and show very

similar behaviours (Q=1.4 in all distributions).

the spectral index of models with two and three fields. For this reason, in what follows,

we concentrate on distributions with ∆MAX = 3.

In the next section, we present the techniques used for the computation of observables.

4.4 Computing the curvature perturbation

A central feature of any model of inflation with more than one active scalar field is that

the primordial curvature perturbation ζ evolves on superhorizon scales. To compute this,

almost all methods in the literature to date make use of some variant of the separate

universe assumption [16–18]. The idea is to understand the final curvature perturbation as

the result of the scatter of a collection of equal size space-time patches, within which the

field values at a given time are constant. Let us make this more precise.
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4.4.1 The separate universe assumption is a geometrical optics approxima-

tion

The separate universe assumption states that, when smoothed on some physical scale L

much larger than the horizon scale, the average evolution of each L-sized patch can be

computed using the background equations of motion and initial conditions taken from

smoothed quantities local to the patch. The evolution of ζ can be understood as the

variation in the expansion of these patches. Since each smoothed patch corresponds to

a position in phase space, the evolution of ζ can be determined by the evolution of an

ensemble of points in the classical phase space. These points are subject to the laws of

statistical physics and hence evolve according to the Liouville equation.

Under the separate universe assumption, interactions between patches are negligible

and therefore all that is required is a mapping of the initial conditions to a final state.

The final distribution in phase space can then be viewed as an image of the initial con-

ditions. This mapping simply follows a flow generated by the background theory and can

be calculated in precisely the same way as geometrical optics enables us to calculate the

image generated by a source of light rays. This optical description was made precise in

Ref. [19], which we briefly summarise in this section, referring the reader to Ref. [19] for a

more detailed discussion.

4.4.2 Transport equations

Since slow-roll approximations are not valid in general, we are required to work in a 2NF-

phase space. This consists of NF fields φi as well as their momenta pi ≡ φ′i, where primes

represent differentiation with respect to the number of e-folds N . The fields φi and pi

are treated on an equal footing, so from now on we will denote a point in phase space by

ϕα ≡ {φi, pi} where α runs from 1 to 2NF.

In canonical models of inflation, if we set initial conditions near horizon-crossing, the

initial distribution of field perturbations will be close to Gaussian [20]. Furthermore, typ-

ical spacing between arbitrarily selected members of the ensemble is of order the quantum

scatter. It follows that the trajectories traversed by the ensemble trace out a narrowly-

collimated spray or ‘bundle’ of rays in phase space with an initial Gaussian distribution.

This scenario is well studied in the optics literature since many lasers have this character-
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istic.

Cross-sections within the bundle of trajectories may be focused, sheared or rotated by

refraction. It is ultimately through these distortions that any evolution in ζ occurs. To

describe these distortions quantitatively, it is only necessary to know how some basis which

spans the cross-section is transported from slice to slice. Denoting the difference between

two field values at equal-time positions x and x + r by δϕα(r), we have an appropriate

basis. This basis evolves along the beam as [19]

dδϕα(r)

dN
= uαβ[ϕ(x)]δϕβ(r) +

1

2
uαβγ [ϕ(x)]δϕβ(r)δϕγ(r) + · · · . (4.19)

where uαβ ≡ ∂βuα is the expansion tensor defined as the derivative with respect to the

fields of the background flow uα[ϕ(x)] ≡ ϕ′α(x) and similarly uαβγ ≡ ∂γuαβ . For clarity,

we will drop the explicit ϕ(x) dependence from now on.

The expansion tensor can be decomposed as a dilation θ = truαβ , a traceless symmetric

shear σαβ , and an antisymmetric twist ωαβ ,

uαβ ≡
θ

M
δαβ + σαβ + ωαβ, (4.20)

Dilation describes a rigid, isotropic rescaling of δϕα by 1+θ, representing a global tendency

of the light rays to focus or defocus. The shear σij represents a tendency for some light

rays within the beam to propagate faster than others. The twist ωαβ describes a tendency

of neighbouring trajectories to braid around each other.

The observables of interest, like the power spectrum of ζ, its spectral index ns, the

local non-Gaussianity parameter fNL, etc, are related to the correlators 〈ζζ〉 and 〈ζζζ〉. So

to compute the evolution of these quantities we need to know the evolution of the correl-

ators of δϕα. The full set of basis vectors contains all information required to determine

the evolution of the bundle, encoded in Eq.(4.19) by the u-tensors. To obtain transport

equations for the correlation functions simply requires reorganisation of this information.

As was shown in Refs [5, 6, 19] this can be done in a number of ways. A particularly quick

method is to acknowledge that provided the perturbations can be treated classically, we

expect d〈O〉/dN = 〈dO/dN〉 for any quantity O. We can therefore immediately arrive at

expressions for the two-point and three-point functions. Writing the two-point function as

Σαβ ≡ 〈δϕαδϕβ〉, Eq. (4.19) implies

dΣαβ

dN
=

〈
dδϕα
dN

δϕβ + δϕα
dδϕβ
dN

〉
= uαγΣγβ + uβγΣγα + [≥ 3 p.f.] (4.21)

Similarly, writing the three-point function as ααβγ ≡ 〈δϕαδϕβδϕγ〉, we get

dααβγ
dN

= uαλαλβγ + uαλµΣλβΣµγ + cyclic (α→ β → γ) + [≥ 4 p.f.]. (4.22)
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This forms a coupled set of ordinary differential equations which can in principle be

extended to any n-point correlation function (see Ref. [21] for an implementation of this

technique for the trispectrum). In the context of this work we only care about the power

spectrum and bispectrum of ζ, so this set of equations encodes all the information we need

for the understanding of superhorizon evolution of our observables.

4.4.3 Gauge tranformations

Having seen how to compute the evolution of the field perturbations, now we need to relate

these to the primordial curvature perturbation ζ. This can be done by realizing that the

curvature perturbation ζ evaluated at some time t = tc is equivalent on large scales to the

perturbation of the number of e-foldings N(tc, t∗, x) from an initial flat hypersurface at

t = t∗, to a final uniform-density hypersurface at t = tc [22–25],

ζ(tc, x) ' δN(tc, t∗, x) ≡ N(tc, t∗, x)−N(tc, t∗) (4.23)

where N(tc, t∗) ≡
∫ c
∗ Hdt. In the transport method, the hypersurfaces at t = t∗ and t = tc

are chosen to be infinitesimally separated. Expanding δN in terms of the initial field

perturbations to second order, one obtains

ζ(tc, x) = δN(tc, t∗, x) = N,α δϕ
∗
α +

1

2
N,αβ (δϕ∗αδϕ

∗
β − 〈δϕ∗αδϕ∗β〉), (4.24)

where repeated indices should be summed over, and N,α, N,αβ represent first and second

derivatives of the number of e-folds with respect to the fields ϕ∗α.4 The N derivatives are

simply a gauge transformation from field perturbations to curvature perturbations. This

gauge transformation only needs to be performed at the time of evaluation of ζ. The fact

that it does not need to be transported through superhorizon evolution is a great numerical

advantage of this technique.

It is straightforward to express the observables of interest at the time of evaluation

within this formalism. The power spectrum is just related to the two-point correlation

function of ζ and can be obtained by [5, 6]

Pζζ = N,αN,βΣαβ. (4.25)
4The subtraction of the correlation function in the second term is due to the fact that this covariance

matrix corresponds to the contribution from disconnected diagrams which gives the vacuum energy. In

Fourier space one only considers connected diagrams from the outset and thus the subtraction is already

implicitly taken care of.
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To obtain initial conditions at horizon-crossing, we set all the fields to be effectively mass-

less. We tested the consistency of this assumption and found it to be valid in every

realisation.5 The scalar spectral index, which expresses how the power spectrum changes

with scale, is defined as

ns − 1 ≡
d lnPζζ
d ln k

∣∣∣∣
k=k∗

(4.26)

where k∗ is the pivot scale. This can be rewritten as

ns − 1 =
N,αN,β

Pζζ

dΣαβ

d ln k
=
N,αN,βnαβ
N,λN,µΣλµ

, (4.27)

where we have introduced the matrix nαβ ≡ dΣαβ/d ln k. Since the gauge-transformation

factors N,α and the expansion tensors uαβ are k-independent (they depend only on the

typical trajectory followed by the smoothed fields at each time) we can understand how

the spectral index evolves on superhorizon scales [26]. The only necessary ingredient is a

transport equation for the object nαβ which is:

dnαβ
dN

=
d

d ln k

dΣαβ

dN
= uαλnλβ + uβλnλα. (4.28)

In this work, for the first time, we apply an equivalent method to evaluate the running

of the spectral index, which estimates how ns itself changes with scale. It is defined as

d(ns − 1)

d ln k

∣∣∣∣
k=k∗

=
d

d ln k

(
N,αN,βnαβ

Pζζ

)
=
N,αN,βrαβ

Pζζ
− (ns − 1)2 (4.29)

where we have introduced the matrix rαβ ≡ dnαβ/d ln k. Again, to have the evolution of

the running, we just need to specify the transport equation for rαβ which is:

drαβ
dN

=
d

d ln k

dnαβ
dN

= uαλrλβ + uβλrλα. (4.30)

The horizon-crossing initial condition for this expression can be obtained by calculating

the derivative with respect to ln k of the horizon-crossing value of nαβ given in Ref. [26].6

This derivative is to be evaluated at equal times. To do so, we first compute how the nαβ

associated to the pivot scale k∗ changes with a variation in scale like k∗ + δ ln k. This is

dnαβ
d ln k

∣∣∣∣
h.c.

= (−2ε′h.c.+4ε2h.c.)Σαβ|h.c.−
(
duαγ
dN

Σγβ +
duβγ
dN

Σγα

)∣∣∣∣
h.c.

+2εh.c.(uαγΣγβ+uβγΣγα)|h.c.
(4.31)

where ε′ = dε/dN .

The k∗ and k∗+ δ ln k modes cross the horizon at different times but we are looking for

the change at equal times. When compared at the same time the longer mode experiences
5We would like to thank Sebastien Renaux-Petel for pointing out this possible issue.
6We would like to thank David Seery for discussions on this topic.
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slightly more evolution. For this reason, we then need to include an extra contribution that

corresponds to this nαβ displacement. Remembering that at horizon crossing d ln k ∼ dN ,

this is just dnαβ/dN . The total expression is then

rαβ|h.c. = (−2ε′h.c. + 4ε2h.c.)Σαβ|h.c. −
(
duαγ
dN

Σγβ +
duβγ
dN

Σγα

)∣∣∣∣
h.c.

(4.32)

+2εh.c.(uαγΣγβ + uβγΣγα)|h.c. − (uαγnγβ + uβγnγα)|h.c..

The local non-gaussianity parameter fNL is defined as [27–29]

fNL ≡
5

18

Bζζζ
(Pζζ)2

(4.33)

where Bζζζ is the bispectrum of curvature perturbations, related to the three-point function

of ζ. It is useful to decompose it as Bζζζ = Bζζζ1 +Bζζζ2, where

Bζζζ1 = N,αN,β N,γ ααβγ , (4.34)

and

Bζζζ2 =
3

2
N,αN,β N,γρ [ΣαγΣβρ + ΣαρΣβγ ] . (4.35)

Eq. (4.34) is the intrinsic non-linearity among the fields, while Eq. (4.35) encodes the non-

Gaussianity resulting from the gauge transformation to ζ [5, 6].

Given these expressions for the observables, it is now only necessary to specify the

gauge transformation expressed by the N derivatives. Following the procedure developed

in Ref. [7], the expansion of Eq. (5.3), can be understood in two steps. First, δN can

be written as an expansion in terms of δρ, where δ refers to a change from an initial flat

hypersurface to a final uniform-density hypersurface:7

δN =
dN

dρ
δρ+

1

2

d2N

dρ2
δρ2 + · · · , (4.36)

where ρ = 3H2. To obtain the derivatives of N as desired, one just needs to perturb each

term of the above expansion in terms of the fields. The result is [7]

N,φi =
V,i

2H2ε(3− ε)
, (4.37)

N,pi =
V Tpi

2H2ε(3− ε)2
, (4.38)

N,φiφj =
V,ij

2H2ε(3− ε)
− V,iV,j

4H4ε2(3− ε)2

(
Tpkp

′k

ε
+ 2ε

)
, (4.39)

7We particularly thank David Mulryne for this result and discussions around this topic.
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N,pipj =
Tδij

2ε(3− ε)
− T 2pipj

4ε2(3− ε)2

(
Tpkp

′k

ε
− 6ε+ 12

)
, (4.40)

N,φipj = − TVipj
4H2ε2(3− ε)2

(
Tpkp

′k

ε
− 2ε+ 6

)
, (4.41)

where the derivatives are taken explicitly with respect to φi and pi rather than the combined

ϕα, the objects V,i and V,ij refer to the derivatives of the potential with respect to the fields

φi and φj and p′i = dpi/dN = d2φi/d
2N .

4.4.4 The adiabatic limit

This section has been dedicated to the understanding of superhorizon evolution of the

curvature perturbations. What is yet to be addressed is at what point ζ ceases to evolve.

This happens when the trajectory has effectively reached its adiabatic limit, i.e. the model

has become effectively single-field (see Ref. [30–32] for early discussions on this topic).

One needs to ensure that the adiabatic limit is reached before the time of computation

of observables, which generally is taken to be at the end of inflation. If isocurvature modes

are still present at that point, the curvature perturbations will continue to evolve through

an epoch of reheating, for which there is no precise knowledge. This would mean that the

conclusions reached at the time of estimation would necessarily be incomplete, and the

model not predictive.

In the D-brane case, the situation is even more delicate, since the validity of the ap-

proximations of the set-up breaks down as one approaches the tip of the conifold, or, for

practical purposes, at x = 0.02. If ζ continues to evolve after that point, it will suf-

fer changes due not only to reheating, but also an unknown background geometry and

potential.

Formally, the approach to an adiabatic limit can be understood via the parameter

θ = tr uαβ of Eq. (4.20) which describes the tendency for the bundle of trajectories to

focus or dilate. The factor by which the bundle’s cross-section has grown (or decayed)

from its horizon-crossing value at N0 to the time N is given by:

Θ(N,N0) ≡ exp

[∫ N

N0

θ(n)dn

]
. (4.42)

In a slow-roll two-field case, where the phase space is simply φi, when Θ→ 0, or equival-

ently θ → −∞, the trajectory is becoming effectively single-field [19]. However, since we

are working with more than two fields and in a phase space composed by φi and pi the

situation is more subtle, and the relation not so direct [7, 19].
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In the full phase space, it is instructive to understand how the bundles of φi and pi

individually behave. In particular, let us identify pi = pSR
i (φi) + si, where pSR

i is the

slow-roll attractor for the momenta pi and a function of φi only and si are the momenta

isocurvature modes. With these new variables, we can write [7]

θ = θSR(φi) + θs(si) (4.43)

where θSR describes the dilation of the field bundle and θs describes the dilation of the s

modes, i.e. how the momenta converge to their slow-roll attractor. We can also define ΘSR

and Θs in analogy with Eq. (4.42).

The interpretation of when the adiabatic limit has been adequately reached from the

above quantities is not straightforward [7], but to infer when it has not been is often simple.

For the purpose of this work it will be sufficient to know that if ΘSR & 1 then an adiabatic

limit certainly has not been reached.

4.5 Distributions for observables

We now present the results obtained from computing the curvature perturbations for dif-

ferent samples of inflationary trajectories. The outcomes are distributions for the values

of the cosmological parameters presented in the previous section: amplitude Pζζ , spectral

index ns and running of the spectral index of the scalar power spectrum, tensor-to-scalar

ratio r, and local non-gaussianity parameter fNL. We compare these with constraints from

observations; all constraint contours are 95% confidence limits using the WMAP 7 year

data release combined with baryonic acoustic oscillations and supernov data [33–35]. We

use as pivot the scale that crossed the horizon 55 e-folds before the end of inflation.

4.5.1 Field number dependence

Regarding the dependence of the inflationary behaviour on the number of active fields,

we found that the effect of increasing the number of angular directions is negligible for

the trajectories and consequent observables. Fig. 4.5 shows how the increase in angular

directions changes the distributions of the tensor-to-scalar ratio and spectral index. We

can identify a slight suppression in r as the number of active fields increases, as one would
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Figure 4.5: Distributions for the tensor-to-scalar ratio r, left, and scalar spectral index ns, right. The distribu-

tions were taken for different numbers of active fields. It is possible to identify a small suppression

in r and a tendency towards redder values of ns (keeping the peak at ns = 1) as NF increases.
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Figure 4.6: Number of e-folds of inflation for different number of active fields. We can see that this distribution

is unchanged by varying NF.

expect since more directions allow for more turns in field space which fuel the scalar power

spectrum. The spectral index, which consistently peaks at 1, gets a shift towards red

values as the number of fields increases. This is not the consequence of a change in the

inflationary trajectories and it can be readily understood, as will be shown shortly.

Interestingly, although an increase in the number of fields allows in principle a wider

range of trajectories, we did not encounter any difference in the distribution for the total

number of e-folds when varying NF, as can be seen in Fig. 4.6.

In the remainder of this paper, we will concentrate mainly on the results for two active

fields for which our sample is constituted of 1086 inflationary trajectories, using the sample

for the full six-field case, composed of 93 trajectories, for comparison.
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Figure 4.7: Superhorizon evolution of the amplitude of the scalar power spectrum Pζζ for 50 trajectories with 2

active fields, coloured at random. The evolutions show a consistent non-monotonic growth that we

refer as ‘caterpillar’ shaped. It is impractical to show the full evolution of all the trajectories due to

the large range in scales even for this reduced sample; for this reason the plot has been cut-off.

4.5.2 Observables

The amplitude of the power spectrum, as can be seen in Fig. 4.7, consistently undergoes a

superhorizon evolution that we refer to as ‘caterpillar’ shaped, i.e. non-monotonic. This is

interesting as this sort of evolution is very rare in purely random generated potentials [15]

and so indicative of a dynamical trait common to all of our inflation realisations. The

next section will explore its origin. As can be seen in Fig. 4.16, the histogram of Pζζ has

a smooth maximum at around 10−9, in agreement with observations (the WMAP value

is ∼ 2.5 × 10−9 [34]). This is not surprising as the overall magnitude of the potential is

determined by the scale µ4, which in turn is set by our choice of the throat length rUV.

The important fact is that the distribution does not sharply peak at a precise value of Pζζ ,

indicating that there is no fine-tuning issue around this parameter.

The spectral index shows a much clearer peak at ns = 1, as seen in Fig. 4.16. Actually,

the spread in ns is not well approximated by a Gaussian; instead, two different populations

can be identified, one with ns ≥ 1 and one with ns < 1. For the two-field ensemble, these

correspond to ∼ 84% and ∼ 16% of the trajectories, respectively. As seen previously,

an increase in the number of active fields enhances the number of red trajectories; the

respective ratios, for the six-field sample are then ∼ 50% each. In the next section we will

address the dynamical characteristics of these two populations and the changes with the

number of fields.
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Figure 4.8: Distributions for the amplitude of the power spectrum Pζζ , top left, scalar spectral index ns, top

right, running of the spectral index, bottom left, and local non-gaussianity parameter fNL, bottom

right. All distributions were taken for the sample with 2 active fields.

A very interesting result comes from the computation of the running of the spectral

index. Fig. 4.16 shows that the running tends to be positive and that it can take large

values. This outcome, as will be discussed shortly, is extremely constraining. One could

think that, since the running can take large values, the value of the spectral index changes

a lot with the choice of pivot scale. Our approach is to think that sampling over a large

number of inflationary potentials reproduces the effect of sampling over different choices of

pivot scales, such that the final distributions for different pivot scales are actually identical.

We tested this assumption and found it to be the case.

The tensor-to-scalar ratio is always extremely small, as it is related to the slow-roll

parameter ε that remains � 1 throughout the calculation. This can be clearly seen in

Fig. 4.9. Furthermore, the usual single-field result for the brane case would be the relation

r = 16
ε

T3
(4.44)

which corresponds to the green line. We can see how multifield effects change this result,

by weakening this expression to an inequality.

The local non-gaussianity parameter fNL, as can be seen in Fig. 4.16, is almost always

too small to possibly be detected by any anticipated observation. In the full two-field

ensemble only five trajectories yielded values of |fNL| > 1. Although these are highly
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Figure 4.9: Plot of the values of ε at horizon-crossing versus r, left, and ns versus fNL, right, for the sample

with 2 active fields. The green lines represent the single-field predictions, r = 16ε/T3 and fNL =

−5(ns − 1)/12, respectively.

unlikely, any case presenting interesting observational signatures can be informative in

its own right; we leave a detailed analysis of these cases for future work. When plot-

ted against ns, this parameter also shows the deviation from the single-field prediction

fNL = −5(ns − 1)/12 [36] represented by the green line in Fig. 4.9. Once again, multifield

effects break this degeneracy.

4.5.3 Constraints from WMAP

We now impose the observational constraints on the distributions.

As can be seen in Fig. 4.17, the majority of the trajectories gives rise to values of

running and spectral index that lie outside the observational bounds. From the running

versus ns plot alone, one could think that the trajectories giving rise to the peak around

ns = 1 would be in agreement with observations. Actually, a stronger constraint for ns is

imposed by the fact that the model predicts a negligible tensor-to-scalar ratio. Constraints

on the ns versus r plot shown in Fig. 4.17 exclude all the trajectories which result in

ns > 0.995. These constraints alone result in only ∼ 10% of the total two-field sample,

and ∼ 50% of the six-field sample, of trajectories being in agreement with observations.

A further constraint is imposed by requiring the correct amplitude of the scalar power

spectrum, (2.5±0.1)×10−9 [34]. Combining all constraints we obtained only two realisations

in total concordance with observations in the full sample of 1086 cases of two-field inflation,

and one realisation in the sample of 93 cases of six-field inflation. As discussed in the

previous subsection, this is not a worrying result as the distribution of Pζζ does not show

a sharp peak.
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Figure 4.10: Plot of the values of ns versus r, left, and ns versus running, right, for the model with 2 active

fields, blue points, and 6 active fields, red points. The lower panels greatly expand the vertical

scales. The orange lines represent the 95% confidence limits using WMAP data. When running is

allowed to be 6= 0 it is important to know what is the best scale with which to make comparisons

with observations. In Ref. [35] this issue was explored; following their conclusions, we look at the

constraints for k∗ = 0.017 Mpc−1 which is not the same choice made in Ref. [34].

4.6 A close look at trajectories

In this section we describe in detail the dynamics of individual trajectories and how they

give rise to the distributions seen in the previous section.

A remarkable feature of this model is that all inflationary trajectories encountered were

essentially of the same type, inflection-point inflation with a wiggle in the trajectory. It

turns out that while in principle inflation could occur at any location within the throat

(above the tip), at least the last 60 e-folds of inflation always occur in a small sub-region

(typically 0.02 < x < 0.09) in the vicinity of the inflection point discussed in §§4.2.2.

While the inflection-point contribution to the potential, VC + VM , alone could not give

enough inflation, the contributions from the bulk can alter the potential in such a way

that sufficient inflation can occur. The range of contributions capable of giving inflation

is limited so in practice the result is a very consistent dynamical behaviour.
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Figure 4.11: The dynamical behaviour of Verse 20277, for the region of the trajectory where inflation occurred.

The top left plot shows the trajectory in field space plotted on top of the potential contours. The

evolution of the amplitude of the power spectrum, top right, spectral index, bottom left, and run-

ning, bottom right, show different colours regarding the position in the potential; yellow represents

evolution before the inflection point, orange between the inflection point and the fall of the ledge

and red after the starting falling off the ledge. For the region represented in red, |η| > 1.

4.6.1 One inflationary trajectory to explain them all

A typical inflationary realisation in our NF = 2 set-up is the affectionately-named Verse

20277. Fig. 4.18 shows the inflationary trajectory superimposed on a contour plot of the

potential, together with the evolution of the observable quantities we investigated. The

trajectory evolves from right to left, passing an inflection point in the radial direction

but also experiencing a slope in the angular direction, causing a wiggle in what would

otherwise be standard single-field inflection-point inflation (see for example Ref. [37]). As

will be shown, this behaviour explains the non-monotonic evolution of Pζζ , which we saw

to be so common. Verse 20277, as ∼ 84% of our realisations, has a blue spectral index,

ns > 1, which can also be understood by its inflationary dynamics. It also presents the

most common evolution of fNL we encountered, giving rise to an unobservably small value

of fNL, as seen consistently across our distributions.

Another interesting characteristic of the dynamics of Verse 20277, which again is repres-

entative of the whole sample, is that the process of falling off the ledge after the inflection

point gives rise to a prolonged period of non-slow-roll inflation, often leading to O(10)



166
Multifield consequences for D-brane inflation

e-folds. This regime is shown in red in Fig. 4.18. While the slow-roll parameter ε remains

much smaller than 1 throughout all the analysis, the parameter |η| increases significantly,

getting to values of ∼ 35. The consequences of this effect will be discussed in what follows.

4.6.2 A separable potential approximation

A simple explanation for all of the above evolutionary traits presents itself if we approx-

imate the inflationary region as a separable potential of the type.8

W (φ) ≡W (x,Ψ) = U(x) +

NF∑
i=2

Vi(Ψi) (4.45)

where U(x) possesses an inflection point in the radial direction

U(x) ≡ V1(φ1) = α0 + α1(x− x0) + α3(x− x0)3 (4.46)

and V (Ψ) are slopes in the angular directions

Vi(Ψi) = βiΨi. (4.47)

As already mentioned, for the majority of inflation, the evolution sits well within the

slow-roll regime. During this period, we can write the number of e-folds of inflation as

N(tc, t∗) = −T3

∫ c

∗

NF∑
i=1

Vi
V,i
dφi. (4.48)

For this section we take the flat surface to be at horizon-crossing and the constant density

surface to be at our time of evaluation. This allows us to write down the total derivative

as

dN = T3

NF∑
j=1

[(
Vj
V,j

)
−

NF∑
i=1

∂φci
∂φ∗j

(
Vi
V,i

)]
dφ∗j . (4.49)

Following the procedure in Ref. [39, 40] one can obtain an expression for the partial deriv-

ative in the previous expression as

∂φci
∂φ∗j

= −Wc

W∗

√
εci
ε∗j

(
εcj
εc
− δij

)
(4.50)

where the slow-roll parameters associated with each field are defined as

εi ≡
1

2T3

(
V,i
W

)2

, ηi ≡
1

T3

V,ii
W

, ξi ≡
V,iV,iii
T 2

3W
2

(4.51)

8Approximating small regions of potentials as separable is a very useful technique which can be applied

quite generally. See Ref. [38] for another recent and rather nice example of this.
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such that ε =
∑
εi. Finally, we arrive at an expression for the derivatives of N

∂N

∂φ∗i
=

√
T3

2ε∗i

V ∗i + Zi
W ∗

, (4.52)

where we have the, rather important for the following discussion, term

Zi ≡
1

εc

NF∑
j=1

V c
j (εci − εcδij) (4.53)

which contains all the information about the constant density surface at the time of eval-

uation. All other terms are determined by horizon-crossing values. Note that due to

assuming slow-roll, we have reduced our phase space to the NF fields φi and that by ap-

proximating the potential as sum-separable, this expression no longer requires the ‘c’ and

‘*’ surfaces to be infinitesimally separated.

The second derivatives are given by [39, 40]

∂2N

∂φ∗i ∂φ
∗
j

= δijT3

(
1−

η∗j
2ε∗

V ∗j + Zj

W∗

)
+

1

W∗

√
T3

2ε∗j

∂Zj
∂φ∗i

. (4.54)

Having obtained expressions for the first and second derivatives of N , it is now possible

to write down analytical expressions for the desired observable quantities. This is done by

using the expressions from §§4.4.3 and using the horizon-crossing values for the correlation

functions of δφ. The amplitude of the power spectrum is given by

Pζζ =
T3W∗
24π2

NF∑
i=1

u2
i

ε∗i
(4.55)

where

ui ≡
V ∗i + Zi
W∗

. (4.56)

The spectral index is given by 9

ns − 1 = −2ε∗ − 4

(
1−

∑NF
i=1

η∗i u
2
i

2ε∗i

)
∑NF

i=1
u2i
ε∗i

(4.57)

Differentiating with respect to ln k we also obtain a new expression for the running. We

find it to be

n′ = −8ε∗2+4

NF∑
i=1

ε∗i η
∗
i −16

(
1−

∑
i
η∗i u

2
i

2ε∗i

)2

(∑
i
u2i
ε∗i

)2 −8

∑
i η
∗
i ui

(
1− η∗i ui

2ε∗i

)
∑

i
u2i
ε∗i

+4ε∗

∑
i
η∗i u

2
i

ε∗i∑
i
u2i
ε∗i

−2

∑
i
ξ∗i u

2
i

ε∗i∑
i
u2i
ε∗i

(4.58)
9Here we have used the fact that d/d ln k ≈ d/dN = (φi/H)∂/∂φi and continually made use of the

substitutions N,iV,i = −V T3 and φ̇iN,ij/H = V,j/V + V,ijN,i/V T3.
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Figure 4.12: Example of evolution of the power spectrum Pζζ and the form of Zi giving rise to it for the sep-

arable potential. The power spectrum appears to stop evolving in the last few e-folds despite the

bundle dilating in this region.

Finally, the local non-Gaussianity is

−5

6
fNL = 2

∑NF
i=1

u2i
ε∗i

(
1− η∗i

2ε∗i

)
+
∑NF

i,j=1
uiuj
ε∗i ε
∗
j
Aji(∑NF

i=1
u2i
ε∗i

)2 , (4.59)

where as a result of differentiating Zi, another term Aji containing contributions from the

‘c’ surface is required [39, 40];

∂Zcj
∂φ∗i

= −W
2
c

W∗

√
2

ε∗i

[
NF∑
k=1

εk

(εj
ε
− δjk

)(εi
ε
− δik

)(
1− ηk

ε

)]
c

(4.60)

≡

√
2

ε∗i
W∗Aji .

All of the above expressions can be shown to reduce to the standard single-field formula

by setting ui = 1.

With these expressions from the separable potential approximation, the phenomenology

described at the beginning of this section becomes clear. We now discuss each of the trends

encountered in the results individually.

4.6.3 Why so many caterpillars?

First, we would like to address the question of why non-monotonic evolution in the amp-

litude of the power spectrum is so common.

Under the separable approximation, all superhorizon behaviour is encapsulated in the

Zi terms. This must go to zero in the adiabatic limit since, as there is no evolution in this
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limit, the result must be independent of our choice of the time of evaluation. However this

is not a sufficient condition for reaching the adiabatic limit; as we will see, it is possible

for Zi to become negligible towards the end of inflation even when an adiabatic limit has

not been reached. Before this limit is reached, Zi demonstrates significant variation. The

extent to which Zi varies over the course of the last 55 e-folds of inflation changes between

inflationary realisations according to both the realisation of the random coefficients and

the path the inflationary trajectory takes in field space, but an example of the form of the

variation is given in Fig. 4.12, where the fields have been redefined such that the inflection

point is at the origin.

As the trajectory crosses the inflection point, Zi has a trough, then increases to zero as

the trajectory leaves the plateau. As can be seen in Eq. (4.55), a peaking in |Zi| corresponds

to a peak in Pζζ , though the precise shape will also depend on the angular component which

determines for how long the trajectory stays on the corresponding ridge in Zi. The peak

in |Zi| occurs due to εc in the denominator of Eq. (5.8) reaching a minimum value and as

such non-monotonic evolution is an inevitable consequence of the inflationary trajectory

crossing an inflection point. The form of Zi also accounts for the final rise (the caterpillar’s

head) in the evolution of Pζζ since Zi turns up as a sum of quadratic terms in Eq. (4.55).

This stage of the evolution is non-slow-roll but when comparing the evolution as given by

Zi with our non-slow-roll transport code we found them to be in good agreement.

4.6.4 Why so blue?

Recognising that all inflationary trajectories take place in the vicinity of an inflection

point also tells us about the spectral index. Remembering that Zi → 0 towards the end of

inflation, Eq. (5.9) states that the final value of the spectral index (along with the other

observables we discuss) will be determined purely in terms of horizon-crossing values. This

is what is often referred to as ‘the horizon-crossing approximation’ [41]. Unless very close to

the inflection point, ηx dominates Eq. (5.9). When horizon-crossing takes place prior to the

inflection point, ηx > 0, the horizon-crossing approximation says that ns will necessarily

be larger than 1. However if the situation arises where horizon-crossing takes place after

the inflection point, ηx < 0 and a red spectral index can be expected. This is what we find

to be the case for approximately 16% of our trajectories (for NF = 2). The reason they are

so rare is that 60 e-folds of inflation still need to take place and this is difficult to achieve
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before falling off the ledge. It turns out that for the red cases, the total number of e-folds

was always at least O(100).

Fig. 4.5 shows a sensitivity to the number of fields NF, where additional angular terms

appear to act to redden the spectral index. This is not due to a larger proportion of

trajectories with horizon-crossing occurring after the inflection point. If this was the case

then there would also be an increase in the number of e-folds. Instead, the increased

redness seems to be a direct result of the geometry of the conifold and can be accounted

for by the separable approximation. Writing Eq. (5.9) in a more suggestive form

ns − 1 = −2

NF∑
i=1

ε∗i −
4∑NF
i=1

u2i
ε∗i

+ 2

η∗x
ε∗x
u2
x∑NF

i=1
u2i
ε∗i

, (4.61)

it is clear that additional angular terms act solely to redden the spectral index by sup-

pressing the contribution from ηx as well as increasing ε.

4.6.5 Trends in the running

Fig. 4.17 shows a lower bound in the plot of the running against the spectral index. This

bound turns out to be parabolic and approximately proportional to −(ns−1)2, suggesting

that there could be a dominant term in η2
x among the contributions for the running.

Interestingly, in the single-field case, terms in η2 do not contribute to the running, n′ =

−24ε2 + 16εη − 2ξ. However, as can be seen by following Eq. (4.58), in the multifield case

the situation changes. The terms from Eq. (4.58) in η2
x are:

n′ ⊃ −4

∑i
η∗i u

2
i

ε∗i∑
i
u2i
ε∗i

2

+ 4

∑
i
η∗2i u2i
ε∗i∑

i
u2i
ε∗i

= −4

η∗2x u4x
ε∗2x(∑
i
u2i
ε∗i

)2 + 4

η∗2x u2x
ε∗x

∑
j

u2j
ε∗j(∑

i
u2i
ε∗i

)2 , (4.62)

which means that there is a residual η2
x cross term which dominates the expression. The

parabolic lower bound is therefore intrinsically multifield.

4.6.6 Evolution in fNL

The separable approximation fares less well in reproducing the behaviour seen for fNL.

The radial acceleration parameter ηx is the dominant contribution to Eq. (4.59), so the

horizon-crossing approximation gives fNL < 0 for horizon-crossing prior to the inflection

point and fNL > 0 for post inflection-point horizon-crossing. Bringing this together with
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Figure 4.13: Example of the form of Aji for the separable model.

the previous discussion for the spectral index implies there should be a correlation between

ns and fNL such that a blue spectral index is accompanied by fNL < 0 and vice versa. This

is in fact the relation from single-field inflation, fNL = −5(ns − 1)/12 [36]. While Fig. 4.9

clearly shows this line, it is also clear that the majority of points deviate from this trend.

In fact, the histogram for fNL shows a tendency for fNL > 0, while the discussion until

now would imply the opposite.

Looking closely at particular evolutions of fNL, like the one in Fig. 4.18, what we see is

that during the non-slow-roll period at the end of inflation, the evolution of fNL experiences

a rise, that typically forces the final value to be > 0. This behaviour is not predicted by the

separable approximation. This discrepancy could be the result of modelling the inflection

point as being cubic when in fact the ledge in the D-brane potential tends to be much

more severe, or more interestingly it could be an intrinsically non-slow-roll effect.

However, the slow-roll phase of the evolution does seem to be captured by the separ-

able approximation. In addition to Zi, there is contribution to the evolution Aji which,

as shown in Fig. 4.13, has a peak and a trough. While the precise form varies between

trajectories, this contribution gives rise to a peak and a trough in fNL, one above and one

below the value fNL takes towards the end of inflation.
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Figure 4.14: Evolution of θSR top left, θs top right, and the dilation of the field bundle ΘSR bottom left for

verse 20277. Bottom right is the histogram of the final field bundle widths for our two-field sample.

The fields initially go through a region of focussing but all is undone as the trajectory falls off the

ledge, resulting the persistence of isocurvature modes at the end of inflation. The histogram shows

this to be true for all 1086 realisations, leading us to conclude the model is unpredictive without a

description of reheating.

4.7 How predictive?

A consideration of paramount importance in any model of inflation is at what point does ζ

cease to evolve. In single-field models, ζ does not evolve on superhorizon scales but for any

model with more than one field this tends not be the case. As we have already discussed,

the criteria for whether or not evolution can persist is whether or not isocurvature modes

are present. The limit in which these decay is referred to as the adiabatic limit.

As already mentioned, one way to keep track of isocurvature modes is to monitor the

dilation of the bundle of trajectories using Eq. (4.42). In the adiabatic limit the bundle is

a caustic, for which a necessary but not sufficient condition is θ → −∞, or equivalently

Θ → 0. Strictly speaking this limit cannot be reached during the slow-roll regime [19]

but we can at least hope that isocurvature modes are exponentially suppressed. More

generally θSR < 0 corresponds to a region of focussing and θSR > 0 to dilation, while

θs > 0 and θs < 0 represent divergence and convergence to the momenta slow-roll attractor
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respectively.

It is interesting to note that our results show exceedingly consistent behaviour. As

shown by the histogram in Fig. 4.20, in not one realisation did we find focussing to be

occurring at the end of inflation. Rather, the process of falling off the ledge results in

dilation of the bundle. This result is still present in the separable approximation and

indeed we expect this result to apply to any model where inflation is terminated by falling

off a ledge if sufficient focussing has not taken place previously.

The downside of a lack of focussing at the end of inflation is that the model is technically

unpredictive without knowledge of what takes place at the tip and the details of reheating.

The plus side is that one should expect interesting evolution during subsequent periods.

Since reheating is a non-linear process, this could give rise to interesting observational

signatures. This is however beyond the scope of this paper.

4.8 Summary

In this paper we explored the multifield effects in D-brane inflation. To do this we made

use of a particularly sophisticated model, originally developed in Ref. [4], to include con-

tributions from the bulk containing random coefficients. These contributions make the

multifield nature of D-brane inflation explicit. Our aim was to use the transport equations

[5–7, 19] to study a large number of realisations of the potential, their resulting inflationary

behaviours, and the consequent properties of ζ. We had two main objectives with this en-

deavour, first to present distributions for the observable predictions of this specific model

and second to analyse how the isocurvature modes behave towards the end of inflation to

understand how reliable those predictions are.

Despite the random contributions, the inflationary behaviour was very consistent across

different realisations. Inflation was always found to have canonical kinetic behaviour and

to take place in the vicinity of the inflection point, which constitutes a very small region

of field space. We also always found a break of the slow-roll condition |η| < 1 when

the inflationary trajectory falls off the ledge after the inflection point. This particular

characteristic led to the extension of transport methods to non-slow-roll cases [7]. We also

extended this method to compute the running of the spectral index.

Regarding the predictions for observables, the amplitude of the power spectrum was
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found to be consistent with observation but unpredictive in so much as the spread in values

was vast compared with the observational constraints. The spectral index tended to be

blue but less so in the full six-field case. This fact, together with the negligible values found

for the tensor-to-scalar ratio and the large spread in values of the spectral index running,

moderately constrains the model given WMAP7 data. Without a reason to believe we

are an atypical observer in our distribution, the soon-to-arrive data from Planck has the

potential to put this model under considerable pressure.

The non-Gaussianity parameter fNL was found to be consistently small. In over 1000

inflationary realisations we found only 5 examples of potentially observable fNL. This fur-

ther supports the recent discussions in Refs. [15, 38, 42] which suggests canonical multifield

inflation is not expected to produce observable fNL.

Due to the remarkable consistency in the inflationary behaviour, it was possible to

approximate the inflationary region of the potential as a sum-separable potential consisting

of a polynomial inflection point in the radial direction and linear slopes in the angular

directions. With this description all the observed characteristics of this model could be

accounted for analytically except the final evolution in fNL. It was shown that the evolution

of the amplitude of the power spectrum undergoes non-monotonic evolution whenever the

trajectory traverses the inflection point and this will typically give rise to a blue tilt which,

along with all other observable quantities of interest, can be calculated purely in terms of

horizon-crossing values. It was also shown that additional angular terms act to make the

tilt more red.

Regarding the reliability of these predictions, we made first steps towards a means of

efficiently tracking isocurvature modes in non-slow-roll multifield models. Though we leave

a complete description of this to a separate publication, we nevertheless found the bundle

width to be exceedingly informative. Extending the ideas on the adiabatic limit discussed

in Ref. [19] to non-slow roll constitutes a considerable increase in complexity. We found it

helpful to consider two distinct bundles, one for the fields and a second for the momenta.

With this we were able to conclude that in not a single realisation was an adiabatic limit

reached. We expect this result to hold for any model where inflation is terminated by

falling off a ledge, provided sufficient focussing does not occur prior to this. This result

renders the model technically unpredictive, since subsequent events such as reheating can

modify the characteristics of ζ.
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Erratum

4.9 Curved field-space metric and massive modes

In the analysis presented in our paper ‘Multifield consequences for D-brane inflation’, we

considered the field-space metric in Eq. (2.4) to be the flat trivial metric, gij = δij . How-

ever, the inclusion of the curved conifold metric has several implications on the inflationary

dynamics, and as such should be incorporated in our calculations. We thank Liam McAl-

lister and Sebastien Renaux-Petel for pointing out this issue.

In this case, the Lagrangian experienced by the D-brane is

L = a3

(
1

2
T3Gijφ̇

iφ̇j − V (φ)

)
(4.63)

where a is the scale factor and T3 is the brane tension. For simplicity, the vector composed

of the 6 brane coordinates in the throat — radial and Ψ — is represented by φ and the

vector Ψ refers to the 5 angular dimensions, Ψ = θ1, θ2, φ1, φ2, ψ.

The field-space metric Gij corresponds to the Klebanov–Witten geometry in which the

non-compact conifold geometry is built over the five-dimensional (SU(2)× SU(2)) /U(1)

coset space T 1,1. In this case [1],

Gijdφ
idφj = dr2 + r2ds2

T 1,1 . (4.64)

where r is the radial conical coordinate and

ds2
T 1,1 =

1

9
(dψ + cos θ1dφ1 + cos θ2dφ2)2 +

1

6

(
dθ2

1 + sin2 θ1dφ
2
1

)
+

1

6

(
dθ2

1 + sin2 θ1dφ
2
1

)
.

(4.65)

With this new Lagrangian we repeated the experimental procedure described in §3, and

collected over 500 trajectories, with 6 active fields and ∆MAX = 3, which give rise to at

least 63 e-folds of inflation.

It is usual that models with curved field-space metrics present massive modes around

horizon crossing. To verify if this was the case in our model, we calculated the eigenvalues
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Figure 4.15: The eigenvalues of the mass matrix at horizon crossing for all the successful realisations. We can

see that there is consistently one light quantum mode while all the others are heavy.

of the mass matrix. The mass matrix can be determined from the second-order perturbed

action:

S(2) =

∫
dtd3xa3

(
GijDtQiDtQj −

1

a2
Gij∂µQ

i∂µQj −MijQ
iQj
)
, (4.66)

where Dt are covariant cosmic time derivatives, Qi are the covariant field perturbations

and

Mij = V ;ij −Rikljφ̇kφ̇l −
1

a3
Dt
[
a3

H
φ̇iφ̇j

]
(4.67)

with semicolon referring to covariant derivatives. From this action we can recover the

Klein–Gordon equation for the field perturbations Qi

D2
tQ

i + 3HDtQi +
k2

a2
Qi +M i

jQ
j = 0. (4.68)

For our sample of trajectories we consistently found one of the directions to be light

while the other quantum modes have masses of order of the Hubble scale at horizon exit, in

agreement with Ref. [2]. The results are shown in Fig. 4.15. The presence of heavy modes

required the development of a new computational tool for the calculation of ζ. The prob-

lem relates to the initial condition at horizon exit necessary for implementing the separate

universe assumption. In our previous analysis, the standard light-field Gaussian approx-

imation at horizon exit was sufficient — Σφφ = GijH
2/(2π)2. But now this approximation

does not hold. An analytic solution of the full Klein–Gordon equation is impossible to



181
Erratum

achieve and for this reason we developed with our collaborators David Mulryne and David

Seery an efficient method to deal with this issue numerically [3, 4]. Here, we only present

the analysis for the two-point function of ζ, leaving a detailed study of the three-point

function for a future publication.

4.10 New techniques

In this section, our aim is to sketch the extensions to the transport method (§4 of our

paper) used in the new analysis of the D-brane model. First, we will briefly present the

argument of Elliston et al. [5] applied to a non-slow-roll setup, and then we will introduce

the idea of quantum transport on subhorizon scales. We will not develop these descriptions

in great detail here; we refer the reader to Refs. [3, 4] for a complete description.

If inflation is driven by a system of several scalar fields whose field-space metric Gij is

different from δij , the field perturbations δφ of §4 are no longer covariant objects. To use

the transport method in this case, we need to reformulate it in terms of the above covariant

perturbations Qi. In the same spirit as §4 we can define a vector Qα ≡ {Qi,DNQi} ≡

{Qi, P i}. The foundation of the transport formulation is the deviation equation which

determines the evolution of perturbations according to background expansion tensors. For

the new covariant perturbations this looks like

DNQα = wαβQβ +
1

2
wαβγQβQγ + · · · (4.69)

For the computation of the two-point function, the first-order term is sufficient. The

expansion tensor wαβ can be read off directly from the Klein–Gordon equation for Qi

given above by taking the superhorizon limit k2/a2 � 1. If we change the time coordinate

to be N rather than cosmic time, and assuming that we are well outside the horizon,

DNQi =P i (4.70)

DNP i =

[
−
V ;ij
H2

+
V,i V,j
H3V

+Rilmjp
lpm

]
Qj (4.71)

+

[
V,i pj

(3− ε)H2
+ pipj + (ε− 3)δij

]
P j .

The expansion tensor wαβ contains all the information on the superhorizon evolution of

the power spectra Σαβ associated to 〈QαQβ〉

DNΣαβ = wαµΣµβ + wβ µΣµα + · · · (4.72)
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The power spectra Σαβ relate to the power spectrum of ζ by the usual gauge transforma-

tions described in §4.

This method describes the transport of field perturbations on superhorizon scales using

the separate universe assumption. The question to ask now is what are the initial con-

ditions for this method at horizon exit. Since it is impossible to deal with this question

analytically, correlation functions need to be transported from subhorizon scales up to

the end of inflation, so that the full evaluation is numerical. Usually, a numerical imple-

mentation of perturbation theory is computationally very intensive. This is related to the

oscillatory nature of the perturbations as wave functions. However, by only keeping track

of the evolution of correlators, the calculation becomes much lighter.

In order to do this, we extended the transport technique to a quantum era on subho-

rizon scales. In this case, if the evaluation is chosen to start early enough, such that the

perturbations are much smaller than the horizon, one can assume that the initial conditions

are established in flat Minkowski space-time, where correlation functions are well known.

To quantise transport, the field perturbations and their momenta should be interpreted

as operators in Fourier space related by the usual commutation relations. In k space it is

helpful to use a DeWitt notation where indices are primed to indicate the Fourier space

scale dependence:

Q̂α′ = Q̂α(kα) (4.73)

where kα is the scale associated with the perturbation of index α (with no sum on α). This

operator has an evolution equation like

DN Q̂α
′

= wα
′
β′Q̂β

′
+

1

2
wα
′
β′γ′Q̂β

′Q̂γ′ + · · · (4.74)

where

wα
′
β′ = (2π)3wαβ δ(kα − kβ). (4.75)

For the quantum subhorizon evolution the expansion tensor is not determined by the

background only. It can be recovered by looking at the second-order perturbed action

computed above. In this case, the quantum expansion tensor wαβ only gets modified by

the extra term containing information on the (comoving) scale k of the perturbations:

wαβ ⊃ −
k2

a2H2
δαβ . (4.76)

The evolution equation for Σαβ follows from the Ehrenfest theorem

d〈Ô〉
dt

=
〈
− i
[
Ô, Ĥ

] 〉
, (4.77)
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which is the direct equivalent to the evolution of classical expectation values. For simplicity,

one can choose to work with the symmetrised Σαβ , which corresponds to the real part of

the two-point correlator; as perturbations become classical, the imaginary part decays

which means that only the evolution of the real part is necessary to compute observables.

The transport equation for this symmetrised Σαβ is equivalent to the one on superhorizon

scales:

DNΣαβ = wαµΣµβ + wβµΣµα + · · · (4.78)

With these equations we were able to compute the perturbations for our sample of

trajectories. We started our computation 8 e-folds of inflation before horizon exit, which

is early enough to find the perturbations well inside the horizon where Minkowski initial

conditions hold. We computed the observables for the perturbation associated with the

scale which crossed the horizon 55 e-folds before the end of inflation.

4.11 Results

4.11.1 Observables

We now present the results from our new analysis. The outcome is distributions for the

values of the cosmological parameters associated to the two-point function of perturbations:

amplitude Pζζ , spectral index ns, and tensor-to-scalar ratio r. We compared these with

constraints from observations; all constraint contours are 95% confidence limits using the

WMAP 7-year data release combined with baryonic acoustic oscillations and supernovæ

data [6].

We concluded that the inclusion of the curved field-space metric, even though it induces

large masses in 5 of the 6 quantum modes active during inflation, does not qualitatively

change the results for observables that we obtained with a trivial field-space metric.

As can be seen in Fig. 4.16, the histogram of Pζζ has a smooth maximum at around

10−9, in agreement with observations (the WMAP value is ∼ 2.5× 10−9 [6]) and with our

original computation. This is not surprising as the overall magnitude of the potential is

determined by the scale µ4, which in turn is set by our choice of the throat length rUV.

The spectral index still presents a peak around ns = 1 but it is less dramatic than in

our previous computation, as seen in Fig. 4.16. As before, two different populations can
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Figure 4.16: Distributions for the amplitude of the power spectrum Pζζ , left and scalar spectral index ns, right.
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Figure 4.17: Plot of the values of ns versus r. The right panel greatly expands the vertical scale. The orange

lines indicate the 95% confidence limits using WMAP data.

be identified, 73% of the realisations with ns ≥ 1 and 27% with ns < 1.

The tensor-to-scalar ratio is always extremely small, as it is related to the slow-roll

parameter ε that remains � 1 throughout inflation. This can be clearly seen in Fig. 4.17.

Imposing observational constraints on the distributions, as can be seen in Fig. 4.17,

excludes the majority of the trajectories. Almost all the realisations with red tilt are in

accordance with observational constraints, such that ∼ 20% of the total sample is in agree-

ment with data. A further constraint is imposed by requiring the correct amplitude of the

scalar power spectrum, (2.5± 0.1)× 10−9 [6]. Combining all constraints we obtained only

three realisations in total concordance with observations in the full sample of 564 cases.

As discussed in the original article, this is not a worrying result as the distribution of Pζζ

does not show a sharp peak.

As in our original computation, all trajectories are essentially of the same type —

inflection-point inflation. Most of the inflation occurs in a small sub-region of the conifold

(typically 0.02 < x < 0.09) in the vicinity of an inflection point in the radial direction.

Looking closely at one particular representative trajectory, Verse 79856, this is evident.
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Figure 4.18: The dynamical behaviour of Verse 79856. The left plot shows the projection of the trajectory

across x, θ1 and ψ. The top-right panel shows the trajectory in x, whereas the middle and bottom

panel show the superhorizon evolutions of Pζζ and ns. Orange and yellow approximately indicates

before and after the inflection point, respectively.

In the top right panel of Fig. 4.18, the trajectory in the radial coordinate is plotted in

two different colours to highlight the approximate position of the inflection-point – orange

before and yellow after it. The left panel shows the inflationary trajectory projected over

three of the six directions – radial, θ1 and ψ. The trajectory evolves from top to bottom

and it is easy to see that around the inflection point it undertakes turns in the angular

directions. The turns distinguish this trajectory from single-field inflection-point inflation

and, as discussed, have consequences in the statistics of ζ. In fact, it is possible to see

in Fig. 4.18 — right middle and bottom panels — that the values of Pζζ and ns undergo

superhorizon evolution around these turns in field space.

As in our previous analysis, the populations with red and blue spectral index could

be understood by the position of horizon crossing relative to the inflection point. In fact,
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Figure 4.19: The value of the spectral index plotted against the total number of e-folds. The orange line repres-

ents the ns = 1 cut. It is possible to see how ns < 1 implies N & 120.

it is straightforward to see that whenever horizon exit occurs before the inflection point,

the spectral index is bigger than one. For the spectral index to be smaller than one, a

dominant negative η contribution is required, which implies horizon exit after the inflection

point. The latter is harder to achieve, which explains the small proportion of inflationary

trajectories with red tilt; a trajectory that gives rise to 55 e-folds in the yellow region needs

to have a much larger total number of e-folds. Roughly, one would expect it to give rise to

at least twice 55. Indeed, this rough estimation is confirmed by Fig. 4.19, where the value

of the spectral index is plotted against the total number of e-folds.

4.11.2 How predictive?

The biggest discrepancy between our two analyses concerns the approach to an adiabatic

limit. As stated in §7, one way to keep track of isocurvature modes is to monitor the

dilation of the bundle of trajectories.

When the number of fields is larger than one, the bundle of trajectories is a tensor of

rank n > 1. In this case, the condition θSR → −∞ is not sufficient to ensure the bundle

is reaching a caustic, becoming an object of rank 0. In fact, θSR would experience this

behaviour whenever the bundle becomes a tensor of rank n−1. In other words, a ‘spherical’

bundle could focus to a ‘sheet’ rather than a point; if this happens, isocurvature modes

are not suppressed [7]. Therefore it is hard to make absolute statements.

In the D-brane model, as can be seen in Fig. 4.20, we consistently found across all the

trajectories and throughout the full inflationary period θSR < 0, which means the bundle
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Figure 4.20: On top, histogram of the final field bundle widths for our sample. On the bottom, evolution of θs

left and θSR right for verse 79856.

of trajectories is focusing. To ensure this corresponds to reaching an adiabatic limit we

have to make sure the bundles are reaching caustics. In this model, where we are near

what can be considered quasi-single-field inflation, with one direction light and all the

others heavy, there is no dynamical reason for the bundle to be focusing in any other way

than by exponentially suppressing the isocurvature modes. Therefore we can consider that

this model does not raise problems of predictiveness related to persistence of isocurvature

through reheating, in agreement with Ref. [2].

4.12 Conclusions

In this erratum we repeat our calculations for the predictions of the D-brane model presen-

ted in ‘Multifield consequences for D-brane inflation’ taking into account the curved field-

space metric in the conifold. We performed this analysis for the power spectrum of

curvature perturbations only, leaving the study of bispectrum for a future publication.

The inclusion of curvature induces large masses in 5 of our 6 active quantum modes, in
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agreement with Ref. [2], which has consequences for the dynamics of inflation. To perform

this computation we used extensions of the transport method which allow for curved field

space metrics and quantum subhorizon evolution.

The results of our new analysis are in agreement with Ref. [2] and qualitatively identical

to our original discussion, except regarding the suppression of isocurvature modes before

the end of inflation, or, in other words, the reaching of an adiabatic limit. Our original

conclusion, that the adiabatic limit was commonly not achieved, is not supported by our

corrected analysis, where we find that the adiabatic limit is approached in all cases studied.
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Paper 5

Predictions in multifield models of inflation

Jonathan Frazer

This paper presents a method for obtaining an analytic expression for the density

function of observables in multifield models of inflation with sum-separable potentials.

The most striking result is that the density function in general possesses a sharp peak

and the location of this peak is only mildly sensitive to the distribution of initial

conditions. A simple argument is given for why this result holds for a more general

class of models than just those with sum-separable potentials and why for such models,

it is possible to obtain robust predictions for observable quantities. As an example, the

joint density function of the spectral index and running in double quadratic inflation

is computed. For scales leaving the horizon 55 e-folds before the end of inflation,

the density function peaks at ns = 0.967 and α = 0.0006 for the spectral index and

running respectively.

5.1 Introduction

The observable consequences of the simplest models of inflation with only one canonical

field are quite well understood but ideas from fundamental physics seem to motivate models

with more than one active field.1 Models involving more than one light field, often referred

to as “multifield models" allow for much richer inflationary behaviour and consequently

making a prediction for observables in models of this kind is more complex. Although the
1As described in Ref. [1], although it remains difficult in string theory to achieve a sufficiently light

scalar to give rise to inflation, once this is managed, the mechanism which gives rise to one light scalar,

tends to give rise to many.
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phenomenology of these models is well studied, and the search for observational signatures

such as local non-Gaussianity is an active area of research, at present it is not clear what

even the simplest multifield models actually predict.

One characteristic which makes computing observables more challenging is the fact

that the primordial curvature perturbation evolves on superhorizon scales. In order to

understand the possible signatures of multifield inflation it is essential to be able to precisely

track the evolution after horizon crossing. Fortunately this is well studied and a number

of techniques exist [2–28]. However, there is another important distinction between single

field models of inflation and models with multiple active fields which is the sensitivity to

initial conditions.

Models involving only one field are essentially insensitive to initial conditions; some

minimum number of e-folds of inflation is required to solve cosmological problems such as

the flatness and homogeneity, but provided the total amount of inflation is a few e-folds

more than this, the observational consequences are independent of how much inflation

actually takes place.2 The primordial curvature perturbation on a given scale is uniquely

determined by the value of the inflaton at the moment that scale left the horizon. If we

take the largest scales we observe to have left the horizon say 55 e-folds before the end of

inflation, our observations are generally insensitive to what happened before then, be it

another 20 e-folds of inflation or 200.

When there is more than one active field the situation changes. As illustrated in Fig. 5.1,

if the model involves Nf inflationary fields, instead of there being only one possible value

of the inflaton at horizon crossing, now there is an infinite set of possible locations in field

space forming an Nf − 1 dimentional hypersurface.3 Without specifying initial conditions,

it is not possible to say which inflationary trajectory corresponds to our observable universe

and since different trajectories will in general give rise to different values for observables,

the model is only as predictive as the volume in the space of observables permitted by the

model. If we are to seriously confront multifield models of inflation with observation, then

it is of paramount importance that this problem is overcome.

The obvious question then is whether a description of initial conditions can be derived

within the framework of the model. One can hope that an ultraviolet complete theory of
2An important exception is the situation where there is more than one metastable vacuum. This

situation certainly is sensitive to initial conditions. The discussion in this paper applies when only one

minimum is relevant.
3Discussed in more detail in section §5.2, this assumes only one trajectory passes through a given point

in field space.
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Figure 5.1: Sketch showing the horizon crossing surface in a single field inflationary potential and a two-field

model. For a single field model, the horizon crossing surface is a single point, meaning that observ-

ables are approximately insensitive to inflationary dynamics prior to crossing this point. For the

case of the two-field model, without knowledge of initial conditions one can not identify a single in-

flationary trajectory that corresponds to what we observe. One must therefore consider all possible

inflationary trajectories.

inflation will provide information on the initial state but calculations along this line are

clearly well beyond our current understanding of fundamental physics. A more promising

approach is to consider how chaotic inflation populates the potential. Although this issue

has received some attention in the past for the case of single field inflation (see for instance

Refs. [29, 30] and references therein), a general description for the multifield case currently

does not exist.

Ultimately the most problematic aspect of this question is what is often referred to as

the measure problem (see Ref. [31] for a recent review). Often described in the context of

tunnelling between metastable vacua but nevertheless still of critical importance even to

much simpler models [32], the issue is that one must choose a measure when addressing

what proportion of an infinite space-time corresponds to a particular choice of an infinite

set of initial conditions.

Despite the significant challenge of computing initial conditions, the aim of this paper

is to show that at least for some models it is still possible to make robust predictions for

observables. A general method is not given here. Instead, by considering the subclass of

multifield models where there is no couplings between the fields, it is shown that the density
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function for observables can be computed analytically given an initial density function on

field space. It turns out that under mild assumptions, the density function of observables is

strongly peaked. This characteristic is largely determined by the geometry of the potential

and can be comparatively insensitive to the initial density function on field space. This

makes clear how the prediction for observables is (marginally) affected by the choice of

measure, leading one to conclude that only certain choices will significantly change the

result in comparison to the resolution of current and future observations such as Planck.

The approach taken in this paper utilises the fact that for sum-separable potentials,

provided isocurvature modes have decayed before the end of inflation, observables o may be

expressed solely in terms of quantities evaluated at horizon crossing. As is often the case,

in what follows this will be referred to as the horizon crossing approximation [33]. The use

of this approximation means that all the information required to compute observables for

all possible inflationary trajectories is contained in a single hypersurface Σf parameterised

by Nf − 1 variables {θ1, .., θNf−1
}. The idea then is that by specifying the density function

f(θ1, .., θNf−1
) on the hypersurface, conservation of probability implies it is possible to

compute the resulting density function for observables p(o1, ..., on). For instance, consider

the case where the hypersurface is 1-dimensional: Let θ be a continuous random variable

with probability density f(θ). Defining o ≡ o(θ), provided the function is bijective, the

probability density of o is given by p(o) where

p(o)|do| = f(θ)|dθ|. (5.1)

The density function f(θ) will depend on details of the theory as well as whatever the

resolution of the measure problem may be, but even at this point Eq. (5.1) shows that a

stationary point in o(θ) will give rise to a spike in p(o) and so, with only mild assumptions

as to the form of f(θ), one can obtain a sharp prediction for the model. Furthermore, if

the surface of evaluation is closed, then o(θ) will be periodic and hence the existence of

stationary points is guaranteed!

With regard to relevant work existing in the literature, there seems to be little seeking

to directly address the issue of predictions in multifield models. In Refs. [32, 34] a toy model

of inflation in the landscape was investigated. By using a method equivalent to taking a flat

distribution over initial conditions, distributions for observables were computed. However,

the presence of multiple minima meant that the results were clearly sensitive to the choice

of distribution of initial conditions yet it was not clear how to asses the impact of this

choice on results. A similar approach was taken in Refs. [35–37] to study 6-field D-brane
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inflation but this model suffered from much the same problem. Here, drastically simpler

models are considered and the approach taken to studying these models is very different.

The most important difference is that here the role of the initial density function is explicit.

Despite not being directly about inflation, it is interesting to note the recent work of

Sumitomo and Tye on the cosmological constant [38–40]. The mechanism by which they

argue for the smallness of the cosmological constant is closely related to why a spike in the

density function of observables is argued to be generic here.

The rest of this paper is structured as follows. §5.2 briefly reviews the relevant expres-

sions for observable quantities in sum-separable potentials and discusses the conditions

under which the method sketched above is applicable. §5.3 is dedicated to a more thor-

ough explanation of the use of Eq. (5.1). §5.4 is a detailed discussion of the prediction of

quadratic inflation; as well as being an interesting model in its own right, the spherical sym-

metry of the model makes calculating predictions exceptionally straightforward and hence

will serve as a transparent demonstration of the method. §5.5 briefly discusses why the

results should hold for a more general class of models than just the class of sum-separable

models and §5.6 concludes this paper.

5.2 Sum-Separable Potentials and the Horizon Approximation

This section briefly introduces the expressions for observables in canonical models of in-

flation with sum-separable potentials and then discusses the conditions necessary for the

proposed method to be applicable.

5.2.1 Expressions for Observables

The curvature perturbation may be related to perturbations in the fields by realising that

on large scales ζ is equivalent to the perturbation of the number of e-foldings from an

initial flat hypersurface at t = t∗, to a final uniform-density hypersurface at t = tc [2–4, 8]

ζ(tc, x) ' δN(tc, t∗, x) ≡ N(tc, t∗, x)−N(tc, t∗). (5.2)
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where N(tc, t∗) ≡
∫ c
∗ Hdt. Expanding δN in terms of the initial field perturbations to

second order, one obtains

ζ(tc, x) = δN(tc, t∗, x) = N,α δφ
∗
α +

1

2
N,αβ δφ

∗
αδφ

∗
β, (5.3)

where repeated indices should be summed over, and N,α, N,αβ represent first and second

derivatives of the number of e-folds with respect to the fields φ∗α.

Observables of interest are related to the correlation functions of ζ and hence may be

expressed in terms of field correlation functions multiplied by derivatives of N . In general

computing the N derivatives require numerical techniques but a useful exception is the

case of sum-separable potentials

W (φ1, .., φNf
) =

Nf∑
i

Vi(φi). (5.4)

Models of this kind have the appealing characteristic that observables such as the power

spectrum, spectral index, running, non-Gaussianity parameter fNL etc. may be computed

analytically. It should be noted however that there is no particularly good reason to

believe that these models are well motivated from an effective field theory perspective; one

in general should expect couplings between the fields. Although a more general approach is

not given here, in later sections it will be argued that the main result of this paper applies

to a broader class of models than just those with sum-separable potentials.

This paper focusses on quantities relating to the two-point statistics of ζ, particularly

the spectral index ns and running α, however all techniques used throughout this work are

just as easily applied to higher order statistics. The reader is referred to Refs. [36, 41, 42]

for derivations of the expressions. For this paper it will suffice to quote the results. Setting

MPL = 1, the power spectrum is given by

Pζ =
W∗

24π2

NF∑
α=1

u2
α

ε∗α
(5.5)

where

uα ≡
V ∗α + Zα
W∗

, (5.6)

and εα is the first slow-roll parameter

εα ≡
1

2

(
V ′α
W

)2

, (5.7)

such that ε =
∑
εα. Also, rather importantly for what follows, the term

Zα ≡
1

εc

NF∑
β=1

V c
β (εcα − εcδαβ) (5.8)
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contains all the information about the constant density surface at the time of evaluation

and all other terms are evaluated at horizon-crossing.

By differentiating with respect to ln k, the spectral index is found to be

ns − 1 = −2ε∗ − 4

(
1−

∑NF
α=1

η∗αu
2
α

2ε∗α

)
∑NF

α=1
u2α
ε∗α

, (5.9)

where ηα is the second slow-roll parameter

ηα ≡
V ′′α
W
. (5.10)

Differentiating with respect to ln k once again, the running is found to be [36]

α = − 8ε∗2 + 4

NF∑
α=1

ε∗αη
∗
α − 16

(
1−

∑
α
η∗αu

2
α

2ε∗α

)2

(∑
α
u2α
ε∗α

)2 − 8

∑
α η
∗
αuα

(
1− η∗αuα

2ε∗α

)
∑

α
u2α
ε∗α

+ 4ε∗

∑
α
η∗αu

2
α

ε∗α∑
α
u2α
ε∗α

− 2

∑
α
ξ∗αu

2
α

ε∗α∑
α
u2α
ε∗α

,

(5.11)

where ξα is the third slow-roll parameter

ξα ≡
V ′αV

′′′
α

W 2
. (5.12)

All of the above expressions can be shown to reduce to the standard single-field formula

by setting uα = 1.

5.2.2 The horizon crossing approximation and the adiabatic limit

As already discussed, the method proposed here for mapping a density function in field

space to a density function for observables makes use of the horizon crossing approximation.

The above expressions for the power spectrum (5.5), tilt (5.9) and running (5.11), are all

composed of slow-roll terms evaluated at horizon crossing “*" and one other term uα, of

which the only contribution not evaluated on “*" is Zα. It follows that in order for this

approach to be appropriate two requirements must be satisfied:

1. The slow-roll approximations ε� 1, η � 1, ξ � 1 must be valid.

2. Observables must stop evolving within the realm of validity of the model.

The first requirement is necessary for a number of reasons. The method proposed here

seeks to map the density function on an Nf − 1 hypersurface in field space to a density
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function for observables. The very fact that the objective is phrased this way already

implicitly assumes that (up to a time shift) there is a unique trajectory passing through

each point in field space. A simple way to ensure this is the case is to stipulate that the

slow-roll conditions are satisfied. If one does not wish to place any constraints on momenta

then the situation is drastically more complicated. In principle an infinite number of both

inflationary and non-inflationary trajectories may pass through any given point in field

space. To handle such a situation is well beyond the scope of this approach.

Another reason for the first requirement is that the expressions for observables given

above are obtained by assuming slow-roll. In practice it can well be the case that these

expressions are valid even when the slow-roll approximations start to break down but this

range of validity is clearly model-dependant.

The second requirement refers to the fact that for the model to be predictive, the prim-

ordial curvature perturbation must become conserved before the end of inflation. Otherwise

a description of reheating is required. In order for the curvature perturbation to become

conserved, isocurvature modes must have exponentially decayed by the end of inflation

such that the model approaches the adiabatic limit [32, 36, 43–45]. Although it is difficult

to say with certainty when isocurvature modes are sufficiently decayed, an intuitive method

to test that this requirement has been satisfied is to track the evolution of the width of

the bundle of perturbed inflationary trajectories in field space. The reader is referred to

Ref. [45] for detailed discussion but an expression for the bundle width can be found to be

Θ(N,N0) = exp

{
−
∑
α

∫ φc

φ∗

(−ηα + 2εα)
Vα
V ′α
dφα

}
, (5.13)

where the expression given here differs from that given in Ref. [45] slightly since this has

been written for the case of sum-separable potentials and made use of dN = −
∑

α Vα/V
′
αdφα.

For an adiabatic limit to be reached, a necessary (but not sufficient if Nf > 2) condition is

that Θ→ 0. By inspection of Eq. (5.13), a period of focusing requires

∑
α

ηα > 2ε, (5.14)

though how much focussing is required is a model dependant statement.

Satisfaction of the second requirement guarantees Zα will be exponentially close to a

constant at the end of inflation but does not guarantee that it is negligible. Satisfaction

of both the first and the second requirement does however guarantee that to a good ap-

proximation one can express observables solely in terms of quantities evaluated at horizon
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crossing. This is what is referred to as the horizon crossing approximation.4 In practice,

it is often the case that Zα → 0 in the approach to the adiabatic limit but even in the

situations where this is not the case, provided the first requirement is satisfied, it will be

possible to map a given location on the final surface to a unique location on the horizon

crossing surface. For the example of quadratic inflation given in this paper Zα → 0 at the

end of inflation.

5.3 Computing the density function of observables

The objective is to obtain an expression for p(o1, .., on) where oi are the observables of

interest such as the spectral index, running etc. If the model consists of Nf fields, then the

horizon crossing contour is an (Nf − 1)-dimensional hypersurface in field space and hence,

under the horizon crossing approximation, each observable may be expressed in terms of

Nf−1 parameters θα′ . Latin indices label the observables, greek indices label coordinates on

field space and primed greek indices label coordinates on the horizon crossing hypersurface

in field space. The choice of parameterisation is arbitrary. Describing the horizon crossing

hypersurface parametrically such that φα = φα(θ1, .., θNf−1
), the volume element on the

horizon crossing hypersurface can be expressed in terms of the parameters θα′ in the usual

way. Constructing basis vectors

eαα′ ≡
∂φα
∂θα′

, (5.15)

assuming flat field space, the induced metric is then

gΣf
α′β′ =

Nf∑
α

eαα′e
α
β′ (5.16)

so remembering that the volume of the corresponding parallelepiped is given by
√

det gΣf ,

the volume element dθ in Eq. (5.1) can now be written more explicitly as

dθ →
√

det gΣfdθ1 · · · dθNf−1, (5.17)

If n ≤ Nf then a similar picture holds for the left hand side of Eq. (5.1). oi(θ1, .., θNf−1
)

are the parametric equations of a surface in the space of observables and so one can

construct the volume element in the same way. The induced metric in “observables space"
4N.B this is not the same as evaluating the expression for a given observable at horizon crossing!
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is

goα′β′ =
n∑
i

∂oi
∂θα′

∂oi
∂θβ′

(5.18)

and so Eq. (5.1) becomes

p(o1, .., on) = f [φ1(θ1, .., θNf−1), .., φNf
(θ1, .., θNf−1)]

√
det gΣf

det gΣo
. (5.19)

Although it will always be possible to compute this expression when the horizon cross-

ing approximation is valid and n ≤ Nf , clearly some sacrifices are made to achieve this

generality. Ideally what one would like to do is perform the inverse mapping and express

θα′(o1, ..., on) such that p(o1, .., on) can be written explicitly in terms of the observables.

Whether this is practical is a model dependant statement and the difficulty in doing so

will also depend on the number of observables under consideration. For instance if n > Nf ,

then one either needs to compute the cumulative distribution function or construct enough

dummy variables such that n = Nf . To give an explicit example, consider the case of 1

observable n = 1 and a 2-dimensional horizon crossing surface Nf − 1 = 2. One would

essentially need to compute

p(o) =
d

do

∫∫
f
√
detgθdθ1dθ2, (5.20)

which in general one probably would prefer to avoid in favour of numerical techniques.

However Eq. (5.19) does have some advantages. As already mentioned, it is simple

to compute and still allows one to locate and compare peaks in the density function. In

some cases, it is sufficient to construct the full density function and even make a sensible

estimate of confidence limits. The main advantage as far as this paper is concerned is that

Eq. (5.19) makes manifest the relationship between the geometry of the potential and the

initial density function. One potentially valuable application of this is in understanding

the sensitivity of the model to the choice of measure. This will be discussed in the context

of the example in the following section.

5.4 Quadratic Inflation

In this section an explicit example is given of the method outlined in §5.3. Double quad-

ratic inflation is a good example for a number of reasons. Explicitly shown in Ref. [45] for

an arbitrary number of fields approaching a quadratic minimum, all isocurvature modes
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are exponentially decaying before the end of inflation and so the horizon crossing approx-

imation is valid. The spherical symmetry of the horizon crossing surface also makes it a

particularly simple example.

The potential for double quadratic inflation is [46]

V1 =
1

2
m2

1φ
2
1 V2 =

1

2
m2

2φ
2
2, (5.21)

such that W = V1 + V2. An expression for the horizon crossing contour may be obtained

by writing the number of e-folds as

N(tc, t∗) = −
∫ c

∗

NF∑
α=1

Vα
V ′α
dφα (5.22)

and so

N =
1

4
(φ2

1∗ + φ2
2∗)−

1

4
(φ2

1c + φ2
2c). (5.23)

A well known [42, 46] and rather helpful choice of parameterisation is to move into polar

coordinates. By neglecting the contribution from the “c" surface one can write

φ1 = 2
√
N cos θ φ2 = 2

√
N sin θ, (5.24)

where here and what follows, unless explicitly written otherwise, fields only lie on the

surface Σf and so the “*" label has been dropped. For quadratic inflation, the observables

(5.5), (5.9) and (5.11) become

Pζ(θ,N) =
H2

4π2
N, (5.25)

ns(θ,N)− 1 = −2ε− 1

N
, (5.26)

α(θ,N) = −8ε2 − 2

N2
+ 4 (ε1η1 + ε2η2) . (5.27)

The amplitude of the power spectrum is in a sense less interesting than the other observ-

ables since it may always be adjusted by a pre-factor on the potential which does not

affect the inflationary dynamics. Other observables one might want to consider are the

non-Gaussianity parameter fNL and the tensor-to-scalar ratio r. For the case of double

quadratic inflation, it was shown in Ref. [42] that −6
5fNL = 1/N . Since Σf is defined as

being at a fixed number of e-folds before the end of inflation, fNL is single valued over

Σf which is why it has not been part of the discussion until now (the same is true for

the tensor-to-scalar ratio). Hence, for this example, the objective is to calculate p(ns, α).

Fig. 5.2 shows plots of the spectral index and running evaluated 55 e-folds before the end

of inflation. As mentioned previously, an important characteristic to bear in mind for what
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Figure 5.2: Example plots of ns(θ) and α(θ) for scales leaving the horizon 55 e-folds before the end of inflation

in double quadratic inflation with masses m2/m1 = 9.

follows is that these observables are periodic in θ. This is simply a consequence of the fact

that θ represents coordinates on a closed surface. It is also worth noting that the stationary

points at θ = πi/2, where i is an integer, occur at the same values for ns and α.

5.4.1 Regarding the field space density function fΣf

It is necessary to specify the density function fΣf
. As already mentioned, this is dependant

on the details of the model as well as the choice of measure. For the purposes of this paper

the distribution is chosen to be flat

fΣf
= c =

1∫
Σf
dΣf

. (5.28)

Following Ref. [47], this choice is a statement of ignorance. We simply adopt the distri-

bution requiring the least additional assumptions. No further justification will be given at

this stage, however in §5.5.1 the implications of this choice will be discussed.

The physics in each quadrant of field space is the same, so without loss of generality

consider just the first quadrant where both fields are positive. The density function over

the contour is then

fΣf
=

1

π
√
N
. (5.29)
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Figure 5.3: Example plots for double quadratic potential with masses m2/m1 = 9 (red), m2/m1 = 7 (orange),

m2/m1 = 5 (gold). The plot on the left shows the set of possible values of {ns, α}. The right hand

plot additionally includes p(ns, α). The density function for all examples shown peak at ns − 1 =

− 1
30

and α = − 1
1800

and are divergent and so the full plot range is not shown. The grey lines are

the projections onto the p(ns, α) = 0 plane.

5.4.2 The joint density function p(ns, α)

As mentioned, it is convenient to parameterise in terms of polar coordinates {N, θ}. Py-

thagorus and Eq. (5.24) give dΣf = 2
√
Ndθ and so the right hand side of Eq. (5.1) becomes

fΣf
dΣf =

2

π
dθ. (5.30)

Since for this model the observables of interest are o = {ns, α}, using Eq. (5.15) and

Eq. (5.16) the element do may be rewritten as

do =

√(
dns
dθ

)2

+

(
dα

dθ

)2

dθ (5.31)

and hence combing Eq. (5.1) with Eq. (5.30) and Eq. (5.31),

p(ns, α) =
2

π

1√(
dns
dθ

)2
+
(
dα
dθ

)2 . (5.32)

The right hand plot of Fig. 5.3 shows p(ns, α) for the case of double quadratic inflation

with masses m2/m1 = 9, m2/m1 = 7, m2/m1 = 5 shown in red, orange and gold respect-

ively. The left plot shows the contours of possible values in the ns − α plane. There is a

strong peak in the density function which corresponds θ = πi/2, where i is a member of the

integers. Comparing with Fig. 5.2, this is exactly what should be expected. Fig. 5.2 shows

that for a large range of θ, the tilt and running are slowly varying. Since a large proportion
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of the contour maps to a relatively small proportion of the possible range of values of the

tilt and running, this will give rise to a very sharp spike in the density function.

It is interesting to note that the peak occurs at the same point for each mass ratio.

i.e the prediction of the model is not as sensitive to the mass hierarchy as the space of

possible values for observables might suggest.

5.5 Discussion

In computing the density function for observables in the previous section, two important

assumptions were made. One was that the density function on field space was taken to be

a flat distribution over the horizon crossing contour. The second was that the potential

was sum-separable. In this section the significance of these assumptions is assessed.

5.5.1 The choice of a flat density function at horizon crossing

Following the procedure in Ref. [46], an expression for the evolution of θ from some initial

surface Σi to the horizon crossing surface Σ∗ can be obtained by substituting Eq. (5.24)

into the slow-roll equations of motion for the fields and integrating

N∗
Ni

=

(
sin θ∗
sin θi

) 2m2
1

m2
2−m

2
1

(
cos θ∗
cos θi

) 2m2
2

m2
2−m

2
1 . (5.33)

As shown by the example plots in Fig. 5.4, there is a dynamical attractor causing the

field trajectories to converge on θ = 0 or θ = π. This means that a flat distribution chosen

on some N > N∗ contour will evolve to give rise to a density function at horizon crossing

with peaks at θ = 0 and θ = π. As shown in Fig. 5.4, the result of this is to sharpen the

peak in the density function of observables. In this sense choosing a flat distribution at

horizon crossing can be considered to result in a lower bound on the strength of the peak

sourced by dynamical effects.

As mentioned previously, one advantage of computing the density function as given by

Eq. (5.19), is that it makes clear the role of the density function on field space and so in

turn, the choice of measure. Since field space dynamics act to strengthen the peak in p(o),

in order for the prediction of the model to be changed significantly, one would require a

choice of measure that acts to counter this dynamical effect.
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Figure 5.4: Example plots showing the effect on p(ns − 1, α) if a flat distribution is taken at 200 e-folds before

the end of inflation instead of at horizon crossing, for the case of double quadratic inflation with

mass ratio m2/m1 = 9. The top left plot shows the evolution of example trajectories from 200 e-

folds before the end of inflation up until horizon crossing. The plot shows a significant proportion

of the trajectories converge at θ = 0 and θ = π. The top right plot shows the relation of θi, the

parameterisation of the initial contour, to θ∗, the parameterisation of the horizon crossing contour.

The plot shows once again that trajectories over a significant range of θi converge onto θ∗ = 0 and

θ∗ = π. The bottom left hand plot shows the resulting density function over one quadrant of the

horizon crossing surface with a strong peak at θ = 0. Finally, the bottom right plot shows the result

on p(ns − 1, α) in gold compared to p(ns − 1, α) for a flat distribution at horizon crossing shown in

red. The red plot is the same as that shown in the right hand plot of Fig. 5.3 but projected onto the

p(ns−1, α)−ns−1 plane. The effect of the evolution is to sharpen the peak in p(ns−1, α)−ns−1.

5.5.2 The use of sum-separable potentials

Central to the approach taken in this paper is the use of sum-separable potentials. It is

therefore important to understand to what extent the results are special to this class of

models. The reason the analysis performed here was restricted to this class was that it

enabled the use of the horizon crossing approximation and hence provided a simple method

of mapping a density function on field space to a density function for observables. The

most striking result is that the functional form of Eq. (5.19) seems to imply that the density

function of observables will be strongly peaked and this is indeed the case for the example

of double quadratic inflation that was explored. If a strong peak turns out to be a generic
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feature of multifield models this is advantageous on two fronts. Most importantly it means

that a given multifield model may be significantly more predictive than considering just

the range of possible values of observables allowed within the model and hence one can be

much more optimistic about the prospect of constraining such models. Secondly, if sharp

peaks in the density function exist, then knowing the location of these peaks can be very

advantageous to numerical approaches to computing the density function.

Although the use of the horizon crossing approximation provides a simple map from

field space to observables, it is argued here that it is not the cause of the peak in p(o).

It may not be very efficient but clearly there already exists a method of computing the

density function of observables for a much broader class inflationary models than the

method given here. For example, consider the class of all inflationary models where the

slow-roll approximation is valid at horizon crossing and also reach an adiabatic limit before

the end of inflation.5 For this class one could perform the following procedure:

1. Perform a Monte Carlo search for the horizon crossing surface Σ∗.

2. Draw initial field space positions from a given density function fΣ∗ .

3. For each set of initial field space positions, starting with momenta given by the

slow-roll equations, evolve each trajectory until the end of inflation.

4. For each inflationary trajectory, using one of the methods given in Refs. [2–28],

compute relevant observables.

In doing this, one would numerically obtain a map from the Nf −1 dimensional surface

on which inflation ends to observables which may, as before, be parameterised by Nf − 1

variables {θ1, .., θNf−1
}. Once this map is obtained, Eq. (5.19) is once again applicable.

If the surface in field space is closed there are only two options for the mapping. Either

the observable is independent of {θ1, .., θNf−1
}, or it is periodic in {θ1, .., θNf−1

}. If the

observable is independent of {θ1, .., θNf−1
} then (as was the case here for fNL and r) that

observable is single valued. If the observable is periodic in {θ1, .., θNf−1
}, then stationary

points are guaranteed.

If the surface in field space is not closed then it is not possible to say anything so

concrete. Nevertheless, the conditions for a peak in the density function to occur are clear.

As illustrated in Fig. 5.5, a peak in p(o) occurs when do/dθ is small. If the surface in field
5The method proposed here is straightforward to adapt to other models of inflation but some details

may vary and so in pursuit of being a little more concrete, discussion has been restricted to this class.
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Figure 5.5: Sketch of why a stationary point in the functional form of o(θ) will give rise to a divergence in the

density function p(o). The spacing of the red lines represents the density function f(θ) and how it is

distorted under a change of variable to give p(o).

space is not closed, then this requirement can not be guaranteed but it is certainly still

permitted.

5.6 Conclusion

If multifield models of inflation are to be confronted with data, it is essential that we

understand what the prediction of a given model actually is. As has been discussed, there

is essentially two parts to this problem:

1. Computing the density function on field space.

2. Mapping the density function on field space to the density function of observables.

Progress with the first part is stymied by the measure problem. This issue has received

considerable attention recently and a number of authors have proposed various possible

solutions. At present however, the problem remains open. The second part has received

comparatively little attention but it is hoped that this paper represents steps towards

rectifying this.
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As an attempt at making progress with the second issue, here a solution for the case of

sum-separable potentials was proposed. Although it is useful to have analytic examples,

clearly this is not sufficient and a more general approach is urgently needed if we are

to compare multifield models with the soon to arrive data from Planck. As discussed,

in principle a numerical approach is already available. However it is inefficient, meaning

that a thorough analysis of models with a large number of active fields, or models with

complicated Lagrangians may still be computationally unaccessible.

The main point this work is trying to make is that a strongly peaked density function

for observables is expected to be generic for a broad class of models. This means that

some models may be relatively insensitive to the density function on field space and hence

for such models it should be possible to make robust predictions with the knowledge we

already have available to us.
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Conclusion

At the time of writing of this thesis, it seems that we live in a time of transition. Perhaps

this is a feeling common to many students at the end of their PhD. Perhaps this is feeling

that is common to many people active in research, independent of time or position. In any

case, I would like to reflect on the work done in this thesis, while trying to keep in mind

the more general situation in cosmology and particle physics.

The current status of inflation

As of a few days ago the Large Hadron Collider (LHC) in Geneva completed the first run

and has been shut down for upgrades estimated to take two years to complete. A Higgs-

like particle was discovered at approximately 125 GeV. The discovery of what may be the

first scalar particle is certainly reassuring for the theory of inflation but it is somewhat

disconcerting that as yet there is no evidence of supersymmetry.

In less than a month it is expected that first data from the Planck satellite will be

released. This data is likely to have a profound impact on the study inflation in years to

come. For instance, if evidence of primordial non-Gaussianity is found, then the study of

these non-Gaussian statistics will provide an incredibly rich source of information about

the effective Lagrangian of inflation. Not only from Planck data itself; there are arguments

to say that in such circumstances data on large scale structure from future missions such

as Euclid will become of great interest to the study of inflation. It does not seem too much

of a stretch to say that such a detection would herald a new era for particle physics.

If the LHC discovers no new physics, and Planck only tightens current constraints, then

it is not clear how best to proceed. This situation could potentially be quite problematic in

so much as perhaps we are simply “running out” of observables. Then again, to overcome
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this issue would surely be an exciting pursuit, likely to send the study of fundamental

physics in new unforeseen directions.

The status of this work

As outlined in the introduction, the work done in this thesis could be summarised as seek-

ing to address the question

How does one compute predictions when there is more than one field?

Here I will reflect on the progress made over the course of this work and how I plan

on continuing this pursuit.

To account for the superhorizon evolution of ζ, over the course of this work, a computa-

tionally efficient and highly versatile method for evolving the statistics of ζ was developed.

The method works by numerically solving a hierarchy of first order differential equations for

the correlation functions of the field perturbations. Apart from the numerical efficiency of

such an approach, another significant benefit is that the method can essentially be applied

whenever the problem can be expressed in terms of evolving a probability distribution.

Utilising this versatility, the original slow-roll superhorizon method developed by Mulryne,

Seery and Wesley was extended, to include non-slow-roll effects, a non-trivial field space

metric and evolution on subhorizon scales. This work is still ongoing but as demonstrated

in this thesis, the method has now reached a level of maturity where it is now possible

to compute the statistics of ζ in more sophisticated models than was previously possible.

Having reached this status, we are now in the final stages of preparing code for public

release.

Another important characteristic of the transport method is the new perspective it

lends to building a better intuition of the evolution of correlation functions. The method

evolves correlation functions in field space which can be related to geometrical optics and

the analogy becomes precise in the slow-roll limit. This new perspective can be useful in a

number of circumstances. One such situation is tracking evolution to the adiabatic limit.

Once an adiabatic limit is reached ζ become conserved and so tracking such a characteristic

is essential in computing the prediction of the model.
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The most problematic feature of multifield models of inflation is that the probabilistic

nature of the prediction is highly non-trivial. Any given multifield model possesses an un-

countable infinite set of inflationary trajectories which necessarily gives rise to a probability

distribution for observables. This challenge is exacerbated in models where the potential

contains more than one minimum, such as in models of inflation in the string landscape.

Here I addressed both cases to a varying degree.

For the case of models possessing multiple minima, we explored in detail two models. A

toy model of the landscape there the potential was a Fourier series with random coefficients

and a D-brane model where the contribution from the bulk was modelled using spherical

harmonics with random coefficients. For such models, the primary question to address is

how the random coefficients affect the ability to make a prediction. For the case of the

Fourier potential, we showed that while varying the number of fields did not significantly

affect the distribution of observables, varying the typical length-scale of features in the

potential had a very significant effect. A well known signature of multifield inflation is a

non-zero fNL. It is therefore important not just to address if a given model can give rise

to an observably large fNL but also to know if it is in any sense generic. We found not

a single inflationary realisation that gave rise to an observably large fNL. Although it is

hard to make robust predictions in models of this kind due to an unknown weighting from

the choice of measure, a detection of fNL seems likely to rule out the model.

The D-brane model represented a considerable step up in complexity. In order to com-

pute observables in this model required considerable extensions to the transport method.

Some of which we did not fully appreciate at first and hence in addition to the paper, an

erratum is also included in this work. The key challenge with this model was accounting

for the large mass spectrum present at horizon crossing that comes about as a result of the

metric on the conifold. To account for this, we evolved correlations functions from subho-

rizon scales which required a quantum extension to the transport method. We saw new

kinds of evolution including a range of non-monotonic behaviours in the power spectrum

and spectral index. Understanding this behaviour and its implications for higher order cor-

relation functions is part of our present work. Little-to-nothing is currently known about

the inflationary behaviour in models with non-trivial field space metrics but equipped with

the tools developed during this work, now we are in a position to explore this uncharted

territory. This is exciting because models of this kind are expected to be generic in super-

gravity.

We found the distribution for the spectral index to be in some tension with current



216
Conclusion

observations and quite likely to be under considerably more tension with the release of the

Planck data. As with the Fourier model, there is an unknown weighting related to the

choice of measure. In this case, there was a clear relation between the spectral index and

the number of e-folds of inflation. Inflationary realisations with more e-folds of inflation

tended to have a redder spectrum. This implies that imposing a measure that favours

more inflation would shift the distribution we obtained to be in better agreement with

observation.

When the potential only has one minimum the situation is much simpler. In the last

paper of this thesis, I showed that for the class of sum-separable potentials, it is possible

to obtain analytic expressions for the density function of observables. In contrast to the

previous papers, this provided an explicit means of understanding the role of the initial field

space distribution. It turns out that under quite general conditions, the density function

of observables will be strongly peaked and that the strength and location of this peak is

remarkably insensitive to the field space distribution. Although this paper worked with

a very special class of models, this result appears to apply more generally. This is very

encouraging as it means that for single minimum models, it should be possible to place

strong constraints.

Clearly it is important to understand how to make predictions for any model of interest

but in lieu of detecting a straightforward signature distinguishing broad classes of models,

it may turn out that the best we can do is constrain models on a case by case basis. If this

turns out to be the situation, then a good understanding of how to compute predictions

in multifield models will becomes all the more critical.

Ultimately the goal is to unite inflation with fundamental theory. Particle physics is

in desperate need of a means of being confronted with observation. We await future data

from the LHC but for many, it seems that the future progress of particle physics will rely

on cosmological tests. Meanwhile inflation severely lacks a foundation in particle physics,

requiring better observations and considerable theoretical development. It is my sincere

hope that this contribution will help, be it in some very small way, in bringing us one step

closer to achieving this union.
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