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Summary 

Distributed video coding (DVC) is a new video coding methodology that shifts the 

highly complex motion search components from the encoder to the decoder, such a 

video coder would have a great advantage in encoding speed and it is still able to 

achieve similar rate-distortion performance as the conventional coding solutions. 

Applications include wireless video sensor networks, mobile video cameras and 

wireless video surveillance, etc. Although many progresses have been made in DVC 

over the past ten years, there is still a gap in RD performance between conventional 

video coding solutions and DVC. The latest development of DVC is still far from 

standardization and practical use. The key problems remain in the areas such as accurate 

and efficient side information generation and refinement, quality control between 

Wyner-Ziv frames and key frames, correlation noise modelling and decoder complexity, 

etc. 

Under this context, this thesis proposes solutions to improve the state-of-the-art side 

information refinement schemes, enable consistent quality control over decoded frames 

during coding process and implement highly efficient DVC codec. 

This thesis investigates the impact of reference frames on side information 

generation and reveals that reference frames have the potential to be better side 

information than the extensively used interpolated frames. Based on this investigation, 

we also propose a motion range prediction (MRP) method to exploit reference frames 



 

 

and precisely guide the statistical motion learning process. Extensive simulation results 

show that choosing reference frames as SI performs competitively, and sometimes even 

better than interpolated frames. Furthermore, the proposed MRP method is shown to 

significantly reduce the decoding complexity without degrading any RD performance. 

To minimize the block artifacts and achieve consistent improvement in both 

subjective and objective quality of side information, we propose a novel side 

information synthesis framework working on pixel granularity.  We synthesize the SI at 

pixel level to minimize the block artifacts and adaptively change the correlation noise 

model according to the new SI. Furthermore, we have fully implemented a state-of-the-

art DVC decoder with the proposed framework using serial and parallel processing 

technologies to identify bottlenecks and areas to further reduce the decoding complexity, 

which is another major challenge for future practical DVC system deployments. The 

performance is evaluated based on the latest transform domain DVC codec and 

compared with different standard codecs. Extensive experimental results show 

substantial and consistent rate-distortion gains over standard video codecs and 

significant speedup over serial implementation.  

In order to bring the state-of-the-art DVC one step closer to practical use, we address 

the problem of distortion variation introduced by typical rate control algorithms, 

especially in a variable bit rate environment. Simulation results show that the proposed 

quality control algorithm is capable to meet user defined target distortion and maintain a 

rather small variation for sequence with slow motion and performs similar to fixed 

quantization for fast motion sequence at the cost of some RD performance. 

Finally, we propose the first implementation of a distributed video encoder on a 

Texas Instruments TMS320DM6437 digital signal processor. The WZ encoder is 



 

 

efficiently implemented, using rate adaptive low-density-parity-check accumulative 

(LDPCA) codes, exploiting the hardware features and optimization techniques to 

improve the overall performance. Implementation results show that the WZ encoder is 

able to encode at 134M instruction cycles per QCIF frame on a TMS320DM6437 DSP 

running at 700MHz. This results in encoder speed 29 times faster than non-optimized 

encoder implementation. We also implemented a highly efficient DVC decoder using 

both serial and parallel technology based on a PC-HPC (high performance cluster) 

architecture, where the encoder is running in a general purpose PC and the decoder is 

running in a multicore HPC. The experimental results show that the parallelized decoder 

can achieve about 10 times speedup under various bit-rates and GOP sizes compared to 

the serial implementation and significant RD gains with regards to the state-of-the-art 

DISCOVER codec. 
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Chapter 1  

Introduction 

1.1 Background and Motivations 

Video applications are extensively used nowadays which has encouraged the 

deployment of multimedia products such as mobile phones, digital cameras, DVD 

systems and many other digital devices and software products. These applications 

require large amount of video data storage or transmission, and therefore efficient 

compression of video data is important. Since data transmission over network, 

especially wireless networks, is prone to errors, compression algorithms with good error 

resilience properties are desired. Furthermore, emerging applications such as wireless 

and handheld devices are tend to be small in size and restricted by their battery life and 

computational resources. Therefore, low complexity processing, low power 

consumption and simple implementation for such applications are necessary as they 

cannot afford to run complex routines. Conventional video coding schemes, such as 

MPEG-x and H.26x [1][2], use predictive coding techniques to exploit the correlation 

between adjacent video frames. This results in computationally intensive encoders due 

to high complexity of the encoder side motion search component. In contrast, the 

decoders are usually much simpler. This type of architecture succeeds in a wide range 

of down link model applications such as video broadcasting and video-on-demand, 

where the cost of the decoder is critical. However, the predictive coding strategies are 

not suitable for the aforementioned emerging applications that requiring simple but still 

efficient encoders, where the power consuming of the encoder is critical. Please note 

that unless specifically defined in this thesis, the term “complexity” herein refers to the 

number of computational operations. 
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A new coding paradigm, Distributed Video Coding (DVC), emerged under this 

circumstance. It shifts the major computation (i.e. the motion search component), 

partially or fully, from encoders to the decoder [3]. A DVC codec typically divides the 

video sequence into two kinds of frames: key frames and Wyner-Ziv (WZ) frames. Key 

frames are inserted periodically, depending on the group of picture sizes (GOP). They 

are typically intra-coded by a conventional coding solution, whereas the WZ frames are 

coded by the DVC principle. These two kinds of frames can be separately encoded 

without any reference to each other, but still achieve similar or even the same coding 

efficiency as the conventional coding approach. This novel feature enables simple but 

still efficient encoders. At the decoder side, one or more already decoded frames serve 

as side information, providing a noisy version of the WZ frame and their correlation are 

modelled and exploited. The decoder complexity can be reduced by properly increase 

the number of key frames, thus reducing the decoding of WZ frames and therefore it 

allows the encoder to share the overall complexity depending on the target platforms 

and applications. This feature enables flexible adjustment of complexity between 

encoders and decoders. And the hybrid video coding architecture is not only compatible 

with most conventional “down-link” applications, but also benefits “uplink” 

applications. 

1.2 Aims and Objectives 

The main objective of this thesis is to investigate, develop and evaluate new, more 

efficient and more practical solutions for DVC, thus bridge the gap between theory 

approach and realistic applications, and bring the state-of-the-art DVC codec one step 

closer to practical use, particularly through the proposal of the following methods. 
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 In-depth investigation and analysis of the impact of using reference frames as side 

information on the coding efficiency in terms of RD performance and decoding 

complexity; 

 Efficient motion search technique to exploit the correlation between the reference 

frames and WZ frames; 

 Finer granularity side information refinement framework for high quality side 

information generation; 

 Adaptive correlation noise modelling for updated side information; 

 Efficient rate distortion model to achieve consistent quality of decoded frames; 

 Highly efficient serial and parallel DVC implementations for practical video coding 

systems. 

All of above are based upon the investigation and evaluation of existing research 

works. The proposed methods are validated carefully before the implementation and a 

systematic test and measurement are carried out to show the correctness and the 

efficiency of our proposals. 

1.3 Original Contributions 

This thesis proposes solutions to improve the state-of-the-art side information 

refinement schemes, enable consistent quality control over decoded frames and 

implement highly efficient DVC codecs. The main contributions of this thesis are 

summarized below. 

1. This thesis investigates the impact of reference frames on side information 

generation and reveals that reference frames have the potential to be better side 

information than the extensively used interpolated frames. Based on this 

investigation, we propose a motion range prediction (MRP) method to exploit 
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reference frames and precisely guide the statistical motion learning process. 

Extensive simulation results show that choosing reference frames as SI performs 

competitively, and sometimes even better than interpolated frames. Furthermore, the 

proposed MRP method is shown to significantly reduce the decoding complexity 

without degrading any RD performance.  

2. To minimize the block artifacts and achieve consistent improvement in both 

subjective and objective quality of side information, we propose a novel side 

information synthesis framework working on pixel granularity.  We synthesize the 

SI at pixel level to minimize the block artifacts and adaptively change the 

correlation noise model according to the new SI. Furthermore, we have fully 

implemented a state-of-the-art DVC decoder with the proposed framework using 

serial and parallel processing technologies to identify bottlenecks and areas to 

further reduce the decoding complexity, which is another major challenge for future 

practical DVC system deployments. The performance is evaluated based on the 

latest transform domain DVC codec and compared with different standard codecs. 

Extensive experimental results show substantial and consistent rate-distortion gains 

over conventional standard video codecs and significant speedup over serial 

implementation. 

3. In order to bring the state-of-the-art DVC one step closer to practical use, we 

address the problem of distortion variation introduced by typical rate control 

algorithms, especially in a variable bit rate environment. Simulation results show 

that the proposed quality control algorithm is capable to meet user defined target 

distortion and maintain a rather small variation for sequence with slow motion and 

performs similar to offline fixed quantization settings for fast motion sequence at 

the cost of some RD performance. 
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4. Finally, we propose the first implementation of a distributed video encoder on a 

Texas Instruments TMS320DM6437 digital signal processor. The WZ encoder is 

efficiently implemented, using rate adaptive low-density-parity-check accumulative 

(LDPCA) codes, exploiting the hardware features and optimization techniques to 

improve the overall performance. Implementation results show that the WZ encoder 

is able to encode at 134M instruction cycles per QCIF frame on a TMS320DM6437 

DSP running at 700MHz. This results in encoder speed 29 times faster than non-

optimized encoder implementation. We also implemented a highly efficient DVC 

decoder using both serial and parallel technology based on a PC-HPC (high 

performance cluster) architecture, where the encoder is running in a general purpose 

PC and the decoder is running in a multicore HPC. The experimental results show 

that the parallelized decoder can achieve about 10 times speedup under various bit-

rates and GOP sizes compared to the serial implementation and significant RD gains 

with regards to the state-of-the-art DISCOVER codec. 

1.4 Outline of the Thesis 

This thesis is organized as follows. This chapter presents the background and the 

motivations, along with the main objectives of our work, highlights of the original 

contributions and the structure of the thesis. 

Chapter 2 reviews the theoretical background supporting the WZ video coding as 

well as a comprehensive literature review on the state-of-the-art DVC performance and 

research topics that are directly relevant to this thesis. These include the latest 

developments of side information generation and refinement, correlation noise 

modelling, consistent quality control for decoded video frames and practical DVC 

implementations. 
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Chapter 3 investigates the impact of reference frames in DVC on the RD 

performance and reveals that reference frames have the potential to be better side 

information than the extensively used interpolated frames. Based on this investigation, 

we propose a motion range prediction method to exploit reference frames and precisely 

guide the statistical motion learning process. 

A novel SI synthesis framework based on pixel granularity is proposed in Chapter 4. 

We synthesize the SI at pixel level to minimize the block artifacts and adaptively 

change the correlation noise model according to the new SI. The decoding complexity is 

another major research challenge in practical DVC system deployments. We have fully 

implemented a state-of-the-art DVC decoder with the proposed framework using both 

serial and parallel processing technologies. The performance is evaluated based on the 

latest transform domain DVC codec and compared with different standard video codecs. 

In Chapter 5, we propose a novel algorithm to facilitate quality controls for both key 

frames and WZ frames. The proposed algorithm adjusts the quantization parameters 

according to the visual content and the user defined target quality online without any 

external control. A distortion-quantization model derived from MPEG-2 distortion 

estimation model is employed. With the proposed algorithm, low complexity encoding 

is still guaranteed by performing the distortion estimation partly at the decoder side. The 

proposed algorithm addresses the problem of distortion variation introduced by typical 

rate control algorithms, especially in a various bit rate environment. 

Chapter 6 proposes the first implementation of a distributed video encoder on a 

Texas Instruments TMS320DM6437 digital signal processor. The WZ encoder is 

efficiently implemented, using LDPCA codes, exploiting the hardware features and 

optimization techniques to improve the overall performance. This chapter also presents 
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a highly efficient DVC decoder using both serial and parallel technology based on a PC-

HPC (high performance cluster) architecture, where the encoder is running in a general 

purpose PC and the decoder is running in a multicore HPC. Both the encoder and the 

decoder are carefully evaluated and compared with the state-of-the-art codecs. 

Finally, Chapter 7 summarizes the main achievements of this thesis and identifies 

possible areas for our future works. 
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Chapter 2  

Overview of Distributed Video Coding 

2.1 Introduction 

DVC has been evolving significantly since the first practical solutions. However, 

this coding paradigm is still relatively new and its latest development shows that it is 

still far from standardization and industrial deployments, although compared to the 

conventional coding solutions, the coding efficiency of DVC has achieved similar 

performance.  

This chapter reviews the recent status and trends in distributed video coding. The 

foundation of DVC including the Slepian-Wolf and Wyner-Ziv theorem are presented in 

section 2.2. After the theorem introduction, section 2.5 is devoted to the early 

development of DVC architectures, mainly the Berkeley DVC architecture and the 

Stanford architecture. The current research challenges are summarized in section 2.4 

and section 2.5, the latest developments of DVC in terms of overall performance and 

relevant research areas including SI generation, SI refinement, correlation noise 

modelling, consistent quality control and fast DVC implementations are reviewed. 

Finally in section 2.6, we conclude this chapter. 

2.2 Theoretical Background 

In classic video coding standards, such as MPEG-x or H.26x recommendations 

[1][2], predictive coding techniques exploiting the statistics of the video contents are 

adopted at encoder side. This brings intensive computational complexity and thus sets 

rather high requirements on the hardware performance at the encoder, whereas the 

decoder is very straightforward and simple. This architecture suits well for most 
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“downlink” or “storage” scenarios which only compress the data once but can be 

streamed to multiple terminals and decompressed whenever requested, as depicted in 

Figure 2.1. Live video can be captured and sent to a central storage server to be encoded. 

The encoded data is typically stored offline for future streaming requests. This scenario 

can be characterized as a one-to-many video coding paradigm with highly complex 

front-ends but allows multiple simple terminals. It emphasizes the reuse of encoded data 

resources as video compression is far less frequent than video decoding in this case. 

Typical applications include internet video streaming and broadcastings, video 

surveillance, etc. 

Camera

0101010101...

0101010101...

0101010101...

Decoder A

Decoder B

Decoder C

0101010101...

Decoder D

Storage server

 

Figure 2.1 Conventional “down-link” model applications 
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Figure 2.2 DVC provide “up-link” model applications 

Distributed video coding aims at very low complexity encoding but still achieve the 

same or similar coding efficiency as the conventional solutions. DVC shifts the major 

computational component (i.e. the motion search module) from encoder to decoder side. 

This novel insight enables video compression ability in resource critical devices which 

is currently limited or even impossible for conventional coding solutions. Figure 2.2 

shows a typical “up-link” application scenario where the power restricted devices are 

now able to upload captured video data efficiently. 

However, for real-time applications, decoders also have complexity restraint and 

thus a transcoder is required to guarantee that both encoder and decoder are of low 

complexity. Figure 2.3 shows the use of a transcoder to convert the decoded video data 

from a DVC decoder into a conventional video codec such as H.264/AVC encoder. 

Real-time decoding can therefore be achieved at the decoder side as well.  
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Figure 2.3 Use of a transcoder to achieve real-time video coding 

The theoretical foundations of distributed video coding are based on Slepian-Wolf 

theorem [6] in which the entropies of correlated information are proposed and it also 

shows that two isolated sources can be compressed as efficiently as if they were 

communicating with each other. Shortly after this finding, Aaron D. Wyner and Jacob 

Ziv extended this theorem to lossy compression with decoder side information [7]. 

2.2.1 Slepian-Wolf Coding 

The Slepian-Wolf theorem gives the rate bound to reconstruct the correlated data 

with arbitrarily small error probability. Consider two independent and identically 

distributed (i.i.d.) sequences X and Y. Shannon’s source coding theory [8] indicates that 

a rate of joint entropy        is sufficient to compress X and Y losslessly based on the 

complete knowledge of X and Y at a single encoder, whereas Slepian and Wolf showed 

that this rate can still be achieved even X and Y are compressed separately by 

independent encoders. The Slepian-Wolf theorem shows that to recover separately 

encoded X and Y losslessly, a rate of              is sufficient if           
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and          . These inequalities form the achievable rate region [6], given by 

Figure 2.4. 

The top right region in dark grey is the rate region for conventional coding solutions 

that encode X and Y separately without exploiting their correlation. Special cases can be 

seen from the corner points of the rate region which is commonly referred to as 

compression with decoder side information, where one data source is available at the 

decoder side but not accessible at the encoder side, e.g. trying to achieve a rate of 

       when encode X, while a rate of       has been used to encode Y.  

Rx

Ry

H(Y)

H(Y|X)

H(X)H(X|Y)

H(X,Y)

H(X,Y)

A

B

Slepian-Wolf Rate Region

Rx+Ry=H(X,Y)

 

Figure 2.4 The Slepian-Wolf rate region 

 

Since one of the two correlated data can be seen as a noisy version of the other 

obtained through a virtual correlation noise channel, Slepian-Wolf coding can therefore 

relate to channel coding. A Slepian-Wolf codec can be implemented using efficient 

channel codes such as Turbo codes [13] and LDPC codes [14] given particular 

correlation models. 
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2.2.2 Wyner-Ziv Coding 

In 1975, Wyner and Ziv extended Slepian and Wolf’s work to lossy coding with 

decoder side information scenario [7].  The theorem gives the lower rate bound for 

encoding Gaussian memoryless source [15] under the constraint of mean squared error 

(MSE) distortion. And this rate bound will not change even if the side information is not 

available at the encoder side, i.e. there is no coding efficiency loss when the side 

information is only available at the decoder. 

Lossy compression is usually obtained by introducing quantizers. Therefore, a 

practical Wyner-Ziv codec can be seen as a Slepian-Wolf codec with a quantizer and a 

de-quantizer. 

2.3 Early DVC Architectures 

Although theories state that DVC solutions can perform as efficient as joint coding 

solutions, the practical DVC architectures only came out a decade ago. Among them, 

the early DVC architectures developed by UC Berkeley and Stanford research groups 

remain the most popular architectures nowadays. 

2.3.1 The Berkeley DVC Architecture 

The first attempt to design a practical DVC started in 2002, i.e. PRISM codec 

(Power-efficient, Robust, hIgh compression Syndrome-based Multimedia coding) 

[9][10]. Its architecture is shown in Figure 2.5. Input frames are divided into 8×8 blocks 

and DCT transformed. At the same time, zero-motion block differences are used to 

evaluate the correlation level between neighbouring frames, which result in 16 different 

encoding classes. For instance, blocks with very low correlation are encoded using 

conventional Intra-coding method, whereas blocks with very high correlation are simply 
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skipped without coding. The remaining blocks are encoded based on DVC principles. 

The estimated correlation levels are also utilized to determine the number of least 

significant bits (LSB) of the transform coefficients, and syndrome bits are generated 

from them. The lowest bit planes in the LSB are encoded using standard entropy coding 

principles with a (run, depth, path, last) 4-tuple alphabet. The higher bit planes in the 

LSB are coded using channel codes. And BCH block codes are chosen for their good 

performance on small block-lengths. With regards to the most significant bits (MSB), 

they can be derived from the block predictor or SI. In order to check successful 

decoding, a 16-bit Cyclic Redundancy Check (CRC) [16] is calculated for quantized 

code words at encoder. At the decoder side, the syndrome bits are then used to correct 

predictors, which are generated from the motion search module.  
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Figure 2.5 PRISM DVC Architecture 

2.3.2 The Stanford DVC Architecture  

Almost at the same time, Rane, Aaron and Girod proposed another DVC 

architecture [11]. The functional blocks of this architecture is shown in Figure 2.6. The 

input video sequence is split into key frames and WZ frames. Key frames are encoded 

using a conventional video coding solution such as H.264/AVC Intra [12]. The WZ 

frames are encoded using distributed video coding principles. WZ frames are quantized 

without DCT transform, which is usually referred to as pixel-domain DVC architecture 
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(whereas transform-domain DVC architecture refers to DVC with coding of pixels in a 

transformed form). Bit-planes are then extracted from the quantized symbols which will 

feed to a Turbo encoder. The Turbo encoder generates parity bits and they are stored in 

a buffer for the decoder requests. 
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WZ frames
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Figure 2.6 Stanford DVC Architecture 

At the decoder side, motion-compensated frame interpolation or extrapolation using 

previously decoded frames is performed to generate SI. The turbo decoder then correct 

the errors in the SI using the parity bits requested from encoder buffer via a feedback 

channel. Finally, bit-planes of WZ frames are reconstructed, and decoded WZ frames 

and key frames are re-ordered to form the decoded video sequence.  

The above two architectures are still the main structural designs for modern DVC 

codecs implementations. However, the features in one architecture can sometimes be 

used in the other. Most modern DVC codecs nowadays actually combine the modules 

from the two. The fundamental differences between them are highlighted in Table 2.1.  

The most obvious difference is that PRISM uses different coding mode according to 

the block correlation which allows for a better adaptation of various local textures of 

video content. In this way, the WZ coding mode is only used when the correlation is 

sufficient since WZ coding performs poorly for intense motion or scene changes. 

Although block classification by simple inter-frame prediction does not dramatically 
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increase encoder complexity, block partitioning results in short block-length which 

impairs efficient channel coding. BCH codes [17][18] are therefore used for this reason. 

On the contrary, Stanford solution encodes the entire WZ frame without block 

partitioning and classification. However, more efficient channel codes, such as Turbo or 

LDPC codes, were used to improve the coding efficiency.  

Table 2.1 Stanford Architecture vs. Berkeley Architecture 

                      

                        Architecture 

  Techniques 
Stanford Architecture Berkeley Architecture 

Coding unit Frame Block 

Block classification No Yes 

Rate control Decoder side Encoder side 

Channel codes LDPC codes Turbo codes 

Auxiliary data None Hash codes 

Use of motion information Initial SI generation Candidate SI decoding 

Rate control mechanisms used in these two frameworks form another important 

fundamental distinction. PRISM removed the feedback channel by estimating a 

minimum rate at encoder side. This is key to reducing the decoder complexity, although 

false estimation may cause some coding performance loss. On the contrary, the Stanford 

approach relies on the feedback channel to achieve better coding efficiency. Although a 

feedback channel can allow virtual noise adaptation and achieve optimal coding rate, it 

is usually considered to be not practical in real-time applications, and the complexity it 

brings to the decoder side is tremendous. 

Furthermore, motion estimation is also performed in different ways. The Stanford 

architecture estimates motion when generating the SI. Motion estimation between the 

reference frames is performed at the decoder side which can provide a good estimate of 
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the motion vectors between SI and WZ frame for slow motion video content but the 

accuracy may decrease for intense motion scenarios. On the contrast, PRISM searches 

over the space of candidate motion vectors and each candidate associates to a motion 

compensated SI. The SI that successfully decodes the syndrome bits and passes the 

CRC check is believed to have associated with the best-matched motion vector. A more 

detailed comparison can also be found in [5]. 

2.4 Research Challenges 

Although numerous work has been done to improve the RD performance and speed 

up the practical use of DVC, the main challenges remain in the areas of the following. 

2.4.1 Side information generation 

Side information can be seen as a noisy version of the WZ frames, therefore the aim 

of side information generation is to create an estimate of the WZ frame that is as similar 

as possible. The quality of SI has a direct impact on the final RD performance as well as 

the decoding complexity since the better the SI is, the less error it contains and thus 

fewer parity bits are required for decoding. SI is typically generated by frame 

interpolation or extrapolation of reference frames, taking into account the motion 

activities. However, this estimation can be very challenging since the motion 

information is not necessary consistent and smooth over time, and scene changes or 

intense motion can seriously affect the accuracy of interpolation/extrapolation based 

methods. Furthermore, coding with long GOP sizes can also lead to poor SI quality.  

2.4.2 Side information refinement 

Transform domain DVC usually converts video frames into bands, and decoding is 

carried out band by band. As one band is successfully decoded, it provides information 
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not initially available to the decoder. With the help of this information, SI can be refined 

gradually and thus improve the coding efficiency for decoding the rest of the frame. The 

refinement can be significant, especially when the motion is intense or scene changes 

occur since interpolation/extrapolation for the initial SI generation performs poorly 

under these situations. However, the selection of areas in SI is essential since not the 

entire SI requires update, i.e. some regions would not change over time and any updates 

on these regions may bring even poorer SI and increase decoding complexity at the 

same time. Furthermore, any changes in SI will affect accuracy of the conditional bit 

probability model and the correlation noise model established earlier for the initial SI. 

The improvements in SI quality during the decoding process may not necessarily 

transfer to the final RD performance gains if the other related modules are not 

coordinated well. 

2.4.3 Correlation noise modelling 

Since SI can be created at the decoder side, with the knowledge of the correlation 

between SI and WZ frames, WZ frames can be decoded. This is very similar to the 

channel coding scenarios where WZ frames are “transmitted” through a virtual channel 

and the SI can be seen as the received version with transmission noise. This virtual 

noise is actually a form of the correlation information and is typically following a 

Laplacian distribution [4][5][19][26]. Correlation noise model is used to estimate the 

noise distribution and it also has a direct impact on the final RD performance and 

decoding complexity. The main challenge here is that WZ frames are unknown at the 

decoder side. Therefore, the correlation between WZ frames and SI has to be estimated 

from reference frames, which can be very unreliable since the differences between 

reference frames do not directly reflect the difference between WZ frames and SI. 
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Furthermore, SI might be updated during decoding process, and the correlation noise 

will be changing accordingly, which makes the estimation even harder. 

2.4.4 Consistent Quality Control 

Most of the existing DVC solutions use pre-defined quantization parameters for 

coding both key frames and WZ frames [3][4][5][11]. And these parameters are 

typically obtained from extensive offline experiments trying to achieve a consistent 

image quality over time. However, this is not practical for real-time applications. 

Therefore, it is necessary to design a rate control algorithm to coordinate the 

quantization settings for both key frames and the WZ frames. The major challenges are 

that the key frames and the WZ frames are coded independently by different codecs. 

Therefore the quantization settings have to be estimated separately for both of them. 

Furthermore, the major advantage of DVC is the low encoding complexity and hence 

the controlling algorithm should not add major complexity burden to the encoder.  

2.4.5 DVC implementation 

Although enormous solutions have been proposed to tackle various DVC problems, 

the same solution can be interpreted differently in implementations. The efficiency of 

different implementations, in terms of coding and complexity performances can vary 

dramatically. In addition, the transference of complexity from encoder to decoder plus 

various refinement algorithms added on the top can make the already slow decoder 

overburdened. This is usually overlooked by the research community but it is a critical 

problem for practical DVC applications, especially for real-time scenarios. Therefore, 

an efficient implementation of DVC codec is essential and deserves more attentions. 

However, since the encoder and the decoder are usually targeted at different hardware 

platforms, it requires the design and the implementations to consider the restriction on 
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both of the software and hardware, available resources, portability of the codes, 

communications between the encoder and decoder platforms, etc. Furthermore, different 

interpretations of the algorithms will results in different implementations, and the 

correctness and the efficiency of the implementations may need to be tested by 

extensive experiments. 

2.5 Relevant Recent Advances on DVC 

2.5.1 State-of –the-art Performance 

Developed in 2005, the European project DISCOVER [19], is one of the best 

performing DVC codecs reported in the literature to date. It is based on the Stanford 

architecture [11] but a lot of improved modules have been integrated. [20] presents a 

comprehensive evaluation of this codec. This transform domain Wyner-Ziv codec 

introduced a hybrid bit-rate control mechanism which operates at both the encoder and 

the decoder sides. The encoder estimates a minimum rate budget and if it is not 

sufficient, the decoder can request more parity bits from the encoder buffer through a 

feedback channel. This allows a great reduction on decoder complexity and also enables 

rate adaptability. Furthermore, a motion vectors smoothing algorithm was applied to 

motion compensated interpolation in order to generate SI with enhanced quality. 

Notably, the correlation noise distribution was online estimated and more advanced 

channel codes, i.e. LDPCA codes [21][22] are used at the decoder. The decoded 

symbols are reconstructed in a mean squared error-optimal way [23]. The reported RD 

performance shows that the DISCOVER codec consistently outperforms H.264/AVC 

Intra, except high motion video content such as the “Soccer” sequence. For low motion 

video content such as “Hall Monitor”, up to 3 dB gains can be observed. When 

compared to H.263+ Intra codec [24], a remarkable 8 dB gains can be observed for the 



34 

 

“Hall Monitor” sequence. However, there is still some gaps between the RD 

performance of the DISCOVER codec and H.264/AVC No Motion [12]. 

More advanced DVC codec was later developed by the VISNET II project [25].This 

codec is also based on the early architecture in [11] and integrates numerous advanced 

tools. The major improvements over DISCOVER codec are mainly brought by the 

iterative SI refinement method and the deblocking filter. After each DCT band is 

decoded, the partially decoded WZ frame is exploited to refine the SI and also provides 

better reconstructed WZ frame. After frame reconstruction, an adaptive deblocking filter 

is used to improve the subjective and objective quality of WZ frame. In terms of RD 

performance, the VISNET II codec consistently outperforms the DISCOVER codec for 

all the test sequences and various bit-rates. Gains of up to 5 dB can be achieved over 

H.264/AVC Intra for low motion content such as Hall Monitor. However, although for 

video sequences with regular global motion, such as Coastguard sequence, VISNET II 

still can achieve better RD performance over H.264/AVC No Motion, for most other 

video sequences, the performance of the VISNET II codec is still significantly lower. 

Regarding to complexity, [26] shows that the DVC encoding complexity in terms of 

software execution time is about 1/6 of the average encoding time of H.264/AVC Intra 

and H.264/AVC No Motion. 

The best performing DVC codecs, as far as the author can check, are presented in 

[27] and [28]. [27] estimates the parameters of the global motion at the encoder using 

scale invariant feature transform and combines the global and local motion 

compensation at the decoder side. Those encoder estimated parameters are sent to the 

decoder in order to generate a globally motion compensated side information. Based on 

motion-compensated temporal interpolation of neighbouring reference frames, it also 

generates a locally motion compensated side information. And finally, an improved 
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fusion of global and local side information can be obtained during the decoding process 

using the partially decoded Wyner–Ziv frame and decoded reference frames. The 

presented experimental results show that when compared to DISCOVER codec, this 

method can achieve a RD performance gain of up to 1.92 dB for GOP size 2 and a 

remarkable 4.65 dB for longer GOP sizes. More impressing and encouraging is that, 

DVC now outperformed H.264/AVC Intra or H.264/AVC No motion in all reported test 

conditions. And the performance gap between the proposed DVC scheme and 

H.264/AVC Inter prediction with motion is considerably reduced. However, the 

astonishing RD performance gains mainly come from the motion information provided 

by the encoder. Therefore, strictly speaking, this codec is not a pure DVC codec since 

the correlated information, WZ frames and Key frames are not “distributed”. There is 

information exchange between them. With that being said, however, for practical 

system design and implementation, it is still highly recommended to partially rely on 

the encoder to analyse motion. In contrast, [28] does not perform any motion search at 

the encoder side. It used optical flow to compensate the weaknesses of using block-

based methods to improve side information generation, and it also introduced clustering 

algorithm to capture cross band correlation and increase local adaptivity in the noise 

modelling. In addition, multiple techniques are combined to calculate several candidates 

of soft side information for channel decoding. This method can achieve 1.53 dB 

improvement in average on RD performance over the DISCOVER codec for the most 

difficult test sequence (Soccer) using GOP size 2. The RD performance gains are 

mainly achieved by multi-hypothesis based decoding method. However, the decoding 

complexity can increase significantly along with the increase of the number of side 

information. 
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2.5.2 Side Information Generation 

It is well known that the performance of DVC highly depends on the quality of side 

information. Early attempts to generate SI are rather simple and intuitive. In 2002, the 

Stanford research group proposed to use the average of the reference frames to generate 

the SI [11]. This method exploited limited correlation between the reference frames 

since motion information was not taken into account, and therefore it has much poorer 

coding efficiency. Later in 2004, they extended the previous work and evaluated 

different SI generation schemes [29]. Two simple SI generation schemes, average 

interpolation and previous frame extrapolation, are evaluated and compared with the 

motion compensation based interpolation methods. The simulation results show that the 

RD performance is about 1 to 2 dB lower for Foreman sequence when motion 

compensation is not performed. More recently, in 2005, the IST research group 

proposed a frame interpolation with motion smoothing algorithm [30]. The two 

reference frames are low pass filtered to reduce the noise for motion estimation. 

Forward motion vectors are then obtained by block based motion estimation. To avoid 

holes effects, it selects the motion vector that has the intercepting point closest to the 

centre of the non-overlapped block. Since interpolated frames are not available, bi-

directional motion estimation is then performed between the two reference frames with 

the constraint of a linear trajectory of forward and backward motion vectors. After bi-

directional motion estimation, weighted vector median filter is applied to improve the 

spatial coherence, and finally, bi-directional motion compensation is performed to 

generate the interpolated frame. This algorithm was first proposed for a pixel domain 

DVC codec but was later widely adopted by transform domain DVC codecs.  

Although frame interpolation has been proved to perform better than extrapolation 

techniques, it is more suitable for real-time applications to generate SI by extrapolation 
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since frame interpolation breaks the original frame order and requires some future 

frames to be available beforehand. However, this is impossible for real-time scenario 

since video frames have to be decoded in sequence in this case. In 2005, [31] proposed 

frame extrapolation module to generate SI based on motion fields smoothening method. 

Firstly, forward motion vectors are estimated by 8×8 overlapped blocks using two 

previously decoded reference frames. Secondly, motion vectors are smoothened by 

calculating the average of all the neighbouring motion vectors. And finally, motion 

compensation is performed using the obtained motion vectors. For any overlapping 

pixels, average values are used. And for uncovered areas, local spatial interpolation is 

performed taking into account 3 neighbouring pixels. Simulation results show about 7 

dB loss in RD performance for the Foreman sequence when comparing with frame 

interpolation method.  In 2007, a more advanced frame extrapolation based SI 

generation method is proposed [32]. It exploited 3 previously decoded frames to 

generate initial motion vectors. It then generates another set of motion vectors only 

from the nearest two frames. Final motion vectors are chosen from these two set motion 

vectors by taking into account the consistency restraint, i.e. motion vectors with the 

lowest difference between subsequent neighbouring frames are selected. Although this 

solution provides better extrapolated frames, similar to other extrapolation based 

methods, it performs poorly for intense and inconsistent motion scenarios since motion 

vectors are always estimated by the information obtained from previously decoded 

frames. 

2.5.3 Side Information Refinement 

Various techniques have been proposed for SIS in the past. The recent advances on 

this issue can be categorized as below. 
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Multiple hypotheses: SIS using this method typically selects the SI candidate that 

first converge the decoding iterations [28][33]. The idea is to evaluate different SI in 

each iteration of belief propagation process [34] and choose the one that stops the 

iterative decoding successfully. It always guarantees the best SI to be chosen for 

decoding. However, the major drawback is the seriously increased complexity. The 

complexity of iterative decoding process increases in proportion to the number of 

candidate soft inputs. For the simplest case of using only 2 soft inputs, the complexity 

of belief propagation almost doubles. Furthermore, appropriate correlation noise models 

will be required to fit different noise distribution brought by different SI generation 

schemes. 

Statistical motion learning: Motion learning is seen as an indirect method of SI 

update. Due to the high complexity, it usually limits the motion search in block level by 

estimating the probability of every possible displacement of each block. The resulting 

probabilities for each possible motion vectors are contributing to the new correlation 

noise distribution and optionally for SI refinement [35][36][37]. However, motion 

learning suffers from high complexity in motion search process as each possible motion 

field for the over-complete SI has to be evaluated to produce an accurate estimation. 

And each time a band has been successfully decoded, the statistical motion fields will 

need to be re-calculated to further update correlation noise model and SI. Additionally, 

this results in a highly restricted decoder design. For a typical transform domain motion 

learning algorithm, the motion probabilities are computed in transform domain, which 

requires everything relevant to be converted into transform domain as well, e.g. the 

generation of over-complete SI has to be converted into transform domain. All the 

efforts made on performing motion learning in transform domain actually results in 

similar or even worse motion fields as those achieved from straightforward spatial 
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domain approaches. In addition, if the motion learning model relies on other processing 

modules such as the correlation noise model, poor correlation noise estimation will 

results in bad motion probability distribution, whereas spatial domain motion search is 

generally independent, so the accuracy of the motion fields only relies on the quality of 

reference frames. 

Spatial domain SIS: This is a straightforward technique that directly exploits the 

correlation from the reference frames. Spatial domain motion estimation can be further 

categorized into block level and pixel level motion estimation. The former saves more 

computational complexity whereas the later gives better precision, especially for high 

motion video content. Most work in the literature use block level motion estimation 

[38][39]. 

DCT domain SIS: SI refinement can also be performed in transform domain as the 

partially decoded WZ frame is initially obtained in transform domain before any inverse 

transform is carried out. In [40] and [41], motion estimation is performed between the 

decoded and oversampled DC frame and transformed key frames. The refined SI is 

synthesized considering the forward, backward, and bi-directional prediction together 

with the motion vectors obtained from the initial SI generation. Since band-by-band 

decoding model only gives a subset of all the Discrete Cosine Transform (DCT) bands 

after a certain band is successfully decoded each time, the motion estimation using only 

a small subset of the DCT bands of a single block has been reported to be not so 

accurate [39][42]. Therefore, [40] and [41] used block of DCT coefficients to improve 

the accuracy for transform domain motion search, which requires bigger block size that 

may not favor complex motion in local area. Complexity is also an important issue for 

this approach as it requires DCT transform for each over-complete SI candidate.  
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Bit-plane by bit-plane update [43][44]: SI can be updated each time a bit-plane is 

successfully decoded. However, the information provided by a small portion of decoded 

bit-planes is not sufficient for transform domain DVC, and is therefore more suitable for 

pixel domain DVC.  

2.5.4 Correlation Noise Modelling 

One of the most important aspects influencing the coding performance of DVC is 

the virtual channel noise model which is used to estimate the noise distribution between 

the side information and the WZ frame. There are mainly two kinds of correlation 

model in literatures, i.e. offline correlation noise modelling [3][29][45][46] where the 

noise is estimated with the original WZ frame provided; online correlation noise 

modelling estimates the noise using reference frames. Since offline modelling either 

requires the encoder to perform the complex motion estimation task, or requires the 

original frame to be available at the decoder which is unrealistic. Therefore, the 

following reviews of the recent literatures are only dedicated to the online correlation 

modelling. 

The authors of [47] proposed an algorithm to online estimate the noise at frame level 

for pixel domain DVC codec. It used a weighted mean square error between motion 

compensated backward and forward reference frames to approximate the variance 

between SI and WZ frame. And the noise distribution is assumed to be Laplacian 

distribution. The parameter for the probability dense function is computed from the 

estimated variance. Simulation results show that there is only a very slight RD 

performance loss regarding to the off-line approach. Later in the same year, they 

extended the algorithm to model the Laplacian parameter at different granularity for 

both offline and online models [48]. Three granularity levels, i.e. frame level, block 
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level and pixel level are investigated in the modelling algorithm. Experimental results 

show that the model can achieve better performance at finer granularity and the 

performance gap between offline models and online models has been reduced. A more 

comprehensive study of the correlation noise modelling for both pixel domain and 

transform domain DVC codecs is presented in [4]. This method has been widely 

adopted in literatures and the best performing DVC codecs.  

More recently, in 2009 [49] investigated the online CNM techniques and found that 

quantization noise also has an impact on the accuracy of noise distribution. Therefore, 

they estimated the quantization noise for intra frames at the encoder and sent this 

information to the decoder. The experimental results show significant bit rate reduction 

for coarse quantization. [50] proposed to use a category map based on previously 

decoded DCT bands. The map divides transformed coefficients of the current band into 

two categories, where different parameter estimators are applied to locally compute the 

Laplacian parameters. Finally, each transformed coefficient is assigned a Laplacian 

parameter based on its corresponding category and reliability. Compared with the 

coefficient level noise model in [4], the proposed noise model can only improve the RD 

performance for high bit-rates up to 0.5 dB. Since the cross-band correlation and the 

successfully decoded information can significantly influence the reliability of block 

classification and the accuracy of noise parameter estimation of subsequent bands, later 

in 2011, they proposed another algorithm [51] to adaptively estimate the Laplacian 

parameter by using clustering method to exploit correlation across all frequency bands. 

It was also proposed to combine their algorithm with the noise model in [50] to 

adaptively optimize the soft side information for LDPCA decoding. The proposed 

model achieved average improvement in PSNR up to 1.24 dB over the DISCOVER 

codec. In the same year, [52] proposed a progressive refinement approach for CNM 
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which used the previously decoded bit-planes and quantization errors to refine estimated 

correlation noise. Although the proposed CNM refinement consistently performs better 

than DISCOVER codec, the maximum PSNR gains are only about 0.2dB. [53] 

estimated the Laplacian parameters for each group in each band, where the groups are 

derived from classification on the residual energy.  The calculation of the Laplacian 

parameters for each group still follows the method proposed in [4]. However, the 

Laplacian parameter assigned to each group is derived from a look-up table which is 

obtained offline. This approach can slightly reduce the CNM complexity compared to 

the coefficient level model, but the offline lookup table may not well suitable for real-

time applications and may not adapt to the various video content.  

In 2012, [54] proposed to refine the residual frame by exploiting the correlation of 

neighbouring coefficients. Residuals of already decoded frames are used to influence 

the noise distribution of the current frame and thus further exploit the temporal 

correlation. It then grouped the coefficients in each band into clusters and generated 

candidate noise parameters for each cluster. Adaptive optimization of the noise 

parameters are achieved by multiple convergence tests in LDPCA decoding process. 

Actually, this approach can be seen as a multiple side information approach and 

therefore it may introduce significant decoding complexity when the number of 

candidate noise parameters increase, although a good overall RD performance gain can 

be achieved with regard to the DISCOVER codec. 

2.5.5 Consistent Quality Control 

The rate control discussed here refers to the decoded frame quality control in 

distributed video coding. A smooth decoding quality over time is usually desired. 

Recent advances on this topic are studied below. 
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Different solutions have been proposed to solve the problem. In [55], a hybrid 

coding framework using zero vector motion compensation was proposed. The residual 

of adjacent frames are intra coded and their low frequency coefficients are sent to the 

decoder. The SI is then generated by taking into account the previously decoded frame 

and the received residual coefficients. The decoded image quality can be controlled by 

the quantization step size of the residual frame and the amount of transmitted 

coefficients according to the quality requirements. The percentage of the to-be-sent low-

frequency coefficients is proportional to the SAD of two adjacent frames at the encoder 

side.  However, more efficient residual coder is needed to reduce the encoder 

complexity as well as the bit rate cost at residual frames. In [56], a distortion model 

pixel-domain Wyner-Ziv video codecs using the distribution of correlation noise was 

proposed. The model sees the coding distortion as a function of the quantization step 

size and the correlation noise parameter. Thus, once the noise parameter is estimated, 

the encoder can choose the quantization step size that minimizes the difference between 

the estimated distortion of WZ frames and the target distortion. However, this model 

requires the estimation of the correlation noise parameters at the encoder side which can 

further increase the encoding complexity. Furthermore, the distortion model used for 

key frame coding is very inefficient since the selection of key frame quantization 

parameters are based on iterative trials of encoding and decoding at encoder side, which 

again can significantly increase the encoder complexity. More recently, authors in [57] 

proposed another quality control mechanism by establishing distortion-quantization 

(DQ) models for both key frames and WZ frames. The correlation noise between the SI 

and WZ frames is modelled by recreating the rough side information (SI) for each WZ 

frame at the encoder. With the calculated distribution of the correlation noise, the 

distortion of WZ frames is online estimated. The quantization parameter which gives 
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distortion best matches the target distortion is selected by an exhaustive search 

performing at frequency band level. The algorithm provides a rather smooth image 

quality over time by an increase of 10% encoder complexity for coarse quantizer.  

In [58], Hong Bin et al. proposed to use greedy search algorithm using estimated RD 

curve to control the quality of WZ frames. Given a target distortion, SI is first estimated 

at the encoder side to form a range of RD points by using a RD estimator. The resulting 

RD points are then connected to generate a RD curve which can be used for the greedy 

search algorithm. It decreased the quantization level from the largest level and measured 

the distortion using the curve values until it found the best one. The results show 

smaller quality variance over the decoding time and better overall RD performance than 

[57]. However, this method lacks quality control for key frames and the complexity of 

the algorithm has not been measured.  

2.5.6 DVC Implementation 

Over the past few years, multi-core processors have been widely used across many 

application domains including general-purpose, embedded, network, digital signal 

processing, and graphics. The improvement in performance gained by the use of a 

multi-core processor depends very much on the software algorithms used and their 

implementation. In the particular case of DVC, parallel implementation could help to 

reduce the huge complexity of the decoder. The development of efficient DVC 

implementation is discussed in this section. 

Since DVC is a relatively new video coding paradigm, its practical implementation 

only comes up in recent years. In 2010, [59] proposed a parallel DVC implementation 

using General Purpose Graphics Processing Unit (GPGPU) [60] and since LDPCA 

decoding contributes the primary computational complexity, the LDPCA decoding 
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algorithm was implemented to run in parallel. In 2011, [61] split WZ frames into spatial 

partitions and each partition is then assigned a processing core such that the decoding 

can be run in parallel. More recently, a parallel message-passing decoding algorithm [62] 

for computing LDPCA syndromes is applied through the Compute Unified Device 

Architecture (CUDA) [63] based on GPGPU. It divides the message passing algorithm 

into horizontal processing and vertical processing parts, which corresponds to the 

calculations for the variable nodes messages and the check nodes messages. The 

calculation of the messages can therefore be parallelized.  Furthermore, they also 

proposed a rate control algorithm to reduce the number of requests in the decoding 

process. It assigns small step sizes for bit-planes with smaller number of requests while 

large step sizes for bit-planes with larger number of requests. This algorithm can 

significantly reduce the decoding complexity but still maintain the adaptivity to the 

virtual noise, especially when the noise in the SI is high which can lead to numerous 

parity bits requests. In [64], the authors proposed a parallel implementation for DVC 

encoder. It divides each frame into multiple tiles. Since there are no computational 

dependencies among tiles, they can be encoded in parallel using OpenMP [65]. Bit-

plane packing technique is also applied to the LDPCA encoding for each tile to speed 

up the encoding process.  

A more comprehensive implementation of DVC decoder in different parallel levels 

is presented in [66]. This work investigated four parallel Wyner-Ziv decoding 

algorithms, i.e. parallelism in decoding each bit-plane, parallelism in decoding each 

spatial partition to avoid dependences between bit-planes, parallelism in decoding each 

GOP and parallelism in both GOP level and frame partition level. As expected, the last 

approach achieved the most reduction in decoding complexity.  
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2.6 Conclusion 

This chapter reviews relevant advances on distributed video coding, starting with the 

theoretical background and possible applications. We then introduce the early 

architectures of DVC. We have also identified the current research challenges. The 

current performance status of the state-of-the-art DVC codecs in terms of RD 

performance and complexity is reviewed. Details of research progress on five areas, 

namely side information generation, side information refinement, correlation noise 

modelling, quality control and efficient DVC implementation are described. These areas 

have fundamental impacts on practical DVC performance and our contributions in 

Chapters 3 to 6 of this thesis build upon the techniques of this literature.  
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Chapter 3  

Exploration and Exploitation of 

Reference Frames 

3.1 Introduction 

Side information generation is an essential function in the DVC decoder, and plays a 

key-role in determining the coding performance. Frame interpolation is one of the most 

popular methods used for SI generation, since it takes advantage of both forward and 

backward reference frames, especially when motion is considered [30][39][67]. The 

reference frames refer to previously decoded key frames or WZ frames. It is widely 

believed that interpolated frames give better performance compared with reference 

frames. However, we found that using reference frames without interpolation performs 

very close to, or sometimes even better than complicated frame interpolation methods. 

Motion learning is a typical approach used to exploit the correlation between SI and 

Wyner-Ziv frames. In 2008, Varodayan et al. [35] proposed an unsupervised motion 

learning mechanism to model the forward statistical motion fields at the decoder. It 

employs an Expectation Maximization method [68] to progressively update the motion. 

Later, Martins et al. in [37] also proposed a motion learning method that makes use of 

the previously decoded Discrete Cosine Transform bands to reduce the total bit-rate. 

However, the above methods suffer from high decoding complexity and do not 

efficiently exploit the motion information readily available in reference frames.  

The main novelty and contributions of this chapter include the following, 
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We investigate the impact of reference frames on the RD performance and find that 

the common belief that taking interpolated frames as SI is better than reference frames 

is not always true.  

Based on the above investigation, a new motion learning algorithm exploiting 

reference frames directly is proposed, leading to significant decoding complexity 

reduction without incurring any penalty in coding efficiency. 

This chapter is organized as follows: Section 3.2 describes the architecture of the 

proposed DVC codec. The correlation model used in this chapter is explained in detail 

in Section 3.3. Section 3.4 explores the information provided by reference frames and 

analyses the advantages of taking reference frame as SI with no interpolation or 

extrapolation. Next, in Section 3.5, we propose a novel motion learning algorithm and 

simulation results are shown in Section 3.6. Finally, Section 3.7 concludes this chapter. 

3.2 Novel DVC Codec Architecture 

The transform domain DVC encoder and decoder proposed in this chapter are 

illustrated in Figure 3.1 and Figure 3.2, respectively. The system is based on the 

Stanford architecture [11], which is briefly described as follows.  

The input video sequence is split into key frames and WZ frames. The key frames 

are encoded by a conventional video coding solution, such as H.264 Intra codec. The 

WZ frames are divided into 4-by-4 blocks. DCT is applied over each block and the 

resulting coefficients are uniformly quantized (Q) to ensure a low complexity encoder. 

Quantized coefficients are then converted into a bit stream and encoded by Low Density 

Parity Check Accumulated codes [22]. The resulting parity bits are stored in the buffer 

for decoder requests. 
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At the decoder side, previously decoded frames serve as reference frames. The 

correlation noise between SI and WZ frames is estimated by the online correlation noise 

model followed by soft SI generation, as shown in Figure 3.2, and is progressively 

refined during the iterative EM process, until the stopping criteria is met or the 

maximum number of iterations is reached. It can be noted that there is also a quantizer 

at decoder side, which means the soft SI is calculated based on quantized DCT 

coefficients. This will lead to certain loss in coding efficiency but the decoding 

complexity can be reduced significantly. Therefore, the use of decoder side quantizer in 

practical DVC codec design should depend on the restrictions on hardware computing 

power and also the target RD performance. It is a trade-off between decoding 

complexity and coding efficiency and this is important as the idea is based on DVC with 

quantizer installed at decoder side. However, for most DVC codecs in the literature, in 

order to avoid any performance loss non-quantized DCT coefficients are used to 

compute the bit probabilities. Finally, the decoded symbols are optimally reconstructed 

[23]. More details will be discussed in section 3.5. 

DCT
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Figure 3.1 DVC encoder architecture 
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Figure 3.2 Proposed DVC decoder architecture 

In the proposed decoder architecture, instead of frame interpolation, reference 

frames are directly used as SI. Furthermore, the motion fields between the reference 

frames are also exploited in the Motion Range Prediction module to estimate the 

position and the size of the searching window of motion fields. This results in a smaller 

but more precise search region and thus high coding efficiency can be achieved with 

significantly reduced computational complexity. 

3.3 Correlation Noise Modelling 

The distribution of correlation noise between WZ frame and SI frame is assumed to 

be Laplacian distribution. The probability density function of Laplacian distribution for 

random variable   is          
 

 
        , where   is a location parameter and     
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is usually called as Laplacian parameter or the scale parameter which scales the 

distribution up and down. The smaller   is, the wider the tail of the curve is. In 

distributed video coding,   is usually set to 0 so that the distribution is symmetrically 

centred at 0. Sometimes, in order to restrict the range of probabilities to       without 

going through a normalization process, a form of               can be used. After all, 

the Laplacian distribution is merely an analogous form of the actual distribution. A 

graph of this function with  =3.5 is shown in Figure 3.3. It can be seen that variables 

close to the centre of the curve have much higher probabilities than other region. The 

residual of WZ frame and SI frame follows this distribution since they are very similar 

to each other and therefore most of the values of the residual frame are on the brink of 

zeros. 

 

Figure 3.3 Laplacian distribution       

3.4 Exploration of Reference Frames 

Side information is seen as a “noisy” version of the WZ frame. It is obvious that the 

fewer “errors” SI carries, the fewer parity bits are needed, and thus the better the overall 

coding efficiency. Frame interpolation based methods assume the motion fields between 

adjacent frames to be smooth and WZ frames are seen as a transition of the reference 
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frames. It is expected that interpolated frames contain fewer errors than reference 

frames when collocated pixels are compared to WZ frames, since interpolation exploits 

more information than using direct reference frames, especially when motion aided 

interpolation is applied. 

However, if motion estimation and compensation are applied in reference frames, 

the quality of reference frames is similar, if not better than interpolated frames. For this 

reason, we infer that choosing reference frames as SI will not have significant loss in 

RD performance when compared with interpolated frames. 

The above assumption is verified by the following simulation and the experimental 

results presented in Section 3.6. Recall the decoding process that SI is shifted to all the 

possible positions and compared with WZ frames in transform domain. The probability 

of each motion field yield by its corresponding shift operation will then be calculated 

during the EM process. We simulate the decoder motion estimation process by an 

analogous experiment.  

Three different SI are compared in the simulation, namely motion compensated 

interpolated frames (MCI), backward (B), and forward (F) reference frames. The 

simulation assumes that DVC codec works in transform domain and the decoder is able 

to find the best match for each quantized coefficient by searching its surrounding 

samples within a predefined window. A window size of ±5 is enough to provide good 

searching results. The three SI are divided into 4-by-4 blocks and then motion 

compensated. The resulting frames are DCT transformed and uniformly quantized, 

which corresponds to the soft comparison process between SI and WZ frames at the 

decoder. The 4-by-4 quantization step matrix depicted in Table 3.1 is divided by the 

scale factors    { 64.0, 32.0, 16.0, 8.0, 4.0, 2.0, 1.0, 0.5 }, according to the 
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quantization index    with        . Table 3.1 is derived from the intra-coding 

initializing quantization matrix of H.264 reference software [69]. Each scale factor 

results in different quantization levels, which will be used to evaluate the coding 

distortion under different bit rate. The first quantization index    therefore represents 

the lowest bit-rate and the last index    represents the highest bit-rate. The key frames are 

coded with constant quantization parameters as defined in Table 3.2, obtained from 

extensive experiments aiming to achieve the best RD performance. These settings are 

different than the one used in DISCOVER codec since the coding algorithms are 

different and we only focus on the DVC codecs with a decoder quantizer. 

Table 3.1 Quantization step matrix 

7 16 22 24 

6 22 24 28 

18 22 27 33 

22 24 32 47 

 

Table 3.2 Key frames quantization parameters 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

Hall Monitor 47 45 43 40 37 33 29 24 

Foreman 45 44 44 43 37 33 29 24 

Coastguard 45 44 42 40 37 33 29 25 
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Table 3.3 Quality comparison of motion compensated reference frames and 

interpolated frames for Hall Monitor 

Average PSNR Hall Monitor 

 B F MCI 

Q1 77.33 77.37 77.80 

Q2 71.55 71.56 71.64 

Q3 69.34 69.34 69.58 

Q4 66.16 66.17 66.49 

Q5 63.19 63.22 63.65 

Q6 60.41 60.48 60.88 

Q7 56.91 56.99 57.35 

Q8 53.17 53.30 53.65 

 

 

Table 3.4 Quality comparison of motion compensated reference frames and 

interpolated frames for Foreman 

Average PSNR Foreman 

 B F MCI 

Q1 76.81 76.72 76.33 

Q2 71.80 71.90 71.71 

Q3 68.99 69.05 68.85 

Q4 64.38 64.43 64.18 

Q5 61.04 61.09 60.66 

Q6 56.91 56.97 56.23 

Q7 52.23 52.28 51.31 

Q8 47.80 47.87 46.71 
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Table 3.5 Quality comparison of motion compensated reference frames and 

interpolated frames for Coastguard 

Average PSNR Coastguard 

 B F MCI 

Q1 72.43 72.47 72.50 

Q2 73.64 73.58 73.67 

Q3 68.86 68.84 68.73 

Q4 65.15 65.11 64.92 

Q5 61.60 61.50 60.92 

Q6 57.76 57.57 56.44 

Q7 53.36 53.04 51.37 

Q8 48.93 48.54 46.43 

We try to find the best match for each block of WZ frame from the shifted blocks in 

the SI. The performance of each SI is measured by the average peak signal to noise ratio 

(PSNR) between WZ frames and the motion compensated SI after DCT transform and 

uniform quantization. Only luminance components of Hall Monitor, Foreman and 

Coastguard representing videos of different types of motion are used. All the test video 

sequences are of size QCIF (176×144) at frame rate of 15 Hz. All frames in the test 

sequences are used, which means 165 frames for Hall Monitor and 150 frames for 

Foreman and Coastguard. Simulation results presented in Table 3.3-Table 3.5 show that 

after motion compensation, reference frames have very similar quality to MCI frames. 

In the case of Foreman sequence, the quality of reference frames is even consistently 

better than MCI frames. And as of Coastguard sequence, it is observed that reference 

frames also have better quality in most quantization settings. 

3.5 Exploitation of Reference Frames for Motion Range 

Prediction 

The statistical motion fields (SMF) for a 4-by-4 WZ block is given by a probability 

matrix containing the probabilities of a SI block moving to all the possible positions 



56 

 

using the search window size of   . The higher the probability is, the more likely the 

displaced block is the best match to the WZ block. The decoding algorithm based on the 

Stanford architecture [11] using the proposed MRP method directly utilizing reference 

frames as SI is outlined below. It approximates the target motion vectors by an iterative 

EM refinement process. 

A. The statistical motion fields         for each 4-by-4 block with top left pixel 

located at (x,y) are initialized by experimentally chosen distributions which gives 

good overall performance: 

 {    }  {

                     
                      
                       

 (3.1) 

B. The Expectation-Step (E-Step) updates the statistical motion fields of each block by 

the corresponding soft estimate      of the block, which before normalization is 

written as 

    {    }        {    } {            
|         

     } 

       {    } ∑     
     

                  
 

    

   

 

(3.2) 

where             
 is the SI block located at            and      is the probability 

mass function of the residual between WZ frame and SI in transform domain after 

quantization. The computation of the sum product in (3.2) for each statistical motion 

field is over each possible quantization level             , where   denotes bit 

depth. Therefore, for a single 4-by-4 block, a full search with window size    

requires                times computation of (3.2). The computational 

complexity increases dramatically with the increase of the size of searching window.  



57 

 

Furthermore, this iterative learning algorithm is possible to converge to a coarse 

motion vectors combination since EM algorithm does not guarantee that the 

convergence will be to a global maximum. However, motion vectors between forward 

and backward reference frames can be used to guide the learning process if they are 

similar to the motion between SI and WZ frame. This requires SI to be the same as a 

reference frame so that the number of candidate motion vectors for each block can be 

reduced to the surrounding motion vectors of the guidance motion vector. This results in 

more precise motion learning and lower computational complexity. 

It is proposed here a MRP method that the motion fields between two adjacent 

reference frames are used as location and size indicator for the searching window, 

assuming the motion between neighbouring frames is smooth. We search in a small 

window of size    centered at half of the reference motion vector     
   

 as depicted in 

Figure 3.4, where    is the proposed searching window and    is the initial searching 

window.  Experiments show that window size of 2 is sufficient to provide good overall 

results. The motion fields         between SI block and WZ block is confined by the 

region defined in (3.3), where it guarantees that the search region will not exceed the 

initial region defined by  . 

   [   (
  

   

 
     )     (

  
   

 
    )] 

   [   (
  

   

 
     )     (

  
   

 
    )] 

(3.3) 

Considering the search region defined by (3.3), the complexity reduction in terms of 

number of motion vector candidates after applying the proposed search region in each 

EM iteration is, 
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For example, for the search window used in [35] with L=10, and taking     as 

defined previously can reduce computational complexity in each EM iteration by 94.3%. 

This is considerable reduction that will have major impact on implementation aspects of 

DVC. 

Mx,y
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W2

X

Y
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R

Ref

 

Figure 3.4 Proposed search window for a reference motion vector 

C. The Maximization-Step aims to update      by generating soft SI followed by an 

iterative joint pixel LDPCA decoding, 

 
   
          

    

∑    {         }                     
 

    

 (3.4) 

where the summation is over each motion field      and   represents syndrome 

checks. 

D. The EM algorithm terminates when the syndrome check is satisfied.  

3.6 Simulation Results 

 The proposed MRP algorithm is evaluated by our DVC codec presented in Figure 

3.1 and Figure 3.2 in Section 3.2. We compare the RD performance of the basic DVC 

codec with and without the proposed MRP algorithm, using different side information. 
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The same coding configurations as in section 3.4 are also applied in the following 

experiments. A constant GOP size of 2 is used for all test sequences, i.e. odd frames are 

key frames whereas even frames are WZ frames. 

Figure 3.5 shows the RD performance of the decoded frames for all the sequences. It 

is observed in Hall Monitor sequence that backward and forward reference frames 

perform consistently better than MCI frames, with and without MRP algorithm. In 

Foreman and Coastguard sequences, reference frames have better performance in low 

bit-rate, both with and without MRP algorithm. However, the MRP boosts the 

performance of MCI frames in high bit-rate, as the increase of bit-rate brings more 

details in the frames. When the motion or scene change is high, these details show 

significant increase in bit consumption. When the search region is restricted by MRP 

algorithm, if EM converges with a coarse motion field, the strength of MCI frames start 

to show up. The proposed MRP method gives slightly better RD performance in most of 

the time over all the test sequences.  
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(a) Hall Monitor 
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(c) Coastguard 

 

Figure 3.5 RD performance for different video sequences 
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The above results prove that reference frames can be a good SI candidate that gives 

very similar or sometimes better RD performance when compared with interpolated 

frames. Therefore, it is fair to say reference frames offer potential for a better SI 

candidate. 

3.7 Conclusion 

This chapter reveals for the first time that using reference frames as SI is capable to 

achieve similar or sometimes even better coding efficiency than the widely used MCI 

frames when the bit probabilities are computed in quantization domain. In order to 

maximize their potential, we also presented a new technique to exploit the motion 

information between reference frames. Simulation results show that the proposed MRP 

method can significantly reduce complexity in each Expectation-Maximization iteration 

with no loss in RD performance. This work brings new insight and strength to the use of 

reference frames. It opens attractive perspectives that allow us to better understand the 

role of reference frames in distributed video coding. 
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Chapter 4  

Pixel Granularity Side Information 

Synthesis Framework and Parallel 

Implementation 

4.1 Introduction 

For transform domain DVC, the transformed coefficients are usually grouped into 

bands and the Wyner-Ziv frames are decoded band by band. Each decoded band 

provides partial information of the WZ frame, which is not available previously and 

thus, can be utilized to improve the SI. Currently, this refinement process is mainly 

carried out using block level motion search algorithms in the state-of-the-art literature 

due to complexity issues. For high motion video content and long group of picture sizes, 

this can bring significant block artifacts to the decoded frames. Furthermore, each time 

when SI is improved, the correlation noise between SI and WZ frame changes 

accordingly. Therefore, the initially estimated noise distribution may not be accurate 

anymore and thus require the correlation noise model to adapt itself to the changing 

noise.  

Since iterative algorithms are widely used for DVC, the decoder is naturally slow in 

computation. Introduction of SI refinement and correlation noise re-modeling will 

therefore add more computational complexity to the decoder. 

To tackle the SI refinement problem which is a major challenge in DVC 

advancement, we propose a flexible pixel granularity side information synthesis (PGSIS) 

framework and investigate its performance compared with block based classical systems. 

To provide in depth study of DVC decoding complexity and future improvements we 
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have fully  implemented a state-of-the art DVC decoder using both conventional serial 

approach and parallel processing technology. The main contributions of this chapter are 

summarized below. 

1) A finer granularity side information synthesis (SIS) framework is proposed. It works 

efficiently at pixel level and provides superior synthesized SI in both subjective and 

objective image quality. The proposed architecture is flexible and modular based 

which can be integrated into most modern DVC architectures. 

2) To further save the required parity bits and hence improve the rate-distortion 

performance, we propose an adaptive virtual noise model alongside the SIS 

algorithm. It learns the new noise distribution during the SI refinement and gives 

more accurate knowledge of the correlation of the WZ frames and SI. 

3) Full implementation of serial and parallel DVC decoders with block based and 

PGSIS SI refinement techniques. A highly parallelized software implementation is 

recommended to speed up the decoding time and bring DVC one step closer to 

practical use. We have also identified potential areas for further complexity 

reduction to be made proportional to the number of CPU employed for faster 

practical systems applications. Since our implementation is platform independent, it 

is scalable for any multicore hardware architecture. 

The rest of the chapter is organized as follows. Section 4.2 describes the transform 

domain DVC architecture with the proposed framework. It also provides details of 

initial SI generation and virtual channel modelling techniques without the proposed 

framework, which will be used for performance comparison in Section 4.5. Section 4.3 

introduces the novel SIS framework. The parallel implementation is described in section 

4.4. Section 4.5 is dedicated to the experimental results, performance evaluation and 

analysis of the proposed framework. Finally, Section 4.5.3 concludes this chapter. 
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4.2 System Architecture 

The framework proposed in this chapter is based on the popular Stanford 

architecture [11] and will be described in detail next. 

The input video is divided into key frames and WZ frames, as shown in Figure 4.1. 

Key frames are inserted periodically determined by GOP size and encoded by 

conventional intra codec, such as H.264/AVC Intra codec [1]. The WZ frames are 

divided into 4-by-4 blocks. In each block, DCT and a uniform quantization are 

performed. The quantized DCT coefficients are grouped into frequency bands and 

converted into bit-planes. Each bit-plane is separately encoded using low-density-parity-

check accumulated (LDPCA) codes [22] and stored in a buffer for the decoder requests. 

An 8-bit cyclic redundancy check (CRC) code is also generated for each bit-plane to 

confirm decoding is successful.  

At the decoder side, two reference frames obtained from the decoded key frames and 

WZ frames are interpolated using optical flows to generate the initial SI. The 

intermediate motion compensated version of the two reference frames are then DCT 

transformed and their residue is used for virtual channel modelling.  
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Figure 4.1 Proposed PGSIS-DVC system architecture 

The estimated correlation between SI and WZ frame is exploited to compute the 

conditional bit probability. Using this bit probability, the LDPCA decoder performs an 

iterative message propagation algorithm (MPA) to decode each bit-plane, starting from 

an estimated code rate and will request more parity bits from encoder if the available 

parity bits are not sufficient. The decoding procedure follows the zigzag scan order. 

After successfully decoding all the bit-planes for each DCT band, these bit-planes are 

grouped together to form the quantized symbols and optimally reconstructed [23]. A de-

blocking filter is then applied to the final decoded frames to give better image quality. 

The proposed PGSIS framework and its associated components are highlighted in 

Figure 4.1. The initial SI is generated by an optical flow algorithm and it will be 

updated in PGSIS framework each time a DCT band being successfully decoded. 

PGSIS framework consists of three key components. WZ frame approximation gives a 

rough estimate of the actual WZ frame according to the partially decoded information. 

The approximated WZ frame provides a reference for the next component to select the 
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right SI candidates. Each selected SI candidate is then assigned a weight factor to mark 

its importance with regards to its quality. Finally the new SI can be synthesized 

considering all the selected candidates and their weight factors. The produced weight 

factors are exploited again in the virtual channel modelling to adapt the updated 

correlation noise. More details of the proposed framework will be explained in section 

4.3. 

The initial SI generation and the virtual noise modelling for our transform domain 

DVC codec without using the PGSIS framework are briefly explained below. 

4.2.1 Initial SI Generation 

1) Bi-directional motion estimation 

Optical flows are used to determine the motion between two neighbouring reference 

frames. To generate precise motion vectors, we used a highly improved Horn–Schunck 

method optical flow estimation [70][71][72]. The algorithm is based on a coarse-to-fine 

warping strategy using a variational model to minimize a rotationally invariant energy 

function for optical flow computations based on two terms: a robust data term with 

brightness constancy and a gradient constancy assumption, combined with a 

discontinuity preserving spatio-temporal smoothness constraint. The algorithm is robust 

under considerable amount of noise and allows for large motion displacements, which is 

favourable for high motion video content and long GOP sizes. The bi-directional motion 

estimation is performed between the two adjacent reference frames. Optical flows are 

extracted from one of them by taking the other one as a reference. 

2) Motion compensated frame interpolation 

The motion vectors (       obtained from previous step can be used for frame 

interpolation. We employ a straightforward interpolation scheme that the initially 
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interpolated SI pixel           at position       is derived from the mean of the forward 

motion compensated pixels   
 (  

   

 
   

   

 
) and backward motion compensated 

pixels   
 (  

   

 
   

   

 
) through half of the forward motion vector           and 

the backward motion vector         , respectively. For any motion vectors that go out 

of image boundaries, the co-located pixel of corresponding reference frame will be used 

instead, as depicted in the following formula,  
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(4.1) 

where   and   are the width and height of each frame, respectively. The motion 

compensated version of backward and forward reference frames can be further utilized 

in virtual channel modeling process. 

It should be noted that since the optical flow and frame interpolation techniques are 

independent modules, it is possible to replace them with more advanced solutions such 

as the top ranked optical flow in [73] and interpolation method in [74]. 

4.2.2 Virtual Channel Modelling 

The correlation noise between SI and WZ frames are assumed to be Laplacian 

distributed and estimated by the virtual channel model in the following steps. 

1) Residual frame generation.  Residual frame provides an estimate of the actual noise 

between the SI and WZ frame. The motion compensated version of backward and 
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forward reference frames obtained previously for initial SI generation are used again to 

compute the residue frame   given by 

         
 (  

   

 
   

   

 
)    

 (  
   

 
   

   

 
) (4.2) 

 

2) DCT transform on the residual frame. Since the proposed DVC codec works in 

transform domain, the residual frame   has to be DCT transformed, 

           (4.3) 

where     is the absolute value of  . 

3) The Laplacian parameters are estimated online at coefficient level based on the 

algorithm proposed in [4]. 

4.3 Pixel Granularity Side Information Synthesis 

4.3.1 Typical Approach 

A typical approach for SIS consists of three steps, WZ frame approximation, 

candidate SI generation and new SIS. The basic idea is to find the best match from 

candidate SI to the actual WZ frame and use the best match to replace corresponding SI. 

WZ frame is not available at the decoder side. However, during the band-by-band 

decoding process, partial knowledge of WZ frame will become gradually available and 

hence can be utilized to generate an approximation of the original WZ frame. Candidate 

SI can be chosen from any frame that is similar to the WZ frame. Once the SI 

candidates are created, the current SI can be updated to a better quality for decoding the 

subsequent bands. Due to the changes of SI, the initially estimated correlation noise 

model will also need to be updated to give more accurate noise distribution. The details 

of these steps are presented below. 
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4.3.2 WZ Frame Approximation 

In order to measure the quality of the candidate SI, some knowledge of the WZ 

frame is required at the decoder side. During the decoding process, some bands of the 

WZ frame will gradually become available. We can reconstruct the currently decoded 

bands and apply inverse DCT transform to generate the so called partially decoded WZ 

frame. This frame can be seen as an approximation of the genuine WZ frame. The 

approximation can also be in the transform domain, i.e. without inverse DCT transform 

after reconstruction. However, most DVC frameworks only allow sequential band-by-

band decoding, i.e. there is only a small subset of all the DCT bands available at one 

time. These limited bands information is not sufficient for block based motion 

estimation. A technical report from HP lab [42] shows that the number of DCT bands 

must be sufficient for block based motion estimation to provide acceptable block 

matching results. The increased complexity is also an obvious drawback. Although the 

reconstructed symbols are already in transform domain and directly available for further 

computation, SI will have to be shifted to all possible directions and DCT transformed 

for motion estimation. Therefore, motion analysis in pixel domain is clearly more 

desirable than in transform domain. 

Extensive experimental results have shown that there are certain areas in a frame 

cannot be refined by the above approach since the best match to the partially decoded 

WZ frame may not necessarily be the best match for the actual WZ frame. This also 

confirms the results in [39]. Including these areas in the SI update not only increases the 

computational complexity but may also lead to poorer SI quality.  

Therefore, it is important to exclude such regions before proceeding to the next step. 

A reasonable approach is to filter the blocks that are similar to the co-located blocks in 
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the partially decoded WZ frame since these blocks are believed to be well updated 

already, no need for further refinement. 

We propose here not to refine block n if it has a sum of squared difference (SSD) 

smaller than the average SSD of all the blocks in SI frame. The SSD of the nth 4×4 

block is defined by 

     ∑ ∑              ̂            
 

   

 

   

 (4.4) 

where        and  ̂      are the previously updated SI block and the partially decoded 

WZ block at time    , respectively.  A block that has been discarded for updating the 

current SI may be picked up for refinement in the future as long as it contains fewer 

“errors” than the average “errors” in the SI frame. The average     is given by 

       
 

 
∑     
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where   is the number of blocks in a frame. 

4.3.3 Candidate SI Selection 

The blocks selected in the previous step have to be updated with the newly 

synthesized information. This information comes from multiple SI candidates and they 

need to be carefully selected from a range of frames. Reasonable candidates for SIS can 

be decoded key frames, initial SI frame, currently updated SI frame and partially 

decoded WZ frames, but some may provide more information than the others. Both 

backward and forward decoded reference frames are used for initial SI generation and 

we further exploit them in the SIS process. The previously updated SI may have some 

new information derived from the SI candidates and therefore it is also selected to 

prepare the information for further SIS. As explained in the previous step, the partially 
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decoded WZ frame is used to measure the quality of SI candidates and the better 

candidates will contribute more on the final synthesized SI. 

In classical DVC, each selected block is typically replaced entirely by the candidate 

block. This approach ignores the texture context and may produce obvious edge effects. 

We avoid this common practice and use a finer granularity, pixel level SI candidate 

selection to address the block artifacts problem introduced by block level synthesis. It is 

observed in our experiments that these block artifacts can propagate during the SI 

refinement process, further impairing the objective and subjective SI quality. 

We propose to use three SI candidates            for the new SI synthesis, i.e. the 

pixels from the motion compensated backward reference frame   , forward reference 

frame     and the previously updated SI frame   , 

                                

                                 

                                      

(4.6) 

where                     is the motion vector between the previously updated SI 

       and the partially decoded WZ frame. 

The previously updated SI is considered as a more reliable candidate than backward 

and forward reference frames since it contains information from both of them. 

Therefore, it deserves more exploration for corresponding candidate generation. We 

take two steps to prepare   . 

1) Block based bi-directional motion compensation: A 3-by-3 low pass filter is applied on 

both reference frames to facilitate the subsequent motion estimation. Then forward and 

backward motion vectors are estimated by block matching algorithm between both reference 

frames and partially decoded WZ frame using mean absolute difference as the cost function. 
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These motion vectors are further refined by sub-pixel motion estimation and current SI is 

updated by bi-directional motion compensation. 

2) Pixel level optical flow motion compensation: The SI obtained in the above step provides 

a good estimate of SI candidate but can be improved by pixel level optical flow motion 

compensation.  

However, for low bit rate scenarios, step 1 above is not recommended as critical bit 

rate condition can introduce serious block artifacts using block based motion 

compensation, which further affect the performance of step 2. 

4.3.4 New SI Synthesis  

In the proposed SIS framework, all the selected candidates are exploited in pixel 

domain to give more precise motion estimation and lower computational complexity. 

Three candidate SI frames computed in (4.6) are employed for new SI synthesis. The 

error of each pixel is measured in square error considering all of its surrounding pixels 

and the final synthesis is performed by weighted mean of all the selected candidates 

where smaller weights are assigned to the pixels containing more errors. 

Since multiple SI is used for synthesis, it is expected to have the candidate pixel that 

contains fewer errors bigger weight than the others. However, the partially decoded WZ 

frame is only an approximation of the actual WZ frame, considering the difference of a 

single pixel is not appropriate. Therefore, it is proposed to take all the neighbouring 

pixels into account when calculating the weight. We still use SSD to measure the error 

   of the  th candidate pixel at position        , considering all its surrounded pixels,  

   ∑ ∑           ̂       

    

      

    

      

 (4.7) 
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where the candidate pixel    is taken from (4.6). Since the weight for a candidate pixel 

should monotonically decrease with its “errors”, we simply take the reciprocal of    as 

the weight, 

   
 

  
 (4.8) 

This weight must be always followed by a normalization step as in (4.9) to achieve a 

normalized distribution of the weights. 

  ̅̅̅̅  
  

∑  
 (4.9) 

where ∑   is the sum of the weights of all three SI candidates. 

It should also be noticed that for a slow motion video sequence such as Hall Monitor, 

there may be no difference between some candidate pixels and the partially decoded 

pixel. Therefore, there is no need to update these pixels and they can be skipped before 

any synthesis. Finally, the synthesis of the new SI is obtained by the sum of all the 

weighted candidates, 

          ∑          ̅̅̅̅

 

   

 (4.10) 

The block artifacts can be severe using block based SI refinement solutions, 

especially for high motion contents. Figure 4.2 shows one experimental result of the 

updated SI for the Soccer sequence using the 8th quantization matrix Q8 [19][37][39] 

during the decoding process using a classical block wise SI refinement approach [37]. It 

can be observed that the block artifacts are propagating throughout the refinement 

process, degrading the refinement achieved during the decoding process. Figure 4.3 

shows the updated SI frames under the same test conditions using the proposed method. 
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There is no severe block artifact throughout the decoding process and both the 

subjective and objective SI quality is better than the block based approach. 

  

(a) Initial SI PSNR: 23.50dB (b) After decoding band 1, PSNR: 25.79dB 

  

(c) After decoding band 2, PSNR: 26.83dB (d) After decoding band 13, PSNR: 28.05dB 

Figure 4.2 Block granularity SIS for Soccer Q8 

 

  

(a) Initial SI PSNR: 23.47dB (b) After decoding band 1, PSNR: 27.83dB 

  

(c) After decoding band 2, PSNR: 30.01dB (d) After decoding band 13, PSNR: 34.37dB 

Figure 4.3 Pixel granularity SIS for Soccer Q8 



76 

 

Taking a closer look at the block based approach, it can be observed that this 

approach can hardly represent arbitrary edges and the basic motion search can easily fail 

for intense motion scenario or fast scene changes. It can be seen from Figure 4.2 (b) that 

the duplicated leg shading has almost been removed from the person stand on the right 

after decoding the first band. However, the edges of the leg are not well shaped and the 

left foot is missing. Although a lot of noise has been removed around the leg, the left 

foot cannot be recovered even after decoding 13 bands. 

The updated SI frames using the proposed pixel granularity approach can be seen in 

Figure 4.3. It can be observed from Figure 4.3 (b) that after decoding the first band, the 

new approach has removed much more noise around the left leg from the person on the 

right and looks better shaped, although still blurry. It can also be noticed that the whole 

foot has been recovered after band 2 is decoded. It can also be seen that after decoding 

band 13 (Figure 4.3 (d)), most of the noise has been removed from the scene and the 

PSNR increased significantly by 10.9 dB compared with the initial SI PSNR (Figure 4.3 

(a)). However, in the block based approach there is only 4.55 dB gain.    

4.3.5 Adaptive Virtual Channel Modelling 

SI is updated during the decoding process, which suggests the correlation noise is 

also changing over time. Therefore, a virtual channel model that can adapt to this 

change is able to fit the real noise distribution better. Recall the weight given in (4.9) 

measures the importance of a certain SI candidate and we use the sum of the weighted 

means to synthesize the new SI. The larger the weight, the bigger proportion of the 

corresponding candidate is used for SIS. It is proposed to adaptively update the virtual 

channel model taking into account the new information obtained from the refined SI. 

This gives the decoder a better knowledge of the virtual noise distribution. 
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Residue Frame Re-estimate: The newly synthesized SI can bring an essential change 

on the SI content. Affected by this change, the initially estimated Laplacian parameters 

using the motion compensated reference frames may not be accurate any more. The re-

estimate of the residue frame is crucial for the final RD performance, especially for high 

motion content under high bit rate. Since the weighting factor in (4.9) gives the 

proportion of influence of each SI candidate, we can still use it to update the simple 

noise frame in (4.2) to a blended noise frame as depicted in (4.11) such that the 

Laplacian parameters can be improved substantially. The adaptive virtual noise is given 

by 

       ∑ |         ̂        |    ̅̅̅̅  

 

   

 (4.11) 

where     is the absolute value of  . 

In a similar manner, the adaptive probability density function,   is calculated as 

follows, 

                 ∑   ̅̅̅̅
      

 
                         

 

   

 (4.12) 

where        is the Laplacian parameters at position       computed through 

correlation noise modeling. 

The weighted factor is integrated into the calculation to give higher priority for more 

possible SI candidate but also allows the other candidates to contribute to the final noise 

distribution. This sum of weighted distribution changes the initial noise estimation 

which gives more accurate conditional bit probability for LDPCA decoding and will 

thus reduce requested parity bits and decoding time significantly. It can be noticed that 

the synthesized SI also takes into account the priority of the selected SI candidates and 
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therefore could be used to re-estimate the virtual noise distribution instead of reusing 

the weighted factors. 

4.4 Parallelized Software Implementation 

The complexity of PGSIS depends mainly on the chosen optical flow algorithm. For 

efficient implementation of PGSIS and to advance the speed limit on state-of-the-art 

DVC codec, we implement PGSIS-DVC with highly efficient parallelized design using 

Open Multiprocessing API (OpenMP) technology. OpenMP provides a simple and 

flexible interface for parallel programming and supports multi-platform on most 

processor architectures and operating systems and is therefore fully portable among 

different platforms.  

The key for efficient implementation highly depends on the organization of the data 

structures since data in parallel regions have to be fully independent to each other. 

4.4.1 Initial SI Creation 

We create two parallel regions for initial SI creation, one region for computing the 

optical flows and the other one for frame interpolation and residual frame generation. 

The forward and backward optical flows can be computed separately and require two 

threads/processors. The resulting motion vectors are used for frame interpolation, which 

is carried out using pixel-by-pixel bi-directional motion compensation. It can be noted 

that motion compensation for each pixel can be calculated without the knowledge of 

other pixels in different locations. Therefore, they can be divided into a group of subsets, 

and each subset can be handled by a separate thread. This procedure can be depicted by 

the flow chart in Figure 4.4 (a). The master thread creates two threads for computing the 

optical flows and they join to the master thread after both finish the task, then the master 
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thread creates M threads (according to the number of processors) in which each subset 

of pixels are processed separately in parallel. 

1

2

Compute forward optical flows

Compute backward optical flows

1

2

M

...

Subset 1 of (x,y)
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Compute (0) ( , )Y x y

Compute (0) ( , )Y x y

Compute (0) ( , )Y x y
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Compute ( , )N x y

Compute ( , )N x y

 

(a) Flow chart 

#pragma omp parallel sections { 

    #pragma omp section 

{ compute forward optical flows           } 

    #pragma omp section 

    { compute backward optical flows           } 

} 

#pragma omp parallel for 

for each pixel (x,y) {   

    compute           using equation (4.1); 

    compute        using equation (4.2);  

} 

(b) C++ pseudo code using OpenMP 

Figure 4.4 Initial SI creation 

The corresponding C++ pseudo code implementation of this routine using OpenMP 

is given in Figure 4.4 (b). Two parallel sections to compute forward and backward 

optical flows are created. Since each parallel section here costs similar time for 

execution, one section does not need to wait the other for long time of synchronization. 

Then pixels are divided into subsets such that each subset of the initial SI and residual 

frame can be computed in parallel. 

4.4.2 Adaptive Correlation Noise Modelling 

Similarly, it can be noted that the calculation of   in (4.12) is independent to       

which suggests that it can be distributed equally among multiple threads/processors. 
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The flow chart for adaptive correlation noise modelling is shown in Figure 4.5 (a), 

where the possible WZ coefficients         are divided into M subsets and each of them 

is run by a thread/processor to form a parallel region.  

The C++ pseudo code using OpenMP for this routine is shown in Figure 4.5 (b). All 

the possible DCT coefficients of WZ frame are divided into subsets. Each subset is 

handled by a separate thread. The sum of weighted Laplacian distribution   is declared 

as “private” so that each thread will have its own instance of   to avoid occuring race 

conditions. 
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...

Subset 1 of X(x,y)

Subset 2 of X(x,y)
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Master thread

Compute p

Last 
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Y

Compute p

Compute p
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(a) Flow chart 

for each DCT coefficient i {  

    #pragma omp parallel for  private( ) 

for each possible        { 

        for each SI candidate c      

            compute   using equation (4.12);  

} 

} 

(b) C++ pseudo code using OpenMP 

Figure 4.5 Adaptive correlation noise modeling 

4.4.3 PGSIS 

Figure 4.6 (a) shows the flow chart of PGSIS modules which consists of three 

parallel regions. The first region computes      for M subsets of blocks. Each subset 

can be handled by an independent thread/processor. Then, the three SI candidates are 
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generated in parallel as well. With the computed      and three SI candidates, blocks 

are divided into subsets again for M threads/processors to update SI and residual frame. 

Since computing different SI candidates actually takes very similar time, they are 

allocated into parallel sections to reduce waiting time for synchronization. 
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Subset 1 of blocks

Subset 2 of blocks
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Master thread
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(a) Flow chart 

#pragma omp parallel for reduction(+:      ) 

for each 4-by-4 block n {  

    compute      using equation (4.4); 

} 

compute        using equation (4.5);  

#pragma omp parallel sections { 

#pragma omp section         

{ compute    using equation (4.6); } 

#pragma omp section    

{ compute    using equation (4.6); } 

#pragma omp section     

{ compute    using equation (4.6); } 

} 

#pragma omp parallel for 

for each 4-by-4 block n {   

if      >        {  

        compute    using equation (4.7); 

        compute    using equation (4.8); 

        compute   ̅̅̅̅  using equation (4.9);   

        update      using equation (4.10);         

        update   using equation (4.11);         

    } 

}   

(b) C++ pseudo code 

Figure 4.6 PGSIS algorithms 
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 The C++ pseudo code using OpenMP for this routine is shown in Figure 4.6 (b). 

Blocks are divided into subsets and SSD of each subset of blocks can be computed in 

parallel. Each thread keeps a separate copy of        but they will be summed together 

using “reduction” syntax to calculate        for all blocks. 

4.5 Experimental Results and Performance Evaluation 

4.5.1 Test Condition 

The proposed framework is evaluated by our transform domain DVC codec 

presented in Section III. We compare the RD performance and the complexity 

performance with and without the proposed PGSIS algorithm, using the following test 

conditions. 

1) Video sequences: Foreman, Hall Monitor, Coastguard, and Soccer. 

2) Number of frames: all frames of the test sequences have been used to evaluate the 

RD performance which means 150 for Foreman, 165 for Hall Monitor, 150 for 

Coastguard, and 150 for Soccer. However, since the average complexity performance 

only shows negligible differences using various numbers of frames, we only use the 

first 30 frames of all test sequences to evaluate the decoding complexity of PGSIS-DVC 

codec. 

3) Spatial and temporal resolution: QCIF at 15 Hz which means 7.5 Hz for the WZ 

frames when GOP=2. 

4) GOP length: 2, 4 and 8. 

5) Eight RD points are considered for DVC codec, corresponding to eight 4×4 

quantization matrices widely used in literature [19][37][39]. 

6) Key frames are coded by H.264/AVC Intra with constant quantization parameters 

as defined in [19]. 
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7) Software and hardware configuration: the decoding tasks are performed on the 

Bright Beowulf Cluster Environment using 12 CPU processors of the running node 

under Linux operating system. The codec is written in C/C++ code and compiled by 

GCC 4.7.0 using OpenMP 3.1. 

The RD performance of the proposed PGSIS-DVC codec will be compared with the 

same transform domain DVC codec without PGSIS framework. It is also compared with 

the state-of-the-art conventional coding solutions H.263+ Intra, H.264/AVC Intra and 

H.264/AVC Inter No Motion. Under similar condition of encoder complexity, i.e. the 

computationally intensive motion search is not performed by any of them.     

4.5.2 RD Performance 

1) DVC with PGSIS vs. DVC without PGSIS 

The RD performance of the chosen coding solutions for all the selected video 

sequences is presented in Figure 4.7 and Figure 4.8. The results show that the transform 

domain DVC codec with PGSIS consistently out performs the same codec without 

PGSIS for all test sequences and conditions, especially for higher bit-rate and longer 

GOP sizes. It is expected that the average RD gains increase with bit-rate and the GOP 

sizes since we use finer quantizer under high bit-rate, which gives better estimates of 

WZ frame after each reconstruction and therefore PGSIS is able to produce more 

accurate SI. Similarly, motion interpolation based SI generation technique becomes less 

effective when the temporal distance between key frames increases (i.e. when the GOP 

size becomes large), which degrades the quality of the SI but leaves more room for 

improvements by the PGSIS algorithms. This is an attractive property as most of WZ 

video codecs do not perform well under long GOP sizes. Another important feature 

observed from the experimental results is that PGSIS performs better for the sequences 

with more complex motion, which is also a desirable property since most of other 



84 

 

transform domain WZ codecs perform poorly under this condition. This is as a result of 

lower quality SI obtained from the poor motion interpolation process so that PGSIS 

algorithms are able to exploit more correlated information during the decoding process, 

whereas for low motion video contents, there is not much room for improvement in SI 

quality and thus their gains of RD performance are little. 

The Foreman and Soccer sequences are considered to be of the high motion video 

contents, whereas Hall Monitor and Coastguard sequences are seen as relatively low 

motion video contents. As expected, the Foreman and Soccer sequences give better 

gains in RD performance, particularly the Soccer sequence that achieves the highest RD 

gains with regards to the DVC codec without proposed algorithms. Taking a close look 

at Figure 4.7 for the Soccer sequence, notably for the last RD point, there is 

approximately 1.25 dB for GOP size 2, 1.6 dB and 1.5 dB for a GOP size of 4 and 8, 

respectively. Similar gains can be observed from the Foreman sequence with about 1 dB 

for GOP size 2 and 1.3 dB for GOP size 4 and 8. 

However, the RD curves in Figure 4.8 show slightly lower performance for the 

sequences of Hall Monitor and Coastguard. The DVC codec with PGSIS performs very 

close to the one without for the Hall Monitor sequence under most RD points except the 

last one that gives around 0.7 dB gain for GOP size 2, 1.2 and 1.5 dB gains for GOP 

size 4 and 8, respectively. Similar gains but within wider range of bit-rates can be seen 

from the Coastguard sequence. Up to 0.7 dB gain for GOP size 2 and around 1 dB gain 

for GOP size 4 and 8. 

2) PGSIS vs. Standard video coding solutions 

The conventional video coding solutions evaluated here are those widely used 

standard video codecs. When compared with the RD performance of the PGSIS video 

codec, it can be concluded that the PGSIS codec out performs H.264/AVC Intra for low 
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motion sequences, especially for lower GOP sizes. There is also performance gain for 

more complex video sequence such as Foreman, under low bit-rate and high GOP size.  

(a) Foreman: GOP=2 (b) Soccer: GOP=2 

  

(c) Foreman: GOP=4 (d) Soccer: GOP=4 

  

(e) Foreman: GOP=8 (f) Soccer: GOP=8 

  

Figure 4.7 RD Performance for Foreman and Soccer sequences 

It is usually expected that WZ codec can hardly beat the performance of H.264/AVC 

No Motion. However, the PGSIS codec shows remarkable RD gains for high motion 

video sequences. Foreman sequence with GOP size 8, Soccer sequence with GOP size 2 
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and Coastguard sequence using GOP sizes 2 and 4, all performs better than H.264/AVC 

No Motion. However, there are no significant RD performance changes for the Hall 

Monitor sequence, i.e. the performance remains above H.264/AVC Intra and still below 

H.264 No Motion.  

(a) Hall Monitor: GOP=2 (b) Coastguard: GOP=2 

  

(c) Hall Monitor: GOP=4 (d) Coastguard: GOP=4 

  

(e) Hall Monitor: GOP=8 (f) Coastguard: GOP=8 

  

Figure 4.8 RD Performance for Hall Monitor and Coastguard sequences 

28

29

30

31

32

33

34

35

36

37

38

39

40

41

0 100 200 300 400 500

P
SN

R
, d

B
 

Rate, kbit/s 

DVC with PGSIS

DVC without PGSIS

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra)

27

28

29

30

31

32

33

34

35

36

37

0 100 200 300 400 500 600
P

SN
R

, d
B

 

Rate, kbit/s 

DVC with PGSIS

DVC without PGSIS

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra)

28

29

30

31

32

33

34

35

36

37

38

39

40

41

0 100 200 300 400 500

P
SN

R
, d

B
 

Rate, kbit/s 

DVC with PGSIS

DVC without PGSIS

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra) 26

27

28

29

30

31

32

33

34

35

36

0 100 200 300 400 500 600

P
SN

R
, d

B
 

Rate, kbit/s 

DVC with PGSIS

DVC without PGSIS

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra)

28

29

30

31

32

33

34

35

36

37

38

39

40

41

0 100 200 300 400 500

P
SN

R
, d

B
 

Rate, kbit/s 

DVC with PGSIS

DVC without PGSIS

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra)

25

26

27

28

29

30

31

32

33

34

35

36

0 100 200 300 400 500 600

P
SN

R
, d

B
 

Rate, kbit/s 

DVC with PGSIS

DVC without PGSIS

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra)



87 

 

It can also be observed that, for low motion sequences such as Hall Monitor and 

Coastguard, PGSIS-DVC remains above or similar to H.264/AVC Intra under most 

situations. However, for high motion sequences such as Foreman and Soccer, the RD 

performance is still below H.264/AVC Intra for most settings. Comparing with H.263+ 

(Intra) codec, PGSIS is consistently better with exception for the most complex 

sequence Soccer, which only shows superior RD performance using GOP size 2. 

We have also presented the RD performance of DISCOVER codec as a benchmark. 

However, DISCOVER uses some more advanced modules, such as a dead-zone 

quantizer. For simplicity these modules were not used in PGSIS, so they cannot be 

directly compared. Despite these RD curves of PGSIS DVC are in general above or 

similar to the performance of DISCOVER codec. A notable 2 dB gain can be observed 

from the last point of Foreman sequence of GOP size 8. However, more gains can be 

expected if PGSIS-DVC utilizes the same modules as DISCOVER. 

4.5.3 Complexity Analysis 

In terms of encoding complexity, a thorough analysis of a DVC codec which shares 

similar encoding architecture as the encoder of this chapter is presented in [26]. The 

results show that for GOP size of 2, DVC encoding complexity is about 60-70% of 

H.264/AVC Intra and H.264/AVC (No Motion). Much more gains can be obtained with 

longer GOP sizes, but even with GOP size 2, it already has much lower encoding 

complexity and defeats the RD performance of H.264/AVC Intra for most test 

sequences, not to mention the performance of H.264/AVC (No Motion) which has 

slightly higher complexity than H.264/AVC Intra. 
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Table 4.1 PGSIS-DVC Decoding Time For the Parallel and Serial Implementations. The 

Main Components and Total Decoding Time (in seconds) are Presented for Different 

Quantization Parameters Using Fixed Group of Picture Size of 2. The Parallel 

Architecture Employs 12 CPU Cores. Parallel (P),  Serial (S), Initial SI Creation (I), 

Correlation Noise Modelling (C),  PGSIS (G), LDPCA Decoding (L), Total Decoding 

Time (T) 

Sequences Components Q1(P/S) Q4(P/S) Q8(P/S) 

Foreman 

I 12.92/25.06 13.04/24.68 14.03/24.36 

C 1.78/7.33 3.89/13.95 5.34/16.07 

G 47.30/195.89 156.91/642.75 244.74/959.38 

L 7.24/53.65 19.27/143.59 43.95/337.86 

T 69.33/282.36 193.25/825.68 308.25/1338.57 

Soccer 

I 13.59/23.32 13.11/26.76 13.10/24.29 

C 1.69/7.04 3.85/13.50 6.12/15.41 

G 50.61/187.70 165.46/689.76 244.17/959.19 

L 10.25/65.79 24.64/190.50 42.31/332.65 

T 76.23/284.21 207.22/921.32 305.89/1332.35 

Coastguard 

I 13.17/27.67 13.48/30.60 13.20/30.92 

C 1.94/7.88 4.33/15.96 6.67/18.41 

G 48.93/208.28 165.17/733.99 245.26/1093.22 

L 2.13/16.55 10.68/78.28 48.08/372.31 

T 66.28/260.98 193.86/860.10 313.43/1516.44 

Hall 

I 13.94/26.35 13.34/26.85 16.24/27.45 

C 1.98/9.12 5.41/18.96 8.02/22.17 

G 50.17/203.25 164.28/684.67 298.73/1037.24 

L 2.08/16.01 7.60/56.39 25.98/184.76 

T 68.30/255.37 190.84/788.14 349.33/1273.32 

The PGSIS-DVC codec is implemented in parallel as well as in serial, where the 

serial implementation can be seen as the parallel version that uses only one CPU core. 
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The complexity performance of only the parallelized modules: initial SI creation (I), 

correlation noise modeling (C), PGSIS (G), and LDPCA decoding (L), are presented in 

Table 4.1.  It can be seen that the majority of the computational time is spent on I, G, 

and L. The parallelized initial SI generation is about 2 times faster than the serial 

version, and the channel modeling and PGSIS are both about 4 times faster, whereas the 

LDPCA decoding module is about 7 times faster. In addition, the impact of video 

content on the decoding time meets the common expectation, i.e. the more complex the 

video content is, the more time requires decoding that sequence. The video sequence 

that contains highest motion content here is Soccer, which therefore takes longest time 

to decode. However, it is not always the opposite for the slowest video content tested 

here. 

We have also included the decoding time for LDPCA decoder for both parallel and 

serial implementations in Table 4.1 as this module is usually considered to be the most 

complex component in DVC. For further details on the decoding algorithm and parallel 

implementation the reader can refer to [62] as similar methods are used here. 

 The limitations of the proposed PGSIS-DVC codec and their possible solutions are 

summarized here. It can be seen that PGSIS and SI generation takes more time than the 

LDPCA decoding. In addition, for slow motion sequences (e.g. Hall Monitor) the 

computing time is not remarkably less than that of the faster motion sequences (e.g. 

Soccer) despite the fact that fewer blocks are processed during the refinement process. 

Furthermore, the time reduction brought by the parallel implementation is not 

proportional to the number of CPU used. The above are mainly due to the following 

reasons. Firstly, due to the source code availability, we have adopted a highly complex 

serial optical flow algorithm, which takes about 80-90% of the total computational time 

of PGSIS and therefore, the time reduction brought by block filtering can hardly 
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observed here. Secondly, from section 4.4.1 and 4.4.3, it can be seen that only 2 and 3 

parallel sections (Figure 4.4 (a) and Figure 4.6 (a)) are used for initial SI creation and 

PGSIS, respectively, although 12 CPU cores have been used. Therefore, it can be 

expected to have speedup of only about 2× and 3× compared with the serial 

implementation. However, we stress that the optical flow component is completely 

independent of the proposed algorithm so it can be replaced with a much more efficient 

one and apply parallel techniques to reduce the complexity cost further. For example, a 

fast parallel implementation of an optical flow algorithm presented in [75] is able to 

compute both forward and backward flows in about 3 seconds per frame for about 12 

times larger frame size (640×480) than QCIF used in our experiments, running at a 

single machine equipped with cheap GPU hardware. Furthermore, in our 

implementation the optical flows are computed for all blocks within the WZ frames. 

However, this could be reduced by performing the computations on the selected blocks 

that are already available within the PGSIS refinement process, particularly for slow 

motion sequences.  

4.6 Conclusion 

This chapter presents a pixel level SIS framework and parallel implementation 

within a state-of-the-art transform domain DVC codec. The experimental results show 

significant improvements on RD performance over the same codec without the 

proposed algorithms. The parallel implementation also shows high utilization of 

resources and substantial speedup when compared with the serial implementation. The 

updated SI frames during the SIS process demonstrate considerable improvement in 

both subjective and objective image quality against the widely used block based SIS 

algorithms. The proposed SIS framework can be integrated into any modern transform 

domain DVC codec to achieve a better RD performance especially for video sequences 
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with complex motion and coded with long GOP sizes. The framework can also be re-

configured to exploit more efficient optical flow algorithms to improve the performance 

and further reduce complexity. Furthermore, the proposed parallel implementation 

brings the state-of-the-art DVC codec one step closer to practical use. 
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Chapter 5  

Consistent Quality Control for 

Wireless Video Surveillance 

5.1 Introduction 

Video transmission over wireless links is unreliable and can be characterized by 

bursty and high channel error probability. Since channel coding is adopted in DVC, this 

brings another appealing property that it is resilient against transmission errors. As 

wireless networks have limited bandwidth, rate control algorithms are usually required 

to achieve the best overall quality at the minimum bit rate cost. However, the priority is 

given to control the target bit-rate without regard to a stable visual quality along time. It 

is also important to notice that conventional DVC systems are weak in coordinating the 

key frames encoder and WZ frames encoder due to the separation of the encoding 

process. This can be characterized by using fixed quantization settings [19][26][35] for 

the coding of key frames and corresponding WZ frames. The fixed quantization 

parameters are typically obtained from iterative offline experiments. However, constant 

quantization configurations cannot adapt the changes in visual content and offline 

training approaches are impractical for real time video surveillance systems. 

Furthermore, inappropriate distortion distribution in key frames and WZ frames can 

seriously degrade RD performance. 
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Figure 5.1 Overall System Architecture 

In this chapter, we propose a novel algorithm to facilitate key frames and WZ frames 

encoder quality control. The proposed algorithm adjusts the quantization parameters 

according to the visual content and the user defined target quality online without any 

external control. A DQ model derived from MPEG-2 distortion estimation model [76] is 

employed. With the proposed algorithm, low complexity encoding is still guaranteed by 

performing the distortion estimation partly at the decoder side. The information required 

from the decoder is sent through the existing feedback channel.  

The rest of this chapter is organized as follows. Section 5.2 presents the overall 

system architecture of our DVC codec. In Section 5.3 and Section 5.4, we describe the 

proposed quality control solutions for the key frames and WZ frames, respectively. The 

simulation results are given in Section 5.5 and finally, Section 5.6 concludes this 

chapter and gives a brief outlook on future work. 

5.2 System Architecture 

The proposed DVC codec depicted in Figure 5.1 is based on the Stanford 

architecture [11] summarized as follows: 
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(1) The input video is divided into key frames and WZ frames. Key frames are inserted 

periodically determined by group of pictures (GOP) size. 

(2) The WZ frames are further divided into 4-by-4 blocks and in each block, discrete 

cosine transform (DCT) and a uniform quantization with dead-zone are performed.  

(3) The quantization matrix (QM) is determined by the WZ frames quality control 

algorithm, given user defined target distortion in terms of peak signal noise ratio 

(PSNR). 

(4) The quantized DCT coefficients are grouped into frequency bands and converted into 

bit-planes. 

(5) Each bit-plane is separately encoded using low-density-parity-check (LDPC) codes 

and stored in a buffer for decoder requests. An 8-bit cyclic redundancy check (CRC) 

code is also generated for each bit-plane to confirm decoding is success.  

(6) Key frames are encoded by an efficient conventional coder such as H.264/AVC Intra, 

where the quantization parameters (QP) are determined by the key frame quality 

control algorithm given the same target distortion. 

(7) At the decoder side, decoded key frames and WZ frames are interpolated to generate 

SI. 

(8) The correlation noise between SI and WZ frames are assumed to be Laplacian 

distributed and modelled by the virtual channel model. 

(9) Distortion of AC coefficients is estimated by residual statistic information of the 

decoded key frames and sent back to the encoder to aid WZ frame quality control. 

These results are further utilized in the virtual channel modelling process. 

(10) The soft input to the LDPC decoder in terms of conditional bit probability is 

calculated, using the statistical information provided by the virtual channel model.  
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(11) An iterative decoding process is performed until the syndrome check and CRC 

check are both successful. More parity bits can be requested if the above stopping 

criterion is not met. 

(12) Finally, all the decoded quantized symbols are optimally reconstructed [23] and 

inverse transformed. 

5.3 Key frames Quality Control 

The key frames quality control algorithm shown in Figure 5.2 is mainly derived 

from [57] and works in frame level. It consists of two main modules.  The key frame 

DQ model estimates the distortion of key frames and selects a proper QP for the 

conventional intra encoder. Its parameters are online updated using previously encoded 

key frames. 

5.3.1 Key Frame DQ Modelling 

The key frames distortion as a function of quantization step size    is estimated by 

the DQ model in Equation (5.1), 

          
     (5.1) 

where   and   are frame dependent model parameters.    is typically a constant and 

        as in [57] is used here.  

Target 
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Figure 5.2 Key frames quality control 
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According to H.264/AVC standard [1], quantization is controlled by an integer QP. 

Each QP value corresponds to a    value. The ratio between successive    values is √ 
 

, 

so that    doubles in value when  QP increases by six. Therefore, any   value can be 

derived from Equation (5.2) using the first six   values in Table 5.1, 

                     ⌊    ⌋ (5.2) 

where     is the modulo operation,       is a value in Table 5.1 indexed by x and ⌊ ⌋ 

denotes the nearest integer smaller than the given number.  

Table 5.1: The First 6    Values 

QP  0 1 2 3 4 5 

    0.625 0.702 0.787 0.884 0.992 1.114 

The QP is chosen as follows, 

1) Encode the first 2 key frames with some predefined initial QP values; 

2) Calculate the model parameters  and  , which will be discussed in the following 

section; 

3) Use the model parameters to estimate key frames distortion for each given QP as in 

Equation (5.2), in case of H.264/AVC Intra          ; 

4) The QP that produces the key frame distortion     best matches the target distortion 

   is chosen, i.e.  

         
         

                     (5.3) 

5) Encode the first 2 key frames again with the new QP and all the rest of the key 

frames will be encoded following the same procedures in 2) to 4). 

We restrict the distortion of key frames in Equation (5.3) to be the closest but lower 

than the target distortion to guarantee a better quality of key frames, since the quality of 
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decoded WZ frames are strongly dependent on the quality of the key frames. This 

unbalanced relationship is a trade-off to provide a good overall RD performance. 

5.3.2 Key Frame DQ Model Parameters Calculation 

The parameters   and   in Equation (5.1) can be calculated from previously encoded 

key frames. Assuming the GOP size is 2, then the distortion   and      for frame   and 

frame    , respectively, introduced by     and       can be calculated as Equation 

(5.4), 

{
                        

                    
 (5.4) 

The model parameters can thus be online updated using Equation (5.5), 

{
 
 

 
   

       

                     
          

     
                   

                     

 (5.5) 

However, due to the similarity of visual characters in adjacent frames, the QP 

obtained from Equation (5.3) for current frame   can be the same as in frame    , 

which results in zero denominator in Equation (5.5). In this case, a previously recorded 

different QP with its corresponding distortion   will be chosen to solve Equation (5.5). 

5.4 WZ Frames Quality Control 

The objective of WZ frames quality control algorithm depicted in Figure 5.3 is to 

choose a QM which can meet the target distortion. A DQ model for WZ frames is 

needed to estimate the distortion introduced by a candidate QM. A DQ model derived 

from [76] is employed in this chapter.  
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Figure 5.3 WZ frames quality control 

5.4.1 WZ Frame DQ Modelling 

The model given in Equation (5.6) estimates the average WZ distortion     at 

frame level, considering the distortion contributions of each coefficient, 

    
 

  
    

  ∑   
    

  

   

  (5.6) 

where   is the index of AC coefficients. The overall distortion is divided by two parts, 

i.e. the distortion of DC coefficients    
  and the distortion of AC coefficients    

 . The 

average DC distortion of a MPEG-2 coded frame is calculated using Equation (5.7), 

   
          (5.7) 

where     is intra DC precision in MPEG-2 which controls the quantization coarseness 

of DC coefficients.  In our DVC system, quantization coarseness is controlled by the 

quantization level in QMs. Each quantization level can be represented by  bits, so     

in Equation (5.7) is replaced by  in our calculation. 

The estimation of AC distortion will be discussed in detail in the following section.  
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5.4.2 AC Distortion Estimation 

The average squared quantization error    
 for MPEG-2 coded AC coefficients is 

obtained as Equation (5.8), 

   
      

     
           

        
 
 

 
    (5.8) 

where the original AC coefficients are assumed to follow a Laplacian distribution with 

parameter λ,    is the quantization step size and   is the offset of the reconstruction 

window in MPEG-2 TM5. We ignore   in Equation (5.8) by assigning a zero offset so 

that Equation (5.8) can be refined as follows, 

   
      

     
      

        
 (5.9) 

  is given by Equation (5.10) as, 

   
    

             
 (5.10) 

where        is the ratio of the number of zero coefficients over all the coefficients 

quantized by   . 

However, for a coarse QM some of the high frequency bands of AC coefficients are 

not coded, which means no data for these frequency bands is transmitted from the 

encoder. We denote these AC coefficients as    . In the reconstruction process,     are 

taken directly from the SI. Obviously, Equation (5.9) does not consider this situation. 

An insight into the distortion of    shows that the distortion of these frequency bands 

is actually the difference between SI and WZ frames, i.e. the correlation noise. The 

correlation noise is typically modelled by the statistical distribution of the residual of 

reference frames. Here, we use Mean Squared Error (MSE) of the residual frame to 

estimate the distortion of    . Residual frame   is generated from the motion 
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compensated versions of backward reference frames   and forward reference frames 

   as Equation (5.11): 

       
                               

 
 (5.11) 

where                 and                 represent the backward and the 

forward motion compensated frames, respectively. In (5.11),         represent the 

motion vector and       is the pixel location in frame  . Therefore, the distortion of 

   ,     
 is calculated in Equation (5.12), 

    

              (5.12) 

where       is the expectation operator over all the coefficients in band  .    
  is now 

rewritten as in the following, 

   
  {

    
     

      

        
        

    

                      

 (5.13) 

where    represents the quantization level for the AC band.  

The distortion of DC coefficients combined with all AC distortion contributes the 

distortion of a WZ frame. Thus, we can choose the QM by Equation (5.14), 

          
       

         (5.14) 

Here, 8 QMs in [26] indexed by   are used in our DVC codec. The    that gives the 

closest distortion to the target distortion is selected. 

5.5 Simulation Results 

The proposed algorithm is evaluated by our DVC codec presented in Section 5.2. 

We compare the distortion variation and the RD performance of the basic DVC codec 
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with and without proposed algorithm. Only luminance components of Hall Monitor and 

Coastguard representing videos of different types of motion are used. Both test 

sequences are of size QCIF (176×144) at temporal resolution of 15 Hz. All frames in 

the test sequences are used, which means 165 frames for Hall Monitor and 150 frames 

for Coastguard. A constant GOP size of 2 is used for all test sequences, i.e. odd frames 

are key frames whereas even frames are WZ frames. The QMs defined in [26] are 

applied in our simulation to determine the quantization levels. A regular degree LDPC 

accumulate code [22] of length 1584 bits is used for virtual channel coding.  

All frames are coded with constant QM-QP pairs defined in Table 5.2 [26] when no 

quality control is performed. Table 5.2 is obtained by iterative offline training process 

targeting to have almost constant decoded video quality for both key frames and WZ 

frames. In the following experiments, Hall monitor and Coastguard are coded with QM1  

and QM4, respectively, when using fixed quantization settings.  

5.5.1 Distortion Variation 

Both key frames and WZ frames quality control algorithms are verified by the 

temporal PSNR variation in this section. The distortion of test sequences is also 

compared with target PSNR which is set to be equal to the average PSNR over all 

frames obtained in the coder without quality control. 

Table 5.2: QP Values for Corresponding QMs of the 

Basic DVC Codec without Proposed Quality Control 

 QM1 QM2 QM3 QM4 

Hall Monitor 37 36 36 33 

Coastguard 38 37 37 34 
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1) Key Frames Distortion Variation 

Figure 5.4 and Figure 5.5 show the temporal PSNR variation for the sequences Hall 

Monitor and Coastguard, respectively. It can be seen from both figures that the key 

frames distortion varies rather small for slow motion and fast motion sequences, 

regardless of quality control. More specifically, the key frames PSNR variances of Hall 

Monitor with and without quality control are 0.0152 and 0.0069, respectively. However, 

this trivial variance increase introduced by quality control brings PSNR around 1 dB 

closer to the target. Similar results are obtained from Coastguard sequence. The key 

frames PSNR variance increased from 0.0424 to 0.0632 using quality control but again, 

it provides decoded quality more than 1.5 dB closer to the target. 

 

Figure 5.4 Temporal PSNR variation for the key frames for Hall Monitor 
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Figure 5.5 Temporal PSNR variation for the key frames for Coastguard 

2) WZ Frames Distortion Variation 

Figure 5.6 and Figure 5.7 show the results of WZ frames distortion variation for Hall 

Monitor and Coastguard, respectively. The proposed algorithm reduced the PSNR 

variance from 0.2138 to 0.0636 and better met the target PSNR by about 1 dB for 

sequence Hall Monitor. However, the algorithm performs similar to the fixed 

quantization settings obtained from offline training for the Coastguard sequence. Only a 

small reduction from 0.5434 to 0.5242 on PSNR variance is obtained using quality 

control. It gives smoother image quality closer to the target only in the later part (after 

100 frames) of the sequence when the scene changes tend to reduce.  
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Figure 5.6 Temporal PSNR variation for the WZ frames for Hall Monitor 

 

 

Figure 5.7 Temporal PSNR variation for the WZ frames for Coastguard 
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5.5.2 RD Performance 

Figure 5.8 and Figure 5.9 show the RD performance of sequence Hall Monitor and 

Coastguard, respectively. The first 4 coarse QMs in [26] with their corresponding QPs 

defined in Table 5.2 are used in the basic DVC codec without proposed quality control 

algorithm, which correspond to 4 RD points. RD performance loss of up to about 2.5 dB 

is observed in Figure 5.8 when using quality control, whereas a smaller loss of up to 

about 0.6 dB is observed in Figure 5.9. It is also important to notice that the average 

distortion of key frames and WZ frames are rather similar in Figure 5.4 and Figure 5.6, 

when using proposed quality control. However, more priority is given to key frames 

which result in rather big difference in the average distortion of key frames and WZ 

frames in Figure 5.5 and Figure 5.7. A similar average distortion in both key frames and 

WZ frames gives a rather degraded RD performance, whereas an unbalanced average 

distortion gives a smaller loss in RD performance, which implies the need for balance 

between smooth quality control and RD performance. This has also been reported in [26] 

that allocating more bits to the key frames at the cost of a less stable video quality may 

lead to a better RD performance. 
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Figure 5.8 RD performance for Hall Monitor 

 

 

Figure 5.9 RD performance for Coastguard 
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5.6 Conclusion and Future Works 

In this chapter, we have presented an efficient technique to automatically control the 

video quality for DVC codecs. Simulation results show that the proposed method 

closely meet user defined target quality and smooth out the distortion variation for slow 

motion sequences and performs similar to fixed quantization settings obtained from 

offline trainings for fast motion sequences. However, some RD performance loss is 

observed in our quality-controlled DVC codec. 

A flexible control to balance a smooth quality and RD performance remains as our 

future work. 
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Chapter 6  

Low Complexity Implementation of 

DVC Codec 

6.1 Introduction 

The first software implementation of DVC were developed in 2002, by Stanford 

University [11][77] and UC Berkeley [9][10], using different frameworks and verified 

by simulations on general purpose personal computers (PC). In 2007, a European 

project called DISCOVER [19], based on the Stanford framework, implemented an 

efficient DVC codec also on a general purpose PC. It presents a state-of-the-art low-

complexity DVC codec, as well as a benchmark for DVC implementations. But all the 

above frameworks have not been verified in a practical system architecture, considering 

the memory and processors restriction. 

In this chapter, we present the first implementation of a DVC encoder using low-

density-parity-check accumulative codes (LDPCA) on Texas Instruments 

TMS320C6437 fixed point DSP. We present an efficient implementation utilizing the 

DSP hardware features and optimization techniques particularly in-place Discrete 

Cosine Transform (DCT) transform, software pipelining and built-in LDPCA codes. 

The decoder is running on a general purpose PC. Furthermore, the Stanford DVC 

framework is verified on a DSP based encoder and PC based decoder, together referred 

to as DSP-PC architecture.  

Furthermore, we present a parallel implementation of DVC decoder based on a PC 

based encoder and HPC (high performance cluster) based decoder, together referred to 
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as PC-HPC architecture, where the encoder is running in a general purpose PC and the 

decoder is running in a multicore HPC. 

The rest of this chapter is organized as follows. In Section 6.2, we describe the DSP-

PC system architecture and the target platforms of the encoder and the decoder. 

Implementation details of encoder components such as DCT transform, coefficients to 

bit-stream conversion, LDPCA encoding and key frames encoding are provided in 

section 6.2.6 to section 6.2.9. And the performance evaluation of the encoder 

complexity and the overall RD performance are presented in section 6.2.10. In Section 

6.3, the focus is moved to the PC-HPC architecture where we implement a highly 

efficient decoder using parallel technology. Section 6.3.2 to section 6.3.5 provide 

technical details for the encoder, especially covers the quantizer design, LDPCA 

encoding and file structure organization. Details of the parallel implementation for the 

modules of SI generation, correlation noise modelling, conditional bit probability 

computation and LDPCA decoding are presented in section 6.3.7 to section 6.3.10. The 

decoding complexities as well as the RD performances are given for different 

experimental scenarios in section 6.3.11. Final conclusions and future works are given 

in Section 6.4. 

6.2 DSP-PC DVC Implementation and Optimization 

6.2.1 System Overview 

The system level diagram of our implementation is presented in Figure 6.1. The WZ 

encoder using LDPCA codes and a conventional intra-frame encoder employing JPEG 

Baseline [78] coding approach are implemented on a DSP, connected to a PC through 

an embeded JTAG emulator. The bit-streams are generated and stored on PC, in which 

the WZ decoder and the conventional decoder are implemented. The WZ encoder deals 
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with all the even frames while the conventional encoder processes the remaining frames. 

This DVC coding scheme works in transform domain. This chapter focus more on the 

implementation issues, the reader is referred to [3] for further information and details on 

DVC. 

WZ Decoder

PC

Conventional 

Decoder

WZ Encoder

DM6437

Conventional 

Encoder

Video 

sequence

 

Figure 6.1 System Architecture 

6.2.2 Encoder Architecture 

The encoder functional blocks are shown in Figure 6.2. The JPEG encoder divides a 

video frame into square blocks with equal block length. DCT and a fixed quantization 

(DCT&Q) are performed over each block. The quantized DC coefficients are encoded 

by differential pulse-code modulation (DPCM). The encoding of the quantized AC 

coefficients is performed by run-length encoding (RLE) algorithm. The DPCM encoded 

DC coefficients and RLE encoded AC coefficients are further compressed by an entropy 

encoder. 

The WZ encoder also performs block-wise DCT and quantization on the video 

frames. The quantization table used in JPEG encoder is employed in WZ encoder as 

well. The quantized coefficients are then converted into bit-streams and coded using a 

LDPCA code.  
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Parity bits and compressed key frame bit-streams are generated on the DSP board 

and sent to PC through an emulator. 

DCT&Q
Coefficient to 

bit-stream
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encoder

Parity bits
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Compressed 

Bit-Stream
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Figure 6.2 Encoder Functional Block Diagram 

6.2.3 Decoder Architecture 
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Figure 6.3 Decoder Functional Block Diagram 

The DVC decoder main functional blocks are shown in Figure 6.3. The JPEG 

decoding consists of doing all the above JPEG encoding process in reverse. One or 

more already reconstructed frames (either WZ frames or key frames) will serve as side 

information for the WZ decoder. The correlation between the key frames and the WZ 

frames is modelled by Laplacian distribution. The WZ decoder receives successive 
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chunks of parity bits from the encoder following the requests made through a feedback 

channel.  

If the parity bits are not sufficient to successfully decode a certain DCT coefficient, 

the decoder requests more bits from the encoder. 

6.2.4 System Design Flow 

The DM6437 EVM is a development platform that enables fast applications 

evaluation and development for the TI DaVinci
TM

 processor family [79]. The block 

diagram of the internal architecture of the DM6437 EVM is shown in Figure 6.4. 
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Figure 6.4 DM6437 EVM Architecture 

Its powerful CPU allows efficient hardware pipelining under certain conditions. It is 

able to dispatch up to eight parallel instructions in each CPU cycle. The big Level 1 

cache (L1), configurable Level 2 memory (L2), Internal DMA (IDMA) plus EDMA 3.0 

enable fast data transfers with external device or memory to offload CPU. Moreover, 



113 

 

the Switched Central Resource (SCR) can route up to four transfers between CPU, 

EDMA, device peripherals and memory at the same time.  

A rich set of available libraries and tools for DM6437, including debugging, 

development and performance analysis not only shorten the development cycles, but 

also improve the efficiency and robustness of the target applications. Other features can 

be found in [80].  

6.2.5 Encoder Implementation 

The implementation of the encoder is optimized at different levels by different 

techniques. A set of optimized image/video processing libraries such as IMGLIB [81], 

provided by Texas Instruments (TI), are used. These libraries provide high performance 

codes and an efficient and robust way of development. TI also provides high 

performance code generation tools to aid developers to debug and optimize codes. Code 

Composer Studio (CCS) is used throughout our implementation. 

6.2.6 Discrete Cosine Transform 

The DCT component of the WZ encoder is implemented by DSP Image/Video 

Processing Library with all operations in image blocks performed entirely in place. The 

DCT transform algorithm presented in [82] is efficiently implemented in the library. 

The number of operations is less than 1/6 of the conventional DCT algorithm using a 2-

sided (Fast Fourier Transform) FFT. At the programming level, techniques like 

instruction scheduling and pipelines, registers reuse, etc. are employed to improve 

instruction-level parallelism. 
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6.2.7 Coefficients to Bit-stream 

The DCT transformed coefficients have to be converted to a bit stream for LDPCA 

encoding. We first combine the two layer loops of the horizontal and vertical access of 

each coefficient. Second, a coefficient register is used to hold the coefficient value for 

each bit, avoiding re-calculation of array index. Also, the inner loop calculating the bit 

value of each bit-plane is unrolled to facilitate software pipeline. Finally, the modulo-2 

operation is replaced by a faster bitwise and operation. 

6.2.8 LDPCA Encoding 

To facilitate adaptive coding rate, LDPCA codes are used. LDPCA codes can be 

represented by a sparse matrix. When dealing with image data, the size of this sparse 

matrix can be huge. Thus, most PC-based implementations of LDPC coding store the 

matrix in external memory [19][35][21][83]. A LDPCA code typically contains a set of 

codes with various code rates, range from the lowest code rate to the highest code rate, 

so that the decoder can start decoding with a lower rate bound, gradually increasing the 

rate if the parity is not sufficient. However, the code rate can be pre-estimated. Hence, it 

is not necessary to load the codes with all the available code rates. But even if large 

amount of unnecessary LDPCA codes are avoided from loading to the memory, the 

external memory reading, parsing, allocating and copying of a single LDPCA code are 

still time costing.  

In our implementation, we compile the LDPCA code into the executable file, 

making a built-in LDPCA code in the data segment instead of storing it in external 

memory disk. Thus, high speed loading of LDPCA codes can be achieved by increasing 

a bit of program size. 
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The LDPCA encoder consists of an LDPC syndrome-former followed by an 

accumulator. The bits of the quantized DCT coefficients are first multiplied by the 

parity check matrix, yielding syndromes. These syndromes are in turn accumulated 

modulo (MOD) 2, producing the accumulated syndrome bits [21][22]. We denote the 

adjacent syndromes as        and     , thus the accumulated syndrome bits       can be 

calculated as follow: 

                 

                 

It can be noted that doing modulo 2 and accumulating at the same time does not 

affect the result, and the addition modulo 2 corresponds to bitwise exclusive or (XOR) 

operation, therefore the above calculations can be simplified as below in the 

implementation, where bitwise and with 1 (AND 1) is an alternative but faster operation 

for modulo-2. 

      (               )       

6.2.9 Key Frames Encoding 

The key frames are encoded by JPEG using the Codec Engine API. The Codec 

Engine is an extendable and configurable framework that provides developers a 

common interface to access eXpressDSP-compliant codecs and algorithms [84]. 

6.2.10 Performance Study and Analysis 

1. Complexity Performance 

Our transform-domain DVC codec divides the video sequence into groups of 

pictures (GOP) with GOP size of 2. The odd frames are coded as key frames, decoded 

without reference to side information. The even frames are WZ coded, decoded using 

the previous reconstructed frames. A set of tests on both of the encoder and the decoder 
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has been carried out to verify their performance. Three video sequences, foreman, hall 

monitor and soccer are used, at QCIF resolution and 15 Hz frame rate. Only the 

luminance component is considered in the subsequent results.  

A block size of 8 is used for the DCT and quantization. A scaled quantization matrix 

in Annex K of the JPEG standard [78] with scaling factor of 0.5 is used in the two 

encoders. The WZ frames are coded by a regular degree-3 LDPCA code of length 

50688 bits [21]. Each QCIF-sized WZ frame is divided into four regions with equal 

dimension to match the code length. Therefore, the test results on main functional 

blocks of the WZ encoder are given for ¼ of a frame. The parity bits are generated by 

DM6437 and stored in the PC side through the embedded JTAG emulator. After an 

iterative decoding using Message Passing Algorithm [85], if the decoded bit-stream 

does not satisfy the syndrome check, the decoder requests additional parity bits from the 

encoder via a feedback channel. 

We compared a non-optimized and an optimized WZ encoder on the DSP. The non-

optimized DCT process uses a 2-sided FFT algorithm which works with floating point 

data results in slower processing at the algorithm level. In addition, it allocates a 

Table 6.1 Implementation Performance of The DM6437 Based WZ Encoder 

AVERAGE NUMBER OF INSTRUCTION CYCLES(CYCLES×10
6
) 

 

Foreman Hall Monitor Soccer 

Non-optimized/Optimized 

DCT&Quantization (1/4 frame) 415.4/3.9 415.4/3.9 415.4/3.9 

Coefficients to Bit-stream (1/4 frame) 2.2/1.8 2.2/1.8 2.2/1.8 

LDPCA Encoding (1/4 frame) 564.4/27.7 562.4/27.8 562.1/27.6 

WZ Encoder (whole frame) 3960.1 /134.2 3959.9/134.0 3959.7/134.6 

Overall Improvement with Optimization 29.5 times 29.6 times 29.4 times 
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temporary memory to store the transformed coefficients for each 8-by-8 block. This 

frequent memory allocation and release operation is also time-costing. The optimized 

DCT process uses a faster in place DCT transform algorithm which can work with fixed 

point data with only a little loss in accuracy. The optimized implementation not only 

speeds up the transform process but saves the memory usage. 

The non-optimized conversion of DCT coefficient to bit-stream accesses each 

coefficient by two layer loops. The outer loop indexes the rows of a frame whereas the 

inner loop indexes the column. These two loops are combined into a single loop in the 

optimized implementation. Furthermore, loop unrolling technique is employed on 

bitwise access to help software pipelining. 

In LDPCA encoding process, we avoid loading the large LDPCA codes from the 

external memory by compiling the codes into the executable file. Therefore, the codes 

are integrated in the binary program and are loaded to the DSP memory together with 

the program resulting in high speed loading of LDPCA codes. This approach increases 

the program size by around 728KB which is negligible for the huge total memory 

capacity, but eliminates the time for string parsing, external memory access as well as 

dynamic memory allocation. Furthermore, the syndrome accumulator is simplified by 

doing accumulating and modulo-2 at the same time with bitwise operations.  

Table 6.1shows the profiling results of the DM6437 based encoder, given in average 

number of instruction cycles. The performance is tested on the WZ encoder and its main 

functional blocks (DCT and quantization, coefficients to bit-stream, LDPCA encoding). 

The last row shows the improvements achieved with the optimized implementation. An 

overall reduction of more than 29 times of WZ encoder complexity in terms of average 

number of instruction cycles is obtained. The average number of instruction cycles 
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reflects the actual amount of operations in the algorithms. Therefore, the reduction on 

the instruction cycles has a great impact on practical power consumptions. For resource 

restricted applications, this means less processing power is needed or longer battery life 

can be achieved. 

2. Rate-Distortion Performance 

 

Figure 6.5 RD Curves for DSP-PC based DVC codec implementation for different 

sequences 

We also verified the rate-distortion (RD) performance of this DSP-PC based DVC 

architecture. Our experiments use 50 frames of the above video sequences. The 

quantization matrix in the tests is scaled by factor Q = 0.5, 1, 2 and 4, respectively. 

Figure 6.5 compares the RD curves for Foreman, Hall Monitor, and Soccer, which 

represent different motion speed. The results are given in average rate and PSNR values. 

It can be seen from the figure that sequence with faster motion (Soccer) are often 

inferior in RD performance due to more “errors” between side information and WZ 

frames introduced by motion. It should also be noted that the results are for fixed point 
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implementation which explains why it is slightly lower than the expected using floating 

point. 

Further reduction in computational cost can be achieved by employing Q-format 

representation in the quantizer to facilitate the rounding and truncation process, and 

refining the C/C++ code with C64x intrinsic or linear assembly to fully exploit the 

potential of the target platform. Furthermore, for a regular degree LDPCA code, further 

memory reduction can be achieved utilizing the code-word index structure. In addition, 

a better alternative for key frames coding such as H.264/AVC Intra codec can be used to 

improve the quality of side information and thus improve the final RD performance. 

6.3 PC-HPC DVC Parallel Implementation 

Due to high complexity of DVC decoder, it is supposed to be implemented on high 

performance base station. We have implemented a DVC codec in a PC-HPC (High 

Performance Cluster) architecture which simulate the scenario of running a DVC 

decoder at a base station. This also compliments our encoder implementation work to 

provide a comprehensive suggestion and full evaluation of the state-of-the-art DVC 

codec implementation under a practical software and hardware setup. Since this chapter 

mainly focuses on implementation aspects, SI refinement is therefore not taking into 

consideration, but readers who are interested in this topic can refer to Chapter 4 for 

more details. 

6.3.1 System Overview 

The system architecture of our PC-HPC DVC codec is shown in Figure 6.6. Video 

frames are split to key frames and WZ frames. The number of WZ frames is decided by 

GOP size. Key frames are encoded by H.264/AVC Intra encoder and the resulting bit-

stream is stored along with all the relevant encoding parameters. WZ frames are divided 
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into 4×4 blocks and each block is DCT transformed and uniformly quantized. The 

quantized symbols are then split into bit-planes in zigzag order, starting from the most 

significant bit-planes (MSB) to the least significant bit-planes (LSB). A CRC code is 

generated for each bit-plane before they are encoded by LDPCA codes. LDPCA 

encoded bits, also referred to as syndrome bits, are stored into a file with associated 

coding parameters. For simplicity reason, this file is separately stored from the intra 

coded key frame files. 
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Figure 6.6 System Architecture 

At the decoder side, decoded key frames are stored in buffer to provide information 

for initial SI generation. Since our DVC codec is working in transform domain, the 

initial SI has to be DCT transformed. Any decoded WZ frames are also stored into the 

same buffer. These frames are usually called reference frames and their residue frame 

computed during initial SI generation will be utilized to estimate the correlation noise. 

The noise is assumed to follow Laplacian distribution. The resulting Laplacian 

parameters are then used to compute conditional bit probabilities which will be used for 

LDPCA decoding. The accumulated syndrome bits are decoded using an iterative 
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message passing algorithm, which converges when the syndrome checks are fulfilled or 

the maximum number of iterations is reached. It requests for more parity bits if the 

current parity bits are not sufficient and a successful decoding is always tested by the 

CRC check. Decoded bit-streams are combined to form the quantized symbols, 

optimally reconstructed and inverse DCT transformed. Decoded frames are always 

smoothed by a deblocking filter to reduce block artifacts. Finally, decoded key frames 

and WZ frames are re-ordered in the same sequence as the input video sequence. 

6.3.2 Encoder Implementation 

Although the target platform of our encoder implementation is in a general purpose 

PC, it can be easily ported to digital signal processors, mobile phones or other resource 

critical devices. The encoding flow chart is depicted in Figure 6.7. It can be seen that 

the encoding process is a recursive loop since the encoding starts from the middle frame 

of a GOP, then move the right and left boundaries to the middle and repeat this process 

until all the frames in a GOP are encoded. 
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Figure 6.7 WZ Encoder Flow Chart 

Key aspects of encoder implementation include quantizer design, LDPCA encoder 

implementation and file structure organization, which will be discussed in the following 

sections. 

6.3.3 Quantizer Implementation 

The quantizer is one of the key components that determines the quality of decoded 

frames as well as the decoding speed. Since DVC aims at achieving low complexity 

encoding, the quantizer design is usually simple and straightforward. Typical quantizer 

used in literatures is the uniform scalar quantizer, sometimes with an additional dead-

zone to achieve better compression rate. Due to complexity reason, a uniform quantizer 

without a dead-zone is used in the implementation. 
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Our encoder quantizer is based on the quantizer from DISCOVER codec but without 

a dead-zone. The dynamic range for DC coefficients is assumed to be        , although 

the actual range should be        . A bigger value range with the same number of 

quantization levels means bigger step size and hence higher compression rate (at the 

sacrifice of image quality). The dynamic range for AC coefficients is assumed to be 

              , where       is the absolute maximum value of all the coefficients 

in a band. Each       has to be stored along with the compressed bit-stream. 

The quantization step size   for DC coefficients is calculated as below, where   is 

the number of quantization levels decided by one of the quantization tables defined in 

Figure 6.8. 

  
   

 
 (6.1) 

The selection of the above quantization table is decided by the target rate/distortion 

requirement. And zero quantization level means these bands are not encoded into bit-

stream and will be recovered from corresponding bands in SI directly. 

Calculation of the step sizes for AC coefficients is, 

  {⌈
           

 
⌉       

                            

  (6.2) 

where ⌈ ⌉ means rounding to the smallest integral value that is not less than  . For zero 

quantization level, the step size is marked as zero as well and these bands will be 

ignored in quantization. 
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Figure 6.8 Eight quantization tables for eight RD points 

 Therefore, DCT coefficients can be quantized to 
 

 
 where   is a DCT coefficient. 

However, AC coefficients can contain negative numbers. The quantized symbols   are 

usually shifted to all positive levels, since only positive numbers are usually supported 

for array indexing and this also simplify the coding process as the sign bits are not 

necessary any more. The level shift   for an AC coefficient is computed as, 

  
   

 
 (6.3) 

6.3.4 LDPCA Encoder 

The LDPCA encoder generates syndrome bits for each bit-plane of quantized 

symbols. This process has been described in 6.2.8, but the syndrome bits are converted 

to bytes to save storage space. 

6.3.5 File Structure Organization 

Since there is no standard for the file structure of WZ bit-stream so far, we propose a 

simple file structure to store the bit-stream and all the relevant parameters. The file 

structure for encoded WZ frames is depicted in Table 6.2. Encoded frame data are 

organized according to the order of GOP coding, i.e. the middle frame is always 

encoded first. 



125 

 

Table 6.2 File structure for encoded WZ frames 

Content Number of bytes 

Frame resolution (0:QCIF, 1:CIF) 1 

Quantization table index 1 

GOP size: 2, 4 or 8 1 

Total number of frames encoded 2 

Encoded frame data for frame i - 

…… - 

Encoded frame data for frame N - 

For each frame, the AC ranges for all the AC bands are stored at the beginning of the 

encoded frame data, in zigzag scan order, followed by all the encoded bit-plane data in 

the same order, depicted in Table 6.3. For each encoded bit-plane data, CRC code is 

always placed ahead of the syndrome bits to help checking if decoding is successful, as 

shown in  

Table 6.4. 

Table 6.3 Data layout of encoded frame data for a single frame 

Content Number of bytes 

AC range for the first AC band 2 

AC range for the second AC band 2 

…… - 

AC range for the n
th

 AC band 2 

Encoded bit-plane data for bit-plane 1 - 

Encoded bit-plane data for bit-plane 2 - 

…… - 

Encoded bit-plane data for bit-plane k - 

 

Table 6.4 Data layout of encoded bit-plane data for a single bit-plane 
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Content Number of bytes 

CRC code 1 

Syndrome bit-stream - 

6.3.6 Decoder Implementation 

A transform domain DVC decoder without SI refinement process is implemented 

using OpenMP parallel technique. Details of parallel implementation of some selected 

modules which have significant impact on the decoding complexity are presented below. 

6.3.7 Initial Side Information Generation 

The initial SI is generated using the method proposed in [30], the implementation of 

this algorithm is briefly described below, but more details on parallel implementation 

are discussed here.  

The two reference frames, the past and the future reference frames, are first filtered 

by a 3×3 mean filter such that the motion vectors generated will be more reliable, and 

then they are both up sampled through a finite impulse response (FIR) filter for half 

pixel motion estimation. 

 

Figure 6.9 Order of SI generation for GOP=4 

The initial motion vector for each macro block of size 16×16 is selected by forward 

motion estimation. However, if the motion vectors intercept the centre of the 

interpolated blocks, some areas in the interpolated frame may not be filled when motion 

compensation is performed. A solution proposed in [30] suggests that for each non-
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overlapped block in the interpolated frame, the motion vector that has intercepting point 

closest to the centre of the block will be selected. This approach guarantees that each 

non-overlapped block in the interpolated frame can be assigned a motion vector and 

therefore can effectively eliminate holes or blank area in the interpolated frame. The 

motion vectors obtained in this step are further refined by half pixel bi-directional 

motion estimations, first using block size 16×16 and then refined again using the size of 

8×8. In order to overcome the spatial incoherence of the motion vectors, weighted 

vector median filters are used to reduce the number of false estimations. It selects the 

vectors that minimize the sum of weighted distances to all the other neighbouring 

vectors. The weights are computed according to the ratio of the mean square error of the 

current block and the neighbouring block. Finally, the initial SI is generated by bi-

directional motion compensation using the motion vectors obtained so far. 

Due to the large searching range in forward motion estimation, it is the most time 

costing module in the initial SI generation process. Therefore, this module is 

implemented in parallel. For each block in the future frame, it compares with all the 

blocks within the searching range in the past frame to find the best matched block using 

sum of absolute difference (SAD) as the cost function. Each block can then be assigned 

a forward motion vector and a backward motion vector, derived from half of the motion 

vector between the current block and its best matched block. The motion vectors are 

then re-assigned according to the distance of the intercepting points and the centre of the 

blocks. Since finding the motion vectors for each block is independent from each other, 

therefore blocks can be divided evenly among threads and forward motion estimation 

can be carried out in parallel. The corresponding flowchart and the pseudo-code are 

depicted in Figure 6.10. 
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(a) Flow chart 

    #pragma omp parallel for 

    for each 16×16 block { 

        Extract a future frame block; 

        Find the best match from past frame; 

        Adjust motion vectors; 

    } 

(b) C++ pseudo code using OpenMP 

Figure 6.10 Initial SI Generation 

6.3.8 Correlation Noise Modelling 

The correlation noise distribution is modelled using the widely adopted coefficient 

level method proposed in [4]. For all the coefficients in each band that needs to be 

decoded, the noise distribution of WZ frame   and SI frame   over each possible 

coefficient level at pixel       is calculated. 

                                         (6.4) 

where   is the Laplacian parameter. 

In most literature, the above calculation is carried out using the exact form of the 

probability density function of Laplacian distribution, which multiplies 
      

 
 to the 

right of (6.4). However, in practical implementation this means the resulting 

probabilities have to be normalized before use. It can be noted that Laplacian 

distribution is an exponential distribution and equation (6.4) is already an exponential 
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distribution which can give very close shape of the actual Laplacian distribution. 

Furthermore, the modeling process itself is only an estimation of the actual distribution 

and the simpler form of (6.4) saves more computations. It avoids the calculation of 

multiplication for each possible level of a WZ coefficient and more importantly, it does 

not need normalization process any more since the resulting probabilities are always in 

the range of      .  

Since the calculation of the noise distribution for each coefficient does not rely on 

any other coefficients, the coefficients in a band can be divided into M subset to run 

each subset in parallel, where M is decided according to the number of CPU cores. The 

flowchart and the pseudo code of parallel implementation of this module are depicted 

below. 

1

2

M

...

Subset 1 of band coefficients

Master thread

Compute p

Compute p

Compute p

Subset 2 of band coefficients

Subset M of band coefficients

 

(a) Flow chart 

#pragma omp parallel for 

for each coefficient in a band {  

    compute   using equation (6.4); 

} 

(b) C++ pseudo code using OpenMP 

Figure 6.11 Correlation noise modeling 
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6.3.9 Conditional Bit Probability Calculation 

This module provides the probability of a bit of a WZ coefficient given the SI. In 

another word, it computes the belief of a bit of a WZ coefficient being 1 or 0 given the 

SI, which will be used later for belief propagation algorithm in LDPCA decoding. 

A. Compute the range of quantization index 

The lower bound   and the upper bound   of the  th
 bit-plane of quantization index 

  being 0 and 1 given all of the decoded bit-planes can be found in (6.5).  

  
        

  
       

            

  
             

  
       

            

(6.5) 

where        ,   is the number of total bits for current decoding band and    is the 

decoded quantization values before bit-plane  . 

B. Compute the range of coefficient values: 

Since the decoder works in non-quantized transform domain, the above range has to 

be converted to the range of coefficient values. Similar to the DISCOVER codec [19] 

(but with no dead-zone used in our implementation), the  th
 quantization interval   

 
 for 

band   is defined as below: 

  
  {

                 
                     

 (6.6) 

where    is the quantization step size for band  . This quantization interval is also the 

range for the coefficient values. Substitute   in (6.6) with   
  and   

  in (6.5) we can get 

the range    
    

   for the coefficient values. 
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(6.7) 

 

C. Compute conditional probability: 

With all the possible levels of a WZ coefficient in the defined range above, the 

conditional probability of a bit of WZ coefficient being 0 and 1, denoted as    and   , 

respectively, can be derived as below, 

   ∑         

  
    

    
    

 

   ∑         

  
    

    
    

 

(6.8) 

where   is the SI at the same pixel location. 

D. Normalization: 

However, the probabilities calculated in (6.8) should not exceed 1. To guarantee the 

resulting probabilities are within a valid range,    and    are usually normalized before 

being used.  

   
  

     
 (6.9) 
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The conditional probability in terms of likelihood ratio can therefore be computed as 

  

  
, since logarithm gives more numerically stable results, log likelihood ratios LLR 

     
  

  
  are usually used instead of likelihood ratio.  

For AC coefficients, the above algorithm has to be adjusted to consider the level 

shifts applied at the encoder side. 

It can be noticed that the calculation of conditional probability for each coefficient 

does not require any information of other coefficient. Therefore, for a DCT band under 

decoding, all the coefficients within that band can be divided into sub-groups for 

parallel processing. The corresponding flow chart and C++ pseudo code using OpenMP 

is depicted below. 

1

2

M

...

Subset 1 of coefficients

Subset M of coefficients

1

Master thread

2

M

Compute Compute LLR

1

2

M

p1p0 Compute

Subset 2 of coefficients

 

(a) Flow chart 

#pragma omp parallel for 

for each coefficient in a band {  

    compute quantization range using equation (6.5); 

    compute coefficient range using equation (6.7); 

    compute    and    using equation (6.8);  
    normalize    and   using equation (6.9); 

    compute LLR      
  

  
 ; 

} 

(b) C++ pseudo code using OpenMP 

Figure 6.12 Conditional bit probability calculation 
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6.3.10 LDPCA Decoding 

LDPCA decoding is the most time consuming components at the decoder side 

according to our experimental results. The decoding algorithm adopted here is derived 

from the belief propagation algorithm explained in [86], in which the computation of 

the message     from each check node   to its associated variable nodes  , depicted in 

(6.10), has the highest computational complexity since the calculation involves 

summation of logarithm and hyperbolic tangent. 

    ∏        ∑        

       

 

       

 (6.10) 

where      denotes all variable nodes connected to check node   except node  ,      and 

     are the sign and the magnitude of the extrinsic message from each variable node to 

its associated check nodes, respectively, and                  
 

 
  . (6.10) can be 

computed in two steps, first loop over all the message paths to compute        , then 

sum them up and loop over all the message paths again to get    . The computations 

involved in each message path is independent to any other paths, these two loops can 

therefore be computed in parallel. The corresponding flow chart and C++ pseudo code 

for this implementation are depicted below. 
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(a) Flow chart 
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#pragma omp parallel for 

for each message path {  

    compute        ; 

} 

#pragma omp parallel for 

for each message path {  

    compute     using (6.10); 

} 

(b) C++ pseudo code using OpenMP 

Figure 6.13 Belief propagation 

In order to further improve the decoding speed, a minimum rate estimation 

algorithm proposed in [87] is used to reduce the number of parity bit requests. This rate 

is computed based on the conditional entropy        between the original data and the 

SI. The LDPCA decoding always starts from the estimated minimum rate, if it fails the 

syndrome check or the CRC check, it then requests more parity bits from the encoder 

buffer until both the syndrome check and the CRC check are successful. 

6.3.11 Performance Study and Analysis 

A. Test Condition 

The proposed parallel implementation of our transform domain DVC codec is 

evaluated and compared with the sequential implementation in terms of the complexity 

performance and the RD performance using the following test conditions. 

1) Video sequences: Foreman, Hall Monitor, Coastguard, and Soccer. 

2) Number of frames: all frames of the test sequences have been used to evaluate the 

RD performance which means 150 for Foreman, 165 for Hall Monitor, 150 for 

Coastguard, and 150 for Soccer. However, since the average complexity 

performance only shows negligible differences using various numbers of frames, we 

only use the first 30 frames of all test sequences to evaluate the decoding 

complexity. 
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3) Spatial and temporal resolution: QCIF at 15 Hz which means 7.5 Hz for the WZ 

frames when GOP=2. 

4) GOP length: 2, 4 and 8. 

5) Eight RD points are considered for DVC codec, corresponding to eight 4×4 

quantization matrices widely used in literature [19][37][39]. 

6) Key frames are coded by H.264/AVC Intra with constant quantization parameters as 

defined in [19]. 

7) Software and hardware configuration: the decoding tasks are performed on the 

Bright Beowulf Cluster Environment using 24 CPU processors of the running node 

under Linux operating system. The codec is written in C/C++ code and compiled by 

GCC 4.7.0 using OpenMP 3.1. 

B. Complexity Performance 

The CRG DVC codec is implemented in parallel as well as in serial, where the serial 

implementation can be seen as the parallel version that uses only one CPU core.  The 

total decoding time of the parallel implementation and the serial implementation for all 

the sequences and GOP sizes are compared in this section. More detailed computational 

complexity on major decoding components for both parallel and serial implementations 

are also presented here. 

1)  Parallel vs. Serial Implementation 

Table 6.5 to Table 6.7 show the total decoding time of parallel and serial 

implementation of CRG DVC for GOP size 2, 4 and 8, respectively. Please note that in 

the following implementations, no network channel is used for data transmission 

between the encoder and the decoder, i.e. video data is encoded and decoded locally. 

However, for practical applications where encoded bit-streams are transmitted over a 

real network channel, the results shown in Table 6.5 to Table 6.7 should refer to latency 
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since they include the time that data is requested through the feedback channel from the 

source. As expected, the decoding time increases as bit-rate and GOP size increase since 

there are more DCT bands to be decoded under higher bit-rate and more WZ frames to 

be decoded for larger GOP sizes. It can be observed that the parallel implementation 

using 24 CPU cores spends about less than 1/10 of the total decoding time with regard 

to the serial implementation across most GOP settings, rates and sequences. The impact 

of video content on the total decoding time meets the common expectation, i.e. the more 

complex the video content is, more time requires to decode that sequence. The video 

sequence that contains highest motion content here is Soccer, which therefore takes 

longest time to decode. The same pattern can be seen from the slowest video content 

tested here. Hall Monitor costs the shortest time to decode which is only about 1/5 for 

lower bit-rates and ¼ for higher bit-rates compared to Soccer sequence under both 

parallel and serial implementations.  

For real time applications, a frame rate of 10 to 15 fps is required to eliminate any 

flickering effects, which means 30 frames have to be decoded within 2 to 3 seconds. It 

can be found in Table 6.5 that decoding Hall Monitor sequence with GOP size 2 in 

parallel under the lowest quantization matrix using 24 CPU cores can be considered real 

time. 

Table 6.5 Total decoding time (in seconds) for CRG-DVC parallel (P) 

implementation (using 24 CPU cores) vs. serial (S) implementation for GOP=2 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

Foreman 
P 6.66 7.14 7.93 14.96 19.85 31.25 31.08 45.65 

S 68.51 71.49 87.04 165.85 201.97 297.47 329.12 468.44 

Soccer 
P 12.26 11.74 12.16 24.43 27.83 38.28 41.39 53.49 

S 120.46 110.78 127.52 244.87 272.49 390.06 408.41 548.84 

Coastguard 
P 3.36 4.29 4.79 9.98 10.48 19.02 27.77 54.00 

S 37.87 46.40 51.72 108.09 113.14 193.49 277.83 552.50 

Hall 
P 2.33 2.91 3.17 6.14 6.34 10.79 11.76 17.96 

S 28.52 32.13 35.97 67.34 71.41 104.30 133.57 186.06 
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Table 6.6 Total decoding time (in seconds) for CRG-DVC parallel (P) 

implementation (using 24 CPU cores) vs. serial (S) implementation for GOP=4 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

Foreman 
P 13.70 15.35 19.17 33.89 39.37 59.02 70.82 99.62 

S 140.07 147.75 180.30 331.66 395.49 570.54 668.10 968.70 

Soccer 
P 21.63 19.78 26.10 44.57 49.08 70.78 74.51 108.54 

S 205.40 198.71 239.76 437.01 488.37 688.07 742.33 1007.72 

Coastguard 
P 5.82 7.08 7.50 18.83 18.15 33.87 48.90 99.42 

S 67.55 73.90 82.63 179.62 188.27 324.29 475.32 967.96 

Hall 
P 3.94 3.93 4.62 9.49 9.86 16.31 18.55 26.94 

S 42.04 45.45 50.85 101.12 103.77 158.36 193.16 277.00 

 

Table 6.7 Total decoding time (in seconds) for CRG-DVC parallel (P) 

implementation (using 24 CPU cores) vs. serial (S) implementation for GOP=8 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

Foreman 
P 22.30 24.92 30.47 60.22 62.84 85.88 101.05 153.96 

S 215.39 239.62 282.88 525.46 596.77 819.35 972.45 1382.66 

Soccer 
P 27.85 26.45 33.70 66.37 71.23 88.03 97.30 142.69 

S 265.93 259.11 312.78 591.52 657.21 872.05 942.64 1351.99 

Coastguard 
P 7.72 9.54 10.94 25.37 27.73 47.33 61.68 126.77 

S 86.08 101.77 119.37 248.53 270.39 451.60 621.62 1241.00 

Hall 
P 4.91 4.90 5.73 12.66 12.91 18.40 21.78 36.70 

S 52.61 55.59 61.25 127.55 129.72 190.02 228.36 343.79 

2) Component based complexity analysis 

Table 6.8 - Table 6.10 show the decoding time for major computational components 

using serial implementation. It can be seen that the time spend on each component is 

increasing as GOP sizes increase and the majority computational complexity is spent on 

SI creation, correlation noise modeling and LDPCA decoding. Among these 

components, LDPCA decoding is the most time costing module and the time spent on 

conditional bit probability calculation is trivial. For Foreman sequence coded with GOP 

size 2, LDPCA decoding costs about 88% of the total decoding time for Q1 and a 

significant 98% for Q8. For Soccer sequence coded with GOP size 2, LDPCA decoding 

takes 93% of the total decoding time for Q1 and 98% for Q8 as well. It can also be seen 
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that the time spent on SI creation is almost constant regardless of bit-rates since the 

complexity of motion estimation does not change according to the bit-rate. However, 

the time spent on correlation noise modeling and conditional bit probability 

computation are increasing with the increase of the bit-rates since there are more bands 

to be decoded under higher bit-rates. Comparing the results of GOP size 2 and 4, it can 

be seen that the time costing for each component is almost doubled. However, LDCPA 

decoding for GOP size 8 is only about 1.3 times faster than using GOP size 4. 

Table 6.8 Decoding time (in seconds) for Serial CRG-DVC components: SI 

Creation (S), Correlation Noise Modeling (C), Conditional Bit Probability 

Computation (P) and LDPCA Decoding (L) for GOP=2 

  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

Foreman 

S 3.73 3.75 3.79 3.78 3.75 3.73 3.76 3.77 

C 4.27 4.27 5.67 6.59 6.80 6.90 7.08 7.04 

P 0.30 0.32 0.48 0.59 0.55 0.64 0.63 0.59 

L 60.14 63.08 76.99 154.73 190.67 285.98 317.43 456.84 

Soccer 

S 3.70 3.75 3.76 3.74 3.71 3.77 3.71 3.73 

C 4.13 4.19 5.27 5.96 6.27 6.60 6.50 6.65 

P 0.29 0.30 0.37 0.50 0.47 0.67 0.53 0.66 

L 112.27 102.48 118.02 234.52 261.85 378.81 397.47 537.60 

Coastguard 

S 3.72 3.73 3.73 3.81 3.80 3.72 3.72 3.99 

C 4.31 4.32 5.77 6.85 7.26 7.24 7.41 7.75 

P 0.53 0.59 0.69 0.85 0.92 0.87 0.99 1.15 

L 29.23 37.69 41.43 96.42 100.97 181.44 265.49 539.41 

Hall 

S 3.84 3.70 3.70 3.72 3.88 3.73 3.93 3.73 

C 4.73 4.55 6.22 7.54 8.39 8.42 8.88 8.60 

P 0.55 0.53 0.72 0.90 0.99 0.96 1.48 1.41 

L 19.32 23.28 25.23 55.01 57.97 90.98 119.06 172.11 
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TABLE 6.9 Decoding time (in seconds) for Serial CRG-DVC components: SI 

Creation (S), Correlation Noise Modelling (C), Conditional Bit Probability 

Computation (P) and LDPCA Decoding (L) for GOP=4 

  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

Foreman 

S 5.45 5.40 5.40 5.36 5.38 5.37 5.39 5.42 

C 6.36 6.37 7.94 9.20 9.74 10.20 10.12 10.36 

P 0.62 0.55 0.60 0.83 0.77 1.07 0.99 1.09 

L 127.53 135.32 166.21 316.02 379.30 553.57 651.28 951.51 

Soccer 

S 5.39 5.56 5.45 5.38 5.38 5.43 5.42 5.35 

C 6.09 6.24 7.66 8.70 9.23 9.65 9.71 9.59 

P 0.44 0.48 0.56 0.68 0.72 0.99 0.99 0.83 

L 193.39 186.33 225.94 422.02 472.75 671.68 725.90 991.68 

Coastguard 

S 5.90 5.32 5.36 5.39 5.34 5.38 5.34 5.43 

C 7.16 6.38 8.54 10.09 10.66 11.01 10.92 11.53 

P 1.01 0.89 1.03 1.15 1.58 1.30 1.29 1.67 

L 53.32 61.20 67.54 162.75 170.39 306.29 457.45 948.99 

Hall 

S 5.36 5.33 5.35 5.33 5.35 5.33 5.48 5.34 

C 6.91 6.86 9.40 11.18 12.08 12.47 13.11 12.71 

P 0.78 0.81 1.16 1.40 1.51 1.55 2.27 1.64 

L 28.89 32.35 34.80 82.97 84.56 138.70 171.96 257.00 

 

Table 6.10 Decoding time (in seconds) for Serial CRG-DVC components: SI 

Creation (S), Correlation Noise Modelling (C), Conditional Bit Probability 

Computation (P) and LDPCA Decoding (L) for GOP=8 

  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

Foreman 

S 6.35 6.42 6.32 6.32 6.35 6.33 6.33 6.32 

C 7.42 7.52 9.31 10.93 11.57 11.76 11.93 12.06 

P 0.61 0.78 0.71 0.84 0.93 0.95 1.20 1.05 

L 200.89 224.77 266.36 507.09 577.57 799.95 952.62 1362.87 

Soccer 

S 6.30 6.43 6.33 6.31 6.50 6.30 6.29 6.32 

C 7.11 7.29 8.87 10.24 11.04 11.29 11.20 11.43 

P 0.51 0.55 0.65 0.79 0.88 0.90 0.93 0.99 

L 251.90 244.72 296.76 573.91 638.45 853.20 923.86 1332.91 

Coastguard 

S 6.37 6.41 6.54 6.34 6.44 6.37 6.28 6.34 

C 7.74 7.75 10.60 11.95 13.06 13.22 13.08 13.61 

P 0.96 1.08 1.35 1.27 1.53 1.70 1.59 1.86 

L 70.87 86.41 100.68 228.70 249.01 429.92 600.30 1218.81 

Hall 

S 6.32 6.35 6.31 6.33 6.32 6.31 6.34 6.27 

C 8.20 8.17 11.20 13.50 14.39 15.00 15.07 15.11 

P 0.97 1.03 1.49 1.98 1.92 2.91 2.47 2.00 

L 36.99 39.91 42.07 105.46 106.78 165.40 204.08 320.04 

Table 6.11 - Table 6.13 show the decoding time for the same major computational 

components using parallel implementation. Comparing with serial implementation, 
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parallel implementation using 24 CPU cores can achieve about 10 times faster for each 

component using all the quantization matrices and GOP sizes. 

Table 6.11Decoding time (in seconds) for parallel CRG-DVC components 

(using 24 CPU cores): SI Creation (S), Correlation Noise Modeling (C), 

Conditional Bit Probability Computation (P) and LDPCA Decoding (L) for 

GOP=2 

  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

Foreman 

S 0.29 0.28 0.28 0.28 0.28 0.28 0.28 0.29 

C 0.19 0.19 0.26 0.32 0.35 0.37 0.37 0.37 

P 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.04 

L 6.12 6.62 7.33 14.28 19.12 30.51 30.33 44.89 

Soccer 

S 0.29 0.30 0.29 0.29 0.29 0.28 0.28 0.29 

C 0.19 0.19 0.25 0.30 0.34 0.35 0.36 0.37 

P 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.03 

L 11.73 11.20 11.57 23.76 27.10 37.55 40.66 52.74 

Coastguard 

S 0.29 0.28 0.27 0.27 0.27 0.27 0.27 0.28 

C 0.20 0.20 0.27 0.34 0.38 0.40 0.40 0.41 

P 0.06 0.06 0.07 0.08 0.09 0.08 0.09 0.10 

L 2.77 3.71 4.12 9.22 9.67 18.20 26.94 53.15 

Hall 

S 0.28 0.28 0.28 0.28 0.27 0.27 0.28 0.28 

C 0.21 0.21 0.30 0.38 0.42 0.44 0.45 0.45 

P 0.03 0.03 0.04 0.05 0.05 0.05 0.06 0.06 

L 1.77 2.35 2.51 5.37 5.52 9.94 10.90 17.10 

 

Table 6.12 Decoding time (in seconds) for parallel CRG-DVC components 

(using 24 CPU cores): SI Creation (S), Correlation Noise Modelling (C), 

Conditional Bit Probability Computation (P) and LDPCA Decoding (L) for 

GOP=4 

  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

Foreman 

S 0.40 0.39 0.39 0.40 0.40 0.40 0.40 0.39 

C 0.29 0.29 0.38 0.48 0.52 0.55 0.56 0.56 

P 0.02 0.02 0.03 0.04 0.04 0.04 0.05 0.05 

L 12.93 14.59 18.30 32.89 38.31 57.93 69.72 98.53 

Soccer 

S 0.41 0.41 0.40 0.40 0.40 0.40 0.40 0.40 

C 0.28 0.28 0.37 0.45 0.50 0.53 0.54 0.54 

P 0.02 0.02 0.03 0.03 0.04 0.04 0.04 0.05 

L 20.87 19.02 25.23 43.60 48.04 69.70 73.43 107.46 

Coastguard 

S 0.39 0.39 0.38 0.38 0.39 0.39 0.39 0.40 

C 0.30 0.30 0.41 0.51 0.57 0.60 0.60 0.60 

P 0.09 0.09 0.10 0.11 0.11 0.12 0.12 0.12 

L 4.97 6.24 6.54 17.73 16.97 32.66 47.69 98.21 

Hall 

S 0.38 0.38 0.38 0.39 0.39 0.38 0.39 0.38 

C 0.32 0.32 0.45 0.56 0.62 0.66 0.67 0.67 

P 0.04 0.04 0.06 0.08 0.08 0.09 0.09 0.09 

L 3.12 3.12 3.65 8.36 8.66 15.06 17.29 25.69 
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Table 6.13 Decoding time (in seconds) for parallel CRG-DVC components 

(using 24 CPU cores): SI Creation (S), Correlation Noise Modelling (C), 

Conditional Bit Probability Computation (P) and LDPCA Decoding (L) for 

GOP=8 

  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

Foreman 

S 0.46 0.46 0.46 0.46 0.47 0.46 0.46 0.46 

C 0.34 0.34 0.45 0.57 0.62 0.65 0.65 0.66 

P 0.03 0.03 0.03 0.04 0.05 0.05 0.06 0.06 

L 21.40 24.03 29.44 59.03 61.58 84.60 99.76 152.66 

Soccer 

S 0.48 0.48 0.48 0.48 0.48 0.47 0.47 0.47 

C 0.33 0.33 0.44 0.54 0.60 0.63 0.64 0.64 

P 0.02 0.02 0.03 0.04 0.05 0.05 0.05 0.06 

L 26.95 25.55 32.67 65.21 69.99 86.75 96.03 141.41 

Coastguard 

S 0.45 0.46 0.46 0.45 0.46 0.45 0.45 0.45 

C 0.36 0.35 0.49 0.61 0.68 0.71 0.71 0.72 

P 0.09 0.10 0.11 0.11 0.11 0.12 0.13 0.13 

L 6.74 8.54 9.79 24.08 26.35 45.91 60.27 125.36 

Hall 

S 0.45 0.45 0.46 0.45 0.46 0.45 0.45 0.45 

C 0.38 0.38 0.54 0.67 0.75 0.79 0.80 0.80 

P 0.05 0.05 0.08 0.09 0.10 0.10 0.11 0.12 

L 3.95 3.95 4.56 11.33 11.48 16.93 20.30 35.21 

C. Rate-Distortion Performance 

(1) CRG Parallel DVC vs. DISCOVER 

The RD performance of the chosen coding solutions for all the selected video 

sequences is presented in Figure 6.14 and Figure 6.15. The results show that the CRG 

parallel DVC performs very similar to the DISCOVER codec for slow motion 

sequences using short GOP size. However, it dramatically outperforms DISCOVER for 

video sequences with high motion content, especially for higher bit-rate and longer 

GOP sizes. The RD gains are mainly brought by the better quality of SI. It is a big 

challenge for most DVC codecs to generate good SI under critical conditions that the 

motion is intense and GOP sizes are big. 

The Foreman and Soccer sequences are considered to be the high motion video 

contents, whereas Hall Monitor and Coastguard sequences are seen as relatively low 

motion video contents. As expected, the Foreman and Soccer sequences give better 

gains in RD performance, particularly the Foreman sequence that achieves the highest 

RD gains with regards to the DISCOVER codec. Taking a close look at Figure 6.14 for 
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the Foreman sequence, notably for the last RD point, there is approximately 1.6 dB for 

GOP size 8. Similar gains can be observed from the Soccer sequence with about 1.26 

dB for GOP size 2. 

(a) Foreman: GOP=2 (b) Soccer: GOP=2 

  

(c) Foreman: GOP=4 (d) Soccer: GOP=4 

  

(e) Foreman: GOP=8 (f) Soccer: GOP=8 

  

Figure 6.14 RD Performance for Foreman and Soccer sequences 
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(a) Hall Monitor: GOP=2 (b) Coastguard: GOP=2 

  

(c) Hall Monitor: GOP=4 (d) Coastguard: GOP=4 

  

(e) Hall Monitor: GOP=8 (f) Coastguard: GOP=8 

  

Figure 6.15 RD Performance for Hall Monitor and Coastguard sequences 

However, the RD curves in Figure 6.15 show slightly lower performance for the 

sequences of Hall Monitor and Coastguard. The RD curve of the proposed codec 

overlaps DISCOVER’s for the Hall Monitor sequence for GOP size 2 and 4, but a 

notable gain of up to 1 dB can be observed from the longest GOP size. Slight 
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performance loss of up to 0.3 dB can be seen from the Coastguard sequence using GOP 

size 2, whereas the RD performances for GOP size 4 are extremely close and some 

small gains of about 0.2 dB can be noted under high bit-rate for GOP size 8.  

(2) CRG parallel DVC vs. Standard video coding solutions 

The conventional video coding solutions evaluated here are those widely used 

standard video codecs. When compared with the RD performance of the CRG parallel 

DVC codec, it can be concluded that it out performs H.264/AVC Intra for low motion 

sequences under almost all the test conditions, except GOP size 8 for Coastguard 

sequence. There is also performance gain for more complex video sequence such as 

Foreman coded with GOP size 8 and Soccer with GOP size 2.  

It is usually expected that WZ codec can hardly beat the performance of H.264/AVC 

No Motion. However, the CRG parallel DVC codec shows remarkable RD gains for 

high motion video sequences. Foreman sequence with GOP size 8, Soccer sequence 

with GOP size 2 and Coastguard sequence using GOP sizes 2 and 4, all performs better 

than H.264/AVC No Motion. However, there are no significant RD performance 

changes for the Hall Monitor sequence, i.e. the performance remains above H.264/AVC 

Intra and still below H.264 No Motion.  

It can also be observed that, for low motion sequences such as Hall Monitor and 

Coastguard, CRG parallel DVC remains above or similar to H.264/AVC Intra under 

most situations. However, for high motion sequences such as Foreman and Soccer, the 

RD performance is still below H.264/AVC Intra for most settings. Comparing with 

H.263+ (Intra) codec, CRG parallel DVC is consistently better with exception for the 

most complex sequence Soccer, which only shows superior RD performance using GOP 

size 2. 
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6.4 Conclusion 

First of all, a low complexity implementation of a LDPCA code based DVC encoder, 

on a TMS320DM6437 (DaVinci) DSP is presented in this chapter. We also 

implemented the DVC decoder on a general purpose PC. The performance of the DVC 

codec is verified on a DSP-PC architecture. Test results show that an improvement in 

speed of more than 29 times can be obtained against a non-optimized implementation. 

The optimized implementation shows that DM64x DSP is a suitable platform for the 

implementation of DVC encoder. As future work, this DSP based encoder can be used 

for online coding task, enabling real-time DVC applications.  

A PC-HPC system architecture with emphasis on the parallel implementation of a 

transform domain DVC decoder is presented in the rest of this chapter. The 

experimental results show that the decoder exploiting 24 CPU cores in parallel 

processing can achieve about 10 times speedup under various bit-rates and GOP sizes 

compared to the serial implementation. Although the decoding speed is still far from 

real time requirement, it is strongly believed that a number of approaches can be 

considered to bring huge speedup to the decoder side to meet the real time requirements. 

Examples of these approaches include introducing a simple rate estimation module at 

the encoder side to remove the feedback channel, skip blocks that does not have 

significant changes over time, using early stop criteria for LDPCA decoding, which 

remain as our future work. 
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Chapter 7  

Conclusions & Future Work 

This thesis has proposed contributions to investigate and exploit side information to 

improve DVC RD performance, provided solution to achieve consistent quality of 

decoded video frames over time, proposed efficient DVC implementations across 

different hardware platforms. These will be summarized in Section 7.1 followed by 

future works on open research challenges in Section 7.2. 

7.1 Conclusions 

Chapter 2 reviewed the theoretical background and the development of DVC. This 

review identified the major research challenges in this field and addressing these 

problems is the objective and the main contribution of this thesis. The conclusions from 

this Chapter are 1) DVC can significantly benefit numerous emerging applications that 

require very low encoding complexity and hence it deserves wide attention from the 

research communities; 2) Most recent DVC developments show that despite DVC can 

already achieve very similar RD performance for some test sequences when compared 

to the conventional video codecs, it is still not ready from practical use and deployments. 

Therefore, further research work in this field is necessary; 3) Some of the major 

challenges in DVC have been identified and they are in the areas of side information 

creation and refinement, consistent quality control and efficient codec implementations.  

To address the challenges identified in Chapter 2, Chapter 3 investigates the impacts 

of using reference frames as side information on RD performance and proposed a 

solution to improve the accuracy of motion search and reduce decoding complexity. The 

experimental results reveal that if the conditional bit probability for LDPCA decoder is 
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computed for quantized WZ frame, using reference frames as SI is capable to achieve 

similar or sometimes even better coding efficiency than the widely used MCI frames. 

The proposed MRP method can significantly reduce decoder complexity with no loss in 

RD performance. This work brings new insight and strength to the use of reference 

frames. It opens attractive perspectives that allow us to better understand the role of 

reference frames in DVC. 

Chapter 4 presents a novel pixel granularity SI refinement framework to reduce the 

block artifacts introduced by widely used block based frame interpolation solutions. It 

also suggests a parallel implementation to improve the decoding speed within a state-of-

the-art transform domain DVC codec. The experimental results show significant 

improvements on RD performance over the same codec without the proposed 

algorithms. The parallel implementation also shows high utilization of resources and 

substantial speedup when compared with the serial implementation. The updated SI 

frames during the SIS process demonstrate considerable improvement in both subjective 

and objective image quality against the widely used block based SIS algorithms. The 

proposed SIS framework can be integrated into any modern transform domain DVC 

codec to achieve a better RD performance especially for video sequences with complex 

motion and coded with long GOP sizes. The framework can also be re-configured to 

exploit more efficient optical flow algorithms to improve the performance and further 

reduce complexity. Furthermore, the proposed parallel implementation brings the state-

of-the-art DVC codec one step closer to practical use.   

As aforementioned, consistent quality of decoded video frames is sometimes 

favoured in real applications and therefore, a quality control mechanism is very much 

needed. To address this problem, Chapter 5 proposes a solution to control the video 

frame quality for coding both key frames and WZ frames through two distortion-
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quantization models. As expected, simulation results show that the proposed method 

closely meet user defined target quality and smooth out the distortion variation for slow 

motion sequences and performs similar to fixed quantization settings obtained from 

offline trainings for fast motion sequences. However, it is also expected to have some 

RD performance loss as DVC usually require slightly better frame quality for key 

frames over WZ frames to achieve a better RD performance [19], but the quality control 

algorithm may not meet this condition. 

An efficient implementation taking into account both software and hardware 

features and restrictions is essential for practical use and deployments of DVC. Chapter 

6 demonstrates two fully implemented DVC codecs using different hardware 

architectures.  The DSP-PC architecture shows that under the restriction of memory and 

processing power, DVC encoder is still capable to perform in a rather fast speed. The 

proposed optimization shows more than 29 times speedup against a non-optimized 

implementation. The conclusion drawn from this implementation is that DM64x DSP is 

a suitable platform for the implementation of DVC encoder. The PC-HPC architecture 

demonstrates a highly efficient parallel implementation to maximize the utilization of 

system resources at the decoder side. The experimental results show that the parallelized 

decoder can achieve about 10 times speedup under various bit-rates and GOP sizes 

compared to the serial implementation. The RD performance of this implementation 

beats one of the best-performed DVC codec (DISCOVER codec). Although the 

decoding speed is not yet satisfactory for real time requirement, it is strongly believed 

that a number of approaches can be considered to bring huge speedup to the decoder 

side for real time applications. We have also provided a thorough specification for the 

file structure of encoder output. This has not yet been discussed elsewhere in the 
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literature but it is a key protocol for encoder and decoder to communicate information 

and it is also essential for future standardization of DVC codec.  

The research work presented in this thesis has resulted in 2 IEEE journal papers 

[36][88], 2 conference papers [89][90] and a highly efficient DVC codec deployed in 

the CRG research group.  

7.2 Future Works 

In summary, this thesis has proposed various solutions to bring DVC one step 

forward to practical use. The suggested techniques are capable of improving the overall 

RD performance and accelerating both of the encoding and decoding speed. However, 

future research work is still necessary to further enhance DVC performance. Possible 

research areas are summarized below.  

7.2.1 Further Investigation on Computation of Conditional Bit 

Probability in Quantized Coefficient Domain 

This thesis found that using reference frames as SI directly performs not worse than 

widely used interpolated frames, when the computation of conditional bit probability is 

in quantized symbol domain. When this information is calculated in non-quantized 

symbol domain, the RD performance is expected to be better as there is no information 

loss in the process. However, under certain distortion restraint, if the computation of the 

bit probability in quantized domain is already sufficient to meet the target distortion, it 

is not necessary to carry out this highly complex computation in non-quantized domain, 

which can bring significant complexity gains, especially when EM algorithm is adopted 

to consistently update bit probabilities. 



150 

 

7.2.2 Extend the Pixel Granularity SI Synthesis Framework to 

Use Extrapolated Frames 

For real-time applications, using frame interpolation for SI generation may not be 

applicable as frame interpolation changes the original frame order and this requires 

frame buffering which may not be desirable. Furthermore, longer GOP sizes will have 

need of bigger buffer size which can increase the delay. Frame extrapolation can be one 

of the possible solutions. The proposed SI synthesis framework in this thesis is based on 

frame interpolation, but it can be extended in the future to use extrapolated frames to 

generate SI. Previously decoded frames can be used to extrapolate the SI for decoding 

the next frame according to the original frame order.  

7.2.3 Efficient Quality Control Algorithm without Feedback 

Channel 

The quality control algorithm proposed in this thesis requires sending back some 

information from the decoder to the encoder side to facilitate the distortion-quantization 

modelling process. Since a feedback channel is usually not desired for practical 

applications, an encoder side rate allocation algorithm can be integrated into our DVC 

codec. Therefore, our quality control algorithm will not be able to obtain the residual 

information from the decoder side.  However, the fact that the conventional video 

decoder is usually far simpler than the encoder can be exploited. Therefore, in the future, 

key frames decoder can be added to the encoder side to generate the residual statistic 

information of the decoded key frames, facilitating the estimation of the distortion of 

AC coefficients. And hence, no information is required to be sent back to the encoder 

any more. 
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7.2.4 More Efficient and Practical DVC Implementation 

Like most research work in the literatures, the DVC implementations in this thesis 

have only considered the brightness colour component. However, for realistic 

applications coloured output frames are usually preferred. As a future work, all the 

colour components can be taken into account in DVC. In this case, the correlation 

between different colour components and the correlation of the same colour component 

between neighbouring frames can be exploited.  

As mentioned in section 7.2.3, an encoder rate control is usually required for 

practical DVC applications. It can remove the feedback channel and significantly reduce 

the decoding complexity. To further speedup the DVC decoder, a fast stopping criteria 

can also be introduced to accelerate the iterative decoding procedure. In addition, more 

hardware features such as GPGPU can be exploited to improve the parallel 

implementation as well.  

Furthermore, more computationally efficient channel codes such as polar code [91] 

can be considered for practical DVC codec design. Like turbo and LDPC codes, polar 

codes facilitate near-capacity operation. However, polar codes do not require an 

iterative decoder, and hence can provide much lower coding complexity. This may 

increase the opportunities to use DVC for real-time applications.  

Last but not least, since power restricted devices cannot afford to run a DVC 

decoder due to its high complexity, a transcoder can be introduced to achieve a “simple-

to-simple” transmission of video data. An intuitive solution is to convert the decoded 

video frames into conventionally encoded data in a centralized base-station and then 

forward it to the target terminal. This base-station serves as a transcoder to exploit the 
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fact that DVC encoder and conventional video decoder can perform fast coding tasks, 

bringing forth low complexity end-to-end encoding as well as decoding. 
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