

A University of Sussex DPhil thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

Side Information Exploitation, Quality

Control and Low Complexity Implementation

for Distributed Video Coding

Min Zheng

A Thesis Submitted for the Degree of Doctor of Philosophy

School of Engineering and Informatics

University of Sussex

September 2013

University of Sussex

Thesis Submitted in Fulfilment of the Requirements for the Degree of

Doctor of Philosophy

[Side Information Exploitation, Quality Control and Low Complexity

Implementation for Distributed Video Coding]

By: Min Zheng

Summary

Distributed video coding (DVC) is a new video coding methodology that shifts the

highly complex motion search components from the encoder to the decoder, such a

video coder would have a great advantage in encoding speed and it is still able to

achieve similar rate-distortion performance as the conventional coding solutions.

Applications include wireless video sensor networks, mobile video cameras and

wireless video surveillance, etc. Although many progresses have been made in DVC

over the past ten years, there is still a gap in RD performance between conventional

video coding solutions and DVC. The latest development of DVC is still far from

standardization and practical use. The key problems remain in the areas such as accurate

and efficient side information generation and refinement, quality control between

Wyner-Ziv frames and key frames, correlation noise modelling and decoder complexity,

etc.

Under this context, this thesis proposes solutions to improve the state-of-the-art side

information refinement schemes, enable consistent quality control over decoded frames

during coding process and implement highly efficient DVC codec.

This thesis investigates the impact of reference frames on side information

generation and reveals that reference frames have the potential to be better side

information than the extensively used interpolated frames. Based on this investigation,

we also propose a motion range prediction (MRP) method to exploit reference frames

and precisely guide the statistical motion learning process. Extensive simulation results

show that choosing reference frames as SI performs competitively, and sometimes even

better than interpolated frames. Furthermore, the proposed MRP method is shown to

significantly reduce the decoding complexity without degrading any RD performance.

To minimize the block artifacts and achieve consistent improvement in both

subjective and objective quality of side information, we propose a novel side

information synthesis framework working on pixel granularity. We synthesize the SI at

pixel level to minimize the block artifacts and adaptively change the correlation noise

model according to the new SI. Furthermore, we have fully implemented a state-of-the-

art DVC decoder with the proposed framework using serial and parallel processing

technologies to identify bottlenecks and areas to further reduce the decoding complexity,

which is another major challenge for future practical DVC system deployments. The

performance is evaluated based on the latest transform domain DVC codec and

compared with different standard codecs. Extensive experimental results show

substantial and consistent rate-distortion gains over standard video codecs and

significant speedup over serial implementation.

In order to bring the state-of-the-art DVC one step closer to practical use, we address

the problem of distortion variation introduced by typical rate control algorithms,

especially in a variable bit rate environment. Simulation results show that the proposed

quality control algorithm is capable to meet user defined target distortion and maintain a

rather small variation for sequence with slow motion and performs similar to fixed

quantization for fast motion sequence at the cost of some RD performance.

Finally, we propose the first implementation of a distributed video encoder on a

Texas Instruments TMS320DM6437 digital signal processor. The WZ encoder is

efficiently implemented, using rate adaptive low-density-parity-check accumulative

(LDPCA) codes, exploiting the hardware features and optimization techniques to

improve the overall performance. Implementation results show that the WZ encoder is

able to encode at 134M instruction cycles per QCIF frame on a TMS320DM6437 DSP

running at 700MHz. This results in encoder speed 29 times faster than non-optimized

encoder implementation. We also implemented a highly efficient DVC decoder using

both serial and parallel technology based on a PC-HPC (high performance cluster)

architecture, where the encoder is running in a general purpose PC and the decoder is

running in a multicore HPC. The experimental results show that the parallelized decoder

can achieve about 10 times speedup under various bit-rates and GOP sizes compared to

the serial implementation and significant RD gains with regards to the state-of-the-art

DISCOVER codec.

Acknowledgements

There are far too many to thank individually, but the efforts of the following are

crucial. My deepest gratitude is to my supervisor Dr. Falah H. Ali, from whom I have

learned the arts of making research compelling and engaging. Every facet of this work

reflects his wisdom, thoughtful comments, and also his insights into the ideas. The

contributions of this thesis are the results of numerous discussions with him. His rich

research experiences and affability contributed to make this journey enriching and

pleasant.

All my colleagues in the Communications Research Group were sources of

inspiration and friendship. It was sheer enjoyment to work with Walid, Marwan, Bilal,

Saif, Fei, Tom, Ibrahim and Murtala. We shared, not just ideas, but the daily ups and

downs of research life. Special thanks to Marwan for his warm words of support and for

his valuable comments and suggestions on this thesis.

Since arriving at Brighton, I have had the companionship and encouragement of

friends, old and new. There were my long-time friends Bo Yao and Lei Zou from China,

my previous landlord Paul and Marie, my ex-girlfriend Sahar Delikhan and her family. I

befriended many wonderful people in Brighton, among them Eric, Audrey and Roger,

Xiaolin Zhang, Frank, Xiaolei, Jie Li, Zuhal, Paula, Zahara, Maria, Jorge, Hussam,

Jamila, Szevia and Nadia.

My deepest and forever gratitude is for my family. My parents raised me across

continents to think across boundaries. My brother and I share a lifelong dialogue that

influences me a lot. I thank them for all their love, understanding, efforts in support of

my success and patience.

I would also like to thank to Zebra Geosciences Ltd. for offering me the job and

financial support. And also thank to all the colleagues in this company for the relax and

pleasant working environment and their kind assistance and advice on technical issues.

List of Publications

 M. Zheng, F. H. Ali, “DSP Implementation of On-Board Distributed Video Coding,”

4th European DSP Education and Research Conference, EDERC2010, 5 pages, Nice,

France, Dec. 2010.

 M. Zheng, F. H. Ali, “Consistent Quality Control for Wireless Video Surveillance

Using Distributed Video Coding,” The 4th International Conference on Imaging for

Crime Detection and Prevention (ICDP-11), London, UK, Dec. 2011.

 M. Zheng, F. H. Ali, “Exploration and Exploitation of Reference Frames in

Distributed Video Coding,” IEEE Signal Processing Letters, vol. 19, issue 7, pp.

411-414.

 M. Zheng, F. H. Ali, “Pixel Granularity Side Information Synthesis Framework and

Parallel Implementation for Distributed Video Coding,” submitted to IEEE

Transactions on Multimedia.

1

Table of Contents

Summary ... 4

Acknowledgements ... 7

List of Publications ... 9

Table of Contents .. 1

List of Abbreviations... 7

List of Figures ... 10

List of Tables... 12

Chapter 1 Introduction ... 14

1.1 Background and Motivations ... 14

1.2 Aims and Objectives .. 15

1.3 Original Contributions ... 16

1.4 Outline of the Thesis .. 18

Chapter 2 Overview of Distributed Video Coding .. 21

2.1 Introduction .. 21

2.2 Theoretical Background ... 21

2.2.1 Slepian-Wolf Coding .. 24

2.2.2 Wyner-Ziv Coding .. 26

2.3 Early DVC Architectures ... 26

2.3.1 The Berkeley DVC Architecture ... 26

2.3.2 The Stanford DVC Architecture ... 27

2

2.4 Research Challenges .. 30

2.4.1 Side information generation .. 30

2.4.2 Side information refinement ... 30

2.4.3 Correlation noise modelling .. 31

2.4.4 Consistent Quality Control .. 32

2.4.5 DVC implementation .. 32

2.5 Relevant Recent Advances on DVC .. 33

2.5.1 State-of –the-art Performance ... 33

2.5.2 Side Information Generation ... 36

2.5.3 Side Information Refinement .. 37

2.5.4 Correlation Noise Modelling .. 40

2.5.5 Consistent Quality Control .. 42

2.5.6 DVC Implementation .. 44

2.6 Conclusion ... 46

Chapter 3 Exploration and Exploitation of Reference Frames 47

3.1 Introduction .. 47

3.2 Novel DVC Codec Architecture .. 48

3.3 Correlation Noise Modelling ... 50

3.4 Exploration of Reference Frames .. 51

3.5 Exploitation of Reference Frames for Motion Range Prediction 55

3.6 Simulation Results ... 58

3

3.7 Conclusion ... 62

Chapter 4 Pixel Granularity Side Information Synthesis Framework and Parallel

Implementation ... 63

4.1 Introduction .. 63

4.2 System Architecture ... 65

4.2.1 Initial SI Generation .. 67

4.2.2 Virtual Channel Modeling... 68

4.3 Pixel Granularity Side Information Synthesis ... 69

4.3.1 Typical Approach .. 69

4.3.2 WZ Frame Approximation .. 70

4.3.3 Candidate SI Selection .. 71

4.3.4 New SI Synthesis .. 73

4.3.5 Adaptive Virtual Channel Modeling ... 76

4.4 Parallelized Software Implementation ... 78

4.4.1 Initial SI Creation .. 78

4.4.2 Adaptive Correlation Noise Modeling .. 79

4.4.3 PGSIS .. 80

4.5 Experimental Results and Performance Evaluation... 82

4.5.1 Test Condition ... 82

4.5.2 RD Performance .. 83

4.5.3 Complexity Analysis ... 87

4.6 Conclusion ... 90

4

Chapter 5 Consistent Quality Control for Wireless Video Surveillance 92

5.1 Introduction .. 92

5.2 System Architecture ... 93

5.3 Key frames Quality Control ... 95

5.3.1 Key Frame DQ Modelling .. 95

5.3.2 Key Frame DQ Model Parameters Calculation .. 97

5.4 WZ Frames Quality Control .. 97

5.4.1 WZ Frame DQ Modelling ... 98

5.4.2 AC Distortion Estimation .. 99

5.5 Simulation Results ... 100

5.5.1 Distortion Variation .. 101

5.5.2 RD Performance .. 105

5.6 Conclusion and Future Works ... 107

Chapter 6 Low Complexity Implementation of DVC Codec 108

6.1 Introduction .. 108

6.2 DSP-PC DVC Implementation and Optimization ... 109

6.2.1 System Overview .. 109

6.2.2 Encoder Architecture .. 110

6.2.3 Decoder Architecture .. 111

6.2.4 System Design Flow ... 112

6.2.5 Encoder Implementation ... 113

5

6.2.6 Discrete Cosine Transform ... 113

6.2.7 Coefficients to Bit-stream ... 114

6.2.8 LDPCA Encoding ... 114

6.2.9 Key Frames Encoding ... 115

6.2.10 Performance Study and Analysis .. 115

6.3 PC-HPC DVC Parallel Implementation .. 119

6.3.1 System Overview .. 119

6.3.2 Encoder Implementation ... 121

6.3.3 Quantizer Implementation ... 122

6.3.4 LDPCA Encoder ... 124

6.3.5 File Structure Organization ... 124

6.3.6 Decoder Implementation ... 126

6.3.7 Initial Side Information Generation .. 126

6.3.8 Correlation Noise Modelling .. 128

6.3.9 Conditional Bit Probability Calculation .. 130

6.3.10 LDPCA Decoding ... 133

6.3.11 Performance Study and Analysis .. 134

6.4 Conclusion ... 145

Chapter 7 Conclusions & Future Work ... 146

7.1 Conclusions .. 146

7.2 Future Works ... 149

6

7.2.1 Further Investigation on Computation of Conditional Bit Probability in

Quantized Coefficient Domain ... 149

7.2.2 Extend the Pixel Granularity SI Synthesis Framework to Use Extrapolated

Frames 150

7.2.3 Efficient Quality Control Algorithm without Feedback Channel 150

7.2.4 More Efficient and Practical DVC Implementation.................................. 151

References ... 153

7

List of Abbreviations

2D Two dimensional

AVC Advanced video coding

CNM Correlation noise modelling

CRC Cyclic redundancy check

CRG Communications Research Group

CUDA Compute Unified Device Architecture

dB Decibel

DC Direct current

DCT Discrete cosine transform

DISCOVER Distributed coding for video services

DISCUS Distributed source coding using syndromes

DQ Distortion-quantization

DSC Distributed source coding

DSP Digital signal processing

DVC Distributed video coding

EM Expectation maximization

FIR Finite impulse response

GOP Group of pictures

GPGPU General-Purpose computing On Graphics Processing Units

GPU Graphics processing unit

HPC High performance cluster

IDCT Inverse discrete cosine transform

i.i.d Independent and identically distributed

ISO International Organization for Standardization

8

ITU-T International Telecommunications Union –

Telecommunications Standardization Sector

JPEG Joint Photographic Experts Group

LDPC Low density parity check

LDPCA Low density parity check accumulate

LSB Least significant bit-plane

MAD Mean absolute difference

MAE Mean absolute error

MAP Maximum a posteriori

MCFI Motion compensated frame interpolation

MCI Motion compensated interpolation

MMSE Minimum mean square error

MPEG Motion Picture Experts Group

MRP Motion range prediction

MSB Most significant bit-plane

MSE Mean square error

MV Motion vector

OpenMP Open Multi Processing

PC Personal computer

PDWZ Pixel domain Wyner-Ziv

PGSIS Pixel granularity side information synthesis

PRISM Power-efficient, robust, high-compression, syndrome-based

multimedia coding

PSNR Peak signal to noise ratio

QCIF Quarter common intermediate format for images (144 lines ×

9

176 columns)

QP Quantization parameter

RD Rate distortion

SAD Sum of absolute differences

SI Side information

SISO Soft-input, Soft-output

SMF Statistical motion fields

SPA Sum product algorithm

TDWZ Transform domain Wyner-Ziv

UC University of California

VLC Variable length coding

WZ Wyner-Ziv

XOR Exclusive or

10

List of Figures

Figure 2.1 Conventional “down-link” model applications ... 22

Figure 2.2 DVC provide “up-link” model applications .. 23

Figure 2.3 Use of a transcoder to achieve real-time video coding 24

Figure 2.4 The Slepian-Wolf rate region .. 25

Figure 2.5 PRISM DVC Architecture ... 27

Figure 2.6 Stanford DVC Architecture ... 28

Figure 3.1 DVC encoder architecture ... 49

Figure 3.2 Proposed DVC decoder architecture ... 50

Figure 3.3 Laplacian distribution .. 51

Figure 3.4 Proposed search window for a reference motion vector 58

Figure 3.5 RD performance for different video sequences ... 61

Figure 4.1 Proposed PGSIS-DVC system architecture ... 66

Figure 4.2 Block granularity SIS for Soccer Q8 ... 75

Figure 4.3 Pixel granularity SIS for Soccer Q8 .. 75

Figure 4.4 Initial SI creation ... 79

Figure 4.5 Adaptive correlation noise modeling ... 80

Figure 4.6 PGSIS algorithms .. 81

Figure 4.7 RD Performance for Foreman and Soccer sequences.................................... 85

Figure 4.8 RD Performance for Hall Monitor and Coastguard sequences 86

Figure 5.1 Overall System Architecture ... 93

Figure 5.2 Key frames quality control .. 95

Figure 5.3 WZ frames quality control ... 98

Figure 5.4 Temporal PSNR variation for the key frames for Hall Monitor 102

Figure 5.5 Temporal PSNR variation for the key frames for Coastguard 103

11

Figure 5.6 Temporal PSNR variation for the WZ frames for Hall Monitor 104

Figure 5.7 Temporal PSNR variation for the WZ frames for Coastguard 104

Figure 5.8 RD performance for Hall Monitor ... 106

Figure 5.9 RD performance for Coastguard .. 106

Figure 6.1 System Architecture... 110

Figure 6.2 Encoder Functional Block Diagram .. 111

Figure 6.3 Decoder Functional Block Diagram .. 111

Figure 6.4 DM6437 EVM Architecture .. 112

Figure 6.5 RD Curves for DSP-PC based DVC codec implementation for different

sequences... 118

Figure 6.6 System Architecture... 120

Figure 6.7 WZ Encoder Flow Chart .. 122

Figure 6.8 Eight quantization tables for eight RD points.. 124

Figure 6.9 Order of SI generation for GOP=4 .. 126

Figure 6.10 Initial SI Generation .. 128

Figure 6.11 Correlation noise modeling ... 129

Figure 6.12 Conditional bit probability calculation .. 132

Figure 6.13 Belief propagation ... 134

Figure 6.14 RD Performance for Foreman and Soccer sequences 142

Figure 6.15 RD Performance for Hall Monitor and Coastguard sequences 143

12

List of Tables

Table 2.1 Stanford Architecture vs. Berkeley Architecture .. 29

Table 3.1 Quantization step matrix ... 53

Table 3.2 Key frames quantization parameters ... 53

Table 3.3 Quality comparison of motion compensated reference frames and interpolated

frames for Hall Monitor .. 54

Table 3.4 Quality comparison of motion compensated reference frames and interpolated

frames for Foreman ... 54

Table 3.5 Quality comparison of motion compensated reference frames and interpolated

frames for Coastguard ... 55

Table 4.1 PGSIS-DVC Decoding Time For the Parallel and Serial Implementations. The

Main Components and Total Decoding Time (in seconds) are Presented for Different

Quantization Parameters Using Fixed Group of Picture Size of 2. The Parallel

Architecture Employs 12 CPU Cores. Parallel (P), Serial (S), Initial SI Creation (I),

Correlation Noise Modelling (C), PGSIS (G), LDPCA Decoding (L), Total Decoding

Time (T) .. 88

Table 5.1: The First 6 Values .. 96

Table 5.2: QP Values for Corresponding QMs of the Basic DVC Codec without

Proposed Quality Control .. 101

Table 6.1 Implementation Performance of The DM6437 Based WZ Encoder............. 116

Table 6.2 File structure for encoded WZ frames .. 125

Table 6.3 Data layout of encoded frame data for a single frame 125

Table 6.4 Data layout of encoded bit-plane data for a single bit-plane 125

Table 6.5 Total decoding time (in seconds) for CRG-DVC parallel (P) implementation

(using 24 CPU cores) vs. serial (S) implementation for GOP=2 136

13

Table 6.6 Total decoding time (in seconds) for CRG-DVC parallel (P) implementation

(using 24 CPU cores) vs. serial (S) implementation for GOP=4 137

Table 6.7 Total decoding time (in seconds) for CRG-DVC parallel (P) implementation

(using 24 CPU cores) vs. serial (S) implementation for GOP=8 137

Table 6.8 Decoding time (in seconds) for Serial CRG-DVC components: SI Creation

(S), Correlation Noise Modeling (C), Conditional Bit Probability Computation (P) and

LDPCA Decoding (L) for GOP=2 .. 138

TABLE 6.9 Decoding time (in seconds) for Serial CRG-DVC components: SI Creation

(S), Correlation Noise Modelling (C), Conditional Bit Probability Computation (P) and

LDPCA Decoding (L) for GOP=4 .. 139

Table 6.10 Decoding time (in seconds) for Serial CRG-DVC components: SI Creation

(S), Correlation Noise Modelling (C), Conditional Bit Probability Computation (P) and

LDPCA Decoding (L) for GOP=8 .. 139

Table 6.11Decoding time (in seconds) for parallel CRG-DVC components (using 24

CPU cores): SI Creation (S), Correlation Noise Modeling (C), Conditional Bit

Probability Computation (P) and LDPCA Decoding (L) for GOP=2 140

Table 6.12 Decoding time (in seconds) for parallel CRG-DVC components (using 24

CPU cores): SI Creation (S), Correlation Noise Modelling (C), Conditional Bit

Probability Computation (P) and LDPCA Decoding (L) for GOP=4 140

Table 6.13 Decoding time (in seconds) for parallel CRG-DVC components (using 24

CPU cores): SI Creation (S), Correlation Noise Modelling (C), Conditional Bit

Probability Computation (P) and LDPCA Decoding (L) for GOP=8 141

14

Chapter 1

Introduction

1.1 Background and Motivations

Video applications are extensively used nowadays which has encouraged the

deployment of multimedia products such as mobile phones, digital cameras, DVD

systems and many other digital devices and software products. These applications

require large amount of video data storage or transmission, and therefore efficient

compression of video data is important. Since data transmission over network,

especially wireless networks, is prone to errors, compression algorithms with good error

resilience properties are desired. Furthermore, emerging applications such as wireless

and handheld devices are tend to be small in size and restricted by their battery life and

computational resources. Therefore, low complexity processing, low power

consumption and simple implementation for such applications are necessary as they

cannot afford to run complex routines. Conventional video coding schemes, such as

MPEG-x and H.26x [1][2], use predictive coding techniques to exploit the correlation

between adjacent video frames. This results in computationally intensive encoders due

to high complexity of the encoder side motion search component. In contrast, the

decoders are usually much simpler. This type of architecture succeeds in a wide range

of down link model applications such as video broadcasting and video-on-demand,

where the cost of the decoder is critical. However, the predictive coding strategies are

not suitable for the aforementioned emerging applications that requiring simple but still

efficient encoders, where the power consuming of the encoder is critical. Please note

that unless specifically defined in this thesis, the term “complexity” herein refers to the

number of computational operations.

15

A new coding paradigm, Distributed Video Coding (DVC), emerged under this

circumstance. It shifts the major computation (i.e. the motion search component),

partially or fully, from encoders to the decoder [3]. A DVC codec typically divides the

video sequence into two kinds of frames: key frames and Wyner-Ziv (WZ) frames. Key

frames are inserted periodically, depending on the group of picture sizes (GOP). They

are typically intra-coded by a conventional coding solution, whereas the WZ frames are

coded by the DVC principle. These two kinds of frames can be separately encoded

without any reference to each other, but still achieve similar or even the same coding

efficiency as the conventional coding approach. This novel feature enables simple but

still efficient encoders. At the decoder side, one or more already decoded frames serve

as side information, providing a noisy version of the WZ frame and their correlation are

modelled and exploited. The decoder complexity can be reduced by properly increase

the number of key frames, thus reducing the decoding of WZ frames and therefore it

allows the encoder to share the overall complexity depending on the target platforms

and applications. This feature enables flexible adjustment of complexity between

encoders and decoders. And the hybrid video coding architecture is not only compatible

with most conventional “down-link” applications, but also benefits “uplink”

applications.

1.2 Aims and Objectives

The main objective of this thesis is to investigate, develop and evaluate new, more

efficient and more practical solutions for DVC, thus bridge the gap between theory

approach and realistic applications, and bring the state-of-the-art DVC codec one step

closer to practical use, particularly through the proposal of the following methods.

16

 In-depth investigation and analysis of the impact of using reference frames as side

information on the coding efficiency in terms of RD performance and decoding

complexity;

 Efficient motion search technique to exploit the correlation between the reference

frames and WZ frames;

 Finer granularity side information refinement framework for high quality side

information generation;

 Adaptive correlation noise modelling for updated side information;

 Efficient rate distortion model to achieve consistent quality of decoded frames;

 Highly efficient serial and parallel DVC implementations for practical video coding

systems.

All of above are based upon the investigation and evaluation of existing research

works. The proposed methods are validated carefully before the implementation and a

systematic test and measurement are carried out to show the correctness and the

efficiency of our proposals.

1.3 Original Contributions

This thesis proposes solutions to improve the state-of-the-art side information

refinement schemes, enable consistent quality control over decoded frames and

implement highly efficient DVC codecs. The main contributions of this thesis are

summarized below.

1. This thesis investigates the impact of reference frames on side information

generation and reveals that reference frames have the potential to be better side

information than the extensively used interpolated frames. Based on this

investigation, we propose a motion range prediction (MRP) method to exploit

17

reference frames and precisely guide the statistical motion learning process.

Extensive simulation results show that choosing reference frames as SI performs

competitively, and sometimes even better than interpolated frames. Furthermore, the

proposed MRP method is shown to significantly reduce the decoding complexity

without degrading any RD performance.

2. To minimize the block artifacts and achieve consistent improvement in both

subjective and objective quality of side information, we propose a novel side

information synthesis framework working on pixel granularity. We synthesize the

SI at pixel level to minimize the block artifacts and adaptively change the

correlation noise model according to the new SI. Furthermore, we have fully

implemented a state-of-the-art DVC decoder with the proposed framework using

serial and parallel processing technologies to identify bottlenecks and areas to

further reduce the decoding complexity, which is another major challenge for future

practical DVC system deployments. The performance is evaluated based on the

latest transform domain DVC codec and compared with different standard codecs.

Extensive experimental results show substantial and consistent rate-distortion gains

over conventional standard video codecs and significant speedup over serial

implementation.

3. In order to bring the state-of-the-art DVC one step closer to practical use, we

address the problem of distortion variation introduced by typical rate control

algorithms, especially in a variable bit rate environment. Simulation results show

that the proposed quality control algorithm is capable to meet user defined target

distortion and maintain a rather small variation for sequence with slow motion and

performs similar to offline fixed quantization settings for fast motion sequence at

the cost of some RD performance.

18

4. Finally, we propose the first implementation of a distributed video encoder on a

Texas Instruments TMS320DM6437 digital signal processor. The WZ encoder is

efficiently implemented, using rate adaptive low-density-parity-check accumulative

(LDPCA) codes, exploiting the hardware features and optimization techniques to

improve the overall performance. Implementation results show that the WZ encoder

is able to encode at 134M instruction cycles per QCIF frame on a TMS320DM6437

DSP running at 700MHz. This results in encoder speed 29 times faster than non-

optimized encoder implementation. We also implemented a highly efficient DVC

decoder using both serial and parallel technology based on a PC-HPC (high

performance cluster) architecture, where the encoder is running in a general purpose

PC and the decoder is running in a multicore HPC. The experimental results show

that the parallelized decoder can achieve about 10 times speedup under various bit-

rates and GOP sizes compared to the serial implementation and significant RD gains

with regards to the state-of-the-art DISCOVER codec.

1.4 Outline of the Thesis

This thesis is organized as follows. This chapter presents the background and the

motivations, along with the main objectives of our work, highlights of the original

contributions and the structure of the thesis.

Chapter 2 reviews the theoretical background supporting the WZ video coding as

well as a comprehensive literature review on the state-of-the-art DVC performance and

research topics that are directly relevant to this thesis. These include the latest

developments of side information generation and refinement, correlation noise

modelling, consistent quality control for decoded video frames and practical DVC

implementations.

19

Chapter 3 investigates the impact of reference frames in DVC on the RD

performance and reveals that reference frames have the potential to be better side

information than the extensively used interpolated frames. Based on this investigation,

we propose a motion range prediction method to exploit reference frames and precisely

guide the statistical motion learning process.

A novel SI synthesis framework based on pixel granularity is proposed in Chapter 4.

We synthesize the SI at pixel level to minimize the block artifacts and adaptively

change the correlation noise model according to the new SI. The decoding complexity is

another major research challenge in practical DVC system deployments. We have fully

implemented a state-of-the-art DVC decoder with the proposed framework using both

serial and parallel processing technologies. The performance is evaluated based on the

latest transform domain DVC codec and compared with different standard video codecs.

In Chapter 5, we propose a novel algorithm to facilitate quality controls for both key

frames and WZ frames. The proposed algorithm adjusts the quantization parameters

according to the visual content and the user defined target quality online without any

external control. A distortion-quantization model derived from MPEG-2 distortion

estimation model is employed. With the proposed algorithm, low complexity encoding

is still guaranteed by performing the distortion estimation partly at the decoder side. The

proposed algorithm addresses the problem of distortion variation introduced by typical

rate control algorithms, especially in a various bit rate environment.

Chapter 6 proposes the first implementation of a distributed video encoder on a

Texas Instruments TMS320DM6437 digital signal processor. The WZ encoder is

efficiently implemented, using LDPCA codes, exploiting the hardware features and

optimization techniques to improve the overall performance. This chapter also presents

20

a highly efficient DVC decoder using both serial and parallel technology based on a PC-

HPC (high performance cluster) architecture, where the encoder is running in a general

purpose PC and the decoder is running in a multicore HPC. Both the encoder and the

decoder are carefully evaluated and compared with the state-of-the-art codecs.

Finally, Chapter 7 summarizes the main achievements of this thesis and identifies

possible areas for our future works.

21

Chapter 2

Overview of Distributed Video Coding

2.1 Introduction

DVC has been evolving significantly since the first practical solutions. However,

this coding paradigm is still relatively new and its latest development shows that it is

still far from standardization and industrial deployments, although compared to the

conventional coding solutions, the coding efficiency of DVC has achieved similar

performance.

This chapter reviews the recent status and trends in distributed video coding. The

foundation of DVC including the Slepian-Wolf and Wyner-Ziv theorem are presented in

section 2.2. After the theorem introduction, section 2.5 is devoted to the early

development of DVC architectures, mainly the Berkeley DVC architecture and the

Stanford architecture. The current research challenges are summarized in section 2.4

and section 2.5, the latest developments of DVC in terms of overall performance and

relevant research areas including SI generation, SI refinement, correlation noise

modelling, consistent quality control and fast DVC implementations are reviewed.

Finally in section 2.6, we conclude this chapter.

2.2 Theoretical Background

In classic video coding standards, such as MPEG-x or H.26x recommendations

[1][2], predictive coding techniques exploiting the statistics of the video contents are

adopted at encoder side. This brings intensive computational complexity and thus sets

rather high requirements on the hardware performance at the encoder, whereas the

decoder is very straightforward and simple. This architecture suits well for most

22

“downlink” or “storage” scenarios which only compress the data once but can be

streamed to multiple terminals and decompressed whenever requested, as depicted in

Figure 2.1. Live video can be captured and sent to a central storage server to be encoded.

The encoded data is typically stored offline for future streaming requests. This scenario

can be characterized as a one-to-many video coding paradigm with highly complex

front-ends but allows multiple simple terminals. It emphasizes the reuse of encoded data

resources as video compression is far less frequent than video decoding in this case.

Typical applications include internet video streaming and broadcastings, video

surveillance, etc.

Camera

0101010101...

0101010101...

0101010101...

Decoder A

Decoder B

Decoder C

0101010101...

Decoder D

Storage server

Figure 2.1 Conventional “down-link” model applications

23

Encoder A

Encoder B

Encoder C

Joint decoder

Encoder D

Figure 2.2 DVC provide “up-link” model applications

Distributed video coding aims at very low complexity encoding but still achieve the

same or similar coding efficiency as the conventional solutions. DVC shifts the major

computational component (i.e. the motion search module) from encoder to decoder side.

This novel insight enables video compression ability in resource critical devices which

is currently limited or even impossible for conventional coding solutions. Figure 2.2

shows a typical “up-link” application scenario where the power restricted devices are

now able to upload captured video data efficiently.

However, for real-time applications, decoders also have complexity restraint and

thus a transcoder is required to guarantee that both encoder and decoder are of low

complexity. Figure 2.3 shows the use of a transcoder to convert the decoded video data

from a DVC decoder into a conventional video codec such as H.264/AVC encoder.

Real-time decoding can therefore be achieved at the decoder side as well.

24

Transcoder

Encoder A

Encoder B

Encoder C

Encoder D

Decoder A

Decoder B

Decoder C

Decoder D

DVC
Decoder

H.264
Encoder

Figure 2.3 Use of a transcoder to achieve real-time video coding

The theoretical foundations of distributed video coding are based on Slepian-Wolf

theorem [6] in which the entropies of correlated information are proposed and it also

shows that two isolated sources can be compressed as efficiently as if they were

communicating with each other. Shortly after this finding, Aaron D. Wyner and Jacob

Ziv extended this theorem to lossy compression with decoder side information [7].

2.2.1 Slepian-Wolf Coding

The Slepian-Wolf theorem gives the rate bound to reconstruct the correlated data

with arbitrarily small error probability. Consider two independent and identically

distributed (i.i.d.) sequences X and Y. Shannon’s source coding theory [8] indicates that

a rate of joint entropy is sufficient to compress X and Y losslessly based on the

complete knowledge of X and Y at a single encoder, whereas Slepian and Wolf showed

that this rate can still be achieved even X and Y are compressed separately by

independent encoders. The Slepian-Wolf theorem shows that to recover separately

encoded X and Y losslessly, a rate of is sufficient if

25

and . These inequalities form the achievable rate region [6], given by

Figure 2.4.

The top right region in dark grey is the rate region for conventional coding solutions

that encode X and Y separately without exploiting their correlation. Special cases can be

seen from the corner points of the rate region which is commonly referred to as

compression with decoder side information, where one data source is available at the

decoder side but not accessible at the encoder side, e.g. trying to achieve a rate of

 when encode X, while a rate of has been used to encode Y.

Rx

Ry

H(Y)

H(Y|X)

H(X)H(X|Y)

H(X,Y)

H(X,Y)

A

B

Slepian-Wolf Rate Region

Rx+Ry=H(X,Y)

Figure 2.4 The Slepian-Wolf rate region

Since one of the two correlated data can be seen as a noisy version of the other

obtained through a virtual correlation noise channel, Slepian-Wolf coding can therefore

relate to channel coding. A Slepian-Wolf codec can be implemented using efficient

channel codes such as Turbo codes [13] and LDPC codes [14] given particular

correlation models.

26

2.2.2 Wyner-Ziv Coding

In 1975, Wyner and Ziv extended Slepian and Wolf’s work to lossy coding with

decoder side information scenario [7]. The theorem gives the lower rate bound for

encoding Gaussian memoryless source [15] under the constraint of mean squared error

(MSE) distortion. And this rate bound will not change even if the side information is not

available at the encoder side, i.e. there is no coding efficiency loss when the side

information is only available at the decoder.

Lossy compression is usually obtained by introducing quantizers. Therefore, a

practical Wyner-Ziv codec can be seen as a Slepian-Wolf codec with a quantizer and a

de-quantizer.

2.3 Early DVC Architectures

Although theories state that DVC solutions can perform as efficient as joint coding

solutions, the practical DVC architectures only came out a decade ago. Among them,

the early DVC architectures developed by UC Berkeley and Stanford research groups

remain the most popular architectures nowadays.

2.3.1 The Berkeley DVC Architecture

The first attempt to design a practical DVC started in 2002, i.e. PRISM codec

(Power-efficient, Robust, hIgh compression Syndrome-based Multimedia coding)

[9][10]. Its architecture is shown in Figure 2.5. Input frames are divided into 8×8 blocks

and DCT transformed. At the same time, zero-motion block differences are used to

evaluate the correlation level between neighbouring frames, which result in 16 different

encoding classes. For instance, blocks with very low correlation are encoded using

conventional Intra-coding method, whereas blocks with very high correlation are simply

27

skipped without coding. The remaining blocks are encoded based on DVC principles.

The estimated correlation levels are also utilized to determine the number of least

significant bits (LSB) of the transform coefficients, and syndrome bits are generated

from them. The lowest bit planes in the LSB are encoded using standard entropy coding

principles with a (run, depth, path, last) 4-tuple alphabet. The higher bit planes in the

LSB are coded using channel codes. And BCH block codes are chosen for their good

performance on small block-lengths. With regards to the most significant bits (MSB),

they can be derived from the block predictor or SI. In order to check successful

decoding, a 16-bit Cyclic Redundancy Check (CRC) [16] is calculated for quantized

code words at encoder. At the decoder side, the syndrome bits are then used to correct

predictors, which are generated from the motion search module.

DVC Encoder

DVC Decoder

DCT Quatizer
Syndrome

Coding

Hash

Generator

Classifier

Input video

sequence

Correlation

Estimate

Channel

Information

Yes
Syndrome

Decoder

Motion Search

Hash Check

Estimation,

Reconstruction &

Post processing

No

Candidate Predictor

Decoded

video

sequence

Figure 2.5 PRISM DVC Architecture

2.3.2 The Stanford DVC Architecture

Almost at the same time, Rane, Aaron and Girod proposed another DVC

architecture [11]. The functional blocks of this architecture is shown in Figure 2.6. The

input video sequence is split into key frames and WZ frames. Key frames are encoded

using a conventional video coding solution such as H.264/AVC Intra [12]. The WZ

frames are encoded using distributed video coding principles. WZ frames are quantized

without DCT transform, which is usually referred to as pixel-domain DVC architecture

28

(whereas transform-domain DVC architecture refers to DVC with coding of pixels in a

transformed form). Bit-planes are then extracted from the quantized symbols which will

feed to a Turbo encoder. The Turbo encoder generates parity bits and they are stored in

a buffer for the decoder requests.

DVC Encoder DVC Decoder

WZ frames

Key frames

Quantizer

Conventional

Intraframe

Encoder

Conventional

Intraframe

Decoder

Turbo

Encoder
Buffer

Turbo

Decoder
Reconstruction

Interpolation /

Extrapolation

Request Bits Side Information

Decoded

WZ frames

Decoded

Key frames

Figure 2.6 Stanford DVC Architecture

At the decoder side, motion-compensated frame interpolation or extrapolation using

previously decoded frames is performed to generate SI. The turbo decoder then correct

the errors in the SI using the parity bits requested from encoder buffer via a feedback

channel. Finally, bit-planes of WZ frames are reconstructed, and decoded WZ frames

and key frames are re-ordered to form the decoded video sequence.

The above two architectures are still the main structural designs for modern DVC

codecs implementations. However, the features in one architecture can sometimes be

used in the other. Most modern DVC codecs nowadays actually combine the modules

from the two. The fundamental differences between them are highlighted in Table 2.1.

The most obvious difference is that PRISM uses different coding mode according to

the block correlation which allows for a better adaptation of various local textures of

video content. In this way, the WZ coding mode is only used when the correlation is

sufficient since WZ coding performs poorly for intense motion or scene changes.

Although block classification by simple inter-frame prediction does not dramatically

29

increase encoder complexity, block partitioning results in short block-length which

impairs efficient channel coding. BCH codes [17][18] are therefore used for this reason.

On the contrary, Stanford solution encodes the entire WZ frame without block

partitioning and classification. However, more efficient channel codes, such as Turbo or

LDPC codes, were used to improve the coding efficiency.

Table 2.1 Stanford Architecture vs. Berkeley Architecture

 Architecture

 Techniques
Stanford Architecture Berkeley Architecture

Coding unit Frame Block

Block classification No Yes

Rate control Decoder side Encoder side

Channel codes LDPC codes Turbo codes

Auxiliary data None Hash codes

Use of motion information Initial SI generation Candidate SI decoding

Rate control mechanisms used in these two frameworks form another important

fundamental distinction. PRISM removed the feedback channel by estimating a

minimum rate at encoder side. This is key to reducing the decoder complexity, although

false estimation may cause some coding performance loss. On the contrary, the Stanford

approach relies on the feedback channel to achieve better coding efficiency. Although a

feedback channel can allow virtual noise adaptation and achieve optimal coding rate, it

is usually considered to be not practical in real-time applications, and the complexity it

brings to the decoder side is tremendous.

Furthermore, motion estimation is also performed in different ways. The Stanford

architecture estimates motion when generating the SI. Motion estimation between the

reference frames is performed at the decoder side which can provide a good estimate of

30

the motion vectors between SI and WZ frame for slow motion video content but the

accuracy may decrease for intense motion scenarios. On the contrast, PRISM searches

over the space of candidate motion vectors and each candidate associates to a motion

compensated SI. The SI that successfully decodes the syndrome bits and passes the

CRC check is believed to have associated with the best-matched motion vector. A more

detailed comparison can also be found in [5].

2.4 Research Challenges

Although numerous work has been done to improve the RD performance and speed

up the practical use of DVC, the main challenges remain in the areas of the following.

2.4.1 Side information generation

Side information can be seen as a noisy version of the WZ frames, therefore the aim

of side information generation is to create an estimate of the WZ frame that is as similar

as possible. The quality of SI has a direct impact on the final RD performance as well as

the decoding complexity since the better the SI is, the less error it contains and thus

fewer parity bits are required for decoding. SI is typically generated by frame

interpolation or extrapolation of reference frames, taking into account the motion

activities. However, this estimation can be very challenging since the motion

information is not necessary consistent and smooth over time, and scene changes or

intense motion can seriously affect the accuracy of interpolation/extrapolation based

methods. Furthermore, coding with long GOP sizes can also lead to poor SI quality.

2.4.2 Side information refinement

Transform domain DVC usually converts video frames into bands, and decoding is

carried out band by band. As one band is successfully decoded, it provides information

31

not initially available to the decoder. With the help of this information, SI can be refined

gradually and thus improve the coding efficiency for decoding the rest of the frame. The

refinement can be significant, especially when the motion is intense or scene changes

occur since interpolation/extrapolation for the initial SI generation performs poorly

under these situations. However, the selection of areas in SI is essential since not the

entire SI requires update, i.e. some regions would not change over time and any updates

on these regions may bring even poorer SI and increase decoding complexity at the

same time. Furthermore, any changes in SI will affect accuracy of the conditional bit

probability model and the correlation noise model established earlier for the initial SI.

The improvements in SI quality during the decoding process may not necessarily

transfer to the final RD performance gains if the other related modules are not

coordinated well.

2.4.3 Correlation noise modelling

Since SI can be created at the decoder side, with the knowledge of the correlation

between SI and WZ frames, WZ frames can be decoded. This is very similar to the

channel coding scenarios where WZ frames are “transmitted” through a virtual channel

and the SI can be seen as the received version with transmission noise. This virtual

noise is actually a form of the correlation information and is typically following a

Laplacian distribution [4][5][19][26]. Correlation noise model is used to estimate the

noise distribution and it also has a direct impact on the final RD performance and

decoding complexity. The main challenge here is that WZ frames are unknown at the

decoder side. Therefore, the correlation between WZ frames and SI has to be estimated

from reference frames, which can be very unreliable since the differences between

reference frames do not directly reflect the difference between WZ frames and SI.

32

Furthermore, SI might be updated during decoding process, and the correlation noise

will be changing accordingly, which makes the estimation even harder.

2.4.4 Consistent Quality Control

Most of the existing DVC solutions use pre-defined quantization parameters for

coding both key frames and WZ frames [3][4][5][11]. And these parameters are

typically obtained from extensive offline experiments trying to achieve a consistent

image quality over time. However, this is not practical for real-time applications.

Therefore, it is necessary to design a rate control algorithm to coordinate the

quantization settings for both key frames and the WZ frames. The major challenges are

that the key frames and the WZ frames are coded independently by different codecs.

Therefore the quantization settings have to be estimated separately for both of them.

Furthermore, the major advantage of DVC is the low encoding complexity and hence

the controlling algorithm should not add major complexity burden to the encoder.

2.4.5 DVC implementation

Although enormous solutions have been proposed to tackle various DVC problems,

the same solution can be interpreted differently in implementations. The efficiency of

different implementations, in terms of coding and complexity performances can vary

dramatically. In addition, the transference of complexity from encoder to decoder plus

various refinement algorithms added on the top can make the already slow decoder

overburdened. This is usually overlooked by the research community but it is a critical

problem for practical DVC applications, especially for real-time scenarios. Therefore,

an efficient implementation of DVC codec is essential and deserves more attentions.

However, since the encoder and the decoder are usually targeted at different hardware

platforms, it requires the design and the implementations to consider the restriction on

33

both of the software and hardware, available resources, portability of the codes,

communications between the encoder and decoder platforms, etc. Furthermore, different

interpretations of the algorithms will results in different implementations, and the

correctness and the efficiency of the implementations may need to be tested by

extensive experiments.

2.5 Relevant Recent Advances on DVC

2.5.1 State-of –the-art Performance

Developed in 2005, the European project DISCOVER [19], is one of the best

performing DVC codecs reported in the literature to date. It is based on the Stanford

architecture [11] but a lot of improved modules have been integrated. [20] presents a

comprehensive evaluation of this codec. This transform domain Wyner-Ziv codec

introduced a hybrid bit-rate control mechanism which operates at both the encoder and

the decoder sides. The encoder estimates a minimum rate budget and if it is not

sufficient, the decoder can request more parity bits from the encoder buffer through a

feedback channel. This allows a great reduction on decoder complexity and also enables

rate adaptability. Furthermore, a motion vectors smoothing algorithm was applied to

motion compensated interpolation in order to generate SI with enhanced quality.

Notably, the correlation noise distribution was online estimated and more advanced

channel codes, i.e. LDPCA codes [21][22] are used at the decoder. The decoded

symbols are reconstructed in a mean squared error-optimal way [23]. The reported RD

performance shows that the DISCOVER codec consistently outperforms H.264/AVC

Intra, except high motion video content such as the “Soccer” sequence. For low motion

video content such as “Hall Monitor”, up to 3 dB gains can be observed. When

compared to H.263+ Intra codec [24], a remarkable 8 dB gains can be observed for the

34

“Hall Monitor” sequence. However, there is still some gaps between the RD

performance of the DISCOVER codec and H.264/AVC No Motion [12].

More advanced DVC codec was later developed by the VISNET II project [25].This

codec is also based on the early architecture in [11] and integrates numerous advanced

tools. The major improvements over DISCOVER codec are mainly brought by the

iterative SI refinement method and the deblocking filter. After each DCT band is

decoded, the partially decoded WZ frame is exploited to refine the SI and also provides

better reconstructed WZ frame. After frame reconstruction, an adaptive deblocking filter

is used to improve the subjective and objective quality of WZ frame. In terms of RD

performance, the VISNET II codec consistently outperforms the DISCOVER codec for

all the test sequences and various bit-rates. Gains of up to 5 dB can be achieved over

H.264/AVC Intra for low motion content such as Hall Monitor. However, although for

video sequences with regular global motion, such as Coastguard sequence, VISNET II

still can achieve better RD performance over H.264/AVC No Motion, for most other

video sequences, the performance of the VISNET II codec is still significantly lower.

Regarding to complexity, [26] shows that the DVC encoding complexity in terms of

software execution time is about 1/6 of the average encoding time of H.264/AVC Intra

and H.264/AVC No Motion.

The best performing DVC codecs, as far as the author can check, are presented in

[27] and [28]. [27] estimates the parameters of the global motion at the encoder using

scale invariant feature transform and combines the global and local motion

compensation at the decoder side. Those encoder estimated parameters are sent to the

decoder in order to generate a globally motion compensated side information. Based on

motion-compensated temporal interpolation of neighbouring reference frames, it also

generates a locally motion compensated side information. And finally, an improved

35

fusion of global and local side information can be obtained during the decoding process

using the partially decoded Wyner–Ziv frame and decoded reference frames. The

presented experimental results show that when compared to DISCOVER codec, this

method can achieve a RD performance gain of up to 1.92 dB for GOP size 2 and a

remarkable 4.65 dB for longer GOP sizes. More impressing and encouraging is that,

DVC now outperformed H.264/AVC Intra or H.264/AVC No motion in all reported test

conditions. And the performance gap between the proposed DVC scheme and

H.264/AVC Inter prediction with motion is considerably reduced. However, the

astonishing RD performance gains mainly come from the motion information provided

by the encoder. Therefore, strictly speaking, this codec is not a pure DVC codec since

the correlated information, WZ frames and Key frames are not “distributed”. There is

information exchange between them. With that being said, however, for practical

system design and implementation, it is still highly recommended to partially rely on

the encoder to analyse motion. In contrast, [28] does not perform any motion search at

the encoder side. It used optical flow to compensate the weaknesses of using block-

based methods to improve side information generation, and it also introduced clustering

algorithm to capture cross band correlation and increase local adaptivity in the noise

modelling. In addition, multiple techniques are combined to calculate several candidates

of soft side information for channel decoding. This method can achieve 1.53 dB

improvement in average on RD performance over the DISCOVER codec for the most

difficult test sequence (Soccer) using GOP size 2. The RD performance gains are

mainly achieved by multi-hypothesis based decoding method. However, the decoding

complexity can increase significantly along with the increase of the number of side

information.

36

2.5.2 Side Information Generation

It is well known that the performance of DVC highly depends on the quality of side

information. Early attempts to generate SI are rather simple and intuitive. In 2002, the

Stanford research group proposed to use the average of the reference frames to generate

the SI [11]. This method exploited limited correlation between the reference frames

since motion information was not taken into account, and therefore it has much poorer

coding efficiency. Later in 2004, they extended the previous work and evaluated

different SI generation schemes [29]. Two simple SI generation schemes, average

interpolation and previous frame extrapolation, are evaluated and compared with the

motion compensation based interpolation methods. The simulation results show that the

RD performance is about 1 to 2 dB lower for Foreman sequence when motion

compensation is not performed. More recently, in 2005, the IST research group

proposed a frame interpolation with motion smoothing algorithm [30]. The two

reference frames are low pass filtered to reduce the noise for motion estimation.

Forward motion vectors are then obtained by block based motion estimation. To avoid

holes effects, it selects the motion vector that has the intercepting point closest to the

centre of the non-overlapped block. Since interpolated frames are not available, bi-

directional motion estimation is then performed between the two reference frames with

the constraint of a linear trajectory of forward and backward motion vectors. After bi-

directional motion estimation, weighted vector median filter is applied to improve the

spatial coherence, and finally, bi-directional motion compensation is performed to

generate the interpolated frame. This algorithm was first proposed for a pixel domain

DVC codec but was later widely adopted by transform domain DVC codecs.

Although frame interpolation has been proved to perform better than extrapolation

techniques, it is more suitable for real-time applications to generate SI by extrapolation

37

since frame interpolation breaks the original frame order and requires some future

frames to be available beforehand. However, this is impossible for real-time scenario

since video frames have to be decoded in sequence in this case. In 2005, [31] proposed

frame extrapolation module to generate SI based on motion fields smoothening method.

Firstly, forward motion vectors are estimated by 8×8 overlapped blocks using two

previously decoded reference frames. Secondly, motion vectors are smoothened by

calculating the average of all the neighbouring motion vectors. And finally, motion

compensation is performed using the obtained motion vectors. For any overlapping

pixels, average values are used. And for uncovered areas, local spatial interpolation is

performed taking into account 3 neighbouring pixels. Simulation results show about 7

dB loss in RD performance for the Foreman sequence when comparing with frame

interpolation method. In 2007, a more advanced frame extrapolation based SI

generation method is proposed [32]. It exploited 3 previously decoded frames to

generate initial motion vectors. It then generates another set of motion vectors only

from the nearest two frames. Final motion vectors are chosen from these two set motion

vectors by taking into account the consistency restraint, i.e. motion vectors with the

lowest difference between subsequent neighbouring frames are selected. Although this

solution provides better extrapolated frames, similar to other extrapolation based

methods, it performs poorly for intense and inconsistent motion scenarios since motion

vectors are always estimated by the information obtained from previously decoded

frames.

2.5.3 Side Information Refinement

Various techniques have been proposed for SIS in the past. The recent advances on

this issue can be categorized as below.

38

Multiple hypotheses: SIS using this method typically selects the SI candidate that

first converge the decoding iterations [28][33]. The idea is to evaluate different SI in

each iteration of belief propagation process [34] and choose the one that stops the

iterative decoding successfully. It always guarantees the best SI to be chosen for

decoding. However, the major drawback is the seriously increased complexity. The

complexity of iterative decoding process increases in proportion to the number of

candidate soft inputs. For the simplest case of using only 2 soft inputs, the complexity

of belief propagation almost doubles. Furthermore, appropriate correlation noise models

will be required to fit different noise distribution brought by different SI generation

schemes.

Statistical motion learning: Motion learning is seen as an indirect method of SI

update. Due to the high complexity, it usually limits the motion search in block level by

estimating the probability of every possible displacement of each block. The resulting

probabilities for each possible motion vectors are contributing to the new correlation

noise distribution and optionally for SI refinement [35][36][37]. However, motion

learning suffers from high complexity in motion search process as each possible motion

field for the over-complete SI has to be evaluated to produce an accurate estimation.

And each time a band has been successfully decoded, the statistical motion fields will

need to be re-calculated to further update correlation noise model and SI. Additionally,

this results in a highly restricted decoder design. For a typical transform domain motion

learning algorithm, the motion probabilities are computed in transform domain, which

requires everything relevant to be converted into transform domain as well, e.g. the

generation of over-complete SI has to be converted into transform domain. All the

efforts made on performing motion learning in transform domain actually results in

similar or even worse motion fields as those achieved from straightforward spatial

39

domain approaches. In addition, if the motion learning model relies on other processing

modules such as the correlation noise model, poor correlation noise estimation will

results in bad motion probability distribution, whereas spatial domain motion search is

generally independent, so the accuracy of the motion fields only relies on the quality of

reference frames.

Spatial domain SIS: This is a straightforward technique that directly exploits the

correlation from the reference frames. Spatial domain motion estimation can be further

categorized into block level and pixel level motion estimation. The former saves more

computational complexity whereas the later gives better precision, especially for high

motion video content. Most work in the literature use block level motion estimation

[38][39].

DCT domain SIS: SI refinement can also be performed in transform domain as the

partially decoded WZ frame is initially obtained in transform domain before any inverse

transform is carried out. In [40] and [41], motion estimation is performed between the

decoded and oversampled DC frame and transformed key frames. The refined SI is

synthesized considering the forward, backward, and bi-directional prediction together

with the motion vectors obtained from the initial SI generation. Since band-by-band

decoding model only gives a subset of all the Discrete Cosine Transform (DCT) bands

after a certain band is successfully decoded each time, the motion estimation using only

a small subset of the DCT bands of a single block has been reported to be not so

accurate [39][42]. Therefore, [40] and [41] used block of DCT coefficients to improve

the accuracy for transform domain motion search, which requires bigger block size that

may not favor complex motion in local area. Complexity is also an important issue for

this approach as it requires DCT transform for each over-complete SI candidate.

40

Bit-plane by bit-plane update [43][44]: SI can be updated each time a bit-plane is

successfully decoded. However, the information provided by a small portion of decoded

bit-planes is not sufficient for transform domain DVC, and is therefore more suitable for

pixel domain DVC.

2.5.4 Correlation Noise Modelling

One of the most important aspects influencing the coding performance of DVC is

the virtual channel noise model which is used to estimate the noise distribution between

the side information and the WZ frame. There are mainly two kinds of correlation

model in literatures, i.e. offline correlation noise modelling [3][29][45][46] where the

noise is estimated with the original WZ frame provided; online correlation noise

modelling estimates the noise using reference frames. Since offline modelling either

requires the encoder to perform the complex motion estimation task, or requires the

original frame to be available at the decoder which is unrealistic. Therefore, the

following reviews of the recent literatures are only dedicated to the online correlation

modelling.

The authors of [47] proposed an algorithm to online estimate the noise at frame level

for pixel domain DVC codec. It used a weighted mean square error between motion

compensated backward and forward reference frames to approximate the variance

between SI and WZ frame. And the noise distribution is assumed to be Laplacian

distribution. The parameter for the probability dense function is computed from the

estimated variance. Simulation results show that there is only a very slight RD

performance loss regarding to the off-line approach. Later in the same year, they

extended the algorithm to model the Laplacian parameter at different granularity for

both offline and online models [48]. Three granularity levels, i.e. frame level, block

41

level and pixel level are investigated in the modelling algorithm. Experimental results

show that the model can achieve better performance at finer granularity and the

performance gap between offline models and online models has been reduced. A more

comprehensive study of the correlation noise modelling for both pixel domain and

transform domain DVC codecs is presented in [4]. This method has been widely

adopted in literatures and the best performing DVC codecs.

More recently, in 2009 [49] investigated the online CNM techniques and found that

quantization noise also has an impact on the accuracy of noise distribution. Therefore,

they estimated the quantization noise for intra frames at the encoder and sent this

information to the decoder. The experimental results show significant bit rate reduction

for coarse quantization. [50] proposed to use a category map based on previously

decoded DCT bands. The map divides transformed coefficients of the current band into

two categories, where different parameter estimators are applied to locally compute the

Laplacian parameters. Finally, each transformed coefficient is assigned a Laplacian

parameter based on its corresponding category and reliability. Compared with the

coefficient level noise model in [4], the proposed noise model can only improve the RD

performance for high bit-rates up to 0.5 dB. Since the cross-band correlation and the

successfully decoded information can significantly influence the reliability of block

classification and the accuracy of noise parameter estimation of subsequent bands, later

in 2011, they proposed another algorithm [51] to adaptively estimate the Laplacian

parameter by using clustering method to exploit correlation across all frequency bands.

It was also proposed to combine their algorithm with the noise model in [50] to

adaptively optimize the soft side information for LDPCA decoding. The proposed

model achieved average improvement in PSNR up to 1.24 dB over the DISCOVER

codec. In the same year, [52] proposed a progressive refinement approach for CNM

42

which used the previously decoded bit-planes and quantization errors to refine estimated

correlation noise. Although the proposed CNM refinement consistently performs better

than DISCOVER codec, the maximum PSNR gains are only about 0.2dB. [53]

estimated the Laplacian parameters for each group in each band, where the groups are

derived from classification on the residual energy. The calculation of the Laplacian

parameters for each group still follows the method proposed in [4]. However, the

Laplacian parameter assigned to each group is derived from a look-up table which is

obtained offline. This approach can slightly reduce the CNM complexity compared to

the coefficient level model, but the offline lookup table may not well suitable for real-

time applications and may not adapt to the various video content.

In 2012, [54] proposed to refine the residual frame by exploiting the correlation of

neighbouring coefficients. Residuals of already decoded frames are used to influence

the noise distribution of the current frame and thus further exploit the temporal

correlation. It then grouped the coefficients in each band into clusters and generated

candidate noise parameters for each cluster. Adaptive optimization of the noise

parameters are achieved by multiple convergence tests in LDPCA decoding process.

Actually, this approach can be seen as a multiple side information approach and

therefore it may introduce significant decoding complexity when the number of

candidate noise parameters increase, although a good overall RD performance gain can

be achieved with regard to the DISCOVER codec.

2.5.5 Consistent Quality Control

The rate control discussed here refers to the decoded frame quality control in

distributed video coding. A smooth decoding quality over time is usually desired.

Recent advances on this topic are studied below.

43

Different solutions have been proposed to solve the problem. In [55], a hybrid

coding framework using zero vector motion compensation was proposed. The residual

of adjacent frames are intra coded and their low frequency coefficients are sent to the

decoder. The SI is then generated by taking into account the previously decoded frame

and the received residual coefficients. The decoded image quality can be controlled by

the quantization step size of the residual frame and the amount of transmitted

coefficients according to the quality requirements. The percentage of the to-be-sent low-

frequency coefficients is proportional to the SAD of two adjacent frames at the encoder

side. However, more efficient residual coder is needed to reduce the encoder

complexity as well as the bit rate cost at residual frames. In [56], a distortion model

pixel-domain Wyner-Ziv video codecs using the distribution of correlation noise was

proposed. The model sees the coding distortion as a function of the quantization step

size and the correlation noise parameter. Thus, once the noise parameter is estimated,

the encoder can choose the quantization step size that minimizes the difference between

the estimated distortion of WZ frames and the target distortion. However, this model

requires the estimation of the correlation noise parameters at the encoder side which can

further increase the encoding complexity. Furthermore, the distortion model used for

key frame coding is very inefficient since the selection of key frame quantization

parameters are based on iterative trials of encoding and decoding at encoder side, which

again can significantly increase the encoder complexity. More recently, authors in [57]

proposed another quality control mechanism by establishing distortion-quantization

(DQ) models for both key frames and WZ frames. The correlation noise between the SI

and WZ frames is modelled by recreating the rough side information (SI) for each WZ

frame at the encoder. With the calculated distribution of the correlation noise, the

distortion of WZ frames is online estimated. The quantization parameter which gives

44

distortion best matches the target distortion is selected by an exhaustive search

performing at frequency band level. The algorithm provides a rather smooth image

quality over time by an increase of 10% encoder complexity for coarse quantizer.

In [58], Hong Bin et al. proposed to use greedy search algorithm using estimated RD

curve to control the quality of WZ frames. Given a target distortion, SI is first estimated

at the encoder side to form a range of RD points by using a RD estimator. The resulting

RD points are then connected to generate a RD curve which can be used for the greedy

search algorithm. It decreased the quantization level from the largest level and measured

the distortion using the curve values until it found the best one. The results show

smaller quality variance over the decoding time and better overall RD performance than

[57]. However, this method lacks quality control for key frames and the complexity of

the algorithm has not been measured.

2.5.6 DVC Implementation

Over the past few years, multi-core processors have been widely used across many

application domains including general-purpose, embedded, network, digital signal

processing, and graphics. The improvement in performance gained by the use of a

multi-core processor depends very much on the software algorithms used and their

implementation. In the particular case of DVC, parallel implementation could help to

reduce the huge complexity of the decoder. The development of efficient DVC

implementation is discussed in this section.

Since DVC is a relatively new video coding paradigm, its practical implementation

only comes up in recent years. In 2010, [59] proposed a parallel DVC implementation

using General Purpose Graphics Processing Unit (GPGPU) [60] and since LDPCA

decoding contributes the primary computational complexity, the LDPCA decoding

45

algorithm was implemented to run in parallel. In 2011, [61] split WZ frames into spatial

partitions and each partition is then assigned a processing core such that the decoding

can be run in parallel. More recently, a parallel message-passing decoding algorithm [62]

for computing LDPCA syndromes is applied through the Compute Unified Device

Architecture (CUDA) [63] based on GPGPU. It divides the message passing algorithm

into horizontal processing and vertical processing parts, which corresponds to the

calculations for the variable nodes messages and the check nodes messages. The

calculation of the messages can therefore be parallelized. Furthermore, they also

proposed a rate control algorithm to reduce the number of requests in the decoding

process. It assigns small step sizes for bit-planes with smaller number of requests while

large step sizes for bit-planes with larger number of requests. This algorithm can

significantly reduce the decoding complexity but still maintain the adaptivity to the

virtual noise, especially when the noise in the SI is high which can lead to numerous

parity bits requests. In [64], the authors proposed a parallel implementation for DVC

encoder. It divides each frame into multiple tiles. Since there are no computational

dependencies among tiles, they can be encoded in parallel using OpenMP [65]. Bit-

plane packing technique is also applied to the LDPCA encoding for each tile to speed

up the encoding process.

A more comprehensive implementation of DVC decoder in different parallel levels

is presented in [66]. This work investigated four parallel Wyner-Ziv decoding

algorithms, i.e. parallelism in decoding each bit-plane, parallelism in decoding each

spatial partition to avoid dependences between bit-planes, parallelism in decoding each

GOP and parallelism in both GOP level and frame partition level. As expected, the last

approach achieved the most reduction in decoding complexity.

46

2.6 Conclusion

This chapter reviews relevant advances on distributed video coding, starting with the

theoretical background and possible applications. We then introduce the early

architectures of DVC. We have also identified the current research challenges. The

current performance status of the state-of-the-art DVC codecs in terms of RD

performance and complexity is reviewed. Details of research progress on five areas,

namely side information generation, side information refinement, correlation noise

modelling, quality control and efficient DVC implementation are described. These areas

have fundamental impacts on practical DVC performance and our contributions in

Chapters 3 to 6 of this thesis build upon the techniques of this literature.

47

Chapter 3

Exploration and Exploitation of

Reference Frames

3.1 Introduction

Side information generation is an essential function in the DVC decoder, and plays a

key-role in determining the coding performance. Frame interpolation is one of the most

popular methods used for SI generation, since it takes advantage of both forward and

backward reference frames, especially when motion is considered [30][39][67]. The

reference frames refer to previously decoded key frames or WZ frames. It is widely

believed that interpolated frames give better performance compared with reference

frames. However, we found that using reference frames without interpolation performs

very close to, or sometimes even better than complicated frame interpolation methods.

Motion learning is a typical approach used to exploit the correlation between SI and

Wyner-Ziv frames. In 2008, Varodayan et al. [35] proposed an unsupervised motion

learning mechanism to model the forward statistical motion fields at the decoder. It

employs an Expectation Maximization method [68] to progressively update the motion.

Later, Martins et al. in [37] also proposed a motion learning method that makes use of

the previously decoded Discrete Cosine Transform bands to reduce the total bit-rate.

However, the above methods suffer from high decoding complexity and do not

efficiently exploit the motion information readily available in reference frames.

The main novelty and contributions of this chapter include the following,

48

We investigate the impact of reference frames on the RD performance and find that

the common belief that taking interpolated frames as SI is better than reference frames

is not always true.

Based on the above investigation, a new motion learning algorithm exploiting

reference frames directly is proposed, leading to significant decoding complexity

reduction without incurring any penalty in coding efficiency.

This chapter is organized as follows: Section 3.2 describes the architecture of the

proposed DVC codec. The correlation model used in this chapter is explained in detail

in Section 3.3. Section 3.4 explores the information provided by reference frames and

analyses the advantages of taking reference frame as SI with no interpolation or

extrapolation. Next, in Section 3.5, we propose a novel motion learning algorithm and

simulation results are shown in Section 3.6. Finally, Section 3.7 concludes this chapter.

3.2 Novel DVC Codec Architecture

The transform domain DVC encoder and decoder proposed in this chapter are

illustrated in Figure 3.1 and Figure 3.2, respectively. The system is based on the

Stanford architecture [11], which is briefly described as follows.

The input video sequence is split into key frames and WZ frames. The key frames

are encoded by a conventional video coding solution, such as H.264 Intra codec. The

WZ frames are divided into 4-by-4 blocks. DCT is applied over each block and the

resulting coefficients are uniformly quantized (Q) to ensure a low complexity encoder.

Quantized coefficients are then converted into a bit stream and encoded by Low Density

Parity Check Accumulated codes [22]. The resulting parity bits are stored in the buffer

for decoder requests.

49

At the decoder side, previously decoded frames serve as reference frames. The

correlation noise between SI and WZ frames is estimated by the online correlation noise

model followed by soft SI generation, as shown in Figure 3.2, and is progressively

refined during the iterative EM process, until the stopping criteria is met or the

maximum number of iterations is reached. It can be noted that there is also a quantizer

at decoder side, which means the soft SI is calculated based on quantized DCT

coefficients. This will lead to certain loss in coding efficiency but the decoding

complexity can be reduced significantly. Therefore, the use of decoder side quantizer in

practical DVC codec design should depend on the restrictions on hardware computing

power and also the target RD performance. It is a trade-off between decoding

complexity and coding efficiency and this is important as the idea is based on DVC with

quantizer installed at decoder side. However, for most DVC codecs in the literature, in

order to avoid any performance loss non-quantized DCT coefficients are used to

compute the bit probabilities. Finally, the decoded symbols are optimally reconstructed

[23]. More details will be discussed in section 3.5.

DCT
LDPCA

encoder
Buffer

WZ frames

Request

H.264 Intra encoder
Key frames H.264 bit stream

Bit-stream

conversion
Q

Figure 3.1 DVC encoder architecture

50

LDPCA

Decoder

DCT&Q

Online

Correlation

Noise Modeling

Frame Buffer

Reconstruction
Parity bits

Decoded

Key Frames

Decoded WZ

Frames

Reference

frames

Soft SI

Generation

Motion

Estimator

Motion Probability

H.264 Intra

Decoder

H.264 Bit Stream

IDCT

Motion Range

Prediction (MRP)
Reference

frames

Figure 3.2 Proposed DVC decoder architecture

In the proposed decoder architecture, instead of frame interpolation, reference

frames are directly used as SI. Furthermore, the motion fields between the reference

frames are also exploited in the Motion Range Prediction module to estimate the

position and the size of the searching window of motion fields. This results in a smaller

but more precise search region and thus high coding efficiency can be achieved with

significantly reduced computational complexity.

3.3 Correlation Noise Modelling

The distribution of correlation noise between WZ frame and SI frame is assumed to

be Laplacian distribution. The probability density function of Laplacian distribution for

random variable is

 , where is a location parameter and

51

is usually called as Laplacian parameter or the scale parameter which scales the

distribution up and down. The smaller is, the wider the tail of the curve is. In

distributed video coding, is usually set to 0 so that the distribution is symmetrically

centred at 0. Sometimes, in order to restrict the range of probabilities to without

going through a normalization process, a form of can be used. After all,

the Laplacian distribution is merely an analogous form of the actual distribution. A

graph of this function with =3.5 is shown in Figure 3.3. It can be seen that variables

close to the centre of the curve have much higher probabilities than other region. The

residual of WZ frame and SI frame follows this distribution since they are very similar

to each other and therefore most of the values of the residual frame are on the brink of

zeros.

Figure 3.3 Laplacian distribution

3.4 Exploration of Reference Frames

Side information is seen as a “noisy” version of the WZ frame. It is obvious that the

fewer “errors” SI carries, the fewer parity bits are needed, and thus the better the overall

coding efficiency. Frame interpolation based methods assume the motion fields between

adjacent frames to be smooth and WZ frames are seen as a transition of the reference

2 1 1 2

0.2

0.4

0.6

0.8

1.0

52

frames. It is expected that interpolated frames contain fewer errors than reference

frames when collocated pixels are compared to WZ frames, since interpolation exploits

more information than using direct reference frames, especially when motion aided

interpolation is applied.

However, if motion estimation and compensation are applied in reference frames,

the quality of reference frames is similar, if not better than interpolated frames. For this

reason, we infer that choosing reference frames as SI will not have significant loss in

RD performance when compared with interpolated frames.

The above assumption is verified by the following simulation and the experimental

results presented in Section 3.6. Recall the decoding process that SI is shifted to all the

possible positions and compared with WZ frames in transform domain. The probability

of each motion field yield by its corresponding shift operation will then be calculated

during the EM process. We simulate the decoder motion estimation process by an

analogous experiment.

Three different SI are compared in the simulation, namely motion compensated

interpolated frames (MCI), backward (B), and forward (F) reference frames. The

simulation assumes that DVC codec works in transform domain and the decoder is able

to find the best match for each quantized coefficient by searching its surrounding

samples within a predefined window. A window size of ±5 is enough to provide good

searching results. The three SI are divided into 4-by-4 blocks and then motion

compensated. The resulting frames are DCT transformed and uniformly quantized,

which corresponds to the soft comparison process between SI and WZ frames at the

decoder. The 4-by-4 quantization step matrix depicted in Table 3.1 is divided by the

scale factors { 64.0, 32.0, 16.0, 8.0, 4.0, 2.0, 1.0, 0.5 }, according to the

53

quantization index with . Table 3.1 is derived from the intra-coding

initializing quantization matrix of H.264 reference software [69]. Each scale factor

results in different quantization levels, which will be used to evaluate the coding

distortion under different bit rate. The first quantization index therefore represents

the lowest bit-rate and the last index represents the highest bit-rate. The key frames are

coded with constant quantization parameters as defined in Table 3.2, obtained from

extensive experiments aiming to achieve the best RD performance. These settings are

different than the one used in DISCOVER codec since the coding algorithms are

different and we only focus on the DVC codecs with a decoder quantizer.

Table 3.1 Quantization step matrix

7 16 22 24

6 22 24 28

18 22 27 33

22 24 32 47

Table 3.2 Key frames quantization parameters

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Hall Monitor 47 45 43 40 37 33 29 24

Foreman 45 44 44 43 37 33 29 24

Coastguard 45 44 42 40 37 33 29 25

54

Table 3.3 Quality comparison of motion compensated reference frames and

interpolated frames for Hall Monitor

Average PSNR Hall Monitor

 B F MCI

Q1 77.33 77.37 77.80

Q2 71.55 71.56 71.64

Q3 69.34 69.34 69.58

Q4 66.16 66.17 66.49

Q5 63.19 63.22 63.65

Q6 60.41 60.48 60.88

Q7 56.91 56.99 57.35

Q8 53.17 53.30 53.65

Table 3.4 Quality comparison of motion compensated reference frames and

interpolated frames for Foreman

Average PSNR Foreman

 B F MCI

Q1 76.81 76.72 76.33

Q2 71.80 71.90 71.71

Q3 68.99 69.05 68.85

Q4 64.38 64.43 64.18

Q5 61.04 61.09 60.66

Q6 56.91 56.97 56.23

Q7 52.23 52.28 51.31

Q8 47.80 47.87 46.71

55

Table 3.5 Quality comparison of motion compensated reference frames and

interpolated frames for Coastguard

Average PSNR Coastguard

 B F MCI

Q1 72.43 72.47 72.50

Q2 73.64 73.58 73.67

Q3 68.86 68.84 68.73

Q4 65.15 65.11 64.92

Q5 61.60 61.50 60.92

Q6 57.76 57.57 56.44

Q7 53.36 53.04 51.37

Q8 48.93 48.54 46.43

We try to find the best match for each block of WZ frame from the shifted blocks in

the SI. The performance of each SI is measured by the average peak signal to noise ratio

(PSNR) between WZ frames and the motion compensated SI after DCT transform and

uniform quantization. Only luminance components of Hall Monitor, Foreman and

Coastguard representing videos of different types of motion are used. All the test video

sequences are of size QCIF (176×144) at frame rate of 15 Hz. All frames in the test

sequences are used, which means 165 frames for Hall Monitor and 150 frames for

Foreman and Coastguard. Simulation results presented in Table 3.3-Table 3.5 show that

after motion compensation, reference frames have very similar quality to MCI frames.

In the case of Foreman sequence, the quality of reference frames is even consistently

better than MCI frames. And as of Coastguard sequence, it is observed that reference

frames also have better quality in most quantization settings.

3.5 Exploitation of Reference Frames for Motion Range

Prediction

The statistical motion fields (SMF) for a 4-by-4 WZ block is given by a probability

matrix containing the probabilities of a SI block moving to all the possible positions

56

using the search window size of . The higher the probability is, the more likely the

displaced block is the best match to the WZ block. The decoding algorithm based on the

Stanford architecture [11] using the proposed MRP method directly utilizing reference

frames as SI is outlined below. It approximates the target motion vectors by an iterative

EM refinement process.

A. The statistical motion fields for each 4-by-4 block with top left pixel

located at (x,y) are initialized by experimentally chosen distributions which gives

good overall performance:

 { } {

 (3.1)

B. The Expectation-Step (E-Step) updates the statistical motion fields of each block by

the corresponding soft estimate of the block, which before normalization is

written as

 { } { } {
|

 }

 { } ∑

(3.2)

where
 is the SI block located at and is the probability

mass function of the residual between WZ frame and SI in transform domain after

quantization. The computation of the sum product in (3.2) for each statistical motion

field is over each possible quantization level , where denotes bit

depth. Therefore, for a single 4-by-4 block, a full search with window size

requires times computation of (3.2). The computational

complexity increases dramatically with the increase of the size of searching window.

57

Furthermore, this iterative learning algorithm is possible to converge to a coarse

motion vectors combination since EM algorithm does not guarantee that the

convergence will be to a global maximum. However, motion vectors between forward

and backward reference frames can be used to guide the learning process if they are

similar to the motion between SI and WZ frame. This requires SI to be the same as a

reference frame so that the number of candidate motion vectors for each block can be

reduced to the surrounding motion vectors of the guidance motion vector. This results in

more precise motion learning and lower computational complexity.

It is proposed here a MRP method that the motion fields between two adjacent

reference frames are used as location and size indicator for the searching window,

assuming the motion between neighbouring frames is smooth. We search in a small

window of size centered at half of the reference motion vector

 as depicted in

Figure 3.4, where is the proposed searching window and is the initial searching

window. Experiments show that window size of 2 is sufficient to provide good overall

results. The motion fields between SI block and WZ block is confined by the

region defined in (3.3), where it guarantees that the search region will not exceed the

initial region defined by .

 [(

) (

)]

 [(

) (

)]

(3.3)

Considering the search region defined by (3.3), the complexity reduction in terms of

number of motion vector candidates after applying the proposed search region in each

EM iteration is,

58

For example, for the search window used in [35] with L=10, and taking as

defined previously can reduce computational complexity in each EM iteration by 94.3%.

This is considerable reduction that will have major impact on implementation aspects of

DVC.

Mx,y

W1

W2

X

Y
L

R

Ref

Figure 3.4 Proposed search window for a reference motion vector

C. The Maximization-Step aims to update by generating soft SI followed by an

iterative joint pixel LDPCA decoding,

∑ { }

 (3.4)

where the summation is over each motion field and represents syndrome

checks.

D. The EM algorithm terminates when the syndrome check is satisfied.

3.6 Simulation Results

 The proposed MRP algorithm is evaluated by our DVC codec presented in Figure

3.1 and Figure 3.2 in Section 3.2. We compare the RD performance of the basic DVC

codec with and without the proposed MRP algorithm, using different side information.

59

The same coding configurations as in section 3.4 are also applied in the following

experiments. A constant GOP size of 2 is used for all test sequences, i.e. odd frames are

key frames whereas even frames are WZ frames.

Figure 3.5 shows the RD performance of the decoded frames for all the sequences. It

is observed in Hall Monitor sequence that backward and forward reference frames

perform consistently better than MCI frames, with and without MRP algorithm. In

Foreman and Coastguard sequences, reference frames have better performance in low

bit-rate, both with and without MRP algorithm. However, the MRP boosts the

performance of MCI frames in high bit-rate, as the increase of bit-rate brings more

details in the frames. When the motion or scene change is high, these details show

significant increase in bit consumption. When the search region is restricted by MRP

algorithm, if EM converges with a coarse motion field, the strength of MCI frames start

to show up. The proposed MRP method gives slightly better RD performance in most of

the time over all the test sequences.

60

(a) Hall Monitor

(b) Foreman

0 50 100 150 200 250 300 350 400 450
22

24

26

28

30

32

34

36

38

40

42

Bitrate(kbps)

P
S

N
R

 (
d
B

)

0 100 200 300 400 500 600 700
24

26

28

30

32

34

36

38

40

Bitrate(kbps)

P
S

N
R

 (
d
B

)

61

(c) Coastguard

Figure 3.5 RD performance for different video sequences

0 100 200 300 400 500 600 700 800 900
22

24

26

28

30

32

34

36

38

Bitrate(kbps)

P
S

N
R

 (
d
B

)

0 50 100 150 200 250 300 350 400 450
20

40

60

Bitrate(kbps)

P
S

N
R

 (
d
B

)

Backward Reference Frame-No MRP

Foreward Reference Frame-No MRP

Motion-compensated Interpolated Frame-No MRP

Backward Reference Frame-MRP

Foreward Reference Frame-MRP

Motion-compensated Interpolated Frame-MRP

62

The above results prove that reference frames can be a good SI candidate that gives

very similar or sometimes better RD performance when compared with interpolated

frames. Therefore, it is fair to say reference frames offer potential for a better SI

candidate.

3.7 Conclusion

This chapter reveals for the first time that using reference frames as SI is capable to

achieve similar or sometimes even better coding efficiency than the widely used MCI

frames when the bit probabilities are computed in quantization domain. In order to

maximize their potential, we also presented a new technique to exploit the motion

information between reference frames. Simulation results show that the proposed MRP

method can significantly reduce complexity in each Expectation-Maximization iteration

with no loss in RD performance. This work brings new insight and strength to the use of

reference frames. It opens attractive perspectives that allow us to better understand the

role of reference frames in distributed video coding.

63

Chapter 4

Pixel Granularity Side Information

Synthesis Framework and Parallel

Implementation

4.1 Introduction

For transform domain DVC, the transformed coefficients are usually grouped into

bands and the Wyner-Ziv frames are decoded band by band. Each decoded band

provides partial information of the WZ frame, which is not available previously and

thus, can be utilized to improve the SI. Currently, this refinement process is mainly

carried out using block level motion search algorithms in the state-of-the-art literature

due to complexity issues. For high motion video content and long group of picture sizes,

this can bring significant block artifacts to the decoded frames. Furthermore, each time

when SI is improved, the correlation noise between SI and WZ frame changes

accordingly. Therefore, the initially estimated noise distribution may not be accurate

anymore and thus require the correlation noise model to adapt itself to the changing

noise.

Since iterative algorithms are widely used for DVC, the decoder is naturally slow in

computation. Introduction of SI refinement and correlation noise re-modeling will

therefore add more computational complexity to the decoder.

To tackle the SI refinement problem which is a major challenge in DVC

advancement, we propose a flexible pixel granularity side information synthesis (PGSIS)

framework and investigate its performance compared with block based classical systems.

To provide in depth study of DVC decoding complexity and future improvements we

64

have fully implemented a state-of-the art DVC decoder using both conventional serial

approach and parallel processing technology. The main contributions of this chapter are

summarized below.

1) A finer granularity side information synthesis (SIS) framework is proposed. It works

efficiently at pixel level and provides superior synthesized SI in both subjective and

objective image quality. The proposed architecture is flexible and modular based

which can be integrated into most modern DVC architectures.

2) To further save the required parity bits and hence improve the rate-distortion

performance, we propose an adaptive virtual noise model alongside the SIS

algorithm. It learns the new noise distribution during the SI refinement and gives

more accurate knowledge of the correlation of the WZ frames and SI.

3) Full implementation of serial and parallel DVC decoders with block based and

PGSIS SI refinement techniques. A highly parallelized software implementation is

recommended to speed up the decoding time and bring DVC one step closer to

practical use. We have also identified potential areas for further complexity

reduction to be made proportional to the number of CPU employed for faster

practical systems applications. Since our implementation is platform independent, it

is scalable for any multicore hardware architecture.

The rest of the chapter is organized as follows. Section 4.2 describes the transform

domain DVC architecture with the proposed framework. It also provides details of

initial SI generation and virtual channel modelling techniques without the proposed

framework, which will be used for performance comparison in Section 4.5. Section 4.3

introduces the novel SIS framework. The parallel implementation is described in section

4.4. Section 4.5 is dedicated to the experimental results, performance evaluation and

analysis of the proposed framework. Finally, Section 4.5.3 concludes this chapter.

65

4.2 System Architecture

The framework proposed in this chapter is based on the popular Stanford

architecture [11] and will be described in detail next.

The input video is divided into key frames and WZ frames, as shown in Figure 4.1.

Key frames are inserted periodically determined by GOP size and encoded by

conventional intra codec, such as H.264/AVC Intra codec [1]. The WZ frames are

divided into 4-by-4 blocks. In each block, DCT and a uniform quantization are

performed. The quantized DCT coefficients are grouped into frequency bands and

converted into bit-planes. Each bit-plane is separately encoded using low-density-parity-

check accumulated (LDPCA) codes [22] and stored in a buffer for the decoder requests.

An 8-bit cyclic redundancy check (CRC) code is also generated for each bit-plane to

confirm decoding is successful.

At the decoder side, two reference frames obtained from the decoded key frames and

WZ frames are interpolated using optical flows to generate the initial SI. The

intermediate motion compensated version of the two reference frames are then DCT

transformed and their residue is used for virtual channel modelling.

66

PGSIS

Wyner-Ziv Encoder Wyner-Ziv Decoder

DCT Q
Bit

Ordering

LDPCA

Encoder
Buffer

H.264/AVC Intra

Encoder

H.264/AVC Intra

Decoder

New SI Synthesis

Adaptive Virtual

Channel

Modeling

IDCTReconstruction

Decoder

succ./

failure

LDPCA

Decoder

8-Bit CRC

Parity Request

Decoded

WZ frames

Key Frames

WZ Frames

Frame

Buffer

X’B

X’F

WZ Frame

Approximation

SI Candidates

Selection

Initial SI

Generation
DCT

Conditional Bit

Probability

Computation

motion

compensated X’B

and X’F

Deblocking

Fliter

Partially decoded

WZ frame

Figure 4.1 Proposed PGSIS-DVC system architecture

The estimated correlation between SI and WZ frame is exploited to compute the

conditional bit probability. Using this bit probability, the LDPCA decoder performs an

iterative message propagation algorithm (MPA) to decode each bit-plane, starting from

an estimated code rate and will request more parity bits from encoder if the available

parity bits are not sufficient. The decoding procedure follows the zigzag scan order.

After successfully decoding all the bit-planes for each DCT band, these bit-planes are

grouped together to form the quantized symbols and optimally reconstructed [23]. A de-

blocking filter is then applied to the final decoded frames to give better image quality.

The proposed PGSIS framework and its associated components are highlighted in

Figure 4.1. The initial SI is generated by an optical flow algorithm and it will be

updated in PGSIS framework each time a DCT band being successfully decoded.

PGSIS framework consists of three key components. WZ frame approximation gives a

rough estimate of the actual WZ frame according to the partially decoded information.

The approximated WZ frame provides a reference for the next component to select the

67

right SI candidates. Each selected SI candidate is then assigned a weight factor to mark

its importance with regards to its quality. Finally the new SI can be synthesized

considering all the selected candidates and their weight factors. The produced weight

factors are exploited again in the virtual channel modelling to adapt the updated

correlation noise. More details of the proposed framework will be explained in section

4.3.

The initial SI generation and the virtual noise modelling for our transform domain

DVC codec without using the PGSIS framework are briefly explained below.

4.2.1 Initial SI Generation

1) Bi-directional motion estimation

Optical flows are used to determine the motion between two neighbouring reference

frames. To generate precise motion vectors, we used a highly improved Horn–Schunck

method optical flow estimation [70][71][72]. The algorithm is based on a coarse-to-fine

warping strategy using a variational model to minimize a rotationally invariant energy

function for optical flow computations based on two terms: a robust data term with

brightness constancy and a gradient constancy assumption, combined with a

discontinuity preserving spatio-temporal smoothness constraint. The algorithm is robust

under considerable amount of noise and allows for large motion displacements, which is

favourable for high motion video content and long GOP sizes. The bi-directional motion

estimation is performed between the two adjacent reference frames. Optical flows are

extracted from one of them by taking the other one as a reference.

2) Motion compensated frame interpolation

The motion vectors (obtained from previous step can be used for frame

interpolation. We employ a straightforward interpolation scheme that the initially

68

interpolated SI pixel at position is derived from the mean of the forward

motion compensated pixels
 (

) and backward motion compensated

pixels
 (

) through half of the forward motion vector and

the backward motion vector , respectively. For any motion vectors that go out

of image boundaries, the co-located pixel of corresponding reference frame will be used

instead, as depicted in the following formula,

{

 (

)  (

)

 (

) (

)

 (

)
 (

)

(4.1)

where and are the width and height of each frame, respectively. The motion

compensated version of backward and forward reference frames can be further utilized

in virtual channel modeling process.

It should be noted that since the optical flow and frame interpolation techniques are

independent modules, it is possible to replace them with more advanced solutions such

as the top ranked optical flow in [73] and interpolation method in [74].

4.2.2 Virtual Channel Modelling

The correlation noise between SI and WZ frames are assumed to be Laplacian

distributed and estimated by the virtual channel model in the following steps.

1) Residual frame generation. Residual frame provides an estimate of the actual noise

between the SI and WZ frame. The motion compensated version of backward and

69

forward reference frames obtained previously for initial SI generation are used again to

compute the residue frame given by

 (

)

 (

) (4.2)

2) DCT transform on the residual frame. Since the proposed DVC codec works in

transform domain, the residual frame has to be DCT transformed,

 (4.3)

where is the absolute value of .

3) The Laplacian parameters are estimated online at coefficient level based on the

algorithm proposed in [4].

4.3 Pixel Granularity Side Information Synthesis

4.3.1 Typical Approach

A typical approach for SIS consists of three steps, WZ frame approximation,

candidate SI generation and new SIS. The basic idea is to find the best match from

candidate SI to the actual WZ frame and use the best match to replace corresponding SI.

WZ frame is not available at the decoder side. However, during the band-by-band

decoding process, partial knowledge of WZ frame will become gradually available and

hence can be utilized to generate an approximation of the original WZ frame. Candidate

SI can be chosen from any frame that is similar to the WZ frame. Once the SI

candidates are created, the current SI can be updated to a better quality for decoding the

subsequent bands. Due to the changes of SI, the initially estimated correlation noise

model will also need to be updated to give more accurate noise distribution. The details

of these steps are presented below.

70

4.3.2 WZ Frame Approximation

In order to measure the quality of the candidate SI, some knowledge of the WZ

frame is required at the decoder side. During the decoding process, some bands of the

WZ frame will gradually become available. We can reconstruct the currently decoded

bands and apply inverse DCT transform to generate the so called partially decoded WZ

frame. This frame can be seen as an approximation of the genuine WZ frame. The

approximation can also be in the transform domain, i.e. without inverse DCT transform

after reconstruction. However, most DVC frameworks only allow sequential band-by-

band decoding, i.e. there is only a small subset of all the DCT bands available at one

time. These limited bands information is not sufficient for block based motion

estimation. A technical report from HP lab [42] shows that the number of DCT bands

must be sufficient for block based motion estimation to provide acceptable block

matching results. The increased complexity is also an obvious drawback. Although the

reconstructed symbols are already in transform domain and directly available for further

computation, SI will have to be shifted to all possible directions and DCT transformed

for motion estimation. Therefore, motion analysis in pixel domain is clearly more

desirable than in transform domain.

Extensive experimental results have shown that there are certain areas in a frame

cannot be refined by the above approach since the best match to the partially decoded

WZ frame may not necessarily be the best match for the actual WZ frame. This also

confirms the results in [39]. Including these areas in the SI update not only increases the

computational complexity but may also lead to poorer SI quality.

Therefore, it is important to exclude such regions before proceeding to the next step.

A reasonable approach is to filter the blocks that are similar to the co-located blocks in

71

the partially decoded WZ frame since these blocks are believed to be well updated

already, no need for further refinement.

We propose here not to refine block n if it has a sum of squared difference (SSD)

smaller than the average SSD of all the blocks in SI frame. The SSD of the nth 4×4

block is defined by

 ∑ ∑ ̂

 (4.4)

where and ̂ are the previously updated SI block and the partially decoded

WZ block at time , respectively. A block that has been discarded for updating the

current SI may be picked up for refinement in the future as long as it contains fewer

“errors” than the average “errors” in the SI frame. The average is given by

∑

 (4.5)

where is the number of blocks in a frame.

4.3.3 Candidate SI Selection

The blocks selected in the previous step have to be updated with the newly

synthesized information. This information comes from multiple SI candidates and they

need to be carefully selected from a range of frames. Reasonable candidates for SIS can

be decoded key frames, initial SI frame, currently updated SI frame and partially

decoded WZ frames, but some may provide more information than the others. Both

backward and forward decoded reference frames are used for initial SI generation and

we further exploit them in the SIS process. The previously updated SI may have some

new information derived from the SI candidates and therefore it is also selected to

prepare the information for further SIS. As explained in the previous step, the partially

72

decoded WZ frame is used to measure the quality of SI candidates and the better

candidates will contribute more on the final synthesized SI.

In classical DVC, each selected block is typically replaced entirely by the candidate

block. This approach ignores the texture context and may produce obvious edge effects.

We avoid this common practice and use a finer granularity, pixel level SI candidate

selection to address the block artifacts problem introduced by block level synthesis. It is

observed in our experiments that these block artifacts can propagate during the SI

refinement process, further impairing the objective and subjective SI quality.

We propose to use three SI candidates for the new SI synthesis, i.e. the

pixels from the motion compensated backward reference frame , forward reference

frame and the previously updated SI frame ,

(4.6)

where is the motion vector between the previously updated SI

 and the partially decoded WZ frame.

The previously updated SI is considered as a more reliable candidate than backward

and forward reference frames since it contains information from both of them.

Therefore, it deserves more exploration for corresponding candidate generation. We

take two steps to prepare .

1) Block based bi-directional motion compensation: A 3-by-3 low pass filter is applied on

both reference frames to facilitate the subsequent motion estimation. Then forward and

backward motion vectors are estimated by block matching algorithm between both reference

frames and partially decoded WZ frame using mean absolute difference as the cost function.

73

These motion vectors are further refined by sub-pixel motion estimation and current SI is

updated by bi-directional motion compensation.

2) Pixel level optical flow motion compensation: The SI obtained in the above step provides

a good estimate of SI candidate but can be improved by pixel level optical flow motion

compensation.

However, for low bit rate scenarios, step 1 above is not recommended as critical bit

rate condition can introduce serious block artifacts using block based motion

compensation, which further affect the performance of step 2.

4.3.4 New SI Synthesis

In the proposed SIS framework, all the selected candidates are exploited in pixel

domain to give more precise motion estimation and lower computational complexity.

Three candidate SI frames computed in (4.6) are employed for new SI synthesis. The

error of each pixel is measured in square error considering all of its surrounding pixels

and the final synthesis is performed by weighted mean of all the selected candidates

where smaller weights are assigned to the pixels containing more errors.

Since multiple SI is used for synthesis, it is expected to have the candidate pixel that

contains fewer errors bigger weight than the others. However, the partially decoded WZ

frame is only an approximation of the actual WZ frame, considering the difference of a

single pixel is not appropriate. Therefore, it is proposed to take all the neighbouring

pixels into account when calculating the weight. We still use SSD to measure the error

 of the th candidate pixel at position , considering all its surrounded pixels,

 ∑ ∑ ̂

 (4.7)

74

where the candidate pixel is taken from (4.6). Since the weight for a candidate pixel

should monotonically decrease with its “errors”, we simply take the reciprocal of as

the weight,

 (4.8)

This weight must be always followed by a normalization step as in (4.9) to achieve a

normalized distribution of the weights.

 ̅̅̅̅

∑
 (4.9)

where ∑ is the sum of the weights of all three SI candidates.

It should also be noticed that for a slow motion video sequence such as Hall Monitor,

there may be no difference between some candidate pixels and the partially decoded

pixel. Therefore, there is no need to update these pixels and they can be skipped before

any synthesis. Finally, the synthesis of the new SI is obtained by the sum of all the

weighted candidates,

 ∑ ̅̅̅̅

 (4.10)

The block artifacts can be severe using block based SI refinement solutions,

especially for high motion contents. Figure 4.2 shows one experimental result of the

updated SI for the Soccer sequence using the 8th quantization matrix Q8 [19][37][39]

during the decoding process using a classical block wise SI refinement approach [37]. It

can be observed that the block artifacts are propagating throughout the refinement

process, degrading the refinement achieved during the decoding process. Figure 4.3

shows the updated SI frames under the same test conditions using the proposed method.

75

There is no severe block artifact throughout the decoding process and both the

subjective and objective SI quality is better than the block based approach.

(a) Initial SI PSNR: 23.50dB (b) After decoding band 1, PSNR: 25.79dB

(c) After decoding band 2, PSNR: 26.83dB (d) After decoding band 13, PSNR: 28.05dB

Figure 4.2 Block granularity SIS for Soccer Q8

(a) Initial SI PSNR: 23.47dB (b) After decoding band 1, PSNR: 27.83dB

(c) After decoding band 2, PSNR: 30.01dB (d) After decoding band 13, PSNR: 34.37dB

Figure 4.3 Pixel granularity SIS for Soccer Q8

76

Taking a closer look at the block based approach, it can be observed that this

approach can hardly represent arbitrary edges and the basic motion search can easily fail

for intense motion scenario or fast scene changes. It can be seen from Figure 4.2 (b) that

the duplicated leg shading has almost been removed from the person stand on the right

after decoding the first band. However, the edges of the leg are not well shaped and the

left foot is missing. Although a lot of noise has been removed around the leg, the left

foot cannot be recovered even after decoding 13 bands.

The updated SI frames using the proposed pixel granularity approach can be seen in

Figure 4.3. It can be observed from Figure 4.3 (b) that after decoding the first band, the

new approach has removed much more noise around the left leg from the person on the

right and looks better shaped, although still blurry. It can also be noticed that the whole

foot has been recovered after band 2 is decoded. It can also be seen that after decoding

band 13 (Figure 4.3 (d)), most of the noise has been removed from the scene and the

PSNR increased significantly by 10.9 dB compared with the initial SI PSNR (Figure 4.3

(a)). However, in the block based approach there is only 4.55 dB gain.

4.3.5 Adaptive Virtual Channel Modelling

SI is updated during the decoding process, which suggests the correlation noise is

also changing over time. Therefore, a virtual channel model that can adapt to this

change is able to fit the real noise distribution better. Recall the weight given in (4.9)

measures the importance of a certain SI candidate and we use the sum of the weighted

means to synthesize the new SI. The larger the weight, the bigger proportion of the

corresponding candidate is used for SIS. It is proposed to adaptively update the virtual

channel model taking into account the new information obtained from the refined SI.

This gives the decoder a better knowledge of the virtual noise distribution.

77

Residue Frame Re-estimate: The newly synthesized SI can bring an essential change

on the SI content. Affected by this change, the initially estimated Laplacian parameters

using the motion compensated reference frames may not be accurate any more. The re-

estimate of the residue frame is crucial for the final RD performance, especially for high

motion content under high bit rate. Since the weighting factor in (4.9) gives the

proportion of influence of each SI candidate, we can still use it to update the simple

noise frame in (4.2) to a blended noise frame as depicted in (4.11) such that the

Laplacian parameters can be improved substantially. The adaptive virtual noise is given

by

 ∑ | ̂ | ̅̅̅̅

 (4.11)

where is the absolute value of .

In a similar manner, the adaptive probability density function, is calculated as

follows,

 ∑ ̅̅̅̅

 (4.12)

where is the Laplacian parameters at position computed through

correlation noise modeling.

The weighted factor is integrated into the calculation to give higher priority for more

possible SI candidate but also allows the other candidates to contribute to the final noise

distribution. This sum of weighted distribution changes the initial noise estimation

which gives more accurate conditional bit probability for LDPCA decoding and will

thus reduce requested parity bits and decoding time significantly. It can be noticed that

the synthesized SI also takes into account the priority of the selected SI candidates and

78

therefore could be used to re-estimate the virtual noise distribution instead of reusing

the weighted factors.

4.4 Parallelized Software Implementation

The complexity of PGSIS depends mainly on the chosen optical flow algorithm. For

efficient implementation of PGSIS and to advance the speed limit on state-of-the-art

DVC codec, we implement PGSIS-DVC with highly efficient parallelized design using

Open Multiprocessing API (OpenMP) technology. OpenMP provides a simple and

flexible interface for parallel programming and supports multi-platform on most

processor architectures and operating systems and is therefore fully portable among

different platforms.

The key for efficient implementation highly depends on the organization of the data

structures since data in parallel regions have to be fully independent to each other.

4.4.1 Initial SI Creation

We create two parallel regions for initial SI creation, one region for computing the

optical flows and the other one for frame interpolation and residual frame generation.

The forward and backward optical flows can be computed separately and require two

threads/processors. The resulting motion vectors are used for frame interpolation, which

is carried out using pixel-by-pixel bi-directional motion compensation. It can be noted

that motion compensation for each pixel can be calculated without the knowledge of

other pixels in different locations. Therefore, they can be divided into a group of subsets,

and each subset can be handled by a separate thread. This procedure can be depicted by

the flow chart in Figure 4.4 (a). The master thread creates two threads for computing the

optical flows and they join to the master thread after both finish the task, then the master

79

thread creates M threads (according to the number of processors) in which each subset

of pixels are processed separately in parallel.

1

2

Compute forward optical flows

Compute backward optical flows

1

2

M

...

Subset 1 of (x,y)

Subset 2 of (x,y)

Subset M of (x,y)

1

Master thread
2

M

Compute (0) (,)Y x y

Compute (0) (,)Y x y

Compute (0) (,)Y x y

Compute (,)N x y

Compute (,)N x y

Compute (,)N x y

(a) Flow chart

#pragma omp parallel sections {

 #pragma omp section

{ compute forward optical flows }

 #pragma omp section

 { compute backward optical flows }

}

#pragma omp parallel for

for each pixel (x,y) {

 compute using equation (4.1);

 compute using equation (4.2);

}

(b) C++ pseudo code using OpenMP

Figure 4.4 Initial SI creation

The corresponding C++ pseudo code implementation of this routine using OpenMP

is given in Figure 4.4 (b). Two parallel sections to compute forward and backward

optical flows are created. Since each parallel section here costs similar time for

execution, one section does not need to wait the other for long time of synchronization.

Then pixels are divided into subsets such that each subset of the initial SI and residual

frame can be computed in parallel.

4.4.2 Adaptive Correlation Noise Modelling

Similarly, it can be noted that the calculation of in (4.12) is independent to

which suggests that it can be distributed equally among multiple threads/processors.

80

The flow chart for adaptive correlation noise modelling is shown in Figure 4.5 (a),

where the possible WZ coefficients are divided into M subsets and each of them

is run by a thread/processor to form a parallel region.

The C++ pseudo code using OpenMP for this routine is shown in Figure 4.5 (b). All

the possible DCT coefficients of WZ frame are divided into subsets. Each subset is

handled by a separate thread. The sum of weighted Laplacian distribution is declared

as “private” so that each thread will have its own instance of to avoid occuring race

conditions.

1

2

M

...

Subset 1 of X(x,y)

Subset 2 of X(x,y)

Subset M of X(x,y)

Master thread

Compute p

Last

coefficient?

Next

coefficient

Y

Compute p

Compute p

N

(a) Flow chart

for each DCT coefficient i {

 #pragma omp parallel for private()

for each possible {

 for each SI candidate c

 compute using equation (4.12);

}

}

(b) C++ pseudo code using OpenMP

Figure 4.5 Adaptive correlation noise modeling

4.4.3 PGSIS

Figure 4.6 (a) shows the flow chart of PGSIS modules which consists of three

parallel regions. The first region computes for M subsets of blocks. Each subset

can be handled by an independent thread/processor. Then, the three SI candidates are

81

generated in parallel as well. With the computed and three SI candidates, blocks

are divided into subsets again for M threads/processors to update SI and residual frame.

Since computing different SI candidates actually takes very similar time, they are

allocated into parallel sections to reduce waiting time for synchronization.

1

2

M

...

Subset 1 of blocks

Subset 2 of blocks

Subset M of blocks

Master thread

1

2

3

Compute Y1

Compute Y2

Compute Y3

1

2

M

...

Subset 1 of blocks

Subset 2 of blocks

Subset M of blocks

Compute
nSSD

Compute
nSSD

Compute
nSSD

Update ()tY and N

Update ()tY and N

Update ()tY and N

(a) Flow chart

#pragma omp parallel for reduction(+:)

for each 4-by-4 block n {

 compute using equation (4.4);

}

compute using equation (4.5);

#pragma omp parallel sections {

#pragma omp section

{ compute using equation (4.6); }

#pragma omp section

{ compute using equation (4.6); }

#pragma omp section

{ compute using equation (4.6); }

}

#pragma omp parallel for

for each 4-by-4 block n {

if > {

 compute using equation (4.7);

 compute using equation (4.8);

 compute ̅̅̅̅ using equation (4.9);

 update using equation (4.10);

 update using equation (4.11);

 }

}

(b) C++ pseudo code

Figure 4.6 PGSIS algorithms

82

 The C++ pseudo code using OpenMP for this routine is shown in Figure 4.6 (b).

Blocks are divided into subsets and SSD of each subset of blocks can be computed in

parallel. Each thread keeps a separate copy of but they will be summed together

using “reduction” syntax to calculate for all blocks.

4.5 Experimental Results and Performance Evaluation

4.5.1 Test Condition

The proposed framework is evaluated by our transform domain DVC codec

presented in Section III. We compare the RD performance and the complexity

performance with and without the proposed PGSIS algorithm, using the following test

conditions.

1) Video sequences: Foreman, Hall Monitor, Coastguard, and Soccer.

2) Number of frames: all frames of the test sequences have been used to evaluate the

RD performance which means 150 for Foreman, 165 for Hall Monitor, 150 for

Coastguard, and 150 for Soccer. However, since the average complexity performance

only shows negligible differences using various numbers of frames, we only use the

first 30 frames of all test sequences to evaluate the decoding complexity of PGSIS-DVC

codec.

3) Spatial and temporal resolution: QCIF at 15 Hz which means 7.5 Hz for the WZ

frames when GOP=2.

4) GOP length: 2, 4 and 8.

5) Eight RD points are considered for DVC codec, corresponding to eight 4×4

quantization matrices widely used in literature [19][37][39].

6) Key frames are coded by H.264/AVC Intra with constant quantization parameters

as defined in [19].

83

7) Software and hardware configuration: the decoding tasks are performed on the

Bright Beowulf Cluster Environment using 12 CPU processors of the running node

under Linux operating system. The codec is written in C/C++ code and compiled by

GCC 4.7.0 using OpenMP 3.1.

The RD performance of the proposed PGSIS-DVC codec will be compared with the

same transform domain DVC codec without PGSIS framework. It is also compared with

the state-of-the-art conventional coding solutions H.263+ Intra, H.264/AVC Intra and

H.264/AVC Inter No Motion. Under similar condition of encoder complexity, i.e. the

computationally intensive motion search is not performed by any of them.

4.5.2 RD Performance

1) DVC with PGSIS vs. DVC without PGSIS

The RD performance of the chosen coding solutions for all the selected video

sequences is presented in Figure 4.7 and Figure 4.8. The results show that the transform

domain DVC codec with PGSIS consistently out performs the same codec without

PGSIS for all test sequences and conditions, especially for higher bit-rate and longer

GOP sizes. It is expected that the average RD gains increase with bit-rate and the GOP

sizes since we use finer quantizer under high bit-rate, which gives better estimates of

WZ frame after each reconstruction and therefore PGSIS is able to produce more

accurate SI. Similarly, motion interpolation based SI generation technique becomes less

effective when the temporal distance between key frames increases (i.e. when the GOP

size becomes large), which degrades the quality of the SI but leaves more room for

improvements by the PGSIS algorithms. This is an attractive property as most of WZ

video codecs do not perform well under long GOP sizes. Another important feature

observed from the experimental results is that PGSIS performs better for the sequences

with more complex motion, which is also a desirable property since most of other

84

transform domain WZ codecs perform poorly under this condition. This is as a result of

lower quality SI obtained from the poor motion interpolation process so that PGSIS

algorithms are able to exploit more correlated information during the decoding process,

whereas for low motion video contents, there is not much room for improvement in SI

quality and thus their gains of RD performance are little.

The Foreman and Soccer sequences are considered to be of the high motion video

contents, whereas Hall Monitor and Coastguard sequences are seen as relatively low

motion video contents. As expected, the Foreman and Soccer sequences give better

gains in RD performance, particularly the Soccer sequence that achieves the highest RD

gains with regards to the DVC codec without proposed algorithms. Taking a close look

at Figure 4.7 for the Soccer sequence, notably for the last RD point, there is

approximately 1.25 dB for GOP size 2, 1.6 dB and 1.5 dB for a GOP size of 4 and 8,

respectively. Similar gains can be observed from the Foreman sequence with about 1 dB

for GOP size 2 and 1.3 dB for GOP size 4 and 8.

However, the RD curves in Figure 4.8 show slightly lower performance for the

sequences of Hall Monitor and Coastguard. The DVC codec with PGSIS performs very

close to the one without for the Hall Monitor sequence under most RD points except the

last one that gives around 0.7 dB gain for GOP size 2, 1.2 and 1.5 dB gains for GOP

size 4 and 8, respectively. Similar gains but within wider range of bit-rates can be seen

from the Coastguard sequence. Up to 0.7 dB gain for GOP size 2 and around 1 dB gain

for GOP size 4 and 8.

2) PGSIS vs. Standard video coding solutions

The conventional video coding solutions evaluated here are those widely used

standard video codecs. When compared with the RD performance of the PGSIS video

codec, it can be concluded that the PGSIS codec out performs H.264/AVC Intra for low

85

motion sequences, especially for lower GOP sizes. There is also performance gain for

more complex video sequence such as Foreman, under low bit-rate and high GOP size.

(a) Foreman: GOP=2 (b) Soccer: GOP=2

(c) Foreman: GOP=4 (d) Soccer: GOP=4

(e) Foreman: GOP=8 (f) Soccer: GOP=8

Figure 4.7 RD Performance for Foreman and Soccer sequences

It is usually expected that WZ codec can hardly beat the performance of H.264/AVC

No Motion. However, the PGSIS codec shows remarkable RD gains for high motion

video sequences. Foreman sequence with GOP size 8, Soccer sequence with GOP size 2

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

0 100 200 300 400 500 600

P
SN

R
, d

B

Rate, kbit/s

DVC with PGSIS

DVC without PGSIS

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra)

27

28

29

30

31

32

33

34

35

36

37

38

39

0 200 400 600 800

P
SN

R
, d

B

Rate, kbit/s

DVC with PGSIS

DVC without PGSIS

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra)

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

0 100 200 300 400 500 600

P
SN

R
, d

B

Rate, kbit/s

DVC with PGSIS

DVC without PGSIS

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra)

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

0 200 400 600 800

P
SN

R
, d

B

Rate, kbit/s

DVC with PGSIS

DVC without PGSIS

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra)

26

27

28

29

30

31

32

33

34

35

36

37

38

0 100 200 300 400 500 600

P
SN

R
, d

B

Rate, kbit/s

DVC with PGSIS

DVC without PGSIS

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra)
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

0 200 400 600 800

P
SN

R
, d

B

Rate, kbit/s

DVC with PGSIS

DVC without PGSIS

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra)

86

and Coastguard sequence using GOP sizes 2 and 4, all performs better than H.264/AVC

No Motion. However, there are no significant RD performance changes for the Hall

Monitor sequence, i.e. the performance remains above H.264/AVC Intra and still below

H.264 No Motion.

(a) Hall Monitor: GOP=2 (b) Coastguard: GOP=2

(c) Hall Monitor: GOP=4 (d) Coastguard: GOP=4

(e) Hall Monitor: GOP=8 (f) Coastguard: GOP=8

Figure 4.8 RD Performance for Hall Monitor and Coastguard sequences

28

29

30

31

32

33

34

35

36

37

38

39

40

41

0 100 200 300 400 500

P
SN

R
, d

B

Rate, kbit/s

DVC with PGSIS

DVC without PGSIS

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra)

27

28

29

30

31

32

33

34

35

36

37

0 100 200 300 400 500 600
P

SN
R

, d
B

Rate, kbit/s

DVC with PGSIS

DVC without PGSIS

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra)

28

29

30

31

32

33

34

35

36

37

38

39

40

41

0 100 200 300 400 500

P
SN

R
, d

B

Rate, kbit/s

DVC with PGSIS

DVC without PGSIS

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra) 26

27

28

29

30

31

32

33

34

35

36

0 100 200 300 400 500 600

P
SN

R
, d

B

Rate, kbit/s

DVC with PGSIS

DVC without PGSIS

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra)

28

29

30

31

32

33

34

35

36

37

38

39

40

41

0 100 200 300 400 500

P
SN

R
, d

B

Rate, kbit/s

DVC with PGSIS

DVC without PGSIS

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra)

25

26

27

28

29

30

31

32

33

34

35

36

0 100 200 300 400 500 600

P
SN

R
, d

B

Rate, kbit/s

DVC with PGSIS

DVC without PGSIS

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra)

87

It can also be observed that, for low motion sequences such as Hall Monitor and

Coastguard, PGSIS-DVC remains above or similar to H.264/AVC Intra under most

situations. However, for high motion sequences such as Foreman and Soccer, the RD

performance is still below H.264/AVC Intra for most settings. Comparing with H.263+

(Intra) codec, PGSIS is consistently better with exception for the most complex

sequence Soccer, which only shows superior RD performance using GOP size 2.

We have also presented the RD performance of DISCOVER codec as a benchmark.

However, DISCOVER uses some more advanced modules, such as a dead-zone

quantizer. For simplicity these modules were not used in PGSIS, so they cannot be

directly compared. Despite these RD curves of PGSIS DVC are in general above or

similar to the performance of DISCOVER codec. A notable 2 dB gain can be observed

from the last point of Foreman sequence of GOP size 8. However, more gains can be

expected if PGSIS-DVC utilizes the same modules as DISCOVER.

4.5.3 Complexity Analysis

In terms of encoding complexity, a thorough analysis of a DVC codec which shares

similar encoding architecture as the encoder of this chapter is presented in [26]. The

results show that for GOP size of 2, DVC encoding complexity is about 60-70% of

H.264/AVC Intra and H.264/AVC (No Motion). Much more gains can be obtained with

longer GOP sizes, but even with GOP size 2, it already has much lower encoding

complexity and defeats the RD performance of H.264/AVC Intra for most test

sequences, not to mention the performance of H.264/AVC (No Motion) which has

slightly higher complexity than H.264/AVC Intra.

88

Table 4.1 PGSIS-DVC Decoding Time For the Parallel and Serial Implementations. The

Main Components and Total Decoding Time (in seconds) are Presented for Different

Quantization Parameters Using Fixed Group of Picture Size of 2. The Parallel

Architecture Employs 12 CPU Cores. Parallel (P), Serial (S), Initial SI Creation (I),

Correlation Noise Modelling (C), PGSIS (G), LDPCA Decoding (L), Total Decoding

Time (T)

Sequences Components Q1(P/S) Q4(P/S) Q8(P/S)

Foreman

I 12.92/25.06 13.04/24.68 14.03/24.36

C 1.78/7.33 3.89/13.95 5.34/16.07

G 47.30/195.89 156.91/642.75 244.74/959.38

L 7.24/53.65 19.27/143.59 43.95/337.86

T 69.33/282.36 193.25/825.68 308.25/1338.57

Soccer

I 13.59/23.32 13.11/26.76 13.10/24.29

C 1.69/7.04 3.85/13.50 6.12/15.41

G 50.61/187.70 165.46/689.76 244.17/959.19

L 10.25/65.79 24.64/190.50 42.31/332.65

T 76.23/284.21 207.22/921.32 305.89/1332.35

Coastguard

I 13.17/27.67 13.48/30.60 13.20/30.92

C 1.94/7.88 4.33/15.96 6.67/18.41

G 48.93/208.28 165.17/733.99 245.26/1093.22

L 2.13/16.55 10.68/78.28 48.08/372.31

T 66.28/260.98 193.86/860.10 313.43/1516.44

Hall

I 13.94/26.35 13.34/26.85 16.24/27.45

C 1.98/9.12 5.41/18.96 8.02/22.17

G 50.17/203.25 164.28/684.67 298.73/1037.24

L 2.08/16.01 7.60/56.39 25.98/184.76

T 68.30/255.37 190.84/788.14 349.33/1273.32

The PGSIS-DVC codec is implemented in parallel as well as in serial, where the

serial implementation can be seen as the parallel version that uses only one CPU core.

89

The complexity performance of only the parallelized modules: initial SI creation (I),

correlation noise modeling (C), PGSIS (G), and LDPCA decoding (L), are presented in

Table 4.1. It can be seen that the majority of the computational time is spent on I, G,

and L. The parallelized initial SI generation is about 2 times faster than the serial

version, and the channel modeling and PGSIS are both about 4 times faster, whereas the

LDPCA decoding module is about 7 times faster. In addition, the impact of video

content on the decoding time meets the common expectation, i.e. the more complex the

video content is, the more time requires decoding that sequence. The video sequence

that contains highest motion content here is Soccer, which therefore takes longest time

to decode. However, it is not always the opposite for the slowest video content tested

here.

We have also included the decoding time for LDPCA decoder for both parallel and

serial implementations in Table 4.1 as this module is usually considered to be the most

complex component in DVC. For further details on the decoding algorithm and parallel

implementation the reader can refer to [62] as similar methods are used here.

 The limitations of the proposed PGSIS-DVC codec and their possible solutions are

summarized here. It can be seen that PGSIS and SI generation takes more time than the

LDPCA decoding. In addition, for slow motion sequences (e.g. Hall Monitor) the

computing time is not remarkably less than that of the faster motion sequences (e.g.

Soccer) despite the fact that fewer blocks are processed during the refinement process.

Furthermore, the time reduction brought by the parallel implementation is not

proportional to the number of CPU used. The above are mainly due to the following

reasons. Firstly, due to the source code availability, we have adopted a highly complex

serial optical flow algorithm, which takes about 80-90% of the total computational time

of PGSIS and therefore, the time reduction brought by block filtering can hardly

90

observed here. Secondly, from section 4.4.1 and 4.4.3, it can be seen that only 2 and 3

parallel sections (Figure 4.4 (a) and Figure 4.6 (a)) are used for initial SI creation and

PGSIS, respectively, although 12 CPU cores have been used. Therefore, it can be

expected to have speedup of only about 2× and 3× compared with the serial

implementation. However, we stress that the optical flow component is completely

independent of the proposed algorithm so it can be replaced with a much more efficient

one and apply parallel techniques to reduce the complexity cost further. For example, a

fast parallel implementation of an optical flow algorithm presented in [75] is able to

compute both forward and backward flows in about 3 seconds per frame for about 12

times larger frame size (640×480) than QCIF used in our experiments, running at a

single machine equipped with cheap GPU hardware. Furthermore, in our

implementation the optical flows are computed for all blocks within the WZ frames.

However, this could be reduced by performing the computations on the selected blocks

that are already available within the PGSIS refinement process, particularly for slow

motion sequences.

4.6 Conclusion

This chapter presents a pixel level SIS framework and parallel implementation

within a state-of-the-art transform domain DVC codec. The experimental results show

significant improvements on RD performance over the same codec without the

proposed algorithms. The parallel implementation also shows high utilization of

resources and substantial speedup when compared with the serial implementation. The

updated SI frames during the SIS process demonstrate considerable improvement in

both subjective and objective image quality against the widely used block based SIS

algorithms. The proposed SIS framework can be integrated into any modern transform

domain DVC codec to achieve a better RD performance especially for video sequences

91

with complex motion and coded with long GOP sizes. The framework can also be re-

configured to exploit more efficient optical flow algorithms to improve the performance

and further reduce complexity. Furthermore, the proposed parallel implementation

brings the state-of-the-art DVC codec one step closer to practical use.

92

Chapter 5

Consistent Quality Control for

Wireless Video Surveillance

5.1 Introduction

Video transmission over wireless links is unreliable and can be characterized by

bursty and high channel error probability. Since channel coding is adopted in DVC, this

brings another appealing property that it is resilient against transmission errors. As

wireless networks have limited bandwidth, rate control algorithms are usually required

to achieve the best overall quality at the minimum bit rate cost. However, the priority is

given to control the target bit-rate without regard to a stable visual quality along time. It

is also important to notice that conventional DVC systems are weak in coordinating the

key frames encoder and WZ frames encoder due to the separation of the encoding

process. This can be characterized by using fixed quantization settings [19][26][35] for

the coding of key frames and corresponding WZ frames. The fixed quantization

parameters are typically obtained from iterative offline experiments. However, constant

quantization configurations cannot adapt the changes in visual content and offline

training approaches are impractical for real time video surveillance systems.

Furthermore, inappropriate distortion distribution in key frames and WZ frames can

seriously degrade RD performance.

93

DCT
Deadzone

Quantizer

Bit

Ordering

LDPC

Encoder
Buffer

H.264/AVC

Intra Encoder

H.264/AVC Intra

Decoder

Side Information

Extraction

Virtual

Channel

Model

DCT
Soft Input

Computation

IDCTReconstruction
Decoder

succ./failure

LDPC

Decoder

Wyner-Ziv Encoder Wyner-Ziv Decoder

Target Distortion

8-Bit CRC

Parity Request

Decoded Key frames

Decoded WZ frames

Key Frames

Key Frame

Quality Control

WZ Frame

Quality Control
AC Distortion

Estimation

AC Distortion

WZ Frames

Figure 5.1 Overall System Architecture

In this chapter, we propose a novel algorithm to facilitate key frames and WZ frames

encoder quality control. The proposed algorithm adjusts the quantization parameters

according to the visual content and the user defined target quality online without any

external control. A DQ model derived from MPEG-2 distortion estimation model [76] is

employed. With the proposed algorithm, low complexity encoding is still guaranteed by

performing the distortion estimation partly at the decoder side. The information required

from the decoder is sent through the existing feedback channel.

The rest of this chapter is organized as follows. Section 5.2 presents the overall

system architecture of our DVC codec. In Section 5.3 and Section 5.4, we describe the

proposed quality control solutions for the key frames and WZ frames, respectively. The

simulation results are given in Section 5.5 and finally, Section 5.6 concludes this

chapter and gives a brief outlook on future work.

5.2 System Architecture

The proposed DVC codec depicted in Figure 5.1 is based on the Stanford

architecture [11] summarized as follows:

94

(1) The input video is divided into key frames and WZ frames. Key frames are inserted

periodically determined by group of pictures (GOP) size.

(2) The WZ frames are further divided into 4-by-4 blocks and in each block, discrete

cosine transform (DCT) and a uniform quantization with dead-zone are performed.

(3) The quantization matrix (QM) is determined by the WZ frames quality control

algorithm, given user defined target distortion in terms of peak signal noise ratio

(PSNR).

(4) The quantized DCT coefficients are grouped into frequency bands and converted into

bit-planes.

(5) Each bit-plane is separately encoded using low-density-parity-check (LDPC) codes

and stored in a buffer for decoder requests. An 8-bit cyclic redundancy check (CRC)

code is also generated for each bit-plane to confirm decoding is success.

(6) Key frames are encoded by an efficient conventional coder such as H.264/AVC Intra,

where the quantization parameters (QP) are determined by the key frame quality

control algorithm given the same target distortion.

(7) At the decoder side, decoded key frames and WZ frames are interpolated to generate

SI.

(8) The correlation noise between SI and WZ frames are assumed to be Laplacian

distributed and modelled by the virtual channel model.

(9) Distortion of AC coefficients is estimated by residual statistic information of the

decoded key frames and sent back to the encoder to aid WZ frame quality control.

These results are further utilized in the virtual channel modelling process.

(10) The soft input to the LDPC decoder in terms of conditional bit probability is

calculated, using the statistical information provided by the virtual channel model.

95

(11) An iterative decoding process is performed until the syndrome check and CRC

check are both successful. More parity bits can be requested if the above stopping

criterion is not met.

(12) Finally, all the decoded quantized symbols are optimally reconstructed [23] and

inverse transformed.

5.3 Key frames Quality Control

The key frames quality control algorithm shown in Figure 5.2 is mainly derived

from [57] and works in frame level. It consists of two main modules. The key frame

DQ model estimates the distortion of key frames and selects a proper QP for the

conventional intra encoder. Its parameters are online updated using previously encoded

key frames.

5.3.1 Key Frame DQ Modelling

The key frames distortion as a function of quantization step size is estimated by

the DQ model in Equation (5.1),

 (5.1)

where and are frame dependent model parameters. is typically a constant and

 as in [57] is used here.

Target

Distortion

Key Frame DQ

Modeling

Key Frame DQ

Model Parameter

Calculation

H.264/AVC

Intra Encoder

QP

a,b

Bit-stream

Key frames

distortion

Key frames

Figure 5.2 Key frames quality control

96

According to H.264/AVC standard [1], quantization is controlled by an integer QP.

Each QP value corresponds to a value. The ratio between successive values is √

,

so that doubles in value when QP increases by six. Therefore, any value can be

derived from Equation (5.2) using the first six values in Table 5.1,

 ⌊ ⌋ (5.2)

where is the modulo operation, is a value in Table 5.1 indexed by x and ⌊ ⌋

denotes the nearest integer smaller than the given number.

Table 5.1: The First 6 Values

QP 0 1 2 3 4 5

 0.625 0.702 0.787 0.884 0.992 1.114

The QP is chosen as follows,

1) Encode the first 2 key frames with some predefined initial QP values;

2) Calculate the model parameters and , which will be discussed in the following

section;

3) Use the model parameters to estimate key frames distortion for each given QP as in

Equation (5.2), in case of H.264/AVC Intra ;

4) The QP that produces the key frame distortion best matches the target distortion

 is chosen, i.e.

 (5.3)

5) Encode the first 2 key frames again with the new QP and all the rest of the key

frames will be encoded following the same procedures in 2) to 4).

We restrict the distortion of key frames in Equation (5.3) to be the closest but lower

than the target distortion to guarantee a better quality of key frames, since the quality of

97

decoded WZ frames are strongly dependent on the quality of the key frames. This

unbalanced relationship is a trade-off to provide a good overall RD performance.

5.3.2 Key Frame DQ Model Parameters Calculation

The parameters and in Equation (5.1) can be calculated from previously encoded

key frames. Assuming the GOP size is 2, then the distortion and for frame and

frame , respectively, introduced by and can be calculated as Equation

(5.4),

{

 (5.4)

The model parameters can thus be online updated using Equation (5.5),

{

 (5.5)

However, due to the similarity of visual characters in adjacent frames, the QP

obtained from Equation (5.3) for current frame can be the same as in frame ,

which results in zero denominator in Equation (5.5). In this case, a previously recorded

different QP with its corresponding distortion will be chosen to solve Equation (5.5).

5.4 WZ Frames Quality Control

The objective of WZ frames quality control algorithm depicted in Figure 5.3 is to

choose a QM which can meet the target distortion. A DQ model for WZ frames is

needed to estimate the distortion introduced by a candidate QM. A DQ model derived

from [76] is employed in this chapter.

98

WZ Frame DQ

Modeling

WZ

Encoder

QM

H.264/AVC

Intra Decoder

Bit-stream Ref B

Ref F

AC Distortion

Estimation

WZ

Decoder

Feedback Channel

AC Distortion

Buffer
Target Quality

Parity request

Figure 5.3 WZ frames quality control

5.4.1 WZ Frame DQ Modelling

The model given in Equation (5.6) estimates the average WZ distortion at

frame level, considering the distortion contributions of each coefficient,

 ∑

 (5.6)

where is the index of AC coefficients. The overall distortion is divided by two parts,

i.e. the distortion of DC coefficients
 and the distortion of AC coefficients

 . The

average DC distortion of a MPEG-2 coded frame is calculated using Equation (5.7),

 (5.7)

where is intra DC precision in MPEG-2 which controls the quantization coarseness

of DC coefficients. In our DVC system, quantization coarseness is controlled by the

quantization level in QMs. Each quantization level can be represented by  bits, so

in Equation (5.7) is replaced by  in our calculation.

The estimation of AC distortion will be discussed in detail in the following section.

99

5.4.2 AC Distortion Estimation

The average squared quantization error
 for MPEG-2 coded AC coefficients is

obtained as Equation (5.8),

 (5.8)

where the original AC coefficients are assumed to follow a Laplacian distribution with

parameter λ, is the quantization step size and is the offset of the reconstruction

window in MPEG-2 TM5. We ignore in Equation (5.8) by assigning a zero offset so

that Equation (5.8) can be refined as follows,

 (5.9)

 is given by Equation (5.10) as,

 (5.10)

where is the ratio of the number of zero coefficients over all the coefficients

quantized by .

However, for a coarse QM some of the high frequency bands of AC coefficients are

not coded, which means no data for these frequency bands is transmitted from the

encoder. We denote these AC coefficients as . In the reconstruction process, are

taken directly from the SI. Obviously, Equation (5.9) does not consider this situation.

An insight into the distortion of shows that the distortion of these frequency bands

is actually the difference between SI and WZ frames, i.e. the correlation noise. The

correlation noise is typically modelled by the statistical distribution of the residual of

reference frames. Here, we use Mean Squared Error (MSE) of the residual frame to

estimate the distortion of . Residual frame is generated from the motion

100

compensated versions of backward reference frames and forward reference frames

 as Equation (5.11):

 (5.11)

where and represent the backward and the

forward motion compensated frames, respectively. In (5.11), represent the

motion vector and is the pixel location in frame . Therefore, the distortion of

 ,
 is calculated in Equation (5.12),

 (5.12)

where is the expectation operator over all the coefficients in band .
 is now

rewritten as in the following,

 {

 (5.13)

where represents the quantization level for the AC band.

The distortion of DC coefficients combined with all AC distortion contributes the

distortion of a WZ frame. Thus, we can choose the QM by Equation (5.14),

 (5.14)

Here, 8 QMs in [26] indexed by are used in our DVC codec. The that gives the

closest distortion to the target distortion is selected.

5.5 Simulation Results

The proposed algorithm is evaluated by our DVC codec presented in Section 5.2.

We compare the distortion variation and the RD performance of the basic DVC codec

101

with and without proposed algorithm. Only luminance components of Hall Monitor and

Coastguard representing videos of different types of motion are used. Both test

sequences are of size QCIF (176×144) at temporal resolution of 15 Hz. All frames in

the test sequences are used, which means 165 frames for Hall Monitor and 150 frames

for Coastguard. A constant GOP size of 2 is used for all test sequences, i.e. odd frames

are key frames whereas even frames are WZ frames. The QMs defined in [26] are

applied in our simulation to determine the quantization levels. A regular degree LDPC

accumulate code [22] of length 1584 bits is used for virtual channel coding.

All frames are coded with constant QM-QP pairs defined in Table 5.2 [26] when no

quality control is performed. Table 5.2 is obtained by iterative offline training process

targeting to have almost constant decoded video quality for both key frames and WZ

frames. In the following experiments, Hall monitor and Coastguard are coded with QM1

and QM4, respectively, when using fixed quantization settings.

5.5.1 Distortion Variation

Both key frames and WZ frames quality control algorithms are verified by the

temporal PSNR variation in this section. The distortion of test sequences is also

compared with target PSNR which is set to be equal to the average PSNR over all

frames obtained in the coder without quality control.

Table 5.2: QP Values for Corresponding QMs of the

Basic DVC Codec without Proposed Quality Control

 QM1 QM2 QM3 QM4

Hall Monitor 37 36 36 33

Coastguard 38 37 37 34

102

1) Key Frames Distortion Variation

Figure 5.4 and Figure 5.5 show the temporal PSNR variation for the sequences Hall

Monitor and Coastguard, respectively. It can be seen from both figures that the key

frames distortion varies rather small for slow motion and fast motion sequences,

regardless of quality control. More specifically, the key frames PSNR variances of Hall

Monitor with and without quality control are 0.0152 and 0.0069, respectively. However,

this trivial variance increase introduced by quality control brings PSNR around 1 dB

closer to the target. Similar results are obtained from Coastguard sequence. The key

frames PSNR variance increased from 0.0424 to 0.0632 using quality control but again,

it provides decoded quality more than 1.5 dB closer to the target.

Figure 5.4 Temporal PSNR variation for the key frames for Hall Monitor

103

Figure 5.5 Temporal PSNR variation for the key frames for Coastguard

2) WZ Frames Distortion Variation

Figure 5.6 and Figure 5.7 show the results of WZ frames distortion variation for Hall

Monitor and Coastguard, respectively. The proposed algorithm reduced the PSNR

variance from 0.2138 to 0.0636 and better met the target PSNR by about 1 dB for

sequence Hall Monitor. However, the algorithm performs similar to the fixed

quantization settings obtained from offline training for the Coastguard sequence. Only a

small reduction from 0.5434 to 0.5242 on PSNR variance is obtained using quality

control. It gives smoother image quality closer to the target only in the later part (after

100 frames) of the sequence when the scene changes tend to reduce.

104

Figure 5.6 Temporal PSNR variation for the WZ frames for Hall Monitor

Figure 5.7 Temporal PSNR variation for the WZ frames for Coastguard

105

5.5.2 RD Performance

Figure 5.8 and Figure 5.9 show the RD performance of sequence Hall Monitor and

Coastguard, respectively. The first 4 coarse QMs in [26] with their corresponding QPs

defined in Table 5.2 are used in the basic DVC codec without proposed quality control

algorithm, which correspond to 4 RD points. RD performance loss of up to about 2.5 dB

is observed in Figure 5.8 when using quality control, whereas a smaller loss of up to

about 0.6 dB is observed in Figure 5.9. It is also important to notice that the average

distortion of key frames and WZ frames are rather similar in Figure 5.4 and Figure 5.6,

when using proposed quality control. However, more priority is given to key frames

which result in rather big difference in the average distortion of key frames and WZ

frames in Figure 5.5 and Figure 5.7. A similar average distortion in both key frames and

WZ frames gives a rather degraded RD performance, whereas an unbalanced average

distortion gives a smaller loss in RD performance, which implies the need for balance

between smooth quality control and RD performance. This has also been reported in [26]

that allocating more bits to the key frames at the cost of a less stable video quality may

lead to a better RD performance.

106

Figure 5.8 RD performance for Hall Monitor

Figure 5.9 RD performance for Coastguard

107

5.6 Conclusion and Future Works

In this chapter, we have presented an efficient technique to automatically control the

video quality for DVC codecs. Simulation results show that the proposed method

closely meet user defined target quality and smooth out the distortion variation for slow

motion sequences and performs similar to fixed quantization settings obtained from

offline trainings for fast motion sequences. However, some RD performance loss is

observed in our quality-controlled DVC codec.

A flexible control to balance a smooth quality and RD performance remains as our

future work.

108

Chapter 6

Low Complexity Implementation of

DVC Codec

6.1 Introduction

The first software implementation of DVC were developed in 2002, by Stanford

University [11][77] and UC Berkeley [9][10], using different frameworks and verified

by simulations on general purpose personal computers (PC). In 2007, a European

project called DISCOVER [19], based on the Stanford framework, implemented an

efficient DVC codec also on a general purpose PC. It presents a state-of-the-art low-

complexity DVC codec, as well as a benchmark for DVC implementations. But all the

above frameworks have not been verified in a practical system architecture, considering

the memory and processors restriction.

In this chapter, we present the first implementation of a DVC encoder using low-

density-parity-check accumulative codes (LDPCA) on Texas Instruments

TMS320C6437 fixed point DSP. We present an efficient implementation utilizing the

DSP hardware features and optimization techniques particularly in-place Discrete

Cosine Transform (DCT) transform, software pipelining and built-in LDPCA codes.

The decoder is running on a general purpose PC. Furthermore, the Stanford DVC

framework is verified on a DSP based encoder and PC based decoder, together referred

to as DSP-PC architecture.

Furthermore, we present a parallel implementation of DVC decoder based on a PC

based encoder and HPC (high performance cluster) based decoder, together referred to

109

as PC-HPC architecture, where the encoder is running in a general purpose PC and the

decoder is running in a multicore HPC.

The rest of this chapter is organized as follows. In Section 6.2, we describe the DSP-

PC system architecture and the target platforms of the encoder and the decoder.

Implementation details of encoder components such as DCT transform, coefficients to

bit-stream conversion, LDPCA encoding and key frames encoding are provided in

section 6.2.6 to section 6.2.9. And the performance evaluation of the encoder

complexity and the overall RD performance are presented in section 6.2.10. In Section

6.3, the focus is moved to the PC-HPC architecture where we implement a highly

efficient decoder using parallel technology. Section 6.3.2 to section 6.3.5 provide

technical details for the encoder, especially covers the quantizer design, LDPCA

encoding and file structure organization. Details of the parallel implementation for the

modules of SI generation, correlation noise modelling, conditional bit probability

computation and LDPCA decoding are presented in section 6.3.7 to section 6.3.10. The

decoding complexities as well as the RD performances are given for different

experimental scenarios in section 6.3.11. Final conclusions and future works are given

in Section 6.4.

6.2 DSP-PC DVC Implementation and Optimization

6.2.1 System Overview

The system level diagram of our implementation is presented in Figure 6.1. The WZ

encoder using LDPCA codes and a conventional intra-frame encoder employing JPEG

Baseline [78] coding approach are implemented on a DSP, connected to a PC through

an embeded JTAG emulator. The bit-streams are generated and stored on PC, in which

the WZ decoder and the conventional decoder are implemented. The WZ encoder deals

110

with all the even frames while the conventional encoder processes the remaining frames.

This DVC coding scheme works in transform domain. This chapter focus more on the

implementation issues, the reader is referred to [3] for further information and details on

DVC.

WZ Decoder

PC

Conventional

Decoder

WZ Encoder

DM6437

Conventional

Encoder

Video

sequence

Figure 6.1 System Architecture

6.2.2 Encoder Architecture

The encoder functional blocks are shown in Figure 6.2. The JPEG encoder divides a

video frame into square blocks with equal block length. DCT and a fixed quantization

(DCT&Q) are performed over each block. The quantized DC coefficients are encoded

by differential pulse-code modulation (DPCM). The encoding of the quantized AC

coefficients is performed by run-length encoding (RLE) algorithm. The DPCM encoded

DC coefficients and RLE encoded AC coefficients are further compressed by an entropy

encoder.

The WZ encoder also performs block-wise DCT and quantization on the video

frames. The quantization table used in JPEG encoder is employed in WZ encoder as

well. The quantized coefficients are then converted into bit-streams and coded using a

LDPCA code.

111

Parity bits and compressed key frame bit-streams are generated on the DSP board

and sent to PC through an emulator.

DCT&Q
Coefficient to

bit-stream

LDPCA

encoder

Parity bits
Video

sequence

Compressed

Bit-Stream

DCT&Q

DPCM

RLE
Entropy

Coding

WZ Encoder

JPEG Encoder

Figure 6.2 Encoder Functional Block Diagram

6.2.3 Decoder Architecture

LDPCA

decoder

DCT

Conventional

Key frame

Decoder

(JPEG)

Interpolation/

Extrapolation

Decoded Key

frames

Correlation

Noise

Modelling

Parity Bits

Reconstruction

Decoded WZ

frames

Bit-stream

Figure 6.3 Decoder Functional Block Diagram

The DVC decoder main functional blocks are shown in Figure 6.3. The JPEG

decoding consists of doing all the above JPEG encoding process in reverse. One or

more already reconstructed frames (either WZ frames or key frames) will serve as side

information for the WZ decoder. The correlation between the key frames and the WZ

frames is modelled by Laplacian distribution. The WZ decoder receives successive

112

chunks of parity bits from the encoder following the requests made through a feedback

channel.

If the parity bits are not sufficient to successfully decode a certain DCT coefficient,

the decoder requests more bits from the encoder.

6.2.4 System Design Flow

The DM6437 EVM is a development platform that enables fast applications

evaluation and development for the TI DaVinci
TM

 processor family [79]. The block

diagram of the internal architecture of the DM6437 EVM is shown in Figure 6.4.

DSP Subsystem

C64X+ DSP 600MHz Core

L1P 32KB

Switch Fabric

Video Processing Subsystem

Front End

CCD Controller

Video Interface

Preview

Histogram &

Resizer

Back End

On Screen

Display(OSD)

10b DAC

10b DAC
10b DAC

10b DAC

Video Enc

EDMA3 PCI EMAC HPIor or

McBSP

McASP
or

I2C UART

CAN SPI

Serial Interface

DDR2

Controller
EMIF

Program/Data Storage

Timers PWM

Peripherals Connectivity System

DM6437

PLL

JTAG

DDR

PLL

OSC

Figure 6.4 DM6437 EVM Architecture

Its powerful CPU allows efficient hardware pipelining under certain conditions. It is

able to dispatch up to eight parallel instructions in each CPU cycle. The big Level 1

cache (L1), configurable Level 2 memory (L2), Internal DMA (IDMA) plus EDMA 3.0

enable fast data transfers with external device or memory to offload CPU. Moreover,

113

the Switched Central Resource (SCR) can route up to four transfers between CPU,

EDMA, device peripherals and memory at the same time.

A rich set of available libraries and tools for DM6437, including debugging,

development and performance analysis not only shorten the development cycles, but

also improve the efficiency and robustness of the target applications. Other features can

be found in [80].

6.2.5 Encoder Implementation

The implementation of the encoder is optimized at different levels by different

techniques. A set of optimized image/video processing libraries such as IMGLIB [81],

provided by Texas Instruments (TI), are used. These libraries provide high performance

codes and an efficient and robust way of development. TI also provides high

performance code generation tools to aid developers to debug and optimize codes. Code

Composer Studio (CCS) is used throughout our implementation.

6.2.6 Discrete Cosine Transform

The DCT component of the WZ encoder is implemented by DSP Image/Video

Processing Library with all operations in image blocks performed entirely in place. The

DCT transform algorithm presented in [82] is efficiently implemented in the library.

The number of operations is less than 1/6 of the conventional DCT algorithm using a 2-

sided (Fast Fourier Transform) FFT. At the programming level, techniques like

instruction scheduling and pipelines, registers reuse, etc. are employed to improve

instruction-level parallelism.

114

6.2.7 Coefficients to Bit-stream

The DCT transformed coefficients have to be converted to a bit stream for LDPCA

encoding. We first combine the two layer loops of the horizontal and vertical access of

each coefficient. Second, a coefficient register is used to hold the coefficient value for

each bit, avoiding re-calculation of array index. Also, the inner loop calculating the bit

value of each bit-plane is unrolled to facilitate software pipeline. Finally, the modulo-2

operation is replaced by a faster bitwise and operation.

6.2.8 LDPCA Encoding

To facilitate adaptive coding rate, LDPCA codes are used. LDPCA codes can be

represented by a sparse matrix. When dealing with image data, the size of this sparse

matrix can be huge. Thus, most PC-based implementations of LDPC coding store the

matrix in external memory [19][35][21][83]. A LDPCA code typically contains a set of

codes with various code rates, range from the lowest code rate to the highest code rate,

so that the decoder can start decoding with a lower rate bound, gradually increasing the

rate if the parity is not sufficient. However, the code rate can be pre-estimated. Hence, it

is not necessary to load the codes with all the available code rates. But even if large

amount of unnecessary LDPCA codes are avoided from loading to the memory, the

external memory reading, parsing, allocating and copying of a single LDPCA code are

still time costing.

In our implementation, we compile the LDPCA code into the executable file,

making a built-in LDPCA code in the data segment instead of storing it in external

memory disk. Thus, high speed loading of LDPCA codes can be achieved by increasing

a bit of program size.

115

The LDPCA encoder consists of an LDPC syndrome-former followed by an

accumulator. The bits of the quantized DCT coefficients are first multiplied by the

parity check matrix, yielding syndromes. These syndromes are in turn accumulated

modulo (MOD) 2, producing the accumulated syndrome bits [21][22]. We denote the

adjacent syndromes as and , thus the accumulated syndrome bits can be

calculated as follow:

It can be noted that doing modulo 2 and accumulating at the same time does not

affect the result, and the addition modulo 2 corresponds to bitwise exclusive or (XOR)

operation, therefore the above calculations can be simplified as below in the

implementation, where bitwise and with 1 (AND 1) is an alternative but faster operation

for modulo-2.

 ()

6.2.9 Key Frames Encoding

The key frames are encoded by JPEG using the Codec Engine API. The Codec

Engine is an extendable and configurable framework that provides developers a

common interface to access eXpressDSP-compliant codecs and algorithms [84].

6.2.10 Performance Study and Analysis

1. Complexity Performance

Our transform-domain DVC codec divides the video sequence into groups of

pictures (GOP) with GOP size of 2. The odd frames are coded as key frames, decoded

without reference to side information. The even frames are WZ coded, decoded using

the previous reconstructed frames. A set of tests on both of the encoder and the decoder

116

has been carried out to verify their performance. Three video sequences, foreman, hall

monitor and soccer are used, at QCIF resolution and 15 Hz frame rate. Only the

luminance component is considered in the subsequent results.

A block size of 8 is used for the DCT and quantization. A scaled quantization matrix

in Annex K of the JPEG standard [78] with scaling factor of 0.5 is used in the two

encoders. The WZ frames are coded by a regular degree-3 LDPCA code of length

50688 bits [21]. Each QCIF-sized WZ frame is divided into four regions with equal

dimension to match the code length. Therefore, the test results on main functional

blocks of the WZ encoder are given for ¼ of a frame. The parity bits are generated by

DM6437 and stored in the PC side through the embedded JTAG emulator. After an

iterative decoding using Message Passing Algorithm [85], if the decoded bit-stream

does not satisfy the syndrome check, the decoder requests additional parity bits from the

encoder via a feedback channel.

We compared a non-optimized and an optimized WZ encoder on the DSP. The non-

optimized DCT process uses a 2-sided FFT algorithm which works with floating point

data results in slower processing at the algorithm level. In addition, it allocates a

Table 6.1 Implementation Performance of The DM6437 Based WZ Encoder

AVERAGE NUMBER OF INSTRUCTION CYCLES(CYCLES×10
6
)

Foreman Hall Monitor Soccer

Non-optimized/Optimized

DCT&Quantization (1/4 frame) 415.4/3.9 415.4/3.9 415.4/3.9

Coefficients to Bit-stream (1/4 frame) 2.2/1.8 2.2/1.8 2.2/1.8

LDPCA Encoding (1/4 frame) 564.4/27.7 562.4/27.8 562.1/27.6

WZ Encoder (whole frame) 3960.1 /134.2 3959.9/134.0 3959.7/134.6

Overall Improvement with Optimization 29.5 times 29.6 times 29.4 times

117

temporary memory to store the transformed coefficients for each 8-by-8 block. This

frequent memory allocation and release operation is also time-costing. The optimized

DCT process uses a faster in place DCT transform algorithm which can work with fixed

point data with only a little loss in accuracy. The optimized implementation not only

speeds up the transform process but saves the memory usage.

The non-optimized conversion of DCT coefficient to bit-stream accesses each

coefficient by two layer loops. The outer loop indexes the rows of a frame whereas the

inner loop indexes the column. These two loops are combined into a single loop in the

optimized implementation. Furthermore, loop unrolling technique is employed on

bitwise access to help software pipelining.

In LDPCA encoding process, we avoid loading the large LDPCA codes from the

external memory by compiling the codes into the executable file. Therefore, the codes

are integrated in the binary program and are loaded to the DSP memory together with

the program resulting in high speed loading of LDPCA codes. This approach increases

the program size by around 728KB which is negligible for the huge total memory

capacity, but eliminates the time for string parsing, external memory access as well as

dynamic memory allocation. Furthermore, the syndrome accumulator is simplified by

doing accumulating and modulo-2 at the same time with bitwise operations.

Table 6.1shows the profiling results of the DM6437 based encoder, given in average

number of instruction cycles. The performance is tested on the WZ encoder and its main

functional blocks (DCT and quantization, coefficients to bit-stream, LDPCA encoding).

The last row shows the improvements achieved with the optimized implementation. An

overall reduction of more than 29 times of WZ encoder complexity in terms of average

number of instruction cycles is obtained. The average number of instruction cycles

118

reflects the actual amount of operations in the algorithms. Therefore, the reduction on

the instruction cycles has a great impact on practical power consumptions. For resource

restricted applications, this means less processing power is needed or longer battery life

can be achieved.

2. Rate-Distortion Performance

Figure 6.5 RD Curves for DSP-PC based DVC codec implementation for different

sequences

We also verified the rate-distortion (RD) performance of this DSP-PC based DVC

architecture. Our experiments use 50 frames of the above video sequences. The

quantization matrix in the tests is scaled by factor Q = 0.5, 1, 2 and 4, respectively.

Figure 6.5 compares the RD curves for Foreman, Hall Monitor, and Soccer, which

represent different motion speed. The results are given in average rate and PSNR values.

It can be seen from the figure that sequence with faster motion (Soccer) are often

inferior in RD performance due to more “errors” between side information and WZ

frames introduced by motion. It should also be noted that the results are for fixed point

119

implementation which explains why it is slightly lower than the expected using floating

point.

Further reduction in computational cost can be achieved by employing Q-format

representation in the quantizer to facilitate the rounding and truncation process, and

refining the C/C++ code with C64x intrinsic or linear assembly to fully exploit the

potential of the target platform. Furthermore, for a regular degree LDPCA code, further

memory reduction can be achieved utilizing the code-word index structure. In addition,

a better alternative for key frames coding such as H.264/AVC Intra codec can be used to

improve the quality of side information and thus improve the final RD performance.

6.3 PC-HPC DVC Parallel Implementation

Due to high complexity of DVC decoder, it is supposed to be implemented on high

performance base station. We have implemented a DVC codec in a PC-HPC (High

Performance Cluster) architecture which simulate the scenario of running a DVC

decoder at a base station. This also compliments our encoder implementation work to

provide a comprehensive suggestion and full evaluation of the state-of-the-art DVC

codec implementation under a practical software and hardware setup. Since this chapter

mainly focuses on implementation aspects, SI refinement is therefore not taking into

consideration, but readers who are interested in this topic can refer to Chapter 4 for

more details.

6.3.1 System Overview

The system architecture of our PC-HPC DVC codec is shown in Figure 6.6. Video

frames are split to key frames and WZ frames. The number of WZ frames is decided by

GOP size. Key frames are encoded by H.264/AVC Intra encoder and the resulting bit-

stream is stored along with all the relevant encoding parameters. WZ frames are divided

120

into 4×4 blocks and each block is DCT transformed and uniformly quantized. The

quantized symbols are then split into bit-planes in zigzag order, starting from the most

significant bit-planes (MSB) to the least significant bit-planes (LSB). A CRC code is

generated for each bit-plane before they are encoded by LDPCA codes. LDPCA

encoded bits, also referred to as syndrome bits, are stored into a file with associated

coding parameters. For simplicity reason, this file is separately stored from the intra

coded key frame files.

Wyner-Ziv Encoder Wyner-Ziv Decoder

DCT Q
Bit

Ordering
LDPCA

Encoder
Encoded
WZ File

H.264/AVC Intra
Encoder

H.264/AVC Intra
Decoder

Virtual Channel
Modeling

IDCTReconstruction
Decoder

succ./
failure

LDPCA
Decoder

8-Bit CRC

Parity Request

Decoded WZ
frames

Key Frames

WZ Frames

Frame
Buffer

X’B

X’F

Initial SI
Generation

DCT

Conditional Bit
Probability

Computation

Deblocking
Fliter

Encoded
H.264 File

Figure 6.6 System Architecture

At the decoder side, decoded key frames are stored in buffer to provide information

for initial SI generation. Since our DVC codec is working in transform domain, the

initial SI has to be DCT transformed. Any decoded WZ frames are also stored into the

same buffer. These frames are usually called reference frames and their residue frame

computed during initial SI generation will be utilized to estimate the correlation noise.

The noise is assumed to follow Laplacian distribution. The resulting Laplacian

parameters are then used to compute conditional bit probabilities which will be used for

LDPCA decoding. The accumulated syndrome bits are decoded using an iterative

121

message passing algorithm, which converges when the syndrome checks are fulfilled or

the maximum number of iterations is reached. It requests for more parity bits if the

current parity bits are not sufficient and a successful decoding is always tested by the

CRC check. Decoded bit-streams are combined to form the quantized symbols,

optimally reconstructed and inverse DCT transformed. Decoded frames are always

smoothed by a deblocking filter to reduce block artifacts. Finally, decoded key frames

and WZ frames are re-ordered in the same sequence as the input video sequence.

6.3.2 Encoder Implementation

Although the target platform of our encoder implementation is in a general purpose

PC, it can be easily ported to digital signal processors, mobile phones or other resource

critical devices. The encoding flow chart is depicted in Figure 6.7. It can be seen that

the encoding process is a recursive loop since the encoding starts from the middle frame

of a GOP, then move the right and left boundaries to the middle and repeat this process

until all the frames in a GOP are encoded.

122

Encode frame f1 to f2

Read frame f

4x4 DCT & Q Extract bit-planes

LDPCA encoding

Set f2=f1+GOP size

Set f=(f1+f2)/2

f>f1?

Set f1=f1+GOP size

Y

Recursively encode
frame f1 to f

Recursively encode
frame f to f2 f1<number of

frames

Y

Done

Set f1=0

Figure 6.7 WZ Encoder Flow Chart

Key aspects of encoder implementation include quantizer design, LDPCA encoder

implementation and file structure organization, which will be discussed in the following

sections.

6.3.3 Quantizer Implementation

The quantizer is one of the key components that determines the quality of decoded

frames as well as the decoding speed. Since DVC aims at achieving low complexity

encoding, the quantizer design is usually simple and straightforward. Typical quantizer

used in literatures is the uniform scalar quantizer, sometimes with an additional dead-

zone to achieve better compression rate. Due to complexity reason, a uniform quantizer

without a dead-zone is used in the implementation.

123

Our encoder quantizer is based on the quantizer from DISCOVER codec but without

a dead-zone. The dynamic range for DC coefficients is assumed to be , although

the actual range should be . A bigger value range with the same number of

quantization levels means bigger step size and hence higher compression rate (at the

sacrifice of image quality). The dynamic range for AC coefficients is assumed to be

 , where is the absolute maximum value of all the coefficients

in a band. Each has to be stored along with the compressed bit-stream.

The quantization step size for DC coefficients is calculated as below, where is

the number of quantization levels decided by one of the quantization tables defined in

Figure 6.8.

 (6.1)

The selection of the above quantization table is decided by the target rate/distortion

requirement. And zero quantization level means these bands are not encoded into bit-

stream and will be recovered from corresponding bands in SI directly.

Calculation of the step sizes for AC coefficients is,

 {⌈

⌉

 (6.2)

where ⌈ ⌉ means rounding to the smallest integral value that is not less than . For zero

quantization level, the step size is marked as zero as well and these bands will be

ignored in quantization.

124

16 8 0 0 32 8 0 0 32 8 4 0 32 16 8 4

8 0 0 0 8 0 0 0 8 4 0 0 16 8 4 0

0 0 0 0 0 0 0 0 4 0 0 0 8 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0

Q1 Q2 Q3 Q4

32 16 8 4 64 16 8 8 64 32 16 8 128 64 32 16

16 8 4 4 16 8 8 4 32 16 8 4 64 32 16 8

8 4 4 0 8 8 4 4 16 8 4 4 32 16 8 4

4 4 0 0 8 4 4 0 8 4 4 0 16 8 4 0

Q5 Q6 Q7 Q8

Figure 6.8 Eight quantization tables for eight RD points

 Therefore, DCT coefficients can be quantized to

 where is a DCT coefficient.

However, AC coefficients can contain negative numbers. The quantized symbols are

usually shifted to all positive levels, since only positive numbers are usually supported

for array indexing and this also simplify the coding process as the sign bits are not

necessary any more. The level shift for an AC coefficient is computed as,

 (6.3)

6.3.4 LDPCA Encoder

The LDPCA encoder generates syndrome bits for each bit-plane of quantized

symbols. This process has been described in 6.2.8, but the syndrome bits are converted

to bytes to save storage space.

6.3.5 File Structure Organization

Since there is no standard for the file structure of WZ bit-stream so far, we propose a

simple file structure to store the bit-stream and all the relevant parameters. The file

structure for encoded WZ frames is depicted in Table 6.2. Encoded frame data are

organized according to the order of GOP coding, i.e. the middle frame is always

encoded first.

125

Table 6.2 File structure for encoded WZ frames

Content Number of bytes

Frame resolution (0:QCIF, 1:CIF) 1

Quantization table index 1

GOP size: 2, 4 or 8 1

Total number of frames encoded 2

Encoded frame data for frame i -

…… -

Encoded frame data for frame N -

For each frame, the AC ranges for all the AC bands are stored at the beginning of the

encoded frame data, in zigzag scan order, followed by all the encoded bit-plane data in

the same order, depicted in Table 6.3. For each encoded bit-plane data, CRC code is

always placed ahead of the syndrome bits to help checking if decoding is successful, as

shown in

Table 6.4.

Table 6.3 Data layout of encoded frame data for a single frame

Content Number of bytes

AC range for the first AC band 2

AC range for the second AC band 2

…… -

AC range for the n
th

 AC band 2

Encoded bit-plane data for bit-plane 1 -

Encoded bit-plane data for bit-plane 2 -

…… -

Encoded bit-plane data for bit-plane k -

Table 6.4 Data layout of encoded bit-plane data for a single bit-plane

126

Content Number of bytes

CRC code 1

Syndrome bit-stream -

6.3.6 Decoder Implementation

A transform domain DVC decoder without SI refinement process is implemented

using OpenMP parallel technique. Details of parallel implementation of some selected

modules which have significant impact on the decoding complexity are presented below.

6.3.7 Initial Side Information Generation

The initial SI is generated using the method proposed in [30], the implementation of

this algorithm is briefly described below, but more details on parallel implementation

are discussed here.

The two reference frames, the past and the future reference frames, are first filtered

by a 3×3 mean filter such that the motion vectors generated will be more reliable, and

then they are both up sampled through a finite impulse response (FIR) filter for half

pixel motion estimation.

Figure 6.9 Order of SI generation for GOP=4

The initial motion vector for each macro block of size 16×16 is selected by forward

motion estimation. However, if the motion vectors intercept the centre of the

interpolated blocks, some areas in the interpolated frame may not be filled when motion

compensation is performed. A solution proposed in [30] suggests that for each non-

127

overlapped block in the interpolated frame, the motion vector that has intercepting point

closest to the centre of the block will be selected. This approach guarantees that each

non-overlapped block in the interpolated frame can be assigned a motion vector and

therefore can effectively eliminate holes or blank area in the interpolated frame. The

motion vectors obtained in this step are further refined by half pixel bi-directional

motion estimations, first using block size 16×16 and then refined again using the size of

8×8. In order to overcome the spatial incoherence of the motion vectors, weighted

vector median filters are used to reduce the number of false estimations. It selects the

vectors that minimize the sum of weighted distances to all the other neighbouring

vectors. The weights are computed according to the ratio of the mean square error of the

current block and the neighbouring block. Finally, the initial SI is generated by bi-

directional motion compensation using the motion vectors obtained so far.

Due to the large searching range in forward motion estimation, it is the most time

costing module in the initial SI generation process. Therefore, this module is

implemented in parallel. For each block in the future frame, it compares with all the

blocks within the searching range in the past frame to find the best matched block using

sum of absolute difference (SAD) as the cost function. Each block can then be assigned

a forward motion vector and a backward motion vector, derived from half of the motion

vector between the current block and its best matched block. The motion vectors are

then re-assigned according to the distance of the intercepting points and the centre of the

blocks. Since finding the motion vectors for each block is independent from each other,

therefore blocks can be divided evenly among threads and forward motion estimation

can be carried out in parallel. The corresponding flowchart and the pseudo-code are

depicted in Figure 6.10.

128

1

2

M

...

Subset 1 of blocks

Subset 2 of blocks

Subset M of blocks

1

Master thread

2

M

Extract a
future

frame block

Find the best
match from
past frame

Adjust motion vectors
to intercept the centre
of interpolated block

1

2

M

(a) Flow chart

 #pragma omp parallel for

 for each 16×16 block {

 Extract a future frame block;

 Find the best match from past frame;

 Adjust motion vectors;

 }

(b) C++ pseudo code using OpenMP

Figure 6.10 Initial SI Generation

6.3.8 Correlation Noise Modelling

The correlation noise distribution is modelled using the widely adopted coefficient

level method proposed in [4]. For all the coefficients in each band that needs to be

decoded, the noise distribution of WZ frame and SI frame over each possible

coefficient level at pixel is calculated.

 (6.4)

where is the Laplacian parameter.

In most literature, the above calculation is carried out using the exact form of the

probability density function of Laplacian distribution, which multiplies

 to the

right of (6.4). However, in practical implementation this means the resulting

probabilities have to be normalized before use. It can be noted that Laplacian

distribution is an exponential distribution and equation (6.4) is already an exponential

129

distribution which can give very close shape of the actual Laplacian distribution.

Furthermore, the modeling process itself is only an estimation of the actual distribution

and the simpler form of (6.4) saves more computations. It avoids the calculation of

multiplication for each possible level of a WZ coefficient and more importantly, it does

not need normalization process any more since the resulting probabilities are always in

the range of .

Since the calculation of the noise distribution for each coefficient does not rely on

any other coefficients, the coefficients in a band can be divided into M subset to run

each subset in parallel, where M is decided according to the number of CPU cores. The

flowchart and the pseudo code of parallel implementation of this module are depicted

below.

1

2

M

...

Subset 1 of band coefficients

Master thread

Compute p

Compute p

Compute p

Subset 2 of band coefficients

Subset M of band coefficients

(a) Flow chart

#pragma omp parallel for

for each coefficient in a band {

 compute using equation (6.4);

}

(b) C++ pseudo code using OpenMP

Figure 6.11 Correlation noise modeling

130

6.3.9 Conditional Bit Probability Calculation

This module provides the probability of a bit of a WZ coefficient given the SI. In

another word, it computes the belief of a bit of a WZ coefficient being 1 or 0 given the

SI, which will be used later for belief propagation algorithm in LDPCA decoding.

A. Compute the range of quantization index

The lower bound and the upper bound of the th
 bit-plane of quantization index

 being 0 and 1 given all of the decoded bit-planes can be found in (6.5).

(6.5)

where , is the number of total bits for current decoding band and is the

decoded quantization values before bit-plane .

B. Compute the range of coefficient values:

Since the decoder works in non-quantized transform domain, the above range has to

be converted to the range of coefficient values. Similar to the DISCOVER codec [19]

(but with no dead-zone used in our implementation), the th
 quantization interval

 for

band is defined as below:

 {

 (6.6)

where is the quantization step size for band . This quantization interval is also the

range for the coefficient values. Substitute in (6.6) with
 and

 in (6.5) we can get

the range

 for the coefficient values.

131

 {

(
)

 {

(
)

 {

(
)

 {

(
)

(6.7)

C. Compute conditional probability:

With all the possible levels of a WZ coefficient in the defined range above, the

conditional probability of a bit of WZ coefficient being 0 and 1, denoted as and ,

respectively, can be derived as below,

 ∑

 ∑

(6.8)

where is the SI at the same pixel location.

D. Normalization:

However, the probabilities calculated in (6.8) should not exceed 1. To guarantee the

resulting probabilities are within a valid range, and are usually normalized before

being used.

 (6.9)

132

The conditional probability in terms of likelihood ratio can therefore be computed as

, since logarithm gives more numerically stable results, log likelihood ratios LLR

 are usually used instead of likelihood ratio.

For AC coefficients, the above algorithm has to be adjusted to consider the level

shifts applied at the encoder side.

It can be noticed that the calculation of conditional probability for each coefficient

does not require any information of other coefficient. Therefore, for a DCT band under

decoding, all the coefficients within that band can be divided into sub-groups for

parallel processing. The corresponding flow chart and C++ pseudo code using OpenMP

is depicted below.

1

2

M

...

Subset 1 of coefficients

Subset M of coefficients

1

Master thread

2

M

Compute Compute LLR

1

2

M

p1p0 Compute

Subset 2 of coefficients

(a) Flow chart

#pragma omp parallel for

for each coefficient in a band {

 compute quantization range using equation (6.5);

 compute coefficient range using equation (6.7);

 compute and using equation (6.8);
 normalize and using equation (6.9);

 compute LLR

 ;

}

(b) C++ pseudo code using OpenMP

Figure 6.12 Conditional bit probability calculation

133

6.3.10 LDPCA Decoding

LDPCA decoding is the most time consuming components at the decoder side

according to our experimental results. The decoding algorithm adopted here is derived

from the belief propagation algorithm explained in [86], in which the computation of

the message from each check node to its associated variable nodes , depicted in

(6.10), has the highest computational complexity since the calculation involves

summation of logarithm and hyperbolic tangent.

 ∏ ∑

 (6.10)

where denotes all variable nodes connected to check node except node , and

 are the sign and the magnitude of the extrinsic message from each variable node to

its associated check nodes, respectively, and

 . (6.10) can be

computed in two steps, first loop over all the message paths to compute , then

sum them up and loop over all the message paths again to get . The computations

involved in each message path is independent to any other paths, these two loops can

therefore be computed in parallel. The corresponding flow chart and C++ pseudo code

for this implementation are depicted below.

1

2

M

...

Subset 1 of message paths

Master thread

1

2

M

Compute Rji

Subset 2 of message paths

Subset M of message paths

Compute Rji

Compute Rji

...

Subset M of message paths

Subset 2 of message paths

Subset 1 of message paths
)(' jiCompute

)(' jiCompute

)(' jiCompute

(a) Flow chart

134

#pragma omp parallel for

for each message path {

 compute ;

}

#pragma omp parallel for

for each message path {

 compute using (6.10);

}

(b) C++ pseudo code using OpenMP

Figure 6.13 Belief propagation

In order to further improve the decoding speed, a minimum rate estimation

algorithm proposed in [87] is used to reduce the number of parity bit requests. This rate

is computed based on the conditional entropy between the original data and the

SI. The LDPCA decoding always starts from the estimated minimum rate, if it fails the

syndrome check or the CRC check, it then requests more parity bits from the encoder

buffer until both the syndrome check and the CRC check are successful.

6.3.11 Performance Study and Analysis

A. Test Condition

The proposed parallel implementation of our transform domain DVC codec is

evaluated and compared with the sequential implementation in terms of the complexity

performance and the RD performance using the following test conditions.

1) Video sequences: Foreman, Hall Monitor, Coastguard, and Soccer.

2) Number of frames: all frames of the test sequences have been used to evaluate the

RD performance which means 150 for Foreman, 165 for Hall Monitor, 150 for

Coastguard, and 150 for Soccer. However, since the average complexity

performance only shows negligible differences using various numbers of frames, we

only use the first 30 frames of all test sequences to evaluate the decoding

complexity.

135

3) Spatial and temporal resolution: QCIF at 15 Hz which means 7.5 Hz for the WZ

frames when GOP=2.

4) GOP length: 2, 4 and 8.

5) Eight RD points are considered for DVC codec, corresponding to eight 4×4

quantization matrices widely used in literature [19][37][39].

6) Key frames are coded by H.264/AVC Intra with constant quantization parameters as

defined in [19].

7) Software and hardware configuration: the decoding tasks are performed on the

Bright Beowulf Cluster Environment using 24 CPU processors of the running node

under Linux operating system. The codec is written in C/C++ code and compiled by

GCC 4.7.0 using OpenMP 3.1.

B. Complexity Performance

The CRG DVC codec is implemented in parallel as well as in serial, where the serial

implementation can be seen as the parallel version that uses only one CPU core. The

total decoding time of the parallel implementation and the serial implementation for all

the sequences and GOP sizes are compared in this section. More detailed computational

complexity on major decoding components for both parallel and serial implementations

are also presented here.

1) Parallel vs. Serial Implementation

Table 6.5 to Table 6.7 show the total decoding time of parallel and serial

implementation of CRG DVC for GOP size 2, 4 and 8, respectively. Please note that in

the following implementations, no network channel is used for data transmission

between the encoder and the decoder, i.e. video data is encoded and decoded locally.

However, for practical applications where encoded bit-streams are transmitted over a

real network channel, the results shown in Table 6.5 to Table 6.7 should refer to latency

136

since they include the time that data is requested through the feedback channel from the

source. As expected, the decoding time increases as bit-rate and GOP size increase since

there are more DCT bands to be decoded under higher bit-rate and more WZ frames to

be decoded for larger GOP sizes. It can be observed that the parallel implementation

using 24 CPU cores spends about less than 1/10 of the total decoding time with regard

to the serial implementation across most GOP settings, rates and sequences. The impact

of video content on the total decoding time meets the common expectation, i.e. the more

complex the video content is, more time requires to decode that sequence. The video

sequence that contains highest motion content here is Soccer, which therefore takes

longest time to decode. The same pattern can be seen from the slowest video content

tested here. Hall Monitor costs the shortest time to decode which is only about 1/5 for

lower bit-rates and ¼ for higher bit-rates compared to Soccer sequence under both

parallel and serial implementations.

For real time applications, a frame rate of 10 to 15 fps is required to eliminate any

flickering effects, which means 30 frames have to be decoded within 2 to 3 seconds. It

can be found in Table 6.5 that decoding Hall Monitor sequence with GOP size 2 in

parallel under the lowest quantization matrix using 24 CPU cores can be considered real

time.

Table 6.5 Total decoding time (in seconds) for CRG-DVC parallel (P)

implementation (using 24 CPU cores) vs. serial (S) implementation for GOP=2

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Foreman
P 6.66 7.14 7.93 14.96 19.85 31.25 31.08 45.65

S 68.51 71.49 87.04 165.85 201.97 297.47 329.12 468.44

Soccer
P 12.26 11.74 12.16 24.43 27.83 38.28 41.39 53.49

S 120.46 110.78 127.52 244.87 272.49 390.06 408.41 548.84

Coastguard
P 3.36 4.29 4.79 9.98 10.48 19.02 27.77 54.00

S 37.87 46.40 51.72 108.09 113.14 193.49 277.83 552.50

Hall
P 2.33 2.91 3.17 6.14 6.34 10.79 11.76 17.96

S 28.52 32.13 35.97 67.34 71.41 104.30 133.57 186.06

137

Table 6.6 Total decoding time (in seconds) for CRG-DVC parallel (P)

implementation (using 24 CPU cores) vs. serial (S) implementation for GOP=4

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Foreman
P 13.70 15.35 19.17 33.89 39.37 59.02 70.82 99.62

S 140.07 147.75 180.30 331.66 395.49 570.54 668.10 968.70

Soccer
P 21.63 19.78 26.10 44.57 49.08 70.78 74.51 108.54

S 205.40 198.71 239.76 437.01 488.37 688.07 742.33 1007.72

Coastguard
P 5.82 7.08 7.50 18.83 18.15 33.87 48.90 99.42

S 67.55 73.90 82.63 179.62 188.27 324.29 475.32 967.96

Hall
P 3.94 3.93 4.62 9.49 9.86 16.31 18.55 26.94

S 42.04 45.45 50.85 101.12 103.77 158.36 193.16 277.00

Table 6.7 Total decoding time (in seconds) for CRG-DVC parallel (P)

implementation (using 24 CPU cores) vs. serial (S) implementation for GOP=8

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Foreman
P 22.30 24.92 30.47 60.22 62.84 85.88 101.05 153.96

S 215.39 239.62 282.88 525.46 596.77 819.35 972.45 1382.66

Soccer
P 27.85 26.45 33.70 66.37 71.23 88.03 97.30 142.69

S 265.93 259.11 312.78 591.52 657.21 872.05 942.64 1351.99

Coastguard
P 7.72 9.54 10.94 25.37 27.73 47.33 61.68 126.77

S 86.08 101.77 119.37 248.53 270.39 451.60 621.62 1241.00

Hall
P 4.91 4.90 5.73 12.66 12.91 18.40 21.78 36.70

S 52.61 55.59 61.25 127.55 129.72 190.02 228.36 343.79

2) Component based complexity analysis

Table 6.8 - Table 6.10 show the decoding time for major computational components

using serial implementation. It can be seen that the time spend on each component is

increasing as GOP sizes increase and the majority computational complexity is spent on

SI creation, correlation noise modeling and LDPCA decoding. Among these

components, LDPCA decoding is the most time costing module and the time spent on

conditional bit probability calculation is trivial. For Foreman sequence coded with GOP

size 2, LDPCA decoding costs about 88% of the total decoding time for Q1 and a

significant 98% for Q8. For Soccer sequence coded with GOP size 2, LDPCA decoding

takes 93% of the total decoding time for Q1 and 98% for Q8 as well. It can also be seen

138

that the time spent on SI creation is almost constant regardless of bit-rates since the

complexity of motion estimation does not change according to the bit-rate. However,

the time spent on correlation noise modeling and conditional bit probability

computation are increasing with the increase of the bit-rates since there are more bands

to be decoded under higher bit-rates. Comparing the results of GOP size 2 and 4, it can

be seen that the time costing for each component is almost doubled. However, LDCPA

decoding for GOP size 8 is only about 1.3 times faster than using GOP size 4.

Table 6.8 Decoding time (in seconds) for Serial CRG-DVC components: SI

Creation (S), Correlation Noise Modeling (C), Conditional Bit Probability

Computation (P) and LDPCA Decoding (L) for GOP=2

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Foreman

S 3.73 3.75 3.79 3.78 3.75 3.73 3.76 3.77

C 4.27 4.27 5.67 6.59 6.80 6.90 7.08 7.04

P 0.30 0.32 0.48 0.59 0.55 0.64 0.63 0.59

L 60.14 63.08 76.99 154.73 190.67 285.98 317.43 456.84

Soccer

S 3.70 3.75 3.76 3.74 3.71 3.77 3.71 3.73

C 4.13 4.19 5.27 5.96 6.27 6.60 6.50 6.65

P 0.29 0.30 0.37 0.50 0.47 0.67 0.53 0.66

L 112.27 102.48 118.02 234.52 261.85 378.81 397.47 537.60

Coastguard

S 3.72 3.73 3.73 3.81 3.80 3.72 3.72 3.99

C 4.31 4.32 5.77 6.85 7.26 7.24 7.41 7.75

P 0.53 0.59 0.69 0.85 0.92 0.87 0.99 1.15

L 29.23 37.69 41.43 96.42 100.97 181.44 265.49 539.41

Hall

S 3.84 3.70 3.70 3.72 3.88 3.73 3.93 3.73

C 4.73 4.55 6.22 7.54 8.39 8.42 8.88 8.60

P 0.55 0.53 0.72 0.90 0.99 0.96 1.48 1.41

L 19.32 23.28 25.23 55.01 57.97 90.98 119.06 172.11

139

TABLE 6.9 Decoding time (in seconds) for Serial CRG-DVC components: SI

Creation (S), Correlation Noise Modelling (C), Conditional Bit Probability

Computation (P) and LDPCA Decoding (L) for GOP=4

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Foreman

S 5.45 5.40 5.40 5.36 5.38 5.37 5.39 5.42

C 6.36 6.37 7.94 9.20 9.74 10.20 10.12 10.36

P 0.62 0.55 0.60 0.83 0.77 1.07 0.99 1.09

L 127.53 135.32 166.21 316.02 379.30 553.57 651.28 951.51

Soccer

S 5.39 5.56 5.45 5.38 5.38 5.43 5.42 5.35

C 6.09 6.24 7.66 8.70 9.23 9.65 9.71 9.59

P 0.44 0.48 0.56 0.68 0.72 0.99 0.99 0.83

L 193.39 186.33 225.94 422.02 472.75 671.68 725.90 991.68

Coastguard

S 5.90 5.32 5.36 5.39 5.34 5.38 5.34 5.43

C 7.16 6.38 8.54 10.09 10.66 11.01 10.92 11.53

P 1.01 0.89 1.03 1.15 1.58 1.30 1.29 1.67

L 53.32 61.20 67.54 162.75 170.39 306.29 457.45 948.99

Hall

S 5.36 5.33 5.35 5.33 5.35 5.33 5.48 5.34

C 6.91 6.86 9.40 11.18 12.08 12.47 13.11 12.71

P 0.78 0.81 1.16 1.40 1.51 1.55 2.27 1.64

L 28.89 32.35 34.80 82.97 84.56 138.70 171.96 257.00

Table 6.10 Decoding time (in seconds) for Serial CRG-DVC components: SI

Creation (S), Correlation Noise Modelling (C), Conditional Bit Probability

Computation (P) and LDPCA Decoding (L) for GOP=8

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Foreman

S 6.35 6.42 6.32 6.32 6.35 6.33 6.33 6.32

C 7.42 7.52 9.31 10.93 11.57 11.76 11.93 12.06

P 0.61 0.78 0.71 0.84 0.93 0.95 1.20 1.05

L 200.89 224.77 266.36 507.09 577.57 799.95 952.62 1362.87

Soccer

S 6.30 6.43 6.33 6.31 6.50 6.30 6.29 6.32

C 7.11 7.29 8.87 10.24 11.04 11.29 11.20 11.43

P 0.51 0.55 0.65 0.79 0.88 0.90 0.93 0.99

L 251.90 244.72 296.76 573.91 638.45 853.20 923.86 1332.91

Coastguard

S 6.37 6.41 6.54 6.34 6.44 6.37 6.28 6.34

C 7.74 7.75 10.60 11.95 13.06 13.22 13.08 13.61

P 0.96 1.08 1.35 1.27 1.53 1.70 1.59 1.86

L 70.87 86.41 100.68 228.70 249.01 429.92 600.30 1218.81

Hall

S 6.32 6.35 6.31 6.33 6.32 6.31 6.34 6.27

C 8.20 8.17 11.20 13.50 14.39 15.00 15.07 15.11

P 0.97 1.03 1.49 1.98 1.92 2.91 2.47 2.00

L 36.99 39.91 42.07 105.46 106.78 165.40 204.08 320.04

Table 6.11 - Table 6.13 show the decoding time for the same major computational

components using parallel implementation. Comparing with serial implementation,

140

parallel implementation using 24 CPU cores can achieve about 10 times faster for each

component using all the quantization matrices and GOP sizes.

Table 6.11Decoding time (in seconds) for parallel CRG-DVC components

(using 24 CPU cores): SI Creation (S), Correlation Noise Modeling (C),

Conditional Bit Probability Computation (P) and LDPCA Decoding (L) for

GOP=2

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Foreman

S 0.29 0.28 0.28 0.28 0.28 0.28 0.28 0.29

C 0.19 0.19 0.26 0.32 0.35 0.37 0.37 0.37

P 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.04

L 6.12 6.62 7.33 14.28 19.12 30.51 30.33 44.89

Soccer

S 0.29 0.30 0.29 0.29 0.29 0.28 0.28 0.29

C 0.19 0.19 0.25 0.30 0.34 0.35 0.36 0.37

P 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.03

L 11.73 11.20 11.57 23.76 27.10 37.55 40.66 52.74

Coastguard

S 0.29 0.28 0.27 0.27 0.27 0.27 0.27 0.28

C 0.20 0.20 0.27 0.34 0.38 0.40 0.40 0.41

P 0.06 0.06 0.07 0.08 0.09 0.08 0.09 0.10

L 2.77 3.71 4.12 9.22 9.67 18.20 26.94 53.15

Hall

S 0.28 0.28 0.28 0.28 0.27 0.27 0.28 0.28

C 0.21 0.21 0.30 0.38 0.42 0.44 0.45 0.45

P 0.03 0.03 0.04 0.05 0.05 0.05 0.06 0.06

L 1.77 2.35 2.51 5.37 5.52 9.94 10.90 17.10

Table 6.12 Decoding time (in seconds) for parallel CRG-DVC components

(using 24 CPU cores): SI Creation (S), Correlation Noise Modelling (C),

Conditional Bit Probability Computation (P) and LDPCA Decoding (L) for

GOP=4

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Foreman

S 0.40 0.39 0.39 0.40 0.40 0.40 0.40 0.39

C 0.29 0.29 0.38 0.48 0.52 0.55 0.56 0.56

P 0.02 0.02 0.03 0.04 0.04 0.04 0.05 0.05

L 12.93 14.59 18.30 32.89 38.31 57.93 69.72 98.53

Soccer

S 0.41 0.41 0.40 0.40 0.40 0.40 0.40 0.40

C 0.28 0.28 0.37 0.45 0.50 0.53 0.54 0.54

P 0.02 0.02 0.03 0.03 0.04 0.04 0.04 0.05

L 20.87 19.02 25.23 43.60 48.04 69.70 73.43 107.46

Coastguard

S 0.39 0.39 0.38 0.38 0.39 0.39 0.39 0.40

C 0.30 0.30 0.41 0.51 0.57 0.60 0.60 0.60

P 0.09 0.09 0.10 0.11 0.11 0.12 0.12 0.12

L 4.97 6.24 6.54 17.73 16.97 32.66 47.69 98.21

Hall

S 0.38 0.38 0.38 0.39 0.39 0.38 0.39 0.38

C 0.32 0.32 0.45 0.56 0.62 0.66 0.67 0.67

P 0.04 0.04 0.06 0.08 0.08 0.09 0.09 0.09

L 3.12 3.12 3.65 8.36 8.66 15.06 17.29 25.69

141

Table 6.13 Decoding time (in seconds) for parallel CRG-DVC components

(using 24 CPU cores): SI Creation (S), Correlation Noise Modelling (C),

Conditional Bit Probability Computation (P) and LDPCA Decoding (L) for

GOP=8

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Foreman

S 0.46 0.46 0.46 0.46 0.47 0.46 0.46 0.46

C 0.34 0.34 0.45 0.57 0.62 0.65 0.65 0.66

P 0.03 0.03 0.03 0.04 0.05 0.05 0.06 0.06

L 21.40 24.03 29.44 59.03 61.58 84.60 99.76 152.66

Soccer

S 0.48 0.48 0.48 0.48 0.48 0.47 0.47 0.47

C 0.33 0.33 0.44 0.54 0.60 0.63 0.64 0.64

P 0.02 0.02 0.03 0.04 0.05 0.05 0.05 0.06

L 26.95 25.55 32.67 65.21 69.99 86.75 96.03 141.41

Coastguard

S 0.45 0.46 0.46 0.45 0.46 0.45 0.45 0.45

C 0.36 0.35 0.49 0.61 0.68 0.71 0.71 0.72

P 0.09 0.10 0.11 0.11 0.11 0.12 0.13 0.13

L 6.74 8.54 9.79 24.08 26.35 45.91 60.27 125.36

Hall

S 0.45 0.45 0.46 0.45 0.46 0.45 0.45 0.45

C 0.38 0.38 0.54 0.67 0.75 0.79 0.80 0.80

P 0.05 0.05 0.08 0.09 0.10 0.10 0.11 0.12

L 3.95 3.95 4.56 11.33 11.48 16.93 20.30 35.21

C. Rate-Distortion Performance

(1) CRG Parallel DVC vs. DISCOVER

The RD performance of the chosen coding solutions for all the selected video

sequences is presented in Figure 6.14 and Figure 6.15. The results show that the CRG

parallel DVC performs very similar to the DISCOVER codec for slow motion

sequences using short GOP size. However, it dramatically outperforms DISCOVER for

video sequences with high motion content, especially for higher bit-rate and longer

GOP sizes. The RD gains are mainly brought by the better quality of SI. It is a big

challenge for most DVC codecs to generate good SI under critical conditions that the

motion is intense and GOP sizes are big.

The Foreman and Soccer sequences are considered to be the high motion video

contents, whereas Hall Monitor and Coastguard sequences are seen as relatively low

motion video contents. As expected, the Foreman and Soccer sequences give better

gains in RD performance, particularly the Foreman sequence that achieves the highest

RD gains with regards to the DISCOVER codec. Taking a close look at Figure 6.14 for

142

the Foreman sequence, notably for the last RD point, there is approximately 1.6 dB for

GOP size 8. Similar gains can be observed from the Soccer sequence with about 1.26

dB for GOP size 2.

(a) Foreman: GOP=2 (b) Soccer: GOP=2

(c) Foreman: GOP=4 (d) Soccer: GOP=4

(e) Foreman: GOP=8 (f) Soccer: GOP=8

Figure 6.14 RD Performance for Foreman and Soccer sequences

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

0 100 200 300 400 500 600

P
SN

R
, d

B

Rate, kbit/s

CRG Parallel DVC

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra)
27

28

29

30

31

32

33

34

35

36

37

38

39

0 200 400 600 800

P
SN

R
, d

B

Rate, kbit/s

CRG Parallel DVC
DISCOVER
H.264/AVC(Intra)
H.264/AVC(No Motion)
H.263+(Intra)

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

0 100 200 300 400 500 600

P
SN

R
, d

B

Rate, kbit/s

CRG Parallel DVC
DISCOVER
H.264/AVC(Intra)
H.264/AVC(No Motion)
H.263+(Intra)

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

0 100 200 300 400 500 600

P
SN

R
, d

B

Rate, kbit/s

CRG Parallel DVC
DISCOVER
H.264/AVC(Intra)
H.264/AVC(No Motion)
H.263+(Intra)

26

27

28

29

30

31

32

33

34

35

36

37

38

0 100 200 300 400 500 600

P
SN

R
, d

B

Rate, kbit/s

CRG Parallel DVC

DISCOVER

H.264/AVC(Intra)

H.264/AVC(No Motion)

H.263+(Intra)
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

0 200 400 600 800

P
SN

R
, d

B

Rate, kbit/s

CRG Parallel DVC
DISCOVER
H.264/AVC(Intra)
H.264/AVC(No Motion)
H.263+(Intra)

143

(a) Hall Monitor: GOP=2 (b) Coastguard: GOP=2

(c) Hall Monitor: GOP=4 (d) Coastguard: GOP=4

(e) Hall Monitor: GOP=8 (f) Coastguard: GOP=8

Figure 6.15 RD Performance for Hall Monitor and Coastguard sequences

However, the RD curves in Figure 6.15 show slightly lower performance for the

sequences of Hall Monitor and Coastguard. The RD curve of the proposed codec

overlaps DISCOVER’s for the Hall Monitor sequence for GOP size 2 and 4, but a

notable gain of up to 1 dB can be observed from the longest GOP size. Slight

28

29

30

31

32

33

34

35

36

37

38

39

40

41

0 100 200 300 400 500

P
SN

R
, d

B

Rate, kbit/s

CRG Parallel DVC
DISCOVER
H.264/AVC(Intra)
H.264/AVC(No Motion)
H.263+(Intra)

27

28

29

30

31

32

33

34

35

36

37

0 100 200 300 400 500 600

P
SN

R
, d

B

Rate, kbit/s

CRG Parallel DVC
DISCOVER
H.264/AVC(Intra)
H.264/AVC(No Motion)
H.263+(Intra)

28

29

30

31

32

33

34

35

36

37

38

39

40

41

0 100 200 300 400 500

P
SN

R
, d

B

Rate, kbit/s

CRG Parallel DVC
DISCOVER
H.264/AVC(Intra)
H.264/AVC(No Motion)
H.263+(Intra) 26

27

28

29

30

31

32

33

34

35

36

0 200 400 600

P
SN

R
, d

B

Rate, kbit/s

CRG Parallel DVC
DISCOVER
H.264/AVC(Intra)
H.264/AVC(No Motion)
H.263+(Intra)

28

29

30

31

32

33

34

35

36

37

38

39

40

41

0 100 200 300 400 500

P
SN

R
, d

B

Rate, kbit/s

CRG Parallel DVC
DISCOVER
H.264/AVC(Intra)
H.264/AVC(No Motion)
H.263+(Intra)

25

26

27

28

29

30

31

32

33

34

35

36

0 100 200 300 400 500 600

P
SN

R
, d

B

Rate, kbit/s

CRG Parallel DVC
DISCOVER
H.264/AVC(Intra)
H.264/AVC(No Motion)
H.263+(Intra)

144

performance loss of up to 0.3 dB can be seen from the Coastguard sequence using GOP

size 2, whereas the RD performances for GOP size 4 are extremely close and some

small gains of about 0.2 dB can be noted under high bit-rate for GOP size 8.

(2) CRG parallel DVC vs. Standard video coding solutions

The conventional video coding solutions evaluated here are those widely used

standard video codecs. When compared with the RD performance of the CRG parallel

DVC codec, it can be concluded that it out performs H.264/AVC Intra for low motion

sequences under almost all the test conditions, except GOP size 8 for Coastguard

sequence. There is also performance gain for more complex video sequence such as

Foreman coded with GOP size 8 and Soccer with GOP size 2.

It is usually expected that WZ codec can hardly beat the performance of H.264/AVC

No Motion. However, the CRG parallel DVC codec shows remarkable RD gains for

high motion video sequences. Foreman sequence with GOP size 8, Soccer sequence

with GOP size 2 and Coastguard sequence using GOP sizes 2 and 4, all performs better

than H.264/AVC No Motion. However, there are no significant RD performance

changes for the Hall Monitor sequence, i.e. the performance remains above H.264/AVC

Intra and still below H.264 No Motion.

It can also be observed that, for low motion sequences such as Hall Monitor and

Coastguard, CRG parallel DVC remains above or similar to H.264/AVC Intra under

most situations. However, for high motion sequences such as Foreman and Soccer, the

RD performance is still below H.264/AVC Intra for most settings. Comparing with

H.263+ (Intra) codec, CRG parallel DVC is consistently better with exception for the

most complex sequence Soccer, which only shows superior RD performance using GOP

size 2.

145

6.4 Conclusion

First of all, a low complexity implementation of a LDPCA code based DVC encoder,

on a TMS320DM6437 (DaVinci) DSP is presented in this chapter. We also

implemented the DVC decoder on a general purpose PC. The performance of the DVC

codec is verified on a DSP-PC architecture. Test results show that an improvement in

speed of more than 29 times can be obtained against a non-optimized implementation.

The optimized implementation shows that DM64x DSP is a suitable platform for the

implementation of DVC encoder. As future work, this DSP based encoder can be used

for online coding task, enabling real-time DVC applications.

A PC-HPC system architecture with emphasis on the parallel implementation of a

transform domain DVC decoder is presented in the rest of this chapter. The

experimental results show that the decoder exploiting 24 CPU cores in parallel

processing can achieve about 10 times speedup under various bit-rates and GOP sizes

compared to the serial implementation. Although the decoding speed is still far from

real time requirement, it is strongly believed that a number of approaches can be

considered to bring huge speedup to the decoder side to meet the real time requirements.

Examples of these approaches include introducing a simple rate estimation module at

the encoder side to remove the feedback channel, skip blocks that does not have

significant changes over time, using early stop criteria for LDPCA decoding, which

remain as our future work.

146

Chapter 7

Conclusions & Future Work

This thesis has proposed contributions to investigate and exploit side information to

improve DVC RD performance, provided solution to achieve consistent quality of

decoded video frames over time, proposed efficient DVC implementations across

different hardware platforms. These will be summarized in Section 7.1 followed by

future works on open research challenges in Section 7.2.

7.1 Conclusions

Chapter 2 reviewed the theoretical background and the development of DVC. This

review identified the major research challenges in this field and addressing these

problems is the objective and the main contribution of this thesis. The conclusions from

this Chapter are 1) DVC can significantly benefit numerous emerging applications that

require very low encoding complexity and hence it deserves wide attention from the

research communities; 2) Most recent DVC developments show that despite DVC can

already achieve very similar RD performance for some test sequences when compared

to the conventional video codecs, it is still not ready from practical use and deployments.

Therefore, further research work in this field is necessary; 3) Some of the major

challenges in DVC have been identified and they are in the areas of side information

creation and refinement, consistent quality control and efficient codec implementations.

To address the challenges identified in Chapter 2, Chapter 3 investigates the impacts

of using reference frames as side information on RD performance and proposed a

solution to improve the accuracy of motion search and reduce decoding complexity. The

experimental results reveal that if the conditional bit probability for LDPCA decoder is

147

computed for quantized WZ frame, using reference frames as SI is capable to achieve

similar or sometimes even better coding efficiency than the widely used MCI frames.

The proposed MRP method can significantly reduce decoder complexity with no loss in

RD performance. This work brings new insight and strength to the use of reference

frames. It opens attractive perspectives that allow us to better understand the role of

reference frames in DVC.

Chapter 4 presents a novel pixel granularity SI refinement framework to reduce the

block artifacts introduced by widely used block based frame interpolation solutions. It

also suggests a parallel implementation to improve the decoding speed within a state-of-

the-art transform domain DVC codec. The experimental results show significant

improvements on RD performance over the same codec without the proposed

algorithms. The parallel implementation also shows high utilization of resources and

substantial speedup when compared with the serial implementation. The updated SI

frames during the SIS process demonstrate considerable improvement in both subjective

and objective image quality against the widely used block based SIS algorithms. The

proposed SIS framework can be integrated into any modern transform domain DVC

codec to achieve a better RD performance especially for video sequences with complex

motion and coded with long GOP sizes. The framework can also be re-configured to

exploit more efficient optical flow algorithms to improve the performance and further

reduce complexity. Furthermore, the proposed parallel implementation brings the state-

of-the-art DVC codec one step closer to practical use.

As aforementioned, consistent quality of decoded video frames is sometimes

favoured in real applications and therefore, a quality control mechanism is very much

needed. To address this problem, Chapter 5 proposes a solution to control the video

frame quality for coding both key frames and WZ frames through two distortion-

148

quantization models. As expected, simulation results show that the proposed method

closely meet user defined target quality and smooth out the distortion variation for slow

motion sequences and performs similar to fixed quantization settings obtained from

offline trainings for fast motion sequences. However, it is also expected to have some

RD performance loss as DVC usually require slightly better frame quality for key

frames over WZ frames to achieve a better RD performance [19], but the quality control

algorithm may not meet this condition.

An efficient implementation taking into account both software and hardware

features and restrictions is essential for practical use and deployments of DVC. Chapter

6 demonstrates two fully implemented DVC codecs using different hardware

architectures. The DSP-PC architecture shows that under the restriction of memory and

processing power, DVC encoder is still capable to perform in a rather fast speed. The

proposed optimization shows more than 29 times speedup against a non-optimized

implementation. The conclusion drawn from this implementation is that DM64x DSP is

a suitable platform for the implementation of DVC encoder. The PC-HPC architecture

demonstrates a highly efficient parallel implementation to maximize the utilization of

system resources at the decoder side. The experimental results show that the parallelized

decoder can achieve about 10 times speedup under various bit-rates and GOP sizes

compared to the serial implementation. The RD performance of this implementation

beats one of the best-performed DVC codec (DISCOVER codec). Although the

decoding speed is not yet satisfactory for real time requirement, it is strongly believed

that a number of approaches can be considered to bring huge speedup to the decoder

side for real time applications. We have also provided a thorough specification for the

file structure of encoder output. This has not yet been discussed elsewhere in the

149

literature but it is a key protocol for encoder and decoder to communicate information

and it is also essential for future standardization of DVC codec.

The research work presented in this thesis has resulted in 2 IEEE journal papers

[36][88], 2 conference papers [89][90] and a highly efficient DVC codec deployed in

the CRG research group.

7.2 Future Works

In summary, this thesis has proposed various solutions to bring DVC one step

forward to practical use. The suggested techniques are capable of improving the overall

RD performance and accelerating both of the encoding and decoding speed. However,

future research work is still necessary to further enhance DVC performance. Possible

research areas are summarized below.

7.2.1 Further Investigation on Computation of Conditional Bit

Probability in Quantized Coefficient Domain

This thesis found that using reference frames as SI directly performs not worse than

widely used interpolated frames, when the computation of conditional bit probability is

in quantized symbol domain. When this information is calculated in non-quantized

symbol domain, the RD performance is expected to be better as there is no information

loss in the process. However, under certain distortion restraint, if the computation of the

bit probability in quantized domain is already sufficient to meet the target distortion, it

is not necessary to carry out this highly complex computation in non-quantized domain,

which can bring significant complexity gains, especially when EM algorithm is adopted

to consistently update bit probabilities.

150

7.2.2 Extend the Pixel Granularity SI Synthesis Framework to

Use Extrapolated Frames

For real-time applications, using frame interpolation for SI generation may not be

applicable as frame interpolation changes the original frame order and this requires

frame buffering which may not be desirable. Furthermore, longer GOP sizes will have

need of bigger buffer size which can increase the delay. Frame extrapolation can be one

of the possible solutions. The proposed SI synthesis framework in this thesis is based on

frame interpolation, but it can be extended in the future to use extrapolated frames to

generate SI. Previously decoded frames can be used to extrapolate the SI for decoding

the next frame according to the original frame order.

7.2.3 Efficient Quality Control Algorithm without Feedback

Channel

The quality control algorithm proposed in this thesis requires sending back some

information from the decoder to the encoder side to facilitate the distortion-quantization

modelling process. Since a feedback channel is usually not desired for practical

applications, an encoder side rate allocation algorithm can be integrated into our DVC

codec. Therefore, our quality control algorithm will not be able to obtain the residual

information from the decoder side. However, the fact that the conventional video

decoder is usually far simpler than the encoder can be exploited. Therefore, in the future,

key frames decoder can be added to the encoder side to generate the residual statistic

information of the decoded key frames, facilitating the estimation of the distortion of

AC coefficients. And hence, no information is required to be sent back to the encoder

any more.

151

7.2.4 More Efficient and Practical DVC Implementation

Like most research work in the literatures, the DVC implementations in this thesis

have only considered the brightness colour component. However, for realistic

applications coloured output frames are usually preferred. As a future work, all the

colour components can be taken into account in DVC. In this case, the correlation

between different colour components and the correlation of the same colour component

between neighbouring frames can be exploited.

As mentioned in section 7.2.3, an encoder rate control is usually required for

practical DVC applications. It can remove the feedback channel and significantly reduce

the decoding complexity. To further speedup the DVC decoder, a fast stopping criteria

can also be introduced to accelerate the iterative decoding procedure. In addition, more

hardware features such as GPGPU can be exploited to improve the parallel

implementation as well.

Furthermore, more computationally efficient channel codes such as polar code [91]

can be considered for practical DVC codec design. Like turbo and LDPC codes, polar

codes facilitate near-capacity operation. However, polar codes do not require an

iterative decoder, and hence can provide much lower coding complexity. This may

increase the opportunities to use DVC for real-time applications.

Last but not least, since power restricted devices cannot afford to run a DVC

decoder due to its high complexity, a transcoder can be introduced to achieve a “simple-

to-simple” transmission of video data. An intuitive solution is to convert the decoded

video frames into conventionally encoded data in a centralized base-station and then

forward it to the target terminal. This base-station serves as a transcoder to exploit the

152

fact that DVC encoder and conventional video decoder can perform fast coding tasks,

bringing forth low complexity end-to-end encoding as well as decoding.

153

References

[1] “Coding of audio-visual objects-Part 2: Visual,” in ISO/IEC 14496-2 (MPEG-4

Visual Version 1), Apr. 1999.

[2] “Draft ITU-T recommendation and final draft international standard of joint video

specification (ITU-T Rec. H.264/ISO/IEC 14496-10 AVC),” in Joint Video Team

(JVT) of ISO/IEC MPEG and ITU-T VCEG, JVTG050, 2003.
[3] B. Girod, A. Aaron, S. Rane and D. Rebollo-Monedero, “Distributed Video Coding,”

Proceedings of the IEEE, vol. 93, no. 1, pp. 71-83, Jan. 2005.

[4] C. Brites and F. Pereira, “Correlation noise modeling for efficient pixel and

transform domain Wyner-Ziv video coding,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 18, no. 9, pp. 1177–1190, 2008.

[5] F. Pereira, C. Brites, J. Ascenso, and M. Tagliasacchi, “Wyner-Ziv video coding: a

review of the early architectures and further developments,” in Proceedings of IEEE

International Conference on Multimedia and Expo (ICME ’08), pp. 625–628,

Hannover, Germany, June 2008.

[6] J. D. Slepian and J. K. Wolf, “Noiseless coding of correlated information sources,”

IEEE Transactions on Information Theory, vol. IT-19, pp. 471–480, July 1973.

[7] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding with side

information at the decoder,” IEEE Transactions on Information Theory, vol. IT-22,

no. 1, pp. 1–10, Jan. 1976.

[8] C.E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical

Journal, vol. 27, pp. 379–423, 623-656, July, October, 1948.

[9] R. Puri and K. Ramchandran, “PRISM: a new robust video coding architecture

based on distributed compression principles,” in Proceedings of Allerton

154

Conference on Communication, Control and Computing, Allerton, USA, Oct. 2002.

[10] R. Puri, A.Majumdar, and K. Ramchandran, “PRISM: a video coding paradigm

with motion estimation at the decoder,” IEEE Transactions on Image Processing,

vol. 16, no. 10, pp. 2436–2448, 2007.

[11] A. Aaron, R. U. I. Zhang, and B. Girod, “Wyner-Ziv coding of motion video,” in

Proceedings of the 36
th

 Asilomar Conference on Signals Systems and Computers, pp.

240–244, Pacific Grove, Calif, USA, Nov. 2002.

[12] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the

H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 13, no. 7, pp. 560–576, 2003.

[13] Claude Berrou, Alain Glavieux and Punya Thitimajshima, “Near Shannon limit

error-correcting coding and decoding: Turbo codes,” International Communications

Conference (ICC), Geneva, Switzerland, May 1993, pp. 1064-1070.

[14] R. G. Gallager, “Low Density Parity Check Codes,” Monograph, M.I.T. Press,

1963.

[15] Toby Berger, “Rate-distortion theory: A mathematical basis for data compression, ”

Englewood Cliffs, NJ: Prentice-Hall, 1971.

[16] Peterson, W. W. and Brown, D. T., “Cyclic Codes for Error Detection,”

Proceedings of the IRE 49 (1): 228–235, Jan. 1961.

[17] Hocquenghem, A., “Codes correcteurs d'erreurs”, Chiffres (in French) (Paris) 2:

147–156, Sep. 1959.

[18] R. C. Bose, D. K. Ray-Chaudhuri, “On A Class of Error Correcting Binary Group

Codes”, Information and Control, 3 (1): 68–79, Mar. 1960.

155

[19] X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D. Kubasov and M. Ouaret, “The

DISCOVER codec: Architecture, Techniques and Evaluation,” Picture Coding

Symposium 2007, Lisbon, Portugal, Nov. 2007.

[20] The DISCOVER Codec Evaluation, http://www.img.lx.it.pt/~discover/home.html.

[21] D. Varodayan, A. Aaron, and B. Girod, “Rate-adaptive distributed source coding

using low-density parity-check codes,” in Proceedings of the 39
th

 Asilomar

Conference on Signals, Systems and Computers, pp. 1203–1207, Pacific Grove,

Calif., USA, Nov. 2005.

[22] D. Varodayan, A. Aaron, and B. Girod, “Rate-adaptive codes for distributed source

coding,” EURASIP Signal Processing Journal, vol. 86, no. 11, pp. 3123–3130, Nov. 2006.

[23] D. Kubasov, J. Nayak, C. Guillemot, “Optimal reconstruction in Wyner-Ziv video

coding with multiple side information,” IEEE International Workshop on

Multimedia Signal Processing, Crete, Greece, Oct. 2007.

[24] ITU Telecom. Standardization Sector of ITU, “Video coding for low bitrate

communication,” Draft ITU-T Recommendation H.263 Version 2, Sep. 1997.

[25] J. Ascenso and F. Pereira, “Integrated software tools for distributed video coding,”

VISNET II Deliverable D1.2.3, Jun. 2009.

[26] C. Brites, J. Ascenso, J. Pedro and F. Pereira, “Evaluating a feedback channel-

based transform domain Wyner-Ziv video codec,” Signal Process.: Image Commun.,

vol. 23, p.269 , 2008.

[27] A. Abou-Elailah, F. Dufaux, J. Farah, M. Cagnazzo, B. Pesquet-Popescu, “Fusion

of Global and Local Motion Estimation for Distributed Video Coding,” IEEE

Transactions on Circuits and Systems for Video Technology, Vol. 23, Issue 1, Jan.

2013.

[28] H Luong, L Raket, X Huang, S Forchhammer, “Side Information and Noise

156

Learning for Distributed Video Coding using Optical Flow and Clustering,” IEEE

Transactions on Image Processing 21 (12), 4782-4796, 2012.

[29] A. Aaron, S. Rane, E. Setton and B. Girod, “Transform- Domain Wyner-Ziv Codec

for Video,” Visual Communications and Image Processing (VCIP 2004), San Jose,

USA, Jan. 2004.

[30] J. Ascenso, C. Brites and F. Pereira, “Improving frame interpolation with spatial

motion smoothing for pixel domain distributed video coding,” 5th EURASIP

Conference on Speech and Image Processing, Multimedia Communications and

Services, Slovak Republic, Jul. 2005.

[31] L. Natario, C. Brites, J. Ascenso and F. Pereira, “Extrapolating Side Information

for Low-Delay Pixel Domain Distributed Video Coding,” Int. Workshop on Very

Low Bitrate Video Coding, Sep. 2005.

[32] Borchert, S., R. P. Westerlaken, R. Klein Gunnewiek, and R. L. Lagendijk, “On

Extrapolating Side Information in Distributed Video Coding,” 26
th

 Picture Coding

System, Lisbon, Portugal, Nov. 2007.

[33] A. B. B. Adikari, W. A. C. Fernando, W. A. R. J. Weerakkody, “Multiple Side

Information Streams for Distributed Video Coding,” IET electronics Letters, vol. 42,

issue 25, pp. 1447-1449, Mar., 2006.

[34] Pearl Judea, “Reverend Bayes on inference engines: A distributed hierarchical

approach,” Proceedings of the Second National Conference on Artificial Intelligence,

Pittsburgh, PA. Menlo Park, California, pp. 133–136, 1982.

[35] D. Varodayan, D. Chen, M. Flierl and B. Girod, “Wyner-Ziv coding of video with

unsupervised motion vector learning,” Signal Process.: Image Commun., vol. 23,

pp. 369–378, Jun. 2008.

157

[36] M. Zheng, F. H. Ali, “Exploration and Exploitation of Reference Frames in

Distributed Video Coding,” IEEE Signal Processing Letters, vol. 19, issue 7, pp.

411 – 414, Jul. 2012.

[37] R. Martins, C. Brites, J. Ascenso and F. Pereira, “Statistical motion learning for

improved transform domain Wyner-Ziv video coding,” Image Processing, IET, vol.

4, no. 1, pp. 28-41, Feb. 2010.

[38] X. Artigas and L. Torres, “Iterative generation of motion-compensated side

information for distributed video coding,” in 2005 IEEE Int. Conf. on Image

Processing, vol. 1, pp. I-833-6, Sep. 2005.

[39] R. Martins, C. Brites, J. Ascenso, F. Pereira, “Refining side information for

improved transform domain Wyner-Ziv video coding,” IEEE Trans. on Circuits and

Systems for Video Technology, pp. 1327–1341, Sep. 2009.

[40] M. B. Badem, M. Mrak and W. A. C. Fernando, “Side information refinement

using motion estimation in DC domain for transform-based distributed video

coding”, IET Electron. Lett., vol. 44, no. 16, pp. 965 -966, 2008.

[41] M. B. Badem, W. A. C. Fernando, J. L. Martinez and P. Cuenca, “An iterative side

information refinement technique for transform domain distributed video coding,”

in 2009 Proc. IEEE Int. Conf. on Multimedia an Expo, New York, 2009, pp. 177-

180.

[42] N. Merhav and V. Bhaskaran, “Fast inverse motion compensation algorithms for

MPEG and for partial DCT information,” J. Vis. Commun. Image Repres., vol. 7,

pp.395-410, 1996.

[43] J. Ascenso, C. Brites and F. Pereira, “Motion compensated refinement for low

complexity pixel based distributed video coding,” in Proc. IEEE Conf. Advanced

Video Signal Based Surveillance, pp.593, 2005.

158

[44] A. B. B. Adlikari, W. A. C. Fernando, W. A. R. T. Weerakkody and H. K.

Arachchi, “A sequential motion compensation refinement technique for distributed

video coding of Wyner-ziv frames,” in Conf. on Image Processing, Atlanta, 2006,

pp. 597-600.

[45] A. Aaron, S. Rane, and B. Girod, “Wyner-Ziv video coding with hash-based

motion compensation at the receiver”, IEEE Int. Conf. Image Processing, 2004.

[46] A. Trapanese, M. Tagliasacchi, S. Tubaro, J. Ascenso, C. Brites and F. Pereira,

“Improved correlation noise statistics modeling in frame-based pixel domain

Wyner-Ziv video coding,” Proc. of International Workshop on Very Low Bitrate

Video Coding, pp.1-4, 2005.

[47] C. Brites, J. Ascenso, F. Pereira, “Modeling Correlation Noise Statistics at Decoder

for Pixel Based Wyner-Ziv Video Coding,” Picture Coding Symposium (PCS),

Beijing, China, Apri. 2006.

[48] C. Brites, J. Ascenso and F. Pereira, “Studying temporal correlation noise

modeling for pixel based Wyner-Ziv video coding,” Proc. of IEEE International

Conference on Image Processing, pp.273-276, 2006.

[49] J. Slowack, S. Mys, J. Skorupa, P. Lambert, R. Van de Walle, “Accounting for

quantization noise in online correlation noise estimation for distributed video

coding,” Proceedings of Picture Coding Symposium, 2009.

[50] X. Huang, S. Forchhammer, “Improved virtual channel noise model for transform

domain Wyner–Ziv video coding,” Proceedings of IEEE International Conference

on Acoustics, Speech and Signal Processing, 2009.

[51] H. V. Luong , X. Huang and S. Forchhammer, “Adaptive noise model for

transform domain Wyner-Ziv video using clustering of DCT blocks,” Proc. IEEE

Int. Workshop Multimedia Signal, pp.1-6, 2011.

159

[52] J. Song, K. Wang, H. Liu, Y. Li, C. Wu, “Progressive correlation noise refinement

for transform domain Wyner-Ziv Video Coding,” 18th IEEE International

Conference on Image Processing (ICIP), Brussels, Belgium, Sep. 2011.

[53] G. R. Esmaili and P. C. Cosman, “Wyner-Ziv video coding with classified

correlation noise estimation and key frame coding mode selection,” IEEE Trans.

Image Process., vol. 20, no. 9, pp.2463-2474, 2011.

[54] Huynh Van Luong,S. Forchhammer, “Noise residual learning for noise modeling

in distributed video coding,” Picture Coding Symposium (PCS), Krakow, pp. 157-

160, May 2012.

[55] G. Wu, L. Sun and F. Huang, “Consistent-Quality Distributed Video Coding

Framework,” PCM'07 Proceedings of the multimedia 8th Pacific Rim conference on

Advances in multimedia information processing, 2007.

[56] A. Roca, M. Morbee, J. Prades-Nebot, and Edward Delp, “A distortion control

algorithm for pixel-domain Wyner-Ziv video coding,” in Proc. Picture Coding

Symposium, Lisbon, Portugal, Nov. 2007.

[57] S. Sofke, F. Pereira, E. Müller, “Dynamic quality control for transform domain

Wyner–Ziv video coding,” in EURASIP Journal on Image and Video Processing,

Special Issue: Distributed Video Coding, 2009.

[58] Hongbin Liu, Debin Zhao, Siwei Ma and Wen Gao, “Constant quality control of

Wyner-Ziv frames in DCT domain distributed video coding,” ICIC Express Letters,

Vol. 5, Number 7, Jul. 2011.

[59] R. Oh, J. Park, and B. Jeon, “Fast implementation of Wyner-Ziv Video codec using

GPGPU,” in Proc. IEEE International Symposium on Broadband Multimedia

Systems and Broadcasting 2010 (BMSB 2010), pp. 1-5, Mar. 2010.

160

[60] J. Fung and S. Mann, “Computer vision signal processing on graphics processing

units,” in Proceedings of the IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP 2004), pp. 83-89, Montreal, Quebec, Canada, May

17-21 2004.

[61] A. Corrales-Garcia, J.L. Martinez, G. Fernandez-Escribano, F. J. Quiles, W. A. C.

Fernando, “Wyner-Ziv frame parallel decoding based on multicore processors,”

2011 IEEE 13
th

 International Workshop on Multimedia Signal Processing (MMSP),

Hangzhou, China, pp. 1-6, 17-19 Oct. 2011.

[62] Y. S. Pai, Y. C. Shen, J. L. Wu, “High efficient distributed video coding with

parallelized design for LDPCA decoding on CUDA based GPGPU,” Journal of

Visual Communication and Image Representation, vol. 23, Issue 1, pp. 63–74, Jan.

2012.

[63] NVIDIA Corporation, “NVIDIA CUDA C Programming Guide,” Santa Clara, CA,

2010.

[64] J. Park, B. Jeon, "Parallel transform domain Wyner-Ziv video encoding scheme for

standard definition video," 2012 IEEE International Symposium on Broadband

Multimedia Systems and Broadcasting (BMSB), pp. 1-4, Seoul, 27-29 Jun. 2012.

[65] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, J. McDonald, “Parallel

Programming in OpenMP,” Morgan Kaufmann, 2000.

[66] A. C. García, J. L. Martínez, G. F. Escribano, F. J. Quiles, “Toward fast Wyner-

Ziv video decoding on multicore processors,” Multimedia Tools and Applications,

Springer, Apri. 2012.

[67] J. Chen, T. Zhang, W. Cui and W. Wu, “Reducing quantisation loss and improving

side information in distributed video coding”, IET Electronics Letters, vol. 47, issue

1, pp. 30-31, Jan. 2011.

161

[68] A.P.Dempster, N.M.Laird, D.B. Rubin, “Maximum Likelihood from Incomplete

Data via the EM Algorithm,” Journal of the Royal Statistical Society, Series B 39

(1): 1–38, 1977.

[69] H.264/AVC Reference Software, version JM18.2, URL:

http://iphome.hhi.de/suehring/tml/download/.

[70] T. Brox, A. Bruhn, N. Papenberg and J. Weickert, “High accuracy optical flow

estimation based on a theory for warping,” in Proc. European Conf. on Computer

Vision, vol. 4, pp. 25–36, 2004.

[71] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artificial

Intelligence, vol.17, pp. 185-203, 1981.

[72] Y. Adato, O. Ben-Shahar, etc. Available: http://code.google.com/p/optflowb/.

[73] S. Baker, D. Scharstein, J.P. Lewis, S. Roth, M.J. Black, R. Szeliski, Avaliable:

http://vision.middlebury.edu/flow.

[74] K. Chen, D. A. Lorenz, “Image sequence interpolation based on optical flow,

segmentation, and optimal control,” IEEE Trans. on Image Processing, vol. 21, no.

3, 2012, pp. 1020-1030.

[75] N. Sundaram, T. Brox, and K. Keutzer, “Dense point trajectories by GPU-

accelerated large displacement optical flow,” European Conf. on Computer Vision,

LNCS, Springer, Heidelberg, 2010.

[76] S. Forchhammer, H. Li and J. Dahl Andersen, “No-reference analysis of decoded

MPEG images for PSNR estimation and post-processing,” Journal of Visual

Communication and Image Representation, Vol. 22, Issue 4, pp. 313-324, May 2011.

[77] A. Aaron, E. Setton and B. Girod, “Towards practical Wyner-Ziv coding of video,”

Proc. IEEE International Conference on Image Processing, ICIP-2003, Barcelona,

Spain, Sep. 2003.

162

[78] ITU-T, I. JTC1, “Digital compression and coding of continuous-tone still images,”

ISO/IEC 10918-1 ITU-T Recommendation T.81 (JPEG), 1994.

[79] Spectrum Digital, Inc., “TMS320DM6437 Evaluation Module Technical

Reference,” Dec. 2006.

[80] Texas Instr., “Digital Media Processor DM6437 Datasheet,”

http://www.ti.com/product/tms320dm6437, accessed in Jun. 2013.

[81] “C64x+ Image Library (IMGLIB),” http://www.ti.com/tool/sprc264, accessed in

Jun. 2013.

[82] W. H. Chen, C. H. Smith, and S. Fralick, “A Fast Computational Algorithm for the

Discrete Cosine Transform,” IEEE Trans. on Communications, 25, 1004–1009, Sep.

1977.

[83] A. D. Liveris, Z. Xiong, and C. N. Georghiades, “Compression of binary sources

with side information at the decoder using LDPC codes,” IEEE Commun. Lett., vol.

6, no. 10, pp. 440–442, Oct. 2002.

[84] “Multimedia Framework Products (MFP) - Codec Engine and xDAIS Framework

Components,” http://www.ti.com/tool/tmdmfp, accessed in Jun. 2013.

[85] S. Y. Chung, T. J. Richardson, and R. Urbanke, “Analysis of sum–product

decoding of low-density parity-check codes using a Gaussian approximation,” IEEE

Trans. Inform. Theory, vol. IT-47, pp. 657–670, Feb. 2001.

[86] W. E. Ryan, B. Vasic, “An introduction to LDPC codes,” CRC Handbook for

Coding and Signal Processing for Recording Systems, 2004.

[87] D. Kubasov , K. Lajnef and C. Guillemot, “A hybrid encoder/decoder rate control

for Wyner–Ziv video coding with a feedback channel,” Proc. IEEE Multimedia

Signal Processing (MMSP 2007), pp.251-254, 2007.

[88] M. Zheng, F. H. Ali, “Pixel Granularity Side Information Synthesis Framework

163

and Parallel Implementation for Distributed Video Coding,” submitted to IEEE

Transactions on Multimedia.

[89] M. Zheng, F. H. Ali, “DSP Implementation of On-Board Distributed Video

Coding,” 4th European DSP Education and Research Conference, EDERC2010, 5

pages, Nice, France, Dec. 2010.

[90] M. Zheng, F. H. Ali, “Consistent Quality Control for Wireless Video Surveillance

Using Distributed Video Coding,” The 4th International Conference on Imaging for

Crime Detection and Prevention (ICDP-11), London, UK, Dec. 2011.

[91] E. Arikan, “Channel polarization: a method for constructing capacity-achieving

codes for symmetric binary-input memoryless channels,” IEEE Trans. on

Information Theory, 55(7): pp. 3051-3073, 2009.

	Coversheet
	Zheng, Min

