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Summary

Systems neuroscience has recently unveiled numerous fundamental features of the macroscopic
architecture of the human brain, the connectome, and we are beginning to understand how
characteristics of brain dynamics emerge from the underlying anatomical connectivity. The current
work utilises complex network analysis on a high-resolution structural connectivity of the human
cortex to identify generic organisation principles, such as centralised, modular and hierarchical
properties, as well as specific areas that are pivotal in shaping cortical dynamics and function.

After confirming its small-world and modular architecture, we characterise the cortex’ multi-
level modular hierarchy, which appears to be reasonably centralised towards the brain’s strong
global structural core. The potential functional importance of the core and hub regions is assessed
by various complex network metrics, such as integration measures, network vulnerability andmotif
spectrum analysis.

Dynamics facilitated by the large-scale cortical topology is explored by simulating coupled
oscillators on the anatomical connectivity. The results indicate that cortical connectivity appears
to favour high dynamical complexity over high synchronizability. Taking the ability to entrain other
brain regions as a proxy for the threat posed by a potential epileptic focus in a given region, we also
show that epileptic foci in topologically more central areas should pose a higher epileptic threat
than foci in more peripheral areas.

To assess the influence of macroscopic brain anatomy in shaping global resting state dynamics
on slower time scales, we compare empirically obtained functional connectivity data with data from
simulating dynamics on the structural connectivity. Despite considerable micro-scale variability
between the two functional connectivities, our simulations are able to approximate the profile of
the empirical functional connectivity.

Our results outline the combined characteristics a hierarchically modular and reasonably cen-
tralised macroscopic architecture of the human cerebral cortex, which, through these topological
attributes, appears to facilitate highly complex dynamics and fundamentally shape brain function.
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Chapter 1

Introduction to connectomics

Complex network approach in systems

neuroscience

The brain is a network of extraordinary complexity on multiple spatial scales. On the macroscopic

scale, local regions interconnected by a large number of white-matter projections form an intricate

system: the connectome. Understanding the organisation principles of the large-scale architecture

of the brain, how it shapes brain dynamics and how it ultimately affects function, cognition and

behaviour is one of the greatest challenges faced by contemporary neuroscience (Sporns (2010)).

In this introductory chapter of the thesis, we present a brief overview of the currently applied

methodologies, achieved results and future research directions that are intended to unveil the

extraordinarily complex organisation of the brain. At the end of the chapter, we introduce the

research questions and goals proposed by the current study.

1.1 The science of complex networks

From the earliest times, mathematical geometry was developed to solve problems involving phys-

ical position and distance. In the 18th century, however, Leonhard Euler took a radically different

formalisation approach in resolving the famous problem of the Seven Bridges of Königsberg by

abstracting away from spatial embeddedness and only taking into account the relative relations of

the problem’s entities (Euler (1736)). That publication is now generally regarded as the birth of

a whole new branch of mathematics, which, complementing the traditionally space- and distance-

centric view of geometry, is now known as graph theory.

Graphs or networks are abstract representations of real-world systems. A graph comprises
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a set of nodes (vertexes) and a set of edges (connections or links). Nodes represent the basic

elements of the system, while network edges define the relation between pairs of nodes. Based

on the properties and attributes of the edges, graphs can be categorised into several basic types,

such as weighted/binary, directed/undirected, spatial/non-spatial graphs, each one with its own

application domain and analysis methods (Newman (2003), Boccaletti et al. (2006)).

For a long time, early graph theory was mainly concerned with the study of regular graphs

(Kőnig (1936)). The first graph model to characterise complex, heterogeneous and large-scale

networks was proposed by Paul Erdős and Alfréd Rényi in the 1950’s (Erdös and Rényi (1959),

Erdös and Rényi (1960)). The so-called random graph model and its statistical analysis was

pioneering at its time, and shaped the emerging field of complex networks for decades (Albert

and Barabási (2002)). Nevertheless, application of graph theory as a standard analytic tool dates

back to the 1920’s in the social sciences, that utilise complex network analysis for the quantitative

description of social networks since then (Freeman (1996)). In fact, many basic concepts, such

as small-worldness (Milgram (1967)), and analysis methods, such as centrality (Freeman (1978))

of modern complex network science were discovered and developed during these early studies on

social networks. More recently, network representations of complex systems has prevailed in many

fields of the natural sciences as well, and we are still witnessing the emergence of ”the new science

of networks” (Watts (2004)).

The breakthrough of complex network sciences can be attributed to two key factors. Firstly,

the field has undergone considerable theoretical development in the last fifteen years, that has

led to a diverse set of widely applicable analytic tools and powerful characterisations of real-

world networks such as the small-world (Watts and Strogatz (1998)) and scale-free (Barabási

and Albert (1999)) properties1. Secondly, thanks to ongoing technological advancements, we

are now beginning to explore and map systems of increasing size, complexity and detail from

many segments of the world around us. A few examples of these ”networkable” systems include

the Internet (Faloutsos et al. (1999)), the World Wide Web (Huberman (2001)), gene regulatory

networks (Jeong et al. (2001)), social networks (Scott (2000)), semantic associations (Dorogovtsev

andMendes (2001)), ecological food webs (Bascompte et al. (2006)), metabolic pathways (Stelling

et al. (2002)) and synaptic connections (Chen et al. (2006)). The fact that all these systems can be

represented, analysed and better understood as complex networks of simple nodes and edges has

contributed to the rise of complex network sciences, and has led to the notion that the complex

network framework is a universal scientific approach (Barabási (2011)).

1Although see Keller (2005) for some cautious criticism on the interpretation of these results.
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1.2 Complex networks in the neurosciences

1.2.1 Premises and difficulties

The advantages of utilising the framework of complex networks in the neurosciences, just as in

any other applied scientific field, lays in the abstraction power of network theory. Representing the

nervous system as a network or graph enables the researcher to omit some potentially irrelevant

variability of the brain, such as size and surface shape, providing a necessary level of abstraction

for longitudinal (Yap et al. (2011)), cross-subject (Alexander-Bloch et al. (2012)), cross-modal

(structural, functional, effective) (Honey et al. (2009)) or even cross-species (Sporns and Kötter

(2004)) comparison with respect to canonical local or global architectural features that govern

brain function, and therefore ultimately shape cognition and behaviour. Complex network science

thus offers a principled and systematic framework for system neuroscience to study the structure

and function (or dysfunction) of the brain (Bressler and Menon (2010)).

Along with all these promises, the fundamental question of ”What are the networks of the

brain?” remains to be answered. According to the neuron doctrine, one can regard the neurons and

their synaptic connections as the nodes and edges of the ultimate network of the brain. Assembling

such a neural map from the human brain, however, poses enormous technological and theoretical

challenges. It has also been argued that this micro-level description, being highly variable and

redundant, is not only unnecessary but also inappropriate to represent the human brain as a network,

and an integrative, multi-scale approach is favourable instead (Sporns et al. (2005)).

In the future, we need to continue and further extend and integrate the multi-scale analysis

of complex brain networks, as potentially all levels contribute to the emerging dynamics of the

whole system (Sporns (2010)). Within the limited resources of the current research project, this

work also presents a multi-level study by investigating nodal or regional attributes at the lowest

resolution of the investigated brain network, properties of greater structural and modular elements

at the meso-scale, as well as global characteristics of the entire network.

1.2.2 Current acquisition techniques and connectivity types

Numerous techniques have been developed to map connectivity networks in the brain. On one

end of the spectrum there are highly invasive in-vitro and post-mortem methods, such as serial

block-face scanning electron microscopy (Kleinfeld et al. (2011)), that provide the most direct and

highest resolution map of the neural network by entirely reconstructing the neuronal tissue in three

dimensions. On the other end, we find various imaging techniques, such as diffusion magnetic

resonance imaging (dMRI) (Hagmann et al. (2010a), Yendiki et al. (2011)), which, due to their non-
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invasive nature, are compatible to be applied on living human subjects. However, they come with

the trade-off of providing only indirect and inaccurate information about the brain network under

study, and thus their resolution, reliability and completeness are limited (Jbabdi and Johansen-Berg

(2011)). Nonetheless, thanks to the many recent and ongoing developments in novel brain mapping

methodologies (reviewed in Leergaard et al. (2012) and in Van Essen and Ugurbil (2012)), the huge

gap between these microscopic and macroscopic scales might be filled by new technologies during

the coming decades, bringing along a whole new era of mapping the networks of the brain.

Next to the so far discussed structural (anatomical) networks of the brain, the highly dynamic

nature of the nervous system necessitates the identification and analysis of other connectivity types

describing various aspects of its operation. Functional connectivity (FC) measures deviations

from statistical independence between distributed neuron populations, and is believed to reflect

dynamical couplings between these populations (Friston et al. (1993), Friston (1994)). It is usually

calculated as correlation, spectral coherence or phase locking of EEG, MEG or fMRI time series,

resulting in a symmetric connectivity measure. As opposed to that, effective connectivity (EC)

describes the directed, causal network of interactions between neural elements (Friston (1994)), and

is usually derived by some complex data processing and modelling technique (Büchel and Friston

(2000)). These two non-physical connectivity modalities complement the traditional structural

connectivity by providing a network representation of the dynamical interactions between the

neuron populations. Consequently, unlike SC, FC and EC are highly time and stimulus dependent

and often statistically non-stationary.

1.2.3 Traditional and current research themes

Early studies on the large-scale characterisation of brain networks were largely limited to the

nervous system of model animals, such as the Caenorhabditis elegans (White et al. (1986)), the

rat (Burns and Young (2000)), the cat (Scannell et al. (1999)) and the macaque (Felleman and

Van Essen (1991), Young (1993)). These datasets were laboriously accumulated by a large number

of research groups through years or even decades, from thousands of animal subjects, and by

various invasive means, such as serial electron microscopy and staining methods. In spite of the

tremendous amount of labour and the state-of-art techniques of the time that the acquisition of these

datasets required, they are limited to the representation of a ’standard’ or ’idealised’ brain of an

animal species (Bezgin et al. (2012)), which, due to appliedmethodology, is necessarily incomplete

and inherently inconsistent (Modha and Singh (2010)).

Recent advancement of non-invasive anatomical (Conturo et al. (1999), Mori et al. (1999)) and

functional (Huettel et al. (2009), Pan et al. (2011)) imaging techniques, along with the development
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of automated, high throughput post-processing techniques (e.g., Cammoun et al. (2012)), have

opened a whole new era in brain network research and brought to the realm of comparative human

subjects studies (Bressler and Menon (2010)). Recently, comparative connectome analysis has

proved to be an indispensable methodology in unveiling fundamental organisational differences

in the large-scale architecture of the brains of various subject groups. The focus of these diverse

set of studies include development, maturation and ageing of brain connectivity (eg. Fair et al.

(2008), Meunier et al. (2009a), Fair et al. (2010), Homae et al. (2010) Hagmann et al. (2010b),

Homae et al. (2010), Yap et al. (2011), Zuo et al. (2011), Tomasi and Volkow (2012)), gender

specific connectome differences (Hagmann et al. (2006), Duarte-Carvajalino et al. (2011), Zuo

et al. (2011)), alteration in brain connectivity due to practise, personality and intellectual abilities

(van den Heuvel et al. (2009b), Chiang et al. (2009), Adelstein et al. (2011), Jang et al. (2011),

Hasenkamp and Barsalou (2012)), connectomical correlates of neurological disorders (for a review,

see Guye et al. (2010)), in particularly in schizophrenia (Bassett et al. (2008), Lynall et al. (2010),

van den Heuvel et al. (2010), Zalesky et al. (2011), Alexander-Bloch et al. (2012), Bassett et al.

(2012)), and task dependent reconfiguration of functional connectivity (Fries (2005), Bassett and

Bullmore (2006), Kitzbichler et al. (2011)).

The scientific employability of the complex network approach in the neurosciences, even in

describing the inherently spatial and highly dynamic networks of the brain, has been demonstrated

by numerous studies that successfully linked brain structure and function to cognition and

behaviour. For instance, van den Heuvel et al. (2009b) showed that higher intellectual performance

(IQ) is accompanied by higher functional efficiency (shorter path lengths in resting state functional

connectivity [rsFC]). In practical terms on the other hand, perhaps one of the most attainable, but

nonetheless extremely beneficial, application of complex network analysis of the brain would be its

medical utilisation in detecting topological markers of neuropathological diseases (Nucifora et al.

(2007), Reijneveld et al. (2007), Bullmore and Sporns (2009)), which is currently one of the most

active and promising research area of the field.

1.2.4 Current challenges and future research directions

Given the various spatial and topological scales (such as nodal, node group, global) and the

large number of partially inter-related analysis tools and models one can apply, both the scientific

research and future medical applications of brain network analysis faces significant data mining

challenges. To that end, several promising multi-scale and multi-method techniques have been

formulated and tested with the aim to develop a comprehensive, standard framework for the analysis

of complex brain networks (Meskaldji et al. (2011), Echtermeyer et al. (2011a), Echtermeyer et al.
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(2011b)). However, due to the ongoing technological and theoretical progression, the field is still

largely on the move, and the matured theoretical consensus and the long-awaited breakthrough

towards medical applications have yet to appear.

Realising the fundamental need for data sharing among research groups, several global

initiatives have been launched recently with the aim to accelerate scientific progress in the field

by cooperation of distant and otherwise independent research groups. The 1000 Functional

Connectomes Project2 sets out the goal of establishing an open-access database for the fMRI

community (Biswal et al. (2010)). To date, the project has successfully aggregated over a thousand

resting-state fMRI scan datasets from human subjects around the world, and has made them

publicly available for the research community.

Another initiative, the Human Connectome Project3 (Toga et al. (2012)), aims to ”provide

the foundation for the detailed mapping of the human connectome”. The main goals of the

project include the collection and dissemination of connectomic, behavioural, and genotype data of

normal subjects, using novel, sophisticated data acquisition methods and a web-based informatics

infrastructure. The project has already generated over 50 publications to date, and holds a great

potential to develop and establish future routes to the research of human connectomics.

1.3 The scope of the thesis

Recent development in the theory and analysis tools of the complex network sciences has led to

the discovery of numerous organisation principles in the large-scale structural anatomy of the

brain. The most prominent of these features are the brain’s small-world (Sporns et al. (2000)),

hierarchical (Bassett et al. (2008)) and modular architecture (Hilgetag et al. (2000)), as well as

its strong structural core (Hagmann et al. (2008)) and rich-club organisation (Van den Heuvel and

Sporns (2011)). However, despite the increasing number of such findings, integrative studies on

singular datasets to date are largely missing, thus the relation, relative significance and potential

functional implications of these concepts on the brain are still unclear.

In this work, we perform a systematic series of analyses on the human cortical connectome

with the aim to comparatively assess and relate some of its fundamental organisational principles.

Our goal is to integrate the obtained results into a coherent description of the large-scale network

architecture of the human brain, and then to relate the found structural properties to the dynamics

and function of the cortex. The importance of such comprehensive framework is underscored

by numerous recent studies able to relate a wide range of brain disorders to some fundamental

2http://fcon_1000.projects.nitrc.org/
3 http://www.humanconnectomeproject.org/

http://fcon_1000.projects.nitrc.org/
http://www.humanconnectomeproject.org/


8

Figure 1.1: Illustration of network organisation principles investigated in the current study.

(A) A three-level hierarchical network architecture composed of a central, an intermediate and a

peripheral layer. (B) Modular structure composed of a set of highly intra-connected but sparsely

inter-connected group of regions (modules, clusters or communities). (C) A hierarchical modular

network architecture. Modules of the network (on level L1) are themselves composed of smaller

modules (on level L2). (D) Two candidate core structures of a network: rich-club (highest degree

regions) and s-core (most densely intra-connected regions). Notice the overlap between the two

structures.



9

deviation in its large-scale structural architecture (eg. Bassett et al. (2008), Verstraete et al. (2010),

Zalesky et al. (2011), Alexander-Bloch et al. (2012)). Thus, apart from promising us new insights

into the organisation and operation of the healthy human brain, such a network level descriptionmay

prove to be invaluable in understanding the pathogenesis of, as well as developing new treatments

to, common neurological and psychiatric brain disorders, such as Alzheimer’s disease, Parkinson’s

disease, amyotrophic lateral sclerosis, autism, schizophrenia and epilepsy (Bullmore and Sporns

(2009)).

The organisation of the thesis is the following. We will begin with introducing the cortical

connectivity dataset (Chapter 2) and the null-hypothesis (surrogate) networks (Chapter 3) to be used

during the study. After that, we shall investigate a number of earlier findings on the organisation

of the connectome, such as its integration and segregation properties and small-world architecture

(Chapter 4), modular, core, rich-club and hub structures, as well as some of its widely assumed, but

yet relatively unexplored features, such as its hierarchical and hierarchically modular architecture

(Chapter 5). Some of the organisation principles to be investigated are illustrated on Figure 1.1.

Along the way, we shall assess to what extent each of these features is the direct consequence of

the basic topological and spatial properties and constraints of the cortical connectivity, in order to

identify those features that are presumably the results of some higher organisation principles of

the cortical connectivity, and hence may possess higher functional relevance. This analysis will be

performed on the full resolution of the high resolution cortical dataset of Hagmann et al. (2008).

After the purely structural analysis of the cortical connectome, we shall turn our attention to

the exploration of the relation between network anatomy, dynamics and function. The nature of

the dynamics facilitated on fast time scales by the large-scale cortical topology will be explored by

simulating a minimal model, composed of coupled oscillators on the anatomical connectivity of the

cortex (Chapter 7). Specifically, we shall investigate the cortex’ synchronizability and dynamical

complexity facilitated by its anatomical connectivity, along with the role of some topologically

distinguished cortical areas in these processes. Additionally, taking the ability to entrain other

brain regions as a proxy for the threat posed by a potential epileptic focus in a given region, we shall

also evaluate which cortical areas are the most effective in propagating synchronous activity, thus

posing higher epileptic threat during white-matter mediated cortico-cortical spread of epileptiform

seizures.

To assess the influence of macroscopic brain anatomy in shaping global resting state dynamics

on slower time scales, we shall compare empirically obtained functional connectivity data with

data from simulated dynamics on the structural connectivity of the cortex (Chapter 8). As a more

detailed analysis of the structure – function relation in the human cortex, we shall also investigate
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the resemblance of structural organisation features in both the empirical and simulated functional

connectivities in order to gain further insight into the relation between more general features of

brain structural and function.

We finish with discussing the obtained results and pointing to potential directions of future

research (Chapter 9). The appendix of the thesis contains the mathematical definitions of some

common complex network measures, the brief summary of the analysis of a diverse set of brain

networks, and various technical information related to the conducted research.
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Chapter 2

The human cortical connectome

In the first chapter, we discussed how the analysis of any brain network crucially depends on the

nature of nodes and edges. With this inmind, in this chapter we introduce the structural connectivity

to be used throughout this work. First, we describe the applied acquisition method and discuss its

strengths and limitations. Then, we provide an introduction to the basic properties of the obtained

cortical network by discussing its parcellation scheme, anatomical hierarchy, resolution and some

fundamental topological features.

2.1 Introduction of the cortical connectivity dataset

Since its introduction, diffusion magnetic resonance imaging (dMRI) has revolutionised non-

invasive imaging of human brain anatomy (Mori and Barker (1999)). Recently, a novel and pow-

erful brain mapping technique has been developed in Lausanne, Switzerland by Patric Hagmann

and his colleagues, combining cutting-edge brain imaging and post-processing tools. The detailed

description of the technique’s processing pipeline was first published in Hagmann et al. (2007),

which was shortly followed by a research paper unveiling the structural core of the cerebral cortex

(Hagmann et al. (2008)).

The method aims to provide a comprehensive map of the large-scale connectivity of the human

brain, the connectome (Sporns et al. (2005)), by tracing the white matter projections linking pairs

of cortical brain sites. The technique produces a compact network representation of cortical gray

matter regions as network nodes, and their interconnecting white matter fibre bundles as edges. In

this section, due to its prime importance to the forthcoming analysis, we provide a brief introduction

to the technique’s construction procedure and the basic attributes of the connectivity networks it

yields.
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2.1.1 The acquisition technique

Network construction

The construction method of Hagmann et al. proceeds through several intermediate stages to the

final structural connectivity network (Hagmann et al. (2007), Cammoun et al. (2012)). At the

first step, a set of cortical areas, the regions of interest (ROIs), is determined by partitioning the

brain’s white matter-gray matter boundary firstly into 66 anatomical subregions, and then further

dividing each subregion into a number of ROIs. This iterative procedure results in a complete,

hierarchical and non-overlapping partitioning of the cortical surface into approximately equal size

ROIs, the nodes of the network. Independently of this step, the so-called diffusion map (voxel-wise

water diffusion intensity) of the brain is calculated from diffusion spectrum MRI (DSI) scanning

(Wedeen et al. (2005)). Harnessing the fact that white matter bundles shape the primary direction

of local water flow in the brain (Schmahmann et al. (2007)), this diffusion map is then used to track

cortico-cortical white matter projections by a tractography algorithm (Conturo et al. (1999)).

In the final step, the cortical regions and the tracked fibres (typically around three million

pieces) are aggregated into a network by taking each region pair and bundling all fibres connecting

the two ROIs into a single cortical projection. Each one of these final, aggregated bundles,

represented by an edge in the network, possesses two important attributes: a connection length,

which is the average trajectory length of the fibres composing the bundle, and a connection weight

or density, which is the average of the number of fibres per cortical surface unit on the two target

sites of the bundle. The result of the entire procedure is an undirected, weighted and hierarchical

network that represents the large-scale white matter connectivity between cortical gray matter

regions of the brain.

Reliability and robustness

Proving the reliability and accuracy of a new measurement technique always requires verification

by already establishedmethods (Bland andAltman (1986)). While numerous early assessment tests

pointed to the fidelity of the above acquisition technique (Hagmann et al. (2008)), Cammoun et al.

(2012) carried out an extensive validation test on the procedure. In that work, the authors showed

that known fibre tract bundles with various length and projection properties (eg. homotopic, or

longitudinal) are readily identifiable in the connection matrices at essentially every resolution (i.e.,

n = 66, 133, 241, 483 and 998 ROIs).

Additionally, the robustness of the technique was also assessed by a three-step repeatability

test: i) by running the processing pipeline twice on the same dataset (scans), ii) by scanning and
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processing the same group of subjects twice, and iii) by assessing the pairwise intervariability

between a group of 20 subjects. The test results verified the robustness of the technique with

considerably high correlation values (between 0.745 and 0.998), and showed at the same time two,

fairly intuitive trends: mean correlations decline with higher measurement variability from test i)

through ii) to iii) (.977, .874 and .745 at n=998 nodes), and from lower to higher resolution (0.998

and 0.977 for test i) ). The latter trend points to the importance of the resolution of investigation,

which should be carefully chosen in accordance with the requirements of the specific application,

and kept in mind throughout the analysis (Fornito et al. (2010), Bassett et al. (2011)).

Cross-validation of the DSI method with more direct, classical anatomical techniques is an

essential, but difficult step for establishing its reliability. Due to the lack of available anatomical

tract tracing data for the human brain, researchers have been restricted to carry out DSI validation

studies in model animals, such as the rat, mini-pigs, or the macaque. In Schmahmann et al. (2007),

DSI mapping was shown to reconstruct the major features of the long-range association tracts of the

macaque brain obtained by histological tract tracing, thus providing indirect support for the validity

of diffusion imaging data obtained from the human brain. Another cross-technique validation test

was carried out by Hagmann et al. (2008), who compared DSI data of the macaque brain with

tract tracing data in the CoCoMac database (Kötter (2004)). Their results revealed a high degree

of overlap between DSI and classical tract tracing anatomy, with 79% of the DSI connections

matched with identified connections from the CoCoMac database, a further 15% were placed in

positions from which information was unavailable in CoCoMac, and only 6% of the obtained DSI

connections were reported to be absent in CoCoMac.

Methodological advantages and limitations

The above methodology and its technical realisation come with several advantages, currently

unmatched by any other brain mapping technique (Hagmann et al. (2010a)). Firstly, the procedure

produces a reasonably high resolution network of the entire living human brain in a non-invasive

manner, making it compatible with future medical applications (Reijneveld et al. (2007), Bullmore

and Sporns (2009)). Secondly, the parcellation of each subject’s brain is registered uniformly

with a generic labelled mesh template (Fischl et al. (2004)), allowing for direct cross-modal

(structural and functional) comparison (Honey et al. (2009)) as well as for inter-subject cross-

comparison (Hagmann et al. (2008)) on the same (i.e., equivalent) set of brain regions, rendering

the technique a highly valuable scientific research tool. Thirdly, the method yields both weight and

length information for each tracked fibre tract connection, enabling topological, spatial as well as

hybrid, spatio-topological investigations of the connectome (Kaiser (2011), Wedeen et al. (2012)).
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Fourthly, the automated nature of the technique (Fischl et al. (2004), Cammoun et al. (2012))

makes it a highly efficient and controllable acquisition procedure, in contrast with for example

the traditional histological and tracer techniques (Köbbert et al. (2000)).

However, along with the numerous advantages discussed above, the procedure also comes with

a number of shortcomings. The most severe ones, originating from the limitations of current DSI

and tractography techniques, are i) the lack of directionality information on the resulting network,

and ii) the reduced capability to track fibre crossings and wide angular changes along the trajectory

of the fibre tracts (Zhan and Yang (2006)). A further deficiency of the specific network utilised in

this research is its purely cortical nature, missing all subcortical areas, such as the thalamus or the

brain stem, thus restricting our investigation to the human neocortex.

The lack of fibre polarity (limitation i) above) is an inherent shortcoming of the DSI tractog-

raphy technique, originating from the indifference of water diffusion in efferent and afferent axons

(Hagmann et al. (2010a)). Indeed, the availability of fibre directionality would not only enrich the

forthcoming analysis of this work, but also open up entirely new research questions, such as how

closely the directed effective connectivity (Friston (1994)) is related to and shaped by the polarity

of its underlying structural connectivity. Promising preliminary studies have show the potential

of multi-modal approaches to tackle this problem, where the locations of the fibre tracts provided

by diffusion tractography are complemented by polarity measurements by some other techniques,

such as magneto-encephalography (MEG) (e.g., Stufflebeam et al. (2008)). For the current work,

however, we have to accept the non-directed nature of cortical network under study. Nonetheless,

there are two arguments mitigating the severity of this limitation. Firstly, the majority of cortico-

cortical connections in the macaque cortex were found to be reciprocal (Felleman and Van Essen

(1991)), suggesting that the undirected network representation of the cortical connectivity may be

a simplified, but reasonable approximation. Secondly, even at the currently investigated relatively

high network resolution (i.e., millimetre scale), the high number of axons in each voxel (∼105,

Aboitiz et al. (1992)) makes the presence of axons running in both directions in any single fibre

bundle highly probable, rendering the question of polarity somewhat less critical. Nonetheless, it

is of prime importance for future connectome research to find a way to incorporate the connection

polarity of the large-scale brain connectivities, and thus increase network representation accuracy

as well as enrich and extend connectome analysis (Jbabdi and Johansen-Berg (2011)).

The ability of diffusion tractography methods to detect and distinguish more complex axonal

relations, such as crossing, fanning and bending of multiple fibres (limitation ii) above) has gone

through significant improvements in the last decade (Jbabdi and Johansen-Berg (2011)). While the

earliest standard method of diffusion MRI, diffusion tensor imaging (DTI) (Pierpaoli et al. (1996))
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was restricted to capture a single water diffusion direction per voxel, diffusion spectrum imaging

(DSI) (Wedeen et al. (2005)) models diffusion with a non-Gaussian distribution, making this more

advanced technique capable of measuring intra-voxel diffusion heterogeneity caused by crossing

neuronal tracts (Behrens et al. (2007), Wedeen et al. (2008)). Spreading or fanning of fibres, typical

e.g. for the entire coronal radiata, or when tracts arrive at the cortex, is an abundant phenomenon in

the brain that is still not captured adequately by current tractography methods, however, promising

attempts at better modelling have been made recently (Descoteaux et al. (2009)).

Diffusion tractography, despite all the advances made in the field, still suffers from a number of

serious limitation that researchers must bear in mind while working with such datasets (Hagmann

et al. (2010a), Jbabdi and Johansen-Berg (2011)). One such limitation is spatial dependence,

introduced by the accumulation of errors and uncertainties during the tracking process, practically

making long-range connections susceptible to be under-represented in diffusion tractography

mapped brain networks. Another deficiency is the likely under-representation of non-myelinated

axons, as axonal myelin sheaths, facilitating the diffusion of the water molecules preferentially

along their main direction, are more easily detectable by tractography.

Nevertheless, if interpreted with its above discussed flaws in mind, diffusion tractography

provides powerful means for the study of human brain anatomy, and holds an enormous potential

for the future of brain research and for medical applications (Bressler and Menon (2010)).

The simultaneous advances in data acquisition, modelling and algorithmic methods in the field

continuously increase our confidence on the reliability of mapped fibre tracts (Jbabdi and Johansen-

Berg (2011)). Among these novel data acquisition developments are accelerated sequences

(Feinberg et al. (2010)) and high fieldMRI (e.g., 7T) (Heidemann et al. (2010)), that will ultimately

allow for higher orientation and spatial resolution and more complex micro-structural modelling

in the near future.

In summary, we conclude that the acquisition method of the structural connectivity network to

be utilised in the current study, with all its deficiencies discussed above, still provides a detailed,

complete and reliable large-scale representation of the human brain’s cerebral gray matter regions

and their interconnecting white matter fibre bundles (Pan et al. (2011)). In the next section, we

start the analysis of the cortical connectivity to be utilised in this study, first published in Hagmann

et al. (2008), by looking into some of its most basic network characteristics, before proceeding

to its detailed investigation by some more complex network analysis methods in the forthcoming

chapters.
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2.2 Attributes and basic properties of the cortical connectivity net-

work

2.2.1 Cortical parcellation, anatomical hierarchy and network resolution

By the nature of its processing pipeline, the network originally consists of a two-level hierarchical

parcellation of the cortex: it is composed of 66 anatomical regions at the higher level, and contains

998 ROI at the lower level (Hagmann et al. (2008)). The parcellation scheme of the dataset, defining

these resolutions, is a core element of the constructed network. The procedure leads to a network

that covers the entire cortices of both hemispheres, but no subcortical area is included.

In the first step of this multi-stage parcellation process, using the cortical surface construction

software Freesurfer (Dale et al. (1999)), Hagmann et al. divided the surface of the cortex into 66

non-overlapping regions (33 on each hemispheres), identified by ”clear anatomical landmarks”.

Then the individual brain of each subject was registered on this labelled mesh template, leading

to a standardised parcellated representation of each of the five participants’ brains on an ”average”

brain surface.

In the second step, each of these 66 cortical regions were subdivided on the Freesurfer average

brain into a set of small and compact, approximately equal size (about 1.5cm2) subregions, leading

to 998 ROIs at the highest connectivity resolution. For a detailed introduction of this subdivision

algorithm, see Hagmann et al. (2007) and Cammoun et al. (2012). In the resultant sub-parcellation

every ROI belongs to one and only one of the 66 anatomical region, and each one of the 66 regions

is fully covered by its ROIs in a non-overlapping manner, hence defining a multi-level hierarchical

connectivity network.

Several previous studies have chosen to lower the resolution of the 998-ROI network to

the 66-region level, and performed analysis solely on that computationally less demanding,

coarser network (e.g., Honey et al. (2010), Cabral et al. (2011), Shanahan and Wildie (2012)).

This approach, however, while generating spatially compatible results with those of earlier low

resolution studies (e.g., Sporns and Kötter (2004), Sporns et al. (2007), Honey et al. (2007), Deco

et al. (2009)), omits the available finer (higher-resolution) of the connectivity, which is likely to

affect the outcome of complex network analysis (Wang et al. (2009), Fornito et al. (2010), Zalesky

et al. (2010)). Therefore, in order to obtain the most accurate and detailed results the dataset allows

for, we carry out all analysis on the high resolution, 998-node anatomical connectivity network

in the present study. This also applies to the meso-scale, structural level and macro-scale, global

analyses, for which properties of groups of nodes will be derived (averaged or summed) from

single-node results.
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Figure 2.1: Network hierarchy in anatomical space, coronal projection. Labels of main

anatomical structures are placed onto the ’centre of mass’ of their constituting regions. Every

node of the hierarchy network is connected to its parent node, ’cortex’ in the centre is the root node

of the network hierarchy.

Multi-scale investigations on different levels of the network hierarchy has proved to be a

valuable approach in exploring the topological (eg. Van den Heuvel and Sporns (2011)) and

functional (eg. Bassett et al. (2012)) properties of brain networks. With this in mind, we further

extended the network hierarchy with additional greater anatomical structures, in order to gain

more flexibility in multi-scale analysis. Our final network possesses a five level deep, unbalanced

hierarchy, shown in Figure 2.1 and 2.3, with the following main anatomical structures: the frontal

lobe is divided into inferio-frontal, medio-frontal, orbito-frontal, superio-frontal and precentral

areas, the parietal lobe to inferio-parietal, superio-parietal, precuneus and postcentral areas, the

temporal lobe is split into inferio-temporal and superio-temporal areas, and finally the occipital

lobe and the limbic system are both kept as anatomical structures on their own. In the forthcoming

research, we shall use these thirteen, bi-hemispherically organised anatomical structures to carry

out comparative meso-scale analysis.

2.2.2 Basic network properties

The structural network at its highest resolution consists of 998 nodes, each representing an area of

the cortical surface of approximately 1.5cm2 size (in the following: region), and possesses 17865

undirected and weighted connections with additional fibre tract length information. This results in
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Figure 2.2: Structural connectivity matrix. Cortical regions are organised by hemisphere (top

left sub-square is left, bottom right is right hemisphere), grouped by their containing anatomical

structures (left and top colour stripes, for structural colour code, see Figure 2.3), and ordered by

their spatial positions along the fronto-caudal axis (after Cammoun et al. (2012)). Matrix values

represent connection weights, colour code is shown on colour bar on the right side.

a sparse, 3.59% connection density network with 35.8 mean degree of the nodes.

Out of the 998 nodes, nine (five limbic, three superio-temporal and one inferiotemporal) regions

(0.9%) do not possess any connections, rendering them disconnected from the connected part of

the network. However, while presumably being only weakly connected, it is unlikely that these

nine regions have no white matter fibre tracts connecting them to the rest of the cortex. Instead this

disconnectedness most probably originates from the above discussed limitations of the acquisition

process, and warns about the inevitable incompleteness of the dataset.

For the remainder of the current study, these nine unconnected nodes will be discarded from

the analysis due to their topologically separatedness from the rest of the network.
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2.2.3 Network visualisation

The connectivity matrix of the network is shown in Figure 2.2. To illustrate the importance of

a well structured connectivity matrix visualisation in gaining insights into the network’s basic

organisation properties, we follow the region ordering applied in Cammoun et al. (2012). In Figure

2.2, regions are firstly grouped by hemisphere (top left sub-squares is left, bottom right is right

hemisphere), then by main anatomical structures (see colour stripes on left and top sides), and

finally ordered along the fronto-caudal axis in anatomical space.

This ordering of the connectivity matrix enables us to verify some of the known anatomical

features of the large-scale cortical network solely by visual inspection. Specifically, the predom-

inantly local and iso-hemispheric connectivity of the cortex (Braitenberg and Schuz (1998)) is

readily identifiable in the higher connection densities along the matrix’s main diagonal in top left

and bottom right sub-squares. Inter-hemispheric connectivity is contained in the bottom left and

top right sub-squares of the matrix. More frequent projections between ipsilateral region-pairs

is observable by the higher connection densities around the main diagonal of these subsquares.

Furthermore, the structural ordering of the connectivity matrix also allows us to detect structure

specific differences in ipsilateral connection densities: while there is a marked level of cross-

connectivity between the left and right parts of the occipital, superio-parietal, precuneus, limbic,

superio-frontal and orbito-frontal cortices, we can see no such connection within the inferio-

temporal and superio-temporal cortices. This is consistent with the more medial position of the

former structures and the highly lateral location of the latter group.

Figure 2.3 shows the cortical network on an abstract hierarchical radial layout (Holten (2006),

Appendix E) as well as on projections in anatomical space. For clarity, only 10% (n=1786)

of the strongest (highest weight) connections are shown. Both visualisations demonstrate that

these strongest connections are well-distributed throughout the cortical network. However, it is

also noticeable on the radial layout that the 18 parahippocampal regions in the limbic system

have no such strong connection, while regions in the fusiform (FUS, in inferio-temporal cortex)

contain only a few of those strong connections, suggesting weaker weighted connectedness of these

structures compared to the rest of the network. At this point, however, just as in the case of the nine

completely disconnected regions (see above), we also have to bear in mind the imperfect nature of

the dataset originating from the limitations of diffusion tractography (Section 2.1.1). Specifically,

due to their inferior and lateral locations, both the parahippocampal gyrus and fusiform cortex

are likely to be connected to the rest of the cortex through predominantly long-range and possibly

highly curved fibre bundles, the tracking of which is currently error-prone in diffusion tractography.

Lower or non-myelinated axons of these regions can also cause their low connectedness in the
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Figure 2.3: Visualization of structural connectivity on radial layout and projections. Top: all

998 cortical regions (5 outermost circles) along with their 72 hierarchically embedded container

structures (5 innermost circles) placed on radial layout (Appendix E), grouped by main structures

(see sectors at perimeter). Bottom: coronal (left) and horizontal (right) projections. On all three

subfigures, only the strongest 10% (n=1786) of the connections are shown for clarity.
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current dataset. All the above possible cases need to be carefully checked before drawing any

further conclusions about the extraordinarily low connectedness found in these regions.

In this chapter we qualitatively introduced and visually illustrated some of the basic prop-

erties of the large-scale connectome of the human cortex. It is easy to recognise, that further

characterisation of this highly complex network requires advanced network analysis methods. In

the forthcoming chapters, we shall systematically uncover the topological and spatial organisation

features of the cortical connectome at macro-, meso- and micro-scale with the aid of quantitative

complex network analysis tools.
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Chapter 3

Surrogate networks

In this chapter, we introduce our surrogate or null-hypothesis networks, that play a crucial role in

the forthcoming analysis. After describing their purpose, properties and generation method, we

will evaluate the generated surrogate networks against a set of validation tests in order to verify

their suitability for the current research.

3.1 Need for a null-hypothesis

Measures of complex networks are highly influenced (i.e., quantitatively biased) by more funda-

mental properties of the network, such as its number of nodes and edges (Rubinov and Sporns

(2010), Zalesky et al. (2010)). This network-specificity renders the interpretation and comparison

of results of complex network measures non-trivial. For example, how should one compare the

efficiencies of a 100-node and a 1000-node network just by looking at their individual global

efficiency values?

A common approach to test the significance of some network property is the so-called surrogate

or null-hypothesis comparison (Rubinov and Sporns (2010)). According to this analysis technique,

the set of a priori chosen surrogate networks represent a null-hypothesis of the investigated network

property by preserving some a priori chosen basic features of the network under investigation, but,

at the same time, lacking its ”higher” organisational characteristics. Direct quantitative comparison

with, or normalisation by, these ”basically similar” surrogate networks enables the researcher to

draw conclusions on how significant a specific topological property of the network is with respect

to the chosen basic properties.

Additionally, surrogate comparison also makes quantitative and qualitative cross-comparison

between fundamentally dissimilar networks possible. For example, considering their sizes and

connections densities, the segregation of network A can be more significant than that of network
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B, in spite of their individual global segregation indices alone suggesting the opposite. Surrogate

network comparison, as it will be used in the current study, also enables researchers to test if some

basic network properties induce, or at least contribute to, the expression of some other, more global

and complex organisation features of the network under study.

3.2 Surrogate network generation

3.2.1 Choosing the appropriate surrogate types

Traditional approaches

Traditionally, in determining the appropriate surrogate networks, the most widely used null-

hypothesis properties are the size (number of nodes), connection density (number of edges) and

degree distribution (the number of connections of each node) of the network. This approach has

proved to be sufficient for the topological investigation of many abstract, not spatial-embedded

networks, for example the World Wide Web, food-webs, gene-regulatory or metabolic networks

(Milo et al. (2002)), Boccaletti et al. (2006)), and are also routinely applied in the analysis of

neural and brain networks in order to demonstrate that some global, ”higher-order” organisation

features of the brain maps, such as modularity or small-worldness, are not the direct consequence

of their basic network properties (e.g., Hilgetag et al. (2000), Bassett et al. (2008), Zamora-López

et al. (2010)).

Physical networks like the brain are, however, embedded into three dimensional space which

imposes additional fundamental constraints on their basic characteristics which random surrogates

do not share. These surrogates hence represent a rather loosely constrained null-hypothesis

set for these spatially embedded networks. Specifically, random surrogates tend to possess a

large number of long-range connections because they ”smooth” local inhomogeneities of physical

networks. They thus form highly and rather homogeneously integrated networks, while at the

same time lacking the high segregation of predominantly local connectivity, which is one of the

most prominent features of brain networks (Braitenberg and Schuz (1998)). Therefore, when

comparing the architecture of the brain to random surrogates, properties may appear significant to

the brain’s architecture even though they are predominantly only caused by the spatial constraints

of its embedding into the physical world.

To address this problem, the so-called lattice surrogates have been introduce and applied in

numerous studies (Sporns and Kötter (2004), Sporns (2006), Sporns et al. (2007), Honey et al.

(2007), Rubinov and Sporns (2010)), which preserve (or rather increase) the high segregation of

brain networks. However, the motivation behind lattice surrogates, originating from the Watts-
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Strogatz small-world model (Watts and Strogatz (1998)), is to represent a lattice-like, topologically

over-segregated (and thus under-integrated) surrogate network type, the counterpart of random

surrogates, and to compare the studies network with these two extreme null-hypothesis types. This

is reflected in the commonly applied generator algorithm for lattice surrogates (only replacing

connections closer to the main diagonal of the connectivity matrix, see e.g. Sporns and Kötter

(2004)), which is only indirectly linked to physical distance through some arbitrary spatial ordering

of the network nodes, and is therefore only partially appropriate to provide a null-hypothesis

network set for physical wiring constraints of the network under study. Furthermore, these lattice

surrogates are designed to reduce, rather than preserve, the connection lengths of the studied

network, therefore they are prone to loosing some brain network properties during that optimisation

of spatial wiring.

Spatially preserving null-hypothesis networks

As it has been discussed above, the structure of spatially embedded physical networks, like brain

networks, is usually heavily influenced by additional organisation constraints, such as the tendency

of connections to be formed locally (Braitenberg and Schuz (1998)). Spatial embeddedness is

one of the most fundamental factors shaping the evolution and development of the brain (Kaiser

and Hilgetag (2004b)). More generally, every materially realised network faces basic physical

constraints, such as the number, density and lengths of network connections (Kaiser and Hilgetag

(2004c)). Comparative complex network studies have long pointed to fundamental organisation

differences between ’geographic’ or spatial networks, such as power grids or the Internet, and non-

spatial networks, such as semantic networks or theWWW (reviewed in Newman (2003), Boccaletti

et al. (2006) and Sporns (2010)).

One of the primary considerations in the physiological efficiency of brain networks is the

metabolic cost their structure and operation requires (Laughlin et al. (1998), Laughlin and

Sejnowski (2003)). The fact that longer synaptic connections are more expensive, both in terms

of material cost and energy consumption, is likely to be a fundamental ’design’ principle during

the evolution and development of brain networks towards conserved wiring lengths (Kaiser and

Hilgetag (2004b), Kaiser (2007)). While a small fraction of metabolically non-optimal, long-range

projections is necessary for maintaining high network efficiency (Kaiser and Hilgetag (2006)), the

human brain is a spatially extremely conservative network with the majority of the connections

being local, even when considering the cortico-cortical white matter projections only (see Section

3.3.3).

In the current work, we introduce a new class of surrogates, spatial surrogate networks, which
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preserve more of the actual embedding of the brain network into physical space than random

surrogates do, and hence are a better baseline to investigate whether the particular arrangement

of regions in the brain may induce some of the properties of the connectome. Specifically,

as opposed to the rather abstract, minimally constrained random surrogate networks, our novel

spatial surrogates additionally incorporate the physical feature of the brain to favour spatially local

connections. Additionally, in order to follow the standard analysis framework of the field, as well

as to be able to compare the cortex with a set of surrogate network sets with varying degree of

spatial constraints, we also perform null-hypothesis analysis against a set of traditional, spatially

non-restricted random surrogate networks.

3.2.2 The rewiring algorithm

Both types of surrogate networks were generated by the widely applied iterative rewiring algorithm

(Maslov and Sneppen (2002), Milo et al. (2002), Sporns and Kötter (2004)), the basic variant of

which proceeds as follows. Starting from the original cortical network, in each iteration, two edges,

(n1, n2) and (n3, n4), are randomly chosen. After making sure that no self-connections or parallel

edges (multiple links between two nodes) would be created, the two original edges are rewired to

(n1, n3) and (n2, n4).

The above basic variant is used to generate random surrogate networks. In our spatially

constrained variant of the rewiring algorithm, we incorporated the following additional rule: each

rewiring step is only executed if the resulting total connection length of every nodewould not exceed

that of the node in the original cortical network1. In the current study, the procedure terminates

when each edge is rewired 20 times on average (10*17865=178650 rewiring steps, as each step

rewires two edges). For both surrogate types, we generated n=20 networks. The pseudocode of the

algorithm used to generate the two surrogate network types is presented in Alg. 1.

The rewiring algorithm, while randomising (shuffling) network edges between nodes, preserves

not only the number of nodes and edges of the cortical network, but also its (non-weighted) degree

distribution (number of connections of each node). The reason for this latter property follows from

the fact, that, during the generation of a surrogate network, every ’atomic’ rewiring step of the

entire rewiring procedure preserves the degree of all four regions being rewired (each one looses

a connection and at the same time gains another one). Therefore the binary degree distribution of

every intermediate network generated during the rewiring procedure equals to that of the original

cortical network, hence so does that of the final rewired surrogate network (see Figure 4.1, top left
1Due to losing the actual, DSI tractography-derived lengths of the projection trajectories during the rewiring

procedure, connection lengths in this case were approximated by the sum of Euclidean distances between the positions

of each connected node-pair, both for cortical and for surrogate networks.
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Algorithm 1 Pseudocode of the surrogate network generator algorithm

Surrogate network generator method

input: C cortical network

r boolean for surrogate type

True: random, False: spatial

output: S surrogate network

B initialise

nrewsteps = 10 ∗ C.number_of_edges()

S = C

i = 0

while i < nrewsteps do

B choose two edges randomly

n1, n2 = S.get_random_edge()

n3, n4 = S.get_random_edge()

B avoid self-loops

if n1 6= n3 and n2 6= n4 then

nbrs1 = S.get_neighbours(n1)

nbrs2 = S.get_neighbours(n2)

B avoid parallel edges

if n3 /∈ nbrs1 and n4 /∈ nbrs2 then

B extra spatial condition

see right column for method s

if r or s(C, S, n1, n2, n3, n4) then

B rewire edges

w1 = S.get_weight(n1, n2)

w2 = S.get_weight(n3, n4)

S.delete_edge(n1, n2)

S.delete_edge(n3, n4)

S.add_edge(n1, n3, w1)

S.add_edge(n2, n4, w2)

i = i+ 1

end if

end if

end if

end while

return S

Extra condition for spatial surrogates

(method s from left column)

input: C cortical network

S surrogate network

n1,n2 nodes of first edge

n3,n4 nodes of second edge

output: evaluated spatial condition

True: passed, False: failed

B get nodes’ total connection lengths

originally in cortical network

ct1 = C.get_total_conn_len(n1)

ct2 = C.get_total_conn_len(n2)

ct3 = C.get_total_conn_len(n3)

ct4 = C.get_total_conn_len(n4)

B get nodes’ total connection lengths

currently in surrogate network

st1 = S.get_total_conn_len(n1)

st2 = S.get_total_conn_len(n2)

st3 = S.get_total_conn_len(n3)

st4 = S.get_total_conn_len(n4)

B get distances of node pairs

d12 = get_dist(n1, n2)

d34 = get_dist(n3, n4)

d13 = get_dist(n1, n3)

d24 = get_dist(n2, n4)

B True, if original connection length

would not be increased for any node

if st1 − d12 + d13 ≤ ct1 and

st2 − d12 + d24 ≤ ct2 and

st3 − d34 + d13 ≤ ct3 and

st4 − d34 + d24 ≤ ct4 then

return True

else

return False

end if
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subfigure).

Additionally to these properties of random surrogate networks (identical network size, num-

ber of connections and degree distribution), spatial surrogates also conserve the regional total

connection length distribution of the cortical connectivity, thereby satisfying our null-hypothesis

requirements on connection proximity. Also, note that in all surrogate networks degrees and

connection lengths (the latter only for spatial surrogates) are not only globally preserved, but also

on a per node basis. This makes comparison feasible not only at the macro-scale of the entire

network, but also at the micro-scale of individual regions and, by consequence, at the intermediate

meso-scale of region subgroups.

In summary, comparison of complex network metrics between the cortical network and its two

surrogate types allows for assessing cortical characteristics that are not (solely) the consequences of

the size, connection density and degree-distribution of the cortex, in case of random surrogates, and

for assessing cortical characteristics that are not (solely) the consequences of the size, connection

density and degree-distribution of the cortex and its local connectivity, in case of spatial surrogates.

Due to the additional, connection length constraint, we expect spatial surrogate networks to better

approximate cortical network properties than random surrogates do.

3.3 Surrogate network verification

The rewiring algorithm outlined above is given several constraints to comply with during the

randomisation of the cortical connectivity. In order to assess that, in spite of these constraints,

sufficient randomisation is achieved for the forthcoming surrogate analysis, we verify the resulting

surrogate networks below.

The averaged connectivity matrices of the obtained surrogate network groups are shown

in Figure 3.1. By sole visual inspection of the matrices, we can note that a homogeneous

randomisation was achieved across random surrogates, indicated by the blurred purple colour of

their average connectivity matrix. The average connectivity matrix of spatial surrogates on the

other hand noticeably resembles characteristics of their original cortical counterpart (see Figure

2.2): the concentration of high values along the main diagonal indicates that they preserved the

predominantly local connectivity of the cortex to a large extent. In the forthcoming analysis, we

shall quantitatively assess the similarity between the cortical network and its surrogate groups.

3.3.1 Cortex – surrogate distances

We start the assessment of the generated surrogate networks by evaluating their similarity to the

cortical connectivity. Numerous indices have been devised to measure similarity between two
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A spatial B random

Figure 3.1: Average connectivity matrices of surrogate network groups. Averaged connection

matrices (projection strength weighted frequencies of connection occurrences) of spatial (A) and

random (B) surrogates. See colour bar on right for scale of both matrices. All matrices are

symmetric due to the undirected nature of the networks. For colour code and ordering of regions

(left and top strips) see Figure 2.2 and Figure 2.3. For comparison with the original cortical

connectivity matrix, see Figure 2.2.

datasets. The Damerau–Levenshtein distance (Damerau (1964)) and its Levenshtein or ”edit

distance” variant (Levenshtein (1966)) were developed to measure the distance between two

character strings as the minimum number of some discrete operations required to transform one

to the other. These similarity indices are most commonly applied in bioinformatics to measure

the variation between DNA sequences, in which basic steps of mutation can be represented by

considered discrete operations (Jones and Pevzner (2004)). However, these metrics are less suitable

for measuring our main interest here, i.e., the global dissimilarity between different networks, as

they are designed to investigate the process itself that leads to those differences.

Another two metrics for measuring the similarity between two sets of data are the Jaccard index

J (Jaccard (1901)), and the closely related Sørensen similarity quotient QS (Sørensen (1948)).

Both measures are based on the quotient of the intersection and the union of the two sets, making

them more suitable for our purpose, that is, for measuring the global (dis)similarity or relative

overlap between the connection sets of networks defined on the same set of nodes. Here, we use the

Sørensen distance, which is equivalent to the Bray–Curtis dissimilarity (Bloom (1981)), modified

to calculate distance on (connectivity) matrices, and we call that modified measure the normalised

distance δ. Specifically, the distances of each surrogate network S from the cortical network C is
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calculated by the Sørensen distance of their weighted connectivity sets:

δ(C, S) = 1−QS(C, S) = 1− 2 |C ∩ S|
|C|+ |S|

=
|C|+ |S| − 2 |C ∩ S|

|C|+ |S|
=
|C4S|
|C|+ |S|

=

=

∑
i,j∈N |Cij − Sij |∑

i,j∈N Cij +
∑

i,j∈N Sij
=

∑
i,j∈N |Cij − Sij |
2 ∗
∑

i,j∈N Cij
, (3.1)

where A4B is the symmetric difference between sets A and B, N is the set of regions in the

networks (the same for the two compared networks in our case), andMij is the connection weight

between nodes i and j in networkM ∈ {C, S} (zero if the two nodes are not connected). With the

above definition, δ measures the ratio of dissimilarity between the weighted connectivities of two

networks C and S, that are defined on the same set of nodes and possess the same total connection

weight sum. Normalised distance is 1 if the networks share no common connection (maximal

distance), and it is 0 if the networks are equivalent, that is, they are composed of exactly the same

set of weighted connections (zero distance).

We calculate the mean normalised distances δ(C, S) for the two surrogate sets. For random

surrogates, we obtain δ(C, SR) = 0.95 ± 0.002, indicating their almost completely different

connection sets from that of the cortical network. For spatial surrogates, we obtain the much

lower δ(C, SS) = 0.52 ± 0.002, confirming that conservation of the connectional locality of

the cortical regions indeed lowered the achievable degree of randomisation. Nonetheless, even

the spatial surrogates are substantially, more than 50% different in their connectivity from the

cortical network, rendering them appropriate to represent a set of reasonably randomised, spatially

constrained surrogate networks of the cortex.

3.3.2 Surrogate – surrogate distances

The δ(C, SR) and δ(C, SS) values obtained above demonstrate only some very insignificant

deviation from their respective means. This can be the combined consequence of the sufficiently

long edge shuffling process and the relatively large size of the network, according to the law of large

numbers. Another possibility, however, is that the low deviation originates from an adversely low

variation within the generated surrogate groups, each being composed of highly similar networks.

To determine which one of the above two cases is true, we calculate the pair-wise normalised

network distance between every surrogate network pair in each of the surrogate groups. Mean

intra-group distance values and their standard deviations are δ(SR, SR) = .95 ± .001 for random

surrogates and δ(SS , SS) = .55 ± .003 for spatial surrogates, confirming that the intra-group

distances are significantly non-zero, and invalidating the second scenario above.
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Figure 3.2: Connection lengths of the cortical connectivity and its surrogate network groups.

(A) Connection length (distance between linked region pairs) distribution of the cortical network

(bars) and its surrogates (diamonds), with mean ± standard deviation values indicated in legend.

Whiskers on diamonds denote the standard deviation between networks within each surrogate

group. Note the highly similar, but somewhat shorter tailed connection length distribution of spatial

surrogates, and the shift of the connection length distribution of random surrogates towards much

higher values, reflected in their mean and standard deviations (see figure legend). (B) Histogram of

total connection length of regions (sum of distances from all neighbours). Each row corresponds

to a single region, bars represent values in the cortex and are coloured to the anatomical structure

colour of the region (see Figure 2.3). Diamonds denote mean of total connection lengths of regions

within each surrogate groups (see legend). Note that total connection length of not only the entire

network (as shown inA), but also of each individual region is preserved in spatial surrogates (orange

diamonds, apart from some exceptions, match with bar values in B), while they have been increased

in random surrogates.

Interestingly, the low deviations in both the δ(SR, SR) random-random and the δ(SS , SS)

spatial-spatial distances indicate that in each surrogate group there exists a characteristic or natural

distance, δ(SR, SR) and δ(SS , SS), between any two members of that group. In addition to that,

we see that the mean distance of the cortical network from its surrogate groups is analogous to

these characteristic distances of the groups (δ(C, SS) ≈ δ(SS , SS) and δ(C, SR) ≈ δ(SR, SR)),

and furthermore with only a very low deviation. This finding renders the cortical network a generic

member of each group in terms of its basic region-region connectivity, measured by δ.
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3.3.3 Connection lengths

The connection length distribution and total connection length of each region (sum of distances to

all neighbours) in the cortical network and its surrogates are shown in Figure 3.2. Consistent with

the predominantly local connectivity of the cortex (mean cortical connection length lC = 27.625

mm), random rewiring of cortical connections has nearly tripled the average connection length

(mean ± standard deviation of random surrogate network means: lR = 75.971 ± 0.164 mm). For

this reason, that is, due to the natural tendency of randomly swapping links to increase the lengths

of the originally short cortical connections, the applied simple condition during spatial surrogate

generation (i.e., ’not to exceed the original total connection length of the cortex’, see Alg. 1) has

been sufficient to achieve conservation of connection lengths in spatial surrogates (lS = 27.507 ±

0.120 mm), with a similar profile, but slightly narrower connection length distribution (standard

deviation of connection lengths: cortex: σ(lC) = 22.146 mm→ spatial surrogates: σ(lS) = 18.589

mm) and shorter tail (see Figure 3.2 A).

This latter alteration renders the distribution of the length of the individual cortical connections

significantly different from those of both of its surrogate groups (Wilcoxon two-sided rank-sum test

for identical distribution: p < 10−4 both for random and spatial surrogates). On the other hand, as

it can be seen in Figure 3.2 B, the total connection lengths of the individual cortical regions have

been successfully preserved in spatial surrogates (cortex minus spatial surrogate mean: -2.374 ±

5.521 %, Wilcoxon two-sided rank-sum test for identical distribution: p = 0.898), while random

surrogates have significantly increased these regional connection lengths (cortex minus random

surrogate mean: +227.5± 114.0%, p < 10−4). These results verify our novel spatially constrained

surrogate network generator algorithm, as well as the obtained null-hypothesis networks, in terms

of conserving not only topological, but basic spatial properties of the cortical connectivity, that are

largely lost in traditional random surrogates.

3.4 Overview of results

In this chapter, we introduced and verified the robustness of the surrogate generator algorithm, and

gave validity to the forthcoming surrogate comparison analysis. Specifically, we have confirmed

that our spatial surrogates successfully preserved not only the basic topological properties (number

of regions, connections and degree distribution) of the cortical connectivity network, but also

some of its basic spatial ”wiring” properties (total connection length of individual regions and

the entire network). This enables the utilisation of spatial surrogates to test the significance of

certain organisation features of the cortical network against the individual wiring constraints of its
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regions.

We also note, however, that, although they reasonably approximate its profile, even spatial

surrogates were not able to fully conserve the connection length distribution of the cortical network

at the level of individual connections, due to having lost some of the longest-range connections of

cortical connectivity. Nevertheless, while keeping the above point in mind, the conservation of

the total wiring length as well as the individual wiring length of the cortical regions enables us to

use spatial surrogates as null-hypothesis networks that estimate these latter aspects of the cortical

wiring constraints.

With the combined utilisation of traditional random surrogates and our novel spatially preserv-

ing surrogates, we are able to distinguish in our analysis those significant topological features of the

cortical network that are derivable from its predominantly local, spatially segregated connectivity

(in case both the cortical network and its spatially preserving surrogates differ from random

surrogates) from those that are the consequences of some primarily not spatially constrained,

potentially functionally more relevant organisation principles of the cortical connectivity (in case

the cortical network differs from both its spatially conservative and random surrogates).

In the forthcoming survey of analyses, we shall utilise the obtained surrogate groups with that

purpose, that is, to gain insight into the global relevance of each investigated network organisation

feature, before turning our attention to the analysis of how that feature is internally expressed and

facilitated by various parts of the cortical topology.



Part II

From structure to function

through dynamics
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Chapter 4

The small-world of the brain

Topological basis of functional integration and

segregation in the cortex

4.1 Introduction

In this chapter, we start the topological analysis of the cortical structural connectivity by assessing

whether it exhibits one of themost prominent features ofmany real-world complex networks, the so-

called small-world organisation (Watts and Strogatz (1998)). Informally, a network is called small-

world if it is relatively sparsely and locally connected, but, at the same time, is able to maintain

short path lengths between its nodes.

In practical terms, these criteria usually translate to both relatively high segregation and high

integration, properties that reflect the kind of information processing the network is capable of

(Tononi et al. (1998)) and are important topological aspects to be investigated on their own.

Therefore, by utilising an assorted set of complex network measures, we carry out a detailed multi-

scale analysis on the segregation and integration properties of the cortical network first, then, using

those results, we draw conclusions on the small-world organisation of the cortex.

Beyond characterising the global integration and segregation properties of the cortical connec-

tivity, we shall also seek for internal differences in the topological integratedness and segregat-

edness among the individual cortical regions, and thereby characterise potential specialisation in

their functional operation. We shall also investigate the relation of integration and segregation by

contrasting the regional expression of two, naturally opposing network phenomena (Tononi et al.

(1998)).

It is important to note, that even in the ever-growing plethora of complex network measures



35

(see Costa et al. (2006), Rubinov and Sporns (2010) and Kaiser (2011) for recent reviews), there

is no generally applicable ”gold standard” for the quantitative assessment of network integration

or segregation. These umbrella terms should rather be regarded as qualitative characteristics with

their own diverse, inter-related set of specialised measures, where each measure assesses a different

aspect of the general phenomenon. The multi-scale, spatially embedded and highly dynamic nature

of the brain complicates this situation further by rendering the interpretation of some measures,

such as flow or page-rank, non-trivial, and necessitating the development of new measures that are

able to deal with the above characteristics (Rubinov and Sporns (2010)).

For these reasons, we are necessarily restricted to work with a set of some selected, repre-

sentative measures in this study. The measures following in this chapter were chosen partly due

to their prior utilisation for brain network analysis, in order to work with already established,

validated tools, as well as to facilitate cross-study comparison. Additionally, the importance of

utilising multi-scale measures in order to capture different aspects of network integration has been

demonstrated by Zuo et al. (2011). Keeping this in mind, we also attempt to use a selection of

network metrics with the ability to illuminate network integration and segregation from different

angles and to get a more balanced picture of the investigated general phenomena.

4.2 Integration

4.2.1 Introduction

In the context of brain networks, functional integration is ”the ability to rapidly combine specialised

information from distributed brain regions” (Rubinov and Sporns (2010)). Structural connectivity

of the brain gives us insight into local and global aspects of functional integration through the

assumption that anatomical connections form the underlying basis of communication between brain

regions. Generally speaking, topological analysis of structural connectivity builds on the notion

that anatomically highly integrated regions (or groups of regions or entire networks) are able to

utilise functional information present in the network in a more efficient way by requiring less time

and other physical resources to access it. While the complete exclusion of the dynamical aspects

of information processing from this analysis framework may seem to be an oversimplification, this

approach has been adopted and widely applied in the complex network sciences as a reasonable

starting point for uncovering potention for functional integration from network structure (Newman

(2003), Watts (2004), Boccaletti et al. (2006), Rubinov and Sporns (2010)). Nonetheless, we will

return to this basic assumption on the relation between structure and function and examine its

validity in Chapter 7 in general, and in Section 8.3.2 in particular.
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We investigate the integrative properties of the cortex by four complex network measures of

integration: degree centrality, leverage centrality, efficiency and betweenness. Below, we first

formally introduce and informally interpret all four measures, then we analyse the cortical network

with respect to them.

4.2.2 Methods: Integration measures

Degree centrality

Degree centrality (or simply degree) (Rubinov and Sporns (2010)) of a node i is the number of

connections the node possesses with every other network node:

ki =
∑
j∈N

aij (4.1)

where aij=1 if there is an edge between node i and j, and 0 otherwise. Degree centrality is the

most fundamental centrality measure that reflects the integratedness of the nodes by measuring

their immediate interconnectedness with the rest of the network.

Leverage centrality

Leverage centrality (Joyce et al. (2010)) of a node i measures the relationship between its degree

ki and the degree of each of its neighbours, averaged over all neighbours Ni:

li =
1

ki

∑
j∈Ni

ki − kj
ki + kj

(4.2)

According to the developers of the measure: ”The leverage centrality of a node in a network is

determined by the extent to which its immediate neighbours rely on that node for information.”

(Joyce et al. (2010)). A node has negative leverage centrality if its degree is less than the average

degree of its neighbours, suggesting that it relies on them in communicating with the rest of the

network, while the topological relation is vica versa for positive leverage centrality nodes. The

correction term in the denominator of Eq. 4.2 is used to eliminate the imbalance high degree

nodes would introduce to the distribution of the measure.

Efficiency

Efficiency (Latora and Marchiori (2001)) of a node i is the average of the inverse of the dij shortest

path lengths between the node and every other network node:

ei =

∑
j∈N,j 6=i 1/dij

|N | − 1
. (4.3)
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High efficiency nodes require fewer intermediating edges to reach other nodes on average, therefore

higher efficiency values represent greater potential to exchange information or exert influence on

the rest of the network. Efficiency has the advantage over the more traditional average shortest path

length of being computable for multi-component networks1, and generally it is a more balanced

measure due to the fact that shortest path length can be heavily effected by only a few, very long

paths (Achard and Bullmore (2007)).

Betweenness centrality

Betweenness centrality (Freeman (1978)) of a node i is the fraction of all shortest paths that pass

through it:

bi =
1

(|N | − 1)(|N | − 2)

∑
h,j∈N

j 6=i,h 6=i,h 6=j

ρjh(i)

ρjh
, (4.4)

where ρjh is the number of shortest paths between nodes j and h, and ρjh(i) is the number of

shortest paths between nodes j and h that pass through i. High betweenness centrality implies that

the node contributes to many shortest paths in the network, and suggests the node’s distinguished

importance in supporting global, network-wide integration.

Comparison of the integration metrics

For all four measures introduced above, higher measure values suggest higher potential of the

node in facilitating functional integration within the network due to its topologically more central

position. From the four measures, leverage centrality can take negative values, while the other three

measures are non-negative.

We emphasise, that the calculation of the four measures take an increasing extent of the network

topology into account: degree centrality only counts own edges (immediate neighbours), leverage

centrality considers the connectivity of neighbours, efficiency evaluates own shortest paths, and

finally betweenness centrality requires all shortest paths present in the network. Consequently,

the selected measures reflect the integration potential of the network nodes at various scales from

local to global, thus in combination they are able to cover cortical integration processes occurring

on various spatial scales.

1For example, the efficiency of a disconnected node degenerates to 0, while its shortest path length is infinite.
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4.2.3 Results: Regional integration properties

Surrogate comparison

Distributions of regional measure results of the four integration metrics, and their pairwise

relationships are shown in Figure 4.1. First, let us consider the distribution of measure values

along with their surrogate tests (subfigures along main diagonal).

Degree distributions of both types of surrogate networks, by the nature of their construction

(Section 3), are identical with that of the cortical network (mean: 36.0± 16.0). Leverage centrality

distribution of the cortex is narrower around its higher mean value (network mean: LC = -0.064)

than that of its random surrogates (LR = -0.088 ± 0.217, Wilcoxon two-sided rank-sum test for

identical distribution: p < 10−3), and is remarkably akin to its spatial surrogates (LS = -0.064

± 0.173, p = 0.65). This suggests that the predominantly short connections of the cortex link

spatially close regions with similar degrees, resulting in a relative balance in functional integration

within local neighbourhoods of regions, throughout the cortical surface.

Considering the global topological distances between cortical regions, the efficiency of the

cortex is significantly lower than both of its surrogate groups (network means: cortex: EC = 0.174,

spatial: ES = 0.214 ± 0.030, random: ER = 0.26 ± 0.032, Wilcoxon two-sided rank-sum test

for identical distribution: p < 10−4 for both surrogate types), reflecting sub-optimality in mean

regional distances. Finally, the distribution of betweenness centralities of the cortical network is

more spread towards higher values (network means: cortex: BC = 0.0021, spatial: BS = 0.0017

± 6·10−5, random: BR = 0.0013± 4·10−5, p < 10−4 for both surrogate types), indicating a more

heterogeneous, possibly centralised global architecture in the cortex, with a fewer regions laying

on many shortest paths, than in its more homogeneous surrogate network.

Importantly, although the cortex’s integration properties, as expected, are better approximated

by spatial surrogates than random networks (see mean values), in some cases the brain network is

significantly different from both null-hypothesis networks (see significance tests above). Specif-

ically, while the cortex and its spatial surrogates are locally highly similar (degree and leverage

centrality), their global integration is differently organised (efficiency and betweenness centrality).

This suggests that while the physical wiring constraints of individual cortical regions predominantly

shape their local integration ability, it is likely that some other organisation principles govern the

characteristics or cortical integration on the meso- and macro-scale.
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Figure 4.1: Distributions and correlations of integration measures. Subfigures in main

diagonal: distributions of regional measure values (bars), colour coded by the mean color of

comprised regions. Diamonds and whiskers show spatial (orange) and random (magenta) surrogate

means and standard deviations. Legend showsmean± standard deviation of cortical network (’C’),

and its spatial (’S’) and random surrogates (’R’). Off-diagonal subfigures: scatter plots of pairwise

measure values of regions (dots), colour coded by their main structure. Blue line is fitted linear

(f(x) = ax + b) or exponential curve (f(x) = cekx + y0), obtained by least square fitting both

models to data and choosing the one with lower r2 value. Legends show parameters of model fit (k

and c for exponential, a for linear fit), coefficient of determination (r2 = 1 −
∑ yi−fi

yi−y (Steel and

Torrie (1960))) and normalized redundancy (R) (see Appendix C). Note that although some metric

pairs have a clearer trend (higher r2 and R values) than others (lower r2 and R values), all curve

fittings indicate a generally positive correlation (co-increase) between the measures.
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Inter-relation of the measures

Having calculated the four integration metrics for each region of the cortex, we are able to assess

the relation of the measures to each other on the regional (network node) level of the cortical

connectivity. Looking at the relationship between the integrationmeasures (off-diagonal subfigures

of Figure 4.1), we can observe positive correlations between the values of all measure-pairs: fitted

curves all increase (blue curves), indicated by their positive slope a, in case of linear fitting, or

identical sign (both positive or both negative) constant factor c and exponent parameter k, in case of

exponential fitting. These characteristics suggest that high degree regions also tend to be influential

in their local neighbourhoods (high leverage centrality), are able to reach and be reached by other

regions faster and more directly (high efficiency), and are able to globally facilitate communication

between many other region-pairs in the network (high betweenness centrality).

The most highly integrated regions

Regional measure values and the projections linking the regions with the highest measure values

are visualised in Figure 4.2 for all four integration measure. The spatial distribution of the highest

degree and most efficient regions, along with their dense inter-connections, clearly delineate a

coherent central area along the caudal part of the cortical midline. Indeed, all the top 5% (n=50)

highest degree and most efficient brain regions reside in only five of the 13 anatomical structures:

in the precuneus, the limbic (cingulate) system, the superio-parietal, superio-frontal and occipital

cortices. Furthermore, the top 10% (n=1786) of the edges connecting these regions predominantly

run between regions of the former group, with only a few reaching out to areas in the temporal and

frontal lobes, suggesting a high level of interconnectedness between these highly central regions.

These characteristics together suggest that high efficiency regions, capable of facilitating global

integration due to their topological closeness, are both spatially enclosed and form a densely

interconnected subgroup in the cortex. We will directly investigate this claim in Chapter 5.

As opposed to the above centralisation of high degree and highly efficient regions, the location

Figure 4.2 (following page): Integration measure results on projections. In each row, the

regional measure results for an integration metric are represented on coronal (left column) and

horizontal projections (right column). Regions are drawn with sizes proportional to their measure

values, and are coloured to their main anatomical structure colour. On all projections, only the top

10% (n=1786) of the connections are shown for clarity, the ones that connect regions with highest

measure values.
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of other locally and globally important integrator areas, measured by leverage centrality and

betweenness centrality, respectively, exhibits amore homogeneous spatial distribution by extending

to the lateral and frontal part of the cortex. As both metrics measure the potential of the regions to

provide intermediating links between other regions, locally for leverage and global for betweenness

centrality, their rather homogeneous spread suggests that the integration of distributed activity at

various spatio-topological scales is organised around local and global hubs throughout the cortex.

We will turn back to these claims in the following chapters.

4.3 Segregation

4.3.1 Introduction

In the context of brain networks, functional segregation is ”the ability for specialised processing

to occur within densely interconnected groups of brain regions” (Rubinov and Sporns (2010)).

Similarly to the functional interpretation of topological properties in the context of integration

(Section 4.2), the above definition of functional segregation is also based on the assumption that

anatomical connections are the fundamental facilitators of functional interaction and specialisation.

In support of this assumption, numerous studies found significant match between specialised

functional areas and anatomically highly segregated parts (structural modules) in the thalamo-

cortex of the cat (Hilgetag et al. (2000), Hilgetag and Kaiser (2004)) as well as in the macaque

brain (Honey et al. (2007)). Nonetheless, as in the case of our functional integration analysis

(Section 4.2), it is important to bear in mind that metrics of structural segregation omit the complex

dynamical processes occurring on brain networks, and as such, are limited to characterise only the

anatomical potential for functional segregation (Rubinov and Sporns (2010)). We will return to

this question and investigate the relation between structural metrics and functional interaction in

Chapter 7 in general, and in Section 8.3.2 in particular.

In the following analysis, we assess segregation in the cortex by two structural measures:

clustering and normalised clique size. After formally defining and interpreting them, we present

the results of their utilisation on the cortical connectivity.
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4.3.2 Methods: Segregation measures

Clustering coefficient

The clustering coefficient (Watts and Strogatz (1998)) of node i is the fraction of triangles around

it:

cci =
ti
mi

=

∑
j,h∈Ni

ajh

|Ni| ∗ (|Ni| − 1)
, (4.5)

whereNi is the set of neighbours of i, ajh = 1 if there is an edge between node j and h, 0 otherwise,

and ti = 1
2

∑
j,h∈Ni

ajh is the actual number of triangles, while mi = 1
2 |Ni| ∗ (|Ni| − 1) is the

maximum possible number of triangles around i, given its number of connections (cci = 0 for

|Ni| < 2) (Rubinov and Sporns (2010)).

The clustering coefficient of a node is 1 if all of its neighbours are also connected pair-wise,

and it is 0 if none of its neighbour-pairs are connected. Clustering coefficient, reflecting the local

density of inteconnectivity on network topology, is the basic measure of segregation.

Normalised clique size

As an alternative segregation measure to the standard clustering coefficient, we introduce a related,

but slightly modified metric: normalised clique size. The normalised clique size of node i is the

fraction of its neighbours that, taken together with i, form the largest complete subgraph or clique

(Luce and Perry (1949)):

csi =
ωi − 1

|Ni|
, (4.6)

whereNi is the set of neighbours of i, and ωi is the clique number of i, which is the size of largest

complete, i.e., fully connected, subgraph that i is the member of (Eblen et al. (2012)).

Normalised clique size reflects the level of segregation by measuring the size of the largest

completely connected functional ”subunit” (topological clique) relative to the local level of

interconnectivity. The normalised clique size of a node is 1, if all of its neighbours are fully

connected (total segregation), and it is 0, if there is no connection between any of its neighbours

(null segregation). While these extreme cases also apply to clustering coefficient, normalised clique

size differs from the former by measuring local segregation in a more concentrated (the single

largest clique), rather than distributed sense (all triangles around a node).

As a technical note, we mention that in the extreme case of a fully connected network (in

which there exists an edge between every node-pair), all network nodes take the value one for both

clustering coefficient and normalised clique size, despite the fact that such networks are normally

not considered segregated. However, as, generally, real-world networks tend to have rather sparse

connectivity (see e.g. the review of Albert and Barabási (2002)), and, particularly, the connection
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Figure 4.3: Distributions and correlations of segregation measures. Subfigures along main

diagonal: bars denote distribution of cortical values (’C’ in legend), diamonds and error bars show

spatial (orange colour and ’S’ in legend) and random (magenta colour and ’R’ in legend) surrogate

means and standard deviations. Off-diagonal subfigures: scatter plots of pairwise measure values

of regions (dots), colour coded by their main structure. For further figure explanation, see Figure

4.1.

density of the analysed cortical connectivity network is 3.6%, we can safely ignore the above

deteriorating aspect of the considered segregation measures.

4.3.3 Results: Region-level results

Segregation measure results are presented in Figure 4.3. The characteristically high segregation

of the cortex is salient: its mean clustering coefficient and normalised clique-size (CCC = 0.464,

CSC = 0.331) are multiple times higher than those of its random surrogate networks (CCR = 0.048

± 0.001, CSR = 0.087 ± 0.002, Wilcoxon two-sided rank-sum test for identical distribution: p <

10−4 both for measures). The cortex also has about 60% higher segregation level according to both

measures than its spatially constrained surrogates (CCS = 0.298 ± 0.004, CSS = 0.211 ± 0.004,

p < 10−4 both for measures). As expected, spatial surrogates approximate the cortical network

much closer than random test networks, reflecting the importance of spatially short connections in

shaping the level of structural segregation in the cortex.

The specific values of the measures are also noteworthy: the 46% global cortical clustering

coefficient means that more than almost every second neighbour-pair of each cortical region is also
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Figure 4.4: Segregationmeasure results on projections. In each row, the regional measure results

for a segregation measure are visualised on coronal (left column) and horizontal projections (right

column). Regions are drawn with sizes proportional to their measure values, and are coloured

to their main anatomical structure colour. On all projections, only the top 10% (n=1786) of the

connections are shown for clarity, the ones that connect regions with highest highest measure

values.

connected on average (4.8% or 1:20 for random, and 30% or 1:3 for spatial surrogates), while the

33%mean cortical normalised clique-size indicates that each region forms a clique with as much as

one third of its neighbours on average (8.7% or 1:11 for random, 21% or 1:5 for spatial surrogates).

Comparison of the two measures (Figure 4.3, off-diagonal subfigures) shows a high and

strong positive correlation between them, reinforcing the intuitively expectable tendency of high

clustering coefficient regions to form large relative cliques around themselves.

The most highly segregated cortical regions and their interconnectivity, are shown in Figure

4.4. The widespread spatial distribution of these regions, according to both measures, and the

”patchy” formations of their local interconnections are salient, especially in contrast with the high
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centralisation of the highest degree and most efficient regions (Figure 4.2), and generally is in

agreement with the interpretation of highly segregated regions to form small clusters of densely

interconnected local processing units (Rubinov and Sporns (2010)).

4.4 Specialisation between integration and segregation

4.4.1 Introduction

We have seen in Figure 4.1 and 4.3, that groups of complex network metrics, measuring various

aspects of integration and segregation of the brain regions, are in positive correlation, and that

collectively they are capable of providing a broad, multi-scale assessment of network phenomena

they gauge. Furthermore, cross-relation between these metric groups, shown in Figure 4.5,

indicates negative correlation between all measure pairs. This finding supports the intuitive notion

that integration and segregation are in competition with each other for the limited resources present

the cortical network, e.g., for the metabolic energy the structure and operation of the connections

require (Laughlin et al. (1998), Laughlin and Sejnowski (2003)). It hence appears, that individual

cortical regions express one of them at the expense of the other. In this section, we attempt to

characterise this regional specialisation between integration and segregation.

4.4.2 Methods: Measure for specialisation

The negative correlation between the two measure groups enables us to categorise individual brain

regions by being either in an integrator or rather in a segregated position in the cortical network.

To quantify this phenomenon, we introduce a metric for measuring regional specialisation between

integration and segregation. Given the sets of all investigated integration and segregationmeasures,

I and S, we order the regional results of each measurem ascending (smallest first), resulting in a

rank ordered list of the regions rm. Then we calculate the following average for each region i on

its rank indices rm(i) across allm measures:

U(i) =

∑
m∈I rm(i)

n|I|
−
∑

m∈S rm(i)

n|S|
, (4.7)

where n=989 is the number of regions in the cortical connectivity network, and |I| = 4 and |S| =

2 are the number of integration and segregation measures, respectively.

The above formula, resulting in a number in [-1, 1], evaluates the potential information

processing role of each brain region in the network on a continuous scale. Regions with more

positive U values are more highly ranked in integration measures, while at the same time have low

segregation measure ranks, resulting in a rather integrator role in the cortical network. Conversely,



47

Figure 4.5: Correlations of segregation and integration measures. Top and right sides:

distributions of regional measure values (bars), colour coded by the mean colour of comprised

regions. Center: scatter plots of pairwise regional measure values (dots). Regions are colourcoded

by their main structure. Blue line is fitted linear (f(x) = ax + b) or exponential curve (f(x) =

cekx + y0), obtained by least square fitting both models to data and choosing the one with lower r2

coefficient of determination value. Legends show parameters of model fit (k and c for exponential,

a for linear fit), coefficient of determination (r2 = 1 −
∑ yi−fi

yi−y ) and normalized redundancy (R)

(see Appendix C).

more negativeU indices indicate the inverse relationship between themeasure values, and therefore

a topologically rather segregated information processing position of the node. Cortical regions have

U values close to zero if they possess average values (ranks) in both measure groups, consequently

being specialised neither as effective integrators nor as highly segregated areas.

The rationale behind using measure ranks, rather than normalised measure values directly, is

to ensure a more balanced competitiveness among the regions by minimising the adverse effect of

outlier regions usually having very low degrees, at the cost of loosing any additional information

carried by the shapes of the measure distributions.
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4.4.3 Results: Regional specialisation

Analysis results of the above U index, aggregating all the integration and segregation measures,

are shown in Figure 4.6. Distribution of the regional values (Figure 4.6A) shows that the cortical

network has a broader regional distribution than its random surrogates, but it is about equally wide

to its spatial surrogates (mean ± standard deviation of regional values: cortex: UC = 0.00 ± 0.49

, spatial: US = 0.00 ± 0.49, random: UR = 0.00 ± 0.41). This result suggests that spatial wiring

constraints, specifically, the formation of short-range connectivity accompanied by a small set of

long-range connections, facilitates regional specialisation in the cortical architecture.

Anatomical structure level analysis (Figure 4.6B), although with a large intra-structural

variation (see error bars), points to the precuneus, superio-frontal and limbic areas as the structures

specialised to high integration capacity, and indicates greatly segregated information processing

potential of the orbito-frontal, postcentral and inferio-temporal cortices. Indeed, the difference

between the anatomical structures within each of these groups is found statistically insignificant

(two-sample unpaired t-tests between the regional U values of pairs of anatomical structures are all

p > 0.05, not assuming identical variances), while anatomical structure pairs from different groups

(between structures having low and high mean regional U values) are all found to be statistically

significantly different (all p-values are p < 10−5).

Region level results visualised on projections (Figure 4.6C) show that highly integrative and

segregated regions are well-spread throughout the cortical surface. Nevertheless, the clusteredness

of colours at some cortical locations shows a tendency towards consistent local specialisation,

for example the precuneus and its neighbourhood and the cortical midline appears to be more

integrated, while the inferio-temporal and orbito-frontal structures are rather segregated. The ele-

vated specialisation values of these greater anatomical structures suggest their excessive capability

to carry out global functional integration (consistently high U values, red colour) or segregated

information processing (constantly low U values, blue colour).

Positive correlation between various integration measures, and negative correlation between

integration and segregation measures have been found in earlier studies. Sporns et al. (2007)

investigated the hub regions of the anatomical connectivity of both the cat and the macaque

brain, and found these regions to possess consistently high integration metric values (degree

centrality, closeness centrality and betweenness centrality) but low segregation indices (clustering

coefficient). Van den Heuvel and Sporns (2011) found similar characteristics for the high degree

hub nodes in a low-resolution anatomical connectivity network of the human brain. Our results

extend the validity of these findings by showing that the above relations between integration and

segregation measures in general are held when considering all the regions to the entire human
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Figure 4.6: Regional specialisation between integration and segregation. (A): distribution of

U values of the regions in the cortical network (bars and ’C’ in legend) and its surrogates (spatial

surrogates: orange colour and ’S’ in legend, random surrogates: magenta colour and ’R’ in legend).

Bars are colour coded by the mean structural colour of the contained regions (see B). Error bars

show standard deviation of each surrogate network type. (B): structural averages of regional results

(bars) and their regional standard deviations (error bars). (C): regional U values on coronal (left)

and horizontal (right) projections. Regions on projections are colour coded by their U(i) index

(see colourbar on the left side), and drawn with size proportional to the |U(i)| absolute value of

their indexes. Red: integrator regions, blue: segregated regions.
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cortex.

4.5 Small-worldness

4.5.1 Introduction

The need for the simultaneous presence of integration and segregation poses opposing demands

for the ’design’ of a network architecture (Tononi et al. (1994)). A network possessing this balance

between being too strongly integrated and too strongly segregated is called a small-world network.

Small-worldness was found to be one of the most fundamental organisational property in a broad

range of natural, social and technological networks (Watts and Strogatz (1998)) including neural

(Humphries et al. (2006)) and brain networks (Sporns and Honey (2006), Bassett and Bullmore

(2006), Bassett et al. (2006)).

In their seminal paper, Watts and Strogatz (1998) devised a simple network model that

explains the development of small-world architecture by interpolating between random and lattice

graphs. This model, emphasising the heterogeneous nature (neither entirely regular, nor fully

random) of small-world topologies, still remains the basic model for the notion of small-worldness.

Utilising the Watts-Strogatz model, Sporns (2010) intuitively explains the abundance of small-

world architecture by the necessity of real-world complex networks to possess such heterogeneous

topologies to a varying degree, as opposed to the idealised, homogeneous models of random and

regular lattice networks.

In this section, we will assess the degree of small-worldness of the cortical connectivity.

4.5.2 Methods: The small-world index

For the quantitative assessment of small-worldness, the network’s high integratedness is usually

translated to relatively short path lengths (comparable to random, and exceeding lattice surrogate

networks), while strong segregation is measured by a high level of clustering (comparable to lattice,

and exceeding random surrogate networks) (Sporns (2011)). From the several formulae developed

to assess the degree of small-worldness of a complex network (eg. Latora and Marchiori (2001),

Humphries and Gurney (2008)), we use an altered version of Humphries and Gurney’s small-

worldness index (Humphries and Gurney (2008)), modified in the following way:

SW =
C

Crand
∗ E

Erand
(4.8)

where C and Crand is the mean clustering coefficient of the network and its random surrogates,

while E and Erand is their efficiencies, respectively. We note, that Humphries and Gurney (2008)
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Figure 4.7: Small-worldness evaluation. Relation between clustering coefficient, global efficiency

and small-world index in cortical connectivity and its surrogate networks. Each coloured circle

represents a network, with dashed lines guiding the eye to their projections on side panes. Random

surrogates lay on the E – C pane with small-world index SW=1 by definition. Note the remarkably

similar values for all three measures within each surrogate group. Blue line shows correlation

between clustering coefficient and global efficiency across all the investigated cortical and surrogate

networks with r correlation coefficient indicated. E: global efficiency, C: clustering coefficient, SW:

small-world index, r: Pearson correlation coefficient.

use average path lengths instead of efficiency. A network is said to be small-world, if it has

SW � 1.

4.5.3 Results: Small-worldness of the cortical network

When considering the global integratedness and segregation of the cortical network compared to

its surrogates, shown for the utilised two measures in Figure 4.7, we find that the cortex, both in

terms of its global efficiency and clustering coefficient, significantly differs from both its lattice

and random surrogates (cortex: EC = 0.174, CC = 0.464, spatial surrogates: ES = 0.214± 0.001,

CS = 0.298 ± 0.004, random surrogates: ER = 0.260 ± 0.001, CR = 0.048 ± 0.001, one-sided
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significance test assuming normal distribution of surrogate means: p < 10−5, for both surrogate

groups and both measures). Considering that the total connection length of each region in the

cortical network is the same as in its spatial surrogates, these results indicate that the long-range

cortico-cortical connections of the connectome are distributed in a topologically sub-optimal way

for high integration (efficiency). Furthermore, the clustering coefficient indices demonstrate an

excessive tendency of the cortex to form topologically segregated neighbourhoods of groups of

regions, much beyond what would be expected from the spatial wiring constraints of its individual

regions. Therefore, not only when compared against spatially non-constrained random surrogates,

but also when taking into account the number and total lengths of the connectivity of each cortical

region, the cortex appears to strongly favour topological segregation over integration.

The presence of an extremely high level of clustering in the cortex (CC/CR = 9.67), that

naturally comes with some cost in its efficiency (EC/ER = 0.67), indicates a small-world cortical

topology. In order to quantify the degree of small-worldness of the cortical network in comparison

with its spatial surrogates, we calculate the above introduced small-world index SW to these

networks. We obtain a fairly high SWC = 6.442 small-world index for the cortical network assessed

against its random surrogates, indicating the well-expressed small-world organisation of the cortex.

In comparison, we obtain a significantly lower SWS = 5.098 ± 0.029 small-world index for

spatial surrogates assessed against random surrogates (one-sided significance test assuming normal

distribution of surrogate means: p < 10−4). Random surrogates have a small-world index SWR =

1 by definition. The comparable magnitude of the small-world indices of the cortical network and

its spatially constrained surrogates indicates that the physically predominantly local connectivity

of the cortex plays a crucial role in shaping the characteristics of its gross architecture on the large

scale. However, the significantly higher cortical small-world index also highlights that the cortex,

due to its increased local segregation, exhibits the small-world property beyond what is implied by

its local connectivity, despite its decreased global efficiency.

Utilising the original version of Humphries’ small-world index (Humphries et al. (2006)),

small-world attributes of this dataset have been found in Hagmann et al. (2008) (see their

supplementary materials). Several other studies have also reported the small-world organisation of

the structural connectivity of the human brain (Hagmann et al. (2007), van den Heuvel et al. (2010),

Van denHeuvel and Sporns (2011)). Our results extend the findings of these studies by showing that

spatial wiring constraints account for a large extent, but not for all, the small-world characteristics

of the human cortex. We hypothesise, that the excess ”small-worldness” of the connectome can

be explained by the functional relevance of this prominent organisation pattern, specifically, by

the widely accepted property of small-world architectures to naturally foster a balance between
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functional integration and segregation (Bassett and Bullmore (2006), Sporns and Honey (2006)).

4.6 Overview of results

In this chapter, we carried out a detailed assessment of the functional integration (Section 4.2)

and segregation (Section 4.3) abilities of the cortical connectivity by a set of relevant complex

network measures for each phenomenon. Globally, we found a significantly increased functional

segregation and decreased functional integration capability (especially in global efficiency) in

the cortical connectivity compared to both of its surrogates groups. This decreased cortical

integration capability is further underscored by the fact that the spatially similarly constrained

spatial surrogates in fact possess less long-range connections than the cortex does (see Section

3.3.3), which should naturally render them topologically less integrated. We shall further assess the

functional consequences and potential benefits of the topologically lowered global integratedness

of the cortex in Chapter 7.

Internally, we found that while high segregatedness, both spatially and topologically, is a

rather homogeneous property of the entire cortex, there is considerable deviation in the regional

integration efficiency across the cortex. In particular, our results indicate, that the topologically

most capable regions in carrying out functional integration are spatially centralised around the

caudal part of the cortical midline, comprising most of the precuneus, the cingulate cortex, and

some superio-parietal, occipital, superio-frontal areas.

Contrasting regional integration and segregation capabilities revealed a higher than topolog-

ically expected specialisation of the cortical regions, which was nevertheless attributable to its

spatially local connectivity (Section 4.4). While the location of these extreme integrator/segregated

regions arewell distributed throughout the cortical surface, some degree of consistent specialisation

at the level of greater anatomical structures is noticeable. Specifically, we detected the precuneus,

the superio-frontal and the limbic areas as the main integrator structures, while large frontal,

precentral and postcentral areas demonstrated a significantly segregated topological positioning.

Finally, we extended earlier results on the small-world organisation of the cortical structural

connectivity by showing that the spatial constraints of forming predominantly local white-matter

connections is a fundamental, however, not exclusive, facilitator of the significantly strong small-

world architecture of the cortex (Section 4.4).

In this chapter, we gained some preliminary insight into the properties of integration, segrega-

tion and small-worldness on the micro- (region-region) and macro-scale (global network mean).

However, our findings so far provide only limited information on the architecture of the cortex. For
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example, with the algorithm of Watts and Strogatz (1998) one can construct networks with high

clustering and small-world architecture that are not separable to modules, while modular small-

world networks can also be easily created by the algorithm of Sporns (2006). We shall therefore

turn to the investigation of the cortical architecture on the meso-scale in the next chapter, and assess

the expression of some generic network organisation principles in the cortical connectome.
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Chapter 5

Modularity, hierarchy and centrality

Organisation features of the modular

architecture of the cortex

In the previous chapter we have found that many of the individual cortical regions, the micro-

elements of the network, have a tendency to adopt either an integrator or segregated topological

position, and how this regional specialisation leads to a small-world architecture on the global

scale of the heterogeneous cortical topology. In between of these two extremes of brain network

organisation scales, however, is the intermediate level of meso-scale, where groups of regions

may form internally tightly integrated, but globally (i.e., from the rest of the network) segregated

modules (Kaiser (2011)). The potential functional significance of these modular elements lays

in their topological capability to carry out specialised information processing tasks, and thus

collectively act as a single functional unit of the network (Sporns (2010)). Beyond the actual

identity of the modules, the particular way by which these modules combine their specialised

activity, presumably at least partially determined by their anatomical relations, is also of high

importance in describing how information is globally processed in the brain, and may be pivotal in

understanding how higher level cognitive capacities emerge (Bressler and Menon (2010)).

In this chapter, our investigations are organised around the module formation of the cortical

connectome on its meso-scale. We will attempt to characterise the large-scale organisation of the

cortical topology emerging from its meso-scale structure, that is, the relation between its network

modules. For that end, we assess the level of centralisation, as opposed to distributedness, among

the modules by evaluating the expression of two basic network organisation principles: hierarchical

architecture and core formation.

Hierarchical architectures can be defined in multiple ways (Kaiser et al. (2010)) of which we
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shall investigate two specific types. Firstly, utilising the basic idea of Ravasz and Barabási (2003),

we shall assess the globally centralised topological positioning of high degree regions, which is

indicative to their hierarchically distinguished role. Secondly, after finding evidence for the global

modular organisation of the cortex, we shall attempt to characterise cortical hierarchy in terms of

an iteratively embedded, hierarchical formation of module components at multiple scales, as it was

introduced in Sporns (2006).

The detailed analysis of the obtained hierarchically modular architecture will be followed by

the assessment of centralisation among the found cortical modules. Specifically, we shall compare

two potentially significant central substructure of the cortical connectivity: its rich-club (Van den

Heuvel and Sporns (2011)) and s-core formation (Hagmann et al. (2008)), by contrasting their

topological significance and positioning. Finally, we shall end the chapter by assessing the level of

centralisation in the cortical connectome.

5.1 Hierarchical organisation of the cortex

5.1.1 Introduction

Hierarchical organisation is believed to be one of the most central architectural features of various

complex social networks or the World Wide Web (Ravasz and Barabási (2003)). Hierarchical

aspects of network architectures can fundamentally affect their evolution, development, adaptabil-

ity and efficiency on multiple scales. Despite the importance and wide acknowledgement of the

phenomenon in brain sciences, the question of hierarchical organisation has not yet been analysed in

large-scale whole-brain networks as comprehensively as for instance the concepts of modularity or

regional centrality (Kaiser et al. (2010)), partly due to a lack of consensus over the formal definition

and assessment of this rather informal notion. To our best knowledge, so far there has been no

attempt to characterise the hierarchical aspects of the topological organisation of the entire human

cortex on the large scale. In this section, we begin the analysis of hierarchical module structure of

the cortical network by assessing its global hierarchical characteristics.

5.1.2 Detecting global hierarchical organisation

Taken the intuition, that high degree nodes should occupy a topologically central position in a

hierarchical network, as a starting point of their measure, Ravasz and Barabási (2003) introduced

the simple but elegant hierarchy coefficient β for assessing hierarchical features of scale-free

network. After the authors observed a distinctively exponential relation between the nodal degrees

and clustering coefficients for various synthetic and real-world scale-free networks, they proposed
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that the β exponent of the relation quantifies the tendency of high degree nodes to be linked

with a sparsely intra-connected neighbour set (themselves hence having low clustering), thus they

effectively serve as connector nodes between segregated parts of the network (Figure 5.1A).

Unfortunately, the human cortical network under study exhibit an exponential, rather than scale-

free degree distribution (Hagmann et al. (2008)), and the nodal degree – clustering relation does

not show a clear exponential relation for the direct application of the β index. Nevertheless, as

the general idea of Ravasz and Barabási (2003) remains valid irrespective of the specific shape

of the degree – clustering relation, we attempt to detect traces of the above type of hierarchical

organisation by observing the trend between degree – clustering in the cortex and in its surrogates.

Specifically, in sparsely connected and locally highly clustered networks, such as the connectivity

of the cortex (see previous chapter), if high degree nodes of a network possess a lower than

average clustering coefficient, then they are in position to connect segregated parts of the network,

suggesting a hierarchical type architecture with these high degree nodes being in the centre (Figure

5.1A). As opposed to that, the equal or higher then average clustering coefficient of high degree

nodes indicates a more homogeneous architecture and the lack of that hierarchical organisation

pattern in such a network.

Importantly, by taking into account all network nodes, the degree – clustering relation is

capable of indicating graduality in the multi-level hierarchical organisation of a network (layers

with different colours in Figure 5.1A), in which lower degree nodes (blue nodes in Figure 5.1A)

may correspond to locally more cohesive (i.e., highly clustered) lower hierarchical levels, while

higher degree but less clustered nodes integrate more segregated, greater parts of the network at

higher levels of the network hierarchy (green and red nodes in Figure 5.1A).

5.1.3 Hierarchical organisation results

In their seminal work, Ravasz and Barabási (2003) detected well-expressed hierarchical structure in

all investigated non-spatial (non-geographical), real-world networks, but not in the spatial ones (the

power grid network and the Internet). This supports the intuition that the high cost of establishing

physically long connections substantially limits the type of topology spatial networks can exhibit.

In a study of a 104-region structural network of the human cortex, however, Bassett et al. (2008)

reported some, although restricted, hierarchical properties in the brain when finding significant

hierarchical structure among multimodal cortical regions, but not within unimodal and transmodal

regions.

Following the basic idea of Ravasz and Barabási (2003) (see above), we calculated the average

clustering coefficients of groups of cortical region with similar degrees, relative to the global
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Figure 5.1: Illustration of investigated hierarchical organisation and analysis results. (A) A

three level hierarchical structure composed of a central (high degree – low clustering, red), an

intermediate (medium degree – medium clustering, green) and a peripheral layer (low degree –

high clustering, blue). (B) Relation of nodal degree and clustering coefficient. Regions are binned

by degree (x axis), and plotted against the average clustering coefficient of the bin normalised by the

global average clustering coefficient of their network. Bars correspond to cortical results and are

colour coded to the mean of the colours of the contained regions (see sector names in Figure 2.3).

Diamonds and error bars represent surrogate mean values and standard deviations (see legend).

Note the negative correlation in the cortex and the spatial surrogates, suggesting their hierarchical

organisation, as opposed to the positive correlation in random surrogates.

clustering coefficient of the network (Figure 5.1B).We observe a steep decline in itsmean clustering

– degree relation (see bars), indicating that the cortex possesses the type of hierarchical organisation

illustrated in Figure 5.1A. This finding confirms the general notion of a hierarchically organised

brain (Kaiser et al. (2010)), despite the tendency of spatially embedded, physical networks not

to develop such an architecture due to the basic spatial (geographical) constraints acting on them

(Ravasz and Barabási (2003)). Furthermore, we observe highly similar tendencies for the spatially

constrained surrogates of the cortex, but not for its spatially unconstrained random surrogates, in

which clustering actually increases with region degree. This remarkably high robustness of the

clustering – degree relationship indicates that the individual wiring lengths and positioning of high

degree regions in the cortex is such that the globally hierarchical organisation naturally arises from

these basic network features alone.

Furthermore, the colours of the bars in Figure 5.1B provide some insight into the role and

positioning of various parts of the cortex in the found hierarchical organisation. Specifically, we
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can observe the abundance of temporal regions (yellow bars) at low degrees, corresponding to more

peripheral, lower hierarchy levels. Medium degrees, that are associated with intermediate hierarchy

levels, are dominated by frontal regions (greenish bars). Finally, at high degrees, corresponding to

the most central, highest hierarchy levels in our model, we find the abundance of parietal (blue),

limbic (magenta) and some occipital (red) regions. This structural differentiation across degree

range is held for spatial and random surrogate networks as well due to the identical degrees of their

regions, but with markedly different clustering – degree trend in the case of random surrogates, in

which high degree regions in the latter structures have lost their relatively low clustering.

In summary, utilising a simple measure to find traces of hierarchical patterns in the cortical

architecture, our results indicate the presence of a globally hierarchical network organisation in the

cortical connectome, in which high degree regions are capable of connecting segregated parts of

the cortical network. In the following sections, we shall give further evidence to our findings in

this section, and a more detailed characterisation of the cortical hierarchy.

5.2 Modules of the cortex

5.2.1 Introduction

It has been widely acknowledged that most real-world networks have a characteristic topology that

allows for their separation into some relatively densely intra-connected and weakly inter-connected

subgroups (Newman and Girvan (2004), Boccaletti et al. (2006)). These subgroups, illustrated in

Figure 5.2, are usually referred to as the modules (or clusters, communities) of the network.

Figure 5.2: Illustration of modular network architecture. A modular structure composed of a

set of highly intra-connected but sparsely inter-connected group of regions (modules, clusters or

communities).
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Recent studies all reported highly modular architecture of the human brain in its structural

(Chen et al. (2008), Hagmann et al. (2008), Van den Heuvel and Sporns (2011)) as well as in

its functional connectivity (Valencia et al. (2009), Meunier et al. (2009b), He et al. (2009)).

Furthermore, studying the effect of ageing on the brain’s modular structure, Meunier et al. (2009a)

pointed out marked differences in the composition and putative topological roles between the

modules in the rsFC of younger (mean: 24 years) and older human subjects (mean: 67 years).

Our motivation in investigating the modular architecture of the cortex lays in the fact, that, due

their high internal connectedness and relative separateness, modules naturally have the capability

for increased internal information exchange and cooperation and thus may serve as candidates for

the functional units of the brain.

5.2.2 The modularity measure

Interestingly, despite the prevalence and salience of the phenomenon of modularisation, its general

formalisation has proved to be so difficult that no widely accepted formal definition (let alone

identification) for a modular architecture exists in complex network sciences.

However, from the large number of accumulated approaches (Boccaletti et al. (2006), Costa

et al. (2006)), the so-called modularity index proposed by Newman (2004), is emerging as the most

commonly used measure for assessing the modular strength of a given partitioning of a network

(Danon et al. (2005), Rubinov and Sporns (2010)). Here, we will use its weighted, non-directed

variant, which is formally defined as follows. Given a set of node groups (modules)M , that fully

partition the network without overlaps, the modularity index Q of that partition is

Q =
∑
u∈M

Qu =
∑
u∈M

euu −( ∑
v∈M

euv

)2
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∑
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−
( ∑
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w
j

lw

)2
]
,

(5.1)

where Qu is the modularity index of module u, euv is the proportion of all weighted connections

wij between modules u and v in the network, lw is the sum of all weights in the network, and kwi
is the sum of all connection weights of node i.

From the above definition, modularity is the difference between the ratio of intra-cluster edges

(sum of weights) in the actual (positive term in Eq. 5.1) and in a fully randomised network

(negative term in Eq. 5.1), the latter essentially serving as a null-hypothesis value (Newman

(2006)). Therefore, intuitively, modularity assesses how much more intraconnected the modules

of a given partition are than it would be expected based on the individual connection strengths of

their nodes. Taking its values from the [0,1] interval, the modularity index of a strong community

structure approaches 1. However, it typically does not exceed 0.8 for real complex networks even

if they have a well-pronounced modular structure (Newman and Girvan (2004)).
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Figure 5.3: Modular properties of anatomical structures. Anatomical structures as modules

on coronal projection. Structures, represented by large circles, drawn at the mean position of the

contained regions, and with radius proportional to their size (number of regions). Inter-structure

edge widths are proportional to the total strength of the interconnecting links.

5.2.3 Modular strength of the anatomical structures

Being capable of assessing the ”strength” or ”quality” of a certain community division with Q

in Eq. 5.1, as an initial analysis, let us first investigate how strong community partitioning is

formed by the anatomically (and not topologically) defined main structures of the cortex. The

anatomical structures, their contained regions and interconnectivity strengths are shown in Figure

5.3. Modularity index calculation of the anatomical structures in the cortical network results

in a fairly high QC = 0.41 value, while the same anatomical partitioning in its randomised

networks yields QR = 0.0008 ± 0.002 and QS = 0.32 ± 0.003 values for random and spatial

surrogates, respectively. The somewhat trivial quasi-zeroQR value simply verifies that connection

proximity, absent in random surrogates, provides the basis of spatially local module formation in

the cortex. The higher than random, but still significantly lower than cortical structural modularity

of spatial surrogates (one-sided significance test assuming normal distribution of surrogate means:

p < 10−4) suggests that the anatomical structures of the cortex are more modular (encapsulated)

than what is expected from the degrees and connection lengths of their regions alone.

Having found a reasonable modular segregation of the main anatomical structures of the cortex,

let us find that set of cortical region groups that exhibit the highest modular segregation in the
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network, i.e., that collectively possess the highest modularity index. The best such partitioning

of the connectome defines the topological modules of the cortex, that are important network

elements due to their increased ability to carry out segregated information processing and thus

realise specialised functional areas of the brain (Rubinov and Sporns (2010), Kaiser (2011)).

5.2.4 The module detection algorithm

TheQmodularity index has proved to be a highly accurate and powerful indicator of the modularity

strength of a given partitioning of a complex network (Danon et al. (2005), Boccaletti et al. (2006)).

However, finding the best such partitioning, i.e., the partitioning with the highest Q modularity

index, requires some further analysis tools. For example, we have seen that the anatomical

structures represent a fairly strong cluster partitioning with a moderately high Q index. However,

having been identified according to large-scale anatomical landmarks (sulci and gyri), they are by

no means guaranteed to form the optimal modular division (partition with maximal Q modularity

index) of the cortical structural connectivity.

Numerous algorithms have been developed to recover the modular structure of complex

networks (for reviews, see Danon et al. (2005), Boccaletti et al. (2006)). In fact, many of them

utiliseQ as a ’fitness’ measure to be optimised by some means. In this study, we use the simple and

elegant spectral based algorithm developed byMark Newman (Newman (2006)). Starting from the

entire network as a single module, this algorithm splits each module into two in each iteration step.

The procedure finds the optimal division of a module by utilising a so-called ”modularity matrix”

derived from the networks connectivity matrix. The leading eigenvector of this modularity matrix

determines the node composition of the two submodules of each module to be split. The algorithm

stops where no more increase in the global Q modularity index can be achieved by any more split.

Newman’s procedure comes with a number of benefits over the formerly applied stochastic

optimisation approaches (such as simulated annealing or genetic algorithms, e.g. Hilgetag et al.

(2000)). Firstly, the procedure is a divisive technique that leads to a nested module hierarchy

carrying potential extra information (Newman (2006)). Secondly, the technique is deterministic,

thus reproducible and analytically more tractable. Thirdly, it is computationally cheap, therefore

applicable to nowadays large networks (Danon et al. (2005)). And fourthly, it is fairly naturally

generalisable to weighted and directed networks (Newman (2006), Leicht and Newman (2008)).

Two disadvantages of the method, however, are that it is unsuitable for detecting overlapping

clusters, and, just like any other multi-resolution technique relying on a global null model, that

the procedure suffers from scale limit issues in resolving the finest community organisation of

large networks (Fortunato and Barthélemy (2007), Lancichinetti and Fortunato (2011)). It is also
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worth noting here that the optional fine-tuning extension of the above introduced basic method,

also proposed by Newman (2006), proved to be highly valuable. The utilisation of the extension

resulted in a 5-10% increase in the final Q modularity values over the ones obtained by the basic

version of the procedure, hence provided a higher ’quality’ partitioning that the basic method alone

could detect.

5.2.5 The global cortical modules

Utilising the above discussed algorithm of Newman on the cortical network, we obtain a module

partition with a considerably high, QC = 0.65 modularity index and with NC = 8 discovered

modules, shown in Figure 5.4. As opposed to that, spatial surrogates only reach a significantly lower

(one-sided significance test assuming normal distribution of surrogate means: p < 10−4), but still

relatively high level of modularity: QS = 0.55 ± 0.005 (random surrogates, as expected, express

almost no modularity: QR = 0.15 ± 0.001) and NS = 5.95 ± 0.22 number of spatial surrogate

modules (random: NR = 4.50 ± 0.59). The difference between the modularity index of the cortex

and those of its spatial surrogates shows that the spatial constraints on the length of cortico-cortical

white-matter connections is a fundamental, but not exclusive factor in increasing the higher than

expected strength (QC) and granularity (NC) of the cortex’s global modular architecture.

Outstandingly, the eight modules found retain 77.1% (n = 13769) of the cortical projections

internally, while only 22.9% (n = 4098) of the connections run across module boundaries. This

results in an average of 22.1% intra-module and 0.95% inter-module connection density, indicating

that while more than every fifth intra-module region-pair is linked, this ratio is down to 1:100

between region-pairs from different modules. In comparison, the global connection density of the

network is 3.6%.

5.2.6 Comparison with previous results

Module detection on the 66-node lower resolution derivative of the cortical connectivity dataset

used in this study has been previously performed by Hagmann et al. (2008) and by Cabral et al.

(2011), both studies reporting only six global modules. Nevertheless, their modules are in close

correspondence with the ones found here: the two, rather large lateral modules of the above

studies are each refined into two submodules in our results (into M3 and M4, and into M5 and

M6 in Figure 5.4), while the other four modules are quasi identical. Apart from the obvious

resolution differences, this discrepancy can also originate from, or at least be amplified by, the

utilisation of the basic, non-weighted version of the module detection algorithm as well as by the

lack of Newman’s fine-tuning extension (Newman (2006)), that the other studies do not report
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Figure 5.4: Global cortical modules on projections. The eight cortical modules, identified by

applying Newman’s module detection algorithm on the entire network, are represented by large

circles, drawn at the mean position of the contained regions, with radius proportional to their size

(number of regions), and are coloured by the average anatomical structure colour of the regions

contained (for colour code, see Figure 5.3). Regions (smallest circles) are connected to their

modules, and drawnwith the colour of their modules. The widths of inter-module edges (gray lines)

are proportional to the total strength of the interconnecting links. Note the lack of interconnectivity

between the lateral modules on the right (M3 and M4) and left hemispheres (M5 and M6).

to have incorporated. Furthermore, Hagmann et al. (2008) also reports that ”Recovering the

modularity structure using high-resolution connection matrices produced similar results [to their

low resolution ones] (unpublished data)”, which directly points to the importance of applying the

fullest variant of the module finding algorithm in order to detect the highest quality, most precise

module partitioning. For the defence of the basic variant of the module detection algorithm, we

note that the δQ increment achieved by the split of these lateral modules were rather insignificant

(δQM3,M4 = 0.006 and δQM5,M6 = 0.009) when compared to the overall modularity index of the

entire network (QC = 0.65), nevertheless, the detection of even these minor increments can lead to

large differences between the module configurations of two partitionings (six modules versus eight

modules).

A significantly different modular organisation is found by Van den Heuvel and Sporns (2011)

in a 82-node structural network of the human brain, including subcortical areas. In that study only

four global modules are detected, one located at the anterior and one at the posterior parts, on each

hemisphere. Because the module partitioning algorithm used in that study is the same as that of

Hagmann et al. (2008) and similar to the one used here, it is likely that including subcortical areas

into the structural network of the brain alters its global module configuration. This claim was not
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addressed in Van den Heuvel and Sporns (2011), therefore direct comparison between the cortical

connectivities utilised in these studies, or even a consistent, higher-resolution dataset incorporating

cortical and subcortical areas, is needed to provide evidence for or against this claim.

Confirming earlier results, we found in this section that the cortical connectome can be

partitioned into a number of highly separated modules. Given their relatively large size in the

current resolution of investigation, what kind of internal organisation these modules themselves

have? In the next section, we shall try to answer this question.

5.3 Hierarchical modularity in the cortex

5.3.1 Introduction

Hierarchical modularity (’decomposability’) has long been recognised as a potentially universal

organisation feature of awide range of complex systems in nature (Simon (1962)). The evolutionary

and adaptive advantages of this architecture lay in the reduced risk any segregated module

component impose on the entire system during its functional adoption, effectively accelerating

the emergence of complex systems from simpler building blocks (Koch and Laurent (1999)).

More recently, numerous computational studies have confirmed the generic tendency of complex

networks to evolve towards such modular topology under a wide range of dynamical and functional

selection pressures (Sporns et al. (2000), Gong and van Leeuwen (2004), van den Berg and

Van Leeuwen (2004), Kaiser and Hilgetag (2007), Rubinov et al. (2009)).

Figure 5.5: Illustration of hierarchical modular network architecture. Modules of the network

(on level L1) are themselves composed of smaller modules (on level L2). The figure only depicts

two hierarchical levels (L1 and L2), but of course this iterative pattern can continue to deeper

hierarchical levels.

In particular, a widely acknowledged property of the cortex, and perhaps one of its most
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fundamental ’design’ principles, is its hierarchically embedded, multi-scale modular organisation

at essentially all levels: from the micro-level of small neuron populations (Szentágothai (1983)),

through the mesoscale of cortical columns (Mountcastle (1997), Somogyi et al. (1998)), up to the

global macroscale of brain regions and greater structures (Hilgetag et al. (2000)) we are presently

dealingwith. However, in Section 5.2.5 we only retrieved eight, fairly large, global cortical modules

(mean size: n=125 regions, 12.5%), and were unable to detect any further subclusters in any of the

modules. This result contradicts the notion of multi-scale, hierarchical modularity of the cortex.

As we noted above, the Q modularity index, although it is technically capable of it, has

difficulties in finding the fine modular structure in large networks (Fortunato and Barthélemy

(2007), Lancichinetti and Fortunato (2011)). Indeed, as Fortunato and Barthélemy (2007)

report about all the five biological networks they investigated: ”The communities found through

modularity optimisation are in fact clusters of smaller modules”. In this section, we attempt to

overcome the scale-limit effect of Newman’s module detection algorithm and find the modular

hierarchy of the cortex to the finest level our dataset allows for.

The hierarchical modular organisation we seek to discover here is similar to the fractal-like

neural architecture proposed in Sporns (2006). In that study, the synthetic networks, composed

of self-similar elements at each hierarchy level, were found to possess highest small-world index,

’functional motif’ counts (Sporns and Kötter (2004)) and complexity (Tononi et al. (1994)) at a

coinciding, intermediate value of the parameter governing the distribution of intra- versus inter-

module connections, and furthermore in a scale-invariantmanner (i.e., independently of the number

of hierarchy levels). These properties, also characteristic of real brain networks, support the

hypothesis of the presence of fractal-like patterns in the neuroanatomical connectivity of the cortex.

5.3.2 Methods: Fine-scale hierarchical module detection

In order to be able to assess the cortex’s modular organisation at lower scales of the cortical

connectivity network, we attempt to overcome the above algorithmic limitation by iteratively

applying Newman’s module detection procedure on readily identified modules. Potentially, this

iterative approach allows for the progressive construction of a hierarchically embedded module

structure at several predefined scales. At each scale, as it is shown in Figure 5.6, we essentially

increase our resolution of investigation by zooming onto a specific group of regions, previously

detected to form a module at that scale, and seek for submodules inside that region group.

In order to be able to investigate the modules globally at various resolution levels, we aim

the detection procedure to return with a coherent set of modules with reasonably similar sizes at

each specific resolution, by requiring a minimum number of regions forming each submodule.
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These lower limits, also defining our scales (resolutions) of investigation, are the following:

supermodules: 150 regions (15%), modules: 50 regions (5%), submodules: 15 regions (1.5%),

minimodules: 5 regions (0.5%), micromodules: 2 regions (0.2%). It is important to note upfront,

that the above procedure by itself does no guarantee any degree of approach of the module sizes to

their corresponding minimum limit, as will be discussed in details shortly.

Technically, the subgraph partitioning approach proposed above has partially been applied in

Hagmann et al. (2008), as an illustrative example that the visual and the frontal cortex are divisible

into known anatomical substructures. However, neither did Hagmann et al. (2008) attempt to

systematically uncover the cortex modular hierarchy, nor did they try to compensate for the scale

limit issues of the Q modularity index, also utilised in their study.

5.3.3 Results: The cortical module hierarchy

Result illustration

Figure 5.6 demonstrates the method outlined above on the found module hierarchy of the cortex by

zooming onto micromodule ’M21412’ (second supermodule→ first module→ fourth submodule

→ first minimodule→ second micromodule, see red subsquares in Figure 5.6). This micromodule

is composed of three precentral and three postcentral regions and is located on the left hemisphere.

In the progression of travelling through the six hierarchy levels, we can visually observe the

formation of modules with increasing internal connection densities (Figure 5.8, fifth column). The

concentration of a high proportion of the strongest edges of the parent module into, and not in

between, its submodules is also salient at every level, complying with our informal definition of a

module (highly intraconnected – weakly interconnected node group).

Figure 5.6 (following page): Module hierarchy of the cortex. Zooming to micromodule M21412

(second supermodule, first module, fourth submodule, first minimodule, second micromodule)

through the module hierarchy, from left to right, top to bottom. Matrix entry colours code

connection strengths from black (no link) to red (strongest link). Colour stripes on the left and

top of each matrix correspond to anatomical colorcodes (see Figure 5.3). Blue and red sub-

squares delineate modules at current hierarchical level, each redmodule is expanded on consecutive

subfigure.
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Result verification

As Fortunato and Barthélemy (2007) point out, submodule partitioning of a network module by

the iterative utilisation of Newman’s algorithm is a per se unsafe approach in the modularity

framework. Indeed, by neglecting all external links of the module towards the rest of the network,

the detected submodules are not guaranteed to satisfy the modularity condition globally, that is, to

have positive modularity index when considering the entire network (Qu terms in Eq. 5.1). For

this reason, it is also important to quantitatively validate the found submodules by calculating their

individual Qu modularity index in the whole network.

For every detected module on all hierarchy levels, we find that all modularity indexes are

indeed positive, that is, their internal connection density is higher than what their global degrees

alone suggest (random null hypothesis). This finding confirms that, according to the modularity

framework (Newman (2004)), the detected modules are indeed valid submodules not only of their

respective parent module, but also of the global network.

We note that the above discussed scaling limit ofQ is observable in our results in the decrease

in global Q modularity index on lower hierarchy levels (Figure 5.8 third column). This tendency,

being in agreement with Fortunato and Barthélemy (2007), demonstrates why the ’flat’, single-run

application of the module detection algorithm in Section 5.2.5 was unable to find the finer modular

elements of the network while maximising Q.

Intra- and inter-connectivity of modules

The most fundamental characteristic of the module hierarchy is an increase in both intra- and inter-

module connection densities from higher to lower levels of the hierarchy (Figure 5.8 fourth and

fifth column). Both trends are inevitable in any hierarchically modular network, otherwise at any

given hierarchy level, one could find no more higher intra- than inter-connected submodules within

the modules (see Sporns (2006) for a modelling example).

The increasing concentration of internal connections in turn result in saturation in the number

of modules at the lowest, micromodule hierarchy level. As shown in Figure 5.8 (first and second

columns), the first four iterations (network → supermodules → modules → submodules →

minimodules) are able to increase the number of modules (and consequently to decrease average

module size) by about a factor of three each. In contrast to that, at the level of minimodules, further

splitting into micromodules is unsuccessful in more than 30% of the minimodules. This saturation

is exactly the factor that limits our investigation on the utilised dataset, and forces the iteration

of the module partitioning algorithm to stop at the level of micromodules (6.7 regions/module

on average). The identification and analysis of submodules presumably present at finer hierarchy
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levels would require the mapping of higher resolution whole-brain connectivity networks.

The strong discrepancy observable between internal and external connectedness (Figure

5.8 fourth and fifth columns), especially towards lower hierarchy levels, can be misleading in

determining the amount of connectivity between the modules at the various hierarchy levels. We

get more shaded picture if we also consider the number of connections in absolute terms. For

example, an average micromodule possesses as much as 93% of its possible internal connections,

but only 2.8% of its possible external links exist, and yet 83% of all connections (n ≈ 15000) are

between micromodules, and only 17% (n ≈ 3000) within micromodules.

Thus the overall picture confirms the traditional notion about a predominantly locally con-

centrated cortical connectivity, with large, spatially distant parts of the cortex being largely

unconnected (as can be seen on the interconnectivity between supermodules or modules in

Figure 5.6), while at smaller scales spatially close cortical areas become increasingly tightly

coupled (as can be seen in the inter-connectivity between minimodules or micromodules in

Figure 5.6), granting increased potential for inter-module communication amongminiature cortical

neighbourhoods (sub-, mini- and micromodules).

Modules as functional units

The high internal connection density of the mini- and micromodules points to their capability to

act as separate functional units in the cortical network (Section 4.3, Rubinov and Sporns (2010)).

However, it has also been proposed, that the connectional fingerprint (set of all neighbours) of any

brain region fundamentally determines the functional role it can play in a network (Passingham

et al. (2002)).

In order to assess that phenomenon in the found module hierarchy, we measure the mean

Figure 5.7 (following page): Modules of the cortex in anatomical space. Recovered modules at

all five hierarchical levels are shown row-wise on horizontal (left) and coronal (right) projections.

Modules, represented by large circles, are drawn at the mean position of contained regions, with

radius proportional to their size (number of regions), and are coloured by the average anatomical

structure colour of the regions contained (see Figure 5.3). Regions (smallest circles) are connected

to their modules, and drawn with the colour of their modules. The widths of inter-module edges

(gray lines) are proportional to the total strength of the interconnecting links. Note the lack of

interconnectivity between the lateral supermodules (first row, light green circles). Strong coupling

between the sub-, mini- and micromodules along the caudal part of the cortical midline is also

observable.
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Figure 5.8: Properties of the module hierarchy. Mean module size: mean number of contained

regions. Q: modularity index (Eq. 5.1). Intra-module connection density: mean internal

connection density of modules (number of actual over number of possible links). Inter-module

connection density: external connection density among modules. Matching index: mean ratio of

overlap of connectivity (set of all internal and external neighbours) of every node pair within each

module. Symmetry: mean ratio of overlap with hemispherically ’homologous’ module, averaged

over all modules. The homologous module of a module is identified as the module containing the

largest number of homologue region pairs of the regions of the original module, and can be identical

to itself (to deal with modules positioned along the cortical midline, such as the red module in the

second row of Figure 5.7). Red error bars indicate standard deviation across individual module

data.

similarity between the connection fingerprints of the cortical regions within the same modules

at each hierarchy level by averaging the ratio of overlap between the individual neighbour sets of

each region pair in every module (matching index, Zamora-López et al. (2010)). We obtain 30%

and 33% average matching index values at the mini- and micromodule levels (Figure 5.8, sixth

column), meaning that on average, each region shares about every second of its (both external and

internal) neighbours with any other region from the same module on these hierarchy levels. These

highly similar connectivity profiles provide further evidence for the high functional segregation or

encapsulation of the smallest modules at the lowest hierarchy levels.

Spatial aspects: symmetry, encapsulation and anatomical composition

Figure 5.7 shows the detected modules at each resolution level on horizontal and coronal projec-

tions. It is noticeable, that while the modules are hemispherically highly symmetric on the large

scales of supermodules and modules, this symmetry appears to break down as the resolution is

increased. Quantitative evaluation of this characteristic in Figure 5.8 (last column) confirms, that,
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Figure 5.9: Module composition of anatomical structures. Each row shows the distribution of an

anatomical structure in % across network modules (from M11 to M43), grouped by supermodules

(M1 to M4). Higher than 5% overlaps are indicated by text labels. Supermodules: M1: medial,

M2: left lateral, M3: right lateral, M4: frontal (see Figure 5.7). Anatomical structure prefixes: ’l’:

left, ’r’: right, no prefix: unsplit medial structure.

as lower and lower hierarchy levels are considered, the cortical modules indeed gradually loose their

initially almost complete hemispheric symmetry (ANOVA test for equal symmetry means on all

module hierarchy levels: p < 10−15). This steady increase in asymmetry from the supermodule to

minimodule level saturates at the level of minimodules and micromodules at about 45% symmetry

value (two-sample unpaired t-tests between pairs of module levels are all p < 10−3 between

supermodule, module, submodule and minimodule symmetries, not assuming identical variances,

but p = 0.45 between mini- and micromodule symmetry values).

Even though the anatomical structures are far from being the optimal cortical modules (Section

5.2.3), there is nevertheless a rather high correspondence between the anatomical and modular

partitioning. Modular composition of the anatomical structures is presented in Figure 5.9. The

concentration of anatomical structures into only a few modules, and vica versa, is salient. The

medial M1 supermodule contains the whole precuneus, and the majority of the occipital lobe and

the limbic areas. The two lateral supermodules, M2 and M3, largely match with the temporal,

pre- and post-central and parietal cortices on the left and right hemispheres. The frontal M4
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supermodule contains large part of the frontal lobe and no other major structure. Furthermore,

there is a remarkably high correspondence between the M41 module and the orbito-frontal cortex,

suggesting a topologically high segregatedness of the whole orbito-frontal cortex from the rest

of the network. The found correspondence provides credibility to the traditional anatomical

partitioning of the brain from the perspective of its underlying structural network.

It is worth re-emphasising here that the module detection algorithm utilises only the topology

of the cortical connectivity, no spatial information is incorporated. Therefore, the remarkably

high level of symmetry, even at higher resolutions, the high spatial integrity (encapsulation) of the

detected modules, as well as their relatively high anatomical correspondence, are all the exclusive

consequence of the local, segregated connectivity of the cortex, and not of some a-priori knowledge

of the module detection procedure. Furthermore, broad agreement between the anatomical and

functional subdivisions and the topological modules have been previously reported in the cat

and macaque brain (Hilgetag et al. (2000), Hilgetag and Kaiser (2004)), providing support for

the potential anatomical and functional relevance of topological module partitioning technique in

general.

5.3.4 Discussion

Recently, Ferrarini et al. (2009) and Meunier et al. (2009b) showed that the functional connectivity

network of the human brain exhibits hierarchical modular organisation patterns. However, despite

its wide acknowledgement (Sporns (2010), Stam and van Straaten (2012)), such finding has not

yet been reported, to our best knowledge, on the anatomical connectivity of the human brain. One

possible reason for this is that the analysis of multi-level, hierarchical modularity requires high

resolution connectivity networks which have only recently become available for the living human

brain.

Kaiser and Varier (2011) attributes the appearance of hierarchical modular organisation in

the human brain to the increase in topological complexity of brain networks on evolutionary

time scales, which is a natural consequence of evolutionary divergence and the specialisation of

life forms. As it has been discussed in the introduction of this section, hierarchical modularity

is also believed to accelerate evolutionary adaptation under selection pressure, increase the

robustness against injury, and enables adaptive reconfiguration of the system (Simon (1962)). In

the neurosciences, another functionally advantageous characteristic of hierarchical modular brain

networks is their increased complexity (Tononi et al. (1994), Sporns (2006)), which we shall

investigate in Chapter 7.

In the next section, we continue the characterisation of the meso-scale organisation of the
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cortical connectome by assessing the level of centralisation (versus distributedness) in the cortex.

We start that analysis by detecting the global core of the cortex.

5.4 The cortex’s central core

5.4.1 Introduction

In the last section we have detected the hierarchically modular organisation of the cortex, its

composition of a number of relatively tightly intraconnected but loosely interconnected clusters or

modules essentially at all resolutions of the structural connectivity. In this section we investigate

what topological relationship of these modular elements can tell us about the nature of functional

cooperation among them. Specifically, we search the answer to the question: Do the putative

functional processing units of the cortex hold equal roles in a topologically homogeneously

distributed system, or rather, is there topological evidence that their activity might be coordinated

by some ”central executor” or ”global workspace” (Dehaene and Naccache (2001), Baars (2002))?

Figure 5.10: Illustration of rich-club and s-core network structures. Two core structures

of a network: rich-club (highest degree regions, green regions) and s-core (most densely intra-

connected regions, red regions). Note the overlap of the two structures.

The core of a network is a set of ’elite’ nodes, that are topologically centrally positioned,

forming a highly intra- and inter-connected global centre (Shanahan and Wildie (2012)). Figure

5.10 illustrates this type of network organisation with two such groups of nodes, the network’s rich-

club and s-core. The existence of such formations in network topology indicates the presence of

centralisation in the network’s dynamics and functional operation, which is fundamentally different

from that of a homogeneous network architecture composed of distributed, identically segregated

units (see Figure 5.12).
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Core formation in the brain

Realising the importance of the phenomenon, numerous studies have investigated the core structure

of various brain networks, utilising a range of analysis tools. In a series of studies, Zamora-López

and his colleagues, utilising rich-club analysis (see Section 5.4.2), reported a highly connected, yet

distributed core in the modular architecture of the cat thalamo-cortical network (Zamora-López

et al. (2009), Zamora-López et al. (2010)), and pointed to the dynamical implications of this

centralisation on the synchronisation and potential functional operation of the network (Gómez-

Gardeñes et al. (2010)).

A remarkably tightly connected inner-core of themacaque brain is reported inModha and Singh

(2010) by k-core decomposition (see Section 5.4.2). Hagmann et al. (2008) utilise k-core and s-

core decomposition (see Section 5.4.2 to recover the structural core of the same cortical network

of the human brain that is used in this study. The results of both techniques, combined with other

measures of integration, pointed to the posterior medial cortex as a highly central part of the human

brain.

In a more recent work on a relatively low-resolution network of 82 cortical and subcortical

regions of the human brain, a wide spectrum of network analytic tools were utilised to establish

the prominent rich-club organisation of the large-scale structural connectivity of the human

connectome (Van den Heuvel and Sporns (2011)). The results at low-resolution were in qualitative

agreement with their exploratory high-resolution analysis (1170 cortical regions) in pointing to

a strong rich-club organisation of the human brain. However, while the obtained spatially rather

compact low resolution rich-club was located along the cortical midline, the authors exploratory

high resolution analysis revealed a more scattered distribution of the rich-club regions, pointing to

the characteristic scale-dependence of the analysis technique (Fornito et al. (2010), Zalesky et al.

(2010)) and to the importance of a detailed high-resolution analysis.

Despite the potential significance of, and previous findings in, the topic of core formation in

the brain, no thorough comparison has been presented between the two most commonly utilised

methods, k-core (s-core) and rich-club analysis, neither regarding the significance of the two

phenomena nor about identity of the regions on a high-resolution cortical connectivity network

of the human brain.
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5.4.2 Methods: Core detection algorithms

Difference between high integration and high coreness

Due to the interrelated nature of the two phenomena, there is usually a considerable overlap between

the set of highly integrated nodes and the inner core of the network (Hagmann et al. (2008), Modha

and Singh (2010), Van den Heuvel and Sporns (2011)). Here we make the following conceptual

difference between high level of integration and network coreness. On the one hand, individual

regions possess strong functional integration potential if they have high level of global or local

centrality, measured by the metrics introduced in Section 4.2. Network coreness, on the other

hand, is a group-level, meso-scale property: it is necessarily defined for, and identified in, a group

of regions, that are found to be in a certain relation with each other and, as a whole, with the rest

of the network.

Nevertheless, the above distinction is not meant to separate the naturally related concepts of

integration and centralisation (Rubinov and Sporns (2010)). On the contrary, we expect the network

core to have a large degree of overlap with the set of individual regions with high integration

capacity. The purpose of proposing these definitions for the two notions is simply to stress the

necessity of using specialised centralisation or core detection algorithms over the integration

measures applied in Section 4.2, as the latter are not suitable to detect any relevant relation between

central network nodes.

K-core and s-core detection

The core of a network is usually unveiled by some iterative peeling algorithm. These algorithms,

in each step, remove (’peel off’) a set of ’shell’ or ’crust’ nodes , with the aim to progressively focus

on the more and more centralised ones. In this context, centralisation is assessed by some coreness

condition.

The k-core of the network (Seidman (1983)), for a given degree k, is the set of nodes that are

connected to at least k other nodes in the core. The k-coreness index of a node is then the highest

k degree whose core the node is still the member of. Similarly, the weighted variant k-core, the

s-core of the network (Hagmann et al. (2008)) is the group of nodes in which each one has a total

connections strength of at least s towards the rest of the s-core. The tightest or innermost s-core of

the network (simply s-core from here and on) is the set of remaining nodes at the highest strength

threshold that still yields a non-empty s-core.
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Rich-club: introduction

Another analysis related to the notion of centralisation assesses the so-called rich-clubness of the

network. The rich-club phenomenon is the tendency of high degree nodes to be preferentially

connected to each other (Zhou and Mondragón (2004), Colizza et al. (2006)). The phenomenon,

like many others in complex network sciences, has been first observed in social networks, in

which highly central individuals with rich connectivity tend to form a highly interconnected club

(McAuley et al. (2007)). The degree of rich-clubness is usually measured by the φ(k) k-density

function of the network, which is the internal connection density among all nodes with degree

larger than k.

Let us note here the fundamental difference between obtaining the most centralised nodes by

the two introduced methods. While rich-club counts all connections of the central nodes with every

other network node, k-core and s-core decomposition only considers core-internal edges. As we

shall see below, this difference makes k-core and s-core a more ”elitist” core over the rich-club.

Rich-club: weighted version

A possible weighted variant of the rich-club measure, as introduced in Opsahl et al. (2008),

evaluates the tendency of the highest connection weights to be distributed among high degree (rich)

nodes. However, this variant, due to normalisation by the number of edges, results in a connection

density independent index, which renders it unsuitable for measuring edge centralisation. As both

phenomena are of interest here, that is, both connection and weight centralisation, we propose

another weighted version of rich-clubness metric below, which is capable of capturing both

tendencies.

We define weighted rich-clubness as the internal weighted connection density φW (k) of the

set of nodes with degrees larger than k, N>k, which is the ratio between the sum of connection

weightsW>k among the nodes in N>k and the maximum of their possible weight sumWmax
>k :

φw(k) =
W>k

Wmax
>k

=
W>k∑Emax

>k

l=1 wrankedl

, (5.2)

whereEmax>k = |N>k|∗(|N>k|−1)/2 is the maximum possible number of edges among the nodes

in N>k, and wrankedl is the lth strongest (highest weight) link in the network.

With the above φw we define a normalised coreness measure function, which takes its value

from [0, 1] for each k degree. φw is 1 only in the extreme case ifN>k is fully connected by exactly

the strongest connections of the network. In general, φw measures the fraction of interconnection

strength within N>k relative to this theoretical maximum, given the set of weighted edges present

in the network.
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Let us note that in Eq. 5.2 the denominator is not calculable if Emax>k is greater than the

number of edges E present in the network. This condition renders the interpretation domain of

φw dependent on the connection density of the investigated network, and makes φw applicable

for weighted rich-clubness measurement only for a fraction of the highest degree nodes N>kmin
.

Specifically, for undirected graphs, the number of these nodes |N>kmin
| cannot be larger than the

real solution of the quadratic equation

E =
x(x− 1)

2
=⇒ x2 − x− 2E = 0. (5.3)

Eq. 5.3 finds the largest number of nodes x that can still be fully interconnected by the existing

number of edges E in the network. The cortical network under study has E = 17865 connections,

thus we get |N>kmin
| = 188 nodes as the largest assessable rich-club size. This size makes up

about 20% of the nodes in the network, and renders φw(k) the domain of k ∈ [kmin, kmax], where

kmax = 97 is the largest node degree, and kmin = 49 is the degree of the 188th node in the rank

ordered node list.

In summary, the novel φw metric introduced above (Eq. 5.2) unifies the earlier unweighted

(Zhou and Mondragón (2004)) and weighted (Opsahl et al. (2008)) rich-club variants, and is hence

capable of measuring the weighted concentration of edges among the rich-club regions, relative to

the connection strength distribution of the network.

5.4.3 Results: Comparison of the cortex’ s-core and rich-club measures

Coreness evaluation of the cortical connectivity network is performed by the above introduced two

methods, s-core and weighted rich-club analysis (Figure 5.11). First, we examine the global degree

of centralisation in the cortical network in comparison with its surrogates, and then we examine

the core cortical regions the methods yield.

Figure 5.11 (following page): S-core and rich-club analysis results. Top: core sizes (solid

lines) and φW (k) weighted k-densities (dashed lines) of the cortex and its surrogates for the two

core detection algorithms. Rich-club sizes (green) are the same for all networks due to their

identical degree distribution. Colour-filled regions delineate surrogate ranges by their minimum

andmaximum values. Middle and bottom: n=100 (10%) strongest s-core and rich-club regions and

their connections visualised on coronal and horizontal projections (middle row), and on abstract

hierarchically radial layout (Holten (2006)) (bottom row).
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S-core significance

Generally speaking, s-core analysis assesses a network’s tendency to form a densely intra-

connected inner core by measuring the size of, and overall connection strength within, the most

strongly inter-connected group of nodes. We identify the s-core of the cortical network through

a peeling procedure that iteratively removes less connected regions from a candidate s-core (see

Methods). Examining the evolution of the s-core decomposition of the cortical network and those of

its surrogates (Figure 5.11 top left) during the peeling procedure, we can identify two characteristic

phases. In the early phase of the crust peeling process, that is, for relatively low strength thresholds

(s<11), random surrogates are able to keep a significantly higher number of their nodes in the

(weak) core than the cortical network or its spatial surrogates. This is clearly the consequence of the

highly integrated and poorly segregated connectivity of random surrogates (Section 4.2), granting

them higher resistance against the destructive peeling process in this low strength threshold regime.

This longer early phase then transitions into an unstable phase (s>11), in which the s-cores

of both surrogate types diminish and vanish suddenly. The cortical network, on the other hand,

continues to sustain a substantially sized s-core of n=100 regions (9.98%) for much longer. This

s-core eventually collapses at a significantly higher strength threshold (sC = 13.095) than its

counterparts in the random (sR = 12.055 ± 0.078, one-sided significance test assuming normal

distribution of surrogate means: p < 10−4) or spatial surrogates (sS = 11.433± 0.124, p < 10−4).

The fact that the s-cores of the connection length restricted spatial surrogates all vanish prior to

that of random networks demonstrates the surprising tendency, that the specific spatial constraints

of the cortical regions by themselves hamper the formation of a strong s-core in the cortex. This

finding further accentuates the significance of the strong cortical s-core, and suggests that the white-

matter ”wiring” of the cortical network may be optimised towards the formation of a significant

global s-core, which is much stronger than its connection length constraints alone would suggest.

Rich-club significance

An alternative measure of core formation in a network is the assessment of its rich-club index

(Zhou and Mondragón (2004), Colizza et al. (2006)). Our rich-club index variant, φw, measures

the tendency of high degree nodes to be both densely and strongly interconnected. Comparing

the evolution of φw in the cortical network and in its surrogates (Figure 5.11 top right), we can

see a slightly counter-intuitive outcome in the light of the s-core results: spatial surrogates reach

substantially higher φW values than random networks for the whole valid range of the measures,

and even keep up with the cortical network. However, in combination with the s-core results, this

in fact indicates that while the cortex possesses a densely intraconnected internal core (strong s-
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core), that core is not exclusively composed of the highest degree regions, because they are not

more strongly interconnected than their spatial counterparts for any reasonable core size (for n>9

regions→ k<80).

It is important to note that previous studies (Zamora-López et al. (2010), Van den Heuvel and

Sporns (2011)) used random surrogates exclusively for assessing the rich-club property of the cat

and the human brain networks, according to which the cortical network under study also expresses

a highly developed rich-club (magenta versus blue line). However, our spatial surrogate result

extends this picture by showing that this property originates from the relatively low variance in

the spatial locations of highly connected regions (Figure 4.2), which, in combination with the

highly clustered, local connectivity of the cortex, naturally results in a tendency for strong rich-

club formation.

This observation is supported by the r assortativity coefficients of the networks. Degree

assortativity is a global metric measuring the tendency of high degree nodes to be preferentially

connected to other high degree nodes (Newman (2002)), and is thus highly interrelated with the

phenomenon of rich-club formation. We obtain positive assortativity coefficients for the cortex

(r = 0.29) which is highly similar to those of its spatial surrogates (r = 0.28 ± 0.004, one-sided

significance test assuming normal distribution of surrogate means: p = 0.10), while almost no

degree assortativity is found in random surrogates (r = 0.05 ± 0.005, p < 10−4).

This preferentially mutual connectedness of high degree regions, resulting in the detected

strong rich-clubs in both the cortex and its spatially constrained surrogates, indicate that the found

rich-club formation tendency of the cortex naturally arise from the location of these cortical hubs

and the spatial wiring constraints of the network.

Comparing the s-core and the rich-club

Let us now examine the detected s-core and rich-club of the cortex in detail. In order to be able

to compare the two, we take an equal size group of the most central regions provided by each

procedure. We choose the size of the final non-empty s-core for this, containing a reasonable

proportion, n=100 (9.98%) regions, of the entire cortex.

The s-core and rich-club regions selected by the two methods (Figure 5.11) are largely

consistent with those found by Hagmann et al. (2008) and Van den Heuvel and Sporns (2011)

on lower resolution cortical networks. Our s-core (n=100 regions in final, non-empty core)

and rich-club regions (n=100 highest degree regions) exhibit a considerable, exactly 50% (n=50

regions) overlap between the two groups. However, while we can observe a high level of

spatial encapsulation of the s-core around the caudal part of the cortical midline, formed by the
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precuneus, the cingulate cortex and the superior part of the occipital lobe (cuneus, lingual gyrus

and pericalcarine cortex), this centralisation is, although also present, much less pronounced, in

the cortex’ rich-club, as about one third of it extends to the lateral and frontal parts of the cortex.

Our finding on the spatially dispersed cortical rich-club is consistent with earlier studies reporting

both spatially and modularly distributed rich-clubs of the cat thalamo-cortex (Zamora-López et al.

(2010)) and in the entire human brain (Van den Heuvel and Sporns (2011)).

Additionally, as expected from their detection methods and is shown in Figure 5.11, the spread

of arborization of the two cores are also markedly different. The more numerous (n=5662, 31.7%)

projections of the rich-club establishes direct connectivity with almost the whole of the rest of the

cortex (n=795, 88.5% regions). At the same time, the s-core possesses a smaller, as well as more

internally directed, connection set (n=3921 edges, 21.9%), which connects it directly with only one

third (32.7%, n=294 regions) of the rest of the network.

These differences, originating from the definitions of the s-core and rich-club structures,

demonstrate the more distributed nature of the cortex’ rich-club, as opposed to the rather

encapsulated, but spatially and topologically central position of the s-core. Furthermore, unlike

its rich-club structure, the s-core of the cortex appears to be optimised even against its physical

wiring constraints, which suggests high functional relevance to that core structure, and renders it

an appropriate candidate for some sort of putative central, global coordinator substructure of the

brain (Baars (2002)).

Due to its above found spatial and topological properties, in the forthcoming analysis, we will

consider the above detected s-core as the global core of the cortical network. Additionally, we

hypothesise that the spatially rather scattered cortical rich-club is more suited for fulfilling the role

of a set of distributed cortical hub regions, predominantly connecting their local neighbourhoods

with distant parts as well as with the core of the cortex. Nevertheless, the large (50%) overlap

between the s-core and rich-club regions suggests a great extent of functional cooperation between

these highly intertwined core structures.

5.4.4 Topological location of the core in the cortex’s modular architecture

Modular centralisation of the cortical s-core

In the last section, we have seen the spatially highly centralised anatomical structure composition

of the s-core along the medio-caudal part of the brain. In Section 5.2 we have also found that

the actual module organisation of the cortex is highly related, but not identical, to its anatomical

division (Section 5.2.3). An important question regarding the topological positioning of the core

at this point is whether it is evenly distributed among the modules of the network, and resembles
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a, distributed b, centralised

Figure 5.12: Schematic diagrams of distributed and centralised modular architectures. a:

distributed organisation of an aggregation of segregated modules (large gray disks), capable

of acting as specialised functional units, and cooperating predominantly via inter-module links

of their high degree module hubs (green disks). b: in a centralised architecture, the densely

intraconnected and topologically central network core (magenta) is in the position to effectively

integrate information from the otherwise sparsely interconnected, but densely intraconnected,

segregated modules (gray).

a highly interconnected multi-module hub structure, or whether it is positioned in a centralised

manner by residing in a (small set of) central module(s). In this section we carry out a series of

investigations to decide between the two, radically different, architecture types illustrated in Figure

5.12.

Considering the position of the core with respect to the modules of the cortex, we find that the

entire s-core resides in a single supermodule out of four (25%), 90% of it is located in two modules

out of 12 (17%), and 80% of the s-core is further concentrated in only three submodules out of

37 (8%). Conversely, the s-core makes up 42% of its supermodule, more than 50% of the two

mentioned modules, and almost 70% of its three main submodules. The concentration of s-core

into these module components clearly renders them a distinguished topological role, and provides

support for the centralised, rather then distributed network organisation type (Figure 5.12b). In the

rest of this chapter, our main aim will be assessment of this hypothesis by further analysis.

Connection centralisation towards the cortical s-core

Having established the modular concentration of the cortical core regions, let us now investigate the

degree of direct centralisation of the connectivity of cortical modules towards the network core. To

that end, we compare the average inter-module and inter-supermodule connection densities (actual

over possible number of connections) with the connection density between the network core and

the modules/supermodules. For a clear comparison, the three modules (one supermodule) in which
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the network core resides (total of n=234 regions, 23.4%), are discarded from this analysis, in order

to eliminate the overlap between the core and the modules 1.

We obtain 0.82% connection density between the core and the non-core both at the level of

modules and supermodules (the values are the same, because the same connections are considered

at both hierarchy levels). Less than half of this, only 0.38% of the possible connections exist

between non-core supermodules at the supermodule hierarchy level, indicating the topologically

central location of the core among the otherwise very loosely coupled supermodules of the cortex.

As opposed to that, non-core modules are pairwise interconnected with a 50% higher, 1.2%

connection density, due to many of them residing in the same supermodule, demonstrating no

direct centralisation of the rather intra-supermodularly interconnected cortical modules towards

the core.

In conclusion, the core appears to be an important immediateway station in between peripheral

supermodules, however, in accordance with the found hierarchical modular architecture, the

strong internal organisation of these supermodules lessens the importance of the core as a central

communicator starting from the module level and on lower levels of the hierarchy. We note,

however, that the above analysis only considered direct centralisation in the modular organisation

of the cortical connectivity towards its network core, which wewill extend by utilisingmore general

complex network measures in the forthcoming analysis.

5.4.5 Intra-module organisation: local s-cores in supermodules

Introduction

Considering the findings on the relation between the cortex’s global core and its module hierarchy

found so far in this section, a possible scenario is that the cortex possesses a number of densely

intraconnected and globally equally important ’local cores’, presumably one within each of its

supermodules. Indeed, the crust peeling procedure of the s-core algorithm is an extremely elitist

strategy: it necessarily yields only one, the most strongly intraconnected group of nodes, even

if multiple such groups are present in the network with comparable strength. Intuitively, an

indicator of this scenario is a sudden drop in the core size at a certain threshold value, where one

such alternative core is detached (’peeled off’) from the somewhat more strongly interconnected

remainder. Examining Figure 5.11 (top left subfigure), this is exactly what we see at s ≈ 11 and

s ≈ 12. Furthermore, the fact that the global s-core resides in its entirety in only one of the four

supermodules calls for the investigation of the local s-cores of the other three supermodules.

In Section 5.4.4 we have seen how the centralisation towards the cortical core, present at the

1We also note, however, that this in turn introduces a slight bias towards lower core-module connections densities.
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supermodule level, is suppressed at the module level by the dominating internal connectivity of the

supermodules. In the following, we investigate the nature of this internal organisation by assessing

the local core formation tendency within these modular elements.

Methods

We perform s-core detection within each individual supermodule, that is, within the cortical sub-

network formed by the regions and internal projections of each supermodule. Local organisation

features and global significance of these intra-supermodular s-cores are evaluated by calculating

their strength, size and centrality, both relative to their own supermodule and in absolute terms in

the entire cortical network. We emphasise here, that the comparison of these local s-cores also

assesses them with respect to the global s-core, because, as we have already seen in Section 5.4.4,

the global s-core happens to be one of the supermodular s-cores.

Global and relative strengths aremeasured as the ratio of local s-core strength (final s-threshold)

to mean global node strength and intra-supermodule node strength, where the latter only considers

internal connections. Likewise, we assess global and relative size of supermodular s-cores as the

proportion of contained regions with respect to the entire network and to their own supermodules

only.

Centrality and contribution to network integration are measured by two means: i) as the

ratio of mean betweenness centralities of regions of the local s-core and of regions network wide

(betweenness, see Section 4.2), and ii) as loss in mean network efficiency after removing all s-core

regions and their projections (vulnerability, Albert et al. (2000), Crucitti (2003)).

In order to gain further insight into the individual organisation of the local s-cores, we assess

their dispersion at one hierarchy level lower, at the level of modules. We define the modular

dispersion of supermodular s-core s as:

δ(s) = 1− [max(P (s))−min(P (s))], (5.4)

where the vector P contains the proportion of s-core regions in each module of the supermodule.

δ(s) is 1 if s is evenly distributed across its modules (P (s) is uniform→ maximal dispersion), 0

if s is contained by a single module (one element of P (s) is 1, the other elements are 0 → zero

dispersion), and otherwise a value in between indicating the degree of dispersion of s across its

modules.

Results

Figure 5.13 visualises the local s-cores of the four supermodules, while their quantitative assess-

ment is presented in Figure 5.14. As we discussed it in Section 5.4, the caudal-central M1 contains
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Figure 5.13: Local s-cores in anatomical space. Local s-cores (larger, interconnected circles of

the same colour) of each supermodule are shown on horizontal (left) and coronal (right) projections.

Regions (circles) are coloured to the colour of their supermodules (Figure 5.7).

the global s-core, while M2, M3 and M4 are the left lateral, right lateral and frontal supermodules,

respectively.

Firstly, let us consider the strengths (final threshold of the peeling process) of the supermodular

s-cores. In the two lateral and the frontal supermodules (M2, M3 and M4), we find local s-cores

that are weaker in global terms (in comparison with the network average connection strength, first

column), but similarly strong or, as in the case of the frontal M4 supermodule, even stronger in

local terms (in comparison with their internal mean connection strength, second column) than the

global s-core of M1.

Secondly, examining the extent of the local s-cores, both in relative (third column) and

in absolute terms (fourth column), we find relatively small size local s-cores in both lateral

supermodules (79 and 85 regions). Remarkably, the size of the s-core of the frontal supermodule is

much smaller (33 regions), only one third of the size of the global core (100 regions). This, along

with the extreme relative strength of this frontal s-core (second column), is a potential indicator of

a high level of internal centralisation within the frontal lobe, with the majority of the peripheral

nodes being only very loosely coupled to the extremely strong local core. We also note that the

global s-core of the cortex is composed by close to half of the caudal-central supermodule M1

(third column), making up 10% of the whole network. This indicates an extraordinary extent of

tight connectivity within that supermodule, which, as we have shown before, contains two thirds

of the highest degree regions with a strong tendency to be mutually connected (see Figure 5.11).

To further investigate the topological centralities of the local s-cores in the cortical supermod-

ules, we assess their global and intra-supermodule integration capabilities (fifth, sixth and seventh

columns in Figure 5.14) by evaluating their betweenness, the vulnerability of the network to their
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Figure 5.14: Organisation of local s-cores in supermodules. Global/relative strength: ratio

of s-core strength (final s-threshold) to mean global/intra-supermodule node strength (sum of

internal connection weights only). Global/relative size: proportion of contained regions in entire

network/own supermodule. Betweenness: % of mean betweenness of regions in s-core to network

mean. Vulnerability: % of loss in mean network efficiency after removing all s-core regions (and

their projections). Dispersion: % of dispersion of s-core across modules of supermodule.

loss (deletion), and their degree of dispersion across the modules of their supermodule. Firstly, the

lateral s-cores, in M2 and M3, exhibit very low mean betweenness values: they lay on about 25%

less shortest paths than an average network region. This global segregatedness in fact provides them

with such a level of isolation that their removal from the network actually increases global network

efficiency, as indicated by their negative network vulnerability index. At the same time, the global

and frontal s-cores in M1 andM4 possess high betweenness values, and contribute positively to the

efficiency of the cortical network, with the global s-core being significantly more pivotal however.

Finally, let us consider the modular composition of the supermodular s-cores (seventh column

in Figure 5.14). While the central and right lateral s-cores, in M1 and M3, demonstrate a relatively

high level of modular dispersion, each residing in multiple modules of their own supermodule, the

left lateral s-core in M2 exhibits a very low level of modular distribution. Even more remarkably

the M4 frontal s-core is entirely concentrated into a single one of the three modules of the frontal

supermodule. This module is M41, which, as we have seen in Section 5.3.3, consists of 94% of

the orbito-frontal cortex (Figure 5.9), complementing the extremely high internal integratedness

(modularity) of the orbito-frontal cortex by pointing to its not only spatially, but also topologically

central role within the frontal supermodule and in the frontal lobe.

In summary, we found comparably sized, but more weakly intraconnected and highly isolated

local s-cores in the two lateral cortical supermodules, and a very tightly integrated and locally
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remarkably central, but small size and globally insignificant local s-core in the orbitofrontal

cortex of the frontal supermodule. Based on these findings, we conclude that the global s-

core in M1 occupies not only an anatomically, but also topologically central position in the

cortical connectivity. However, our results also indicate that the highly segregated, modular and

hierarchical nature of the cortex limits this centralisation to the largest topological scales: to its

inter-supermodule connectivity.

5.5 Overview of results

In this chapter, we turned to the investigation of the cortical architecture on the meso-scale, and

evaluated the expression of some generic network organisation principles in the cortex, such as

hierarchical, modular, and centralised organisation patterns.

With the utilisation of a simple model for network hierarchy, we detected the presence of

a globally hierarchical organisation in the cortical connectivity (Section 5.1). After that, we

confirmed the previously reported highly modular architecture of the cortex, however, with some

variation in the actual identity of the modules compared to earlier results (Section 5.2.5). These

differences can be attributed to the resolution difference of the utilised datasets, as well as to the

inclusion/exclusion subcortical brain areas in the analysis.

We tested the hypothesis that the cortical connectivity possesses hierarchical organisation

patterns in its modular structure. The resolution of the network under study allowed us to detect an

iterative pattern of submodule formation up to five hierarchically embedded levels, with significant

connectivity saturation at the fifth level (6.7 regions/micromodule, 93% internal connection

density). Spatially, the modules are highly compact at all hierarchy levels and hemispherically

symmetric at higher levels. Increasing capability of the submodules at lower hierarchy levels

to operate as individual functional units is indicated by the increase not only in their internal

connection density, but also in their modular matching indexes, reaching as high as 33% at the

lowest hierarchy levels. In summary, topological analysis of the large-scale anatomical connectivity

of the cortex confirmed its characteristic organisation feature of being composed of relatively

loosely coupled subunits (modules), in a repetitive manner across multiple levels.

In any modular architecture, such as the one found in the cortex, network modules on the

global level can engage in two fundamentally different topological relations, and thus functional

cooperation: in a distributed (Figure 5.12 a) or in a centralised (Figure 5.12 b) architecture pattern.

While the exponential degree distribution (Hagmann et al. (2008)) and globally hierarchical

organisation (Section 5.1) already suggested the latter type of architecture, we explicitly examined

which, if any, parts of the cortex is topologically able to fulfil that putative central coordinator role
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and thus potentially operate as the global workspace of Baars (2002) (Section 5.4). Confirming

previous results of Hagmann et al. (2008), the most densely intra-connected group of regions,

the s-core of the cortex, was found to be spatially encapsulated at a medial-caudal location,

composed by the precuneus, the cingulate cortex and the superior part of the occipital lobe.

Furthermore, surrogate comparison detected an elevated level of internal integratedness (intra-

connection strength) in the cortex’s s-core, indicating the existence of a spatially compact and

topological significant network core.

As opposed to that, the existence of another candidate central structure, the rich-club formation

of the cortex (Van den Heuvel and Sporns (2011)), while exhibit a denser than random intra-

connectedness, was also found in its spatial surrogates, thus can largely be explained by the spatial

embedding and wiring constraints of the cortex. Furthermore, the rich-club of the cortex was

found to be formed by a relatively loosely coupled, spatially not significantly strong, and both

spatially and topologically rather dispersed set of regions, as it was found in the cat thalamo-cortex

(Zamora-López et al. (2010)) and in the entire human brain (Van den Heuvel and Sporns (2011)).

These properties, as opposed to the even spatially highly significant and well-confined cortical s-

core, render the rich-club a less appropriate candidate for a putative central cortical core, and more

suited for fulfilling the role of a set of distributed cortical hub regions, predominantly connecting

their local neighbourhoods with distant parts of the cortex. Nevertheless, the large (50%) overlap

between the s-core and rich-club regions suggests a great extent of functional cooperation between

these highly intertwined core structures.

In order to further investigate the putative role of the detected core in the network, we assessed

how much topologically centralisation is actually expressed by the network towards its core. To

that end, we evaluated the level of local centralisation within each supermodule by detecting the

’local s-cores’ in each of them, the global network core itself being one of them (Section 5.4.5). We

found that these local s-cores, while being the main integrator substructures within their respective

supermodules, are significantly smaller in size and weaker in terms of intra-connectedness than the

global core, and furthermore they are in a rather segregated position from the other supermodules,

as opposed to the global s-core, which itself is one of these supermodular s-cores due to its modular

encapsulation. These results place the network core to a global inter-supermodule integrator

position: a spatially and topologically central structure capable of integrating and coordinating

the otherwise highly segregated lateral parts of the two hemispheres.

Using the anatomical connectivity map they collated using the CoCoMac database (Kötter

(2004)), Modha and Singh (2010) also reported the presence of a strong k-core in the brain of the

macaque, which, however, was found to be a ”deeply nested”, highly centralised and integrated
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structure of the macaque brain. While this and our results are in general agreement regarding the

significance of the network cores, the more centralised manner of the macaque brain of Modha and

Singh (2010) may arise from the lower strength of the modularity structure of that connectivity

map, that was not assessed in Modha and Singh (2010).

Having established the hierarchical modular and reasonably centralised architecture of the

cortical connectivity around its significant strength s-core in this chapter, in the next chapter we

shall investigate the topological position of another functionally potentially highly significant group

of regions, the hubs of the cortex.
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Chapter 6

Hubs of the cortex

Having found a reasonable level of modular centralisation in the cortex around its significant s-

core in the last chapter, in this chapter we shall attempt to characterise the topological properties

of another potentially functionally significant set of cortical regions, the hubs of the cortex

(Sporns et al. (2007)). Specifically, we will evaluate their topological positioning and integration

capabilities with respect to the features of the cortical network architecture unveiled so far, in order

to gain further insight into the organisation features of the cortex. After that, we shall also evaluate

and compare the kind of stereotypical functional operations the core and hubs regions of the cortex

are specialised to at the micro-structure level by performing a detailed network motif analysis

(Milo et al. (2002)). Throughout this chapter, our main goal will be to further characterise and

compare cortical hub and core regions in terms of their topological integratedness, centralisation

and potential functional cooperation.

6.1 Introduction

6.1.1 Overview of results up to this point

In the previous chapters, we have found a highly modular organisation in the cortex (Section 5.2),

with high global, but low local centralisation towards its s-core structures at the various levels of its

module hierarchy (Section 5.4.5). The prominent global s-core of the cortical connectivity is both

spatially and topologically central and well-confined. Specifically, rather than being distributed

among the high-degree nodes of the network modules, the global s-core takes a highly concentrated

position with respect to the underlying hierarchically modular cortical architecture by residing in

just one of the four supermodules (Section 5.4.4). Furthermore, we have also shown by surrogate

tests that the s-core, as opposed to the rich-club, is far more tightly connected than the degrees,

locations and connection lengths of its constituting regions would suggest (Section 5.4).
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Based on the above findings, we propose that the cortex has a centralised, rather than

distributed, and yet modular architecture, schematically illustrated in Figure 5.12 b. Nevertheless,

our results so far do not allow us to clearly categorise the cortical network either as a centralised

and fractal structure, empirically found in Ravasz et al. (2002) and theoretically studied in Ravasz

and Barabási (2003), or as a hierarchy of module agglomerations, studied for example in Shanahan

(2008) and in Shanahan (2010). While it is most likely that, being a complex, spatial network,

the cortex combines organisational elements of both architectures types, in this section we explore

the question by investigating the topological positioning of a pivotal region group, the hubs of the

cortex.

6.1.2 Hubs in complex networks

Taken the proposed architecture scheme in Figure 5.12 b, the question we ask is: Are there

distinguishable nodes in the cortex that facilitate interaction between the individual modules and

the network core? If so, which ones are they? (green nodes in Figure 5.12) These nodes have

traditionally been referred to as the hubs of the network, and usually simply identified by their high

degree (Boccaletti et al. (2006)).

Recognising the characteristically modular architecture of most biological and brain networks,

as well as the two fundamentally different topological positionings a hub can take with respect

to a given module partitioning, it has become a standard in systems neuroscience to further

differentiate between provincial (intra-cluster) and connector (inter-cluster) hubs (eg. Guimerà

and Nunes Amaral (2005), Bassett and Bullmore (2006), Sporns et al. (2007), Hagmann et al.

(2008)). Provincial hubs, tightening intramodule connectivity by their mostly internal links, reside

in the topological centre of a single module. Connector hubs, on the other hand, are maintainers

of inter-cluster connectivity due to their links being highly distributed among network modules.

6.1.3 Hubs in the brain

By their informal definition, hub nodes are the primary integrators in complex networks. Ac-

cordingly, the identification of hub regions in various large-scale brain networks have generated

considerable interest (Sporns et al. (2007), Rubinov and Sporns (2010)).

In the original analysis of the cortical connectivity dataset investigated here, Hagmann et al.

(2008) have reported that connector hubs are concentrated in the posterior medial and parietal

cortex, while the majority of provincial hub areas are located in the frontal, temporoparietal and

occipital modules. Other studies carried out on directed brain networks identified ’driving’ hubs

and ’driven’ hubs, according to the significantly elevated number of their out- and in-degrees,
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respectively (Yan and He (2011)).

Having found a strong hierarchical modular organisation and a spatially and topologically

centrally positioned structural core in the cortex, in this chapter we investigate the topological

position and properties of the hub regions of the cortex. Specifically, we shall assess their relation

and relative significance to the global network core with the aim to gain further insight into their

putative functional role in the cortical architecture as characterised so far (Figure 5.12b).

6.2 Global topological properties of hub regions

6.2.1 A novel hub categorisation scheme

In Section 5.4.4 we have found a very low interconnection density (∼ 1%) between the cortical

modules, which places connector regions into a distinguished topological position. Furthermore,

in Section 5.4, we have found that one half of the top n=100 (9.98%) highest degree nodes, the rich-

club nodes, are contained in the spatially and topologically confined, highly intra-connected global

s-core of the network, a prominent central element of the cortical network. These observations

lead us to propose an alternative categorisation to the above connector/provincial hub types. We

distinguish between core hubs and module hubs, depending on whether they reside within the

network core, or in a module outside of the core.

The traditional connector and provincial hub types are determined solely by taking a known

module configuration of the network (Sporns et al. (2007)). As opposed to that, our alternative

core hub/module hub categorisation first characterises hub regions with respect to network core,

and only then the uncovered module configuration is taken into account to evaluate their putative

functional role by their structural location in the modular topology (Figure 5.12 b).

In this section, we shall attempt to uncover topological differences between the above two,

alternative hub groups with the aim to find evidence for the potentially different functional role they

are able fulfil in the cortical connectivity. Specifically, we shall search for topological specialisation

in the positioning of the hub groups that may support or weaken the significance of the cortical

organisation found in the last chapter, i.e., the hierarchically modular cortical architecture that is

reasonably centralised around its strong s-core. For this comparative analysis, we will use the

non-hub regions of the cortex as a baseline population.

This section of the chapter, we start our investigation by the global topological properties of

the hub groups by several complex network measures on the macro-scale. In the next section, we

extend these results and investigate the micro-structural characteristics of the hub groups on the

lowest levels of the cortical connectivity by a detailed motif spectra analysis.
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6.2.2 Methods

All cortical regions are categorised into one of the following groups: core hubs, module hubs and

non-hub regions. We analyse the three groups by assessing them against various integration and

segregation measures in order to gain further insight into their topological position and potential

functional role in the discovered network architecture.

In order to measure the general integration ability of the above three node groups, we take the

mean of their contained regions for each of the four basic integration measures, applied in Section

4.2: degree, leverage centrality, efficiency, and betweenness centrality. The selected metrics,

in the above order, measure the integration potential of the network nodes from local to more

global topological scales (degree centrality: own neighbours, leverage centrality: neighbours of

own neighbours, efficiency: own shortest paths, betweenness centrality: all shortest paths), thus

in combination they are able to address a whole spectrum of integration processes of the cortex

allowed by resolution of the dataset.

The collective contribution of specific region groups to network-wide integration efficiency is

evaluated by calculating the vulnerability (loss in mean efficiency) of the cortex to the removal of

each region group (Albert et al. (2000), Section 5.4.5). For direct comparability of the vulnerability

of the above three groups of different sizes, we normalise the obtained efficiency losses by the

number of regions removed.

We also assess inter-module integration ability of the three node groups directly by calcu-

lating the mean participation coefficient of their regions (Guimerà and Nunes Amaral (2005)).

Participation coefficient, used to distinguish between connector and provincial hubs, measures the

connection distribution/concentration of a node among the network modules (see Appendix A for

definition).

We are also interested in the general clusteredness and internal integration ability of the

three region groups. At single region level, mean clustering coefficient of the groups’ regions is

calculated to measure local regional segregation. For assessing group-level integratedness, which

is indicative of increased internal cooperation and global segregation, we calculate the internal

connection densities of the groups.

6.2.3 Results: Global positioning of module hubs and core hubs

Visualisation of the two hub groups, along with their topological features, are presented in Figure

6.1. Due to the relation of the s-core and rich-club of the cortex (Section 5.4.3), the number of

hub regions inside the core (core hubs) is equal to the number of hubs outside of the core (module

hubs) (n=50, 5% of the entire cortex), making the two groups directly comparable in the following
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Figure 6.1: Analysis of core hubs and module hubs. Core hub (left) and module hub (right)

regions and their connections on coronal and horizontal projections (top row), and on radial layout

(middle row). Bottom: metric results of the two hub and the non-hub region groups.
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analysis.

The presented visualisation suggests marked differences in the spread of connectivity of the two

hub groups. While module hubs possess 17% of the cortical connections (n=2996) and have direct

links to 85% of the rest of the network, core hubs, with about the same number of links (n=2842,

16%), are only connected to 2.5 times less, 34% of the network, and concentrate more than half

(53%) of their connections inside the network core, that consists of only n=100 regions (10%).

This basic difference in their topological positioning suggests fundamentally different functional

roles for the two hub groups. In the following, we shall further characterise this difference by the

above introduced complex network measures.

We assess the integration capability of the various hub and non-hub region groups by a number

of complex network measures (Figure 6.1 second to seventh columns). Firstly, all metrics confirm

that non-hub regions, making up 90% of the cortex, are significantly poorer integrator areas than

the two hub groups, as expected from their definitions (for all integration measures between non-

hub and core hub, and non-hub and module hub regions: p < 10−4 for two-sample unpaired t-test,

not assuming identical variances). Secondly, looking at the two hub groups, one can observe no

marked difference between their average degree, participation coefficients (spread of connections

across modules) and vulnerability (loss of global network efficiency caused by their collective

deletion).

However, we obtain a significantly higher mean efficiency of hub regions in the core (ECH =

0.21± 0.006) than in module hubs (EMH = 0.19± 0.010), compared to the baseline efficiency of

non-hub regions (ENH = 0.17± 0.023,Wilcoxon two-sided rank-sum test for identical distribution:

p < 10−5 between all group pairs), which shows that core hubs are in a more central position in

the cortex, that is, topologically they are located closer to an average region in the entire cortical

network than module hubs are. Importantly, the applied core detection algorithm does not utilise

centrality metrics per se (Section 5.4.2), thus the found central topological position of the core

was not a priori guaranteed, but rather it is an independent feature of the cortical connectivity,

supporting the found centralisation in the cortical connectome (Section 5.4.4).

In addition to the direct centralisation described above, we also detect that module hubs appear

to possess a somewhat higher group average than core hubs with respect to two specific integration

metrics: leverage centrality and betweenness centrality. The difference between the two hub groups

is significant in the case of leverage centrality (p < 10−6 for two-sample unpaired t-test, not

assuming identical variances), but not for betweenness centrality (p = 0.049). Both measures

quantify how much a given node facilitates the integratedness of other nodes, locally in the case

of leverage centrality and globally in the case of betweenness centrality (Section 4.2). On the
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one hand, the mean leverage centrality of module hub regions being significantly higher than non-

hub regions is intuitively expected from their exceedingly high degrees within their local modules.

This finding, being consistent with both architecture schemes in Figure 5.12, reinforces the putative

role of module hubs as the main local integrators of their neighbourhood. On the other hand, the

elevated betweenness centrality of modules hubs over core hubs would indicate their heightened

global importance in establishing short communication channels (paths composed of chains of

white-matter connections) between their local neighbourhood and distant cortical areas. The almost

half as lowmean betweenness centrality of core hubs is suggestive, but inconclusive in this case, and

has to be assessed in combination with the vulnerability results of the two hub groups. Together the

two metrics seem to indicate that, while the individual regions of the highly intraconnected core

are effective substituters of each other by facilitating alternative pathways between distant brain

regions (intermediate betweenness of individual core regions), they are at the same time collectively

equally important integrators of the cortex as the local module hubs (equally high vulnerability for

collective removal of the module hub and core hub regions).

Along with their integration capacity in the cortical network, we also investigate the degree

of segregation of the hub region groups, both at the level of individual regions as well as for the

entire hub groups as a whole, in order to unveil their potential for functional specialisation and

collective cooperation, respectively (Rubinov and Sporns (2010)). We measure the former by the

mean clustering coefficients of the region groups (Figure 6.1 eighth column), and the latter by their

internal connection density (Figure 6.1 ninth column). The obtained intermediate clustering values

of core hubs (CCH=0.39) presumably originate from their high intra-connectedness: more than

every second possible connections exist between these core cortical regions. On the other hand,

module hubs demonstrate the lowest individual clustering coefficient (CMH=0.32), indicating their

lower functional specialisation within their local neighbourhood. At the same time, however,

considering their spatial scatteredness and the low, 3% connection density of the rest of the network,

module hubs exhibit a relatively high, 16% intra-connectedness among themselves, which, being

in line with the rich-club organisation of the cortex (Section 5.4), supports the notion that spatially

remote hub regions possess increased potential for functional cooperation.

Inter-connectivity of the presented region groups provides additional information on their

mutual relationship in the network architecture. Consistently with their position in the modular

organisation of the cortex, module hubs, directing 85% of their connections towards non-hub

regions, are muchmore important network elements in terms of their potential in directly collecting

and disseminating local information than core hubs, that share only 41% of their connections with

non-hub regions outside of the core (85% of the network). Module hubs possess an about equal
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number of connections (6%) between themselves and towards core hubs, maintaining similar level

internal and pro-core connectedness. As opposed to that, core hubs retain almost four times more,

22%, of their connections internally, forming a much more tightly integrated group.

Considering the strong modular organisation found in the cortex, an important question is how

much the two hub groups contribute to inter-module integration. We find that both groups keep

about 70% of their connections inside their own module, and contribute about equally, with 12.5%,

to inter-module connectivity, placing neither hub group above the other in facilitating inter-module

communication. Furthermore, the low ratio of internally kept connections of module hubs (6%),

and comparison of their connection density in the cortical network (16%) and in its surrogates

(random: 12%, spatial: 17%) provides evidence against the notion that module hubs would form a

separate functional unit acting collectively as a group of global integrator regions among various

segregated parts of the cortex.

These results together are consistent with the found significant rich-club organisation and

high assortativity in Section 5.4.3, and provide further evidence for the remarkably high internal

integratedness and global centrality of the network core, as well as for a lower, but still relatively

high level of cooperation between cortical hubs in even distant modules, as illustrated in Figure

5.12.

6.2.4 Discussion

In this section we investigated the hubs of the cortical connectivity with respect to the previously

found organisation features of the network. First, we identified the hubs of the network as its one

hundred most highly connected regions, that is, its rich-club (Section 5.4.3). We found that 50% of

the hubs are also part of the core. Then, based on this 50% overlap between the core and rich-club

of the cortical network (Section 5.4.3), the set of hub regions was split into two equal size (n=50

regions, 5% each) groups: hubs inside the network core, or core hubs, and hubs outside network

core, or module hubs.

This way, in the first group we obtained a set of centrally located and highly intra-connected

hubs, the core hubs, along the caudal part of the cortical midline, mainly containing regions from

the precuneus, along with some visual and limbic (cingulate) areas. The second group outside of

the network core mainly is comprised of more lateral regions in the temporal lobe, parietal lobe,

as well as some precentral and frontal areas.

Originating from their topological and spatial positioning, we have found core hubs to be highly

concentrated, and module hubs to be more dispersed, both in terms of regional location and spread

of connectivity. Furthermore, analysis by various integration measures showed that core hubs are
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globally central integrator regions of the cortex, while module hubs are rather local integrators that

effectively organise their local neighbourhoods as well as link it with more distant cortical areas

(Figure 6.1).

Altogether, these results are in agreement with the existence of a globally highly central and

densely intra-connected core module, mainly composed of the core hubs of the network (Figure

5.12 b). However, they also point to a lessened degree of centralisation in the cortical network by

revealing a relatively strong inter-connectedness of the peripheral modules, mainly facilitated by

their local hub regions, the module hubs.

Sporns et al. (2007) provided a detailed analysis on the topological characteristics of the hub

regions in the large-scale connectivity networks of the macaque and cat brain. In accordance with

our results, Sporns et al. (2007) found that high degree nodes generally exhibit high integration

and low segregation measure values, making them capable of acting as functional links between

segregated subsystems of the brain.

Hagmann et al. (2008) investigated the spatial distribution of hub regions in the current dataset

using the traditional connector/provincial hub categorisation scheme, with regard to their slightly

different module partition (see Section 5.2.6). They found that most of the connector hubs are

located along the anterior–posterior medial axis in the cingulate cortex and the precuneus, as well as

in the parietal cortex. Similar results were found byVan denHeuvel and Sporns (2011). These areas

largely coincide with the cortical core, underscoring the core’s significance in global, intermodule

integration. Furthermore, prominent provincial hubs, the facilitators of local integration, were

found in the temporal module by Hagmann et al. (2008), reinforcing our findings about the

extremely high internal integratedness of that module (Section 5.4.5).

In this section we have established the distinguished global topological position of the high

degree hub regions in the cortical connectome. We found that hubs in the network core (core

hubs) and outside of the core (module hubs), while being similar to each other in some basic

hub properties (degree, participation coefficient, vulnerability), differ significantly in some other,

potentially functionally important features (betweenness, clustering, internal connection density).

In the next section, we attempt to further characterise this difference by comparing the kind of

stereotypical functional operations the core and hubs regions of the cortex are specialised to at the

micro-structure level of the current resolution of the cortical connectome.
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6.3 Motifs spectrumdifferences as a proxy for function of hub regions

6.3.1 Introduction

Network motifs

Network motifs are miniature subgraphs abundant in the network (Milo et al. (2002)). Comprised

of only several nodes which arranged in characteristic formations, network motifs are regarded

as putative functional atoms of the network at its finest level, that are capable of carrying out

certain stereotypical computational tasks (Holland and Leinhardt (1974)). The deviation of the

motif distribution of a network from that of its set of null-hypothesis networks carries information

on the functional and evolutionary constraints of the network (Milo et al. (2002)). Furthermore

these deviations tend to be characteristic to groups of networks, the so-called “superfamilies”,

originating from seemingly unrelated domains, such as social and engineered networks (Milo et al.

(2004b)).

However, it has been argued that inappropriately chosen null-hypothesis networks can lead

to ill-posed deductions about the adaptive and/or evolutionary value of observed motifs. In

some cases, the abundance (or scarcity) of certain miniature subgraphs may be readily explained

by some more elementary principles, such as local clustering or network growth constraints

(Artzy-Randrup et al. (2004)), not addressed by simple null-hypothesis networks. Nonetheless,

careful and comprehensive motif analysis provides a generic framework that is potentially able to

advance our understanding on the topological characteristics, stereotypical functional elements and

evolutionary processes of complex networks (Milo et al. (2004a)).

Motifs in brain networks

In the context of neural networks, motifs can be regarded as the ’canonical’ processing circuits of

the network (Douglas and Martin (2004)). In one of the earliest comprehensive studies on the

motifs in the neurosciences, Reigl et al. demonstrated the descriptive power of the technique

by exploring the network motifs in the neuronal wiring of C. elegans (Reigl et al. (2004)).

They found several symmetric, densely connected, and feed-forwardly coupled motif forms of

size two, three and four (but none of size five). These motif forms reflect some of the most

fundamental organisation features of C. elegans nervous system of being bilaterally symmetric,

highly clustered, approximately three-layered (motor, interneuron and sensory layers) and of having

evolved essentially to carry out information processing (as opposed to the rather sensory nature of

transcription networks or the information storing of social networks (Milo et al. (2004b))).
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A comparative study on the networkmotifs of various brain networks was carried out by Sporns

and Kötter, who investigated the motif spectrum of cortical brain networks of the macaque monkey

and the cat, as well as the invertebrate nervous system of C. elegans (Sporns and Kötter (2004)).

They found that the cortical networks possess motif distributions that are markedly different from

those of invertebrate brains, which led the authors to propose that cortical networks form a distinct

superfamily (Milo et al. (2004b)) to invertebrate nervous systems in terms of significant network

motifs. However, as the study compared the macaque cortex with the entire C. elegans nervous

system, the question of whether the found difference is also present between the cortex and the

spinal cord of the macaque, or indeed between the entire nervous systems of the macaque and

the C. elegans would require further investigation, as well as it raises the problem of resolution

difference (brain regions versus single neurons) when comparing various brain networks (Rubinov

and Sporns (2010), Kaiser (2011)).

Furthermore, Sporns and Kötter (2004) optimised the topology of synthetic networks to

maximal number of ”functional” motifs (sub-motifs within traditional structural motifs), but not

to maximal number of ”structural” (traditional) motif, and found characteristically similar evolved

networks to the cortical networks with respect to several topological measures, such as complexity

(Tononi et al. (1994)), clustering coefficient, shortest path length, and therefore small-worldness

(Section 4.5). In combination with previous results (Sporns et al. (2000)), these findings quite

strikingly suggest that efficient integration and segregation through global network architecture

can be achieved by several, possibly interrelated criteria, such as high small-world index, high

complexity, or certain motif distributions (Sporns and Kötter (2004)).

In a subsequent study, Sporns and colleagues includedmotif spectrum analysis into their survey

of structural measures during an attempt to find and characterise hub regions of the large-scale

cortical networks of the macaque and the cat brain (Sporns et al. (2007)). Interestingly, a specific

3-node subgraph, the reciprocally connected V-shape was found at significantly elevated numbers

at the putative, high-degree and highly central hub regions. Furthermore, principal component

analysis (PCA, Pearson (1901)) pointed to this specific motif as a highly significant component in

the regional motif spectral distribution in the cortical connectivities of both species. Preliminary

investigations on the positional motif spectra of these regions suggested that they are indeed located

at the ”apex” (central position) of the motif formwith amuch higher ratio than it would be expected,

leading to low clustering coefficients at these regions and reinforcing their role as intermediating

way stations in the network topology. Utilising these finding, increased contribution to the same

reciprocal V-shape motif form was taken as an indicator of individual nodes to serve as network

hubs in Honey et al. (2007).
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Interpretation and generalisation of network motifs

Regarding the interpretation of motif analysis results, one can consider the evolutionary and

adaptive benefits of subgraphs found overabundant in various biological networks. It has also been

proposed that motif forms with higher structural stability, due to their higher reliability in a noisy

environment/system, might have generally been favoured contrary to motifs that are less stable to

perturbations in their connection strengths and polarity (Prill et al. (2005)). However, as the authors

admit, the hypothesis that motifs can be regarded as independent dynamical units, able to act and

evolve relatively uninfluenced from the global state of the complex network they are embedded in,

renders the theory less appealing for the more tightly integrated and simultaneously active neural

and brain networks than, for instance, for transcription networks composed effectively of on–off

switchable molecular elements.

The general notion of characterising and grouping individual nodes of a brain network

(neurons, cortical columns or anatomical regions) with respect to a certain set of network measures

was first proposed and studied in Passingham et al. (2002) and in Kötter and Stephan (2003). By

specifying such a set of measures, each network node can be given a set of according attributes,

which are collectively called the node’s ”fingerprint”. These fingerprints are not restricted to the

spectra of small-size subgraph the nodes participate in. Instead, they generalise the notion of

network ”motifs” to characteristic vectors describing topological properties of individual nodes

along a combination of complex network metrics, including for example integration or segregation

measures (Section 4.2 and Section 4.3).

Although preliminary studies of Passingham et al. (2002) and Kötter and Stephan (2003)

were carried out on relatively small networks (up to about 100 brain regions) of the macaque

brain, and used rather simplistic network measures (connection fingerprint, density, symmetry

and transmission), they were able to point out the potential value of applying network measures

at the single node level to identify groups of nodes with similar topological and thus presumably

functional characteristics. This approach, at its time of introduction, departed from the traditionally

applied, global network measures that only provide characteristic descriptions of the whole

network, and it was one of the first techniques to put emphasis on the internal organisation

differences of brain networks at the regional (node) level.

A recent extension of the fingerprinting technique proposes a framework for automatic

identification of network nodes that are ”special” in the sense of being outliers from the trend

followed by themajority of the nodes (Costa et al. (2009), Echtermeyer et al. (2011a)). Focusing the

investigations on these ”motif nodes”, the virtue of the technique was demonstrated in Echtermeyer

et al. (2011b), in which the authors carried out for the first time a comparative analysis among a
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spatio-temporally diverse set of structural connectivities of the human cortex, obtained from more

than 50, 12 to 23 year old children and young adults, at three different spacial resolutions (at about

400, 800 and 1600 ROIs). Their results showed that along both dimensions (subject age and brain

network resolution), node motifs as well as overall network characteristics differ in several, partly

previously already reported, topological and spatial aspects, such as fibre tract length distribution,

motif diversity or significance profile.

Motif node spectrum as a proxy for the function of individual network regions

We further investigate and contrast the putative functional role of the hub and core regions by

analysing their motif spectra. In the forthcoming analysis, it is important to carefully distinguish

between the terms motif node and network node. The abstract term motif node refers to a node of

a motif graph, which is different from a node of the brain network, a concrete cortical region, that

can take the role of a motif node in many motif graphs.

Previous studies used motif analysis mainly to investigate the dominant (and significant) type

of information processing the network under study, as a whole, is capable of or adapted to, by

analysing the motif distribution of the entire network (see introduction). Here, instead, we carry

out a more detailed analysis, and look for the putative functional role of various parts of the cortical

network by their individual motif fingerprint. To this end, we generalise the approach of Sporns

et al. (2007), who reported that hub regions appear at a certain position of a specific motif form, at

the apex of the V-shape motif, with increased probability. Specifically, we investigate the dominant

”canonical processing function” of each cortical region by examining how often the region takes

place at each specific location of every subgraph, that is, at each motif node.

Based on their connectivity within their motif forms, we categorise each node of every three-

and four-node motif form into one of three types: integrator, terminus and clustered. Informally,

we define these categories in the following way. Integrator motif nodes are central nodes of the

motif that create indirect links between nodes that are not directly connected. As opposed to that,

terminusmotif nodes realise a start/end point of the motif by being connected to the rest of motif by

a single link only. Finally, clustered motif nodes, being neither in central nor in peripheral position,

are topological equal (symmetrically connected) members of some densely connected motif form.

The classification of each motif node to be investigated is shown in Figure 6.2. With the above

categorisation, we seek to unveil the dominant functional role of cortical regions by analysing the

distribution of how often they participate at particular positions in network motifs.

This analysis, just like most techniques of the field of complex network sciences, is interrelated

to, but not equivalent with, some of the already applied analyses. Specifically, a dominantly



105

minihub
(integrator \ distributor)
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3 - node
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4 - node
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Figure 6.2: Motif node types investigated in this study. There are two three-node and six

four-node undirected (and connected) motif forms. All of their motifs nodes are first grouped

by isomorphism (red coloured nodes in a single motif graph) and then classified into one of the

three types: integrator, terminus or clustered, based on their connections with the rest of the motif

graph nodes.

clustered motif node spectrum necessarily correlates with high clustering coefficient (Section 4.3),

while integrator/terminus motif node spectra are expected to be related to low clustering coefficient

and to high/low degree in particular, as well as to high/low integration measures in general (Section

4.2).

We use the outlined analysis framework specifically to find differences in the motif spectra

of four previously investigated parts of the cortex, delineated by the core and the hub structure

of the network. Both the core and the crust (non-core) parts of the network are divided into two

subgroups: hub regions inside the core (core hubs), non-hub regions inside the core (non-hub core),

hub regions outside of the core (module hubs) and non-hub regions outside of the core (non-hub

crust). The last group, non-hub crust, makes up the majority of the network (848 regions, 85%) and

can be regarded as the baseline population of the cortical regions, while the first three, topologically

rather distinguished groups, consist of 50 regions each (5%).

We investigate the individual motif fingerprint of the core and hub regions of the cortical

connectivity network in order to gain additional insight into their putative functional roles from

the micro-connectivity perspective of motifs. Our hypothesis is that the above four region groups,

due to the difference in their topological properties, also significantly deviate in their motif node

spectra from each other, suggesting their different characteristic functional roles in the canonical



106

processing units of networkmotifs. For example, cortical regions found predominantly in integrator

motif node positions are likely to play a functional integrator role between specialised topological

neighbourhoods, while regions located mainly in terminus motif node positions are likely to act as

functionally highly specialised receivers or providers within the cortical network.

6.3.2 Methods

Motif node counting algorithm

In order to count the occurrences of network nodes at each individual position of the motif

forms, we developed our own specialised motif counting algorithm. Motif counting is an

algorithmically challenging task due to its high computational cost on large networks. For the

complete motif counting on the entire cortical network, even for only the six four-node undirected

motif forms, the ’brute-force’ approach of examining all the possible node-quartets in the network

is computationally not feasible1. However, exploiting the sparseness of the network, one can

radically reduce the computational cost by only considering the existing edges of the network.

To this end, a modified and extended version of the algorithm of Batagelj and Mrvar (2001) has

been implemented, with the generalisation of being able to deal with both directed and undirected

motifs of any size. We used that algorithm to count the motif node spectra of each individual region

in the cortical network and in its surrogates, as well as to obtain the global motif graph distributions

of these networks.

Motif node counts and spectra

We count the global occurrence number Cm of each m motif (k node subgraph) in the entire

network. The motif spectrum of each individual region is determined on a per Cm,n motif node

basis in the cortical network and in its surrogates, for each node n of each motif m. Occurrences

of isomorphic nodes within each motif form (red nodes of the motifs in Figure 6.2) are dealt with

by averaging. Aggregating these region level spectrum results, the motif node spectrum of a group

of regions is calculated by summing up the motif node occurrences at the individual regions in the

group. To be able to make comparisons between these group spectra, they are normalised by the

total number of contained motif nodes, yielding an occurrence probability Pm,n(G) of each node

n of each motifm within a certain group of cortical regions G.

1Even in our intermediate size, 998-node network, there is about 41 billion of such node-quartets.
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Z-score

In statistics, the Z-score of a given observation indicates how many standard deviations that

observation is above or below the mean (Larsen and Marx (2010)). Mean z-scores or standard

scores of the region groups for each motif node are calculated against both surrogate network types

as the average of the individual z-scores of each region contained in region group G:

zSm,n(G) =

∑
r∈G z

S
m,n(r)

|G|
, (6.1)

where zSm,n(r) is the z-score of region r against surrogate type S for node n of motifm:

zSm,n(r) =
Cm,n(r)− µ(CSm,n(r))

σ(CSm,n(r))
, (6.2)

where µ(x) and σ(x) are the mean and standard deviation of value set x. This way, zSm,n(G)

indicates the significance of motif node spectrum deviation of the cortical regions from their

surrogate correspondences.

6.3.3 Results

The occurrences of all three- and four-node undirected and connected motifs were counted in the

cortical network and on its two surrogate network sets. The undirected nature of the network under

study limited our investigation to undirected motif analysis. While technological (computational)

barriers prevent the analysis of larger motifs in practise2, ’functional’ interpretation of motif forms

also becomes less and less straightforward with the increase of size (Reigl et al. (2004)), thus

reducing the potential virtue of motif analyses at greater size.

Three-node motifs

Figure 6.3 shows the results of the three-node motif analysis. The cortical network contains about

half a million pieces of the two three-node (undirected) motifs forms in total (Figure 6.3 a). In

absolute terms, the linear form, due to the low connection density of the cortex, occurs more than

four times more frequently than the clustered triangle. Nonetheless, high z-scores of this latter form

against both surrogate sets reassure previous segregation results by indicating the overabundance

of clustered triplets in the cortex in relative terms (Section 4.3).

Absolute motif node counts of the four region groups are plotted in Figure 6.4, group averaged

motif node spectra and z-scores are shown in Figure 6.3 b. Firstly, the higher probability of the
2For example, to count the occurrences of all the 21 five-node undirected motif forms, one is required to perform the

computationally expensive isomorphism check between all of these motif forms and each one of the billions of 5-node

subgraphs of the network.
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Figure 6.3: Three-node motif results. a: absolute motif counts (bars) and random (orange) and

spatial (magenta) z-scores (diamonds) of the two three-node undirected subgraphs. Numbers on

top of the bars indicate absolute motif counts, scales on the two sides indicate z-score values. b:

z-scores of the three motif node types, clustered, integrator and terminus (top plots), and deviations

of normalised spectra (bars in the middle) of the three motif node types, clustered, integrator and

terminus, of the two hub and two non-hub groups, from that of the network mean. Colour codes

of z-scores on top match that of spectrum deviations at the bottom.

triangle motif in the network core indicates that the core is generally more clustered than non-core

regions (Figure 6.3 b, first column). Along with that, both core and module hub regions fulfil their

integrator role (second column) by creating connections between, and thus collecting information

from, both non-hub region types, which themselves are more frequently found in terminus position

(third column). Furthermore, this finding is reinforced by a higher random z-score value of the

integrator motif node in the cortical core and hubs than in the non-hub network crust. This

less negative z-score value indicates a centralisation in the distribution of those motif positions

towards the core and hub regions, thus a higher than expected integration capacity of these cortical

areas. However, as the z-score difference is much less pronounced for the spatial surrogates, this

centralisation can partially be accounted for by the length distributions and physical locations of

the core and hub regions.
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core hubs module hubs

non-hub core non-hub crust

Figure 6.4: Three-motif node fingerprints of the two hub and two non-hub groups. Each sector

corresponds to a motif node by its index (see motif forms on periphery). Sector areas (and not radii)

are proportional to motif node occurrences (see motif node occurrence number indicators on dotted

circles).
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Four-node motifs

Figure 6.5 shows the results of the four-node motif analysis. The cortical network contains about 20

million of the six four-node motif forms in total (Figure 6.5 a). In absolute comparison, the ’linear’

four-node subgraph (form 2) significantly outperforms the other five shapes, with more then 10

million (∼50%) occurrences, pointing to the predominantly linear (possibly edge-wise two-way)

information processing scheme among the sparsely connected cortical regions. Furthermore, the

’fan’ (form 1) and ’crossed fan’ subgraphs (form 3) are also represented significantly in the network,

with about 2.8 million (∼14%) and 5.1 million (∼25%) instances, respectively. These two forms

suggest a completely different, rather distributive and/or integrative communication scheme among

the contained node quadruplets, one of them possessing the special role of being a central ’mini-

hub’ of the formation in each case.

Surrogate comparison with both surrogate groups (Figure 6.5a) results in positive z-score

values for all clustered motif forms (motifs that contain at least one triangle, i.e., form 3, 5 and

6), and negative z-score values for all non-clustered motif forms (motifs without any triangles,

i.e., form 1, 2 and 4), demonstrating the dominating effect of the high clusteredness of the cortical

network on the gross signature of its miniature ’functional units’.

Beside the effect of its extremely high clustering, another fundamental topological property of

the cortical network,its low connection density, provides further understanding of the found four-

node cortical motif distribution. Indeed, in comparing the six four-node motif forms, the three

with the highest absolute occurrence number, form 1, 2 and 3, are the ones containing the lowest

number of edges (3, 3 and 4, respectively) and the greatest number of linear (non-triangular) node

triplets (3, 2, 2). The low expression of motif form 5 (∼6%) and 6 (∼2%) conforms well with this

trend: with them possessing 5 and 6 edges, they are the most densely connected motif forms, and

they contain only 2 and nil linear node triplets.

Interestingly, form 4, the rectangular subgraph, is an exception from the above rule: it is made

up of only four edges, all four of its node triplets are linear, and yet, with only about two hundred

thousands occurrences (∼1%), it is the most under-represented four-node subgraph in the cortex,

its anti-motif. However, the sparse and yet highly clustered connectivity of the cortex provides a

straightforward explanation to this apparent discrepancy: the scarcity of the rectangular formation

simply indicates the extremely low probability of any two regions in the cortex to be indirectly

linked by two other (unlinked) regions, while not being directly connected to each other. In other

words, if there exists at least two two-step long independent paths between any two cortical regions,

they are almost always directly connected as well.

Let us analyse now the group averaged motif node fingerprints of the three investigated cortical
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Figure 6.5: Four-node motif results. a: motif counts (bars) and random (orange) and spatial

(magenta) z-scores (diamonds) of the six four-node undirected motifs. Number of top of the bars

indicate absolute counts of subgraphs, scales on the two sides indicate z-score values. b: z-scores

(top plots) and normalised spectrum deviations (bars in the middle) of the three motif node types,

clustered, integrator and terminus, of the two hub and two non-hub groups, from that of the network

average. Dashed lines indicate zero z-score levels. Due to its relative (but not absolute) over-

representation by the cortex (random z-score between 5000 and 12000), random z-scores of the

last clustered subgraph (the complete graph) was manually set to zero to fit to scale.
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core hubs module hubs

non-hub core non-hub crust

Figure 6.6: Four-motif node fingerprints of the two hub and two non-hub groups. For figure

explanation, see Figure 6.4.
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region groups (core hub, module hub, non-hub core) and that of the baseline, non-hub crust group

(Figure 6.5b). Firstly, the motif node spectra of the various region groups clearly demonstrate

uniformly positive or negative deviation within each motif node types (clustered, integrator and

terminus). These consistent trends confirm that our predefined motif node classes, although all

contain nodes from various motif forms, are indeed groups of corresponding motif nodes whose

over- or under-expressions correlate for the four investigated cortical region groups. Furthermore,

the actual functional capabilities suggested by the spectrum deviations of the three distinguished

region groups are consistent with the ones indicated by our earlier analysis, thus verifying that motif

node categorisation is a viable analysis technique for investigating the putative functional roles of

certain cortical regions or region groups.

Spectrum deviations of the four region groups at the different motif node groups types are

consistent with what was found for the three-node motif form distribution. Specifically, we find

that both hub groups occur at terminus motif nodes with decreased, and at integrator motif nodes

with elevated frequencies, indicating their high functional integration potential over the rest of

the cortical network. Additionally, the fact that module hubs surpass even core hubs in integrator

motif node count indicates that module hubs are the most capable regions in the cortex to act as

’mediator’ regions between two otherwise unconnected regions in the cortical connectivity. We

also find that both sub-groups of the core, hubs and non-hubs in the core, tend to be found at high

degree clustered motif nodes more frequently, which is in line with our earlier findings on their

dense, mutual inter-connectedness, and grants them a remarkable internal integration potential at

the topological centre of the cortical network.

Absolute motif counts of the four region groups, plotted in Figure 6.6, also demonstrate

significant differences in their motif fingerprints. Most notable is the overabundance of integrator

motif nodes at the two hub groups, the increased occurrence of high degree clustered motif nodes

at the two core groups, and the increased relative frequency of terminus motif nodes at non-hub

crust regions, each one confirming previously found properties of the four node groups.

6.3.4 Discussion

In this section, we investigated the characteristic processing role of various topologically relevant

groups of cortical regions within its ’canonical functional units’, the network motifs. To this end,

we divided the cortex into four region groups, core hubs, module hubs, non-hub core and non-hub

crust, and analysed their three- and four-node motif spectra on a per motif node basis.

We started off our motif analysis by counting the 3- and 4-node motif spectrum of the cortical

network globally (Section 6.3). Due to its low connection density, we found an overabundance of
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sparsely connected (low edge number) motifs in the cortex in absolute terms. However, surrogate

analysis also unveiled the relative overabundance of more clustered (high edge number) motif

forms, attributable to the extremely high local segregation present in the cortex. These results

are broadly in agreement with those found by Reigl et al. (2004) and Sporns and Kötter (2004) in

the neural network of the C. elegans and in the macaque visual cortex, pointing to overall similar

characteristics of the motif spectra of various brain networks at different scales, originating from

their common properties of having a sparse, but relatively clustered connectivity.

On the global level, we found that low edge number, sparsely connected subgraphs dominate in

the cortex in absolute terms, due to its overall sparse connectivity. However, in relative terms, more

densely connected motifs are overabundant in the cortical network in comparison with both of its

surrogate types, providing the previously detected high clusteredness to the cortex. Furthermore,

in the particular case of four node motifs, we found the circularly connected rectangle subgraph

formation to be highly under-represented in the cortex, pointing to the extremely low probability

of any two unconnected regions to be indirectly connected through at least two other regions. This

finding suggests the relative lack of parallel information processing along short (two-step-long)

parallel pathways in the cortex compared to other stereotypical functional blocks, such as linear or

fanned motifs, at least at the currently investigated resolution.

Considering the various topological parts investigated, we found that each one of the four region

groups specialised to different motif node types. Highly clustered motif nodes are characteristic

in only the two core groups, providing high internal integration capability to the core as a whole,

compared to the rest of the network. In general accordance with the results of Sporns et al. (2007),

regions from both hub groups can be found in integrator motif node positions with significantly

increase frequency, while, on the contrary, regions of both non-hub groups appear to favour

terminus motif node positions. The found typical motif node fingerprints provide further evidence

for the topological specialisation of the investigated region groups, and suggests functionally

different roles during cortical information processing.

Due to the undirected nature of the currently utilised dataset, we are not able to test the

intriguing finding of Sporns et al. (2007) about the characteristic and strong preference of hub

regions in the cat and macaque brain networks for the appex position of the two-way connected V-

shape motif form. That motif node is one of the integrator motif node types in our categorisation

scheme, which was found to be favoured by both cortical hub groups, providing indirect support

for the validity of the finding of Sporns et al. (2007) in the human cortex. Nonetheless, future,

directed versions of the human cortical connectivity will significantly enrich our motif analysis by

being able to detect such direction-specific differences in the motif node spectra of various cortical
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region groups.

6.4 Overview of results

In this chapter, we analysed the topological properties of a functionally potentially highly significant

group of regions, the hubs of the cortex. Investigating the topological position of high-degree

hub regions in the found hierarchically modular and considerably centralised cortical architecture,

we found a stronger than random, spatially rather scattered rich-club structure, which nevertheless

exhibits a 50%overlapwith the network core (Section 5.4). This led us to depart from the traditional

connector/provincial hub categorisation scheme, and to distinguish hub regions with respect to the

network core, as core hubs or module hubs, depending on if they reside inside or outside of the

core (Section 6).

Comparing the two, equal size groups (n=50 regions, 5% each), we found that module hubs,

as opposed to hubs in the core, are spatially more distributed and topologically rather segregated

from each other (only sparsely intra-connected), and furthermore they appear to contribute more

to local rather than global integration. These findings suggest that, as depicted in Figure 5.12b, the

rather disconnected extra-core hubs in the various cortical modules are indeed primarily specialised

to coordinate and connect their local neighbourhoods to the rest of the network, reinforcing the

globally central position of the network core.

The possibility that individual cortical regions may favour differentmotif node positions within

the various motif graphs can result in substantial internal inhomogeneity in the motif spectrum

distribution of the cortex. Furthermore, motif nodes, besides forming isomorphic groups within

individual motif graphs, can be further categorised into characteristic classes according to their

intra-motif connectivity across motif graphs. We categorised each motif node as being either in a

terminus, integrator or clustered position within their respective motif form. To investigate these

properties of the cortex, we assessed the motif node spectrum deviations of four, topologically

distinguished region groups of the cortex: hubs in the network core (core hubs), hub outside of

the network core (module hubs), non-hub regions in the core (non-hub core) and non-hub regions

outside of the core (network crust)(Section 6.3).

Firstly, spectrum deviations of the various motif nodes showed systematic co-variation within

the same group type across all four investigated cortical region groups, validating our motif node

categorisation scheme. Secondly, we found that each cortical region group is specialised to different

motif node classes. Specifically, both hub groups favour integrator, and rather than terminus motif

node positions, supporting their putative functional integrator role even at the microscopic network

elements of motifs. Additionally, hubs inside the core, but not hubs outside of it, can be found
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in clustered position with increased frequency, in agreement with our previous results on their

extraordinary internal integration capability. Furthermore, both non-hub region groups favour

terminus, rather than integrator motif node positions in the three most common motif forms, with

non-hub core regions also appearing in clustered positions with increased probability. Altogether,

these findings are in agreement with the dominant topological characteristics of the investigated

region groups, further underscoring the distinguished topological, and putative functional, role

of the core and hub regions as the main collective and distributed integrators of the cortex,

respectively.

This chapter concludes our purely topological analysis on the anatomical architecture of the

cortical connectome. In the next chapter, we shall simulate network activity on the cortical

connectivity in order to investigate the relevance of our structural findings on the dynamics of

the cortex.
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Chapter 7

The structural origin of cortical

synchronisation

Simulations of coupled oscillators on the

cortical structural connectivity

In the previous chapters, we carried out a survey of analyses on the organisation features of the

structural connectivity of the human cortex on multiple scales. Using those results, in this chapter

we will turn to the investigation of the properties of the dynamics the topology of the cortical

architecture facilitates. We shall observe and analyse the dynamical patterns on the simulated

activity of cortical regions interacting through their anatomical connectivity.

The chapter is organised around three fundamental dynamical phenomena: the emergence of

synchrony, dynamical complexity, and propagation of activity. For the complete observation of

the first phenomenon, we shall investigate the path of the cortical connectivity from asynchrony

to complete synchrony in a physiologically non-plausible dynamical model, and assess the

resemblance and significance of the various architecture features of the cortex in its emerging

synchronisation patterns (synchronizability). We shall investigate the second phenomenon,

dynamical complexity, by a biophysically more plausible model, in order to characterise the

significance of certain topological features of the cortical connectivity in facilitating this important

aspect of cortical dynamics (Shanahan (2010)), as well as to guide our parameter choices in

forthcoming dynamical analysis. Finally, the third phenomenon, propagation of synchronous

activity, will be investigated to gain insight into the threat posed by certain parts of the cortex

in propagating and picking up epileptiform seizures. Throughout this chapter, our analysis will

be organised around the topologically distinguished parts of the cortical architecture obtained in
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the previous chapters, its modules, core and hub regions, in order to test their putative functional

significance in the unfolding cortical dynamics.

7.1 Introduction: Synchronised oscillations in the cortex

The central challenge of the neurosciences is to uncover how the brain carries out its fundamental

function: to translate sensory information to motor commands through internal information

processing. Given the brain’s various organisation levels, from subcellular elements through

cortical columns to brain regions, and considering the wide range of information processing

demands, from sub-conscious stimulus processing and motor command execution to high-level

mental activities, the notion of a single, universally applied information processing strategy seems

highly unlikely, which calls for a multi-scale andmulti-modal approach (Dayan and Abbott (2001)).

Different kinds of information processing strategies have indeed been discovered in the brain.

Sensory stimulus encoding into neuronal firing intensity and timing (Butts et al. (2007)), or

specialisation of neurons to the selective representation of different colours, orientations, or spatial

locations (McNaughton et al. (2006)), are only two examples of the numerous strategies possibly

utilised by the nervous system.

On larger scales, synchronisation between neural assemblies (Buzsaki (2006)) has extensively

found to be involved in the execution of ’higher order’ cognitive tasks, such as arousal, perceptual

integration, attention selection, association and working memory (Engel and Singer (2001),

Melloni et al. (2007), Lakatos et al. (2008)). Additionally, abnormal neural synchronywas shown to

be a pathophysiological mechanism of several neuropsychiatric disorders, such as autism spectrum

disorders (ASDs), epilepsy and schizophrenia (reviewed in Uhlhaas et al. (2009a)).

In this chapter, we examine the characteristics of spontaneous and evoked oscillations emerging

on the human cortical connectivity by various simulation techniques. To gain a better understanding

on how the unfolding network dynamics are facilitated through the structural features of the cortical

network, we carry out a detailed, multi-stage andmulti-model analysis of the dynamics with respect

to the cortex various topological features found in the previous chapters. Besides investigating the

basic large-scale dynamical characteristics of the cortex, our primary goal throughout the analysis

will be to extend our purely structural analysis results on the found hierarchically modular and

considerably centralised cortical topology, and explore how these properties affect the emerging

network dynamics.
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7.2 Methods: The Kuramoto phase oscillator model

7.2.1 Introduction of the Kuramoto model

Originally motivated by the dynamics of chemical oscillator systems almost 30 years ago, the

Kuramoto oscillator model (Kuramoto (1984)) has since been analytical investigated in great

depths (Acebrón et al. (2005), Arenas et al. (2008)), and has become a widely utilised tool for the

exploration of synchronisation on complex networks of different domains (see Arenas et al. (2008)

for a review). In the neurosciences, the Kuramoto model is widely applied for the simulation

of meso- and macro-scale dynamics of cortical networks (Honey and Sporns (2008), Gómez-

Gardeñes et al. (2010), Cabral et al. (2011)). Its popularity can be attributed to its capability for

addressing a wide range of dynamical phenomena and yet being simple enough to be analytically

and computationally tractable, compared to the more detailed and thus more parameter-rich neural

mass models (Deco et al. (2008), Deco et al. (2009), Jirsa et al. (2010)) or spiking neuron

models (Gerstner and Kistler (2002), Izhikevich (2004), Izhikevich (2010)). Despite its relative

simplicity, dynamical network models of coupled Kuramoto oscillators are able to incorporate such

fundamentally important anatomical and physiological features of the brain as connection specific

coupling strengths and transmission delays, and variance in internal region activities.

In terms of complexity, on the other end of the spectrum of models there has been an

increasing interest on large-scale simulations of virtual brains composed of a tremendous number

of microscopic elements: individually modelled spiking neurons (reviewed in de Garis et al.

(2010)). The inherent potential of creating a unified and universal model by arching over multiple

spatio-temporal scales makes these approaches highly appealing for modellers and computational

researchers. However, while there has been an enormous technological progress since early studies

(Lumer et al. (1997a), Lumer et al. (1997b)), the interpretability and theoretical tractability of these

extremely detailed simulations is still problematic up to date, which in turn limits their scientific

benefit (see Izhikevich and Edelman (2008) as a recent example of such a study). These issues,

along with the motivation to focus our investigations on how network dynamics is shaped by

network structure, rather than by any particular node model, supports our choice for choosing a

’minimal’ model for the simulation of large-scale brain dynamics.

Our oscillatory model will closely follow the one introduced in Cabral et al. (2011), where the

emerging network dynamics and functional connectivity of a 66-region downsampled version of

the cortical networkwas studied in an intermediately synchronous, but highlymetastable dynamical

regime of coupled Kuramoto oscillators. In spite of utilising the same cortical connectivity

network, there are two major differences between the study of Cabral et al. (2011) and the current
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one regarding their simulated connectivity networks. Firstly, a network of 15 times larger in size

will be investigated here, rendering the resolution of the current study to mm-size cortical regions,

as opposed to the cm-size regions of Cabral et al. (2011). Secondly, at the nodal level, network

dynamics of the former study was enriched by the partial directionality introduced during the

downsampling process1. In the following, we will introduce the components and construction

of the applied node and network model.

7.2.2 Detailed introduction of the model

Prior to any simulations, the cortical structural connectivity network is pre-processed in order to

reach a normalised and controllable domain for the simulations (Cabral et al. (2011)). Specifically,

the connectivity matrix C, containing the connections weights between the cortical regions, is

normalised so that the mean strength is set to 1. The fibre tract length matrix L is transformed into

a conduction delay matrix τ by choosing a conduction velocity V , resulting in a mean conduction

delay 〈τ〉 = 〈L〉/V , where 〈L〉 is the mean fibre tract length.

In the structural connectivity network, each node (cortical region) represents a local population

of excitatory and inhibitory neurons. The phase of the self-sustained (locally generated) dynamics

of these neuron populations at the gamma frequency range (30-80 Hz) (Bartos et al. (2007)) is

simulated by a Kuramoto phase oscillator at each network node. This particular range is chosen

because slow power fluctuations of the local field potential of neural activity in this frequency

range has been shown to be correlated with BOLD fMRI signal (He et al. (2008), Miller et al.

(2009), Schölvinck et al. (2010)), which relation serves as the basis for our resting-state functional

connectivity simulations, as well as in order to be able to compare our results with those of Cabral

et al. (2011) obtained in the same frequency range.

The coupling between the oscillators are determined by the connectivity of the network,

resulting in the following differential equation governing the phase θn of oscillator n:

dθn
dt

= ωn + k

N∑
p=1

Cnp sin
(
θp
(
t− τnp

)
− θn(t)

)
+ ηn(t), (7.1)

where N = 998 is the number of network nodes, k is the network’s global coupling strength, Cnp

is the relative coupling strength and τnp = Lnp/V = 〈τ〉Lnp/〈L〉 is the delay between node p

and node n, fn = ωn/2π is the intrinsic frequency of node n, and ηn(t) is the noise received by

the local neuron population. As the C connectivity matrix contains only non-negative elements,

region-region inhibition through coupling is not modelled by the above formula. This simplifying

1The network used in Cabral et al. (2011) was directed in the sense that two-way links between the same node-pairs

were non-symmetric in their connection weights, but were still symmetric up to their presence (both exist or absent)



121

aspect of the model is supported by the fact, that the inhibitory cortico-cortical connections are

generally absent in the macaque cortex (Deco et al. (2009)).

We note that the above formula takes three factors into account in determining the influence that

one node exerts on another: their coupling strength, interaction delay and phase difference. The

relative distribution of the first two of these factors are fixed by the connectivity and delay matrices,

but their scaling can be varied with k and 〈τ〉. In order to introduce regional inhomogeneity to the

model, the intrinsic frequencies fn of the nodes are drawn from a Gaussian distribution with mean

f0=60Hz and standard deviation σf . The ηn(t) noise received by the local neuron population is

modelled as uncorrelated Gaussian white noise with zero mean (〈ηn(t)〉 = 0) and σ2
n variance.

The four main free parameters of themodel are the global coupling strength k, mean conduction

delay 〈τ〉 , dispersion of natural frequencies σf and variance of noise σn received by the oscillators.

The first two parameters, determining the magnitude of the strength and delay of the interaction

between the oscillators, are the parameters bywhich the emerging dynamics is affected by the actual

structure of the underlying network. The last two parameters, frequencies dispersion and noise,

model phenomena that are naturally present in the brain, and are included to increase the realism of

the model. Although analytical studies have pointed to the potentially significant effect of Gaussian

noise in the Kuramoto model as well as in more general oscillator models (see e.g. Daffertshofer

(1998), Acebrón et al. (2005)), extensive numerical exploration of the parameter space of the model

to be used here, carried out by Cabral et al. (2011), showed that both frequency dispersion and noise

have relatively small influence on the behaviour of the network in their plausible ranges, compared

to the global coupling strength and conduction delay (Cabral et al. (2011) supplementary material).

Motivated by the findings of Cabral et al., we will use their choice of σf = 3 and σn = 2 as a

working point for all of our simulations, except in Section 7.3, where both parameters are set to

zero.

A typical simulation run proceeds as follows. First, node phases are initialised randomly. Then,

in order to accumulate sufficient pre-run node phases sufficient for the delays of the network, a non-

interacting (and non-noisy) network is run until maximum delay time τmax. After that, the internal

noise of each node and the coupling between the node-pairs are turned on, and the actual simulation

is performed until t seconds. In order to minimise the effect of initial conditions, the first t0=2s

of the simulation is discarded from further analysis, except for the synchronizability simulations.

Numerical integration is performed using the Euler method with δt = 0.1ms time step.
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7.2.3 Effects of the various model components

In order to find appropriate parameter choices of the forthcoming simulations, we explore the effect

of the variousmodel components on the emerging network dynamics by running partial simulations

with only some of the model components enabled.

For this preliminary analysis, we are interested in measuring the temporal internal synchrony

and mean phase of the entire network (N ) or among a group of nodes (G). For this, we use the

jointly defined phase uniformity RG(t) and group phase ΦG(t) order parameters:

RG(t)eiΦG(t) =
1

|G|
∑
n∈G

eiθn(t), (7.2)

where θn(t) is the phase of node n at time t and i is the imaginary unit of complex numbers (Arenas

et al. (2008)). RG(t) is 0 at time t, if the nodes in G are fully desynchronized, and 1 if they are in

full synchrony, that is, they are in the exact same phase.

Figure 7.1 a illustrates the characteristic dynamics emerging from the simulation of the simplest

Kuramoto model variant: homogeneous, instantaneously interacting phase oscillators with no

frequency dispersion, noise or transmission delay (applied eg. in Arenas et al. (2006) and in

Gómez-Gardeñes et al. (2010)). In this most basic model variant, starting from a randomised phase

distribution, both the individual modules as well as the whole network evolves into an almost fully

synchronous state fairly quickly, even at this low level of coupling (k = 2).

Figure 7.1 b shows the dynamics of the Kuramoto model of intermediate complexity, composed

of inhomogeneous and noisy phase oscillators with instantaneous transmission (zero delay). Again,

starting from a randomised phase distribution, both intra-modular and global network synchrony

Figure 7.1 (following page): Illustration of the effect of various model components on the

simulated network dynamics. Network dynamics from three variants of the model are presented:

a: noiseless oscillators with instantaneous interaction, b: noisy oscillators with instantaneous

interaction and c: noisy oscillators with time-lagged interaction. In the top four subfigures for

each variant, all 998 cortical regions are represented by dots around the circle perimeter, with

angles corresponding to their momentary phases, and with regions in the same module drawn to

the same distance from the origin. Synchrony, main phase and phase dispersion of each one of the

12 modules is plotted as the length, phase and opening angle of correspondingly coloured inner

circle sectors. On the figures below, relative module phases (difference between mean network

phase ΦN and module phase Φ) and module synchronies R are shown as the function of time.

Model parameters: noiseless (a): τm=0ms, σf=0, σn=0, noisy (b): τm=0ms, σf=3, σn=2, time-

lagged (c): τm=1ms, σf=3, σn=2. For all three variants: k=2 and f0=60Hz.
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of this model variant are able to reach high levels too, however, a certain level of noisy oscillations

appear compared to the homogeneous, noiseless case (a), due to the repulsive forces appearing due

to the introduction of inhomogeneous frequencies and internal white noise at the nodal level.

Figure 7.1 c illustrates the typical dynamics of the fullest Kuramoto model variant to be

used in this study: inhomogeneous and noisy phase oscillators with transmission delays (applied

e.g. in Cabral et al. (2011)). Note that even the introduction of as low as τm=1ms mean node

coupling delay results in substantially reduced mean structural and global synchrony. Specifically,

the magnified oscillations in internal structural synchrony (R) is accompanied with increased

decoupling among the angular movement of the structures (Φ) at the inter-group level. Thus the

addition of conduction delays to the model significantly enriches the dynamics of the network on

micro- (sub-modular), meso- (modular) and macro- (global) scale.

To summarise, in this section, we have seen characteristic differences in the network dynamics

to the various variants of the Kuramoto model. In particular, confirming the results of Cabral et al.

(2011), we have found that parameters introducing inhomogeneity to the dynamics of individual

nodes (σf and σn), even at low global coupling strengths, cause only minor alteration to the

emerging dynamics at meso- and macro-scales, and that turning on the node-node interaction

affecting conduction delays is necessary to increase the complexity of the temporal dynamics of

the coupled oscillator network.

We also note that the early phase of the dynamics is highly susceptible to the actual distribution

of the randomly initialised phases of the network nodes. For this reason, when the dynamics of that

initial period is not the interest of the analysis, we will discard the first t = 2s of the simulations

for evaluating any temporally averaged measures.

7.3 Global synchronizability of the cortex

7.3.1 Introduction

In this section, we start the exploration of cortical synchronisation dynamics facilitated by its

structural connectivity by investigating the evolution of global synchrony from initial asynchrony

(random phase distribution). Specifically, we will ask the questions: In what ways do the found

topological features of the cortex organise, contribute to and participate in the emergence of

cortical synchronisation?

The simulation of synchronisation phenomena as an abstract exploratory tool has proved to

be useful for the identification and analysis of various dynamically important structural substrates

of complex networks (Arenas et al. (2008)). In a series of analytical investigations, Arenas and
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his colleagues studied the evolution of local synchronisation patterns towards global synchrony on

different stereotypical network architectures. The emergence of synchronisation on ’homogeneous’

structures (such as hierarchically modular networks (Sporns (2006)) and Erdös-Rényi (Erdös and

Rényi (1960)) graphs) was found to be dominated by a sequence of rather sudden transitions, each

corresponding to the propagation of intra-module synchrony from a certain hierarchical level to the

one above (Arenas et al. (2006), Gómez-Gardeñes et al. (2007)). As opposed to that, evolution of

global synchrony on ’heterogeneous’ network structures (such as scale-free graphs (Barabási and

Albert (1999))) is a rather smooth process, mainly organised around and driven by the hubs of the

network (Gómez-Gardeñes et al. (2007), Gómez-Gardeñes et al. (2011)).

Practical utilisation of synchronizability analysis on the structural connectivity of the cat

cerebral cortex was carried out by Gómez-Gardeñes et al. (2010), who explored the emergence of

synchrony within and between the modules and the modularly distributed rich-club of the network.

The technique reinforced and extended previous structural (Zamora-López et al. (2009)) and linear

dynamical system analysis (Zamora-López et al. (2010)) results, pointing to the significance of the

rich-club structure of the cat cortex as a topologically central mediator of cerebral synchronisation.

Utilising the above techniques as some abstract analysis tools to gain insight into the signif-

icance of certain topological features in shaping network dynamics, in this section we will start

investigating the dynamical significance of our findings on the structural organisation of the cortical

connectome. In our first, initial set of analysis, we investigate the path followed from local to

global synchronisation in the network and observe the synchronisation features of the identified

topological substrates of the cortex, i.e., its modules, its network core and its hub regions.

As we discussed above, different network organisations were found to exhibit characteristically

different paths to global synchrony (Arenas et al. (2006), Arenas et al. (2008), Gómez-Gardeñes

et al. (2007)), and various parts of the network, depending on their topological features and global

significance, can contribute to the emergence of this synchronisation by a different extent (Gómez-

Gardeñes et al. (2010)). Therefore, with the initial simulations of this section we aim to extend

our, up to this point, purely topological results on the cortical connectome by some preliminary

analysis on their dynamical significance using the simplest Kuramoto model variant. Specifically,

in order to be able to examine the evolution of total network synchrony from total asynchrony,

we utilise an abstract (biophysically non-plausible), instantaneously interacting (non time-lagged)

variant of the Kuramoto model, with a global coupling strength that guarantees the emergence of

global synchrony.

We have to stress, that the simulation of the evolution of total network synchrony in this section

is not meant to be the model of any biophysically plausible phenomenon of the brain, but rather we
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utilise it as an abstract, minimal and controllable analysis tool to investigate the dynamical potential

of various parts of the cortical network to cooperate and exert influence on (or drive) other parts

of cortex. We will turn to biophysically more plausible investigations on the complex dynamics of

the cortex in the following sections of the chapter.

7.3.2 Methods

Dynamical model and simulation parameters

In order to examine the emergence of global network synchrony, we have to use a dynamical model

that is able to asymptotically approach the totally synchronous state from a random initial state. For

the study of this rather abstract phenomenon (emergence of global synchrony), we use the simplest,

physiologically least plausible Kuramoto network model variant, composed of instantaneously

coupled (zero-time lagged), noiseless and identical oscillators (Figure 7.1 a). The same model

variant was used for example in Arenas et al. (2006) and in Gómez-Gardeñes et al. (2010) for

similar investigations.

For each analysis in this section, n=100 simulation runs are performed and averaged, which

differ from each other only in the initial phases of the cortical regions. The identical and noiseless

Kuramoto oscillators at each region are coupled instantaneously and with a relatively low, k=2

global coupling strength in order to observe the emergence of global synchrony with reasonable

temporal resolution. Modular and global network level synchrony are measured by the R order

parameter (Eq. 7.2).

Global synchronizability of the cortex is assessed against its surrogates. Besides comparing

the evolution of the network-wide order parameter R for the intact networks, we also assess the

resilience of cortical synchronizability against different lesion scenarios: i) against removal of

n=100 random regions and ii) against removal of its n=100 hub regions. For the quantitative

evaluation of the simulation results, we measure the simulation time steps needed to reach a

synchrony threshold for each network (cortex and its surrogates) in each simulation scenario (intact,

hub lesioned, random lesioned). In order to use a uniform threshold for all the above cases, we

choose the minimum of the maximum synchrony levels reached by the end of the simulations,

across all cases. This simulation case is the hub lesioned cortical network simulation, which reaches

Rth=0.785 by the end of the simulation time.

Due to the abstract nature of the applied model in this section (zero time lag and very low

coupling strength), interpretation of time dimension in absolute terms is not attempted here, instead

we only assess the temporal evolution of the investigated phenomena relative to one another.
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Pairwise region synchronisation matrices

Internal evolution of synchrony is examined similarly as it was in Arenas et al. (2006). To that

end, synchronisation times between all region pairs are calculated, and then aggregated for certain

region groups. Below, we formally introduce our analysis methods.

First, we define a continuous metric for measuring correlation between oscillator-pairs:

ρij(t) = 〈cos(θi(t)− θj(t))〉, (7.3)

where 〈·〉 is average over all n=100 simulation runs. This results in a local order parameter matrix

ρ, that indicates the level of synchrony on a continuous scale (ρij ∈ [-1, 1]) at each time instance

of the simulation (Arenas et al. (2006)).

To clearly distinguish between synchrony and asynchrony, ρ is then thresholded to get the binary

D dynamical connectivity matrix (Arenas et al. (2006)):

D(t)ij =

 1 if ρij(t) ≥ Th

0 if ρij(t) < Th
(7.4)

In our analysis, Th is set to 0.8 in order to reach a close to complete global synchrony by end of

the simulation.

Finally, we unify the above time-dependent D dynamical connectivity matrices into a single,

synchronisation onset timematrix S, each entry of which indicates the earliest time the correspond-

ing region pair gets synchronised:

Sij = argmin
t
{D(t′)ij = 1 | ∀ t′ ≥ t} (7.5)

With that, we reach a quantified, compact representation of the synchronisation ability (synchro-

nizability) of each region-pair.

Group synchrony assessment

Being able to assess the onset of phase synchrony between any region-pair, we use the matrix S

to compare the onset of internal synchrony of various region groups of interest. As the transition

from incoherent dynamics to synchrony is regarded as the dynamically critical regime of coupled

oscillators (Strogatz (2000), Acebrón et al. (2005)), we weaken the total, all-to-all synchrony

condition and define the onset of internal synchronisation of a group of regions as the earliest

time when an average region of the group is in synchrony with at least L proportion of the rest of

the group.

As a trade-off value that allows for most of the investigated groups to reach internal synchrony

(not too high L) and at the same time gives high enough time resolution for the analysis (not
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Figure 7.2: Temporal evolution of global network synchrony. The x axis denotes abstract

(physiologically implausible) simulation time.

too low L), we found L=65% to be an optimal intermediate value for our simulations. We note

here, that this reduced group synchrony condition implies, that for the remaining of this section

group synchronisation time means the onset, rather than termination, of internal group synchrony

evolution.

7.3.3 Results

Global synchronizability of the simulated cortex

Evolution of global network synchrony is shown for the cortex and for its surrogates in Figure 7.2

(solid lines). The simulated cortex is clearly less globally synchronizable than both of its surrogates

(simulation time to synchrony threshold Rth = 0.785, cortex: tC(Rth) = 45, spatial surrogates:

tS(Rth) = 22, random surrogates: tR(Rth) = 12). These differences in the pace of global synchrony

emergence presumably reflect integration and segregation measure differences of the cortex and

its surrogates. Specifically, the more segregated (high clustering coefficient, Section 4.3) and

less integrated (lower efficiency, Section 4.2) topology of the cortical network slows down phase

synchronisation of topologically distant regions, thereby elongating the development of global,

network-wide synchrony in the cortex.

For assessing the significance of hub regions in the emergence of global synchrony in the cortex,

as well as in its surrogates, we assess how much global synchronizability of the intact network is

affected by hub-lesion and random-lesion. All three networks largely preserve their synchronisation

characteristics when losing n=100 (10%) random regions (Figure 7.2 dotted lines) (percentage of

increment in simulation time required to reach threshold synchrony Rth = 0.785: cortex: ∆tCrnd
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= 16%, spatial surrogates: ∆tSrnd = 18%, random surrogates: ∆tRrnd = 8%). Considering the

contribution of hub regions in global synchronisation, all three networks exhibit significant loss in

their synchronisation times for the removal of hub regions (n=100 [10%] highest degree regions)

(cortex: ∆tChub = 120%, spatial surrogates: ∆tShub = 86%, random surrogates: ∆tRhub = 50%),

with the cortex being the most effected by hub lesion among the investigated networks. The found

increased importance of the hub regions in disseminating synchronisation globally in the cortex

supports our earlier findings about the distinguished topological positioning and putative functional

role of hub regions in the heterogeneous cortical architecture (Chapter 6).

Interpretation of global synchronizability results

In this section, we carried out a synchronizability analysis as a simplistic model for the internal

capacity of spatio-temporally extended synchronisation in networks. The cortical connectivity,

exhibiting the lowest such capacity compared to its surrogates, appears to avoid the sudden

and broad emergence of such scenarios, which is in accordance with the pathological nature

of these conditions to brain function (Arthuis et al. (2009)). On the other hand of course,

information processing through synchronisation (Uhlhaas et al. (2009a)) requires a certain level

of synchronizability. We found that hub regions contribute to the cortex’ global synchronizability

substantially more than random regions, suggesting that hub regions may be crucial elements of

the cortical connectivity in facilitating synchrony-mediated processing in the cortex. This result

reinforces our earlier findings on their increased ability as functional integrators (Chapter 6), and

also warns about their potential as mediators of epileptiform network seizures (Section 7.5).

In conclusion, we consider three functional benefits of the observed reduced level of global

cortical synchronizability:

• it increases the cortex’s ability of carry out segregated, specialised information processing,

• it increases the dynamical complexity/metastability of the cortex, and

• it prevents hyper-synchronous neuronal activity and makes the cortex resistant against

epileptic seizures.

These claims will be further investigated in the following sections.

Emergence of global synchrony through module hierarchy: overview

Looking at the internal evolution of network synchrony, firstly we investigate how the found

module hierarchy affects the phenomenon. Specifically, the finding that global synchrony builds up

through the modular elements of the various hierarchy levels would provide dynamical evidence
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Figure 7.3: Evolution of pairwise synchronies. Samples of ρ (top) and D (bottom) synchrony

matrices. Colour codes: ρ: from blue (asynchrony) to red and white (complete synchrony), D:

black: asynchrony, grey: synchrony. In every subfigure, cortical regions are ordered according to

the found module hierarchy (see Figure 5.6 top left).

for the ability of the found modules to indeed cooperate functionally (Arenas et al. (2006) Gómez-

Gardeñes et al. (2010)). Additionally, we are also interested in the role in cortical synchronizability

of the other topologically important parts of the cortex: its core and hub regions.

Figure 7.3 shows the evolution of both pairwise synchrony matrices, ρ and D, at four time

instances of the simulations. The visually observable formation of highly synchronised sub-blocks

along the main diagonal of both matrices indicates the emergence and progression of internal

group synchronies from lower to higher levels of the modular hierarchy, and eventually between

supermodules (by t=1000, not shown).

Before quantitatively assessing the synchronisation times of the elements of the module

hierarchy, let us examine the aggregated S synchronisation times matrices of the cortex, both

in its intact state and after introducing various lesion types. Following our structural analysis

(Section 5.4 and Section 6), we investigate four lesion scenarios: removal of the core hubs (n=50

regions), removal of the module hubs (n=50 regions), deletion of all hub regions (n=100 regions),

and deletion of the entire core (n=100 regions). We have already seen in Figure 7.2 that random

region removal does not significantly affect cortical synchronizability, thus that lesion scenario is

not studied here further, and simply the intact network is used as a baseline case.

Synchronisation time matrices of the intact and the four lesioned cortical network variants are

shown in Figure 7.4. Block formation of highly intra-synchronizable region groups along the main
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Figure 7.4: S synchronisation time matrices of the intact and lesioned cortex. Colours

inside matrices code synchronisation times (see colorbar, ’unfinished’: region pair did not reach

synchrony threshold by the end of simulation, that is, by t=1000), left and top colour strips are

anatomical colour codes.

diagonal of the intact cortex is a salient tendency, corresponding to the early intra-synchronisation

of the found cortical module configuration. This characteristic modularisation in network dynamics

is so strong, that it is not destroyed even in the most severely lesioned networks, after the removal of

the entire core or of all network hubs. However, one can discover greatly reduced synchronizability

(increased synchronisation times) inside the lesion affected modules and supermodules by plain

visual inspection.

For instance, M1, which contains the network core and is located on the top left corner

of the matrices, is the supermodule fastest to synchronise internally, with SM1 = 208 mean

synchronisation time. This quick synchronisation time is only elongated by the three lesion cases

that include the removal of local regions (core hub lesion: SM1 = 500, whole core: SM1 = 581, all

hubs: SM1 = 711), but not affected when only module hubs are removed (SM1 = 210). On the other

hand, the deletion of core regions (core hubs and whole core lesion cases) has only little effect on

the intra-synchronisation of the non-core supermodules (M2, M3 and M4). This suggests a robust,

relatively independent internal synchronizability of cortical supermodules and provides dynamical

evidence for the topologically indicated role of the network core as mainly being involved in inter-
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supermodule integration (Section 6).

To further examine this point, let us note that in the intact synchronisation time matrix, lateral

supermodules (M2 and M3) are the latest to start inter-synchronisation, which process appears to

happen through the intermediating central M1 supermodule, containing the network core. Inter-

hemispheric synchronisation also appears to be the ”weakest” point of network synchronizability:

it is the slowest to occur in the intact cortex as well as themost highly affected process in all lesioned

cases.

As a global measure of the significance of the lesioned parts in cortical synchronizability, we

calculate the global mean S of the synchronisation time matrices S. As a baseline value, we obtain

S = 576 time steps for themean synchronisation time of the intact cortical network. While lesioning

with module hubs only (S = 686) has less severe effect than the removal of core hubs (S = 705),

deletion of all hub regions (S = 877) have more severe effect on cortical synchronizability than the

removal of the entire core (S = 720).

We stress the fact, that lesioning of all hubs has a far more devastating effect on the

synchronizability of the cortex (∆S = 301) than the sum of the individual effects of its two

components: core hubs (∆S = 129) and module hubs (∆S = 110). Furthermore, our results are in

qualitative agreement with earlier simulation studies, reporting that the removal of highly central

regions exerts the most widespread as well as greatest overall effect on the functional connectivity

(FC) of the remaining brain (Young et al. (2000), Honey and Sporns (2008), Alstott et al. (2009)).

Emergence of global synchrony through the module hierarchy: quantitative analysis

In the following more detailed analysis, we attempt to find out if the hub and core regions serve

different roles in the emergence of intra- and inter-module synchronisations at the various module

hierarchy levels. To that endwe assess the change in the average intra-module synchronisation times

on all module hierarchy levels after lesioning the cortical network by those region groups. The basic

idea behind the analysis is that the magnitude of elongation in internal module synchronisation at

a certain hierarchy level indicates the significance of the removed regions in the synchronizability

of the intact network at that level.

Mean and variance of intra-module synchronisation times are shown in Figure 7.5. Firstly,

we note the high variance in intra-module synchronisation times, which likely results at least

partially from the highly heterogeneous intra- and inter-connectivity of the modules even in the

intact cortical network (see second column). This high variance is further increased in most lesion

scenarios (third to sixth columns), which can be explained by the fact that the regions removed

by each lesion type, rather than being distributed homogeneously, are concentrated into only a
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Figure 7.5: Modular intra-synchronisation times. Intra-module synchrony time is the time

needed for the modular elements to reach the onset of internal synchronisation (65% of regions

in synchrony). Bar widths denote mean values, error bars indicate standard deviation. Statistically

significant changes at lesioned cases (third to sixth columns) compared to the intact network

(second column), assessed by two-sample unpaired t-tests for identical sample means, are denoted

by * if p < 0.05, ** if p < 0.01, and *** if p < 0.001. The label ’max’ indicates that synchronisation

did not finish by the end of the simulation.

few modular elements (see Figure 5.11 and Figure 6.1), therefore their removal effects (increases)

intra-synchronisation in these modules much more severely than in other modules.

Considering the means of the intra-module synchronisation times, we can observe increasing

mean synchronisation times of the modular elements from lower to higher levels of the module

hierarchy (second column), with a very late network synchronisation time at the end (ANOVA

test for identical mean intra-module synchronisation times across hierarchy levels p < 10−6).

We performed post-hoc analysis to detect significance between the individual hierarchy levels by

calculating two-sample unpaired t-tests, not assuming identical sample variances. We found that

while the increase across hierarchy levels decribed above is not statistically significant between

pairs of consecutive hierarchy levels (micromodules→minimodules, minimodules→ submodule,

etc.), the difference is significant between hierarchy levels at least two steps away from each other

(micromodules→ submodules, minimodules→ modules, etc) (all p < 0.05).

For comparison, the mean of anatomical structure synchronisation times is also plotted

on Figure 7.5 (last row). Anatomical structures are very late to reach synchrony onset: in

the intect case only about 10% earlier than the entire network does (one-sided significance

test of network synchronisation time being significantly different from anatomical structure

synchronisation times, assuming normal distribution of the latter, p = 0.38), and significantly
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later than cortical supermodules (two-sample unpaired t-test: p = 0.045) or modules (p < 10−3)

synchronise, despite the fact that anatomical structures are on average smaller than cortical

modules. This elongated synchronisation in anatomical structures is presumably attributable

to their bi-hemispheric distribution in the topologically hemispherically largely divided cortical

network.

Assessment of the lesioned cases indicate that the two hub groups coordinate intra-module

synchronisation at different levels of the module hierarchy (third and fourth columns). While hubs

in the core appear to be more, although not significantly more, engaged in the intra-synchronisation

of modules, supermodules and the entire network (third column), this profile is shifted to lower

hierarchical levels in the case of module-hubs, that appear to contribute more to the internal

synchronisation of lower levels of the module hierarchy (micromodules to submodules) (fourth

column), but not as much to global synchrony. These differences are even more pronounced if

we consider the inevitable ”cascade effect” of our analysis toward higher module hierarchy levels,

making it more difficult to precisely localise the effect of the various lesion scenarios. For example,

the elongation of submodule intra-synchronisation by the removal of module-hubs also necessarily

adds to the synchronisation times of the modules, supermodules and the whole network on higher

levels of the hierarchy.

The obtained increases in global synchronisation times for core hub and module hub lesions

(29% and 20%) appear rather large, considering that each group makes up only 5% of the network,

and that random removal of twice as many, i.e. 10% of the cortical regions, caused less, namely

only a 16% increase in global synchronisation time (Figure 7.2).

Nonetheless, all-hub-lesion (fifth column) has an even more severe, statistically significant

(see stars next to mean values), exponentially elongating effect on modular synchronisation

towards higher hierarchy levels (ANOVA test for identical level of increase in mean intra-module

synchronisation times at all hierarchy levels after removing all hub regions: p < 10−5), which at

the network level reaches our maximum simulation time. Removal of the entire network core from

the cortex (sixth column) has less overall effect than all-hub-lesioning, with a steady increase in

the mean intra-synchronisation times towards higher hierarchy levels, but without any statistically

significant difference in the impact of lesion between these levels (ANOVA test for identical level

of increase in mean intra-module synchronisation times across hierarchy levels after removing all

core regions: p = 0.823). Nevertheless the simulation terminates before the onset of global network

synchronisation would occur in this lesioning case as well, suggesting that the core may be mainly

involved in organising synchronisation globally between supermodules.
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7.3.4 Discussion

Synchronisation has been shown to reveal the topological scales of hierarchically modular archi-

tectures in Arenas et al. (2006). This phenomenon was observed in this section, indicating the

increased ability of various modular elements across the module hierarchy to interact and cooperate

as segregated functional units of the human cortex. Earlier studies on the transition towards

synchronisation in the anatomical connectivity network of the cat thalamo-cortex also revealed

that functional clusters of synchrony coincide with structural modules of the network (Zemanova

et al. (2006), Zhou et al. (2006), Zhou et al. (2007)).

More interestingly, however, Zamora-López et al. (2010) extended these results by showing that

the significant topological centralisation found the cat brain network around its strong rich-club

(Gómez-Gardeñes et al. (2010)) is capable of ”orchestrating” the evolution of synchronisation in

the network, resulting in a transition from modular to centralised organisation of synchronisation.

The characteristics of the evolution of global synchronisation we found in the human cortex is

highly similarity to the above results, with the core and hub regions appear to play a central role

in the coordination of inter-module synchronisation. These properties, supporting our structural

analysis, make these cortical structures capable of acting as some sort of (reasonably) centralised

coordinators of the dynamics at the highest levels of cortical processing.

In this section we provided evidence for the claim, that the distinguished topological properties

of the core and hub regions, found in the last two chapters, result in their increased general capability

of mediating synchrony across the cortical connectome. Specifically, we found that both core and

hub regions seem to facilitate synchronisation both intra-modularly as well as globally, as opposed

to our finding that randomly chosen regions of the network elongate network synchronisation, and

that hub regions appear to have a higher andmore significant impact on the emergence of synchrony,

especially on lower, more local levels of the module hierarchy of the cortex. In the next section, we

extend our model to investigate the ubiquitous phenomenon of metastability in cortical dynamics,

and the role of various network components in its global emergence.

7.4 Metastability of the cortical network

7.4.1 Introduction

Metastability in complex systems and brain networks

In the previous section (Section 7.3), we investigated the synchronisation path of the cortex

facilitated by its structure, along with the specific role certain topological features of the cortex play
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in the process. While studies of these stable, synchronous states of systems of coupled oscillator

have attracted particular attention (Acebrón et al. (2005), Arenas et al. (2006), Gómez-Gardeñes

et al. (2010)), spatio-temporally extended synchronisation in many systems, such as the brain, is

actually pathological, and is a symptom of seizures (Arthuis et al. (2009)). The need to understand

more realistic dynamics of these complex systems has motivated the study of metastability of

coupled oscillator networks in general (Niebur et al. (1991), Shanahan (2010)), and of the brain in

particular (Bressler and Kelso (2001), Kitzbichler et al. (2009)).

Computational modelling and simulation provides an excellent scientific tool for investigating

the complexity and metastability of complex dynamical networks, such as the brain, at various

states (parameter regimes) (Shanahan (2010)). In a relatively early study on simulating cortical

functional connectivity (FC) on the 47-node network of the macaque brain, Honey et al. (2007)

combined a nonlinear biophysical node model (Breakspear et al. (2003)) with transfer entropy

(Schreiber (2000)) to obtain functional connectivities emerging from spontaneous network dynam-

ics on various time scales. They observed high structural to function correspondence on the slow

time scales of minutes. At an intermediate time scale (0.1 Hz), however, significant fluctuations

appeared in FC, along with the formation of anti-correlated functional clusters, also observable

in simulated BOLD signals. Finally, at the fastest time scale (≈ 10Hz), the authors reported high

temporal metastability in network dynamics characterised by intermittent synchronisation (phase-

locking) and desynchronization between brain regions.

In a subsequent study, Deco et al. (2009) applied the biophysicalWilson-Cowanmodel (Wilson

and Cowan (1972)) on a relatively coarse, 38-node network of the macaque brain, organised around

twomain functional clusters (modules). In that model, nodal noise proved to be a crucial element in

putting the network into such a dynamical regime, in which the transient internal synchronisation

and desynchronization of the clusters alternated, resulting in spontaneous anti-correlation in their

simulated BOLD signal. This led the authors to hypothesise how intrinsic noise, by rendering

network dynamics to spontaneously fluctuate between multistable states, cast high competition

between the various task-specific subnetworks and may thus facilitate highly tuned and responsive

brain dynamics, a so-called ’active resting state’ (Deco et al. (2009)).

The role of hierarchically modular structure in facilitating limited sustained network activity

(LSA) was explicitly explored by Kaiser and his colleagues by simulating a simple spreading

process model on different stereotypical networks (Kaiser et al. (2008)) as well as on a spectrum of

parameterised, synthetic networks, approximating specific large-scale brain architectures (Kaiser

and Hilgetag (2010)). They found that modular architectures, in contrast to non-modular random

and small-world networks, prevented global activity spread, and supported the formation of local
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and persistent activity in a large critical range, even without the presence of noise, inhibition or

external stimulation. Across the different hierarchically modular networks, both increase in scale

(number of hierarchy levels) and in granularity (number of modules on each level) were found

to further facilitate LSA (widen the critical range). Notably, from an abstract dynamical point

of view, the sustained but limited activity (LSA) investigated in these studies, which neither dies

out but nor spreads globally, is akin to high temporal metastability between coupled oscillators,

balancing between total synchrony and asynchrony (Shanahan (2010)).

In exploring the dynamics of the model applied in the current study, Cabral et al. (2011)

obtained highest global network metastability at the regime of intermediate coupling strengths

(10<k<30) and realistic mean time delays (10ms<τ<20ms). Additionally, this increased metasta-

bility coincided with the emergence of intra-module, but not global, synchrony. Most interestingly,

however, this regime largely overlapped with the one in which their simulated functional connec-

tivity best approximated the empirically obtained one. These results suggest that the structure

and dynamics of the brain may be co-optimised towards (some sort of) maximal metastability,

overlapping with the occurrence of intra-module synchrony.

In this section, we shall investigate the characteristics of the complex dynamics unfolding on

the simulated cortical connectivity. Using a more plausible dynamical model than in the previous

section and utilising several dynamical complexity metrics, we aim to explore at which parameter

regimes the simulated cortical network exhibits the highest metastability in its dynamics globally as

well as within and between its modules, and assess the physiological plausibility of those regimes.

With hub lesioning we aim to assess the role of hub regions in facilitating the high complexity

of network dynamics. Internally, we shall investigate characteristics of intra- and inter-module

synchronisation in the found complex dynamical regime. Additionally, our goal is to find an

appropriate, physiologically plausible regime in the parameter space of the model that results in

high complexity in cortical dynamics, in order to conduct our subsequent dynamical simulations

in that regime.

7.4.2 Methods

For the study of metastability in simulated cortical dynamics, we use the most complex and

plausible Kuramoto model illustrated in Figure 7.1 c, composed of delay-coupled, non-identical

and noisy oscillators. Fundamentally, our approach is to ”sweep” the parameter space of the model

and assess its metastability at each value combination of the parameter set by calculating various

complexity metrics on the simulated dynamics.

The four free parameters of the model variant are the global coupling strength k, mean
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conduction delay 〈τ〉, dispersion of natural frequencies σf and variance of noise σn received by the

oscillators (Section 7.2.2). Due to computational limitations, only a restricted regime of the entire

parameter space can be swept. However, Cabral et al. (2011) already showed that out of those four

parameters, only the first two, k and 〈τ〉, are significant in shaping network dynamics, while σf and

σn have negligible effect on the emerging dynamics, also illustrated in Figure 7.1 (see also main

text in Section 7.2.2). We note that this fundamental property of the model also conforms well with

our primary motivation to explore how network topology influences emerging dynamics, due to the

fact that the former two parameters determine node-node interactions over network connectivity,

while the latter define internal dynamics of individual nodes. In fact, the above finding suggests the

dominating importance of connectivity over the applied single node model in network dynamics (at

least in the Kuramoto framework), and provides confirmation to the validity of our investigations,

that is, to the influential role of network structure in the emerging dynamics.

Below, we formally introduce and briefly discuss the various measures we utilise for assessing

the complexity and metastability of network dynamics.

Global synchrony and (nodal) metastability

We define temporal synchrony between a group of regions by the order parameter R(t) (phase

uniformity) according to Eq. 7.2. Its temporal mean, R, is applied as an index of global

synchronisation level, and its temporal standard deviation, σR, measures the level of metastability

of the network (Shanahan (2010)).

The synchrony and metastability indices defined above evaluate global properties of synchro-

nisation dynamics from the oscillation patterns of individual nodes. The following four measures

on the other hand assess various aspects of dynamical complexity at the level of modules.

Modular metastability

Temporally averaged variance in the synchrony of a given module can be defined as

σmet(m) =
1

T

∑
t≤T

(Rm(t)− 〈Rm〉T )2, (7.6)

where Rm(t) is the internal synchrony of module m at time t. The mean of this variance over all

modules gives the modular metastability of the network:

ζ = 〈σmet(m)〉M , (7.7)

whereM is the set of allm modules (Shanahan (2010)). High ζ modular metastability indicates a

temporally highly varying level of synchrony within an average network module, while ζ is zero if
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the internal synchrony levels of the modules are temporally constant, including the extreme cases

of total synchrony (Rm=1) and ynchrony (Rm=0).

Chimera index

Changing the order of averaging in Eq. 7.6, we can define themodule averaged variance of temporal

inter-group synchronies as:

σchi(t) =
1

|M |
∑
m∈M

(Rm(t)− 〈R(t)〉M )2. (7.8)

The mean of this variance gives the chimera index of the network

χ = 〈σchi(t)〉T , (7.9)

that indicates how ”chimera-like” the system is on average during simulation time (Kuramoto and

Battogtokh (2002), Shanahan (2010)).

Both total synchrony and total asynchrony result in σmet = σchi = 0. In the intermediate

dynamical regime, however, both measures take positive values. In the case of metastability

measure σmet, typical dynamics in this regime are composed of a series of states, in which the

network is synchronised at some times, and desynchronized at other times. In the case of the

chimera index, σchi is positive if some of the modules are internally synchronised at some time,

while others are not. These properties make the above measures appropriate for addressing the

dynamical complexity of individual network modules.

Pairwise synchrony

Tomeasure the complexity of interaction betweenmodule pairs, first we define temporally averaged

synchrony of a given module pairmi andmj as

R(mi,mj) =
1

T

∑
t≤T

Rmi∪mj (t). (7.10)

The mean over all module pair combinations gives the mean pairwise synchrony of the network:

ψ = 〈R(mi,mj)〉∀mi,mj
. (7.11)

ψ, taking its values from [0,1], measures the extent by which modules are in synchrony with

each other. ψ=1, if all module pairs are in synchrony for the whole simulation time (global

synchrony), ψ=0 if no module pairs in synchrony at any time during simulation, and intermediate

values show that some modules are in synchrony for some time, indicating more complex interplay

(synchronisation and desynchronization) between modular pairs.
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Coalition entropy

For assessing the variability of the exhibited metastable chimera states, whether the network only

periodically returns into the same few chimera states, or, more interestingly, it has a great repertoire

of different chimera states, coalition entropy HC (Shanahan (2010)) is calculated:

HC = − 1

log2|S|
∑
s∈S

p(s)log2(p(s)), (7.12)

which measures normalised entropy of the entire possible set of chimera states S, using the

probability (occurrence frequency) p(s) of each possible s ∈ S coalition. In this context, the term

”coalition” refers to a set of synchronised network modules.

To be able to distinguish between synchronous and non-synchronous states among a set of

modules, we apply a jointmodule synchrony threshold γ = 0.8, abovewhichmodules are considered

to be in synchrony.

In the cortical network studied here, the number of possible chimera states, determined by its

12 modules, is |S| = 2|M | = 212 = 4096. HC , being the entropy of the probability distribution of

module coalitions, is bound to be between 0 and 1. HC takes the value 0 if the network, for the

whole simulation time, exhibits a single s chimera state: a certain module coalition, which includes

the extreme cases of complete asynchrony as well as global synchrony. On the other hand, HC is

1 if all possible s module coalitions are exhibited with an equal frequency (uniform probability

distribution). For a more detailed discussion on coalition entropy, modular metastability and

chimera index, see Shanahan (2010).

7.4.3 Results

Cortical metastability at the global level

We start our dynamical complexity analysis by assessing the global metastability of the cortex in

comparison with its surrogates. Global synchrony index R and metastability index σ of the intact

and lesioned cortex and its surrogates at a chosen, physiologically plausible point of the model

parameter space (mean axonal conduction delay τm is 10ms, Ghosh et al. (2008)) are shown in

Figure 7.6. In accordancewith the found low synchronizability of the cortex (Section 7.3), the intact

cortex reaches a lower mean global synchrony level than both of its surrogates. This is presumably

attributable to its highly segregated (Section 4.3) and modular (Section 5.2.5) topology, because, as

the more tightly integrated connectivity of random surrogates demonstrates (Section 4.2), close to

global synchrony (R = 0.88) is attainable even at the investigated relatively high conduction delay

(τm = 10ms) and low network connection density (3.6%).
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Figure 7.6: Global synchrony and metastability of the cortex and its surrogates. Intact: entire

network, hub lesioned: network remaining after removal of all hub regions and their connections.

Bars length denote mean values, error bars indicate standard deviation across surrogate network

values. Model parameters: k=20, τm=10ms, f0=60Hz, σf=3, σn=2.

Interestingly, spatial surrogates, that possess an intermediate level of both topological integra-

tion and segregation (Section 4.2, Section 4.3), reach significantly higher average metastability

index σ than the cortex (one-sided significance test assuming normal distribution of surrogate

means: p < 10−4). This finding, however, can partly be attributed to the higher mean

global synchrony level R of spatial surrogates, making their relative variation close to identical.

Additionally, lesioning the cortex and its spatial surrogates with the hub regions (n=100 highest

degree regions) results in a substantial reduction not only in their global synchrony level, but

also in their metastability (Figure 7.6 right), equalising the above difference (p = 0.06). These

results provide dynamical evidence for the notion that hub regions may play a facilitating role in

the formation of transient coalitions during spontaneous cortical dynamics (Shanahan (2010)) and

hence effectively enrich the dynamical regime of the cortex.

Metastability of cortical modular dynamics

We investigate the effect of regional coupling strengths and interaction delay on the complexity of

network dynamics by varying the corresponding parameters of our model, k and τm. Results of

the four module-level complexity measures are shown in Figure 7.7.

Comparing the global complexity results obtained by the four investigated metrics (Figure 7.7),

all four measures seem to indicate the same apparent relation between k and τm. Specifically,

the dynamics exhibit relatively high complexity values already at low, but non-zero coupling

strengths and delays (k=5, τm=2ms), and approximately preserve that level of complexity with

the simultaneous increase of k and τm. In that intermediately coupled regime (5 < k < 40), all four

measures indicate highest dynamical complexity, because the formation of transient and partial

inter-module coalitions is already facilitated between cortical modules, however, the coupling is
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Modular metastability Chimera index

Mean pairwise synchrony Coalition entropy

Figure 7.7: Summary of module-level dynamical complexity measures. Global values of

dynamical complexity measures emerging from module level dynamics, as the function of mean

coupling strength k and mean transmission delay τm. f0=60Hz, σf=3, σn=2. Higher values

indicate higher metastability, except for mean pairwise synchrony, where higher complexity in

inter-module dynamics occurs at intermediate (green) values.

not yet strong enough to drive network dynamics into more sustained and global level synchrony

against the time-lag of the interaction. Our findings are similar to the results of Shanahan (2010)

and Cabral et al. (2011).

We will use these parameter sweeping results for determining the parameters of the simulations

of epileptiform activity spread in the next section and for the simulation of functional connectivity

in Chapter 8.

Modular dynamics at a chosen working point from regime of parameter space that facilitates

the most complex dynamics is shown in Figure 7.8. The highly metastable dynamics of network
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Figure 7.8: Modular dynamics at a chosen working point of the parameter space. a: a 1s

sample of the dynamics, see Figure 7.1 for figure explanation. b: modular synchronies 〈R〉 (bars)

and metastabilities σ(R) (error bars). c: mean diagonal: intra-module synchronies (〈R〉) as in b,

off diagonal: mean pairwise module synchronies (ψ). Parameters: k=20, τm=8ms.
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modules is observable in the great variance in their R intra-module synchrony index (Figure 7.8

a). We can also note substantial individual differences in intra-module synchronies, with some,

mainly lateral and frontal, modules being more metastable, while the more densely intra-connected

modules of the M1 supermodule, that contains the network core, exhibits more stable internal

dynamics (Figure 7.8 b). Additionally to intra-module synchronies, we can also observe a complex,

highly metastable pattern of inter-module interactions (Figure 7.8 a).

The pair-wise module synchrony values in Figure 7.8 c show only moderate mean intra-

supermodule synchrony outside of the network core (M1), nevertheless with a relatively high M1-

M4 core-frontal inter-supermodule synchronisation (bottom left and top right 3x3 sub-rectangles).

Furthermore, the right lateral M31 module exhibits one of the highest internal and inter-module

synchronisation values. The fact, that this non-core module alone, out of the nine other non-core

modules (11%), contains 9 of the 50 module hubs (18%), provides further validation to to the

significance of hub regions in mediating between cortical modules.

7.4.4 Discussion

Our findings on the highly metastable dynamics of the cortical connectivity, organised around its

modules, are in agreement with those of Shanahan (2010) and Cabral et al. (2011), but at the

same time extend them by showing that other dynamical complexity related measures possess

their maximum at a coinciding parameter regime. This results in a large repertoire of dynamically

forming module coalitions that engage in transient synchronisation and desynchronization during

spontaneous cortical activity in ourmodel. These transient, metastable, highly variable and ”labile”

dynamics of the brain are believed to mediate perception and cognition (Friston (2000), Honey

et al. (2007)), and they have even been associated with behavioural performance (McIntosh et al.

(2008)). These notions are supported by our findings on the maximum dynamical complexity of

the cortical connectivity in the biophysically plausible parameter regime of our model (5-20 ms,

Ghosh et al. (2008)).

Furthermore, our findings also pointed to the core modules (M11, M12 and M13) as central

elements in the transient and metastable cortical dynamics, not only as the modules exhibiting

the highest level of internal synchrony, but also as the ones most capable of engaging with other

modules in transient inter-synchronisation. Altogether, these results suggest that these modules, as

well as the network core residing in them, may be pivotal cortical structures in organising synchrony

mediated cognition in the cortex (Friston (2000)).

Having confirmed the metastable properties of the spontaneous dynamics of the cortex, in the

next section we investigate the activity propagation characteristics of the cortical topology while



145

being in this dynamically metastable state.

7.5 Structure facilitated spread of epileptiform activity in the cortex

7.5.1 Introduction

Transient and spatially partial synchronisation of neural assemblies is believed to be one of

the fundamental mechanisms of brain functioning (see previous section), but hyper-synchronous

neuronal activity is a pathological case of brain activity (Uhlhaas et al. (2009a)). Epilepsy is a

diverse set of chronic neurological disorders characterised by the tendency of brain seizures to

recur (Milton (2010)). It is the third most common neurological disorder, with over 50 million

people worldwide suffering from it (WHO (2009)). Despite the great interest and substantial

research effort made so far (Chang and Lowenstein (2003)), our knowledge is still very limited

on the physiological and neuro-anatomical causes of epilepsy, let alone its unifying dynamical

definition (Ullah and Schiff (2009)). Hence, experimental and computational neuroscience must

continue close cooperation and find novel researchmethods to gain a better understanding andmore

effective treatments for this common neurological disorder (Milton (2010)).

The study of various spreading processes, such as rumour spread or epidemic spread of

viruses in social as well as in computer networks, has provided valuable insights to the important

phenomena of activity or information spreading occurring on a diverse set of complex networks

(reviewed in Boccaletti et al. (2006)). However, traditional models of spreading processes assign

network nodes one of the set of possible discrete states (Daley and Kendall (1964)), making them

unsuitable for modelling epilepsy, which is a dynamical disease (Milton (2010)). Researching

the build-up and propagation of epileptic seizures in brain networks requires continuous models

(Soltesz and Staley (2008)), that are modulated by and intricately intertwined with the already

extraordinary complexity of the dynamics of the intact brain. With this in mind, we shall utilise

the Kuramoto model of the previous section in its highly metastable parameter regime and apply a

mechanistic model for simulating the build-up of the inter-synchronisation of epileptic region group

the from spontaneous network activity, in order to investigate the seizure propagation properties of

the cortex globally as well as the specific role of certain parts in it.

In the nervous system, long-range cortico-cortical connections, subcortical, and brainstem

structures have all been identified as important components of seizure generalisation. Specifically,

subcortical and brainstem nuclei are pivotal in modulating the onset, propagation, and subsequent

termination of epileptic seizures (Milton and Jung (2003)). Generally, there are three types

of pathways to consider in spreading seizure activity arising from an isolated epileptic focus:
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(i) intracortical spread from the epileptic focus, horizontally to the cortical surface; (ii) white

matter-mediated spread via myelinated cortico-cortical axons radially to the gray matter, and (iii)

subcortical nuclei-mediated spread, radially to the cortex, via myelinated axons to the underlying

subcortical nuclei, with subsequent, more diffuse back-projection to the cortex (Milton (2010)).

Unfortunately the current dataset at hand excludes all subcortical and brainstem structures and

their connectivity with the cortex, therefore we are unable to analyse a full model of the brain

containing those epileptically important structures, and limited tomodel the propagation of seizures

through type (i) and type (ii) connections. As a result, the analysis of this section is a rather

exploratory one, that, in general, aims to investigate the characteristics of spreading processes

within the cortex facilitated by its anatomical connectivity. Our main goal therefore is to extend

the results of the thesis obtained so far by considering the capability of cortical regions to exert

influence on the spontaneous activity of rest of the network.

In this section, we study the characteristics of synchronous activity spreading facilitated by

the topology of the cortical connectivity. We shall assess the susceptibility of the cortex to be

overrun by periodically recurring epileptic activity (seizures) originating from focal or distributed

cortical sites. We do not address the also important and difficult question of how such seizures arise

from normal brain activity, instead we restrict our investigation to the spreading characteristics of

seizures through the cortical connectivity that are steadily generated and emitted from a distributed

(generalised seizure) or local (focal seizure) set of regions. Additionally, in amore detailed analysis,

we also seek differences in the activity spreading properties of individual cortical areas, the cortical

core and hub regions and its modules, in order to assess their effectivity in influencing the rest of

the cortex, as well as to gauge their potential danger as cortical propagating points of epileptiform

activity.

Acknowledging the limitations of our dataset and dynamical model, we stress the experimental

nature of the following analysis. Our main purpose in this section is to extend our dynamical

analysis by investigating the characteristics of synchrony spreading in the cortical connectivity, and

not to propose a detailed and accurate model for epileptic activity. Nevertheless, our analysis of

finding the cortical regions that are topologically the most influential to others may be generalisable

for more accurate investigations of epileptic phenomena in the brain.

7.5.2 Methods

In this section, our goal is to assess the strength and extent of seizures a given part P of

the cortex is capable of propagating towards the rest of the network globally. Our model for

assessing this phenomenon is the following. Firstly, during simulation, we let spontaneous network
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activity develop for t0 = 1s, after which time we externally force (entrain) P to oscillate in total

synchrony (RP = 1) at a specific entrainment frequency, 10Hz. This is done by setting the intrinsic

frequencies of the regions in P to f0 = 10Hz, turning off their internal noise (σn = 0), and allowing

instantaneous, all-to-all interactions between these regions (τm = 0ms). At the same time, to

guarantee total synchrony, we also decouple these regions from the rest of the network by turning

off their afferent connections coming from outside P .

Using the above method, we let the applied dynamical model continuously build up and then

sustain a synchronous 10Hz oscillation within P mechanistically (within the framework of the

model), as opposed to introducing an abrupt, rather artificial jump in network dynamics by directly

setting the output of the Kuramoto model, the phases of the entrained regions. All parameters of

the regions outside P are kept unchanged, and their dynamics is only affected by the entrained

regions through network connectivity.

After simulation, we assess the potential of the entrained P part of the network in propagating

cortical seizures by comparing the power at entrainment frequency (10± 0.5Hz) in the spectrum of

the spontaneous and entrained dynamics. Greater power increase indicate wider seizure spread in

the frequency domain. Additionally, we evaluate the spatial extent of induced seizures by counting

the number of cortical regions with power at the entrainment frequency exceeding the threshold T

= 80% of their total power. In order to compensate for the size differences of the entrained areas,

as well as for a clearer spontaneous-entrained comparison, the entrained region of P are discarded

from spectral analysis in the entrained case.

Firstly, susceptibility to seizure spread of the entire cortex is assessed on the global scale.

Specifically, power increase at the entrainment frequency in the cortex is compared with those

of its surrogates in response to random focal (a random seed region and the 99 spatially closest

regions to it), random non-hub (100 random regions that are not hub regions) and hub region (100

hub regions) entrainment. For each of the two random entrainment cases, n=10 simulations are run

with independently chosen random seed regions. Additionally, the seizure spreading capability by

various parts of the cortex is investigated in a more detailed analysis. Specifically, we entrain all 12

modules of the cortex, and compare the power of the globally induced seizures with those induced

by cortical hubs and by the network core.

7.5.3 Results

Global spread and susceptibility to synchronised activity of the cortex

Spectral and spatial spread of seizures in the cortex and in its two surrogate network sets are shown

in Figure 7.9 for four experimental scenarios: spontaneous (baseline) network activity, random
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Figure 7.9: Magnitude of global seizure spread in the cortex and its surrogates. Bars denote

mean power at the f = 10Hz entrainment frequency, averaged for all nodes, error bars indicate

standard deviation across nodal powers. Spontaneous: under no entrainment, random focal:

during entraining a randomly chosen seed region and the 99 spatially closest regions to it, random

distributed: during entraining n=100 random regions, hub: during entraining the n=100 hub

regions. Model parameters: k=30, τm=10ms, f0=60Hz, σf=3, σn=2. For random entrainment

cases, n=10 independent simulations were run.

focal, random distributed and hub entrained activity. Firstly, spontaneous activity confirms the low

baseline spectral power around the frequency of generated seizures in all three networks.

Random focal entrainment results in intermediate mean spread of entrained seizure activity in

the cortical network and its spatial surrogates (one-sided test for the cortical mean being drawn from

the distribution of spatial surrogates, assuming that the latter is a normal distribution: p = 0.46),

but not so much in random surrogates, yet still not significantly differently (p = 0.18). As opposed

to that, we obtain higher cortical susceptibility to epileptic activity originating from distributed

random entrainment sites, compared to its somewhat, but not significantly, more resilient spatial

surrogate networks (p = 0.27), and the significantly more resilient random surrogates (p = 0.02).

We interpret this to mean that, at the investigated parameter regime, it is the higher metastability of

the cortical network, as opposed to the high level of global synchrony in surrogate networks, that

makes the cortex more vulnerable to be globally overrun by seizures originating from a distributed

(non-local) set of random regions.

Interestingly, however, not only the cortex, but also its surrogate networks demonstrate

increased susceptibility to be invaded by synchronised activity generated at the network hubs (p >

0.4 for both surrogates). These distributed (non-focal) seizures, originating from the topologically

most vulnerable points of the networks (see Chapter 6), its highest degree nodes, appear to pose

increased threat to the more integrated spatial and random surrogate networks than to the highly

segregated cortex, especially relative to the threat posed by random focal and random distributed

propagation points (two-sample unpaired t-tests for identical means between random and hub
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entrainments for both surrogates yield p < 10−5, not assuming identical variances). This is

in agreement with the long recognised functional advantages of modular architectures (Simon

(1962), Koch and Laurent (1999)), granting a globally lower level of synchronizability (Section

7.3) and higher dynamical decomposability to the cortex in general. We hypothesise that these

dynamical properties may contribute to the relative resistance against hub entrainment found in

the cortex (Figure 7.9), compared to the relative vulnerability to hub entrainment of its surrogates,

lacking these characteristics. Nonetheless, as we will see it in the next section, hub regions are still

significantly more effective activity propagation points of the cortical connectome, than any other

spatially localised (focal) parts of it.

Seizure propagation properties of cortical areas

Spectral power of all cortical regions around the entrained 10Hz frequency in response to samples

of entrainment sites are shown on projections in Figure 7.10, while a summary evaluation of the

entire simulation set is presented in Figure 7.11. All entrainment simulations model localised,

focal seizure onsets, except hub entrainment experiments (third row), which, due to the relatively

wide dispersion of cortical hub regions (Figure 5.11, rich-club column), models a distributed

seizure onset targeting the highest degree regions of the cortex. Each result is the average of n=5

independent simulation runs.

In absolute comparison, hub regions proved to be the most effective areas in propagating

synchronous activity by spreading the 10Hz frequency oscillations imposed on them effectively

to the entire cortex, both in the frequency (89%) and spatial domains (86%) (two-sample

unpaired t-tests for identical distribution means between hub entrainment and each of the other

14 experimental cases all yield p < 10−5, not assuming identical variances). This also indicates

that seizures originating from the cortical hub regions pose the highest epileptic threat in cortico-

cortical seizure propagation. This finding is not surprising, considering the topological (Section

6) and dynamical (Section 7.3 and 7.4) significance of the hub regions. However, considering

the results of Figure 7.9, it seems likely that the lower spread of the localised seizure cases

(core and module entrainment) is also caused partly by the functionally favourable modular

Figure 7.10 (following page): Entrainment results on projections. Colours code regional power

at 10Hz derived from spontaneous dynamics (top) and from activity during entraining four cortical

locations at 10Hz: the network core (focal), hubs (distributed), a lateral module (focal) and a frontal

module (focal). First column: coronal projections, second column: horizontal projections. Model

parameters: k=30, τm=10ms, σf=3, σn=2, and f0=60Hz.
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(”decomposable”) architecture of the cortex (Simon (1962), Koch and Laurent (1999)), effectively

segregating distant cortical areas from each other and this way preventing them from being

permanently overrun by incoming seizures of other modules.

From the localised (i.e., non-hub) seizure cases, the network core, presumably due to its central

topological position, is the most effective area in propagating its activity (global power: 63%),

and thus it may pose the highest threat as epileptic focus point (two-sample unpaired t-tests for

identical distribution means between core entrainment and each of the other 14 experimental cases

all give p < 10−5, not assuming identical variances). The core is followed by one of its container

modules, M12 (44%, all p < 10−5), and the lateral modules, M21–M33 (∼35%). The power

spectra distribution these lateral modules induce to the cortex are highly similar to each other

(p > 0.2 for all pairs in M21–M33), but significantly different from the rest of the entrained areas

(pair-wise t-tests between a lateral and a non-lateral module all give p < 10−4, except for p(M11,

M21) = 0.09, p(M11, M22) = 0.06, and p(M11, M32) = 0.07), suggesting their topologically highly

similar seizure propagation ability. Modules in the frontal lobe, M41–M43, demonstrate the lowest

potential to propagate seizures to the rest of the cortex (∼17%), which modules again induce highly

similar cortical power spectra to each other (p > 0.3 for all pairs in M41–M43), but not to the rest

of the entrained areas (p < 10−6 between frontal modules and the every other areas). Results on

the spatial extent of seizure spread (Figure 7.11 second column) seem to follow similar trends to

the proportion of regional powers at the entrainment frequency (Figure 7.11 first column).

7.5.4 Discussion

Combining with our earlier results, in this section we have seen how the functionally advantageous

high metastability of the cortex results in higher sensitivity in spreading locally generated

synchronous activity, and thus higher generic susceptibility to epileptic activity, than in the less

modular and thus less metastable (globally more synchronised) surrogate network of the cortex.

At the same time, however, we also found the cortex to be relatively less vulnerable to seizures

originating from its hub regions than its surrogates are, presumably attributable to the cortex’s

highly segregated and modular architecture.

The hub nodes have long been suspected to orchestrate synchronisation in complex neural

networks (Gómez-Gardeñes et al. (2010)). Several computational and experimental studies

have showed that hyper-connected hub neurons contribute largely to the hyper-excitability of the

developing hippocampus by mediating gamma-frequency oscillations (Morgan and Soltesz (2008),

Bonifazi et al. (2009), Case and Soltesz (2011), Quilichini et al. (2012)).

Detailed entrainment simulations showed that the propagation of synchronous activity from
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Figure 7.11: Seizure propagation ability and susceptibility of cortical areas. Power at 10Hz:

means (bars) and standard deviations (error bars) of regional powers at 10±0.5Hz. Seizure

spread: proportion of cortical regions with more than 80% of their power concentrating around

the entrainment frequency (10±0.5Hz, see Methods). All values are in %ge.

focal cortical sites, the core and the modules of the cortex, are significantly less effective, and

thus potentially epileptically less dangerous, then those originating from distributed cortical areas

(random and hub entrainment). These characteristics are again clearly attributable to the highly

segregated, modular topology of the cortical connectivity. From the localised cases, the cortical

core exhibited the significantly strongest ability towide activity spreading, reinforcing its functional

importance indicated by its topological characteristics.

Notably, the results of our preliminary simulations of the highly complex phenomenon of

epilepsy report the topologically central structural core as the most dangerous epileptic focus in

terms of seizure spreading potential. This finding is consistent with the results of Vaudano et al.

(2009), who provided evidence that the precuneus, a prominent substructure of the cortical core,

gates generalised spike wave discharges in the thalamo-cortical network.

For the interpretation of these findings it is important to note, however, that our exploratory

model was not devised to investigate the potential of cortical areas to generate epileptiform seizures,

but to assess their capacity of propagating their synchronous activity and of being effected by

incoming seizures. The detailed, physiologically accurate investigation of epileptic brain activity

requires a more complete dataset of the entire brain including the thalamus and biophysically more
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plausible dynamical models (Soltesz and Staley (2008), Milton (2010)).

7.6 Overview of results

In this chapter, we carried out a series of analyses on the structure facilitated synchronisation

properties of the cortex. We started off by investigating the emergence of cortical synchrony

from local to global levels in an abstract oscillatory model (Section 7.3). Globally, we found that

the cortex exhibits significantly lower levels of synchronizability than its surrogates, which we

attributed to its topologically decreased integratedness and increased segregatedness.

Investigation of the internal synchronisation times of various parts of the cortex indicated that

modular elements on all levels of the unveiled module hierarchy are indeed possess increased

capability for functional cooperation through their high synchronizability. We also assessed

the ability of various topologically distinguished region groups of the cortex to facilitate this

synchronisation process across the module hierarchy. Results indicate, that while hubs outside the

cortical core are significantly more involved in organising synchronisation on the lower levels of the

module hierarchy, hubs in the core appear to facilitate synchronisation on the higher hierarchy level

of supermodules and in the entire network globally. These findings provide dynamical validation

to our earlier results on the differentiated roles of core hubs and module hubs suggested by network

topology (Chapter 6). We also found that the removal of all hub regions results in a significantly

more devastating effect in modular and global synchronizability than the sum of the effects of its

components.

The putative functional advantages of the found low level of cortical synchronizability were fur-

ther investigated by simulating physiologically more plausible coupled oscillator models (Section

7.4). Firstly, we found that the low global cortical synchrony is accompanied by a relatively high

metastability facilitated by the segregatedness of the network. Furthermore, this high metastability

is substantially lowered after the removal of cortical hub regions, which is attributable to the

decrease in inter-module connectivity.

Module level analysis revealed high agreement among several dynamical complexity measures

in the parameter regime where the cortex exhibits maximal metastability, specifically at intermedi-

ate coupling strength and physiologically plausible conduction delay values (5-20 ms, Ghosh et al.

(2008)). Within that regime, cortical modules, while themselves being internally highlymetastable,

spontaneously engage and disengage in transient coalitions of varying combinations.

In our final experiments on cortical synchronisation dynamics, we investigated the level of

susceptibility the topology of the cortex exhibits to spreading of synchronised activity (Section

7.5). In a global analysis against its surrogate networks, we found that its high metastability renders
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the cortex highly vulnerable to epileptic activity from random, non-hub sites. At the same time,

however, the cortex also demonstrated increased resilience against the distributed stimulation of all

hub nodes in comparison with its surrogates, a finding we attributed to the highly segregated and

modular architecture of the cortex.

Simulations of localised, focal seizures provided further validation for the increased dynamical

separateness of the topologically segregated cortical modules, effectively moderating the cortico-

cortical spread of epileptic activity. All focal seizure simulations demonstrated significantly lower

spread than the distributed stimulation of approximately equal numbers of random and hub regions.

Among the focal seizure simulations, the cortical core was proved to be able to impose the greatest

influence on the spontaneous dynamics of the rest of the network, followed by the intermediate

effect of the lateral and caudal modules, and the rather low activity propagation ability of the frontal

modules.

Having seen in this chapter how synchronisation dynamics on fast time scales are affected by

the topology of the cortical connectivity, in the next chapter we shall investigate the patterns of

inter-regional activities on slow time scales emerging on the underlying anatomical network of the

cortex, that is, the relation between the cortex’ structural and functional connectivities.
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Chapter 8

Functional connectivity analysis

Interactions between regional resting-state

activities

In the previous chapter, we studied the ways in which the anatomical connectivity shapes the

dynamics unfolding on its topology in short to intermediate time scales. In this chapter, we

search for statistical patterns of significantly increased or decreased interactions between inter-

regional activities on longer time scales, and study how these patterns, collectively called the brain’s

functional connectivity, relate to their physical substrate, the structural connectivity of the cortex.

We shall assess influence of structural connectivity on cortical function by comparing it both

with a simulated and an empirical functional connectivity, the latter obtained by Hagmann et al.

(2008). Apart from directly comparing the two connectivity modalities (structure and function),

we also attempt to characterise less direct effects of cortical network structure on its function

by assessing the relationship between several spatial properties and complex network metrics of

the anatomical connectivity of the cortex on the emerging dynamical patterns, represented by its

functional connectivity. This latter analysis provides a direct test for one of the basic assumptions

of complex network sciences, that is, that complex network metrics of topology are indicative to

the functional/dynamical characteristics of the networks.

8.1 Introduction

8.1.1 Resting state functional connectivity

In the absence of any external stimulus input or motor output, that is, in its resting state, the brain

exhibits a complex pattern of intrinsically generated activity (Gusnard et al. (2001), Fox andRaichle
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(2007)). In contrast to the traditionally researched task-specific responses, this spontaneous activity

represents an unconstrained, default brain state with nevertheless rich and active characteristic

dynamics, from which any stimulus- and task-dependent activity can be initiated.

As we briefly touched in Section 1.2, by measuring the simultaneous activity of a set of brain

sites, one can derive two distinctively different connectivity types: functional connectivity (FC)

and effective connectivity (EC). Both modalities were designed to represent statistically significant

interactions in the dynamics of brain areas under some condition, such as the resting state. However,

FC, using a simpler relation model, depict those as symmetric correlations (Achard et al. (2006)),

as opposed to the directed, causal connections of EC (Friston (1994)).

Correlation between structural and resting state functional connectivities of the human cortex

has been investigated by several studies (eg. Skudlarski et al. (2008), Honey et al. (2009) and

Honey et al. (2010)). All studies reported positive correlation between DTI and DSI derived

structural connectivities and functional networks obtained by fMRI or simulations. While this

correlation is particularly high at structurally directly connected brain regions, some regions have

strong functional correlation even at the absence of anatomical connection, which nevertheless

can partially be explained by indirect connections and spatial proximity (Honey et al. (2009)).

Furthermore, despite the fact that both empirical and simulated functional connectivities exhibit

some level of variability across scans and model runs (Cammoun et al. (2012), Tomasi and Volkow

(2011a), Tomasi and Volkow (2011b)), all studies were in agreement on the finding that resting

state functional connectivity is heavily constrained by the large-scale structural architecture of the

cortex (Honey et al. (2010)).

From brain dynamics to functional connectivity

Contemporary functional magnetic resonance imaging (fMRI) techniques measure the so-called

blood oxygenation level dependent signal or BOLD signal of the brain activity (Huettel et al.

(2009)). The fundamental assumption behind using fMRI signals measuring the BOLD contrast

is that the amount of oxygen in the blood can be used as a marker for neural activity (Friston et al.

(2003)). Previous experiments, showing that neural activity and blood flow are linearly related

over normal ranges (Miller et al. (2000)), provided empirical evidence that such metabolic changes

picked up by the BOLD signal are indeed the result of neural activity. An important fact to keep

in mind during the interpretation of BOLD fMRI, is that the signal by its nature detects major

metabolic demand of the neurons, which, rather than being local spiking activity, are in fact the

synaptic transmission and conductance of post-synaptic potentials, occurring at the target sites of

the active neuron population (Friston et al. (2000)).
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In recent years, the advancement and spread of fMRI imaging along with the increasing

interest in the mechanistic explanation of the phenomena have generated considerable effort for

developing generic hemodynamic models that mediate between synaptic activity and measured

BOLD responses. The one introduced in Friston et al. (2003) and used here is comprised of

two main model components: a linear dynamical model of the changes in regional cerebral blood

flow (rCBF) caused by neuronal activity (Friston et al. (2000)), and the Balloon-Windkessel (BW)

model (Buxton and Frank (1997), Buxton et al. (1998), Mandeville et al. (1999)) accounting for

the translation from rCBF to the ”observed” (simulated) BOLD signal.

The scientific benefit of such mechanistic models is two-fold. Having passed extensive

validation tests (Friston et al. (2000)), the rCBF+BW compound model is not only able to provide

an explanation to the origin of the BOLD fMRI signal, thus providing a common basis to its

interpretation (Friston et al. (2003)), but also serves as a model for computational research in brain

activity derived functional connectivity (Cabral et al. (2011)). In the current study, we utilise this

second aspect of the model.

In this section, we look at the ways structural connectivity shapes the emerging patterns of

functional interactions in the human cortex in its resting state. Taking advantage of the identical

cortical parcellation schemes for the two connectivities, we carry out a comparative analysis

between the structural connectivity and the resting state FC of the cortex, both empirically obtained

by Hagmann et al. (2008). Besides this direct, cross-modal structure–function comparison, the

degree of influence of the anatomical connectivity on the emerging dynamical interactions is also

assessed by comparing the empirical rsFC with its ”synthetic” counterpart, simulated by simple

coupled oscillators on the cortical SC.

8.2 Methods: Functional connectivity simulation

Local neural activity is obtained by simulating time-lag coupled, non-identical and noisy Kuramoto

oscillators on the anatomical connectivity of the cortex (Figure 7.1 c). Due to the large size of the

network and the long simulation time needed, we are not able to carry out a parameter sweeping

analysis and find optimal model parameters at which the simulated FC best approximates the

empirical ones. Thus, we derive our working point of choice from results on the lower resolution

cortical network of Cabral et al. (2011), who found that the parameter regime where the difference

between the empirical and simulated FC is minimal largely overlaps with that where the simulated

cortical activity exhibits its most metastable dynamics. The utilisation of these results is motivated

by the fact that the obtained regime is in the physiologically plausible propagation velocity range
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of 5-20m/s (Ghosh et al. (2008)), and furthermore our results on the metastable dynamics of

the high resolution cortical network are in agreement with the found parameter values (Section

7.4). Therefore, to obtain the simulated functional connectivity of the cortex, we simulate regional

dynamics at global coupling strength k = 20 and mean conduction delay τ = 10ms. The simulation

is run for 30s, with 0.5ms integration time step.

The above local neural activity, simulated by the Kuramoto model, is then transformed into a

BOLD signal on each cortical region using the Balloon-Windkessel hemodynamic model (Friston

et al. (2000), Friston et al. (2003)), following the post-processing pipeline applied in Cabral et al.

(2011). In the following, we briefly introduce the main steps of the processing pipeline.

The basic assumption behind the Balloon-Windkessel model, originating from interpretation

of experimentally obtained BOLD fMRI signals, is that the BOLD signal indicates the variation

in the firing rate of the local neuronal population. Assuming that the firing rate rn(t) of any given

region n fluctuates around a fixed value, we simply approximate rn(t) by the sinusoidal relation:

rn(t) = r0sin(θn(t)) (8.1)

where θn(t) is the phase of regionn at time t, and r0 is the fixed fluctuation amplitude. We stress the

difference between rn(t) and f0 in the applied modelling framework: rn(t) represents actual firing

frequency or firing rate of a neuron population at region n, while f0 denotes oscillation frequency,

which is the intrinsic frequency of mean firing rate fluctuations of the regions. We use r0 = 1, so

that the Balloon–Windkessel model is linear and is analogue to a linear filter. This way, our results

depend only on the neural activity generated by the model, and not on the non-linearities of the

BOLD model (see Cabral et al. (2011) for further discussion).

In order to match the parameters at which the empirical functional connectivity (empFC) was

obtained, simulated BOLD was low-pass filtered (0.25 Hz) and downsampled at 2s. After that, the

global signal (average over all regions) was regressed out of the regional BOLD time series (Fox

et al. (2005), Fox et al. (2009)), and finally, the correlation matrix of this time series was calculated,

yielding the simulated functional connectivity (simFC).

8.3 Results: Inferring functional connections from cortical topology

8.3.1 Comparison of empirical and simulated functional connectivities

Empirical and simulated functional connectivities along with their correlation are shown in Figure

8.1. Both connectivities exhibit the tendency to organise around strongly correlated blocks of

varying size along the main diagonal of their connectivity matrices, resembling the anatomical
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and modular architecture of the underlying structural connectivity. Specifically, we note the high

functional intra-correlation of visual lobe (red regions), as well as the similar functional correlation

pattern in the first and second supermodules (top left side of the matrices) in both FC’s.

Along with these similarities on the large scale, we can visually observe considerable disagree-

ment between the individual value-pairs of the two functional connectivities. As the correlation

plots show (Figure 8.1 c and d), there is a large dispersion in the corresponding entries of the two

FCmatrices, with most region-pairs taking very low functional correlation (red area around origin),

and, especially in the simulated FC, with more region-pairs exhibiting strong positive than strong

negative correlations.

Potential causes of these discrepancies between the empirical and the simulated FCs include

the presumably incomplete and noisy structural connectivity (Section 2.1), the minimalistic

model of regional and interaction dynamics provided by the Kuramoto model, and any further

oversimplification and computational deflection introduced during the simulation of the BOLD

signal and the additional post-processing steps. While, considering the extraordinarily intricate

structure and dynamics of the human brain, it appears to be a naive assumption to expect very

high accuracy during these simulations, the obtained results already point to the fundamental role

of the cortex’s anatomical connectivity and coupled oscillatory dynamics in shaping functional

interactions on the large scale. We nevertheless hypothesise that ongoing improvements of

anatomical tracing techniques and the utilisation of more complex computational models will

certainly result in more accurate functional connectivity simulations in the future.

8.3.2 Resemblance of structural properties in the functional couplings of the cortex

An increasing amount of evidence indicates that the cortex’ gross anatomical structure plays an

important role in shaping the patterns of functional interactions acting on in, however, we are only

beginning to discover the complex relationship between these two basic connectivity modalities

(Honey et al. (2010)). Numerous studies have already found positive correlations between the

anatomical and functional connections in certain parts of the brain (Greicius et al. (2009), van den

Heuvel et al. (2009a)) or in the entire connectome (Skudlarski et al. (2008), Honey et al. (2009)).

However, to our best knowledge, no previous work has studied the ways in which more general

topological features of the connectome, such as various node-level network metrics, are reflected

in its functional interaction patterns. In this section, we address exactly this question.

Beside the scientific relevance of the question, there is also a growing interest in the feasibility

of ”reverse-engineering” the brain from the technical side, by inferring anatomical links from

functional connections (Van Dijk et al. (2010), Alexander-Bloch et al. (2012)). We believe, that
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Figure 8.1: Simulated and empirically obtained resting state functional connectivity

(FC) comparison. Top: empirical (a) and simulated (b) functional connectivity matrices.

Cortical regions are ordered according to the recovered modular organisation of the structural

connectivity (Section 5.3). Matrix entries represent correlation values in the pair-wise activities of

corresponding regions, and are colour coded on a linear scale (see colour bars on the right side).

Top and left colour stripes denote greater anatomical structures (see Figure 5.3). Bottom: Linear

(traditional) and Bland–Altman mean–difference (Bland and Altman (1986)) correlation plots of

the two functional connectivities.
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exploring the relationship betweenmore general structural properties and the functional links of the

cortex is a crucial point for the success of such an endeavour. Furthermore, with the forthcoming

analysis, we also aim to directly investigate the validity of the commonly accepted functional

interpretation of various routinely applied structural measures (Rubinov and Sporns (2010)) in

a concrete brain network.

Inter-relations between the empirical and simulated functional connections and the five metrics

of the structural connectivity are shown in Figure 8.2. The first three, strength, efficiency and

matching index, are purely topological features, while the last two, length and distance, are spatial

properties of the cortex. Strength and length, being direct attributes of the structural connections,

are related to functional coupling only between anatomically directly linked node pairs, while

efficiency, matching index and distance are generic metrics represented and shown between all

node pairs. In the following, we analyse the obtained structure–function relations one by one.

Firstly, let us investigate how direct anatomical connections translate to functional coupling

(Figure 8.2, first row). In accordance with several previous studies (reviewed in Honey et al.

(2010)), we detect strong positive correlations between structural and functional connections at

existing anatomical links. The co-variance is present in both FC’s, with the simulated one being

shifted towards stronger functional correlations, presumably pointing to the lack of some inhibitory

processes in the utilised dynamical model, as opposed to, for example, the model of Honey et al.

(2009).

Topological efficiency (inverse path length) is generally regarded and utilised as a structural

correlate to functional influence and cooperation capability (Rubinov and Sporns (2010)). How-

Figure 8.2 (following page): Relationship between empirical and simulated functional

connectivities and various metrics of their common structural connectivity. Each subfigure is

a scatter plot showing either the relation between attributes of structural projections and functional

connection strengths only between anatomically linked region pairs (first and fourth row), or the

relation between a pairwise structural metric and the functional connection strength between all

region pairs (second, third and fifth row). SC metrics: strength: weight of existing structural

projections, efficiency: efficiency between all region-pairs, matching index: matching index of

all region-pairs, length: projection length of existing structural connections, distance: distance

between all region-pairs in anatomical space. Colours from blue (low) to red (high) represent

number of node-pairs/edges in bins.
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ever, the relation between region–region efficiency and functional linkage exhibits a diverse pattern,

being composed of multiple, partially overlapping clusters of points (Figure 8.2, second row). The

diameter (length of the longest of the shortest paths) of the cortical network being 6, each of these

clusters, from top to bottom, corresponds to a specific topological distance from 1 to 6 (higher

to lower efficiency). The clusters are smeared and overlap because of the weighted version of

the measure. Note how the most efficient, light blue uppermost cluster, representing the directly

connected region-pairs, is identical to the scatter in the strength subfigure above.

As a generalisation of the above results on the correlation between anatomical and functional

connection strength, we can observe that high structural efficiency of the directly connected regions

is sufficient but not necessary for strong functional connection. Additionally, we also note that the

correlation between efficiency and functional coupling sharply declines in both the empirical and

simulated FC’s as the anatomical linkage becomes less direct (with the increase of topological path

length). These results argue against the general interpretation of efficiency as a structural measure

of functional cooperation in large-scale brain networks.

Matching index measures the degree of similarity (ratio of overlap) between the connectivity

fingerprints (set of neighbours) of the node pairs (Zamora-López et al. (2010)). Pairs of

brain regions sharing many common neighbours are believed to fulfil similar functional roles

(Passingham et al. (2002)), therefore they need to be functionally coupled. We obtain a dispersed

relation between matching index and functional connections (Figure 8.2, third rows), which

nevertheless reconfirms that region-pairs with similar connectivity fingerprints are more likely to

functionally correlate.

Finally, the two spatial metrics we relate to functional coupling are connection length and

region–region distance (Figure 8.2, fourth and fifth rows). Not surprisingly, as previously reported

by Honey et al. (2009), we find that shorter projections result in strong functional correlation, as

well as that spatially close region pairs tend to cooperate functionally more strongly.

Altogether these results, while cautioning against the overly broad functional interpretation of

the investigated structural measures, confirm that the spatio-topological segregation of the cortical

connectome significantly contribute to its functional interactions.

8.4 Overview of results

In this chapter, our aim was to assess the degree of influence of the structural connectivity of

the cortex on its resting state functional connectivity. In-depth network analysis of the functional

connectivity was not attempted in this study for several reasons, including i) the interpretation

issues of many complex network measures developed for network structure when applied to such
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abstract associations like correlation of activity (Rubinov and Sporns (2010)), ii) the ambiguity

introduced by thresholding of the dense and weighted functional connectivity matrix into a binary

one, and iii) the absence of null-models for functional connectivities. We note that the above

issues have recentlymotivated research on generalisingmodularity and centralitymetrics to densely

connected functional connectivities containing negative weights (Rubinov and Sporns (2011)).

Firstly, we tested directly how well an empirically obtained rsFC can be approximated by

simulating coupled Kuramoto oscillators on the anatomical connectivity of the cortex (Section

8.3.1). We observed considerable discrepancies between the empirically obtained and our

simulated FC. While our rather minimalistic dynamical model certainly misses important factors

that influence the emerging functional connectivity from network anatomy, the utilised structural

connectivity, as the initial point of the simulations, is also necessarily imperfect due to, for

instance, its limited spatial resolution and its deficiency in representing long, inter-hemispheric

projections (see Section 2.1.1). Considering these points, our results report a strong structure–

function correspondence by demonstrating a reasonable approximation of functional connectivity

by even a simplistic dynamical model.

Having had a structural and functional connectivity dataset on the same cortical parcellation, we

also took the opportunity to explicitly investigate some of the generally accepted claims about the

functional relevance of structural complex network metrics in the human cortex (Section 8.3.2).

In agreement with earlier results (Honey et al. (2009)), we found that while direct and strong

anatomical connectivity is indicative of strong functional connections, low efficiency between

region-pairs in general does not necessarily mean weak functional coupling. Similarly, high

matching index (many common neighbours) result in strong functional connection, but the inverse

relation is much less clear. Looking at the spatial connection length and region–region distances,

we found that they are in a relatively strong negative correlation with functional connection

strength. These results provide further validation to the functional influence of the both spatial

and topological segregation of the cortex, but also point to the inadequacy of structural measures

to accurately and reliably infer functional connections in the brain in general.

Our results are broadly in agreement with earlier studies on correlation between structural and

resting state functional connectivities of the human brain. Despite the considerable technological

challenge these studies require to overcome, a growing amount of experimental evidence supports

the above notion of the (direct or indirect) effect of anatomical connectivity on large-scale brain

dynamics (eg. van den Heuvel et al. (2008), Greicius et al. (2009), Honey et al. (2009)).

This chapter concludes the research carried out in this study, and in the next chapter we provide

a summary and discussion on our results.
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Chapter 9

Discussion

In this work, we analysed the large-scale anatomical connectivity of the human cortex in order to

confirm, relate and compare the previously reported topological organisation patterns of small-

worldness, modularity, hierarchy and core formation on a higher-resolution cortical connectivity

network, and to then analyse the dynamical consequences of these patterns. Along the series of

analyses we carried out, our aim was not only to integrate the above organisation principles into

a single description of the network architecture of the cortical connectivity, but also to explore

how the basic topological properties and the spatial embedding of the cortical connectivity into

physical space affect the expression of these organisation principles. In this chapter, we discuss

the obtained findings in the context of previous research, we give a possible explanation for the

putative functional and behavioural relevance of the current results, and finish with an outlook of

connectomics.

9.1 Review of results

9.1.1 The applied dataset

We started by introducing the cortical connectivity dataset used in this study (Chapter 2).

Originating from the current shortcomings of the applied data acquisition technique, the analysed

connectome dataset suffers from certain limitations. The most severe ones of these limitations are

the absence of polarity information of the cortico-cortical connections, and the purely cortical

nature of the network, excluding all thalamic and brainstem areas. We discussed how these

limitations restrict our analysis and may affect our results, and why the cortical network at its

currently investigated resolution can be approximately represented as a undirected (reciprocally

connected) network. Then we provided an initial introduction of the cortical connectivity network
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by discussing its basic topological properties.

9.1.2 Null-hypothesis networks

One of the main themes of the thesis was the question of how much and what aspects of the

structural organisation of the cortex are preserved if we conserve some of its basic topological

and spatial constraints but otherwise randomise its connectivity. To this end we utilised two

null-hypothesis or surrogate network groups. Firstly, we analysed a set of traditional, spatially

unconstrained random surrogates, that conserve the number of regions, number of connections and

(binary) degree distribution of the cortical connectivity. Along with these spatially unconstrained

random surrogate networks, we introduced a novel type of surrogate network, spatial surrogates,

that, in addition to the properties above, also preserve the total connection length of the network

globally, the sum of connection lengths of each region locally, and furthermore reasonably

approximate the length distribution of the individual cortical connections. In Chapter 3, we

described the purpose of these null-hypothesis networks along with their properties and generation

method, and finally we evaluated the generated surrogate networks against a set of validation tests

in order to verify their suitability for the current research.

9.1.3 Integration, segregation, small-worldness

In our first set of analyses, we assessed the functional integration and segregation abilities of the

cortical connectivity by a set of relevant complex network measures for each phenomenon (Chapter

4). By comparing the cortical connectivity to its surrogates, we found a relatively low level of global

efficiency in the cortex, significantly below that of its spatial surrogates, suggesting that long-range

cortico-cortical connections are sub-optimally placed for high integration. In line with this, we also

found a significantly higher level of segregation the cortical network than in its spatial surrogates,

indicating that the cortex favours high segregation over integration, even when considering the

already increased level of the former and reduced level of latter due to its sparse and spatial limited

connectivity. Relating these measure results with those of random surrogates, we found that spatial

constraints of the cortex seem to strongly contribute to its relatively low integration and extremely

high segregation, together resulting in an elevated expression of small-world organisation in the

cortex, compared to its spatial surrogates.

9.1.4 Hierarchical modularity

In Chapter 5 we turned to the investigation of the cortical architecture on the meso-scale, and

evaluated the expression of some generic network organisation principles in the cortex, such as
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hierarchical, modular, and centralised organisation patterns. The mean clustering coefficient as a

function of region degree, utilised as a simple model for detecting hierarchical features, indicated

the presence of a hierarchical organisation in both the cortical network and its spatially constrained

surrogates, but not in random surrogates, revealing how the predominantly local connectivity and

the central positioning of high degree nodes alone are suitable to foster hierarchical organisation

features in the cortex.

Modularity analysis revealed that, while spatial surrogates also exhibit a considerably strong

modular architecture, the modular organisation of the cortex is stronger and more refined (com-

posed of more modules) than its connection length preserving spatial surrogates. Our findings

indicate that, while basic wiring constraints of cortical regions naturally result in the tendency for

cortical module formation, the long-range cortico-cortical projections appear to be more optimally

placed towards a highly modular cortical architecture, than these wiring constraints alone suggest.

The large sizes of the obtained modules compared to the resolution of the cortical network

under investigation allowed for the analysis of the internal topological organisation of the modules

(Section 5.3). Specifically, we tested the hypothesis that these global modules, rather than

having homogeneous internal connectivity (such as the models in Shanahan (2008) or Shanahan

(2010)), are themselves composed of submodules of smaller size, which submodules can be

divided further into sub-submodules, and so on, in other words, we searched for the cortex’s

multi-level, hierarchical module organisation (Arenas et al. (2006), Sporns (2006)). Topological

and dynamical analysis of the large-scale anatomical connectivity of the cortex confirmed its

characteristic organisation feature of being composed of relatively loosely coupled, but spatially

and topologically encapsulated subunits (modules), in a repetitive manner across multiple levels.

This hierarchical modular organisation of the cortical connectivity may provide the anatomical

basis for the similarly organised functional connectivity of the cortex, found earlier in the cat (Zhou

et al. (2007)) and the human brain (Ferrarini et al. (2009), Meunier et al. (2009b)).

9.1.5 Core formation and centralisation

While the exponential degree distribution (Hagmann et al. (2008)) and hierarchical organisation

already suggested a centralised organisation of the cortical topology, in Section 5.4 we explicitly

examinedwhich, if any, parts of the cortex is located in its topological centre. Surrogate comparison

revealed that the s-core of the cortex is stronger and larger than those of its spatial and random

surrogates. Furthermore, confirming previous results of Hagmann et al. (2008), the s-core of

the cortex was found to be spatially encapsulated at a medial-caudal location, composed by the

precuneus, the cingulate cortex and the superior part of the occipital lobe. The cortex therefore
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appears to have a spatially compact and topological highly significant s-core, optimised against

its physical wiring constraints. These properties suggest high functional relevance to that core

structure, and make it an appropriate candidate for some sort of putative central, global coordinator

substructure of the brain (Baars (2002)).

As opposed to that, another candidate central structure, the rich-club formation of the cortex

(Van den Heuvel and Sporns (2011)), while exhibiting a denser than random intra-connectedness,

is formed by a relatively loosely coupled, spatially and topologically rather dispersed set of regions,

therefore it appears to be a less appropriate candidate for a putative central core of the cortex.

Further investigation on the topological centralisation towards the detected s-core of the

network indicated, that local s-cores in each cortical supermodule, while being the main inte-

grator substructures within their respective supermodules, are globally less significant integrator

substructures. Furthermore, these local s-cores are located in a topologically rather segregated

position from the other supermodules, as opposed to the global s-core, which itself is one of these

supermodular s-cores due to its modular encapsulation. These results place the s-core of the cortex

into a global inter-supermodule integrator position: a spatially and topologically central structure

capable of integrating and coordinating the otherwise highly segregated lateral parts of the two

hemispheres.

9.1.6 Hubs regions

In Chapter 6, we analysed the topological features of a functionally potentially highly significant

group of regions, the hubs of the cortex. Due to the properties and relation of the found s-core

and rich-club structures (see above), we departed from the traditional connector/provincial hub

categorisation scheme, and distinguished hub regions with respect to the network core, as core

hubs or module hubs, depending on if they reside inside or outside of the core.

Our results about the topological properties of the two hub groups are consistent with the

significant rich-club organisation and high assortativity of the cortical connectivity (compared to

random surrogates). Furthermore, as an alternative to the traditional provincial/connector classes

(Guimerà and Nunes Amaral (2005)), the results support the rational behind our hub categorisation

scheme, that distinguishes hub regions on the basis of their relation to the structural core of the

cortex. Specifically, complex network metric and motif node spectra analysis provided evidence

for the remarkably high internal integratedness and global centrality of the network core, capable

of acting as a central integrator ’unit’ in the cortex. Additionally, the hubs in the more peripheral

modules were found to be highly capable of supporting this putative function of the network core by

performing a local integrator role within their individual neighbourhoods, as illustrated in Figure
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5.12b.

9.1.7 Synchronizability, metastability and activity propagation

In Chapter 8, we started investigating the relevance of our structural findings on the dynamics of the

cortex by assessing how synchronisation dynamics on fast time scales are affected by the topology

of the cortical connectivity. Assessing the emergence of cortical synchrony from local to global

levels in an abstract oscillatory model indicated a significantly lowered level of synchronizability in

the cortex compared to its surrogates, presumably due to its topologically decreased integratedness

and increased segregatedness. Nevertheless, the relatively high internal synchronizability of

the elements of the cortical module hierarchy reinforced their increased ability for functional

cooperation. Furthermore, our earlier structural results on the potentially differentiated roles of

core hubs and module hubs (Chapter 6) were underscored by the finding the hubs in the cortical

core are more involved in supermodular and global level synchronisation, while hubs outside of the

core appear to facilitate synchronisation at the lower hierarchy levels of submodules and modules.

By simulating a physiologically more plausible coupled oscillator models, we found that

the low global cortical synchrony is accompanied by a relatively high metastability, presumably

facilitated by the segregated, modular nature of the network. Furthermore, this high metastability

is substantially lowered after the removal of cortical hub regions, due to the decrease in inter-module

connectivity. This finding points to the key role of these regions in keeping the cortical network

in a presumably dynamically critical, highly metastable state, in which cortical modules, while

themselves being internally highly metastable, spontaneously engage and disengage in transient

coalitions of varying combinations (Shanahan (2010)). Metastability, as well as several other

dynamical complexity measures, were found to be maximal at intermediate coupling strength and

physiologically plausible conduction delay values (5-20 ms) (Ghosh et al. (2008)).

Simulations of localised, focal seizures provided further validation for the increased dynamical

separateness of the topologically segregated cortical modules, effectively moderating the spread

of epileptiform activity. All focal seizure simulations demonstrated significantly lower spread

than the distributed stimulation of equal number of random and hub regions. Among the focal

seizure simulations, the cortical core was proved to be able to impose the greatest influence on

the spontaneous dynamics of the rest of the network, followed by the intermediate effect of the

lateral and caudal modules, and the lowest propagation ability of the modules in the frontal lobe,

in accordance with the findings of Vaudano et al. (2009).
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9.1.8 Structure – function relationship

In our final experiments in Chapter 8, we asked the question: How does cortical resting state

functional connectivity (rsFC) relate to its structural substrate? Our results, in agreement with

the significantly positive correlation obtained in Honey et al. (2009) on the low resolution cortical

connectivity, exhibited an overall similar large-scale organisation in the empirical and simulated

functional connectivities, resembling the underlying structural architecture, especially considering

the limitations of the dataset and the simplicity of the applied dynamical model. However, the

individual region–region functional couplings demonstrated substantial differences in the two FC’s,

suggesting an increasing necessity of using biophysically more detailed dynamical models for

simulations at the current and higher resolutions of the human connectome, such as the one used

in Honey et al. (2009).

Utilising the availability of both a structural and functional connectivity dataset on the same

cortical parcellation, we also took the opportunity to explicitly investigate some of the generally

accepted claims about the functional relevance of structural complex network metrics in the human

cortex. Our results provide further validation to the functional influence of the both spatial and

topological segregation of the cortex, but also warns about the inadequacy of structural measures

to accurately and reliably infer functional connections in the brain in general.

9.1.9 Summary of results

Table 9.1 summarises our results on the structural and dynamical properties of the cortex in contrast

to its two surrogate types. From an abstract point of view, the need to be able to simultaneously

deal with a multitude of sensory, motor and cognitive tasks necessitates the topologically lowered

integratedness and elevated segregation, and the presumably related functionally favourable

decreased dynamical synchronizability and increased metastability of the cortex. Furthermore,

being a real complex network with a diverse and extraordinarily complex set of functions to carry

out, it is not surprising that the cortex adopts, and takes advantage of, several functionally beneficial

organisation patterns, such as the small-world, modular and hierarchical architectures.

Small-world architecture has been shown to naturally foster high dynamical complexity (Sporns

et al. (2000)), which is one of the hallmarks of brain activity (Stam (2005)). Modularity is

widely acknowledged to promote network robustness and evolvability by minimising dependencies

and isolating effect of local mutations and disturbances (Sporns (2010)), and it also has been

shown to increase dynamical metastability (Shanahan (2010)) thus hindering the pathological

cases of prolonged synchronisation and seizures (Arthuis et al. (2009)). Hierarchically modular

organisation has been found to facilitate limited sustained network activity (Kaiser et al. (2010)), it
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cortical connectome ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑

spatial surrogates ∼ ∼ ∼ ↑ ∼ ↓ ↑ ↓ ∼ ↑ ∼

random surrogates ↑ ↓ n/a ∅ ∅ ↓ n/a ∅ ↑ ∅ ∼

Table 9.1: Summary of structural and dynamical features found in cortex and in its

surrogates. Symbols: ↑ : high, ∼ : moderate, ↓ : low, ∅ : nil, n/a: not applicable

(random surrogate results used as baseline values for the cortex and spatial surrogates for these

metrics).

hence may serve crucial role in maintaining the critical functional range the human brain operates

in (Kitzbichler et al. (2009)). Combining all these findings, along with the increased rich-club and

core formation tendency of the cortex, into a single description of the structural connectivity of the

human cortex, our results outline a hybrid, reasonably centralised and hierarchical, but nevertheless

strongly modular anatomical architecture, with a remarkably strong central network core.

9.1.10 Discussion of results in relation to other domains of connectome research

Table 9.1 demonstrates that the current study, while addressing numerous principles of the

structural organisation and dynamical operation of the human cortex, utilised a wide range of

complex network analysis tools. We also note, however, that several aspects of brain connectivity

research, with lower or higher relevance to the investigated questions, are not covered and applied

in this study. Below, we briefly discuss some of these research directions and concepts with the

aim to connect them to the results of the current study.

The important questions of network growth and development have generated considerable

interest not only in general complex network sciences (see Albert and Barabási (2002), Newman

(2003) for reviews), but also in the neurosciences (for reviews, see Sporns (2010), Kaiser (2011),

Kaiser and Varier (2011)). The role of brain’s spatial embedding and wiring cost in shaping the

cortical architecture was one of the main themes of the current study, and our results pointed to the

fundamental, although not exclusive, impact of the wiring constraints of the cortex on its large-scale

organisation features. The growth of spatially embedded networks has been investigated in a series
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of studies by Kaiser et al. (Kaiser and Hilgetag (2004c), Kaiser and Hilgetag (2004b), Kaiser and

Hilgetag (2007), Kaiser et al. (2009)), who proposed variants of a simple spatial growth model with

developmental time-windows that are able to account for the observed small-world and modular

architecture of the cortex (see Section 9.2.1), reinforcing our findings about the crucial role of

basic spatial constraints on the cortical architecture. As a potential extension of these studies,

it would be interesting to see how well the spatial growth models of the above studies, possibly

after their appropriate customisation, are able to approximate the actual connectivity profile of the

cortex in more realistic simulations that incorporate further cortical properties, such as the spatial

arrangement of the cortical regions and the limited volume of the skull.

The non-local functional effects of localised lesions in brain structure have been extensively

reported (e.g., He et al. (2007a), He et al. (2007b)), supporting complex network approaches in

general in understanding the operation of the brain. Computational studies provide flexible tools for

exploring the resilience of complex networks against random errors and targeted attacks (Boccaletti

et al. (2006)), and a number of studies have investigated the possible structural (Kaiser and Hilgetag

(2004a), Kaiser et al. (2007)) and dynamical/functional (Achard et al. (2006), Honey and Sporns

(2008), Honey et al. (2009), Alstott et al. (2009)) consequences of various lesion scenarios in

different brain networks. In the current study, we also analysed various lesioned versions of

the cortical connectivity to assess the significance of its substructures in facilitating the global

expression of some important network phenomena, such as global efficiency, synchronizability

and metastability. The results of both our analysis and the above studies pointed to the highest

vulnerability of brain networks against the loss of their highly connected hub regions, that impose

the most non-local effect on the structure and dynamics of the network. In addition to investigating

the effect of regional lesion scenarios, our lesion studies could be further extended bymodelling the

potential dynamical effect of the deactivation of certain white matter pathways (network edges), or

that of the removal of various module components of the cortical network. Furthermore, cortical

reconfiguration after injury may also be worthwhile studying by an appropriate adaptive network

model incorporating mechanisms of neuro-plasticity.

One of the fundamental characteristics of brain dynamics is its inherently complex, metastable

nature at various spatio-temporal scales (e.g., Freeman (2003), Gong et al. (2003)). Providing

evidence for the behavioural and cognitive relevance of this prevalent metastable dynamics,

McIntosh et al. (2008) showed that greater dynamical diversity (higher metastability) in the

maturing brain can be associated with more stable cognitive and behavioural capacities. The

question in turn naturally arises: What is the origin of this dynamical diversity? The concept of

self-organised criticality (SOC, Bak et al. (1987), Gisiger (2001)) has been proposed as a plausible
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model for dynamical variability and adaption in the brain (Chialvo and Bak (1999), Bak and

Chialvo (2001)). Scale-invariant characteristics of SOC have indeed been found in the patterns of

spontaneous neuronal activity (Beggs and Plenz (2003), Beggs and Plenz (2004)) as well as inMEG

and fMRI signals of spontaneous brain activity (Poil et al. (2008), Kitzbichler et al. (2009)). In this

study, we have showed how the hierarchically modular topology of the cortical connectivity, along

with its hub and core regions, are able to provide a structural basis that facilitates the emergence

of the highly metastable dynamics of the cortex. We therefore hypothesise, that elements of self-

organised criticality might readily appear in the simulated dynamics of the connectome in the form

of spatio-temporally scale-invariant synchronisation patterns, which claim can be directly assessed

by conducting the appropriate simulations. Additionally, evidence for the existence of a critical

state in cortical dynamics could be found if the cortical functional connectivity exhibits fractal-

like, self-similar organisation patterns on multiple scales (Bassett et al. (2006)). The hierarchical

modular architecture uncovered in the current study may provide an ideal structural substrate for

the emergence of such dynamics.

Research on the above aspects of cortical architecture and dynamics would be able to

complement our current results, and thus provide further insight into the organisation, dynamics

and function of the human connectome.

9.2 The putative role of core and hub regions in cortical function and

cognition

9.2.1 Symbiotic relationship between brain structure and function

Complex networks from broad domains exhibit adaptive properties, that is, their topological

evolution is influenced by the dynamics of the network nodes (Gross and Blasius (2008)). In

these ”adaptive co-evolutionary networks”, network dynamics (function) is generally shaped by

structural connections on faster time scales, while structure is effectively sculpted by network

activity on slower time scales.

The cortex is known to be such a network with symbiotic structure – function relationship.

Numerous studies have demonstrated the important role of spontaneous neuronal activity in

synaptic connectivity formation in the developing brain (Katz and Shatz (1996), Weliky and Katz

(1999), Cang et al. (2005)), andwe also know that the large-scale topology (Hagmann et al. (2010b),

Fan et al. (2011), Echtermeyer et al. (2011b)) and functional connectivity (Fair et al. (2008),

Uhlhaas et al. (2009b), Fair et al. (2010)) of the human brain continues to change dramatically

during the entire human life span.
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Considering the strong, characteristic network organisation features of the human cortical

connectivity found in earlier studies and in the current research, an important question is ”What

factors affect and guide the development of the brain’s small-world, modular, hierarchical and

centralised anatomical architecture?”. Several computational studies investigated the interplay

between network structure and function in various models using synchrony dependent rewiring

rules (Gong and van Leeuwen (2004), Kwok et al. (2007), Rubinov et al. (2009)). In these

studies, the initially random network connectivities consistently evolved towards a small-world

network architecture during spontaneous activity. Additionally, Rubinov et al. (2009) observed the

emergence of modular architectures with an increasing number and strength of network modules

as the simulations progressed. Significant fluctuations in functional connectivity were also found

in that study, which was attributed to the ”noisy dynamics of central structural nodes”, the hubs

of the networks. These nodes, by providing interconnections among multiple modules, are pivotal

in enabling the balance between functional segregation and integration, thus serving a key role in

increasing the functional complexity of the brain (Sporns et al. (2000), see also results of current

study).

The computational models of these theoretical studies propose that the spontaneous activity of

neural networks on the micro-scale as well as of cortical regions on the macro-scale supports the

formation of some of the prominent organisation patterns of the brain’s structural connectivity

during its development, maturation, ageing. Furthermore, the highly complex and metastable

dynamics of the cortex on fast time scales, enabling the continuous exploration of the repertoire of

its functional micro-states (Bressler and Tognoli (2006), Honey et al. (2007)), may also account for

the astounding ability of the damaged central nervous system to reorganise itself (Draganski and

May (2008), Berlucchi (2011)), through activity dependent mechanisms.

Characteristic organisation patterns of the large-scale topology of the cortical connectivity may

also arise as a result of evolutionary mechanisms (Kaiser and Varier (2011)). Theoretical and

computational research on brain network evolution suggests the natural formation of small-world

and modular architecture with highly connected hub nodes (Kaiser (2011)). Furthermore, spatial

growth models also demonstrated how simple spatial rules of network growth through competition

for available space and other resources can lead to the observed small-world topology of the cortex

(see Section 9.1.10). Therefore it seems likely that the emergence of characteristic features of

the cortical architecture is a result of the combination of evolutionary mechanisms and various

spatial and activity dependent developmental processes, that, instead of acting independently, may

complement or even reinforce each other in complex ways.
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9.2.2 Functional accounts of the cortical core and hubs

Having found the core and hub regions at topologically distinguished positions in the cortical

connectivity in Chapter 5 and 6, we focused the analysis of our simulations around the dynam-

ical properties of these region groups. Both groups were found to significantly contribute to

cortical synchronizability and metastability, and they exhibited elevated capacity for propagating

synchronous activity. The finding that the hub-lesioned cortical network is less synchronizable and

less metastable is intuitively explainable by the notion that hub regions are the primary facilitators

of inter-module integration, as it is suggested by their high activity propagation capacity.

Several earlier studies pointed to the topologically distinguished position of the posterior

parietal cortex, and specifically the precuneus. The precuneus as a strong structural hub has been

identified in Gong et al. (2009) on a low resolution (78 regions) human cortex connectivity. Van den

Heuvel and Sporns (2011) studied the rich-club of the human brain’s structural connectivity in

great depth, and revealed some level of variability in the identity of rich-club regions across the

various network resolutions investigated. Considering the regional composition of the network’s

rich-club, Van den Heuvel and Sporns (2011) and our results disagreed in the participation of the

superio-frontal cortex, reported only by the latter work, as well as of the superio-temporal and

primary visual cortex, detected only in the current study. Despite these differences, the overlap

between the two studies agree in a subset of rich-club regions, that are interestingly coincident

with the regions this study distinguish as the core hub group (Figure 6.1): the precuneus, the

superio-parietal cortex and the cingulate cortex were consistently detected as high-degree rich-

club areas. The facts, that (1) these regions also make up a large part of the brain’s network core, (2)

they are consistently found to be strong resting-state functional hubs (Tomasi and Volkow (2011a),

Tomasi and Volkow (2011b)) and therefore (3) important constituents of the default mode network

(Raichle et al. (2001)), suggest that their topologically central position facilitates their distinguished

functional importance in the resting state of the human brain.

Furthermore, our results about the core’s structural centrality is in complete accordance with

earlier findings on the functional hubs of the human brain (Tomasi and Volkow (2011a), Tomasi

and Volkow (2011b)). These studies, analysing more than a thousand resting-state fMRI datasets

of subjects from all around the world (Biswal et al. (2010)), identified the precuneus, the cingulate

cortex and parts of the primary visual cortex (BA 17, 18) as the global hubs of FC, exactly the

regions we found to compose the core hub region group: the overlap between the cortex’s structural

core and rich-club. Other areas found here to possess topologically high integration capacity,

such as the orbito-frontal cortex, which contains the locally highly central s-core of the frontal

lobe, or the superio-temporal cortex (BA 21 and 22), were also reported as global functional hub
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areas during resting state brain activity by the above studies. This remarkable correspondence

between structural and functional centrality provides further evidence to the notion, that patterns

of dynamical interactions in the brain, that is, its functional connections, are fundamentally sculpted

by its large-scale white-matter anatomy (Honey et al. (2009), Honey et al. (2010), van den Heuvel

et al. (2009a)).

Several studies showed evidence for the functional influence of regions in the found cortical

core to other parts of the cortex through their direct anatomical connections, as well as for

their functionally intermediating role between cortical areas, that are structurally not directly

connected. Direct structure – function correspondence has been investigated in van den Heuvel

et al. (2008), who showed that the magnitude of the functional connection and the micro-structural

organisation of the fibre tract between the precuneus/posterior cingulate cortex and the medial

frontal cortex are significantly and positively correlated. Indirect connections between anatomy

and function have been studied in Greicius et al. (2009), providing evidence for anatomically

unconnected medial temporal lobe and the medial prefrontal cortex to be functionally linked by the

structurally intermediating precuneus/posterior cingulate cortex. More generally, analysis across

the whole brain revealed that a substantial proportion of strong functional connections are between

structurally only indirectly linked brain areas (Skudlarski et al. (2008), Honey et al. (2009)), which,

intuitively, becomes increasingly dominant in the sparser connectivity of finer and finer anatomical

scales (Sporns (2010)). These findings suggest that the found globally highly coupled brain areas,

the cortical core and hub structure, are not only topologically central, but also play a functionally

pivotal role in coordinating distant parts of the brain.

9.2.3 Cognitive accounts of the cortical architecture

Considering the above points, the topological position and dynamical attributes of the cortical core,

and in particular its anatomically most confined and prominent substructure, the precuneus, found

here as well as in earlier studies (eg. Hagmann et al. (2008), Van den Heuvel and Sporns (2011)),

suggest a distinguished functional role to that brain area, making it capable of even serving as some

sort of generic coordinator region for the entire cortex (Baars (2002)). Indeed, experimental studies

examining its task-dependent activation attributed a diverse set of cognitive phenomena to the

precuneus, including episodic memory, self-referential processing, imagery (Cavanna and Trimble

(2006)), and even the level of consciousness (Laureys et al. (2004)). Furthermore, deactivation

or lesion of the posterior medial cortex, containing the precuneus and other core areas, have been

shown to result in the disturbance or even loss of cognition and consciousness (Kaisti et al. (2002),

Damasi (1999)). Along with these findings, as we discussed above, the precuneus is also identified
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as a pivotal area of the brain’s default mode network (DMN) (Fransson and Marrelec (2008)) with

a remarkable consistency across individuals (Biswal et al. (2010)).

The precuneus is believed to be one of the evolutionary most recently developed areas of the

human brain, with a larger relative size and more complex columnar organisation than in other

primates (Cavanna and Trimble (2006)). It is also among the last cortical regions to myelinate

(Goldman-Rakic (1987)). The anatomical and connectivity data available of this brain area has long

been suggesting its important role in higher-order brain function, but having found its involvement

in a diverse set of mental processes (see above), empirical studies were unable to pinpoint its exact

cognitive function (Cavanna and Trimble (2006)). The apparently generic nature of its functional

activation reinforces our finding on the topologically distinguished central positioning and putative

functionally coordinating role of the precuneus, presumably in cooperation with the rest of the

cortical core.

In line with the found topologically central and functionally distinguishable role of the cortical

core, prominent theories of cognition employ the notion of integration by convergence on large-

scale neuro-cognitive networks. In supporting functional integration across multiple cognitive

domains in the brain, Mesulam (1998) have suggested the crucial role of a special set of ”transmodal

nodes” that are capable of binding together multiple signals from unimodal areas, and thus creating

multimodal representations. Damasio (1989) proposed a related idea, that accounts the integration

of multiple aspects of external and internal reality to the phase-locked co-activation of spatially

distant cortical areas. According to this theory, supported by a broad range of physiological studies

(Meyer andDamasio (2009)), integration is achieved by triggering and synchronising the activity of

remote, distributed neural populations, which is carried out by the so-called ”convergence zones” of

the brain. The theory uses a hierarchical network architecture for the explanation of these processes,

in which sensory stimuli of various domains from the lowest level of the hierarchy propagates

through multiple levels of integration, governed by convergence zones, up to areas responsible for

higher-order association in the cortex.

This model is consistent with the notion of a hierarchically segregated organisation of the brain

in general, and with the hierarchical modular architecture revealed in the current study in particular.

Also, the topological and dynamical properties of the distributed group of hubs in the various

cortical modules, found in the current study, fit well into Damasio’s theory, for these module hubs

appear to be capable of coordinating the activity of their respective local neighbourhoods, and thus

ensure functional integration on lower and intermediate levels of the cognitive hierarchy. Finally,

our findings on the topological and dynamical features of the cortical core point to this structure

as a potential convergence zone at the highest level of the neuro-cognitive hierarchy in Damasio’s
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model.

It is important to emphasise, that the found centralised core structure in the anatomical

connectivity of the cortex and its capacity of facilitating cortical synchronisation, although being

consistent with it, does not necessitate the existence of a classic ”central executive” process (e.g.,

Goldman-Rakic (1995)), a supervisory control of cognition over the available mental resources and

decision making. The alternative notion of distributed cognitive processing, that falls closer to the

complex network approach followed by this study, denies any simple one-to-one correspondence

between anatomical regions and cognitive function, and instead describes specific domains of

cognition as a network phenomena emerging from the cooperation of a specialised subset of regions

(Mesulam (1990)). Even the distributed cognitive model of Mesulam (1998) emphasises the

fundamental role of transmodal areas in coordinating the operation of large-scale neuro-cognitive

networks of the brain. In that sense, the reasonable, but not complete, level of topological

and dynamical centralisation of the cortical connectivity around its structural core enables the

core to facilitate complex interactions between distinct cognitive subnetworks of the cortex (to

”orchestrate” cortical dynamics), as described in the model of Mesulam (1998) and found in

Chapter 7, while not necessarily imposing the role of an absolute central operator (”supervisor”)

of cognition on the core.

9.2.4 From resting state brain activity to behaviour and cognition

Consistent activation patterns of the brain in its resting state, its so-called default mode (Raichle

et al. (2001), Gusnard et al. (2001)), is believed to serve as a physiological baseline, from where

any task-dependent activity can be initiated. As opposed to this intrinsic functional connectivity

of the task-independent resting state of the brain, extrinsic connectivity describes the activation

patterns in the brain that are observable during task-specific processing, that is, those evoked by

sensory or motor events (Raichle and Snyder (2007)). Striking observations on the brain’s intrinsic

activity, such as its much higher metabolic cost than that of evoked activity, its consistency, or its

coherent patterns with known brain systems (see Raichle and Mintun (2006) for a review), support

the view that understanding the brain’s default mode is a key factor in bridging the gap between

brain activity and cognition and behaviour (Raichle and Snyder (2007)). Accordingly, a large body

of research focused on the study of the resting state activity of the brain, as a physiological baseline

of brain activity of healthy subjects and various patient groups (for reviews, see Broyd et al. (2009),

Northoff et al. (2010), Sutherland et al. (2012)).

Prominent areas of this network, the default mode network (DMN), are the precuneus and the

posterior parietal cortex, along with somemedial parts of the temporal and frontal cortices (Raichle
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and Snyder (2007)). We know that endogenous activity of DMN far exceeds that of task-evoked

activity (Raichle and Mintun (2006)), however, its functional role in cognition and behaviour is

still not entirely clear. Interestingly, certain patterns of this resting state or intrinsic functional

connectivity remain active during stimulus driven processing and influence on the behavioural

outcome of the task. Trial-to-trial variability of simple cognitive tasks has been attributed to

the spontaneous and persistent fluctuations in the baseline neural activity (Dehaene et al. (2003),

Dehaene and Changeux (2005)) and in the BOLD response (Fox et al. (2006), Fox and Raichle

(2007)).

Meta-analysis on the results of numerous experiments in Schilbach et al. (2008) revealed that

regions of the DMNare recurrently reported to be involved in social cognitive processes, suggesting

that DMN areas do not only form a physiological baseline, but also some sort of ”psychological

baseline”, an internally driven cognition mode of the self and its social context. However, as several

studies on sleeping humans (Larson-Prior et al. (2009)), as well as on anaesthetised primates

showed (Vincent et al. (2007)), correlated default mode activity persists even in the absence of

consciousness. Thus, the brain’s default mode, primarily driven by its topological core, appears to

be involved in both conscious and unconscious, but nonetheless fundamental mental processing,

the decomposition and better understanding of which requires more detailed investigations in the

future.

9.3 Proposed directions for future connectome research

Naturally, the standard models of complex network sciences and the fundamentals of the neu-

rosciences in conjunction, often in agreement, shape the specific techniques we utilise for the

analysis of brain networks. For example, the abstract concept of small-worldness has traditionally

been defined in relation to random and lattice networks (Watts and Strogatz (1998)), while the

diffuse nervous system of coelenterates, such as Cnidaria, has long been recognised to exhibit

a characteristically regular, lattice-like pattern (Kaiser (2011)). These findings have no doubt

contributed to the wide application of traditional random and lattice surrogate techniques in brain

network analysis.

However, in conjunction with these traditional techniques, we argue that the utilisation of

other, more constrained null-hypothesis models, incorporating not only basic topological but also

spatial properties of the connectome, will help us better understand the structural organisation

and functional operation of the inherently spatial brain. The spatial surrogate networks of this

study were designed with that purpose, that is, to provide additional insight into the organisation

features of the cortex by distinguishing the ones that appear to be at least partially spatially induced,
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such as the rich-club structure of the cortex, from the ones that may be the result of some higher

organisation principles and hence are potentially functionally more relevant, such as its s-core.

The results of this study raise a number of immediate questions for future research, some of

which have already been proposed in Section 9.1.10. With the anticipation that the limitations of the

acquisition method of the current dataset will soon be overcome, the current findings would need

to be investigated in more complete and accurate connectome maps in the near future. Specifically,

as a first step, the found hierarchical modular organisation, core formation and centralisation of

the cortex would need to be tested on a whole brain network incorporating subcortical structures.

Similar investigations could be carried out on future higher resolution brain connectivity maps,

that would enable the deeper characterisation of the module hierarchy of the brain in particular, as

well as the analysis of a more refined cortical parcellation in general.

Although technically it appears to be the most difficult to overcome (Jbabdi and Johansen-

Berg (2011)), incorporating information about polarity (directionality) of the cortical projections

would not only quantitatively enrich, but would also open up the way for qualitatively different

questions to be asked and analytic tools to be applied. Among these are i) identifying chains of

white-matter pathways that are in position to facilitate the effective flow of directed cortical activity,

ii) assessing directed aspects of the hierarchical, modular and centralised organisation of the cortex

found in the current study, such as the ratio of efferent/afferent connections of the various modules

or the core, iii) performing a directed motif spectrum analysis in order to find further differences

between the motif node spectra of various region groups of the brain, thus further differentiating

their potential functional role, and iv) characterising the relation between directed network structure

and asymmetric influence/causal interactions in large-scale network dynamics in the brain.

Even though the nature of the current study is rather abstract and theoretical, especially

considering the current state-of-art in empirical systems neuroscience, some claims proposed on

the basis of the findings could be tested experimentally. For example, the consistent co-activation

of certain module components of the module hierarchy during spontaneous or task-specific cortical

activity would provide empirical evidence for their collective significance as potential functional

units of the brain. Also, although there is ample evidence for the distinguished role of the precuneus

in brain function and cognition (see Section 9.2), the co-activation of the entire global structural

core, along with the local s-cores found in the other three supermodules of the cortical connectome,

during multiple cognitive tasks would provide evidence for the important general coordinating

role these areas are capable of fulfilling functionally. Finally, our simulation results on the highly

varying effect of the different entrainment locations in epileptic seizure propagation in the cortex

(distributed or focal, hub regions or local modular regions) could be confirmed or revised based
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on direct experimental observations. For example, an invasive experiment on model animals

could compare the effects of seizures artificially evoked at various key locations in the previously

mapped brain of the animal (Sheerin et al. (2004), Alexander and McNamara (2012)), while

a non-invasive experiment, applicable on human subjects, could combine recent developments

on modelling patient-specific epileptic networks (Murta et al. (2012)) with neuroimaging brain

mapping techniques (Cammoun et al. (2012)) in order to assess the relation between the topological

significance of and the epileptic danger posed by various foci.

With the ongoing developments on mapping its anatomical pathways at increasing resolutions

(Cammoun et al. (2012), Toga et al. (2012)), we will soon be able to acquire more and more

comprehensive and detailed, multi-scale descriptions of the topology of the human brain, “an

indispensable foundation for basic and applied neurobiological research” (Sporns et al. (2005)).

These structural connectivitymaps of the brain will allow for themore refined characterisation of its

hierarchical modular architecture, revealed in this study only on the large-scale of the human cortex,

as well as for identifying their particular relevance in brain function and disorder. Furthermore, it

is intuitively clear, that the strong functional connections found between structurally only indirectly

linked brain areas (Skudlarski et al. (2008), Honey et al. (2009)) becomes increasingly dominant

in the sparser connectivity of finer and finer anatomical scales (Sporns (2010)). Therefore we

anticipate, that future research will assign increasing importance to the found globally highly

coupled brain areas, the cortical core and hub structure, as those topologically central and

functionally pivotal cortical regions, that coordinate integration among spatially distant and

topologically segregated parts of the brain, and thus may well serve as the substrate for such high-

level cognitive capacities as consciousness.

Due to ongoing technological and theoretical advancements in the past 20 years, research of

the connectome has been accelerated, and complex network based study of the human brain has

become the standard approach in systems neuroscience (Sporns (2010)). With the growing number

of research groups joining the scientific challenge of unveiling the architectural organisation

and functional operation of the brain as a whole, the coming decades promise us some major

breakthroughs in the field. Among these are i) the better understanding of the relation between

brain structure and function (Honey et al. (2010)), ii) the emergence of behaviour and cognition

from brain dynamics and functional networks (Bressler and Menon (2010)), iii) network-level

descriptions of brain dysfunction caused by various neuro-degenerative diseases and iv) the

translation of that knowledge to medical applications and treatment (Bullmore and Sporns (2009)).

For that, brain imaging research needs to convey even higher resolution, more complete and

more reliable connectomemaps (Hagmann et al. (2010a)), traditional research themes of the brain’s
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structure and resting state function must be complemented by the comprehensive study of task-

specific functional networks (Kitzbichler et al. (2011)), and the neurosciences ultimately need to

study and understand brain networks as embodied systems being in continuous interaction with

their environment (Sporns (2010)). Witnessing the pace of progress and the increasing effort

invested into the field, we anticipate further rise and success of human connectome research.
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Figure descriptions for part front pages

Part I: Radial representation (Appendix E) of the macaque brain structural connectivity of

880 brain sites and 6601 connections (Reveley et al. (2011)). Brain sites are represented as

labels, coloured by eight greater anatomical structures (see sectors around periphery). Distance

from centre indicates position in hierarchy structure. Connections are bundled along their shared

hierarchical paths and colour interpolated from source site (green) to target site (magenta).

Part II: Structure and dynamics of the human cortical connectivity (Hagmann et al. (2008)),

horizontal view. Left hemisphere: purely structural representation of cortical regions (blue dots)

and white-matter connections (blue lines). Right hemisphere: hybrid structural – dynamical

representation of white-matter connections (coloured lines) overlaid by the simulated activity of

cortical regions (coloured semi-transparent circles). Colours from red (low) to blue (high) represent

simulated activity (momentary phase) of one of the experiments in Section 7.4 (parameters: k=20,

τ=10). For clarity, only 10% of the strongest connections are drawn for both hemispheres and

inter-hemispheric projections are omitted.

Part III: Illustration of the found structural features of the cortical connectome. Dots denote

brain regions, connected by 20% of the strongest white-matter projections. Dot colours: red: core

region, blue: module hub region, green: crust (other) region. Colours of semi-transparent circles

denote supermodule, module and submodule configuration.
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Appendix A

Formal definition of applied complex

network measures

Table A.1 introduces the general notation applied in this study, if not stated otherwise. Table A.2

and Table A.3 formally define the applied complex network measures. All formulae are defined

for undirected networks. For a more complete collection of complex network measures relevant in

the neurosciences and for further references, see Rubinov and Sporns (2010).

Notation Definition

N set of all network nodes

n number of network nodes

L set of all network links

l number of network links

(i, j) link between node i and node j (i, j ∈ N )

wij connection weight of link between node i and node j

aij connection status from node i to node j

aij = 1 if link (i, j) exist (or wij 6= 0)

aij = 0 otherwise

aii = 0 (no self–loops)

Table A.1: Notation of basic concepts in complex network theory
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Measure Definition

Number of links l =
∑
i,j∈N

aij

Sum of weights lW =
∑
i,j∈N

wij

Degree of node i ki =
∑
j∈N

aij

Weighted degree of i kWi =
∑
j∈N

wij

Mean degree Km =
1

n

∑
i∈N

ki

Connection density Kd =

∑
i∈N ki

n(n− 1)

Number of triangles around i ti =
1

2

∑
j,h∈N

aijaihajh

Clustering coefficient C =
1

n

∑
i∈N

Ci =
1

n

∑
i∈N

2ti
ki(ki − 1)

Table A.2: Formal definitions of complex network theoretical measures
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Measure Definition

Shortest path length from i to j dij =
∑

aij∈gi↔j

aij , where gi↔j is the shortest path

between i and j

Diameter D = max
i,j∈N
dij 6=∞

dij

Characteristic path length L =
1

n

∑
i∈N

∑
j∈N,j 6=i dij

n− 1

Global efficiency E =
1

n

∑
i∈N

∑
j∈N,j 6=i (dij)

−1

n− 1

Small-world index SWI =
E

Esn
/
C

Csn
, where Xsn is the mean of

measure X calculated to the network’s (random)

surrogate networks (see Section 4.5)

Betweenness centrality of node i bi =
1

(n− 1)(n− 2)

∑
h,j∈N

h6=j,h6=i,j 6=i

ρhj(i)

ρhj
, where ρhj

is the number of shortest paths (paths with minimum

lengths) between h and j, and ρhj(i) is the number

of shortest paths between h and j that pass through

i.

Participation coefficient of node i yi = 1 −
∑
m∈M

(
ki(m)

ki

)2

, where M is the set of

modules, and ki(m) is the number of links between

i and all nodes in modulem.

Table A.3: Formal definitions of complex network theoretical measures (continued)
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Appendix B

Summary analysis of various structural

brain networks

The software developed during this study (Appendix D) has been tested and applied on a set of

synthetic and real brain networks. As a brief summary of our results, we provide a survey of

analyses of several publicly available brain networks in Table B.1.

These brain networks were acquired using different methodologies, leading to mathematically

fundamentally different types of networks. Among them, we find directed and undirected networks,

weighted as well as binary ones, some of them are flat (non-hierarchical), while others possess a

multi-level hierarchy highly intertwined with the actual connectivity. We emphasise how the great

abstraction power of graph theory and complex network science makes it able to represent, analyse

and compare all these brain networks under a unified framework.

B.1 List of analysed brain maps

Below we enumerate the utilised networks along with their original publication (’reference’), the

source where the datasets were actually obtained for this study (’source’), and their abbreviations

in Table B.1.

Human Diffusion Spectrum Imaging

reference: Hagmann et al. (2008)

source: Gerhard (2010)

abbreviation: [Hum DSI]

CoCoMac IBM
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reference: Modha and Singh (2010)

source: Modha and Singh (2010) Supp. Mat.

abbreviation: [Mac IBM]

Macaque Cortex By Kötter

reference: Kötter (2004)

source: Kaiser (2010)

abbreviation: [Mac CxK]

Macaque Cortex By Young

reference: Young (1993)

source: Sporns and Rubinov (2010)

abbreviation: [Mac CxY]

Macaque Visual Cortex

reference: Felleman and Van Essen (1991)

source: Sporns and Rubinov (2010)

abbreviation: [Mac VCx]

Macaque Visual SensoryMotor Cortex

reference: Honey et al. (2007)

source: Sporns and Rubinov (2010)

abbreviation: [Mac VSM]

Cat Thalamo Cortex

reference: Scannell et al. (1999)

source: Sporns and Rubinov (2010)

abbreviation: [Cat TCx]

C. elegans

reference: Choe Y (2004)

source: Kaiser (2010)

abbreviation: [C. Elgns]
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B.2 Description of attributes and measures

Hierarchy: Properties of the hierarchy graph, if there is any. Formally, the hierarchy graph

(hierarchy tree) is binary, directed acyclic graph (DAC) by its nature. Each of its nodes

has zero or one parent or predecessor node (its most directly containing brain region), and

can have an arbitrary number of child or successor nodes. The node not having a parent

node, at the top of the hierarchy, is called the root node. Nodes without any child node, at

the bottom of the hierarchy, are called leaf nodes.

• # nodes: number of nodes in the hierarchy graph, each one representing a usually

anatomically defined greater structure, region or single neuron of the brain, depending

on the dataset.

• # leaf nodes: number of nodes in the hierarchy graph that are at the bottom of the

hierarchy, that is, are not the parent of any other nodes further down in the hierarchy.

• max depth: maximum of the distances between the root node and all the leaf nodes,

giving the maximal depth of the hierarchical tree.

• mean depth: mean of the distances between the root node and all the leaf nodes.

Connectivity: Characteristics of the connectivity graph. The connectivity graph can be weighted

or unweighted (binary), directed or undirected, and it can contain information about the

spatial location of its nodes, and the length of its edges. Standard complex network analysis

in the neurosciences currently omits self-edges (connection that links the node to itself)

and parallel edges (multiple edges between the same node pair), thus these edges must be

removed/aggregated prior to analysis. For a formal mathematical definition of the measures

below, see Appendix A and Rubinov and Sporns (2010).

• # nodes: number of nodes in the connectivity graph, each one representing a usually

anatomically defined region or neuron of the brain, depending on the resolution of

investigation and the nervous system under study.

• position info: gives the kind of spatial information available for the nodes: 3 dimen-

sional (3D), 2 dimensional (2D), or not available (n/a).

• # edges: number of edges in the connectivity graph, each one representing a traced fibre

tract bundle connection between two regions, or a synaptic connection between two

neurons. The presence or absence of directionality information of the edges depends

on the applied data acquisition method.



220

• mean degree: sum of degrees over the number of nodes. It gives how many direct

neighbours an average node has.

• connection density: actual over maximal connections. Describes how strongly con-

nected the network is, on average (mean degree, compensated by the size of the

network).

• reciprocal connections: ratio of reciprocal connections in directed networks. It

describes the extent of directly two-way, short circuit information flow, as opposed

to the longer feedback time one-way region connectivity.

• transmission coefficient (std/mean): transmission coefficient standard deviation over

mean. For directed networks, transmission coefficient is the average of the affer-

ent/efferent connections ratio, for all nodes. Nodes with high transmission coefficient

are more involved in broadcasting information, while nodes with low transmission

coefficient are more specialised in integrating incoming information. In networks with

high deviation around their respective mean transmission coefficient ratio, there are

more specialised broadcaster and integrator nodes. On the other hand, in networks

with low standard deviation/mean ratio, broadcaster and integrator roles are much less

clearly distinguishable among the nodes.

• diameter: the maximum distance between any two node pairs in the network. It

provides a simple description about how tightly connected the network is, or how long

it maximally takes for a node to transmit (receive) information to (from) the others.

• efficiency: the average inverse shortest path length. Unlike shortest path length,

efficiency can be meaningfully computed on disconnected graphs (efficiency is zero

between any two nodes without a route between them, while the shortest path is

infinite). Generally, networks with high efficiency are more tightly coupled, and thus

are able to quickly integrate information.

• surrogate network efficiency: efficiency of n=20 random surrogate networks of the

brain connectivity (Chapter 3). Surrogate efficiency is used as a null-hypothesis

value to indicate the significance of the network’s own efficiency and small-world

architecture.

• clustering coefficient: clustering coefficient, a simple, triangle-connectivity based

measure of segregation. It gives the fraction of node neighbours that are also

neighbours of each other for an average node. Higher clustering coefficient values

indicate greater local segregation in the network.
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• surrogate network clustering coefficient: clustering coefficient of 20 random surrogate

networks of the brain connectivity. Surrogate clustering coefficient is used as a null-

hypothesis value to indicate the significance of the network’s own clustering coefficient

and small-world architecture. Standard deviations in the mean surrogate clustering

coefficients are negligible for all brain maps (< 2%).

• small-world index: a complex network is said to have the small-world property if,

despite of its large size and high clustering, there still is a relatively short path between

any two nodes. That is, if the clustering coefficient of a network is significantly higher

than those of its surrogate networks, while it still being able to maintain high efficiency

(short characteristic path length), then we call the network small-world (Watts and

Strogatz (1998)).

• betweenness centrality standard deviation/mean: standard deviation overmean of nodal

betweenness centralities. The betweenness centrality of a node is defined as the fraction

of shortest paths that pass through it. Nodes possessing high betweenness centrality

often act as inter- or intramodular hubs, providing short connection routes between

many node pair. Networks with high std/mean ratio in this metric possess clearly

distinguishable hub nodes.

• innermost core #: k degree of innermost core (Modha and Singh (2010)). The kth

core of the network is defined as the maximal set of nodes in which each node has at

least k connections to the others in the core. The innermost core is the last, non-empty

core of the network with the highest k. Networks with high innermost core numbers are

integrated in a deeply nested manner, and their innermost core can act as the ’backbone’

of the network. Such a network backbone is comprised of tightly coupled and thus

effectively cooperating nodes, that are efficient in collecting, integrating and spreading

out information from and to more peripheral nodes. Directed networks are converted

to undirected for this analysis.

• nodes in innermost core %: number of nodes in innermost core proportional to

the network size (see above). In general, the more nodes the innermost core is

comprised of, the more uniform (homogeneous) the topology of network is, thus the

less specialised its nodes are.
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Table B.1: Summary of complex network metrics of some structural brain networks
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Appendix C

Measuring the relationship between

complex network measures

In many cases, topological network properties are interrelated (Boccaletti et al. (2006), Rubinov

and Sporns (2010)). Sometimes, typically for complex network metrics from the same measure

group (eg. measures of integration or segregation), this relation is already evident by the nature of

the measures’ calculation (eg. centrality measures are usually based on node degrees and shortest

paths), thus some level of dependence (overlap in information content) is a priori expected in those

cases. On the other hand, for any given network, the relationship will also be characteristic to

(influenced by) the topological properties (organisation) of that network. Therefore by studying

the relationship between the distribution of pairs of (nodal) complex network measure values, one

is able to gain insight about the network-specific relation of the measures, that is, how the assessed

topological properties are interrelated within the network at hand.

In the current study, we use two analysis techniques to assess the relationship between

complex network metrics of the human cortical network: Pearson correlation coefficient and

normalised mutual information or redundancy. Pearson product-moment correlation coefficient

(Rodgers and Nicewander (1988)), a statistical measures to assess the degree and sign of linear

dependence (correlation) between two ’variables’ X and Y , each represented by a set of samples,

X1, X2, ..., Xn and Y1, Y2, ..., Yn:

C =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2
(C.1)

Pearson correction coefficient, taking its values from the interval [−1, 1], measures the degree of

linear dependence between the variables (sample sets) in its magnitude (absolute value) and the

type of correlation (positive or negative) in its sign.

From an information theoretical point of view, complex network measure indexes of network



224

nodes, such as their degree centrality, clustering coefficient or s-core value, can also be interpreted

as samples of an unknown distribution. Taking this approach, individual nodal measure-pairs

represent corresponding observations of two stochastic processes, between which various types

of (stochastic) relationships can be tested, such as (dis)similarity, divergence, dependency, one- or

two-way association, or redundancy.

Taking two stochastic variables (observation vectors),X and Y , with value sets (domains) VX

and VY , and their individual and joint probability density functions (normalised distributions) p(x),

p(y) and p(x, y), their I(X,Y ) mutual information can be calculated (estimated) by

I(X,Y ) = H(X) +H(Y )−H(X,Y ), (C.2)

where H(X) is the entropy of X:

H(X) = −
∑
x∈Vx

p(x) ∗ log(p(x)), (C.3)

and H(X,Y ) is the joint entropy of X and Y :

H(X,Y ) = −
∑
x∈VX

∑
y∈VY

p(x, y) ∗ log(p(x, y)), (C.4)

Mutual information measures the dependence between two stochastic variables, that is, how

much uncertainty is reduced about one variable by knowing the value of the other (Shannon

and Weaver (1949)). Being a symmetric, dimensionless quantity (usually measured in bits), high

mutual information indicates high dependence (large reduction in uncertainty), while zero mutual

information means that the two variables are independent.

By considering the limits of the H(X,Y ) mutual information:

min(H(X), H(Y )) ≤ H(X,Y ) ≤ H(X) +H(Y ) (C.5)

⇓

0 ≤ I(X,Y ) ≤ min(H(X), H(Y )) (C.6)

one can use a normalised variant of mutual information

R(X,Y ) =
I(X,Y )

min(H(X), H(Y ))
. (C.7)

which is also referred to as the normalised redundancy betweenX andY (Yao (2003)). By applying

the above normalisation, we gain a dependency metric which is independent of the individual

entropies of the stochastic variables (in our case, complex networkmeasures), consequentlymaking

direct comparison between the redundancies of various pairs of network measures possible. We
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note, that, as the above formulation implies, normalised redundancy ”is the degree of deviation of

the joint distribution from the independence distribution” (Yao (2003)). It is also important, that

both Pearson correlation coefficient and normalised redundancy are dimensionless, scale-invariant

measures: they detect statistical relation patterns insensitively of the magnitudes of the sample sets.

These properties make both measures capable of comparing various complex network metrics.

As an illustration of the above introduced measures, Pearson correlation coefficients and

normalised redundancies between some representative variable-pairs are shown on Figure C.1.

In each column, a set of n=1000 values (observations) of x stochastic variable are drawn from

a well-characterised distribution: uniform, normal and exponential (see bottom labels). In each

row, the corresponding n=1000 values of ’variable’ y are calculated using the values of x (see

labels on left side), resulting in a distribution of variable-pairs with known interrelation. Given the

observation vectors of x and y, Pearson correlation coefficients (C) and normalised redundancies

(R) are calculated, and linear regression line (red lines) is fitted to each data set.

We note, that while the Pearson correlation coefficient is generally more noise-tolerant than

normalised redundancy (see especially second and third rows), it measures strict linear dependency,

and therefore in some cases fails to detect more complex relations between the sample sets (see

fourth row). Also, the existence of some ’residual’ redundancy at the case of independent relation

(fifth row), which is due to binning errors unavoidable introduced during the probability density

function estimation of the variables. In the current study, the k bin size was determined from the

number of samples n by the widely applied simple rule of thumb k =
√
n.

Figure C.1 (following page): Illustration of statistical dependence on representative variable-

pairs. In each column, n=1000 values (observations) of x were taken and scatter-plotted against

their corresponding y values in each subfigure. C: Pearson correlation coefficient, R: normalised

redundancy, red line: linear regression. Columns from left to right: uniform distribution, normal

distribution, exponential distribution. Rows from top to bottom: linear (identical) relationship,

noisy linear relationship, noisy polynomial dependence, sinusoidal relationship and independence.

U(a, b): uniform distribution in the [a, b] interval.
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Appendix D

Utilised software packages

The entire project was carried out in the Python programming environment (Van Rossum (2003)).

In the following, we enumerate the several specialised Python software packages that were utilised

for the various aspects of the work. These packages were integrated into a generic complex network

analysis package composed of some 20 thousand lines of code, incorporating a graphical user

interface, and capable of analysing, simulating and visualising networks of various properties and

attributes (see Appendix B).

The NetworkX package (Hagberg et al. (2008)) was used for the representation and manipula-

tion of the studied networks, as well as for calculating the various complex network measures in

Section 4.2, 4.3 and Appendix B.Whenever it was possible, we used the NetworkX implementation

of the investigated complex network measures in the rest of the work too. Due to the lack of their

implementation in NetworkX, however, the following algorithms and metrics were programmed

by the author in Python: network rewiring algorithm (Alg. 1), Sørensen distance (Eq. 3.1),

leverage centrality (Eq. 4.2), regional specialisation measure (Eq. 4.7), small-world index

(Eq. 4.8), hierarchical organisation analysis (Section 5.1), modularity calculation (Eq. 5.1),

flat and hierarchical module detection (Section 5.2 and 5.3), intra- and inter-module connection

density (Section 5.3.3), matching index (Section 5.3.3), symmetry (Section 5.3.3), s-core detection

(Section 5.4.2), weighted rich-club detection (Eq. 5.2), modular s-core dispersion (Eq. 5.4),

participation coefficient (Section 6.2), and motif counting and analysis (Section 6.3).

The numeric and scientific computation capabilities of the NumPy and SciPy packages (Jones

et al. (2001)) were utilised throughout the work, from representing and manipulating vectors

and matrices to performing statistical tests and calculating Fast Fourier Transformations. All the

simulations and the subsequent analysis of the simulated regional time-series activities in Chapter

7, as well as the calculation of the rCBF signal and the Balloon-Windkessel model in Chapter

8, were implemented by the author in Python, building upon the functionalities provided by the
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NumPy and Scipy packages.

The graphical package Matplotlib (Hunter (2007)) was used for creating the two dimensional

plots of the thesis, including the hierarchical radial visualisation of the networks (Appendix E) and

most of their projection images.

Figure 7.10 and the front page images of Part II and Part III are actual projections of three

dimensionally rendered images, and were created with the MayaVi package (Ramachandran and

Varoquaux (2011)).

The illustrations in Figure 5.1A, Figure 5.2, Figure 5.5 and Figure 5.10 were drawn manually

with the image drawing software Inkscape (http://inkscape.org/).

This document was edited in Emacs (http://www.gnu.org/software/emacs/) and typeset

by LATEX2ε (http://www.latex-project.org/).

http://inkscape.org/
http://www.gnu.org/software/emacs/
http://www.latex-project.org/


229

Appendix E

Abstract visualisation of large networks

Effective visualisation of large complex networks is a challenging task, which, however, can serve

as an invaluable tool for gaining insight into and for the better understanding of such networks. In

the context of brain networks, often not only the sheer size of the connectivity network, but also

the various auxiliary data make it extremely difficult to present the observer with all the available

information on a single, yet accessible image. Such additional information can include: name

and spatial position of regions (nodes), direction, weight and length or trajectory of connections

(edges), and further hierarchical relations among the different levels or resolutions of the network.

Besides the standard 2D projected visualisations of the brain, the ”abstract” (non-spatial)

layout utilised in this work (front page figure of Part I, Figure 2.3 top, Figure 5.11 bottom and

Figure 6.1 middle) is called hierarchical radial tree, and was developed by Holten (2006). We

implemented the layout in Python for the current project, making it capable of visualising directed

or undirected, weighted or unweighted networks generically, possessing balanced or unbalanced

hierarchy structure. The basic idea behind this layout is that both the hierarchy structure (inclusive

relations) and the connectivity (adjacent relations) of a network can be visualised on a single image,

the former being depicted by the radial distances of the nodes from a common centre point (the

origo), while the latter is made accessible by effectively ”bundling” the edges that run along the

same ”path segment” in this hierarchical layout (Holten (2006)). Our implementation has some

20 adjustable parameters to manipulate the positioning and colouring of the network’s nodes and

edges on the layout, as well as to select only a subset of those to be drawn.
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