University of Sussex

A University of Sussex DPhil thesis
Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

EVALUATION OF THE USABILITY OF
CONSTRAINT DIAGRAMS AS A
VISUAL MODELLING LANGUAGE:
THEORETICAL AND EMPIRICAL
INVESTIGATIONS

NOORA FETAIS

A thesis submitted in partial fulfilment of the requirements of the University of Sussex

for the degree of Doctor of Philosophy
The University of Sussex

September, 2012

Declaration

| hereby declare that this thesis has not been and will not be, submitted in whole or in
part to another University for the award of any other degree. After registration for the
degree, and under supervision, these are the published paper names which are related to

the thesis chapters:

Fetais, Noora and Cheng, Peter C.-H. Empirical Evaluation of Constraint Diagrams Notation.

Qatar Foundation Annual Research Forum Proceedings (2012), Qatar.

Fetais, Noora and Cheng, Peter C.-H. Using Cognitive Dimensions Framework to Evaluate

Constraint Diagrams. Qatar Foundation Annual Research Forum Proceedings (2011), Qatar.

Fetais, Noora. Constraint diagrams can be used to interpret program specification expressions: an
evaluation experiment with novice users. Proceedings of Qatar Foundation Annual Research
Forum, Doha (2010), Qatar.

Fetais, Noora and Cheng, Peter C.-H. An Experiment to Evaluate Constraint Diagrams with
Novice Users. A.K. Goel, M. Jamnik, and N.H. Narayanan (Eds.): Diagrams 2010, LNAI 6170, pp.
307-309, 2010. © Springer-Verlag Berlin Heidelberg 2010.

Signature:

-~

A——,

Acknowledgements

First and foremost, profound thanks and gratitude to my supervisor, Professor Peter
Cheng at the University of Sussex for being a constant source of advice, encouragement
and enthusiasm, and for affording me ‘beyond the call of duty’ amounts of time and
endless support. Being Peter’s student has been a great privilege. Without his generous
support, this thesis would not have been brought to its conclusion and | would not have
had the not inconsiderable courage to expose the fields of cognitive science and
representational design. I am thankful for his incredible way of thinking to break a

complex task into a number of simple and easy to understand and solve chunks.

Secondly I would like to express my special thanks to Professor John Howse at the
University of Brighton for being a constant source of support, advice and expertise in
the field of representational notations especially in Constraint Diagrams Language. The
continuing influence of John has been appreciated. | also acknowledge the invaluable

assistance that Professor Thomas Green gave me with Cognitive Dimensions.

Thirdly, I must also express gratitude to both Dr. Gem Stapleton and Dr. lan Mackie for

agreeing to formally examine the thesis.

Thanks, also, to my annual review examiners, Dr. Richard Cox, Dr. Rudi Lutz, Dr. Bill
Keller, and Dr. lan Mackie for their time, support, advice and encouragement.

I would like to thank all the members of the Cognitive and Language Processing
Systems Group (CALPS) at the University of Sussex for the supportive and enthusiastic
environment they provided. It has been a privilege to work within this group. Thanks
must also go to the individuals who participated in the evaluations for their
contributions and patience in spending hours of their time understanding, interpreting

and constructing the desired notations.

Finally 1 would like to express my sincere appreciation to the most important people in
my life. To my family, thank you for the support given to me at all times and the

encouragement to pursue my dreams.

Evaluation of the Usability of Constraint Diagrams
as a Visual Modelling Language: Theoretical and

Empirical Investigations.

Noora Fetais
SUMMARY

This research evaluates the constraint diagrams (CD) notation, which is a formal
representation for program specification that has some promise to be used by people
who are not expert in software design. Multiple methods were adopted in order to
provide triangulated evidence of the potential benefits of constraint diagrams compared

with other notational systems. Three main approaches were adopted for this research.

The first approach was a semantic and task analysis of the CD notation. This was
conducted by the application of the Cognitive Dimensions framework, which was used
to examine the relative strengths and weaknesses of constraint diagrams and
conventional notations in terms of the perceptive facilitation or impediments of these
different representations. From this systematic analysis, we found that CD cognitively
reduced the cost of exploratory design, modification, incrementation, searching, and
transcription activities with regard to the cognitive dimensions: consistency, visibility,
abstraction, closeness of mapping, secondary notation, premature commitment, role-
expressiveness, progressive evaluation, diffuseness, provisionality, hidden dependency,

viscosity, hard mental operations, and error-proneness.

The second approach was an empirical evaluation of the comprehension of CD
compared to natural language (NL) with computer science students. This experiment
took the form of a web-based competition in which 33 participants were given
instructions and training on either CD or the equivalent NL specification expressions,
and then after each example, they responded to three multiple-choice questions
requiring the interpretation of expressions in their particular notation. Although the CD
group spent more time on the training and had less confidence, they obtained
comparable interpretation scores to the NL group and took less time to answer the

questions, although they had no prior experience of CD notation.

The third approach was an experiment on the construction of CD. 20 participants were
given instructions and training on either CD or the equivalent NL specification
expressions, and then after each example, they responded to three questions requiring
the construction of expressions in their particular notation. We built an editor to allow
the construction of the two notations, which automatically logged their interactions. In
general, for constructing program specification, the CD group had more accurate
answers, they had spent less time in training, and their returns to the training examples

were fewer than those of the NL group.

Overall it was found that CD is understandable, usable, intuitive, and expressive with

unambiguous semantic notation.

Submitted for the degree of Doctor of Philosophy
The University of Sussex

September, 2012

Table of Contents

(D] (O I 7 AN I [] 2
ACKNOWLEDGEMENTS ...ttt e e e st e e e s e bt e e s s b e e e s sba e e s ssbbesessabeeessbbenas 3
TABLE OF CONTENTS ..ttt ettt ettt ettt ettt e s ettt e e s bt e e e s sabte e s st eeeesebbaaessabbaessabbasessabenessbeneas 6
LIST OF TABLES ...ttt et e e e et e e e et e e s s bt e e e s e bt e e e s st e e e e s sbbeesssbbtesesabenessiaeeeas 9
LIST OF FIGURES ...ttt ettt ettt et e ettt e e et e e s eat e e e s s st e e e e s b bt e e s eabeeessabbeessraaeessaees 10
CHAPTER 1 INTRODUGCTION ..ottt ettt ettt e st e e e s sttt e s st e e e s b e e e sasbeeessares 14
1.1. MOTIVATION AND BACKGROUND.........ocotttiiiieiiiiititriee e e e s ssiibriee e e e s s ssibbbres e e s s s s sabbbesseesssssaabbaneeeeas 14
1.2. RESEARCH GOALS AND OBUIECTIVES ...iiciiiitttiiiteeiiiiitriees e e st esiasbaesssessssiabbrasssessssssssssesssssssnssssnes 17
1.3. RESEARCH METHODOLOGYcoiiittitiiiie et iiiibttiee s e e s s siibbaee s s e s s s sabbaesssesssssabbbatesasssssabbbareeaeesssanbreees 18
1.4. OVERVIEW OF THE THESIS 1.tttttiiiiiiiiiitttietie e s seiibtieeeesssesiabbbesssesssssasbsssssesssssssbbssesssssssssssssssssessinnns 19
1.4.1. Chapter 2: A Review 0Of the LItErature ..o 19
1.4.2. Chapter 3: CoNStraint DIAGIAMSc.ooviiiiiiirieieisieeee e 19
1.4.3. Chapter 4: Cognitive Dimensions ANAIYSIScccoovviriireniineeeeeeee e 20
1.4.4. Chapter 5: Experiment 1: Interpretation of Constraint Diagramsccccoeerereeeneenn. 20
1.4.5. Chapter 6: Experiment 2: Construction of Constraint Diagrams............ccccccevvvevivernnnens 20
1.4.6. Chapter 7: General CONCIUSIONScccuiiiiiiciieciece e 21
CHAPTER 2 A REVIEW OF THE LITERATURE ... 22
2.1. INTRODUCTIONoittttiette e et eiiibtet e e e e e et et et e e e et e et bbb b e e e e e e e saba b b aeeeeessssabbbbteeeeesssbbbbbeeseessaasbbbbaaeeeeas 22
2.2. PROGRAM SPECIFICATION LANGUAGES.uttiiiiieiiiiitiiiie e e e s esittiet e e e s s e sisbaeeseessssssbbareeasssssasrreens 23
2.3. LOGIC AND PROGRAM SPECIFICATION DIAGRAMScoeteieeeeeeeeeeeeeeeeeeeeee et 24
2.4, APPROACHES TO SUPPORTING THE LEARNING OF LOGIC.......cccuvviiiieiiieeiiieeee et 26
2.5. THEORY OF DIAGRAMMATIC REPRESENTATIONS ..uvvviiiiiiiiiitiriieeeessiitirreeesessssssssssssesssssssssssssess 29
2.6. THE CONSTRAINT DIAGRAM FAMILY L.uuitiiiiiiii ittt ettt sibab e e s sababaa e e 30
2.7. METHODOLOGIES AND FRAMEWORKS FOR ANALYSING NOTATIONAL SYSTEMS ..ccoevevviiirieieennn, 33
CHAPTER 3 CONSTRAINT DIAGRAMS ...ttt 35
3.1. N0 51U Lo 1 0] 35
3.2. S N T AKX ¢ttt e ettt ettt et e e et et et ettt e e e s e et bt etseessesaas b e et eeeesesas b eeteeeesessab b beeeeeeeessaabbebeeeeeessabbaareeeeessares 36
3.2.1. INFOPMAL SYNEAX .ttt se e 36
3.2.2. FOPMAL SYNTAXeeitiitt ettt sttt e bbb nnes 39

3.3. SEMANTICS ittt ittt et e ettt e e e e s et bbbt et e e e e s e e bbb b et s e e e se s bbb bat e e e e s s s bbb bbb e e eesssaabbbbbeeeseessabbbbeeesesssases 41
3.3.1. INFOIMAL SEMANTICS ...ttt e e s a e e e s et e e e s st b e e s sbaa e e s saees 41
3.3.2. FOIMAl SEMANTICS .. .vviiiieiiie ettt ettt st e e s s eb b e e s s st e e e s sbea e e s sbbeeesssbaneeans 42

3.4. REASONING ... vttt ettt e e e s s e bbb e e e e e e s e e bbb b e e e e e e s e s bbb bbb e e e e e s s sabbbbbeeasesssabbbaees 42

3.5. FRAGMENTS OF CONSTRAINT DIAGRAMScutitiiieiiieieitesie sttt et sne bt snesne e 44

3.6. USING CONSTRAINT DIAGRAMS IN PROGRAM SPECIFICATIONccuveviirinriniisrisieeiieie e 44
3.6.1. Patient Population: Class PP] ...c.ccvceieeiie st 45
3.6.2. Health-Care System: class HCS[Z, £S5, H Q] v 48
3.6.3. Patient Record System: class PRS[.P, LS5, H; Q0 R F] covveveeieieiecese e 53

3.7. L0 L U PP PR PP P 56

3.8. COMPARISON WITH OTHER DIAGRAMS.cututuiiiiistateteteieseststntsessssasssesssesesesestssssssssesesesesesesens 57
3.8.1. ComMUEALIVE QIAGIAMceiieieicce ettt e eesresresrneneas 58
3.8.2. L [0 = o] o SR 59
3.8.3. UML GIBQIAMS ...ttt ettt eb et b e eb et b bbb et sbe e b anes 60

3.9. DISCUSSION ...ttt e sr e sr e sr e 61

CHAPTER 4 COGNITIVE DIMENSIONS OF NOTATIONS FRAMEWORK ANALYSIS ..63

4.1. INTRODUGCTIONuttettttesitee sttt site ettt e st et essb e s bt e e sab e e shbeeshb e e sb e e e abs e e sbb e e sbe e e sbbeenb b e e asneenbbeennneennneens 63
4.2. NOTATIONAL ACTIVITIES ..uvtitteiteesteeieete st sieesteesre s sssesseesneesmeesbeennesnesseesseesneesneenneenresneenes 65
4.3. DIMENSIONS ...ttt sttt ettt b e et et e ae e h e e R e e bt e R e e s e e s he e s Reeere e nbeenneenreanrennee e 67
4.4, EXAMPLES FROM THE PATIENT RECORD SYSTEM....ccctiitiiiiniieniiesiiesiee it sneesne e 71
4.5. PROFILES ...ttt sttt ettt etttk b et e e st e e e e Rt et e b e e s et e e e e he e ebe e eRe e eneenreenrenne e 78
45.1. EXploratory DeSIgN ACTIVITYcooveiiirieiiiieiee et 78
45.2. MOdIfiCAtION ACHIVITYceitiiiiiite ettt 86
45.3. INCremMeNtation ACTIVITYoieiiiieiie e 91
4.5.4, SEAICHING ACHIVILY .eoveie e nae s 96
4.5.5. TranSCrIPLiON ACLIVILY ...ccveiviiie e sre et et e e nnee e 100
4.6. DISCUSSION ...ttt sttt ettt ettt b e bbbt bt a bt he e eb e nb e e b e e ke e b e e e s e e sbeenneenis 107
CHAPTER 5 EXPERIMENT 1: INTERPRETATION OF CONSTRAINT DIAGRAMS...... 109
5.1 INTRODUGCTION ...ttt ettt etee ettt et e bttt e bttt e sbe e e sbs e e sbe e e sbs e e sbb e e sbe e e abb e e sbe e e nab e e ssbeenabeesnbeennneeanes 109
5.2. EXPERIMENTAL DESIGN ...ttt sttt ettt ettt st ettt snee e b snneennne e 110
5.3. PILOT EXPERIMENTS ..viutitiiteietestestetestesteseste st esestesaesesbestesesbe st esasbessesesbessesesbessesasaessenessessenensens 111
5.4. EXPERIMENT ..otttiieteste st ete et st e e st st ete et st te sttt e s b e et e s b et e se et e st e s e et et ese et e s ese et e st eseebe s eneste st eneerns 114
5.4.1. IMEBENOO ..ttt bttt 114
5.4.2. SUDJBCES ..ttt b sr b neas 116
5.4.3. IMIBEETTAUS ...ttt bt bbbttt bbb n s 116
5.5. RESULTS ottt ettt bbbt h e bt e bt e bt et e e R bt e b b e eb e e ke e bt ekt e be e ne e eae e nne et 119
5.5.1. (@00 g 1T AN 0L T 121
5.5.2. Time Spent 0N €aCh QUESLIONciiiiiiiiiccriee s 124
5.5.3. CONFIABNCE RALING.....eveiiitiieeiee ettt 126
5.5.4. Time Spent 0N €ach EXAMPIEcoviiiiiieicc st eneas 130
5.5.5. RELUINS 10 EXAMPIE ...ttt 132
5.5.6. Relations between different MEASUIEScoiiiiiiiieiieee s 132
5.6. DISCUSSION ...ttt ettt ettt ettt he e b e e b e e bt et e e ae e e hb e eb e e eb e e b e e ebeebeennesaeesbnenneenis 133

CHAPTER 6 EXPERIMENT 2: CONSTRUCTION OF CONSTRAINT DIAGRAMS 138

6.1. INTRODUCTION ...ttt ettt sttt et ettt bbbt sbe e sbe e bt e ab e ehe e eb e e bt e be e s beebeesbeesbeeebeenbeenbeenbeseee e 138
6.2. EXPERIMENTAL DESIGNeiutiiiiiiiititiesti ettt ettt st st sttt ettt sttt e st e e nbe et aeesbeesae e e 139
6.3. PILOT EXPERIMENTS ..tiuiittiteiietestesieseste et et e s st see st seese st stesesbessesestestesesbessesesteseesensens 146
6.4. EXPERIMENT ..ottittteteite ettt sttt sttt sttt etttk bbb et b et b e bt e bt et st e bt et st n e et e n et 146
6.4.1. IMEENOM ...ttt et 146
6.4.2. RS0 o T £ S SPRSI 148
6.4.3. IMIBEEITAUS ...ttt bbbttt na b e eneenes 149
6.5. RESULTS ettt sttt h bbbttt h e bt b e s bt e bt et e e R bt e hb e eb e ekt e ekt e be e beenneeneenbeenbe et 156
6.5.1. (O00] ¢ 1101 07N 0 LT TSPV 157
6.5.2. PerCentage Of STEPS ...t 168
6.5.3. Percentage of the Number of Returns to the Examples........c.ccccvvvevvevviie i, 170
6.5.4. Time Spent 0N €ach EXampPleccooviiiiie e 172
6.5.5. Time Spent on each INitial-ThiNKINGcccoiiiiiiiiice e 177
6.5.6. Relations between different MEASUIEScovivriiirieeieee e 179
6.6. DISCUSSION ...ttt ettt ettt ettt b bbbt e bt e s bb e e sbb e e s bb e e sbb e e s bb e e nb b e e snbeenbbeesnneennneens 181
CHAPTER 7 GENERAL CONCLUSIONS ...ttt 185
7.1. INTRODUGCTION ...ttt ettt etee ettt bee ettt e bbbt e ket esbe e e kbt e she e e sbb e e sbe e e abb e e sbe e e sbbeesmbeesnbeeenbeennneennes 185
7.2. IMPLICATIONS OF THE KEY FINDINGS.....cctiitiiiiieitiesitaie ettt sttt sbe e sne e 188
7.2.1. Is CD notation effective for supporting NOVICE USErS?cccvveveeiueeveeiiesieseesee e 189

7.2.2. What are the relative strengths and weaknesses of CD notation and conventional NL

[40] 7211 {010 1O SO POUSOUP P TTPR PRSP 189
7.2.3. Is CD a good notation for the interpretation of program specification expressions?.... 190
7.2.4. Is CD a good notation for the construction of program specification expressions?......191
7.2.5. Is CD notation effective for program specification?...........ccocvevvineniiieneinenece, 191

7.3. THESIS LIMITATIONS AND FUTURE WORK ... cctiitiiiiiiieniite sttt 192
BIBLIOGRAPHY ..ottt ettt bbbt b bbbt b et st ne et 197
APPENDIX A: MATERIAL USED FOR CONDUCTING EXPERIMENT 1....ccccocoivvviiniiinnnn, 207

APPENDIX B: MATERIAL USED FOR CONDUCTING EXPERIMENT 2.....cccccooiiniiiiinn. 221

List of Tables

Table 3.1 These Formal Semantics are based on (Fish, et al., 20050)c.cccoecvviiiviiiniecie s, 42
Table 4.1 Cognitive DImensions DEfiNitiONS. ..ot 68
Table 4.2 Summary of Exploratory Design Activity Profile............coooriiiiiiiiiieee e, 86
Table 4.3 Summary of Modification Activity Profile........c.cccoiiiiiiiin i 91
Table 4.4 Summary of Incrementation Activity Profile ..., 96
Table 4.5 Summary of Searching Activity Profile ... 100
Table 4.6 Summary of Transcription ACtivity Profile..........cccoviiiiiii e 104
Table 4.7 CD Integrated Profile ..ot e 105
Table 4.8 NL Integrated Profileo.oiiiiiiiee e 106
Table 5.1The Pearson Product Moment Correlation between different measures for CD group............ 133
Table 5.2 The Pearson Product Moment Correlation between different measures for NL group............ 133
Table 5.3 SUMMArY Of the RESUILScoiiiiiiiiec e 135
Table 6.1 The Pearson Product Moment Correlation between different measures for the CD group 180
Table 6.2 The Pearson Product Moment Correlation between different measures for the NL group...... 181
Table 6.3 Summary of the Results where the CD group performed better than the NL group................. 183

Table 6.4 Summary of the Results where the NL group performed as well as or better than the CD group

.. 184
Table A.1 The EXamples fOr the CD grOUDc.coveiiirieiiiinieisiesieeeie st 207
Table A.2 The ExXamples for the NL grOUDcooveiiiriiiiireese st 212
Table A.3 The Questions for both the CD and the NL groups and the correct answerc.ccoeevnuene. 214
Table B.1 The Examples fOr the CD grOUDcoveiiirieiiirieieiesieeeie et 221
Table B.2 The Examples for the NL grOUPc.eocvveii ettt 226
Table B.3 The Part A - Questions for both the CD and the NL groups........c.cccvereireneineneneneeneens 231
Table B.4 The Part B - Questions for both the CD and the NL groups.........cccceverererineniene e 236

TabIE B.5 THE COITECT ANSWET ...t eeeee ettt e sttt e s et e s s bt e e e s eb b e e s s sabee s e sbaeeesebbaeesssbeaesssbbeeesssraneens 241

10

List of Figures

Figure 1.1 Constraint Diagrams representation of the invariant of the Patient Record System 16
Figure 2.1 OCL representation of the invariant of the Patient Record System...........ccccoevneneineneennen, 23
Figure 2.2 Entity-Relationship DIagram...........ccciiieiieiiieeese e 25
FIQUIE 2.3 HATel’s STAIECHATTccveceieiiie e eese s e s e st s ettt e e te s te e et et e stestesteeneese e tentestenreaneeneas 25
Figure 2.4 diagram to present the existence of an element in patient...........cccccooeveviniir e, 30
Figure 2.5 Spider Diagrams (3 VEISIONS)........coueiierieirierieiestesieit sttt sttt sb et sb et sbe et sbe e nn s 32
Figure 2.6 Concepts Patient, PRec, and Communication are represented by the Concept Diagrams 32
Figure 3.1 An example of an ambiguous constraint diagramcccccevieerieiecce s 37
Figure 3.2 This Formal Syntax is based on (Fish, et al., 2005b)c.cooeiiiiiiiiinii e, 39
Figure 3.3 Deleting an existential SPIEr ..o 43
Figure 3.4 Class-structure for Patient ReCOrd SYStEM.........cccveiiiiiiiiiiie e 44
Figure 3.5 Specification of an invariant that uses constraint diagramsccccocereineneieneneiseneenen, 45
Figure 3.6 Constraint Diagrams as an Event to Register Patientscccoeveineniineneisenecseneeen, 46
Figure 3.7 An event to update Patient Information at the PP levelcccocovooviiiicc e, 47
Figure 3.8 An event to record Patient's Death at the PP level..........ccooe i 47
Figure 3.9 The HCS INVAITANT.........oiiiiiieie ettt 48
Figure 3.10 An event to define @ NBW SEIVICE.......icviiiiieeciecie ettt ae e sreesae e 49
Figure 3.11 An event to define @ NEW SUD-SEIVICE........cccueiieiieie et 49
Figure 3.12 An event to register a new health professional............ccccoiiiiiiniinne, 50
Figure 3.13 An event to record a new qualification............ccccooeiiiiiiineii e, 50
Figure 3.14 An event to associate a health-profeessional with a (Sub-) SErviceccccocevveveiieieeinenne. 51
Figure 3.15 An event to dissociate a halth-professional from a (Sub-) SErvice.........ccccvvveviveieiiciiesnenne. 51
Figure 3.16 An event to enroll a patient into (SUD-) SEIVICE.......ccii i 52
Figure 3.17 An event to discharge a patient from (SUD-) SEIVICEcccoeririiiiii e 52
Figure 3.18 Two Events that are promoted from the extended invariant.............ccccooieiiiinnic s, 52
Figure 3.19 The PRS INVATTANToiiiiiieiie ettt ettt et 53
Figure 3.20 AN eVent t0 Create @ NEW NOTEeiiirieiiie ettt ettt st see s 54
Figure 3.21 An event to send & COMMUNICALIONc..eiviitiriiiiiiiie ettt st 55
Figure 3.22 Events that are promoted from this or extended invariants............ccocoveineneinieneineneenen, 56
Figure 3.23 COMMUEALIVE DIAGIAMSeveiiiieieeite ettt sttt sttt sttt et s b et e et st nr et b ne b 58
FIQUIE 3.24 HIGEAPI ...t bbbttt bt e bbbt et et et sbesbeabeeneas 59
Figure 3.25 TWO NON-INtErSected DIODS..... ..o e 60
FIgure 3.26 Class QIagram.......c.ccueiiieieiiieeieiesesestestese e s e e e e e stestesreesee e e s e tesaestesaeeseeseensesaesresresnaanens 60
Figure 3.27 State diagram fOr HPTFOT.........oo i e 61
Figure 4.1 CD diagram to represent the Patient set with two disjoint SUDSELScocveiieiiiiiiciineen, 71

Figure 4.2 NL statement to represent the Patient set with two disjoint SUBSELScccvevverercrieiivnininenn, 72

11

Figure 4.3 CD diagram to represent the Gender set with two disjoint SUDSELS...........ccccererireneiineneenen, 72
Figure 4.4 NL statement to represent that the Gender set with two disjoint SUDSELScccceveireneennen. 72
Figure 4.5 CD diagram to represent the Patient set with five SUDSELSccccceveviiiniiv e, 73
Figure 4.6 NL statement to represent the Patient set with five SUDSELSc.cccvveriiiiinciiiice, 73
Figure 4.7 CD diagram to present the five subsets of the Patient set along with a spider........................ 74
Figure 4.8 NL statement to present the five subsets of the Patient set along with a spider 74
Figure 4.9 CD diagram to present the two sets Patient and Gender along with their subset.................... 75
Figure 4.10 NL statement to present the two sets Patient and Gender along with their subsets 75
Figure 4.11CD diagram to present that each Patient is either a Male or Female only..............c.cccooee.. 75
Figure 4.12 NL statement to represent that each Patient is either a Male or Female only 76
Figure 4.13 CD diagram to present that each Patient has one or many PRecC fileS..........ccccoovvvninennen, 76
Figure 4.14 NL statement to represent that each Patient has one or many PRec filescc.ccovvneinnen. 76
Figure 4.15 A CD diagram to represent that each PRec file refers to only one patientc.cccoeveee. 76
Figure 4.16 NL statement to represent that each PRec file refers to only one patient................ccccevvvuennee. 77
Figure 4.17 CD diagram to present the problem of the differences between domain and habitat............. 77
Figure 4.18 NL statement to present the problem of the differences between domain and habitat............ 77
Figure 4.19 A CD diagram to present the generalized version of the CDc.ccccevevieiiiie e, 77
Figure 4.20 NL statement to represent two relations at the same timeccoccovvereineneineneceee, 77
Figure 5.1 A snapshot from PIlOt L.........ccooiiiiiiiii e 112
Figure 5.2 A snapshot of training example 7 USING CDcccvoiieiieiiie e 117
Figure 5. 3 A snapshot of training example 7 USING NL........ccoooiiiiiiiniee e 118
Figure 5.4 A snapshot of qUESEION 23 USING CD.......coiviiiiriiirieieire e 118
Figure 5.5 A snapshot of question 23 USING NLccviviiiiiiiciicce e 119
Figure 5.6 The drop-0UL FALE..........cciii et te et e et e s seeeasesteestaenraenreeseeas 120
Figure 5.7 Graph of the average of correct answers for the two groups across the 24 questions........... 122

Figure 5.8 Graph of the interaction of CD and NL representations and correct answers for the two halves
OF thE 24 QUESTIONS. ...ttt bbbt b e b e b e bt e b e et e st e b et e nbesbesbesreeneas 123
Figure 5.9 Graph of the average time for the two groups across the 24 qUESLIONS...........cccceeerererienene 125
Figure 5.10 Graph of the interaction of CD and NL representations and the time spent on questions for
the two halves Of the 24 QUESTIONSc.eiiiiiiiiec et 125
Figure 5.11 Graph of the confidence average for the two groups across the 24 questions 126
Figure 5.12 Graph of the interaction of CD and NL representations and the level of the confidence rating
for the two halves Of the 24 QUESTIONSoiiiii e bbb 128
Figure 5.13 Graph of the interaction of CD and NL representations and normalized confidence rate the
tWO halVes Of the 24 QUESTIONS.........oouiiiieii et et b e bbbt be b bbb ens 129
Figure 5.14 Graph of the example time average for the two groups across the 24 questions 131
Figure 5.15 Graph of the interaction of CD and NL representations and the time spent on examples for

the two halves Of the 24 QUESTIONSecvieccc et reens 132

12

Figure 6.1 Evaluating Methods of Program Specification: Constructing CD — Training Question: Part A

.. 141
Figure 6.2Evaluating Methods of Program Specification: Constructing CD — Training Question: Part B
.. 142
Figure 6.3 Evaluating Methods of Program Specification: Constructing FSL — Training Question: Part A
.. 143
Figure 6.4 Evaluating Methods of Program Specification: Constructing FSL — Training Question: Part B
.. 144
Figure 6.5 Examples of hand-drawn CIrCIEScccviiiiiiiiicie e 148
Figure 6.6 A snapshot of training example 7 USING CDccocviiiiiniininee e 150
Figure 6.7 A snapshot of training example 7 USiNg NL ..o 151
Figure 6.8 4 snapshot of “UpdatePatientRecord” Event (Question Part-A) using CDccocvevnee. 152
Figure 6.9 4 snapshot of “UpdatePatientRecord” Event (Question Part-A) using NLcc.ccceneee. 153
Figure 6.10 A snapshot of "UpdatePatientRecord” Event (Question Part-B) using CDc..cccccuvenene 154
Figure 6.11 A snapshot of “UpdatePatientRecord” Event (Question Part-B) using NLc.cee.ee.. 155

Figure 6.12 4 snapshot of the correct answer of “UpdatePatientRecord” Event Question using CD 156
Figure 6.13 A snapshot of the correct answer of "UpdatePatientRecord™ Event Question using NL...... 156
Figure 6.14 Graph of the average of correct answers for the two groups across the 21 questions......... 158
Figure 6.15 Graph of the interaction of CD and NL representations and correct answers of the two parts
OF The 21 QUESTIONS ...ttt b bbbt b e bttt b ettt sbe et e s bt ebe e 158
Figure 6.16 Graph of the average of correct objects for the two groups across the 21 questions........... 160
Figure 6.17 Graph of the interaction of CD and NL representations and correct objects of the two parts
Lo 1 LT o TN TS Ao PSS 161
Figure 6.18 Graph of the average of created objects for the two groups across the 21 questions 162

Figure 6.19 Graph of the interaction of CD and NL representations and created objects of the two parts

OF The 21 QUESTIONS ...ttt bbbt b e bbbkt b ettt nb e et e s bt ebennes 163
Figure 6.20 TWO QISJOINTEA SELSiviiiiitiiieieie ittt st b et e et b ebe e 165
Figure 6.21Two sets with the same Size and XY POINTSoovviiireireree e 165
Figure 6.22 TWO FEIATEA SELS......c..oiiiitirieitieieei ettt ettt bbbt bt e e b et b be s e 165
Figure 6.23 Graph of the average of configuration for the two groups across the 21 questions............. 166

Figure 6.24 Graph of the interaction of CD and NL representations and configuration of the two parts of
TNE 2L QUESTIONSttt bbbttt bbbt b st bt b e e st b et b et n e 167
Figure 6.25 Graph of the average of steps for the two groups across the 21 quUeStionsc.ccceueeve.. 168
Figure 6.26 Graph of the interaction of CD and NL representations and steps of the two parts of the 21
(0 [U LTS (o] 4TSRS SOUU TP 169
Figure 6.27 Graph of the average of returns to examples for the two groups across the 21 questions... 171
Figure 6.28 Graph of the interaction of CD and NL representations and steps of the two parts of the 21
oW o] 4SS 172

13

Figure 6.29 Graph of the average of time spent on each example for the two groups across the 7
BXAMPIES ...ttt b bbb b e bR bR bbb E e bt bbbt nh et b bt erenas 173
Figure 6.30 Graph of the average of time spent on each new example for the two groups across the 7
Loy C= 1111 0] LSRR 174
Figure 6.31 Graph of the average of time spent on each returned example for the two groups across the
o 01y o) TSRS 175
Figure 6.32 Graph of the average of time spent on each returned example for the two groups across the 7
L3 C= 1111 0] LSS 175
Figure 6.33 Graph of the interaction of CD and NL representations and the returned examples time of the
tWO PArtS OF the 21 QUESTIONSe.viuiitiieeeieti ittt b ettt bbb bt s 176
Figure 6.34 Graph of the average of time spent on each initial thinking for the two groups across the 21
GUESTIONS. c. ettt ettt etttk e bbb bbb st b e E s h e e Eeh e bt e Eeh £ e b e E oA e e bt e E R e e bt E R e Rt R Rt e bt nh e b b e b e 177
Figure 6.35 Graph of the interaction of CD and NL representations and initial thinking time of the two

PANES OF tNE 2L QUESLIONSeviieiiite ettt bbbt b e et b e bbb bbb bbbt st ene b 178

14

Chapter 1 Introduction

This chapter has four sections: Section 1.1 presents the reasons
leading to this study, section 1.2 sets out the goals and objectives,
section 1.3 defines the methodology we adopt and finally section

1.4 is an overview of the chapters that follow.

1.1. Motivation and Background
Program specification is a description of the software system that must be available to
software designers in advance to eliminate guesswork and to understand the limitations
of the proposed system, to ensure that all domain states are represented. It is either
formal, if mathematical notations are used, or informal, if narrative descriptions are
used. The struggle to choose formal or informal languages is due to the involvement of
stakeholders, who are experts in a domain, and software developers, who are experts in
program specification in the development of software systems, which requires sufficient
shared understanding of the proposed design’s representation. Unlike software
designers, stakeholders are experts in their own domain but they are novices in
designing systems. On the one hand, formal specification languages, which ensure
unambiguous semantics and offer a single interpretation, can be used to represent a
design. However, the problem with using these formal languages is that they are used as
a lingua franca by experienced software engineers to communicate between themselves.
They require specialist knowledge, good experience and a strong mathematical
background. Thus, it is difficult to engage stakeholders in conversations about the
design of the model. On the other hand, most of the time informal specification
languages, which are easy to use, have the problem of ambiguity and they allow
different inferences. As a result, the initial step in designing a solution to a problem is to

choose an appropriate representation.

Constraint diagrams (CD) (Kent, 1997) are a diagrammatic formal program
specification language, which are used to model programs in the preliminary stages of
designing complex software systems. The notion of this proposal is to bridge the gap
between formal and informal specification languages by providing an intuitive
diagrammatic formal language that is simpler and more effective than other approaches
used to formally specify programs. Moreover, CD is for novices in specific areas, either

in domain or program specification. Although CD is a simple diagrammatic language, it

15

can specify functions or relations, show the properties of those relationships and
compositions of those relationships, express constraints, and enhance the visualization
of object structures. The CD notation is used to alternate the mathematical logic
notation, to express constraints in Syntropy (Cook & Daniels, 1994), Catalysis (D'Souza
& Wills, 1995; D'Souza & Wills, 1998), Z (Woodcock & Davies, 1996) and Object
Constraint Language (OCL) (Warmer & Kleppe, 1998). Not only that, but also it is used
in conjunction with the Unified Modelling Language (UML) diagrams (Booch, et al.,
1999; Oestereich, 2002) that specify large software systems, due to CD’s ability to
visualize the properties of relationships and the relative positions of the elements such
as being a subset of other sets. Constraints (Burns & Hajdukiewicz, 2004), which are a
set of important relationships that affect the accuracy of the system, are visible only
when they are represented and understood. Figure 1.1 provides an example of a
constraint diagram taken from a health informatics case study called a Patient Record
System (Fetais, et al., 2005). Although superficially it might seem visually
straightforward and simple, there is much in the structure of the diagram. Each contour
is used to represent a set of elements, a labelled arrow to represent a binary relation, a
dot to represent an existential element (existential spider), and an asterisk to represent a
universal spider. This diagram shows that for each Health Professional (HProf), the
Patient Record (PRec) of any patient who is related to the HProf must be originated by
all services which are associated to the HProf. Clearly there is a level of conceptual
complexity here, even though the diagram may visually be relatively simple. Reading
CD notation can cause ambiguity if it does not adopt a reading choice. For Figure 1.1,
we read this diagram using the ‘follow the arrow’ convention. However, we can use
other implicit or explicit reading choices such as an explicit reading tree (Fish, et al.,
2003; Fish & Howse, 2003; Fish & Howse, 2004; Fish & Masthoff, 2005) which
eliminates the intuitive reading possibilities, or the implicit reading tree (Howse &
Schuman, 2005) which provides a simple default reading option.

This research aims to explore the usability of CD which has not yet been evaluated. The
usability, according to 1SO 9241-11, is “the extent to which a product can be used by
specified users to achieve specified goals with effectiveness, efficiency and satisfaction
in a specified context of use.” (Bevan, 1997). CD needs to be evaluated to test its
usability, which according to the previous definition, checks its ability to be used by

novices, to specify programs, to examine its real impact in the real world.

16

HProf Service

Orig

Patien PRec

Figure 1.1 Constraint Diagrams representation of the invariant of the Patient Record System

This thesis includes theoretical and empirical investigations to evaluate the usability of
CD as a visual modelling language for diagrammatic communication between involvers
in the program designs. Since CD is a language, we will start with a definition of the
language: a language is a tool that we use for interactions. A language is defined as “a
system of symbols and rules that enable us to communicate” (Harley, 2008). According
to Whorf’s hypothesis, in the weak interpretation (Carroll, 1956), the structure of a
language affects the thinking habits and the behaviours of the human. Thus, this applies
to the language that we might consider to express program specifications. So, it is
important to pick a good language. With different languages there are different

conceptual costs and benefits which need to be evaluated.

Since some basis of comparison is needed in order to evaluate the potential of CD,
several formal or informal, diagrammatic or non-diagrammatic languages are likely to
be used and compared with CD. Examples of these languages are: the first-order logic
(Margaris, 1990), Z (Woodcock & Davies, 1996), and the UML (Booch, et al., 1999).
Although the idea of CD notation is to try to bridge such a gap by providing an intuitive
formal language with precise semantics, due to their diagrammatic properties such as
being well matched to its meaning (Gurr, 1996) which shown in Figure 4.19 and having
free rides (Shimojima, 1996) which is shown in Figure 2.4 — as will be discussed

extensively with examples in chapter 4 — it is used as an aid to communicate with all

17

stakeholders as in section 3.6, even those not mathematically trained. For this reason, it
is unlikely that novice users with little technical knowledge of program specification
would use them. Therefore, for the purpose of this experiment, natural language (NL)
provides a realistic and suitable comparator. Although some may question the
legitimacy of using NL as the comparator in this study instead of formal languages, we
believe NL has three advantages over the mentioned ones. First, it is a common notation
that is readily understood. Second, it is not demanding or beyond novice users'
capabilities, which is necessary for communicating requirements between the client and
the software engineers. Third, it is always used in specification as a narrative
specification to produce requirements specification documents that go with the formal
specification of software. Therefore, this could result in exploring answers to scientific

questions about diagrams and notations.

1.2. Research Goals and Objectives

Due to the involvement of experts in a domain and experts in program specification in
the development of software systems, there is a need for sufficient shared understanding
of the problem's representations and of the proposed solution. For the purposes of
formal software specification using a visual method, Constraint Diagrams (CD) (Kent,
1997) were proposed as a simple and effective approach to formally specify programs
(Howse & Schuman, 2005). The efficacy of some aspects of CD were questioned
(Stapleton & Delaney, 2008), claiming that it is not always well matched to meaning
(Gurr & Tourlas, 2000) and changes were suggested to improve the language.
Additionally, in order to evaluate the efficacy of CD, some empirical studies have been
carried out on CD. These took the form of experiments with no direct comparison to
other methods (Fish & Masthoff, 2005), or a comparison of CD with VisualOCL
(Bottoni, et al., 2001; Kiesner, et al., 2002) from a theoretical perspective without
empirical evaluation (Fish, et al., 2005a). In this respect, no such empirical studies have
yet been performed, and thus this work is a first step in this direction. In fact, the need
for empirical studies to compare CD with textual languages has been pointed out
(Stapleton & Delaney, 2008).

The objective of this research is to provide triangulated evidence of the potential
benefits of CD notation compared to another notational system. This is important to
support the hypothesis that a novice in either a domain or a program specification can

understand CD notation and can actually use it to formally specify programs, which will

18

allow all the parties to the development of the software design to be involved without
the need for a strong mathematical background that is usually required by formal
specification languages. Despite the fact that CD notation is designed as an easy and

simple program specification notation, we would like to raise the following questions:

1. Is CD notation effective for program specification?

2. Is CD a good notation for the construction of program specification expressions?

3. Is CD a good notation for the interpretation of program specification
expressions?

4. What are the relative strengths and weaknesses of CD notation and conventional
NL notation?

5. Is CD notation effective for supporting novice users?

According to these questions and their answers, this study will focus on the insights of
CD notation, and will also explore the nature of diagrams that could make an effective

notation, and how logic and program specification could be coded using CD notation.

1.3. Research Methodology
The overall aim of this research is to rigorously examine constraint diagrams as a
software design approach, to understand the benefits and the limitations of CD. Multiple
methods are adopted in order to provide triangulated evidence of the potential benefits
of CD notation compared to other notational systems. Three main approaches are
adopted in this research. The first is examining the semantic and task analysis of CD
language. This is conducted by the application of the Cognitive Dimensions framework
(Green & Petre, 1996) which is used to examine the relative strengths and weaknesses
of CD and conventional notations in terms of the cognitive facilitation or impediments
of these different representations which will help in determining if the users would be
able to use CD to accomplish a set of tasks. The second approach is the direct empirical
valuation of the constraint diagrams compared to NL in terms of the comprehension of
notational system. The third approach is the another empirical valuation of the
constraint diagrams compared to NL in terms of the usage of that system to generate the
specifications that model the program expressions. These two empirical approaches
include two computer-based experiments, one on the comprehension of a notational

system and the other on the usage.

19

Comprehension is an important software engineering activity to facilitate reuse,
inspection, and extension of existing system. There are many research communities
concerned with program comprehension such as IEEE International Conferences on
Program Comprehension (ICPC) and Psychology of Programming Interest Group (PPIG)
annual workshops. We examined state of the art of program comprehension by using the
Cognitive Dimensions of the Notations Framework and the state of the practice by

conducting an experiment on the interpretations.

Construction is another important software activity to understand the usability of a

notational system in real world situations.

1.4, Overview of the thesis

This section presents the overall plan of the thesis.

1.4.1. Chapter 2: A Review of the Literature
This chapter reviews the literature in six areas that relate to the aim of this study. First,
we review the available program specification languages to point out their strengths and
limitations. Second, we explore the diagrammatic logic and program specification
languages. In this context, we compare the diagrammatic and non-diagrammatic
languages for program specification. Third, we investigate the learning approaches that
support logic and program specification learning activities. Fourth, this track of
investigating the literature requires an understanding of the nature of the diagrammatic
notations. Fifth, to concentrate on constraint diagrams, we need to explore its family by
providing a review of the spider diagram family to which constraint diagrams belong.
Finally, researching on the usability of a notation needs an evaluation of the available
evaluation methods, highlighting the strengths and limitations of these methods and

choosing the most appropriate method.

We conclude this chapter by emphasising the most relevant work related to this

research.

1.4.2. Chapter 3: Constraint Diagrams
This chapter explains constraint diagrams in more detail. It shows both their formal and
informal syntax and semantics. Moreover, we provide examples of the usage of

constraint diagrams in program specification. Finally, we provide a comparison between

20

different program specification diagrams and constraint diagrams to investigate the
strengths and the limitations of these related diagrams.

We provide a summary of the potential benefits of constraint diagrams to serve as the

foundation of CD which will impact on understanding the next chapters.

1.4.3. Chapter 4: Cognitive Dimensions Analysis
The content of this chapter is about using a Cognitive Dimensions framework to
evaluate the usability of CD and conventional notations in terms of the cognitive
facilitation or impediments of these different representations. For this reason, to
understand how constraint diagrams work, we must show how constraint diagrams use
visual characteristics to support particular qualitative inferences. The findings of this
evaluation will answer our questions as to whether CD notation cognitively works at all,
whether CD is cognitively effective for supporting novices in specifying programs, and
what the relative strengths and weaknesses of CD notation and conventional NL

notation are in terms of the cognitive facilitation or impediments.

1.4.4. Chapter 5: Experiment 1: Interpretation of Constraint Diagrams
In this chapter, an empirical experiment to examine the interpretation of using CD
compared with NL will be discussed. The findings of this evaluation will answer our
questions as to whether CD notation works at all in terms of the interpretation, whether
CD is a good notation for interpreting program specifications compared with NL
notation, whether CD is effective for helping novices to understand programs, and what
the relative strengths and weaknesses of CD notation and conventional NL notation are

in terms of the comprehensive facilitation or impediments.

1.4.5. Chapter 6: Experiment 2: Construction of Constraint Diagrams
Another empirical experiment to examine the usage of CD in constructing specification
compared again with NL is conducted and discussed in this chapter. The findings of this
evaluation will answer our questions as to whether CD notation works at all in terms of
the construction, whether CD is a good notation for construction program specifications
compared with NL notation, whether CD is effective for supporting novices in
constructing programs, and what the relative strengths and weaknesses of CD notation
and conventional NL notation are in terms of the comprehensive facilitation or

impediments.

21

1.4.6. Chapter 7: General Conclusions
This concluding chapter presents the findings of the triangulated evidence we adopted
and discusses the contributions made by the thesis and the directions for future work.

General questions will be answered.

22

Chapter 2 A Review of the Literature

This chapter represents the work related to this research. Indeed,
this thesis draws on the literature from (a) cognitive science of
representations, particularly diagrammatic representations, (b)

logic and (c) program specification using diagrammatic notation.

2.1. Introduction

There is a trend to use diagrams in logic and program specification because “a picture
can be worth 10,000 words” (Larkin & Simon, 1987). Hadamard (Dreyfus, 1994), in
1945, “concludes that [mathematicians], very generally, use images and that these
images very often are of a geometric nature. He recounts that when thinking, practically
all mathematicians avoid not only the use of words but also algebraic and other
symbols; they use vague images”. With this idea in mind, an increasing number of
investigations into the cognitive, logical, and computational characteristics of
diagrammatic representations follow the importance of visual information in
communication and computation and the key role that design, and therefore modelling
notations, play in the development process of software systems.

Constraint Diagrams (Kent, 1997), as in Figure 1.1, are a language designed to formally
specify information systems by visualizing logical or set-theoretic assertions and
representing relationships between sets, such as containment and disjointedness. They
generalize the intuitive system of Venn-Peirce diagrams investigated by Shin, by

providing facilities for quantification and navigation of relations.

Another system which arises from this constraint diagrams investigation is called Spider
diagrams (Gil, et al. 1999; Howse, Molina et al. 1999). Spider diagrams, as in Figure
2.6, are a system of visual notation for expressing logical statements, and form the basis
of more expressive constraint diagrams. Spiders are used to denote that an element
exists in a set which is the union of one or more regions, as will be shown in the next
chapter. In general, spider diagrams notation is a fragment of constraint diagrams which

extend spider diagrams by using additional syntax such as arrows and wildcards.

This thesis concentrates on studying the usability of Constraint Diagrams, and thus we
need to understand the reasons behind (1) the need for program specifications and the

difficulties associated with program specification, (2) diagrammatic representations of

23

logic and program specification, (3) approaches to supporting the learning of program
specification, (4) the theory of diagrammatic representations in general, (5) the notion of
the constraint diagram family, and (6) the different methodologies and frameworks that
are used to analyse different representations. In general, this chapter will be a guide to

the design of our usability study.

2.2. Program Specification Languages
There are different program specification languages which are used to provide relevant
aspects of the specification. Some of them are informal such as natural languages, and
the others are formal with strong mathematics such as Z language (Woodcock &
Davies, 1996) and Object Constraint Language (OCL) (Warmer & Kleppe, 1998).

Figure 1.1, in Chapter 1, shows by using constraint diagrams (CD) that for each Health-
professional (HProf), the Patient-Records (PRec) of any patient (Patient) who is related
to the HProf must be originated by all services (Service) which are associated with the
HProf. As is known, this description in natural language could result in ambiguity.

Figurel.1 could be presented in OCL as shown in Figure 2.1:

Context Patient Record System

Inv: HProf alllnstances ->forAll(h | h.Relate->forAll(p |
h.Assoc-=forAll(s | s.Orig->includes(p.Own))))

Figure 2.1 OCL representation of the invariant of the Patient Record System

However, this OCL does not include the disjointedness information also in the diagram
e.g. HProf is disjointed from Service. Figure 2.1 shows that it will always need a
mathematical background to interpret this expression. Although OCL is textual first
order logic to describe additional constraints about the objects in the model, it is not a
stand-alone language. All attributes used in OCL expressions must be defined in UML
model. OCL expressions are verbose in that they are textual and rely on a class diagram
for context. On the other hand, CD can make many statements in a single diagram and

are therefore reasonably concise.

Constraints need to be described using a formal language such as OCL or Z to avoid
ambiguities. OCL is a logical-based language used to define invariants and pre and post

conditions of operations. Despite the fact that the problem with such languages is the

24

need for a strong mathematical background, and thus they are difficult to use as an aid
for integrating stakeholders into the software development because they cannot read it

or write it, these languages are still the only approach to verify critical systems.

In the OCL v2.3.1 manual (OMG), it is written that “In order to write unambiguous
constraints, so-called formal languages have been developed. The disadvantage of
traditional formal languages is that they are usable to people with a strong
mathematical background, but difficult for the average business or system modeller to
use. OCL has been developed to fill this gap. It is a formal language that remains easy
to read and write.” However, Craig Larman (Larman, 2001) suggested that “Unless
there is a compelling practical reason to require people to learn and use the OCL, keep
things simple and use natural language”. In general, OCL is not a stand-alone language

and needs a UML class diagram to accompany it.

After studying the advantages and disadvantages of using informal and formal
languages, and for the reason of focusing on novice users, we will choose to use natural
language which is informal language to be compared with CD in our research. Thus,

this section guided the design of our usability study.

2.3. Logic and program specification diagrams
The development of diagrammatic notations in program specifications enables more
people to accomplish more ambitious tasks. There was a tremendous development in
diagrammatic representations to specify the requirements to build a program after the
1940s due to the development of computer systems and the need for presenting a design
of the software.

Examples used for program specifications are Syntropy (Cook & Daniels, 1994),
Catalysis (D'Souza & Wills, 1998), Entity-Relationship Diagrams (ER-D) (Chen, 1976;
Chen, 2002), Harel statecharts (Harel, 1987), and The Unified Modelling Language
(UML) (Booch, et al., 1999). ER-D represents data in an abstract conceptual manner
that describes a database. As shown in Figure 2.2, entities are represented by rectangular
boxes which are stored in tables such as Patient and Patient-Record entities.
Relationships are represented by diamond-shaped boxes such as Own. Entities and
relationships are mapped to their value sets by attributes that are depicted by circles,
such as Name, ID, and Address for Patient and Author, Origin, and Date for Patient-

Record as shown in the figure. So we say that a patient whose name, 1D, and address are

http://www.craiglarman.com/

25

equal to Name, ID and Address owns the Patient-Record that has the author, origin and
date of Author, Origin and Date. However, it represents only the structure of a system

without depicting any dynamic behaviour.

RPS KRR

Patient PRec

Figure 2.2 Entity-Relationship Diagram

Harel statecharts are a higraph-based system (Section 3.8.2) where the rounded
rectangles (called blobs) represent states, and arrows represent transitions. They
represent the dynamic behaviour of the system, and thus they allow elements to exist in
multiple different states simultaneously. It has been stated that “Modellers can use
orthogonal states to decompose large state spaces naturally into independent (or almost
independent) parts” (Harel & Gery, 1997). Although Harel statecharts are used in UML
as a state diagram, they are, as Harel stated, “not exclusively visual/diagrammatic. Their
non-visual parts include, for example, the events that cause transitions, the conditions
that guard against taking transitions and actions that are to be carried out when a
transition is taken” (Harel, 2007). Each set represented in Figure 1.1 could be
represented using different statecharts. Figure 2.3 represents the states of Patient set
(Figure 1.1) where they could be Alive or Dead.

" Patient)

&(Alive)
(De‘;id />

Figure 2.3 Harel’s Statechart

26

UML v2.0 (Booch, et al., 1999), which has 13 different diagrammatic notations to
provide relevant aspects of the specification, is a widespread set of different notations
that has been standardized by OMG to be used in both industry and academia. Unified
Modelling Language (UML) Diagrams — which includes Class Diagrams as in Figure
3.27 and includes state diagrams as in Figure 3.28 — are used to provide a ready-to-use,
expressive visual modelling language (Booch, et al., 1999). It is mainly intended to be
used by software designers during the software development process, from capturing the
domain requirements to the implementation. It is used to simply explain your design
and to give a general roadmap for the implementation. Booch, a co-creator of UML,
said that the original vision for UML was a “graphical language to help reason about
the design of a system as it unfolds” (O’Brien & Booch, 2009). By implication,
unfortunately, UML is a detailed planning method with multi-stage diagrams where
some diagrams are related to a specific stage or phase of the software development (e.g.
UML Structure Diagrams relate to the planning and design stage because they show the
real-world concepts and the relationships between them whereas the UML Deployment
Diagrams relate to the installation stage because they show the way the application will
be configured and deployed). Thus, UML is a good method only if it is well understood,
but due to its complexity and being a method not a methodology, it could cause some
issues such as confusing designers in knowing where to start. Moreover, using UML
diagrams definitely requires too much time and, unfortunately, could turn the
stakeholders’ focus from the design itself to the software features, which is, from the

point of view of the software designers, a real interruption.

This section provided us with some of the program specification diagrams which helped
us to understand the issues with them and why a new diagrams notation such as CD

were proposed. Thus, this section guided us in the design of our usability study.

2.4. Approaches to supporting the learning of Logic
There are popular approaches to teaching logic (Goldson, et al., 1993), each trying to
overcome the misconception about people learning logic. Barwise and Etchemendy
developed a theory of heterogeneous reasoning (Barwise & Etchemendy, 1995) which
was implemented as a computer program called Hyperproof for teaching first-order
logic in a novel way that uses both graphical and linguistic representations, supports
reasoning in either representation, or a mixture of both. The Hyperproof interface shows

a grid with objects and has two main parts. One represents a diagrammatical view of the

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Class_diagram

27

represented first-order logic system by using different-sized objects and the other
represents a list of sentences of the same system using formulas related to these objects.
Then they designed Tarski's World which can be used to explore the semantics of first-
order logic by writing sentences in an interpreted language, and building worlds in
which those sentences may be evaluated for truth (Stenning, 2002). According to
Cheng, the invention of novel diagrammatic systems can enhance conceptual learning in
science and mathematics (Cheng, 2002; Cheng, 2003; Cheng & Shipstone, 2003).
Diagrams could be used to make a discovery (Cheng & Simon, 1992), which would be
easier than using an algebra-like representation such as those adopted by the classic
models in the area of computation scientific discovery (Langley, et al., 1987). Further,
by giving the same Law Encoding Diagrams (LEDs) to students of physics, learners
gained similar benefits, analogous to those achieved by the original scientists, compared
with learners using a conventional algebraic approach (Cheng, 1996).The Cognitive
Impacts of diagrams on learning and the inferences of the relation between the
represented real-world and the representing system are found in (Palmer, 1978; Barwise
& Etchemendy, 1995; Zhang, 1996).

There are other approaches such as problem-solving techniques. There are ten problem-
solving events such as explanation-based learning, and similarity-based learning
(VanLehn, 1989). Learning gains can be measured (VanLehn, et al., 2011) by: (1) fixed
tasks design, (2) fixed time design and (3) mastery learning design. A study on problem
solving with diagrammatic representation came up with an interactive learning
environment to examine reasoning with self-constructed diagrams (Cox, 1997), and
learning-based systems must have complex statistical techniques to map between
different moves of the tutor and the learner and the states of that learner (Soller &
Lesgold, 2003). Taylor and his colleague (Taylor & Dionne, 2000) believe that the
efficiency of solving problems relates to the level of expertise of the problem-solver in a
certain domain. They believe that developing problem-solving abilities depends on the
availability of problem-solving strategies. Moreover, the problem-solver’s performance
in terms of accuracy and time spent on solving the problem depends on being expert or
novice in a certain domain (Larkin, et al., 1980). They identified the work technique
adopted by novices as a backward working technique and the one adopted by experts as
a forward working technique. However, experts adopt the backward working technique

only on an easy problem that doesn’t need any planning. Langley and Rogers believe

28

that if the problem-solver becomes an expert, then they will adopt the forward working
technique which means a direct solution (Langley & Rogers, 2005). They state that
complex tasks need to be solved with a forward working technique because working

backward from the goal is unreasonable.

Larkin and Simon (Larkin & Simon, 1987) claimed that diagrams as a representation are
better to use for reasoning and they rely on geometry as evidence. They showed that
different representations may be better for different problems depending on the
cognitive processing costs of locating the components of information. Langley and
Rogers also believe that due to the visual nature of the diagrams, they have benefits for
problem solving (Langley & Rogers, 2005). Indeed, after representing the problem, the
problem-solver will solve the solution by adopting a strategy. Due to the cognitive and
semantic properties of the diagrams, they are useful aids (Cox & Brna, 1995; Stenning
& Oberlander, 1995; Cox, 1996). Moreover, computational thinking (Wing, 2006) is a
fundamental skill involving solving problems, designing systems and understanding
behaviours. Choosing a suitable representation is considered as computational thinking.
In fact, diagrammatic-based knowledge organization is argued to be more beneficial
(Koedinger, 1992) to the problem solver than sentential-based ones. Diagrams can lead
to great insight, but also to the lack of it (Card, et al., 1999), as the example of the
accident of the space shuttle Challenger showed (Tufte, 1997). This example showed
that the same problem presented by different representations can have different stories
because, as in that example, it was difficult to notice any patterns of damage and the
adopted representation showed that the damage was low (Nielson, et al., 1997).
However, the other representation showed a clear pattern of damage (Tufte, 1997) and
thus, as Tufte claimed, “there are right ways and wrong ways to show data; there are
displays that reveal the truth and displays that do not”. More on the nature of

diagrammatic representations for problem solving is in (Glasgow, et al. 1995).

By understanding the graphical effects on learning logic and how graphical
representations can be used to teach logic, this prepares the basis for designing the

learning environment for teaching users the CD notational system.

We needed to understand how to support learning of a new notation and thus, this

section can be used to guide the design of our usability study in chapters 5 and 6.

29

2.5. Theory of diagrammatic representations
This section is about the formal description of the nature of diagrammatic
representations. Gurr explained the nature of closeness of mapping between the world
and its representation, and the variation or degree of similarity, which may vary from
one representation to another (Gurr, 1996; Gurr, 1997). He explained the properties of
the relation between representation and represented. He proposed that most
representations are homomorphisms where the mapping between world and its
representation are the same but a few are isomorphic where this mapping is one-to-one.
There will be a homomorphic mapping from representation to world when every
object’s relation in the representation accurately relates to some objects’ relation in the
world. Moreover, the mapping could be isomorphic, which is a special case of
homomorphism. Being isomorphic, or close to being isomorphic, representations are
important for the validity and ease of interpretation and reasoning of tasks. He
illustrated that applying external constraints on homomorphic representations, that are
too expressive, and wusing secondary notations for insufficiently expressive
representations, can achieve isomorphism. For example, Figure 4.17 is not a well-
matched to meaning due to the difference between domain and habitat (Stapleton &
Delaney, 2007) because it is non-isomorphic. In general, the importance of constraints
will depend on the representational system limits. He also examined the meaning of
being a homomorphism representation and the success or failure in being an
isomorphism. It is well known in the literature that theories of diagrams fall into two
categories. The first category is to provide a justification for diagrammatic reasoning in
formal proofs (Shin, 1994; Hammer & Danner, 1996; Shimojima, 1996) by
demonstrating their properties as soundness and completeness to show that
diagrammatic systems have some of the desirable properties of sentential ones. The
second category of diagrammatic theories is to explain the impact of graphical
representations on human cognition by explaining what advantages diagrammatic
representations have over other forms of representation such as a free ride (Shimojima,
1996). Figure 2.4 shows an example of giving information a free ride using the CD
notation since it is a diagrammatic notation. In this Figure, the diagram gives us ‘for
free’ the information that the patient Jean is not dead. The explanation of the syntactical
components along with their semantics will be shown in Chapter 3 section 3.2 and

section.3. This type of inferential advantage of diagrams has been noted by several

30

researchers such as: (Larkin & Simon, 1987; Barwise & Etchemendy, 1995; Stenning &
Lemon, 2001; Shimojima & Katagiri, 2008).

Patient

Alive Dead

Figure 2.4 diagram to present the existence of an element in patient.

We will explain how these results were used to guide the design of our usability study in

chapter 4.

2.6. The Constraint Diagram Family
The constraint-family diagrams are Euler-based diagrams which combine both the
object-oriented approach and a formal method. This family consists of three diagrams:
spider diagrams (Figure 2.6), constraint diagrams (Figure 1.1), and concept diagrams
(Figure 2.7). For the purposes of formal software specification for using a visual
method, constraint diagrams (Kent, 1997) were proposed to be used in conjunction with
the UML for object-oriented modelling. It is intended to be a simple and effective
approach to formally specify programs and provides a diagrammatic notation for
expressing constraints (e.g., invariants) that could only be expressed textually in UML
using OCL. Constraint diagrams developed due to the important role the constraints
play. The designer needs to understand what the limits of the program are and to ensure
that all domain states are represented. The CD notation is used to describe the syntax of

a domain and to visually capture the semantics of it.

The CD was originally proposed to present a static constraint; thus, many improvements
were made. For example, a three-dimensional CD (Gil & Kent, 1998) proposed for
behavioural specification to express pre-conditions and post-conditions was proposed
with the influence of UML multi-diagrams and Catalysis (D'Souza & Wills, 1998).

31

Moreover, due to the fact the CD as originally proposed are ambiguous (see Chapter 3,
section 3.3.1 for an example of an ambiguous constraint diagram), Reading Tree (Fish,
et al., 2003; Fish & Howse, 2003; Fish & Howse, 2004; Fish & Masthoff, 2005) was
developed because some constraint diagrams have more than one intuitive reading. For
explicit reading tree, the concept of the dependence graph for a constraint diagram was
developed. From the dependence graph a set of reading trees can be obtained, which
provides a partial ordering for some syntactic elements of the diagram to deliver a
unique semantic reading. For implicit reading tree (Howse & Schuman, 2005) was
proposed with the influence of Z notation (Woodcock & Davies, 1996). Furthermore, a
generalized CD (Figure 4.19) was proposed (Stapleton & Delaney, 2008) to provide a

sequence of reading order.

From the constraint diagram investigations by Kent and colleagues, spider diagrams
(SD1) were proposed (Gil, et al., 1999; Howse, et al., 1999) as a Venn-based visual
notation for expressing logical statements, and to form the basis of more expressive
constraint diagrams. Later, they were extended from SD1 to SD2 to include new
notation, and the inference rules were extended in order to show that the extended

system is sound and complete (Howse, et al., 2000a; Howse, et al., 2001).

In general, using SD1 will prevent existential spiders from being placed in shaded
zones. However, in SD2, spiders are allowed to be placed in shaded zones. Then the
SD2 was extended to the ESD (Stapleton, et al., 2004a) by allowing Euler-based
diagrams (rather than Venn diagrams) and by adding additional syntax such as equality.
Both ESD and SD2 are similar in terms of ESD not being more expressive than SD2,
and, along with further rules required for completeness, the reasoning rules for ESD are
those for SD2.

Later, spider diagrams were augmented with constants (Stapleton, et al., 2004b) to
contain syntactic elements analogous to constants in first order predicate logic. In
general, since spider diagrams are equivalent in expressiveness to monadic first-order
logic with equality (Stapleton, et al., 2004c; Stapleton, et al., 2009), they cannot be
practical for being used in software modelling. Overall, constraint diagrams are more
expressive than spider diagrams and they, unlike spider diagrams with equality, can
express statements involving two-place predicates and are practical for being used in

software modelling.

32

In Figure 2.6, spider diagrams are used to show the possible cases that can be expressed
using the three versions of SD. By using the spider diagram (SD1), we can express that
Jean in Patient and Mrs. Peterson in HProf are the same person and that this person is
either a Patient or a HProf, or both as shown in Figure 2.6 part a. However, by using
SD1, we cannot represent that Jean and Mrs. Peterson may be the same person and
thus, SD2 is used here as in Figure 2.6 part b. Moreover, to represent that Jean and Mrs.

Peterson must be the same; ESD is used as in Figure 2.6 part c.

HProf Patient HProf Patient HProf Patient
terson terson e eterson
a. Using SD1 b. Using SD2 c. Using ESD

Figure 2.5 Spider Diagrams (3 versions)

Concept diagrams (Oliver, et al., 2009; Howse, et al., 2010; Howse, et al., 2011;
Stapleton, et al., 2012; Stapleton, et al., 2013) are proposed to define ontology. An
ontology (Gruber, 1993) is a specification of a conceptualization. They share a lot of
CD syntax and augment it with new syntax. However, they have different semantics
than CD in a subtle way. With the use of variables, concept diagrams do not suffer from
any reading issues related to quantifiers. They are equivalent to second-order logic and
thus they are more expressive than constraint diagrams, in the formal sense. Figure 2.6
is an example of a concept diagram that shows that the Patient Jean is the only mother
of the Patient John and that Jean owns exactly two patient-records, both of which are
PRec, including a Communication called c.

Patient PRec

IsTheMotherOf

Figure 2.6 Concepts Patient, PRec, and Communication are represented by the Concept Diagrams

The semantics of concept diagrams is different from the semantics of the CD notation as

discussed in (Stapleton, et al., 2013). For example, both notations have the dot which

33

syntactically is the same component. However, the dots in the CD notation represent
quantification whereas in the concept diagrams the dots represent variables.

This section provided a broader view of the constraint diagrams family which is needed

as an introduction for understanding Chapter 3.

2.7. Methodologies and frameworks for analysing notational
systems

In general, there are several evaluation approaches (e.g., different aspects such as
GOMS (Card, et al., 1983), Glinert’s framework (Glinert, 1989), Heuristic evaluation
(HE) (Nielsen & Molich, 1990; Nielsen, 1992), Maximal repeating pattern analysis
(Siochi & Hix, 1991), Layout appropriateness metric (Sears, 1993), The Cognitive
Walkthrough methodology (Lewis, et al., 1990; Wharton, et al., 1994), Representational
Epistemological Interface Design approach (REEP) (Cheng & Barone, 2007),
Ecological Interface Design (EID) framework (Vicente, 1999), Information
Visualization (Card, et al., 1999), and Zhang Relational Information Displays (Zhang
1996). However, these approaches do not evaluate notational systems. To the author’s
knowledge, the only evaluation approach for notational systems is the Cognitive
Dimensions of Notations (CogDim) framework 1996 (Green, 1989) which is a task-
specific approach for analysing the usability of notational systems, user interfaces and
programming languages by using dimensions which are a high-level discussion tools.
Its dimensional checklist approach is used to improve different aspects of the system.

Each improvement will be associated with a trade-off cost on other aspects.

CogDim is the only HCI evaluation approach intended to evaluate languages
(Blackwell, et al., 2000). It concentrates on the notational design rather than the
instructiveness of the user interfaces, and it is, as Green and his colleagues claimed,
easy to learn and apply by non-specialists, and it is applicable at any stage of design.
There are many studies that have used CogDim to evaluate the cognitive features of the
languages. For example, CogDim was used to cognitively compare Prograph and
LabVIEW (Green & Petre, 1996), to evaluate Pursuit (Modugno, et al., 1994), to
evaluate PrologSpace (Yazdani & Ford, 1996), to evaluate design rationale
representation (Shum, 1991), to evaluate continue-patterns in spreadsheets (Hendry,
1995), to evaluate modification in languages such as Basci and Prolog (Roast & Siddiqi,

1996), to evaluate domain-specific languages (Pereira, et al., 2008), and to evaluate

file:///C:/Users/Noora/Desktop/Eileen/Noora%20Chapter%202,%20literature%20review.doc%23_ENREF_116
file:///C:/Users/Noora/Desktop/Eileen/Noora%20Chapter%202,%20literature%20review.doc%23_ENREF_112

34

distributed notations (Green, et al., 2006). Microsoft used this framework as a
vocabulary for evaluating the usability of their C# (Clarke, 2001), .NET development
tools (Clarke, 2004), and an object oriented application programming interface (Clarke
& Becker, 2003). Moreover, CogDim has been used to develop a framework called
Representation Design Benchmarks (Yang, et al., 1997) which measures the static
representations for a visual programming language. This evaluation method has a set of

metric-based benchmarks to measure the static representations of the language.

Since CogDim is the only evaluation approach in the literature to evaluate the usability
of a notational system, it will be adopted in Chapter 4 as a theoretical approach to

evaluate the usability of the CD notation.

35

Chapter 3 Constraint Diagrams

This chapter introduces the system of constraint diagrams by
giving, in section 3.1, a brief introduction of its development. We
define both the formal and informal syntax of that system in
Section 3.2 while its semantics are covered in section 3.3. Section
3.4 is a brief overview of constraint diagrams as a reasoning
system. Section 3.5 describes the fragments of constraint
diagrams. Section 3.6 illustrates the usage of constraint diagrams
in program specification. Section 3.7 shows that constraint
diagrams have been successfully applied to software modelling.
Section 3.8 is about contrasting constraint diagrams with other
diagrams that are used in program specification. Finally, section

3.9 discusses the outcomes of this chapter.

3.1. Introduction
Constraint Diagrams are Euler-based diagrams, which are a finite collection of simple
closed curves (contours) to represent sets (Kent, 1997). They are proposed to visually
express logical constraints on object-oriented models, and thus provide a substitute to
formal methods such as Syntropy (Cook & Daniels, 1994), Catalysis (D'Souza & Wills,
1995) and OCL, the only non-visual part of the UML. Not only is CD notation a stand-
alone language which has the ability to replace UML class diagrams, but also it can be
integrated into several methodologies such as (Fetais, et al., 2005; Howse & Schuman,
2005) where CD is used instead of Z notations in schemas; and it fits in UML models as
well. It is familiar because it is based on Euler diagrams and Venn diagrams which are
widely known and it is expressive because it overcomes many of the topological
restrictions of Venn diagrams such as the difficulties of drawing more than eight sets,
and the cardinality. Furthermore, it is clear and unambiguous because it has formal
semantics and is equivalent to first order logic, while the generalized CD (Stapleton &

Delaney, 2008) is equivalent to second order logic.

CD provides a diagrammatic notation to construct an abstract information structure that
is intended to specify a system by joining many statements in a single diagram, and
therefore is reasonably concise, and to express static constraints (e.g. invariants) and

dynamic constraints for behavioural contracts (e.g. events defined in terms of pre- and

36

post-conditions). The language design emphasizes scalability and expressiveness while
retaining intuitiveness, and includes facilities for quantification and navigation of

relations.

The purpose of this chapter is to introduce CD and to illustrate some of its
characteristics. CD is a formal logic and its syntax, semantics and reasoning rules will

be described in the next three sections.

3.2. Syntax
CD notation augments Euler and Venn diagrams with additional syntax, as described in
(Fish, et al., 2005b; Stapleton, et al., 2005a; Stapleton & Delaney, 2008; Burton, 2011).

We will explore the syntax informally and then formally.

3.2.1. Informal syntax
This section demonstrates the comprehensiveness of CD in an easy way that people who
have not had an extensive experience in formal program specification could understand.

The syntax of CD is described as follows:

e A boundary rectangle.
e A finite set of contours to represent sets. There are two types of contours: given-
contours and derived-contours.

e A set of regions. A basic region is the bounded area of a contour or the boundary
rectangle. Any basic region or any non-empty union, intersection, or difference
of regions is a region.

e A set of zones. A zone is a single region which does not contain any other

regions.

e A set of shaded zones.

e A finite set of spiders. There are two types of spiders: existential spiders
(denoted by dot) and universal spiders (denoted by asterisk). A spider is a tree
with nodes (feet) whose habitat is the set of zones in which the feet are placed
and connected by a straight line (legs).

e A finite set of arrows. An arrow is a relation between a spider or a contour as a
source and another spider or contour as a target. (Fish, et al., 2005b)

e A set of labels which can be associated with contours or dots, but always

associated with arrows.

37

e A reading tree provides a partial ordering of the quantifiers (spiders) in the

diagram and could be explicit or implicit.

In general, a reading tree ensures a unique semantic interpretation because the reading is
a FOPL sentence. The explicit reading tree will help advanced users to express complex
constraints with unambiguous semantics. This means the syntax of the CD notation will
be extended to include a reading tree. However, this will affect new users who want to
learn and use the CD notation. Overall, explicit will be used for optimizing
expressiveness, but it will increase the complexity of the diagrams and the need for

mental operations.

On the other hand, the implicit reading tree case will simplify the diagram syntax, which
will facilitate this notation learning for new user, but will leave some complex diagrams
ambiguous. Thus, to solve the ambiguity issue, as in Figure 3.1, research has been done
on a method called the default readings of constraint diagrams, where no reading tree is
given (Fish & Howse, 2004) by adopting a particular choice of reading tree depending
only on the diagram properties to give a unique reading. The default reading requires an
ordering of certain sets of spiders in a diagram for a unique semantic interpretation
without the need for a user to choose a reading tree. This thesis adopts the default
reading method because we are targeting inexperienced users. Examples of these

diagrams are shown in Section 3.6.

Patient
Own PRec Initiate HProf

Figure 3.1 An example of an ambiguous constraint diagram

In general, the CD notation that was originally proposed is ambiguous. Figure 3.1 is an
example of an ambiguous constraint diagram. In this figure there are three given
contours labelled Patient, PRec and HProf which represent three disjointed sets. The dot
is an existential spider, which represents existential quantification (there is a health
professional) and its habitat is inside HProf. The asterisk is a universal spider, which
represents universal quantification (for all patients) and its habitat is inside Patient. The

38

two arrows labelled Own and Initiate represent relations. The arrow labelled Own is
sourced at the universal spider and targets an unlabelled derived contour inside PRec.
This derived contour represents the image of the relation Own (the records which are
owned). The semantics of this diagram depend upon the order in which it is read. If we
start reading at the universal spider we obtain that each patient owns some records, and
there is a health professional who initiates only records owned by that patient. However,
if we start reading at the existential spider we get that there is a health professional who

initiates some records, and each patient owns all of these records.

A constraint diagram is a single boundary rectangle which includes finite sets of given-
contours, given-contour labels, shaded zones, spiders, at most one derived-contour — for

a given contour — which is a target of an arrow, arrows and arrow labels.
Now let us consider the following example.
Example 3.1:

From chapter 1, Figure 1.1 has a boundary rectangle, seven contours (four given and
three derived), three universal and one existential spider, four arrows, four given-

contour labels and four arrow labels. The following is a description of the syntax:

Figure 1.1 shows that for each HProf, the PRec of any Patient who is related to the
HProf must be originated by all Services which are associated to the HProf. To be more
precise, this diagram has a boundary rectangle which represents syntactically the edge
of the diagram. This rectangle contains given-contours such as HProf, Service, Patient
and PRec, which are simple closed contours with labels. HProf is disjoint from the six
other sets. All the elements of HProf are represented by the universal spider (asterisk)
which is the source of an arrow (a binary relation) called Assoc. The target of this
relation is a derived-contour of Service. So, for all HProf, they associate to a set of
services. Another arrow called Orig is connecting an asterisk in a derived-contour in
Service to another derived-contour in PRec. Also, Relate is an arrow that represents a
relation which has an asterisk from HProf as the source and a derived-contour in Patient
as a target. The last arrow, Ref, is connecting all elements of the derived-contour in
Patient to some distinct elements (denoted by a dot) in its habitat which is a derived
contour in PRec. Here the habitat is the same as the zone because these spiders do not
have legs.

39

3.2.2. Formal Syntax
To make sure of the validity of the CD notation, formal syntax is described. Formal
syntax is important because type-equivalence implies semantic-equivalence. A

constraint diagram is formally defined as described in (Fish, et.al, 2005b) in Figure 3.2.

An unaugmented constraint diagram consists of contours, zones, spiders and
arrows, formally defined as follows:

l. % is a finite set of contours which is partitioned into subsets %, the set of given
contours, and €7, the set of derived contours.

¥ is a set of given contour labels and the injection label: €% — #“ returns the
label of a given contour.

2. The set & C 2% x 7% is the set of zones, where % is the power set of ¥. A zone
z € Z is denoted by (C*(2), C (z)), where C*(z) and C () partition % and
represent the contours containing and excluding z, respectively. The set Z2° € Z' is
the set of shaded zones. # = 22 — [} 15 the set of regions.

3. % is a finite set of spiders which is partitioned into %%, the set of existential
spiders, and Y, the set of universal spiders.

The function habitat: % — 2 returns the habitat of each spider.

4. o/ is a finite set of arrows. %7 is a set of arrow labels. The functions
label: of — %7, source: of — %05, and target: o — % U . return the label,
source and rarger of an arrow, respectively. We use the standard object-oriented
dot notation to navigate along arrows in a diagram; if x = source(a) then x.a is
another way to refer to target(a).

An augmented constraint diagram is an unaugmented constraint diagram aug-
mented with a reading tree. A reading tree is a rooted tree (with direction inferred
from the root) with root PTC (this is an acronym for plane tiling condition, explained
later) and node set {PTC}U.%; this effectively provides a partial ordering of the
spiders in the diagram.

Figure 3.2 This Formal Syntax is based on (Fish, et al., 2005b)
Now let us consider the following example.
Example 3.2:

From Figure 1.1:
Taking that L° = { Ds Dpa, Dpr }

C = {HProf, Service, Ds, Patient, Dpa , PRec, Dpr } Where Ds, Dpa, and Dpr

denotes the derived contours.
L® = {HProf, Service, Patient, PRec}

Z = {(,{HProf, Service, Patient, PRec, Ds, Dpa, Dpr }),

40

({HProf}, {PRec, Service, Patient, Ds Dpa, Dpr}),
({Service}, {HProf, Patient, PRec, Ds, Dpa, Der }),
({Patient}, {HProf, Service, PRec , Dpa ,Ds, Dpr}),
({PRec}, {HProf, Service, Patient Ds, Dpa, Dpr }),
({Service, Ds}, {HProf, Patient, PRec, Dpa, Dpr }),
({Patient, Dpa }, {HProf, Service, PRec , Ds, Dpr}),
({PRec, Dpr}, {HProf, Service, Patient Ds, Dpa}) }.
Z*={}

R=PZ-{ &}

R*=PZ*-{J}

S ={s1,52,s3,54} where sl is the spider in HProf, s2 is the spider in Service, s3

is the spider in Patient and s4 is the spider in PRec.
A= {Relate, Assoc, Orig, Ref}

L*={Relate, Assoc, Orig, Ref}
text(source(arelae))= “HProf”

text(target(areie))= “Patient”

text(source(aassoc))= “HProf”

text(target(aassc))= “Service”

text(source(aown))= “Patient”

text(target(aown))= “PRec”

text(source(aorig))= “Service”

text(target(aoriq))= “PRec”

41

This diagram is not associated with any explicit reading tree. However, in this example
we used a partial ordering of quantifiers by using an implicit reading tree to give rise to

the default reading, to ensure a unique meaning.

In general, example 3.2 shows the complexity of information that the diagram in Figure
1.1 represents. This shows how intuitive the diagram represented by the CD notation (in

Figure 1.1) is, compared to this example.

3.3. Semantics
We will explain this section as described in (Fish, et al., 2005b; Stapleton, et al., 2005a;
Stapleton & Delaney, 2008; Burton, 2011). In general, constraint diagrams without any
arrows are spider diagrams, and thus their semantics extend their underlying spider

diagrams’ semantics.
We will describe the informal semantics and follow it with the formal semantics.

3.3.1. Informal Semantics
The boundary rectangle represents semantically the universe that we are considering. In
this rectangle there are given-contours to represent sets, and derived-contours to
represent the image of a relation, with respect to the topological properties of the sets.
Existential spiders represent existential quantification and universal spiders represent
universal quantification, such that an independent spider represents a distinct element.
An arrow represents a relation such that the relation is represented by a label; its source
is a spider or a contour and its target (the relational image) is also either a spider or a
contour. Regions are sets and in a shaded region all the elements are represented by

spiders.
Let us consider the following example:
Example 3.3:

From Figure 1.1, the diagram contains four given contours, three derived contours, three
universal spiders, one existential spider, and four arrows. The existential spider asserts
the existence of at least one element in PRec. The universal spider in a set means all
elements in that set. The arrow labelled Assoc, together with its source and target assert
that the Assoc, which is a binary relation, has an image which is a subset of Service

when the domain is an element of HProf. The arrow labelled Relate, together with its

42

source and target assert that the Relate, which is a binary relation, has an image which is
a subset of Patient when the domain is an element of HProf. The arrow labelled Orig,
together with its source and target assert that the Orig, which is a binary relation, has an
image which is an element in PRec when the domain is an element of Service. The
arrow labelled Ref, together with its source and target, assert that the Ref, which is a
binary relation, has an image which is an element in PRec when the domain is an

element of Patient. Finally, the four given contours represent disjoint sets.

3.3.2. Formal Semantics
For this thesis, the formal semantic for the syntax in Figure 3.2 could be found in (Fish,
et al., 2005b) and thus we will not reproduce it here. However, we will give the

following example where The interpretation of CD is defined by a tuple (U,¥,&) such
that:

Table 3.1 These Formal Semantics are based on (Fish, et al., 2005b)

U is the universal set,

Y is a function mapping given contour labels, zones and regions to subsets of U,

¢ is a function mapping arrow labels to relations on U,

Example 3.4:

From Figure 1.1:

U={1, 2,34},
VY= {(HProf,{1}), (Service,{2}),(Patient,{3}),(PRec,{4})},

¢ ={(Assoc,{(1,2)}).(Relate,{(1,3)}),(Orig.{(2.4)}).(Ref.{(3.4) N},

Augmenting the diagrams with a reading tree (effectively a partial ordering of

quantifiers) ensures that each diagram has a unique semantic interpretation.

3.4. Reasoning
In this thesis we are looking at constraint diagrams from the program specifications
point of view. The soundness of CD and its formal system results in a formal logic. In
summary, CD is expressively equivalent to the FOPL and it has sound reasoning rules, a

complete reasoning system. However, it is not a decidable system due to the existence

43

of the universal spiders (Stapleton, et al., 2005a). In the case of reasoning, CD has
diagrammatic notation advantages (Stapleton & Delaney, 2008) such as free rides that
arise from the subset relations, the placements of existential spiders and the images of

relations.

In general, to be able reason between constraint diagrams, reasoning rules are needed
for diagram transformations (Fish & Flower, 2005). For example, in Figure 3.3 to delete
an existential spider p, three conditions must not be held. First, p must not be the source
or target of any arrow. Second, the habitat of p must not include a shaded zone. Finally,
a universal spider x whose domain includes a foot of the spider p; and the p must not be
ordered before the node x in the tree. In this figure, p is ordered after x in the tree, so p
can be deleted. However, if the reading tree had been p—>x->t then we would not be
able to delete p from the diagram because the reading here will be different since p£x in

this case and this prevents us from deleting the spider p.

Patient]
Information

Figure 3.3 Deleting an existential spider

For more on the CD syntax, semantics, soundness, completeness and decidable system
see (Gil, et al., 2001; Fish, et al., 2003; Fish & Howse, 2003; Fish & Howse 2004; Fish,
et al., 2005b; Stapleton, et al., 2005a).

For CD fragments’ syntax, semantics, soundness, completeness and decidable system —
for Euler diagrams see (Howse, et al., 2002; Stapleton, 2005; Fish, et al., 2011); for
Venn-Euler diagrams see (Gil, et al., 2002); and for spider diagrams see (Gil, et al.,
1999; Howse, et al., 1999; Howse, et al., 2000a; Howse, et al., 2000b; Howse, et al.,
2000c ; Howse, et al., 2001; Flower & Stapleton, 2004; Stapleton, et al., 2009).

44

3.5. Fragments of Constraint Diagrams
Some fragments of the CD notation, such as Hammer’s Euler diagram system (Hammer,
1995) and spider diagrams (Howse, et al., 2001; Howse, et al., 2005) have sound,
complete reasoning systems and they are decidable. CD is a combination of three
fragments and other syntax too. These fragments, Euler diagrams, Venn diagrams and
Spider diagrams, have generalization relations: CD generalizes spider diagrams which
generalize Venn diagrams, and this latter generalizes Euler diagrams. CD is more
expressive than spider diagrams because of the arrows that allow expression of
relationships between elements. This will be illustrated in full detail in the next chapter.

3.6. Using Constraint Diagrams in Program Specification
In this section, we show one of the uses of CD notation in the Object-Oriented Formal
Specification to define invariants and to define events, as described in (Howse &
Schuman, 2005). Figures 3.6 to 3.22 are redrawn from (Fetais, Howse et al. 2005) and

are used as examples provided from the “Patient Record System” case study.

Figure 3.4 gives an overview of the initial stage for this development where every level
represents a class, and is depicted by a rectangle with its role, and arrows indicate the

extension of these levels.

class PRS[P,I,5,H,Q,R,F]
/[patient record system

A

class HCS[P,I,5,H,Q]
Il health-care system

A

class PP[P,]]
// patient population

Figure 3.4 Class-structure for Patient Record System

45

3.6.1. Patient Population: class PP[P;]]

PP
Patient
P .
Patient Alive Dead
Patient Information
i

Figure 3.5 Specification of an invariant that uses constraint diagrams

Figure 3.5 provides an example of using constraint diagrams to specify an invariant
(class) called PP which is taken from a health informatics case study. This invariant is
about patients’ personal information where a Patient Population-PP is a set of patients
which is uniquely identified by elements from given type P. Each known patient has
his/her own associated information of type I, and is either alive or dead. This invariant
for class PP is a conjunction of three constraint diagrams: the first defines Patient to be
a set of a given type P. The second partitions Patient into two disjoint subsets: those
who are Dead and all the others who are Alive. The partition of Patient is indicated by
shading the zone inside that set but outside its two subsets, identified by the names
Alive and Dead. The third defines a relation Info that associates each element of Patient
with some element of type I. Although superficially it might seem visually
straightforward and simple, there is much in the structure of the diagram. It expresses
that every known patient (uniquely identified by elements from given type P) has
his/her own associated Information (of type I), and is either Alive or Dead. There are at
least 20 different visual elements occurring on several nested levels. Alive and Dead
subsets occur within the Patient set, which is of type P. A shaded zone containing no
elements represents the empty set. The rectangle labelled P indicates that Patient is of

the predefined type P. Another rectangle I represents another predefined type and yet

46

another Patient contour. Constraint diagrams use spiders to represent elements. The dot
(existential spider) in I represents the existence of a spider (element) and an asterisk
(universal spider) represents all spiders (elements) in a specific set. The arrow labelled
Info represents a binary relation, where its source must be a spider and its target can be
either an element (spider) or a set (contour). At the highest level of the diagram there is
a framework, which is shown by a semi-box (open rectangle) and the class label PP.
The semi-colon that separates declarations can easily be missed and a new line is used
as another type of separator. Despite the fact that constraint diagrams notation is
designed as an easy and simple program specification notation, it could be difficult to

understand when presenting complex ideas.

The possible changes-of-state at this level are specified as the following three events:

PP!IRegisterPatient(p,i)

P 1
Patient i

O L

Alive’

Information’

Figure 3.6 Constraint Diagrams as an Event to Register Patients

Event 1. PP!RegisterPatient(p,i) could be used to register a new patient — which will be
identified by p — only if his information i (which is of type 1) is given. Initially, p is said
to be alive as shown in Figure 3.6. To elaborate, the CD notation can also be used to
capture a more sophisticated idea: specifying an event. This Figure presents an event
which is a named operation that changes an object’s state by using a dash on the label to
denote a change and an undashed label otherwise. Each event is specified by a pre-
condition and a post-condition. The double line inside the framework is used to indicate
pre-condition (above the double line) and post-condition (below the double line). The
pre-condition ensures that the arguments satisfy all the constraints which are imposed

by the invariant. The post-condition shows the values that are changed. However, only

47

minimal changes are shown because there is a convention used in constraint diagrams
that "the rest stays unchanged” (Howse & Schuman, 2005). For example in Figure 3.6
in the post-condition, adding a new patient increases the Alive, but the Dead set is
unchanged. As a result, the Dead set is not shown in the post-condition. This figure
shows an event called RegisterPatient which is preceded by the level name and a V'
separator. This event can be used to register a new patient with information i, to give
him/her a unique identifier p; initially, p is said to be alive. The pre-condition ensures
that the event's argument i has type I, and p which is not in Patient yet is an identifier of
type P. In post-condition there is a dash in the Alive set and another in Information
value. In other words, the Alive set has increased by adding a new patient and the
associated Information on that patient. These dashed names denote values that have

changed.

PP!UpdatePatientInfo(p,i)
Information |

p./\\i

Information’

.

Figure 3.7 An event to update Patient Information at the PP level

Event 2: PP!UpdatePatientinfo(p, i) is used to update current information for patient p,

so it has some value i afterwards as shown in Figure 3.7.

PP!RecordDeath(p)
Alive

Dead’

Figure 3.8 An event to record Patient's Death at the PP level.

48

Event 3: PP!RecordDeath(p) is used to record the death of an alive patient p as shown
in Figure 3.8.

3.6.2. Health-Care System: class HCS[P;1;S;H;Q)]
Another level is developed to represent an abstract model for a Health-Care System by
extending PP to define the class HCS[P;I;S;H;Q].

Every Health-Care System, Figure 3.9, supports its Patient Population via some
hierarchy of services and nested sub-services that each patient is currently enrolled in.
Services and their subservices are uniquely identified by elements from given type S. It
also maintains the central register of health-professionals (uniquely identified by
elements from type H), which gives their qualifications (of type Q) and current
associations with a service or sub-service; those having at least one such association are

said to be active.

HCS

PP[P,]]
S Patient Roll
Service

Q ;

Service

Sub H
HProf

o Q

HProf Assoc Service HProf Assoc

Patient Roll Service HProf Qualif Q

Figure 3.9 The HCS invariant

49

The possible changes-of-state at this level are specified as the following events:

HCS!NewService(s)

S
Service

()

Service’

Figure 3.10 An event to define a new service

Event 1: HCS!NewService(s) is used to define a new service, s, only if its name is
unique as shown in Figure 3.10.

HCS!NewSubService(s,n)

S
Service

(1)

Service’

Figure 3.11 An event to define a new sub-service

Event 2: HCS!NewSubService(s,n) is used to nest a new sub-service uniquely identified

by s in the (sub-) service named n as shown in Figure 3.11.

50

HCS!RegisterHProf(q,h)

H Q
HProf q

O B

HPTOP Quall]p;

Figure 3.12 An event to register a new health professional

Event 3: HCS!RegisterHProf(qg,h) is used to register a new professional uniquely
identified by h with the qualification g, as shown in Figure 3.12.

HCS!RecordNewQualif(h,q)
)J& Q
“ L

Qualif’

Figure 3.13 An event to record a new qualification

Event 4: HCS!RecordNewQualif(h,q) is used to record an additional qualification g for

the professional h as in Figure 3.13.

o1

HCS!Associate(h,s)
Assoc

Service

Assoc’
h m

Figure 3.14 An event to associate a health-profeessional with a (sub-) service

Event 5: HCS!Associate(h,s) is used to associate a new professional h with the (sub-)

service s as shown in Figure 3.14.

HCS!Dissociate(h,s)
Assoc

Figure 3.15 An event to dissociate a halth-professional from a (sub-) service

Event 6: HCS!IDissociate(h,s) is used to dissociate a professional h from the (sub-)

service s as shown in Figure 3.15.

52

HCS!EnrolNewPatient(p,s)
Roll S

ervice
2ERCeD

Figure 3.16 An event to enroll a patient into (sub-) service

Event 7: HCS!EnrolNewPatient(p,s) is used to enrol a new patient p for the (sub-)

service s as shown in Figure 3.16.

HCS!DischargePatient(p,s)
Roll

Figure 3.17 An event to discharge a patient from (sub-) service

Event 8: HCS!DischargePatient(p,s) is used to discharge a patient p from the (sub-)

service s as shown in Figure 3.17.

Moreover, Two PP operations are likely to be promoted, Figure 3.18, for use with the
class HCS:

HCS!RegisterPatient(p.i) HCS!UpdatePatientInfo(p,i)
PP!RegisterPatient(p,i) PP!UpdatePatientInfo(p,i)

Figure 3.18 Two Events that are promoted from the extended invariant

53

3.6.3. Patient Record System: class PRS[P;[;S;H;Q;R;F]

The “Patient Record System" is a model that defines the class PRS[P;1;S;H;Q;R;F] and
extends class HCS.

PRS

HCS[P,1,S,H,Q]

R

PRec PRec PRec Ref Patient

Q ; 60@ nication ;

PRec Auth HProf PRec Orig Service

PRec Dest Service @/Att\ F

PRec Ms TEXT PRec DaT TEXTXTIME

a

NN e

Service Queue Seq.Communication Note Orig Service
RGN

Figure 3.19 The PRS invariant

A Patient Record System, Figure 3.19, extends a Health-Care System, to support the
central database of patient records (uniquely identified by elements from type R). Each
such record refers to one particular patient, and identifies its author (a professional) as
well as an originator and destination (services) along with a DATE and TIME of entry
(introduced by the system). All have a message (of predefined type TEXT) and some
may also have multiple attached files (of type F).

Any record having the same originator and destination is said to be a note; otherwise, it

records a certain communication. These are held in a queue for their destination service.

The possible changes-of-state at this level are specified as the following events:

54

PRS!NewNote(p,h,s,m,r)
Roll R

o
-
B
D
(@]

AssocC

Ref’

3 » o

Auth’

=

Figure 3.20 An event to create a new note

Event 1: PRS!NewNote(p,h,s,m,r) is used to enter a new note — uniquely identified by r
— that refers to patient p by professional h of service s with message m but no
attachments, only if p is enrolled for s and h is associated with s as shown in Figure
3.20.

Event 2: PRS!Send(p,h,s1,s2,m,F,r) is used to send a new communication — uniquely
identified by r — that refers to patient p by professional h of service sl to service s2 with
message m and set of attached files F, only if p is enrolled for s1 and h is associated

with s1. Then r would be enqueued for the destination s2 as shown in Figure 3.21.

55

PRS!Send(p,h,s1,52,m,F,r)

Service TEXT R F

i5” NOHEIS®

’ Auth’
r/&i&"-O e b
Orig’ Dest’
r/ﬁkél ; r./—\iz

Mso’ Att’ F
r/—N ; "AQ

Figure 3.21 An event to send a communication

56

Moreover, Two HCS and one PP operations are made available for use at the level of
PRS.

PRS!Enrol(p,h,s,m,r) PRS!Discharge(p,h,s,m,r)
PRS!NewNote(p,h,s,m,r) PRS!NewNote(p,h,s,m,r)
HCSIEnrolNewPatient(p,s) HCS!IDischarge(p,s)
PRS!Death(p,h,s,m,r) HCS!UpdatePatientInfo(p,i)
PRS!NewNote(p,h,s,m,r) PP!UpdatePatientinfo(p,i)
PP!RecordDeath(p)

Figure 3.22 Events that are promoted from this or extended invariants

Figure 3.22 shows that at this level a record r is required to promote events such as
enrol, discharge and record the death of a patient, while the update patient information

is simply promoted at the level to be used at this class.

3.7. Usage
The efficacy of constraint diagrams is shown by its applications. It has been applied in
many cases, for example:
(1) A formal object-oriented specification of a software system, such as:
a. A library system (Kent, 1997).
b. A video rental store model (Howse & Schuman, 2005).
c. A patient record system model (Fetais, et al., 2005).

(2) A framework for specifying an abstract model for a transparent configuration

control platform for Nokia (Howse, Schuman et al., 2009).

(3) Reasoning systems (Howse, et al., 2000c; Gil, et al., 2001; Fish, et al., 2003,
Fish & Howse, 2003; Fish & Howse, 2004; Fish, et al., 2005b; Stapleton, et al.,
2005a).

(4) Developing a new diagrammatic language called Visual First Order Logic
(VFOL) to visualize FOL (Stapleton, et al., 2005b).

(5) Developing a new diagrammatic notation called Concept Diagrams to visualize

ontologies (Howse, et al., 2011).

Its fragments have been used in:

57

(1) Developing Euler-based diagrammatic notations such as UML diagrams and
statecharts (Harel, 1987).

(2) Presenting set-based statistical data (Chow & Ruskey, 2003).

(3) Presenting the database complex queries’ results for traditional library
environments (Thievre, et al., 2005) and for indexed video databases (Verroust
& Viaud, 2004) .

(4) Representing multi-categories non-hierarchal files systems (DeChiara, et al.,
2003; DeChiara & Fish, 2007).

(5) Representing complex genetic set relations for bio-informatics field (Kestler, et
al., 2005).

(6) Capturing knowledge in ontologies environments (Hayes, et al., 2005).

(7) Visual editing environment for semantic web languages (Lovdahl, 2002; Zhao
& Lovdahl, 2003).

(8) Reasoning system (Shin, 1994; Hammer, 1995; Howse, et al., 2001).

(9) Hardware specification for a safety critical environment (Clark, 2005).

These uses of CD and its fragments indicate that it is a widely accepted notation and it
has been successfully used for various systems. Thus, this is why we focus on constraint

diagrams in this thesis.

3.8. Comparison with other diagrams
In this section we want to compare CD with other diagrams to test the ability of these
diagrams, including CD, to check which properties these diagrams are able to capture
and which are absent. We know that every diagram was proposed for a different
purpose. However, these diagrams shared the goal of being used in Object-oriented
specification or to capture a similar kind of information. In this section we try to point

out the similarities and the differences between CD and other diagrams.

58

3.8.1. Commutative diagram
Assoc
HProf Service
Relate Orig
Patient PRec

Own

Figure 3.23 Commutative Diagrams

Commutative Diagrams (Eilenberg & MacLane, 1945) are used to describe properties of
morphisms among objects such that the commutative results of all the directed paths
with the same start and endpoint are equal.

Figure 1.1 represents constraint diagrams and Figure 3.23 represents commutative
diagrams. Both have similar syntax and semantics, but they are not equivalent due to the
differences in the structure involved. In the constraint diagrams Assoc, Relate, Orig and
Ref are relations, while in the commutative diagram they are all functions. Constraint
diagrams can be considered as a generalization of commutative diagrams because they
produce the same accessibility by allowing relational navigation, but CD augments

commutative diagrams with the set-theoretical relationships.

The semantics of the diagram presented in Figure 3.23 can be presented as:
OrigoAssoc=RefoRelate

which means Vxe HProf, Orig(Assoc(x))=Ref(Relate(x))

While Figure 1.1 is representing the following:

VxeHProf, Assoc(x) — Service and Relate(x) Patient

Vye Assoc(x), Orig(y) cPRec

Vze Relate(x), Ref(z) = PRec

59

We can see that CD and commutative diagrams have similarities in both syntax and
semantics. However, the structure is different because unlike commutative diagrams,

CD represents set-theoretical relationships like disjointedness and subset.

3.8.2. Higraph

Figure 3.24 Higraph

Hi-graphs (Hammer, 1995; Harel, 1988) add arrows to Euler diagrams to represent
relations between sets (Fish, et al., 2005b). Syntactically Harel’s higraphs (Harel, 1988),
which are the basis of Harel’s statecharts (Harel, 1987), and CD have similarities such
as representing binary relations between contours and being Euler-based diagrams.

However, their semantics are different (Gil, et al., 2001).

Higraphs represent topological structure of dynamic behaviour. However, unlike CD,
higraphs have unlabelled relations and the contours, which are called blobs, cannot
represent quantifiers. Moreover, higraphs have difficulties in representing both
inclusion and membership of sets (Gil & Kent, 1998). Figure 3.24 represents four sets
and their binary relations. However, unlike CD, the subsets in Service and Patient are
increased by one because in higraph formalism, one subset inside a set means the set
itself which is not partitioning the set. So, to indicate that a set Patient has a subset,
higraph represents this set with two internal contours to represent the area inside the
subset and the other contour represents the area outside the subset. For example, in

Figure 3.25 the interaction of two curves does not mean any intersection unless internal

60

blobs appear in it. If Patient had been entirely enclosed within HProf or vice versa, then

the interpretation would be entirely different from in Figure 3.25.

HProf

Patient

Figure 3.25 Two non-intersected blobs

3.8.3. UML diagrams

3.8.3.1. Class diagrams
HProf ~ ASSoC * Service
Relate | * *| Orig
* *
Patient ?Wn 1 PRec

Figure 3.26 Class diagram

Class (type) diagrams are used to represent the abstract structure of the design. They
express static constraints and they allow expressing the relation between classes by
directed or undirected links. In Figure 3.26, we cannot tell which class has a subclass
and the links are not directed, which allows reading from both directions.

CD and class diagrams represent classes, relations and cardinalities. However, CD is
more expressive and they represent cardinalities visually by shadings and spiders,
directed relations which show domain and range, and subsets which represent a state.
Class diagrams do not show the relations within the subsets and they do not show the

dynamic constraints which are expressed textually using Object Constraint Language

61

(OCL) which is part of UML. Unlike class diagrams, CD in Figure 1.1 shows the
directed-relation navigation because we know the source and target of all relations. For

example we know that the source of Assoc relation is HProf and its target is Service.

3.8.3.2. State diagrams
State diagrams which are based on Harel’s statecharts (Harel, 1987) are used to specify
dynamic behaviour. However, they are limited in the constraints they are able to

exXpress.

In Figure 3.26 we cannot tell if Service has subsets. If we want to represent that each
HProf associated to a subset of Services we will need another diagram along with it. In

this case state diagrams are used.

" Register HProf

(RecordNe:/qualiﬁ

< Active >:]ﬂ< Assgciate ><‘
(Disschiate >

Figure 3.27 State diagram for HProf

In Figure 3.27, a HProf is inactive unless joining a service by an event called Join,
which will change the state to active. This could simply be represented in Figure 1.1 by
adding a subset to HProf and calling it Active and changing the source of the Assoc to

be all elements of Active instead of all elements in HProf.

3.9. Discussion
This chapter introduces constraint diagrams by illustrating both the formal and informal
syntax of that system, along with its semantics. We also gave a brief overview of

constraint diagrams as a reasoning system. The fragments of constraint diagrams and

62

the use of constraint diagrams and its fragments in different systems ensure the ability
of this notation to work successfully.

Constraint diagrams are intuitive and can be used as a stand-alone language which has
the ability to replace other languages such as OCL and Z, and diagrams such as UML-
class diagrams. Being expressive Euler-based diagrams is an advantage. Constraint
diagrams are clearly useful for program specification because they are a formal system.
In contrast to other diagrammatic notations, they are a powerful tool for program
specification. Constraint diagrams seem quite complex and, thus, this is why it is an
important question to see whether it is effective for program specification. Clearly there
is a level of conceptual complexity here, even though the diagram may visually be
relatively simple. Therefore, despite the claims about the efficacy of constraint
diagrams, we might expect a user without substantial experience of the notation to find
it difficult to use. However, we will start our study by answering the question of how

constraint diagrams use visual characteristics to support particular qualitative inferences.

63

Chapter 4 Cognitive Dimensions of Notations

Framework Analysis

This chapter provides a theoretical evaluation by using an existing
framework to examine the usability of specific properties of the
components of CD, and to analyse the cognitive tasks employing
CD. Section 4.1 introduces the framework and shows its existing
applications. Section 4.2 represents the activities that a notational
system is desired to support, and section 4.3 presents the
cognitive dimensions which are required for the activities. In
section 4.4, a selection of examples from the Patient Record
System is presented. In section 4.5, CD profiles are generated by
applying cognitive dimensions to the defined activities. Finally,
section 4.6 consists of a discussion of the application of the
cognitive dimensions of notations framework to both the CD and

NL notations.

4.1. Introduction
The Cognitive Dimensions (CogDim) of Notations (Green & Petre, 1996) is a heuristic
framework created by Thomas Green for analyzing the usability of notational systems.
Its dimensional checklist approach is used to improve different aspects of the system

with a trade-off cost on other aspects.

Although there is a study on the usability of the constraint diagrams using CogDim
(Morgan, 2011), this study did not provide a full usability profile of the notation.
Moreover, it adopted a different way to apply CogDim to constraint diagrams by
combining novices’ feedback on the interpretation of the notation to analysis
dimensions. Starting with the dimensions to test if the activity is acceptable was
suggested on the tutorial (Green & Blackwell, 1998). However, when | personally met
with Professor Green, he suggested starting with an activity to test the dimensions. As a
result two steps were required. The first step was identifying the activities. The second
step was to apply each dimension to each activity. This framework was applied to both

versions: constraint diagrams and natural language.

64

The CogDim framework has had several decades of development (Green, 1989; Green
& Blackwell, 1998; Green, 2000; Green, 2006; Green, et al., 2006) and it is a widely
accepted approach that has credibility in the software evaluation community. To recap,
it is the only HCI evaluation approach intended to evaluate languages (Blackwell, et al.,
2000), and thus there are many studies that have used CogDim to evaluate the cognitive
features of the languages. For example, CogDim was used to cognitively compare
Prograph and LabVIEW (Green & Petre, 1996), to evaluate Pursuit (Modugno, et al.,
1994), to evaluate PrologSpace (Yazdani & Ford, 1996), to evaluate design rationale
representation (Shum, 1991), to evaluate continue-patterns in spreadsheets (Hendry,
1995), to evaluate modification in language such as Basci and Prolog (Roast & Siddiqi,
1996), to evaluate domain-specific languages (Pereira, et al., 2008), to evaluate
distributed notations (Green, et al., 2006), and to develop a framework called
Representation Design Benchmarks (Yang, et al., 1997), which measured the static
representations for a language. Moreover, Microsoft used this framework as a
vocabulary for evaluating the usability of their C# (Clarke, 2001), .NET development
tools (Clarke, 2004), and an object oriented application programming interface (Clarke
& Becker, 2003).

In this evaluation study it is used to examine the relative strengths and weaknesses of
Constraint Diagrams notation and conventional notations in terms of the cognitive
facilitation or impediments of these different representations. We compared the
evaluation of Constraint Diagrams and of Natural Language by running a usability study
to determine if users would be able to use constraint diagrams to accomplish a set of
tasks. The objectives of this study were to predict the difficulties that may be faced
when working with these tasks, such as interpreting or constructing constraint diagrams.
Moreover, we aim to provide a rich exploration of advantages and disadvantages of
using constraint diagrams for specifying programs compared to natural language, and to
point out the key problem areas in constraint diagrams that need to be redesigned. We
hope to provide an analysis to determine if users would be able to use constraint

diagrams to accomplish a set of tasks.

To evaluate a notation using a cognitive dimensions framework, two steps were
required (Green, 2000). The first step is to decide what activities a system is desired to
support. An activity is described at a rather abstract level in terms of the structure of

information and constraints on the notational environment. Each activity has its own

file:///C:/Users/Noora/Desktop/Eileen/Noora%20chapter%204%20etc.doc%23_ENREF_132

65

requirements in terms of cognitive dimensions, and demands a different profile to
support them, and is described by the information structure and the constraints on the
notational environment. As a result, the second step is to analyse the system and
determine how it lays on each dimension. A dimension is a property of the notation or a
descriptor which captures an aspect of the nature of the notation that affects the way
users may interact with it. The dimensions are a discussion tool, which help to provide
designers with a framework to detail its analysis and to focus on its issues. To apply
CogDim, every dimension should be described (Blackwell, et al., 2001) with illustrative
examples, case studies, and associated advice for designers. In general, an activity such
as exploratory design, where software designers make changes at different levels, is the
most demanding activity. This means that dimensions such as viscosity and premature-
commitment must be low while visibility and role-expressiveness must be high (Green,
2000).

In this chapter we evaluate the notation itself, constraint diagrams notation. However,
we are going to use representative examples from a Patient Record System which is an
application designed to have lots of features yet be easy to use, and it is described in full
detail in chapter 3, section 3.6. Before applying individual dimensions to the activities,

we will first identify the activities.

4.2. Notational Activities
According to the importance of an activity to CD users, the six activities (Green 2000)
are: exploratory design, modification, incrementation, searching, transcription and

exploratory understanding, which are now described with examples:

An activity such as exploratory design, which is the most required program
specification task, is used for adding new components and changing an existing
structure. Green introduced this activity as hacking or in other words as programming
on the fly when sketching out designs. For example, the types of tasks for this activity
are: (1) adding a new set called gender with only two disjoint subsets called male and
female as in Figure 4.5. This set is a subset of an existing set called Patient which has
two disjoint subsets called alive and dead as in Figure 4.1. Both male and female
subsets intersect with both alive and dead; (2) adding legs and feet of a spider;
(3) inserting a new partitioning for a set, in the case of the program specification and the
patient record system; (4) adding a new invariant that extends an existing invariant and

66

is extended by another existing invariant; and (5) an event could be related to a different

un-extending or un-extended invariant.

Modification is an activity that changes an existing structure without adding any new
information. Green illustrated this activity with a simple example: “At first, young
people put books or music CDs on their shelves in random order; later they impose a
bit of a system; still later, they probably revise the system, as their tastes change or as
their collection grows” (Green, 2000). For our study, we will use tasks such as: (1)
change a spider with three feet from being located in two intersected sets to a set that
includes these two intersected sets; (2) change the target of a relation from being a set,
to being a spider; (3) change gender from set with only two elements to denote male and
female to two disjoint subsets of patients called male and female and each is intersected
with both alive and dead, as in the case of the program specification; (4) regarding the
patient record system, an event could be related to a different extended or extending

invariant.

Incrementation is an activity that involves adding more information without changing
the structure. Green gave an example of the telephone device with a memory where a
user can incrementally store the phone numbers in the device memory (Green, 2000). In
our case, the user can, for example, add (1) a label to an existing component, (2) a
spider, in the case of the program specification, (3) in the patient record system, a

patient called Peter (usually by using an event).

Searching is applied when the user is looking for information. Green provided an
example of searching the telephone memory for the forgotten and invisible number of
Aunt Mary (Green, 2000). For example, the user is searching for: (1) a spider with three
feet and two legs located in two intersected sets; (2) the source or target of the relation;
(3) all the subsets of a set; (4) all the elements of a set; (5) all the supersets of a set, in
the case of the program specification; (6) in the patient record system, a patient called
Peter (usually by using a query); (7) the event’s class; (8) the extending classes; and (9)
the extended classes. We believe that in the case of modelling systems, searching is not
a very demanding activity. However, it is extremely demanding in the case of web

pages.

Transcription is coding or copying the specification from one representation to another.

It is usually an undemanding activity for software designers who use it as an aid to

67

evaluate the specification that is written in a specific representation. However, as Green
illustrated, it is the main activity for the telephone device with a memory where a user
needs to convert written telephone number to a sequence of pressed buttons (Green,
2000). For our study, any CD could be converted to (1) natural language, (2) symbolic
language, (3) OCL, (4) Class diagrams, or (5) Z notation.

Exploratory understanding is a higher level activity which is more related to both
notational tools and distributed notations, and is not relevant to specifying programs.
Furthermore, it is the least well specified activity and Green did not provide examples
that allow us to easily use it. We believe that this activity is not related to CD because
CD is proposed as a program specification language and not as a language for
discovering structure. As a result, this activity is beyond the scope of this research.

4.3. Dimensions
The list of the activities and the dimensions has been changed. In (Blackwell, et al.,
2001), Green and colleagues wrote that there are new dimensions created by others
such as free rides and creative ambiguity, but in another paper (Blackwell & Green,
2003) he suggested that these two dimensions are already describing the detail of

existing dimensions such as closeness of mapping and provisionality, respectively.

The second step is applying each dimension to each activity. In the most recent version
of CogDim, there are fourteen dimensions. We will give their definitions in Table 4.1 as
described in (Blackwell & Green, 2003) .

These dimensions are now illustrated by Green with the following examples:

The viscosity dimension is about the resistance to change. Green provided examples of
this dimension such as manually changing US spelling to UK spelling in a large-sized
document. This type of action requires repetition and thus Green called it repetition
viscosity. Another example Green provided was inserting a new figure which will
require additional actions such as updating all later figures, updating their cross-
reference within the text, and also updating the list of figures and the index. He called
this type of change entailing further actions a knock-on viscosity. For exploratory
design and modification activities, only if the notation’s viscosity is low, then this

notation meets this dimension. However, for incrementation, searching and transcription

68

activities which are not about changing components, it is not important whether the

notation meets or fails to meet this dimension.

Table 4.1 Cognitive Dimensions Definitions

Cognitive Dimension

Definition

Viscosity

the cost of making changes

Hidden dependencies

the invisible links between components

Abstraction level

(a) combining information together to enhance patterns

(b) abstraction barrier

Premature commitment

the constraints on the order of doing things

Visibility

the ability to easily find components

Secondary notation

the extra informal information

Closeness of mapping

(a) closeness of the representation to the domain

(b) free rides (inferences)

Consistency

achieved when similar semantics are expressed in similar

syntax

Diffuseness

the verbosity of the language

Error-proneness

inviting error

Hard mental operations

achieved when the notation does not provide any aid with

mental operations

Progressive evaluation

the ability to check the work at any stage

Provisionality

() the degree of commitment to actions

(b) creative ambiguity

Role-expressiveness

the readability of the purpose of each component

The hidden dependencies dimension relates to the not-fully-visible relationships
between different components. Green explained this dimension by providing the
example of the HTML links that are fossils because they are pointing to deleted or
moved pages. For exploratory design, modification, searching and transcription
activities, if the notation’s hidden dependencies are low, then this notation meets this
dimension. However, for incrementation activity which is not imposing any kind of

changes, it is not important whether the notation meets or fails to meet this dimension.

The abstraction level dimension is about grouping elements to be treated as one entity.

An example that Green illustrated for this dimension is sentence styles such as setting

69

all the sentences of level 1 headings to 24-point bold by creating a style called
Headingl. For exploratory design, modification, searching and transcription activities, if
the notation’s abstraction level is high, then this notation meets this dimension.
However, for incrementation activity which is not imposing any kind of changes, it is

not important whether the notation meets or fails to meet this dimension.

The premature commitment dimension concerns the enforcement to make a decision
before having the necessary information due to the constraints on the order of doing
things and the guessing of the spatial place. The amateur signwriter is the example
Green provided, where the user would guess the width of the wording while writing the
sign. For exploratory design, modification and incrementation activities, if the
notation’s premature commitment is low, then this notation meets this dimension.
However, for transcription and searching activities which are not imposing any kind of

changes, it is not important whether the notation meets or fails to meet this dimension.

The visibility dimension is about the ability to easily view components. The indexing
facilities of telephone directory design do not provide the name of the subscriber that
has a specific telephone number, as Green explained. For exploratory design,
modification, incrementation, searching and transcription activities, if the notation’s

visibility is high, then this notation meets this dimension.

The secondary notation dimension relates to the extra and non-official meaning
information such as indentation that is usually used in programming languages, which
has no meaning for compilers but makes it easy for users to read this pretty-printing as
Green illustrated. Another example provided is the convention of reading and writing
telephone numbers by splitting them into a group of digits depending on the region, and
also reading from left to right. For exploratory design and modification activities, if the
notation’s secondary notation is high, then this notation meets this dimension. However,
for incrementation, searching and transcription activities which are not imposing any
kind of changes, it is not important whether the notation meets or fails to meet this

dimension.

The closeness of mapping dimension relates to the closeness of the representation to its
domain. LabView is an example of a visual programming language that is, as Green

mentioned, closely modelled on an actual circuit diagram. For exploratory design,

70

modification, incrementation, searching and transcription activities, if the notation’s

closeness of mapping is high, then this notation meets this dimension.

The consistency dimension relates to expressing similar semantics in similar syntactic
forms. The example Green gave is in-car audio sets where the keys, instead of moving
through the menus, move up or down. For exploratory design, modification,
incrementation, searching and transcription activities, if the notation’s consistency is

high, then this notation meets this dimension.

The diffuseness dimension relates to the verbosity of language. Green gave an example
of a verbose language called COBOL where a command such as MULTIPLY A BY B
GIVING C is used. For exploratory design, modification, incrementation, searching and
transcription activities, if the notation’s diffuseness is low, then this notation meets this

dimension.

The error-proneness dimension relates to invitations to mistakes. Green provided the
example of FORTRAN language where | and O are used as identifiers, but can be
confused with one and zero. For exploratory design, modification, incrementation,
searching and transcription activities, if the notation’s error-proneness is low, then this

notation meets this dimension.

The hard mental operations dimension is about the high demand on cognitive resources.
The example Green gave is mazes. Physical mazes may depend on memory-less
algorithms, but auditing spreadsheets is hard. For exploratory design, modification,
incrementation, searching and transcription activities, if the notation’s hard mental

operations are low, then this notation meets this dimension.

The progressive evaluation dimension relates to checking the work-to-date at any time.
The example here is the spreadsheets which frequently re-compute formulas, as Green
illustrated. For exploratory design, modification, incrementation, searching and
transcription activities, if the notation’s progressive evaluation is high, then this notation

meets this dimension.

The provisionality dimension relates to the degree of commitment to actions for serving
for the time being. The use of pencils is the example that Green provided for this
dimension. This usage allows designers to make fuzzy marks to mean something may

go somewhere. For exploratory design, modification, incrementation, searching and

71

transcription activities, if the notation’s provisionality is high, then this notation meets

this dimension.

The role-expressiveness dimension is about the readily inferred purpose of a
component. A radio circuit diagram can be looked at and its parts can quickly be picked
out at different stages by any electrical engineer. For exploratory design, modification,
searching and transcription activities, if the notation’s role-expressiveness is high, then
this notation meets this dimension. However, for incrementation activity which is not
imposing any kind of changes, it is not important whether the notation meets or fails to

meet this dimension.

In the next section, we will use examples from the Patient Record System case study,
which was mentioned earlier in chapter 3, to evaluate the dimensions within each

activity.

4.4. Examples from the Patient Record System
The CD notation is used to provide the specification of the Patient Record System case
study as described in 3.6. In this section we will choose from that case study some of
the diagrams that used CD notation which were used previously in the specification of
the Patient Record System. We have picked two examples (Figure 4.1, Figure 4.13 and
Figure 4.14) that we believe cover most of the CD notation’s components. Figure 4.1 is
taken partially from Figure 3.5; and Figures 4.13 and 4.14 are partially taken from
Figure 3.20. These examples will be augmented by other components in this section in
order to show all possible cases when applying the activities, and to check the cognitive
dimensions for these cases. The following figures will show constraint diagrams as odd-
numbered figures; each is followed by an even-numbered figure to show natural

language statements.

Patient

Alive Dead

00

Figure 4.1 CD diagram to represent the Patient set with two disjoint subsets

72

Figure 4.1 is a diagrammatic example of sets and subsets. It is described in Figure 4.2.

Patient is defined to be a set. This set is partitioned into only
two disjoint subsets: those who are Dead and all the others
who are Alive. The partition of Patient which is inside that
set but outside its two subsets contains no elements, and this
represents the empty set. The two subsets are identified by
the names Alive and Dead. This expresses that every known

patient is either Alive or Dead.

Figure 4.2 NL statement to represent the Patient set with two disjoint subsets

Figure 4.2 is the NL version of the constraint diagram presented in Figure 4.1. As for
the previous figure, this is an example of sets and subsets. However, it is represented by

a statement.

Gender

Figure 4.3 CD diagram to represent the Gender set with two disjoint subsets

Figure 4.3 is another diagrammatic example of sets and subsets. It is described in Figure
4.4.

Gender is defined to be a set. This set is partitioned into two
disjoint subsets: those who are Male and all the others who
are Female. The partition of Gender which is inside that set
but outside its two subsets contains no elements, and this
represents the empty set. The two subsets are identified by
the names Male and Female. This expresses that every

known gender is either Male or Female.

Figure 4.4 NL statement to represent that the Gender set with two disjoint subsets

73

Figure 4.4 is the NL version of the constraint diagram presented in Figure 4.3 to

represent an example of sets and subsets.

Patient
Gender

Figure 4.5 CD diagram to represent the Patient set with five subsets

Figure 4.5 is another diagrammatic example of sets and subsets. It is described in Figure
4.6.

Patient is defined to be a set. This set is partitioned into two
pairs of two disjoint subsets. The first pair of the two
disjointed subsets is about those who are Dead and all the
others who are Alive. The other pair is about the two
disjointed subsets: Male and Female. These latter subsets are
also subsets of the Gender set which is a subset of Patient
set. The partition of Patient which is outside the Gender set
contains no elements, and this represents the empty set as
well as the partition of Gender which is inside that set but
outside its two subsets contains no elements. Moreover, the
partition of Gender which is not the intersection between the
Patient’s subsets and Gender’s subsets contains no elements.
There are only four zones that may contain elements: the
intersections of Alive and Male, Alive and Female, Dead

and Male, and Dead and Female.

Figure 4.6 NL statement to represent the Patient set with five subsets

Figure 4.6 is the NL version of the constraint diagram presented in Figure 4.5 to
represent an example of sets and subsets.

74

Patient

Figure 4.7 CD diagram to present the five subsets of the Patient set along with a spider

Figure 4.7 is another diagrammatic example of sets and subsets. It is described in Figure
4.8.

Figure 4.8 is the NL version of the constraint diagram presented in Figure 4.7 to

represent an example of sets and subsets.

Patient is defined to be a set. This set is partitioned into two
pairs of two disjoint subsets. The first pair of the two
disjointed subsets is about those who are Dead and all the
others who are Alive. The other pair is about the two
disjointed subsets: Male and Female. These latter subsets
are also subsets of the Gender set which is a subset of
Patient set. The partition of Patient which is outside the
Gender set contains no elements, and this represents the
empty set as well as the partition of Gender which is inside
that set but outside its two subsets contains no elements.
Moreover, the partition of Gender which is not the
intersection between the Patient’s subsets and Gender’s
subsets contains no elements. There are only four zones that
may contain elements: the intersections of Alive and Male,
Alive and Female, Dead and Male, and Dead and Female.

Furthermore, there is a patient called Jean.

Figure 4.8 NL statement to present the five subsets of the Patient set along with a spider

75

Gender

Figure 4.9 CD diagram to present the two sets Patient and Gender along with their subset

There are two sets: patient and gender where each of them
has two disjointed subsets alive and dead, and male and
female, respectively. The partitions outside the subsets but

inside the sets contain no elements.

Figure 4.10 NL statement to present the two sets Patient and Gender along with their subsets

Figure 4.9 is another diagrammatic example of sets and subsets. It is described in Figure
4.10.

Figure 4.10 is the NL version of the constraint diagram presented in Figure 4.9 to

represent an example of sets and subsets.

Patient Gender

Alive Dead _ Male Female

Figure 4.11CD diagram to present that each Patient is either a Male or Female only

Figure 4.11 is another diagrammatic example of sets and subsets. It is described in
Figure 4.12.

76

There are two disjointed sets: Patient and Gender. Each of
them has two disjointed subsets. Patient has Alive and Dead
whereas Gender has Male and Female. The partitions of
Patient and Gender that are inside them but outside their
subsets contain no elements. Each patient is either a Male or

Female only.

Figure 4.12 NL statement to represent that each Patient is either a Male or Female only

Figure 4.12 is the NL version of the constraint diagram presented in Figure 4.11 to

represent an example of sets and subsets.

Figure 4.13 is another diagrammatic example of sets and subsets. It is described in
Figure 4.14.

Patient Oown PRec

Figure 4.13 CD diagram to present that each Patient has one or many PRec files

Each patient owns one or more PRec file.

Figure 4.14 NL statement to represent that each Patient has one or many PRec files

Figure 4.14 is the NL version of the constraint diagram presented in Figure 4.13 to

represent an example of sets and subsets.

Patient Ref PRec

Figure 4.15 A CD diagram to represent that each PRec file refers to only one patient

Figure 4.15 is another diagrammatic example of sets and subsets. It is described in
Figure 4.16.

77

Each PRec file refers to only one patient.

Figure 4.16 NL statement to represent that each PRec file refers to only one patient

Figure 4.16 is the NL version of the constraint diagram presented in Figure 4.15 to

represent an example of sets and subsets.

Patient Own PRec

Figure 4.17 CD diagram to present the problem of the differences between domain and habitat

Figure 4.17 is another diagrammatic example of sets and subsets. It is described in
Figure 4.18.

For each patient who owned a PRec file, that PRec file

refers to all patients.

Figure 4.18 NL statement to present the problem of the differences between domain and habitat

Figure 4.18 is the NL version of the constraint diagram presented in Figure 4.17 to
represent an example of sets and subsets.

Patient Patient

Y

Figure 4.19 A CD diagram to present the generalized version of the CD

Figure 4.19 is another diagrammatic example of sets and subsets. It is described in
Figure 4.20.

For each patient who owned a PRec file, that PRec file

refers to only that patient.

Figure 4.20 NL statement to represent two relations at the same time

78

Figure 4.20 is the NL version of the constraint diagram presented in Figure 4.19 to
represent an example of sets and subsets.

4.5. Profiles
A profile (Blackwell, et al., 2001) is the integration of the activities with the cognitive

dimensions. The profiles together form a discussion portfolio.

45.1. Exploratory Design Activity
To recap, this activity relates to adding new components and changing existing
structures. The following figures will be used to explain this activity under each

dimension.

The viscosity dimension

This is a very important dimension for the exploratory design activity because to lower
the cost of this activity, which is about adding and changing components, viscosity must
be as low as possible. A set with two disjoint subsets, as in Figure 4.1, could be
augmented by having another set called Gender, as in Figure 4.5, which itself has two
disjoint subsets, Male and Female, as in Figure 4.3, where each of them intersects with
the other two disjointed subsets, Alive and Dead, as shown in Figure 4.5. Any place
outside the intersecting of the two disjointed subsets with the other two disjointed
subsets is an empty place as in Figure 4.5.

The sentence that describes Figure 4.5 as shown in Figure 4.6 is harder to read, change
and understand than the diagram in Figure 4.5, which means NL can be very viscous
and can make the exploratory design activity very difficult. However, using CD as in
Figure 4.5 shows why CD is not a viscous language. We changed the non-empty places

from two to four easily and we added three new sets easily as well.

Thus, CD notation is a good language to be used for exploratory activity because its
viscosity is low. In general, the CD notation meets this dimension for this activity while

the NL notation fails to meet it.

The hidden dependencies dimension

In the CD notation, components such as subsets or sources and targets for arrows, are
defined clearly and easily, so that a user can visually spot the dependencies. For
example we can tell that set Patient in Figure 4.5 has many subsets. In general, using a

contour in CD makes it clear that it could contain something while a dot will not. Also,

79

using a line will depend on having things to be joined as one entity, while using an
arrow which presents a relation will depend on having a source and a target related to

that relation.

However, without careful treatment the order of reading CD can raise an issue of hidden
dependencies. For example, Figure 4.13 is the a design of the case where all patients
have one or more PRec files while Figure 4.15 represents another example of designing
a case where each PRec file has only one patient. These two cases could be designed as
one diagram such as Figure 4.17 to represent that for each patient who owns a PRec file,
that PRec file refers to that patient. However, this figure is an example of a not well-
matched-to-meaning diagram due to the problem of the difference between domain and
habitat (Stapleton & Delaney, 2008). This happened because of the order of reading and
drawing the diagram. In this case order of reading could be seen as a hidden

dependency.

Reading tree was proposed to reduce the hidden dependencies problem by enforcing the
reading order. However, accessing the right information from the reading tree could be
difficult in complex cases and require coordination between the tree and the diagram.
As a way to solve this, explicit reading order was proposed as a method in (Fish, et al.,
2003) and another method of implicit reading order was proposed in (Howse &
Schuman, 2005). The first method is useful for reading, but for huge programs this
method would increase the required mental operations. Furthermore, as in Figure 4.17,
it will cause the problem of the differences between domain and habitat. On the other
hand, another method is a generalized version of the CD notation (Stapleton & Delaney,
2008), where a diagram is viewed as a sequence of images which provide the reader
with the ability to know exactly how somebody has drawn the diagram, which will
provide the exact order of reading the diagram. Thus this last method, as in Figure 4.19,

will decrease the mental operations needed to understand the diagram.

In NL, a lot of dependencies are defined in one place and used in another. NL suffers
from hidden dependencies which mean that to sketch an existing design you should
explore the dependencies to understand whether the augmentation is valid and if so
where the location should be. Thus, both CD notation and NL notation fail to meet this

dimension.

80

The abstraction level dimension

The set-theoretical concept and the use of Euler-based diagrams provide the CD
notation with a high level of abstraction. This can help a designer sketching the system
at high level and avoids too much detail by encapsulating fragments. Despite the fact
that abstraction will make the language difficult to learn, it is one of the reasons for the
development of OO programming, the solution to viscosity problems, if any, increasing
the comprehensibility of a language, and increasing the protection against error-

proneness; but it could increase hidden dependences.

The CD notation is based on familiar diagrams such as Euler and Venn and thus the
abstraction here is incremental as we can see in the examples of the invariants provided

in Chapter 3, Section 3.6, where there was no need to think about variable declarations.

The NL notation, on the other hand, provides users with a detailed explanation because
it is a narrative language. Thus it is difficult to apply abstraction to NL, which means,
before sketching an existing design, the user should review the existing context word by
word and then apply the sketches. Thus, CD notation meets this dimension while NL

notation fails to meet it.

The premature commitment dimension

If we want to draw a set called patient which has a subset called alive that contains a
spider, then the order of drawing these three components is not important. However if
we want to draw an arrow to denote a relation, then a partial order is important; i.e. it is
important to have the source and the destination before the relation, but the order of
drawing the source or the destination is not important. The same with the spider legs:
we cannot draw a leg before having a foot. As a result when dealing with the sets, set
relations or elements, there is no order in drawing. The order is only required when
dealing with elements relations which are very helpful, to prevent errors and to keep the

consistency of the design.

The CD notation sometimes forces you to think ahead and make certain decisions.
However, this enforcement is needed to prevent mistakes. For example, Figure 4.1
represents a set called patient with two disjoint subsets, and the place outside these
subsets is shaded which means empty. So, to add an element to patient, it will be in
alive or dead. Figure 4.7 represents that there is at least one patient who may be a male

or female and who may be alive or dead. So the decision we have to make is to add a

81

spider with four feet and three legs to the diagram to represent this situation and thus
this preserve the validity of the diagram. Also, in Figure 4.9, we add a relation between
gender and patient sets, but if the requirements were not clear about the set relations
between the four subsets, then we would adopt the general Venn theme, which is the

intersection to be the relation between them, unless otherwise stated.

If we analogise to the Green and Blackwell example of the signwriter (Green &
Blackwell, 1998), we can tell that the CD notation has no such problem because
whenever a new subset is added there will be spatial place and if it is too small we can
play with the shading notion which is part of the CD system. As a result, premature
commitment for guessing the order is high and for guessing the spatial place is low for

exploratory design.

However, for NL, the order of sketching is very important. For example, we cannot start
saying that alive is related to patient because it is vague. The order here should be to
start by defining whether alive and patient are sets or spiders, then later by defining the
relation — whether it is a set relation or an element relation, and so on. Indeed in NL, the
size of the writing is important because measuring the font size determines the available
space. Thus, both CD and NL notations fail to meet this dimension.

The visibility dimension

This dimension is important for solving problems. The CD notation could increase
visibility because elements are associated directly with its sets and sets associated
directly with its subsets and supersets as well as arrows which are associated with its
sources and targets. Also, it is easy to know the order to read CDs because they have the
implicit reading tree option which simplifies the diagrams: the explicit reading tree
option used with a complex problem, or the generalized CD option which provides a

visual reading order of sequences.

In the odd-numbered Figures from 4.1 to 4.17, the places that may contain elements and
the empty places are all clearly visible. Moreover, the relations between the sets, subsets

and elements are all obvious and visible.

However, using the NL notation to find the information that is needed but is hiding in
documentation, the user has to search many pages to find such information. For
example, using sentences as used in the even-numbered Figures from 4.2 to 4.18 for

82

designing shows the invisibility of a valid description of a patient without using some
mental operations. Thus, CD notation meets this dimension while NL notation fails to

meet it.

The secondary notation dimension

There is no secondary notation for sets and elements. The CD notation does not enforce
the convention of reading from left to right. Instead, the reading order starts with the
source of an arrow. Furthermore, the CD notation has the option of choosing how to
read the diagram. For example, the combined diagrams from both Figure 4.11 and
Figure 4.13 is an example of an implicit reading tree representing the same information
that is in both Figure 4.17, which represents the generalized CD, and Figure 4.18 which
Is presented in NL notation.

In general, the CD notation cannot prevent colouring the diagrams, adding textual
comments, adding extra reading trees or choosing the location to place things. In this
activity, secondary notation is very helpful to explain complex diagrams. However, the
high use of secondary notation could increase the complexity of the diagram and the
need for hard mental operations. Due to the diagrammatic grouping nature of the CD
notation which already gives more information, there is no need to have extra

information.

On the other hand, NL notation which allows a substantial number of comments (Green
& Petre, 1996) has the benefit of secondary notation. Many comments can be used to
explain something. In general, secondary notation in both CD and NL languages can be
used to amend the low expressiveness deficiencies which would prevent the
representations from being isomorphic of what they represent and thus affect their

closeness of mapping. Thus, both CD and NL notations meet this dimension.

The closeness of mapping dimension

The CD notation has a closeness of mapping property because it provides descriptions
of objects and behaviours that are related to the represented world. For example, an
arrow is well matched to its meaning because it provides information that the source is

related to the target.

The CD is a very intuitive notation in being well-matched to meaning (Stapleton &
Delaney, 2008). Moreover, Euler diagrams have free rides (Shimojima, 2004) which

83

have been empirically evaluated (Shimojima & Katagiri, 2008). Thus CD which is an
Euler-based notation, has free rides which are inferences that are explicit within a
diagram, such as the transition property of the subset relation which leads to free rides.
On the other hand, these inferences would have to be derived when using the NL
notation. For example, Figure 4.5 shows that there are only four valid places for a spider
to be, which is difficult to show by the NL notation as in Figure 4.6 the NL notation
suffers from a lack of closeness of mapping due to its textual nature. Thus, CD notation

meets this dimension while NL notation fails to meet it.

The consistency dimension

CD has formal syntax and semantics and their syntax is simple due to the fact that it is
based on simple diagrams. There are a limited number of symbols to represent syntax.
Each symbol has only one meaning and there are no two symbols that represent a
similar thing. We have not noticed any particular problems of consistency. So, to sketch
a design, you are constrained with the syntax and the semantics to help you focus on the
design and prevent you from focusing on other details such as choosing a good syntax

to present what you sketch.

On the other hand, NL notation sometimes suffers from a lack of consistency. There are
many new words, old words, or words imported from different languages, and also a
word can have different interpretations depending on the context. Moreover, NL has a
thesaurus and synonyms for each single word. For example, in CD notation, a drawn
circle means a set, but in NL notation, a word set means different meanings, such as a
group, or the status of changing from liquid to solid which has a totally different
meaning. As a result, in NL notation, it depends on the context, not only on the syntax.

Thus, CD notation meets this dimension while NL notation fails to meet it.

The diffuseness dimension

CD compacts information because it uses a small space to represent a lot of information
and its syntax is very limited — for example in Figure 4.1 there are three components
along with their labels. However, NL uses a lot of symbols or a lot of space to represent
the same information. NL is a long-winded language due to its narrative nature. To
convert Figure 5-1 into NL we will need many words to say that there is a set called
patient which contains two disjoint subsets: alive and dead. Any place outside alive and

dead but inside patient is shaded to denote an empty place. It can be seen that we

84

needed 30 words, two punctuation marks and, with this font size, two lines. Thus, CD
notation meets this dimension while NL notation fails to meet it.

The error-proneness dimension

For designing activities, visually grouping related information will help designers to
detect patterns. By using the CD notation, it is not easy to make mistakes because
diagrammatic errors can easily be spotted; e.g. a relation cannot be drawn without a
source and a target and also a spider can’t be drawn on the edge of a set. However,
errors related to textual labels are not easy to spot. On the other hand, NL errors are
very difficult to spot. Thus, CD notation meets this dimension while NL notation fails to

meet it.

The hard mental operations dimension

Due to the fact that CD has free rides, this reduces the number of hard mental
operations. Figure 4.5 shows that the intersection between the area of gender outside
male and female and the area of alive gives a shaded area to indicate an empty area; this
is a free ride. However, since NL does not have the free rides advantage and some
information needs to be clearly stated or be derived, this means there is a need for
mental operations. For example Figure 4.2 states that ““The partition of Patient which is
inside that set but outside its two subsets contains no elements, and this represents the
empty set”, which means that the designer needs to distinguish between inside and
outside and to find out which of them has elements and which does not. This could be
more difficult if the number of insides and outsides increases as in Figure 4.6, which the
author herself finds it difficult to state in NL and easier in CD. Thus, CD notation meets

this dimension while NL notation fails to meet it.

The progressive evaluation dimension

This dimension can be successfully applied if there is a digital environment involved,
such as the example of recomputed formulas in spreadsheets that was mentioned earlier.
However, assuming a manual environment, we can stop in the middle of creating a
diagram to review the work at any time, at any stage, to check the progress, because as
shown in Chapter 3, section 3.6.2, the CD design emphasizes scalability. The same
procedure is used for NL to spot the stage of the work. Thus, both CD and NL notations

meet this dimension.

85

The provisionality dimension

By considering Figure 4.8 as an example, it shows that the problem domain has two
sets, patient and gender, where each of them has two disjointed subsets, alive and dead
and male and female, respectively. This sentence does not tell us anything about the
relation between patient and gender, patient and both male and female, or gender and
both alive and dead. Figure 4.9 is the CD representation for this sentence. Since we do
not know the relation between the sets, CD follows the general Venn theme that all sets
intersect unless otherwise stated. This allows creative ambiguity and allows playing
around with an idea because we are not sure which way to proceed and the given
information does not help us to be too precise about the exact result we were trying to
get. This sentence is also a clear example of provisionality in NL. Both CD and NL
have provisionality and they make exploratory design easier. Another example is Figure
4.7 which uses legs (lines) between spiders to indicate ambiguity of the place of that
spider. This figure represents the valid optional places of an element, but the exact place

is not certain. Thus, both CD and NL notations meet this dimension.

The role-expressiveness dimension

This dimension is important for the exploratory design because if the purpose of a
component is readily inferred, then the design can be read easily. In CD, each
component is distinguished by different graphical devices; e.g. existential spiders have
dots which are different from universal spiders that have asterisks and different from
sets which have contours, etc. The CD notation makes it easier to sketch a design
because it has a high role-expressiveness property. Figure 4.7 shows sets by using
contours, spiders by dots and a leg between two dots by a line to denote the relationship

between them.

On the other hand, using NL sometimes makes it harder to read the design because the
role-expressiveness is not clear. It is not always clear if an individual name is for a
spider or a set. This means NL makes it harder to sketch a design because its role-
expressiveness is low. Furthermore, as mentioned previously, a word set has different
roles such as a group or a process of converting liquid to solid. As a result, the role of a
set is an ambiguous word when used by NL notation. Thus, the CD notation meets this

dimension while the NL notation fails to meet it.

The results of CD/NL can reduce exploratory design costs as follows:

86

Table 4.2 Summary of Exploratory Design Activity Profile

Cognitive Dimensions | CD | NL

Viscosity v ox
Hidden dependencies X | %
Abstraction level V| x

Premature commitment
Visibility

Secondary notation

Closeness of mapping

Consistency

Diffuseness

X

Error-proneness

Hard mental operations

Progressive evaluation

< | 2| X

Provisionality

2L | ||| || 2|22 =<2|=<2]|X
X

X

Role-expressiveness

According to this table (Table 4.2) CD can reduce exploratory design costs by 12:14
while with NL it is by 3:14.

4.5.2. Modification Activity
Modification is an activity that changes an existing structure without adding any new

information.

The viscosity dimension

This is a very important dimension for modification activity because to lower the cost of
this activity, which is about adding and changing components, viscosity must be as low
as possible. Inheritance structure leads to being viscous, and changing the inheritance
means changing the pattern of class. In CD, changing a relation from being a set relation
to an element relation is visually easier to do rather in other non-diagrammatic
notations. For example, Figure 4.5 can be converted easily into Figure 4.11. However,
to change this from Figure 4.6 to figure 4.12, a lot of changes are required. In general, in

CD, when changing a spider to a set or vice versa, and also when changing a target of a

87

relation from set to a spider or vice versa, the change can be done easily and there will
be no need for a lot of work to change, and thus CD is a less viscous system.

On the other hand, with NL notation, a lot of work is required to change any type. To
change a spider to a set, extra work is needed. This will mean that set rules should be
applied as well as grammar and a review will be needed as well; this NL is much harder
to modify and has higher viscosity, which is harmful for modification. Thus, CD
notation meets this dimension while NL notation fails to meet it.

The hidden dependencies dimension

To recap, in the CD notation, dependencies such as subsets or sources and targets for
arrows are defined clearly and easily so that a user knows the dependencies. For
example, we can tell that set Male in Figure 4.5 has no subsets and the relation’s source
and target in Figure 4.11 has no hidden dependencies. Thus CD is not a hidden
dependencies notation.

However, in NL, a lot of dependencies are defined in one place and used in another, as
in figures 4.6 and 4.12. When changing something, a review is needed many times, and
thus NL is much harder to modify and it has higher hidden dependencies. Thus, CD
notation meets this dimension while NL notation fails to meet it.

The abstraction level dimension

As mentioned before, the set-theoretical concept and the use of Euler-based diagrams
provide CD with a high level of abstraction. Changing from Figure 4.5 to Figure 4.11
did not affect the abstraction level and also the abstraction level did not prevent any

change.

The NL notation, on the other hand, provides users with a detailed explanation because
it is a narrative language, and thus it is difficult to apply abstraction to NL, which means
that to change something the user should review the context word by word, modify,
review spelling and grammar rules, and review the context, which means it is much
harder to modify due to the its lower abstract level. Thus, CD notation meets this

dimension while NL notation fails to meet it.

The premature commitment dimension
Modifying Figures 4.5 and 4.11 has no requirements for any premature commitment.

The modification was straightforward. However, it is not the case with the NL notation,

88

Figures 4.6 and Figure 4.12. Thus, CD notation meets this dimension while NL notation

fails to meet it.

The visibility dimension

This plays an important role in modifying activity to ensure consistency. The
modification of Figure 4.5 to 4.11 is easy because all the components are visible and
there is no hidden information that needs to be derived which is not the case for NL,
Figure 4.6 and Figure 4.12. Despite the fact that modification by using NL requires
review of the whole of the document, it may cause inconsistency. The CD notation is
much easier than the NL notation to use to modify specifications because it has higher

visibility. Thus, CD notation meets this dimension while NL notation fails to meet it.

The secondary notation dimension

Despite the fact that there is no secondary notation for sets and elements, CD cannot
prevent any extra information that is not part of the actual design being added by
colouring the diagrams or using textual comments. In this activity secondary notation
can be used fruitfully to understand a complex diagram or to explain the reasons behind
a change. When changing Figure 4.5 to Figure 4.11, we can add a comment explaining
the reasons behind changing the relation type from set relation to element relation.

Thus, both CD and NL notations meet this dimension.

The closeness of mapping dimension

When changing Figure 4.5 by using the CD notation, it will always maintain the
closeness of mapping; for example, a relation will always have a source and a target as
in Figure 4.11. On the other hand, NL does not have closeness of mapping due to its
textual nature — see Figures 4.6 and 4.12. Thus, CD notation meets this dimension while

NL notation fails to meet it.

The consistency dimension

With simple syntax, changing the structure is low cost. Whereas the CD notation has
simple syntax with formal semantics, NL notation does not. So to change from Figure
4.5 to Figure 4.11, it will be necessary to change the set relation between Patient and
Gender to be an element relation between these sets. So it is consistent in CD notation
because a set relation has only one meaning which includes containment, intersection or

disjoint, and element relation is presented by an arrow. However by using NL, it is

89

difficult to know the type of relation unless stated or derived from the context. Thus,
CD notation meets this dimension while NL notation fails to meet it.

The diffuseness dimension

Unlike NL notation, CD notation has a limited number of components and much
information can be derived as free rides, which implies that a modification task is easy
to do. Figures 4.5 and 4.11 used a small place to represent, while Figures 4.6 and 4.12
needed to be diffused to state that a patient is only alive or dead and each alive or dead
patient is either male or female only. Thus, CD notation meets this dimension while NL

notation fails to meet it.

The error-proneness dimension

It is easy to spot any mistakes when the specification is changed using CD notation. For
example, when modifying Figure 4.13 or Figure 4.15 to become Figure 4.17, we spotted
that there were differences between domain and habitat, and thus we knew that there
would be an issue with the reading. Thus, in this case, we either use a reading tree or the
generalized CD notation. There are other visually spotted mistakes such as placing a
spider on the edge of a set or deleting the source of an arrow or placing a set as a source
of an arrow. However, errors related to labels are not easy to spot. As a result, the CD
notation is much easier to modify because it has less error-proneness. In NL, mistakes
can easily be made due to the nature of textual languages. NL has high error-proneness
which means it is much harder to modify. Thus, CD notation meets this dimension
while NL notation fails to meet it.

The hard mental operations dimension

Modifying from Figure 4.5 to Figure 4.11 is straightforward and there is no need to
recall any information. The CD notation can reduce the need for memory or mental
calculations because it shows constraint and displays information in visual ways. It is

much easier to modify by using CD because fewer hard mental operations are required.

By using the NL notation, we can describe Figure 4.11 by saying that there are two
disjointed sets which have a spider with three feet and two legs. It is hard to modify this
sentence because it needs hard mental operations. For example, to replace this spider by
a set, we cannot replace word by word; i.e. it is incorrect to say there are two intersected
sets which have a set with three feet and two legs. Mental operations are needed to

understand that a spider is an element which means it should belong to a set, and has

90

feet and legs, and to remember that feet should be in different places; no two feet are in
the same place. Also the replacing set may be a superset of the intersected sets, a subset
of them, or a disjoint set. It is much harder to modify by using NL because hard mental
operations are required. Thus, CD notation meets this dimension while NL notation fails

to meet it.

The progressive evaluation dimension

We can stop in the middle of modifying a diagram to review the work at any time, at
any stage, to check the progress. The same procedure is applied to NL to spot the stage
of the work. The type of the used environment, manual or digital, will lead to a manual
or digital progressive evaluation, respectively. Thus, both CD and NL notation meet this

dimension.

The provisionality dimension

For example, to change a set relation as in Figure 5-5 to an element relation without
knowing a specific patient’s exact place, as in Figure 5-11, allows creative ambiguity
because we are not sure which way to proceed and the given information does not help
us to be too precise about the exact result we are trying to get. So, in Figure 4.11, we
can say there is a patient Jean and because we do not know if she alive or not and if she
is male or not we will represent Jean same way as in Figure 4.11 but we will use an
existential spider rather than the universal spider. This sentence is also a clear example
of provisionality in NL. Both CD and NL have provisionality and they make
modification, even with missing information, easier. Thus, both CD and NL notations

meet this dimension.

The role-expressiveness dimension

Since in CD each component is distinguished by different graphical devices, the
purpose of each of them is readily inferred. To modify Figure 4.5 to Figure 4.11, we
look for a contour and modify a set relation to be an element relation; we add an arrow.
The CD notation makes it easier to modify because it has high role-expressiveness.
Figure 4.15 shows a set by using a contour, and the relation between a universal spider
and an existential spider by an arrow. On the other hand, using NL sometimes makes it
harder to modify the design because the role-expressiveness is not clear. It is not always
clear if an individual’s name is for a spider or a set. This means NL makes it harder to

modify a design because its role-expressiveness is low, and thus the modification will

91

depend on the context. Thus, CD notation meets this dimension while NL notation fails
to meet it.

The results of CD/NL reduction of modification costs are:

Table 4.3 Summary of Modification Activity Profile

NL

X

@)
O

Cognitive Dimensions

Viscosity

Hidden dependencies X

Abstraction level

Premature commitment
Visibility

Secondary notation

Closeness of mapping

Consistency

Diffuseness

X

Error-proneness

Hard mental operations

Progressive evaluation

2 | 2| X

Provisionality

) N R I = - I = D I = e
X

Role-expressiveness

According to this table (Table 4.3) CD can reduce modification costs while the NL cost
is 3:14.

4.5.3. Incrementation Activity
Incrementation is an activity that involves adding more information without changing

the structure.

The viscosity dimension

Since this activity is not about changes to components, this dimension is not important
to evaluate. As a result it is not important if CD or NL are viscous or not, which means
that both languages are fine for this activity under this dimension and both do not

increase the incrementation cost. Thus, both CD and NL notation meet this dimension.

92

The hidden dependencies dimension

Inserting a new label into the design doesn’t require an extreme number of individual
actions nor a change at the plan level. However, there should be a graphical device to
label. Also, this label should not have been used before. Unlike NL, every dependency
is explicit and clearly visible. We can add a spider in any contour in Figure 4.5 and even
if we do not know its exact place we will not face any difficulties in inserting that spider
as shown in Figure 4.7 because by using spider’s legs and feet we can show all the
possible places, which indicates the lack of knowledge of the exact place. Nevertheless,
there could be hidden dependencies when adding a new arrow in Figure 4.13 or Figure
4.15 if the order of the reading was not clear. Figure 4.17 which represents this issue has
the problem of the difference between domain and habitat. This issue could be solved

by using reading trees or the generalized CD notation.

In general this dimension does not affect this activity much because incrementation is
about adding, not modifying. As a result both languages are fine for incrementation

regarding hidden dependencies. Thus, both CD and NL notation meet this dimension.

The abstraction level dimension

Abstraction is useful either to lower the viscosity or to stimulate the user’s conceptual
structure. Since incrementation is not about changes, viscosity is not an issue for this
activity and also it is not about capturing the structure as shown in Figures 4.6 and 4.7.
Thus, since this dimension will not cause any problems to this activity, both the CD and
NL languages do not increase incrementation costs. Thus, both CD and NL notation

meet this dimension.

The premature commitment dimension

Since new data is being created, this dimension is vital to this activity. In Figure 4.5, to
insert a set along with its subsets that contain spiders as in Figure 4.7, the order of the
insertion of these components is not important. In this case whenever a piece of
information comes we can insert it easily. However, to insert a new label such as Male,
there should be a graphical device to label and this label should be unique. We cannot
make decisions before we have the information we need about which graphical device —
which is a subset in this case — to attach the label to. Moreover, to insert an arrow which
represents elements’ relations, its source and target should be inserted first. Otherwise,

we cannot insert this arrow. In general, when inserting sets, set relations or elements,

93

there is no order to follow. The order is only required when dealing with elements’
relations, which is very helpful to prevent errors and to keep the consistency of the
design. The CD notation sometimes forces you to think ahead and to make certain
decisions to prevent mistakes. For example, the decision we are forced to make when
adding a label is to have an existing graphical device first, and thus this preserves the
validation of the diagram. Another example is inserting a subset into a set which has
many subsets and there is no spatial place to add more subsets. In CD, if the spatial

place is too small we can play with the shading notion which is part of the CD system.

On the other hand, due to the nature of NL, the order of insertion is very important. For
example we cannot say that alive is related to patient because it is vague. The order here
should be to start by defining whether alive and patients are sets or spiders, then later by
defining the relation as a set relation or element relation, and so on. Indeed in NL the
size of the writing is important because measuring the font size determines the available

space. Thus, both CD and NL notations fail to meet this dimension.

The visibility dimension

For this activity which is about inserting components, visibility is useful for error-
checking only. For example, in Figure 4.5, to insert a new existential spider in Patient, it
is visible that there are only four zones where this patient could be placed and it would
be an error to place it in other zones as shown in Figure 4.7. As a result both languages
do not increase the incrementation costs. Thus, both CD and NL notation meet this

dimension.

The secondary notation dimension

Inserting new information using CD or NL: this dimension will not have an effect on
this activity. We could insert new components in Figure 4.5 with a different colour. For
example, if inserting spiders into Patient as in Figure 4.7, we could for example draw
the spider feet on the Female set by a pink colour and on the Male set by a blue colour.
However, since the use of colours is not part of the notation, it is the same whether
colours are used or not. As a result, both languages will not increase the incrementation

cost under this dimension. Thus, both CD and NL notation meet this dimension.

The closeness of mapping dimension
In the represented world, two things are related by a specific relation. In the CD

notation, a uniquely identified arrow, as in Figure 4.11, is used to relate a source to its

94

target. Thus, inserting a relation is very closely related to what we want to describe
because a source and a target to this relation will be either existing or inserted along
with the relation. Unlike NL, CD is close to mapping. Thus, CD notation meets this

dimension while NL notation fails to meet it.

The consistency dimension

Since CD has simple syntax, incrementation is low cost. Meaning is clear in CD; for
example, a dot means a spider, and a relation head points to the target while its end
points to the source as in Figure 4.11. However, NL has a wider syntax and the same
word may mean different things depending on the context. To insert a spider using NL
we would use a lot of symbols or a lot of space for defining the spider, its type,
describing the location of that spider, and explaining its relations to the existing
components. Unlike NL, CD has a limited number of components and much
information can be derived as free rides, which implies that an incrementation task is

easy to do. Thus, CD notation meets this dimension while NL notation fails to meet it.

The diffuseness dimension

The CD notation compacts information because it uses a small space to represent a lot
of information and its syntax is very limited. In Figure 4.5, to insert a spider in Patient
as in Figure 4.7, we would add a dot in a specific spatial place. However, to insert a
spider using NL we can use a lot of symbols for representing a spider such as element,
member, individual ...etc. Thus, CD notation meets this dimension while NL notation

fails to meet it.

The error-proneness dimension

It is easy to spot that there is a mistake, for example in Figure 4.5, inserting a spider as
in Figure 4.7 but on the edge of a set, or inserting an arrow as in Figure 4.11 but without
a source — these are visually spotted errors. However, errors related to labels are not
easy to spot. As a result, CD is much easier to use for incrementation because it has less
error-proneness. In NL, mistakes can easily be made due to the nature of the textual
languages. NL has high error-proneness, which means it is much harder to spot insertion

errors. Thus, CD notation meets this dimension while NL notation fails to meet it.

The hard mental operations dimension
Incrementation is straightforward and there is no need to remember any information.

The CD notation can reduce the need for memory or mental calculation because it

95

shows constraint and displays information in visual ways. It is much easier to insert
when using the CD components because then less difficult mental operations are
required. For example, to insert a spider in Figure 4.5 to be as in Figure 4.7, there will
be nothing to remember and no mental operations are needed. However, to insert a
spider using NL, mental operations are needed to understand the context and remember
what and where the grouped related information is, and to insert the new information
into that group, which indicates that it is much harder to increment by using NL. Thus,

CD notation meets this dimension while NL notation fails to meet it.

The progressive evaluation dimension

Both languages support stopping in the middle of incrementation to review the work at
any time, at any stage, to check progress or to ascertain the stage of the work. As
previously stated, this review could be done manually or digitally depending on the

environment used. Thus, both CD and NL notation meet this dimension.

The provisionality dimension

In Figure 4.5, adding a spider to denote that there is a patient, doesn’t require a lot of
work, but the location of that spider should be known. In case the information on the
spider’s location is missing, CD allows us to present this by having a spider foot and
legs as in Figure 4.7. Even the NL notation allows creative ambiguity by not being
precise. Both CD and NL have provisionality and they make insertion, even with
missing information, easier. However, CD insertion will represent missing information
by giving all the possible cases, which will keep the diagram valid. On the other hand,
NL will be ambiguous and will give many different inferences. Thus, both CD and NL

notation meet this dimension.

The role-expressiveness dimension

As previously discussed, since in CD each component is distinguished by different
graphical devices, the purpose of each of them is readily inferred. To insert a set, we
will definitely add a contour and to insert a relation, we will add an arrow. For example
in Figure 4.5, to add a specific patient we will use an existential spider to denote that
patient and if we do not know the exact place of that patient we will use feet and legs to
denote the possible places of that patient as in Figure 4.7. the CD notation makes it
easier to insert new information into the design because it has high role-expressiveness.

On the other hand, NL has lower role-expressiveness. However, to insert the text new

96

information, role-expressiveness is not a critical dimension. As a result, both languages
can reduce the incrementation costs under the role-expressiveness dimension. Thus,

both CD and NL notation meet this dimension.
The results of CD/NL reduction in incrementation costs are:

Table 4.4 Summary of Incrementation Activity Profile

Cognitive Dimensions | CD | NL

Viscosity

Hidden dependencies

2 | 2| =
2 | 2| =

Abstraction level

Premature commitment

Visibility

2 | 2| X

Secondary notation

X

Closeness of mapping

Consistency

Diffuseness

X

Error-proneness

Hard mental operations

Progressive evaluation

Provisionality

2lelz2|2|2|2|2|2|=2]|=2]X
X

2 | 2| 2| X

Role-expressiveness

According to this table (Table 4.4) CD can reduce incrementation costs by 13:14 while
NL would be by 8:14.

4.5.4. Searching Activity
Searching is applied when the user is looking for information.

The viscosity dimension

Since it is not an important dimension for searching activity because this activity is not
about changes to components, it is not essential if the CD or NL notations are viscous or
not. So both of them are fine for this activity under this dimension and neither of them

increases the searching cost. Thus, both CD and NL notations meet this dimension.

97

The hidden dependencies dimension

The important dimension to look at for searching is the hidden dependencies. In Figure
4.11, searching for a target of a relation in the design will simply require us to look for
the graphical device near to the arrow head. Unlike NL, every dependency is explicit
and visible. So, the NL notation can slow up searching. As a result, CD can reduce the
search costs by speeding up the search. Thus, CD notation meets this dimension while

NL notation fails to meet it.

The abstraction level dimension

Abstraction is about grouping and visually relating information together. Unlike NL,
CD is a scalable notation which allows hierarchical searching by using overviews to
locate areas for a more detailed search. For example, in Figure 3.20 we can search for
more information of the HProf set and we can see from this figure that more
information is located on HCS class and thus we can search there. Thus, CD notation

meets this dimension while NL notation fails to meet it.

The premature commitment dimension
Searching has nothing to do with making decisions prior to having the information that
we need. So premature commitment is not vital for searching activity using either CD or

NL notations. Thus, both CD and NL notation meet this dimension.

The visibility dimension

In the CD notation, the visibility is good because, as in Figure 4.7, elements are
associated directly with their sets and a set is associated directly with its subsets and
supersets, as well as, in Figure 4.11, an arrow which is associated with its sources and
targets. Also, it is easy to know the order in which to read CDs because they have an
implicit reading tree which simplifies the diagrams, or an explicit reading tree which is
used with complex problems. In NL to find the information needed in a document, the
user has to search many pages to find similar information. Thus, CD notation meets this

dimension while NL notation fails to meet it.

The secondary notation dimension
To search for information using CD or NL: this dimension will not have an effect on
this activity. Perhaps using secondary notation here will speed up the search by

allocating the location of the searched-for component. As a result, both languages will

98

not increase the search cost under this dimension. Thus, both CD and NL notations meet

this dimension.

The closeness of mapping dimension

An effective mapping can speed up the interpretation and can lead to fewer errors. Since
CD enables inference operations and is close to mapping as previously discussed, it
reduces the search costs; which is not the case with NL. Thus, CD notation meets this
dimension while NL notation fails to meet it.

The consistency dimension

In CD, searching for a subset as in Figure 4.1 means searching for a set contained in
another set, which is always true and could be visually spotted easily. However,
searching for a subset using NL is not easy, especially if the word subset was not
explicitly mentioned and has to be derived from the context. Thus, CD notation meets
this dimension while NL notation fails to meet it.

The diffuseness dimension

Due to CD’s diagrammatic nature, it compresses information into a small space because
it has a limited number of components and much information can be derived as free
rides, which reduces the search costs. For example, Figure 3.20 represents the whole
system of Patient Record System using simple components in a small space, and locates
the place of the additional information from the extended classes. However, NL is a
diffused language with many synonyms, antonyms and a thesaurus. Thus, CD notation

meets this dimension while NL notation fails to meet it.

The error-proneness dimension

Searching for both valid and invalid results is easy with CD notation. The user will
easily spot that there is a mistake if searching for a spider on the edge of a set or
searching for a source of an arrow which is not there. As a result, CD is much easier to
use for searching for valid results because it has less error-proneness. However, in NL
searching for a set as a source of a relation is difficult to spot as an invalid search. Thus,
CD notation meets this dimension while NL notation fails to meet it.

The hard mental operations dimension
CD reduces hard mental operations because diagrams are spatially grouped by related
information such as the sets in Figure 4.5, which provide rapid access, reducing the

99

need to match symbolic labels, acting as a memory resource to aid users, detecting
patterns, enabling inference operations such as in Figure 4.5, which indicates that the
shaded area is an empty area, and compacting information into a small space, as in
Figure 4.11. However, NL requires hard mental operations to understand the context
and remember what and where the grouped related information is, which indicates that
it is much harder to search using NL especially if the search includes negatives and self-

embedding. Thus, CD notation meets this dimension while NL notation fails to meet it.

The progressive evaluation dimension

A user is unlikely to stop in the middle of searching to spot the stage of the work.
Therefore, this dimension is irrelevant to this activity. However, CD and NL do not
prevent you from doing that. Thus, both CD and NL notations meet this dimension.

The provisionality dimension

This dimension is about creating ambiguity and non-precise information. By searching
using CD, it is easy to distinguish between information and missing information. For
example, in Figure 4.7, by searching for a Jean, we conclude that Jean is a patient but
other information is missing. It is not known whether Jean is male or female, nor
whether she is alive or dead. However, distinguishing is difficult in the case of NL.

Thus, CD notation meets this dimension while NL notation fails to meet it.

The role-expressiveness dimension

This dimension is important for reducing the cost of searching because when searching
for a set in CD, we are looking to find a contour, while if we are searching for a relation,
we will look for an arrow. For example, in Figure 4.7, we are searching for a specific
patient called Jean and thus we are looking for a spider and because we have found this
spider with feet and legs we know that the location of that spider was not available
during the insertion time. The CD notation makes searching easier because it has high
role-expressiveness whereas NL sometimes makes it harder to read the design because
the role-expressiveness is not clear. Thus, CD notation meets this dimension while NL

notation fails to meet it.

The results of CD/NL reduction of search costs are:

100

Table 4.5 Summary of Searching Activity Profile

NL
N

X

@)
w)

Cognitive Dimensions

Viscosity

Hidden dependencies

Abstraction level

< | X

Premature commitment
Visibility

X

2

Secondary notation

Closeness of mapping

Consistency

Diffuseness

Error-proneness

Hard mental operations

Progressive evaluation

Provisionality

) N A - - = R I = D I = .
X

Role-expressiveness

According to this table (Table 4.5) CD supports searching by reducing the searching
costs while the NL cost is 4:14.

4.5.5. Transcription Activity

Transcription is coding or copying the specification from one representation to another.

The viscosity dimension

This is not an important dimension for transcription activity because this activity is not
about changing components. Transcription does not impose any kind of changes, as
shown in transcribing from Figure 4.1 to Figure 4.2. So this dimension does not affect
this activity much — since there is no change — and thus both languages are fine for
transcription regarding viscosity, and neither increases the cost of transcription. Thus,

both CD and NL notations meet this dimension.

The hidden dependencies dimension
Transcribing a target of a relation, such as in Figure 4.11 to Figure 4.12, will simply

require knowing its relation and its source which can all be seen by the graphical

101

devices: the arrowhead points to the target and its end points to the source. Unlike NL,
every dependency is explicit and easily visible. As a result, CD can reduce the
transcription costs. However, NL may cause transcription difficulties because when
transcribing without knowing the hidden dependencies, this will cause invalid cases
such as transcribing Figure 17. Unlike the CD notation, the NL notation increases
transcription costs. Thus, CD notation meets this dimension while NL notation fails to

meet it.

The abstraction level dimension

In general, abstraction is useful for capturing the structure for ease of transcription
activity and the CD notation visually groups related information. For example, Figure
4.7 has higher abstraction than Figure 4.8, and therefore the CD notation reduces
transcription cost which is not the case with NL. Thus, CD notation meets this

dimension while NL notation fails to meet it.

The premature commitment dimension

Since no new information is being created in the structure by the transcription activity,
no decisions are required to be made before having any necessary information, as shown
in transcribing from Figure 4.7 to Figure 4.8. As a result, premature commitment is not
vital for transcription activity using either CD or NL notations, and thus both notations

meet this dimension.

The visibility dimension

For this activity, visibility is required to ensure consistency, which is useful for error-
checking only. To transcribe from Figure 4.7 to Figure 4.8 it is visible that the exact
place of the spider Jean is not known. So the known and unknown information are
visible using the CD notation. However, since this dimension is not vital for this
activity, both languages do not increase the transcription costs. Thus, both CD and NL

notations meet this dimension.

The secondary notation dimension

In general, having extra information could help during the transcription activity, but it is
not essential. The CD notation cannot prevent the colouring of the diagrams, adding
textual comments or choosing the size of the components. However, due to the
diagrammatic grouping nature, CD does not need to have extra information — as in

Figure 4.7, where we did not need to add a comment to say that we did not have any

102

information about the exact place of the spider Jean. In fact, both languages do not
increase transcription activity costs for this dimension. Thus, both CD and NL notations

meet this dimension.

The closeness of mapping dimension

Using the CD notation speeds up the interpretation of the design that is needed to make
the transcription easier, and this could lead to fewer errors than with NL. The CD
components are generally well-matched to meaning — for example, the arrows in Figure
4.11, which says that any patient is either a male or female. Thus, CD notation meets

this dimension while NL notation fails to meet it.

The consistency dimension

In CD, transcription is a low cost because a set is visually spotted as only a contour
without any mental cost; also a relation is spotted as an arrow. However, transcription
using NL is not easy, especially if the word patient did not explicitly refer to a set,
which gives an option of referring to a spider, and this will need a deriving operation
since NL lacks free rides. Also the word ‘set’ itself, as we previously mentioned, has
several interpretations, such as a group, or a process of converting liquid to solid. As a
result, the meaning of the word set in NL is ambiguous. Thus, CD notation meets this

dimension while NL notation fails to meet it.

The diffuseness dimension

With transcription activity, it is easy to use the CD notation because it has a limited
number of components, which reduces transcription costs such as transcribing Figure
4.11. However, it is difficult when using NL because it is a diffused language, with
many synonyms and antonyms, especially if negatives and self-embedding are included.

Thus, CD notation meets this dimension while NL notation fails to meet it.

The error-proneness dimension

It is easy to spot that there is a mistake such as transcribing a spider on the edge of a set
or transcribing an arrow without a source or a target. As a result, CD is much easier to
use for transcription because it has less error-proneness. However, in NL transcribing a
set as a source of relation is difficult to spot as an invalid search, especially with
negatives and self-embedding. Thus, CD notation meets this dimension while NL

notation fails to meet it.

103

The hard mental operations dimension

Transcription is straightforward and there is no need to remember any information. CD
can reduce the need for memory or mental calculation because it shows constraints and
displays information in visual ways. It is much easier to transcribe when using CD
because fewer hard mental operations are required. For example, transcribing Figure
4.11 to Figure 4.12 is easy, but vice versa is not. However, to transcribe a set using NL,
mental operations are needed to understand the context and remember its subsets,
members, supersets, and relations with other sets and non-members, which indicates
that it is much harder to transcribe using NL, especially if negatives and self-embedding
are included. For example Figure 4.2 states that “The partition of Patient which is inside
that set but outside its two subsets contains no elements, and this represents the empty
set”; this needs some mental operations to imagine the inside and outside of a set and to
determine which of them has the elements and which does not. Thus, CD notation meets
this dimension while NL notation fails to meet it.

The progressive evaluation dimension

We can stop in the middle of transcription to review the work at any time, at any stage,
to check the progress or to ascertain the stage of the work in both CD and NL
languages. This review could be manual or digital depending on the environment used.

Thus, both CD and NL notations meet this dimension.

The provisionality dimension

When transcribing using the CD notation, it is easy to distinguish between information
and missing information, such as in Figure 4.7. However, this distinction is difficult in
the case of NL. Thus CD notation meets this dimension while NL notation fails to meet
it.

The role-expressiveness dimension

This dimension is important for reducing the cost of transcription because if the purpose
of a component is readily inferred then the transcription can easily be done. The CD
notation makes it easier to transcribe a design because it has high role-expressiveness,
as shown in Figure 4.7, where a spider is shown by a dot and a set by a contour;
whereas the NL notation sometimes makes it harder to read the design because the role-
expressiveness is not clear. Thus, CD notation meets this dimension while NL notation

fails to meet it.

104

The results of CD/NL reduction in transcription costs are:

Table 4.6 Summary of Transcription Activity Profile

Cognitive Dimensions | CD | NL

Viscosity N[N

Hidden dependencies | v | x

Abstraction level v | x

Premature commitment | v |

Visibility Y

Secondary notation VR

Closeness of mapping V| x

Consistency V| ox
Diffuseness V| ox
Error-proneness R

Hard mental operations | \ | x

Progressive evaluation | v |

Provisionality v | x

Role-expressiveness V| ox

According to this table (Table 4.6) CD can reduce transcription costs while the NL cost
is 5:14.

The summary of applying each dimension to each activity for CD language is shown in

Table 4.7 to answer whether the notation is increasing the activity costs or not:

105

Table 4.7 CD Integrated Profile

2
.% '% E)ég_lorr]atory Modification | Incrementation | Searching | Transcription
'% é Actil\g/’ity Activity Activity Activity Activity
O 0O
Viscosity V J J V V
Hidden N N N N N
dependencies
Abstraction J J N N N
level
Prema_ture « J N N N
commitment
Visibility \ \ \ \ \
Secondary J J N N N
notation
Close_ness of J J N N N
mapping
Consistency J V V V l
Diffuseness \ \ \ N \
Error-proneness J V \/ \/ V
Hard mental J N N N N
operations
Progres_sive J N N N N
evaluation
Provisionality J J J \/ x/
Role- y y y y y
expressiveness

Moreover, the summary of applying each dimension to each activity for NL language is

shown in Table 4.8:

Table 4.8 NL Integrated Profile

106

(72}
c
[<B]
; '% gzgilgr:atory Modification | Incrementation | Searching | Transcription
%’ qé Activity Activity Activity Activity Activity
QO
Viscosity x x \ \ N
Hidden
. X x + X %
dependencies
Abstraction
X X \/ X X
level
Prema_ture y y y J J
commitment
Visibility x x \ x N
Secondary J J J J J
notation
Closeness of
. X X X X X
mapping
Consistency x x x x x
Diffuseness x x x x x
Error-proneness x x x x x
Hard mental y y y y y
operations
Progressive J J J J J
evaluation
Provisionality V V \/ X x
Role- y 5 J y y

expressiveness

107

4.6. Discussion
Overall, it seems that the CD profile is promising; in general, the cost of the activities
using CD is less than the cost using NL. Only in one dimension, premature
commitment, did CD not satisfy two activities. However, this dissatisfaction is needed
to ensure the diagram’s formal validity. We are glad we have not faced the case where
high viscosity and high premature commitment are combined because it would be the
worst problem, as Green discussed (Green & Blackwell, 1998). Exploratory design and
incrementation activities have a high level of premature commitment, which is a
problem. However, since viscosity is very low this lets premature commitment be less

costly, since bad guesses can easily be corrected.

CD notation is cognitively better than NL notation according to our single case study. It
is meant to specify different situations and it may be used for other complex case
studies that have different processes and may give different results. We covered all of
the five activities that could be used for program specification and for each of these
activities we looked at all fourteen of the different dimensions.

Despite the fact that Green (Green, 2000) advised evaluating the notation and its
environment, and recommended a paper-based environment, CD is well used by editors.
Since there is no specific editor for CD, despite the basic editor (Gil & Sorkin, 2013),

most users use Microsoft Visio to draw diagrams (Halpin, et al., 2003)

The trade-offs between the different dimensions were obvious. For example, in NL to
solve the lack of visibility, a secondary notation is required. Another thing to be noted is
the trade-off within the dimension itself. For example, secondary notation in CD could
provide bracketing information, prevent ambiguities, help inexperienced users to
understand the complex diagrams, help experienced users to express more complex
specifications, and provide unique semantics. However, it will not keep the basic syntax
of the notation, makes the syntax of a diagram more complicated, and reduces the

simplicity of a notation.

In this study, we used dimensions to examine the activities and we used activities for
finding the undesired degree of a dimension. For example, we faced a problem of high
level premature commitment with CD in exploratory design and incrementation
activities and luckily the level of viscosity was low, which means correction guesses

were cost-free. Moreover, if the levels of viscosity and premature commitment were

108

high, we could adopt a different notation or a different medium by making a draft
version of the system in a lower viscosity medium and then transferring it to the target
medium, which breaks this process into two activities: exploratory design activity

followed by transcription activity.

Cognitive dimensions of notations helped us in understanding the nature of the structure
of CD notation. Despite the fact that CD is a complex notation, this framework is
suitable for exploring the cognitive aspects for this complex notation. This study
provides a full profile for each activity that can be carried out when using this notation,
supported by a number of cognitive aspects to understand how this notation can be used

in specifying software.

Although we found that CD notation is cognitively better than NL in terms of
supporting program specification, this evaluation focused on only one case study, and
different case studies may be more complex than the one we investigated. For this
evaluation we picked a selected range of examples which we thought would enrich the

evaluation.

The choice of CD and NL notations might impact on the evaluation because if another
notation was chosen which was close to CD, such as any other formal notation, we
might find that the other notation was cognitively better than CD. Furthermore, the
cognitive differences between the diagrammatic and sentential notations that were
discussed in detail in (Larkin & Simon, 1987) might affect the comparison as well.
Perhaps using these two notations to represent the patient record system also affected

the system itself and vice versa.

109

Chapter 5 Experiment 1: Interpretation of Constraint

Diagrams

This experiment attempts to evaluate the potential utility of CD
for users who have relatively little experience in specifying
programs by comparing two different groups, to check how easy
it is for such users to learn about CD and interpret specification
expressions in comparison with using NL expressions. Section 5.1
introduces the experiment. Section 5.2 represents the
experimental design. Section 5.3 explains the pilot experiments.
Section 5.4 shows the results of the experiment. Finally, section

5.6 is the discussion.

5.1. Introduction
This chapter describes a comprehensive investigation to explore the usability of CD as a
program specification language. This experiment focused on two cognitive activities for
learning: thinking and reasoning. It took the form of a web-based competition in which
53 participants were given instructions and training either on CD or equivalent NL
specification expressions, and then responded to multiple-choice questions requiring the
interpretation of expressions in their particular notation. It was predicted that
participants using CD notation would take longer over the training, need more time to
answer the questions, be less confident about their answers, and obtain lower correct

interpretation scores, because they had no prior experience of CD notation.

This empirical study is aimed at evaluating how difficult CD notation is to interpret
by investigating whether it can support people with relatively little technical
background, novice users of software systems specification, and whether it is possible
for users to understand constraint diagrams easily and rapidly. It is also aimed at
checking the effectiveness of CD notation by finding out whether learning is going to be
a major task compared with other notations. We performed this experiment to identify

the benefits of using CD in specifying programs.

This study considered the interpretation of specifications, rather than their
construction, because it is the first step in evaluating this notation and we wanted to test

how easily and rapidly this notation could be learnt and interpreted. Thus, this

110

experiment’s target was novice users with little experience in specification, and without
any experience of using CD in specification. As a result of having novice users as a
target and in order to answer the question of whether CD can work for complex
problems, we examined their interpretation with basic concepts and simple questions to
find out if there was a fundamental difference between CD and NL, which has not been
done before.

5.2. Experimental Design
We will now consider: (a) the design of the experiment, (b) the training approach to
familiarize people with the constraint diagrams, (c) the measurements of the results as
evidence, (d) the predictions, (e) the design of the examples and questions, (f) the
concepts to include in the experiment, and (g) the appropriate number of questions.

(@) A between-participants design was adopted with two separate groups and two
different representations: constraint diagrams and natural language. Two different
versions of the same material, questions and examples were created, which were
informationally equivalent (Larkin & Simon, 1987). Participants were randomly
assigned to the CD group or the NL group. Although some people would argue that a
within-participants design would have made comparison easier, our experiment was to
compare their understanding of the concepts in a specific representation without any

prior experiments that bias familiarity.

(b) In spite of the fact that there are individual differences in cognitive styles, training is
the best solution to persuade users to learn about constraint diagrams because
differences disappear with training (Frandsen & Holder, 1969; Blackwell, 1997).
Training users to understand constraint diagrams allows a comparison between these
two different representations, despite the fact that NL notation is familiar to users while
CD is not.

(c) In order to evaluate how effective the different notations were, we measured how
accurately and how quickly they were used. The measures used were: time spent on the
training examples, time taken to answer the questions, percentage of correct answers,
level of confidence rating, and number of returns to the examples. The time was
recorded between the example or question online page being loaded and the Next button

being pressed.

111

(d) It is predicted that NL will be better because it is familiar and there is no need to
learn a new notation before working on the tasks. Given the complexity of CD, the
experimental hypothesis states that participants given the CD notation will obtain fewer
correct answers in a longer time with a lower level of confidence rating and many
returns to examples. This experiment has the version of the specification (CD or NL) as
the independent variable; whereas correct answers, confidence, question time, example

time, and returning to examples are the dependent variables.

(e) The domain used for training examples was different from the one used for
questions. Each example that introduced a concept provided training from a domain
called “Video Rental Service” while the questions’ domain was called “Patient Record
System”. There were two design options: (1) an example followed by three questions or
(2) all examples followed by all questions. The benefits of (1) are to look at each
concept separately and to examine their understanding of that concept individually,
which gives the opportunity for incrementally constructing knowledge. This will help us
to identify how difficult a concept was. We also believe that learning should be active
and meaningful so learners can apply what they have learned, and control the learning
process. On the other hand, (2) would be quite a heavy load for learning in one go and
needs high mental operations. We adopted the first option so that they could learn each

concept by elaborating each concept.

(f) There were eight concepts covered in this experiment: Sets and Types, Members of
sets, Set relationships, Relationships, Spiders, Spider relationships, Invariant and An
Event Specification. Every concept was introduced using training examples that were

followed by three questions.

(9) A pilot experiment, which was a face-to-face experiment between the participants
and the experimenter, was conducted in order to obtain the level of difficulty and the
number of questions. As a result, it was determined that 24 questions would be

appropriate.

5.3. Pilot Experiments
Pilots are used as a method to evaluate the material and the software. Pilot 1 was aimed
at evaluating the material testing the constraint diagrams notation. The purpose of this
pilot was to gather valuable data that would increase the value of this material. It was

run as a one-to-one tutorial which helped in understanding the value of the gathered

112

data. During pilot 1, four participants, who were undergraduate informatics students
from the University of Brighton who had finished a course on constraint diagrams, were

monitored and were asked some questions.

Patient

Alive Dead

From this diagram, cana Patient be a child?
) Yes
3 No
{2 Not Specified

How confident you are about your answer?

(2 Mot at all Confident (O Not Very Confident (O Not Confident O Neutral O Confident O Very Confident O Extremely Confident

% Example e Hext

Figure 5.1 A snapshot from Pilot 1

The developed java application had examples of a constraint diagram’s concepts, each
followed by questions to examine participants’ understanding. They were asked to rate
their confidence about each answer. Pilot 1 had five examples and fifteen questions
(each example followed by three questions). Figure 5.1 is a snapshot of question
number 8 from this pilot. The participants answered by choosing one of three options:
Yes, No or Not Specified as shown in Figure 5.1. If they were satisfied with the
information provided, then they would answer the question with Yes. However, if they
were not satisfied with the provided information, then they would answer the question
with No. Otherwise, if they felt that some information influencing their decisions was
missing, then they would choose Not Specified. Not Specified means there is insufficient
information provided in the question to answer it without any assumptions, which is the
case in Figure 5.1 where the provided diagram did not specify anything about being
child or adult, and thus the answer here is Not Specified. While participants were trying
to answer, they could return to the example by pressing a button called Example as
shown in Figure 5.1. However, if there was no need to return to the example, they could

113

proceed to the next question by pressing the other button which was called Next, except
that in the last question (question 15) the Next would be called Finish. After answering,
participants would rate their level of confidence about their answer. A seven-point scale
(1= lowest score, and 7= highest score) (Churchill, 1979) is used to measure their
confidence: Not at all Confident, Not Very Confident, Not Confident, Neutral,
Confident, Very Confident, Extremely Confident. However, participants only used five
levels. This application was a tutorial with examples and questions; the examples were
used to teach participants new notation concepts and the questions to examine how easy
the notation explanations were. Participants used a tool which automatically recorded
their feedback and answers in a log file to prepare them to be analysed. The time they
spent on reading each example and on answering each question was recorded. Also, the
number of times they returned to an example was counted. These factors were very
helpful in ascertaining which examples were difficult to understand and which questions
were difficult to solve.

A final revision of the experiment’s material was successfully carried out, and there
were many lessons learnt from pilot 1, such as: 20 to 30 questions were a suitable
number of questions for the experiment. The number of confidence levels had to be
smaller than the one used in the pilot. We reduced the number of levels of confidence
from seven to five levels, and from being personal to being specifically about the
question rather than the self-esteem. Although it was mentioned in the instructions, the
participants did not use the Example button, which was a help tool, until it was
mentioned personally to them. Some of them were not interested in seeing the example
again. Also, the Next button was used sometimes without providing an answer.
Participants did not understand the option Not Specified until its use was explained
verbally. The last two points led to the need for a training example to instruct them on
using the Example button and the Not Specified option. Also, the material was revised to

only concentrate on the notation itself without the framework.

By adopting the material of pilot 1, pilot 2 aimed at including the lessons learnt from
pilot 1 and testing the software itself. The main plan here was to provide an easily
accessible online experiment which would avoid installing the software on each PC. We
used ASP.Net web application and we tried it with 91 participants who were
undergraduate informatics students from the University of Brighton and the University

of Qatar. Lots of developments within many months were made in order to make the

114

software error-free. These tests helped us to monitor the participants’ interactions with
the software itself, so some software designs were changed. The Next button property
was changed from invisible to disabled until participants answered. Although in the
instructions we mentioned that they would not be able to proceed until they answered, it
seemed they forget this point because when they did not want to answer and they aimed
to proceed, they were pressing the only visible button, the Example button, which took

them back to the example and they believed that the software had crashed.
From these pilot experiments, we now explore the main experiment.
54. Experiment

54.1. Method
In this experiment, there were two experimental learning trial conditions: (1) The CD
group which used the constraint diagrams version of the system for program
specifications; (2) The NL group which used a system of program specifications written
in natural language. It was a training web-based competition which randomly assigned
participants to one version. This learning-based experiment was a tutorial which taught
the participants program specification concepts for a CD or an NL representation. The
criteria for judging the best performance in the competition is a combination of
spending less time learning the new concepts and getting the most answers correct in the

least time.

Before starting the competition there was a tutorial on how to use the software. This
tutorial was one simple algebra example, as shown in Appendix A, followed by three
questions which were randomized between participants. The example used for the
tutorial contained a box containing an algebraic statement “The product of 2 and 4
subtracted from x equals 10” and this box was followed by a description “This
statement represents the value of x. x-2*4=10 means x-8=10 which means x=10+8, So
x=18". This example and the first question had step-by-step instructions to teach
participants about using the training. The second and third questions aimed to test their
ability to use it. After finishing the software training tutorial, the competition began
with training examples. Each training example was followed by three related questions.

I will explain what the participants could see. Each example had one or more statements
(NL version) or an image (CD version) and a description of it followed by a definition.

115

After studying the example to understand the concept, participants had to press the Next

button to proceed.

For any question, one or more statements or an image appeared, depending on the
representation version (NL/CD). This was followed by a question about it. Participants
had the opportunity to return to the related example associated with that question any
time before answering by pressing a button called Example. They couldn't proceed until
they had provided an answer, relying only on information given in the current question,
without any assumption from previous questions. Participants answered a question by
choosing one of three answering options: Yes, No or Not Specified. For each concept's
questions, there might be any possible combination of answers. Consequently, there
would not necessarily be one specific answer for all three questions. However, we did
not tell the participants that for each training example the answer would consist of one
Yes, one No and one Not Specified. There were five levels to measure how hard the
question was: Very Difficult, Difficult, Intermediate, Easy and Very Easy. Participants
rated each question on its difficulty, which would show their confidence level in
answering. Subsequently, feedback according to the answer was provided. Then

participants had to press the Next button to proceed.

The measures used were: time spent on the training examples, time spent on the
questions, percentage of correct answers and level of confidence rating. Each example
had only one button called Next. When participants pressed it, the time was recorded
starting from the time the example page was loaded until the time of pressing the Next
button. However, each question had two buttons: the Example button and the Next
button. Participants could either answer the question or press the Example button. In
contrast, they would not be able to press the Next button unless they rated the level of
difficulty of answering the question, which couldn't be done without answering the
question first. The question time was recorded from the time a question page was loaded
until the time participants pressed a button. If participants returned to an example, then
the number of returns was recorded as well as the time spent on that example. As a
result, the example time would be the total time spent on that example, and the question
time would be the total time spent on that question before returning to the example page
and after returning to the question page to answer. When participants answered, the
number of correct answers for each question was also recorded. Moreover, feedback on

that answer was provided after participants chose their level of confidence. Immediate

116

feedback had a valuable effect on participants’ learning. This rating showed how
confident at answering they were. It was important to understand whether participants
answered depending on what they believed was the correct answer or whether they only
wanted to go to the next page in order to proceed. This evidence measured if constraint
diagram notation could become familiar to users. They also measured the ease and the
rapidity of learning it. Designing experimental software avoids pencil-and-paper
experiments. Despite the fact that developing software is a time-consuming method, it is
a helpful tool to accurately record the time, and the number of tries at answering. We
developed this web-based experiment by using Visual Basic.NET in Microsoft Visual
Studio to create an ASP.NET web application. Therefore participants easily accessed
the online competition and we successfully avoided installing the application on each

workstation.

54.2. Subjects
The subjects were undergraduate and postgraduate informatics/computing students at
Sussex and Brighton Universities. Since the purpose of this study is to examine the CD
notation, not the program specification itself, informatics students were chosen as
participants because they can be considered as representative of the target users of CD
and they have no background in CD, but they have little knowledge of program
specifications. As a result, we targeted participants who were aware of the idea of
software design and implementation; therefore they had a little knowledge of program
specification without any experience of real-life program specification. They voluntarily
participated in the experiment through a competition with six prizes worth in total 100
pounds. They were divided randomly into two learning groups. There were 53
participants (27 NL, 26 CD) who participated online, of which 33 (20 NL, 13 CD)
produced usable data because they completed more than half the questions. There was a
smaller proportion of female participants, but the ratio of male to female was about the
same in the two groups. They were asked to provide their personal information and to

both consent to be involved in the competition and read the experiment instructions.

5.4.3. Materials
To recap, there were two versions: CD and NL versions. The inferences which were
made in one representation can be made in the other representation as well. Both had the
same tutorial, eight examples and 24 questions, but a different representation. They

were given a training example and three questions, both with step-by-step instructions,

117

to train them on how to use the online experiment. After that, the main testing began.
Participants studied the concepts provided by the examples. After each example there
were three questions that participants had to answer in order to proceed. There were two

domains: one for the examples and the other for the questions.

Figure 5.2 and Figure 5.3 are screen-snapshots from the experiment. They were used in
the CD version and NL version, respectively. Each represents example 7 in a different
representation. Each example has a title of the introduced concept, either a diagram in
the case of the CD version or a statement in case of the NL version, followed by a
description, definition of important parts in the concept, and the Next button. This

applied to all examples in the experiment.

Example 7: Invariant

ve
T
Title Title D
Title
mcoll ()
Excoli ()

This diagram shows that a Video Copy class (C) maintains a set of 7iz/e (s) (uniquely identified by
elements from given type T). Each known 7it/e has their own associated Desc (Description) (of type
D), and is either in /nColl (In-Collection) and in £ExCol/ (Ex-Collection), but not in both.

Definition: The general form is:

Core Concept name
c Stat ts of the core
Semibox | STATE-INVARIANT. ... conceptgo here. They
are the conditions that
are always true about
the class.

This framework represents a core concept
(class). Its state-invariant is written as any mix of declarations and predicates (separated by a “;’
when they appear on the same line). State-invariants of the core concept are the conditions that are
always true about the class.

Figure 5.2 A snapshot of training example 7 using CD

118

Example 7: Invariant

A Video Copy class maintains a set called 7itle
(uniquely identified by elements from given
type T). Each known Title has its own
associated Description (of type D), and is
either in In-Collection or in Ex-Collection , but
not in both.

Definition:

A core concept (class) has two components; a class name and a state-invariant which is written as
any mix of statements of declarations and predicates. A State-invariant of the core concept is a

combination of conditions that are always true about the class.

Figure 5. 3 A snapshot of training example 7 using NL

Question 23

PPIUpdatePatientinfolp,i)
|

Pw"!’ﬂ\w .

V”L! '
? i

From the given diagram, can a piece of Info (Information) be updated?

Well Done! The answer is Correct!
How hard did you find the question?

m
Q>

Next

Figure 5.4 A snapshot of question 23 using CD

119

Question 23

An event, called 'UpdatePatientInformation
(pi) , can be used to update current
Information for a patient, p , so it has some
value i afterwards. Before performing this
event p should be an element of Patient and i
should be a value of type I which differs from
the current value of Information ; so After
performing this event that value will indeed be
changed, whilst still preserving the invariant of
PP

From the given statement, can a piece of Information be updated?

The answer is Wrong! The correct answer is Yes.
How hard did you find the question?

Next

Figure 5.5 A snapshot of question 23 using NL

Figure 5.4 and Figure 5.5 are screen snapshots from the experiment. They are used in
the CD version and the NL version. Each represents question 23 in a different
representation. A question has a title consisting of its number, either a diagram in the
case of the CD version or a statement in case of the NL version, followed by a related
question; three answering options: Yes, No and Not Specified; a difficulty level question
followed by five levels: Very Difficult, Difficult, Intermediate, Easy and Very Easy;
feedback on the answer; and the Example and Next buttons. This applied to all questions

in the experiment.

A full range of all the examples and questions used in this experiment is in Appendix A.

Now we will present the results.

5.5. Results
Overall, it was predicted that the participants in the CD group would find learning
concepts and answering questions in the domain harder. It was anticipated that the CD
group would have more incorrect answers to the questions, spend longer on giving

answers, and be less confident. In this section, we will explore the dropout rate, to

120

examine which group was happier to stick with the experiment. Then we will
investigate the results according to the measurements that we pointed out in the
previous sections. We will investigate the performance according to the correct answers,
the question time, the confidence rating, the example time, and the number of the
returns to the examples. Moreover, we will consider the relations between these
measurements: question time and correct time, confidence rating and correct answers,
question time and confidence rating, example time and correct answers, example time

and question time, and example time and confidence rating.

Further, item analyses using t tests or Chi-squared tests are needed to find any
differential effects of representation for certain questions. It is an approach to give a
richer picture of the use of the representations. However, when using repeated tests the
chance of finding a false positive is increased. A false positive occurs when finding a
significance difference but in reality there is no such significance. Thus, Bonferroni

correction is used to lessen the chances of finding a false positive.

The Bonferroni test is used, as needed for this experiment, to adjust the significance
levels using the number of comparisons because several tests are done on the same data.
By dividing the conventional significance level which is 0.05 by the number of tests
which is 24, the adjusted significance level is (p<0.002), which applies to all the t tests.
It is important to achieve the adjusted significance level for the t tests to be counted as

significant.

100%
90%
80%
70%
60%
50% -
40% -
30% -
20% -
10% -
0% -

uCD
mNL

Percentage

Before the middle After the middle
Quitters

Figure 5.6 The drop-out rate

121

Some participants withdrew from the experiments over time. In total, 28 of the 53
participants dropped out. The drop-out rate for both groups was the same: 14 for each.
As shown in Figure 6.6, before the middle of the experiment 13 participants (93%) out
of the 14 dropped out from the CD group, and there were 7 participants (7%) who
dropped out of the 14 from the NL group. However, after the middle of the experiment,
there was only one participant (7%) who dropped out from the CD group and 7
participants (50%) who dropped out of the 14 from the NL group. Since 53.85% from
the CD group and 51.85% from the NL group dropped out from the experiment across
time, the overall rate for both groups was approximately the same. To be more precise,
there was a pretty constant percentage of drop-out participants from the NL group in
both halves of the experiment. However, there was a significant difference for the CD
group in the two halves. The CD users who did not withdraw earlier were happier to
stick with the experiment. Perhaps their decision to quit was affected by the version of
the notation that they received: CD or NL notations. There is a significant difference
between the two groups in both halves according to Chi-squared tests (one-tailed), X?(1,
N = 33) = 0.012 at the conventional p<0.05, but it is not significant at the Bonferroni
adjusted significance level (p<0.002). Moreover, for each half, and also for the overall
withdraw rate, there is no significant difference between the two groups. Since
participants withdrew at different stages of the experiment, we have chosen to analyse

data related to those who completed at least half of the questions.

55.1. Correct Answers
This measurement is used to find out which notation would provide more correct
answers. This could reflect their understanding of interpretation using that notation. If
using CD notation results in having fewer correct answers than using NL notation, then
NL notation is better, which is our hypothesis here since CD is a new notation and
participants need to learn and understand how this new notation is used and to think and

interpret using it.

Figure 5.7 shows the mean number of correct answers for each question for the two
groups. The overall mean number of correct answers by group is largely similar across
the questions. There appears to be a general trend for the proportion of correct answers
to decrease from the earlier to the later questions, although the question-by-question

variability increases substantially in the second half of the questions. The mean (and

122

SD) of the CD and NL groups over all of the questions are 0.729 (0.445) and 0.745
(0.436) respectively.

% Chi-test for p<0.002

=
[N

* Chi-test for p<0.01

o
()

wn

S

= 1.0 -)

2 * Chi-test for p<0.05
© A —@— Constraint
— 0.8 -

| 5] Diagrams
L

S 06 = & - Natural

g Language
o

o 04 level of

% chance

S performance
=

<

©
o

123456 78 9101112131415161718192021222324
Number of the Questions

Figure 5.7 Graph of the average of correct answers for the two groups across the 24 questions

By using a mixed design ANOVA (Figure 5.8), there is a significant main within-
subjects effect of the two halves of the questions: F(1,30)=48.76 for p<0.01 and n2
=0.619. However, there is no significant main between-subjects effect of the two
representations: F(1,30)=0.037 for p=0.85 and the interaction between the two
representations for both halves shows that it is not significant; F(1,30)=1.048 for
p=0.31. The graph (Figure 5.7) shows that the second half (each half is 12 questions) is
worse than the first for both representations, which indicates that the CD notation is not
worse than NL notation. Although the CD group have more correct answers in the first
half compared with the NL group, with a mean of 0.846 compared to 0.806, they are
worse in the second half with a mean of 0.602 compared to 0.626. However, these mean
values are not significant and thus, the lack of significant results indicates that there are
no differences between both representations and no within-subjects differences for both

halves.

By examining each question individually, we find that there is no significant difference
between the two groups in all but two of the questions, according to Chi-squared tests.
For question Q12 the difference between the groups is significant, X*(1, N = 33) =0.001
(p<0.002) and similarly for Q20, X?(1, N = 33) =0.034 (p<.05). The CD group achieved
a proportion of correct answers that was greater than or equal to that of the NL groups

123

in 12 questions. Overall, the CD group did not perform substantially worse than the NL
group.

Half (12 Questions)

—1
\\J

85 o
80
75
70

L6577

Estimated Marginal Means (Correct Answers)

Nilley

cD ML

Representation

Figure 5.8 Graph of the interaction of CD and NL representations and correct answers for the two halves of the 24
questions

Although the performance of the CD group was not significantly different from that of
the NL group, it is nevertheless possible that the constraint diagrams may not be
effective because both groups were largely guessing the answers. As there are three
answer options for each question, the level of chance performance on a question is 0.33,
as shown by the dashed line in Figure 5.7. Many of the scores are substantially greater
than this. It is possible to determine more formally whether each group performed better
than chance by using a chi-squared test with 33.3% and 66.7% as the theoretical
expectations of guessing correctly or incorrectly. Out of the 24 questions, four of the NL
group's answers (Q14, Q18, Q19 and Q22) were not significantly different to chance
and nine of the CD group's answers (Q1, Q8, Q11, Q14, Q15, Q16, Q18, Q19 and Q22)
were not significantly different from chance, at p<0.002. In this respect the CD group

did not perform as well as the NL group.

124

One way to consider the relative impact of the two representations compared with other
factors on the difficulty of giving answers is to determine the strength of the correlation
between the proportions of correct answers for each group question by question. The
greater the correlation the less likely that aspects which are specific to one or other
representation are responsible for the level of performance. By using the Pearson
Product Moment Correlation, the two variables were strongly correlated, r(22)=0.601
which is significant at p<0.001. In other words, the same questions are of comparable
difficulty for both groups. Again this suggests that the performance of the two groups

was not substantially different.

As a result, the CD group performed as well as the NL group despite the fact that it was
their first time of being introduced to this notation.

5.5.2. Time Spent on each Question
This measurement is used to find out which notation would be faster in terms of
learning, understanding and answering related questions. This could reflect their
understanding of learning and using that notation. If using CD notation results in
slowing the interpretation of a program specification, then this notation is worse. We
believe that using CD notation will be worse than NL since it is a new notation and
participants need to take time to interpret the question and the related case before

answering, which will reflect their learning and understanding of such new notation.

Figure 5.9 shows the mean amount of time spent on each question by the two groups.
The overall mean amount of time spent by the CD group is less than for the NL group
across the questions. There appears to be a general trend for the proportion of time to
increase from the earlier to the later questions, although the question-by-question
variability increases in the second half of the questions. The mean (and SD) of the CD
and NL groups over all the questions are 23.09 (16.84) and 28.73 (25.77) seconds,

respectively.

125

¥ t-test for p<0.002 —— Constraint Diagrams
60 % t-test for p<0.01 - & - Natural Language S
Al
n * t-test for p<0.05 K
T 50 .
c \
g L
% ‘_ _‘ 7 \
£) B
o w
S
=]
c
2
17
q) O T 1
8 1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24
Number of the Questions
Figure 5.9 Graph of the average time for the two groups across the 24 questions
Half (12 Questions)
—) —1
= 35 7
=
Q
L]
[-F]
[#.]
.
£
.5
[
g 30
-
[-F]
=
<
[
g
[-F]
2 25
E
2
=
~
£
£ 20+
g
L4
=

CD NL

Representation

Figure 5.10 Graph of the interaction of CD and NL representations and the time spent on questions for the two halves
of the 24 questions

There is no significant difference between the two groups, according to t tests (one-
tailed) for p<0.002. At p<0.05, the difference between the groups that appeared in Q7 is
t (31) = 0.043 and in Q12, t (31) = 0.029. As seen in Figure 5.9, in only one question

126

was the NL group a little faster than the CD. Overall, the CD group performed
substantially better than the NL group.

The Pearson Product Moment Correlation showed that the two variables were strongly
correlated, r(22) = 0.901, which is significant at p<0.000. Both groups took a
comparable amount of time to do the same questions, suggesting that the performance
of the two groups was not substantially different. However, a Binomial test for 23 out of
24 questions being shorter, assuming equally probable that either would be shorter, has
a probability of p<0.001.

As a result, the CD group spent less time in answering the questions than the NL group.

Thus, CD notation is better than NL notation in terms of fast learning.

55.3. Confidence Rating
This measurement was used to find out which notation would be more difficult to
understand, which would affect their confidence in providing the answers. If using the
CD notation resulted in having less confidence in answering rates than using NL
notation, then NL notation is better, which is the hypothesis here since CD is a new
notation and participants need to learn and understand such a new notation to be more

confident in using it.

1.50 * L % t-test for p<0.002
<«
,' N - ¢ - Natural Language * t-test for p<0.01
* *
1.00
* t-test for p<0.05
[«B]
< '
§ 0.50 . \3 . .
<
8 0.00)
o 1234567891011&13¥1M20 2223/
i)
‘€ -0.50
(@]
© \./'{
-1.00
-1.50

Number of the Questions

Figure 5.11 Graph of the confidence average for the two groups across the 24 questions

127

Participants answered the question on how hard they found the question by choosing
one of five levels: very easy, easy, intermediate, difficult or very difficult. Their answer
meant very confident, confident, neutral, not particularly confident and not at all
confident. These levels of confidence rating were translated into numbers: 2, 1, 0, -1 and

-2, respectively.

Figure 5.11 shows the mean of the level of confidence rating for each question for the
two groups. The overall mean of the level of confidence rating by each group is
different across the questions. There is a general trend for the level of confidence rating
to decrease from the earlier to the later questions, although the question-by-question
variability increases substantially in some parts of the questions. The mean (and SD) of
the CD and NL groups over all of the questions are 0.16 (1.26) and 0.38 (1.17),

respectively.

By using a mixed design ANOVA as shown in Figure 5.12, all the effects (the main
within-subjects effect, the main between-subjects effect, and the interaction effect) are
reported as not significant. For the main within-subjects effect of both halves of the
questions, F(1,30)=3.8 for p=0.06 and for the main between-subjects effect for the two
representations, F(1,30)=0.868 for p=0.36. Moreover, there is no significant interaction
effect: F(1,30)=3.09 for p=0.09. Figure 5.12 indicates that the level of confidence in the
first half for both groups was quite similar. However, in the second half the CD group
was less confident while the NL group was very confident in the same half. It may be
the case that CD effectively supports simple problems, or the case that CD is a new
notation which needs more training. According to the significance results, there is no
significant difference between the two halves and no significant difference between the
two representations. Also, there are no interactions between representations and halves.

As a conclusion, the CD notation is not worse than NL notation.

O