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Evaluation of the Usability of Constraint Diagrams 

as a Visual Modelling Language: Theoretical and 

Empirical Investigations. 

Noora Fetais 

SUMMARY 

This research evaluates the constraint diagrams (CD) notation, which is a formal 

representation for program specification that has some promise to be used by people 

who are not expert in software design. Multiple methods were adopted in order to 

provide triangulated evidence of the potential benefits of constraint diagrams compared 

with other notational systems. Three main approaches were adopted for this research. 

The first approach was a semantic and task analysis of the CD notation. This was 

conducted by the application of the Cognitive Dimensions framework, which was used 

to examine the relative strengths and weaknesses of constraint diagrams and 

conventional notations in terms of the perceptive facilitation or impediments of these 

different representations. From this systematic analysis, we found that CD cognitively 

reduced the cost of exploratory design, modification, incrementation, searching, and 

transcription activities with regard to the cognitive dimensions: consistency, visibility, 

abstraction, closeness of mapping, secondary notation, premature commitment, role-

expressiveness, progressive evaluation, diffuseness, provisionality, hidden dependency, 

viscosity, hard mental operations, and error-proneness. 

The second approach was an empirical evaluation of the comprehension of CD 

compared to natural language (NL) with computer science students. This experiment 

took the form of a web-based competition in which 33 participants were given 

instructions and training on either CD or the equivalent NL specification expressions, 

and then after each example, they responded to three multiple-choice questions 

requiring the interpretation of expressions in their particular notation. Although the CD 

group spent more time on the training and had less confidence, they obtained 

comparable interpretation scores to the NL group and took less time to answer the 

questions, although they had no prior experience of CD notation.  
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The third approach was an experiment on the construction of CD. 20 participants were 

given instructions and training on either CD or the equivalent NL specification 

expressions, and then after each example, they responded to three questions requiring 

the construction of expressions in their particular notation. We built an editor to allow 

the construction of the two notations, which automatically logged their interactions. In 

general, for constructing program specification, the CD group had more accurate 

answers, they had spent less time in training, and their returns to the training examples 

were fewer than those of the NL group. 

Overall it was found that CD is understandable, usable, intuitive, and expressive with 

unambiguous semantic notation. 
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Chapter 1 Introduction 

This chapter has four sections: Section 1.1 presents the reasons 

leading to this study, section 1.2 sets out the goals and objectives, 

section 1.3 defines the methodology we adopt and finally section 

1.4 is an overview of the chapters that follow.  

1.1. Motivation and Background  

Program specification is a description of the software system that must be available to 

software designers in advance to eliminate guesswork and to understand the limitations 

of the proposed system, to ensure that all domain states are represented. It is either 

formal, if mathematical notations are used, or informal, if narrative descriptions are 

used. The struggle to choose formal or informal languages is due to the involvement of 

stakeholders, who are experts in a domain, and software developers, who are experts in 

program specification in the development of software systems, which requires sufficient 

shared understanding of the proposed design’s representation. Unlike software 

designers, stakeholders are experts in their own domain but they are novices in 

designing systems. On the one hand, formal specification languages, which ensure 

unambiguous semantics and offer a single interpretation, can be used to represent a 

design. However, the problem with using these formal languages is that they are used as 

a lingua franca by experienced software engineers to communicate between themselves. 

They require specialist knowledge, good experience and a strong mathematical 

background. Thus, it is difficult to engage stakeholders in conversations about the 

design of the model. On the other hand, most of the time informal specification 

languages, which are easy to use, have the problem of ambiguity and they allow 

different inferences. As a result, the initial step in designing a solution to a problem is to 

choose an appropriate representation. 

Constraint diagrams (CD) (Kent, 1997) are a diagrammatic formal program 

specification language, which are used to model programs in the preliminary stages of 

designing complex software systems. The notion of this proposal is to bridge the gap 

between formal and informal specification languages by providing an intuitive 

diagrammatic formal language that is simpler and more effective than other approaches 

used to formally specify programs. Moreover, CD is for novices in specific areas, either 

in domain or program specification. Although CD is a simple diagrammatic language, it 
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can specify functions or relations, show the properties of those relationships and 

compositions of those relationships, express constraints, and enhance the visualization 

of object structures. The CD notation is used to alternate the mathematical logic 

notation, to express constraints in Syntropy (Cook & Daniels, 1994), Catalysis (D'Souza 

& Wills, 1995; D'Souza & Wills, 1998), Z (Woodcock & Davies, 1996) and Object 

Constraint Language (OCL) (Warmer & Kleppe, 1998). Not only that, but also it is used 

in conjunction with the Unified Modelling Language (UML) diagrams (Booch, et al., 

1999; Oestereich, 2002) that specify large software systems, due to CD’s ability to 

visualize the properties of relationships and the relative positions of the elements such 

as being a subset of other sets. Constraints (Burns & Hajdukiewicz, 2004), which are a 

set of important relationships that affect the accuracy of the system, are visible only 

when they are represented and understood. Figure 1.1 provides an example of a 

constraint diagram taken from a health informatics case study called a Patient Record 

System (Fetais, et al., 2005). Although superficially it might seem visually 

straightforward and simple, there is much in the structure of the diagram. Each contour 

is used to represent a set of elements, a labelled arrow to represent a binary relation, a 

dot to represent an existential element (existential spider), and an asterisk to represent a 

universal spider. This diagram shows that for each Health Professional (HProf), the 

Patient Record (PRec) of any patient who is related to the HProf must be originated by 

all services which are associated to the HProf. Clearly there is a level of conceptual 

complexity here, even though the diagram may visually be relatively simple. Reading 

CD notation can cause ambiguity if it does not adopt a reading choice. For Figure 1.1, 

we read this diagram using the ‘follow the arrow’ convention. However, we can use 

other implicit or explicit reading choices such as an explicit reading tree (Fish, et al., 

2003; Fish & Howse, 2003; Fish & Howse, 2004; Fish & Masthoff, 2005) which 

eliminates the intuitive reading possibilities, or the implicit reading tree (Howse & 

Schuman, 2005) which provides a simple default reading option.  

This research aims to explore the usability of CD which has not yet been evaluated. The 

usability, according to ISO 9241-11, is “the extent to which a product can be used by 

specified users to achieve specified goals with effectiveness, efficiency and satisfaction 

in a specified context of use.” (Bevan, 1997). CD needs to be evaluated to test its 

usability, which according to the previous definition, checks its ability to be used by 

novices, to specify programs, to examine its real impact in the real world.  
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Figure  1.1 Constraint Diagrams representation of the invariant of the Patient Record System 

This thesis includes theoretical and empirical investigations to evaluate the usability of 

CD as a visual modelling language for diagrammatic communication between involvers 

in the program designs. Since CD is a language, we will start with a definition of the 

language: a language is a tool that we use for interactions. A language is defined as “a 

system of symbols and rules that enable us to communicate” (Harley, 2008). According 

to Whorf’s hypothesis, in the weak interpretation (Carroll, 1956), the structure of a 

language affects the thinking habits and the behaviours of the human. Thus, this applies 

to the language that we might consider to express program specifications. So, it is 

important to pick a good language. With different languages there are different 

conceptual costs and benefits which need to be evaluated.  

Since some basis of comparison is needed in order to evaluate the potential of CD, 

several formal or informal, diagrammatic or non-diagrammatic languages are likely to 

be used and compared with CD. Examples of these languages are: the first-order logic 

(Margaris, 1990), Z (Woodcock & Davies, 1996), and the UML (Booch, et al., 1999). 

Although the idea of CD notation is to try to bridge such a gap by providing an intuitive 

formal language with precise semantics, due to their diagrammatic properties such as 

being well matched to its meaning (Gurr, 1996) which shown in Figure 4.19 and having 

free rides (Shimojima, 1996) which is shown in Figure 2.4 – as will be discussed 

extensively with examples in chapter 4 – it is used as an aid to communicate with all 
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stakeholders as in section 3.6, even those not mathematically trained. For this reason, it 

is unlikely that novice users with little technical knowledge of program specification 

would use them. Therefore, for the purpose of this experiment, natural language (NL) 

provides a realistic and suitable comparator. Although some may question the 

legitimacy of using NL as the comparator in this study instead of formal languages, we 

believe NL has three advantages over the mentioned ones. First, it is a common notation 

that is readily understood. Second, it is not demanding or beyond novice users' 

capabilities, which is necessary for communicating requirements between the client and 

the software engineers. Third, it is always used in specification as a narrative 

specification to produce requirements specification documents that go with the formal 

specification of software. Therefore, this could result in exploring answers to scientific 

questions about diagrams and notations. 

1.2. Research Goals and Objectives 

Due to the involvement of experts in a domain and experts in program specification in 

the development of software systems, there is a need for sufficient shared understanding 

of the problem's representations and of the proposed solution. For the purposes of 

formal software specification using a visual method, Constraint Diagrams (CD) (Kent, 

1997) were proposed as a simple and effective approach to formally specify programs 

(Howse & Schuman, 2005). The efficacy of some aspects of CD were questioned 

(Stapleton & Delaney, 2008), claiming that it is not always well matched to meaning 

(Gurr & Tourlas, 2000) and changes were suggested to improve the language. 

Additionally, in order to evaluate the efficacy of CD, some empirical studies have been 

carried out on CD. These took the form of experiments with no direct comparison to 

other methods (Fish & Masthoff, 2005), or a comparison of CD with VisualOCL 

(Bottoni, et al., 2001; Kiesner, et al., 2002) from a theoretical perspective without 

empirical evaluation (Fish, et al., 2005a). In this respect, no such empirical studies have 

yet been performed, and thus this work is a first step in this direction. In fact, the need 

for empirical studies to compare CD with textual languages has been pointed out 

(Stapleton & Delaney, 2008). 

The objective of this research is to provide triangulated evidence of the potential 

benefits of CD notation compared to another notational system. This is important to 

support the hypothesis that a novice in either a domain or a program specification can 

understand CD notation and can actually use it to formally specify programs, which will 
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allow all the parties to the development of the software design to be involved without 

the need for a strong mathematical background that is usually required by formal 

specification languages. Despite the fact that CD notation is designed as an easy and 

simple program specification notation, we would like to raise the following questions: 

1. Is CD notation effective for program specification? 

2. Is CD a good notation for the construction of program specification expressions?  

3. Is CD a good notation for the interpretation of program specification 

expressions? 

4. What are the relative strengths and weaknesses of CD notation and conventional 

NL notation? 

5. Is CD notation effective for supporting novice users? 

According to these questions and their answers, this study will focus on the insights of 

CD notation, and will also explore the nature of diagrams that could make an effective 

notation, and how logic and program specification could be coded using CD notation. 

1.3. Research Methodology 

The overall aim of this research is to rigorously examine constraint diagrams as a 

software design approach, to understand the benefits and the limitations of CD. Multiple 

methods are adopted in order to provide triangulated evidence of the potential benefits 

of CD notation compared to other notational systems. Three main approaches are 

adopted in this research. The first is examining the semantic and task analysis of CD 

language. This is conducted by the application of the Cognitive Dimensions framework 

(Green & Petre, 1996) which is used to examine the relative strengths and weaknesses 

of CD and conventional notations in terms of the cognitive facilitation or impediments 

of these different representations which will help in determining if the users would be 

able to use CD to accomplish a set of tasks.  The second approach is the direct empirical 

valuation of the constraint diagrams compared to NL in terms of the comprehension of 

notational system. The third approach is the another empirical valuation of the 

constraint diagrams compared to NL in terms of the usage of that system to generate the 

specifications that model the program expressions.  These two empirical approaches 

include two computer-based experiments, one on the comprehension of a notational 

system and the other on the usage. 
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Comprehension is an important software engineering activity to facilitate reuse, 

inspection, and extension of existing system.  There are many research communities 

concerned with program comprehension such as IEEE International Conferences on 

Program Comprehension (ICPC) and Psychology of Programming Interest Group (PPIG) 

annual workshops. We examined state of the art of program comprehension by using the 

Cognitive Dimensions of the Notations Framework and the state of the practice by 

conducting an experiment on the interpretations.   

Construction is another important software activity to understand the usability of a 

notational system in real world situations.  

1.4. Overview of the thesis  

This section presents the overall plan of the thesis. 

1.4.1. Chapter 2: A Review of the Literature 

This chapter reviews the literature in six areas that relate to the aim of this study. First, 

we review the available program specification languages to point out their strengths and 

limitations. Second, we explore the diagrammatic logic and program specification 

languages. In this context, we compare the diagrammatic and non-diagrammatic 

languages for program specification. Third, we investigate the learning approaches that 

support logic and program specification learning activities. Fourth, this track of 

investigating the literature requires an understanding of the nature of the diagrammatic 

notations. Fifth, to concentrate on constraint diagrams, we need to explore its family by 

providing a review of the spider diagram family to which constraint diagrams belong. 

Finally, researching on the usability of a notation needs an evaluation of the available 

evaluation methods, highlighting the strengths and limitations of these methods and 

choosing the most appropriate method.  

We conclude this chapter by emphasising the most relevant work related to this 

research. 

1.4.2. Chapter 3: Constraint Diagrams 

This chapter explains constraint diagrams in more detail. It shows both their formal and 

informal syntax and semantics. Moreover, we provide examples of the usage of 

constraint diagrams in program specification. Finally, we provide a comparison between 
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different program specification diagrams and constraint diagrams to investigate the 

strengths and the limitations of these related diagrams. 

We provide a summary of the potential benefits of constraint diagrams to serve as the 

foundation of CD which will impact on understanding the next chapters.  

1.4.3. Chapter 4: Cognitive Dimensions Analysis 

The content of this chapter is about using a Cognitive Dimensions framework to 

evaluate the usability of CD and conventional notations in terms of the cognitive 

facilitation or impediments of these different representations. For this reason, to 

understand how constraint diagrams work, we must show how constraint diagrams use 

visual characteristics to support particular qualitative inferences. The findings of this 

evaluation will answer our questions as to whether CD notation cognitively works at all, 

whether CD is cognitively effective for supporting novices in specifying programs, and 

what the relative strengths and weaknesses of CD notation and conventional NL 

notation are in terms of the cognitive facilitation or impediments.  

1.4.4. Chapter 5: Experiment 1: Interpretation of Constraint Diagrams  

In this chapter, an empirical experiment to examine the interpretation of using CD 

compared with NL will be discussed. The findings of this evaluation will answer our 

questions as to whether CD notation works at all in terms of the interpretation, whether 

CD is a good notation for interpreting program specifications compared with NL 

notation, whether CD is effective for helping novices to understand programs, and what 

the relative strengths and weaknesses of CD notation and conventional NL notation are 

in terms of the comprehensive facilitation or impediments.  

1.4.5. Chapter 6: Experiment 2: Construction of Constraint Diagrams  

Another empirical experiment to examine the usage of CD in constructing specification 

compared again with NL is conducted and discussed in this chapter. The findings of this 

evaluation will answer our questions as to whether CD notation works at all in terms of 

the construction, whether CD is a good notation for construction program specifications 

compared with NL notation, whether CD is effective for supporting novices in 

constructing programs, and what the relative strengths and weaknesses of CD notation 

and conventional NL notation are in terms of the comprehensive facilitation or 

impediments.  
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1.4.6. Chapter 7: General Conclusions  

This concluding chapter presents the findings of the triangulated evidence we adopted 

and discusses the contributions made by the thesis and the directions for future work. 

General questions will be answered. 
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Chapter 2 A Review of the Literature  

This chapter represents the work related to this research. Indeed, 

this thesis draws on the literature from (a) cognitive science of 

representations, particularly diagrammatic representations, (b) 

logic and (c) program specification using diagrammatic notation.      

2.1. Introduction 

There is a trend to use diagrams in logic and program specification because “a picture 

can be worth 10,000 words” (Larkin & Simon, 1987). Hadamard (Dreyfus, 1994), in 

1945, “concludes that [mathematicians], very generally, use images and that these 

images very often are of a geometric nature. He recounts that when thinking, practically 

all mathematicians avoid not only the use of words but also algebraic and other 

symbols; they use vague images”. With this idea in mind, an increasing number of 

investigations into the cognitive, logical, and computational characteristics of 

diagrammatic representations follow the importance of visual information in 

communication and computation and the key role that design, and therefore modelling 

notations, play in the development process of software systems. 

Constraint Diagrams (Kent, 1997), as in Figure 1.1, are a language designed to formally 

specify information systems by visualizing logical or set-theoretic assertions and 

representing relationships between sets, such as containment and disjointedness. They 

generalize the intuitive system of Venn-Peirce diagrams investigated by Shin, by 

providing facilities for quantification and navigation of relations.  

Another system which arises from this constraint diagrams investigation is called Spider 

diagrams (Gil, et al. 1999; Howse, Molina et al. 1999). Spider diagrams, as in Figure 

2.6, are a system of visual notation for expressing logical statements, and form the basis 

of more expressive constraint diagrams. Spiders are used to denote that an element 

exists in a set which is the union of one or more regions, as will be shown in the next 

chapter. In general, spider diagrams notation is a fragment of constraint diagrams which 

extend spider diagrams by using additional syntax such as arrows and wildcards. 

This thesis concentrates on studying the usability of Constraint Diagrams, and thus we 

need to understand the reasons behind (1) the need for program specifications and the 

difficulties associated with program specification, (2) diagrammatic representations of 
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logic and program specification, (3) approaches to supporting the learning of program 

specification, (4) the theory of diagrammatic representations in general, (5) the notion of 

the constraint diagram family, and (6) the different methodologies and frameworks that 

are used to analyse different representations. In general, this chapter will be a guide to 

the design of our usability study. 

2.2.  Program Specification Languages 

There are different program specification languages which are used to provide relevant 

aspects of the specification. Some of them are informal such as natural languages, and 

the others are formal with strong mathematics such as Z language (Woodcock & 

Davies, 1996) and Object Constraint Language (OCL) (Warmer & Kleppe, 1998). 

Figure 1.1, in Chapter 1, shows by using constraint diagrams (CD) that for each Health-

professional (HProf), the Patient-Records (PRec) of any patient (Patient) who is related 

to the HProf must be originated by all services (Service) which are associated with the 

HProf. As is known, this description in natural language could result in ambiguity. 

Figure1.1 could be presented in OCL as shown in Figure 2.1: 

Figure  2.1 OCL representation of the invariant of the Patient Record System 

However, this OCL does not include the disjointedness information also in the diagram 

e.g. HProf is disjointed from Service. Figure 2.1 shows that it will always need a 

mathematical background to interpret this expression. Although OCL is textual first 

order logic to describe additional constraints about the objects in the model, it is not a 

stand-alone language. All attributes used in OCL expressions must be defined in UML 

model. OCL expressions are verbose in that they are textual and rely on a class diagram 

for context. On the other hand, CD can make many statements in a single diagram and 

are therefore reasonably concise. 

Constraints need to be described using a formal language such as OCL or Z to avoid 

ambiguities. OCL is a logical-based language used to define invariants and pre and post 

conditions of operations. Despite the fact that the problem with such languages is the 



24 

 

need for a strong mathematical background, and thus they are difficult to use as an aid 

for integrating stakeholders into the software development because they cannot read it 

or write it, these languages are still the only approach to verify critical systems.     

In the OCL v2.3.1 manual (OMG), it is written that “In order to write unambiguous 

constraints, so-called formal languages have been developed. The disadvantage of 

traditional formal languages is that they are usable to people with a strong 

mathematical background, but difficult for the average business or system modeller to 

use. OCL has been developed to fill this gap. It is a formal language that remains easy 

to read and write.” However, Craig Larman (Larman, 2001) suggested that “Unless 

there is a compelling practical reason to require people to learn and use the OCL, keep 

things simple and use natural language”. In general, OCL is not a stand-alone language 

and needs a UML class diagram to accompany it.   

After studying the advantages and disadvantages of using informal and formal 

languages, and for the reason of focusing on novice users, we will choose to use natural 

language which is informal language to be compared with CD in our research. Thus, 

this section guided the design of our usability study.  

2.3. Logic and program specification diagrams 

The development of diagrammatic notations in program specifications enables more 

people to accomplish more ambitious tasks. There was a tremendous development in 

diagrammatic representations to specify the requirements to build a program after the 

1940s due to the development of computer systems and the need for presenting a design 

of the software.  

Examples used for program specifications are Syntropy (Cook & Daniels, 1994), 

Catalysis (D'Souza & Wills, 1998), Entity-Relationship Diagrams (ER-D) (Chen, 1976; 

Chen, 2002), Harel statecharts (Harel, 1987), and The Unified Modelling Language 

(UML) (Booch, et al., 1999). ER-D represents data in an abstract conceptual manner 

that describes a database. As shown in Figure 2.2, entities are represented by rectangular 

boxes which are stored in tables such as Patient and Patient-Record entities. 

Relationships are represented by diamond-shaped boxes such as Own. Entities and 

relationships are mapped to their value sets by attributes that are depicted by circles, 

such as Name, ID, and Address for Patient and Author, Origin, and Date for Patient-

Record as shown in the figure. So we say that a patient whose name, ID, and address are 

http://www.craiglarman.com/
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equal to Name, ID and Address owns the Patient-Record that has the author, origin and 

date of Author, Origin and Date. However, it represents only the structure of a system 

without depicting any dynamic behaviour.  

 

Figure  2.2 Entity-Relationship Diagram 

Harel statecharts are a higraph-based system (Section 3.8.2) where the rounded 

rectangles (called blobs) represent states, and arrows represent transitions. They 

represent the dynamic behaviour of the system, and thus they allow elements to exist in 

multiple different states simultaneously. It has been stated that “Modellers can use 

orthogonal states to decompose large state spaces naturally into independent (or almost 

independent) parts” (Harel & Gery, 1997). Although Harel statecharts are used in UML 

as a state diagram, they are, as Harel stated, “not exclusively visual/diagrammatic. Their 

non-visual parts include, for example, the events that cause transitions, the conditions 

that guard against taking transitions and actions that are to be carried out when a 

transition is taken” (Harel, 2007). Each set represented in Figure 1.1 could be 

represented using different statecharts. Figure 2.3 represents the states of Patient set 

(Figure 1.1) where they could be Alive or Dead. 

      

Figure  2.3 Harel’s Statechart 

PRecPatient Own

Name ID Address Author Origin Date

Patient

• 
Alive

Dead
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UML v2.0 (Booch, et al., 1999), which has 13 different diagrammatic notations to 

provide relevant aspects of the specification, is a widespread set of different notations 

that has been standardized by OMG to be used in both industry and academia. Unified 

Modelling Language (UML) Diagrams – which includes Class Diagrams as in Figure 

3.27 and includes state diagrams as in Figure 3.28 – are used to provide a ready-to-use, 

expressive visual modelling language (Booch, et al., 1999). It is mainly intended to be 

used by software designers during the software development process, from capturing the 

domain requirements to the implementation. It is used to simply explain your design 

and to give a general roadmap for the implementation. Booch, a co-creator of UML, 

said that the original vision for UML was a “graphical language to help reason about 

the design of a system as it unfolds” (O’Brien & Booch, 2009). By implication, 

unfortunately, UML is a detailed planning method with multi-stage diagrams where 

some diagrams are related to a specific stage or phase of the software development (e.g. 

UML Structure Diagrams relate to the planning and design stage because they show the 

real-world concepts and the relationships between them whereas the UML Deployment 

Diagrams relate to the installation stage because they show the way the application will 

be configured and deployed). Thus, UML is a good method only if it is well understood, 

but due to its complexity and being a method not a methodology, it could cause some 

issues such as confusing designers in knowing where to start. Moreover, using UML 

diagrams definitely requires too much time and, unfortunately, could turn the 

stakeholders’ focus from the design itself to the software features, which is, from the 

point of view of the software designers, a real interruption.  

This section provided us with some of the program specification diagrams which helped 

us to understand the issues with them and why a new diagrams notation such as CD 

were proposed. Thus, this section guided us in the design of our usability study. 

2.4. Approaches to supporting the learning of Logic 

There are popular approaches to teaching logic (Goldson, et al., 1993), each trying to 

overcome the misconception about people learning logic. Barwise and Etchemendy 

developed a theory of heterogeneous reasoning (Barwise & Etchemendy, 1995) which 

was implemented as a computer program called Hyperproof for teaching first-order 

logic in a novel way that uses both graphical and linguistic representations, supports 

reasoning in either representation, or a mixture of both. The Hyperproof interface shows 

a grid with objects and has two main parts. One represents a diagrammatical view of the 

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Class_diagram
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represented first-order logic system by using different-sized objects and the other 

represents a list of sentences of the same system using formulas related to these objects. 

Then they designed Tarski's World which can be used to explore the semantics of first-

order logic by writing sentences in an interpreted language, and building worlds in 

which those sentences may be evaluated for truth (Stenning, 2002). According to 

Cheng, the invention of novel diagrammatic systems can enhance conceptual learning in 

science and mathematics (Cheng, 2002; Cheng, 2003; Cheng & Shipstone, 2003). 

Diagrams could be used to make a discovery (Cheng & Simon, 1992), which would be 

easier than using an algebra-like representation such as those adopted by the classic 

models in the area of computation scientific discovery (Langley, et al., 1987). Further, 

by giving the same Law Encoding Diagrams (LEDs) to students of physics, learners 

gained similar benefits, analogous to those achieved by the original scientists, compared 

with learners using a conventional algebraic approach (Cheng, 1996).The Cognitive 

Impacts of diagrams on learning and the inferences of the relation between the 

represented real-world and the representing system are found in (Palmer, 1978; Barwise 

& Etchemendy, 1995; Zhang, 1996). 

There are other approaches such as problem-solving techniques. There are ten problem-

solving events such as explanation-based learning, and similarity-based learning 

(VanLehn, 1989). Learning gains can be measured (VanLehn, et al., 2011) by: (1) fixed 

tasks design, (2) fixed time design and (3) mastery learning design. A study on problem 

solving with diagrammatic representation came up with an interactive learning 

environment to examine reasoning with self-constructed diagrams (Cox, 1997), and 

learning-based systems must have complex statistical techniques to map between 

different moves of the tutor and the learner and the states of that learner (Soller & 

Lesgold, 2003). Taylor and his colleague (Taylor & Dionne, 2000) believe that the 

efficiency of solving problems relates to the level of expertise of the problem-solver in a 

certain domain. They believe that developing problem-solving abilities depends on the 

availability of problem-solving strategies. Moreover, the problem-solver’s performance 

in terms of accuracy and time spent on solving the problem depends on being expert or 

novice in a certain domain (Larkin, et al., 1980). They identified the work technique 

adopted by novices as a backward working technique and the one adopted by experts as 

a forward working technique. However, experts adopt the backward working technique 

only on an easy problem that doesn’t need any planning. Langley and Rogers believe 
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that if the problem-solver becomes an expert, then they will adopt the forward working 

technique which means a direct solution (Langley & Rogers, 2005). They state that 

complex tasks need to be solved with a forward working technique because working 

backward from the goal is unreasonable. 

Larkin and Simon (Larkin & Simon, 1987) claimed that diagrams as a representation are 

better to use for reasoning and they rely on geometry as evidence. They showed that 

different representations may be better for different problems depending on the 

cognitive processing costs of locating the components of information. Langley and 

Rogers also believe that due to the visual nature of the diagrams, they have benefits for 

problem solving (Langley & Rogers, 2005). Indeed, after representing the problem, the 

problem-solver will solve the solution by adopting a strategy. Due to the cognitive and 

semantic properties of the diagrams, they are useful aids (Cox & Brna, 1995; Stenning 

& Oberlander, 1995; Cox, 1996). Moreover, computational thinking (Wing, 2006) is a 

fundamental skill involving solving problems, designing systems and understanding 

behaviours. Choosing a suitable representation is considered as computational thinking. 

In fact, diagrammatic-based knowledge organization is argued to be more beneficial 

(Koedinger, 1992) to the problem solver than sentential-based ones. Diagrams can lead 

to great insight, but also to the lack of it (Card, et al., 1999), as the example of the 

accident of the space shuttle Challenger showed (Tufte, 1997). This example showed 

that the same problem presented by different representations can have different stories 

because, as in that example, it was difficult to notice any patterns of damage and the 

adopted representation showed that the damage was low (Nielson, et al., 1997). 

However, the other representation showed a clear pattern of damage (Tufte, 1997) and 

thus, as Tufte claimed, “there are right ways and wrong ways to show data; there are 

displays that reveal the truth and displays that do not”. More on the nature of 

diagrammatic representations for problem solving is in (Glasgow, et al. 1995). 

By understanding the graphical effects on learning logic and how graphical 

representations can be used to teach logic, this prepares the basis for designing the 

learning environment for teaching users the CD notational system. 

We needed to understand how to support learning of a new notation and thus, this 

section can be used to guide the design of our usability study in chapters 5 and 6. 
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2.5. Theory of diagrammatic representations 

This section is about the formal description of the nature of diagrammatic 

representations. Gurr explained the nature of closeness of mapping between the world 

and its representation, and the variation or degree of similarity, which may vary from 

one representation to another (Gurr, 1996; Gurr, 1997). He explained the properties of 

the relation between representation and represented. He proposed that most 

representations are homomorphisms where the mapping between world and its 

representation are the same but a few are isomorphic where this mapping is one-to-one. 

There will be a homomorphic mapping from representation to world when every 

object’s relation in the representation accurately relates to some objects’ relation in the 

world. Moreover, the mapping could be isomorphic, which is a special case of 

homomorphism. Being isomorphic, or close to being isomorphic, representations are 

important for the validity and ease of interpretation and reasoning of tasks. He 

illustrated that applying external constraints on homomorphic representations, that are 

too expressive, and using secondary notations for insufficiently expressive 

representations, can achieve isomorphism. For example, Figure 4.17 is not a well-

matched to meaning due to the difference between domain and habitat (Stapleton & 

Delaney, 2007) because it is non-isomorphic. In general, the importance of constraints 

will depend on the representational system limits. He also examined the meaning of 

being a homomorphism representation and the success or failure in being an 

isomorphism. It is well known in the literature that theories of diagrams fall into two 

categories. The first category is to provide a justification for diagrammatic reasoning in 

formal proofs (Shin, 1994; Hammer & Danner, 1996; Shimojima, 1996) by 

demonstrating their properties as soundness and completeness to show that 

diagrammatic systems have some of the desirable properties of sentential ones. The 

second category of diagrammatic theories is to explain the impact of graphical 

representations on human cognition by explaining what advantages diagrammatic 

representations have over other forms of representation such as a free ride (Shimojima, 

1996). Figure 2.4 shows an example of giving information a free ride using the CD 

notation since it is a diagrammatic notation. In this Figure, the diagram gives us ‘for 

free’ the information that the patient Jean is not dead. The explanation of the syntactical 

components along with their semantics will be shown in Chapter 3 section 3.2 and 

section.3. This type of inferential advantage of diagrams has been noted by several 



30 

 

researchers such as: (Larkin & Simon, 1987; Barwise & Etchemendy, 1995; Stenning & 

Lemon, 2001; Shimojima & Katagiri, 2008). 

  

Figure  2.4 diagram to present the existence of an element in patient. 

We will explain how these results were used to guide the design of our usability study in 

chapter 4. 

2.6. The Constraint Diagram Family  

The constraint-family diagrams are Euler-based diagrams which combine both the 

object-oriented approach and a formal method. This family consists of three diagrams: 

spider diagrams (Figure 2.6), constraint diagrams (Figure 1.1), and concept diagrams 

(Figure 2.7). For the purposes of formal software specification for using a visual 

method, constraint diagrams (Kent, 1997) were proposed to be used in conjunction with 

the UML for object-oriented modelling. It is intended to be a simple and effective 

approach to formally specify programs and provides a diagrammatic notation for 

expressing constraints (e.g., invariants) that could only be expressed textually in UML 

using OCL. Constraint diagrams developed due to the important role the constraints 

play. The designer needs to understand what the limits of the program are and to ensure 

that all domain states are represented. The CD notation is used to describe the syntax of 

a domain and to visually capture the semantics of it.  

The CD was originally proposed to present a static constraint; thus, many improvements 

were made. For example, a three-dimensional CD (Gil & Kent, 1998) proposed for 

behavioural specification to express pre-conditions and post-conditions was proposed 

with the influence of UML multi-diagrams and Catalysis (D'Souza & Wills, 1998). 

DeadAlive

Patient

• 
Jean
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Moreover, due to the fact the CD as originally proposed are ambiguous (see Chapter 3, 

section 3.3.1 for an example of an ambiguous constraint diagram), Reading Tree (Fish, 

et al., 2003; Fish & Howse, 2003; Fish & Howse, 2004; Fish & Masthoff, 2005) was 

developed because some constraint diagrams have more than one intuitive reading. For 

explicit reading tree, the concept of the dependence graph for a constraint diagram was 

developed. From the dependence graph a set of reading trees can be obtained, which 

provides a partial ordering for some syntactic elements of the diagram to deliver a 

unique semantic reading. For implicit reading tree (Howse & Schuman, 2005) was 

proposed with the influence of Z notation (Woodcock & Davies, 1996). Furthermore, a 

generalized CD (Figure 4.19) was proposed (Stapleton & Delaney, 2008) to provide a 

sequence of reading order.   

From the constraint diagram investigations by Kent and colleagues, spider diagrams 

(SD1) were proposed (Gil, et al., 1999; Howse, et al., 1999) as a Venn-based visual 

notation for expressing logical statements, and to form the basis of more expressive 

constraint diagrams. Later, they were extended from SD1 to SD2 to include new 

notation, and the inference rules were extended in order to show that the extended 

system is sound and complete (Howse, et al., 2000a; Howse, et al., 2001). 

In general, using SD1 will prevent existential spiders from being placed in shaded 

zones. However, in SD2, spiders are allowed to be placed in shaded zones. Then the 

SD2 was extended to the ESD (Stapleton, et al., 2004a) by allowing Euler-based 

diagrams (rather than Venn diagrams) and by adding additional syntax such as equality. 

Both ESD and SD2 are similar in terms of ESD not being more expressive than SD2, 

and, along with further rules required for completeness, the reasoning rules for ESD are 

those for SD2. 

Later, spider diagrams were augmented with constants (Stapleton, et al., 2004b) to 

contain syntactic elements analogous to constants in first order predicate logic. In 

general, since spider diagrams are equivalent in expressiveness to monadic first-order 

logic with equality (Stapleton, et al., 2004c; Stapleton, et al., 2009), they cannot be 

practical for being used in software modelling. Overall, constraint diagrams are more 

expressive than spider diagrams and they, unlike spider diagrams with equality, can 

express statements involving two-place predicates and are practical for being used in 

software modelling. 
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In Figure 2.6, spider diagrams are used to show the possible cases that can be expressed 

using the three versions of SD. By using the spider diagram (SD1), we can express that 

Jean in Patient and Mrs. Peterson in HProf are the same person and that this person is 

either a Patient or a HProf, or both as shown in Figure 2.6 part a. However, by using 

SD1, we cannot represent that Jean and Mrs. Peterson may be the same person and 

thus, SD2 is used here as in Figure 2.6 part b. Moreover, to represent that Jean and Mrs. 

Peterson must be the same; ESD is used as in Figure 2.6 part c.       

 

Figure  2.5 Spider Diagrams (3 versions) 

Concept diagrams (Oliver, et al., 2009; Howse, et al., 2010; Howse, et al., 2011; 

Stapleton, et al., 2012; Stapleton, et al., 2013) are proposed to define ontology. An 

ontology (Gruber, 1993) is a specification of a conceptualization. They share a lot of 

CD syntax and augment it with new syntax. However, they have different semantics 

than CD in a subtle way. With the use of variables, concept diagrams do not suffer from 

any reading issues related to quantifiers. They are equivalent to second-order logic and 

thus they are more expressive than constraint diagrams, in the formal sense. Figure 2.6 

is an example of a concept diagram that shows that the Patient Jean is the only mother 

of the Patient John and that Jean owns exactly two patient-records, both of which are 

PRec, including a Communication called c. 

 

Figure  2.6 Concepts Patient, PRec, and Communication are represented by the Concept Diagrams 

The semantics of concept diagrams is different from the semantics of the CD notation as 

discussed in (Stapleton, et al., 2013). For example, both notations have the dot which 
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syntactically is the same component. However, the dots in the CD notation represent 

quantification whereas in the concept diagrams the dots represent variables. 

This section provided a broader view of the constraint diagrams family which is needed 

as an introduction for understanding Chapter 3. 

2.7. Methodologies and frameworks for analysing notational 

systems  

In general, there are several evaluation approaches (e.g., different aspects such as 

GOMS (Card, et al., 1983), Glinert’s framework (Glinert, 1989), Heuristic evaluation 

(HE) (Nielsen & Molich, 1990; Nielsen, 1992), Maximal repeating pattern analysis 

(Siochi & Hix, 1991), Layout appropriateness metric (Sears, 1993), The Cognitive 

Walkthrough methodology (Lewis, et al., 1990; Wharton, et al., 1994), Representational 

Epistemological Interface Design approach (REEP) (Cheng & Barone, 2007), 

Ecological Interface Design (EID) framework (Vicente, 1999), Information 

Visualization (Card, et al., 1999), and Zhang Relational Information Displays (Zhang 

1996). However, these approaches do not evaluate notational systems. To the author’s 

knowledge, the only evaluation approach for notational systems is the Cognitive 

Dimensions of Notations (CogDim) framework 1996 (Green, 1989) which is a task-

specific approach for analysing the usability of notational systems, user interfaces and 

programming languages by using dimensions which are a high-level discussion tools. 

Its dimensional checklist approach is used to improve different aspects of the system. 

Each improvement will be associated with a trade-off cost on other aspects.  

CogDim is the only HCI evaluation approach intended to evaluate languages 

(Blackwell, et al., 2000). It concentrates on the notational design rather than the 

instructiveness of the user interfaces, and it is, as Green and his colleagues claimed, 

easy to learn and apply by non-specialists, and it is applicable at any stage of design. 

There are many studies that have used CogDim to evaluate the cognitive features of the 

languages. For example, CogDim was used to cognitively compare Prograph and 

LabVIEW (Green & Petre, 1996), to evaluate Pursuit (Modugno, et al., 1994), to 

evaluate PrologSpace (Yazdani & Ford, 1996), to evaluate design rationale 

representation (Shum, 1991), to evaluate continue-patterns in spreadsheets (Hendry, 

1995), to evaluate modification in languages such as Basci and Prolog (Roast & Siddiqi, 

1996), to evaluate domain-specific languages (Pereira, et al., 2008), and to evaluate 

file:///C:/Users/Noora/Desktop/Eileen/Noora%20Chapter%202,%20literature%20review.doc%23_ENREF_116
file:///C:/Users/Noora/Desktop/Eileen/Noora%20Chapter%202,%20literature%20review.doc%23_ENREF_112
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distributed notations (Green, et al., 2006). Microsoft used this framework as a 

vocabulary for evaluating the usability of their C# (Clarke, 2001), .NET development 

tools (Clarke, 2004), and an object oriented application programming interface (Clarke 

& Becker, 2003). Moreover, CogDim has been used to develop a framework called 

Representation Design Benchmarks (Yang, et al., 1997) which measures the static 

representations for a visual programming language. This evaluation method has a set of 

metric-based benchmarks to measure the static representations of the language. 

Since CogDim is the only evaluation approach in the literature to evaluate the usability 

of a notational system, it will be adopted in Chapter 4 as a theoretical approach to 

evaluate the usability of the CD notation. 
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Chapter 3 Constraint Diagrams 

This chapter introduces the system of constraint diagrams by 

giving, in section 3.1, a brief introduction of its development. We 

define both the formal and informal syntax of that system in 

Section 3.2 while its semantics are covered in section 3.3. Section 

3.4 is a brief overview of constraint diagrams as a reasoning 

system. Section 3.5 describes the fragments of constraint 

diagrams. Section 3.6 illustrates the usage of constraint diagrams 

in program specification. Section 3.7 shows that constraint 

diagrams have been successfully applied to software modelling. 

Section 3.8 is about contrasting constraint diagrams with other 

diagrams that are used in program specification. Finally, section 

3.9 discusses the outcomes of this chapter. 

3.1. Introduction 

Constraint Diagrams are Euler-based diagrams, which are a finite collection of simple 

closed curves (contours) to represent sets (Kent, 1997). They are proposed to visually 

express logical constraints on object-oriented models, and thus provide a substitute to 

formal methods such as Syntropy (Cook & Daniels, 1994), Catalysis (D'Souza & Wills, 

1995) and OCL, the only non-visual part of the UML. Not only is CD notation a stand-

alone language which has the ability to replace UML class diagrams, but also it can be 

integrated into several methodologies such as (Fetais, et al., 2005; Howse & Schuman, 

2005) where CD is used instead of Z notations in schemas; and it fits in UML models as 

well. It is familiar because it is based on Euler diagrams and Venn diagrams which are 

widely known and it is expressive because it overcomes many of the topological 

restrictions of Venn diagrams such as the difficulties of drawing more than eight sets, 

and the cardinality. Furthermore, it is clear and unambiguous because it has formal 

semantics and is equivalent to first order logic, while the generalized CD (Stapleton & 

Delaney, 2008) is equivalent to second order logic. 

CD provides a diagrammatic notation to construct an abstract information structure that 

is intended to specify a system by joining many statements in a single diagram, and 

therefore is reasonably concise, and to express static constraints (e.g. invariants) and 

dynamic constraints for behavioural contracts (e.g. events defined in terms of pre- and 
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post-conditions). The language design emphasizes scalability and expressiveness while 

retaining intuitiveness, and includes facilities for quantification and navigation of 

relations.  

The purpose of this chapter is to introduce CD and to illustrate some of its 

characteristics. CD is a formal logic and its syntax, semantics and reasoning rules will 

be described in the next three sections.  

3.2. Syntax 

CD notation augments Euler and Venn diagrams with additional syntax, as described in 

(Fish, et al., 2005b; Stapleton, et al., 2005a; Stapleton & Delaney, 2008; Burton, 2011). 

We will explore the syntax informally and then formally. 

3.2.1. Informal syntax 

This section demonstrates the comprehensiveness of CD in an easy way that people who 

have not had an extensive experience in formal program specification could understand. 

The syntax of CD is described as follows: 

  A boundary rectangle. 

 A finite set of contours to represent sets. There are two types of contours: given-

contours and derived-contours. 

 A set of regions. A basic region is the bounded area of a contour or the boundary 

rectangle. Any basic region or any non-empty union, intersection, or difference 

of regions is a region.  

 A set of zones. A zone is a single region which does not contain any other 

regions. 

 A set of shaded zones. 

 A finite set of spiders. There are two types of spiders: existential spiders 

(denoted by dot) and universal spiders (denoted by asterisk). A spider is a tree 

with nodes (feet) whose habitat is the set of zones in which the feet are placed 

and connected by a straight line (legs). 

 A finite set of arrows. An arrow is a relation between a spider or a contour as a 

source and another spider or contour as a target. (Fish, et al., 2005b) 

  A set of labels which can be associated with contours or dots, but always 

associated with arrows. 
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 A reading tree provides a partial ordering of the quantifiers (spiders) in the 

diagram and could be explicit or implicit.  

In general, a reading tree ensures a unique semantic interpretation because the reading is 

a FOPL sentence. The explicit reading tree will help advanced users to express complex 

constraints with unambiguous semantics. This means the syntax of the CD notation will 

be extended to include a reading tree. However, this will affect new users who want to 

learn and use the CD notation. Overall, explicit will be used for optimizing 

expressiveness, but it will increase the complexity of the diagrams and the need for 

mental operations.     

On the other hand, the implicit reading tree case will simplify the diagram syntax, which 

will facilitate this notation learning for new user, but will leave some complex diagrams 

ambiguous. Thus, to solve the ambiguity issue, as in Figure 3.1, research has been done 

on a method called the default readings of constraint diagrams, where no reading tree is 

given (Fish & Howse, 2004) by adopting a particular choice of reading tree depending 

only on the diagram properties to give a unique reading. The default reading requires an 

ordering of certain sets of spiders in a diagram for a unique semantic interpretation 

without the need for a user to choose a reading tree. This thesis adopts the default 

reading method because we are targeting inexperienced users. Examples of these 

diagrams are shown in Section 3.6. 

 

Figure  3.1 An example of an ambiguous constraint diagram 

In general, the CD notation that was originally proposed is ambiguous. Figure 3.1 is an 

example of an ambiguous constraint diagram. In this figure there are three given 

contours labelled Patient, PRec and HProf which represent three disjointed sets. The dot 

is an existential spider, which represents existential quantification (there is a health 

professional) and its habitat is inside HProf. The asterisk is a universal spider, which 

represents universal quantification (for all patients) and its habitat is inside Patient. The 
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HProf
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two arrows labelled Own and Initiate represent relations. The arrow labelled Own is 

sourced at the universal spider and targets an unlabelled derived contour inside PRec. 

This derived contour represents the image of the relation Own (the records which are 

owned). The semantics of this diagram depend upon the order in which it is read. If we 

start reading at the universal spider we obtain that each patient owns some records, and 

there is a health professional who initiates only records owned by that patient. However, 

if we start reading at the existential spider we get that there is a health professional who 

initiates some records, and each patient owns all of these records. 

A constraint diagram is a single boundary rectangle which includes finite sets of given-

contours, given-contour labels, shaded zones, spiders, at most one derived-contour – for 

a given contour – which is a target of an arrow, arrows and arrow labels. 

Now let us consider the following example. 

Example 3.1: 

From chapter 1, Figure 1.1 has a boundary rectangle, seven contours (four given and 

three derived), three universal and one existential spider, four arrows, four given-

contour labels and four arrow labels. The following is a description of the syntax: 

Figure 1.1 shows that for each HProf, the PRec of any Patient who is related to the 

HProf must be originated by all Services which are associated to the HProf. To be more 

precise, this diagram has a boundary rectangle which represents syntactically the edge 

of the diagram. This rectangle contains given-contours such as HProf, Service, Patient 

and PRec, which are simple closed contours with labels. HProf is disjoint from the six 

other sets. All the elements of HProf are represented by the universal spider (asterisk) 

which is the source of an arrow (a binary relation) called Assoc. The target of this 

relation is a derived-contour of Service. So, for all HProf, they associate to a set of 

services. Another arrow called Orig is connecting an asterisk in a derived-contour in 

Service to another derived-contour in PRec. Also, Relate is an arrow that represents a 

relation which has an asterisk from HProf as the source and a derived-contour in Patient 

as a target. The last arrow, Ref, is connecting all elements of the derived-contour in 

Patient to some distinct elements (denoted by a dot) in its habitat which is a derived 

contour in PRec. Here the habitat is the same as the zone because these spiders do not 

have legs.  
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3.2.2. Formal Syntax 

To make sure of the validity of the CD notation, formal syntax is described. Formal 

syntax is important because type-equivalence implies semantic-equivalence. A 

constraint diagram is formally defined as described in (Fish, et.al, 2005b) in Figure 3.2. 

 

Figure  3.2 This Formal Syntax is based on (Fish, et al., 2005b) 

Now let us consider the following example. 

Example 3.2: 

From Figure 1.1: 

Taking that L
D
 = { DS, DPA, DPR } 

C = {HProf, Service, DS, Patient, DPA , PRec, DPR } where DS, DPA, and DPR 

denotes the derived contours.   

L
G 

= {HProf, Service, Patient, PRec} 

Z = {(,{HProf, Service, Patient, PRec, DS, DPA, DPR }),  
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({HProf}, {PRec,  Service, Patient, DS, DPA, DPR}),  

({Service}, {HProf, Patient, PRec, DS, DPA, DPR }), 

({Patient}, {HProf, Service, PRec, , DPA ,DS, DPR}), 

({PRec}, {HProf, Service, Patient, DS, DPA, DPR }), 

({Service, DS}, {HProf, Patient, PRec, DPA, DPR }), 

({Patient, DPA }, {HProf, Service, PRec, , DS, DPR}), 

               ({PRec, DPR}, {HProf, Service, Patient, DS, DPA}) }.  

 Z*={} 

R= PZ-{ } 

R*= PZ*-{ }  

S ={s1,s2,s3,s4} where s1 is the spider in HProf, s2 is the spider in Service, s3 

is the spider in Patient and s4 is the spider in PRec. 

A= {Relate, Assoc, Orig, Ref} 

L
A
={Relate, Assoc, Orig, Ref} 

text(source(aRelate))= “HProf” 

text(target(aRelate))= “Patient” 

text(source(aAssoc))= “HProf” 

text(target(aAssoc))= “Service” 

text(source(aOwn))= “Patient” 

text(target(aOwn))= “PRec” 

text(source(aOrig))= “Service” 

text(target(aOrig))= “PRec” 
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This diagram is not associated with any explicit reading tree. However, in this example 

we used a partial ordering of quantifiers by using an implicit reading tree to give rise to 

the default reading, to ensure a unique meaning. 

In general, example 3.2 shows the complexity of information that the diagram in Figure 

1.1 represents. This shows how intuitive the diagram represented by the CD notation (in 

Figure 1.1) is, compared to this example.  

3.3. Semantics 

We will explain this section as described in (Fish, et al., 2005b; Stapleton, et al., 2005a; 

Stapleton & Delaney, 2008; Burton, 2011). In general, constraint diagrams without any 

arrows are spider diagrams, and thus their semantics extend their underlying spider 

diagrams’ semantics. 

We will describe the informal semantics and follow it with the formal semantics. 

3.3.1. Informal Semantics 

The boundary rectangle represents semantically the universe that we are considering. In 

this rectangle there are given-contours to represent sets, and derived-contours to 

represent the image of a relation, with respect to the topological properties of the sets. 

Existential spiders represent existential quantification and universal spiders represent 

universal quantification, such that an independent spider represents a distinct element. 

An arrow represents a relation such that the relation is represented by a label; its source 

is a spider or a contour and its target (the relational image) is also either a spider or a 

contour. Regions are sets and in a shaded region all the elements are represented by 

spiders.  

Let us consider the following example: 

Example 3.3: 

From Figure 1.1, the diagram contains four given contours, three derived contours, three 

universal spiders, one existential spider, and four arrows. The existential spider asserts 

the existence of at least one element in PRec. The universal spider in a set means all 

elements in that set. The arrow labelled Assoc, together with its source and target assert 

that the Assoc, which is a binary relation, has an image which is a subset of Service 

when the domain is an element of HProf. The arrow labelled Relate, together with its 
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source and target assert that the Relate, which is a binary relation, has an image which is 

a subset of Patient when the domain is an element of HProf. The arrow labelled Orig, 

together with its source and target assert that the Orig, which is a binary relation, has an 

image which is an element in PRec when the domain is an element of Service. The 

arrow labelled Ref, together with its source and target, assert that the Ref, which is a 

binary relation, has an image which is an element in PRec when the domain is an 

element of Patient. Finally, the four given contours represent disjoint sets.     

3.3.2. Formal Semantics  

For this thesis, the formal semantic for the syntax in Figure 3.2 could be found in (Fish, 

et al., 2005b) and thus we will not reproduce it here. However, we will give the 

following example where The interpretation of CD is defined by a tuple〈U,Ψ,〉such 

that:  

Table  3.1 These Formal Semantics are based on (Fish, et al., 2005b) 

U is the universal set, 

Ψ is a function mapping given contour labels, zones and regions to subsets of U,  

φ is a function mapping arrow labels to relations on U, 

Example 3.4: 

From Figure 1.1: 

 

U= {1, 2,3,4},   

Ψ= {(HProf,{1}), (Service,{2}),(Patient,{3}),(PRec,{4})},  

φ ={(Assoc,{(1,2)}),(Relate,{(1,3)}),(Orig,{(2,4)}),(Ref,{(3,4)})}, 

 

Augmenting the diagrams with a reading tree (effectively a partial ordering of 

quantifiers) ensures that each diagram has a unique semantic interpretation. 

3.4. Reasoning 

In this thesis we are looking at constraint diagrams from the program specifications 

point of view. The soundness of CD and its formal system results in a formal logic. In 

summary, CD is expressively equivalent to the FOPL and it has sound reasoning rules, a 

complete reasoning system. However, it is not a decidable system due to the existence 
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of the universal spiders (Stapleton, et al., 2005a). In the case of reasoning, CD has 

diagrammatic notation advantages (Stapleton & Delaney, 2008) such as free rides that 

arise from the subset relations, the placements of existential spiders and the images of 

relations. 

In general, to be able reason between constraint diagrams, reasoning rules are needed 

for diagram transformations (Fish & Flower, 2005). For example, in Figure 3.3 to delete 

an existential spider p, three conditions must not be held. First, p must not be the source 

or target of any arrow. Second, the habitat of p must not include a shaded zone. Finally, 

a universal spider x whose domain includes a foot of the spider p; and the p must not be 

ordered before the node x in the tree. In this figure, p is ordered after x in the tree, so p 

can be deleted. However, if the reading tree had been pxt then we would not be 

able to delete p from the diagram because the reading here will be different since p≠x in 

this case and this prevents us from deleting the spider p.   

 

Figure  3.3 Deleting an existential spider 

For more on the CD syntax, semantics, soundness, completeness and decidable system 

see (Gil, et al., 2001; Fish, et al., 2003; Fish & Howse, 2003; Fish & Howse 2004; Fish, 

et al., 2005b; Stapleton, et al., 2005a). 

For CD fragments’ syntax, semantics, soundness, completeness and decidable system – 

for Euler diagrams see (Howse, et al., 2002; Stapleton, 2005; Fish, et al., 2011); for 

Venn-Euler diagrams see (Gil, et al., 2002); and for spider diagrams see (Gil, et al., 

1999; Howse, et al., 1999; Howse, et al., 2000a; Howse, et al., 2000b; Howse, et al., 

2000c ; Howse, et al., 2001; Flower & Stapleton, 2004; Stapleton, et al., 2009). 
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3.5. Fragments of Constraint Diagrams 

Some fragments of the CD notation, such as Hammer’s Euler diagram system (Hammer, 

1995) and spider diagrams (Howse, et al., 2001; Howse, et al., 2005) have sound, 

complete reasoning systems and they are decidable. CD is a combination of three 

fragments and other syntax too. These fragments, Euler diagrams, Venn diagrams and 

Spider diagrams, have generalization relations: CD generalizes spider diagrams which 

generalize Venn diagrams, and this latter generalizes Euler diagrams. CD is more 

expressive than spider diagrams because of the arrows that allow expression of 

relationships between elements. This will be illustrated in full detail in the next chapter.   

3.6. Using Constraint Diagrams in Program Specification 

In this section, we show one of the uses of CD notation in the Object-Oriented Formal 

Specification to define invariants and to define events, as described in (Howse & 

Schuman, 2005). Figures 3.6 to 3.22 are redrawn from (Fetais, Howse et al. 2005) and 

are used as examples provided from the “Patient Record System” case study.   

Figure 3.4 gives an overview of the initial stage for this development where every level 

represents a class, and is depicted by a rectangle with its role, and arrows indicate the 

extension of these levels. 

                                              
Figure  3.4 Class-structure for Patient Record System 

class PRS[P,I,S,H,Q,R,F]

// patient record system

class HCS[P,I,S,H,Q]

// health-care system

class PP[P,I]

// patient population
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3.6.1. Patient Population: class PP[P;I] 

 

Figure  3.5 Specification of an invariant that uses constraint diagrams 

Figure 3.5 provides an example of using constraint diagrams to specify an invariant 

(class) called PP which is taken from a health informatics case study. This invariant is 

about patients' personal information where a Patient Population-PP is a set of patients 

which is uniquely identified by elements from given type P. Each known patient has 

his/her own associated information of type I, and is either alive or dead. This invariant 

for class PP is a conjunction of three constraint diagrams: the first defines Patient to be 

a set of a given type P. The second partitions Patient into two disjoint subsets: those 

who are Dead and all the others who are Alive. The partition of Patient is indicated by 

shading the zone inside that set but outside its two subsets, identified by the names 

Alive and Dead. The third defines a relation Info that associates each element of Patient 

with some element of type I. Although superficially it might seem visually 

straightforward and simple, there is much in the structure of the diagram. It expresses 

that every known patient (uniquely identified by elements from given type P) has 

his/her own associated Information (of type I), and is either Alive or Dead. There are at 

least 20 different visual elements occurring on several nested levels. Alive and Dead 

subsets occur within the Patient set, which is of type P. A shaded zone containing no 

elements represents the empty set. The rectangle labelled P indicates that Patient is of 

the predefined type P. Another rectangle I represents another predefined type and yet 
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another Patient contour. Constraint diagrams use spiders to represent elements. The dot 

(existential spider) in I represents the existence of a spider (element) and an asterisk 

(universal spider) represents all spiders (elements) in a specific set. The arrow labelled 

Info represents a binary relation, where its source must be a spider and its target can be 

either an element (spider) or a set (contour). At the highest level of the diagram there is 

a framework, which is shown by a semi-box (open rectangle) and the class label PP. 

The semi-colon that separates declarations can easily be missed and a new line is used 

as another type of separator. Despite the fact that constraint diagrams notation is 

designed as an easy and simple program specification notation, it could be difficult to 

understand when presenting complex ideas. 

The possible changes-of-state at this level are specified as the following three events: 

 

Figure  3.6 Constraint Diagrams as an Event to Register Patients 

Event 1: PP!RegisterPatient(p,i) could be used to register a new patient – which will be 

identified by p – only if his information i (which is of type I) is given. Initially, p is said 

to be alive as shown in Figure 3.6. To elaborate, the CD notation can also be used to 

capture a more sophisticated idea: specifying an event. This Figure presents an event 

which is a named operation that changes an object’s state by using a dash on the label to 

denote a change and an undashed label otherwise. Each event is specified by a pre-

condition and a post-condition. The double line inside the framework is used to indicate 

pre-condition (above the double line) and post-condition (below the double line). The 

pre-condition ensures that the arguments satisfy all the constraints which are imposed 

by the invariant. The post-condition shows the values that are changed. However, only 
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minimal changes are shown because there is a convention used in constraint diagrams 

that "the rest stays unchanged" (Howse & Schuman, 2005). For example in Figure 3.6 

in the post-condition, adding a new patient increases the Alive, but the Dead set is 

unchanged. As a result, the Dead set is not shown in the post-condition. This figure 

shows an event called RegisterPatient which is preceded by the level name and a '!' 

separator. This event can be used to register a new patient with information i, to give 

him/her a unique identifier p; initially, p is said to be alive. The pre-condition ensures 

that the event's argument i has type I, and p which is not in Patient yet is an identifier of 

type P. In post-condition there is a dash in the Alive set and another in Information 

value. In other words, the Alive set has increased by adding a new patient and the 

associated Information on that patient. These dashed names denote values that have 

changed. 

 

Figure  3.7 An event to update Patient Information at the PP level 

Event 2: PP!UpdatePatientInfo(p, i) is used to update current information for patient p, 

so it has some value i afterwards as shown in Figure 3.7. 

 

Figure  3.8 An event to record Patient's Death at the PP level. 
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Event 3: PP!RecordDeath(p) is used to record the death of an alive patient p as shown 

in Figure 3.8. 

3.6.2. Health-Care System: class HCS[P;I;S;H;Q] 

Another level is developed to represent an abstract model for a Health-Care System by 

extending PP to define the class HCS[P;I;S;H;Q]. 

Every Health-Care System, Figure 3.9, supports its Patient Population via some 

hierarchy of services and nested sub-services that each patient is currently enrolled in. 

Services and their subservices are uniquely identified by elements from given type S. It 

also maintains the central register of health-professionals (uniquely identified by 

elements from type H), which gives their qualifications (of type Q) and current 

associations with a service or sub-service; those having at least one such association are 

said to be active. 

 

Figure  3.9 The HCS invariant 
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The possible changes-of-state at this level are specified as the following events: 

 

Figure  3.10 An event to define a new service 

 

Event 1: HCS!NewService(s) is used to define a new service, s, only if its name is 

unique as shown in Figure 3.10. 

 

 

Figure  3.11 An event to define a new sub-service 

 

Event 2: HCS!NewSubService(s,n) is used to nest a new sub-service uniquely identified 

by s in the (sub-) service named n as shown in Figure 3.11. 
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Figure  3.12 An event to register a new health professional 

 

Event 3: HCS!RegisterHProf(q,h) is used to register a new professional uniquely 

identified by h with the qualification q, as shown in Figure 3.12. 

 

 

Figure  3.13 An event to record a new qualification 

 

Event 4: HCS!RecordNewQualif(h,q) is used to record an additional qualification q for 

the professional h as in Figure 3.13. 
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Figure  3.14 An event to associate a health-profeessional with a (sub-) service 

 

Event 5: HCS!Associate(h,s) is used to associate a new professional h with the (sub-) 

service s as shown in Figure 3.14.  

 

 

Figure  3.15 An event to dissociate a halth-professional from a (sub-) service 

 

Event 6: HCS!Dissociate(h,s) is used to dissociate a professional h from the (sub-) 

service s as shown in Figure 3.15. 
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Figure  3.16 An event to enroll a patient into (sub-) service 

 

Event 7: HCS!EnrolNewPatient(p,s) is used to enrol a new patient p for the (sub-) 

service s as shown in Figure 3.16. 

 

 

Figure  3.17 An event to discharge a patient from (sub-) service 

Event 8: HCS!DischargePatient(p,s) is used to discharge a patient p from the (sub-) 

service s as shown in Figure 3.17. 

Moreover, Two PP operations are likely to be promoted, Figure 3.18, for use with the 

class HCS:  

Figure  3.18 Two Events that are promoted from the extended invariant 
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3.6.3. Patient Record System: class PRS[P;I;S;H;Q;R;F] 

The “Patient Record System" is a model that defines the class PRS[P;I;S;H;Q;R;F] and 

extends class HCS.  

 
Figure  3.19 The PRS invariant 

A Patient Record System, Figure 3.19, extends a Health-Care System, to support the 

central database of patient records (uniquely identified by elements from type R). Each 

such record refers to one particular patient, and identifies its author (a professional) as 

well as an originator and destination (services) along with a DATE and TIME of entry 

(introduced by the system). All have a message (of predefined type TEXT) and some 

may also have multiple attached files (of type F). 

Any record having the same originator and destination is said to be a note; otherwise, it 

records a certain communication. These are held in a queue for their destination service. 

The possible changes-of-state at this level are specified as the following events: 
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Figure  3.20 An event to create a new note 

Event 1: PRS!NewNote(p,h,s,m,r) is used to enter a new note – uniquely identified by r 

– that refers to patient p by professional h of service s with message m but no 

attachments, only if p is enrolled for s and h is associated with s as shown in Figure 

3.20. 

Event 2: PRS!Send(p,h,s1,s2,m,F,r) is used to send a new communication – uniquely 

identified by r – that refers to patient p by professional h of service s1 to service s2 with 

message m and set of attached files F, only if p is enrolled for s1 and h is associated 

with s1. Then r would be enqueued for the destination s2 as shown in Figure 3.21. 
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Figure  3.21 An event to send a communication 
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Moreover, Two HCS and one PP operations are made available for use at the level of 

PRS. 

 

 
Figure  3.22 Events that are promoted from this or extended invariants 

Figure 3.22 shows that at this level a record r is required to promote events such as 

enrol, discharge and record the death of a patient, while the update patient information 

is simply promoted at the level to be used at this class. 

3.7. Usage 

The efficacy of constraint diagrams is shown by its applications. It has been applied in 

many cases, for example: 

(1) A formal object-oriented specification of a software system, such as: 

a. A library system (Kent, 1997). 

b. A video rental store model (Howse & Schuman, 2005). 

c. A patient record system model (Fetais, et al., 2005). 

(2) A framework for specifying an abstract model for a transparent configuration 

control platform for Nokia (Howse, Schuman et al., 2009). 

(3) Reasoning systems (Howse, et al., 2000c; Gil, et al., 2001; Fish, et al., 2003; 

Fish & Howse, 2003; Fish & Howse, 2004; Fish, et al., 2005b; Stapleton, et al., 

2005a). 

(4) Developing a new diagrammatic language called Visual First Order Logic 

(VFOL) to visualize FOL (Stapleton, et al., 2005b). 

(5) Developing a new diagrammatic notation called Concept Diagrams to visualize 

ontologies (Howse, et al., 2011). 

Its fragments have been used in: 
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(1) Developing Euler-based diagrammatic notations such as UML diagrams and 

statecharts (Harel, 1987). 

(2) Presenting set-based statistical data (Chow & Ruskey, 2003).  

(3) Presenting the database complex queries’ results for traditional library 

environments (Thièvre, et al., 2005) and for indexed video databases (Verroust 

& Viaud, 2004)  . 

(4) Representing multi-categories non-hierarchal files systems (DeChiara, et al., 

2003; DeChiara & Fish, 2007). 

(5) Representing complex genetic set relations for bio-informatics field (Kestler, et 

al., 2005). 

(6) Capturing knowledge in ontologies environments (Hayes, et al., 2005). 

(7) Visual editing environment for semantic web languages (Lövdahl, 2002; Zhao 

& Lövdahl, 2003). 

(8) Reasoning system (Shin, 1994; Hammer, 1995; Howse, et al., 2001). 

(9) Hardware specification for a safety critical environment (Clark, 2005). 

 

These uses of CD and its fragments indicate that it is a widely accepted notation and it 

has been successfully used for various systems. Thus, this is why we focus on constraint 

diagrams in this thesis. 

 

3.8. Comparison with other diagrams 

In this section we want to compare CD with other diagrams to test the ability of these 

diagrams, including CD, to check which properties these diagrams are able to capture 

and which are absent. We know that every diagram was proposed for a different 

purpose. However, these diagrams shared the goal of being used in Object-oriented 

specification or to capture a similar kind of information. In this section we try to point 

out the similarities and the differences between CD and other diagrams.  
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3.8.1. Commutative diagram  

 

Figure  3.23 Commutative Diagrams 

Commutative Diagrams (Eilenberg & MacLane, 1945) are used to describe properties of 

morphisms among objects such that the commutative results of all the directed paths 

with the same start and endpoint are equal. 

Figure 1.1 represents constraint diagrams and Figure 3.23 represents commutative 

diagrams. Both have similar syntax and semantics, but they are not equivalent due to the 

differences in the structure involved. In the constraint diagrams Assoc, Relate, Orig and 

Ref are relations, while in the commutative diagram they are all functions. Constraint 

diagrams can be considered as a generalization of commutative diagrams because they 

produce the same accessibility by allowing relational navigation, but CD augments 

commutative diagrams with the set-theoretical relationships.  

The semantics of the diagram presented in Figure 3.23 can be presented as:  
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We can see that CD and commutative diagrams have similarities in both syntax and 

semantics. However, the structure is different because unlike commutative diagrams, 

CD represents set-theoretical relationships like disjointedness and subset.  

3.8.2. Higraph  

 

Figure  3.24 Higraph 

Hi-graphs (Hammer, 1995; Harel, 1988) add arrows to Euler diagrams to represent 

relations between sets (Fish, et al., 2005b). Syntactically Harel’s higraphs (Harel, 1988), 

which are the basis of Harel’s statecharts (Harel, 1987), and CD have similarities such 

as representing binary relations between contours and being Euler-based diagrams. 

However, their semantics are different (Gil, et al., 2001).  

Higraphs represent topological structure of dynamic behaviour. However, unlike CD, 

higraphs have unlabelled relations and the contours, which are called blobs, cannot 

represent quantifiers. Moreover, higraphs have difficulties in representing both 

inclusion and membership of sets (Gil & Kent, 1998). Figure 3.24 represents four sets 

and their binary relations. However, unlike CD, the subsets in Service and Patient are 

increased by one because in higraph formalism, one subset inside a set means the set 

itself which is not partitioning the set. So, to indicate that a set Patient has a subset, 

higraph represents this set with two internal contours to represent the area inside the 

subset and the other contour represents the area outside the subset. For example, in 

Figure 3.25 the interaction of two curves does not mean any intersection unless internal 
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blobs appear in it. If Patient had been entirely enclosed within HProf or vice versa, then 

the interpretation would be entirely different from in Figure 3.25.     

 

Figure  3.25 Two non-intersected blobs 

3.8.3. UML diagrams 

3.8.3.1. Class diagrams 

 

Figure  3.26 Class diagram 

Class (type) diagrams are used to represent the abstract structure of the design. They 

express static constraints and they allow expressing the relation between classes by 

directed or undirected links. In Figure 3.26, we cannot tell which class has a subclass 

and the links are not directed, which allows reading from both directions. 

CD and class diagrams represent classes, relations and cardinalities. However, CD is 

more expressive and they represent cardinalities visually by shadings and spiders, 

directed relations which show domain and range, and subsets which represent a state. 
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(OCL) which is part of UML. Unlike class diagrams, CD in Figure 1.1 shows the 

directed-relation navigation because we know the source and target of all relations. For 

example we know that the source of Assoc relation is HProf and its target is Service. 

3.8.3.2. State diagrams 

State diagrams which are based on Harel’s statecharts (Harel, 1987) are used to specify 

dynamic behaviour. However, they are limited in the constraints they are able to 

express. 

In Figure 3.26 we cannot tell if Service has subsets. If we want to represent that each 

HProf associated to a subset of Services we will need another diagram along with it. In 

this case state diagrams are used.  

 

Figure  3.27 State diagram for HProf 

In Figure 3.27, a HProf is inactive unless joining a service by an event called Join, 

which will change the state to active. This could simply be represented in Figure 1.1 by 

adding a subset to HProf and calling it Active and changing the source of the Assoc to 

be all elements of Active instead of all elements in HProf.  

3.9. Discussion 

This chapter introduces constraint diagrams by illustrating both the formal and informal 

syntax of that system, along with its semantics. We also gave a brief overview of 

constraint diagrams as a reasoning system. The fragments of constraint diagrams and 
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the use of constraint diagrams and its fragments in different systems ensure the ability 

of this notation to work successfully.  

Constraint diagrams are intuitive and can be used as a stand-alone language which has 

the ability to replace other languages such as OCL and Z, and diagrams such as UML-

class diagrams. Being expressive Euler-based diagrams is an advantage. Constraint 

diagrams are clearly useful for program specification because they are a formal system. 

In contrast to other diagrammatic notations, they are a powerful tool for program 

specification. Constraint diagrams seem quite complex and, thus, this is why it is an 

important question to see whether it is effective for program specification. Clearly there 

is a level of conceptual complexity here, even though the diagram may visually be 

relatively simple. Therefore, despite the claims about the efficacy of constraint 

diagrams, we might expect a user without substantial experience of the notation to find 

it difficult to use. However, we will start our study by answering the question of how 

constraint diagrams use visual characteristics to support particular qualitative inferences.  



63 

 

Chapter 4 Cognitive Dimensions of Notations 

Framework Analysis 

This chapter provides a theoretical evaluation by using an existing 

framework to examine the usability of specific properties of the 

components of CD, and to analyse the cognitive tasks employing 

CD. Section 4.1 introduces the framework and shows its existing 

applications. Section 4.2 represents the activities that a notational 

system is desired to support, and section 4.3 presents the 

cognitive dimensions which are required for the activities. In 

section 4.4, a selection of examples from the Patient Record 

System is presented. In section 4.5, CD profiles are generated by 

applying cognitive dimensions to the defined activities. Finally, 

section 4.6 consists of a discussion of the application of the 

cognitive dimensions of notations framework to both the CD and 

NL notations.  

4.1. Introduction 

The Cognitive Dimensions (CogDim) of Notations (Green & Petre, 1996) is a heuristic 

framework created by Thomas Green for analyzing the usability of notational systems. 

Its dimensional checklist approach is used to improve different aspects of the system 

with a trade-off cost on other aspects.  

Although there is a study on the usability of the constraint diagrams using CogDim 

(Morgan, 2011), this study did not provide a full usability profile of the notation. 

Moreover, it adopted a different way to apply CogDim to constraint diagrams by 

combining novices’ feedback on the interpretation of the notation to analysis 

dimensions. Starting with the dimensions to test if the activity is acceptable was 

suggested on the tutorial (Green & Blackwell, 1998). However, when I personally met 

with Professor Green, he suggested starting with an activity to test the dimensions. As a 

result two steps were required. The first step was identifying the activities. The second 

step was to apply each dimension to each activity. This framework was applied to both 

versions: constraint diagrams and natural language. 
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The CogDim framework has had several decades of development (Green, 1989; Green 

& Blackwell, 1998; Green, 2000; Green, 2006; Green, et al., 2006) and it is a widely 

accepted approach that has credibility in the software evaluation community. To recap, 

it is the only HCI evaluation approach intended to evaluate languages (Blackwell, et al., 

2000), and thus there are many studies that have used CogDim to evaluate the cognitive 

features of the languages. For example, CogDim was used to cognitively compare 

Prograph and LabVIEW (Green & Petre, 1996), to evaluate Pursuit (Modugno, et al., 

1994), to evaluate PrologSpace (Yazdani & Ford, 1996), to evaluate design rationale 

representation (Shum, 1991), to evaluate continue-patterns in spreadsheets (Hendry, 

1995), to evaluate modification in language such as Basci and Prolog (Roast & Siddiqi, 

1996), to evaluate domain-specific languages (Pereira, et al., 2008), to evaluate 

distributed notations (Green, et al., 2006), and to develop a framework called 

Representation Design Benchmarks (Yang, et al., 1997), which measured the static 

representations for a language. Moreover, Microsoft used this framework as a 

vocabulary for evaluating the usability of their C# (Clarke, 2001), .NET development 

tools (Clarke, 2004), and an object oriented application programming interface (Clarke 

& Becker, 2003). 

In this evaluation study it is used to examine the relative strengths and weaknesses of 

Constraint Diagrams notation and conventional notations in terms of the cognitive 

facilitation or impediments of these different representations. We compared the 

evaluation of Constraint Diagrams and of Natural Language by running a usability study 

to determine if users would be able to use constraint diagrams to accomplish a set of 

tasks. The objectives of this study were to predict the difficulties that may be faced 

when working with these tasks, such as interpreting or constructing constraint diagrams. 

Moreover, we aim to provide a rich exploration of advantages and disadvantages of 

using constraint diagrams for specifying programs compared to natural language, and to 

point out the key problem areas in constraint diagrams that need to be redesigned. We 

hope to provide an analysis to determine if users would be able to use constraint 

diagrams to accomplish a set of tasks. 

To evaluate a notation using a cognitive dimensions framework, two steps were 

required (Green, 2000). The first step is to decide what activities a system is desired to 

support. An activity is described at a rather abstract level in terms of the structure of 

information and constraints on the notational environment. Each activity has its own 

file:///C:/Users/Noora/Desktop/Eileen/Noora%20chapter%204%20etc.doc%23_ENREF_132
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requirements in terms of cognitive dimensions, and demands a different profile to 

support them, and is described by the information structure and the constraints on the 

notational environment. As a result, the second step is to analyse the system and 

determine how it lays on each dimension. A dimension is a property of the notation or a 

descriptor which captures an aspect of the nature of the notation that affects the way 

users may interact with it. The dimensions are a discussion tool, which help to provide 

designers with a framework to detail its analysis and to focus on its issues. To apply 

CogDim, every dimension should be described (Blackwell, et al., 2001) with illustrative 

examples, case studies, and associated advice for designers. In general, an activity such 

as exploratory design, where software designers make changes at different levels, is the 

most demanding activity. This means that dimensions such as viscosity and premature-

commitment must be low while visibility and role-expressiveness must be high (Green, 

2000). 

In this chapter we evaluate the notation itself, constraint diagrams notation. However, 

we are going to use representative examples from a Patient Record System which is an 

application designed to have lots of features yet be easy to use, and it is described in full 

detail in chapter 3, section 3.6. Before applying individual dimensions to the activities, 

we will first identify the activities.  

4.2. Notational Activities 

According to the importance of an activity to CD users, the six activities (Green 2000) 

are: exploratory design, modification, incrementation, searching, transcription and 

exploratory understanding, which are now described with examples: 

An activity such as exploratory design, which is the most required program 

specification task, is used for adding new components and changing an existing 

structure. Green introduced this activity as hacking or in other words as programming 

on the fly when sketching out designs. For example, the types of tasks for this activity 

are: (1) adding a new set called gender with only two disjoint subsets called male and 

female as in Figure 4.5. This set is a subset of an existing set called Patient which has 

two disjoint subsets called alive and dead as in Figure 4.1. Both male and female 

subsets intersect with both alive and dead; (2) adding legs and feet of a spider; 

(3) inserting a new partitioning for a set, in the case of the program specification and the 

patient record system; (4) adding a new invariant that extends an existing invariant and 
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is extended by another existing invariant; and (5) an event could be related to a different 

un-extending or un-extended invariant. 

Modification is an activity that changes an existing structure without adding any new 

information. Green illustrated this activity with a simple example: “At first, young 

people put books or music CDs on their shelves in random order; later they impose a 

bit of a system; still later, they probably revise the system, as their tastes change or as 

their collection grows” (Green, 2000). For our study, we will use tasks such as: (1) 

change a spider with three feet from being located in two intersected sets to a set that 

includes these two intersected sets; (2) change the target of a relation from being a set, 

to being a spider; (3) change gender from set with only two elements to denote male and 

female to two disjoint subsets of patients called male and female and each is intersected 

with both alive and dead, as in the case of the program specification; (4) regarding the 

patient record system, an event could be related to a different extended or extending 

invariant. 

Incrementation is an activity that involves adding more information without changing 

the structure. Green gave an example of the telephone device with a memory where a 

user can incrementally store the phone numbers in the device memory (Green, 2000). In 

our case, the user can, for example, add (1) a label to an existing component, (2) a 

spider, in the case of the program specification, (3) in the patient record system, a 

patient called Peter (usually by using an event). 

Searching is applied when the user is looking for information. Green provided an 

example of searching the telephone memory for the forgotten and invisible number of 

Aunt Mary (Green, 2000). For example, the user is searching for: (1) a spider with three 

feet and two legs located in two intersected sets; (2) the source or target of the relation; 

(3) all the subsets of a set; (4) all the elements of a set; (5) all the supersets of a set, in 

the case of the program specification; (6) in the patient record system, a patient called 

Peter (usually by using a query); (7) the event’s class; (8) the extending classes; and (9) 

the extended classes. We believe that in the case of modelling systems, searching is not 

a very demanding activity. However, it is extremely demanding in the case of web 

pages. 

Transcription is coding or copying the specification from one representation to another. 

It is usually an undemanding activity for software designers who use it as an aid to 
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evaluate the specification that is written in a specific representation. However, as Green 

illustrated, it is the main activity for the telephone device with a memory where a user 

needs to convert written telephone number to a sequence of pressed buttons (Green, 

2000). For our study, any CD could be converted to (1) natural language, (2) symbolic 

language, (3) OCL, (4) Class diagrams, or (5) Z notation. 

Exploratory understanding is a higher level activity which is more related to both 

notational tools and distributed notations, and is not relevant to specifying programs. 

Furthermore, it is the least well specified activity and Green did not provide examples 

that allow us to easily use it. We believe that this activity is not related to CD because 

CD is proposed as a program specification language and not as a language for 

discovering structure. As a result, this activity is beyond the scope of this research. 

4.3. Dimensions 

The list of the activities and the dimensions has been changed. In (Blackwell, et al., 

2001), Green and colleagues wrote that there are new  dimensions created by others 

such as free rides and creative ambiguity, but in another paper (Blackwell & Green, 

2003) he suggested that these two dimensions are already describing the detail of 

existing dimensions such as closeness of mapping and provisionality, respectively. 

The second step is applying each dimension to each activity. In the most recent version 

of CogDim, there are fourteen dimensions. We will give their definitions in Table 4.1 as 

described in  (Blackwell & Green, 2003) . 

These dimensions are now illustrated by Green with the following examples: 

The viscosity dimension is about the resistance to change. Green provided examples of 

this dimension such as manually changing US spelling to UK spelling in a large-sized 

document. This type of action requires repetition and thus Green called it repetition 

viscosity. Another example Green provided was inserting a new figure which will 

require additional actions such as updating all later figures, updating their cross-

reference within the text, and also updating the list of figures and the index. He called 

this type of change entailing further actions a knock-on viscosity. For exploratory 

design and modification activities, only if the notation’s viscosity is low, then this 

notation meets this dimension. However, for incrementation, searching and transcription 
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activities which are not about changing components, it is not important whether the 

notation meets or fails to meet this dimension. 

Table  4.1 Cognitive Dimensions Definitions 

Cognitive Dimension Definition 

Viscosity the cost of making changes 

Hidden dependencies the invisible links between components 

Abstraction level (a) combining information together to enhance patterns  

(b) abstraction barrier 

Premature commitment the constraints on the order of doing things 

Visibility the ability to easily find components 

Secondary notation the extra informal information 

Closeness of mapping (a) closeness of the representation to the domain  

(b) free rides (inferences) 

Consistency achieved when similar semantics are expressed in similar 

syntax 

Diffuseness the verbosity of the language 

Error-proneness inviting error 

Hard mental operations achieved when the notation does not provide any aid with 

mental operations 

Progressive evaluation the ability to check the work at any stage 

Provisionality (a) the degree of commitment to actions 

(b) creative ambiguity 

Role-expressiveness the readability of the purpose of each component 

The hidden dependencies dimension relates to the not-fully-visible relationships 

between different components. Green explained this dimension by providing the 

example of the HTML links that are fossils because they are pointing to deleted or 

moved pages. For exploratory design, modification, searching and transcription 

activities, if the notation’s hidden dependencies are low, then this notation meets this 

dimension. However, for incrementation activity which is not imposing any kind of 

changes, it is not important whether the notation meets or fails to meet this dimension. 

The abstraction level dimension is about grouping elements to be treated as one entity. 

An example that Green illustrated for this dimension is sentence styles such as setting 
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all the sentences of level 1 headings to 24-point bold by creating a style called 

Heading1. For exploratory design, modification, searching and transcription activities, if 

the notation’s abstraction level is high, then this notation meets this dimension. 

However, for incrementation activity which is not imposing any kind of changes, it is 

not important whether the notation meets or fails to meet this dimension. 

The premature commitment dimension concerns the enforcement to make a decision 

before having the necessary information due to the constraints on the order of doing 

things and the guessing of the spatial place. The amateur signwriter is the example 

Green provided, where the user would guess the width of the wording while writing the 

sign. For exploratory design, modification and incrementation activities, if the 

notation’s premature commitment is low, then this notation meets this dimension. 

However, for transcription and searching activities which are not imposing any kind of 

changes, it is not important whether the notation meets or fails to meet this dimension. 

The visibility dimension is about the ability to easily view components. The indexing 

facilities of telephone directory design do not provide the name of the subscriber that 

has a specific telephone number, as Green explained. For exploratory design, 

modification, incrementation, searching and transcription activities, if the notation’s 

visibility is high, then this notation meets this dimension.  

The secondary notation dimension relates to the extra and non-official meaning 

information such as indentation that is usually used in programming languages, which 

has no meaning for compilers but makes it easy for users to read this pretty-printing as 

Green illustrated. Another example provided is the convention of reading and writing 

telephone numbers by splitting them into a group of digits depending on the region, and 

also reading from left to right. For exploratory design and modification activities, if the 

notation’s secondary notation is high, then this notation meets this dimension. However, 

for incrementation, searching and transcription activities which are not imposing any 

kind of changes, it is not important whether the notation meets or fails to meet this 

dimension. 

The closeness of mapping dimension relates to the closeness of the representation to its 

domain. LabView is an example of a visual programming language that is, as Green 

mentioned, closely modelled on an actual circuit diagram. For exploratory design, 
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modification, incrementation, searching and transcription activities, if the notation’s 

closeness of mapping is high, then this notation meets this dimension.  

The consistency dimension relates to expressing similar semantics in similar syntactic 

forms. The example Green gave is in-car audio sets where the keys, instead of moving 

through the menus, move up or down. For exploratory design, modification, 

incrementation, searching and transcription activities, if the notation’s consistency is 

high, then this notation meets this dimension.  

The diffuseness dimension relates to the verbosity of language. Green gave an example 

of a verbose language called COBOL where a command such as MULTIPLY A BY B 

GIVING C is used. For exploratory design, modification, incrementation, searching and 

transcription activities, if the notation’s diffuseness is low, then this notation meets this 

dimension.  

The error-proneness dimension relates to invitations to mistakes. Green provided the 

example of FORTRAN language where I and O are used as identifiers, but can be 

confused with one and zero. For exploratory design, modification, incrementation, 

searching and transcription activities, if the notation’s error-proneness is low, then this 

notation meets this dimension.  

The hard mental operations dimension is about the high demand on cognitive resources. 

The example Green gave is mazes. Physical mazes may depend on memory-less 

algorithms, but auditing spreadsheets is hard. For exploratory design, modification, 

incrementation, searching and transcription activities, if the notation’s hard mental 

operations are low, then this notation meets this dimension.  

The progressive evaluation dimension relates to checking the work-to-date at any time. 

The example here is the spreadsheets which frequently re-compute formulas, as Green 

illustrated. For exploratory design, modification, incrementation, searching and 

transcription activities, if the notation’s progressive evaluation is high, then this notation 

meets this dimension.  

The provisionality dimension relates to the degree of commitment to actions for serving 

for the time being. The use of pencils is the example that Green provided for this 

dimension. This usage allows designers to make fuzzy marks to mean something may 

go somewhere. For exploratory design, modification, incrementation, searching and 
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transcription activities, if the notation’s provisionality is high, then this notation meets 

this dimension.  

The role-expressiveness dimension is about the readily inferred purpose of a 

component. A radio circuit diagram can be looked at and its parts can quickly be picked 

out at different stages by any electrical engineer. For exploratory design, modification, 

searching and transcription activities, if the notation’s role-expressiveness is high, then 

this notation meets this dimension. However, for incrementation activity which is not 

imposing any kind of changes, it is not important whether the notation meets or fails to 

meet this dimension. 

In the next section, we will use examples from the Patient Record System case study, 

which was mentioned earlier in chapter 3, to evaluate the dimensions within each 

activity.  

4.4. Examples from the Patient Record System 

The CD notation is used to provide the specification of the Patient Record System case 

study as described in 3.6. In this section we will choose from that case study some of 

the diagrams that used CD notation which were used previously in the specification of 

the Patient Record System. We have picked two examples (Figure 4.1, Figure 4.13 and 

Figure 4.14) that we believe cover most of the CD notation’s components. Figure 4.1 is 

taken partially from Figure 3.5; and Figures 4.13 and 4.14 are partially taken from 

Figure 3.20. These examples will be augmented by other components in this section in 

order to show all possible cases when applying the activities, and to check the cognitive 

dimensions for these cases. The following figures will show constraint diagrams as odd-

numbered figures; each is followed by an even-numbered figure to show natural 

language statements.  

 

Figure  4.1 CD diagram to represent the Patient set with two disjoint subsets 

DeadAlive

Patient



72 

 

Figure 4.1 is a diagrammatic example of sets and subsets. It is described in Figure 4.2. 

 

 

 

 

 

Figure  4.2 NL statement to represent the Patient set with two disjoint subsets  

Figure 4.2 is the NL version of the constraint diagram presented in Figure 4.1. As for 

the previous figure, this is an example of sets and subsets. However, it is represented by 

a statement.  

 

Figure  4.3 CD diagram to represent the Gender set with two disjoint subsets 

Figure 4.3 is another diagrammatic example of sets and subsets. It is described in Figure 

4.4.  

 

 

 

 

 

Figure  4.4 NL statement to represent that the Gender set with two disjoint subsets 

Female

Male

Gender

Patient is defined to be a set. This set is partitioned into only 

two disjoint subsets: those who are Dead and all the others 

who are Alive. The partition of Patient which is inside that 

set but outside its two subsets contains no elements, and this 

represents the empty set. The two subsets are identified by 

the names Alive and Dead. This expresses that every known 

patient is either Alive or Dead. 

Gender is defined to be a set. This set is partitioned into two 

disjoint subsets: those who are Male and all the others who 

are Female. The partition of Gender which is inside that set 

but outside its two subsets contains no elements, and this 

represents the empty set. The two subsets are identified by 

the names Male and Female. This expresses that every 

known gender is either Male or Female. 
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Figure 4.4 is the NL version of the constraint diagram presented in Figure 4.3 to 

represent an example of sets and subsets. 

 

Figure  4.5  CD diagram to represent the Patient set with five subsets 

Figure 4.5 is another diagrammatic example of sets and subsets. It is described in Figure 

4.6. 

 

 

 

 

 

 

 

 

 

 

Figure  4.6  NL statement to represent  the Patient set with five subsets 

Figure 4.6 is the NL version of the constraint diagram presented in Figure 4.5 to 

represent an example of sets and subsets. 

DeadAlive

Patient

Male

Female

Gender

Patient is defined to be a set. This set is partitioned into two 

pairs of two disjoint subsets. The first pair of the two 

disjointed subsets is about those who are Dead and all the 

others who are Alive. The other pair is about the two 

disjointed subsets: Male and Female. These latter subsets are 

also subsets of the Gender set which is a subset of Patient 

set. The partition of Patient which is outside the Gender set 

contains no elements, and this represents the empty set as 

well as the partition of Gender which is inside that set but 

outside its two subsets contains no elements. Moreover, the 

partition of Gender which is not the intersection between the 

Patient’s subsets and Gender’s subsets contains no elements. 

There are only four zones that may contain elements: the 

intersections of Alive and Male, Alive and Female, Dead 

and Male, and Dead and Female.   
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Figure  4.7  CD diagram to present the five subsets of the Patient set along with a spider 

Figure 4.7 is another diagrammatic example of sets and subsets. It is described in Figure 

4.8. 

Figure 4.8 is the NL version of the constraint diagram presented in Figure 4.7 to 

represent an example of sets and subsets. 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.8  NL statement to present the five subsets of the Patient set along with a spider 

DeadAlive

Patient

Male

Female

Gender

• • 

• • Jean

Patient is defined to be a set. This set is partitioned into two 

pairs of two disjoint subsets. The first pair of the two 

disjointed subsets is about those who are Dead and all the 

others who are Alive. The other pair is about the two 

disjointed subsets: Male and Female. These latter subsets 

are also subsets of the Gender set which is a subset of 

Patient set. The partition of Patient which is outside the 

Gender set contains no elements, and this represents the 

empty set as well as the partition of Gender which is inside 

that set but outside its two subsets contains no elements. 

Moreover, the partition of Gender which is not the 

intersection between the Patient’s subsets and Gender’s 

subsets contains no elements. There are only four zones that 

may contain elements: the intersections of Alive and Male, 

Alive and Female, Dead and Male, and Dead and Female. 

Furthermore, there is a patient called Jean.   
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Figure  4.9 CD diagram to present the  two sets Patient and Gender along with their subset 

 

 

 

Figure  4.10 NL statement to present the  two sets Patient and Gender along with their subsets 

Figure 4.9 is another diagrammatic example of sets and subsets. It is described in Figure 

4.10. 

Figure 4.10 is the NL version of the constraint diagram presented in Figure 4.9 to 

represent an example of sets and subsets. 

 

Figure  4.11CD diagram to present that each Patient is either a Male or Female only 

Figure 4.11 is another diagrammatic example of sets and subsets. It is described in 

Figure 4.12. 

 

Patient
MaleFemale

Gender

Dead

Alive

DeadAlive

Patient

is
FemaleMale

Gender

• • * *

There are two sets: patient and gender where each of them 

has two disjointed subsets alive and dead, and male and 

female, respectively. The partitions outside the subsets but 

inside the sets contain no elements. 
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Figure  4.12 NL statement to represent that each Patient is either a Male or Female only 

Figure 4.12 is the NL version of the constraint diagram presented in Figure 4.11 to 

represent an example of sets and subsets. 

Figure 4.13 is another diagrammatic example of sets and subsets. It is described in 

Figure 4.14. 

 

Figure  4.13 CD diagram to present that each Patient has one or many PRec files 

 

Figure  4.14 NL statement to represent that each Patient has one or many PRec files 

Figure 4.14 is the NL version of the constraint diagram presented in Figure 4.13 to 

represent an example of sets and subsets. 

 

Figure  4.15 A CD diagram to represent that each PRec file refers to only one patient 

Figure 4.15 is another diagrammatic example of sets and subsets. It is described in 

Figure 4.16. 

PRecOwnPatient

*

Patient Ref PRec

*• 

Each patient owns one or more PRec file. 

 

There are two disjointed sets: Patient and Gender. Each of 

them has two disjointed subsets. Patient has Alive and Dead 

whereas Gender has Male and Female. The partitions of 

Patient and Gender that are inside them but outside their 

subsets contain no elements. Each patient is either a Male or 

Female only.  
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Figure  4.16 NL statement to represent that each PRec file refers to only one patient 

Figure 4.16 is the NL version of the constraint diagram presented in Figure 4.15 to 

represent an example of sets and subsets. 

 

Figure  4.17 CD diagram to present the problem of the differences between domain and habitat 

Figure 4.17 is another diagrammatic example of sets and subsets. It is described in 

Figure 4.18. 

 

Figure  4.18 NL statement to present the problem of the differences between domain and habitat 

Figure 4.18 is the NL version of the constraint diagram presented in Figure 4.17 to 

represent an example of sets and subsets. 

 

Figure  4.19 A CD diagram to present the generalized version of the CD 

Figure 4.19 is another diagrammatic example of sets and subsets. It is described in 

Figure 4.20. 

 

 

Figure  4.20 NL statement to represent two relations at the same time 

PRecOwnPatient

* Ref *

Own

Patient

*

PRec
Own

Patient

*

PRec

*Ref

Each PRec file refers to only one patient. 

 

For each patient who owned a PRec file, that PRec file 

refers to all patients. 

For each patient who owned a PRec file, that PRec file 

refers to only that patient. 
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Figure 4.20 is the NL version of the constraint diagram presented in Figure 4.19 to 

represent an example of sets and subsets. 

4.5. Profiles 

A profile (Blackwell, et al., 2001) is the integration of the activities with the cognitive 

dimensions. The profiles together form a discussion portfolio.  

4.5.1. Exploratory Design Activity  

To recap, this activity relates to adding new components and changing existing 

structures. The following figures will be used to explain this activity under each 

dimension.  

The viscosity dimension 

This is a very important dimension for the exploratory design activity because to lower 

the cost of this activity, which is about adding and changing components, viscosity must 

be as low as possible. A set with two disjoint subsets, as in Figure 4.1, could be 

augmented by having another set called Gender, as in Figure 4.5, which itself has two 

disjoint subsets, Male and Female, as in Figure 4.3, where each of them intersects with 

the other two disjointed subsets, Alive and Dead, as shown in Figure 4.5. Any place 

outside the intersecting of the two disjointed subsets with the other two disjointed 

subsets is an empty place as in Figure 4.5.  

The sentence that describes Figure 4.5 as shown in Figure 4.6 is harder to read, change 

and understand than the diagram in Figure 4.5, which means NL can be very viscous 

and can make the exploratory design activity very difficult. However, using CD as in 

Figure 4.5 shows why CD is not a viscous language. We changed the non-empty places 

from two to four easily and we added three new sets easily as well.  

Thus, CD notation is a good language to be used for exploratory activity because its 

viscosity is low. In general, the CD notation meets this dimension for this activity while 

the NL notation fails to meet it. 

The hidden dependencies dimension  

In the CD notation, components such as subsets or sources and targets for arrows, are 

defined clearly and easily, so that a user can visually spot the dependencies. For 

example we can tell that set Patient in Figure 4.5 has many subsets. In general, using a 

contour in CD makes it clear that it could contain something while a dot will not. Also, 



79 

 

using a line will depend on having things to be joined as one entity, while using an 

arrow which presents a relation will depend on having a source and a target related to 

that relation.  

However, without careful treatment the order of reading CD can raise an issue of hidden 

dependencies. For example, Figure 4.13 is the a design of the case where all patients 

have one or more PRec files while Figure 4.15 represents another example of designing 

a case where each PRec file has only one patient. These two cases could be designed as 

one diagram such as Figure 4.17 to represent that for each patient who owns a PRec file, 

that PRec file refers to that patient. However, this figure is an example of a not well-

matched-to-meaning diagram due to the problem of the difference between domain and 

habitat (Stapleton & Delaney, 2008). This happened because of the order of reading and 

drawing the diagram. In this case order of reading could be seen as a hidden 

dependency.  

Reading tree was proposed to reduce the hidden dependencies problem by enforcing the 

reading order. However, accessing the right information from the reading tree could be 

difficult in complex cases and require coordination between the tree and the diagram. 

As a way to solve this, explicit reading order was proposed as a method in (Fish, et al., 

2003) and another method of implicit reading order was proposed in (Howse & 

Schuman, 2005). The first method is useful for reading, but for huge programs this 

method would increase the required mental operations. Furthermore, as in Figure 4.17, 

it will cause the problem of the differences between domain and habitat. On the other 

hand, another method is a generalized version of the CD notation (Stapleton & Delaney, 

2008), where a diagram is viewed as a sequence of images which provide the reader 

with the ability to know exactly how somebody has drawn the diagram, which will 

provide the exact order of reading the diagram. Thus this last method, as in Figure 4.19, 

will decrease the mental operations needed to understand the diagram. 

In NL, a lot of dependencies are defined in one place and used in another. NL suffers 

from hidden dependencies which mean that to sketch an existing design you should 

explore the dependencies to understand whether the augmentation is valid and if so 

where the location should be. Thus, both CD notation and NL notation fail to meet this 

dimension. 
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The abstraction level dimension 

The set-theoretical concept and the use of Euler-based diagrams provide the CD 

notation with a high level of abstraction. This can help a designer sketching the system 

at high level and avoids too much detail by encapsulating fragments. Despite the fact 

that abstraction will make the language difficult to learn, it is one of the reasons for the 

development of OO programming, the solution to viscosity problems, if any, increasing 

the comprehensibility of a language, and increasing the protection against error-

proneness; but it could increase hidden dependences.  

The CD notation is based on familiar diagrams such as Euler and Venn and thus the 

abstraction here is incremental as we can see in the examples of the invariants provided 

in Chapter 3, Section 3.6, where there was no need to think about variable declarations. 

The NL notation, on the other hand, provides users with a detailed explanation because 

it is a narrative language. Thus it is difficult to apply abstraction to NL, which means, 

before sketching an existing design, the user should review the existing context word by 

word and then apply the sketches. Thus, CD notation meets this dimension while NL 

notation fails to meet it. 

The premature commitment dimension 

If we want to draw a set called patient which has a subset called alive that contains a 

spider, then the order of drawing these three components is not important. However if 

we want to draw an arrow to denote a relation, then a partial order is important; i.e. it is 

important to have the source and the destination before the relation, but the order of 

drawing the source or the destination is not important. The same with the spider legs: 

we cannot draw a leg before having a foot. As a result when dealing with the sets, set 

relations or elements, there is no order in drawing. The order is only required when 

dealing with elements relations which are very helpful, to prevent errors and to keep the 

consistency of the design.  

The CD notation sometimes forces you to think ahead and make certain decisions. 

However, this enforcement is needed to prevent mistakes. For example, Figure 4.1 

represents a set called patient with two disjoint subsets, and the place outside these 

subsets is shaded which means empty. So, to add an element to patient, it will be in 

alive or dead. Figure 4.7 represents that there is at least one patient who may be a male 

or female and who may be alive or dead. So the decision we have to make is to add a 
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spider with four feet and three legs to the diagram to represent this situation and thus 

this preserve the validity of the diagram. Also, in Figure 4.9, we add a relation between 

gender and patient sets, but if the requirements were not clear about the set relations 

between the four subsets, then we would adopt the general Venn theme, which is the 

intersection to be the relation between them, unless otherwise stated.  

If we analogise to the Green and Blackwell example of the signwriter (Green & 

Blackwell, 1998), we can tell that the CD notation has no such problem because 

whenever a new subset is added there will be spatial place and if it is too small we can 

play with the shading notion which is part of the CD system. As a result, premature 

commitment for guessing the order is high and for guessing the spatial place is low for 

exploratory design.  

However, for NL, the order of sketching is very important. For example, we cannot start 

saying that alive is related to patient because it is vague. The order here should be to 

start by defining whether alive and patient are sets or spiders, then later by defining the 

relation – whether it is a set relation or an element relation, and so on. Indeed in NL, the 

size of the writing is important because measuring the font size determines the available 

space. Thus, both CD and NL notations fail to meet this dimension. 

The visibility dimension  

This dimension is important for solving problems. The CD notation could increase 

visibility because elements are associated directly with its sets and sets associated 

directly with its subsets and supersets as well as arrows which are associated with its 

sources and targets. Also, it is easy to know the order to read CDs because they have the 

implicit reading tree option which simplifies the diagrams: the explicit reading tree 

option used with a complex problem, or the generalized CD option which provides a 

visual reading order of sequences.  

In the odd-numbered Figures from 4.1 to 4.17, the places that may contain elements and 

the empty places are all clearly visible. Moreover, the relations between the sets, subsets 

and elements are all obvious and visible. 

However, using the NL notation to find the information that is needed but is hiding in 

documentation, the user has to search many pages to find such information. For 

example, using sentences as used in the even-numbered Figures from 4.2 to 4.18 for 
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designing shows the invisibility of a valid description of a patient without using some 

mental operations. Thus, CD notation meets this dimension while NL notation fails to 

meet it. 

The secondary notation dimension 

There is no secondary notation for sets and elements. The CD notation does not enforce 

the convention of reading from left to right. Instead, the reading order starts with the 

source of an arrow. Furthermore, the CD notation has the option of choosing how to 

read the diagram. For example, the combined diagrams from both Figure 4.11 and 

Figure 4.13 is an example of an implicit reading tree representing the same information 

that is in both Figure 4.17, which represents the generalized CD, and Figure 4.18 which 

is presented in NL notation.  

In general, the CD notation cannot prevent colouring the diagrams, adding textual 

comments, adding extra reading trees or choosing the location to place things. In this 

activity, secondary notation is very helpful to explain complex diagrams. However, the 

high use of secondary notation could increase the complexity of the diagram and the 

need for hard mental operations. Due to the diagrammatic grouping nature of the CD 

notation which already gives more information, there is no need to have extra 

information.  

On the other hand, NL notation which allows a substantial number of comments (Green 

& Petre, 1996) has the benefit of secondary notation. Many comments can be used to 

explain something. In general, secondary notation in both CD and NL languages can be 

used to amend the low expressiveness deficiencies which would prevent the 

representations from being isomorphic of what they represent and thus affect their 

closeness of mapping. Thus, both CD and NL notations meet this dimension. 

The closeness of mapping dimension 

The CD notation has a closeness of mapping property because it provides descriptions 

of objects and behaviours that are related to the represented world. For example, an 

arrow is well matched to its meaning because it provides information that the source is 

related to the target. 

The CD is a very intuitive notation in being well-matched to meaning (Stapleton & 

Delaney, 2008). Moreover, Euler diagrams have free rides (Shimojima, 2004) which 
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have been empirically evaluated (Shimojima & Katagiri, 2008). Thus CD which is an 

Euler-based notation, has free rides which are inferences that are explicit within a 

diagram, such as the transition property of the subset relation which leads to free rides. 

On the other hand, these inferences would have to be derived when using the NL 

notation. For example, Figure 4.5 shows that there are only four valid places for a spider 

to be, which is difficult to show by the NL notation as in Figure 4.6 the NL notation 

suffers from a lack of closeness of mapping due to its textual nature. Thus, CD notation 

meets this dimension while NL notation fails to meet it. 

The consistency dimension 

CD has formal syntax and semantics and their syntax is simple due to the fact that it is 

based on simple diagrams. There are a limited number of symbols to represent syntax. 

Each symbol has only one meaning and there are no two symbols that represent a 

similar thing. We have not noticed any particular problems of consistency. So, to sketch 

a design, you are constrained with the syntax and the semantics to help you focus on the 

design and prevent you from focusing on other details such as choosing a good syntax 

to present what you sketch.  

On the other hand, NL notation sometimes suffers from a lack of consistency. There are 

many new words, old words, or words imported from different languages, and also a 

word can have different interpretations depending on the context. Moreover, NL has a 

thesaurus and synonyms for each single word. For example, in CD notation, a drawn 

circle means a set, but in NL notation, a word set means different meanings, such as a 

group, or the status of changing from liquid to solid which has a totally different 

meaning. As a result, in NL notation, it depends on the context, not only on the syntax. 

Thus, CD notation meets this dimension while NL notation fails to meet it. 

The diffuseness dimension 

CD compacts information because it uses a small space to represent a lot of information 

and its syntax is very limited – for example in Figure 4.1 there are three components 

along with their labels. However, NL uses a lot of symbols or a lot of space to represent 

the same information. NL is a long-winded language due to its narrative nature. To 

convert Figure 5-1 into NL we will need many words to say that there is a set called 

patient which contains two disjoint subsets: alive and dead. Any place outside alive and 

dead but inside patient is shaded to denote an empty place.  It can be seen that we 



84 

 

needed 30 words, two punctuation marks and, with this font size, two lines. Thus, CD 

notation meets this dimension while NL notation fails to meet it. 

The error-proneness dimension 

For designing activities, visually grouping related information will help designers to 

detect patterns. By using the CD notation, it is not easy to make mistakes because 

diagrammatic errors can easily be spotted; e.g. a relation cannot be drawn without a 

source and a target and also a spider can’t be drawn on the edge of a set. However, 

errors related to textual labels are not easy to spot. On the other hand, NL errors are 

very difficult to spot. Thus, CD notation meets this dimension while NL notation fails to 

meet it. 

The hard mental operations dimension 

Due to the fact that CD has free rides, this reduces the number of hard mental 

operations. Figure 4.5 shows that the intersection between the area of gender outside 

male and female and the area of alive gives a shaded area to indicate an empty area; this 

is a free ride. However, since NL does not have the free rides advantage and some 

information needs to be clearly stated or be derived, this means there is a need for 

mental operations. For example Figure 4.2 states that “The partition of Patient which is 

inside that set but outside its two subsets contains no elements, and this represents the 

empty set”, which means that the designer needs to distinguish between inside and 

outside and to find out which of them has elements and which does not. This could be 

more difficult if the number of insides and outsides increases as in Figure 4.6, which the 

author herself finds it difficult to state in NL and easier in CD. Thus, CD notation meets 

this dimension while NL notation fails to meet it. 

The progressive evaluation dimension 

This dimension can be successfully applied if there is a digital environment involved, 

such as the example of recomputed formulas in spreadsheets that was mentioned earlier. 

However, assuming a manual environment, we can stop in the middle of creating a 

diagram to review the work at any time, at any stage, to check the progress, because as 

shown in Chapter 3, section 3.6.2, the CD design emphasizes scalability. The same 

procedure is used for NL to spot the stage of the work. Thus, both CD and NL notations 

meet this dimension. 
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The provisionality dimension 

By considering Figure 4.8 as an example, it shows that the problem domain has two 

sets, patient and gender, where each of them has two disjointed subsets, alive and dead 

and male and female, respectively. This sentence does not tell us anything about the 

relation between patient and gender, patient and both male and female, or gender and 

both alive and dead. Figure 4.9 is the CD representation for this sentence. Since we do 

not know the relation between the sets, CD follows the general Venn theme that all sets 

intersect unless otherwise stated. This allows creative ambiguity and allows playing 

around with an idea because we are not sure which way to proceed and the given 

information does not help us to be too precise about the exact result we were trying to 

get. This sentence is also a clear example of provisionality in NL. Both CD and NL 

have provisionality and they make exploratory design easier. Another example is Figure 

4.7 which uses legs (lines) between spiders to indicate ambiguity of the place of that 

spider. This figure represents the valid optional places of an element, but the exact place 

is not certain. Thus, both CD and NL notations meet this dimension. 

The role-expressiveness dimension  

This dimension is important for the exploratory design because if the purpose of a 

component is readily inferred, then the design can be read easily. In CD, each 

component is distinguished by different graphical devices; e.g. existential spiders have 

dots which are different from universal spiders that have asterisks and different from 

sets which have contours, etc. The CD notation makes it easier to sketch a design 

because it has a high role-expressiveness property. Figure 4.7 shows sets by using 

contours, spiders by dots and a leg between two dots by a line to denote the relationship 

between them.  

On the other hand, using NL sometimes makes it harder to read the design because the 

role-expressiveness is not clear. It is not always clear if an individual name is for a 

spider or a set. This means NL makes it harder to sketch a design because its role-

expressiveness is low. Furthermore, as mentioned previously, a word set has different 

roles such as a group or a process of converting liquid to solid. As a result, the role of a 

set is an ambiguous word when used by NL notation. Thus, the CD notation meets this 

dimension while the NL notation fails to meet it. 

The results of CD/NL can reduce exploratory design costs as follows:  
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Table  4.2 Summary of Exploratory Design Activity Profile 

Cognitive Dimensions CD NL 

Viscosity √ × 

Hidden dependencies × × 

Abstraction level √ × 

Premature commitment × × 

Visibility √ × 

Secondary notation √ √ 

Closeness of mapping √ × 

Consistency √ × 

Diffuseness √ × 

Error-proneness √ × 

Hard mental operations √ × 

Progressive evaluation √ √ 

Provisionality √ √ 

Role-expressiveness √ × 

 

According to this table (Table 4.2) CD can reduce exploratory design costs by 12:14 

while with NL it is by 3:14. 

4.5.2. Modification Activity  

Modification is an activity that changes an existing structure without adding any new 

information. 

The viscosity dimension 

This is a very important dimension for modification activity because to lower the cost of 

this activity, which is about adding and changing components, viscosity must be as low 

as possible. Inheritance structure leads to being viscous, and changing the inheritance 

means changing the pattern of class. In CD, changing a relation from being a set relation 

to an element relation is visually easier to do rather in other non-diagrammatic 

notations. For example, Figure 4.5 can be converted easily into Figure 4.11. However, 

to change this from Figure 4.6 to figure 4.12, a lot of changes are required. In general, in 

CD, when changing a spider to a set or vice versa, and also when changing a target of a 
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relation from set to a spider or vice versa, the change can be done easily and there will 

be no need for a lot of work to change, and thus CD is a less viscous system.  

On the other hand, with NL notation, a lot of work is required to change any type. To 

change a spider to a set, extra work is needed. This will mean that set rules should be 

applied as well as grammar and a review will be needed as well; this NL is much harder 

to modify and has higher viscosity, which is harmful for modification. Thus, CD 

notation meets this dimension while NL notation fails to meet it. 

The hidden dependencies dimension 

To recap, in the CD notation, dependencies such as subsets or sources and targets for 

arrows are defined clearly and easily so that a user knows the dependencies. For 

example, we can tell that set Male in Figure 4.5 has no subsets and the relation’s source 

and target in Figure 4.11 has no hidden dependencies. Thus CD is not a hidden 

dependencies notation.  

However, in NL, a lot of dependencies are defined in one place and used in another, as 

in figures 4.6 and 4.12. When changing something, a review is needed many times, and 

thus NL is much harder to modify and it has higher hidden dependencies. Thus, CD 

notation meets this dimension while NL notation fails to meet it. 

The abstraction level dimension 

As mentioned before, the set-theoretical concept and the use of Euler-based diagrams 

provide CD with a high level of abstraction. Changing from Figure 4.5 to Figure 4.11 

did not affect the abstraction level and also the abstraction level did not prevent any 

change. 

The NL notation, on the other hand, provides users with a detailed explanation because 

it is a narrative language, and thus it is difficult to apply abstraction to NL, which means 

that to change something the user should review the context word by word, modify, 

review spelling and grammar rules, and review the context, which means it is much 

harder to modify due to the its lower abstract level. Thus, CD notation meets this 

dimension while NL notation fails to meet it. 

The premature commitment dimension 

Modifying Figures 4.5 and 4.11 has no requirements for any premature commitment. 

The modification was straightforward. However, it is not the case with the NL notation, 
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Figures 4.6 and Figure 4.12. Thus, CD notation meets this dimension while NL notation 

fails to meet it. 

The visibility dimension 

This plays an important role in modifying activity to ensure consistency. The 

modification of Figure 4.5 to 4.11 is easy because all the components are visible and 

there is no hidden information that needs to be derived which is not the case for NL, 

Figure 4.6 and Figure 4.12. Despite the fact that modification by using NL requires 

review of the whole of the document, it may cause inconsistency. The CD notation is 

much easier than the NL notation to use to modify specifications because it has higher 

visibility. Thus, CD notation meets this dimension while NL notation fails to meet it. 

The secondary notation dimension 

Despite the fact that there is no secondary notation for sets and elements, CD cannot 

prevent any extra information that is not part of the actual design being added by 

colouring the diagrams or using textual comments. In this activity secondary notation 

can be used fruitfully to understand a complex diagram or to explain the reasons behind 

a change. When changing Figure 4.5 to Figure 4.11, we can add a comment explaining 

the reasons behind changing the relation type from set relation to element relation. 

Thus, both CD and NL notations meet this dimension. 

The closeness of mapping dimension 

When changing Figure 4.5 by using the CD notation, it will always maintain the 

closeness of mapping; for example, a relation will always have a source and a target as 

in Figure 4.11. On the other hand, NL does not have closeness of mapping due to its 

textual nature – see Figures 4.6 and 4.12. Thus, CD notation meets this dimension while 

NL notation fails to meet it. 

The consistency dimension  

With simple syntax, changing the structure is low cost. Whereas the CD notation has 

simple syntax with formal semantics, NL notation does not. So to change from Figure 

4.5 to Figure 4.11, it will be necessary to change the set relation between Patient and 

Gender to be an element relation between these sets. So it is consistent in CD notation 

because a set relation has only one meaning which includes containment, intersection or 

disjoint, and element relation is presented by an arrow. However by using NL, it is 
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difficult to know the type of relation unless stated or derived from the context. Thus, 

CD notation meets this dimension while NL notation fails to meet it. 

The diffuseness dimension 

Unlike NL notation, CD notation has a limited number of components and much 

information can be derived as free rides, which implies that a modification task is easy 

to do. Figures 4.5 and 4.11 used a small place to represent, while Figures 4.6 and 4.12 

needed to be diffused to state that a patient is only alive or dead and each alive or dead 

patient is either male or female only. Thus, CD notation meets this dimension while NL 

notation fails to meet it. 

The error-proneness dimension 

It is easy to spot any mistakes when the specification is changed using CD notation. For 

example, when modifying Figure 4.13 or Figure 4.15 to become Figure 4.17, we spotted 

that there were differences between domain and habitat, and thus we knew that there 

would be an issue with the reading. Thus, in this case, we either use a reading tree or the 

generalized CD notation. There are other visually spotted mistakes such as placing a 

spider on the edge of a set or deleting the source of an arrow or placing a set as a source 

of an arrow. However, errors related to labels are not easy to spot. As a result, the CD 

notation is much easier to modify because it has less error-proneness. In NL, mistakes 

can easily be made due to the nature of textual languages. NL has high error-proneness 

which means it is much harder to modify. Thus, CD notation meets this dimension 

while NL notation fails to meet it. 

The hard mental operations dimension 

Modifying from Figure 4.5 to Figure 4.11 is straightforward and there is no need to 

recall any information. The CD notation can reduce the need for memory or mental 

calculations because it shows constraint and displays information in visual ways. It is 

much easier to modify by using CD because fewer hard mental operations are required. 

By using the NL notation, we can describe Figure 4.11 by saying that there are two 

disjointed sets which have a spider with three feet and two legs. It is hard to modify this 

sentence because it needs hard mental operations. For example, to replace this spider by 

a set, we cannot replace word by word; i.e. it is incorrect to say there are two intersected 

sets which have a set with three feet and two legs. Mental operations are needed to 

understand that a spider is an element which means it should belong to a set, and has 
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feet and legs, and to remember that feet should be in different places; no two feet are in 

the same place. Also the replacing set may be a superset of the intersected sets, a subset 

of them, or a disjoint set. It is much harder to modify by using NL because hard mental 

operations are required. Thus, CD notation meets this dimension while NL notation fails 

to meet it. 

The progressive evaluation dimension 

We can stop in the middle of modifying a diagram to review the work at any time, at 

any stage, to check the progress. The same procedure is applied to NL to spot the stage 

of the work. The type of the used environment, manual or digital, will lead to a manual 

or digital progressive evaluation, respectively. Thus, both CD and NL notation meet this 

dimension. 

The provisionality dimension 

For example, to change a set relation as in Figure 5-5 to an element relation without 

knowing a specific patient’s exact place, as in Figure 5-11, allows creative ambiguity 

because we are not sure which way to proceed and the given information does not help 

us to be too precise about the exact result we are trying to get. So, in Figure 4.11, we 

can say there is a patient Jean and because we do not know if she alive or not and if she 

is male or not we will represent Jean same way as in Figure 4.11 but we will use an 

existential spider rather than the universal spider. This sentence is also a clear example 

of provisionality in NL. Both CD and NL have provisionality and they make 

modification, even with missing information, easier. Thus, both CD and NL notations 

meet this dimension. 

The role-expressiveness dimension 

Since in CD each component is distinguished by different graphical devices, the 

purpose of each of them is readily inferred. To modify Figure 4.5 to Figure 4.11, we 

look for a contour and modify a set relation to be an element relation; we add an arrow. 

The CD notation makes it easier to modify because it has high role-expressiveness. 

Figure 4.15 shows a set by using a contour, and the relation between a universal spider 

and an existential spider by an arrow. On the other hand, using NL sometimes makes it 

harder to modify the design because the role-expressiveness is not clear. It is not always 

clear if an individual’s name is for a spider or a set. This means NL makes it harder to 

modify a design because its role-expressiveness is low, and thus the modification will 
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depend on the context. Thus, CD notation meets this dimension while NL notation fails 

to meet it.  

The results of CD/NL reduction of modification costs are:  

Table  4.3 Summary of Modification Activity Profile 

Cognitive Dimensions CD NL 

Viscosity √ × 

Hidden dependencies √ × 

Abstraction level √ × 

Premature commitment √ × 

Visibility √ × 

Secondary notation √ √ 

Closeness of mapping √ × 

Consistency √ × 

Diffuseness √ × 

Error-proneness √ × 

Hard mental operations √ × 

Progressive evaluation √ √ 

Provisionality √ √ 

Role-expressiveness √ × 

 

According to this table (Table 4.3) CD can reduce modification costs while the NL cost 

is 3:14. 

4.5.3. Incrementation Activity  

Incrementation is an activity that involves adding more information without changing 

the structure. 

The viscosity dimension  

Since this activity is not about changes to components, this dimension is not important 

to evaluate. As a result it is not important if CD or NL are viscous or not, which means 

that both languages are fine for this activity under this dimension and both do not 

increase the incrementation cost. Thus, both CD and NL notation meet this dimension. 
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The hidden dependencies dimension 

Inserting a new label into the design doesn’t require an extreme number of individual 

actions nor a change at the plan level. However, there should be a graphical device to 

label. Also, this label should not have been used before. Unlike NL, every dependency 

is explicit and clearly visible. We can add a spider in any contour in Figure 4.5 and even 

if we do not know its exact place we will not face any difficulties in inserting that spider 

as shown in Figure 4.7 because by using spider’s legs and feet we can show all the 

possible places, which indicates the lack of knowledge of the exact place. Nevertheless, 

there could be hidden dependencies when adding a new arrow in Figure 4.13 or Figure 

4.15 if the order of the reading was not clear. Figure 4.17 which represents this issue has 

the problem of the difference between domain and habitat. This issue could be solved 

by using reading trees or the generalized CD notation.  

In general this dimension does not affect this activity much because incrementation is 

about adding, not modifying. As a result both languages are fine for incrementation 

regarding hidden dependencies. Thus, both CD and NL notation meet this dimension. 

The abstraction level dimension 

Abstraction is useful either to lower the viscosity or to stimulate the user’s conceptual 

structure. Since incrementation is not about changes, viscosity is not an issue for this 

activity and also it is not about capturing the structure as shown in Figures 4.6 and 4.7. 

Thus, since this dimension will not cause any problems to this activity, both the CD and 

NL languages do not increase incrementation costs. Thus, both CD and NL notation 

meet this dimension. 

The premature commitment dimension 

Since new data is being created, this dimension is vital to this activity. In Figure 4.5, to 

insert a set along with its subsets that contain spiders as in Figure 4.7, the order of the 

insertion of these components is not important. In this case whenever a piece of 

information comes we can insert it easily. However, to insert a new label such as Male, 

there should be a graphical device to label and this label should be unique. We cannot 

make decisions before we have the information we need about which graphical device – 

which is a subset in this case – to attach the label to. Moreover, to insert an arrow which 

represents elements’ relations, its source and target should be inserted first. Otherwise, 

we cannot insert this arrow. In general, when inserting sets, set relations or elements, 
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there is no order to follow. The order is only required when dealing with elements’ 

relations, which is very helpful to prevent errors and to keep the consistency of the 

design. The CD notation sometimes forces you to think ahead and to make certain 

decisions to prevent mistakes. For example, the decision we are forced to make when 

adding a label is to have an existing graphical device first, and thus this preserves the 

validation of the diagram. Another example is inserting a subset into a set which has 

many subsets and there is no spatial place to add more subsets. In CD, if the spatial 

place is too small we can play with the shading notion which is part of the CD system. 

On the other hand, due to the nature of NL, the order of insertion is very important. For 

example we cannot say that alive is related to patient because it is vague. The order here 

should be to start by defining whether alive and patients are sets or spiders, then later by 

defining the relation as a set relation or element relation, and so on. Indeed in NL the 

size of the writing is important because measuring the font size determines the available 

space. Thus, both CD and NL notations fail to meet this dimension.  

The visibility dimension 

For this activity which is about inserting components, visibility is useful for error-

checking only. For example, in Figure 4.5, to insert a new existential spider in Patient, it 

is visible that there are only four zones where this patient could be placed and it would 

be an error to place it in other zones as shown in Figure 4.7. As a result both languages 

do not increase the incrementation costs. Thus, both CD and NL notation meet this 

dimension. 

The secondary notation dimension 

Inserting new information using CD or NL: this dimension will not have an effect on 

this activity. We could insert new components in Figure 4.5 with a different colour. For 

example, if inserting spiders into Patient as in Figure 4.7, we could for example draw 

the spider feet on the Female set by a pink colour and on the Male set by a blue colour. 

However, since the use of colours is not part of the notation, it is the same whether 

colours are used or not. As a result, both languages will not increase the incrementation 

cost under this dimension. Thus, both CD and NL notation meet this dimension. 

The closeness of mapping dimension  

In the represented world, two things are related by a specific relation. In the CD 

notation, a uniquely identified arrow, as in Figure 4.11, is used to relate a source to its 
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target. Thus, inserting a relation is very closely related to what we want to describe 

because a source and a target to this relation will be either existing or inserted along 

with the relation. Unlike NL, CD is close to mapping. Thus, CD notation meets this 

dimension while NL notation fails to meet it. 

The consistency dimension 

Since CD has simple syntax, incrementation is low cost. Meaning is clear in CD; for 

example, a dot means a spider, and a relation head points to the target while its end 

points to the source as in Figure 4.11. However, NL has a wider syntax and the same 

word may mean different things depending on the context. To insert a spider using NL 

we would use a lot of symbols or a lot of space for defining the spider, its type, 

describing the location of that spider, and explaining its relations to the existing 

components. Unlike NL, CD has a limited number of components and much 

information can be derived as free rides, which implies that an incrementation task is 

easy to do. Thus, CD notation meets this dimension while NL notation fails to meet it. 

The diffuseness dimension 

The CD notation compacts information because it uses a small space to represent a lot 

of information and its syntax is very limited. In Figure 4.5, to insert a spider in Patient 

as in Figure 4.7, we would add a dot in a specific spatial place. However, to insert a 

spider using NL we can use a lot of symbols for representing a spider such as element, 

member, individual ...etc. Thus, CD notation meets this dimension while NL notation 

fails to meet it. 

The error-proneness dimension  

It is easy to spot that there is a mistake, for example in Figure 4.5, inserting a spider as 

in Figure 4.7 but on the edge of a set, or inserting an arrow as in Figure 4.11 but without 

a source – these are visually spotted errors. However, errors related to labels are not 

easy to spot. As a result, CD is much easier to use for incrementation because it has less 

error-proneness. In NL, mistakes can easily be made due to the nature of the textual 

languages. NL has high error-proneness, which means it is much harder to spot insertion 

errors. Thus, CD notation meets this dimension while NL notation fails to meet it. 

The hard mental operations dimension 

Incrementation is straightforward and there is no need to remember any information. 

The CD notation can reduce the need for memory or mental calculation because it 
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shows constraint and displays information in visual ways. It is much easier to insert 

when using the CD components because then less difficult mental operations are 

required. For example, to insert a spider in Figure 4.5 to be as in Figure 4.7, there will 

be nothing to remember and no mental operations are needed. However, to insert a 

spider using NL, mental operations are needed to understand the context and remember 

what and where the grouped related information is, and to insert the new information 

into that group, which indicates that it is much harder to increment by using NL. Thus, 

CD notation meets this dimension while NL notation fails to meet it. 

The progressive evaluation dimension  

Both languages support stopping in the middle of incrementation to review the work at 

any time, at any stage, to check progress or to ascertain the stage of the work. As 

previously stated, this review could be done manually or digitally depending on the 

environment used. Thus, both CD and NL notation meet this dimension. 

The provisionality dimension 

In Figure 4.5, adding a spider to denote that there is a patient, doesn’t require a lot of 

work, but the location of that spider should be known. In case the information on the 

spider’s location is missing, CD allows us to present this by having a spider foot and 

legs as in Figure 4.7. Even the NL notation allows creative ambiguity by not being 

precise. Both CD and NL have provisionality and they make insertion, even with 

missing information, easier. However, CD insertion will represent missing information 

by giving all the possible cases, which will keep the diagram valid. On the other hand, 

NL will be ambiguous and will give many different inferences. Thus, both CD and NL 

notation meet this dimension. 

The role-expressiveness dimension 

As previously discussed, since in CD each component is distinguished by different 

graphical devices, the purpose of each of them is readily inferred. To insert a set, we 

will definitely add a contour and to insert a relation, we will add an arrow. For example 

in Figure 4.5, to add a specific patient we will use an existential spider to denote that 

patient and if we do not know the exact place of that patient we will use feet and legs to 

denote the possible places of that patient as in Figure 4.7. the CD notation makes it 

easier to insert new information into the design because it has high role-expressiveness. 

On the other hand, NL has lower role-expressiveness. However, to insert the text new 
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information, role-expressiveness is not a critical dimension. As a result, both languages 

can reduce the incrementation costs under the role-expressiveness dimension. Thus, 

both CD and NL notation meet this dimension.  

The results of CD/NL reduction in incrementation costs are:  

Table  4.4 Summary of Incrementation Activity Profile 

Cognitive Dimensions CD NL 

Viscosity √ √ 

Hidden dependencies √ √ 

Abstraction level √ √ 

Premature commitment × × 

Visibility √ √ 

Secondary notation √ √ 

Closeness of mapping √ × 

Consistency √ × 

Diffuseness √ × 

Error-proneness √ × 

Hard mental operations √ × 

Progressive evaluation √ √ 

Provisionality √ √ 

Role-expressiveness √ √ 

 

According to this table (Table 4.4) CD can reduce incrementation costs by 13:14 while 

NL would be by 8:14. 

4.5.4. Searching Activity  

Searching is applied when the user is looking for information.  

The viscosity dimension 

Since it is not an important dimension for searching activity because this activity is not 

about changes to components, it is not essential if the CD or NL notations are viscous or 

not. So both of them are fine for this activity under this dimension and neither of them 

increases the searching cost. Thus, both CD and NL notations meet this dimension. 
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The hidden dependencies dimension 

The important dimension to look at for searching is the hidden dependencies. In Figure 

4.11, searching for a target of a relation in the design will simply require us to look for 

the graphical device near to the arrow head. Unlike NL, every dependency is explicit 

and visible. So, the NL notation can slow up searching. As a result, CD can reduce the 

search costs by speeding up the search. Thus, CD notation meets this dimension while 

NL notation fails to meet it. 

The abstraction level dimension 

Abstraction is about grouping and visually relating information together. Unlike NL, 

CD is a scalable notation which allows hierarchical searching by using overviews to 

locate areas for a more detailed search. For example, in Figure 3.20 we can search for 

more information of the HProf set and we can see from this figure that more 

information is located on HCS class and thus we can search there. Thus, CD notation 

meets this dimension while NL notation fails to meet it. 

The premature commitment dimension  

Searching has nothing to do with making decisions prior to having the information that 

we need. So premature commitment is not vital for searching activity using either CD or 

NL notations. Thus, both CD and NL notation meet this dimension. 

The visibility dimension  

In the CD notation, the visibility is good because, as in Figure 4.7, elements are 

associated directly with their sets and a set is associated directly with its subsets and 

supersets, as well as, in Figure 4.11, an arrow which is associated with its sources and 

targets. Also, it is easy to know the order in which to read CDs because they have an 

implicit reading tree which simplifies the diagrams, or an explicit reading tree which is 

used with complex problems. In NL to find the information needed in a document, the 

user has to search many pages to find similar information. Thus, CD notation meets this 

dimension while NL notation fails to meet it. 

The secondary notation dimension  

To search for information using CD or NL: this dimension will not have an effect on 

this activity. Perhaps using secondary notation here will speed up the search by 

allocating the location of the searched-for component. As a result, both languages will 
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not increase the search cost under this dimension. Thus, both CD and NL notations meet 

this dimension. 

The closeness of mapping dimension  

An effective mapping can speed up the interpretation and can lead to fewer errors. Since 

CD enables inference operations and is close to mapping as previously discussed, it 

reduces the search costs; which is not the case with NL. Thus, CD notation meets this 

dimension while NL notation fails to meet it. 

The consistency dimension 

In CD, searching for a subset as in Figure 4.1 means searching for a set contained in 

another set, which is always true and could be visually spotted easily. However, 

searching for a subset using NL is not easy, especially if the word subset was not 

explicitly mentioned and has to be derived from the context. Thus, CD notation meets 

this dimension while NL notation fails to meet it. 

The diffuseness dimension  

Due to CD’s diagrammatic nature, it compresses information into a small space because 

it has a limited number of components and much information can be derived as free 

rides, which reduces the search costs. For example, Figure 3.20 represents the whole 

system of Patient Record System using simple components in a small space, and locates 

the place of the additional information from the extended classes. However, NL is a 

diffused language with many synonyms, antonyms and a thesaurus. Thus, CD notation 

meets this dimension while NL notation fails to meet it. 

The error-proneness dimension 

Searching for both valid and invalid results is easy with CD notation. The user will 

easily spot that there is a mistake if searching for a spider on the edge of a set or 

searching for a source of an arrow which is not there. As a result, CD is much easier to 

use for searching for valid results because it has less error-proneness. However, in NL 

searching for a set as a source of a relation is difficult to spot as an invalid search. Thus, 

CD notation meets this dimension while NL notation fails to meet it. 

The hard mental operations dimension  

CD reduces hard mental operations because diagrams are spatially grouped by related 

information such as the sets in Figure 4.5, which provide rapid access, reducing the 
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need to match symbolic labels, acting as a memory resource to aid users, detecting 

patterns, enabling inference operations such as in Figure 4.5, which indicates that the 

shaded area is an empty area, and compacting information into a small space, as in 

Figure 4.11. However, NL requires hard mental operations to understand the context 

and remember what and where the grouped related information is, which indicates that 

it is much harder to search using NL especially if the search includes negatives and self-

embedding. Thus, CD notation meets this dimension while NL notation fails to meet it. 

The progressive evaluation dimension 

A user is unlikely to stop in the middle of searching to spot the stage of the work. 

Therefore, this dimension is irrelevant to this activity. However, CD and NL do not 

prevent you from doing that. Thus, both CD and NL notations meet this dimension. 

The provisionality dimension  

This dimension is about creating ambiguity and non-precise information. By searching 

using CD, it is easy to distinguish between information and missing information. For 

example, in Figure 4.7, by searching for a Jean, we conclude that Jean is a patient but 

other information is missing. It is not known whether Jean is male or female, nor 

whether she is alive or dead. However, distinguishing is difficult in the case of NL. 

Thus, CD notation meets this dimension while NL notation fails to meet it. 

The role-expressiveness dimension 

This dimension is important for reducing the cost of searching because when searching 

for a set in CD, we are looking to find a contour, while if we are searching for a relation, 

we will look for an arrow. For example, in Figure 4.7, we are searching for a specific 

patient called Jean and thus we are looking for a spider and because we have found this 

spider with feet and legs we know that the location of that spider was not available 

during the insertion time. The CD notation makes searching easier because it has high 

role-expressiveness whereas NL sometimes makes it harder to read the design because 

the role-expressiveness is not clear. Thus, CD notation meets this dimension while NL 

notation fails to meet it.  

The results of CD/NL reduction of search costs are:  
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Table  4.5 Summary of Searching Activity Profile 

Cognitive Dimensions CD NL 

Viscosity √ √ 

Hidden dependencies √ × 

Abstraction level √ × 

Premature commitment √ √ 

Visibility √ × 

Secondary notation √ √ 

Closeness of mapping √ × 

Consistency √ × 

Diffuseness √ × 

Error-proneness √ × 

Hard mental operations √ × 

Progressive evaluation √ √ 

Provisionality √ × 

Role-expressiveness √ × 

 

According to this table (Table 4.5) CD supports searching by reducing the searching 

costs while the NL cost is 4:14.  

4.5.5. Transcription Activity 

Transcription is coding or copying the specification from one representation to another.  

The viscosity dimension 

This is not an important dimension for transcription activity because this activity is not 

about changing components. Transcription does not impose any kind of changes, as 

shown in transcribing from Figure 4.1 to Figure 4.2. So this dimension does not affect 

this activity much – since there is no change – and thus both languages are fine for 

transcription regarding viscosity, and neither increases the cost of transcription. Thus, 

both CD and NL notations meet this dimension. 

The hidden dependencies dimension 

Transcribing a target of a relation, such as in Figure 4.11 to Figure 4.12, will simply 

require knowing its relation and its source which can all be seen by the graphical 
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devices: the arrowhead points to the target and its end points to the source. Unlike NL, 

every dependency is explicit and easily visible. As a result, CD can reduce the 

transcription costs. However, NL may cause transcription difficulties because when 

transcribing without knowing the hidden dependencies, this will cause invalid cases 

such as transcribing Figure 17. Unlike the CD notation, the NL notation increases 

transcription costs. Thus, CD notation meets this dimension while NL notation fails to 

meet it. 

The abstraction level dimension  

In general, abstraction is useful for capturing the structure for ease of transcription 

activity and the CD notation visually groups related information. For example, Figure 

4.7 has higher abstraction than Figure 4.8, and therefore the CD notation reduces 

transcription cost which is not the case with NL. Thus, CD notation meets this 

dimension while NL notation fails to meet it. 

The premature commitment dimension  

Since no new information is being created in the structure by the transcription activity, 

no decisions are required to be made before having any necessary information, as shown 

in transcribing from Figure 4.7 to Figure 4.8. As a result, premature commitment is not 

vital for transcription activity using either CD or NL notations, and thus both notations 

meet this dimension. 

The visibility dimension  

For this activity, visibility is required to ensure consistency, which is useful for error-

checking only. To transcribe from Figure 4.7 to Figure 4.8 it is visible that the exact 

place of the spider Jean is not known. So the known and unknown information are 

visible using the CD notation. However, since this dimension is not vital for this 

activity, both languages do not increase the transcription costs. Thus, both CD and NL 

notations meet this dimension. 

The secondary notation dimension 

In general, having extra information could help during the transcription activity, but it is 

not essential. The CD notation cannot prevent the colouring of the diagrams, adding 

textual comments or choosing the size of the components. However, due to the 

diagrammatic grouping nature, CD does not need to have extra information – as in 

Figure 4.7, where we did not need to add a comment to say that we did not have any 
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information about the exact place of the spider Jean. In fact, both languages do not 

increase transcription activity costs for this dimension. Thus, both CD and NL notations 

meet this dimension. 

The closeness of mapping dimension 

Using the CD notation speeds up the interpretation of the design that is needed to make 

the transcription easier, and this could lead to fewer errors than with NL. The CD 

components are generally well-matched to meaning – for example, the arrows in Figure 

4.11, which says that any patient is either a male or female. Thus, CD notation meets 

this dimension while NL notation fails to meet it. 

The consistency dimension 

In CD, transcription is a low cost because a set is visually spotted as only a contour 

without any mental cost; also a relation is spotted as an arrow. However, transcription 

using NL is not easy, especially if the word patient did not explicitly refer to a set, 

which gives an option of referring to a spider, and this will need a deriving operation 

since NL lacks free rides. Also the word ‘set’ itself, as we previously mentioned, has 

several interpretations, such as a group, or a process of converting liquid to solid. As a 

result, the meaning of the word set in NL is ambiguous. Thus, CD notation meets this 

dimension while NL notation fails to meet it. 

The diffuseness dimension  

With transcription activity, it is easy to use the CD notation because it has a limited 

number of components, which reduces transcription costs such as transcribing Figure 

4.11. However, it is difficult when using NL because it is a diffused language, with 

many synonyms and antonyms, especially if negatives and self-embedding are included. 

Thus, CD notation meets this dimension while NL notation fails to meet it. 

The error-proneness dimension 

It is easy to spot that there is a mistake such as transcribing a spider on the edge of a set 

or transcribing an arrow without a source or a target. As a result, CD is much easier to 

use for transcription because it has less error-proneness. However, in NL transcribing a 

set as a source of relation is difficult to spot as an invalid search, especially with 

negatives and self-embedding. Thus, CD notation meets this dimension while NL 

notation fails to meet it. 
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The hard mental operations dimension 

Transcription is straightforward and there is no need to remember any information. CD 

can reduce the need for memory or mental calculation because it shows constraints and 

displays information in visual ways. It is much easier to transcribe when using CD 

because fewer hard mental operations are required. For example, transcribing Figure 

4.11 to Figure 4.12 is easy, but vice versa is not. However, to transcribe a set using NL, 

mental operations are needed to understand the context and remember its subsets, 

members, supersets, and relations with other sets and non-members, which indicates 

that it is much harder to transcribe using NL, especially if negatives and self-embedding 

are included. For example Figure 4.2 states that “The partition of Patient which is inside 

that set but outside its two subsets contains no elements, and this represents the empty 

set”; this needs some mental operations to imagine the inside and outside of a set and to 

determine which of them has the elements and which does not. Thus, CD notation meets 

this dimension while NL notation fails to meet it. 

The progressive evaluation dimension 

We can stop in the middle of transcription to review the work at any time, at any stage, 

to check the progress or to ascertain the stage of the work in both CD and NL 

languages. This review could be manual or digital depending on the environment used. 

Thus, both CD and NL notations meet this dimension. 

The provisionality dimension 

When transcribing using the CD notation, it is easy to distinguish between information 

and missing information, such as in Figure 4.7. However, this distinction is difficult in 

the case of NL. Thus CD notation meets this dimension while NL notation fails to meet 

it. 

The role-expressiveness dimension 

This dimension is important for reducing the cost of transcription because if the purpose 

of a component is readily inferred then the transcription can easily be done. The CD 

notation makes it easier to transcribe a design because it has high role-expressiveness, 

as shown in Figure 4.7, where a spider is shown by a dot and a set by a contour; 

whereas the NL notation sometimes makes it harder to read the design because the role-

expressiveness is not clear. Thus, CD notation meets this dimension while NL notation 

fails to meet it. 
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The results of CD/NL reduction in transcription costs are:  

Table  4.6 Summary of Transcription Activity Profile 

Cognitive Dimensions CD NL 

Viscosity √ √ 

Hidden dependencies √ × 

Abstraction level √ × 

Premature commitment √ √ 

Visibility √ √ 

Secondary notation √ √ 

Closeness of mapping √ × 

Consistency √ × 

Diffuseness √ × 

Error-proneness √ × 

Hard mental operations √ × 

Progressive evaluation √ √ 

Provisionality √ × 

Role-expressiveness √ × 

 

According to this table (Table 4.6) CD can reduce transcription costs while the NL cost 

is 5:14. 

 

The summary of applying each dimension to each activity for CD language is shown in 

Table 4.7 to answer whether the notation is increasing the activity costs or not: 
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Table  4.7 CD Integrated Profile 
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D
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o
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Exploratory 

Design 

Activity 

Modification 

Activity 

Incrementation 

Activity 

Searching 

Activity 

Transcription 

Activity 

Viscosity √ √ √ √ √ 

Hidden 

dependencies 
× √ √ √ √ 

Abstraction 

level 
√ √ √ √ √ 

Premature 

commitment 
× √ × √ √ 

Visibility √ √ √ √ √ 

Secondary 

notation 
√ √ √ √ √ 

Closeness of 

mapping 
√ √ √ √ √ 

Consistency √ √ √ √ √ 

Diffuseness √ √ √ √ √ 

Error-proneness √ √ √ √ √ 

Hard mental 

operations 
√ √ √ √ √ 

Progressive 

evaluation 
√ √ √ √ √ 

Provisionality √ √ √ √ √ 

Role-

expressiveness 
√ √ √ √ √ 

 

Moreover, the summary of applying each dimension to each activity for NL language is 

shown in Table 4.8: 



106 

 

Table  4.8 NL Integrated Profile 

C
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n
it
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D
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o
n
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Exploratory 

Design 

Activity 

Modification 

Activity 

Incrementation 

Activity 

Searching 

Activity 

Transcription 

Activity 

Viscosity × × √ √ √ 

Hidden 

dependencies 
× × √ × × 

Abstraction 

level 
× × √ × × 

Premature 

commitment 
× × × √ √ 

Visibility × × √ × √ 

Secondary 

notation 
√ √ √ √ √ 

Closeness of 

mapping 
× × × × × 

Consistency × × × × × 

Diffuseness × × × × × 

Error-proneness × × × × × 

Hard mental 

operations 
× × × × × 

Progressive 

evaluation 
√ √ √ √ √ 

Provisionality √ √ √ × × 

Role-

expressiveness 
× × √ × × 
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4.6. Discussion 

Overall, it seems that the CD profile is promising; in general, the cost of the activities 

using CD is less than the cost using NL. Only in one dimension, premature 

commitment, did CD not satisfy two activities. However, this dissatisfaction is needed 

to ensure the diagram’s formal validity. We are glad we have not faced the case where 

high viscosity and high premature commitment are combined because it would be the 

worst problem, as Green discussed (Green & Blackwell, 1998). Exploratory design and 

incrementation activities have a high level of premature commitment, which is a 

problem. However, since viscosity is very low this lets premature commitment be less 

costly, since bad guesses can easily be corrected.  

CD notation is cognitively better than NL notation according to our single case study. It 

is meant to specify different situations and it may be used for other complex case 

studies that have different processes and may give different results. We covered all of 

the five activities that could be used for program specification and for each of these 

activities we looked at all fourteen of the different dimensions.  

Despite the fact that Green (Green, 2000) advised evaluating the notation and its 

environment, and recommended a paper-based environment, CD is well used by editors. 

Since there is no specific editor for CD, despite the basic editor (Gil & Sorkin, 2013), 

most users use Microsoft Visio to draw diagrams (Halpin, et al., 2003)  

The trade-offs between the different dimensions were obvious. For example, in NL to 

solve the lack of visibility, a secondary notation is required. Another thing to be noted is 

the trade-off within the dimension itself. For example, secondary notation in CD could 

provide bracketing information, prevent ambiguities, help inexperienced users to 

understand the complex diagrams, help experienced users to express more complex 

specifications, and provide unique semantics. However, it will not keep the basic syntax 

of the notation, makes the syntax of a diagram more complicated, and reduces the 

simplicity of a notation.  

In this study, we used dimensions to examine the activities and we used activities for 

finding the undesired degree of a dimension. For example, we faced a problem of high 

level premature commitment with CD in exploratory design and incrementation 

activities and luckily the level of viscosity was low, which means correction guesses 

were cost-free. Moreover, if the levels of viscosity and premature commitment were 
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high, we could adopt a different notation or a different medium by making a draft 

version of the system in a lower viscosity medium and then transferring it to the target 

medium, which breaks this process into two activities: exploratory design activity 

followed by transcription activity. 

Cognitive dimensions of notations helped us in understanding the nature of the structure 

of CD notation. Despite the fact that CD is a complex notation, this framework is 

suitable for exploring the cognitive aspects for this complex notation. This study 

provides a full profile for each activity that can be carried out when using this notation, 

supported by a number of cognitive aspects to understand how this notation can be used 

in specifying software.  

Although we found that CD notation is cognitively better than NL in terms of 

supporting program specification, this evaluation focused on only one case study, and 

different case studies may be more complex than the one we investigated. For this 

evaluation we picked a selected range of examples which we thought would enrich the 

evaluation. 

The choice of CD and NL notations might impact on the evaluation because if another 

notation was chosen which was close to CD, such as any other formal notation, we 

might find that the other notation was cognitively better than CD. Furthermore, the 

cognitive differences between the diagrammatic and sentential notations that were 

discussed in detail in (Larkin & Simon, 1987) might affect the comparison as well. 

Perhaps using these two notations to represent the patient record system also affected 

the system itself and vice versa. 

  



109 

 

Chapter 5 Experiment 1: Interpretation of Constraint 

Diagrams 

This experiment attempts to evaluate the potential utility of CD 

for users who have relatively little experience in specifying 

programs by comparing two different groups, to check how easy 

it is for such users to learn about CD and interpret specification 

expressions in comparison with using NL expressions. Section 5.1 

introduces the experiment. Section 5.2 represents the 

experimental design. Section 5.3 explains the pilot experiments. 

Section 5.4 shows the results of the experiment. Finally, section 

5.6 is the discussion.   

5.1. Introduction 

This chapter describes a comprehensive investigation to explore the usability of CD as a 

program specification language. This experiment focused on two cognitive activities for 

learning: thinking and reasoning. It took the form of a web-based competition in which 

53 participants were given instructions and training either on CD or equivalent NL 

specification expressions, and then responded to multiple-choice questions requiring the 

interpretation of expressions in their particular notation. It was predicted that 

participants using CD notation would take longer over the training, need more time to 

answer the questions, be less confident about their answers, and obtain lower correct 

interpretation scores, because they had no prior experience of CD notation.  

This empirical study is aimed at evaluating how difficult CD notation is to interpret 

by investigating whether it can support people with relatively little technical 

background, novice users of software systems specification, and whether it is possible 

for users to understand constraint diagrams easily and rapidly. It is also aimed at 

checking the effectiveness of CD notation by finding out whether learning is going to be 

a major task compared with other notations. We performed this experiment to identify 

the benefits of using CD in specifying programs.  

This study considered the interpretation of specifications, rather than their 

construction, because it is the first step in evaluating this notation and we wanted to test 

how easily and rapidly this notation could be learnt and interpreted. Thus, this 



110 

 

experiment’s target was novice users with little experience in specification, and without 

any experience of using CD in specification. As a result of having novice users as a 

target and in order to answer the question of whether CD can work for complex 

problems, we examined their interpretation with basic concepts and simple questions to 

find out if there was a fundamental difference between CD and NL, which has not been 

done before. 

5.2. Experimental Design 

We will now consider: (a) the design of the experiment, (b) the training approach to 

familiarize people with the constraint diagrams, (c) the measurements of the results as 

evidence, (d) the predictions, (e) the design of the examples and questions, (f) the 

concepts to include in the experiment, and (g) the appropriate number of questions.  

(a) A between-participants design was adopted with two separate groups and two 

different representations: constraint diagrams and natural language. Two different 

versions of the same material, questions and examples were created, which were 

informationally equivalent (Larkin & Simon, 1987). Participants were randomly 

assigned to the CD group or the NL group. Although some people would argue that a 

within-participants design would have made comparison easier, our experiment was to 

compare their understanding of the concepts in a specific representation without any 

prior experiments that bias familiarity. 

(b) In spite of the fact that there are individual differences in cognitive styles, training is 

the best solution to persuade users to learn about constraint diagrams because 

differences disappear with training (Frandsen & Holder, 1969; Blackwell, 1997). 

Training users to understand constraint diagrams allows a comparison between these 

two different representations, despite the fact that NL notation is familiar to users while 

CD is not. 

(c) In order to evaluate how effective the different notations were, we measured how 

accurately and how quickly they were used. The measures used were: time spent on the 

training examples, time taken to answer the questions, percentage of correct answers, 

level of confidence rating, and number of returns to the examples. The time was 

recorded between the example or question online page being loaded and the Next button 

being pressed.  
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(d) It is predicted that NL will be better because it is familiar and there is no need to 

learn a new notation before working on the tasks. Given the complexity of CD, the 

experimental hypothesis states that participants given the CD notation will obtain fewer 

correct answers in a longer time with a lower level of confidence rating and many 

returns to examples. This experiment has the version of the specification (CD or NL) as 

the independent variable; whereas correct answers, confidence, question time, example 

time, and returning to examples are the dependent variables.  

(e) The domain used for training examples was different from the one used for 

questions. Each example that introduced a concept provided training from a domain 

called “Video Rental Service” while the questions’ domain was called “Patient Record 

System”. There were two design options: (1) an example followed by three questions or 

(2) all examples followed by all questions. The benefits of (1) are to look at each 

concept separately and to examine their understanding of that concept individually, 

which gives the opportunity for incrementally constructing knowledge. This will help us 

to identify how difficult a concept was. We also believe that learning should be active 

and meaningful so learners can apply what they have learned, and control the learning 

process. On the other hand, (2) would be quite a heavy load for learning in one go and 

needs high mental operations. We adopted the first option so that they could learn each 

concept by elaborating each concept. 

(f) There were eight concepts covered in this experiment: Sets and Types, Members of 

sets, Set relationships, Relationships, Spiders, Spider relationships, Invariant and An 

Event Specification. Every concept was introduced using training examples that were 

followed by three questions. 

(g) A pilot experiment, which was a face-to-face experiment between the participants 

and the experimenter, was conducted in order to obtain the level of difficulty and the 

number of questions. As a result, it was determined that 24 questions would be 

appropriate.  

5.3. Pilot Experiments 

Pilots are used as a method to evaluate the material and the software. Pilot 1 was aimed 

at evaluating the material testing the constraint diagrams notation. The purpose of this 

pilot was to gather valuable data that would increase the value of this material. It was 

run as a one-to-one tutorial which helped in understanding the value of the gathered 
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data. During pilot 1, four participants, who were undergraduate informatics students 

from the University of Brighton who had finished a course on constraint diagrams, were 

monitored and were asked some questions.  

 

Figure  5.1 A snapshot from Pilot 1 

The developed java application had examples of a constraint diagram’s concepts, each 

followed by questions to examine participants’ understanding. They were asked to rate 

their confidence about each answer. Pilot 1 had five examples and fifteen questions 

(each example followed by three questions). Figure 5.1 is a snapshot of question 

number 8 from this pilot. The participants answered by choosing one of three options: 

Yes, No or Not Specified as shown in Figure 5.1. If they were satisfied with the 

information provided, then they would answer the question with Yes. However, if they 

were not satisfied with the provided information, then they would answer the question 

with No. Otherwise, if they felt that some information influencing their decisions was 

missing, then they would choose Not Specified. Not Specified means there is insufficient 

information provided in the question to answer it without any assumptions, which is the 

case in Figure 5.1 where the provided diagram did not specify anything about being 

child or adult, and thus the answer here is Not Specified. While participants were trying 

to answer, they could return to the example by pressing a button called Example as 

shown in Figure 5.1. However, if there was no need to return to the example, they could 
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proceed to the next question by pressing the other button which was called Next, except 

that in the last question (question 15) the Next would be called Finish. After answering, 

participants would rate their level of confidence about their answer. A seven-point scale 

(1= lowest score, and 7= highest score) (Churchill, 1979) is used to measure their 

confidence: Not at all Confident, Not Very Confident, Not Confident, Neutral, 

Confident, Very Confident, Extremely Confident. However, participants only used five 

levels. This application was a tutorial with examples and questions; the examples were 

used to teach participants new notation concepts and the questions to examine how easy 

the notation explanations were. Participants used a tool which automatically recorded 

their feedback and answers in a log file to prepare them to be analysed. The time they 

spent on reading each example and on answering each question was recorded. Also, the 

number of times they returned to an example was counted. These factors were very 

helpful in ascertaining which examples were difficult to understand and which questions 

were difficult to solve. 

A final revision of the experiment’s material was successfully carried out, and there 

were many lessons learnt from pilot 1, such as: 20 to 30 questions were a suitable 

number of questions for the experiment. The number of confidence levels had to be 

smaller than the one used in the pilot. We reduced the number of levels of confidence 

from seven to five levels, and from being personal to being specifically about the 

question rather than the self-esteem. Although it was mentioned in the instructions, the 

participants did not use the Example button, which was a help tool, until it was 

mentioned personally to them. Some of them were not interested in seeing the example 

again. Also, the Next button was used sometimes without providing an answer. 

Participants did not understand the option Not Specified until its use was explained 

verbally. The last two points led to the need for a training example to instruct them on 

using the Example button and the Not Specified option. Also, the material was revised to 

only concentrate on the notation itself without the framework. 

By adopting the material of pilot 1, pilot 2 aimed at including the lessons learnt from 

pilot 1 and testing the software itself. The main plan here was to provide an easily 

accessible online experiment which would avoid installing the software on each PC. We 

used ASP.Net web application and we tried it with 91 participants who were 

undergraduate informatics students from the University of Brighton and the University 

of Qatar. Lots of developments within many months were made in order to make the 
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software error-free. These tests helped us to monitor the participants’ interactions with 

the software itself, so some software designs were changed. The Next button property 

was changed from invisible to disabled until participants answered. Although in the 

instructions we mentioned that they would not be able to proceed until they answered, it 

seemed they forget this point because when they did not want to answer and they aimed 

to proceed, they were pressing the only visible button, the Example button, which took 

them back to the example and they believed that the software had crashed. 

From these pilot experiments, we now explore the main experiment. 

5.4. Experiment 

5.4.1. Method 

In this experiment, there were two experimental learning trial conditions: (1) The CD 

group which used the constraint diagrams version of the system for program 

specifications; (2) The NL group which used a system of program specifications written 

in natural language. It was a training web-based competition which randomly assigned 

participants to one version. This learning-based experiment was a tutorial which taught 

the participants program specification concepts for a CD or an NL representation. The 

criteria for judging the best performance in the competition is a combination of 

spending less time learning the new concepts and getting the most answers correct in the 

least time. 

Before starting the competition there was a tutorial on how to use the software. This 

tutorial was one simple algebra example, as shown in Appendix A, followed by three 

questions which were randomized between participants. The example used for the 

tutorial contained a box containing an algebraic statement “The product of 2 and 4 

subtracted from x equals 10” and this box was followed by a description “This 

statement represents the value of x. x-2*4=10 means x-8=10 which means x=10+8, So 

x=18”. This example and the first question had step-by-step instructions to teach 

participants about using the training. The second and third questions aimed to test their 

ability to use it. After finishing the software training tutorial, the competition began 

with training examples. Each training example was followed by three related questions.  

I will explain what the participants could see. Each example had one or more statements 

(NL version) or an image (CD version) and a description of it followed by a definition. 
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After studying the example to understand the concept, participants had to press the Next 

button to proceed. 

For any question, one or more statements or an image appeared, depending on the 

representation version (NL/CD). This was followed by a question about it. Participants 

had the opportunity to return to the related example associated with that question any 

time before answering by pressing a button called Example. They couldn't proceed until 

they had provided an answer, relying only on information given in the current question, 

without any assumption from previous questions. Participants answered a question by 

choosing one of three answering options: Yes, No or Not Specified. For each concept's 

questions, there might be any possible combination of answers. Consequently, there 

would not necessarily be one specific answer for all three questions. However, we did 

not tell the participants that for each training example the answer would consist of one 

Yes, one No and one Not Specified. There were five levels to measure how hard the 

question was: Very Difficult, Difficult, Intermediate, Easy and Very Easy. Participants 

rated each question on its difficulty, which would show their confidence level in 

answering. Subsequently, feedback according to the answer was provided. Then 

participants had to press the Next button to proceed. 

The measures used were: time spent on the training examples, time spent on the 

questions, percentage of correct answers and level of confidence rating. Each example 

had only one button called Next. When participants pressed it, the time was recorded 

starting from the time the example page was loaded until the time of pressing the Next 

button. However, each question had two buttons: the Example button and the Next 

button. Participants could either answer the question or press the Example button. In 

contrast, they would not be able to press the Next button unless they rated the level of 

difficulty of answering the question, which couldn't be done without answering the 

question first. The question time was recorded from the time a question page was loaded 

until the time participants pressed a button. If participants returned to an example, then 

the number of returns was recorded as well as the time spent on that example. As a 

result, the example time would be the total time spent on that example, and the question 

time would be the total time spent on that question before returning to the example page 

and after returning to the question page to answer. When participants answered, the 

number of correct answers for each question was also recorded. Moreover, feedback on 

that answer was provided after participants chose their level of confidence. Immediate 
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feedback had a valuable effect on participants’ learning. This rating showed how 

confident at answering they were. It was important to understand whether participants 

answered depending on what they believed was the correct answer or whether they only 

wanted to go to the next page in order to proceed. This evidence measured if constraint 

diagram notation could become familiar to users. They also measured the ease and the 

rapidity of learning it. Designing experimental software avoids pencil-and-paper 

experiments. Despite the fact that developing software is a time-consuming method, it is 

a helpful tool to accurately record the time, and the number of tries at answering. We 

developed this web-based experiment by using Visual Basic.NET in Microsoft Visual 

Studio to create an ASP.NET web application. Therefore participants easily accessed 

the online competition and we successfully avoided installing the application on each 

workstation. 

5.4.2. Subjects 

The subjects were undergraduate and postgraduate informatics/computing students at 

Sussex and Brighton Universities. Since the purpose of this study is to examine the CD 

notation, not the program specification itself, informatics students were chosen as 

participants because they can be considered as representative of the target users of CD 

and they have no background in CD, but they have little knowledge of program 

specifications. As a result, we targeted participants who were aware of the idea of 

software design and implementation; therefore they had a little knowledge of program 

specification without any experience of real-life program specification. They voluntarily 

participated in the experiment through a competition with six prizes worth in total 100 

pounds. They were divided randomly into two learning groups. There were 53 

participants (27 NL, 26 CD) who participated online, of which 33 (20 NL, 13 CD) 

produced usable data because they completed more than half the questions. There was a 

smaller proportion of female participants, but the ratio of male to female was about the 

same in the two groups. They were asked to provide their personal information and to 

both consent to be involved in the competition and read the experiment instructions. 

5.4.3. Materials 

To recap, there were two versions: CD and NL versions. The inferences which were 

made in one representation can be made in the other representation as well. Both had the 

same tutorial, eight examples and 24 questions, but a different representation. They 

were given a training example and three questions, both with step-by-step instructions, 
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to train them on how to use the online experiment. After that, the main testing began. 

Participants studied the concepts provided by the examples. After each example there 

were three questions that participants had to answer in order to proceed. There were two 

domains: one for the examples and the other for the questions.  

Figure 5.2 and Figure 5.3 are screen-snapshots from the experiment. They were used in 

the CD version and NL version, respectively. Each represents example 7 in a different 

representation. Each example has a title of the introduced concept, either a diagram in 

the case of the CD version or a statement in case of the NL version, followed by a 

description, definition of important parts in the concept, and the Next button. This 

applied to all examples in the experiment.  

Figure  5.2 A snapshot of training example 7 using CD 
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Figure  5. 3 A snapshot of training example 7 using NL 

Figure  5.4 A snapshot of question 23 using CD 
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Figure 5.5 A snapshot of question 23 using NL 

Figure 5.4 and Figure 5.5 are screen snapshots from the experiment. They are used in 

the CD version and the NL version. Each represents question 23 in a different 

representation. A question has a title consisting of its number, either a diagram in the 

case of the CD version or a statement in case of the NL version, followed by a related 

question; three answering options: Yes, No and Not Specified; a difficulty level question 

followed by five levels: Very Difficult, Difficult, Intermediate, Easy and Very Easy; 

feedback on the answer; and the Example and Next buttons. This applied to all questions 

in the experiment.  

A full range of all the examples and questions used in this experiment is in Appendix A. 

Now we will present the results. 

5.5. Results 

Overall, it was predicted that the participants in the CD group would find learning 

concepts and answering questions in the domain harder. It was anticipated that the CD 

group would have more incorrect answers to the questions, spend longer on giving 

answers, and be less confident. In this section, we will explore the dropout rate, to 
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examine which group was happier to stick with the experiment. Then we will 

investigate the results according to the measurements that we pointed out in the 

previous sections. We will investigate the performance according to the correct answers, 

the question time, the confidence rating, the example time, and the number of the 

returns to the examples. Moreover, we will consider the relations between these 

measurements: question time and correct time, confidence rating and correct answers, 

question time and confidence rating, example time and correct answers, example time 

and question time, and example time and confidence rating. 

Further, item analyses using t tests or Chi-squared tests are needed to find any 

differential effects of representation for certain questions. It is an approach to give a 

richer picture of the use of the representations. However, when using repeated tests the 

chance of finding a false positive is increased. A false positive occurs when finding a 

significance difference but in reality there is no such significance. Thus, Bonferroni 

correction is used to lessen the chances of finding a false positive. 

The Bonferroni test is used, as needed for this experiment, to adjust the significance 

levels using the number of comparisons because several tests are done on the same data. 

By dividing the conventional significance level which is 0.05 by the number of tests 

which is 24, the adjusted significance level is (p<0.002), which applies to all the t tests. 

It is important to achieve the adjusted significance level for the t tests to be counted as 

significant.   

             

Figure  5.6 The drop-out rate 
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Some participants withdrew from the experiments over time. In total, 28 of the 53 

participants dropped out. The drop-out rate for both groups was the same: 14 for each. 

As shown in Figure 6.6, before the middle of the experiment 13 participants (93%) out 

of the 14 dropped out from the CD group, and there were 7 participants (7%) who 

dropped out of the 14 from the NL group. However, after the middle of the experiment, 

there was only one participant (7%) who dropped out from the CD group and 7 

participants (50%) who dropped out of the 14 from the NL group. Since 53.85% from 

the CD group and 51.85% from the NL group dropped out from the experiment across 

time, the overall rate for both groups was approximately the same. To be more precise, 

there was a pretty constant percentage of drop-out participants from the NL group in 

both halves of the experiment. However, there was a significant difference for the CD 

group in the two halves. The CD users who did not withdraw earlier were happier to 

stick with the experiment. Perhaps their decision to quit was affected by the version of 

the notation that they received: CD or NL notations. There is a significant difference 

between the two groups in both halves according to Chi-squared tests (one-tailed), X
2
(1, 

N = 33) = 0.012 at the conventional p<0.05, but it is not significant at the Bonferroni 

adjusted significance level (p<0.002). Moreover, for each half, and also for the overall 

withdraw rate, there is no significant difference between the two groups. Since 

participants withdrew at different stages of the experiment, we have chosen to analyse 

data related to those who completed at least half of the questions. 

5.5.1. Correct Answers 

This measurement is used to find out which notation would provide more correct 

answers. This could reflect their understanding of interpretation using that notation. If 

using CD notation results in having fewer correct answers than using NL notation, then 

NL notation is better, which is our hypothesis here since CD is a new notation and 

participants need to learn and understand how this new notation is used and to think and 

interpret using it.  

Figure 5.7 shows the mean number of correct answers for each question for the two 

groups. The overall mean number of correct answers by group is largely similar across 

the questions. There appears to be a general trend for the proportion of correct answers 

to decrease from the earlier to the later questions, although the question-by-question 

variability increases substantially in the second half of the questions. The mean (and 
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SD) of the CD and NL groups over all of the questions are 0.729 (0.445) and 0.745 

(0.436) respectively.  

 

Figure  5.7 Graph of the average of correct answers for the two groups across the 24 questions 

By using a mixed design ANOVA (Figure 5.8), there is a significant main within-

subjects effect of the two halves of the questions: F(1,30)=48.76 for p<0.01 and η2 

=0.619. However, there is no significant main between-subjects effect of the two 

representations: F(1,30)=0.037 for p=0.85 and the interaction between the two 

representations for both halves shows that it is not significant; F(1,30)=1.048 for 

p=0.31. The graph (Figure 5.7) shows that the second half (each half is 12 questions) is 

worse than the first for both representations, which indicates that the CD notation is not 

worse than NL notation. Although the CD group have more correct answers in the first 

half compared with the NL group, with a mean of 0.846 compared to 0.806, they are 

worse in the second half with a mean of 0.602 compared to 0.626. However, these mean 

values are not significant and thus, the lack of significant results indicates that there are 

no differences between both representations and no within-subjects differences for both 

halves.  

By examining each question individually, we find that there is no significant difference 

between the two groups in all but two of the questions, according to Chi-squared tests. 

For question Q12 the difference between the groups is significant, X
2
(1, N = 33) =0.001 

(p<0.002) and similarly for Q20, X
2
(1, N = 33) =0.034 (p<.05). The CD group achieved 

a proportion of correct answers that was greater than or equal to that of the NL groups 
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in 12 questions. Overall, the CD group did not perform substantially worse than the NL 

group. 

 

Figure  5.8 Graph of the interaction of CD and NL representations and correct answers for the two halves of the 24 

questions 

Although the performance of the CD group was not significantly different from that of 

the NL group, it is nevertheless possible that the constraint diagrams may not be 

effective because both groups were largely guessing the answers. As there are three 

answer options for each question, the level of chance performance on a question is 0.33, 

as shown by the dashed line in Figure 5.7. Many of the scores are substantially greater 

than this. It is possible to determine more formally whether each group performed better 

than chance by using a chi-squared test with 33.3% and 66.7% as the theoretical 

expectations of guessing correctly or incorrectly. Out of the 24 questions, four of the NL 

group's answers (Q14, Q18, Q19 and Q22) were not significantly different to chance 

and nine of the CD group's answers (Q1, Q8, Q11, Q14, Q15, Q16, Q18, Q19 and Q22) 

were not significantly different from chance, at p<0.002. In this respect the CD group 

did not perform as well as the NL group. 
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One way to consider the relative impact of the two representations compared with other 

factors on the difficulty of giving answers is to determine the strength of the correlation 

between the proportions of correct answers for each group question by question. The 

greater the correlation the less likely that aspects which are specific to one or other 

representation are responsible for the level of performance. By using the Pearson 

Product Moment Correlation, the two variables were strongly correlated, r(22)=0.601 

which is significant at p<0.001. In other words, the same questions are of comparable 

difficulty for both groups. Again this suggests that the performance of the two groups 

was not substantially different.  

As a result, the CD group performed as well as the NL group despite the fact that it was 

their first time of being introduced to this notation. 

 

5.5.2. Time Spent on each Question  

This measurement is used to find out which notation would be faster in terms of 

learning, understanding and answering related questions. This could reflect their 

understanding of learning and using that notation. If using CD notation results in 

slowing the interpretation of a program specification, then this notation is worse. We 

believe that using CD notation will be worse than NL since it is a new notation and 

participants need to take time to interpret the question and the related case before 

answering, which will reflect their learning and understanding of such new notation.  

Figure 5.9 shows the mean amount of time spent on each question by the two groups. 

The overall mean amount of time spent by the CD group is less than for the NL group 

across the questions. There appears to be a general trend for the proportion of time to 

increase from the earlier to the later questions, although the question-by-question 

variability increases in the second half of the questions. The mean (and SD) of the CD 

and NL groups over all the questions are 23.09 (16.84) and 28.73 (25.77) seconds, 

respectively. 
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Figure  5.9 Graph of the average time for the two groups across the 24 questions 

 
Figure  5.10 Graph of the interaction of CD and NL representations and the time spent on questions for the two halves 

of the 24 questions 

 

There is no significant difference between the two groups, according to t tests (one-

tailed) for p<0.002. At p<0.05, the difference between the groups that appeared in Q7 is 

t (31) = 0.043 and in Q12, t (31) = 0.029. As seen in Figure 5.9, in only one question 
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was the NL group a little faster than the CD. Overall, the CD group performed 

substantially better than the NL group.  

The Pearson Product Moment Correlation showed that the two variables were strongly 

correlated, r(22) = 0.901, which is significant at p<0.000. Both groups took a 

comparable amount of time to do the same questions, suggesting that the performance 

of the two groups was not substantially different. However, a Binomial test for 23 out of 

24 questions being shorter, assuming equally probable that either would be shorter, has 

a probability of p<0.001. 

As a result, the CD group spent less time in answering the questions than the NL group. 

Thus, CD notation is better than NL notation in terms of fast learning. 

5.5.3. Confidence Rating 

This measurement was used to find out which notation would be more difficult to 

understand, which would affect their confidence in providing the answers. If using the 

CD notation resulted in having less confidence in answering rates than using NL 

notation, then NL notation is better, which is the hypothesis here since CD is a new 

notation and participants need to learn and understand such a new notation to be more 

confident in using it.  

 

 

Figure  5.11 Graph of the confidence average for the two groups across the 24 questions 
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Participants answered the question on how hard they found the question by choosing 

one of five levels: very easy, easy, intermediate, difficult or very difficult. Their answer 

meant very confident, confident, neutral, not particularly confident and not at all 

confident. These levels of confidence rating were translated into numbers: 2, 1, 0, -1 and 

-2, respectively. 

Figure 5.11 shows the mean of the level of confidence rating for each question for the 

two groups. The overall mean of the level of confidence rating by each group is 

different across the questions. There is a general trend for the level of confidence rating 

to decrease from the earlier to the later questions, although the question-by-question 

variability increases substantially in some parts of the questions. The mean (and SD) of 

the CD and NL groups over all of the questions are 0.16 (1.26) and 0.38 (1.17), 

respectively.  

By using a mixed design ANOVA as shown in Figure 5.12, all the effects (the main 

within-subjects effect, the main between-subjects effect, and the interaction effect) are 

reported as not significant. For the main within-subjects effect of both halves of the 

questions, F(1,30)=3.8 for p=0.06 and for the main between-subjects effect for the two 

representations, F(1,30)=0.868 for p=0.36. Moreover, there is no significant interaction 

effect: F(1,30)=3.09 for p=0.09. Figure 5.12 indicates that the level of confidence in the 

first half for both groups was quite similar. However, in the second half the CD group 

was less confident while the NL group was very confident in the same half. It may be 

the case that CD effectively supports simple problems, or the case that CD is a new 

notation which needs more training. According to the significance results, there is no 

significant difference between the two halves and no significant difference between the 

two representations. Also, there are no interactions between representations and halves. 

As a conclusion, the CD notation is not worse than NL notation.  

On one hand, by finding the average of the level of confidence rating values for each 

participant, we found most of the averages for the first half of the questions were greater 

than the averages for the second half. This is an indication that most of the participants 

in the CD and in NL groups were less confident in the second half than the first half. 

However, by using t test there are no significant differences at p<0.002.  
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Figure  5.12 Graph of the interaction of CD and NL representations and the level of the confidence rating for the two 

halves of the 24 questions 

On the other hand, we normalized the level of the confidence rating values for each 

participant by compare the level of the confidence rating of individual question with the 

overall average of the questions answered by that participant. Normalizing confidence 

try to take in the account the individuals bias of the participants and because we have 

quite a change between the level of the confidence rating and the normalized level of 

the confidence rating data it means it is important to normalize because basic rating 

between the two groups are not the same. We found out most of the averages of the first 

normalized half of questions are also greater than the averages of the second half which 

means the most of the participants in the CD and in NL groups are less confident in the 

second half. However, by using t test, we also did not find any significant differences at 

p<0.002. 
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Figure  5.13 Graph of the interaction of CD and NL representations and normalized confidence rate the two halves of 

the 24 questions 

To examine whether there is a change from start to end in confidence decline, a mixed 

design ANOVA is used. The interaction main effect between the two representations for 

the two halves is not statistically significant, F(1,30)=2.19 for p=0.15, and also it is not 

significant for main between-subjects effect for the representation: F(1,30)=1.19 for p= 

0.28. However, the main within-subjects effect is significant: F(1,30)=35.68 for p<0.01 

and η
2
 =0.543. Figure 5.13 shows that the second half was worse than the first for both 

representations. For the CD group, they were more confident in the first half compared 

with the NL group. It may be the case that the CD notation effectively supports simple 

problems. However, in the second half the CD group were less confident than the other 

group. It may be the case that CD is a new notation and needs more training. In general, 

the confidence in the first half was higher than in the second half which indicates that 

there are no differences between the two representations and no differences between the 

two halves for each group. As a result, the CD notation is not worse than NL notation. 

By looking at the normalized confidence rate it actually shows a pattern more consistent 

with what we expected to find.  
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By examining each question individually, we find that there is no significant difference 

between the two groups in all but two of the questions, according to t tests (one-tailed) 

at p<0.002. However, at p<0.05, there are differences in Q6; t (31) = 0.027 and in Q17; 

t(31) = 0.042. The CD group achieved a level of confidence rating that was less than 

that of the NL group in 16 questions. In general, the CD group did not perform 

substantially better than the NL group.  

By using the Pearson Product Moment Correlation, we found that the two variables 

were strongly correlated, r (22)=0.688, which is significant at p<0.001. The same 

questions were of comparable difficulty for both groups. As a result, the performance of 

the two groups was not substantially different.  

As a result, the CD group were as confident as the NL group in answering, and thus 

they performed as well as the NL group. 

5.5.4. Time Spent on each Example 

This measurement is used to find out which notation needed less time to be understood 

and learnt. If using CD notation needs more time to learn how to interpret the 

specification for using it than NL notation, then this notation is worse than NL notation. 

We think that CD notation will be worse than NL which is the hypothesis here since it is 

a new notation and participants need to more time to study the new concepts represented 

in each example, which will reflect their learning and understanding of such a new 

notation.  

Figure 5.13 shows the mean amount of time for each example for the two groups. The 

overall mean amount of time by each group is largely different across the examples. 

There appears to be a general trend for the amount of time to increase from the earlier to 

the later examples, although the example-by-example variability decreases substantially 

in some parts of the examples. The mean (and SD) of the CD and NL groups over all of 

the examples are 53.91 (57.60) and 33.03 (48.67) respectively.  

For both halves of the questions, there is a significant main within-subjects effect of the 

two halves of the questions: F(1,30)=6.298 for p<0.05 and η
2
 =0.174. However, there is 

no significant main between-subjects effect of the two representations: F(1,30)=2.018 

for p=0.17; and the interaction between the two representations for both halves shows 

that it is not significant: F(1,30)=1.242 for p=0.27. The graph (Figure 5.15) shows that 
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the CD group needed a longer training time in both halves compared with the NL group 

in general. Both CD and NL groups took more time in the second half compared with 

the first half. It may be the case that as it was a new notation it needed more training. 

Due to the lack of significant interaction effect, that there are no differences between the 

two representations and no differences between the two halves for each group. Thus, the 

CD notation is not worse than the NL notation.  

 

Figure  5.14 Graph of the example time average for the two groups across the 24 questions 

By examining each question individually, we find that there is no significant difference 

between the two groups in all but two of the examples, according to t tests (one-tailed). 

Although by using t test, there are significant differences between the groups – in E1 it 

is significant, t(31) = 0.018 at p<0.05, and similarly for E2 and E4, t(31) = 0.006 at 

p<0.01 – there are no significant differences at p<0.002. Overall, the CD group 

performed as well as the NL group.  

Since the same examples were of comparable difficulty for both groups, the 

performance of the two groups is not substantially different. For the Pearson Product 

Moment Correlation, the two variables were strongly correlated, r (6) = 0.607, which is 

significant at p<0.05. However, this correlation is not significant at p<0.001. 

As a result, there is no significant difference between the CD group and the NL group in 

terms of the time spent on the examples and thus they performed as well as the NL 

group. 
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Figure  5.15 Graph of the interaction of CD and NL representations and the time spent on examples for the two halves 

of the 24 questions 

5.5.5. Returns to Example 

The participants in both the CD and NL groups did not choose to return to the examples, 

with the exception of one participant in the NL group and two in the CD group with 

very few returns. This is despite the fact that it was predicted that they would return to 

the examples more often, especially the CD group. 

5.5.6. Relations between different measures 

This subsection aims to find out whether there are any patterns of relations and any 

evidence of similarities between the two groups and between variables.  

The Bonferroni correction is used here as well by dividing the conventional significance 

level which is 0.05 by the number of the tests which is 6, to find the adjusted 

significance level, which is (p<0.008). 
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  Table  5.1The Pearson Product Moment Correlation between different measures for CD group 

Pearson Product Moment Correlation Correct Answers Confidence Rating Example Time 

Question Time -0.318  0.180 -0.028 

Example Time -0.283 0.661  

Confidence Rating -0.380   

    Legend: Level of significant for one-tailed, * p< 0.008 level for (df=11).  

  Table  5.2 The Pearson Product Moment Correlation between different measures for NL group 

Pearson Product Moment Correlation Correct Answers Confidence Rating Example Time 

Question Time -0.251 -0.208 0.642 

Example Time -0.412 -0.146  

Confidence Rating -0.385   

    Legend: Level of significant for one-tailed, * p<.008 level (df=18). 

Table 5.1 shows the Pearson Product Moment Correlation value for the CD group 

across all the measurements: correct answer and question time, correct answer and 

example time, correct answer and confidence rating, confidence rating and question 

time, confidence rating and example time, and example time and question time. There 

are no significant relations between these measurements at p<0.008.  

Table 5.2 also shows Pearson Product Moment Correlation value for the NL group 

across all the previously mentioned measurements. There are no significant relations 

between these measurements at p<0.008.  

5.6. Discussion  

The overall aim of this experiment was to evaluate the potential utility of CD for users 

who have relatively little experience at specifying programs by comparing how easily 

such users can learn CD notation and interpret specification expressions in comparison 

with using natural language (NL) expressions. It was predicted that participants using 

CD notation would (a) take longer over the training, (b) need more time to answer the 

questions, (c) be less confident about their answers, and (d) obtain lower correct 

interpretation scores, because they had no prior experience of CD notation. Although 

the CD group (a) spent more time on the training and (c) had less confidence, they (b) 

took less time to answer the questions, and (d) obtained equivalent correct interpretation 

scores to the NL group. Within-group analysis shows that there are no obvious classes 

of questions/concepts that one of the representations deals better with than the other. 

Although we expected to find that some questions might be more confusing for one of 

the representations than the other, there were no systematic differences. The number of 
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correct answers and the level of confidence might have decreased across time due to 

harder questions. Moreover, between-group analysis and item analysis showed that 

there was no particular question that was easier in one representation than in the other. 

The experiment took the form of a web-based competition in which 33 participants were 

given instructions and training either on CD or equivalent NL specification expressions, 

and then responded to multiple-choice questions requiring the interpretation of 

expressions in their particular notation. Although we got positive results from this 

experiment, we cannot say that CD is a brilliant tool in every way because of the 

limitations of the experiment. Overall, it seemed that CD is an intuitive and expressive 

tool with unambiguous semantic notation, which supports Kent’s claim (Kent, 1997). It 

is also easy to understand its interpretation when using CD to design software systems 

(Howse & Schuman, 2005). However, the proportion of correct answers and the 

confidence level on answering indicate that the interpretations were not always well-

matched to their meaning (Stapleton & Delaney, 2008).  

The difference between the two groups was rather too weak to be considered a 

substantial effect and the statistical results from this experiment are limited to 

considering the interpretation of specifications. The overall results (Table 5.3) show that 

the CD group were not any worse in terms of interpretation scores, which could be seen 

as encouraging. Since the variability of scores for within-group difference is smaller 

than those for the between-group difference, no real effect can be hidden. 

The general methodology decisions might weaken the experiment. If using CD or NL to 

really try to understand specification programs, participants may adopt a different 

strategy. It is possible that the participants may simply have been using their general 

knowledge of the situation to answer the questions by reading the labels of the 

invariant/event. However, given that they studied the diagram typically for half a 

minute, it appears they were trying to interpret the diagram. In general, the average time 

spent on questions was less than half a minute. Since questions 19, 20, 22 and 23, which 

related to two concepts associated with these questions (concept of invariant and 

concept of event) took over half a minute, it seems participants took these questions 

seriously. These two concepts have labels that match the interpretation of the diagram. 

The matching label, in the case of interpreting complex diagrams, could be used as a 

guide for answering or could be avoided if it was interpreted as a trick.  
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Table  5.3 Summary of the Results 

 Correct Answers Time spent on Questions 

(in seconds) 

Confidence Rate Time spent on 

Examples (in 

seconds) 

Overall CD 

mean (SD) 

Overall NL 

mean (SD) 

0.729 (0.445) 

 

0.745 (0.436) 

23.09 (16.84) 

 

28.73 (25.77) 

0.16 (1.26) 

 

0.38 (1.17) 

53.91 (57.60) 

 

33.03 (48.67) 

Chi –Test/ 

T-Test result 

for individual 

questions or 

examples 

between the 

two groups 

There is a significant 

Difference  

Q12 (p<0.002) 

Q20 (p<.005) 

proportion = 

12questions for both 

groups. 

No significant Difference 

at p<0.002. 

 

Q7, Q12 (p<0.05) 

Proportion = 1question in 

NL faster. 

(in CD, 23questions  less 

time) 

No significant 

Difference at 

p<0.002. 

  

Q6, Q17 (p<0.05) 

proportion = 

16questions in CD 

(in CD, 

8questions  more 

confident) 

No significant 

Difference at 

p<0.002. 

E2, E4 (p<0.01) 

E1 (p<0.05) 

proportion = 

1example in CD 

(in CD, 1example  

less time) 

Conclusion 

about 

Performance 

CD is not worse than 

NL 

CD is better than NL CD is as well as 

NL 

CD is as well as 

NL 

Performance 

not above 

chance (i.e. 

they guessed) 

4 questions  in NL 

9 questions in CD 

CD not as well as NL 

   

Correlation 

between the 

two groups 

Significant at p 

<0.001 

Significant at p <0.001 Significant at p 

<0.001 

Not Significant at 

p <0.001 

Overall 

Conclusion 

Same questions/examples are comparably difficult  

Performance of both not substantially different. 

The drop-out rate was an indication of having problems with the representation or 

participants who might want to self-select the representation. If we allow the self-

selection option, then we are biasing the comparison between the two groups. For fair 

comparison, participants were randomly assigned to one group despite what 

representation they would have preferred. Although we found that CDs are as effective 

as NL, it was clear that there was a difference between early and later drop-out 

especially in the CD group. If we assume that participants might have dropped out 
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because they did not want to interpret that representation, then – by comparing the 

representation preferences – CD is not worse than NL. Indeed, the drop-out rate might 

be independent of that representation. It might be the case that the dropout choice was 

self-selected due to the lack of familiarity with CD notation. It is more likely that 

participants who dropped out didn’t like program specification in general or were not 

happy to think in a program specification way. Furthermore, it might be the case that the 

questions were getting harder and were not interesting. We do not know how the drop-

out rate affected the results, but we know it has some limitations. We expected a higher 

drop-out rate in the CD group because of the unfamiliarity of CD. However, there were 

an equal number of drop-outs in both groups. This indicated that the drop-out was either 

independent of the representation or some degree of representation effects. 

Many experimental design phases were created. It is a complicated design and we do 

not know how these decisions affected the performance. Basic concepts were covered in 

this experiment because the aim of the experiment was to examine how easily novices 

would understand this simple and effective notation called constraint diagrams (Kent 

1997; Howse and Schuman 2005). We have not included the strand syntax because we 

examined simple spider relations and strand is a more complex kind of spider relations. 

However, if we include strand, we might find relations between spiders is a difficulty.  

By having an online experiment, more participants could be involved and they were 

allowed to choose the best time to start. However, they might exclude themselves 

because they faced a bad online connection or a rough day. Moreover, they might not 

take this experiment seriously because it did not occur in a classroom and it was not 

related to their study. In fact they might be encouraged to complete the experiment if 

they saw other participants working on it at the same time. As it was a training 

experiment, participants had to both learn and perform a task at the same time. 

Furthermore, as it was a competition experiment, it might be the competition aspects 

that affected their performance in order to try and win. Immediate feedback had a 

valuable effect on their learning. However, a lack of detailed feedback to participants 

and a lack of understanding on our part of what the participants faced were drawbacks. 

It may also be a factor that prompted them to drop out. The limitation of the confidence 

rate is the fact that it is only a guide which is used as an absolute measure to use to 

compare the two groups. Returning to examples was not a useful measure. As it was a 

competition and the time taken was recorded, they might have decided to save time by 
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not returning to examples. Or they might understand the notation well enough just from 

one reading.  

The findings might be more significant if an experienced CD group had been compared 

with an experienced NL group. Indeed the group is experienced in NL but not in using 

NL for specifying programs. Choosing to use multiple choice rather than free form 

responses could affect the results' value. They only interpreted simple diagrams with 

building models. Thus, this experiment has a limited ecological validity because 

participants were asked to respond to multiple-choice questions whereas a program 

specification task is more about involving participants. The experiment did not really 

capture the sort of interactions and understanding of CD notation that would be required 

in a real-world setting – in particular the use of multiple choice rather than more open-

ended responses.  

In the next experiment, we will examine the use of CD notation to construct a 

specification of a system and we will compare it to the use of NL notation to construct 

the same specification of the same system. Constructing CDs will be more interesting 

and relevant than repeating this experiment, to classify participants’ visual ability and to 

try to put them into two different groups. 
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Chapter 6 Experiment 2: Construction of Constraint 

Diagrams 

This experiment attempts to evaluate the efficacy of CD by 

comparing two different groups to check how easily CD notation 

can be used for constructing specification in diagrammatic 

expressions compared with NL notation. Section 6.1 introduces 

the experiment. Section 6.2 represents the experimental design. 

Section 6.3 explains the pilot experiments. Section 6.4 shows the 

results of the experiment. Finally, section 6.6 is the discussion. 

6.1. Introduction 

This chapter describes a construction-tasks investigation to explore the usability of CD 

as a program specification language by focusing on three different cognitive activities 

for learning: thinking, reasoning, and reflecting. This experiment took the form of a 

factorial experiment in which 20 participants were asked to construct the specification 

from one representation into another. They were given instructions and training either 

on CD or in equivalent NL specification expressions, and they then responded to 

construction questions requiring the generation of expressions in their particular 

notation. It was predicted that participants using CD would take longer over the 

training, obtain a lower number of correct construction scores, need more returns to 

examples, and take longer over examples they returned to because they had no prior 

experience of CD notation.  

This empirical study, which is the second step in the empirical evaluation of this 

notation, is about examining participants’ ability to understand particularly the notation 

usage in real life problems by getting them to use a representation either in linguistic or 

graphical modalities. It is aimed at rigorously evaluating the effectiveness of CD by 

detecting any error of interpretation and finding out whether differences in the nature of 

representation make a big difference in construction, whether learning and using CD for 

constructing is going to be a major task compared with other approaches, and whether, 

after training, CD will be as effective as the comparator notation. In order to answer the 

question of whether CD could have higher ecological validity because participants will 

be involved in this experiment to capture the sort of interactions and understanding of 

CD notation that would be required in a real-world setting, we examined their 
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interpretation with basic concepts and simple questions to find out if there was a 

fundamental difference between CD and NL, which had not been done before. Thus, we 

performed this experiment to identify the benefits of using CD in specifying programs. 

In this experiment, we tried to answer some questions such as whether is it possible to 

translate and generate CD diagrams or Formal-NL (FNL) statements under certain 

circumstances, whether translating a statement written in ordinary-NL to another 

representation such as CD or FNL is easy, and which of CD or Formal-NL is easiest to 

build a model from, using ordinary-NL. 

6.2. Experimental Design 

Just as we did in experiment 1, we will now consider: (a) the design of the experiment, 

(b) the approach to familiarizing people with constraint diagrams, (c) the measures that 

we will use as evidence, (d) the predictions, (e) the design of the examples and the 

questions, (f) the concepts, and (g) the appropriate number of questions.  

(a) For the same reasons we provided for experiment 1, a between-participants design 

was adopted with two separate groups and two different representations: CD and NL. 

Two different versions of the same material, questions and examples were created, 

which were informationally equivalent (Larkin & Simon, 1987). There were many 

possible designs for this experiment. (1) An abstract description would be provided and 

participants would be asked to construct the model/specification by precisely translating 

to CD/NL. CD is a formal notation and there would be a list of terms that could be used. 

Although NL is an informal notation, it could be considered as a semi-formal notation; 

we called it Formal Syntactical Language (FSL), when a list of terms that could be used 

was provided to describe the problem in terms of those. (2) They would be asked to 

construct the model/specification by precisely translating from CD to NL and vice 

versa. (3) They would be asked to construct the diagrams by translating from NL to CD 

and during the second half they would be asked to construct the expressions by 

translating from CD to NL, which is a complicated design. Moreover, grouping 

participants has many different possibilities, such as two groups – CD and FSL – or 

three groups, CD, FSL and hybrid (mixed/combined). We chose two groups and 

adopted design (1); they would randomly be assigned to the CD group or the NL group 

to construct either expressions or diagrams.  



140 

 

(b) In spite of the fact that there are individual differences in cognitive styles, “It is 

possible to compensate for these differences by training” (Blackwell, 1997), which is 

considered to be similar to such arguments in other studies (Frandsen & Holder, 1969). 

Participants gained benefits in experiment 1 when they had been trained on constraint 

diagrams in terms of familiarizing them with the new notation, CD. Thus, this would 

allow a fair comparison between these two different representations. Since this 

experiment is about modelling with CD and FSL, participants would be trained on how 

to use our tool, the editor software, by familiarizing them with the interface and the 

procedure to help when starting with the material. They would be introduced to an 

example to familiarize them with how training examples are shown in this editor, as 

shown in Appendix B. Each training example was used to define a new concept. The 

training was a step by step approach to teach them how they were supposed to read the 

examples. Then they would have a pair of questions to represent the same situation. 

However, part A is an informal description that we normally use and part B is formal 

and specific, as shown in Appendix B. They would be asked to reproduce the given 

diagram or recreate the given sentence/expression that appeared in the two parts of the 

question. In both parts of this training question, as shown in Figures 6.1 and 6.2 for CD 

and Figures 6.3 and 6.4 for FSL, a step by step instruction on how to use the editor and 

how to construct diagrams/expressions was provided, followed by a button to ensure 

that they read every instruction. In the case of CD, we gave them an empty-labelled set 

with a labelled subset. These two sets have a labelled spider and non-labelled spider, 

respectively, as shown in Appendix B. All these diagrams were included in an invariant. 

After that, the correct answer would be provided. These steps were carried out to 

familiarize them with constructing using the editor.  

Then we familiarized them with the concepts themselves by introducing a training 

example that defines a concept by a brief description. We then examined their 

understanding by generating diagram/expressions by three related questions. Each 

question had two parts: part A and part B. The two parts represent the same description. 

However, part A is a more informal NL specification which is represented by an 

everyday description while part B is a more specific NL specification.  

c) In order to evaluate how effective the different notations were, we measured how 

accurately and how quickly they were used in training and in translating tasks. The 

measurements used were: time spent on the training examples, time taken in returning to  
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Figure  6.1 Evaluating Methods of Program Specification: Constructing CD – Training Question: Part A 
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Figure  6.2Evaluating Methods of Program Specification: Constructing CD – Training Question: Part B 
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Figure  6.3 Evaluating Methods of Program Specification: Constructing FSL – Training Question: Part A 
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Figure  6.4 Evaluating Methods of Program Specification: Constructing FSL – Training Question: Part B 
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examples, time taken as initial thinking time, percentage of correct answers, percentage 

of productivity (created objects), percentage of corrected objects, percentage of accurate 

configurations, steps rate and number of returns to the examples.  

(d) It was predicted that FSL would be better because it is NL-based so it is familiar and 

there is no need to learn a new notation before working on the tasks. Given the 

complexity of CD, the experimental hypothesis states that participants given the CD 

notation would obtain a lower number of correct answers proportionally in a longer 

training time with many returns to examples. This experiment has the version of the 

specification (NL-CD or NL-FSL) as the independent variable; whereas correct 

answers, initial thinking time, steps, productivity, configuration, example time and 

returning to examples are the dependent variables.  

(e) For the same reasons that we provided for experiment 1, the domain used for 

examples was different from the one used for questions. Each example introduced a 

concept was provided from a domain called "Video Rental Service" while the questions' 

domain was called "Patient Record System". To recap, there were two design options: 

(1) an example followed by three questions or (2) all examples followed by all 

questions. The benefits of (1) was to incrementally construct knowledge by 

understanding each concept individually, which would help us to identify the difficult 

concepts. In contrast, (2) requires quite a heavy load of learning and remembering. We 

adopted (1) to allow learning each concept by elaborating on it. We believe that the 

questions and the domains are realistic to real world tasks. 

(f) This experiment has seven concepts covered in the experiment: Sets and Types, 

Members of sets, Set relationships, Relationships, Spiders, Invariant and an Event 

Specification. Every concept was explained using an example that was followed by 

three related pairs of questions. 

(g) A pilot experiment, which was a one-to-one experiment between the participants and 

the experimenter, was conducted in order to ascertain the level of difficulty and the 

number of questions. We concluded that 21 questions would be an appropriate number 

of questions.  
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6.3. Pilot Experiments 

We had a small number of participants for these pilots. We first conducted a PowerPoint 

mock-up to simulate the proposed design. From this mock-up we selected the relative 

components and we tested the number of the questions required. After that, we 

conducted a java application to simulate the experiment itself. We ran a one-to-one pilot 

experiment, with four participants, to help the experimenter to focus on how participants 

interacted with the editor, how reliable the software was, and how adequate the material 

was. We found that the constructing activity took more time than the interpretation 

activity, and it was harder than the interpretation activity. Thus we concluded that the 

number of questions should be reduced from 24 to 21 questions and also decided to 

divide the experiment into two different times to allow participants to be more active. 

For the pilot software design, we did not allow two similar shapes to have the same 

label. However, due to the complexity of the diagrams used and as a result of these 

pilots we found that we had to allow two similar shapes to have the same label, which 

helped participants to be more productive and to support the implicit reading tree of 

separating a diagram into multiple diagrams for easiness and to avoid ambiguity. For 

example in Figure 3.5 we have three circular shapes (contours) with the same label 

Patient. These three contours represent the same set, but they were repeated to provide 

more information and to help in keeping the diagram simple.  

6.4. Experiment 

6.4.1. Method 

This experiment is another empirical study on learning constraint diagrams which is an 

extension to the previous one. This approach was chosen to get more fine-grain details 

of what may cause problems in the CD representation. Participants were randomly 

divided into two groups: (1) a group to create constraint diagrams, and (2) a group to 

create formal natural language statements. It was conducted at the informatics 

department lab at the University of Sussex where participants used the lab computers to 

participate in the experiment. They were trained on using the software and then they 

were introduced to training examples that, individually, were followed by three pairs of 

questions. As previously mentioned, each question had two parts: A and B. The data is 

collected for two purposes: to check the hypothesis that CDs are easy to learn and to 
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use, and to check for any unusual strategy a group may adopt. After analysing the data, 

we could check whether CD construction would be easier than NL or not. 

This experiment has a high ecological validity because it is realistic and very near to a 

real life task. The experiment will help in ascertaining whether a statement written in a 

representation can be translated to another easily with the same meaning, and whether it 

is possible to generate CD or a semi-formal statement of a certain circumstance. We 

need to measure how accurately and quickly they can be trained and then let them 

translate. Then we scored the diagram/statement to see how accurate they were and we 

checked if there were missing objects and how long it took them to answer. The results 

depended on the independent variables such as CD, NL and the complexity of problem, 

and on the dependent variables which we used as measurements, such as the number of 

correct answers, the number of correct objects, the number of created objects, the 

number of accurate configurations, the number of steps, the time spent on the initial 

thinking, the time taken in training and leaning examples, the time taken in training for 

new examples, the time taken in training for returned-to examples, and the number of 

returns to the examples. 

Indeed, the environment of constructing diagrams/statements has a tool-bar to use, and a 

description of the expression/diagrams that we have to construct. We developed an 

editor for generating both diagrammatic and textual expressions. Also, we encoded 

program specification statements in four different representations; CD, informal-NL, 

precise-NL, and NL-based FSL. Despite the fact that developing software is a time-

consuming method, it is a helpful tool to accurately record time and numbers of tries at 

answering, and to capture the diagrams without any requirement for hand-drawing or 

for drawing fast. We decided to let them drag and drop instead of drawing because 

drawing may cause ambiguity, so instead of drawing a full circle they might draw an 

illegal circle such as in Figure 6.1. By dragging and dropping, we avoided any problem 

of unclear drawing and we could easily judge if an answer was right or wrong. 

Moreover, dragging and dropping forced the NL group to use a limited number of 

words to construct the expressions, which was easier to analyse and made the mode 

interaction of NL similar to the mode interaction of CD. For example, in the CD 

version, shading represents a set that may be empty or has a specific number of 

elements, and a non-shaded contour represents a non-empty set. By matching this to the 

NL version, No.of-Elements (setName,#,=) represents a set labelled with setName 
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which may be empty (if # equals 0) or has a specific number of elements equal to # 

value, and No.of-Elements (setName,#,≥) represents a non-empty set.  

To get from the issue of how to automatically assess the diagram, we can provide 

feedback by showing them both correct and incorrect answers for both versions. The 

feedback was generated by the author from the editor itself as a way to assess the 

functionality of the editor. As a result, participants saw diagrams or expressions that 

were similar to what they could generate. We recorded what they did and scored 

everything automatically, except for accurate configuration measurement which was 

done manually. The scoring schema was very difficult to develop; we developed a 

scoring scheme by defining dimensions of marking to be correct such as correct objects, 

created objects, and configuration. For configuration reasons, we identified diagrams as 

legal diagrams, illegal diagrams, correct diagrams, incorrect diagrams, and partially 

correct diagrams. These demanded the collection of lots of information from the process 

of constructing by the use of log files to track the order of shapes, the number of the 

shapes, the name of the shape, the kind of shape, the type of action performed (resize, 

labelling, moving, select, delete, and undo), the number of actions performed, the time 

taken to perform every single action, the location of the shape, and the size of the shape. 

Moreover, we captured the final generated answer in a snapshot.   

 

Figure  6.5 Examples of hand-drawn circles 

6.4.2. Subjects 

The subjects were undergraduate and postgraduate informatics students at the 

University of Sussex. Since this experiment aimed to study the potential of CD, not the 

modelling techniques, we used participants with some knowledge of modelling 

techniques such as informatics students. Our target was to concentrate on the notation 
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itself rather than on the modelling. They voluntarily participated in the experiment for 

£15 cash. There were twenty participants in total, divided randomly into two groups of 

ten. All of them completed the experiment without any withdrawals. In general, there 

were a smaller proportion of female participants, but the ratio of male to female was the 

same in the two groups: 8:2. They were asked to provide their Sussex University email, 

and their personal information. Moreover, they were asked to read the experiment 

instructions.    

6.4.3. Materials 

Participants had to study seven concepts provided by training examples. Each training 

example was followed by three questions. Figures 6.6 and 6.7 are screen-snapshots from 

the experiment for CD and NL versions respectively. Each represents example 7 (an 

Event Specification) in a different representation. An example has a title indicating the 

introduced concept, diagrams or statements depending on the version of the 

representation used, a description of the diagrams or the statements, and the Next 

Button. 

Figures 6.8 and 6.9 represent a question (part A) which relates to example 7. The 

numbering of the questions was randomly assigned for the same training example. A 

question about UpdatingPatientRecord was assigned one time as question 19 and 

another time as question 20 or 21. The three questions related to example 7 were only 

assigned as 19, 20, or 21 randomly. The part A question had a very informal description 

used in everyday life. On the other hand, Figures 6.10 and 6.11 represent part B of the 

same question as part A, but with more details to give a precise description. Both part A 

and part B had the Example button to return to the training example in case more 

learning was needed and the Next button to go to the next related question. The Next 

button was not enabled until at least one button to generate a diagram or an expression 

had been pressed. Figures 6.12 and 6.13 present part B after pressing the Next button 

which produced a pop-up window with the expected answer.         
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Figure  6.6 A snapshot of training example 7 using CD 
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Figure  6.7 A snapshot of training example 7 using NL 
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Figure  6.8 A snapshot of “UpdatePatientRecord” Event (Question Part-A) using CD 
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Figure  6.9 A snapshot of “UpdatePatientRecord” Event (Question Part-A) using NL 
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Figure  6.10 A snapshot of "UpdatePatientRecord" Event (Question Part-B) using CD 
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Figure  6.11 A snapshot of “UpdatePatientRecord” Event (Question Part-B) using NL 
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Figure  6.12 A snapshot of the correct answer of “UpdatePatientRecord” Event Question using CD 

                                                                      

Figure  6.13 A snapshot of the correct answer of "UpdatePatientRecord" Event Question using NL 

A full range of all the examples and questions used in this experiment is in Appendix B. 

The next section will explore the results. 

6.5. Results 

Overall, it was predicted that the participants in the CD group would find reflecting on 

the learnt concepts and constructing diagrams to answer questions in the domain harder. 

It was predicted that the CD group would have more incorrect answers to the questions, 



157 

 

and perform more steps. Similarly, it was expected that the amount of time spent 

studying the examples would be longer for the CD group. For the rest of this section we 

will, firstly, look at the results of analysing correct answers which required analysing 

the percentages of correct objects, created objects and the configuration. Secondly, we 

will find the number of steps needed to accomplish tasks. Thirdly, we will examine the 

number of returns to the training examples. Fourthly, we will evaluate the time spent on 

each example, whether it is a new example or a returned-to example. Finally, we will 

investigate the initial thinking time.  

For the reasons explained in Chapter 5, the Bonferroni test was used as needed for this 

experiment to adjust the significance levels using the number of comparisons because 

several tests are done on the same data. By dividing the conventional significance level 

which is 0.05 by the number of the tests which is 21, the adjusted significance level is 

(p<0.002) which applies to all the t tests. It is important to achieve the adjusted 

significance level for the t tests to be counted as significant.   

6.5.1. Correct Answers 

This measurement is used to find out which notation could provide more accurate 

answers that reflect their understanding of using that notation. If using CD notation to 

produce the specification will produce more correct answers than using NL, then CD 

notation will be better than NL. We believe that CD notation will be worse than NL 

because it is a new notation and participants need to learn it and understand it.  

An answer is correct if and only if the number of correct objects (in section 6.5.1.1), the 

number of created objects (in section 6.5.1.2), and their configurations (in section 

6.5.1.3) are correct.  

Figure 6.14 shows the mean of correct answers for each question for the two groups. 

The overall mean number of correct answers by group is largely similar across the 

questions. There appears to be a general trend for the proportion of correct answers to 

decrease from the earlier to the later questions. The mean (and SD) of the CD and NL 

groups over all of the questions were 0.307 (0.461) and 0.157 (0.364) respectively. 

If we calculate the mean of correct objects and configuration without the created 

objects, we found the mean of correct answers for each question for the two groups. The 

overall mean number of correct answers by group is largely similar across the questions. 
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There appears to be a general trend for the proportion of correct answers to decrease 

from the earlier to the later questions. The mean (and SD) of the CD and NL groups 

over all of the questions were 0.871 (0.126) and 0.834 (0.121) respectively. 

 

Figure  6.14 Graph of the average of correct answers for the two groups across the 21 questions 

 

Figure  6.15 Graph of the interaction of CD and NL representations and correct answers of the two parts of the 21 

questions 
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When using a mixed ANOVA design, there are significant results: the main within-

subject effect of the two parts of the questions shows that F(1,18)= 60.803 for p<0.01 

and η2=0.772, the main between-subject effect gives that F(1,18)=12.389 for p<0.01 

and η2=0.408, and the interaction effect is also significant: F(1,18)=6.756 for p<0.01 

and η2=0.273. The graph in Figure 6.11shows that part A of the questions was difficult 

to answer for both groups. However, the difference between part A and part B was 

bigger with the CD group. We can look at the proportion of participants who got a 

particular question wrong; the assumption here is that the more participants who get a 

question wrong, the more difficult that question. 

Since there are significant results, we will use t tests to find out these significances. 

There was a significant difference between the two groups in eight of the questions, 

according to t tests (one-tailed). The difference between the groups in Q1 was 

considerable: t(18)=0.009 (p<0.01); in Q3: t(18)=0.0016(p<.002); in Q11: t(18)=0 

(p<0.002); in Q14: t(18)=0.006 (p<0.01); in Q9: t(18)=0.040 (p<0.05); in Q16: 

t(18)=0.037 (p<0.05); in Q19: t(18)=0.018 (p<0.05); and similarly for Q21, t(18) = 

0.037 (p<0.05). As shown in Figure 6.10, the CD group had more correct answers than 

the NL group (in 16 questions). In only one question, the NL group had more correct 

answers than the CD group. Overall, the CD group performed substantially better than 

the NL group. 

By looking at the correct answers as concepts, there is a significant difference between 

the two groups in all concepts except concept 7. In concept 1 (Q1 to Q3): t(18)= 0.0008 

(p<0.002), concept 2 (Q4 to Q6): t(18)= 0.044 (p<0.05), concept 3 (Q7 to Q9): t(18)= 

0.022 (p<0.05), concept 4 (Q10 to Q12): t(18)= 0 (p<0.002), concept 5 (Q13 to Q15): 

t(18)=0.007(p<0.01) and concept 6 (Q16 to Q18): t(18)=0.040 (p<.05). 

One way to consider the relative impact of the two representations compared to other 

factors on the difficulty of giving answers is to determine the strength of the correlation 

between the proportions of correct answers for each group. The greater the correlation 

the less likely that aspects specific to one or other representation is responsible for the 

level of performance. For the Pearson Product Moment Correlation, r(19)= 0.789, which 

is significant at p<0.002. Since the two variables were strongly correlated, it is likely 

that none of the representations is responsible for the level of the performance, 
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As a result, the CD group had more correct answers than the NL group. Thus, the CD 

group performed substantially better than the NL group. 

6.5.1.1. Percentage of Correct Objects 

The correct-objects measurement was used to find out which notation would provide 

more correct objects that reflect participants’ understanding of using that notation. If 

using CD notation to produce the specification will produce more correct used objects 

than using NL, then CD notation will be better than NL. We believe that CD notation 

will be worse than NL because it is a new notation and participants need to learn it and 

understand it by using the different objects in different places.  

 

Figure  6.16 Graph of the average of correct objects for the two groups across the 21 questions 

Figure 6.16 shows the mean number of correct objects for each question for the two 

groups. The overall mean number of correct objects by group is largely similar across 

the questions. There appears to be a general trend for the proportion of correct-objects 

to decrease from the earlier to the later questions. The mean (and SD) of the CD and NL 

groups over all of the questions were 0.786 (0.060) and 0.759 (0.045) respectively. 

For both parts of the questions, part A and part B, the main within-subject effect is 

significant: F(1,18)=61.484 for p<0.01 and η2=0.774. However, there are no significant 

results for both the main between-subject effect, F(1,18)=1.336 for p<.05, and the 

interaction effect, F(1,18)=0.879 for p<0.05. Figure 6.17 shows that the difference 

between part A and part B is the same for both groups. However, the CD group have 

more correct objects than the NL group.  

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A
v
er

a
g
e 

o
f 

co
rr

ec
t 

O
b

je
ct

s 

Number of the Questions 

Constraint Diagrams

Natural Language

t-test for p<0.002 

 

t-test for p<0.01 

 

t-test for p<0.05 * 

 

* 

 

* 

 
* 

 * 

 

* 

 

* 

 

* 

 * 

 

* 

 

* 

 

* 

 

* 

 

* 

 

* 

 

* 

 

* 

 

* 

 

* 

 



161 

 

 

Figure  6.17 Graph of the interaction of CD and NL representations and correct objects of the two parts of the 21 

questions 

Since the main within-subject effect is significant, we will use t test to check for that 

significance. There is a significant difference between the two groups in seven of the 

questions, according to t tests (one-tailed). The difference between the groups in Q3 is 

considerable: t(18)=0.005 (p<0.01); in Q7, t(18)=0.049(p<0.05); in Q11, t(18)=0 

(p<0.002); in Q12, t(18)=0.006 (p<0.01); in Q13, t(18)=0.001 (p<0.002); in Q14, 

t(18)=0.010 (p<0.05) and similarly for Q21, t(18) = 0.017 (p<0.05). As shown in Figure 

6.12, the CD group had more correct objects than NL (in 13 questions). In only eight 

questions, the NL group had more correct objects than the CD group. Overall, the CD 

group performed substantially better than the NL group. 

By looking at the correct objects as concepts, there is a significant difference between 

the two groups in concept 1 (Q1 to Q3): t(18)= 0.0022 (p<0.023), concept 4 (Q10 to 

Q12): t(18)= 0 (p<0.02), concept 5 (Q13 to Q15): t(18)=0.010(p<0.01) and concept 7 

(Q19 to Q21): t(18)=0.033 (p<0.05). 
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By finding the Pearson Product Moment Correlation, r(19)= 0.863, is significant at 

p<0.002, and thus, it is a strong correlation. So it is likely that none of the 

representations is responsible for the level of the performance. 

Overall, the CD group performed substantially better than the NL group because they 

created more correct objects than the NL group. 

6.5.1.2. Percentage of Created Objects 

This measurement is used to find out which notations could cause a verbose answer. 

This could reflect participants’ understanding of using that notation and their confidence 

in providing the answer. If using CD notation results in having the number of created 

objects equal to the number of the target, which is the correct objects, then this notation 

is better. However, if the number of created objects is higher than the target, then this 

notation is verbose. If the number of created objects is lower, then this language cannot 

specify the requirements. In general, if using CD notation to produce the specification 

will produce more or fewer objects than the target, then CD notation will be worse than 

NL, which is the hypothesis here since it is a new notation and participants need to 

explain their answers by being productive to reflect their learning and understanding of 

such new notation.  

For the validity of the comparison, we found the number of objects created by 

participants for each question and divided it by the number of targeted correct objects 

for that question. 

 

Figure  6.18 Graph of the average of created objects for the two groups across the 21 questions 
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Figure 6.18 shows the mean of the correct number of created objects to the target for 

each question for the two groups. The overall mean number of created objects by group 

is largely similar across the questions. There appears to be a general trend for the 

proportion of created objects to increase from the earlier to the later questions. The 

mean (and SD) of the CD and NL groups over all of the questions were 4.67 (3.35) and 

4.67 (3.96) respectively. 

 

Figure  6.19 Graph of the interaction of CD and NL representations and created objects of the two parts of the 21 

questions 

Figure 6.19 shows that participants from both groups were more productive in part B 

questions. The CD group created more objects than the target compared with the NL 

group for the questions in part A which were informal questions. Although when 

specific information was required as in part B, the CD group also created more objects 

than the NL group, the difference between the two parts within the CD group was less 

than the difference between the two parts within the NL group. The interaction effect is 

not significant: F(1,18)=1.57 for p<0.23. However, the main between-group effect is 
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significant: F(1,18)=6.31 for p<0.05 and η2=0.260. Moreover, the main within-subject 

effect is also significant: F(1,18)=18.72 for p<0.01 and η2=0.510. 

Since there are significant differences between groups, we will find the t-test results. 

There is a significant difference between the two groups in 13 of the questions, 

according to t-tests (one-tailed). The difference between the groups in Q8 is 

considerable: t(18)=0.0015 (p<0.002), in Q9: t(18)=0 (p<0.002), in Q14: t(18)=0.005 

(p<0.01); in Q1: t(18)= 0.019(p<0.05); in Q3: t(18)=0.017(p<0.05); in Q7: 

t(18)=0.020(p<0.05); in Q10: t(18)=0.020(p<0.05); in Q11: t(18)=0.042(p<0.05); in 

Q12: t(18)=0.015(p<0.05); in Q13: t(18)=0.047(p<0.05); in Q16: t(18)=0.019(p<0.05); 

in Q19: t(18)=0.026(p<0.05); and similarly for Q20: t(18) = 0.046 (p<0.05). As shown 

in Figure 6.18, in one question, Q4, the CD group had a number of created objects equal 

to the target created objects. Moreover, in one question, Q2, both groups had more 

created objects than the target. There were fewer created objects than the target in 19 

questions for the CD group and in 20 questions for the NL group. As a result, the CD 

notation is not causing any need to provide a verbose explanation. Thus, the CD group 

performed substantially better than the NL group. 

To check if a specific concept is causing a verbose answer, we will find by looking at 

the created objects as concepts that there is a significant difference between the two 

groups in concept 3 (Q7 to Q9): t(18) = 0 (p<0.002); concept 4 (Q10 to Q12): t(18) = 0 

(p<0.002); concept 5 (Q13 to Q15): t(18) = 0.001 (p<0.002); concept 6 (Q16 to Q18): 

t(18) = 0.003 (p<0.01); and concept 1 (Q1 to Q3): t(18) =0.036 (p<0.05). 

There is a strong correlation between the two representations on the created objects 

measurement. By using the Pearson Product Moment Correlation, we found that r(19)= 

0.891, which is significant at p<0.002.  

As a result, CD notation is not causing any need to provide a verbose explanation. Thus, 

the CD group performed substantially better than the NL group. 

6.5.1.3. Percentage of Configuration 

Since the number of created and correct objects is calculated automatically, we need to 

make sure that this number reflects the target. For example, if there is a set called 

Patient and its subset is called Alive, then the number of targeted objects is two. 

However, these two objects could be drawn disjointed which is inaccurate configuration 
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as in Figure 6.20, drawn above each other with the same size and xy points which 

visually seem to be one object, which is also inaccurate configuration as in Figure 6.21, 

or drawn as Patient being a subset and Alive as the super set which also an inaccurate 

configuration as in Figure 6.22. Thus, this measurement is used to manually visualize 

the answer and to find out how these objects are really used. This could reflect 

participants’ understanding of using that notation. If using CD notation results in having 

more accurate configurations than using NL notation, then CD notation is better, and 

vice versa.  

 

Figure  6.20 Two disjointed sets 

 

Figure  6.21Two sets with the same size and xy points 

 

Figure  6.22 Two related sets 

Patient Alive

Patient Alive

Patient

Alive
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Figure  6.23 Graph of the average of configuration for the two groups across the 21 questions 

Figure 6.23 shows the mean number of accurate configuration for each question for the 

two groups. The overall mean number of configuration by group is largely similar 

across the questions. There appears to be a general trend for the proportion of 

configuration to increase from the earlier to the later questions. The mean (and SD) of 

the CD and NL groups over all of the questions are 0.957 (0.074) and 0.909 (0.109) 

respectively. 

There is no significant interaction effect for the two parts for the two groups: 

F(1,18)=2.649 for p<0.05 and also, there is no significant main within-subject effect of 

the two parts: F(1,18)=2.278 for p<0.05. However, the main between-subject effect for 

the two groups shows a significant result: F(1,18)=8.086 for p<0.01 and η2=0.310. 

Figure 6.124 shows that the difference of the configuration in the CD group is very 

small. 

Since the main between-subject effect is significant, t tests are conducted. There is a 

significant difference between the two groups in 15 of the questions, according to t tests 

(one-tailed). For p<0.002, the difference between the groups in Q3 is considerable: 

t(18)=0; in Q8: t(18)=0; in Q11: t(18)= 0.001; in Q14: t(18)=0.0017; and similarly for 

Q17, t(18) = 0. For p<0.01, the difference between the groups in Q4: t(18)=0.006, and 

in Q15: t(18)=0.007. For p<0.05; the difference between the groups in Q1 is 

considerable: t(18)=0.012; in Q2: t(18)=0.018; in Q5: t(18)=0.048; in Q6: t(18)= 0.032; 
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in Q9: t(18)=0.012; in Q12: t(18)= 0.026; in Q16: t(18)= 0.030; and similarly for Q20, 

t(18) = 0.023. As shown in Figure 6.16, the CD group had more accurate configuration 

than NL (in 18 questions). In only three questions, the NL group had more accurate 

configuration than the CD group. Overall, the CD group performed substantially better 

than the NL group. 

Figure  6.24 Graph of the interaction of CD and NL representations and configuration of the two parts of the 21 

questions 

By looking at the concepts configurations, there is a significant difference between the 

two groups in all concepts expect concept 7. For p<0.002, concepts 1 to 6 has t (18)=0. 

There is a strong correlation between the two representations on the configuration 

measurement at p<0.05. By using the Pearson Product Moment Correlation, we found 

that r(19)= 0.414, which, however, is not significant at p<0.002.  

As a result, the CD group had more accurate configuration than the NL group and thus, 

they performed substantially better than the NL group. 
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6.5.2. Percentage of Steps 

This measurement is used to find out which notation would require more steps to 

produce an answer. This could reflect participants’ confidence and understanding of 

using that notation. If using CD notation results in having a number of steps equal to the 

number of the targeted steps, then this notation is better. However, if the number of 

steps is higher or lower than the target, then this notation would not specify the 

requirements sufficiently. In general, compared to the NL group, if using CD notation to 

produce the specification would need more or fewer steps than the target, then CD 

notation would be worse than NL.  

For the validity of the comparison, we found the number of steps by participant for each 

question and divided it by the number of targeted steps for that question. For NL, the 

targets steps are equal to the number of correct objects plus one, for pressing the Next 

button. On the other hand, for CD, the targeted steps, if there is only one object, is equal 

to the number of correct objects plus one, for pressing the Next button, but if there is 

more than one object, then the number of the targeted steps equals three times the 

number of correct objects and one more step for pressing the Next button. The reason 

behind tripling the steps for CD is that each object needs to be created then sized at least 

once and then moved as well.  

 

Figure  6.25 Graph of the average of steps for the two groups across the 21 questions 
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Figure 7.25 shows the mean number of steps for each question for the two groups. 

There appears to be a general trend for the percentage of steps to increase from the 

earlier to the later questions. The mean (and SD) of the CD and NL groups over all of 

the questions are 1.36 (1.30) and 1.32 (1.26) respectively. 

 
Figure  6.26 Graph of the interaction of CD and NL representations and steps of the two parts of the 21 questions 

Figure 6.26 shows that there are statistically no significant results. The interaction effect 

for the two parts for the two groups is not significant given that F(1,18)=0.214 for 

p<0.65. Moreover, there is no significant main between-subject effect: F(1,18)=0.028 

for p<0.87. Furthermore, the main within-subject effect is not significant: F(1,18)=0.002 

for p<0.97. However, in part B questions, the CD group had more steps than part B 

while the NL group had fewer steps for part B than for part A. It may be the case that 

CD is a diagrammatic notation and needs to be sized and moved to provide a good 

diagram. As shown in the plot, part B for CD group is worse than the NL group as well 

as worse than part A for both, but due to the representation there is no difference 

because the significance results are more than 0.05. According to the significance 

results, there is no significant difference between both parts and no significant 

difference between both representations. Also, there are no interactions between 

representations and parts. 
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Despite the fact that ANOVA test showed that there are no significant results, we will 

show t tests as well. There is a significant difference between the two groups in nine of 

the questions, according to t tests (one-tailed). For p<0.01, the difference between the 

groups in Q5 is considerable: t(18)=0.002, in Q8: t(18)=0.005; and in Q9: t(18)=0. For 

p<0.05, the difference between the groups in Q2 is considerable: t(18)=0.039; in Q6: 

t(18)=0.050; Q7: t(18)=0.011; Q13: t(18)=0.012; Q14: t(18)= 0.037; and similarly for 

Q16, t(18) = 0.037. As shown in Figure 6.25, the CD group had a greater number of 

steps than the targeted steps (in only one question, Q2). Overall, the CD group 

performed as well as the NL group.  

By looking at the steps for concepts, there is significant difference between the two 

groups in three concepts. For p<0.01, concept 2: t(18) =0.008; and for p<0.002 concept 

3: t(18)=0 and for concept 5: t(18)=0.001. 

There is a strong correlation between the two representations on the steps measurement 

at p<0.05. By using the Pearson Product Moment Correlation, we found that r(19)= 

0.444, which, however, is not significant at p<0.002.  

By examining the kind of available and used actions (steps) we found that actions such 

as Resize, Bring to front and Send to back are not used in the NL version. However, this 

group used steps such as Cancel Operation and Return to Example, approximately twice 

as often as the CD group, which, in the other hand, used steps such as Move, Show 

popup menu, Resize, Bring to front, and Send to back. Steps such as Add, Move by 

outside, Delete, and Change label were similar in both groups. 

As a result, the CD group and the NL group had no significant differences in performing 

steps, and thus the CD notation is as good as the formal NL notation. 

6.5.3. Percentage of the Number of Returns to the Examples 

This measurement is used to find out which notation required more understanding by 

returning to the examples to learn the concepts before being able to produce an answer. 

This could reflect participants’ confidence and understanding of what they learnt using 

that notation. If using CD notation results in fewer returns than using NL notation, then 

this notation (CD) is better because they could understand quicker than with the other 

notation. We believe that CD notation will be worse than NL because it is a new 

notation and participants need to learn it and understand it. 
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It was predicted that both groups would return to the examples more often, especially 

the CD group. Figure 6.27 shows the mean number of returns for each example for the 

two groups. There appears to be a general trend for the percentage of returns to increase 

from the earlier to the later questions. The mean (and SD) of the CD and NL groups 

over all of the questions are 5.885 (10.527) and 9.957 (16.737) respectively. 

 

Figure  6.27 Graph of the average of returns to examples for the two groups across the 21 questions 

As shown in Figure 6.28, the interaction effect, the main between-subject effect and the 

main within-subject effect are not significant: with F(1,18)= 1.089 for p<0.05, 

F(1,18)=0.0673 for p<0.05, and F(1,18)= 3.277 for p<0.05. As shown in the plot, 

questions part B for CD group is worse than the NL group as well as worse than the first 

half for both, but due to the representation there is no difference because the significance 

results are more than 0.05. According to the significance results, there is no significant 

difference between both halves and no significant difference between both representations. 

Also, there are no interactions between representations and the two parts. 

There was significant difference between the two groups in three of the questions, 

according to t tests (one-tailed). For p<0.05, the difference between the groups in Q10 

was considerable: t(18)=0.013; in Q16, t(18)=0.045; and similarly for Q18, t(18) = 

0.024. As shown in Figure 6.27, the NL group had more returns to examples than the 

CD group (in only 16 questions). In only five questions, the CD group had more returns 

than the NL group. Overall, the NL group returned more to examples and, and thus the 

CD group performed better than the NL group.  
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Figure  6.28 Graph of the interaction of CD and NL representations and steps of the two parts of the 21 questions 

By looking at the number of returns for the concepts represented by the examples, we 

found that there is no significant difference between the two groups in all concepts. 

By using the Pearson Product Moment Correlation, we found that r(19)= 0.055, which 

is not significant at p<0.05 and thus there is no correlation between the two 

representations on the number of returns to the examples measurement at p<0.002. 

As a result, the CD group had fewer returns to examples than the NL group, and thus 

they performed better than the NL group. 

6.5.4. Time Spent on each Example 

This measurement is used to find out which notation requires less time on studying the 

concepts, which will reflect the ease of understanding the use of that notation. If using 

CD notation will require less time than using NL, then CD notation will be better than 

NL. We believe that CD notation will be worse than NL because it is a new notation and 

participants need to spend more time to learn it and understand it.  
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Time spent on each example is calculated by finding the time spent on each new 

example that is introduced to participants for the first time in this training (in section: 

6.5.4.1), and the time spent on each returned-to example (in section: 6.5.4.2).  

Figure 6.22 shows the mean amount of time spent on studying each example, for each 

new (also discussed in section 6.5.4.1) and each returned (also discussed in section 

6.5.4.2) example for the two groups. The overall mean amount of time by each group is 

largely different across the examples. Unlike for the NL group, there appears to be a 

general trend for the amount of time spent on examples by the CD group to increase 

from the earlier to the later examples. The mean (and SD) of the CD and NL groups 

over all of the examples are 129.84 (96.80) and 133.68 (97.10) respectively. 

 

Figure  6.29 Graph of the average of time spent on each example for the two groups across the 7 examples 

There is no significant difference between the two groups in all but one of the examples, 

according to t tests (one-tailed). The difference between the groups in E7 is t(5)=0.047 

(p<0.05). The CD group achieved a time that was less than that of the NL group in all 

examples except examples 6 and 7. As shown in Figure 6.22, the CD group spent less 

time on returned-to examples than the NL group (in five examples). Overall, the CD 

group spent less time on the examples, and thus the CD group performed better than the 

NL group.  

There is no significant correlation between the two representations on the Time-Spent-

on-Examples measurement. For the Pearson Product Moment Correlation: r(5)=.418, 

which is not significant at p<0.05. 
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As a result, the CD group spent less time on studying the examples than the NL group 

and thus they performed better than the NL group in learning the notation. 

6.5.4.1. Time Spent on each new Example  

This measurement is used to find the time spent on each new example that was 

introduced for the first time. If using CD notation will require less time than using NL, 

then CD notation will be better than NL. We believe that CD notation will be worse 

than NL because it is a new notation and participants need to spend more time to learn it 

and understand it.  

 

Figure  6.30 Graph of the average of time spent on each new example for the two groups across the 7 examples 

Each participant was directed to a new example to be studied for the first time 

independently of any question. Figure 6.30 shows the mean amount of time for each 

example for the two groups. The overall mean amount of time spent by each group is 

largely different across the examples. Unlike the NL group, there appears to be a 

general trend for the CD group for the amount of time to increase from the earlier to the 

later examples. The mean (and SD) of the CD and NL groups over all of the examples 

are 83.57 (61.98) and 65.51 (50.10) respectively.  

There is no significant difference between the two groups in all but two of the examples, 

according to t tests (one-tailed). For p<0.05, the difference between the groups in E6 is 

significant, t(18)=0.024, and similarly for E7, t(18)=0.017. The CD group achieved a 
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time that was less than that of the NL group in two examples: E3 and E4. Overall, the 

CD group performed substantially worse than the NL group. 

For the Pearson Product Moment Correlation was r(5)=-0.269, which is not significant 

at p<0.05. To clarify, the same examples were of comparable difficulty for both groups. 

This suggests again that the performance of the two groups was not substantially 

different. 

As a result, the CD group spent more time on each new example introduced for the first 

time than the NL group, and thus they performed substantially worse than the NL group. 

6.5.4.2. Time Spent on each Returned Example 

 

Figure  6.31 Graph of the average of time spent on each returned example for the two groups across the 21 questions 

 

Figure  6.32 Graph of the average of time spent on each returned example for the two groups across the 7 examples 

This measurement is used to find the time spent on each returned-to example which will 

reflect the ease of understanding the use of that notation. If using CD notation will 

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A
v
er

a
g
e 

o
f 

T
im

e 
o
f 

R
et

u
rn

ed
 

E
x
a
m

p
le

s 

Number of the Examples 

Constraint Diagrams

Natural Language

0

5

10

15

20

1 2 3 4 5 6 7

A
v
er

a
g
e 

o
f 

T
im

e 
o
f 

R
et

u
rn

ed
 E

x
a
m

p
le

s 

Number of the Examples 

Constraint Diagrams

Natural Language

t-test for p<0.002 

 

t-test for p<0.01 

 

t-test for p<0.05 * 

 

* 

 

* 

 
* 

 * 

 

* 

 

t-test for p<0.002 

 

t-test for p<0.01 

 

t-test for p<0.05 * 

 

* 

 

* 

 
* 

 * 

 

* 

 

* 

 

* 

 

* 

 * 

 

* 

 * 

 



176 

 

require less time than using NL, then CD notation will be better than NL. We believe 

that CD notation will be worse than NL because it is a new notation and participants 

need to spend more time to learn it and understand it.  

Figure 6.32 shows the mean time spent on each return to an example for the two groups. 

The overall mean of the time spent on returns by each group is largely different across 

the examples. There appears to be a general trend for the time spent on returns to 

increase from the earlier to the later examples. The mean (and SD) of the CD and NL 

groups over all of the examples are 46.27 (66.77) and 68.17 (77.90) respectively.  

 

Figure  6.33 Graph of the interaction of CD and NL representations and the returned examples time of the two parts of 

the 21 questions 

Figure 6.33 shows that for the two groups and for the two parts, the interaction effect 

and the between-subject effect are not significant, with F(1,18)=0.998 for p<0.05 and 

F(1,18)=0.113, respectively. However, there is a significant main within-subject effect 

with F(1,18)=13.503 for p<0.01 and η2=0.429. Figure 6.33 shows that part B is worse 

than the part A for both representations. For CD group, they take less training time in 

both parts compared with NL group. Both CD and NL groups take more time in part B 
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compared to part A. However, in general, there are no differences in neither both 

representations and both parts.  

There is significant difference between the two groups in three of the questions, 

according to t tests (one-tailed). For p<0.01, the difference between the groups in Q10 is 

considerable: t(18)=0.005 and for p<0.05; the difference in Q16 is t(18)=0.027; and 

similarly for Q18, t(18) = 0.048. As shown in Figure 6.31, the NL group spent more 

time on returned-to examples than the CD group (in 13 questions). In five questions, the 

CD group spent more time than the NL group. Overall, the NL group spent more time 

on returning to examples, and thus the CD group performed better than the NL group.  

By looking at Figure 6.32, we find that according to the time spent on returned-to 

examples that represent concepts, there is no significant difference between the two 

groups in all concepts except in E4: t(18)=0.008 (for p<0.01). 

There is a strong correlation between the two representations in the time spent on each 

returned-to example measurement at p<0.05. By using the Pearson Product Moment 

Correlation, we found that r(19)= 0.379, which, however, is not significant at p<0.002.  

As a result, the CD group spent less time on returned-to examples than the NL group, 

and thus they performed substantially better than the NL group. 

6.5.5. Time Spent on each Initial-Thinking 

 

Figure  6.34 Graph of the average of time spent on each initial thinking for the two groups across the 21 questions 
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This measurement is used to find out which notation required more time in studying the 

concepts before the first action was performed by the participant after reading and 

understanding the question. This will reflect the ease of understanding of how to use 

that notation. If using CD notation will require less time than using NL, then CD 

notation will be better than NL. We believe that CD notation will be worse than NL 

because it is a new notation and participants need to spend more time to learn it and 

understand it. We will not compare the time taken by both groups to answer the 

questions because the editor used for every notation has its own tools and this requires 

different actions, and thus the time spent on performing the answer is affected by 

different factors.  

It was predicted that participants would need a lot of initial thinking time to answer 

questions, especially the CD group. Figure 6.34 shows the mean amount of initial time 

for each question for the two groups. There appears to be a general trend for the initial 

thinking time to decrease from the earlier to the later questions. The mean (and SD) of 

the CD and NL groups over all of the questions are 24.69 (20.52) and 18.80 (14.67) 

respectively. 

 

Figure  6.35 Graph of the interaction of CD and NL representations and initial thinking time of the two parts of the 21 

questions 
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Figure 6.35 shows that there is a significant main within-subject effect with 

F(1,18)=64.817 for p<0.01 and η2=0.783. Moreover, the main between-subject effect is 

significant with F(1,18)=4.833 for p<0.05 and η2=0.212. However, there is no 

significant interaction effect: F(1,18)=3.305 for p<0.05. Figure 6.35 shows that part A is 

worse than the part B for both representations. For NL group, they take less training 

time in both parts compared with the CD group. Both CD and NL groups take more 

time in part A compared to part B. However, in general, there are no differences in 

neither both representations and both parts.  

Since the between-subject effect is significant, t tests are performed. There is no 

significant difference between the two groups in all but 6 of the questions, according to t 

tests (one-tailed). The difference between the groups in Q1 is considerable: t(18)=0.001 

(p<0.002), in Q3; t(18)=0.032 (p<0.05), in Q5: t(18)=0.033 (p<0.05); in Q7: 

t(18)=0.047 (p<0.05), in Q13: t(18)=0.017 (p<0.002); and in Q14: t(18)=0.009 

(p<0.05). As shown in Figure 6.34, the NL group needed less initial thinking time to 

answer the questions (in 17 questions). In four questions the CD group needed less 

initial thinking time than the NL group. Overall, the NL group performed substantially 

better than the CD group. 

By looking at the initial thinking time measurement for the concepts used, there is a 

significant difference between the two groups in four concepts: E1: 

t(18)=0.013(p<0.05); E3: t(18)=0.030 (p<0.05); E6: t(18)=0.017 (p<0.05); and E7: 

t(18)=0.002 (p<0.01). 

By using the Pearson Product Moment Correlation, we found that there is a strong 

correlation between the two representations on the initial thinking time measurement: 

r(19)= 0.379, which is significant at p<0.002.  

As a result, the CD group needed more initial thinking time than the NL group, and thus 

they performed substantially worse than the NL group. 

6.5.6. Relations between different measures 

In this subsection, we explore any evidence of similarities between the two groups and 

between variables by using the Pearson Product Moment Correlation.  
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The Bonferroni correction is used here as well by dividing the conventional significance 

level, which is 0.05, by the number of tests, which is 20 – 10 measurements for each 

group, to find the adjusted significance level, which is (p<0.0025).  

Table 6.1 shows the Pearson Product Moment Correlation value for the CD group on all 

the measures: steps, number of returns to examples, initial thinking time, created 

objects, correct objects, configuration, correct answers, example time, new-example 

time, and returned-to-examples time. There is a tendency for participants who often 

returned to examples to spend more time on these returned examples, which is 

statistically significant for p<0.002; and also more returns to examples and more steps 

to be performed for p<0.05 (Table 6.1). Another tendency is a greater number of created 

objects, and more steps to be performed, which is significant for p<0.01; the more 

accurate configuration as well as more example time, which all are significant at 

p<0.05. Moreover, initial thinking time tends to mean more example time, which is 

significant at p<0.01, and more new-example time, which is significant for p<0.05. 

Further, more new-example time means more example time to record, which is 

significant at (p<0.05). However, there are no significant relations between the other 

measurements.  

Table  6.1 The Pearson Product Moment Correlation between different measures for the CD group 
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No. Returns .490         

Initial Thinking .413 .076        

Returned-to Example 

Time 

.603* .888*** .213       

Created Objects .787** .383 .399 .456      

Correct Objects -.073 .216 -.264 .079 .205     

Accurate Configuration .545 .327 .212 .304 .652* .474    

Correct Answers .077 .413 .117 .228 -.039 .589* .295   

Example Time .415 .436 .737** .547 .558* .316 .530 .433  

New-Example Time -.054 -.283 .662* -.253 .241 .295 .344 .299 .671* 

 Legend: Level of significant for one-tailed, ***p<0.0025, ** p< 0.01 level, * p<0.05 level for (df=8).  
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Table  6.2 The Pearson Product Moment Correlation between different measures for the NL group 
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No. Returns .840***         

Initial 

Thinking 

.224 .496        

Returned-to 

Example 

Time 

.784** .945*** .599*       

Created 

Objects 

.786** .423 .057 .427      

Correct 

Objects 

.669* .228 -.155 .170 .910***     

Accurate 

Configurati

on 

.229 .172 -.056 .124 .332 .477    

Correct 

Answers 

.248 -.182 -.370 -.226 .536 .803*

* 

.558*   

Example 

Time 

.856*** .831*** .553* .901*** .681* .495 .217 .130  

New-

Example 

Time 

.228 -.182 -.055 -.142 .616* .755*

* 

.222 .793** .301 

 Legend: Level of significant for one-tailed, ***p<0.0025, ** p< 0.01 level, * p<0.05 level (df=8). 

6.6. Discussion  

The overall aim of this experiment was to evaluate the efficacy of CD for generating 

program specification expressions in comparison with using natural language (NL) 

expressions. It was predicted that participants given the CD notation would obtain a 

lower proportion of correct answers in a longer training time with many returns to 

examples, because they had no prior experience of the CD notation. Although the CD 

group spent less time on the training, they obtained more correct scores, and fewer 

returns to the examples compared with the NL group.  

The experiment took the form of a training-based experiment in which 20 participants 

were given instructions and training either on CD or equivalent NL specification 



182 

 

expressions, and then they were asked to generate specifications for the expressions, in 

their particular notation. Overall, we got positive results from this experiment; 

participants generated more accurate specifications in CD than using the other notation. 

It seemed that the CD notation is really an intuitive and easy to use notation, which 

again supports Kent’s claim (Kent, 1997). It is also easy to understand its interpretation 

when using CD to design software systems (Howse & Schuman, 2005).  

In general, Table 6.3 shows that CD is better than NL in terms of correct answers, 

correct objects, created objects, accurate configuration, number of returns to examples 

and the time spent on returned-to examples, on new examples and on examples overall. 

Table 6.4 shows that the CD group was not better than the NL group in terms of 

learning time, and steps. Also, Table 6.4 shows that CD was not better than NL in terms 

of initial thinking time, and steps. 

During this experiment, within the NL group, one user tended to draw circles on papers. 

Another NL user tended to image the case by making circular diagrams using his hands 

to draw on the table or in the air with mental visualizations. These two attempts were 

done to understand the purely textual statements since the construction is a process of 

interpretation and translation. The NL users did not know that their colleagues were 

using similar diagrams in the experiments. For fair comparison, participants were 

randomly assigned to one group despite what representation they would have preferred. 

We found that the CD notation was more effective than the NL notation and also we 

found that there were no drop-outs in this voluntary experiment. 

Many experimental design phases were made. It is a complicated design and we do not 

know how these decisions affected participants’ performance. It may be the case that a 

drawing-with-paper-and-pencil environment would be faster than using a new editor 

which requires some time to familiarize oneself with and to learn how to use it.   

Moreover, as it was a training experiment, participants were required to both learn and 

generate specification at the same time. Although immediate feedback was required as a 

training aid, there was a lack of detailed feedback. Both groups were inexperienced in 

using notations for specifying programs.  
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Table  6.3 Summary of the Results where the CD group performed better than the NL group  
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(16.737) 
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(61.98)  

 

65.51 
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Table  6.4 Summary of the Results where the  NL group performed as well as or better than the CD group 
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Overall CD mean (SD) 

Overall NL mean (SD) 

24.69 (20.52)  

18.80 (14.67) 

1.36 (1.30) 

1.32 (1.26) 

T-Test result for 

individual questions or 

examples covering both 

groups 

For p<0.002: Q(1, 13) 

For p<0.05: Q(3, 5, 7, 14) 

In only 4 questions the CD 

group needed less initial 

thinking time than the NL 

For p<0.01: Q(5, 8, 9)  

For p<.05: Q(2, 6. 7. 13. 14.16) 

(the CD group and NL group had no significant 

differences in performing steps and thus the CD 

notation is as good as the formal NL notation) 

Correlation between the 

groups 

significant at p<0.002 (for 

d.f.=19) 

Not Significant at p<0.002 for (df=19) 

Significant at p<0.0540 

The next chapter will have a summary of the previous studies, along with the overall 

conclusion.  
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Chapter 7 General Conclusions  

This concluding chapter brings together the key findings and 

results obtained throughout the thesis. Section 7.1 gives a brief 

summary of the research. Section 7.2 discusses the benefits of 

using the proposed triangulated evidence by discussing the 

research findings. Finally, section 7.3 discusses the limitations of 

this study and gives suggestions for extending this work, as well 

as final thoughts on what could be improved. 

7.1. Introduction 

The primary aim of the research presented in this thesis was to investigate the usability 

of Constraint Diagrams as a program specification language by using different 

approaches to determine the strengths and weaknesses of that language. This research 

reveals that CD seems to be a promising language for use by novices who are not expert 

in software design, to specify programs related to their fields such as medicine, 

chemical engineering, etc. A series of theoretical and practical studies were conducted 

to investigate this usability. 

Multiple methods were adopted in order to provide triangulated evidence of the 

potential benefits of constraint diagrams compared with other notational systems – NL 

in this thesis. Three main approaches were adopted for this research and they were 

worked together. 

The first approach, which was a theoretical evaluation, was a semantic and task analysis 

of CD notation. This was conducted by the application of the Cognitive Dimensions of 

Notations framework (CogDim), which was used to examine the relative strengths and 

weaknesses of both CD and NL notations in terms of the perceived facilitation or 

impediments of these different representations. CogDim suggested five activities and 

for each of these we evaluated both notations according to the fourteen cognitive 

dimensions. 

As we extensively discussed in chapter 4, CogDim is an approach that could help a 

designer to cognitively understand the design of a notation. According to the designer’s 

needs, a selected dimension can be traded off with other dimensions to some degree. 

This framework highlights that changing a dimension will entail a change in some other 
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dimensions. For example, in order to reduce the degree of viscosity, we could increase 

the number of abstractions, which would both create hidden dependencies and reduce 

the visibility level, and thus increase the level of hard mental operations. 

Although there is a study on the usability of constraint diagrams using CogDim 

(Morgan, 2011), it did not provide a full usability profile of the notation. Moreover, it 

adopted a different way of applying CogDim to constraint diagrams by combining 

novices’ feedback of the interpretation of the notation to analyse dimensions. 

From our systematic analysis, we found that the cost of the activities using CD was less 

than the cost using NL. Only in one dimension, premature commitment, did CD not 

satisfy two activities. However, this lack of satisfaction is needed to ensure the diagrams 

are formally valid. Exploratory design and incrementation activities had a high level of 

premature commitment, which could be considered as a problem. However, since 

viscosity was very low this lets premature commitment be less costly, since bad guesses 

can easily be corrected.  

In this study, we used cognitive dimensions to examine the activities and we used these 

activities to find any undesired degree of the dimensions. For example, we faced a 

problem of high level premature commitment with the CD notation in exploratory 

design and incrementation activities; luckily the level of viscosity was low, which 

meant correction guesses would be low cost. In fact, as shown in our evaluation using 

CogDim, the levels of viscosity and premature commitment in the NL notation were 

high for exploratory design and modification activities; thus to do these two activities 

using this notation we could adopt a different notation such as the CD notation that had 

a lower degree of viscosity and then transfer the specification to the target notation, 

which breaks this process into two activities: exploratory design activity using CD 

notation followed by a transcription activity to transfer from CD to NL. 

In general, Cognitive Dimensions of Notations helped us in understanding the nature of 

the structure of the CD notation. Despite the fact that CD is a complex notation, this 

framework is suitable for exploring the cognitive aspects of this complex notation. This 

study provides a full profile for each notational activity supported by a number of 

cognitive dimensions, which could help in understanding how such a notation can be 

used in specifying software. 
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The second approach, which is the first empirical experiment, was conducted to 

examine the interpretation of CD in order to evaluate users’ comprehension of this 

notational system. This study was based on comparing the efficacy of CD and NL for 

understanding program specification statements. It was also a practical evaluation of the 

searching activity used in chapter 4.  

This experiment took the form of a web-based competition in which 33 participants 

were given instructions and training on either CD or equivalent NL specification 

expressions, and after each training example, they responded to three multiple-choice 

questions requiring the interpretation of expressions in their particular notation. 

Participants had no prior experience in applying new notations neither in program 

specification nor in CD notation. 

In the outcomes of this experiment we found that the CD group spent more time on the 

training and had lower confidence. However, they obtained comparable interpretation 

scores to the NL group and took less time to answer the questions, although they had no 

prior experience of CD notation. 

Overall, using CD even by novice users for interpreting a specification for software can 

save time spent on the searching for information activity that is needed for 

interpretation. CD novice users showed accurate understanding of the notation. Thus, 

after CD users had been trained at using CD, they found this notation effective in terms 

of interpretation time. 

The third approach, which was the second empirical experiment, was conducted to 

examine the construction of program specifications. This experiment was based on 

comparing the efficacy of CD with NL for generation of program specification 

statements. This experiment evaluated the use of CD to build program specifications for 

a health informatics case study called a Patient Record System (Fetais, et al., 2005). In 

this experiment, we also evaluated the five activities mentioned in chapter 4: 

exploratory design, modification, incrementation, searching, and transcription activities. 

In this experiment, which focused on the construction of CD, 20 participants were given 

instructions and training on either CD or equivalent NL specification expressions. After 

each training example, they responded to three questions requiring the construction of 

expressions in their particular notation. We built an editor that allowed construction in 



188 

 

the two notations, which automatically logged their interactions. Participants had no 

prior experience in applying new notations in program specification, or in CD notation. 

From this experiment, we found that although the CD group had more accurate answers, 

they spent more time answering the questions. The NL group gave answers that were 

partially correct but with some missing information. Moreover, the CD group had spent 

more time in training, but their returns to the training examples were fewer than in the 

case of the NL group. 

According to the construction of the program specification, CD novice users showed 

accurate understanding of using the notation to construct the required specification. 

However, due to the lack of familiarity with both CD notation and program 

specification, CD users needed more time for training and constructing the 

specification.  

In general, according to CogDim analysis and both interpretation and construction 

experiments, it has been shown that constraint diagrams are clearly a promising 

language for program specification in contrast with a natural language approach. The 

complexity of the problems represented requires a notation that simplifies them and 

explores unobvious constraints that should be known during the program specification 

before the implementation of the program. It is widely accepted that describing 

constraints in natural language will always result in ambiguities, and when describing 

constraints in traditional formal language, this will always need a strong mathematical 

background.  

We will now outline the implications they bring for program specifications, along with 

the limitations and the final views on future recommendations.  

7.2. Implications of the Key Findings 

In the introduction chapter, five questions were posed: 

1. Is CD notation effective for program specification? 

2. Is CD a good notation for the construction of program specification 

expressions?  

3. Is CD a good notation for the interpretation of program specification 

expressions? 
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4. What are the relative strengths and weaknesses of CD notation and 

conventional NL notation? 

5. Is CD notation effective for supporting novice users? 

The objective of this research was to provide a theoretical evaluation and two practical 

experiments, which is triangulated evidence of the potential benefits of CD notation 

compared with NL notation to answer to these questions. We will address the questions 

in reverse order and will discuss them in the following subsections. 

7.2.1. Is CD notation effective for supporting novice users? 

Novice users who are new to program specification and new to using the CD notation 

did not find any difficulties in learning this notation. In both the interpretation and 

construction experiments, the item analysis showed that there was little difference 

between the two groups, even on the most difficult questions. 

Furthermore, there was no significant difference in the time taken for learning CD and 

NL notations, despite the fact that the NL users were already familiar with the NL 

notation. Use of CD notation rather than NL notation even by novice users for 

interpreting a specification for software saved time spent on searching for information 

that was needed for interpretation. In general, CD novice users showed accurate 

understanding of using the notation to both interpret and construct the required program 

specification. Thus, the CD notation is effective for supporting novices in at least two 

aspects of specifying programs. 

7.2.2. What are the relative strengths and weaknesses of CD notation and 

conventional NL notation? 

On one hand, in terms of the cognitive facilitation, CD notation is cognitively less 

costly compared to natural language. Unlike NL notation, CD notation has free rides 

and thus hard mental operations occur less than with NL notation. Moreover, the CD 

notation has a high degree of role-expressiveness which could help novice users to 

easily infer the meaning of the purpose of the components used. Furthermore, since 

related information is visually grouped, errors can be easily spotted. In general, 

according to the cognitive dimensions, CD notation has the required degree of the 

dimensions for the activities. For example there is no need to reduce the degree of 

viscosity, and thus we will not increase the amount of abstraction, which will not create 

hidden dependencies nor reduce the visibility level, and thus, will not increase the level 
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of hard mental operations. In general, the cognitive cost of the program specification 

activities using CD notation is less than the cost using NL notation. In Chapter 4 we 

discussed the cognitive strengths that CD notation has and how the cost of it is less than 

that of natural language.  

On the other hand, in terms of the cognitive impediments, the CD notation has a 

problem of a high level of premature commitment which could force users to think 

ahead and make certain decisions when used in exploratory design and incrementation 

activities. Although this enforcement could be considered as a cognitive weakness, it 

could be viewed as a good way to support the validation of these notation diagrams, and 

luckily the level of viscosity of CD notation was low, which means correction guesses 

were at no cost.  

Furthermore, in terms of the comprehension and construction impediments, due to the 

unfamiliarity with both CD notation and program specification, CD users needed more 

time for training and constructing the specification. However, when users were trained 

on CD notation, it was a faster tool for interpretation than NL notation.  

Overall, the CD notation was cognitively effective for program specification. 

7.2.3. Is CD a good notation for the interpretation of program specification 

expressions? 

As shown in the previous two answers, CD notation supports novice users and also is 

cognitively effective for program specification. This is an indication that CD notation is 

effective enough to play a role. So we examined this indication with the interpretation 

role in this case. 

From the interpretation experiment, we found that the CD notation was better than the 

NL notation for interpretation tasks done by novice users. Overall, it is effective for 

understanding the program specification accurately and it can actually be used to save 

time spent on interpreting the program specification. Despite the fact that NL notation is 

easy to use for specification, especially for narrative descriptions, it has the problem of 

being ambiguous and allowing different inferences. However, CD notation, due to its 

ability to visualize the properties of relationships and the relative positions of the 

elements, such as being in a subset of other sets, and also due to having a free-ride 

property, is better to use because it is not only a visual but also a formal language. 
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Overall, there were no particular types of concept that showed difficulties, even after 

Bonferroni corrections.  

7.2.4. Is CD a good notation for the construction of program specification 

expressions?  

As shown in the previous answer, there is an indication that CD notation is effective 

enough to play an interpretation role. In this case, we will examine this indication with 

another role in program specification, which is the construction role. 

From the construction experiment we found that the CD notation was better than the NL 

notation for construction tasks done by novice users. Overall, due to the fact that CD 

notation can compact information into a small space, it is more effective than NL 

notation in constructing a program specification accurately. In general, there were no 

particular types of concept that showed difficulties, even after Bonferroni corrections. 

7.2.5. Is CD notation effective for program specification? 

As shown in the previous two answers, CD notation supports novice users and also is 

cognitively effective for program specification. It is also a good notation for both 

interpreting and constructing program specification. 

As a conclusion from this study, we found that CD is as effective as NL, which is a 

familiar language that novice users would always use. Overall, Kent claimed that CD 

could be used to bridge the gap between formal and informal specification languages by 

providing an intuitive and expressive unambiguous diagrammatic formal language, and 

that it is simpler and more effective than other approaches used to formally specify 

programs (Kent, 1997); it also has been claimed it could be used for software 

specification (Howse & Schuman, 2005; Fetais, et al., 2005); and it has been claimed 

that its interpretations are not always well matched to the meaning (Stapleton & 

Delaney, 2008). We supported these claims by using triangulated evidence and we went 

further than that by showing that CD notation is  not only better to use for interpretation 

tasks but also better for construction tasks than NL notation, which is a good first step to 

evaluating how CD notation could be used in program specification. Although there was 

an overhead cost of learning the CD notation for interpretation, this cost was not too 

great, and it was less than the cost of NL notation for construction tasks. Thus, 

hopefully constraint diagrams will be used by non-computer scientists to bridge the gap 
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in communication between software designers and stakeholders when specifying 

programs in order to be accurate and concise. 

Overall, it seems that CD is intuitive and expressive, with an unambiguous semantic 

notation, which supports Kent’s claim (Kent, 1997). It is also easy to understand its 

interpretation when using CD to design software systems. However, the proportion of 

correct answers and the confidence level on answering indicate that the interpretations 

were not always well-matched to the meaning (Stapleton & Delaney, 2008).  

7.3. Thesis Limitations and Future Work 

We consider this thesis as the first step in evaluating the usability of CD notation by 

comparing it with natural language using theoretical and empirical methods. The 

theoretical method was an analysis which was obtained from the Cognitive Dimensions 

of Notations framework. Although Green did not explicitly claim that CogDim was 

objective in its conclusions, there is still an issue of how objective it is. Overall, we 

found that CogDim is subjective, because the analysis in Chapter 4 was based on the 

author’s beliefs and experience in both CD and NL notations. Thus, we believe that this 

framework should include, besides the activities and the dimensions, the experience 

level of the users, which would enrich the analysis with the cognitive strengths and 

weaknesses of such notations from the point of view of both the expert and the novice 

user. For example, cognitively a novice user could consider the CD notation as having a 

high degree of hidden dependencies because of the reading issues, but an expert may 

consider that the degree is low because of the generalized constraint diagrams notation. 

Both of them are right for the reasons they have given, which is an indication of their 

expertise level in that notation. Another example: novice users who want to denote the 

existence of a spider (an element) without knowing the exact place may consider putting 

the spider on the edge of the contour as an option. However, an expert would consider 

this a visual error because he knows that having unknown places means that such a 

spider would have feet and legs. The CogDim is also based on the selection of examples 

used, whether they are easy or hard, and the case studies on whether they are simple or 

complex. Moreover, this framework required every dimension to be described 

(Blackwell, et al., 2001) with illustrative examples, case studies, and associated advice 

for designers. Thus, the chosen selection of simple or complex examples and case 

studies will definitely affect the analysis, and thus this framework should include, 

besides the activity, the dimensions and the experience level of the users, and the level 
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of both examples and case studies. Furthermore, although there are definitions of the 

cognitive dimensions, there is no standard definition of their scale – of the degree of 

each dimension. For example, the degree of hidden dependencies for the novice user is 

high, but for the expert it is low. The question here is how high the degree is, and how 

low the degree is; and also when we could consider the degree as medium. In general, 

without having a bar, it was difficult to judge the degree of a cognitive dimension 

without being subjective, which we believe is a major flaw of the CogDim framework. 

In general, we disagree with Green that the CogDim framework is a usability evaluation 

technique (Green, 1996) because it is only a “check list” and a “discussion tool” (Green, 

1996) with other evaluators. Furthermore, since the target for any usability study is the 

users who will use such notations, we have to disagree with Green and his colleagues 

about limiting the scope of users to focus only on designers (Blackwell, 2001). Thus, as 

a recommendation, we think several people, experts and non-experts, using both CD 

and NL languages, are required to apply different dimensions to a variety of tasks. 

However, this will be costly, which is against the notion of proposing CogDim as being 

“extremely quick and cheap” (Green, 1996). In fact, as it is, we did not find it “quick 

and cheap” because it took time to understand the definition of each of the cognitive 

dimensions, to understand the dimensions of the dimensions, to understand the 

relationship between different dimensions, and to understand the differences between 

the dimensions when applying it to different notational activities. Overall, we found that 

this framework, despite its observed limitations, was an effective tool to provide a fair 

sense of how the notation would react to a notational activity, to provide more 

understanding of the useful aspects of the notation, and to provide a standard vocabulary 

that could be used when questioning others about certain notational features. 

For the empirical experiments, the number of participants was limited. In our 

interpretation experiment, which was an online experiment, 28 of the 53 participants 

dropped out, while the drop-out rate was zero in the construction experiment. Perhaps 

the reason was that the latter experiment was conducted in the lab, which was a 

controlled setting and thus affected the rate. Overall, although we found from the 

empirical studies that the CD notation requires more time to learn how to interpret, we 

found it required less time to learn how to construct compared with the NL notation. In 

general for both experiments the NL notation did not provide more accurate answers 
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than the CD notation. For these reasons the CD notation was better than the NL 

notation.  

Although we empirically evaluated the CD and NL notations with novice users, who 

had no, or relatively little, background of either program specification or using CD 

notation, the research should be extended to compare an experienced CD group with an 

experienced NL group. This could provide us with the usability of such notations from 

different points of view and we could use the results from the proposed study to 

compare them with our present results and get a wide-ranging indication of usability. 

Indeed in our study the group was experienced in NL, but not in using NL for 

specifying programs.  

The experiment’s design might also be improved. As they were training experiments, 

participants had to both learn and perform a task at the same time. Perhaps we could 

separate the learning and the performing tasks and see how spending more hours 

learning the CD notation and using it would affect the results. The interpretation 

experiment was intended to last for an hour and the construction experiment was 

intended to last for two hours. However, if we let participants learn and use the CD 

notation for 10 hours with different trails, it may change the results. In fact, we found in 

the interpretation experiment that participants tended not to return to examples. We 

would like to believe that they might understand the notation well enough just from one 

reading. However, due to the fact that it was a competition and the time taken was 

recorded, we have to assume that they might have decided to save time by not returning 

to examples. 

The learning in our experiments depended on both the possibility to return to the related 

example at any time while answering and the immediate feedback on the answers. We 

found that the NL group returned to the examples more than the CD group, which meant 

they needed help in finding out how to solve the questions. This might indicate that the 

specification of a model using the CD notation was more memorable than by using the 

NL notation. In general, we would like to provide participants with detailed feedback 

and check whether this would affect the drop-out rate or not. 

The material we used covered selected concepts of CD notation and thus the range or 

scope of the examples used and their complexity are relatively limited. We aimed at 

evaluating the basic concepts of CD notation because we focused on understanding how 
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users, especially novices, would understand and use simple program specifications. 

Kosslyn (Kosslyn, 1989; Kosslyn & et al., 1990) found that increased visual data 

complexity would reduce comprehension. Thus, we tended to make it as simple as 

possible by avoiding the use of complex examples where a reading tree must be explicit. 

Also, we tended to include only the basic concepts of CD notation and not the full 

version of the relations between spiders such as the strand.  

We used a fragment of the Patient Record System and thus it was not used as a whole 

system. As mentioned previously, we were evaluating the usability of this notation for 

novice users and thus we tended to cover the basic concepts of CD notation and a 

simple case study system. We would recommend repeating this study with different 

case studies which could be real-world case studies taken from companies that are 

interested in software designs. Our research depended on theoretical case studies which 

might or might not apply in the real world, and thus it could be considered as one 

example of a follow-up study. 

Choosing to use multiple choice rather than free-form open-ended responses could 

affect the results. The multiple choice forced participants to pick one answer, which 

could result in providing a vague interpretation. Perhaps translation tasks would produce 

clearer interpretations. 

The construction of the CD notation experiment did not involve free-hand drawing. It 

was an easy drag-and-drop construction of diagrams task to eliminate the chances of 

human error during drawing. On one hand, we limited the users’ creativity by forcing 

them to use a specific number of shapes by constraining their available tools. On the 

other hand, despite the fact that free-hand drawing would not constrain their options, it 

might result in drawing ambiguous diagrams. Thus we would still recommend the drag-

and-drop feature for construction tasks. 

The interpretation and construction tasks were relatively simple. For example, 

participants were provided with one invariant at a time. In our evaluation, we aimed at 

simple tasks because our research was a first step in studying the usability of CD 

notation. We could examine participants’ interaction by providing them with many 

related invariants at once, which might produce different results from ours. In general, 

this research had only one experiment in interpretation and only one experiment in 

construction. Perhaps conducting more experiments would be beneficial. 



196 

 

This construction experiment was about creating diagrams. However, there were no 

practical studies on tasks such as modifying existing modelling using the CD notation. 

We would like to conduct some studies to examine how the use of CD notation as a 

construction tool might affect the programming implementation phase; why CD 

notation would allow people to accomplish tasks faster than purely textual notations; 

and how CD notation would affect the software lifecycle. 

Furthermore, we used general measurements to evaluate the performance, such as the 

time spent on learning and using the notation, and the percentage of accurate answers, 

as well as subjective measurement of the confidence rating. However, we do not know 

whether the user was spending time on learning how to use the notation or learning how 

to use the editor. Thus, we may need to understand the user interactions with the design 

of the notation and distinguish between the time spent using the notation and time spent 

using the editor by measuring whether the user was reading, searching or scanning 

information, or simply looking at the screen. This could be conducted by eye-tracker 

experiments. These experiments could add detailed data to the usability studies, which 

would provide a full understanding of this notational system and extend this study to 

understand the nature of CD notation. 

Moreover, our editor, which took a long time to construct, could be improved by having 

an intelligent electronic answer-marking schema to record the validity of the diagrams 

by differentiating between legal diagrams, correct-answer diagrams, and partially 

correct or legal diagrams, which would be a benefit. Indeed, the way in which our 

developed editor worked for the two notations may impact on the performance.  

Furthermore, we compared this notation with natural language for the reasons discussed 

in Chapter 1. However, it would be beneficial to compare it with other languages for 

different reasons. To elaborate, we could compare it with another diagrammatic 

language such as UML (Chapter 2, section 2.3) or to a formal language such as Z or 

OCL (Chapter 2, section 2.2). Indeed, the contrast with the formal languages would be 

interesting to explore because they all share the same properties of being formal and 

could be applied for program specification.  
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Appendix A: Material used for conducting Experiment 1  

In this Appendix we will present the material that used in Experiment 1. Italic words are 

the names of things that are defined in specifying our information system and bold 

words are their type. At the beginning participants were given a training example 

followed by three training questions. Then each example that illustrates a particular 

concept will be followed by three questions. The total are eight examples each followed 

by three questions about that concept.  

There will be three tables. Table (A.1) represents the Examples used for experiment 1 

for the CD group. 

Table A.1 The Examples for the CD group 

Example # Example content for the CD group 

 

Training 

Example 

 

 

This equation represents the value of x. x-2*4=10 means x-8=10 which means x=10+8. 

So x =18. 

 

Example 1: 

Sets and 

Types 

 

 

This diagram defines Memb (Member) to be a finite subset of given type M.  

Definition: 

This represents a set that can have a number of elements, zero or more. It may 

have a name. 

This represents a predefined type. It will have a name. 

 

Example 2: 

Members of 

sets 
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This diagram represents an empty set called Title. 

 

This diagram represents a set called Memb. With two elements only. 

Definition: 

 This shaded zone shows that the set does not contain any elements other than 

the shown ones. This zone has no elements. 

An element. 

Elements inside this shaded zone show the set has a number of elements. This 

zone has a number of elements less than or equal to three. 

 

Example 3: 

Sets' 

relationships 

 

  

This diagram divides Title into two disjointed subsets: those having no copies are said to 

be ExColl or 'Ex-Collection'; the others are said to be InColl or 'In-Collection'. 

Definition: There are three types of relationships between sets 

 Two sets can intersect: A set can have some members that are already 

members of another set. 

 Two sets can overlap: A set can be a subset of another set. 
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 Two sets can be disjointed: Two sets can be partitioned into separate 

subsets.  

 

Example 4: 

Relationships 

 

 

This diagram defines a relationship called Info that associates every element of Memb 

with some element of type I. 

Definition: 

This represents all elements in a specific set. 

 

This represents the existence of an element. 

This represents a relationship between two sets, elements or a combination of 

both. 

 

 

Example 5: 

Spiders 

 

 

This diagram defines two sets A and B that intersect. There exist at least three elements; 

a, b and c. 

Definition:  

 Elements in different zones are connected by straight lines to denote a 

spider. For a spider, elements are called feet and straight lines are called legs. A spider 

denotes the existence of an element. 
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Example 6: 

Spiders' 

relationships 

  

 

This diagram defines two intersected sets A and B. There is an element in A and an 

element in B which may or may not be the same element. 

Definition: 

 A strand connects two feet, from different spiders, placed in the same zone . 

The two spiders may represent the same element. 

 

Example 7: 

Invariant 

 

 

A diagram introduced shows that a Video Copy class ( VC ) maintains a set of Title (s) 

(uniquely identified by elements from given type T ). Each known Title has their own 

associated Desc (Description) (of type D ), and is either in InColl (In-Collection) and in 

ExColl (Ex-Collection), but not in both. 

Definition:   

The general form is: 
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This framework represents a core concept (class). Its state-invariant is written as any mix 

of declarations and predicates (separated by a ‘;’ when they appear on the same line). 

State-invariants of the core concept are the conditions that are always true about the 

class. 

 

Example 8: 

An Event 

Specification 

 

 

An event (operation) called VM!NewMember(m,i) can be used to register a new member, 

m , with information i . The pre-condition (before applying the event) ensures that i has 

type I , and that m is an identifier of type M which is not in Memb . In the post-

condition(after applying that even), dashed names denote values that are changed - but 

only minimal changes are shown here; there is no need to say that other elements of 

Memb and their associated Info values remain the same, because of the convention that 

"the rest stays unchanged" 

Definition: 

The general form is: 

 

This form represents a named event C!E which specifies some allowable change-of-state 
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for such objects. Thus it always involves a POST-CONDITION (below the double line), 

and it may include an optional PRE-CONDITION (above) as well. An event may have 

input-arguments (names between parentheses); these denote local constants, which must 

be declared in its pre-condition. 

  

The next table (A.2) represents the Examples used for experiment 1 for the NL group. 

Table A.2 The Examples for the NL group 

Example # Example content for the NL group 

 

Training 

Example 

 

 

This statement represents the value of x. x-2*4=10 means x-8=10 which means x=10+8. 

So, x=18. 

 

Example 1: 

Sets and 

Types 

 

 

Definition:  

A set can have a number of elements, zero or more. It may have a name.  

We may say that a set can be of a particular type (have a particular property).  

 

Example 2: 

Members of 

sets 

 

 

 

Definition:  

- A set with zero number of elements is called an empty set.  

- Any member of a set is called an element.  

- A set can have a fixed number of elements.  

 

Example 3: 

Sets' 

relationships 

 

 

 

Definition:  

There are three types of relation between sets:  

1. A set can have some members that are already members of another set.  

2. A set can be a subset of another set.  

3. Two sets can be partitioned into separated subsets.  

 

Example 4: 

Relationships 

 

 

 

Definition:  

The product of 2 and 4 subtracted from x equals 10. 

There is a set called Member of type M. 

There is a set called Title which is an empty set of elements. 

There is a set called Member which has a fixed number of 

elements. 

Title set is partitioned into two separated subsets: those who have no copies are said 

to be Ex-Collection; all others are said to be In-Collection. 

Every element of a set called Member of type M is associated with some element 

of type I by a relation called Information. 
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Two sets, elements, or a combination of both can relate to each other by a relation that 

defines the association 

 

 

Example 5: 

Spiders 

 

 

 

 

 

 

Definition:  

Elements in the same location are the same in a given situation if they denote the 

existence of an element 

 

Example 6: 

Elements' 

relationships 

 

 

 

 

Definition:  

Two different elements in the same location may be the same in a given situation.  

 

 

Example 7: 

Invariant 

 

 

 

 

Definition:  

A core concept (class) has several components; a class name and a state-invariant which 

is written as any mix of statements of declarations and predicates. State-invariants of the 

core concept are the conditions that are always true about the class.  

 

Example 8: 

An Event 

Specification 

 

 

 

 

 

 

 

Definition:  

An event specifies some allowable change-of-state for such objects. Thus it always 

involves a POST-CONDITION and it may include an optional PRE-CONDITION as 

well. An event may have input-arguments (names between parentheses); these denote 

local constants, which must be declared in its pre-condition. The pre-condition ensures 

that any parameter values satisfy all constraints which are imposed by the state-

invariant.  

Consider two sets A and B that intersect and three elements; a, b and c.  

An element a is in A and not in B or a is in the intersection of A and B (a is in A).  

An element b is in B and not in A or b is in the intersection of B and A (b is in B).  

An element c is in A and not in B. 

 

Consider two intersected sets A and B and two elements. There is an element in A 

and an element in B which may or may not be the same element. 

 

A Video Copy class maintains a set of Title (s) (uniquely identified by elements 

from given type T). Each known Title has its own associated Description (of type 

D), and is either in in-collection and in ex-collection, but not in both. 

 

An event (operation) called NewMember(m,i) is used to register a new Member, 

m, with Information, i . The pre-condition (before applying the event) ensures that 

its input-argument m is an identifier of type M which is not in Member. And the 

other input-argument i has type I. In the post-condition (after applying that 

event), values are changed. m is associated with i by a relationship called 

Information and it is in Member. 
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After each example three questions are presented to the participants. For each question 

the answer will be “Yes”, “No” or “Not Specified”. “Not Specified” means there is 

insufficient information provided in the question to answer the question without any 

assumption. Before answering, participants could return to the related example at any 

time. However, after answering they only could rate their confidence about their 

performance by choosing the level of how hard the question was. There were five 

levels: very difficult, difficult, intermediate, easy, and very easy. After rating, an 

immediate feedback about the result was shown to the participant to tell them if their 

answer was right or wrong. If the answer was wrong they would be provided with the 

correct answer because this experiment was a training experiment. Table A.3 represents 

the 24 questions for both groups along with the answers. 

Table A.3 The Questions for both the CD and the NL groups and the correct answer 

 CD NL The answer 

 

Training 

Q1 

 

 

From the given equation, is it true 

that x = 100? 

 

 

 

From the given statement, is it true 

that x = 100? 

 

Yes 

 

Training 

Q2 

 

 

From the given equation, is it true 

that z = 50? 

 

 

 

From the given statement, is it true 

that z = 50? 

 

Not 

Specified 

 

Training 

Q3 

 

 

From the given equation, is it true 

that y = 10?  

 

 

From the given statement, is it true 

that y = 10?  

 

No 

 

Q1 

 

 

From the given diagram, is there a 

set of patients called Patient of type 

P?   

 

 

 

 

From the given statement, is there a 

set of patients called Patient of type 

P? 

 

Not 

Specified 

x divided by 10 added to 30 

equals 40 

 

x divided by 10 added to z 

equals to 40. 

 

10 added to y equals to 40. 

A set is uniquely identified by 

elements from given type P. 
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Q2 

 

 

From the given diagram, is there a 

set called Health-Professional of 

type H? 

 

 

 

 

 

From the given statement, is there a 

set called Health-Professional of 

type H? 

 

Yes 

 

Q3 

 

  

From the given diagram, is R a set 

of type PRec? 

 

 

 

 

From the given statement, is R a set 

of type Patient Record? 

 

No 

 

Q4 

 

 

From the given diagram, is it true 

that there are no patients in Patient 

set? 

 

 

 

 

From the given statement, is it true 

that there are no patients in Patient 

set? 

 

Yes 

 

Q5 

 

From the given diagram, is it true 

that there are many elements in 

Patient set? 

 

 

 

 

From the given statement, is it true 

that there are many elements in 

Patient set? 

 

Not 

Specified 

 

Q6 

 

 

From the given diagram, is it true 

that there are no patients in Patient 

set? 

 

 

 

 

From the given statement, is it true 

that there are no patients in Patient 

set? 

 

No 

Health-Professionals are 

uniquely identified by 

elements from type H. 

 

Patient-Records are uniquely 

identified by elements from 

type R. 

 

There is a set called Patient 

and it is an empty set. 

 

There could be a set, called 

Patient, of patients. 

 

There is a set called Patient 

with only one element. 
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Q7 

 

 

From the given diagram, can an 

element of HProf be both a Doctor 

and a Nurse? 

 

 

 

 

 

 

 

From the given statement, can an 

element of Health-Professional be 

both a Doctor and a Nurse? 

 

No 

 

Q8 

 

 

From the given diagram, can an 

element of Patient be a child? 

 

 

 

 

 

 

From the given statement, can an 

element of Patient be a child? 

 

Not 

Specified 

 

Q9 

 

 

From the given diagram, can an 

element of PRec be either a Note or 

a Comm? 

 

 

 

 

 

 

 

 

From the given statement, can an 

element of Patient-Record be either 

a Note or a Communication? 

 

Yes 

 

Q10 

 

 

From the given diagram, can two 

elements of Patient be associated 

with the same piece of Info? 

 

 

 

 

From the given statement, can two 

elements of Patient be associated 

with the same piece of Information? 

 

 

No 

Health-Professional set is 

partitioned into two disjoint 

subsets; those who are Doctors; 

all others are said to be Nurses. 

 

Patient set is partitioned into 

two separated subsets; those 

who are dead are said to be 

Dead; all others are said to be 

Alive . 

 

Patient-Record set is 

partitioned into two separated 

subsets; those who are said to 

be Note; all others are said to 

be Communication. 

 

Each element of Patient is 

associated with some 

Information of type I. 
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Q11 

 

 

From the given diagram, do all 

HProf have the same Qualif? 

 

 

 

 

 

From the given statement, do all 

Health-Professional have the same 

Qualification(s)? 

 

Not 

Specified 

 

Q12 

 

 

From the given diagram, must s be 

RelatedTo n? 

 

 

 

 

From the given statement, must s be 

RelatedTo n? 

 

Yes 

 

Q13 

 

 

From the given diagram, are there 

two services? 

 

 

 

 

From the given statement, are there 

two services? 

 

Yes 

 

Q14 

 

 

From the given diagram, must every 

Service have Sub-service? 

 

 

 

 

 

 

 

 

From the given statement, must 

every Service have Sub-service? 

 

No 

 

Q15 

 

 

From the given diagram, is there 

only one service? 

 

 

 

 

 

From the given statement, is there 

only one service? 

 

Not 

Specified 

Each element of Health-

Professional is associated with 

a set of Qualification of type 

Q. 

 

A Service s can be a Sub-

service of a service n. 

A set called Service has two 

elements. 

 

A set called Service has a sub-

set called Sub. All Sub's 

elements are related to other 

elements which may be in Sub 

and eventually must be related 

to some element in Service. 

 

A set called Service can have 

one element. 
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Q16 

 

 

 

From the given diagram, are there at 

most two services? 

 

 

 

 

 

From the given statement, are there 

two services at most? 

 

Yes 

 

Q17 

 

 

 

 

 

From the given diagram, it is true 

that a HProf must be an Admin?  

 

 

 

 

 

 

 

From the given statement, it is true 

that a Health-Professional must be 

an Administrator? 

 

No 

 

Q18 

 

 

From the given diagram, should at 

most one HProf be an Admin? 

 

 

 

 

 

 

From the given statement, should at 

most one Health-Professional be an 

Administrator? 

 

Not 

Specified 

 

Q19 

 

 

From the given diagram, is this 

concept about Patient definition, 

Info, and gender? 

 

 

 

 

 

 

 

 

 

From the given statement, is this 

concept about Patient definition, 

Information, and gender? 

 

Not 

Specified 

A set called Service may have 

two elements or less. 

 

If a Health-Professional 

works as an Administrator 

and an Administrator works 

as a Health-Professional, then 

these both may be the same 

person. 

 

If a Health-Professional works 

as an Administrator and an 

Administrator works as a 

Health-Professional, then these 

both may be the same person. 

 

A Patient Population class 

maintains a set of Patient (s) 

(uniquely identified by elements 

from given type P). Each known 

Patient has their own associated 

Information (of type I), and is 

either Alive or in the end Dead. 
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Q20 

 

 

 

From the given diagram, is this 

concept about defining services and 

subservices only? 

 

 

 

 

 

 

 

 

From the given statement, is this 

concept about defining services and 

subservices only? 

 

Yes 

 

Q21 

 

 

 

 

 

 

 

From the given diagram, is this 

concept about Medical Equipment ? 

 

 

 

 

 

 

 

 

 

 

 

From the given statement, is this 

concept about Medical Equipment? 

 

No 

 

Q22 

 

 

 

 

 

From the given diagram, can an 

element of Patient be re-registered? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the given statement, can an 

element of Patient be re-registered? 

 

No 

A Service System class is the 

concept which has conditions 

related to some hierarchical set 

of Service (s) and nested Sub-

services (uniquely identified as 

an element of type S). 

A Health System class is the 

concept which has conditions 

related to Health-Professional 

(uniquely identified as an 

element of type H). Each 

Health-Professional has a set of 

Qualification (s) (uniquely 

identified as a set of type Q). 

 

An event (operation) 

called'RegisterPatient(p,i)' can 

be used to register a new 

patient, p , with information i ; 

initially, p is said to be Alive . 

Before performing this event i 

has to be of type I, and p is an 

identifier of type P which is not 

in Patient. After performing this 

event p will be in Patient and p 

will be associated with I by the 

relation Information. 
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Q23 

 

 

 

 

 

 

 

 

 

From the given diagram, can Info be 

updated?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the given statement, can 

Information be updated? 

 

Yes 

 

Q24 

 

 

 

 

 

From the given diagram, has a male 

Patient died? 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the given statement, has a 

male Patient died? 

 

Not 

Specified 

 

An event, called 

'UpdatePatientInformation(p,i)' 

, can be used to update current 

information for a patient, p , so 

it has some value i afterwards. 

Before performing this event p 

should be an element of Patient 

and i should be a value of type I 

which differs from the current 

value of Information; so After 

performing this event that value 

will indeed be changed, whilst 

still preserving the invariant of 

PP. 

 

An event, called 

'RecordDeath(p)', can be used 

to record the death of patient p, 

but only if p is Alive. Before 

performing this event p should 

be an element of Alive initially 

which is a partition of Patient; 

so after performing this event p 

will be removed from Alive to 

Dead, whilst still preserving the 

invariant of PP. 
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Appendix B: Material used for conducting Experiment 2  

In this Appendix we will present the material that used in Experiment 2. Italic words are 

the names of things that are defined in specifying our information system and bold 

words are their type. At the beginning participants were given a training example 

followed by three training questions. Then each example that illustrates a particular 

concept will be followed by three questions. The total are seven examples each followed 

by three questions about that concept.  

There will be three tables. Table (B.1) represents the Examples used for experiment 2 

for the CD group. The diagrams here were drawn by using our developed editor. 

Table B.1 The Examples for the CD group 

Example # Example content for the CD group 

 

Training 

Example 

There is a set of elements. This set is labelled A. 

 

 

Example 1: 

Types Sets 

and Elements 

There is a set labeled Member. The elements of that set shared a particular type labeled 

M. Also, there is an element labelled e of type M. However, e is not in the set Member.  

The following diagram represents this statement: 

 

Definition: 

This diagram represents a type (a category) which is a particular property of an 

element. Elements of a set are of a particular type. A type will have a label. 

This diagram represents a set. A set has zero or more elements. It may have a 

label. 

This diagram represents an element. It may have a label. 
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Example 2: 

Members of 

Sets 

There is a set labeled Member with at least two elements. This means that there are two 

members or more in the set Member. 

The following diagram represents this statement. 

 

There is an empty set labelled Title which has no elements. This means that there are no 

titles in the set Title. 

The following diagram represents this statement. 

 

There is a set labeled Member with exactly two elements. This means that there are 

exactly two members in the set Member. 

The following diagram represents this statement. 

 

Definition: 

 This diagram represents a set which may contain elements more than the shown 

ones. This set has a number of elements greater than or equal three. 

This diagram represents a set which does not contain any elements other than 

the shown ones. This set has no elements. A set with zero number of elements is defined 

as an empty set. 

 This diagram represents a set which does not contain any elements other than 

the shown ones. This set has exactly three elements. 

 

Example 3: 

Sets Relations 

 There is a set labeled Title which is divided into two disjointed subsets: those having no 

copies are labelled as ExColl or ‘Ex-Collection’; the others are labelled as InColl or ‘In-

Collection’. 

The following diagram represents this statement. 
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Definition: 

There are three types of relations between sets: 

 This diagram represents two sets which intersect; a set can have some 

elements that are also elements of another set. 

 This diagram represents a set which contain another set; a set can be a 

subset of another set. All the elements in the subset are in the set. 

 This diagram represents two sets which be disjoint; they have no 

elements in common. 

 

Example 4: 

Relations 

There is a relation labelled Info (Information) that associates every element of Member 

with some element of type I. 

 

Definition: 

This diagram represents all elements in a specific set. 

 This diagram represents the existence of an element. 

 This diagram represents a relationship between two sets, elements or a 

combination of both. 
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Example 5: 

Spiders 

(Possible 

Locations of 

an Element) 

There is a title labelled t. This title’s state can be changed from ExColl to InColl or from 

InColl to ExColl. In other words, at any time it is the case that t will be either in InColl 

or in ExColl, but not in both. 

 

The following diagram represents this statement. 

 

Definition: 

 This diagram represents a straight line (called leg) which is used to denote that 

an element (called a spider) can be in many possible locations (called feet). 

 

 

Example 6: 

Invariant 

There is an invariant for a Video Copy class and it is labelled VC. It is a specification that 

maintains a set of titles labelled Title. This set is uniquely identified by elements from a 

given type T. All titles must have their own associated descriptions of type D. This 

association is labeled Desc. A title is either in InColl (In-Collection) or in ExColl (Ex-

Collection), but not in both. 

 

The following diagram represents this statement. 

 

 

Definition:  
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This diagram represents an invariant for a class. The invariant has two components; a 

class name and a state-invariant. The state-invariant is a mix of diagrams (separated by a 

‘;’ when they appear on the same line). These diagrams declare and predicate the 

conditions which must be always true about this class. 

 

 

Example 7: 

An Event 

Specification 

There is an invariant labelled VM. his invariant has the definition of Member set and the 

Info relation as shown below: 

 

 

 

Based on this invariant there is an event (operation) labeled VM!NewMember(m,i). The 

invariant name, VM, which appears in the event’s name, is a reference to hidden 

information that previously defined. This event is used to register a new member, m, 

with information i. A specification of an event has 2 conditions; one condition (called 

pre-condition) is used to show things before changes such as initiated members of sets 

and the other condition (called post-condition) is used to show what has changed. The 

pre-condition (before applying the event) ensures that its input-argument, i, has type I, 

and that the other input-argument, m, is an identifier of type M which is not in Member. 

In the post-condition (after applying that event), m is associated with i by a relation 

called Info (Information) and it is in Member. Dashed names denote values that are 

changed- but only minimal changes are shown here; there is no need to say that other 

elements of Member and their associated Info values remain the same, because of the 

convention that “the rest stays unchanged”.  

 

The following diagram represents this statement. 
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Definition: 

 

This diagram represents an event labelled C!E( ) which specifies some allowable change-

of-state for objects. Thus it always involves a POST-CONDITION and it may include an 

optional PRE-CONDITION as well. An event may have input-arguments (names 

between parentheses); these denote local constants, which must be declared in its pre-

condition. 

 

The next table (B.2) represents the Examples used for experiment 2 for the NL group. 

Table B.2 The Examples for the NL group 

Example # Example content for the NL group 

 

Training 

Example 

There is a set of elements. This set is labelled A. 

 

 

Example 1: 

Types Sets 

and Elements 

There is a set called Member. The elements of that set shared a particular type called M. 

Also, there is an element called e of type M. However, e is not in the set Member.  

The following formal expression represents this statement: 
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Definition: 

This expression represents a type (a category) called Z. A type is a 

particular property of an element.  

This expression represents a set called X. A set has zero or more elements.  

This expression represents an element called x. 

 This expression represents an element called X or elements of a set 

called X. X is of type Z. 

 

Example 2: 

Members of 

Sets 

There is a set called Member with at least two elements a and b. This means that there 

are two members or more in the set Member. 

The following formal expression represents this statement. 

 

There is an empty set called Title which has no elements. This means that there are no 

titles in the set Title. 

The following formal expression represents this statement. 

 

There is a set called Member with exactly two elements. This means that there are 

exactly two members in the set Member. 

The following formal expression represents this statement. 

 

Definition: 

 This expression represents an element 

called ElementName which exists in a set called SetName. This means that this element 

is a member of that set. 

This expression 

represents a set called SetName which has a number of elements. The number of 

elements will depend on the Operator. If the operator is =, then this means this set has a 

number of elements equals ElementsNumber. If the Operator is ≥, then this means this 

set has a number of elements greater than the specified number.  
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Example 3: 

Sets Relations 

 There is a set called Title which is divided into two disjointed subsets: those having no 

copies are called as ExColl or ‘Ex-Collection’; the others are called as InColl or ‘In-

Collection’. 

The following formal expression represents this statement. 

 

Definition: 

There are three types of relations between sets: 

 This expression represents two sets which intersect; a set called X can 

have some elements that are also elements of another set called Y. 

 This expression represents a set which contain another set; a set called X 

is a subset of another set called Y. 

 This expression represents a set called X which has no relation with 

another set called Y. If no relation is specified between sets, then the disjoint relation is 

the default. 

 

Example 4: 

Relations 

There is a relation called Info (Information) that associates every element of Member 

with some element of type I. 

 

Definition: 

This expression represents all elements in a set. These elements are 

called x. 

 This expression represents some elements in a set or a type. These 

elements are called y. 

 This expression 

represents a relation called RelationName which is used to represent a relation between a 

Source and a Destination. They could be two sets, elements or a combination of both. 
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Example 5: 

Spiders 

(Possible 

Locations of 

an Element) 

There is a title called t. This title’s state can be changed from ExColl to InColl or from 

InColl to ExColl. In other words, at any time it is the case that t will be either in InColl 

or in ExColl, but not in both. 

The following formal expression represents this statement. 

 

Definition: 

 This formal expression represents that elements such as 

a and b in different sets denote one element. 

 

Example 6: 

Invariant 

There is an invariant for a Video Copy class and it is called VC. It is a specification that 

maintains a set of titles called Title. This set is uniquely identified by elements from a 

given type T. All titles must have their own associated descriptions of type D. This 

association is called Desc. A title is either in InColl (In-Collection) or in ExColl (Ex-

Collection), but not in both. 

The following formal expression represents this statement. 

  

Definition: 
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 This expression represents the invariant for a class called C. 

The invariant has all the expressions that declare and predicate the conditions. These 

conditions must be always true about this class. 

 

Example 7: 

An Event 

Specification 

There is an invariant called VM. his invariant has the definition of Member set and the 

Info relation as shown below: 

 

Based on this invariant there is an event (operation) called VM!NewMember(m,i). The 

invariant name, VM, which appears in the event’s name, is a reference to hidden 

information that previously defined. This event is used to register a new member, m, 

with information i. A specification of an event has 2 conditions; one condition (called 

pre-condition) is used to show things before changes such as initiated members of sets 

and the other condition (called post-condition) is used to show what has changed. The 

pre-condition (before applying the event) ensures that its input-argument, i, has type I, 

and that the other input-argument, m, is an identifier of type M which is not in Member. 

In the post-condition (after applying that event), m is associated with i by a relation 

called Info (Information) and it is in Member. Dashed names denote values that are 

changed- but only minimal changes are shown here; there is no need to say that other 

elements of Member and their associated Info values remain the same, because of the 

convention that “the rest stays unchanged”.  

The following formal expression represents this statement. 
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Definition: 

 

This expression represents an event called C!E which specifies some allowable change-

of-state for objects. Thus it always involves a POST-CONDITION and it may include an 

optional PRE-CONDITION as well. The ! is used to separate the event and the invariant 

names. 

 

The editor that we developed allows the user to drag and drop from the toolbar and also 

allows them to perform some actions such as: to right-click on that diagram to see a 

popup menu with some actions, to left-click on that diagram to move it anywhere, and 

to press shift and left-click on that diagram to bring it to front. After each example three 

questions are presented to the participants. Each question is divided into two questions 

(part A and part B). Before answering, participants could return to the related example 

at any time. However, after answering part A they would get part B and after answering 

part B, the correct answer would be shown to the participant. Table B.3 represents the 

part A of the 21 questions for both groups.          

Table B.3 The Part A - Questions for both the CD and the NL groups  

 CD NL 

 

Training Q 

A circle, called B, is contained in 

another circle, called A. The area of A 

outside of B is shaded. The area of 

intersection between A and B is not. 

There is a dot in B and also a dot in A 

which is not in B. A single-open-

rectangle, called C, contains these two 

circles. 

The produced diagram should look like 

this: 

 

A group, called B, is contained in another 

group, called A. The members of B are already 

members of A. However, if there is a member in 

A but not in B, then this is the only member 

there. B can have many members. An invariant, 

called C, contains these definitions. 

 

The produced formal expression should look 

like this: 
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Please try to reproduce this diagram by 

using the on-screen editor. 

The question will be: 

From the given statement, construct a 

diagram that asserts this situation. 

Please try to reproduce this formal expression 

by using the on-screen editor. 

The question will be: 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q1 

John has a particular property of being 

classified as a patient. 

 

From the given statement, construct a 

diagram that asserts this situation. 

John has a particular property of being classified 

as a patient. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q2 

There is a group of patients. 

 

From the given statement, construct a 

diagram that asserts this situation. 

There is a group of patients. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q3 

There is a group of patients and there is 

John who is not a member of that group. 

However, John and the group are 

sharing a particular property. 

 

From the given statement, construct a 

diagram that asserts this situation. 

There is a group of patients and there is John 

who is not a member of that group. However, 

John and the group are sharing a particular 

property. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q4 

Initially in the system, there are no 

patient records. 

 

From the given statement, construct a 

diagram that asserts this situation. 

Initially in the system, there are no patient 

records. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q5 

There is exactly one patient. 

 

From the given statement, construct a 

diagram that asserts this situation. 

There is exactly one patient. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q6 

There is at least one service. 

 

From the given statement, construct a 

diagram that asserts this situation. 

There is at least one service. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q7 

Some patients are alive (some are not). 

 

From the given statement, construct a 

diagram that asserts this situation. 

Some patients are alive (some are not). 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q8 

Patients are either dead or alive (but not 

both). 

Patients are either dead or alive (but not both). 
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From the given statement, construct a 

diagram that asserts this situation. 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q9 

Patients are dead or alive. 

 

From the given statement, construct a 

diagram that asserts this situation. 

Patients are dead or alive. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q10 

All health professionals have 

qualifications. 

 

From the given statement, construct a 

diagram that asserts this situation. 

All health professionals have qualifications. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q11 

All patients have some associated 

information. 

 

From the given statement, construct a 

diagram that asserts this situation. 

All patients have some associated information. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q12 

One patient called John is associated to 

some specific information. 

 

From the given statement, construct a 

diagram that asserts this situation. 

One patient called John is associated to some 

specific information. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q13 

A patient-record is either a note or a 

communication and it is identified by its 

author (a health-professional). 

 

From the given statement, construct a 

diagram that asserts this situation. 

A patient-record is either a note or a 

communication and it is identified by its author 

(a health-professional). 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q14 

A patient called p is either alive or dead 

(but not both). 

 

From the given statement, construct a 

diagram that asserts this situation. 

A patient called p is either alive or dead (but not 

both). 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q15 

Some services are subservices of other 

services. 

 

From the given statement, construct a 

diagram that asserts this situation. 

Some services are subservices of other services. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q16 

There is a concept of patient population 

which consists of a group of patients 

who have some associated information. 

There is a concept of patient population which 

consists of a group of patients who have some 

associated information. Patients are either alive 
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Patients are either alive or dead (but not 

both). 

 

From the given statement, construct a 

diagram that asserts this situation. 

or dead (but not both). 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q17 

There is a concept of service system 

which consists of a group of services. 

Some services are subservices of other 

services. 

 

From the given statement, construct a 

diagram that asserts this situation. 

There is a concept of service system which 

consists of a group of services. Some services 

are subservices of other services. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q18 

There is a concept of health system 

which consists of a group of health 

professionals who have qualifications. 

 

From the given statement, construct a 

diagram that asserts this situation. 

There is a concept of health system which 

consists of a group of health professionals who 

have qualifications. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q19 

Given a concept called PP: 

 

 

A new patient can be registered. 

 

 

From the given concept and statement, 

construct a diagram that asserts this 

situation. 

Given a concept called PP: 

  

A new patient can be registered. 

 

From the given concept and statement, construct 

a formal expression that asserts this situation. 

 

Q20 

Given a concept called PP: 

 

 

 

 

Given a concept called PP: 
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Current information for a patient can be 

updated to some new value. 

 

From the given concept and statement, 

construct a diagram that asserts this 

situation. 

 

 

Current information for a patient can be updated 

to some new value. 

From the given concept and statement, construct 

a formal expression that asserts this situation. 

 

Q21 

Given a concept called PP: 

 

A patient’s death can be recorded. 

 

From the given concept and statement, 

construct a diagram that asserts this 

situation. 

Given a concept called PP: 

 

A patient’s death can be recorded. 

From the given concept and statement, construct 

a formal expression that asserts this situation. 

 

Table B.4 represents the part B of the 21 questions for both groups. 
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Table B.4 The Part B - Questions for both the CD and the NL groups  

 CD NL 

 

Training Q  

There is an element in a set called A and 

there is another element in a set called 

B. The intersection of A and B is B. If 

the element is in A but not in B, then it 

is the only element there. All of this is 

defined in a class called C. 

The produced diagram should look like 

this: 

 

Please try to reproduce this diagram by 

using the on-screen editor. 

The question will be: 

From the given statement, construct a 

diagram that asserts this situation. 

There is an element in a set called A and there is 

another element in a set called B. The 

intersection of A and B is B. If the element is in 

A but not in B, then it is the only element there. 

All of this is defined in a class called C. 

The produced formal expression should look 

like this: 

 

Please try to reproduce this formal expression 

by using the on-screen editor 

The question will be: 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q1 

There is an element labelled John which 

is of type P. 

 

From the given statement, construct a 

diagram that asserts this situation. 

There is an element called John which is of type 

P. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q2 

There is a set of patients labelled 

Patient. 

 

From the given statement, construct a 

diagram that asserts this situation. 

There is a set of patients called Patient. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q3 

There is a set of patients labelled 

Patient and there is an element labeled 

John which is not in the set Patient.  

John and elements in Patient are of type 

P. 

From the given statement, construct a 

diagram that asserts this situation. 

There is a set of patients called Patient and there 

is an element called John which is not in the set 

Patient.  John and elements in Patient are of 

type P. 

 

From the given statement, construct a formal 

expression that asserts this situation. 
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Q4 

Patient-Record is an empty set. 

 

From the given statement, construct a 

diagram that asserts this situation. 

Patient-Record is an empty set. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q5 

A set called Patient has exactly one 

element. 

 

From the given statement, construct a 

diagram that asserts this situation. 

A set called Patient has exactly one element. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q6 

A set called Service has at least one 

element. 

 

From the given statement, construct a 

diagram that asserts this situation. 

A set called Service has at least one element. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q7 

A set called Alive is a subset of a set 

called Patient. 

 

From the given statement, construct a 

diagram that asserts this situation. 

A set called Alive is a subset of a set called 

Patient. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q8 

A set called Alive and a set called Dead 

are disjoint and their union is a set 

called Patient. 

 

From the given statement, construct a 

diagram that asserts this situation. 

A set called Alive and a set called Dead are 

disjoint and their union is a set called Patient. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q9 

A set called Alive and a set called Dead 

are both subsets of a set called Patient. 

 

From the given statement, construct a 

diagram that asserts this situation. 

A set called Alive and a set called Dead are both 

subsets of a set called Patient. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q10 

Each member of a set called HProf is 

associated with some set whose 

elements are of type Q by relation 

called Qualif. 

 

From the given statement, construct a 

diagram that asserts this situation. 

Each member of a set called HProf is associated 

with some set whose elements are of type Q by 

relation called Qualif. 

 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q11 

Each element of a set called Patient is 

associated with an element of type I by 

a relation called Info. 

Each element of a set called Patient is 

associated with an element of type I by a 

relation called Info. 
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From the given statement, construct a 

diagram that asserts this situation. 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q12 

John who is an element of a set called 

Patient is not associated with an 

element called i of type I by a relation 

called Info. However, he is associated 

with some other element of type I. 

 

From the given statement, construct a 

diagram that asserts this situation. 

John who is an element of a set called Patient is 

not associated with an element called i of type I 

by a relation called Info. However, he is 

associated with some other element of type I. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q13 

There is a set called Note and another 

set called Communication (Comm). 

They are the only subsets of a set called 

Patient-Record. Each record, which 

could be in Note or in Comm, is 

associated with some element in a set 

called HProf (health-professional) by a 

relation called Author. 

 

From the given statement, construct a 

diagram that asserts this situation. 

There is a set called Note and another set called 

Communication (Comm). They are the only 

subsets of a set called Patient-Record. Each 

record, which could be in Note or in Comm, is 

associated with some element in a set called 

HProf (health-professional) by a relation called 

Author. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q14 

There is p which is an element of a set 

called Patient. p is either in one of two 

subsets; Alive or Dead (but not both). 

 

From the given statement, construct a 

diagram that asserts this situation. 

There is p which is an element of a set called 

Patient. p is either in one of two subsets; Alive 

or Dead (but not both). 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q15 

There is a set called Service which 

contains another set called Sub 

(subservice). Each element of Sub is 

related to some other service which 

could be another subservice by a 

relation called RelatedTo. 

 

From the given statement, construct a 

diagram that asserts this situation. 

There is a set called Service which contains 

another set called Sub (subservice). Each 

element of Sub is related to some other service 

which could be another subservice by a relation 

called RelatedTo. 

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q16 

The invariant of a Patient Population 

class which called PP maintains a set 

called Patient whose elements are of 

type P. Each patient has associated 

The invariant of a Patient Population class 

which called PP maintains a set called Patient 

whose elements are of type P. Each patient has 

associated Information of type I and is either 
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Information of type I and is either Alive 

or in the end Dead but not both.    

 

From the given statement, construct a 

diagram that asserts this situation.  

Alive or in the end Dead but not both.    

 

From the given statement, construct a formal 

expression that asserts this situation.  

 

Q17 

The invariant of a Service System class 

which called SS maintains a set called 

Service whose elements of type S. 

Service set contains another set called 

Sub (subservice). Each element of Sub 

is related to some other service which 

could be another subservice.  

 

From the given statement, construct a 

diagram that asserts this situation. 

The invariant of a Service System class which 

called SS maintains a set called Service whose 

elements of type S. Service set contains another 

set called Sub (subservice). Each element of Sub 

is related to some other service which could be 

another subservice.  

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q18 

The invariant of a Health System class 

called HS maintains a set called HProf 

whose elements are of type H. Each 

HProf has associated set of type Q by a 

relation called Qualif.  

From the given statement, construct a 

diagram that asserts this situation. 

The invariant of a Health System class called HS 

maintains a set called HProf whose elements are 

of type H. Each HProf has associated set of 

type Q by a relation called Qualif.  

 

From the given statement, construct a formal 

expression that asserts this situation. 

 

Q19 

Given an invariant called PP: 

 

An event called ‘RegisterPatient(p,i)’ of 

PP class is performed to register a new 

patient called p with associated 

information if and only if p, which is 

not a member in the Patient set yet, is of 

type P and i is of type I. By registering 

a new patient, he/she will be in Alive set 

along with his/her information.  

From the given invariant and statement, 

Given an invariant called PP: 

 

An event called ‘RegisterPatient(p,i)’ of PP 

class is performed to register a new patient 

called p with associated information if and only 

if p, which is not a member in the Patient set 

yet, is of type P and i is of type I. By registering 

a new patient, he/she will be in Alive set along 
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construct a diagram that asserts this 

situation. 

with his/her information.  

 

From the given invariant and statement, 

construct a formal expression that asserts this 

situation. 

 

Q20 

Given an invariant called PP: 

 

An event called 

‘UpdatePatientInformation(p,i)’ of class 

called PP can be used to update the 

current Information for a patient p to 

some new value I if and only if the 

current value of Information differs 

from the new value. Both values are of 

type I.   

 

 

From the given invariant and statement, 

construct a diagram that asserts this 

situation. 

Given an invariant called PP: 

 

An event called‘UpdatePatientInformation(p,i)’ 

of class called PP can be used to update the 

current Information for a patient p to some new 

value I if and only if the current value of 

Information differs from the new value. Both 

values are of type I.   

 

From the given invariant and statement, 

construct a formal expression that asserts this 

situation. 

 

Q21 

Given an invariant called PP: 

 

An event called ‘RecordDeath(p)’of 

class called PP can be used to record the 

death of a patient called p by moving the 

Given an invariant called PP: 
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patient membership from Alive to Dead 

set. 

 

 

 

From the given invariant and statement, 

construct a diagram that asserts this 

situation. 

An event called ‘RecordDeath(p)’of class called 

PP can be used to record the death of a patient 

called p by moving the patient membership from 

Alive to Dead set. 

 

From the given invariant and statement, 

construct a formal expression that asserts this 

situation. 

 

Table B.5 represents the correct answers for both CD and NL groups. 

Table B.5 The correct answer 

 CD NL 

 

Training Q  

 

 

 

 

 

Q1 

 

 

 

 

 

Q2 

 

 

 

 

 

Q3 
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