
   

 

A University of Sussex DPhil thesis 

Available online via Sussex Research Online: 

http://sro.sussex.ac.uk/   

This thesis is protected by copyright which belongs to the author.   

This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

Please visit Sussex Research Online for more information and further details   



Separating what is Evaluated from what

is Selected in Artificial Evolution

Nicholas Tomko

Submitted for the degree of Doctor of Philosophy

University of Sussex

Oct 2013



Declaration

I hereby declare that this thesis has not been and will not be submitted in whole or in

part to another University for the award of any other degree.

Signature:

Nicholas Tomko



iii

UNIVERSITY OF SUSSEX

Nicholas Tomko, Doctor of Philosophy

Separating what is Evaluated from what is Selected in Artificial Evolution

Summary

In artificial evolution, selection and evaluation are separate and distinct steps. This
distinction is rather different in natural evolution, where fitness (corresponding to eval-
uation) is a direct consequence of selection rather than a precursor to it. This thesis
presents a new way of thinking about artificial evolution that separates evaluation and
selection and consequently opens up the space of potential evolutionary algorithms beyond
the limitations imposed by ignoring this distinction.

In Part I of the thesis we explore how varying the level of evaluation and selection
impacts evolution. Using novel genetic algorithms (GAs) we show how group level eval-
uation allows evolution to find solutions to problems that require niching or a division of
labour amongst component parts, something that cannot be accomplished using a stand-
ard GA. One of the inspirations for testing GAs with group-level evaluation was recent
research into bacterial evolution which shows in bacterial colonies, distinguishing between
the individual and group is very difficult because of the symbiotic relationship between
different bacteria. We find that depending on the task it sometimes makes sense to select
the individual while in other cases simply selecting groups is the best choice. Finally, we
present a method for evolving the group size in these types of GAs that has the benefit of
avoiding the need to know the optimal division of labour ahead of time.

In Part II we move away from studying the relationship between evaluation and selec-
tion to show how our novel view of evolution can be used to develop GAs that implement
horizontal gene transfer which was again inspired by looking at bacterial evolution. By
testing these GAs on a variety of different tasks we show how this promiscuous gene swap-
ping is often beneficial to evolution because it can reduce the probability of the population
getting stuck on a sub-optimal solution.

The thesis demonstrates the benefits of of looking at artificial evolution in terms of
both evaluation and selection when it comes to algorithm development, and thus provides
the GA community with a new context in which they can choose different algorithms
appropriate to different tasks.
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Chapter 1

Introduction

Genetic algorithms (GAs, Holland, 1975) are a search and optimisation technique based on

Darwinian evolution. They fall into the general field of evolutionary algorithms or artificial

evolution. Most GAs start off with a random population of individuals that are evaluated

on a specific task. Each individual in the population is assigned a fitness based on how

well it solves the task and the fitter individuals are more likely to be selected to pass on

their genes to the next generation, while the less fit are more likely to be killed off. As in

natural evolution, the new population of offspring is generated by recombining (mating)

the fitter individuals and then applying random mutation. Over time, the population

guided by fitness based selection, mutation and recombination moves around the solution

space looking for better solutions. GAs have been successfully applied to a wide variety of

different problems. For all of these tasks the goal of the GA is the same, which is to evolve

fit individuals based on the task-specific fitness function. It is important to note that

for the purposes of this thesis we define ‘artificial evolution’ as evolutionary experiments

or algorithms where there is an explicitly defined fitness or cost function that is used to

evaluate entities in the population.

Even though GAs are based on the principles of natural evolution, there are some

important differences between natural and artificial evolution that need to be understood

in order to develop novel GAs. One of these differences is that in artificial evolution,

evaluation and selection can be easily separated, which is not the case in natural evolution

where the fitness of a given organism, as viewed by an outside observer, is a direct con-

sequence of selection rather than a precursor to it. In other words, high-fitness adaptations

can only be labeled as high-fitness after they have been selected for. This is in contrast

to artificial evolution where most GAs have an explicit fitness function that is pre-set by

the experimenter before evolution begins. It is this fitness function that is used to evalu-



2

ate individuals and assign them a fitness and so determines which individuals should be

selected to pass their genes on to the next generation. In natural evolution there is no

explicit fitness function. The relative fitness of different biological organisms is something

that can only be determined by an observer after selection has occurred.

The result of thinking about GAs too much in terms of natural evolution means that

in many cases new GAs are developed by thinking about different ways of implementing

selection, while forgetting about the evaluation step. One reason for this could be the

on-going debate in natural evolution over whether group selection actually occurs, which

focuses on the selection step of evolution. One of the main goals of this thesis is to

overcome this way of thinking and show how ignoring the difference between evaluation

and selection limits the types of GAs that can be developed. As we show, understanding

that both what is being evaluated and what is being selected can be varied can result in

novel algorithms with interesting properties.

This thesis argues for the importance of thinking about artificial evolution in terms

of both what is evaluated and what is selected, in that a key consequence of this is the

extension of the space of potential GAs. Using this view of evolution we come up with an

evolutionary cycle that can be used to both analyse existing GAs and develop new GAs.

After presenting this new view of evolution in detail the remainder of this thesis is spent

exploring features of the novel GAs thus developed.

This work should be helpful to researchers interested in the theory of GAs as well as

people who are looking to apply GAs to specific tasks. One of the foci of our research

is group evolution, where groups of individuals are evaluated on a given task. We find

that group evolution can be used to evolve populations where there is a division of labour

between component parts. Therefore, our work should be applicable to people looking

to solve tasks that would benefit from the evolution of cooperation or symbiosis between

individuals in the population. Even though the focus of this research is artificial evolution,

the insights may also be of relevance to group selection in nature.

1.1 Major Contributions

This thesis provides three major contributions to the field of artificial evolution, the first

being:

1. A novel way of looking at artificial evolution that differentiates between what is

being evaluated and what is being selected, the benefits of which include:
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(a) It opens up the space of evolutionary algorithms by explicitly pointing out that

in artificial evolution both the level of evaluation and level of selection can be

varied.

(b) It provides a structured way to analyse existing algorithms and provides a

toolbox for coming up with interesting ways to modify these algorithms.

The second and third major contributions are two novel families of GAs that were

developed using this new way of thinking about artificial evolution. Both families of GAs

were also inspired by some of the differences bacterial and eukaryotic evolution. First we

explore symbiotic type GAs by varying what is being evaluated and what is being selected

and then we implement bacterial-like horizontal gene transfer in GAs. Below, the benefits

of each of these families of GAs are summarised.

2. Novel GAs that vary the relationship between what is being evaluated and what is

being selected which are used to:

(a) Show the benefits of symbiotic evolution where evaluation is occurring at the

group level.

(b) Demonstrate that on some tasks, such as certain artificial neural network tasks,

group evaluation with individual selection makes sense but on other types of

tasks, such as artificial immune system tasks, group evaluation with group

selection is better.

(c) Develop a method of evolving group size in symbiotic GAs that eliminates the

need to pre-set the number of niches or know the optimal division of labour

ahead of time. This method can be used on any GA that implements group

evaluation.

3. Novel GAs that implement horizontal gene transfer which are used to:

(a) Explore the effects of horizontal gene transfer on landscapes with different

amounts of ruggedness, neutrality and epistasis.

(b) Determine that on landscapes with a lot of local optima implementing massive

amounts of horizontal gene transfer improves performance over a standard GA.

However as neutrality is increased these advantages can disappear.
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1.1.1 Claims this thesis does not make

To avoid confusion it is important to explicitly point out what this thesis does not do. We

do not make the claim that any of the new GAs are the ‘best’ way to solve any specific task.

This is related to the no free lunch theorem which says that for any search/optimization

algorithm, any increased performance on one class of problems is paid for in reduced

performance on another class of problems (Wolpert and Macready, 1997). Instead we

have selected tasks to demonstrate interesting qualities of our GAs and show the potential

that these GAs have on different types of problems. The purpose of comparing GAs on

different tasks is: (1) To show that these new GAs are able to solve a variety of different

tasks; (2) To try to understand why some of the GAs work better on certain tasks than

others.

Testing our GAs on a real-world engineering task is outside the scope of this thesis. In

the last chapter of this thesis we discuss some of the tasks that we believe are suited to

being solved with our algorithms but we leave the testing to the reader. The overarching

goal is to provide a recipe book with examples for creating novel algorithms based on a

new way of viewing artificial evolution.

1.2 Structure of Thesis

This thesis is divided into three separate parts. The first part contains the Introduction,

Literature Review and a theoretical chapter describing our new view of evolution that

separates evaluation from selection. The Literature Review covers related work in artificial

evolution as well as reviewing some of the group evolution work in biology. The ‘Separating

Evaluation from Selection in Artificial Evolution’ chapter (Chapter 3) not only explains

our new view of evolution in detail but also applies it to two different existing evolutionary

experiments demonstrating how it can be used to analyse existing genetic algorithms.

The second part of this thesis, which is called Experiments I, presents a novel family

of GAs that vary the relationship between evaluation and selection. Chapter 4 which is

based on work previously published in Tomko et al. (2011) presents the Group GA which

implements both group evaluation and group selection. We show how this type of GA can

evolve solutions to problems where an explicit division of labour is required. Chapter 5

investigates the Binomics GA (first presented in Harvey and Tomko, 2010) which evaluates

at the group level and selects at the individual level. In this chapter the Binomics and

Group GA are compared on a number of different tasks to determine the effects that
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varying the level of selection, while keeping the level of evaluation at the group level, has

on evolution. One of the main problems with any GA where groups of individuals are

evaluated is that a group size needs to be pre-set ahead of time. In Chapter 6 we expand

on the work in Tomko et al. (2012) and present methods that avoid the need to pre-set

the group size of these types of GAs. One of the inspirations for these symbiotic, group-

level evaluation GAs was bacterial evolution and specifically recent metagenomic research

which shows that in bacterial evolution, unlike in eukaryotic evolution, distinguishing

individual bacteria within the overall colony is very difficult. This is discussed further in

the Literature review chapter (Chapter 2).

The third part of this thesis (Experiments II) shifts the focus from the levels of eval-

uation and selection to show how other types of GAs can be developed using our view of

evolution. Again, using bacterial evolution for inspiration we develop and test GAs that

implement bacterial-like horizontal gene transfer which differs from the more conventional

vertical gene transfer found in most GAs. Chapter 7 which is based on work presented

in Tomko et al. (2013) presents the Unconstrained GA (UGA) which is an algorithm that

implements massive amounts of horizontal gene transfer in terms of gene shuffling. We

show that on tasks with a lot of sub-optimal solutions the UGA outperforms a standard

GA. In Chapter 8 we analyse why this occurs by testing a set of related algorithms on a

wide variety of tasks and show that implementing horizontal gene transfer improves evol-

utionary performance on landscapes with a lot of local optima. We also find that on some

tasks, shuffling the genes of the elite members of the population has evolutionary benefits.

Finally in Chapter 9 our conclusions are summarised and discussed. At the end of this

thesis there are four appendices that include supplementary material. Appendix A is a

discussion of the selection pressures of GAs and is included to show that the benchmark

GAs we use to compare our novel GAs to are equivalent to standard GAs. Appendix B

explains the reasoning behind using both orthodox and Bayesian statistical methods to

analyse our results. Finally, the expanded results for all the tests and parameter sweeps

done in this thesis can be found online at ntomko.wordpress.com.
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Chapter 2

Literature Review

This literature review is broken into three main sections. In the first section a general

overview of artificial evolution and genetic algorithms (GAs) is given. This will provide

the reader with the background necessary to understand the key components of any evol-

utionary or genetic algorithm. At the end of this first section we describe in detail the two

GAs we use as benchmarks to compare our algorithms to. The second section summarises

the evolutionary algorithms related to the work done in this thesis. This summary is very

high-level because many of these algorithms are analysed in more detail later in the thesis.

Finally, we discuss group evolution in nature with the purpose of determining whether

any of the group evolution theories from biology can be used to develop better artificial

evolutionary algorithms. It should be noted that we only summarise the group selection

debate, since expressing our opinions on this debate is beyond the scope of this thesis.

2.1 Artificial Evolution Overview

Evolutionary / genetic algorithms (GAs) (Holland, 1975) are a subset of the field of evolu-

tionary computation that also includes evolutionary and genetic programming (Fogel et al.,

1966; Koza, 1990) and evolutionary strategies (Schwefel, 1995; Rechenberg, 1973). GAs

are a search/optimisation technique based on Darwinian evolution (see Mitchell, 1998;

Goldberg, 1989, for a general overview). In a standard GA, a population of individuals

corresponding to different potential solutions are genetically encoded and evaluated on a

specific task. Each individual genotype is assigned a fitness based on how well it solves the

task and the fitter individuals survive to pass on their genes to the next generation while

the less fit die off. As in natural evolution, the new population of offspring is generated

using recombination and random mutation. Over time, the population guided by fitness
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Figure 2.1: A general flow diagram showing the main steps of a genetic algorithm (thanks

to Volko Straub for the image).

based selection, mutation and recombination, moves around the solution space (fitness

landscape) looking for better solutions.

Figure 2.1 illustrates the main steps of a standard GA. Here we can see that the

first step in any genetic algorithm is to create the artificial genotypes that make up the

population and define the genotype-to-phenotype mapping. This mapping describes how

a genotype in the population is evaluated on the task of interest. For example, one method

to evolve robots to navigate an obstacle course is to genetically encode the robot’s neural

network as a string of real numbered or binary connection weights. In this case the string

of connection weights is considered the genotype and the functioning robot is considered

the phenotype that is evaluated on the task.

After the initial population has been generated, the evolutionary cycle can proceed.

The main steps that make up a single evolutionary generation are: evaluation, selection,

and recombination/mutation. The evaluation step differentiates the high scoring individu-

als from the low scoring individuals so that the higher scoring individuals can be selected

and the low scoring individuals can be discarded from the population. Recombination
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and mutation are applied to the selected individuals to add variation to the population.

If evolution has been setup correctly, over time the population should become fitter and

fitter as measured by the pre-defined fitness functions.

Most GAs can be classified as either generational or steady state. In this thesis we will

use both types, so in the next couple of sections we will describe the differences between

them.

2.1.1 Generational GAs

Traditionally, GAs were presented in generational form. In this type of GA, the entire

population is evaluated, selected and modified every generation to create a new population.

This roughly corresponds to a natural species that has just one breeding season, say once

a year, and after breeding the parents die out without a second chance (Harvey, 2011).

The main steps of a generational GA are as follows:

1. Randomly generate initial population

2. Evaluate every individual in the population

3. Select the fitter members of the population, killing off the less fit individuals

4. Recombine and mutate the selected individuals to create the new population that

replaces the previous generation

5. Repeat steps 2-5 until some stopping condition is met

2.1.2 Steady State GAs

Steady state GAs (Whitley, 1989; Collins and Jefferson, 1991) are equivalent to natural

species that do not have a single breeding season, but instead give birth and die asyn-

chronously across the population. Hence the Steady State GA, which in its simplest form

has as its basic event the replacement of just one individual from the population by a

single new one. The main steps of a simple steady state GA are:

1. Randomly generate the initial population

2. Choose a mother from the population using some type of selection biased towards

the fitter individuals

3. Choose a father from the population using the same method
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4. Generate an offpsring using recombination and mutation

5. Add this offspring to the population

6. Keep the population size the same by choosing a single individual to die (this can

be done at random or biased to the less fit)

7. Repeat steps 2-6 until some stopping condition is met

If the population size is 50 then fifty times around the loop is roughly equivalent to a

single generation of the generational GA described in the previous section. In this thesis

we compare our algorithms to either a standard generational GA or steady-state GA; we

will describe these algorithms in detail later in this section.

2.1.3 Selection Methods

There are many different ways to implement selection in GAs; here we summarise a few

of the more common ones. See Goldberg and Deb (1991) for a comparison of different

selection schemes.

Truncation Selection In truncation selection, the choice of parents is restricted to the

fittest 20% (or 50% or . . . ) of the population. This is a parameter that is set before

evolution begins.

Fitness-Proportionate Selection Fitness-proportionate selection guides the probab-

ility of an individual being chosen as a parent in terms of how fit an individual is compared

to the rest of the population. For example, consider a small population of five individuals

with fitnesses of 3, 6, 8, 5, and 1. The total fitness of the population is 23 so using fitness

proportionate selection the probability of choosing the different individuals as parents is

3/23, 6/23, 8/23, 5/23 and 1/23 respectively.

There are a number of limitations with fitness proportionate selection; these include:

(1) How to deal with negative fitness scores (2) If early on in evolution all individuals have

zero fitness except for one, then this individual will unfairly dominate selection and (3)

If during evolution the fitness of all individuals varies slightly about some average then

there will be very little selective pressure on the population.

Linear Rank Selection Due to the issues with fitness-proportionate selection, many

GAs use linear rank selection. In linear rank selection, the individuals are sorted according
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to fitness and the probability of choosing a given individual is based on their rank, not

their absolute fitness score like in fitness proportionate selection. Once the individuals have

been ranked their fitness is rescaled based on this relative ranking. A common choice made

is to allocate (at least in principle) 2.0 reproductive units to the fittest, 1.0 units to the

median, and 0.0 units to the least fit member, similarly scaling pro rata for intermediate

rankings. Using this method, the probability of being a parent is proportional to these

rank-derived numbers, rather than to the original fitness scores.

Tournament Selection Tournament selection is a simple way of implementing linear

rank selection. This type of selection consists of randomly choosing two individuals from

the population, without regard to fitness, comparing their fitness (the ‘tournament’) and

selecting the winner as a parent. Using this method, the probability of winning a tourna-

ment is exactly the same as linear rank selection where fitness is scaled between 0.0 and

2.0.

In this thesis we have chosen to implement tournament selection in all of our algorithms.

The reasons for this is that it avoids the many problems with fitness proportionate selec-

tion, it is easy to implement and it can be applied to both steady-state and generational

GAs.

2.1.4 Mutation

Mutation adds random, undirected variation to the population. Mutation can be imple-

mented in many different ways, here we discuss some of the most common methods used

in this thesis.

If the population is made up of binary genotypes then it is common for the mutation

rate parameter to define the per locus probability of flipping a bit, where a locus is defined

in this case as any single gene within a genotype that is the target of some action, such

as a mutation. It is important to note that different conventions exist for specifying a

per-locus or a per-genotype mutation rate, and a failure to distinguish between these can

cause confusion. For example, if the per-locus mutation rate is set to 10%, then on average,

one out of ten genes will be flipped every time a genotype is mutated.

If the genotype is real numbered then a decision needs to made in terms of both how

many genes are mutated and by how much they are mutated. We have chosen to use either

single-locus or multi-locus mutation, where single-locus mutation means a single locus on

the genotype is mutated and multi-locus mutation means that every locus on the genotype

is mutated. Of course the number of mutations could be determined probabilistically as
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well.

For real numbered genotypes the amount a chosen gene is changed also has to be

determined. In this thesis this we have chosen to define this mutation in terms of a

normally distributed random number with a certain standard deviation (that is set as a

parameter) and a mean of zero. So in the real numbered case a mutation spread of 0.5

means that a normally distributed random number with mean 0.0 and standard deviation

0.5 is added to the gene.

2.1.5 Recombination

In GAs, recombination can be thought of as the method of creating a single offspring from

two or more parents. In this thesis we mainly deal with two parent recombination so we

will limit our overview of recombination to this case.

Two popular types of recombination implemented in GAs are crossover and uniform

recombination. In one-point crossover a single locus is chosen at random and the offspring

is created by combining the genes on one side of the crossover point of one parent with the

genes on the other side of the crossover point of the second parent. In two-point crossover,

instead of randomly choosing a single crossover point, two points are chosen. In uniform

recombination, an offspring is generated by going along the genotype and at each locus

the offspring inherits either parent 1’s gene or parent 2’s gene with an equal probability.

Both crossover and uniform recombination are types of sexual reproduction because

the offspring inherits genes from two parents. Asexual reproduction in GAs can be im-

plemented by generating an offspring which is a mutated copy of a single parent. In this

thesis we have chosen to use uniform recombination whenever we generate offspring using

sexual reproduction.

2.1.6 Elitism

Elitism in GAs is the process by which un-mutated copies of the fittest individual(s) of the

previous generation are automatically copied into the next generation. The number of elite

individuals copied is determined by a pre-set parameter that defines either an elite per-

centage of the population or an absolute number of elite individuals to be copied. Elitism

has the benefit of preserving the genotypes of the best performing individuals throughout

evolution but can also cause the population to get stuck on sub optimal solutions. In

chapters 7 and 8 we investigate novel ways of implementing elitism.
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2.1.7 Benchmark GAs used in this Thesis

The two GAs described below are the benchmark algorithms we use to compare some of

our novel group evolution GAs to. First we describe a standard generational GA with

tournament selection and then we describe the Microbial GA (Harvey, 1996, 2001, 2011)

which is the benchmark steady state GA we used.

Standard Generational GA with Tournament Selection The main steps of this

GA are listed below. The parameter ELITENUM is the number of elite individuals to be

copied un-mutated to the next generation.

1. Evaluate the fitness of each individual genotype in the population comprising of a

POPSIZE number of individuals

2. Rank each genotype according to fitness

3. The fittest ELITENUM individuals are automatically copied into the new offspring

population unchanged

4. The remaining POPSIZE − ELITENUM offspring are generated as follows:

(a) Select two parents from the population using the following tournament selection

method

i. Randomly pick two individual genotypes from the population

ii. Compare the fitness of the two individuals from the population with the

fitter becoming a parent

iii. If the fitness of the two individuals is the same then randomly pick a winner

iv. Repeat steps i-iii to select a second parent

(b) Produce a single offspring from these two parents by randomly choosing a single

gene from either parent at each locus (this is known as uniform recombination)

(c) Mutate this offspring

(d) Add this offspring to the new offspring population

5. These offspring become the population for the next generation

This GA was compared against any of our novel GAs that were of the generational

variety to give us an idea of how well our algorithms fared on different tasks.
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Figure 2.2: An overview of the Microbial GA. Genotypes in the population are represen-

ted as strings. One cycle of this GA consists of PICK (at random), COMPARE (their

fitnesses to determine a winner = W and loser = L, RECOMBINE (some proportion of

the winner’s genetic material ‘infects’ the loser) and MUTATE (the revised version of the

loser). (Harvey and Tomko, 2010)

The Microbial GA The Microbial GA (Harvey, 1996, 2001, 2011) is the benchmark

steady state GA we use to compare all of our novel steady-state GAs to. This reason

we chose this GA is because it implements selection, heredity and variation in a simple

manner that makes programming the algorithm extremely simple. The main steps of the

Microbial GA are described below and shown visually in figure 2.2.

1. Randomly choose two parents from the population without regard to fitness

2. Compare the fitness of each parent with the winner being the fitter of the two

3. Infect the loser with 50% of the winner’s genes

4. Mutate the infected loser’s gene(s)

5. Put both individuals back into the population

6. This cycle is repeated until some pre-defined stopping condition is met

The Microbial GA takes advantage of two non-standard tricks that make programming

the algorithm simpler, however, as explained below these tricks are purely superficial, the

Microbial GA is exactly the same as more familiar steady-state GAs. The first trick is

that it selects who-dies ( which we refer to as negative selection) rather than who is the

parent (which we refer to as positive selection), as in more common GAs. As discussed in

more detail in Harvey (2001, 2011) selecting fitter individuals to be parents, whilst making

an unbiased choice of who is going to die off is exactly the same as making an unbiased
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choice of who is going to be parent and then killing off the less fit individuals, which is

what the Microbial GA does.

Secondly, instead of generating an offspring and then replacing the losing parent with

this new offspring, the Microbial GA simplifies these steps and just infects the loser with

50% of the winners genes before putting them both back into the population. Again this

short-cut makes no quantitative difference to the GA.

As many people are not familiar with the Microbial GA it is important to note that

the selective pressure of the Microbial GA is exactly the same as any other steady-state

GA which is equivalent to the generational GA described earlier in this chapter. Here we

define selective pressure as a measure of how exploitive an algorithm is, in terms of the

evolutionary exploitation versus exploration balance and not in terms ‘how effective’ a GA

is in relation to a basket of optimisation problems, which is another way selective pressure

is sometimes defined. Defined in this way, the selective pressure of the Microbial GA and

generational GAs that use tournament or rank based selection methods can be broadly

equivalent for the following two reasons: (1) the selection pressure of tournament-based

and rank-based selection methods can be made equivalent Goldberg and Deb (1991) and

(2) the negative selection in tournament-based methods has the same selective pressure as

positive selection Harvey (1994). In Appendix A we expand on work presented in Harvey

(1994) to explain this in detail. The full analysis of selection pressure in the Microbial GA

can be found at: http://goo.gl/1yHa1.

2.2 Related Evolutionary Algorithms

Below we summarise the evolutionary algorithms related to this thesis. In many cases

these will be compared to some of our novel algorithms later in the thesis. For this reason,

only a high-level summary is provided here.

2.2.1 Niching Methods

Now we briefly describe the common genetically based niching methods. In general, niching

methods attempt to maintain genetic diversity in the population to either reduce the

chance that the population converges on a sub-optimal solution or to evolve a population

that contains individuals that work together to solve a given task. For a more in-depth

summary on niching see Dick (2005) and Mahfoud (1995).
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Fitness Sharing and Clearing

Fitness sharing (Goldberg and Richardson, 1987) is a niching method that relies on some

distance metric or similarity measure (either genotypic or phenotypic) between individuals.

By using suitable methods to adjust the fitness of any individual according to how many

other similar individuals are within some predetermined niche (similarity) radius, there is

a tendency for the population to spread out over multiple peaks or niches in the fitness

landscape; thus diversity is maintained. Clearing (Petrowski, 1996) is very similar to fitness

sharing but, instead of degrading the fitness of individuals within the same similarity radius

or subpopulation, it removes the least-fit individuals within the similarity radius from the

population. In Horn et al. (1994) it is shown that in Learning Classifier System models

where fitness is shared amongst cooperating individuals implicit niching can occur.

Crowding

Crowding was first introduced in De Jong (1975) as a method of removing similar indi-

viduals from a population, with the goal of trying to maintain diversity during evolution.

Deterministic Crowding (Mahfoud, 1995) is a specific type of crowding that mates two in

the population and then if the offspring is fitter, replaces the parent that is most similar

to the offspring. It is similar to fitness sharing because it requires a similarity calculation

done between individuals, but unlike fitness sharing there is no requirement to pre-specify

a similarity radius.

2.2.2 Demes and Spatially Structured GAs

Alternatives to genetically based niching methods include spatially structured GAs; for

good reviews see Dick (2005) and Tomassini (2005). In these, the population is structured

within some local geographical distribution (demes) that constrains which members of

the population are allowed to be selected or recombined with one another. This deme

structure allows more genetic diversity to be maintained across sub-populations.

Demes can be added to any standard GA. One of the choices that needs to be made

is whether to use one or two dimensional demes. When using one-dimensional demes

the population can is viewed as being on a (virtual) ring where mating is restricted to

individuals close to you in the ring. For two-dimensional demes, mating is restricted to

some 2-D region around the given individual. Spector and Klein (2005) note that one-

dimensional demes can be as effective as higher dimensional versions.
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2.2.3 Symbiotic GAs

A focus of this thesis is to study new types of artificial group evolution. One of the

benefits of group evolution is that it allows evolution to find solutions to tasks that require

a division of labour between different individuals. If we define symbiotic as a mutually

beneficial relationship between different entities, then symbiotic GAs are those in which

a group of individuals is required to solve the task. Below we summarise symbiotic GAs

related to our work.

Cooperative Coevolution

Cooperative coevolution was first introduced in Husbands and Mill (1991) and Husbands

(1993) for the application of job shop planning and scheduling, and has been further

studied in Potter and De Jong (1994) and McIlhagga et al. (1996). This is probably one

of the first symbiotic GAs but can also be thought of as a spatially structured GA because

of the population is sub-divided at the beginning of evolution. In this algorithm the

population is pre-divided into different subpopulations, so it can be thought of as a type of

spatially structured GA. Each subpopulation represents a subcomponent required to solve

the overall task, hence there needs to be some a priori knowledge of the problem so that the

appropriate number of subpopulations is chosen. Each subpopulation is evolved separately

using a standard GA, but the fitness of the individual members of each subpopulation is

based on the performance of the cooperative solutions.

SANE

SANE (Symbiotic, Adaptive Neuro-Evolution, Moriarty and Miikkulainen, 1996, 1995) is

a method of symbiotically evolving artificial neural networks (ANNs). As described by

the authors, the motivation of SANE is:

SANE incorporates the idea of diversity into neuroevolution. SANE evolves a

population of neurons, where the fitness of each neuron is determined by how

well it cooperates with other neurons in the population. To evolve a network

capable of performing a task, the neurons must optimize different aspects of

the network and form a mutualistic symbiotic relationship. Neurons will evolve

into several specializations that search different areas of the solution space.

(Moriarty and Miikkulainen, 1995)
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In an example implementation, they show a simple ANN with two layers of connection

weights, from input to hidden neurons and from hidden neurons to outputs. They treat

each hidden neuron, together with its incoming and outgoing connections, as a member

of the evolving population. By randomly choosing hidden neurons from the population

a full network can be formed. The network as a whole is evaluated on some required

task, and the networks score is added to the fitness of each hidden neuron that it contains.

Thereafter, the selection, replication, crossover and mutation of members of the population

are carried out by conventional GA methods.

Moriarty and Miikkulainen (1999) report that this implementation of SANE works

well on such simple ANNs. They also comment that it is feasible to extend this approach

to different neuron encodings, and to diverse network architectures including recurrency.

Learning Classifier Systems

Learning Classifier Systems (Holland, 1976; Holland and Reitman, 1978) , especially the

Michigan style LCS are very similar to symbiotic GAs. The goal of LCS is to create a

cooperative set of rules that together solve the given task. Unlike a traditional optimisation

scenario, the search is not for a single fittest rule but a number different types of rules which

together give the appropriate behaviour. The rule-base of an LCS had been described as

an evolving ecology of rules - “each individual rule evolves in the context of the external

environment and the other rules in the classifier system” (Forrest and Miller, 1990).

In Michigan LCSs, each individual in the population is an individual rule or classifier.

This is different from the Pittsburgh LCS where the population contains complete sets

of rules or classifiers. This means that Michigan LCSs are very similar to symbiotic GAs

because a group of population members (rules) needs to be combined to solve the task.

One complication that arises in these types of LCS is that a decision needs to be made on

how fitness is allocated to each rule bearing in mind that only the collective as a whole can

be evaluated. This is relevant to our view of evolution which will be discussed in detail in

the next chapter.

SEAM

The Symbiogenic Evolutionary Adaption Model (SEAM, Watson and Pollack, 2000b) is

a symbiotic GA with the following key characteristics: (1) It combines partially specified

individuals to produce offspring that are more genetically specified than the parents. This

recombination operator was used in the Incremental Commitment GA (ICGA, Watson and
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Pollack, 1999, 2000a) which is a simplified version of the Messy GA (Goldberg, 1989) which

also combined partially specified individuals before evaluation. (2) It uses group evaluation

to provide templates that avoid the need to evaluate partially specified individuals and

(3) It maintains diversity by using Pareto coevolution which is defined as a method:

. . . which segregates competition to maintain diversity, and prevents large sub-

optimal strings from replacing small optimal strings (Watson and Pollack,

2000b)

SEAM was shown to be able to solve the Hierarchical If-and-only-if (HIFF) and Shuffled

HIFF landscapes (Watson et al., 1998; Watson and Pollack, 1999).

2.2.4 Group Evolution in Evolutionary Robotics

One of the first pieces of research to study the application of symbiotic GAs to evolutionary

robotics was Quinn et al. (2003); Quinn (2006). They show how symbiotic GAs could be

used to evolve homogeneous multi-robot systems and showed how a division of labour

emerged even within a population of homogeneous controllers. This work was extended

on by Floreano et al. (2008) and Waibel et al. (2009) who use symbiotic GAs to evolve

both homogeneous and heterogeneous teams of robots on both cooperative and altruistic

tasks. In section 3.4 we analyse their algorithms in detail to demonstration of some of the

benefits of our view of evolution. To avoid repetition we will not summarise the algorithms

here.

2.2.5 Artificial Ecosystem Evolution

Up to this point the symbiotic GAs described in this section have been mainly targeted

towards solving optimisation problems. These types of algorithms can also be used to

study natural evolution. For example Waibel et al. (2011) use GAs to test Hamilton’s

rule (Hamilton, 1964) for predicting altruistic behaviour. In another set of experiments,

Williams and Lenton (2007) use symbiotic GAs to model artificial microbial ecosystems.

In their model, flask ecosystems are evolved for different abiotic, phenotypic traits where

fitness is evaluated at the ecosystem level.

2.2.6 In-Vivo Group Evolutionary Experiments

Group evolution can also be simulated in-vivo. Even though all the experiments in this

thesis are in-silico, it is important to present different ways group evolution has been

studied by biologists in a laboratory setting.
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Goodnight and Stevens (1997) provide a good summary of different laboratory experi-

ments that have shown a significant response to group evaluation and selection. One of the

first set of experiments which demonstrated this were by Wade (1977) on T. castaneum

(flour beetles). Forty-eight groups of beetles containing 16 adults per group were allowed

to live and reproduce for 37 days. Then the number of adults in each group were counted

and the groups with the highest number were used to populate the next generation. For

example if the best group had 100 adults, then it was used to create 6 new groups of 16

beetles (6 ∗ 16 = 96). The four remaining beetles from the best group were discarded and

then individuals from the second best group were used to form as many groups as possible.

This process was repeated until 48 new groups were formed.

In ecosystem selection, communities of symbiotic species are selected based on some

ecosystem level trait. In Swenson et al. (2000) small, soil-based ecosystems were evolved

for phenotypic traits such as pH level and amount of above-ground biomass.

2.2.7 GAs with Multi Individual Recombination

In Part II of this thesis we explore the effect of implementing massive amounts of horizontal

gene transfer (HGT) in GAs. Here we review related algorithms including those that

implement some sort of multi-parent recombination and those that are based on bacterial

evolution.

Multi-Parent Recombination (Eiben and Schippers, 1996), Bit Based Simulated Cros-

sover (BSC) (Syswerda, 1993), Probability Based Simulated Learning (PBIL) (Baluja and

Davies, 1998) and Gene Pool Recombination (GPR) (Muhlenbein and Voigt, 1995) are

examples of GAs that apply recombination to more than two individuals at a time, which

is similar to implementing HGT.

In Eiben and Schippers (1996) a variety of multi-parent recombination schemes were

tested using anywhere from 2 to 16 parents on different NK landscapes (which are de-

scribed in detail in section 7.2) to try to understand how varying the amount of sexual

recombination impacts evolutionary performance. GPR (Muhlenbein and Voigt, 1995)

only uses two parents to generate a single offspring but these parents are constructed by

randomly choosing genes at each specific locus from the entire gene pool after evaluation

and selection have been applied to the population. BSC (Syswerda, 1993) is similar to

GPR but is restricted to binary genotypes. In this algorithm, offspring are generated using

population level probability distributions. These distributions are constructed by counting

the number of 1’s and 0’s at each locus position and then weighting this distribution by
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each individual’s fitness. PBIL (Baluja and Davies, 1998) is almost identical to BPC but

instead of having a population of individuals there is a probability vector that represents

the population. This vector is used to generate new individuals which are evaluated and

then used to update the vector.

The Pseudo-Bacterial GA (PBGA) (Nawa et al., 1997) and the Bacterial Evolution-

ary Algorithm (Nawa and Furuhashi, 1998) are two GAs that are inspired by bacterial

evolution. Both include a genetic operator which they call the ‘Bacterial Operator’. This

operator attempts to mimic gene transduction which is one process by which bacteria can

horizontally transmit parts of their genome to other bacteria. The goal of implementing

gene transduction in a GA is to try to speed up the spread of high fitness genes through

the population. Nawa et al. (1997); Nawa and Furuhashi (1998) apply their algorithms to

the evolution of fuzzy rules.

2.3 Group Evolution in Biology

The remainder of this literature review introduces some of the key concepts from biological

group evolution. Even though the focus of this thesis is to look at new ways to implement

group evolution in artificial evolution and GAs, it is important that we review the current

state of group evolution in biology to determine whether any of these natural evolution

theories can be used to improve artificial evolution.

Group selection in nature has been a controversial and confusing subject in evolution-

ary theory for over fifty years. Even today the debate over whether group selection played

a role in the evolution of cooperation is ongoing; a significant portion of a recent issue of

Nature (August 2010, vol.466) was dedicated to this debate. Here we will only summarise

some of the key points in this very complex debate; we will not take sides. For readers

interested in the current state of the group selection debate see: Okasha (2010), West

et al. (2010), Dawkins (2012), Wilson (2012b), and Wilson (2012a).

After summarising the history of group selection and related theories we will show

that despite initial appearances, much of this debate and related skepticism over group

selection in nature is not relevant to the application of group selection or evaluation in

artificial evolution. Then in the next chapter we will discuss how none of these theories

explicitly distinguish between evaluation and selection, and, therefore, it is difficult for

them to be applied to the development of novel evolutionary algorithms. Finally, we will

briefly discuss bacterial evolution and metagenomics and how they relate to this thesis.
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2.3.1 Group and Multi-Level Selection Theories

West et al. (2010) believe that much of the confusion over group selection is due to the

many different ways group selection has been defined and used. Therefore, they try to

clarify things by dividing group selection into two main types: old group selection and

new group selection.

What West et al. (2010) refer to as old group selection was first proposed by Darwin to

explain the evolution of the social structure of insects, one of the first observed examples

of altruistic behaviour. Altruism benefits the recipient of the act, but is costly from a

fitness standpoint to the act giver. Darwin could not reconcile this type of behaviour with

his evolutionary theory of individual selection and survival of the fittest and therefore

hypothesised that altruistic behaviour evolved because it was the insect colony as a whole

that was selected for and not just the individual insect.

Old group selection was used by V. C. Wynne Edwards to try to show that group se-

lection was responsible for the regulation of animal population densities (Wynne-Edwards,

1963). John Maynard Smith showed that under the right conditions this type of group

selection could work, but he was very skeptical that these conditions would occur natur-

ally (Maynard Smith, 1964, 1976). His skepticism stemmed from the belief that the term

‘group selection’ should be reserved for evolutionary processes where there are partially

(or fully) isolated groups which can reproduce and go extinct. He saw these conditions

as necessary for groups to be the evolutionary units of selection; meaning they have the

properties of variation, multiplication and heredity (Maynard Smith, 1976).

This ‘old’ group selection theory was widely accepted well into the 20th century but

fell out of favour for the following reasons: (1) Darwin’s version of group selection requires

well defined groups, so in nature who or what is imposing these structured groups? (2)

It was thought that even if there are groups being selected for, individual selection would

always be a more significant evolutionary force because there are always more individuals

than groups and individual turnover is higher than group turnover (Maynard Smith, 1976).

The Haystack Model was a model Maynard Smith came up with that met his criteria for

group selection. In this model Maynard Smith (1964) imagined a species of mouse which

lived in haystacks. Each haystack is colonized by a single fertilized female whose offspring

only come out of their haystack once per year to mate with members of other haystacks in

order to start new colonies. Using this model Maynard Smith was able to show how group

selection could result in the evolution of altruistic behaviour, but in Maynard Smith (1964)

he concludes that the Haystack Model is “. . . too artificial to be worth pursuing further.”
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Maynard Smith believed that one of the mistakes people make is using group selection to

explain the evolution of a group trait before determining whether the conditions for group

selection are met and whether the same trait can be explained using kin or individual

selection (Maynard Smith, 1964, 1976).

According to West et al. (2010), ‘new group selection’ theories were introduced as

a result of these criticisms. These theories are commonly known as multi-level selection

theories and show that selection can occur at more than one hierarchical level. Theories by

Colwell (1981); Damuth (1988); Hamilton (1975); Wilson (1975, 1977) are multi-selection

theories that attempt to show that cooperation can evolve when between-group selection

is stronger than within-group selection.

MLS1 and MLS2 which are two of the more well known multi-level selection theories

were proposed by Damuth (1988). The difference between MLS1 and MLS2 has to do

with whether the individual (MLS1) or the group (MLS2) is the object of evolution,

where object of evolution is determined by whether you are interested in the changing

frequency of individual or group traits (Wu and Banzhaf, 2011). In MLS1, group selection

refers to the impact group membership has on individual fitness, while in MLS2, group

selection refers to the change in frequency of different types of groups (Damuth, 1988).

According to Damuth (1988) if you are interested in the evolution of altruism, which is

an individual trait, then MLS1 should be used.

2.3.2 Inclusive Fitness and Kin Selection

Group selection fell further out of favour when William Hamilton published his Kin Selec-

tion/Inclusive Fitness (KS/IF) model as an alternative theory that could explain altruistic

cooperation (Hamilton, 1964). Inclusive fitness is what individuals appear to maximise

when taking into account both direct and indirect fitness effects (West et al., 2010), whereas

the Fisher equation (Fisher, 1930) took account of only direct fitness effects.

Since Hamilton’s theory was published, much of the debate over group selection has

revolved around whether there is any difference between group selection theories and the

theory of KS/IF. West et al. (2010) believe that group selection can easily be explained

using the KS/IF model and there is nothing any of these group selection theories can

explain that KS/IF cannot. This view was recently disputed by Nowak et al. (2010). As

we discuss in section 2.3.4 we take the view that this controversy is not relevant to artificial

evolution and therefore for the most part can be ignored for the purposes of this thesis.

Most of this ongoing debate is exclusively framed in terms of explaining altruism, but
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as we will discuss below, in artificial evolution, from an engineering standpoint, we can

manipulate conditions so as to promote the evolution of mutually beneficial cooperation.

2.3.3 Dawkins’ Replicators and Vehicles

Richard Dawkins’ replicators and vehicles (Dawkins, 1982) are his attempt to clear up the

misunderstanding over the unit of selection in biological evolution and therefore deserve

some attention. According to Dawkins, replicators are “any entity in the universe of which

copies are made” (Dawkins, 1982), while vehicles are just the “survival machines” for the

replicators. In other words, replicators replicate and vehicles of selection interact with the

environment. He believes that only prebiotic molecules and genes can be replicators and

therefore all other entities such as individuals, species, or groups are only vehicles for the

replicating genes.

Active, germ-line replicators, then, are the units of selection in the following

sense. When we say that adaptation is “for the good” of something, what

is that something? Is it the species, the group, the individual, or what? I

am suggesting that the appropriate ‘something’, the ‘unit of selection’ in that

sense, is the active germ-line replicator. (Dawkins, 1982)

From this quote, we can see that Dawkins believes that only genes can be the ‘units

of selection’ because all evolutionary adaptations are for the benefit of the genes (this is

part of the gene-centered view of evolution). Based on this logic, vehicles of selection are

the entities that house the ‘units of selection’, which according to Dawkins can be entities

of any hierarchical level. Therefore vehicle selection and replicator survival are the same

process because if the vehicles are selected then the replicators survive (Dawkins, 1982).

Dawkins thinks that the ‘individual’ versus ‘group’ selection debate is about different

vehicles, not over different units of selection because in his view only genes (replicators)

can be units of selection. In section 3.3 we compare Dawkins’ vehicles and replicators to

our view of artificial evolution.

2.3.4 How Does this Group Selection Debate Relate to Artificial Evol-

ution?

In artificial evolution, the conditions required for group selection and evaluation can easily

be enforced by the experimenter. S/he can explicitly define and enforce group structure in

the simulation, can ensure that group turnover occurs either at the same or different time
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scales as individual turnover and can also eliminate within-group competition. Therefore,

the concerns regarding whether the conditions necessary for group selection do or do

not occur in nature should not carry over to the field of artificial evolution because the

experimenter is free to enforce such conditions.

Furthermore, much of the debate about group selection in biology has been about

whether it can explain the phenomenon of altruism, whereby individuals do something

that reduces their own fitness in order to increase the fitness of another individual. In

artificial evolution we are not necessarily concerned with this phenomenon; a more usual

goal is to evolve mutually beneficial cooperation, whereby individuals work together to

perform a group task, increasing the fitness of each member. Thus much of the debate in

biology, including the debates around kin selection and inclusive fitness, is tangential to

the issues of concern to those using group selection as an engineering tool.

In natural evolution it is difficult to separate evaluation and selection because fitness

can be only calculated after selection and reproduction have occurred. This is probably

one reason why the theories described in this section solely describe evolution in terms of

selection and do not explicitly talk about evaluation. In artificial evolution fitness needs

to be evaluated before selection occurs so that entities can be selected based on differential

fitnesses. This means that in natural evolution, group selection versus individual selec-

tion can only be determined (which here means discovered or deduced) a posteriori by

understanding which hierarchical levels (e.g. the group or the individual) benefit from the

evolved traits/characteristics. On the other hand, in artificial evolution the hierarchical

level of both evaluation and selection need to be determined (which here means decided by

the overseer) a priori. Therefore trying to apply the binary classification of group versus

individual selection to artificial evolution is limiting because it fails to take into account

the fact that evaluation and selection are different.

For these reasons attempting to apply any of the theories discussed in this section to

the development of artificial evolutionary algorithms is difficult and will limit the space

of potential algorithms. At the end of the next chapter we will compare these theories to

our view of artificial evolution which discriminates between evaluation and selection.

2.3.5 Bacterial Evolution and Metagenomics

In this thesis, many of the novel GAs we introduce have been influenced by bacterial

(microbial) evolution. Recent research in the field of metagenomics has highlighted how

bacterial evolution is very different from eukaryotic evolution. Some of these differences
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include the significance of horizontal gene transfer (HGT) and how in microbial communit-

ies, distinguishing between individuals and groups is very difficult because of the symbiotic

relationship between different bacteria. A significant part of this thesis implements these

two ideas into artificial evolution and studies how they affect the performance of GAs.

Horizontal or lateral gene transfer (HGT) occurs mainly in microbial communities such

as bacterial colonies and is the process by which genes are transferred between individuals.

Vertical gene transfer (VGT), on the other hand, is the process by which genes from

parent(s) are passed on to one or more offspring and is the primary mechanism of eukaryote

evolution. There are many different mechanisms of HGT (Thomas and Nielsen, 2005), the

most common being: transduction where genes are transferred between bacteria with

the aid of phages or virus and conjugation where genes are transferred through cell to

cell contact using plasmids. It has been shown that HGT is responsible for a significant

amount of evolutionary innovation including antibiotic resistance, virulence attributes and

metabolic properties (Ochman et al., 2000).

Previously our understanding of microbes has been based on studying rather few

samples. In order to perform reproducible scientific experiments, well-defined species have

been used, often with great care taken to culture them in the lab in isolation to ensure

their purity. It is typically assumed that the test-tube is full of a single species that is

genetically well-defined. Research in the field of metagenomics has recently realized that

such assumptions may not hold true in the real world. As a very recent field, most of the

reporting on metagenomics comes in specialised technical research papers. Useful over-

views for a more general audience include Handelsman (2004), a report by the Committee

on Metagenomics (2007) and Eisen (2007).

In microbial communities there may often be large functional differences between

close relatives; further, horizontal gene transmission means that many functions (chem-

ical cycles) typically performed by one species may be also performed by very different

species. Microbes such as bacteria do not undergo sexual reproduction, but reproduce by

binary fission. But they have a further method for exchanging genetic material, bacterial

conjugation. Chunks of DNA, plasmids, can be transferred from one bacterium to the

next when they are in direct contact with each other. Whereas the genomes of different

humans vary by around 0.1%, different members of what may conventionally be termed

a microbial species (or phylotype) can differ by up to 30%. It now makes conceptual

sense and technical developments make it possible to perform shotgun sequencing of a

whole bucketful of microbes taken from the Sargasso Sea (Venter et al., 2004) and con-
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sider the metagenomic sequence of the whole community, together with the functions that

such a community collectively performs. Shotgun analysis involves breaking up the DNA

randomly into small segments that are individually sequenced; then using computational

methods, by seeking overlaps in these fragments, they are built up again into a complete

sequence.

An example of the importance of the symbiotic relationship between bacteria is in the

human body. Recent analysis has sown that there are 10 times as many microbial cells

in a human body than there are human cells; the human metagenome contains perhaps a

hundred times more genes than the human genome (Qin et al., 2010). Many such bacteria

are essential for our human well-being, and in turn they rely on us to provide them with

an appropriate environment.

2.4 Summary

In this literature review we have:

1. Provided a general summary of the main steps of most genetic algorithms (Section

2.1).

2. Described the benchmark GAs we use to compare our GAs to (Section 2.1.7).

3. Reviewed existing GAs and evolutionary algorithms most related to the work done

in this thesis (Section 2.2).

4. Highlighted the key points in the on-going debate over whether group selection occurs

in nature (Section 2.3)

We believe this gives the reader the necessary background and context to properly

understand how our new view of evolution fits in to the field artificial evolution as well as

understanding how our new algorithms compare to some of the existing methods of group

evolution. In the next chapter we describe our new view of evolution in detail, specifically

highlighting the benefits of separating evaluation from selection.
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Chapter 3

Separating Evaluation from

Selection in Artificial Evolution

3.1 Introduction

One major difference between natural and artificial evolution is that in artificial evolution,

evaluation and selection are separate and distinct steps. This is in contrast to natural evol-

ution, where there is no explicit fitness function and natural selection is used to describe

both evaluation and selection, because in nature it can be argued that these two processes

cannot be viewed separately. For the purposes of this thesis, evaluation is defined as the

process of testing some entity on a task and assigning it a fitness score based on an explicit

fitness function and selection is defined as determining which entities should survive based

on differential fitnesses between entities. As we discuss in section 3.3, this difference is

one of the main reasons why attempting to apply natural evolutionary theories such as

group, multi-level or kin selection, that we summarised in the previous chapter, to artifi-

cial evolution is difficult and limiting. In this chapter we present our novel way of viewing

artificial evolution that is based on the conceptual discrimination between evaluation and

selection and discuss how using this view of artificial evolution opens up the potential

space of interesting and novel algorithms.

It is important to note that for the purposes of this thesis we define ‘artificial evolution’

as evolutionary experiments or algorithms where there is an explicitly defined fitness or

cost function that is used to evaluate entities in the population. We realise that attempting

to apply our view to open-ended artificial evolutionary simulations, such as Avida (Adami

and Brown, 1994), where there is no explicit fitness function will be more challenging and

therefore for the purpose of the thesis we limit the application of our view of artificial
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evolution to experiments where there is an explicit fitness function. Whenever a fitness

function is used, the method of evaluation and selection both need to be defined a priori.

In the artificial evolution literature this distinction is rarely discussed (one exception being

Watson and Pollack (2000b)) and the standard convention is to describe different evolu-

tionary algorithms and experiments solely in terms of ‘selection’, in which this is used to

refer to what we call ‘evaluation’ or ‘selection’, without drawing a distinction between the

two.

Due to the influence of natural evolution it is common to describe evolutionary ex-

periments in terms of ‘individual’ or ‘group’ selection, without specifying whether it is

the evaluation or selection step in artificial evolution that is being referred to. Viewing

artificial evolution in the same way as natural evolution can cause confusion because in

many cases experiments labeled as ‘group selection’ are actually individual selection with

group-level evaluation. For example, among the most famous examples of ‘group selec-

tion’ in artificial evolution are the experiments by Craig and Muir (1996) which showed

that when battery hens were evolved basing selection on the number of eggs produced

by a cage of hens, rather than the number produced by a single hen, egg production sig-

nificantly increased. In factory farms for eggs, multiple hens are housed in cages rather

than open pens because this is a more cost efficient way of maintaining a large number of

hens. When evaluation and selection is done at the individual hen level (by picking the

hen that lays the most eggs), the hens compete against others in the same cage, become

aggressive and end up pecking and harming their cage-mates. However, by choosing to

evaluate cages of hens on the egg production of the whole cage rather than of individual

hens, aggressive hens that reduced overall egg production were bred out. By changing the

level of evaluation from the hen to the cage after six generations Craig and Muir (1996)

found that hen survival increased from 160 to 348 days and eggs per hen went from 91

to 237 (averages). This paper is called “Group Selection for adaptation to multiple-hen

cages...” even though the significant change was varying the level of evaluation not the

level of selection. This is an example of why in artificial evolution it is useful to look at

both the selection and evaluation processes separately.

Drawing a distinction between evaluation and selection in artificial evolution has two

major advantages. Firstly, it makes things clearer and easier to understand when trying to

compare different evolutionary experiments, especially when considering those related to

group evolution in any form; and secondly, it extends the space of potential evolutionary

algorithms beyond the standard case where they both act on the individual, allowing novel
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algorithms to be developed. Our view of artificial evolution is based on identifying the

Units of Evaluation (UoE) and Units of Selection (UoS) and the interactions between

them. Not only does this view differentiate between what is being evaluated and what

is being selected, it also eliminates the need to apply an absolute ‘group’ or ‘individual’

label because evolution can be described in terms of the hierarchical relationship between

the UoE and UoS. The problem with trying to understand evolution in terms of ‘group’ or

‘individual’ evaluation/selection is that because evolution can act on multiple hierarchical

levels, what is a ‘group’ and what is an ‘individual’ is largely a matter of perception.

The first section of this chapter presents our new view of evolution in detail. Then

we spend some time comparing this view of evolution to some of the biological theories

presented in the previous chapter. To demonstrate how this view of evolution can be used

to analyse existing GAs, we use it to analyse a set of group based evolutionary robotics

experiments. Finally we describe how this view will be used to develop new GAs in the

remainder of this thesis.

3.2 The UoE / UoS View of Artificial Evolution

Here we describe our view of evolution in detail and apply it to the evolution of battery

hens experiments (Craig and Muir, 1996) discussed earlier as an example of how it can

be used. This view is based on the conceptual discrimination between what is being

evaluated, which we call the Units of Evaluation (UoE), and what is being selected, which

we call the Units of Selection (UoS) and the interaction between them. Using this view,

the five main evolutionary steps are as follows.

1. Evaluate the UoE according to the pre-defined fitness function

2. Assign fitness credits from the UoE to UoS

3. Select the UoS on the basis of the assigned credits

4. Use the selected UoS to produce the next generation of offspring

5. Use the offspring to generate new UoEs

This evolutionary cycle (figure 3.1) can be used to describe any evolutionary algorithm

or experiment as long as there is some pre-defined, external fitness function. In this figure

the UoE, UoS and offspring are represented with different shadings (UoE is white, UoS is

light gray and offspring are dark gray) to highlight the fact that in artificial evolution there
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1. Evaluate the UoE

2. Assign fitness from 
UoE to UoS

3. Select fitter UoS 
based on assigned 

fitness credits
4. Use selected UoS 
to generate offspring

5. Use offpsring to 
generate new UoE

UoS

UoE

Selected 
UoS

Offspring

Figure 3.1: A flow diagram showing how the units of evaluation (UoE) and units of

selection (UoS) interact in artificial evolution. In this figure the different evolutionary

entities (UoE, UoS and offspring) are represented by different shadings (white, light gray

and dark gray respectively).

is no reason the UoE and UoS have to be part of the same hierarchical level, even though

in most standard evolutionary algorithms this is the case. We can categorise different

algorithms according to whether the UoE is (1) the same as the UoS (UoS = UoE), (2)

part of a higher hierarchical level than the UoS (UoE ⊃ UoS), or (3) part of a lower

hierarchical level (UoE ⊂ UoS). It would also be technically possible, although difficult

to think of practical reasons, to make the UoE and UoS different entities on the same

hierarchical level.

To illustrate how changing the UoE and UoS can impact evolution we will apply our

view of evolution to the battery hen experiments. The revolutionary outcome from the

Craig and Muir (1996) experiment was that they showed how egg production could be

significantly increased by changing both the UoE and UoS from the individual hen to

the cage of hens. As we noted earlier, the name of the Craig and Muir (1996) paper is

“Group Selection for adaption to multiple-hen cages...”, even though it could be argued

that changing the UoE was as important, if not more important, as changing the UoS.

Below we describe four different ways battery hens could be evolved with different UoE

and UoS 1. These examples are illustrated in figure 3.2. In this figure the UoE, UoS and

offspring are represented using the same colours as in figure 3.1 and the individual hens,

cages of hens and offspring are shown using circles, rectangles and triangles respectively.

1Note that these examples are purely illustrative and may not actually be effective methods of evolving

egg-producing hens.
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Hens

Chicks

1. Count the number of eggs 
laid by each individual hen

2. Assign fitness from UoE 
to UoS - trivial in this case 

because UoE = UoS

3. The hens that laid 
the most eggs are 

selected as mothers

4. The best hens are 
used to breed new 

chicks

5. These chicks are 
used as next 

generation of hens

Chicks

2. Hens are shuffled into 
new cages weekly.  

Fitness of an individual 
hen is equal to the avg of 
the fitness of the cages it 

was part of

3. The fittest hens are 
selected as mothers

4. Fittest hens are 
used to breed new 

chicks

Cages

Hens from 
best cages

Chicks

1. Count the total eggs 
produced by each cage

3. Hens from the fittest 
cages are selected as 

mothers

4. These hens are 
used to breed new 

chicks

Hens

Cages

Hens from 
best cages

Chicks

2. Fitness of a cage is 
equal to the fitness of the 

best performing hen in 
each cage

UoE = individual hens
UoS = individual hens

UoE = cages of hens
UoS = cages of hens

2. Assign fitness from UoE 
to UoS - trivial in this case 

because UoE = UoS

5. These chicks are 
used to create the next 

generation of cages

UoE = cages of hens
UoS =  individual hens

1. Count the total eggs 
produced by each cage

UoE = individual hens
UoS =  cages of hens

3. Hens from the fittest 
cages are selected as 

mothers

4. These hens are 
used to breed new 

chicks

1. Count the number of eggs 
laid by each individual hen

Hens

Best 
Hens

Cages

Cages

Hens

Best 
Hens

5. These chicks are 
used to create the next 

generation of cages
5. These chicks are 

used as next 
generation of hens

Figure 3.2: Here we use the hen example to illustrate four possible combinations of the

units of evaluation (UoE) and units of selection (UoS) that could be used for evolving egg

producing hens. In each quadrant, the evolutionary cycle for different combinations of

UoE and UoS is shown (see text for details). Like in figure 3.1 the UoE are white, the UoS

are shown in light gray and the offspring are shown in dark gray. The individual hens,

cages of hens and chicks are shown as circles, rectangles and triangles respectively.

For example, a light gray circle means that the individual hens are the UoS.

1. One possibility is that hens are evaluated individually, and the hens that lay the

most eggs (fittest hens) are chosen to be parents of the next generation. In this case

the UoE and UoS are both individual hens (UoS = UoE) .

2. Another possibility is that the number of eggs laid by individual hens is ignored,

instead only the total number of eggs laid in each cage are counted. The best cages

are selected and used to produce the next generation of hens. In this case the UoE

and UoS are both cages of hens (UoS = UoE).

3. Again only the cage totals are counted, but this time the farmer decides to randomly

re-shuffle the cage members every week and calculate the fitness of an individual hen
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as the average of the fitness of the cages it was part of. When breeding time comes

around the fittest hens are selected. In this case the UoE is the cage of hens but the

UoS is the individual hen so the UoE ⊃ UoS.

4. The hens are evaluated individually but all hens in the cage that contains the fittest

hen are sent off for breeding. In this case the UoE is the individual hen but the UoS

is the cage of hens so the UoE ⊂ UoS.

These are just four illustrative examples of how battery hens could be evolved with the

intention of maximising egg production. It is important to understand that these four

methods of evolving battery hens can only be differentiated because we have separated

evaluation from selection.

When the individual population members are able to solve the task on their own, like

in the battery hen example, identifying the UoE can be a little ambiguous. This is because

the fitness of a cage of hens will in some way be based on the number of eggs the individual

hens lay, so it could be tempting to say that the UoE is always the individual hen. We

believe that in these cases the easiest way to determine the UoE is to ask whether the

method of determining fitness can be calculated without any knowledge of the individual

entities that make up the group. If the answer is yes then the UoE is the group, otherwise

the UoE is likely the individual. To illustrate this more clearly below are three examples

of how hen fitness could be calculated. In each case we explain what the UoE is assuming

the UoS is a cage of hens.

Case 1 - Fitness as the Total Number of Eggs per Cage In this case fitness is

calculated as the total number of eggs laid by the cage so the UoE is the cage. This is

because a visiting alien observing fitness being calculated in this way would probably think

that it was the cage laying the eggs rather than the individual hens, because no knowledge

of the individual hens is required to calculate fitness in this way. Using this logic, anytime

the fitness of a group is calculated as the sum of individual fitnesses the UoE will likely

be the group. In this case the UoE and UoS are the same, so assigning fitness from the

UoE to UoS is trivial.

Case 2 - Fitness is Number of Eggs Laid by a Random Hen In Case 2, fitness is

calculated by randomly choosing a single hen from each cage and determining how many

eggs it laid and then assigning this fitness to the cage. Here the UoE is an individual hen

because the same alien visiting earth would realise that it is not the cage laying eggs but
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rather the individual hens. Unlike Case 1, knowledge of the individual hens is required

to calculate fitness. Assigning fitness from the individual hen (the UoE) to the cage (the

UoS) is also trivial in this case because cage fitness is just equal to the number of eggs the

randomly chosen hen laid.

Case 3 - Fitness is the Best Hen in the Cage Here fitness is equal to the number

of eggs the best hen in each cage lays (as in the example in the bottom right of figure 3.2).

As in the previous case, the UoE is the individual hen, since knowledge of the eggs laid

by the individual hens is required to calculate fitness in this way. Fitness is assigned from

the individual hen (the UoE) to the cage (the UoS) by taking the maximum number of

eggs laid by any one hen.

It is important to note that this ambiguity of determining the UoE disappears if

individual fitness is meaningless. An example of this could include a job-shop scheduling

task where the fitness of an overall job-shop schedule can only be calculated by taking

into account how all the machines in the shop work together. The fitness of individual

machines in the shop is meaningless without looking at the overall schedule. Next we

describe each of the steps of our evolutionary cycle in general so they can be applied to

the analysis and development of GAs.

3.2.1 Step 1: Evaluating the UoE

The first step in this evolutionary cycle is to evaluate the UoE based on some explicitly

defined fitness or cost function that is specified a priori by the experimenter before evol-

ution begins. In a standard generational GA the entire population is evaluated once per

generation, while in a steady-state GA the entire population is not evaluated as a whole

but instead individuals from the population are evaluated whenever a new offspring is to

be produced.

In standard GAs (both generational and steady-state) it is assumed that each indi-

vidual in the population encodes a full UoE which can be evaluated on its own, but as we

will show in this thesis this does not have to be the case. In some cases, like symbiotic

GAs, the individuals in the population only encode partial solutions so some method of

combining them into full UoE needs to be specified. This will be discussed in step 5 below.

3.2.2 Step 2: Assigning Fitness from the UoE to the UoS

Fitness of the UoE is determined using some pre-defined fitness function (step 1). The

fitness of the UoS is derived from this evaluation and this assignment procedure can be
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done in different ways depending on the hierarchical relationship between the UoE and

UoS. This choice is related to the credit assignment problem (Jong, 1987; Grefenstette,

1988; Holland and Reitman, 1978), which normally refers to how fitness is sub-divided

among the components of a cooperative solution.

If the UoS = UoE then the fitness of the UoS is the fitness of the UoE because they

are one and the same. When the UoS 6= UoE the choice of how fitness is assigned to the

UoS based on the UoE becomes potentially more complicated 2. Going back to the hen

example, if the UoE is the cage of hens, but the UoS is the individual hen, then a choice

has to be made on how the fitness as evaluated for each cage (UoE) relates to the fitness as

assigned to an individual hen (UoS). The simplest way to do this would be to assign every

hen in a given cage the fitness score of the cage but there are many ways fitness can be

assigned from the UoE to the UoS; with the optimal method likely being task dependent.

Michigan style learning classifier systems (LCS) (Holland, 1976; Holland and Reitman,

1978) and the niching algorithms which we discussed in the Literature Review chapter

each have their own methods of passing fitness between the UoE and UoS. In Chapter 5

we will show how changing the method impacts evolution.

3.2.3 Step 3: Selecting Fitter UoS based on Assigned Fitness Credits

After the UoS have been assigned a fitness score based on the UoE, the fitter UoS can

be selected as parents for the next generation of offspring. Different methods of selection

(fitness proportionate, rank based, truncation, and tournament) were discussed in the

Literature Review chapter so we will not spend any more time describing them here. For

the purposes of this thesis we have chosen to run all of our algorithms using tournament

selection and therefore comparing different types of selection is not part of the scope. For

an analysis of different selective schemes please see Goldberg and Deb (1991).

When analysing this selection step, one must be careful not to confuse fitness driven

selection processes with non-fitness driven choosing or picking steps, because this can lead

to the mis-identification of the UoS. For example, in our second illustrative example of

how to evolve battery hens above, both the UoE and UoS are cages of hens because fitness

is calculated as the total of number of eggs laid per cage and the cages that lay the most

eggs are selected to produce the next generation of hens. There are many different ways

that these UoS (cages of hens) can be used to produce the next generation of hens (step

4), for example: the farmer can send all the hens from the fittest n cages off to breed,

2It may be possible to relate the case where UoS 6= UoE to the Price equation (Price, 1970) with a

non-zero transmission term
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or can randomly pick m hens from the fittest n cages to breed, or even can choose to

breed only the hens from the single fittest cage. In these three examples, the method of

producing the next generation of hens is different, but in all cases the UoS is still a cage of

hens because it is cage(s) of hens that are selected based on differential fitnesses. Even in

the example where the farmer randomly picks individual hens from the fittest cages, the

UoS is a cage of hens because the random picking of hens is not directly driven by fitness

of the UoE. Part of this confusion arises from the many different ways the term ‘selection’

is used. In this paper we try to use ‘selection’ to refer to fitness based selection and use

‘choose’ or ‘pick’ to refer to processes of choosing a subset of entities from a group that

is random and not driven by fitness. In terms of our evolutionary cycle, the decision of

whether to generate offspring from a sub-set of the UoS falls into step 4 which we describe

next.

To complicate matters further, there is also the possibility of having evolutionary

experiments or algorithms where there are multiple UoE and UoS which are involved in a

multi-step selection process. For example, a farmer could keep track of both the number

of eggs produced by each individual hen and the total number of eggs produced by each

cage and then select the individual hens that lay the most eggs from the fittest cage. In

this example individual hens and cages of hens are both UoE and UoS. These examples

show how complex artificial evolution can be. We hope that identifying the UoS and

UoE will provide a consistent method of analysing and comparing different evolutionary

experiments and algorithms.

3.2.4 Step 4: Generate Offspring with Selected UoS

After the fitter UoS have been selected based on the fitness of the UoE, the next generation

of offspring can be produced. To generate offspring in any artificial evolutionary exper-

iment, the type of recombination and mutation needs to be specified (see the Literature

Review Chapter for a description of different types). Other factors that need to be con-

sidered include deciding whether some sort of group formation method such as propagule

or migrant methods (Wu and Banzhaf, 2009) are going to be used. If the UoS is made up

of a group of entities then there is the option of whether to use all the entities to generate

the offspring or to just use a randomly chosen sub-set of the UoS as we discussed in the

previous section.
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3.2.5 Step 5: Use the Offspring to Generate New UoE

The final step of the evolutionary cycle is to generate new UoE from the offspring. In

standard evolutionary algorithms this is often trivial because each individual offspring

encodes a full UoE, i.e. each individual can solve the task on its own, but as we will show

this does not need to be the case. In symbiotic GAs each individual in the population is

only a partial solution to the task so does not encode a full UoE and, therefore, UoEs need

to be constructed using two or more population members. For example, when evolving

artificial neural networks (ANNs) it is common for the population to contain n genotypes

that encode n ANNs. In this case the UoEs do not need to be assembled each generation

because each population member fully specifies a UoE. An alternate method of evolving

ANNs is to have a population of entities that encodes the genotype of individual neurons,

rather than full networks. In this case, each UoE would have to be assembled by choosing

the appropriate number of individual neurons from the population and using them to

construct a fully specific network. Both SANE (Moriarty and Miikkulainen, 1996, 1995)

discussed in the Literature Review Chapter, the Binomics GA (Harvey and Tomko, 2010)

we present in Chapter 5 and the Group GA Tomko et al. (2011) set of algorithms we present

in Chapter 4 require that the UoE are assembled from multiple population members.

Even if each individual in the population is a fully specified UoE there are cases where

the newly generated offspring are not equivalent to the new population of UoE. One

example of this is the Unconstrained GA (UGA) which we present in Chapter 7. In this

algorithm, which is related to the multi-parent recombination algorithms described in the

Literature Review, the genes of the offspring are shuffled before the new population is

created. This can be thought of as implementing horizontal gene transfer on the offspring

population.

3.3 The UoE / UoS View Compared to Natural Evolution-

ary Theories

In the section 2.3 we summarised a number of theories of natural group evolution includ-

ing Multi-Level Selection Theory (MLS) and Dawkins’ vehicles and replicators. Here we

compare them to the UoE/UoS view of evolution and show that because they do not ex-

plicitly separate evaluation from selection they are limiting in terms of their application

to analysing and developing artificial evolutionary experiments and algorithms.

MLS1 and MLS2 are two of the more well known multi-level selection theories that
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try to show that natural selection can occur on more than one hierarchical level. Like

most natural evolutionary theories, MLS does not explicitly draw a distinction between

evaluation and selection but it does hypothesise that fitness can be associated with either

the individual or group. For example, according to Damuth (1988), in MLS1 fitnesses are

properties of individuals, while in MLS2 fitnesses are properties of groups. Okasha (2005)

expands on this definition and states that in MLS1 “A collective’s fitness is defined as the

average fitness of the particles within the collective.” and in MLS2 a collective’s fitness is

“...the expected number of collectives contributed to the next generation.”. In the opinion

of Okasha (2005), MLS1 is very similar to group selection models that want to explain the

evolution of individual traits in a population that is divided into groups.

If we try to think about MLS in terms of UoE and UoS, it could be tempting to say

that in MLS1 the UoE is the group and the UoS is the individual, while in MLS2 the

UoE and UoS are both the group. The problem with this is that as we said before, in

natural evolution, it is difficult to separate evaluation from selection like we do in artificial

evolution. Even if we do apply MLS to the development of evolutionary algorithms it

is still limiting because the relationship between the UoE and UoS is limited to either

UoE = UoS or UoE ⊃ UoS. Our view of evolution does not restrict the hierarchical

relationship between the UoE and UoS and it also examines not only the relationship

between the UoE and UoS but how they interact in the overall evolutionary cycle.

There are also some similarities between UoE and UoS and Dawkins’ vehicles and

replicators (Dawkins, 1982). Even though vehicles and replicators were originally used to

study natural evolution, when applied to artificial evolution they can be used to highlight

the difference between evaluation and selection. Vehicles can be thought of as the entities

being evaluated in the environment (like our UoE) and the replicators can be thought of

as the entities that are selected to pass on genetic material based on the success of the

vehicles that house them (like our UoS). One of the problems with applying vehicles and

replicators to artificial evolution is that Dawkins believes that replicators, which he defines

as the unit of selection of evolution, can only be genes. This means that the vehicles always

have to be part of a higher hierarchical level than the replicators. As discussed earlier,

in artificial evolution the UoS do not have to be part of the lowest hierarchical level and

in many cases are actually part of the same level as the UoE. Also, as we will show in

section 5, when we use our framework to analyse evolutionary experiments, in many cases

the UoS are not actually the ‘genes’ of the simulation. This means that calling the unit of

evaluation a ‘vehicle’ for the genes would be incorrect in many cases. Limiting the UoS to
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genes also eliminates the possibility of group selection based evolutionary algorithms. For

these reasons we see our framework as extending and improving on the concept of vehicles

and replicators in the artificial evolution world by understanding that the gene-centric

view of evolution does not work well when analysing artificial evolution because of the

flexibility the experimenter has in varying the UoE and UoS.

3.4 Opening up the Space of Potential Algorithms

One of the benefits of analysing GAs in terms of UoE and UoS is that it can open up the

space of potential algorithms that can be applied to a task. To demonstrate this we apply

UoE and UoS to two related papers by Floreano et al. (2008) and Waibel et al. (2009)

that test four evolutionary algorithms which they claim differ in terms of the type of team

used to solve the task and the level of selection used.

The four different types of evolution Floreano et al. (2008) and Waibel et al. (2009)

test are (using their definitions): (1) Homogeneous teams evolved with individual-level

selection (2) Heterogeneous teams evolved with individual-level selection (3) Homogeneous

teams evolved with team-level selection and (4) Heterogeneous teams evolved with team-

level selection. These four evolutionary algorithms were tested on robot tasks that can

be solved individually, tasks that require mutually beneficial cooperation and also tasks

that are best solved with altruistic cooperation. Floreano et al. (2008) describe these four

evolutionary methods as follows:

The level of selection is varied by either measuring team performance and

selecting teams (team-level selection) or measuring individual performance and

selecting individuals independently of their team affiliation (individual-level

selection)

This quotation follows the common practice of failing to distinguish between evaluation

and selection, the distinction we wish to highlight. Using our view of evolution, we will

show that because evaluation and selection are not thought of separately the level of

evaluation and the level of selection are the same for each of the algorithms.

In table 3.1 their four different methods of evolving robots are classified using UoE and

UoS. This shows that according to our view of evolution, the algorithms Floreano et al.

(2008) and Waibel et al. (2009) use are limited to having the UoE the same as the UoS.

For example, when they evolve heterogeneous teams using team-level selection, the

fitness of each team is calculated as the sum of the fitnesses of the individual robots,
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Table 3.1: Classifying the four GAs in Floreano et al. (2008) and Waibel et al. (2009)

using units of evaluation (UoE) and units of selection (UoS). Using this view of evolution

the UoS and the UoE are the same in all the algorithms.

Homogeneous Homogeneous Heterogeneous Heterogeneous

Ind Selection Team Selection Ind Selection Team Selection

UoE Individual Team Individual Team

UoS Individual Team Individual Team

and then randomly chosen robots from the fittest teams are picked to be parents for the

next generation (Waibel et al., 2009). For the reasons explained earlier (see battery hen

examples) both the UoE and UoS are a team of robots because the team is being evaluated

and then selection is being driven by the fitness differential of the teams. Distinguishing

between evaluation and selection would have allowed algorithms where the UoE is the

group and the UoS is the individual to be tested, hence opening up the space of potential

algorithms. An example of this type of GA is the Binomics GA (Harvey and Tomko,

2010), which we discuss in chapter 5.

Floreano et al. (2008) found that team-level selection of homogeneous teams outper-

formed the other algorithms on the tasks that were setup to best be solved altruistically.

They believe the reason it outperformed the heterogeneous team-level selection method

was because in the latter, random individuals from the best performing teams, were mated

with individuals from other high performing teams at every generation. In other words,

this algorithm limited the evolution of cooperative solutions by reorganising the teams

every generation. As we discussed earlier in this chapter, there are many ways to select

the UoS based on the assigned fitness credits (step 3). Floreano et al. (2008) have chosen

to pick random individuals from the best performing teams rather than to select the fittest

teams to reproduce as a unit like the Group GA algorithm (Tomko et al., 2011, 2012) that

we will present in chapter 4. One of the benefits of using our view of evolution is that

it makes identifying these subtle differences between algorithms easier which potentially

could lead to improved algorithms.

Floreano et al. (2008) also believe the evolution of homogeneous teams using team-level

selection benefits from the fact that it does not require...

...the need for separately computing the individual performance of each indi-

vidual in a team. This is particularly useful in robotic tasks where only the

resulting work of the team is known, but not what each robot in the team did
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and how.

According to our view of evolution, the UoE of both the homogeneous team-selection

and the heterogeneous team-selection algorithms are teams of robots and therefore the

only reason to calculate the individual fitness scores is if they are required to calculate the

total team score (for an in depth discussion of the pros and cons of different evolutionary

strategies for evolving homogeneous teams of robots see Chapter 3 of Quinn, 2006). In our

opinion the need to calculate individual fitness scores should not be related to the type

of team (homogeneous or heterogeneous), but instead depends on how the fitness of the

UoE is determined.

3.5 Summary

The key message from this chapter is that to get the full picture of artificial evolution,

evaluation and selection need be viewed separately. As we have just shown, doing this

allows existing evolutionary algorithms to be consistently analysed which could help ex-

perimenters come up with new ways of applying artificial evolution. The remainder of this

thesis presents a number of novel algorithms that were developed using this view of evol-

ution and uses these algorithms to study the effects of varying the relationship between

evaluation and selection.

In summary, any evolutionary algorithm or experiment can be described using UoE

and UoS in the five following steps.

1. Evaluate each of the UoE according to the pre-defined fitness function

2. Assign fitness credits from the UoE to UoS

3. Select the UoS on the basis of the assigned credits

4. Use the selected UoS to produce the next generation of offspring

5. Use the offspring to generate new UoE

In standard GAs the UoE = UoS = offspring which means that steps 2 and 5 are

ignored. It is also common for both the UoE and UoS to be individual entities in the

population. By drawing a distinction between evaluation and selection not only is the

experimenter forced to think about the different hierarchical levels in their model but also

the interaction between evaluation and selection (steps 2 and 5).
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The new GAs we present in the remainder of this thesis will focus on steps 1, 2 and 5

of the above evolutionary cycle because we believe it is these steps that are for the most

part ignored when evolution is not viewed in terms of both evaluation and selection. In

Experiments I of this thesis we focus on how varying the relationship between the UoE

and UoS impacts evolution. In Chapter 4 we present the Group GA which increases the

level of both the UoE and UoS from the individual to group, and show how this change

allows evolution to solve problems that require a division of labour between component

parts. Chapter 5 explores the effects of keeping the UoE at the group level but reducing

the UoS to the individual level. One of the issues of setting the UoE to the group level

is that the group size parameter needs to be optimised in order for evolution to work. In

Chapter 6 we present a method of evolving the group which eliminates the need to pre-set

this parameter ahead of time.

In Experiments II (Chapters 7 and 8) of this thesis focuses on the latter half of the

evolutionary cycle, investigating how changing the method of constructing new UoE can

improve evolution on certain tasks. We find that generating new UoE using massive

amounts of horizontal gene transfer can lead to improved performance on tasks where

there is a high amount of genetic epistasis.
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Experiments I: Varying the Levels

of Evaluation and Selection
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In Experiments I of this thesis we investigate how varying UoE and UoS affects evol-

ution. Chapter 4 explores the benefits of increasing both the UoE and UoS to the group

level and is based on work done in Tomko et al. (2011). In Chapter 5 the Binomics GA

Harvey and Tomko (2010) effects of varying the UoS between the individual and group

while keeping the UoE at the group level are investigated. Finally, in chapter 6 a method

to evolve the optimal group size in symbiotic GAs, presented first in Tomko et al. (2012),

is expanded on. Expanded tables of results for the experiments done in this part of the

thesis are included online at ntomko.wordpress.com.
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Chapter 4

Changing the UoE: The Group

GA

4.1 Introduction

Standard GAs, where both UoE and UoS are individual members of the population, work

well when the task is such that a single individual can solve it on its own. But they may

run into problems on multi-role tasks where different individuals are required to cooperate

in different roles. In this chapter we will show that changing the UoE and UoS from an

individual to a group allows evolution to solve tasks that require the population to niche,

in which different individuals are performing different jobs. This is done using the Group

GA (Tomko et al., 2011, 2012). In the Group GA both the UoE and UoS are groups of

population members, which means that groups are selected based on differential group

fitness. In this GA the relationship between the UoE and UoS is the same as a standard

GA, i.e. UoE = UoS, but the actual UoE and UoS are groups, instead of individuals.

We show that when we make both the UoE and UoS groups of population members

evolution is able to cause speciation and niching in the population. Here we use these

terms to broadly described the evolutionary process by which a single type of organism

differentiates into multiple ‘specialised’ types, that for instance, take advantage of different

resources available in a given environment. An example of this is the immune system,

where groups of different types of antibodies have different roles and responsibilities all of

which contribute to the goal of keeping the body healthy and free from diseases.

For a GA to be able to find symbiotic solutions to problems, where the individual

cannot solve the task on its own, it must have the following characteristics: (1) It must be

able to maintain diversity within the population so that niches can form and (2) it must
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allow for fitness to be evaluated at the group level. Evolutionary niching methods such

as those summarised in Dick (2005) and Mahfoud (1995) solve problem (1) by enforcing

diversity in standard GAs so that a single population can be split up into n different

niches. One of the issues with some of the more common niching methods is that they

require prior knowledge about the specific fitness landscape in order to work; for example,

whether n is 2, 5 or some other number. One of the benefits that the Group GA has over

some of these existing methods is that it can accomplish niching with minimal a priori

knowledge of the fitness landscape, and without knowing how the different jobs should be

shared out.

There are two main goals of this chapter. The first is to use the Group GA to illustrate

the effects of changing the UoE and UoS from the individual to the group level and the

second is to highlight the advantages it has over similar algorithms. We demonstrate the

emergent niching ability of the Group GA on an artificial immune system matching task

that has been previously been used in Forrest et al. (1993) and Potter and De Jong (2000).

The goal of this task is to evolve a population of antibodies (protecting agents) to match

a set of antigens (harmful invaders). To solve this task the population of antibodies needs

to niche so that it contains different individuals that match different antigens. One reason

this task was chosen is because the number of peaks in the fitness landscape can be changed

by changing the number of antigens that the population of antibodies needs to match. The

other reason for choosing this task is that it makes it very easy to determine when niching

has occurred. It should be noted that the main purpose of this chapter is to show the

general feasibility of GAs with group-level evaluation. In chapter 5 we compare the Group

GA to other algorithms as well as investigate its sensitivity to different parameter settings

on different tasks.

The remainder of this chapter is structured as follows. In the next section we describe

the Group GA in detail and compare it to existing symbiotic GAs. Next we introduce

our version of the immune system task and describe how the Group GA can be used to

solve it. Finally we present the results of the Group GA on the immune system task

and show how it can handle the situation where the number of antibodies change during

evolution. Expanded results for all these tests and experiments can be found online at

ntomko.wordpress.com.



46

4.2 Tasks Used in this Chapter

After the introduction sections of each of the remaining chapters there will be a section

entitled ‘Tasks Used in this Chapter’ where the tasks are described. If the task(s) have

been introduced in a previous chapter the appropriate sections will be referenced, if not

they will be described in this section. We have chosen to structure each chapter in this

way so that the reader can easily find where all of the tasks are explained.

4.2.1 The Immune System Task

In this chapter we test the Group GA on an artificial immune system matching task to

demonstrate the emergent niching abilities of the Group GA that is presented below. This

task, which has previously been used in Forrest et al. (1993) and Potter and De Jong (2000)

was chosen because it can be solved cooperatively and clearly illustrates how the Group

GA can lead to emergent niching and how it can adapt to a changing fitness landscape,

both of which are difficult with a conventional GA. In Forrest et al. (1993) this task was

used to study adaptation in the immune system and in Potter and De Jong (2000) different

variations of this task were solved using cooperative co-evolution. We will compare the

results of these two papers to the Group GA later in the chapter.

The goal of this task is to evolve a population of antibodies to protect the body from

a set of antigens. Simply speaking, antigens can be thought of as bacteria, viruses or

other pathogens that are dangerous to the body and the antibodies can be thought of as

the guardians which target these antigens for removal. This is a group task since defense

against only a subset of the antigens is insufficient; the entire set of attacking antigens

needs to be targeted. Antibodies in natural immune systems need to be adaptive in order

to combat new and different antigens that may enter the body. Therefore this task tries

to mimic this challenge of natural immune systems on a very basic level by attempting to

evolve a population of artificial antibodies to match a set of antigens that changes over

time.

In this task both the antibodies and antigens are modeled as bit strings. How well an

antibody combats a specific antigen is calculated as the number of bit matches between

antibody and antigen. For example a [1 0 1 1] antibody matches a [0 0 1 0] antigen at

location two and three and therefore the antibody’s fitness is equal to two when matched

to this antigen; the higher the match (fitness) score the better.

Assuming that the length of the antibodies and antigens is the same, when there is

more than one antigen in the antigen set the task can be thought of as symbiotic, because
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it is impossible for a single antibody to match an entire set of antigens on its own. In

this case, the population of antibodies needs to evolve to contain specialists to combat

each different antigen. Obviously the more antigens there are, the more difficult the task

becomes, because the evolving antibody population requires a larger number of specialists.

When we apply the Group GA (and the Binomics GA in a later chapter) to the immune

system task, the fitness of a group of antibodies is calculated as the average of the best

match scores achieved against all the antigens in the set. In other words, to evaluate a

group of antibodies, all the antibodies in the group are matched against every antigen

in the set and the average of the highest match scores against each antigen is the group

fitness. This means that to get a perfect fitness score there has to be at least one antibody

that matches each antigen perfectly in the group. For example, to calculate the fitness

of a group of antibodies represented by binary strings of [0 1 0 0], [0 0 0 0] and [1 0 1 0]

against a set of antigens represented by binary strings [1 1 1 1] and [0 0 0 0] the following

is done:

1. Calculate the match score of every antibody against each antigen in the set. In this

case the match scores of the antibodies against the [1 1 1 1] and [0 0 0 0] antigens

are 1, 0, 2 and 3, 4, 2 respectively.

2. Take the average of the best match scores for each antigen. Here the best match

score for the [1 1 1 1] antigen is 2 and for the [0 0 0 0] antigen the best match score

is 4. Taking the average of 2 and 4 gives us a group fitness of 3.

4.3 The Group GA

The Group GA is a steady-state GA that uses tournament selection and is based on

the Microbial GA (Harvey, 1996, 2001, 2011) described in section 2.1.7 A single cycle

(tournament) of the Group GA can be broken up into the following steps (see figure 4.1):

1. Randomly choose two groups of individuals. Each group is constructed by randomly

choosing n different individuals from the population with replacement. This means

that the same individual can be in both groups but each individual within a single

group is distinct.

2. Calculate and assign a fitness score to each group of population members based on

the group’s performance on a given task.
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Figure 4.1: A sketch of the main steps of the Group GA.

3. The members of the less fit group are infected with genes from the individuals of the

fitter group by randomly pairing individuals from each group and then overwriting

some proportion of the genes from individual in the losing group with the genes

from the individual in the winning group. The proportion of genes transferred is

set as a parameter that can be varied between 0.0 and 1.0. In this chapter we set

this parameter to 1.0 which means that all of the genes of the individual from the

winning group replace the genes of the individual from the losing group. With this

parameter setting ‘infection’ is equivalent to standard replication plus replacement

which is similar to many other steady-state GAs. In later chapters we explore the

effects of varying this infection parameter.

4. The genes of the individuals of the less fit group are mutated. This was done using a

mutation rate of 0.1 per genotype, meaning that at each locus there was a probability

of 1/640 of flipping that bit when using bit strings of length 64.

5. This process is repeated until some pre-defined stopping condition is met.
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What differentiates the Group GA from more conventional GAs is that groups of

population members (of some group size that is a parameter of the GA) rather than

individual population members (as in conventional GAs) are evaluated and then selected

based on the overall fitness of the group. Hence the driver of fitness based selection is the

relative fitness of an entire group of population members that work together as a unit to

solve some task.

replace losing 
group with 

mutated copy of 
winning group

put back in 
population

Group Fitness = 3

Group Fitness = 3.5

choose two groups of 
antibodies without any 

regard to fitness

calculate match score between 
every antibody and all antigens

population

Figure 4.2: The Group GA as applied to an immune system task with two, 4-bit antigens.

To evaluate a group of antibodies, all the antibodies in the group are matched against

every antigen in the set and the average of the highest match scores against each antigen

is the group fitness. For example, the top group of antibodies has a fitness score of 3

because the highest match score against the black antigen is 2 and the highest match

score against the white antigen is 4 (Tomko et al., 2012).

Figure 4.2 illustrates how the Group GA is applied to the immune system task. Here

two groups of antibodies are chosen from the population, evaluated against the antigens

and then a mutated copy of the winning group overwrites the losing group. Although

on this task one can calculate a measure of fitness for an individual, more generally the

Group GA can be applied to tasks where individual fitness is meaningless because the

Group GA randomly selects two groups of population members and uses them to construct
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two higher level entities that are evaluated and assigned a fitness score. How fitness is

calculated depends on what type of problem is being solved, but regardless of this, it is

only the group fitness that matters when determining the tournament winner and loser.

4.4 Results

Here we show how, using the Group GA, a randomly initialised population of antibodies

can be evolved to match a set of antigens. In the first experiment we evolve a population

of antibodies to match a fixed set of four different antigens. This is equivalent to the

Group GA solving a four-peaked fitness landscape. Then in the second experiment we

evolve a population of antibodies to match a variable set of antigens, where antigens are

added and removed during evolution. This second experiment simulates a task where the

number of fitness peaks changes during evolution. In all the experiments in this section

the antigen and antibodies were 64-bit binary strings, the antibody population size was

100 and the number of antibodies per group was 10.

4.4.1 Evolving Antibodies using the Group GA

Antigens
[...0 0 0 0 0 0 0 0...]

[...1 1 1 1 1 1 1 1...]

[...1 0 1 0 1 0 1 0...]

[1 0 0 0 0 0 0 0...]

An
tib

od
ie

s

Allele

Population After Evolution

Figure 4.3: The antibody population after evolution on a 4 antigen task. The y-axis

shows all 100 antibodies and the x-axis shows the value of each allele (gene) for a specific

individual. Black corresponds to a gene value of 1 while white correspond to a gene value

of 0.
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Figure 4.4: A plot of group fitness (black line) and ‘population fitness’ (gray line) over

time for a single typical run of the 4 antigen task. The ‘population fitness is the number

of antigens covered perfectly by at least one antibody from the population as a whole.

Figure 4.3 shows how the antibody population niched after being evolved for 20K

tournaments on a four antigen task. The four antigens used in this experiment were: [...0

0 0 0...], [...1 1 1 1...], [...1 0 1 0 ...], and [1 0 0 0...]. The first three antigens are specified

by repeating these four bit patterns sixteen times to make up the full 64 bits antigen and

the fourth antigen consists of a single ‘1’ followed by 63 ‘0s’. The lower part of figure 4.3

(as with the similar plots in later figures) displays each binary genotype in the population

horizontally above the next genotype, with white and black representing 0 and 1 alleles

respectively. Over 50 runs there were an average of 12 perfect [...0 0 0 0...] antigens, 15

perfect [...1 1 1 1...] antigens, 15 perfect [...1 0 1 0...] antigens, and 11 perfect [1 0 0 0...]

antigens at the end of evolution.

Figure 4.4 is a fitness versus time plot for this a single typical run of the four antigen

task. The black line shows the group fitness of the tournament winning group of antibodies

at each tournament, calculated as described above and the gray line shows the number of

antigens covered perfectly by at least one antibody (from the whole population) at each

tournament - this number can range from zero to the total number of antigens in the set.

We believe that this ‘population fitness’ is an important measure of performance on this

task because if you think of the goal of the antibodies in terms of protecting a body from

invasion, then it is important that the population contains at least one antibody to match

each antigen. In this figure you can see that throughout evolution the group fitness drops

significantly for a tournament or two without decreasing the fitness of the population as

a whole (number of perfect antibody types).
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Remove an Antigen
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Figure 4.5: This figure shows how the antibody population adapts during evolution when

64 bit antigens are added and removed (T=10 K corresponds to tournament 10,000).

We also attempted to solve the four antigen task using the Microbial GA to show how

standard GAs would struggle. As expected, when we used the Microbial GA, for all 50

runs the population always converged to match a single antigen in the set, failing to match

the other three. As discussed later there are different ways that the Microbial GA can be

modified so that it is able to solve the task but in these cases the UoE still needs to be a

group of antibodies.

4.4.2 Changing the Number of Antibodies During Evolution

Figure 4.5 shows how the antibody population adapts when antigens are added and re-

moved during evolution. In this experiment, the antigen set initially contained only two

antigens [...0 0 0 0...] and [...1 1 1 1...]. At tournament 20K a third antigen [...1 0 1 0...]

was added and evolution was resumed. At tournament 40K evolution was paused again

and the [...1 1 1 1...] antigen was removed from the set before evolution was restarted.

This figure clearly shows that when the antibody population is evolved using the Group

GA the population can adapt to changes in the antigen set, adding and removing different

types of antibodies as appropriate. Figure 4.6 shows the fitness versus time plot for this a

single typical run of this task, in which antigens are added and removed during evolution.

As this figure shows, when an antigen is added, the fitness of the population drops, then
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Figure 4.6: A plot of group fitness (black line) and number of antigens perfectly matched

by at least one antibody (gray line) in the population over time for a single typical run of

the task where antigens are added and removed during evolution (Tomko et al., 2011).

quickly recovers as the population adapts to match this new invader 1. Obviously there is

a limit to the number of antigens that can be matched by the population, this is discussed

further in the next section.

4.5 Discussion

We have shown that changing the UoE and UoS from the individual level to the group level

allows evolution to solve tasks that require a division of labour between component parts,

something that is not possible using a standard GA. This was demonstrated using the

Group GA to solve a multi-peaked artificial immune system matching task. Our results

show that by evolving a population of antibodies using the Group GA, the population

niches to match multiple antigens. We have also shown that when antigens are added and

removed during evolution, the Group GA allows the antibody population to adapt to this

change, and match new antigens that are presented.

Unsurprisingly, the Microbial GA, where individual antibodies are selected and evalu-

ated, was unable to solve the multi-antigen task and ended up converging to match a single

antigen every run. Compared to the niching methods described in the literature review,

the Group GA has the following two advantages: (1) niching is accomplished emergently

1There are potential similarities between the adaptive mechanism of the Group GA and clonal selection

(Burnet, 1959) that could provide a further avenue for exploration.
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without having to know the appropriate niches ahead of time or pre-setting any parameter

such as niching radius and; (2) fitness is evaluated at the group level which means that

the Group GA can be used to solve symbiotic tasks where fitness is meaningless at the

individual level.

For example, in cooperative coevolution (Husbands and Mill, 1991; Potter and De Jong,

1994) the number of species (or niches) needs to be set before evolution begins. Potter and

De Jong (2000) solved the same immune system tasks using cooperative coevolution where

the population was subdivided into n different species before evolution was started. This

method was successful at evolving a population of antibodies to match different antigens as

long as the number of different antigens was known a priori and the number of antigens

remained constant throughout evolution. To overcome these limitations of cooperative

coevolution, Potter and De Jong (2000) applied an evolutionary stagnation measure to

determine when a new sub-population should be added. This allows antibody species to

be added and removed during evolution in response to new antigens, but as Potter and De

Jong (2000) state, the level of stagnation at which species should be added or destroyed

is task dependent.

This task was also solved by Forrest et al. (1993) using a GA with a best-match fitness

scoring scheme. In their algorithm, an antigen is chosen at random and matched against

a group of antibodies from the population. Only the antibody in the group with the

highest match score gets its fitness increased by its match score, the fitness of all other

antibodies remains unchanged. This fitness evaluation step is repeated many times and

then the population is evolved using a standard GA. Like the Group GA, this method

allows the antibody population to niche to match a set of antigens without needing to

know a priori how many antigens are present. The major difference between this method

and the Group GA is that this best match method requires that the fitness of individual

population members can be evaluated on their own. This is possible for this task because

each individual antigen can be evaluated on its own by matching it against a single antigen,

but for tasks where fitness can only be evaluated at the collective or group level the best-

match method will not converge to an appropriate niched solution.

In general, other types of algorithms such as fitness sharing (Goldberg and Richardson,

1987) and crowding (De Jong, 1975) do not require knowledge about the exact number of

niches but instead rely on a pre-set niching (similarity) radius or some sort of similarity

calculation in order to get the population to niche. Another problem with some of these

niching methods such as fitness sharing and crowding is that they are tailored for tasks
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where each individual in the population can solve the task on its own or where the division

of labour is known a priori, not for tasks where fitness can only be calculated at a group

level or the optimal division of labour is unknown.

In general, the genetically based niching methods described earlier will struggle with

this type of symbiotic task where individual fitness is meaningless. An example of this

type of task is the evolution of artificial neural networks (ANN) task where the population

is made up of partial sub-networks which have no fitness except when they are combined

with other sub-networks to form a fully specified networks. In the next chapter we test

the Group GA on an ANN task.

The Group GA is also similar to symbiotic GAs such as SANE (Moriarty and Miikku-

lainen, 1995, 1996), ecosystem evolution (Williams and Lenton, 2007) and SEAM (Watson

and Pollack, 2000b), all of which evaluate groups of entities. One of the main differences

between these algorithms and the Group GA is that they evaluate at the group level but

select on the individual level so the UoE ⊃ UoS. In the next chapter we will present the

Binomics GA (Harvey and Tomko, 2010) where the UoE is the group and the UoS is the

individual and compare it to the group GA to try to understand the differences.

There are many other potential ways of evolving solutions to this task. For example,

instead of having each individual in the population being an individual antibody, a number

of antibodies could be strung together so that each population member is a ‘super anti-

body’ that is able to match more than one antigen. If the number of antigens is known

ahead of time and it is known that the number of antigens is not going to change during

evolution then this could be a good way of solving the problem. Alternatively, one could

make each super-antibody long so that one does not need to know how many antigens

there are ahead of time. In both these cases the UoE is still a group of antibodies, so like

the Group GA these methods should be able to evolve a niched population.

It is important to realise that modifying the Group GA so that the same antibodies

are always in the same groups would be exactly the same as having a population of ‘super

antibodies’ that can match more than one antigen. This would be equivalent to adding

geographic structure (demes) to group construction and in some tasks, this may improve

evolution. In the Group and Binomics GA presented in the next chapter, we have chosen

to construct the group by randomly picking individuals from the population. We have

not investigated how different methods of group construction impact evolution although

this would be an interesting line of research and we would expect in some cases it would

benefit evolution.
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The idea of how to construct groups and the different ways of viewing groups versus

individuals can also be thought of in terms of biological evolution. For example, viewing

mammalian evolution solely in terms of its own genetic evolution could be equated to

running standard GAs where the UoE and UoS are individuals. On the other hand, if one

looks at the evolution of the entire mammalian metagenome, which includes both the genes

of the given mammal and all the microbes that are an integral part of the animal, then

evolution looks more like Group GA type evolution. To get a feel for the difference between

the human genome and the human metagenome, one estimate is that there are ten times

as many microbial cells in the human body than there are human cells and the human

metagenome contains a hundred times more genes that the human genome (Qin et al.,

2010). Obviously, there are many differences between natural and artificial evolution, but

the point is that in natural evolution, depending on the goal, it will make sense to view

evolution in specific ways. In artificial evolution depending on the task, different methods

of group construction will be better than others. Our goal is that this view of evolution

and the GAs presented opens up the field so that these interesting variations are tested

and applied to real-world tasks.

Throughout this chapter, we have said that one of the advantages of the Group GA

is that niching can be accomplished emergently without pre-setting any parameters. One

could argue that the Group GA requires the group size to be pre-set so it is the same as

existing algorithms where the niching parameter needs to be set ahead of time. In Chapter

6 we will show that the Group GA can actually solve the immune system task using a

variety of different group sizes, unlike cooperative coevolution which requires the exact

number of niches to be set ahead of time. We also demonstrate how the group size can be

randomised or evolved during evolution, eliminating the need to pre-set this parameter at

all.

We believe that the Group GA has the potential to be a useful algorithm that can use

emergent niching to solve problems where the optimal division of labour is unknown. In

the next chapter we continue to explore how varying the UoE and UoS impacts evolution

by keeping the UoE at the group level but changing the UoS to the individual level.
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Chapter 5

Changing the UoS: The Binomics

GA

5.1 Introduction

In the previous chapter we showed how changing the UoE and UoS to the group level

allows evolution to solve problems that require explicit niching and hence are not solvable

using standard GAs. Now we explore the effects of varying the UoS while leaving the UoE

at the group level. The questions we try to answer are: (1) Does changing the UoS make

a difference to evolution? (2) Is the impact of changing the UoS the same for different

tasks? and (3) Can we start to understand how to set the UoS to for different tasks?

To explore these questions we compare the Group GA, where the UoE and UoS are

both groups, to the Binomics GA (Harvey and Tomko, 2010), where the UoE is a group

and the UoS is an individual. First, these GAs are tested on the immune system task

introduced in the last chapter to see what effect reducing the UoS has on a task that

requires very explicit niching. Then we test both GAs on an artificial neural network

(ANN) task that has been set-up to be symbiotic, meaning that it requires the UoE to

be a group, but unlike the immune system, does not require the population to explicitly

niche.

After comparing the Group and Binomics GA on these two tasks the Binomics GA is

modified so that the number of individuals selected at each tournament may be varied.

As we explain in section 5.6, this doesn’t explicitly change the UoS from the individual to

a group, it does allow us, however, to explore what happens when the amount of selection

in the Binomics GA is increased, thus it is more like the Group GA. It also means that

the optimal amount of selection can be found for each task, providing further data on how



58

changing the UoS impacts evolution. Finally, we compare both the Binomics and Group

GAs to the Microbial GA, which is a standard steady-state GA with individual evaluation

and selection.

Based on the results from comparing the Binomics, Group and modified Binomics GA

by the end of this chapter we are able to make some recommendations regarding what

the UoS should be set to for different tasks as well as discuss the limitations of both the

Group and Binomics GA.

5.2 Tasks Used in this Chapter

The effect of varying the UoS is tested on the immune system task described in 4.2 and

on an autoencoding artificial neural (ANN) network task described here.

Autoencoding (AE) neural networks (Hinton and Salakhutdinov, 2006) are ANNs with

a feedforward succession of layers, potentially fully connected between each successive

layer. When appropriate weights are found, they should reduce high-dimensional input

data through a lower-dimensional bottleneck layer and then recover the input pattern and

replicate it at the final output layer. Between input and bottleneck there is a hidden

layer, which should encode the input pattern into the bottleneck; thereafter a further

hidden layer should decode to the output.

We used AEs of the form N-h-M-h-N , where N is number of inputs/outputs, M is

the size of the bottleneck layer, and h is the size of each hidden layer (see figure 5.1). In

our implementation, all inputs were either 1 or -1. The hidden layer transfer functions

were hyperbolic tangents, whereas the bottleneck transfer function was linear. The output

layer transfer function was a discrete step function that mapped positive/negative values

into +1/-1 respectively. For simplicity, no biases were used in any of the networks. The

fitness of a network is calculated by testing every possible input pattern on the network

and then counting the number of outputs that matched the inputs. For example, on a

3-12-2-12-3 AE there are three input neurons which means there are a total of eight (23)

three bit inputs. When a specific network is evaluated all eight input patterns are shown

to the network, and for each output that correctly matches the input the fitness score is

increased by one, e.g. input 111 and output 101 scores 2. This means that the maximum

fitness score of any 3-input AE is 24. In general, the maximum fitness score of an AE with

N inputs is N ∗ 2N

The reason we chose to use AEs to test our algorithms is that they are simple to

understand, the difficulty of the task can easily be increased by either increasing the
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Figure 5.1: A sketch of a simple autoencoder that has 3 inputs and outputs (N=3), 2

nodes in the hidden layer (h=2) and a single node in the bottleneck layer (M=1). The

transfer functions for each layer: hyperbolic tangent (TANSIG), linear (PURELIN) and

discrete step (STEP) are listed at the bottom of the figure. When fully trained the output

should replicate any binary input pattern.

number of inputs (N) or decreasing the size of the bottleneck layer (M). Since they can

be evolved in a reasonable amount of time it is feasible to run a variety of different tests.

Details of how the Group GA and Binomics GA can be used to evolve solutions to this

task are in section 5.4.

5.3 The Binomics GA

The Binomics GA (Harvey and Tomko, 2010) is similar to the Group GA but instead

of both the UoE and UoS being groups of population members, the UoE is a group of

population members and the UoS is an individual population member; so UoE ⊃ UoS.

This means that individuals from the population are selected based on group fitness.

As discussed in section 3.2.2, when the UoE 6= UoS then fitness needs to be assigned

from the UoE to the UoS. In the Binomics GA the fitness of a UoE is equally passed to all

of its constituent members. For example, if the fitness of the group is 5 then this fitness

is used to update the fitness of every individual, on the basis of:
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NewIndFit = R ∗GroupFit + (1.0− R) ∗OldIndFit

OldIndFit and NewIndFit are used to refer to the previous fitness of the individual

and the updated fitness of the individual respectively, while GroupFit is the fitness score

that the group scored in the most recent evaluation. R, which can be set between zero

and one, can be thought of as the leaky integrator term that weights the fitness score

between the current and historical fitnesses. Setting R to 1.0 means that the individuals

new fitness is solely based on the latest fitness evaluation, and the individuals historical

fitness has no impact on its fitness. With an appropriate choice of R (0.0<R<1.0), the

effective fitness of each individual is smoothed over several recent evaluations of different

groups that it happens to have featured in, whilst still tracking any general changes in its

environment. One way to think about the Binomics GA is in terms of evolving bacteria

in a sea. The UoE can be thought of as a bucket of bacteria randomly drawn from the

sea and the UoS are the individual bacterium that are selected based on the fitness of the

bucket. The fitness smoothing parameter R determines how fitness is assigned from the

bucket (group) to the individual.

Tournament 
between two 
individuals 

randomly picked 
from population

Loser is genetically 
changed

Group of 
individuals 

containing loser is 
evaluated

All individuals in 
the group have 
their fitnesses 

updated

Figure 5.2: An illustration of the main steps of the Binomics GA.

The Binomics GA can be implemented in the following way (see figure 5.2). Initially,

every individual in the population is given a fitness score of zero.

1. Randomly choose two individuals (the UoS) from the population and run a tourna-



61

ment to determine which is the fitter. If the fitnesses are equal a winner is randomly

chosen.

2. Genetically modify the less fit individual (the loser) by infecting the loser with some

proportion (usually 50%) of the winner’s genes and then mutating the loser

3. Evaluate a group (UoE) of individuals from the population that contains the modified

loser individual

4. Update the fitness of all individuals in the group and store these updated fitness

scores

5. Repeat steps 1 to 4 until the stopping condition is reached

Like the Microbial GA described in section 2.1.7, genetic changes in the population

are driven via tournaments involving selecting two individuals at random, comparing their

currently stored fitnesses and designating one as the winner, the other as the loser. This is

different from the Group GA where the tournament is between two groups of individuals

randomly chosen from the population. In the group GA, the UoS is a group while in the

Binomics and Microbial GAs the UoS is the individual.

5.4 How the GAs are Applied to the Tasks

In this chapter we compare the Binomics and Group GAs on both the AE and immune

system tasks and describe how these GAs can be applied to each task. How the Group

GA is applied to the immune system task was described in the previous chapter in section

4.3.

5.4.1 The Binomics GA Applied to the Autoencoder

The AE task was chosen because it can be set up as a symbiotic task where a group of

individuals are required to solve the task. This can be done by having a population of

partially specified networks that are combined into full networks. One way to do this is

to start off with a population of fully-specified networks and then setting the majority of

connection weights between nodes of each individual to zero. In effect, each individual in

the population, therefore is a only a small part of the full ANN, and may very well be

functionless on its own through having no connected path from inputs to outputs. Then,

a full network can be constructed by randomly choosing a group of individuals (partial

networks) from the population and summing (or averaging) the weights at each locus. The
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proportion of zero weights in the population is pre-set at the beginning of evolution and

is maintained using both an add-link and delete-link mutation operator.

Forcing each individual in the population to have some proportion of its weights be set

to zero was done so that this AE task needs to be solved using group evolution. Obviously,

the AE could be evolved using a standard GA if each individual in the population encoded

a full network. However, the main goal of solving the AE in this way was to explore the

effects of changing the UoS on evolution. In the next chapter, we will discuss some

of the benefits of solving an ANN task in this way, including summarizing some recent

research by Hinton and Srivastava (2012) that uses a weight zeroing-out method to improve

performance of large feed-forward ANNs. This method which they call ‘dropout’ is used

to randomly omit some of the neurons during training which has the benefit of reducing

over fitting.

As applied to the AE, a single tournament of the Binomics GA is as follows:

1. Randomly choose two partial networks from the population and compare their stored

fitnesses (initially every individual in the populaiton is given a stored fitness of zero)

2. Genetically modify the less fit network using infection and mutation

3. Randomly choose n other individual networks from the population to be combined

with this tournament-losing network

4. Combine all these partial networks into a single full network by summing the weights

at each locus

5. Evaluate this network on the task

6. The fitness of the network is used to update the stored fitnesses of all the individuals

that made up the network according to: NewIndFit = R ∗ GroupFit + (1.0 − R) ∗

OldIndFit

7. All partial networks are put back into the population and the cycle starting at step

1 is repeated.

8. The stopping condition occurs when a network in step 5 has a fitness score of N ∗2N

In the Binomics GA mutation occurs in two steps. First, standard mutation is applied

by randomly choosing a single non-zero weight and mutating it by a normally distributed

amount with mean zero and standard deviation which is set by a parameter. Then, the



63

number of zero and non-zero weights is modified so that each individual maintains the

approximate ratio as set at the beginning of evolution. This is done as follows:

• Delete a non-zero weight (set it to zero) with probability:

(Percent Zero)*(Num NonZero Wts)/(NumWts)

• Change a zero weight to non-zero (a small random number) with probability:

(Percent Non Zero)*(NumZero Wts)/(NumWts)

For example, if we want each individual (partial network) to have approximately 90% zero

weights then Percent Zero is set to 0.9 and Percent Non-Zero is set to 0.1.

In summary, each tournament takes two partial networks at random from the popu-

lation, and determines a winner and loser based on their current fitnesses. The loser is

modified using infection where some pre-specified proportion of the winner’s genes over-

write the corresponding loser’s genes before being mutated.

5.4.2 The Group GA Applied to the Autoencoder

To determine the effect of changing the UoS from the individual to the group the Binomics

GA was compared to the Group GA on this task. As applied to the AE task, a single

cycle of the Group GA is as follows:

1. Randomly choose two groups of partial networks from the population

2. Combine each group of partial networks into a full network by summing the weights

at each locus

3. Calculate the fitness of each full network with the winning network being the one

with the higher fitness

4. The group of partial networks that made up the losing network is infected with genes

from the winning group and then mutated

5. Both groups of networks are put back into the population and this process is repeated

One difference between the Group and Binomics GA is that in the former, two networks

have to be evaluated each cycle, while in the Binomics GA only a single evaluation needs

to be made. For this reason comparisons are made using the number of evaluations it

takes each algorithm to solve the task, rather than the number of tournaments.
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5.4.3 The Binomics GA Applied to the Immune System

The Binomics GA can be applied to the immune system task as follows:

1. Randomly choose two antibodies from the population and compare their stored

individual fitnesses.

2. The antibody with the lower fitness is genetically changed using infection and muta-

tion.

3. This modified antibody is combined with a group of randomly chosen antibodies

from the population.

4. All the antigens are matched against all the antibodies in the group.

5. The group fitness of this group of antibodies is calculated as the mean maximum

match score in the group in the same way as it was in the Group GA (see section

4.2).

6. The fitness of all antibodies in the group is updated according to : New Antibody Fitness =

R ∗Group Fitness Fitness + (1.0− R) ∗Old Antibody Fitness Fitness

7. All antibodies are put back in the population and this cycle, starting a step 1 is

repeated.

5.5 Results

In this section we present results from the following three experiments. First we demon-

strate that changing how fitness is passed from the UoE to the UoS impacts the perform-

ance of the Binomics GA. Then we compare the performance of the Group to the Binomics

GA on three AE tasks and the immune system task to understand how changing the UoS

while keeping the UoE at the group level impacts performance. We find that on the 4-

24-3-24-4 AE the Binomics GA outperforms the Group GA but on the 4-antigen immune

system task the opposite is true.

5.5.1 Setting R

Before comparing the Binomics to the Group GA on both the AE and immune tasks we

first want to show how the performance of the Binomics GA is impacted by changing the

method of passing fitness from UoE to UoS. As discussed in section 3.2.2 anytime the
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UoE 6= UoS a decision needs to be made about how fitness of the UoE is assigned to the

UoS. In the Binomics GA fitness is assigned equally from the UoE to all the UoS in the

group before being time-smoothed over previous evaluations using the parameter R in the

following way: NewIndFit = R ∗ GroupFit + (1.0 − R) ∗ OldIndFit, where R (which can

be thought of as a leaky integrator) is set between 0.0 and 1.0 To test how varying the

method of passing fitness from UoE to UoS impacts performance in the Binomics GA we

test the Binomics GA, with different R values on the 3-12-2-12-3 AE and the four antigen

immune task.

For the AE task, each partial network in the population had 50% of its weights ini-

tialised to zero, and this ratio of zero to non-zero weights was approximately maintained

throughout evolution. The population size was set to 50, the group size to 25 and the

standard deviation of the mutation amount to 0.5. Performance was measured as the

median number of evaluations it took to evolve a perfect AE (fitness score equals N ∗ 2N )

over 50 runs, where evolution was stopped at a maximum of 20K evaluations.

R was also varied on the four, 64-bit antigen immune system task described in section

4.2. For this experiment we used the following parameters that were found to perform

well based on a parameter sweep: the population size was set to 100, the group size to 10

and the mutation rate to 1/640. Performance was measured as the number of evaluations

it took to evolve the first population that contained antibodies that perfectly matched all

four antigens.

Figure 5.3 shows how varying R impacts performance on the AE and immune tasks

respectively (full testing results can be found online at ntomko.wordpress.com). This

figure, and all box and whisker plots used in this thesis are standard Matlab box and

whisker plots where the red line shows the median of the data, the edges of the box show

the 25th and 75th percentiles, the whiskers extend to show the most extreme data points

not considered outliers and the red crosses show the outliers. An outlier is defined as those

data points that are outside 1.5 times the difference between the 25th and 75th percentiles.

These plots show that on the AE task optimal performance occurs when R = 0.05 and on

the immune task the optimum is when R = 0.75.

When R = 1.0 the fitness of a population member is solely based on the most recent

evaluation, its historical fitness doesn’t factor into its current fitness. As R is decreased

the current fitness is weighted more towards the historical fitness than the most recent

evaluation. This means that on the AE task, the Binomics GA works better when the

fitness of each partial network is more skewed to the past, while on the immune task it
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Figure 5.3: A box and whisker plot of the performance of the Binomics GA with different

R (time smoothing parameter) values on the 3-12-2-12-3 AE task (top) and the 4 antigen,

64-bit immune system task (bottom). A full table of results for this figure can be found

online at ntomko.wordpress.com .

works better when the fitness is based on the last couple of evaluations.

5.5.2 Comparing GAs on the Immune System Task

In the previous chapter we showed how the Group GA could be used to solve an artificial

immune system task where the goal was to evolve a population of antibodies that matched

a number of different antigens. We now test the Binomics GA on the same task and

compare it to the Group GA.

The Binomics GA differs from the Group GA on this task in that the UoS is an

individual antibody rather than a group of antibodies as it is in the Group GA. We

compared the performances of the Group and Binomics GA on the 64 bit, 4 antigen task

over 50 runs. For both GAs, the population size was set to 100, the number of antibodies

per group was 10, the mutation rate was set to 0.1 per genotype, meaning that there

was a probability of 1/640 of flipping a bit. On the Binomics GA the time smoothing

parameter R was set to 0.75. These parameters were chosen because they were found to
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Table 5.1: Comparison of the Binomics GA (BGA) and Group GA (GGA) on the 4

antigen immune system task. Performance was based on the number of evaluations it

took to evolve a population that contained antibodies that perfectly matched all four

antigens and statistical comparisons were done using p-values from the Wilcoxon rank

sum test of equal medians and a Bayes factor over 50 runs.

GGA Median(IQR) BGA Median(IQR) Bayes Factor p-value

Immune Task 275 K (67 K) 1100 K (180 K) 2 ∗ 10−11 7 ∗ 10−18

be the optimal of those sampled in our parameter sweep.

Table 5.1 shows the performance of each GA on this task. Performance was based

on the number of evaluations it took to evolve a population that contained antibodies

that perfectly matched all four antigens. Again, statistical comparisons were made using

p-values calculated using the Wilcoxon rank sum test of equal medians and Bayes factors

(see Appendix B). A p-value of 7 ∗ 10−18 and Bayes factor of 2 ∗ 10−11 show that the

null hypothesis can be rejected with high confidence and we can say that there is strong

evidence that Group GA outperforms the Binomics GA on this task.

For the reasons discussed in Appendix B, all statistical comparisons in this thesis will

be made using both Bayes Factors and p-values generated from the Wilcoxon rank-sum

test of equal medians. As discussed in Appendix B the Bayes factors used in this thesis

are in terms of the null hypothesis over the alternative hypothesis which means that small

Bayes factors provide evidence in favour of the alternate hypothesis, which in the case of

these comparisons is that the performance of the two GAs is not equal. In this thesis a

result is considered significant if the p-value is less than 0.05 and if the Bayes factor is less

than 1/3. Using a significance level of 5% for p-values is fairly standard and according to

Jeffreys (1961) a good rule of thumb is that any Bayes factor less than about 1/3 provides

strong evidence in favour of the alternate hypothesis. If the results of the two statistical

measures contradict each other then it is assumed that there is not enough evidence to

reject the null hypothesis.

Again, it should be noted that we are not using statistical tests in this thesis to claim

any of these GAs are the optimal ways to solve any of these tasks. The main reason for

using these statistical tests is so that we have some way to quantitatively measure how

varying GAs using of our view of evolution impacts performance on different tasks.



68

5.5.3 Comparing GAs on the Autoencoder Task

The Group and Binomics GA are now compared on three different AEs: a 3-12-2-12-3

with 90% of the weights set to zero, a 3-12-2-12-3 with 50% of the weights set to zero and

a 4-24-3-24-4 with 50% of the weights set to zero. One effect of increasing the proportion

of zero weights in an AE is that it means that more individuals (partial networks) are

required to work together to solve the task. Testing a 3-12-2-12-3 AE with both 50% and

90% zero weights allow us to see what impact this has on evolution. The 4-24-3-24-4 AE

was also tested so that the effects of a more difficult landscape could also be explored.

To determine which GA performed better, on each AE a comprehensive parameter

sweep was done and the best parameter combination of each GA was compared. In this

parameter sweep the population size, group size, mutation amount, infection rate and R

(for the Binomics GA) were all varied. Performance was measured in terms of median

evaluations it took to evolve a perfect AE over 50 runs, so lower is better. If a perfect AE

wasn’t found in less than 20K evaluations for the 3-12-2-12-3 AEs and 40K evaluations for

the 4-24-3-24-4 AEs then evolution was stopped and the run was deemed unsuccessful. It is

important to highlight that the number of evaluations were being counted, not the number

of tournaments and that in the Binomics GA there is one evaluation per tournament while

in the Group GA there are two evaluations per tournament. The reason for comparing

performance using evaluations rather than tournaments is that in most real-world tasks

the evaluation step will be the most computationally intensive and time consuming.

Table 5.2 and figure 5.4 compares the performance of the best performing Group and

Binomics GA on the three AEs. This table shows both the median and inter quartile

range (IQR) evaluations it took to evolve a perfect AE over 50 runs as well as the results

of the statistical comparisons. As these results show, on both 3-12-2-12-3 AEs there is not

enough statistical evidence to reject the null hypothesis which is that both GAs perform

equally well on this task. But on the 4-24-3-24-4 the null hypothesis can be rejected and

therefore it can be said that there is strong evidence that the Binomics GA outperforms

the Group GA on this task. Table 5.2 and figure 5.4 only show the performance of the

best performing parameter combinations on each AE, the full results showing the data

from the parameter sweep performed can be found online at ntomko.wordpress.com.

Comparing the Binomics GA to the Microbial GA

To get an idea of how the performance of the Binomics GA compares to a standard GA

on the AE task we present the results from Harvey and Tomko (2010). Figures 5.5 and
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Figure 5.4: A box and whisker plot comparing the Binomics GA (BGA) to the Group GA

(BGA) on the 3-12-2-12-3 AE with 50% zero weights and 90% zero weights and on the

4-24-3-24-4 AE with 50% zero weights.

5.6 which have been copied from Harvey and Tomko (2010) compare the Binomics GA to

the Microbial GA on a 3-12-2-12-3 and 4-24-3-24-4 AE. These results show the Binomics

GA outperforming the Microbial GA in terms of number of evaluations it took to evolve a

perfect AE. As noted in the paper, these were preliminary tests performed to demonstrate

in principle that the Binomics GA could be used to evolve ANN type tasks.

After Harvey and Tomko (2010) was published further research determined that the

reason the Binomics GA outperformed the Microbial GA on these tests was due to how

the weights were being scaled. In the Binomics GA, because a full network is constructed

by summing up the weights at each locus of all the different partial networks in the group,

there is an intrinsic scaling factor being added which significantly improved performance

(see section 5.4.1). The degree of scaling is based on the group size, with larger group sizes

leading to a higher scaling factor. Upon this discovery, we added a scaling factor to the

Microbial GA and after optimising this new parameter, the Microbial GA outperformed

the Binomics GA. Even though the optimised Microbial GA outperformed the optimised

Binomics GA, this led us to investigate ways the group size could be evolved which would
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Table 5.2: Comparison of the Binomics GA (BGA) and Group GA (GGA) on three

different AE tasks: a 3-12-2-12-3 with 50% of the weights set to zero, a 3-12-2-12-3 with

90% and a 4-24-3-24-4 with 50% of the weights set to zero. Performance was measured in

terms of median and IQR evaluations to evolve a perfect AE and statistical comparisons

were done using p-values from the Wilcoxon rank sum test of equal medians and a Bayes

factor.

Autoencoder BGA Median(IQR) GGA Median(IQR) Bayes Factor p-value

3-12-2 50% Zero 1196 (1659) 820 (795) 3 0.2

3-12-2 90% Zero 2573 (2891) 2148 (2252) 0.8 0.03

4-24-3 50% Zero 7385 (7938) 13573 (10297) 0.009 1 ∗ 10−4

avoid the need to preset the scaling factor. These methods are presented in chapter 6.

5.5.4 Results Summary

In the this section we have shown that the Binomics outperforms the Group GA on a 4-24-

3-24-4 AE but on the immune system task the Group GA outperforms the Binomics GA.

We believe that this is due to the fact when the UoS is an individual, as in the Binomics

GA, only a single population member is selected and modified for each evaluation but

when the UoS is a group, as in the Group GA, an entire group of population members are

selected and modified each evaluation. This means that the Group GA is a much more

brutal algorithm than the Binomics GA and may be more suited to immune system type

tasks where there is a very explicit division of labour. To further investigate how changing

the amount of selection and mutation per evaluation impacts evolution in the next section

we modify the Binomics GA so that the number of tournaments per evaluation can be set

as a parameter.

5.6 The Modified Binomics GA

In the standard Binomics GA, which we have tested up to this point in the chapter, there

is a single tournament per evaluation. In this tournament two individuals are randomly

chosen from the population, their fitnesses are compared, and the winner infects the loser

with some proportion of its genes before being mutated. This modified losing individual

is then combined with a randomly chosen group of individuals from the population and

evaluated on the given task. This means that in the standard Binomics GA the UoE is a
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Figure 5.5: Number of evaluations needed to achieve a perfect score using 3 different GAs

(10 runs each) on the 3-12-2-12-3 AE. The Microbial GA with single weight mutation, the

Microbial GA with multi weight mutation and the Binomics GA. (this figure was copied

from Harvey and Tomko, 2010)

Figure 5.6: Number of evaluations needed to achieve a perfect score using 3 different GAs

(10 runs each) on the 4-24-3-24-4 AE. The Microbial GA with single weight mutation, the

Microbial GA with multi weight mutation and the Binomics GA. (this figure was copied

from Harvey and Tomko, 2010)
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group of population members and the UoS is an individual population member.

There is no reason why the number of tournaments per evaluation in the Binomics GA

has to be limited to one, so in this section we test a modified version of the Binomics GA

where the number of tournaments is set as a parameter that can be increased. A single

cycle of this new, modified Binomics GA looks as follows:

1. Randomly choose two individuals from the population

2. Compare the stored fitnesses of the two individuals

3. The less fit individual is infected with genes from the fitter individual and then

mutated

4. Repeat steps 1-3 NUMT times

5. The NUMT modified individuals are combined with a number of randomly chosen

individuals equal to GROUPSIZE - NUMT from the population and evaluated on

the task.

6. The fitness of all individuals in the group are updated by New Fitness = R ∗

Network Fitness + (1.0− R) ∗Old Fitness

7. All individuals in the group are put back into the population and we return to step

1

8. The stopping condition is when maximum fitness or maximum number of tourna-

ments is reached

The only difference between the modified and original Binomics GA is that the number

of tournaments per evaluation (NUMT) can be varied between one and the group size.

This increases the number of individuals selected per evaluation but doesn’t change the

UoS. Even when NUMT = GROUPSIZE the UoS is still the individual. This is because

at every tournament a single individual is being selected. This is different from the Group

GA where at every tournament the entire ‘fitter’ group is being selected as a unit. At the

end of this chapter we discuss whether varying NUMT is equivalent to changing the UoS.

We tested this modified Binomics GA on the three AE tasks and the 64-bit, four

antigen immune system task. For each task we used a high performing set of parameters

as found by our parameter sweep on the standard Binomics GA and varied the NUMT

parameter. For the 3-12-2-12-3 and 4-24-3-24-4 AEs where 50% of the weights were set

to zero, we tested the modified Binomics GA using population sizes of 100 and 500; for



73

Table 5.3: Comparison of the modified Binomics GA (mBGA) to the better of either the

standard Binomics GA (BGA) or Group GA (GGA). Performance was measured in terms

of median and IQR evaluations to evolve a perfect AE and statistical comparisons were

done using p-values from the Wilcoxon rank sum test of equal medians and a Bayes factor.

Task mBGA Median(IQR) GGA or BGA Median(IQR) Bayes p-value

3-12-2 50% Zero 919 (959) GGA 820 (795) 4 0.3

3-12-2 90% Zero 1439 (1684) GGA 2148 (2252) 0.02 2 ∗ 10−4

4-24-3 50% Zero 5285 (6935) BGA 7385 (7938) 0.3 0.01

immune task 287K (71 K) GGA 275K (67 K) 7 0.1

the 3-12-2-12-3, 90% zero weights AE we used a population of 500 and 1000; and for the

immune system task, the population size was 100.

Figures 5.7, 5.8, 5.9, 5.10 show how performance on each of these tasks changes when

NUMT is increased. The additional number of tournaments per evaluation in the modified

Binomics GA are not factored into performance. The reason for calculating performance

in this way is that in real world tasks, such as evolving robots, the cost of evaluation

is going to be many orders of magnitude greater than the cost of running evolutionary

tournaments and so the best GA will be one that can evolve an acceptable solution to a

task in the minimum number of evaluations.

These figures show that on the AE tasks increasing NUMT up to a point improves

performance when the population size is set to either 500 or 1000 but for the cases where

the population was 100 increasing NUMT did not improve performance. For example, on

the 3-12-2-12-3 AE with 90% zero weights, a population size of 500 and a group size of 250

the optimal NUMT was 5. On the immune system task, we can see that increasing NUMT

to 5 or 10 significantly improved performance. On this task a population size of 100 and

group size of 10 was used, so unlike the AE tasks, the optimal NUMT was approximately

the same as the group size for the immune system task.

In table 5.3, we statistically compare the best modified Binomics GA with the better

performing of either the standard Binomics GA or Group GA on each task. As these

results demonstrate the modified Binomics GA is as good or better than the best Group

or standard Binomics on every task. The parameter combinations used to generate these

results are listed online at ntomko.wordpress.com.

Up to this point evolutionary performance on the immune system task has been meas-
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Figure 5.7: A box and whisker plot showing the effect of varying NUMT on the 3-12-2-12-3

task with 50% zero weights with a population size of 100 (top) and 500 (bottom). For

both population sizes the group size was set to 50% of the size of the population.
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Figure 5.8: A box and whisker plot showing the effect of varying NUMT on the 3-12-2-12-3

task with 90% zero weights with a population size of 1000 (top) and 500 (bottom). For

the population size 1000 case, the group size was set to 750, and for the population 500

case, the group size was set to 250.



75

0

1

2

3

4
x 10

4

1 5 10
NUMT

PopSize 100

E
va

lu
at

io
ns

0

1

2

3

4
x 10

4

1 5 10 25 50
NUMT

PopSize 500

E
va

lu
at

io
ns

Figure 5.9: A box and whisker plot showing the effect of varying NUMT on the 4-24-3-24-4

task with 50% zero weights with a population size of 100 (top) and 500 (bottom). For the

population 100 case, the group size was set to 50, and for the population 500 case, the

group size was set to 100.
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Figure 5.10: A box and whisker plot showing the effect of varying NUMT on the 4-antigen

immune system task with a population size of 100 and a group size of 10. The GA was also

run with NUMT=25 but because performance was so poor this data point is not shown

on the plot.
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ured in terms of the number of evaluations it takes to evolve the first population that

contains four antibodies that perfectly match all four antigens. Another way to measure

performance on this task is to run evolution for a fixed number of evaluations and determ-

ine whether at the end of evolution there are antibodies in the population that match all

the antigens. This measures the ability of a GA to maintain niches throughout evolution.

If we compare the modified Binomics GA to the Group GA in this way we find that the

Group GA performs much better. For example, using the same parameters as were used

in table 5.3 and running each GA for 2.4 million evaluations we found that the Group

GA contained antibodies that matched all four antigens in 37/50 runs but the modified

Binomics GA only contained antibodies to match all the antigens in 9/50 runs. So even

though the number of evaluations it takes to evolve the first population that contains

antibodies that match all of the antigens is about the same for both modified Binomics

and Group GA, the Group GA is much better at maintaining these antibodies through

evolution.

5.6.1 Modifying the Group GA

As was just shown, by increasing the number of tournaments per evaluation the Binomics

GA becomes much more like the Group GA in terms of how much selection and mutation

is occurring. Now we modify the Group GA so that it becomes more like the standard

Binomics GA by reducing the number of individuals who are modified each tournament.

In this modified Group GA a new parameter NUMMOD is introduced which specifies the

number of individuals that are modified each tournament. This parameter can be set

between 1 and the group size. When it is set equal to the group size this modified Group

GA is identical to the original Group GA. With this new parameter, the Group GA is run

as follows:

1. Randomly choose two groups of individuals from the population

2. Evaluate each group on the the task

3. Randomly pick NUMMOD individuals from the winning group to be recombined

with a randomly chosen NUMMOD individuals from the losing group

4. Mutate the randomly chosen NUMMOD of individuals from the losing group that

were just recombined

5. Put both groups of individuals back into the population
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Figure 5.11: A box and whisker plot showing the effect of varying the number of individuals

that are modified each tournament in the Group GA.

This GA was tested on all three AE tasks to see the effects reducing NUMMOD had on

evolution. For each AE, we initially tested the case where NUMMOD was equal to group

size, which is equivalent to running the standard Group GA. We then decreased NUMMOD

to see how this effected performance. On the 4-24-3-24-4 AE only two data points are

shown because when NUMMOD was reduced below 5 performance was extremely poor

(full results are available online at ntomko.wordpress.com).

As figure 5.11 shows, reducing NUMMOD on both the 4-24-3-24-4 and 3-12-2-12-3

with 50% zero weights negatively impacts performance. On the 3-12-2-12-3 with 90% zero

weights AE the impact of changing NUMMOD seems negligible. Based on the results of

the previous section these results were a little surprising. This is because increasing the

number of individuals being selected in the modified Binomics GA improved performance,

so one would expect that reducing the number of individual selected in the modified Group

GA to improve performance as well. Possible reasons for this are discussed in the next

section.
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5.7 Comparing the Binomics and Group GA to the Micro-

bial GA on the AE Task

Here we compare the Microbial GA, which is a standard steady-state GA, with the Bi-

nomics, Modified Binomics, and Group GA (group evolution based GAs) on the AE task.

The purpose of this comparison is to determine how the performance of each of these GAs

varies as the percentage of zero weights in the AE is increased from 0% to 50% to 90%.

Increasing the percentage of zero weights in the AE makes it more of a symbiotic task

because at a certain point a single individual in the population will be unable to solve the

task on its own. At one extreme, with no zero weights, a division of labour is not required

because it is possible to evolve a single individual to solve the task. At the other extreme,

where 90% of the weights are set to zero, a division of labour is a necessity because it is

impossible for any single individual to solve the task on its own. The 50% zero weight case

may be the most interesting because with this amount of zero weights a single individual

is still able to solve the task, but as our results show, the group evolution based GAs

outperform the Microbial GA in this case.

Comparisons between these GAs (figure 5.12) were made between the best perform-

ing parameter combinations of each GA over 50 runs and performance was measured in

terms of the number of evaluations it took to evolve a perfect AE (full results used to

construct this figure can be found online at ntomko.wordpress.com). These results can be

summarised as follows:

• For all the GAs, increasing the percentage of zero weights makes the task more

difficult.

• When the percentage of zero weights in the AE is set to zero, the Microbial GA sig-

nificantly outperforms the other GAs but all the GAs are able to solve the task. This

is confirmed by statistically comparing the Microbial GA to the Modified Binomics

GA which results in a p-value of 0.008 and and a Bayes Factor of 0.3.

• At 50% zero weights, the Group and Modified Binomics GA are significantly better

than the Microbial GA (p=1 ∗ 10−4 and Bayes Factor = 0.01 for the Group / Mi-

crobial comparison and p=0.04 and Bayes Factor = 0.14 for the Modified Binomics

/ Microbial comparison).

• At 90% zero weights the Microbial GA was unable to solve the task because there

are no viable networks when 90% of the weights are set to zero. In this case the
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Figure 5.12: A box and whisker plot comparing the Microbial GA, the Binomics GA

(BGA), Group GA (GGA) and the Modified BGA on a 3-12-2-12-3 autoencoder task with

different percentage of zero weights.
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Modified Binomics GA is the best performing GA.

It could be argued that a Bonferroni correction should be applied to these results

to take into account the multiple comparisons. As discussed in Appendix A, two of the

benefits of using Bayes factors are that a correction does not need to be applied in these

cases and Bayes factors, unlike p-values, can be compared. The goal of these results is to

show how group evolution based GAs are more robust to evolving networks with a large

percentage of zero weights so Bayes factors were provided so that the reader can get an

idea of the magnitude of the difference in performance. For these reasons we do not apply

any multiple comparison correction.

These results show that the group evolution based GAs (Binomics, Modified Binomics

and Group GAs) are more robust to changes in the percent of zero weights in the network.

This can be quantified by looking at how the performance of each GA changes as the

percentage of zero weights increases. For example, it takes the Microbial GA four times

longer to solve the AE with 50% zero weights than it does with 0% zero weights and it is

unable to solve the 90% zero weight case. On the other hand, the Modified Binomics GA

solves the 0% and 50% zero weight case in approximately the same number of evaluations

and solves the 90% zero weight case in less than double the number of evaluations as the

other two cases. In general this means that if there is any possibility that a division of

labour may be required to solve the given task, it probably make sense to apply a group

evolution based GA.

Both Geoff Hinton’s work on drop-out training (Hinton and Srivastava, 2012) and

SANE (Moriarty and Miikkulainen, 1996, 1995) have shown success in applying zero

weights to evolving neural networks so it was a little disappointing that in our case in-

creasing the amount of zero weights reduced performance. That being said, the method

of adding and maintaining zero weights we used was designed so that we could study how

changing the amount of symbiosis in a task impacted evolution, it was not designed for

optimal performance. An interesting area of research going forward would be to try to

find a better way of zeroing out weights that doesn’t reduce performance.

5.8 Discussion

In both standard GAs and the Group GA the UoE and UoS are the same, the difference

between them is that in standard GAs, the UoE and UoS are individual population mem-

bers, while in the Group GA, the UoE and UoS are groups of population members. In
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this chapter we introduced the Binomics GA where the UoE was a group and the UoS

was an individual so we could investigate the effect of changing the UoS while keeping

the UoE at the group level. Below we summarise the key results from this chapter, make

recommendations on how to choose the UoS, and finally compare the Binomics GA to

existing algorithms.

5.8.1 Summary of Results

When the UoE and UoS are different, fitness needs to be passed from the UoE to UoS. In

section 3.2.2 the Binomics GA was tested on both the immune system and AE tasks with

different R values to determine the effect this has on evolution. On the immune system

task the optimal R was 0.75, and on the AE task the optimal was 0.05. This means that

taking into account an individual’s historical fitness is more important on the AE task

than it is for the immune system task.

In the results section we compared the performance of the Binomics to the Group GA

on both tasks. Results show that on the easier 3-12-2-12-3 AEs there is no difference in

performance but on the 4-24-4-24-4 network the Binomics GA is significantly better than

the Group GA. On the 4-antigen immune system task the opposite is true, the Group GA

is much better than the Binomics GA. One possible reason why all the GAs performed

similarly on the 3-12-2-12-3 task is because the task was relatively simple and the effects

of varying the UoS therefore had no impact on the performance of evolution.

Finally, the modified Binomics GA was tested to determine the effect of increasing

the number of tournaments per evaluation (NUMT) on evolution. On the AE tasks the

modified Binomics GA outperformed the standard Binomics GA when NUMT was set

greater than one but less than the group size. On the immune system task, when per-

formance is measured in terms of number of evaluations to evolve the first population that

contained antibodies that matched all the antigens, the modified Binomics GA outper-

forms the standard Binomics GA to the point that it performs as well as the Group GA.

However, when performance was measured in terms of how well evolution conserved the

different antibody species in the population, the Group GA was much better than the

modified Binomics GA.

5.8.2 Choosing the UoS

A goal of this chapter was to understand how varying the UoS, while keeping the UoE

at the group level, impacted evolution. Our results show that in some cases it will make
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sense to use the Group GA where the UoE and UoS are both groups and in other cases

using the Binomics GA where the UoS is the individual will make more sense.

The immune system task was best solved when the UoS was a group which is equivalent

to having a large amount of selection and mutation per evaluation. This result is backed-

up by the fact that the Group GA outperformed the standard Binomics GA, and the

modified Binomics GA worked best when the number of tournaments per evaluation was

set equal to the group size. On the more difficult 4-24-3-24-4 AE task, the standard

Binomics GA was significantly better than the Group GA, which would imply that on this

type of ANN task, too much selection and mutation per evaluation reduces performance.

This is confirmed by the fact that when the modified Binomics GA was tested on the AEs

the optimal number of tournaments (NUMT) per evaluation was always much smaller

than the group size.

Even though changing NUMT in the modified Binomics GA doesn’t change the UoS

(individuals are still being selected), changing how many individuals selected per tourna-

ment could be viewed as equivalent to changing the UoS. If this is the case, the results

show that on some tasks having a UoS that is a partial group could be beneficial. To test

this further the Group GA was modified so that instead of selecting an entire group, a

randomly chosen subset was selected. As shown in section 5.6.1 on the AEs tested, this

modified Group GA performed worse then the standard GA where the entire group is se-

lected as a whole. The fact that changing the number of individual selected per evaluation

in the Binomics GA improves performance, but on the Group GA selecting a partial group

reduces performance, is something that needs further exploration.

Both the Binomics and Group GA will have to be tested on more tasks before it

is possible to make any broad generalisations about when to set the UoS to a group,

an individual or something in between. From a practical standpoint, even though the

modified Binomics GA performs the best out of the algorithms we tested on these tasks,

it does suffer from the fact that compared to the Group GA there are more parameters

that need to be optimised; those being the time smoothing parameter R and the number

of tournaments per evaluation NUMT. Also, the fact that the modified Binomics GA

struggled to maintain different types of antibodies throughout evolution suggests that for

tasks where explicit niching is important, setting both the UoE and UoS to the group, like

in the Group GA, may be advantageous. Therefore when choosing between the Group

and modified Binomics GA one needs to think about the trade-off between a potential

performance boost and having to optimise extra parameters.
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5.8.3 Comparing the Binomics GA to Existing Algorithms

The Binomics GA can be classified as a symbiotic GA because the UoE is a group of

population members, so it is related to all the algorithms we reviewed in our literature

review section 2.2.3 but here we limit our comparisons to algorithms where the UoE is a

group of population members and the UoS is an individual population member.

SANE (Moriarty and Miikkulainen, 1996, 1995) which was first discussed in section

2.2.3 is a steady-state GA that has been successfully applied to the evolution of neural

networks. In this context, SANE evolves a population of neurons whose fitnesses are

determined by how well each one performs when grouped together with other neurons to

form a full artificial neural network. In this algorithm the UoE are fully specified networks

and the UoS are individual neurons, so like the Binomics GA, the UoE ⊃ UoS. One of the

differences between the Binomics GA and SANE is how fitness is assigned from the UoE

to the UoS. In SANE an individual neurons’ fitness is based on the average fitness of all

the networks they took part in, which is different from how we time-smooth the fitness of

individual neurons in the Binomics GA. Another difference between the two algorithms is

that SANE is a generational algorithm, while the Binomics GA is based on the steady-

state Microbial GA. The generation style of SANE means that the gene transfer between

individuals is restricted to vertical transfer while the Binomics GA uses horizontal gene

transfer or infection.

When Learning Classifier Systems (LCS) (Holland, 1976; Holland and Reitman, 1978)

are analysed in terms of UoE and UoS we find that Michigan style LCS have UoE ⊃ UoS

as with the Binomics GA and SANE. One way to think about LCS is in terms of ANNs or

bacteria in a sea where each individual classifier (rule) is equivalent to a single neuron or

a single bacterium in the sea. In both Michigan and Pittsburgh style LCS, groups of these

rules are combined to form complete rule sets, which means the UoE are complete sets

of rules. The main difference between these two styles of LCS is that in the Pittsburgh

LCS, the UoS are the complete set of rules so the UoE = UoS, while in the Michigan LCS,

the UoS are individual rules so the UoE ⊃ UoS. This means that in the Michigan LCS,

there needs to be a way to assign fitness from the full classifiers (UoE) to the individual

rules (UoS) (step 2 of our framework). Many different methods have been proposed to

do this, including auctions with specificity-based arbitration mechanisms to allow default

hierarchies to form, and bucket brigade algorithms for the temporal credit assignment

problem. This has resulted in many different flavours of Michigan LCS. Because each

individual in the population of a Michigan LCS is an individual rule that needs to be
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combined with other rules to solve the task, it is similar to symbiotic GAs such as the

Binomics GA and SANE.

SEAM (Symbiotic Evolutionary Adaptation Model) (Watson and Pollack, 2000b) is

another GA that uses group evaluation and individual selection. In this algorithm two

individuals are randomly chosen from the population and used to produce an offspring.

This new offspring is then evaluated and if it is found to dominate its parents then it

replaces them. Domination is determined using pareto co-evolution by building a template

from randomly chosen individuals from the population and then superimposing both the

offspring and the parents on this template to determine which is dominant (details can

be found in (Watson and Pollack, 2000b)). In terms of UoE and UoS, we interpret this

algorithm as evaluating groups of individuals using their pareto-coevolution templating

process and the selecting the fitter of either the parents or offspring based on this group

evaluation. Even though SEAM has the same UoE and UoS as the Binomics GA, how

evaluation and selection is carried out are totally different.

In the final chapter of Part II of this thesis, we investigate how varying the group size

parameter affects the performance of both the Group and Binomics GAs. We then present

two methods that can be applied to these GAs that allow them to be run without having

to pre-set the group size ahead of time, avoiding the need to optimse this parameter.

We will will discuss some of the benefits of using group evolution rather than standard

individual evolution to evolve ANNs.

————————————————————————————–
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Chapter 6

Evolving the Group Size

6.1 Introduction

In the previous two chapters we tested both the Group and Binomics GA to try to under-

stand how varying the UoE and UoS impacts evolution. In both of these GAs the UoE is a

group of population members which means that these GAs are able to evolve solutions to

tasks that require a division of labour between component parts. In Chapter 4 we stated

that one of the advantages the Group GA has over existing algorithms is that it can solve

these types of tasks with minimal a priori knowledge about the optimal number of niches

required. In their current form, both the Group and Binomics GAs need the group size

parameter to be set before evolution begins. In this chapter we will explore how robust

these algorithms are to changes in group size and then will present two methods that can

be used so that the group size does not need to be set before evolution begins.

First we show how changing the group size affects the Group GA on the immune

system task and the Binomics GA on the AE task. These examples were chosen because

the Group GA performs better on the immune task and the Binomics GA performs better

on the AE task. Then two methods that avoid pre-setting the group size are presented.

In the first method, the group size is randomly chosen in evolution (random group size

method) and in the second method, the group size is evolved (evolved group size method)

by adding a group size weight gene to each individual in the population. We show how

both these methods can be applied to either the Group or Binomics GA to solve the

immune system and AE tasks.

Based on the results of this chapter, if the optimal group size is unkown then it makes

sense to evolve the group size as part of evolution. This avoids the need to manually test a

variety of different group sizes and, unlike randomly changing the group size during evol-
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ution, evolving it means that less time is spent at sub-optimal group sizes. Comparisons

made between the evolved group size Group and Binomics GA show that the Group GA is

better at evolving appropriate group size due to differences in selective pressures between

the GAs. Finally we discuss the benefits of applying the evolved group size algorithms to

general ANN problems.

6.2 Tasks Used in this Chapter

As in the previous two chapters we use both the immune system and autoencoder (AE)

tasks to test the different GAs. These tasks are described in detail in sections 4.2 and 5.2

respectively.

The other task used in this chapter is an NK fitness landscape (Kauffman and Johnsen,

1991; Kauffman, 1993). NK landscapes are encoded using bit strings of length N, where N

controls the dimensionality of the landscape. The parameter K determines the degree of

epistasis of the landscape, where epistasis can be thought of as determining the ruggedness

the fitness landscapes is, with higher K’s leading to more rugged landscapes. Fitness is

calculated using randomly generated look-up tables that assign fitness to each locus (gene).

This means that the fitness of a given bit string is the sum of the fitnesses at each locus. In

Part II of the thesis, NK landscapes are used extensively to test how gene shuffling impacts

evolution, so in section 7.2 we describe the NK landscape in detail. In this chapter the

details of the NK landscape are not important, the only thing to remember is that NK

landscapes are best solved by individuals, rather than groups of population members. This

means that when the evolved group size method is tested on the NK landscape the group

size should decrease throughout evolution.

6.3 The Effect of Varying the Group Size

To show how group size impacts the performance of evolution, we tested the Group GA on

the immune system task and the Binomics GA on the AE task using a variety of different

group sizes. The results show that even though there is an optimal group size for each task,

both GAs can perform satisfactorily at a wide range of group sizes when the population

is large enough.
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6.3.1 Varying Group Size of the Group GA

The Group GA was used to evolve populations of either 100 or 1000 antibodies, at a variety

of group sizes (for population 100, group sizes 5, 10, 15, 20, 25 or 50; for population 1000,

group sizes 5, 10, 25, 50, 100 or 150). Figure 6.1 shows: (1) The number of evaluations

it took to evolve the first population that contained at least one antibody that matched

each of the four different antigens and (2) how many runs out of 50 the GA was able to

conserve the fit antibodies throughout evolution, so that after 1600 K evaluations there

were antibodies in the population that matched the four different antigens. One can

see that the optimal group size (from the ones tested) was 10 at both population sizes,

because at this size, the number of evaluations to evolve four antigens to match the different

antigens is minimised and the number of runs where there are four fit antigens conserved

at the end of evolution is maximised. These figures also show that the Group GA is more

robust to group size changes at a population size of 1000. When the population size is

100, evolution fails (does not evolve a population of antibodies where there is at least one

antigen in the population that matches each of the four antigens) when the group size is

25 or bigger, but when the population size is increased to 1000 the Group GA is able to

solve the task with group sizes up to 100.

To explain these results, one needs to understand how varying the group size impacts

the selective pressure on the fitness contributing antibodies in the group. The antibodies in

any group can be separated into two different classes, the fitness contributing antibodies

and the freeloading antibodies. The fitness contributing antibodies are the ones that

closely match one of the four antibodies and contribute to the fitness score of the group,

while the free-riding antibodies are the remaining antibodies in the group that get copied

just because they are in a group with high fitness antibodies. At low group sizes, the

probability of getting a high scoring group, one that contains antibodies that closely match

the four different antigens is low, which is why the Group GA performs poorly when the

group size is set below 10. As the group size is increased, the probability of getting a high

scoring group increases, but at the same time the differential copying of fitness scoring

antibodies versus freeloading antibodies decreases. This is because in the Group GA the

entire winning group overwrites the entire losing group, which means that these free-riding

antibodies in the fitter group are replicated along with the fitness contributing antibodies.

As the group size becomes larger, the probability of having a high percentage of free-riding

antibodies in the group increases which will make it more difficult to evolve a population

where niching has occurred.
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The relationship between group size and population size also impacts the performance

of the Group GA. Figure 6.1 shows that with a population size of 100 the Group GA fails

(there were no runs where antibodies that matched each of the four antigens were present

in the population at the end of evolution) if the group size parameter is increased above

20. When the population size is increased to 1000 the algorithm can solve the 4-antigen

task up to a group size 100. This is important because as the group size is increased,

the probability of having the same antibodies in both groups increases which limits the

genetic diversity between groups and reduces evolutionary performance.
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Figure 6.1: The performance of the Group GA on the 4 antigen task with different group

sizes, where performance was measured as: (1) The median (height of bar) and Interquart-

ile Range (shown as an error bar) number of evaluations over 50 runs that it took the Group

GA to evolve the first population with antibodies matching all four antigens and (2) the

number of runs out of 50 where there were antibodies that matched all the different an-

tigens at the end of evolution; this is shown as the text at the top of each bar. At both

a population size of 100 (upper plot) and of 1000 (lower plot) the optimal group size is

10 because the median number of evaluations is minimised and the number of successful

runs is maximised.

In Forrest et al. (1993) the authors apply their diversity maintaining GA to the same

4-antigen task and discuss the effect of varying the antibody group size (which they call

sample size) and antibody population size to the performance of evolution; they highlight

issues closely related to those discussed here. They find that with their algorithm, the

carrying capacity of the antibody population is 15 antibodies to 1 antigen, meaning that
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a population of at least 60 antibodies is required to match and maintain four different

antigens. They also show that on a four antigen task, a sample size (group size) of at least

7 is required for the population to niche to match four different antigens, but they do not

explore whether there is a maximum sample size that allows this niching to occur.

6.3.2 Varying Group Size of the Binomics GA

To determine how group size affects performance of the standard Binomics GA on the

3-12-2-12-3 AE task we tested it with a population size of 100 and group sizes of 5, 10, 15,

50, and 75 and with a population size of 1000 and group sizes of 10, 50, 100, 250, 500 and

750. This simulation was set up so that each individual in the population was a partially

specified network with 90% of its weights initialised to zero. The other parameters used

are as follows: the rate of infection was set to 50%, mutation amount was set to 0.1, R (the

fitness smoothing parameter) was set to 0.05, and the add and delete weight probabilities

were set to 10% and 90% respectively to ensure that each individual in the population had

around 90% of its weights set to zero throughout evolution. A full network was constructed

from a group of partial networks by summing the weights at each locus. More details of

how the Binomics GA is applied to the AE task can be found in section 5.4.

Figure 6.2 shows how group size impacts performance at populations sizes of 100 and

1000. Performance is measured as the number of successful runs and the median number

of evaluations it took to evolve the first perfect AE over 50 runs. On this task, a successful

run is one where a perfect network was found before 20 K evaluations.

At both population sizes, the Binomics GA performs best when the group size is set

to around 60 to 75% of population size. This is probably because each individual in the

population has approximately 90% of its weights set to zero and therefore a large number

of individuals are required to construct a fully functioning network. Like the Group GA

on the immune system task, performance is more robust when a larger population is used.

6.4 Randomly Generated Group Sizes

If the optimal group size is not known, one of the easiest ways to change the group

size during evolution is to randomly select a new group size before each evolutionary

tournament. The benefit of this method over keeping the group size constant throughout

evolution is that it increases the chances of evolving high fitness solutions over problems

where the optimal group size is unknown beforehand. For example, in the immune system

task, if the number of antigens is unknown and too large or too small a fixed group size is
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Figure 6.2: Box and whisker plots showing how varying the group size effects the perform-

ance of the standard Binomics GA on the 3-12-2-12-3 AE with 90% of the weights set to

zero with population sizes of 100 (top) and 1000 (bottom). The large interquartile ranges

on the population size 100 plot shows that performance is not as good as it is when the

population size is set to 1000.

chosen, then the Group GA will struggle to evolve a niched population of antibodies. In

that case, a parameter sweep through group sizes would be needed to find the appropriate

value. As we show here, this parameter sweep can be avoided if the group size is randomly

changed during evolution because this allows a range of group sizes to be used.

Figure 6.3 shows the performance of the Group GA on the immune task and the

Binomics GA on the AE task where the group size was randomly changed each tournament.

For both GAs, we tested population sizes of 100 and 1000 using the same parameters as

were used in the previous section when the group size was manually changed. We limited

the group size range between 2 and 25% of the population size for the Group GA on the

immune system task, i.e. for population size 100, the group size was a randomly chosen

integer between 2 and 25 and for population size 1000, the group size could be anywhere

between 2 and 250. For the Binomics GA on the AE task, the group size range was set

between 2 and 75% of the population size, i.e. for population size 100, the group size was

a randomly chosen integer between 2 and 75, and for population size 1000, the group size

could be anywhere between 2 and 750. The reason for limiting the group sizes to a certain



91

range is that without these limits evolution performed poorly.
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Figure 6.3: Box and whisker plots showing performance of random group size Group GA

on the 64 bit, 4 antigen task (left) and the random group size Binomics GA on the 3-12-2-

12-3 AE with 90% zero weights. On the immune task, performance was measured as the

number of evaluations it took to evolve the first population that contained four antibodies

that perfectly matched the antigens. On the AE task, performance was measured as the

number of evaluations to evolve the first perfect AE. When performance on the immune

task was measured in terms of number of runs in which perfect antibodies were conserved:

pop 100 only 9/50; while with pop 1000 42/50. Therefore pop 1000 is better at conserving

niches.

Both the Group and Binomics GA were able to solve their respective tasks when the

group size was randomly varied during evolution. In both cases, performance was better

at the higher population size which is to be expected because we found in the previous

section that both algorithms were more robust to changes in group size at the higher

population size. One drawback of this random group size method is that this range needs

to be pre-specified and if it is not specified correctly the performance of the algorithm

could be significantly reduced. For the tests run in this section, the group size range was

set with some prior knowledge because we had already performed a parameter sweep to

generate the results of the previous section. In reality, this information will not normally be
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available, so there is a risk that the group size range chosen will lead to poor performance.

For example, if the group size range of the Group GA on the immune system task was set

between 2 and 75% of the population size, rather than 2 and 25% of population size, then

it struggles to evolve a niched population of antibodies. On these tasks it takes the random

method about twice as many evaluation to solve as the average over all the manually set

group sizes. This means that each test using the random group size method is equivalent

to testing two manually set group sizes. A logical starting point when using the random

group size method is to limit the group size between 2 and 50% of the population size.

Next, we modify both the Group and Binomics GA so that the group size is evolved as

part of evolution. In this case the need to pre-set a group size or group size range is

eliminated.

6.5 Evolving Group Sizes

Two shortcoming of the random group size method just presented are: (1) a group size

range still needs to be specified and (2) much of the time the random group sizes chosen

will be less than optimal, thus leading to inefficiencies. We now present a method where

the group size is evolved as part of evolution. This is done by adding a single, randomly

generated, real numbered gene between 0.0 and 1.0 which serves as the group size weight

to every genotype in the population. These genes to determine the group size as follows:

1. Start with an empty group

2. Randomly choose an individual from the population

3. Calculate the total group size weight by adding the individual weights of the real

numbered genes. If the total is greater than 1.0 then stop (the group is complete),

otherwise, go back to step 2.

This means that smaller values of this new group size weight gene promotes larger

group sizes, and vice versa. After the two groups (potentially of different sizes) have been

constructed, the fitness of each group is calculated and then the losing group is infected

with genes from the winning group before being mutated. If the size of the winning group

is bigger than the size of the losing group then a randomly chosen subset of the winning

group are recombined with all the individuals from the losing group; if smaller then all

of the individuals from the winning group are recombined with a subset of the losing
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group before mutation. This ensures that the population size stays constant throughout

evolution.

In both the Binomics and Group GA the tournament loser inherits the group size

weight gene of the tournament winner. In the case of the Group GA where two groups

of individuals are involved in the tournament, the group size weight genes of the winning

group overwrite the group size weight genes of the losing group. In our GAs, the group

size weight gene is copied from winner to loser regardless of what the rate of infection is.

Even if only 50% of the genes from the winning group are infecting the losing group, the

group size gene will always be copied over. After the group size weight gene is copied from

winner to loser it is mutated by adding a normally distributed random number to it. This

mutator has mean zero, and a standard deviation that is set as a parameter. In the tests

below we set the standard deviation to either 0.1, 0.01 or 0.001. Other than this modified

method of choosing group sizes, both the Group and Binomics GAs remain the same as

described in chapters 4 and 5.

We demonstrate this evolved group size method on the immune system task, an AE

task and on a NK fitness landscape. Unlike the immune system and AE tasks the NK task

is best solved using individual, rather than group evolution, so we would expect that the

group size will be minimized by maximising the group size weight gene during evolution.

6.5.1 Evolving Group Size: Group GA on the Immune System Task

The evolved group size version of the Group GA was tested on the 4 antigen task with

population sizes of 100 and 1000. Performance was measured over 50 runs using median

and IQR evaluations. As figure 6.4 shows, evolving group size with the Group GA works

well with a population size of 1000, but struggled to evolve antibodies that matched all

four antigens at a population size of 100. We believe that this poor performance at the

lower population size is due to the fact that at a population size of 100, unless the group

size is between about 10 and 15, evolution is unable to maintain a niched population of

antibodies. At higher population sizes, the range of viable group sizes increases which

allows evolution to find group sizes where niching occurs.

One of the most interesting aspects of this evolved group size method is that it was

able to evolve group sizes in the viable range between 10 and 50 even though there seems

to be a selective pressure for groups to get bigger and bigger. This is because based on

how the fitness of a group is calculated in the immune system task, the larger the group,

the higher the probability of having a fitter group. The fitness of a group is calculated by
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Figure 6.4: Box and whisker plots showing performance over 50 runs of the evolved group

size version of the Group GA on the 64 bit, 4 antigen immune task with population sizes

of 100 (left) and 1000 (right). For both cases the group size weight gene was randomly

initialised between 0.0 and 1.0.

matching all the antibodies in the group to all the antigens and then taking the average

of the best match scores. So for any population of antibodies, the highest possible group

fitness score can be found by taking the entire population as the group, which would seem

to imply that there is a selective pressure to evolve the largest groups possible. But what

we found was that the average group size weight gene always converged to a value around

0.03, which is equivalent to a group size of around 30 (over 50 runs the average group size

weight gene was 0.0290 with a standard deviation of 0.0039). Figure 6.5 shows how the

average group size weight gene changed during evolution for five different runs. As this

figure shows, in both the population size 100 and 1000 cases, the group size weight gene

starts out high and then converges to a value in the 0.02 - 0.09 range. It is interesting

to note the population size 100 plot is a lot more noisy than the population size 1000

plot. This is likely because when the population size is 100 the range of viable group sizes

is much smaller and therefore evolution struggles to converge on an optimal group size

weight gene.

The evolved values of the group size weight gene in these experiments is in the neighbor-

hood of the optimal group size, but before concluding that selection was indeed responsible

for this satisfactory result we carried out further tests. First, we tested the evolved group

size version of the Group GA where the group size weight genes were all initialised to

zero, meaning that in the early stages of evolution the group sizes would be relatively big.
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Figure 6.5: A plot of the average group size weight gene over time for 5 different runs

using a population size of 100 and 1000.

Like the case where the group size weight genes were randomly intialised between 0.0 and

1.0, the Group GA was able to solve the 4 antigen task, and evolution of the group size

weight gene again converged to a value around 0.03 (over 50 runs the average group size

weight gene was 0.0284 with a standard deviation of 0.0027). We then ran it on a flat

fitness landscape where each group of antibodies was given a random fitness score instead

of a fitness score based on how well it matched the different antigens. This was done to

see if there was any selective pressure on the group size weight gene that was not related

to the fitness of the antibody groups. We ran evolution for one million tournaments with

different group size weight gene mutation rates and initialising the weight genes to differ-

ent values and found that the plots of the average group size weight gene over time looked

like a random walk. In other words, there did not seem to be any selective pressure on

the group size weight gene on a flat fitness landscape.

On the basis of these further tests we conclude that selection was indeed responsible

for evolving a group size reasonably close to the optimal. Hence, we have shown, in this

one example at least, that it is possible to evolve the group size. This avoids the two

shortcomings of the random group size method described earlier, which were: (1) a group

size range needs to be specified and (2) much of the time the random group sizes chosen

are less than optimal. Next we apply this method to the Binomics GA and try evolving
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group sizes of both the Binomics and Group GA on the AE task.

6.5.2 Evolving Group Size on the Autoencoder Task

Like the Group GA, the group size gene can also be used to evolve the group size of the

Binomics GA. This evolved group size version of the Binomics GA is demonstrated on a

3-12-2-12-3 AE and then performance of the evolved group size versions of the Group and

Binomics GA are compared.

Evolving Group Size of the Binomics GA

As applied to the AE task, the evolved group size version of the Binomics GA is as follows:

1. Randomly choose two individual partial networks from the population and compare

their stored fitnesses

2. Genetically modify the less fit network using infection and mutation

3. Copy the group size gene from winner to loser and then mutate it by a small amount

4. Randomly choose n other individual networks from the population to be combined

with this tournament losing network by:

(a) Start with only the losing individual in the group

(b) Randomly choose an individual from the population

(c) Calculate the total group size weight gene by summing up all the individual

group size weight genes. If the total is greater than 1.0 stop (the group is

complete), otherwise, go back to step b. If the total group size weight gene is

equal to zero then the group size is set equal to the population size.

5. Combine all these partial networks into a single full network by summing the weights

at each locus

6. Evaluate this network on the task

7. The fitness of the network is passed to all individuals that made up the network

according to: New Fitness = R ∗Network Fitness + (1.0− R) ∗Old Fitness

8. All partial networks are put back into the population and the cycle is repeated
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We applied this GA to a 3-12-2-12-3 AE task where each individual in the population

had 90% of their weights initialised to zero and this approximate ratio was maintained

through evolution using the appropriate add and delete weight operators. For these tests

we used the following parameters: the population size was set to either 100 or 1000, the

standard deviation of the mutator applied to the weight genes set to 0.1, the rate of

infection was to 0.5, R was set to 0.05, the standard deviation of the mutator applied to

the group size gene was set to either 0.1, 0.01 or 0.001 and the group size weight gene

was initialised either to zero, randomly between 0 and 0.4 or randomly between 0 and

0.05. Evolution was run until a perfect network was evolved or to maximum of 40 K

evaluations. If 40K evaluations was reached before a perfect AE was evolved the run was

deemed unsuccessful.

In Table 6.1 the performance of the evolved group size Binomics GA is shown in terms

of median evaluations over 50 runs it took to evolve a perfect network and number of

successful runs. The average group size equivalent at the end of evolution is also listed.

This value is found by taking the inverse of the average of the group size weight genes

in the population. For example, if at the end of evolution the average of the group size

weight genes in the population is 0.1 then this is equivalent to an average group size of 10.

From these results we can see that performance is much better with a population size

of 100 than with a population of 1000 and when the group size weight gene is initialised to

zero rather than randomly between 0 and 0.4. We know from manually varying the group

size parameter that the Binomics GA performs best on this task when the group size is

set to around 75 with a population of 100 and 600 for a population of 1000. When the

group size weight gene is initialised to zero and an appropriate mutation rate is used the

average group size weight gene in the population at the end of evolution specifies a group

size in the same range as the optimal group size. With a population size of 100 and using

a mutation amount of 0.01 the average group size at the end of evolution is 51, with the

optimal group size being 75 and with a population size of 1000 and mutation amount of

0.001 the group size is 650, with the optimal being 600.

A group size of 75 is equivalent to an average group size weight gene of approxim-

ately 0.0133 (1/75) and a group size of 600 is equivalent to a group size weight gene of

approximately 0.00167 (1/600). Because these group sizes require very small group size

weight genes it is not surprising that the performance is better when the group size gene

is initialised to zero, rather than randomly. As table 6.1 shows, when the initialisation

range is narrowed so that the group size genes are randomly initialised between 0 and 0.05
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Table 6.1: The performance of the evolved group size version of the Binomics GA on the

3-12-2-12-3 AE task. This table shows results at population sizes of 100 and 1000, with

group size mutation rates of 0.01 and 0.001 and initialising the group size weight gene

to either 0, randomly between 0 and 0.4 (RAND 0.4) or randomly between 0 and 0.05

(RAND 0.05). Performance is measured in terms of median evaluations over 50 runs and

number of successful runs out of 50, where a successful run is one where evolution found

a solution before 40K evaluations. The equivalent group size is calculated by taking the

inverse of the average group size weight gene at the end of evolution and the optimal group

size was found by manually varying the group size.

Pop Size Group Size

Gene Init

Group Size

Gene Mut

Equiv

Group Size

Median

Evals (suc-

cesful runs)

Optimal

Group Size

100 0 0.01 51 3.2 K (45) 75

100 0 0.001 89 31.2 K (28) 75

100 RAND 0.4 0.01 11 39.9 K (25) 75

100 RAND 0.05 0.01 40 4.9 K (45) 75

100 RAND 0.4 0.001 10 40.0 K (22) 75

1000 0 0.01 69 17.5 K (42) 600

1000 0 0.001 650 7.5 K (50) 600

1000 RAND 0.4 0.01 poor results 600

1000 RAND 0.4 0.001 poor results 600

rather than between 0 and 0.4 performance improves drastically. Next we test the evolved

group size version of the Group GA on the same AE.

Evolving Group Size of the Group GA

The evolved group size version of the Group GA can be applied to the 3-12-2-12-3 AE

task as follows:

1. Randomly choose two groups of partial AE networks from the population, with the

size of each group determined using the following process:

(a) Start with an empty group

(b) Randomly choose an individual from the population and add to group
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(c) Calculate the total group size weight gene by summing up all the individual

group size weight genes. If the total is greater than 1.0 stop (the group is

complete), otherwise, go back to step b.

2. Combine each group of partial networks into a full network by summing the weights

at each locus

3. Calculate the fitness of each full network with the winning network being the one

with the higher fitness

4. The group of partial networks that made up the losing network is replaced with

mutated copies of the partial networks that made up the winning network. If the

size of winning group is bigger than the size of the losing group then a randomly

chosen subset of the winning group are recombined with all the individuals from the

losing group; if fewer then all the individuals from the winning group are recombined

with a subset of the losing group.

5. Both groups of antibodies are put back into the population and this process is

repeated

Again we set the population size to either 100 or 1000, the mutation rate of the

network weight genes to 0.1, the group size weight gene mutation amount to 0.01 or 0.001

and initialised this gene to either zero or randomly between 0 and 0.4.

Table 6.2 shows the same performance metrics for the Group GA as were shown for

the Binomics GA in the previous section. To determine whether the evolved group size

is in the same range as the optimal group size, the Group GA was run with a variety of

different group sizes. As this table shows, with a population size of 100, the optimal group

size for this task is 25, and with a population of 1000, the optimal is 250. It is interesting

to note that the optimal group size of the Group GA on this task is smaller than that of

the Binomics GA.

Unlike the Binomics GA, the Group GA performed reasonably well regardless of

whether the group size weight gene was initialised randomly between 0 and 0.4 or to

zero, although it still performs better when the group size genes were initialised to zero.

With a population size of 100 and a mutation amount of 0.01 the group size weight gene

converged to a value that corresponds to a group size around 15 regardless of whether the

group size gene was initialised to zero or randomly. This is in the same range as the op-

timal group size (25) so leads us to believe that evolution is optimising group size. When
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Table 6.2: The performance of the evolved group size version of the Group GA on the

3-12-2-12-3 AE task where 90% of the genes were intiailised to zero. This table shows

results at population sizes of 100 and 1000, with group size mutation rates of 0.01 and

0.001 and initialising the group size weight gene to either 0 or randomly between 0 and

0.4 (RAND 0.4). Performance is measured in terms of median evaluations over 50 runs

and number of successful runs out of 50, where a successful run is one where evolution

found a solution before 40 K evaluations. The equivalent group size is calculated by taking

the inverse of the average group size weight gene at the end of evolution and the optimal

group size was found by manually varying the group size.

Pop Size Group Size

Gene Init

Group Size

Gene Mut

Equiv

Group Size

Median

Evals (suc-

cesful runs)

Optimal

Group Size

100 0 0.01 15 8.9 K (49) 25

100 0 0.001 33 10.0 K (44) 25

100 RAND 0.4 0.01 14 9.4 K (45) 25

100 RAND 0.4 0.001 9 15.8 K (38) 25

1000 0 0.01 28 4.5 K (50) 250

1000 0 0.001 113 1.6 K (50) 250

1000 RAND 0.4 0.01 10 27.3 K (37) 250

1000 RAND 0.4 0.001 6 33.9 K (29) 250

the population size was increased to 1000, the best results occurred when the group size

gene was initialised to zero and the mutation amount was set to 0.001. In this case the

average of the final group size genes were equivalent to a group size of 113 which is the

same order of magnitude as the optimal group size of 250. Randomly initializing the group

size weight gene at a population size of 1000 reduced performance, likely because evolution

struggled to move the group size weight genes of the entire population to a optimal size.

Figure 6.6 provides a good visual summary of the results presented in the last few

sections. In this figure the performance of the Binomics GA and the Group GA with

the different methods of determining group size (manual, random and evolved) on the

3-12-2-2-12-3 AE with 90% zero weights are compared. All of the GAs in this figure were

run with a population size of 1000 and all other parameter other than the group size were

fixed at near optimal levels. The manual results for both the Group and Binomics GA

show the performance of the GA with a fixed optimal group size found using a parameter
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Figure 6.6: A comparison of the Group GA (GGA) and Binomics GA (BGA) with three

different methods of determining group size: (1) Manual - where the optimal group size

was found using a parameter sweep (2) Random - where the group size was randomly

chosen during evolution and (3) Evolved where the group size was evolved. For both the

Binomics and Group GA the population size was set to 1000 and all other parameters

were fixed except for the group size.

sweep.

From this figure we can see that using the evolved group size method on the Group

GA is more effective than using it on the Binomics GA. This can be seen by the fact that

the random group size method performs better than the evolved group size method of the

Binomics GA. This result combined with the fact that when the group size weight gene is

initialised between 0.0 and 0.4 the Group GA performs reasonably well, but the Binomics

GA performance is terrible. This leads us to believe that the selection pressure on the

group size gene is stronger with the Group GA as opposed to the Binomics GA. To test

this, in the next section we test both GAs on an NK landscape. This task, unlike the

AE and immune tasks, is best solved when the UoE is an individual which means that we

should see the group size gene steadily increase over time.

6.5.3 Evolving Group Sizes - The NK Landscape

To investigate why evolving the group size seems to work better with the Group GA

than with the Binomics GA we tested both algorithms on an NK fitness landscape task

(Kauffman and Johnsen, 1991; Kauffman, 1993) that has been deliberately set up so that
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evolution performs best when the UoE is an individual, i.e. with a group size of one.

This means that if the group size weight genes are all initialised to zero then as evolution

proceeds the size of this gene should steadily increase, decreasing the size of the group.

As described in section 7.2 when evolving solutions to NK landscapes each individual

in the population is a bit string of length N. This means that when using either the Group

or Binomics GA the UoE is a group of bit strings and the fitness of this group is calculated

as the average fitness of all the individuals in the group. Calculating fitness in this way

means that as evolution proceeds there will be a selective pressure towards smaller groups

because in small groups the fitness of high performing individuals is not averaged out.

To determine how well an appropriate group size was evolved with both the Group and

Binomics GA we compared the number of evaluations it took for the average of all the

group size weight genes in the population to exceed 0.5, which is equivalent to a group

size of 1.

Each GA was run on the same ten different 30-8 NK landscapes and the number of

evaluations it took for the average of the group size weight genes in the population to

become greater than 0.5 was recorded. The parameters used in both the Group GA and

Binomics GA were as follows: population size was 100, maximum evaluations was set to

50K, infection rate was 0.5, mutation rate was 1/N, group size gene mutation standard

deviation was 0.1 and the group size weight genes were initialised to 0.

For the Group GA it took approximately 5,600 evaluations (median) over 10 runs for

the population average group size gene to increase above 0.5 and for the Binomics GA it

took approximately 26,000 evaluations (median) which means that the Group GA reached

the target five times faster. This implies that the selection pressure on the group size is

much more significant when using the Group GA and that evolving the group size using

the Binomics GA is not as effective which explains our results from the previous section.

6.6 Evolving ANNs where the UoE is a Group

Throughout Part I of this thesis autoencoding ANNs have been evolved where each in-

dividual in the population is a partial network. This was done by setting a proportion

of each individual’s genes (weights) to zero and maintaining this through evolution using

add and delete weight operators. This has allowed us to test evolution where the UoE

was a group of partial networks and the UoS was either an individual or a group. Up to

this point we have avoided discussing the question of whether there are any benefits to

evolving ANNs in this way as compared to using a standard GA where the UoE and UoS
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are both individuals, because the focus has been on understanding how varying the UoE

and UoS impacts evolution. To answer this, below are two examples from the literature

that highlight the benefits of evolving ANNs where the UoE is a group of partial networks.

We then explain how using the evolved group size GAs on ANN tasks can be used to find

the optimal network scaling factor.

SANE (Moriarty and Miikkulainen, 1996, 1995), which has been discussed earlier, is

a GA where the UoE is a group of neurons and the UoS are individual neurons. This is

similar to the Binomics GA where the UoS is a partial network and the UoE is a group

of partial networks added together to form a full network. SANE has been shown to

outperform more standard evolutionary methods on an inverted pendulum ANN problem.

Recent research by Geoff Hinton (Hinton and Srivastava, 2012) has also shown that deep-

learning networks can be better trained using a method known as dropout, where a large

proportion of the network weights (usually around 50%) are set to zero and then a number

of these partial networks are combined. This is very similar to how we have evolved

the AEs with the Binomics and Group GA. Both these examples provide evidence that

evolving ANNs where the UoE is a group of partial networks could improve performance

over standard GAs.

Another potential benefit of evolving ANNs using the Group or Binomics GA where the

UoE is a full network constructed by summing the weights of a group of partial networks

is related to the amount the weights are scaled. When evolving ANNs with standard GAs

where the UoE and UoS are both individual, fully specified networks, it is possible that

evolution will not work unless the network weights are scaled by some value. For example

when evolving the the 3-12-2-12-3 AE with the Microbial GA the weights were randomly

initialised between 0.0 and 10.0, but we found that performance was terrible unless the

weights of each network were multiplied by 25 before being evaluated. This optimal scaling

factor was only found after a time consuming parameter sweep. Using the evolved group

size Group or Binomics GA, this parameter sweep can be avoided because evolving the

group size is equivalent to finding an appropriate scaling factor. It is not even necessary

to set a portion of the weights to zero for this to work. One could imagine having a

population of fully specified networks and then using the evolved group size Binomics or

Group GA to find the appropriate group size. Doing this avoids the need to test different

scaling factors because when the group of individual networks are added together to be

evaluated, the group size is equivalent to a scaling factor if the weights of all individuals

in the population are around the same magnitude. Exploring this further is not in the
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scope of this thesis, but understanding the benefits of changing the UoE and UoS when

evolving ANNs is potentially a fruitful research area.

6.7 Discussion

One of the limitations of the Group and Binomics GA in their original form is that the

group size needed to be set ahead of time and if the optimal group size is unknown

performance of these algorithms could suffer. The goal of this chapter was to explore

how varying group size affected these algorithms and then to present two methods that

avoid the need to pre-set the group size before evolution begins. Below, the key results of

manually varying the group size, randomly setting the group size and evolving the group

size of the Binomics and Group GAs are summarised. Based on these results we then

make some recommendations of the types of parameters to use when using the evolved

group size method on a new task.

At the beginning of this chapter the group size was manually changed on both the

Group and Binomics GAs to show the impact this parameter had on performance. The

important result from these tests was that increasing the population size made both GAs

more robust to changes in group size. Next we presented the random group size versions

of both GAs which avoided the need to pre-set a specific group size before evolution

begins. This method will increase the chances of evolving solutions to problems where the

optimal group size is unknown without having to do an extensive parameters sweep. Two

limitations of this method are: (1) evolution spends time at less than optimal group sizes

and (2) a group size range needs to be set ahead of time.

We then showed how the group size of both the Binomics and Group GA can be

evolved by adding a new group size weight gene to each individual in the population.

Using the Group GA on the immune system task, as an example, we showed how this

method was able to solve the task and evolve an appropriate group size even though as

discussed earlier, from a pure fitness maximisation standpoint, bigger groups are always

better. Next we compared the evolved group size versions of the Binomics and Group

GAs on the 3-12-2-12-3 AE. Both GAs were able to evolve solutions to this AE and with

appropriate parameters a near optimal group size was evolved but results showed that the

Group GA actually performed better than the Binomics GA. One possible reason for this

is that the selection pressure on the group size weight gene is stronger when using the

Group GA than the Binomics GA, as was shown using the NK task.

When using the evolved group size versions of either the Group or Binomics GAs how
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the group size weight genes are initialised in the population and how much mutation is

applied during evolution significantly impacts performance. When applying these GAs to

new tasks where there is no prior information about the optimal group size our results

show that it probably makes sense to initialise all group size weight genes in the population

to zero. Reasons for this have not been fully explored, but it may have to do with the fact

that when the group size weight genes are randomly initialised, groups of very different

sizes are used which could impair performance. Choosing an appropriate mutation amount

for the group size weight gene is also important. For both the evolved group size versions

of the Group and Binomics GAs the amount of mutation applied to group size weight

gene was a normally distributed random number with mean zero and standard deviation

set as a parameter. If the standard deviation of the mutation amount was too high then

evolution was unable to converge on large group sizes and if it was too low then evolving the

appropriate group size took too long. As a rule of thumb, setting the standard deviation

of the mutation amount between 1/POP and 10/POP is probably a good place to start.

It also makes sense to set the population reasonably large because as we have shown, on

both the immune system and AE tasks, bigger populations are more robust to a variety

of different group sizes.

A different method of genetically encoding the group size gene is to set the group size

gene as a whole number and then invert this gene when constructing the groups. This

would allow the group size gene to be mutated using whole numbers rather than using

real numbers with mean zero and standard deviation which is a parameter. This means

the mutation rate could could be set to 1 meaning that the tournaments loser(s) have

their group size weight gene increased or decreased by 1. This could reduce the sensitivity

of the evolved group size GAs to mutation and would also make the mutation rate more

understandable.

Both the evolved and random group size version of the Binomics and Group GAs avoid

the need to set a specific group size before evolution begins which reduces the amount of

parameter testing that needs to be done. This makes both GAs useful tools for solving

tasks where the optimal devision of labour is unknown.
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Experiments II: Adding Gene

Shuffling to Genetic Algorithms
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In Experiments I of this thesis we presented two GAs that were developed by varying

the relationship between the level of evaluation and selection. In Experiments II we focus

on the latter half of the evolutionary cycle presented in Chapter 3 (which is reviewed below)

that describes how new population members are generated from the UoS. Specifically, we

focus on the effects of implementing massive amounts of horizontal gene transfer, showing

how this can improve evolutionary performance on a number of different landscapes.

A common theme that ties the GAs in Experiments I and II together is the influence

of bacterial evolution and metagenomics. In Experiments I, we showed demonstrated how

group level evaluation allowed evolution to find symbiotic solutions to tasks. This group

level evaluation was inspired by recent Metagenomic research that the line between the

individual and the group in bacterial colonies is a very fuzzy one. In Experiments II we

experiment with horizontal gene transfer, which is found in bacteria, and show its benefits

when applied to GAs.

The first chapter in Experiments Part II introduces the Unconstrained GA (UGA),

which implements horizontal gene transfer, and shows how it outperforms a standard GA

(SGA) on landscapes with a lot of local optimum. Then in the next chapter we investigate

this further, to try to figure out why this is and test how generalisable this result is to

other landscapes and tasks. The work in this part of the thesis extends on the results

presented in Tomko et al. (2013).

The majority of results in Experiments II are comparisons between the best performing

parameter combination of different GAs on a variety of landscapes. Results of the paramet-

ers sweeps performed on the different GAs can be found online at ntomko.wordpress.com.

For each different landscape, the results of testing different parameters combination on

all GAs are shown. The best performing parameter combinations results for each GA are

highlighted in red.
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Chapter 7

The Unconstrained GA

7.1 Introduction

A common problem with using GAs to solve complex tasks is their tendency to get stuck on

sub-optimal solutions (local optima). Increasing the mutation rate and/or population size

increases the amount of evolutionary exploration, reducing the chances of getting stuck

on a local optimum but does so at the expense of potential exploitation of good solutions.

High mutation rates also risk knocking the population off a fit solution. To overcome

this issue different diversity methods have been developed and applied to GAs (see Dick

(2005) or Mahfoud (1995) for an overview). Here we present the Unconstrained GA (UGA)

which is a novel GA that was developed by varying how new UoE are constructed from

the UoS, and show how it outperforms a standard GA on highly rugged (yet non-random)

landscapes with a large number of local optima. The process of constructing UoE from

UoS is described by steps 4 and 5 of the evolutionary cycle which was first introduced in

Chapter 3, but we re-introduce it below and in figure 7.1.

1. Evaluate the UoE according to the pre-defined fitness function

2. Assign fitness credits from the UoE to UoS

3. Select the UoS on the basis of the assigned credits

4. Use the selected UoS to produce the next generation of offspring

5. Use the offspring to generate new UoEs

In standard generational GAs (SGA), after all the population members have been eval-

uated, the fitter ones are selected to become parents for the next generation of offspring.
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UoE

UoS

Selected 
UoS

Offspring

1. Evaluate the UoE

2. Assign fitness from 
UoE to UoS

3. Select fitter UoS 
based on assigned 

fitness credits
4. Use selected UoS 
to generate offspring

5. Use offpsring to 
generate new UoE

Figure 7.1: A flow diagram showing how the units of evaluation (UoE) and units of

selection (UoS) interact in artificial evolution. In this figure the different evolutionary

entities (UoE, UoS and offspring) are represented by different shapes (circle, rectangle

and triangle respectively).
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In the UGA the offspring are generated in the exact same way, but before this new popu-

lation is evaluated the genes of the entire population are shuffled. This gene shuffling step

can be thought of as being equivalent to implementing massive amounts of horizontal gene

transfer (HGT). In nature, HGT mainly occurs in microbial communities such as bacterial

colonies and is the process by which genes are transferred between individuals (Ochman

et al., 2000). There are many different ways bacteria transfer genes horizontally but some

of the most common include the use of plasmids or bacteriophages. Vertical gene transfer

(VGT) occurs during sexual reproduction when the genes of two parents are recombined to

produce one or more offspring. In most standard generation GAs gene transfer is limited

to VGT but the UGA uses both HGT and VGT. Below we compare the UGA to an SGA

on NK and NKp landscapes (Kauffman, 1993; Barnett, 1998) as well as an autoencoding

(AE) ANN task. NK and NKp landscapes are well known benchmark tasks in the GA

community, the difference between them is NKp landscapes have neutrality, while stand-

ard NK landscapes do not. There are good reasons to expect many fitness landscapes in

both natural (biological) and artificial scenarios to have such neutrality and therefore it

is important to compare the GAs on this type of landscape. The results show that the

UGA outperforms the SGA on the more rugged, less neutral landscapes that have more

local optima. The GAs were also compared on the AE task because it is more of a real

world task, has a lot of neutrality and likely has a very rugged fitness landscape.

7.2 Tasks Used in this Chapter

NK landscapes (Kauffman and Johnsen, 1991; Kauffman, 1993) are tuneable, rugged,

binary landscapes where N defines the dimensionality or number of bits (genes) in the

landscape and K defines how rugged the fitness landscape is, where a more rugged land-

scape has more local optima. In both NK and NKp landscapes the amount of ruggedness

(K) is controlled by changing the amount of genetic epistasis, where epistasis can be gen-

erally defined as the degree of interaction or cross-coupling between genes. The higher the

K, the more genes have an impact on any individual gene’s fitness contribution (Kauffman

and Johnsen, 1991). Along with increasing the number of fitness peaks in the landscape,

increasing K also increases the steepness of these peaks and reduces their height (Kauff-

man and Johnsen, 1991). If K is set to zero then there is no epistatic interaction between

genes and the fitness landscape can be classified as a ‘Mount Fuji’ landscape which has

a single global fitness optimum and no local optima. If K is set to 2 then the fitness

contribution of any given gene depends on the fitness of its two direct neighbors - this
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epistatic interaction increases the ruggedness of the landscape by adding local optima to

it. The maximum value K can be set to is N −1, in this case the fully correlated genotype

gives rise to a completely random fitness landscape (Kauffman and Johnsen, 1991).

NKp landscapes (Barnett, 1998) introduce neutrality into NK landscapes. One way to

picture a neutral landscape is in terms of plateaus connecting what would be local optima

in a non-neutral landscape. In NKp landscapes, the amount of neutrality is controlled by

parameter p which can be set between 0 and 1, where a higher p corresponds to more

neutrality. If p is set to zero then the NKp landscape is equal to a normal NK landscape

and if p is set to 1 then the landscape is completely flat with no optima (Barnett, 1998).

A general procedure for generating an NK landscape, which we use in this thesis, is

summarized in Mayley (1996):

1. Generate N look-up tables, one for each locus

2. Each look-up table has 2(K+1) entries that are randomly generated between [0, 1]

3. The fitness of a given locus, f(n) is found by taking the specific locus and K neighbors

and finding the corresponding entry in the nth look up table.

4. The total fitness is equal to the average of all the loci fitnesses:

F (N,K) =
1

N

∑
f(n)

For example, if N=4 and K=2 then there will be four look-up tables each containing

8 entries. To find the fitness of the second locus in genotype [1 0 1 1] then one looks for

the [1 0 1] entry of the second look-up table.

To generate an NKp landscape from an NK landscape a proportion of the entries in

the look-up table, defined by p, are set to zero. So if p = 0.90 then a random chosen 90%

of the entries in the look-up tables are set to zero.

We chose the NK and NKp landscapes as a test-bed for the UGA because the di-

mensionality (N), ruggedness (K), and neutrality (p) can be easily varied which allows us

to test the UGA on a wide variety of landscapes in a reasonable amount of time. NK

landscapes are also a well-known benchmark in the GA community and have been shown

to be a good task to test the behaviour and performance of GAs (Aguirre and Tanaka,

2003).
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7.3 The Unconstrained GA

The difference between the Unconstrained GA (UGA) (see Figure 7.2) and most standard

generational GAs (SGA) is that the UGA includes both horizontal (HGT) and vertical

gene transfer (VGT) while most standard GAs only apply VGT. In GAs, HGT can be

simulated in a variety of different ways. For example, one could implement HGT as a

transfer of genes where an individual in the population transfers one or more genes to

another individual and in the process overwrites the recipient’s gene(s). In this case, there

would be an increase in the frequency of the genes transferred and a decrease in frequency

of the genes that were overwritten. An alternative way to implement HGT would be as a

gene swap, rather than a gene transfer. In this case, two individuals swap or trade genes

so there is no change of gene frequency in the population. In the UGA we have chosen

to implement HGT as gene swapping instead of gene transferring to ensure that there is

no change in gene frequency in the population as a result of this process. To efficiently

implement massive amounts of gene swapping, in every generation, the genes of each locus

are shuffled. Another way to think about this process is that all the genes of a specific

locus are put into bags and then randomly withdrawn to reconstruct the full genotypes in

the population.

A single generation of the UGA is carried out as follows. ELITENUM is a parameter

that controls how many of the fittest individuals are automatically copied into the next

generation.

1. Evaluate the fitness of each individual genotype in the population

2. Rank each genotype according to fitness

3. The fittest ELITENUM individuals are automatically copied into the new offspring

population unchanged

4. The remaining POPSIZE-ELITENUM offspring are generated as follows:

(a) Select two parents from the population using the following tournament selection

method:

i. Randomly pick two individual genotypes from the population

ii. Compare the fitness of the two individuals from the population with the

fitter becoming a parent

iii. If the fitness of the two individuals is the same then randomly pick a winner
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and mutation (VGT)

2. Rank the individuals 
according to fitness

3. Copy the elite individual(s) 
into the offspring population 
unchanged

Figure 7.2: A general flow diagram showing the main steps of the UGA.

iv. Repeat steps i-iii to select a second parent

(b) Produce a single offspring from these two parents by randomly choosing a single

gene from either parent at each locus (this is known as uniform recombination)

(c) Mutate this offspring at each locus with a probability of MUT (the mutation

rate)

(d) Add this offspring to the new offspring population

5. Break up the genotypes of each offspring and put them into separate locus bags

6. Construct a new population by randomly choosing genes from each bag (this is

equivalent to the population engaging in promiscuous HGT)

7. This new population becomes the population for the next generation

VGT occurs in step 4 where two parents are uniformly recombined to produce a single

offspring, and horizontal gene shuffling is done in step 6. In an SGA, if elitism is used

it conserves the fittest genotypes in the population by automatically copying the fittest

individuals into the offspring population without mutating them. In the UGA, elitism is

carried out in step 3, but because of the gene shuffling of step 6, the fittest genotypes are

not conserved but rather the genes of the fittest individuals are conserved. The reason

for presenting the UGA as above is so that it can easily be seen that when steps 5 and 6
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are eliminated, the UGA becomes an SGA with no gene shuffling, i.e., with tournament

selection and uniform recombination.

7.4 Results

7.4.1 UGA Compared to SGA on NK and NKp Landscapes

Here the performance of the UGA and SGA are compared on a variety of NK and NKp

landscapes. The SGA used for comparison is exactly like the UGA described in the

previous section except that steps 5 and 6, which implement gene shuffling, are eliminated

(see section 2.1.7 for a detailed description of the SGA). For each family of landscapes,

where a family refers to landscapes with the same N, K, and p parameters, performance

was measured as the median of the maximum fitness reached on 50 different randomly

generated landscapes of a given family over a fixed number of evaluations. To ensure a

consistent comparison, the same 50 randomly generated landscapes were tested on both

GAs.

The results presented in this section are the best performing parameter combinations

of each GA on the different landscapes found with a parameter sweep. The population size

was varied between 10 and 1000 and the mutation rate was varied between 0.1/N and 2/N

where this mutation rate corresponds to the probability of flipping a bit at a given locus.

In both GAs, elitism percentages of 0 and 5% were tested. An elitism percentage means

that the number of elite individuals automatically copied to the next generation is equal

to ceil(POPSIZE ∗ELITEPCT ) where ceil rounds up to the nearest higher integer. For

example if the population size is 10 and the elite percent is 5% then the number of elite

individuals (ELITENUM) is 1. The parameter combinations for the results presented in

the following tables can be found online at ntomko.wordpress.com.

The NK landscapes tested were N30 K4, N30 K6 and N30 K8 and the NKp landscapes

tested were N30 K4 p0.99, N30 K8 p0.99, N100 K8 p0.99, N100 K8 p0.90. Statistical

comparisons between the two GAs were made using p-values from the Wilcoxon rank sum

test of equal medians and Bayes factors (see table 7.1).

These results show that on the non-neutral NK landscapes, as K is increased the UGA

starts outperforming the SGA. On the NKp landscapes there is no significant difference

between the GAs except on the least neutral of them, that is the N100 K8 p0.90 land-

scape, Here, the UGA outperforms the SGA. This implies that high amounts of neutrality

eliminates the benefit the UGA has over the SGA on non-neutral, rugged landscapes.
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Table 7.1: Comparison of the Unconstrained GA (UGA) and a standard GA (SGA) on

a variety of different NK and NKp landscapes. Fitness is measured in terms of median

and IQR maximum fitness over 50 runs and statistical comparisons are made using Bayes

Factors and p-values from the Wilcoxon rank sum test of equal medians.

Landscape UGA Median (IQR) SGA Median (IQR) Bayes Factor p-value

N30 K4 0.7708 (0.0269) 0.7663 (0.0267) 5 0.5

N30 K6 0.7739 (0.0258) 0.7670 (0.0263) 0.6 0.02

N30 K8 0.7709 (0.0208) 0.7635 (0.0208) 0.01 1 ∗ 10−4

N30 K4 p99 0.0854 (0.0360) 0.0851 (0.0439) 6 0.6

N30 K8 p99 0.1345 (0.0183) 0.1278 (0.0245) 3 0.2

N100 K8 p99 0.1126 (0.0121) 0.1109 (0.0104) 3 0.2

N100 K8 p90 0.2600 (0.0176) 0.2518 (0.0235) 0.2 0.007

7.4.2 UGA Compared to SGA on the Autoencoder Task

Here the UGA and SGA are compared on an AE task that was used in earlier in the thesis.

Figure 7.3 compares the UGA to the SGA (after a doing parameter sweep of both GAs)

over 50 runs on a 4-24-3-24-4 AE task. Performance was measured in terms of the number

of evaluations it took each GA to evolve a perfect AE, so unlike the NK and NKp results,

lower is better. Using both the Bayes factor and p-value to compare the performance of

these GAs shows that on this task the null hypothesis cannot be rejected and therefore

we cannot say there is any significant difference in performance (p=0.1 and Bayes factor

= 2). One possible reason for this is that like the NKp landscapes, the AE networks have

a lot of neutrality and so the benefits of gene shuffling are reduced.

7.4.3 The UGA Compared to Gene Pool Recombination

In order to determine whether the performance difference between the UGA and the SGA

on the rugged NK landscapes is due to HGT in general or the specific type of HGT

implemented in the UGA we compare the UGA to Gene Pool Recombination (GPR)

(Muhlenbein and Voigt, 1995). Based on the general description given in their paper,

the main difference between UGA and GPR is that GPR constructs a new population

by randomly choosing genes from the offspring population with replacement instead of

shuffling the genes without replacement like in the UGA. This means that unlike the

UGA, the gene frequencies can change during this step. Here we compare UGA to a
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Figure 7.3: A box and whisker plot comparing the performance of the Unconstrained

GA (UGA) to a standard generational GA (SGA) on the 4-24-3-24-4 autoencoder (AE).

Performance was measured in terms of the number of evaluations it took to evolve a perfect

AE over 50 runs.

modified version of the UGA, which we call GPR, where the new population is generated

by randomly choosing genes from the offspring population. While this modified UGA may

not be identical to GPR, it does allow us to determine what effect different types of HGT

have on evolution.

Table 7.2 compares these two GAs on a variety of NK and NKp landscapes as well as

the 4-24-3-24-4 AE. Performance was measured in the exact same way as the SGA and

UGA comparisons in the previous sections. Again comparisons were made between the

best performing parameter combinations of each GA, results from the parameters sweep

can be found online at ntomko.wordpress.com.

These results show that on the both the non-neutral NK landscapes and on the AE task

there is no significant difference between the two algorithms according to the statistical

measures we have used. On the other hand, on all of the NKp landscapes, except for

the N30 K4 p0.99 landscape, the UGA significantly outperforms GPR. This implies that

on highly epistatic landscapes with a lot of neutrality, shuffling genes with replacement

impairs evolutionary performance.
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Table 7.2: The UGA compared to GPR on a variety of different NK and NKp landscapes

as well as the 4-24-3-24-4 autoencoder. Performance was measured in terms of the median

and IQR maximum fitness over 50 landscapes on the NK and NKp tasks and in terms

of median evaluations it took to evolve a perfect autoencoder over 50 runs.. Statistical

comparisons were made using Bayes Factors and p-values calculated using the Wilcoxon

rank-sum test for equal medians.

Landscape UGA Median (IQR) GPR Median (IQR) Bayes Factor p-value

N30 K8 0.7709 (0.0208) 0.7653 (0.0262) 0.6 0.02

N30 K6 0.7739 (0.0258) 0.7694 (0.0236) 3 0.2

N30 K4 0.7708 (0.0269) 0.7679 (0.0267) 5.6 0.6

N100 K8 p90 0.2600 (0.0176) 0.2465 (0.0200) 0.001 8 ∗ 10−5

N100 K8 p99 0.1126 (0.0121) 0.1065 (0.0145) 0.08 0.02

N30 K8 p99 0.1344 (0.0183) 0.1225 (0.0213) 0.06 0.01

N30 K4 p99 0.0845 (0.0360) 0.0774 (0.0352) 2 0.1

4-24-3-24-4 3815 (5468) 5665 (7148) 2 0.1

7.5 Discussion

This chapter introduced the UGA which is a novel generation GA that implements both

VGT and HGT to produce new UoE from the UoS. The major difference between the

UGA and more standard generational GAs (SGAs) is that most SGAs use only VGT. The

UGA was compared to an SGA on both NK and NKp landscapes and an AE task. The

difference between NK and NKp landscapes is that the NKp landscapes add neutrality.

There is also significant amounts of neutrality in the AE task. This is because there are

a large number of different combinations of connection weights that result in different

networks with the same fitness. As mentioned earlier, there is good reason to believe that

neutrality exists in many real wold optimisation problems and in natural evolution so we

felt it important to see what effect it had on the UGA.

Results from this chapter show that on highly rugged (epistatic) landscapes with lim-

ited neutrality the UGA outperformed the SGA. On the tasks with neutrality (NKp and

AE) the performance difference between the UGA and SGA was statistically insignificant.

Our initial explanation for this difference in performance on the epistatic landscapes is

that the gene shuffling maintains diversity in the population which reduces the chances

that it will get stuck on a local optimum. The reason this advantage disappears when
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neutrality is introduced could be because neutral landscapes do not have any local fitness

optimum, instead they have fitness plateaus. This hypothesis will be explored further in

the next chapter.

The UGA is related to GAs that implement some sort of multi-individual recombina-

tion, GAs inspired by bacterial evolution and diversity maintaining GAs all of which have

been summarised in the Literature Review Chapter. As already discussed, Gene Pool

Recombination (GPR) (Muhlenbein and Voigt, 1995) is probably the most similar to the

UGA so we compared the two algorithms on a variety of NK and NKp landscapes. On the

NK landscapes and on the AE there was no significant difference between the UGA and

GPR according to our statistical measures, but on the neutral NKp landscapes with a high

amount of epistasis (K=8), the UGA outperformed GPR. The only difference between the

UGA and the version of GPR tested in this chapter is how HGT is implemented. In the

UGA, HGT is done using gene shuffling (no replacement) which means that HGT does not

change the gene frequencies of the population, all that is changed is which gene belongs

to which individual. In GPR, HGT is done with replacement which means that there is a

chance that the gene frequencies will change.

For some reason, implementing HGT in the same way it is implemented in GPR reduces

performance on neutral, epistatic NKp landscapes but has no effect on the non-neutral

NK landscapes or NKp landscapes with low K as compared the performance of the UGA.

There was also no significant difference between these algorithms on the AE task. The AE

task has significant amounts of neutrality but it is difficult to determine how epistatic it is.

Assuming that the UGA and GPR perform about the same on task with low amounts of

epistasis then these results imply that the AE task is not very epistatic, at least compared

to NK and NKp tasks with K set to 8.

In summary we have tried to explore what massive amounts of HGT buys you when

it is used to create new UoE and found that on rugged landscapes with no neutrality it

improved performance. In the next chapter we try to understand why the UGA outper-

forms the SGA on rugged landscapes, focusing in on how elitism affects performance. We

also compare the UGA to GPR on a couple of other tasks to try to determine when one

method of implementing HGT is better than the other.
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Chapter 8

The UGA and Elitism

8.1 Introduction

Last chapter we showed that the UGA outperforms a standard generational GA (SGA) on

rugged, non-neutral NK landscapes. Our hypothesis was that the reason for this is that

gene shuffling maintains diversity in the population, reducing the chances of the population

getting stuck on local optima. We now further test this hypothesis as well as testing the

UGA on both a two-peak and a Royal Road landscape as well as the autoencoding (AE)

task.

One of the issues explored in this chapter is the role of elitism in the UGA. Elitism

is the process of conserving the genotypes of the fittest member of the population from

generation to generation. This means that the fittest individuals in the population are

automatically copied to the next generation. The benefits are that it ensures that best

performing individuals are kept from being modified by recombination and mutation but,

on the other hand, it can also cause the population to converge on a suboptimal solution.

In the UGA, when elitism is implemented it is not the genotypes as a whole that are

maintained but rather the genes of the fittest individuals. This is because the shuffling

step of the UGA breaks up the genotype of the elite individual every generation. As

we will show, on some landscapes shuffling the genes of just the elite individuals in the

population improves evolution.

This chapter is structured as follows. We first determine the effects of reducing the

number of individuals whose genes are shuffled in the UGA. We then test two modified

versions of the UGA. The first shuffles the genes of only the elite members of the population

while the second shuffles the genes of all individuals but the elite individuals. Finally we

test all the GAs on a two-peak, Royal Road and AE task to further determine the effects
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of gene shuffling on evolution.

Even though the main focus of this chapter is to investigate the UGA and why it

performs well on rugged landscapes, it is important to keep in mind how this work fits

in with the overall themes of the thesis. All the GAs presented in this chapter and the

previous chapter were developed using the UoE/UoS view of evolution. Specifically, these

GAs vary how new UoE are constructed from UoS (steps 4 and 5 of the evolutionary

cycle). So like the Group and Binomics GAs presented in Part I of this thesis, these GAs

are even more examples of ways our view of evolution can be used to develop novel GAs.

8.2 Tasks Used in this Chapter

In this chapter we explore the reasons why the UGA performs well on rugged landscapes

using the NK and NKp landscapes described in the previous chapter, an AE task (section

5.2) as well as on a two-peak and Royal Road landscape which are described here.

8.2.1 The Two-Peak Landscape

The two-peak landscape is a simple landscape that has two optima, a high peak and

low peak. We developed this landscape to explore how well different GAs are able to

move the population off the lesser optimum on to the global optimum. For a given two-

peak landscape, the length of the genotype (N) and the height of the global optimum

(HighPeak) need to be specified, where the height of the global optimum must be greater

than N/2. The height of the lower optimum (LowPeak) is calculated as N −HighPeak

and the fitness of a given binary genotype is calculated as follows.

• if the number of 1’s in the genotype is greater than or equal to LowPeak then fitness

is equal to NumOnes− LowPeak

• if the number of 1’s in the genotype is less than LowPeak then the fitness is equal

to LowPeak −NumOnes

For example, for a 9-1 two peak landscape, N = 10, HighPeak = 9 and LowPeak = 1.

The fittest genotype on this landscape is [1 1 1 1 1 1 1 1 1 1] which has a fitness of 9, the

least fit genotype is any bit string where NumOnes = LowPeak which will have a fitness

of zero and a genotype of all zeros has a fitness equal to the height of the low peak.
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8.2.2 The Royal Road Landscape

The Royal Road Landscape, like the NK and NKp landscapes, is a well known benchmark

landscape in the GA community. It was first used by Mitchell et al. (1992) to explore the

relationship of building blocks and crossover in artificial evolution. We use it to understand

whether the results on the NK, NKp, and two-peak landscapes can be extended to other

landscapes.

A specific Royal Road landscape is defined using two parameters, string length and

schema length. The string length defines the total length of the landscape and the schema

length defines the length of the fundamental building block or intermediate fitness levels

of the landscape. In these landscapes, fitness is only credited for fully formed schemas.

For example, in a simple 8-2 landscape, the string length of the landscape is 8-bits and

the schema length is 2-bits. As per Mitchell et al. (1992) the fitness of any bit string is

calculated as:

F (x) =
∑
sεS

csσs(x)

Where x is a bit string, S is the set of schemas s1, s2, ... sn, cs = order(s) and

σs =

1 if x is an instance of s

0 otherwise

This means that for the 8-2 landscape the fitness of the optimal bit string [1 1 1 1 1

1 1 1] is equal to 2 ∗ 4 + 4 ∗ 2 + 8 ∗ 1 = 32. Because fitness credits are only awarded for

fully formed blocks or schemas the Royal Road landscapes have a lot of neutrality. For

example, in the 8-2 landscape strings [1 1 0 0 0 0 0 0], [1 1 0 1 0 0 0 0] and [0 0 0 1 0 0

1 1] all have a fitness score of 2 even though they are all genetically different. These type

of landscapes are also very epistatic because flipping a bit can destroy a fitness scoring

schema, significantly reducing the fitness score of the individual.

8.3 Varying the Amount of Gene Shuffling

The hypothesis based on the results from the previous chapter was that the reason the

UGA outperforms the SGA on rugged, non-neutral NK landscapes is that gene shuffling

maintains diversity in the population, reducing the chance that the population gets stuck

on a sub-optimal fitness peak. If this hypothesis is correct then reducing the number of

individuals whose genes are shuffled each generation should reduce performance.
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Figure 8.1: A box and whisker plot showing how varying the number of individuals whose

genes are shuffled effects performance of the UGA on the N30 K8 landscape. The case

where 100% of the population’s genes are shuffled is equivalent to the original UGA.

To test this, a modified version of the UGA was run on the N30 K8 landscape where

the number of individuals whose genes were shuffled was controlled by a parameter. In

figure 8.1, the original UGA, where the entire population’s genes are shuffled is compared

to a modified UGA where 70%, 50% and 20% of the populations’ genes were shuffled.

This was done by randomly selecting the appropriate percentage of individuals from the

population and only shuffling their genes. Statistical comparisons between the 100% case

and the 20% case (p = 0.2 and Bayes factor = 3) show that performance is not significantly

impacted by reducing the number of individuals whose genes are shuffled, which is not

what was expected.

Interestingly, our results are similar to those in Eiben and Schippers (1996), who found

that even though multi-parent uniform recombination improved evolutionary performance

on NK landscapes, increasing the number of parents did not further increase performance.

Their hypothesis was that the benefit of multi-parent recombination is a result of more

gene mixing and a bigger sample size to base decisions on, but they could not explain why

increasing the number of parents did not increase performance.
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8.4 Elite Gene Sprinkling

Upon further investigation it was found that the key to the performance of the UGA on

the rugged NK landscapes was not the amount of gene shuffling that occurred but instead

was dependent on whether or not the genes of the elite individual(s) in the population

were shuffled. This was tested by modifying the UGA so that instead of shuffling the genes

of the entire offspring population, the genes of only the elite individuals were sprinkled

through the population after the new offspring population was generated. The ESGA is

illustrated in figure 8.2 and can be described follows:

1. Calculate the fitness of each individual in the population

2. Rank the individuals according to fitness

3. The genes of the fittest ELITENUM individuals are stored

4. A new population of offspring are generated as follows

(a) Select two parents using the following tournament selection method

i. Randomly pick two individuals from the population

ii. Compare the fitness of the two individuals with the fitter becoming a parent

iii. If the fitness of the two individuals is the same then randomly pick a winner

iv. Repeat steps i-iii to select a second parent

(b) Produce a single offspring from these two parents by randomly choosing a single

gene from either parent at each locus (this is known as uniform recombination)

(c) Mutate the offspring

(d) Add this offspring to the new population

(e) Repeat steps a-d until a POPSIZE number of offspring have been produced

5. Sprinkle all the genes from the elite individuals through the population by replacing

randomly chosen genes in the population

Compared to the UGA, in the ESGA, only the genes of the elite individuals in the

population are shuffled and sprinkled through the offspring population. Another difference

is that unlike the UGA, the gene shuffling step of the ESGA does change population gene

frequencies because the genes of the elite individual(s) are copied over other genes in the

population.
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individual in the population
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5. Randomly replace genes of this 
new population with the stored 
genes of the elite individual(s)

6. This population 
becomes the new 
population for the next 
generation

4. Generate a population of 
offspring from the genes of 
the non-elite population 
members using tournament 
selection, uniform 
recombination and mutation 
(VGT)

2. Rank the individuals 
according to fitness

3. Store genes of elite individual(s)

Figure 8.2: An illustration of the main steps of the Elite gene Sprinkling GA (ESGA).

The ESGA was compared to the UGA on N30 K4, K6 and K8 NK landscapes and on

the N30 K4 p0.99, N30 K8 p0.99, N100 K8 p0.90, and N100 K8 p0.90 NKp landscapes. A

parameter sweep was done to find the best parameter combination for the ESGA on each

landscape but it ended up that the best parameters for the ESGA were the same as the

best parameters for the UGA, which are listed online at ntomko.wordpress.com.

The results in table 8.1 show that according to the statistical tests used there was no sig-

nificant difference between the UGA and the ESGA on any of the NK or NKp landscapes.

This provides evidence in favour of the revised hypothesis that the UGA outperforms the

SGA on rugged landscapes because it shuffles the genes of the elite individuals through

the population.

8.4.1 UGA Without Elite Shuffling

To further confirm the benefit of elite gene shuffling on the NK landscapes, a modified

UGA was tested where only the genes of the non-elite members of the population were

shuffled. This UGAnES (UGA no Elite Shuffling) was tested on the N30 K8 and N100

K8 p0.90 family of landscapes which were two of the landscapes the UGA significantly

outperformed the SGA on. If elite gene shuffling is responsible for improved performance
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Table 8.1: The UGA compared to the ESGA on a variety of different NK and NKp

landscapes. Performance was measured in terms of the median and IQR maximum fitness

over 50 landscapes. Statistical comparisons were made using Bayes Factors and p-values

calculated using the Kruskal-Wallis test for equal medians.

Landscape UGA Median (IQR) ESGA Median (IQR) Bayes Factor p-value

N30 K8 0.7709 (0.0208) 0.7684 (0.0215) 4 0.3

N30 K6 0.7739 (0.0258) 0.7731 (0.0252) 7 1

N30 K4 0.7708 (0.0269) 0.7675 (0.0228) 6 0.8

N100 K8 p90 0.2600 (0.0176) 0.2559 (0.0267) 2 0.09

N100 K8 p99 0.1126 (0.0121) 0.1111 (0.0109) 6 0.6

N30 K8 p99 0.1344 (0.0183) 0.1303 (0.0193) 6 0.6

N30 K4 p99 0.08540 (0.0360) 0.08665 (0.0385) 6 0.9

then the UGAnES should be significantly worse on these landscapes.

Figure 8.3 compares the performance of the UGA and UGAnES on the N30 K8 and

N100 K8 p0.90 landscapes. Like the results presented in the previous sections, performance

was calculated as the median of the maximum fitness score reached over 50 different

landscapes of a given family and statistical tests were done using p-values and Bayes

Factors. Except for the number of individuals being shuffled, the parameters of the two

GAs were identical so that we could study the effect of shuffling the genes of the elite

individuals. On the N30 K8 landscape the p-value was 8 ∗ 10−9 and the Bayes Factor was

1 ∗ 10−8, and on the N100 K8 p0.90 landscape the p-value and Bayes Factor was 4 ∗ 10−5

and 0.004 respectively. These statistical tests confirm that on these two landscapes the

UGA is significantly better than the UGAnES which provides more evidence that elite

gene shuffling is responsible for the performance of the UGA on the high K, low p NK

landscapes.

8.5 Testing Elite Gene Sprinkling on Other Landscapes

Based on the results of the previous section, our revised hypothesis is that the UGA

outperforms the SGA on highly epistatic, non-neutral NK landscapes because the genes

of the elite individuals get shuffled, reducing the chance that elitism causes the population

to get trapped on a local optimum. To see if this hypothesis holds on other landscapes

the UGA, SGA, ESGA, UGAnES and GPR are compared on two-peak, Royal Road and
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Figure 8.3: A box and whisker plot comparing the Unconstrained GA (UGA) with the

Unconstrained GA no Elite Shuffling (UGAnES) on a N30 K8 and N100 K8 p0.90 land-

scapes.

autoencoder (AE) tasks.

8.5.1 Two-Peak Landscape Results

Here the UGA, SGA, ESGA, UGAnES and GPR are tested on a 90-10 and 70-30 two-

peak landscape, where the all the individuals in the population were initialised with zero

genotypes so that the entire population started on the top of the local optimum. This was

done to test how well each GA could escape a local optimum.

For each GA, statistics were calculated over 50 different runs, where performance was

calculated as the maximum fitness reached in a fixed number of evaluations. A parameter

sweep was done on each GA to find the optimal parameters, so the results of figure 8.4 show

the best performing parameter combination for each GA (parameters are listed online at

ntomko.wordpress.com). If a perfect solution was not found before 20 K evaluations on

the 70-30 landscape and 5K evaluations on the 90-10 landscape the run was stopped and

declared a failure.

The results of figure 8.4 can be summarised as follows:

• On both the 90-10 and 70-30 landscape there is strong statistical evidence that UGA

significantly outperforms all the other algorithms (the UGA versus GPR on the 90-10
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Figure 8.4: A box and whisker plot comparing the Unconstrained GA (UGA), Elite Shuff-

ling GA (ESGA), Standard GA (SGA), UGA no Elite Shuffling (UGAnEs) and Gene Pool

Recombination (GPR) on a 90-10 and 70-30 two peak landscape.
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landscape results in a p-value of 4e-7 and a Bayes factor of 1e-4 ). The one exception

is on the 70-30 landscape where it is not significantly better than GPR.

• All three GAs where the genes of the elite individual(s) are shuffled (UGA, ESGA,

GPR) significantly outperform the GAs where no elite shuffling occurs (SGA, UGAnES)

In summary, on these two-peak landscapes, shuffling the genes of the elite individuals

seems to help evolution move the population off the local optimum, but unlike the NK

landscapes there is an added benefit to shuffling the genes in the entire population.

8.5.2 Royal Road Results

The five different GAs are now tested on a 64-4 Royal Road landscape. Performance was

calculated as the number of evaluations it took each GA to evolve an optimal bit string

over 50 runs, so in the plots lower values means better performance. It is important to

note that this is different from how performance was calculated on the NK, NKp and

Two-Peak landscapes, where fitness was calculated as the maximum fitness reached in

fixed number of evaluations. Statistical comparisons were made using p-values and Bayes

Factors. For each GA, a parameter sweep was performed where population size, mutation

rate, and elite percentage were varied and the statistical comparisons and plot was made

using the best performing parameter combination of each GA.

Figure 8.5 compares the performance of the UGA, ESGA, SGA, UGAnES and GPR

on the Royal Road landscape. These results can be summarised as follows:

• Both the UGAnES and SGA, where the genes of the elite individuals are not shuffled,

outperformed the other algorithms that shuffle the genes of the elite members of

the population (UGA, ESGA, GPR). Although only the UGAnES was significantly

better than all the other algorithms (including the SGA) according to statistical

tests. For example, comparing the UGAnES to the UGA yielded a p-value of 1e-6

and a Bayes factor of 2e-4.

• The IQR of the ESGA is much greater than any of the other GAs. This is because

the ESGA was only successful in solving the task in 32/50 runs while the other GAs

were successful every run.

• The optimal population size of the SGA and UGAnES was very low (3 and 5 re-

spectively) while the optimal population size for the other GAs was either 50 or

100
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Figure 8.5: A box and whisker plot comparing the Unconstrained GA (UGA), Elite Shuff-

ling GA (ESGA), Standard GA (SGA), UGA no Elite Shuffling (UGAnEs) and Gene Pool

Recombination (GPR) on a 64-4 Royal Road landscape.

So unlike on the other landscapes tested (NK and two-peak), on this Royal Road

landscape, shuffling the genes of the elite members of the population reduced performance.

However, based on the fact that the UGAnES outperforms all the algorithms it does seem

like shuffling the genes of the non-elite population members does improve performance.

8.5.3 The Autoencoder Results

The final landscape on which the UGA family of algorithms was tested was a 4-24-3-24-4

AE. Performance was compared over 50 runs where the number of evaluations required

to evolve a perfect AE was recorded. Figure 8.6 shows that UGA and SGA performed

best on this AE, but based on the results of the statistical tests the evidence is weak that

there is any significant difference in performance between any of this GAs. For example,

comparing the UGA and ESGA gave a p-value of 0.1 and Bayes factor of 2.

8.6 Discussion

The main goal of this chapter was to try to understand why the UGA outperformed the

SGA on a rugged, non-neutral NK landscapes. To explore this we tested the SGA, UGA
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Figure 8.6: A box and whisker plot comparing the Unconstrained GA (UGA), Elite Shuff-

ling GA (ESGA), Standard GA (SGA), UGA no Elite Shuffling (UGAnEs) and Gene Pool

Recombination (GPR) on a 4-24-3-24-4 autoencoder.

and a number of UGA variants on NK, two-peak and Royal Road landscapes as well as

on an autoencoder task. At the end of the last chapter, the hypothesis was that the gene

shuffling improved performance because it maintained diversity in the population which

reduced the chance of the population getting stuck on a sub-optimal solution. On the N30

K8 and N30 K9 p90 landscapes, this hypothesis was proven incorrect because reducing the

number of individuals whose genes were shuffled did not significantly impact performance.

Upon further investigation, we found that the key to the performance of the UGA on

the high-K NK landscapes was not the extent of gene shuffling, but instead whether or not

the genes of the elite individual(s) were shuffled throughout the population. One potential

explanation of these results is that adding elitism to GAs can be a double-edged sword.

On one hand, elitism has the potential to improve performance because it preserves the

fittest individuals in the population, but on the other hand it has the potential to reduce

performance because it can increase the chance that the population gets stuck on a sub-

optimal fitness peak. Our results imply that by shuffling the genes of the elite individuals

through the population, the benefits of elitism are retained without increasing the chances

of getting stuck on a local optimum. As mentioned earlier Eiben and Schippers (1996)

found that increasing the number of parents in the multi-parent recombination GA did
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not improve performance on NK landscapes. The details of the GA used in their paper

were not given so we do not know whether or not elitism was used, but if it was, then our

analysis could possibly explain their results.

The GAs were also tested on two-peak and Royal Road landscapes as well as an

autoencoder task to see whether the benefits of shuffling the genes of elite individuals

helped evolution on other landscapes. On the two-peak landscapes we found that both

the UGA and EGSA, where the genes of the elite individuals were shuffled, significantly

outperformed the GAs where the genes of the elite individuals were not shuffled (SGA,

UGAnES), but unlike on the NK landscapes, the UGA was much better than the EGSA.

This implies that on this type of landscape there is a benefit to shuffling the genes of the

entire population on top of shuffling just the genes of the elite individuals.

Unlike on the NK and two-peak landscapes, on the Royal Road landscape, shuffling the

genes of the elite individuals significantly impaired performance. This may be because on

the Royal Road there are not really any local optima or fitness plateaus since each fitness

scoring schema is required to form higher scoring individuals. This means that conserving

the elite individuals as a whole can only improve performance on this landscape by provid-

ing a stepping stone to higher fitness levels. On this landscape the best performing GA

was the UGAnES which shuffled the genes of all individuals in the population except for

the elite individuals. This means that there is still some benefits to gene shuffling on this

landscape as long as the elite individuals are left alone.

On the 4-24-3-24-4 AE there was no statistical difference in the performance of any of

the GAs. This could be because of the high amounts of neutrality in this task because as

the NKp results showed, higher amounts of neutrality seems to reduce the difference in

performance between GAs.

Based on the results of the previous two chapters, the following conclusions can be

made:

• On all the landscapes tested gene shuffling either improved performance or did not

significantly affect performance of evolution

• On non-neutral landscapes with a lot of local optima, shuffling the genes of the entire

population may improve performance

• The benefits of gene shuffling are most likely related to increasing diversity in the

population as well as reducing the chance of elitism which may cause the population

to get stuck on a local optima
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• Neutrality is a bit of an equaliser which means that on very neutral landscapes the

choice of GA is less important

• In the large majority of cases, the UGA significantly outperformed GPR so gene

shuffling is preferable to HGT with replacement which can alter gene frequencies

From a broader perspective, our results relate to the schema theorem (Holland, 1975;

Goldberg, 1989) view of evolution. In general, the schema theorem claims that if the

genetic schema (building blocks) have above average fitness, then the number of these

schema will increase exponentially in successive generations. This should mean that ge-

netic operators such as uniform recombination and gene shuffling used in the UGA that

potentially break up fully formed schema should reduce the performance of evolution. As

the result in this chapter show, this is not the case, which is additional evidence that evol-

ution may not progress by building block mechanisms. These results support the findings

in the original Royal Road paper (Mitchell et al., 1992) which questioned the benefits of

intermediate building blocks in evolution.

In Part II of this thesis we have shown how new algorithms can be developed by varying

the way that the UoS and offspring are used to construct new UoEs. This reinforces how

viewing evolution in terms of UoE and UoS is helpful in generating new algorithms.
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Chapter 9

Discussion

The most general contribution of this thesis to the fields of artificial evolution and evol-

utionary computation is showing how the space of potential evolutionary algorithms is

extended when evaluation is separated from selection in artificial evolution. As we have

discussed throughout this thesis, viewing artificial evolution in this way, where selection

and evaluation are distinct steps, is rarely done because most evolutionary algorithms

are heavily inspired by natural evolution, where it is difficult to separate evaluation from

selection.

In Chapter 3 we describe this new view of evolution in detail and introduce the concepts

of Units of Evaluation (UoE) and Units of Selection (UoS). We then present a general evol-

utionary cycle using UoE and UoS that we believe gives a more complete view of artificial

evolution than ones that described artificial evolution solely in terms of selection. This

evolutionary cycle was then used to analyse both the breeding of battery hens (Craig and

Muir, 1996) and a number of evolutionary robotic experiments by Floreano et al. (2008)

and Waibel et al. (2009) to show how our view allows different types of evolution to be dif-

ferentiated, something that can only be done when evaluation and selection are separated.

As discussed, separating evaluation from selection in this way adds an additional degree

of freedom to the development of novel GAs because it forces the experimenter to choose

both what is being evaluated (UoE) and what is being selected (UoS). A good example of

how failing to explicitly distinguish between evaluation and selection can limit the types

of evolutionary algorithms, which we highlighted first in section 3.4, is summed up nicely

by the following quote from Floreano et al. (2008):

The level of selection is varied by either measuring team performance and

selecting teams (team-level selection) or measuring individual performance and

selecting individuals independently of their team affiliation (individual-level
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selection)

As we discussed in section 3.4, if the authors had separated evaluation from selection they

would not have been limited to these two types of algorithms where the level of evaluation

and selection are the same.

In the remainder of the thesis we used this new way of looking at artificial evolution as

a blueprint for developing novel GAs. In Experiments Part I, new GAs were developed by

varying the relationship between the UoE and UoS. In Chapter 4, the Group GA, which

is based on work in Tomko et al. (2011, 2012), is presented. In this GA, the UoE and UoS

are both groups of population members which allows evolution to cause the population to

niche, where different individuals are doing different jobs to solve the task. In the next

chapter (Chapter 5), we study the Binomics GA which was first presented in Harvey and

Tomko (2010). In the Binomics GA, the UoE is a group of population members, but

unlike the Group GA, the UoS are individuals rather than groups. Comparing these two

algorithms in Chapter 5 allowed us to study the effect of changing the UoS from the group

to the individual. Both these GAs were tested on an artificial immune system and an

autoencoding (AE) artificial neural network (ANN) task. The Group GA was found to

outperform the Binomics GA on the immune system task, but on the AE, the opposite

was true. To further explore the effects varying the amount of evaluation and selection

has on evolution, both GAs were modified so that the amount of selection in the Binomics

GA could be increased and the amount of evaluation in the Group GA could be reduced.

From testing these modified GAs we found that increasing the amount of selection in the

Binomics GA significantly improved performance on both tasks.

In the final chapter of Experiments Part I (Chapter 6), we addressed a potential cri-

ticism of the Group and Binomics GAs which is that for either of the GAs to perform

well an appropriate group size needs to chosen. In this chapter, we presented a randomly

chosen group size and evolved group size version of both GAs that were first tested in

Tomko et al. (2012). These methods have the advantage of eliminating the need to run a

group size parameter search. Testing showed that even though both methods improve per-

formance as compared to manually varying the group size, the evolved group size method

outperforms the random group size method.

In summary, the key findings in Experiments Part I were:

• Setting the UoE to be a group of population members allows evolution to cause

niching or a division of labour in the population
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• When the UoE and UoS are both groups of population members, like in the Group

GA, there is no need to worry about how fitness is assigned to individual group

members (the credit assignment problem)

• There is an optimal selection/evaluation balance for different tasks. This highlights

the importance of separating evaluation from selection and testing various UoE /

UoS combinations

• The evolved group size method combined with the Group or Binomics GA can be

used to find the optimal group size, eliminating the need for a parameter sweep

Experiments Part II of the thesis shifts the focus from levels of evaluation and selection

to studying how varying the method of constructing new offspring from the UoS impacts

evolution. Specifically, we tested the effects of implementing massive amounts of horizontal

gene transfer (HGT). In the Unconstrained GA (UGA) (Tomko et al., 2013), which was

first described in Chapter 7, HGT is implemented by shuffling the genes of the new offspring

population every generation. We found that on rugged (high K), NK landscapes the UGA

outperformed a standard generational GA. The other key result from this chapter was

that there was no significant difference in performance between the UGA and a standard

generational GA when significant amouns of neutrality were added to the rugged NK

landscapes.

Chapter 8 explored the reasons why the UGA performed well on rugged NK landscapes

by testing a variety of modified versions of the UGA on different landscapes and tasks. One

variation of the UGA shuffled only the genes of the elite individuals in the population. This

Elite Shuffling GA (ESGA) performed as well as the UGA on the NK landscapes implying

that shuffling the elite genes reduces the impact elitism has on causing the population to

converge on a sub-optimal solutions. On the other landscapes we compared these GAs on,

the UGA was found to outperform the ESGA. Based on these results it probably makes

sense to always shuffle the genes of the entire population if HGT is to be implemented. All

these GAs were also compared to a version of Gene Pool Recombination (GPR; Muhlenbein

and Voigt 1995) which like the UGA, implements HGT, but instead of shuffling the genes

without replacement they are shuffled with replacement. On none of the landscapes tested

did GPR outperform the UGA and in most cases the UGA performed better. This could

be due to the fact that shuffling with replacement can lead to a change in gene frequencies

in the population, whereas shuffling without replacement will not impact gene frequencies.

In both parts of this thesis the goal was to present a set of novel GAs developed using

the UoE / UoS view of evolution and to determine how they behave on a variety of different
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landscapes. This work can now be used as a springboard to start thinking about what type

of real-world tasks each of these GAs are most suited to solve. The Group and Binomics

GA are tailored to solve problems that require either an implicit or explicit division of

labour between component parts, where the optimal division of labour is unknown ahead

of time. Engineering tasks which may benefit from being solved with these GAs include

scheduling tasks, ANN tasks and co-operative evolutionary robotics tasks.

A logical next step would be to compare the performance of the Group or Binomics

GA to other evolutionary and non-evolutionary optimisation methods on one or two en-

gineering tasks. This work is outside the scope of this thesis because in our opinion, when

developing new GAs, initially it is more important explore their behaviour on test-bed

type tasks and landscapes rather than try to show that they are the ‘best’ way to solve

specific tasks. Doing this allowed us to investigate the GAs interesting qualities and start

to really understand why they work better on specific tasks. This thesis has provided the

groundwork for people to start applying these GAs to more real-world tasks in a sensible

way. A variant of the Group GA has already been successfully applied to the evolution of

neurocontrollers on co-operative type tasks as part of a Masters level project (S. James,

personal communication, 2013).

Our work has shown that the optimal relationship between the amount of selection

(UoS) and evaluation (UoE) changes depending on the task. Based on testing these GAs

on the immune system and AE tasks, we believe that it makes sense to set both the

UoE and UoS to the group level when the division of labour is explicit, like in the immune

systems task, but when the division of labour is more subtle, like in ANN tasks, it probably

makes sense to reduce the amount of selection. Applying these GAs to more problems will

provide more data points that can be used to determine if there is a good rule of thumb

on how to set the UoE and UoS of various classes of tasks.

For tasks where the experimenter is unsure about the optimal division of labour re-

quired to solve the task, we recommend first trying to solve the task using the evolved

group size version of the Group GA. The Group GA is the simplest GA to set up and

has the least number of parameters which allows for easy testing. After evaluating the

performance of the Group GA on the task, we recommend applying the modified Binomics

GA to the task using the optimal group size found with the evolved group size version

of the Group GA. Varying the NUMCOMPARE parameter of the modified Binomics GA

will provide information regarding the optimal selection / evaluation balance for the given

task which should allow the experimenter to better understand the type of task they are
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trying to solve and which GA is best suited to solve it.

The method of gene shuffling used in the UGA family of GAs can be easily added to

any standard steady-state GA. Based on the promising results of testing these types of

GAs on a variety of different landscapes, we believe that it makes sense to test the UGA

and ESGA on any task that is believed to have a very rugged fitness landscape with lots

of sub-optimal solutions. Even though we showed that significant amounts of neutrality

eliminated the performance advantage the UGA and ESGA had over a standard GA, these

gene-shuffling based GAs always performed as well as the standard GA and therefore it

still makes sense to apply them to tasks that are known to have neutral fitness landscapes.

Apart from applying gene shuffling to improve evolutionary performance on different

tasks, the UGA family of GAs can also be used as the basis for a number of theoretical

studies. These include investigating some of the theories on recombination, understanding

how our results relate to the schema theory of evolution and further investigating why gene

transfer without replacement (gene shuffling) improves performance but gene transfer with

replacement in many cases was found to reduce performance.

There is a lot of room to build on the work done in this thesis to further study how

to best apply group based GAs, such as the Group and Binomics GAs, to ANN tasks.

On the AE task, we showed how using the evolved group size method allows evolution to

find the appropriate scaling factor for network weights, eliminating the need to optimise

this parameter manually. A potentially interesting area of further research would be to

experiment with the add and delete weight mutation operators to see there is a way to

improve them so that group evaluation based GAs outperform standard GAs on this type

of task. The work presented in Hinton and Srivastava (2012) shows that on deep-learning

networks, setting a portion of the weights equal to zero using dropout improves training

and may be a good starting point for this type of research.

Separating evaluation from selection also opens up more speculative work such as the

possibility of developing GAs where there are multiple UoE and UoS that are involved

in a multi-step selection process. For example, going back to the hen breeding example,

one could imagine a breeding algorithm where both the number of eggs produced by each

individual hen and the total number of eggs produced by each cage is recorded and then

the individual hens that lay the most eggs from the fittest cage are selected. In this

example, individual hens and cages of hens are both UoE and UoS. Testing these types

of GAs would be an interesting extension of our research. It is also possible that our way

of looking at artificial evolution could be applied to natural evolution. In Chapter 1 we
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discussed how in natural evolution, selection and evaluation interact differently than in

artificial evolution. This means that our analysis may be able to shed further light on

both the differences and similarities between natural and artificial evolution.

Overall this thesis has contributed the following to the field of evolutionary com-

putation: (1) It has provided a new way of looking at artificial evolution that separates

evaluation and selection and shown how this view can be used to develop novel algorithms;

(2) It has presented two novel GAs (the Binomics and Group GAs) that can be used to

evolve solutions to problems where the optimal division of labour is unknown; (3) It has

shown the benefits of adding gene shuffling to standard GAs and shown how shuffling the

genes of the elite members of the population can eliminate one of the issues with elitism

in GAs. Our hope is that this thesis has provided a set of new GAs that can be applied

to a wide range of interesting problems as well as a simple methodology that can be used

to develop novel GAs.
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Appendix A

Selection Pressure of GAs

Since many people are not familiar with the Microbial GA it is worth spending some time

explaining that the selective pressure of the Microbial GA is exactly the same as any other

steady-state GA which is equivalent to the generational GA described in the Literature

Review chapter. For the purposes of this thesis, selective pressure will be defined as a

measure of how exploitative an algorithm is, in terms of the evolutionary exploitation

versus exploration balance. Exploitation in genetic algorithms can be thought of as the

‘centripetal’ or selective force that causes the population to converge to a single genotype,

and exploration can be thought of as the ‘centrifugal’ force that causes the population to

spread out. This selective pressure is not related to ‘how effective’ a GA is in relation to

a basket of optimisation problems, which is another way selective pressure is sometimes

defined. This section is a summary of a report that can be found at http://goo.gl/1yHa1

and is based on work in Harvey (1994).

The measure of selective pressure we use can be calculated for any GA by taking a

large population (of size P) of identical genotypes, all with zero fitness. Then a single

beneficial mutation is given to one member of the population so that this individual has

non-zero fitness. The GA of interest is then run for a single generation, or a generation

equivalent if a steady state GA is being tested, and the expected number of copies of

this beneficial gene in the population is counted. This is repeated for a large number of

generations, each time starting with a single beneficial gene in the population, and the

average over these runs is taken to be the selective pressure.

If we calculate the selective pressure of the generational GA with tournament selection

described earlier we find that it has a selective pressure of 2. This is because to generate a

single offspring 4 parents are picked from the population so that two parental tournaments

can be run. This means that the individual with the beneficial mutation can be expected
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to be picked 4/P times every time an offspring is generated. Since this individual has a

higher fitness than everyone else in the population it will win every tournament it enters

and therefore become a parent. Each offspring gets 50% of its genes from each parent so

the expected number of copies of the beneficial gene in the offspring is (4/P)/2 = 2/P.

If this generation of a new offspring is run P times which is equal to a single generation

then the total number of expected copies of the beneficial mutation in the population is

(2/P)*P which is 2. It is important to note that in this type of generational GA, the

type of recombination does not impact the selective pressure of the GA. Whether uniform

recombination, one-point or two-point crossover, or even using 10% of one parent’s genes

and 90% of the other’s to construct the offspring, the selective pressure will still be 2.

In all steady-state GAs, including the Microbial GA, the selective pressure is (for a

large population) e, or around 2.7. The reason the selective pressure of steady-state GAs

is slightly higher than that of the generational GAs is because their current generation

and next generation are not kept separate. By definition, a steady-state GA updates the

population in ‘real time’ which means that after the first tournament, there will be, on

average, more than one copy of the mutant already in the population. This increases

the chances of the beneficial mutation replicating in the succeeding tournaments so the

selective pressure is 2.7, which is slightly higher than that of the generational GA, but in

practice will likely make little difference.

Unlike recombination in the generational GA, increasing or decreasing the infection

rate in the Microbial will alter the selective pressure. For example, if the infection rate is

increased to 100% where the offspring is just a copy of the fitter parent then the selection

pressure becomes e2 ≈ 7.2. This is equivalent to applying selection to both the choice of

parents and the choice of who dies.

It is important to realise that in the Microbial GA elitism is implicitly built in to the

algorithm. This is because the fitter of the two randomly chosen parents always survives

meaning that the best individual in the population will survive until a fitter individual is

evolved.

In both the Microbial GA and the generational GA, the selection pressure is the same

but implemented in different ways. In the generational GA, a selective pressure is applied

to the choice of both parents through tournament selection but the choice of who is

going to die is unbiased because the entire preceding generation is killed off without any

favouritism. In the Microbial GA, by randomly choosing the parents from the population

and then replacing the weaker parent with the offspring there is a selective pressure applied
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to both the choice of who is going to survive and who is going to die. These two methods

result in the exact same amount of selective pressure.



151

Appendix B

Statistical Testing Methods

An important part of this thesis is comparing the performance of different evolutionary

algorithms. These comparisons can be made using either orthodox or Bayesian statistical

analysis. The large majority of scientific papers use orthodox statistics, ignoring many

of the issues with these methods. As we will discuss in this section, Bayesian statistics

avoid many of these issues and in our view are the more logical and sound way to make

statistical comparisons. For these reasons we will present both orthodox and Bayesian

statistical analysis in this thesis.

B.1 Orthodox Statistical Comparisons Using p-values

One of the most common orthodox methods of statistical comparisons is using p-values.

Johnson (1999) describes the four main steps required to analyse data using p-values as

follows:

1. Develop some null hypothesis which is usually the opposite of what you want to

show. So if you want to show that one algorithm is better than another the null

hypothesis would be that the two algorithms perform equally well.

2. Collect data, run simulations or tests.

3. Run a statistical test of the null hypothesis to generate a p-value.

4. Interpret the p-value

P-values have been interpreted in many different ways, most of which are incorrect. Carver

(1978) believes the three most common statistical p-value fantasies are as follows, and in

his paper explains why they are not a valid way of interpreting p-values.
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1. Odds-Against-Chance Fantasy which is interpreting the p-value as the probability

that the experimental results were due to chance. In other words, small p-values show

that there was a very small chance that the results obtained were due to random

chance.

2. Replicability or Reliability Fantasy is interpreting 1-p as the probability of getting

the same results if the same experiment was run again.

3. Valid Research Hypothesis Fantasy is believing that 1-p is the probability that the

research hypothesis is true.

According to Johnson (1999) the correct interpretation of a p-value is that it is the

probability of getting the observed data, or more extreme data given: (1) the null hy-

pothesis is true, (2) the assumed model is correct and (3) sampling is done randomly.

Because the p-value is always calculated assuming the null hypothesis is true then you can

only reject the null hypothesis, a low p-value does nothing to confirm your experimental

hypothesis.

Even if p-values are interpreted correctly there is still the question of how useful they

are in understanding experimental results. One well known issue with p-values is that

because they are a function of the difference between reality and the null hypothesis and

sample size, p-values can be reduced by increasing the sample size. Dienes (2011) expands

on this further, explaining how if the null hypothesis is false then increasing the sample

size will drive the p-value to zero, but if the null hypothesis is false then the p-values are

normally distributed meaning that there is equal probability of getting any p-value. Most

scientific journals accept a result as ‘significant’ if the p-value is less than 0.05, ignoring the

fact that this is a very arbitrary choice; two other problems with this are: (1) Increasing

the sample size can get you a ‘significant’ results and (2) even if the null hypothesis is true

there is a 5% chance of getting a p-value that is interpreted as ‘significant’. This issues

also raise questions such as how many tests should I run and whether my results are valid

if I’ve made a planned versus post-hoc hypothesis. The next section will summarise how

using Bayesian methods avoids many of these issues.

B.2 The Benefits of Bayes

In this section we summarise some of the arguments put forward by Dienes (2011) to why

using Bayesian statistics is better than orthodox statistics when it comes to analysing

experimental data.
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Since p-values are sensitive to the number of samples or experimental runs, the question

of when to stop an experiment or simulation is brought into question. For example, assume

that when two algorithms are compared over 25 runs a p-value of 0.07 is found but when

they are compared over 100 runs a p-value of 0.01 is found. In the first case, the results

would not be considered ‘significant’ but in the second case they would be ‘significant’ even

though the only thing that has changed is the number of times the algorithms were run.

This means that using orthodox statistics a results can go from not significant to significant

just by increasing the number of experimental runs or samples. Bayesian statistics like the

Bayes factor avoids this problem because when the null is true or closer to the truth than

the alternative the Bayes factor is driven to zero Dienes (2011). As discussed earlier, in

orthodox statistics, when the null hypothesis is true the p-value isn’t driven to any value

but is uniformly distributed between zero and one. This means that the Bayes factors can

be quantitatively compared while p-values cannot.

Another issue that Bayesian statistics avoids is the whole problem of multiple testing.

This is especially relevant in this thesis because in many chapters we compare multiple

algorithms on a specific task. In orthodox statistics you have to correct for the number

of comparisons done in a given family. One problem with this is that it can be difficult

to determine what counts as being part of a family. For example if I test five different

algorithms on a given task, how do I determine which are part of the same family and

should be statistically compared together? With Bayesian statistics this is not an issue

because it doesn’t matter how many hypothesis are tested as long as all the relevant data

are taken into consideration (Dienes, 2011).

The final advantage Bayes has over orthodox statistics that we will mention is how it

handles planned versus post hoc comparisons. In orthodox statistics it matters whether

a hypothesis is formulated before or after the data is observed. With Bayesian statistics

the strength of evidence is the same irrespective of whether it is analysed before or after

a hypothesis is formed.

For the reasons mentioned in this section we believe that Bayesian statistics are a

better way to compare the performance of different algorithms. But because p-values are

the still the industry standard in academia we will present both types of statistics.

B.3 Tests Used in this Thesis

Here we describe both the orthodox and Bayesian statistical tests we use in this thesis.
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B.3.1 Orthodox Statistical Tests Used

One factor in determining which statistical test to use is whether the data is normally

distributed or not. In most cases the results from testing our genetic algorithms were not

normally distributed so we chose to report results in terms of medians and interquartile

ranges (IQR) rather than using means and standard deviations which should be used for

data that is known to be normally distributed. For comparing two algorithms we used

the Wilcoxon rank sum test of equal medians and for comparing multiple algorithms we

used the Kruskal-Wallis test for equal medians which is suitable for testing three or more

groups from non-Gaussian distributions.

B.3.2 Bayesian Statistical Tests Used

We chose to use the on line two-sample t-test Bayes factor calculator

(pcl.missouri.edu/bayesfactor) described in Rouder et al. (2009). The Bayes factor is

one of the more common Bayesian statistical tests and is described on Dienes’ web page

as follows:

(www.lifesci.sussex.ac.uk/home/Zoltan Dienes/inference/Bayes.htm,April2013)

The Bayes factor tells you how strongly data support one theory (e.g. your

pet scientific theory under test) over another (e.g. the null hypothesis). It is

a simple intuitive way of performing the Bayesian equivalence of significance

testing, telling you the sort of answer which many people mistakenly think

they obtain from significance testing, but cannot.

Unlike p-values, which do not provide evidence for or against the null hypothesis,

Bayes factors can be directly interpreted as odds ratios and therefore can be interpreted

as evidence in favour of or against your hypothesis over the null hypothesis (Dienes, 2011;

Rouder et al., 2009). Because Bayes factors are odds ratios that compare one theory

against another, they can be reported without reference to cut-offs (Rouder et al., 2009).

For readers not familiar to Bayes factors a good rule of thumb is to follow the convention

suggested by Jeffreys (1961) which is to take Bayes factors of greater than 3 (or less than

1/3) to indicate substantial evidence for or against the null hypothesis.

The Rouder et al. (2009) Bayes factors we use in this thesis are structured in terms of

the null hypothesis over the alternative hypothesis which means that large Bayes factors

imply that there is strong evidence in favour of the null hypothesis, while small Bayes

factors signify that the evidence is in favour of the alternative hypothesis.
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