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AN INVESTIGATION INTO THE FUNCTION OF    

SUMOYLATION IN GENOMIC STABILITY IN S. POMBE 
 

SUMMARY 
 
 
Sumoylation is an essential posttranslational modification involved in many cellular 
processes such as DNA replication, chromosomal stability, cytokinesis, DNA damage 
responses and many others. The process of sumoylation is conserved in all eukaryotic 
organisms. This study involves the analysis of various aspects of sumoylation in the 
unicellular model organism Schizosaccharomyces pombe. 
 
The first part of this study is concerned with elucidating the functional and structural 
importance of a SUMO-like domain (SLD) and a putative SUMO-binding domain (SBM) 
present in the essential protein Rad60. Biochemical and genetical analysis reveals that 
SLD2 is required for the DNA damage response function of Rad60 but that the putative 
SBM3 is a key structural feature of the hydrophobic core of SLD2 and therefore unlikely 
to function as a SUMO-interacting motif. As Rad60 interacts with the SUMO E3 ligase 
Pli1, which facilitates overall sumoylation and SUMO chain formation, further analysis 
was undertaken to identify the function of SUMO chain formation and the function of 
Pli1 in maintaining chromosomal stability. A SUMO chain mutant, Pmt3-K14R; K30R, 
was characterized and shown to be sensitive to the DNA replication inhibitor 
hydroxyurea. Analysis of the pli1 null mutant reveals that Pli1 dependent sumoylation 
has multiple functions at the centromeric repetitive sequences as the mutant displays 
increased gene conversion at centromeric regions and increased loss of an artificial 
minichromosome rates compared to a wild type strain. 
 
The second part of this study is concerned with identifying specific modified lysine 
residues in the sumoylation pathway components Fub2, Hus5 and Nse2 and the target 
proteins Rtf2 and PCNA.  After identification of in vitro sumoylation sites, an analysis of 
the sumoylation of the SUMO conjugating enzyme Hus5 and the sumoylation of the Rtf2 
protein is carried out. In vivo and genetical analysis of the hus5-K50R mutant suggests 
that the sumoylation of the conjugating enzyme is required for maintaining the 
homeostasis of the pathway and is essential for cell viability when the homologous 
recombination machinery is impaired. Sumoylation of Rtf2 protein is required for the 
response to the DNA alkylating agent MMS and, like the sumoylation of Hus5, is 
essential for cell viability in homologous recombination mutant backgrounds. 



ABBREVIATIONS 
 
 

A alanine 
ade adenine 
APS ammonium persulphate 
ATP adenosine triphosphate 
ADP Adenosine diphosphate 
AMP Adenosine momophosphate  
BER Base excision repair 
bp base pairs 
BSA bovine serum albumin 
CDK cyclin-dependent kinase 
cDNA complementary deoxyribonucleic acid 
CPK creatine phosphokinase 
Da dalton 
DAPI 4, 6-amino-2-phenylindole 
DMSO dimethylsulphoxide 
DNA deoxyribonucleic acid 
dNTP deoxyribonucleotide triphosphate 
DSB double strand break 
DTT dithiothreitol 
E. coli Escherichia coli 
ECL enhanced chemi-luminescence 
EDTA ethylenediaminetetraacetic acid 
ELN extremely low nitrogen 
g gram 
G418 geneticin 
Gy Gray 
HR homologous recombination 
H. sapiens Homo sapiens 
HU hydroxyurea 
IPTG isopropyl-β-D- thiogalactopyranoside 
IR ionizing radiation 
J/m2 ioules per meter squared 
K lysine 
kb kilobase 
kDa kilodalton 
l litre 
LiOAc lithium acetate 
M molar 
MCS multiple cloning site 
ml milliliter 
MMS methylmethane-sulphonate 
µg microgram 
µl microlitre 
µM micromolar 
NAT nourseothricin sulfate 
NER nucleotide excision repair 



NHEJ non-homologous end joining 
OD optical density 
ORF open reading frame 
PBS phosphate buffered saline 
PCR polymerase chain reaction 
PEG polyethylene glycol 
PMSF phenylmethylsulphonyl fluoride 
PPi 2x inorganic phosphate 
R arginine 
RPM revolutions per minute 
S. Cerevisiae Saccharomyces cerevisiae 
SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis 
TBE Ttris borate 
TBZ thiabendazole 
TCA trichloroacetic acid 
TE tris aminomethane 
TEMED N, N, N’, N’-tetramethyl-ethylenediamine 
Ura uracil 
UV ultra-violet 
YE yeast extract 
YNB yeast nitrogen base 
X-gal 5-bromo-4-chloro-3-indol-β-D galactopyranoside 
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CHAPTER 1  

   INTRODUCTION 
!
!
!
!
!
The fundamental characteristic of life is the ability of cells to accurately transmit their 

genomic information to daughter cells. To achieve this, cells employ complex 

mechanisms to replicate their genomes, prevent and repair DNA damage and faithfully 

segregate their DNA between two identical daughter cells. Faults in these mechanisms 

can lead to genetic diseases, carcinogenesis and cell death.  

 

Cancer is still one of the least understood human diseases and technical and ethical 

difficulties to study human cells complicate the efforts to make progress in preventing 

and curing cancer. The use of model organisms to study the eukaryotic cell cycle, DNA 

damage repair mechanisms and to identify genes involved in these cellular processes 

has contributed greatly to the understanding of genetic defects that can lead to 

carcinogenesis. 

 

!

1.1 S. pombe as a model organism 
!
!
Schizosaccharomyces pombe is a single-celled eukaryote belonging to the kingdom of 

fungi. It usually exists in haploid form and was initially developed as a model organism 

to study genetics due to the ease of obtaining mutant strains and the strength of the 

phenotypes (Leupold, 1957). It has a rod-like shape and, during the cell cycle, it 

maintains its shape and grows exclusively through the cell tips to divide by medial 

fission and generate two daughter cells of the same size. Given these characteristics and 

its rapid growth, the fission yeast gained popularity as a model organism to study the 

mitotic cell cycle of human cells (Mitchison, 1957).  
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The identification and characterization in S. pombe of the cyclins and the cyclin-

dependent kinase, Cdc2 (CDK), the conserved proteins responsible for driving and 

controlling the cell cycle, further highlighted the significance of this model organism 

(eg.Lee and Nurse, 1987). Following the nearly complete sequencing of its genome 

(Wood et al., 2002), further studies in S. pombe propose that many of the essential 

eukaryotic genes emerged with the first eukaryotic cell and remained conserved in all 

cells (Decottignies et al., 2003), with significant homology in  cell cycle regulation, 

DNA replication and DNA damage repair proteins. 

 

!

1.2 The cell cycle 
!
!
The cell cycle is driven by oscillations in the concentration of cyclins, which effect 

oscillations in the activity of CDKs  (cyclin-dependent kinases) through their binding. 

The active cyclin-CDK complexes phosphorylate proteins required to coordinate the 

entries to the phases of the cell cycle. Each cell cycle transition is driven by a specific 

CDK, and a particular cyclin activates each CDK. The timely and accurate progression 

of the cell through the phases of the mitotic cycle is controlled by complex mechanisms 

known as ‘checkpoints’.  

 

Following the termination of mitosis, the new cell enters the G1 growth phase during 

which the restriction point (start point in yeast) (Pardee, 1989) determines whether the 

cell should continue to divide or exit the cycle and enter the vegetative G0 phase. As the 

cells commit to the cell cycle, they continue to grow and proteins required for DNA 

replication are synthesized. DNA replication takes place during S phase. The intra-S 

phase checkpoint is activated if the replication fork stalls or collapses.  After the cells 

complete DNA synthesis, they enter G2 phase. G2 is mainly characterized by cell 

growth and preparation for mitosis. Two checkpoints are active during G2 phase: the 

S/M checkpoint, also known as the DNA replication checkpoint, as it ensures that DNA 

replication is completed before the onset of mitosis, and the G2/M checkpoint, also 

known as DNA damage checkpoint as it ensures that no DNA damage is present at the 

initiation of mitosis. 
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For the purpose of this thesis, S phase and the M phase are described further.  
!
!
!

1.2.1  S phase  
!
!
DNA replication starts at multiple replication origins, known as oris or ARSs 

(Autonomous Replication Sequences) in yeast. These are specific chromosomal sites 

that are bound by the  ‘origin-recognition complex’ (Laane et al.). Replication origins, 

bound by the ORC, are recognized by the DNA helicases MCM (minichromosome 

maintenance proteins) (Grallert and Nurse, 1996, Kelman et al., 1999). Helicases 

unwind the double-stranded DNA and create single-stranded DNA (ssDNA). The 

unwinding of the double helix in a circular unidirectional path creates supercoiled DNA. 

Topoisomerases release the supercoiling by creating ‘nicks’ in one of the strands, 

passing the other strand through the nick and resealing the cut. Single-stranded DNA, 

generated by helicases, is coated by proteins specialized in single-strand binding such as 

the Replication Protein A (RPA). RPA keeps the homologous strands from re-annealing 

and interacts with many proteins required for replication fork progression (Henricksen 

et al., 1994).  

 

DNA polymerases require a RNA primer to start synthesize DNA. RNA primases 

synthesize RNA primers complementary to the ssDNA (Griep, 1995). Following the 

establishment of the replication fork (fig. 1.1), DNA elongation is carried out by DNA 

polymerases. As DNA polymerases can only integrate nucleotides in the 5’ to 3’ 

direction, one strand is replicated in a continuous manner, the leading strand, while the 

other strand is polymerized in opposite direction as discreet nucleotides chains (Okazaki 

fragments) that are synthesized in a 5’ to 3’ fashion (Okazaki et al., 1967). Polymerases 

form asymmetric dimers to synchronize the replication of both strands. DNA ligases 

join the Okazaki fragments and seal the gaps in the sugar-phosphate backbone by 

catalyzing the formation of the phosphodiester bonds in the lagging strand (Ellenberger 

and Tomkinson, 2008). 

 

To ensure continuous DNA synthesis, polymerases are hold onto the DNA by 

processivity factors: homo- or hetero-polymers that are capable of traveling along the 



Fig. 1.1 The Replication Fork 
 
!
Cartoon representation of the main components of the replication fork. DNA replication 

requires a helicase to separate the duplex, a processivity factor (PCNA), a RNA primase 

and a DNA polymerase. Topoisomerases release the supercoiles that result from the 

unwinding of the duplex. 

 The proteins are represented by Pymol software-generated images based on determined 

structures; ie the helicase is represented by a Pymol-generated image based on the 

structure of a helicase. 



Fig. 1.1 Cartoon representation of the Replication Fork 
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DNA duplex by encircling it (sliding clamps). One of the most studied processivity 

factors is the homo-trimeric protein PCNA (Proliferating Cell Nuclear Antigen) 

(Miyachi et al., 1978, Krishna et al., 1994). Apart of its processive role, PCNA is a key 

regulator of other replication-associated mechanisms through its interactions with DNA 

endonucleases (Tom et al., 2000, Guo et al., 2010), helicases (Armstrong et al., 2012) 

and ligases (Mayanagi et al., 2011). Some of the roles of PCNA are discussed in section 

1.5.5. The Replication Factor C (RFC) complex catalyzes the loading of PCNA onto the 

DNA. 

 

Termination of replication in eukaryotes occurs when two opposing forks merge 

(Edenberg and Huberman, 1975) or when the fork reaches the end of the chromosomes 

at the telomeric regions (Lundblad, 2012). Outside of the telomeres, it is believed that 

replication terminates mostly at random sites where two forks meet, although some 

specific sites have been identified (Dalgaard et al., 2009).  These sites are characterized 

by protein-DNA complexes that act as replication fork barriers (RFBs) and stall the 

replication process (Fachinetti et al., 2010). It has been shown that in mammals 

transcription factors act at ribosomal DNA (rDNA) to stall the fork to avoid collision 

between the replication machinery and the transcription machinery (Gerber et al., 1997). 

Most of the research on eukaryotic replication termination has been carried out in S. 

pombe and S. cerevisiae (Steinacher et al., 2012). Is S. pombe, RTS1 (replication 

termination site 1) has been identified as a replication termination specific site 

(Dalgaard and Klar, 2001). Several proteins have been identified to function in DNA 

replication termination at the RTS1 locus: the Swi1-Swi3 complex and the Rtf1 and 

Rtf2 (termination factor 1 and 2) proteins (Dalgaard and Klar, 2000, Eydmann et al., 

2008, Inagawa et al., 2009). Analysis of these proteins in S. pombe is relevant to 

understanding how termination of replication occurs in mammalian cells as the RTS1 

locus is closely related to the mammalian rDNA replication barriers (Eydmann et al., 

2008). 

 

If DNA damage is encountered during replication, the intra-S phase checkpoint is 

activated and the replication fork is stalled to allow repair. The intra-S phase checkpoint 

is discussed in section 1.3. Both replication fork stabilization during stalling, and 

replication fork restart after stalling, require many replication and DNA damage repair 

proteins. It has been shown that homologous recombination starts blocked replication 
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forks by template exchange. The process is mutagenic and results in gross chromosomal 

rearrangements (GCRs) (Lambert et al., 2010).  

 

1.2.2 M phase 
!
!

During the mitotic phase, cells separate their newly replicated chromosomes into two 

identical sets. M phase has several sequential, discreet phases: prophase, metaphase, 

anaphase and telophase. M phase begins with the condensation of the newly replicated 

chromosomes in prophase, process requiring the condensin complex (Hirano T, 1994). 

Prophase is followed by metaphase when the paired chromosomes align in the middle 

of the nucleus and attach to the microtubules. During anaphase the sister chromatids 

separate and the daughter chromosomes are pulled towards the poles of the cell. 

Telophase is characterized by the formation of the daughter nuclei, followed by 

cytokinesis. While most animal cells have an open mitosis, where the nuclear envelope 

breaks before the chromosomes separates, S. pombe has a closed mitosis, where the 

chromosomes divide within an intact (“closed”) cell nucleus.  

 

From the end of DNA replication until the onset of anaphase the cohesin complex holds 

the sister chromatids together (Zou, 2012). Condensin and cohesin belong to the SMC 

(structural maintenance of chromosome) family of proteins and have multiple functions 

throughout the cell cycle including roles in DNA replication, DNA damage repair and 

transcription. During metaphase, the kinetochore assembles at the centromeres of the 

sister chromatids and attaches to the microtubules that extend from the spindles poles of 

the cell. The correct positioning of the mitotic spindle at the centromeres ensures 

accurate distribution of the genetic material between the two daughter cells. Once the 

centromeres are aligned in the middle of the nuclei, the Anaphase Promoting Complex 

APC) (Ostapchuk et al., 1986) triggers a set of events that conclude in the separation of 

the sister chromatids. The APC targets the protein securin for degradation. Securin 

forms a complex with separase, a cysteine protease that hydrolyses cohesin.  Proteolysis 

of securin releases separase, which in turn cleaves the cohesion complex and releases 

the sister chromatids (Yamashita et al., 1999). The spindle checkpoint prevents sister 

chromatids segregation until all centromeres are properly aligned and attached to the 

mitotic spindle. 
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Centromeres are important specialized chromosomal structures required for correct 

chromosome segregation. While S. cerevisiae has simple ‘point’ centromeres (Meraldi 

et al., 2006), S. pombe centromeres are large, complex, transcriptionally silenced 

heterochromatic structures,  more similar to those of humans (Clarke et al., 1986).  

 

1.3 Genome integrity checkpoints 
 

 
Checkpoints are active at specific times of the cell cycle and are designed to detect 

stalled or collapsed replication forks that arise during DNA replication, and DNA 

damage that can occur throughout the cell cycle. When such defects are encountered, 

the checkpoints generate a cell cycle delay or arrest that allows replication fork restart 

and/or DNA damage repair (Carr, 2002, Hartwell et al., 1994). Checkpoints also ensure 

that the phases of the cell cycle occur in a timely order by controlling the completion of 

essential processes before the initiation of a subsequent process. Checkpoints are 

organized as signal transduction pathways, with components acting as sensors, 

mediators and effectors. The term ‘checkpoint’ has been established after research on 

mutants defective in cell cycle in S. cerevisiae (Hartwell and Weinert, 1989).  

 

 

The G1/S checkpoint  

The G1/S checkpoint prevents damaged DNA, present at the beginning of the cell cycle, 

from being replicated during S phase. It involves the sequential activation of ATM/ATR 

and the tumor suppressor p53 proteins, followed by down-regulation of CDK2/cyclin E 

levels. 

ATM (Ataxia telengiectesia mutated) and ATR (ATM and Rad3 related) are 

serine/threonine kinases that are activated by IR-induced DNA double-strand breaks 

and UV-induced single-strand breaks respectively (Banin et al., 1998). ATM and ATR 

phosphorylate the tumor suppressor p53, which acts as an effector protein (Banin et al., 

1998). Phosphorylated p53 inhibits transcription of S phase-specific proteins by 

inactivating the CDK2/cyclin complex (Dulic et al., 1994).  

!
!
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!
!
!
The intra-S phase checkpoint   

The intra-S phase checkpoint arrests or slows down the replication process until defects 

encountered by the replication fork are repaired (Bartek et al., 2004). ATM and ATR 

sense the DNA damage and trigger a signaling cascade that results in inhibition of 

Cdc25, the phosphatase for Cdk2. Phosphorylated Cdk2 blocks the replication fork 

progression (Falck et al., 2002), allowing time for DNA damage repair.  

 

The G2/M DNA damage checkpoint   

The G2/M checkpoint is activated by DNA damage and ensures that the newly 

replicated DNA is damage-free before the cell enters mitosis (Lobrich and Jeggo, 2007). 

Sensor proteins localize at sites of damage and trigger a signaling cascade that results in 

recruitment of DNA repair proteins. As the genome is duplicated and the sister 

chromatids are held together in G2, the main mechanism employed for repair is 

homologous recombination. 

 

The S/M DNA replication checkpoint   

The S/M DNA replication checkpoint prevents the cell from entering mitosis with 

incompletely replicated chromosomes (Corellou et al., 2000). The initiation of this 

checkpoint does not rely on damaged DNA and it has been shown in S. pombe that the 

replication checkpoint is initiated by the inhibition of the DNA polymerase α (Pol1Sp) 

(D'Urso et al., 1995).  

!
!
Checkpoint proteins 

 

Many of the checkpoint proteins were first identified in S. pombe, including the Rad 

proteins (radiation sensitive): Rad1, Rad3, Rad9, Rad26 and Hus1 (hydroxyurea 

sensitive) (al-Khodairy and Carr, 1992, Enoch et al., 1993). 
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Rad1, Rad9 and Hus1 form the 9-1-1 complex (Rad9 – Rad1 – Hus1), a PCNA-like 

sliding clamp that is conserved from yeast to humans (Parrilla-Castellar et al., 2004). 

The 9-1-1 complex is loaded onto the DNA in response to different stresses and is 

required for checkpoint activation. Rad26 is the S. pombe homologue of the human 

ATRIP (ATR interacting protein) (al-Khodairy et al., 1994). Rad26/ATRIP is 

phosphorylated by ATR/Rad3 in response to DNA damage, and the two proteins form a 

complex that responds to DNA damage independent of other checkpoint proteins 

(Edwards et al., 1999). Rad3 is the S. pombe homologue of human kinase ATR (Bentley 

et al., 1996). Rad3/ATR phosphorylates many substrates in response to DNA damage 

and is required for activation of S/M, G/M and intra-s checkpoints (reviewed 

byHumphrey, 2000). 

 

Another important sensor checkpoint protein is ATM  (Ataxia telengiectesia mutated). 

The S. pombe homologue of human ATM is the Tel1 protein (Matsuura et al., 1999). 

ATM/Tel1 is recruited to DNA double-strand breaks by the MRN complex, which 

directly binds DNA ends (Lee and Paull, 2004). The MRN complex is composed of 

Mre11, Rad50 and Nbs1 (Xrs2 in S. cerevisiae) proteins and is conserved in all 

eukaryotes. In S. pombe, Tel1/ATM checkpoint signaling is activated only when the 

DNA-end resection is inhibited (Limbo et al., 2010). Rad3/ATR is the major sensor for 

checkpoint signaling through the main mediators Chk1 and Cds1 (Boddy et al., 1998). 

ATM and ATR phosphorylate both checkpoint mediators and effectors or directly target 

proteins. It has been shown that MRN facilitates ATM-dependent phosphorylation of 

the effectors p53 and Cds1, and the target histone H2AX (Lee and Paull, 2004, Zhao et 

al., 2008). 

 

Downstream of the sensor proteins are the mediator proteins. Two mediator proteins act 

downstream of the Tel1Sp/ATMHs and Rad3Sp/ATRHs in fission yeast: Crb2 and Mrc1 

(Furuya and Niki, 2012). Crb2 is the homologue of human checkpoint mediator 53BP1 

(Saka et al., 1997). At sites of DNA double-strand breaks, Rad3/ATR-dependent hyper-

phosphorylation of Crb2 activates the checkpoint effector Chk1 (Saka et al., 1997). At 

sites of replication inhibition, Rad3/ATR-dependent phosphorylation of Mrc1 activates 

the recruitment of Cds1 at stalled replication forks (Tanaka and Russell, 2001). Cds1 

and Chk1 kinases are important effectors that function in all checkpoints but act on 

different substrate in different organisms (Rhind and Russell, 2000).  
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!

1.4 The spindle assembly checkpoint (SAC) 

  
The spindle assembly checkpoint controls the M phase to ensure the fidelity of the 

chromosomes segregation (Musacchio, 2011). It prevents the separation of the sister 

chromatids until each and every chromosomes is properly aligned and attached to the 

mitotic spindle. Cdc20, the MAD (mitotic arrest deficient) family of proteins (Mad1, 

Mad2 and Mad3) and the Bud family of proteins (Hoyt et al., 1991) are the main players 

in the activation and maintenance of SAC (Shannon et al., 2002) . Cdc20 and the SAC 

proteins are conserved from yeast to humans. Cdc20 and the SAC proteins assemble at 

the kinetochores before the spindle attachment and maintain the checkpoint active until 

the kinetochores are properly attached to the spindle. Cdc20, Mad and Bub proteins 

form a complex that inhibits the activity of the Anaphase promoting complex 

(Ostapchuk et al.), the ubiquitin E3 ligase that targets cohesin for proteasomal 

degradation. !
!
 

1.5 DNA damage  
!
!
The genome is under constant attack as a result of normal cellular metabolic processes, 

as well as exposure to exogenous genotoxic agents. Endogenous sources of DNA 

damage are by-products of hydrolytic and oxidative reactions and other cellular 

processes that occur under normal physiological conditions. Exogenous sources of 

DNA damage are: ultraviolet radiation (UV), ionizing radiation (IR) and numerous 

chemicals from the environment, such as alkylation and methylation agents.  These 

DNA damage sources generate single and double strand breaks and various types of 

base lesions. In addition to the environmental insults, the process of DNA replication is 

prone to errors, mainly caused by incorrect nucleotides added by the DNA polymerases.  

Given the high frequency and the different types of DNA damage, cells have evolved 

multiple complex mechanisms to repair DNA damage or to by-pass DNA lesions. 

!
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1.6 DNA damage repair mechanisms 
!
!
The main mechanisms involved in single-strand damage are: nucleotide excision repair, 

base excision repair and mismatch repair. Double-strand break repair occurs mainly by 

two mechanisms: non-homologous end joining (NHEJ) and homologous recombination 

(HR). 

 

1.6.1 Nucleotide excision repair (NER)  

Nucleotide excision repair removes bulky DNA adducts that result from UV-induced 

damage or from processes associated with transcription (Kamileri et al., 2012). NER 

pathway involves the recognition of damage, excision of the oligonucleotide affected, 

and filling of the resulting gap by repair synthesis. Mutations in NER genes result in 

several genetic diseases such as Xeroderma Pigmentosum (XP), Trichothiodystrophy 

(TTD) and Cockayne syndrome (CS). XP and TTD are associated with different 

mutations in the XP family of genes (Botta et al., 1998) and in the gene encoding for 

ERCC2, a protein involved in DNA repair and transcription (Taylor et al., 1997). 

 

1.6.2 Base excision repair (BER)  

Base excision repair deals with the removal of small, non-bulky base lesions that arise 

from endogenous chemicals such as reactive oxygen species (ROS) (Robertson et al., 

2009). DNA glycosylases remove the damaged bases by hydrolysis of the N-glycosylic 

bond between the DNA base and the sugar phosphate backbone. The resulting abasic 

site is processed by endonucleases, and the resulting single-strand break is repaired by 

DNA polymerases and DNA ligases either by replacing the single nucleotide (short-

patch BER) or by synthesizing 2-10 nucleotides (long-patched BER). In humans, the 

flap endonuclease FEN1, two major ligases, LIG1 and LIG3, two main polymerases, 

PARP1 (Poly(ADP-ribose) polymerase-1) and Pol β, and the single-strand break repair 

protein XRCC1 are the main players in BER. The long-patch BER is dependent on the 

interaction of FEN1 with PCNA (Gary et al., 1999). 
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Homologues of the human BER components have been identified to function in S. 

pombe BER. S. pombe Rad2 is the homologue of FEN1(Alleva and Doetsch, 1998, 

Murray et al., 1994), while Rad4 is the homologue of XRCC1 (Fenech et al., 1991). 

LIG1 ligase is conserved in all eukaryotes while LIG3 is restricted to vertebrates 

(Ellenberger and Tomkinson, 2008). Recently a PARP1 homologue, Hpz1 (homologue 

of PARP-type Zn-finger), has been identified in S. pombe (Boe et al., 2012). However, 

Hpz1 does not have PARP activity, but is required for resistance to UV during G1, and 

resistance to replication inhibition during S phase (Boe et al., 2012) 

 

!

1.6.3 Mismatch repair (MMR)  
 
Mismatch repair corrects base-pairing errors that arise during the replication process, 

including small insertions or deletions that occur particularly at highly repetitive 

sequences (microsatellites) (Jascur and Boland, 2006). In humans, mutations in the 

DNA mismatch repair genes (MLH1, MSH2, MSH6) are associated with hereditary 

colorectal cancer (Lynch syndrome) and endometrial cancer (Masuda et al., 2011) and 

are characterized by microsatellite instability (Banno et al., 2004). The MMR pathway 

is highly conserved amongst species and defects in the S. pombe homologues mlh1, 

msh2 and msh6 result in increased nucleotides insertion and deletion mutation rates 

(Marti et al., 2003).  

!
!

1.6.4 Non-homologous end joining (NHEJ)  

!
Non-homologous end joining repairs double-strand breaks by directly ligating the ends 

of the breaks. It is the predominant double-strand break repair mechanism in 

mammalian cells and is particularly active during the G1 phase in the haploid S. pombe 

(Ferreira and Cooper, 2004), when no homology is available for recombinational repair. 

In mammalian NHEJ, the heterodimer Ku (Ku70/Ku80) forms a ring that tethers the 

broken ends, the DNA polymerases Polλ and Polµ fill the gap and LIG4 performs the 

ligation step of the repair (Weterings and Chen, 2008). In S. pombe all these proteins are 

conserved and are the main players in NHEJ repair (Manolis et al., 2001). It has been 
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shown that in S. pombe NHEJ repair at telomeres requires the MRN complex (Reis et 

al., 2012).  

!
!

1.6.5 Homologous recombination (HR)  
 
Homologous recombination is a high fidelity DNA repair mechanism that uses the sister 

chromatids and the homologous chromosomes as templates to repair the double strand 

breaks (fig. 1.2). S. pombe cells generally repair DSBs by gene conversion (GC), in 

which both ends of the break associate with homologous sequence. In short, the 

homologous recombination process is initiated by the MRN complex that tethers the 

ends of the break and interacts with helicases and endonucleases to resect the strands in 

a 5’-3’ fashion to create single strand overhangs. The 3’ overhangs are coated by RPA, 

which recruits the HR protein Rad51 (Rhp51 in S. pombe). At one of the 3’ overhangs, 

Rad51 forms single strand nucleoprotein filaments required for fast and efficient search 

for homologous DNA sequences. After the identification of a homologous sequence, 

Rad51 facilitates the physical connection of the ssDNA filaments with the template 

sequence by forming double-stranded nucleoprotein filaments. The strand invasion 

proceeds with the formation of a displacement loop (D-loop) that allows the DNA 

polymerases to synthesize new DNA using the invaded strand as a template. This 

process results in the formation of a Holliday junction (HJ). 

 

Resolution of the HJs can occur by two different mechanisms: the double-strand break 

repair (DSBR) mechanism takes places with the formation of another HJ by the second 

3’ overhang with the homologous chromosome; the synthesis-dependent strand 

annealing (SDSA) mechanism involves the migration of the newly extended strand 

from the template strand (branch migration) and its annealing to the second 3’ overhang 

of the damaged chromosome, without chromosomal crossover. The double HJ formed 

by the DSBR mechanism can be resolved either by cutting one HJ at the crossing strand 

and the other at the non-crossing strand, resulting in chromosomal crossover, or by 

cutting both HJs at the crossing strand, resulting in chromosomes without crossover 

(Krejci et al., 2012).  

 



Fig. 1.2 Homologous recombination repair mechanism 
 
!
Homologous recombination repair of a DBS proceeds through the DBSR mechanism 

(left), which results in crossover, or through the SDSA mechanism (right), which results 

in non-crossover. BIR is a HR mechanism that requires DNA replication. 

 

Red and blue represent DNA copies of two different homologues. 



Fig. 1.2 Homologous Recombination Repair mechanisms 
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RPA has a contributory effect towards the homologous recombination function of 

Rad51 (Eggler et al., 2002), but it has a higher affinity for ssDNA than Rad51 and this 

can interfere with the activity of Rad51. To overcome this impediment, the 

recombination mediator proteins Rad52 (Sp Rad22), Rad55 (Sp Rhp55) and Rad57 (Sp 

Rhp57) are required to facilitate Rad51-dependent HR repair (Sung et al., 2003) . Rad52 

is the most studied HR protein as is required for all Rad51-dependent HR pathways and 

for the Rad51-independent HR pathway single-strand annealing (SSA) (Lok and 

Powell, 2012). 

 

The SSA mechanism is initiated when double strand breaks occur at repetitive 

sequences. Complementary single-strands are created adjacent to the break between two 

repeats and the 3’ overhangs align and anneal to each other to restore the continuous 

double-strand. Rad52 is essential for this process as it binds each of the two repeats at 

both ends of the break. SSA is the main DSB repair mechanism at the telomeric and 

centromeric repetitive sequences. The process is mutagenic as it results in the loss of 

one of the repetitive sequences (chromosomal deletions) (Parsons et al., 2000).  

 

Homologous recombination repair can be employed when only one end of the break 

shares homology with a template. The HR machinery establishes a unidirectional 

replication fork that can copy the donor template from the break to the end of the 

chromosome, process known as break-induced replication (BIR) (Kogoma, 1996). Two 

pathways of BIR have been identified: a Rad51-dependent BIR, which requires large 

homology template (several hundred base pairs), and a Rad51-independent BIR, 

employed when only short homology sequences are present (>30 bp) (Ira and Haber, 

2002). The Rad51-independent recombination requires the Rad50 and Rad52 

recombinases, and the Srs2 helicase, and proceeds in two steps: first BIR is employed 

for strand invasion and replication fork initiation, followed by single strand annealing 

repair (Kang and Symington, 2000). Rad51 inhibits short homology-directed 

recombination, while Srs2 inhibits Rad51-dependent recombination by dissociating 

Rad51 from DNA (Antony et al., 2009, Ira and Haber, 2002). BIR has been implicated 

in restarting stalled or collapsed replication forks during S phase (Michel et al., 2004) 

and telomere elongation (Lydeard et al., 2007). BIR is an error-prone DNA repair 

mechanisms and it has been shown to cause chromosomal deletions, translocations and 

duplications (Hastings et al., 2009). 
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When the replication fork encounters DNA damage the cells employ the post-

replication repair mechanism that allows the fork to bypass the lesion. The process 

requires the switch of classical replicative polymerases with non-replicative 

polymerases and is regulated by post-translational modifications of PCNA. Post 

replication repair is further discussed in section 1.8.2. 

!
Cellular processes, such as cell cycle regulation and DNA replication, and DNA 

damage response pathways are closely interlinked and share overlapping functions.  

Specific damage can be repaired by multiple mechanisms, proteins can be shared 

between repair pathways and replication processes, and intermediates that arise from 

one repair pathway can be removed by another repair pathway. Proteins with multiple 

functions, such as PCNA, can switch between pathways by means of post-translational 

modifications. 

 

1.7 SUMO 
!

1.7.1 Post-translational modifications of proteins 
!
!

Post-translational modifications of proteins are mostly reversible and modulate the 

functions of proteins. The first post-translational modification to be identified and 

functionally characterized was phosphorylation (Burnett and Kennedy, 1954). 

Phosphorylation is the main post-translational modification in signal transduction 

pathways as kinases and phosphatases phosphorylate and de-phosphorylate enzymes 

and receptors to switch their activity off and on. As previously described, checkpoints 

during the cell cycle are tightly regulated by phosphorylation. 

 

Other post-translational modifications that involve the attachment of a chemical group 

are hydroxylation, acetylation, alkylation, adenylation (or adenylylation) and many 

others. Adenylation is the attachment of an adenosine monophosphate group (AMP) to 

the hydroxyl group of tyrosine, threonine or serine residues of a substrate. AMP is 

produced during the ATP production and degradation processes. It has been shown that 
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adenylation is required for the activation of other important posttranslational modifiers, 

the Ubiquitin like proteins (UBLs) (Schulman and Harper, 2009). 

!
!

1.7.2 Ubiquitin  
!
!

Ubiquitin was the first example of a protein acting as a post-translational modifier 

(Hershko et al., 1982) and it is best known for its catabolic role in protein degradation 

via the 26S proteasome (Hershko and Ciechanover, 1998). Ubiquitin is a small (76 aa) 

protein with a compact globular structure, present in large amounts in all eukaryotic 

cells (ubiquitous) in the nucleus and cytosol.  It is highly conserved amongst species, 

with only three differences in the amino acids sequence between H. sapiens and S. 

pombe ubiquitin. 

 

Ubiquitin is involved in post-translational modification by covalently attaching through 

an isopeptide bond to lysine residues of target proteins (ubiquitination). The isopeptide 

bond occurs between the carboxylic moiety of the terminal glycine (Gly76) of ubiquitin 

and the ε-amine group of the lysine residues. Ubiquitin can form two types of chains: 

the canonical K48-linked chains mediate the proteasomal degradation of the target 

protein (Sun and Chen, 2004); the non-canonical K63-linked chains are involved in 

modulating the function of the target protein. K63-linked poly-ubiquitination of PCNA 

switches PCNA-dependent DNA damage repair from an error-prone mechanism to an 

error-free mechanism (Hoege et al., 2002). 

 

Since the identification of ubiquitin, several proteins, structurally or functionally related 

to ubiquitin, have been discovered. Some are structurally similar and function in a 

similar way as post-translational modifiers, known as Ubiquitin –like modifiers (UBLs). 

Other proteins have ubiquitin-like domains (ULDs) but are not involved in protein 

conjugation and are known as ubiquitin domain proteins (UDPs) (Jentsch and 

Pyrowolaski, 2000). 
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1.7.3 The Sumoylation pathway 
!
!
SUMO (Small Ubiquitin-like Modifier) is a UBL essential for many cellular processes. 

A global mapping of sumoylation function, using systematic functional genomics, 

identified fifteen major biological processes dependent on sumoylation (reviewed 

byMaknevych T, 2008). These processes include transcriptional regulation (reviewed 

bySapetschnig A, 2002), nuclear transport, DNA replication and repair (reviewed 

byMorris, 2009, Branzei D, 2006), cell cycle progression, subcellular localization of 

targets (Matunis MJ, 1998). 

 

SUMO has only 18% identity with ubiquitin but adopts the same β-grasp fold of 

ubiquitin and covalently conjugates to lysine residues of target proteins in an analogous 

manner. There are four SUMO paralogues in mammals (SUMO-1, SUMO-2, SUMO-3 

and SUMO-4) and only one SUMO in S. cerevisiae, Smt3, and S. pombe, Pmt3. The 

budding yeast SUMO is essential for viability (Meluh PB, 1995), while the fission yeast 

SUMO null mutant is viable but displays severe growth defects (Tanaka K, 1999). Like 

ubiquitin, SUMO attaches covalently to target proteins after a cascade of reactions 

involving SUMO proteases, a SUMO-activating enzyme E1 (SAE), a SUMO-

conjugating enzyme E2 and several SUMO E3 ligases (fig. 1.3).  

 

SUMO is translated as a precursor protein that is processed into the mature form by 

specific proteases. The proteases hydrolyze the C-terminus of SUMO to reveal a double 

glycine motif. Mature SUMO forms a complex with the adenylated SUMO-activating 

heterodimer (E1) (fig. 1.4). SAE interacts non-covalently with the conjugating enzyme 

Ubc9/Hus5 (E2) and SUMO is transferred from the E1 to the E2. Unlike ubiquitination, 

which requires many substrate-specific E2s, there is only one SUMO conjugating 

enzyme in the sumoylation pathway. The conjugating enzyme can transfer the SUMO 

moiety to a substrate directly without the need of a SUMO E3 ligase. E3 ligases are 

indispensable in ubiquitination and, like E2s, they are more substrate specific. While 

there are several E3 SUMO ligases in mammals, only two have been identified in S. 

pombe: Pli1 and Nse2. The homologous components of the sumoylation pathway in S. 

pombe, S. cerevisiae and H. sapiens are listed in table 1.1. 

 

 



Fig. 1.3 The sumoylation pathway 
 
!
The covalent conjugation of SUMO is an ATP-dependent process that requires the 

sequential actions of an activating enzyme (E1), a conjugating enzyme (E2) and, for 

certain substrates, a ligase (E3). SUMO can attach to a target protein or form chains. 

Specific SUMO proteases deconjugate SUMO from substrates or disassemble chains. 
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Table 1.1 Components of the sumoylation pathway 
 
 
 
 
 
 
 

Component S. pombe S. cerevisiae H. sapiens 

SUMO Pmt3 (Tanaka K 1999) Smt3 (Meluh and Koshland 1995) SUMO-1 (Matunis et al, 1996) 
 SUMO-2/3 (Lapenta et al., 1997) 
SUMO- 4 (Bohren et al., 2004 ) 

Activating 
enzyme 

Fub2/Rad31 (Shayeghi et al., 1997) Aos1/Uba2 (Johnson et al., 1997) SAE1/SAE2 (Gong et al., 1999 ) 

Conjugating 
enzyme 

Hus5 (al-Khodairy et al., 1995) Ubc9 (Johnson and Blobel, 1997) Ubc9 (Desterro et al., 1997) 

Ligases Pli1 (Xhemalce et al., 2004) 
Nse2 (Andrews  et al., 2005) 

Siz1/2 (Johnson and Gupta, 2001) 
Mms21/Nse2 (Zhao and Blobel, 
2005) 
Zip3 (Cheng et al., 2006) 

PIAS1 (Liu et al., 1998) 
PIAS3 (Chung et al., 1997) 
PIASy (Gross et al., 2001) 
Mms21/Nse2 (Potts and Yu, 
2005) 
Pc2 (Kagey et al., 2003) 
RanBP2 (Pichler et al., 2002) 
TOPORS (Weger et al., 2005) 

Protease 
Isopeptidases 

Ulp1 (Taylor et al., 2002) 
Ulp2 (Watts lab, University of Sussex, unpublished 
data) 

Ulp1 (Takahashi et al., 2000) 
Ulp2 (Li and Hochstrasser, 2000) 

SENP1 (Gong et al., 2006), 2, 3, 
5, 6, 7 
SENP2-8 (Gong and Yeh, 2006) 
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!

1.7.4 Sumoylation pathway components 
 
 
 
SUMO proteases 
 
SUMO proteases, known as Ulps (ubiquitin-like protein-specific proteases) in yeast and 

SENPs (sentrin/SUMO-specific proteases) in mammals, are responsible for SUMO 

maturation and for the de-sumoylation of SUMO conjugates (reviewed 

byMukhopadhyay and Dasso, 2007). 

 

In S. pombe, Ulp1 is required for both SUMO maturation and SUMO de-conjugation 

(Taylor et al., 2002) while Ulp2 functions in de-sumoylation of substrates and SUMO 

chains disassembly (Kosoy et al., 2007). Ulp1 is not essential for cell viability but is 

required for normal cell cycle progression and an ulp1 null mutant displays severe 

cellular and nuclear abnormalities (Taylor et al., 2002). In S. cerevisiae Ulp2 is required 

for recovery from HU-induced checkpoint arrest (Mukhopadhyay and Dasso, 2007) and 

for the de-sumoylation of PCNA (Stelter and Ulrich, 2003). In mammals, SENP1 and 

SENP2 function as C-terminal hydrolases (Gong et al., 2000, Nishida et al., 2001), 

while SENP3 and SENP5 hydrolyze the isopeptide bond between SUMO and substrates 

(Gong and Yeh, 2006). SENP6 and SENP7 are required for SUMO chain editing 

(Mukhopadhyay et al., 2006).   

 
 
SUMO activating enzyme (E1) 
 
S. pombe Rad31 protein was first identified as an ubiquitin-like activating enzyme that 

functions in a common pathway with Hus5, the S. pombe SUMO conjugating enzyme 

E2 (Shayeghi et al., 1997). Rad31, the homologue of S. cerevisiae and mammalian 

Aos1/SAE1, is not essential for viability but the null mutant displays slow growth and 

mitotic defects. Rad31 forms the heterodimeric SAE with the essential protein Fub2, the 

homologue of S. cerevisiae and mammalian protein Uba2/SAE2. The heterodimeric 

structure and the function of SAE has been characterized in S. cerevisiae (Johnson et al., 

1997) and mammals (Azuma Y, 2001) and the crystal structure of human SAE has been 

determined (Lois and Lima, 2005). In S. cerevisiae and mammals both components of 

SAE are essential for cell viability (Azuma Y, 2001, Johnson et al., 1997). 
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 SUMO conjugation enzyme (E2) 
 
The SUMO-conjugating enzyme, Ubc9/Hus5, was first identified in yeast (al-Khodairy 

et al., 1995, Seufert et al., 1995). It is highly conserved from yeast to mammals and is 

essential for cell viability in all eukaryotes. Hus5/Ubc9 interacts covalently and non-

covalently with SUMO and physically associates with the substrate for its sumoylation 

(Rodriguez MS, 2001). Two S. pombe mutants, hus5-17 and hus5-62, are defective in 

the cellular response to replication inhibition and in recovery from S-phase arrest 

respectively (Ho and Watts, 2003). Recently it has been shown that Cdk1-dependent 

phosphorylation of Ubc9 enhances its sumoyaltion activity (Su et al., 2012). 

 
 
 
SUMO E3 ligases 
 
Ubiquitination involves many E3 ligases necessary for the conjugation to specific 

substrates. Only a few SUMO E3 ligases have been identified and they are not essential 

for the SUMO conjugation as the conjugating enzyme E2 is generally able to directly 

interact with the substrates.  The first identified SUMO E3 ligases were the Siz1 and 

Siz2 proteins in S. cerevisiae (Johnson ES, 2001). They belong to the PIAS [protein 

inhibitor of activated STAT (signal transducer and activator of transcription)] family of 

proteins characterized by an SP-RING [Siz-PIAS RING (really interesting new gene)] 

which is required for the SUMO ligase activity (Takahashi Y, 2005). However, proteins 

that lack SP-RING domains but have SUMO ligase activity have been identified: Pc2 

(polycomb) protein (Kagey MH, 2003), the histone deacetylases HDAC4 (Gregoire S, 

2005) and HDAC7 (Gao C, 2008), and the nucleoporin RanBP2 protein (Pichler A, 

2002). In S. pombe two SUMO E3 ligases have been identified: Nse2 (Andrews EA et 

al., 2005) and Pli1 (Xhemalce B, 2004), both belonging to the PIAS family of proteins.  

 

Pli1 

Pli1 (Pmt3 ligase 1) belongs to the Siz/PIAS (Protein Inhibitor of Activated Stat) family 

of proteins represented by SIZ1/SIZ2 in S. cerevisiae and four paralogues in mammals 

(PIAS1, PIAS3, PIASx and PIASy). They are characterized by a N-terminal SAP (SAF-

A/B, Acinus and PIAS) domain with DNA binding capacity (Aravind and Koonin, 

2000), a PINIT (Proline Isoleucine Aspargine Isoleucine Threonine) domain, required 
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for nuclear localization (Duval et al., 2003) and a central SP-RING (Siz/PIAS-RING) 

required for E3 SUMO ligase activity (Hochstrasser, 2001). 

 

Pli1 is 31% identical to the S. cerevisiae Siz1 and 22% identical to the human PIASy, 

with the highest level of sequence identity around the RING domain. The pli1 null 

mutant is viable and has a phenotype similar to that of a pli1 mutant defective in 

sumoylation (Xhemalce et al., 2004). Both mutants behave like a wild type strain in 

response to most DNA damaging agents but are sensitive to TBZ (thiabendazole), a 

microtubule poison that prevents the spindle pole body clustering (Xhemalce et al., 

2004). Overall sumoylation levels are drastically reduced in both mutants, suggesting 

that the SUMO ligase activity is the only function of Pli1 and that Pli1 targets a large 

pool of substrates. Both mutants display increased rates of loss of an artificial 

minichromosome, reduced silencing at centromeres and elongated telomeres, and are 

unviable following deletion of HR genes rad22/RAD52 and rhp51/RAD51. These 

phenotypes implicate Pli1-dependent sumoylation in DNA damage repair mechanisms 

involved at heterochromatic regions of chromosomes, characterized by large inverted 

repeated sequences (Xhelmace et al., 2004). Pli1 has been shown to enhance the 

sumoylation of several proteins: the homologous recombination protein Rad22, Top1 

and Top3 topoisomerases, the NHEJ protein Ku70, and the recQ helicase Rqh1/Sgs1. 

(Watts FZ, 2007).  

 

 In S. cerevisiae Siz1 facilitates selective sumoylation of PCNA at K164, through its 

PINIT domain (Yunus and Lima, 2009), and non-selectively at K127, and formation of 

SUMO chains on PCNA (Hoege et al., 2002, Windecker and Ulrich, 2008, Stelter and 

Ulrich, 2003). The SAP domain of Siz1 is required for PCNA sumoylation (Reindle et 

al., 2006). 

 

Nse2 

Nse2 is essential for cell viability. This is due to its structural association with the 

essential SMC5/6 complex rather than its SUMO E3 ligase function. A mutant defective 

in sumoylation (nse2-SA) is viable but sensitive to IR, HU and MMS. Unlike pli1Δ, 

nse2-SA  cells have similar levels of sumoylation as wild type cells. It has been shown 

that Nse2 facilitates the sumoylation of several components of the SMC5/6 complex: 
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Smc6, Nse3, and Nse4 (Pebernard S, 2008, Andrews et al., 2005, Pebernard et al., 

2004). Nse2 is also required for the sumoylation of components of cohesin (McAleenan 

et al., 2012).  

 

 

1.7.5 SUMO-like domains (SLDs) 
 
 
A bioinformatics approach has identified the RENi (Rad60-Esc2-Nip45) family of 

proteins characterized by two SUMO-like domains (SLDs) at their C-terminal 

(Novatchkova et al., 2005). Rad60 and NIP45 are essential proteins in S. pombe and 

mammals respectively. NIP45 (NF-AT interacting protein) is a transcription factor 

(Hashiguchi et al., 2013). The S. cerevisiae protein Esc2 is not essential but is required 

for genome integrity, sister chromatid cohesion (Ohya et al., 2008) and regulation of 

transcriptionally silenced heterochromatin through its interaction with the silencing 

protein Sir2 (Yu et al., 2010). 

 

The rad60+ gene was identified in a screen for mutants hypersensitive to MMS and 

synthetically lethal with rad2Sp (FEN1Hs). Rad60 protein is required for cell viability 

and recombination-mediated DNA double-strand breaks (Morishita et al., 2002). Its 

activity is regulated by the checkpoint kinase Cds1 and it has been proposed that it 

interacts with the DNA repair complex Smc5/6 (Boddy et al., 2003).  

 

 

1.7.6 SUMO-interacting motifs (SIMs) 
!
!
Apart from its covalent interaction with substrates, SUMO can also interact non-

covalently with target proteins. The first motif identified to interact non-covalently with 

SUMO, named SUMO-interacting motif, SIM, contained two serine residues separated 

by another amino acid, SxS (Minty et al., 2000). NMR analysis carried out on 

complexes between SUMO-1 and synthetic peptides, based on the PIASX and PML 

sequences, identified an hydrophobic sequence proximal to a SxS motif that interacts 

with SUMO (Song et al., 2004). This SIM, characterized by the V/I-x-V/I-V/I sequence, 

was further shown to interact with a positively charged surface region of SUMO. This 
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suggests that the negatively charged residues identified by Minty et al. could be 

necessary for the interaction. Genomic and proteomic analysis of S. cerevisiae by two-

hybrid screening identified a series of proteins interacting non-covalently with SUMO 

(Hannich et al., 2005). Some of the potential SIMs identified in these proteins are 

related but not identical with the ones identified by Song et al., and they are near a 

sequence of acidic amino acids on the C-terminal side, similar to those reported by 

Minty et al. 

 

 Resolved structures of two complexes of SUMO and SIMs, one by NMR (pdb id 

2ASQ) (Song et al., 2005), another by X-ray diffraction (Reverter and Lima, 2005), 

showed that the sequence V/I-x-V/I-V/I and its reverse V/I-V/I-x-V/I forms a β sheet 

that interacts with residues on the β2 sheet and α helix of SUMO and fits in the groove 

form by these two secondary structures. Further, the sequence V/I-x-V/I-V/I adopts a 

parallel orientation to β2 sheets of SUMO while the reverse sequence, V/I-V/I-x-V/I, 

arrange itself into an antiparallel position. 

 

Many proteins have been identified as having the consensus sequences of SIMs and 

many more have been shown to interact non-covalently with SUMO through sequences 

similar but not identical to a SIM (Li et al., 2010). Three putative SIMs, named SUMO-

binding motifs (SBMs), have been identified in Rad60 protein, two of them within the 

SLD1 and SLD2 respectively, and proposed that they are required for normal Rad60 

function (Raffa et al., 2006). 

 
 
 

1.7.7 SUMO targeted ubiquitin ligases (STUbLs) 
 
 

STUbLs are a family of ubiquitin E3 ligases that facilitate the ubiquitination of 

sumoylated proteins or proteins that contain SUMO-like domains (SLDs) (Prudden et 

al., 2007). At their N-terminal, STUbLs contain SUMO interacting motifs (SIMs) that 

interact with SUMO or SLDs. STUbL-mediated ubiquitination promotes de-

sumoylation and/or degradation of the target, thus maintaining the physiological levels 

of cellular overall sumoylation.  
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Fission yeast cells lacking the STUbL heterodimer Slx8-Rfp accumulate sumoylated 

proteins and subsequently show genomic instability and hypersensitivity to genotoxic 

stress.  STUbLs are highly conserved as proved by the restoration of the SUMO 

pathway following expression of human STUbL, RNF4, in S. pombe cells lacking the 

STUbL heterodimer Slx8-Rfp. Mutants of the slx8 and rnf genes, slx8-1 and rfpΔ, 

display similar phenotypes, suggesting that Slx8 and Rfp work as a heterodimer. 

However, they work in different manners: Rfp contains SIMs not present in Slx8, while 

the latter displays RING-dependent E3 ubiquitin ligase activity, not shown by the Rfp 

protein. The Slx8-Rfp heterodimer interacts strongly with the Rad60 protein and slx8 

and rfp mutants display hypersensitivity to DNA-damaging agents at levels similar to 

those shown by rad60 mutants. The deletion of the SUMO E3 ligase Pli1 suppresses the 

phenotype of the slx8 and rfp mutants (Prudden et al., 2007) suggesting that 

hypersumoylation is responsible for this phenotype. 

 

A mutation at a predicted SIM-binding pocket of SLD1 of Rad60 abolishes the 

interaction between Rad60 and the STUbL. In vitro pull-down assays showed that 

Rad60 is ubiquitinated by the E3 enzyme Slx8 through its RING domain and that the 

heterodimer SLX-Rfp increases the ubiquitination of Rad60. The mutant complex Slx8-

RfpΔSIM (defective in SUMO-interaction) showed strong autoubiquitination but was 

defective in ubiquitinating Rad60, demonstrating that Slx8 ubiquitinates Rad60 through 

SIM motifs of Rfp.  

 

Slx5 and Slx8 proteins were identified in S. cerevisiae  (Mullen et al., 2001) from a 

synthetic-lethality screen with a mutant of the DNA helicase Sgs1. The heterodimer 

Slx5-Slx8 has been shown to function as an ubiquitin E3 ligase when activated by 

sumoylated homologous recombination protein Rad52 (Xie et al., 2007). 

 
 
 

1.8 SUMO targets 
 
!
Since the detection and characterization of the sumoylation pathway, many proteins, 

with functions in various cellular processes, have been identified as targets of 

sumoylation. RanGAP, a GTPase required for many cellular processes including mitotic 
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spindle formation (Becker et al., 1995), was the first identified SUMO target (Mahajan 

et al., 1997). The sumoylation of RanGAP1 is essential for its interaction with the NPC 

(Nuclear Pore Complex) proteins (Mahajan et al., 1997).  The sumoylation of RPA, 

PCNA, Smc5/6 complex and Rad52  proteins is briefly discussed. 

 

1.8.1 RPA 
!
It has been shown in human cells that sumoylation of RPA facilitates DNA damage 

repair by homologous recombination, but inhibits RPA replication function (Dou et al., 

2010). During S phase, RPA is maintained in a hypo-sumoylated state through its 

interaction with the SUMO specific protease SENP6 (Dou et al., 2010). Replication 

stress dissociates SENP6 from RPA, allowing RPA to be modified by SUMO-2/3. RPA 

sumoylation facilitates recruitment of Rad51 protein to the DNA damage foci to initiate 

DNA repair through homologous recombination (HR). Cell lines that expressed a 

sumoylation defective RPA mutant are defective in HR and display an increased 

sensitivity to camptothecin (CPT), a Top1 inhibitor. These results demonstrate that the 

sumoylation levels of RPA play a critical role in the regulation of DNA repair through 

homologous recombination (Dou et al., 2010). 

 

1.8.2 PCNA 
!
Apart from its function in DNA replication, PCNA is required for post-replication 

repair of DNA damage that occurs proximal to the replication fork (Lehmann, 1972). 

The type of  post-translational modification on PCNA determines which sub-pathway of 

PRR is employed to bypass the damage (fig. 1.4). Mono-ubiquitination of PCNA at 

K164 triggers translesion synthesis mechanism, while attachment of K63 linked 

ubiquitin chains at K164 activates the template switching (TS) mechanism. Further, 

mono-ubiquitination-dependent template switching is inhibited by the sumoylation of 

PCNA at K164 (Hoege et al., 2002). 

 

Translesion synthesis is employed when the replication fork encounters a DNA lesion 

and the classical DNA polymerases cannot accommodate the lesion in their active site. 

The process bypasses the damage and requires the exchange of the classical 



 

Fig. 1.4 Post-translational modification of PCNA regulates post replication repair 
!
 
Following DNA damage, PCNA is mono-ubiquitinated on lysine K164 in an error-

prone repair process that is dependent on Rad6 and Rad18. Poly-ubiquitination on K164 

initiates an error-free repair mechanism dependent on Rad5, Mms2 and Ubc13. 

Sumoylation on K164 prevents ubiquitination.  

 

Figure created using cartoon representations, generated by Pymol software, of structures 

of PCNA, SUMO and a model of Srs2 helicase. The model of Srs2 was generated using 

the on-line modeling engine PHYRE.!
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Fig. 1.4 Post-translational modification of PCNA regulates post replication repair 
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polymerases with non-classical polymerases, which are able to incorporate nucleotides 

across from a DNA lesion. After the damage bypass, the specialized TLS polymerases 

are exchanged for the replicative polymerases and the replication fork is restarted 

(Lehmann et al., 2007). Translesion synthesis is an error-prone damage bypass 

mechanism as the non-classical polymerases allow structural distortions due to DNA 

lesions by compromising the fidelity of nucleotide incorporation.  

 

The template switching mechanism (TS) (sometimes referred to as homology-directed 

repair) is error free as it employs the homologous chromosome or the sister chromatid 

to copy the correct genomic information (Adar et al., 2009). Homologous 

recombination can be used to enable template switching to bypass replication fork 

barriers (RFBs) or to promote replication restart if the fork has collapsed (Branzei and 

Foiani, 2008). 

 

Both TLS and TS are regulated by Rad6/Rad18 dependent ubiquitination of PCNA 

(Hoege et al., 2002), but poly-ubiquitination of PCNA requires the ligase activity of 

Rad5 (Parker and Ulrich, 2009). Initially it was argued that mono-ubiquitinated PCNA 

is an intermediate for poly-ubiquitination (Hoege et al., 2002). Recent in vitro studies 

suggest that an en block transfer of ubiquitin chains to unmodified PCNA is possible 

(Masuda et al., 2012). An RFC-like protein, Elg1, and the ubiquitin protease Usp1 

control de-ubiquitination of PCNA. In humans, USP1 forms a complex with a protein 

that contains two SUMO-like domains, UAF1. The SLD2 of UAF1 interacts with SIMs 

present in Elg1 to promote PCNA de-ubiquitination. 

 

K164-sumoylated PCNA recruits the Srs2 helicase to the replication fork (Papouli et al., 

2005). Srs2 inhibits homologous recombination by preventing the accumulation of 

Rad51-dependent recombination intermediates (Liberi et al., 2005). Sumoylation of 

PCNA at K164 in S. cerevisiae was observed during undisturbed S-phase (Hoege et al., 

2002) and in response to DNA damage (Stelter and Ulrich, 2003). Sumoylation of 

PCNA at K127 prevents its interaction with an essential cohesion factor, Eco1 

(Moldovan et al., 2006). In humans, PCNA-SUMO prevents double strand break 

formation at stalled replication forks (Yang et al., 2011). 
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1.8.3 Structural maintenance of chromosome complexes (SMCs) 
!
 
The structural maintenance of chromosomes (SMC) proteins assemble into three 

complexes with different functions: the SMC1/3 complex, or cohesin (Losada A, 1998), 

maintains sister chromatid cohesion until anaphase, the SMC2/4 complex, or condensin 

(Hirano T, 1994), promotes condensation of chromosomes and sister chromatids 

segregation, and the SMC5/6 complex, involved mostly in chromosome maintenance 

processes that require homologous recombination (HR) (Fousteri MI, 2000.). 

 

Initially, subunits of the SMC complexes were identified as SUMO targets from global 

proteomics analysis of sumoylated proteins in S. cerevisiae (Hannich et al., 2005, Panse 

et al., 2004). Condensin and cohesin are directly regulated by Nse2/Mms21-dependent 

sumoylation, and sumoylation of condensin is essential in cells deficient in Top2 

sumoylation or lacking Top1 (Takahashi et al., 2008). Sumoylation of cohesin is 

required for the establishment of sister chromatids cohesion after DNA replication 

(Almedawar et al., 2012) and for DNA damage-induced cohesion (McAleenan et al., 

2012). Recently, Nse2/Mms21-dependent sumoylation of the cohesin component Scc1 

at K15, was shown to be required for sister chromatid recombination at DNA damage 

sites (Wu et al., 2012). 

 

 

The Smc5/6 complex 
 
 
The Smc5 and Smc6 proteins form a stable complex with six non-SMC proteins, Nse1-

Nse6 (fig. 1.6) (Sergeant J, 2005, Pebernard S, 2006). Smc5 and Smc6 form a 

heterodimer. Both proteins have two Walker nuclotide binding motifs at their N- and C-

termini. The central domains are organized as two long anti-parallel coiled-coil domains 

separated by a ‘hinge’ sequence where Smc5 and Smc6 interact (Melby et al., 1998). 

The hinge domain is flexible and allows the opening and closing of the heterodimer 

(Hirano et al., 2001). Nse1, Nse3 and Nse4 form a heterotrimeric subcomplex, Nse5 and 

Nse6 form a heterodimeric subcomplex (Palecek et al., 2006) and Nse2 interacts 

directly with the coiled-coil region of Smc5 (Duan et al., 2009a). Nse1-Nse3-Nse4 

subcomplex binds to the head domain of Smc5 and the Nse5-Nse6 subcomplex bind to 

the hinge region of Smc5 and Smc6 (Duan et al., 2009b).  
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Early studies observed that mutations in any of the components of the SMC5/6 complex 

induce cell sensitivity to DNA damaging agents such as HU, IR, UV and MMS, 

suggesting that the complex is involved in DNA replication, DNA recombination repair 

and recovery after genotoxic stress (Lehmann AR, 1995, Fousteri MI, 2000.). It has 

been shown that the SMC5/6 complex accumulates at telomeres following MMS 

treatment. This process is dependent on sumoylation of Nse4 by the SUMO ligase Nse2 

(Pebernard et al., 2008). Nse1 has a RING domain characteristic to ubiquitin ligases 

(Santa Maria et al., 2007). Human Nse3 belongs to the MAGE (melanoma-associated 

antigen) and it has been shown that the RING-MAGE complex function as an E3 

ubiquitin ligase (Doyle et al., 2010). Nse4 belongs to the EID (E1A-like inhibitor of 

differentiation) family of transcriptional repressors (Guerineau et al., 2012). Nse1 has 

been shown to be required for Rad52-dependent post replication repair of UV-induced 

DNA damage in S. cerevisiae (Santa Maria et al., 2007). 

 

1.8.4 Rad52 and homologous recombination 
 
The main homologous recombination proteins, Rad51 and Rad52, have been shown to 

interact with the SUMO conjugating enzyme Ubc9 and SUMO in S. cerevisiae two-

hybrid analyses (Li et al., 2000). In S. pombe, the sumoylation of the Rad52 homologue, 

Rad22, is facilitated by the E3 ligase Pli1 (Watts et al., 2007). SUMO modified lysine 

residues have been identified in S. cerevisiae Rad52 (Sacher et al., 2006). Sumoylation 

of Rad52 in S. cerevisiae is facilitated by the E3 ligase Siz1 and it has been shown to be 

required for maintaining the activity of Rad52 and for inhibiting Rad52 proteasomal 

degradation (Sacher et al., 2006). In humans, the sumoylation site of Rad52 has been 

identified and shown to be required for Rad52 localization at the nucleus, but not for its 

recombination activities (Saito et al., 2010). In S. cerevisiae, sumoylation of Rad52 

prevents hyperrecombination at ribosomal DNA (rDNA) by facilitating its nucleolar 

exclusion, and the MRN and Smc5/6 complexes regulate this process (Torres-Rosell et 

al., 2007). 
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1.9 Aims  
!

!
 
The objective of this thesis was to obtain a better understanding of the functions of the 

sumoylation pathway in maintaining genomic stability. Specifically, this study aimed at 

gaining insights into the structure and function of the SUMO-like domains (SLDs) and 

putative SUMO-binding motifs (SBMs) of the essential protein Rad60.  Secondly, a 

study of SUMO chain formation in S. pombe was undertaken. A third aim was to 

analyze the function(s) of the SUMO E3 ligase, Pli1, in maintaining genomic stability.  

 

The aims of the second part of this thesis were to use mass spectrometry to identify 

specific sumoylated lysine residues. Having identified lysine residues targeted by 

sumoylation in the SUMO conjugating enzyme, Hus5, and the target protein Rtf2, the 

final aim was to characterize the phenotypic consequences of mutating these residues.  

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
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CHAPTER 2 

!!!!!!!! ! !!!!!MATERIALS AND METHODS 
!
!

2.1  S. pombe methods 
 

2.1.1 S. pombe media 
!
2.1.1.1 Rich media 

Yeast Extract (YE) 

20 g/l Glucose 

200 mg/l Adenine 

100 mg/l Leucine, uracil, histidine, arginine 

For solid YE media, 25 g/l DIFCO agar was added. 

 

2.1.1.2 Sporulation media 

Extra low nitrogen (ELN)  

27.3g/l   Formedium Edinburgh Minimal Medium (EMM) 

50 mg/l  Ammonium chloride 

200mg/l  Adenine 

100mg/l  Leucine 

100mg/l  Uracil 

100mg/l  Histidine 

100mg/l  Arginine 

25g/l             Difco (Bacto) Agar 

 

2.1.1.3 Selective media 

1.9 g/l                         YNB (Formedium) 

4 g/l              Ammonium sulphate 

20 g/l   Glucose 

For solid YNB media, 30 g/l DIFCO Bactoagar and 0.2 ml/l 10 M NaOH were added to 

liquid YNB. 
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2.1.1.4 S. pombe media supplements  

 

The wild-type S. pombe strain used in this study has the genotype ade6-704, leu1-32, 

ura4-D18 and media need to be supplemented with adenine, leucine and uracil for 

normal growth. Strains containing these auxotrophic markers (ADE6, LEU2 and URA4 

genes) can be selected for by using selective media restricted for a particular 

supplement (e.g. leucine). Apart from ade6-704 allele, ade6-210 and ade6-216 alleles of 

ADE6 gene were used for complementation. ura4 was predominantly used as it can be 

counterselected for by supplementing media with 5-fluoroorotic-acid (5FOA). Strains 

marked with an antibiotic resistance gene, e.g. CpG-free neo (geneticin = G418)r  and 

nat1 (nourseothrycin = NAT)r can be selected for by growing cells in the presence of 

that particular antibiotic. The same principles can be applied when selecting for plasmid 

containing cells.  

 

2.1.2 S. pombe strains 
 

Table 2.1 indicates the S. pombe strains used during this study. All S. pombe strains 

were stored in 50% glycerol stocks and maintained at –80oC. 

 

2.1.3 S. pombe vectors 
!
2.1.3.1 pFA6 vectors- PCR based gene targeting  
 

The pFA6a series of plasmids contain drug resistant cassettes based on the heterologous 

selectable marker kanMX6 and are designed to be used as templates for PCR-based gene 

targeting in S. pombe as described by Bahler et al, 1998. The pFA6 series include 

plasmids containing a number of different markers, including the natMX4 (resistance to 

clonNAT-Nourseothricin). Through PCR amplification of the heterologous module with 

primers flanked with 79bp of sequence homologous to upstream and downstream of the 

target sequences within the S. pombe genome, epitopes can be introduced at gene loci 

via homologous integration.   

 



Table 2.1 S. pombe strains  
 
Strain Genotype 
wild type ade6-704, leu1-32, ura4-D18, h+ 

wild type ade6-704, leu1-32, ura4-D18, h- 
nse2.SA ade6-704, leu1-32, ura4-D18, nse2-SA::ura4+, h- 
nse2.SA ade6-704, leu1-32, ura4-D18, nse2-SA::ura4+, h+ 
rad60.CT ade6-704, leu1-32, ura4-D18, rad60-CT:: kanr, h- 
rad60-SBM3 rad60-L401A,V403A,  ade6-704, leu1-32, ura4-D18, h- 
rad60-SBM2 rad60-L348A,V350A,  ade6-704, leu1-32, ura4-D18, h- 
rad60-SBM1 rad60-L243A,V245A,  ade6-704, leu1-32, ura4-D18, h- 
SUMOK14R pmt3-K14R, ade6-704, leu1-32, ura4-D18, h+ 
SUMOK30R pmt3-K30R, ade6-704, leu1-32, ura4-D18, h+ 
SUMORR pmt3-K14R;K30R, ade6-704, leu1-32, ura4-D18, h+ 
pli1Δ ade6-704, leu1-32, ura4-D18, pli1:: ura4+, h-, 
pli1Δ ade6-704, leu1-32, ura4-D18, pli1::natr, h-, 
pli1Δ ade6-704, leu1-32, ura4-D18, pli1:: kanr, h- 
rad22Δ ade6-704, leu1-32, ura4-D18, rad22:: natr, h+ 
rhp51Δ rhp51::ura4,  ade6-704, leu1-32, ura4-D18, h- 

wild type ch.16 leu1-32, ade6-M210, ura4-D18, his3-D1, Ch16-AGU, h- 
pli1Δ ch16 pli1::natr leu1-32 ade6-M210 ura4-D18 his3-D1 Ch16-AGU h- 
rad22Δ rad22:: nat leu1-32 ade6-M210 ura4-D18 his3-D1Ch16-AGU h- 

nse2.SA nse2.SA::ura4+ nat leu1-32 ade6-M210 ura4-D18 his3-D1Ch16-
AGU h+ 

SUMORR ch.16 pmt3-K14R;K30R nat leu1-32 ade6-M210 ura4-D18 his3-
D1Ch16-AGU h+ 

hus5K50R hus5-K50R, ade6-704, leu1-32, ura4-D18, h+ 

hus5K50R hus5-K50R;K30R nat leu1-32 ade6-M210 ura4-D18 his3-
D1Ch16-AGU h+ 

ulp2Δ ulp2::ura4, ade6.704, leu1. 32, ura4.D18, h - 
 

rtf2Δ rtf2:: ura4+ade6.704, leu1.32, ura4.D18, h-,  
rtf2K184R rtf2-K184R  ade6-704, leu1-32, ura4-D18, h- 
rtf2K209R rtf2-K209R  ade6-704, leu1-32, ura4-D18, h- 
rtf2K224R rtf2-K224R  ade6-704, leu1-32, ura4-D18, h- 
rtf2T rtf2-K184R;K209R;K224R  ade6-704, leu1-32, ura4-D18, h- 
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2.1.3.2  pAW vectors- Recombinase-mediated cassette exchange system 
 

The pAW series of vectors are for use in the ‘recombinase-mediated cassette exchange 

(RCME) system‘ (Watson et al., 2008) to obtain ‘base strains’. pAW41 and pAW12 are 

used as PCR templates for generating ‘base strains’ for essential genes in which a ‘loxP-

geneX-ura4+-loxM3’ cassette is introduced into the S. pombe genome  in a two step 

process; first the loxP site from pAW41 is integrate upstream of the promoter and then 

the ura4+ gene and the loxM3 site from pAW12 are integrated immediately downstream 

of the  coding sequence. pAW1 is used for generating base strains for non-essential 

genes in one step. The ‘loxP-ura4+-loxM3’ cassette amplified from pAW1 is integrated 

by homologous recombination immediately upstream of the promoter and immediately 

downstream of the coding sequence and replaces the gene of interest. pAW8 is a Cre-

expression plasmid used for cassette exchange by recombination. All pAW plasmids 

contain the AmpR gene for plasmid propagation in E. coli.  

 pAW1 and pAW8 vectors were used to obtain a ‘base strain’ deletion and point 

mutations for the non-essential rtf2+ gene (see chapter 6.6) 

 

pAW1 contains the ‘loxP-ura4+-loxM3’ cassette. Through PCR amplification of the 

heterologous module, with primers flanked with 79bp of sequence homologous to target 

sequences within the S. pombe genome, the cassette was introduced via homologous 

integration from upstream of the rtf2+ promoter to immediately downstream of the stop 

codon to obtain the deletion strain (rtf2::ura4) .  

 

pAW8 is based on the pUC19 vector and contains the S. cerevisiae LEU2+ gene under 

the control of nmt41 promoter (no message in thiamine), the cre gene (expresses 

bacteriophage P1 recombinase) under the control of  nmt1 promoter, and a multiple 

cloning site (MCS) flanked by the loxP and loxM. When a coding sequence is cloned 

into the pAW8 plasmid loxP and loxM3 sites consequently flank it. Site-directed 

mutagenesis on this pAW8 cassette followed by cassette exchange between this plasmid 

cassette and the chromosomal cassette allows a simple method for integrating point 

mutations into the target gene. 

 

 



! 35!

 2.1.4 Recombination-mediated cassette exchange (Watson et al., 2008) 
 

A pAW8 vector containing the sequence for exchange was transformed into the base 

strain as described in section 2.1.3.1. Following transformation, cells were plated 

directly onto minimal medium (YNB) containing adenine and uracil (-LEU) to select 

for cells that took-up the plasmid. Plates were kept at 300C and when transformants 

appeared, colonies were re-streaked onto fresh YNB+ade+ura plates. The transformants 

were grown to saturation in 10 ml YE at 300C in order for recombination followed by 

plasmid loss to occur. Two dilutions of the culture (10-4 and 10-6) were plated on full 

media (Yeap et al.) such that discernible single colonies are obtained. The resulting 

colonies were replica-plated onto YEA plates containing 5FOA to select for loss of 

ura4+ and onto YNB+ade+ura plates to select for loss of plasmid. Colonies that grew 

on 5FOA but not on LEU- were re-streaked onto fresh YEA plates containing 5FOA for 

further analysis. 

 

 

2.1.5 S. pombe transformation - standard LiAc method 
 

S. pombe cells were grown overnight in YE until they were in mid-log phase. 10 ml (~1 

x 108) cells were used per transformation. Cells were harvested at 3,000 rpm for 5 

minutes. The cells were than washed with 1 ml distilled water, followed by  two washes 

with 1 ml of freshly prepared LiOAc /TE solution. The cell pellet was resuspended in 

100 µl LiOAc/TE and ~1 µg plasmid DNA was added. The sample was incubated at 

room temperature for 10 minutes before adding 260 µl fresh PEG/TE/LiOAc. The 

sample was incubated for 30-45 minutes at 30oC followed by heat shock at 370C for 5 

minutes and centrifugation at 13000rpm for 30s. The cell pellet was washed with 1ml of 

water, resuspended in 100µl water and plated onto appropriate media. 

 

LiOAc/TE 

  0.1M  Lithium acetate pH 7.5 

  1x  TE 
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PEG/LiOAc/TE 

  40%  PEG 

  0.1M  Lithium acetate pH 7.5 

1x  TE 

 

 

2.1.6 S. pombe genetic mating crosses 
 

S. pombe crosses were set up by mixing two strains of opposite mating types on extra 

low nitrogen (ELN) media. The plates were incubated for 3 days at 25oC until spore-

containing asci could be observed by a light microscope. 

 

 

2.1.6.1 Random Spore Analysis 

For mating crosses between strains with different selectable markers random spore 

analysis was used to select for double mutants. 1 ml of water, with 1 µl helicase (S.P.P. 

Helix pomatia juice) was inoculated with a loop of mating mixture. The sample was 

incubated on a rotating wheel overnight (minimum 8 hours) at room temperature. Serial 

dilutions (10-4 and 10-6) of the spores were plated onto YEA and incubated at 30oC for 3 

days. Colonies were then replica-plated onto selective media plates and double mutants 

selected.  

 

2.1.6.2 Tetrad Analysis 

For mating crosses between strains without different selectable markers tetrad 

dissection analysis was used to select for double mutants. Following sporulation, a 

small loop of cells was streaked on one side of a YEA plate and incubated at 300C for 

~3 hours to allow the ascus wall to break down. Each ascus was then micro-manipulated 

to separate the four individual spores on the YEA plate. The spores were incubated for 

3-4 days at 30oC until colonies formed. Depending on the phenotype of the individual 

mutant strains, double mutants were identified by replica plating onto suitable selection 

plates and/or exposing to genotoxins and/or UV/IR radiation. 
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2.1.7 Survival Analysis 
 

2.1.7.1 UV Survival Analysis 

 

Cells were grown in appropriate media overnight to exponential phase and diluted to 

5x103 cells/ml (or a dilution suitable for the strain). To test UV sensitivity, 100 µl cells 

(~500 cells) were plated in duplicate onto yeast extract agar (Yeap et al.) plates and 

irradiated at a dose of 25 Jm-2 /min for doses ranging between (0 and 200 Jm-2). 

Colonies were counted following incubation for 72 hours at 30oC and percentage 

survival calculated with reference to the non-irradiated sample. 

 

 

2.1.7.2 Ionising radiation (IR) survival analysis  

 

Cells were grown in appropriate media overnight to exponential phase and diluted to 

5x103 cells/ml (or a dilution suitable for the strain). To test γ sensitivity, cells were 

irradiated with γ rays from a 137Cs source at a dose of 10 Gy/min for doses ranging from 

0-1,000 Gy. 100 µl cells (~500 cells) were plated in duplicate onto yeast extract agar 

(Yeap et al.) plates. Colonies were counted following incubation for 72 hours at 30oC 

and percentage survival calculated with reference to the non-irradiated sample. 

 

 

2.1.7.3 Sensitivity to genotoxins 

 

To determine the sensitivity of cells to DNA damaging agents by spot tests, 

exponentially growing cultures were adjusted to an equal cell density and four 

successive tenfold dilutions were spotted onto YEA or YEA plates containing 

hydroxyurea (HU), thiabendazole (TBZ), cycloheximide (CHX), camptothecin (CPT) or 

methyl methanesulfonate (MMS).  Plates were incubated at 30⁰C for 3 days.  Table 2.3 

lists the genotoxins used in this study. 

 
!
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2.1.8 DAPI staining of S. pombe cells 
 

1 ml of exponentially growing cells was harvested for 1 minute at 3,000 rpm and the 

supernatant removed. The cells were washed with 1 ml PBS and resuspended in 1 ml 

cold methanol. Following centrifugation for 1 minute at 3,000 rpm, the supernatant was 

discarded and the cells were re-suspended in 100 µl mounting mix. 5 µl of the cell 

suspension was placed on a microscope slide. Once the sample was dry, a small drop of 

vectashield (Vecta) was added to the slide and covered with a coverslip. The coverslip 

was sealed with clear nail varnish and the cells visualized with a Delta Vision 

microscope.  

 

Mounting mix 

0.5 µg/ml DAPI 

2.5 µg/ml Calcofluor 

 

2.1.9 Mutation Rate Determination  
 

To determine the rate of mutation during cell growth, fluctuation tests were utilized 

(Lea and Coulson, 1949), as modified by Reenan and Kolodner (1992). Single colonies 

were propagated in 10ml YE and incubated at 30°C (25°C for temperature sensitive 

strains) on a rotating wheel. After 24 hours the cells were counted and the number of  

cell cycles calculated. 500 cells were plated on non-selective media as control and 

higher number of cells (ie 103, 104, 105) were plated on selective media. The remaining 

cultures were diluted and grown further under the same conditions. The procedure was 

repeated until the cells went through minimum 30 cycles with samples plated after 

every 24 hours. Plates were incubated at 30°C (25°C for temperature sensitive strains) 

for 3-5 days followed by colony counting. 

 

Three independent experiments, each using 7 colonies, were performed for each strain 

to be tested.  The method of the median was used to calculate mutation rates;  r0 = M 

(1.24 + lnM), where r0 is the median number of colonies on selective media out of the 7 

cultures, and M is the average number of colonies on selective media per culture 

(Reenan and Kolodner, 1992).  Interpolation was used to determine M, and was 
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subsequently used to calculate the mutation rate using the formula r = M / N, where N is 

the average number of total cells from the 11 cultures (Reenan and Kolodner, 1992).  To 

compare mutation rates, a contingency χ2 test was used and a P-value of 0.05 or less 

was considered significant (for three-way comparisons) (Spell and Jinks-Robertson, 

2004) 

 
 

2.1.10      Genomic DNA extraction from S. pombe 

 

A 10 ml S. pombe culture was grown overnight in YE until the cells reached stationary 

phase. The cells were harvested at 3000 rpm for 5 minutes and washed once with 2 ml 

SP1 buffer. The cell pellet was then re-suspended in 2 ml SP1 buffer containing 2 

mg/ml zymolyase (T 20,000) and incubated at 37°C for 45-60 minutes until ~80 % cell 

lysis was observed. Spheroplasting was checked by removing 10 µl of sample onto a 

microscope slide with 1 µl 10% SDS and viewing by a light microscope. Once the cells 

were sufficiently lysed the protoplasts were harvested at 3000 rpm for 5 minutes. The 

pellet was re-suspended in 900 µl 5x TE and 100 µl 10% SDS was added. The sample 

was incubated for 5 minutes at room temperature before 300 µl KAc was added to the 

sample. The sample was then incubated for 10 minutes on ice and then centrifuged at 

4,500 rpm for 15 minutes. The supernatant was transferred to a clean falcon tube and 

one volume (~2 ml) of isoproponol was added. After centrifuging at 4,500 rpm for 15 

minutes the pellet was washed with 500 µl 70% ethanol. The pellet was air dried and re-

suspended in 250 µl 1 x TE.  

 

SP1 Buffer: 

1.2 M  Sorbitol 

50 mM  Sodium citrate 

50 mM  Sodium phosphate 

40 mM  EDTA 

Buffer was adjusted to pH 5.6 with NaOH 

 

5x TE 

50 mM  Tris, pH 8.0 
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5 mM  EDTA 

 

2.2  BACTERIAL METHODS 

2.2.1 Bacterial media 
!
L-Broth (LB) 

 

10 g/l Tryptone 

5 g/l  Yeast extract 

5 g/l  NaCl 

For solid LA media 8 g/l agar was added. 

 

2.2.2 Antibiotics 
 

To select for plasmids containing a resistance marker, antibiotics were added to media 

prior to use. All antibiotics were stored at -20⁰C.  

 

Antibiotic Stock Concentration Working Concentration 

Kanamycin 100 mg/ml in water 100 µg/ml 

Spectinomycin 50 mg/ml 50 µg/ml 

Gentimycin 50 mg/ml 50 µg/ml 

Ampicillin 100 mg/ml in water 100 µg/ml 

Chloramphenicol 34 mg/ml in ethanol 34 µg/ml 

 

2.2.3 Blue-white selection 
 

For blue-white selection using insertional activation of the LacZ gene, IPTG and X-Gal 

were added to media containing the appropriate selective antibiotic. Both IPTG and X-

Gal were stored at -20⁰C. 
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Additive Stock Concentration Working Concentration 

IPTG 20 mg/ml in water 40 µg/ml 

X-Gal 20 mg/ml in dimethylformamide 100 µg/ml 

 

 

2.2.4 E.coli strains 
 

The E. coli strains used in this study are listed in table 2.2 

 

2.2.5 Bacterial cloning vectors 
 

pGEM-T Easy (Promega) 

 

The pGEM-T Easy cloning vector is a  high copy number plasmid that can be used for 

the cloning of blunt-ended PCR products. The vector have a 3´ terminal thymidine at 

both ends providing a compatible overhang for PCR products generated by 

polymerases, which add single deoxyadenosine, to the 3´-ends of the amplified 

fragments. The vectors contain both T7 and SP6 RNA polymerase promoters in 

addition to the α-peptide coding region of the enzyme β-galactosidase. Insertional 

inactivation of the α-peptide allows selection of recombinant clones by blue-white 

screening. 

 

The bacterial expression vectors used in this study are under the control of the T7 

promoter, which is activated by the T7 polymerase. The bacterial expression strain 

BL21-CodonPlus (Stratagen) is a λDE3 lysogen containing an integrated copy of the T7 

polymerase gene, which is under the control of the lacZ promoter. Expression of the T7 

polymerase, and therefore the protein of interest, is induced by the addition of IPTG. 

 

 

 

 

 



Table 2.2 E. coli strains  
 
NM522 F-lacIqD(lacZ)M15, proA+B+ / supE, thiD, (lac-proAB)D, (hsdMS-

mcrB)5. 

BL21%C+% (λDE3%lysogen/pLysS)%F8%%AmpT%rB(%mB(%
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pET-15B (Novagen) 

 

The pET-15B vector carries a 6xHis-tag allowing affinity purification of N-terminally 

tagged proteins on Ni2+ agarose beads. A thrombin cleavage site allows cleavage of the 

tag following purification. An Ampr gene allows selection of the plasmid. 

 

pET28a (Novagen) 

 

The pET-28a vector carry an N-terminal His Tag / thrombin / T7 Tag configuration plus 

an optional C-terminal 6xHis Tag sequence. A Kanr gene allows selection of the 

plasmid. pET28a was used for co-expression with pGEX vector (Ampr and Kanr 

selection) 

 

 

pGEX (Pharmacia Biotech) 

 

The pGEX vector encodes a 26 kDa GST tag allowing purification of the N-terminally 

tagged proteins on glutathione sepharose beads. A thrombin cleavage site allows 

cleavage of the tag following purification. An Ampr gene allows selection of the 

plasmid. 

 

 

2.2.7 Preparation of competent E. coli cells 
 

A single colony was used to inoculate 5 ml LB and grown overnight in a 37°C shaker. 

The 5 ml pre-culture was used to inoculate 1 litre pre-warmed LB and grown at 37°C 

with shaking for 2-4 hours until the OD595 reached 0.5-0.6. The cells were chilled on ice 

for 1 hour and centrifuged at 5,000 rpm for 5 minutes at 4°C. The supernatant was 

discarded and the cell pellet re-suspended in 25 ml ice-cold TRNS 1 solution. The 

sample was centrifuged at 3,000 rpm for 5 minutes at 4°C. The supernatant was again 

discarded and the cell pellet re-suspended in 25 ml TRNS 1 solution. After incubating 

on ice for 5 minutes, the sample was centrifuged at 3,000 rpm for 5 minutes at 4°C. The 

supernatant was discarded and the cell pellet re-suspended in 6 ml ice cold TRNS 2.  
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The sample was incubated on ice for 10 minutes before aliquoting into volumes of 300 

µl. The cells were then snap-frozen in liquid nitrogen and stored at –80°C. 

 

TRNS 1 solution 

 

12.1 g/l   RbCl 

9.6 g/l  MnCl2 

1.48 g/l  CaCl2   

2.88 g/l  CH3COONa  

66 ml/l  Glycerol 

Solution adjusted to pH 5.8 with acetic acid, and then filter sterilized. 

 

TRNS 2 solution 

 

1.2 g/l   RbCl 

11 g/l  CaCl2   

2.1 g/l  MOPS 

66 ml/l  Glycerol 

Solution adjusted to pH 6.8 with acetic acid, and then filter sterilized. 

 

2.2.8  E. coli  transformation 
 

Competent E. coli cells were thawed on ice for 15 minutes. Approximately 0.5 µg of 

plasmid DNA was added to 100 µl cells. The sample was incubated on ice for 15 

minutes before being ‘heat shocked’ at 37°C for 2 minutes. The cells were then 

incubated on ice for a further 5 minutes. 0.5 ml L-Broth was added and the sample 

incubated for 45 minutes at 37°C. After incubation, the cells were spun at 3,000 rpm for 

5 minutes and the supernatant tipped off. The cell pellet was re-suspended in 100 µl LB 

and the cells plated onto LB agar plates supplemented with the appropriate selective 

antibiotic. Plates were incubated at 37°C overnight. 
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2.3  DNA METHODS 
!

2.3.1 Agarose gel electrophoresis 
 

Typically, 200 ml 0.8% agarose gels were used to analyse DNA samples, although 

occasionally, a 1% agarose gel were used to analyse small (<500bp) DNA fragments. 

Agarose (Melford) was dissolved, by heating, in 1 x TBE buffer. Prior to pouring in a 

pre-prepared agarose gel cast, ethidium bromide was added to a final concentration of 

0.25 µg/ml. Once set, the gel was submerged in a gel tank containing 1 x TBE buffer. 

Typically, DNA samples were loaded as a 20 µl volume with one-sixth volume of 6x 

loading buffer and were run against 1 µl of a 1 kb ladder (Invitrogen). Electrophoresis 

was carried out at 150 V for ~ 45 minutes or until DNA bands were well separated. The 

DNA was visualised using a UV transilluminator.  

 

10 x TBE Buffer 

108 g/l  Tris base 

55 g/l  Boric acid 

0.2 M  EDTA, pH 8. 

 

6 x Loading Buffer 

0.1%   SDS 

40%       Sucrose 

1 mM  EDTA 

1 mM  Tris, pH 7.5 

0.25 %  Bromophenol blue 

 

2.3.2     Pulse-Field Gel Electrophoresis (PFGE) 
 

PFGE was used to resolve S. pombe genomic DNA embedded in agarose plugs. Two 

different conditions were used: S. pombe conditions to resolve endogeneous 

chromosomes and S.cerevisiae conditions to resolve artificial minichromosomes.  
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S. pombe conditions: 

DNA agarose plugs were cut to size, washed 3 times in 1.0x TAE buffer and set in a 

standard casting stand and a 30-well comb (Bio Rad) with a 0.8% InCert agarose 

(Lonza) in 1.0x TAE. The set up was placed in a CHEF-DR III Variable Angle System 

(Bio Rad)  with 5L of  cold 1.0x TAE buffer. The DNA was resolved at 14⁰C following 

manufacturer’s instructions: 

Switch time: 1800 seconds 

Run time: 72 hours 

Voltage: 1.5V/cm 

Angle:  106° 

 

S. cerevisiae conditions: 

DNA agarose plugs were cut to size, washed 3 times in 0.5x TBE buffer and set in a 

standard casting stand and a 30-well comb (Bio Rad) with a 0.8% InCert agarose 

(Lonza) in 0.5x TBE. The set up was placed in a CHEF-DR III Variable Angle System 

(Bio Rad) with 5L of cold 0.5x TBE buffer. The DNA was resolved at 14⁰C following 

manufacturer’s instructions: 

Switch time: 60 - 120 seconds (ramped) 

Run time: 24 hours 

Voltage: 6 V/cm 

Angle:  1200 

 

The DNA was visualised using a UV transilluminator after 30 minutes staining in 0.5L 

of 0.001% EtBr solution.  

 

10 x TBE Buffer:   see section 2.3.1 

 

 

50x TAE buffer: 

   242 g/l  Tris base 

57.1ml/l glacial acetic acid   

0.5 M  EDTA, pH 8.0 
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2.3.3 PCR-amplifying DNA fragments 
 

PCR was generally carried out using the DNA polymerases Pfu (error-free) and Taq 

(error-prone), both expressed and purified in-house (see section 2.4.10). Approximately 

50 ng template DNA was used per 50 µl reaction containing; 1 µl forward primer (10 

µM), 1 µl reverse primer (10 µM), 5 µl 10 x appropriate buffer, 5 µl 2.5 mM dNTPs,  

and 1 µl  enzyme, which was added last. The PCR programme consisted of 17 - 25 

cycles of; 94°C for 1 minute, X°C for 30 seconds and 68°C for Y minutes where X, the 

annealing temperature, is dependent of the melting temperature of the primer pair, and 

Y, the elongation time, is dependent on the length of desired product. Typically the 

extension time was calculated as 2 minutes per kb product. 1 µl of the PCR product was 

analysed on a 0.8% TBE agarose gel.  

 

10X Pfu buffer: 20mM MgSO4 

   200mM Tris-HCl (pH 8.8 at 25°C) 

   100mM (NH4)2SO4 

   100mM KCl 

   1% (v/v) Triton X-100 

   1mg/ml BSA  

   20mM MgSO4 

10X Taq buffer was purchased from Invitrogen. 

 

 

2.3.4 PCR- Site-directed mutagenesis  
 

Site-directed mutagenesis was carried out based on the ‘QuickChange site-directed 

mutagenesis’ technique (Stratagene). Complementary primer pairs were designed to 

contain the DNA sequence encoding the mutation of choice flanked either side by ~ 12 

bases that will hybridise to the original DNA sequence. Pfu polymerase was used to 

amplify the entire template plasmid. Approximately 50 ng template DNA was used per 

50 µl reaction containing; 1 µl forward primer (1 µM), 1 µl reverse primer (1 µM), 5 µl 

10 x Pfu buffer, 3 µl 2.5 mM dNTPs, and 1 µl Pfu enzyme, which was added last. The 

PCR programme consisted of 17 cycles of: 94⁰ C for 1 minute, X⁰C for 30 seconds and 
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68⁰C for Y minutes where X (the annealing temperature) is dependent on the melting 

temperature of the primer pair, and Y (the elongation time) is dependent on the length 

of desired product. 1 µl of the PCR product was analysed on a 0.8% TBE agarose gel. 

The remaining PCR product was digested with 1 µl DpnI (New England Biolabs), 

which digested the methylated parental DNA template, leaving only the newly 

amplified ‘mutagenic’ DNA product. 20 µl of the mutagenic PCR product was 

transformed into E. coli NM522 cells and the DNA extracted using a QIAGEN 

miniprep kit according to the manufacturer’s instructions. The presence of the desired 

mutation was confirmed by sequencing (Section 2.3.11). 

 

2.3.5 PCR purification 
 

PCR products were purified using a QIAGEN PCR purification column according to the 

manufacturer’s guidelines. 

 

2.3.6 Ethanol precipitation 
 

2.5 x sample volumes EtOH (100%) was added to the DNA sample with 1/10th volume 

3M NaOAc. Samples were incubated at –20°C for ~ 1 hour and then spun at 13,000 rpm 

for 10 minutes at 4⁰C. The supernatant was removed and the DNA pellet washed with 

500 µl EtOH. The supernatant was removed and the DNA pellet was dried for ~ 10 

minutes before being re-suspended in 50 µl  (or desired volume) 1 x TE. 

 

2.3.7 Restriction enzyme digests 
 

Typically, 1 µg of DNA was digested in a total volume of 30 µl. Restriction enzymes 

(New England BioLabs) were used as according to the manufacturers guidelines with 1 

µl restriction enzyme, 3 µl of the relevant 10 x restriction enzyme buffer, and if required 

3 µl of 10 x BSA. Digests were incubated at 37°C for minimum 2 hours. For double 

digests, where the enzyme buffers were not compatible, the DNA was cleaned 
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following the first enzyme digest using a QIAGEN PCR purification column as 

according to the manufacturer’s guidelines.  

 

2.3.8 Purification of DNA fragments from agarose gels 
 

DNA fragments were isolated by electrophoresis. Typically on a 0.8% TBE gel. For 

DNA fragments less than 500 base pairs, a 1% TBE gel was used. The DNA fragments 

were analysed using a UV transilluminator. The DNA band was excised using a clean 

scalpel and purified from the gel using an ‘Easy Pure’ gel purification kit (Biozym 

Scientific GmbH), according to the manufacturer’s instructions.  

 

2.3.9 Ligations 
 

Ligations were carried out using a Quick Ligation Kit (New England BioLabs) 

according to the manufacturer’s guidelines. Typically, the vector and insert were ligated 

in a 1:9 molar ratio with 10 µl 2x ligase reaction buffer and 1 µl DNA ligase  (1 unit/µl) 

in a final reaction volume of 20 µl. The ligation mixture was incubated at room 

temperature for a minimum of 5 minutes before being transformed into NM522 E. coli 

cells. 

 

2.3.10 Amplification of plasmid DNA 
 

2.3.10.1  DISH minipreps  (for DNA checking only) 
 

A 2 ml L-Broth culture, supplemented with the appropriate selective antibiotic was 

inoculated with a single colony and grown for ~4 hours at 37⁰C, with shaking. 1 ml of 

the cell culture was harvested at 13,000 rpm for 5 minutes and the supernatant 

discarded. The cell pellet was re-suspended in 100 µl DISH I solution. 200 µl DISH II 

was added and the sample mixed by inversion. 150 µl ice cold DISH III was added and 

the sample mixed by inversion. 200 µl phenol chloroform was added and the sample 

vortexed. The sample was then spun at 13,000 rpm for 15 minutes and the top aqueous 

layer removed to a clean microcentrifuge tube containing 750 µl 100% ethanol. The 
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sample was spun for a further 5 minutes at 13,000 rpm and the supernatant removed. 

The DNA pellet was dried for approximately 10 minutes in a dessicator before being re-

suspended in 40 µl 1x TE containing 20 µg/ml RNase. 5 µl of the DNA sample was 

analysed on an agarose gel. 

         

DISH I 

9 g/l  Glucose 

3 g/l  Tris-base 

3.72g/l  EDTA 

 

DISH II 

0.2 M  NaOH 

1%  SDS 

  

DISH III 

3 M  KOAc 

11.5%  Glacial acetic acid 

 

Phenol/chloroform 

24 Volumes       Phenol 

25 Volumes       Chloroform 

1 Volume       Isoamyl alcohol. 

 

 

2.3.10.2 Qiagen minipreps 
 

If the DNA was to be sequenced or further manipulated, minipreps were carried out 

using a QIAGEN miniprep kit. 5ml E. coli liqiuid culture, with the appropriate 

antibiotic, was grown to saturation at 37˚C. The bacterial pellet was collected by 

centrifugation at 4000 rpm for 5 min. The plasmid was extracted using the QIAprep 

Spin Miniprep Kit (Qiagen) according to the protocol provided by the manufacturer. 

The DNA was stored at -20˚C until required. 
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2.3.11 Sequencing by GATC 
 

DNA samples and sequencing primers were sent to GATC for sequencing. 20 µl DNA 

(30-100 ng/µl) and 20 µl corresponding primer (30 pmol/µl) were required. 

!
!

2.4 PROTEIN METHODS 
 

2.4.1 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 
 

SDS PAGE was carried out using Biorad Mini Protean II kits. Protein samples were 

resolved on 7.5, 10 or 12.5% separating gels. Polymerisation was achieved by the 

addition of 10% ammonium persulphate (APS) and TEMED to the separating buffer. 

The pre-polymerised gel solution was poured between glass plates separated with 0.75 

mm plastic spacers and left to set for approximately 30 minutes with a layer of distilled 

water on top to achieve a level surface. Once set, the water layer was poured off and the 

plates dried with Whatman paper. The stacking gel (3%) was poured on top of the 

separating gel and the gel comb positioned. After approximately 30 minutes the comb 

was removed and the gel kit assembled. Protein samples were mixed with 5 x sample 

buffer and denatured at 95⁰C for 5 minutes. 10-25 µl of sample were loaded into each 

well. 8 µl of benchmark protein ladder (Invitrogen) was loaded into the end lane as a 

size indicator. Gels were run in 1 x SDS running buffer at 150 V for approximately 1 

hour or until the dye front reached the bottom of the gel.  

 

Separating gels: (To make 2 mini gels) 

 

 

 

 

 

 

 

Separating Gel 7.5% 10% 12.5% 

Protogel                       (ml) 2.5 3.3 4.2 

4x separating buffer    (ml) 2.5 2.5 2.5 

Distilled water             (ml) 5.0 4.2 3.3 

10% APS                      (µl) 100 100 100 

TEMED                        (µl) 10 10 10 
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Stacking gels: (To make 2 mini gels) 

 

 

 

 

 

 

 

 

4 x Separating buffer  

1.5 M  Tris HCl, pH 8.8 

0.4%  SDS 

 

4 x Stacking buffer  

0.5 M  Tris HCl, pH 8.8 

0.4%  SDS 

 

5 x Sample buffer 

60 mM   Tris HCl, pH 6.8 

25%   Glycerol 

2%   SDS 

14.4 mM  β-mercaptoethanol 

10%              Bromophenol blue 

 

10 x SDS-PAGE buffer 

25 mM   Tris HCl, pH 8.3  

192 mM  Glycine 

0.1%              SDS 

 

 

 

 

Stacking 3% 6% 

Protogel                      (ml) 0.5 1.0 

4x stacking buffer      (ml) 1.3 1.3 

Distilled water            (ml) 3.3 2.8 

10% APS                     (µl) 50 50 

TEMED                       (µl) 10 10 
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2.4.2 Coomassie Brilliant Blue Staining 
 

An SDS-PAGE gel was placed in Coomassie gel stain at room temperature for ~ 1 hour 

with gentle shaking. The gel was then briefly washed in water and then placed in 

destain solution overnight with gentle shaking. To dry the SDS-PAGE gel, the gel was 

placed on Whatman 3 MM paper and dried for 1 hour on a gel dryer. 

 

Coomassie gel stain 

 

1 g/l  Coomassie Brilliant Blue (Sigma) 

45%  Methanol 

10%  Glacial acetic acid 

 

Destain solution 

 

10%  Methanol  

10%  Glacial acetic acid 

 

 

2.4.3 Western Blotting 
 

Twelve pieces of Whatman 3 MM paper and one piece of PVDF membrane (millipore) 

were cut to the same size as the SDS-PAGE protein gel. The Whatman 3MM papers 

were soaked in blotting buffer and 6 pieces were stacking on top of each other and 

placed on the Electroblotter (Biorad). The PVDF membrane soaked in methanol and 

then placed on top of the 6 Whatman sheets. The protein gel was laid on top of the 

membrane and the remaining 6 soaked Whatman papers placed on top. Bubbles were 

removed by rolling a thick marker pan over the stack. The electroblotter was run at 150 

mA for 35 minutes per gel. Following blotting the PVDF membrane was transferred to 

a container containing 4% milk (in PBS) and was blocked for at least 30 minutes at 

room temperature or overnight at 4°C with gentle shaking. 
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Semi-dry transfer buffer 

 

48 mM   Tris-Base 

39 mM   Glycine 

0.04%    SDS 

20%       Methanol 

 

2.4.4 Incubation of PVDF membrane with antibodies 
 

Following blocking in 4% milk (in PBS), the PVDF membrane was incubated in 10 ml 

milk containing the primary antibody. Primary antibodies were typically used at a 

1:2,000 dilution in 4% milk (in PBS) and incubated overnight at 4°C with gentle 

shaking. Alterations to this general protocol were made depending on the efficiency of 

the particular antibody. The blot was washed with 3 x 10 minute washes in PBS 

containing 0.1% Tween 20 and 1 x minute wash with PBS. Following washing, 10 ml 

4% milk (in PBS) was added to the membrane and an HRP-conjugated secondary 

antibody was added to a final dilution of 1:2,000. The blot was left to incubate at room 

temperature for approximately 90 minutes with gentle shaking. The previous 10-minute 

wash steps were repeated (3 x PBS with 0.1% Tween, 1 X PBS) and the proteins 

detected by ECL (Section 2.4.5). 

 

 

2.4.5 Enhanced Chemi-Luminescence  
 

Detection was carried out using Western Lightning (PerkinElmer). The blot was 

incubated for ~1 minute with slight agitation before being removed from solution and 

wrapped in Saran wrap. In a dark room, the membrane was exposed to X-ray film 

(Kodaki et al.) for varying lengths of time depending on the intensity of the signal.  The 

film was developed using a LSC50000 machine. 
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2.4.6 Determining protein expression and solubility 
 

A single BL21-CodonPlus(DE3) colony, carrying the appropriate expression vector, 

was used to inoculate 2 ml of L-broth media containing chloramphenicol and the 

appropriate selective antibiotic. The culture was grown overnight at 37°C with shaking. 

The following morning 1 ml of this pre-culture was used to inoculate 10 ml of medium. 

The cells were incubated at 37°C, with shaking until an A595 reading of ~0.6 was 

reached. At this point 1 ml of each culture (non-induced) was removed and placed in a 

fresh tube. Cells in the remaining 9 ml culture were induced with an appropriate 

concentration of IPTG and grown with the non-induced samples for either a further 1 or 

3 hours at 37⁰C. 1 ml of cells was harvested at 13,000 rpm for 5 minutes and the pellet 

re-suspended in X ml (X =A595 reading/ 4) of an appropriate buffer (NETN (section 

2.4.8) for GST-fusion proteins). The sample was sonicated for 15 seconds on ice and 

then spun at 13,000 rpm for 5 minutes. The supernatant was transferred to a fresh 

microcentrifuge tube and one-fifth 5x sample buffer added. The pellet was re-suspended 

in X ml 5 x sample buffer. Samples were boiled for 5 minutes and analysed by SDS-

PAGE (Section 2.4.1) followed by Coomassie staining (Section 2.4.2). 

 

2.4.7 Bradford assay 
 

To determine the protein concentration of a sample the Bradford assay reagent (Biorad) 

was diluted 1 in 5 with water. 1-5 µl protein sample was added to 1 ml of the diluted 

Bradford reagent. The OD A595 was measured as compared to a 1 ml reagent only 

‘blank’. The protein concentration of the sample was determined by comparing the 

sample reading against a BSA standard curve. 

 

2.4.8 GST-tagged protein purification  
 
A single BL21-CodonPlus(DE3) colony, carrying the appropriate expression vector, 

was used to inoculate 2 ml of L-broth containing chloramphenicol and the selective 

antibiotic (amp). This pre-culture was grown at 37oC with shaking for ~8 hours. 1 ml of 

this was used to inoculate 100 ml pre-warmed media, which was grown overnight at 
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37⁰C. The following day this 100 ml pre-culture was used to inoculate a 1-litre pre 

warmed culture. When an A595 reading of 0.6 was reached, the cells were induced with 

IPTG at a final concentration of 5mM. After incubating for a further 3 hours at 37⁰C 

with shaking cells were harvested at 5,000 rpm for 10 minutes at 4°C and the 

supernatant discarded. The cell pellet was re-suspended in 10 ml ice cold NETN 

(freshly supplemented with PMSF to 0.1 mM, and 1 complete protease inhibitor 

cocktail tablet from Roche per 50 ml buffer). The cells were sonicated on ice 3 times for 

15 seconds with 1-minute intervals on ice. The cell extract was cleared by 

centrifugation at 14,000 rpm for 15 minutes at 4⁰C. The supernatant was then added to 

100 µl pre-washed glutathione-sepharose beads (Amersham) equilibrated with NETN. 

The beads were incubated for 2 hours at 4°C on a rotating wheel. The beads were 

washed 7 times in total (3 x 1 ml NETN, followed by 3 x 1 ml wash buffer and 1 x 

PBS). Washing was carried with a brief spin at 13,000 rpm to pellet the beads. 

Following this spin, the supernatant was discarded and the beads were incubated with 1 

ml of the appropriate buffer on a rotating wheel for 5 minutes at 4°C. Protein was 

collected either by glutathione elution of the GST-fusion protein or thrombin cleavage 

of the protein from the GST bound to the beads. 

 

NETN Buffer 

0.5%   NP40 

1 mM   EDTA 

20 mM   Tris-HCl, pH 8.0 

100 mM   NaCl 

freshly supplemented with: 

0.1 mM  PMSF  

1            protease inhibitor cocktail tablet (Roche) per 50 ml buffer 

 

Wash Buffer 

100 mM  Tris-HCl, pH 8.0 

100 mM   NaCl 

1 mM              EDTA 
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Following the final PBS wash step in the GST-tagged protein purification protocol 

(Section 2.4.8.1) the GST-fusion protein was eluted from the beads by adding 250 µl of 

elution buffer and incubating on a rotating wheel for 30 minutes at 4°C. After a 15 

second spin at 2,500 rpm the supernatant was kept. This elution step was repeated a 

further two times and 5-10 µl of the elution samples were analysed by SDS-PAGE 

(Section 2.4.1) followed by Coomassie staining (Section 2.4.2). 

 

Elution Buffer 

100 mM  Tris-HCl, pH 8.0 

120 mM   NaCl 

20 mM            Glutathione 

 

2.4.9     His-tagged protein purification  
 

Ni2+ purification 
 

A 10 ml culture of the BL21-CodonPlus strain carrying the appropriate expression 

vector was grown overnight at 37°C in L-broth containing chloroamphenicol and the 

selective antibiotic. The pre-culture was used to inoculate a 1 l culture of pre-warmed L-

broth, containing the appropriate selective antibiotic. The culture was incubated at 37°C 

for ~ 4 hours until the OD595 reached 0.6-0.8. IPTG was added to a final concentration 

of 0.1-1 mM and the cells incubated for a further 4 hours at 37°C. The cells were 

harvested at 5,000 rpm for 5 minutes and the supernatant discarded. The cell pellet was 

placed at –20°C for at least an hour, before being re-suspended in 20 ml ice-cold 

binding buffer freshly supplemented with 0.1 mM PMSF. The cells were sonicated on 

ice for 5x 15 seconds, with 30 second intervals on ice. The cell extract was cleared by 

centrifugation at 14,000 rpm for 15 minutes at 4°C. The supernatant was gradually 

applied to 0.5 ml column containing pre-washed Ni2+-agarose beads equilibrated with 

binding buffer at 4°C. Once the supernatant has passed through the column by gravity, 

the column was washed with 10 column volumes of binding buffer, freshly 

supplemented with PMSF, followed by 10 column volumes of wash buffer containing 

PMSF. Elution buffer was added to the column and 0.5 ml fractions were collected on 
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ice. The protein concentration of each elution was obtained by Bradford assay and ~5 

µg protein was analysed by SDS-PAGE. 

 

Binding buffer 

5 mM   Imidazole 

0.5 M  NaCl 

20 mM  Tris HCl, pH 7.5 

 

Wash buffer 

20 mM   Imidazole 

0.5 M  NaCl 

20 mM  Tris HCl, pH 7.5 

 

Elution buffer 

500 mM   Imidazole 

0.5 M  NaCl 

20 mM  Tris HCl, pH 7.5 

 

 

Co2+ purification 

 

A 10 ml culture of the BL21-CodonPlus strain carrying the appropriate expression 

vector was grown overnight at 37°C in L-broth containing chloroamphenicol and the 

selective antibiotic. The pre-culture was used to inoculate a 1 l culture of pre-warmed L-

broth, containing the appropriate selective antibiotic. The culture was incubated at 37°C 

for ~ 4 hours until the OD595 reached 0.6-0.8. IPTG was added to a final concentration 

of 0.1-1 mM and the cells incubated for a further 4 hours at 37°C. The cells were 

harvested at 5,000 rpm for 5 minutes and the supernatant discarded. The cell pellet was 

placed at –20°C for at least an hour, before being re-suspended in 20 ml ice-cold 

equilibration/wash buffer. The cells were sonicated on ice for 3 min (5 seconds pulse) 

on ice. The cell extract was cleared by centrifugation at 14,000 rpm for 15 minutes at 

4°C. The supernatant was gradually applied to 0.5 ml column containing pre-washed 

Co2+-agarose beads equilibrated with equilibration/wash buffer at 4°C. Once the 

supernatant has passed through the column by gravity, the column was washed with 10 
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column volumes of equilibration/wash buffer. Elution buffer was added to the column 

and 0.5 ml fractions were collected on ice. The protein concentration of each elution 

was obtained by Bradford assay and ~5 µg protein was analysed by SDS-PAGE. 

 

Equilibration/wash buffer:      

50mM     sodium phosphate,  pH 7.4 

300mM   sodium chloride 

10mM     imidazole 

  

 

Elution buffer: 

  50mM     sodium phosphate,   pH 7.4 

  300mM   sodium chloride 

  150mM   imidazole 

   
 

2.4.10 Expression and purification of PCR polymerases 
 

Taq polymerase 

 

Taq polymerase was expressed from pTAQAmpR plasmid (gift from Dr. J. Downs). 2ml 

culture was inoculated overnight at 37°C and used to inoculate a 1 l culture which was 

grown at 37°C until OD~0.5. The culture was induced with 1 mM IPTG o/n at 18°C. 

The cells were pelleted by centrifugation at 5000rpm for 5 minutes and placed at -20°C 

o/n. The pellet was thawed and resuspended in lysis buffer and the cells were sonicated 

for 3 min (5 seconds pulse) at 30% amplitude on ice. The debris was spun out at 

17000rpm for 20 minutes. The supernatant was heat treated at 85°C for 20 minutes. 

Ammonium sulfate was added slowly to 30% w/v at room temperature with stirring.  

The resulting slurry was centrifuged at 17000rpm for 20 minutes and the pellet was 

resuspended in 5 ml equilibrating buffer. The protein solution was dialysed overnightat 

4°C against 5 l of equilibrating buffer, aliquoted and stored at -20°C. 
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Lysis buffer:  

  10mM  Tris.Cl, pH 7.9 

  50mM  KCl 

  0.5%  Tween 

  0.5%  NP-40 

  1mM  PMSF 

  

 

Equilibrating buffer: 

  50mM  Tris.Cl, pH 7.9 

  50mM  KCl 

  0.1mM  EDTA 

  50%  glycerol 

  1mM  DTT 

   

   

Pfu polymerase 

 

Pfu polymerase was expressed from pET-PfuKanR plasmid (gift from Dr. J. Downs). 

2ml culture was inoculated o/n at 37°C and used to inoculate a 1 l culture which was 

grown at 37°C until OD~0.5. The culture was induced with 1mM IPTG o/n at 18°C. The 

cells were pelleted by centrifugation at 5000rpm for 5 minutes and placed at -20°C o/n. 

The pellet was thawed, washed in PBS and resuspended in 20ml PBS300. The cells 

were sonicated for 3 min (5 seconds pulse) at 30% amplitude on ice. The debris was 

spun out at 17000rpm for 20 minutes. The supernatant was heat treated at 75°C for 20 

minutes and spun out at 15000rpm for 10 mins. The supernatant was applied to 1 ml 

column of Ni-NTA agarose pre-equilibrated with 10 ml of PBS300.  

The column was washed with 20 ml PBS300+15 mM imidazole. 3 ml PBS300+25 mM 

imidazole was added to the column and 1ml fractions were collected by gravity. 5 ml 

PBS+500mM imidazole was added to the column and 1ml fractions were collected by 

gravity. 5 µl of each fraction was run on a SDS gel. Peak fractions were combined and 

an equal volume of storage buffer was added. The protein solution was dialysed against 

two changes of 1L of storage buffer at 4°C, aliquoted and stored at -20°C. 
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PBS300:  PBS + 150 mM sodium chloride 

Storage buffer:   

  50mM   Tris, pH 8.0 

  0.1mM  EDTA 

  1mM  DTT 

  0.1%  NP40 

  0.1%  Tween 

  50%  glycerol 

   

2.4.11 Protein dialysis 
 

Protein solutions were dialysed using SnakeSkin tubing, MWCO 7K (Thermo 

Scientific), against minimum 10x volume of the exchange buffer at 4°C. 

 

2.4.12 Protein desalting/buffer exchange 
 

PD-10 desalting columns (Amersham Biosciences) were used for protein buffer 

exchange according to the manufacturer instructions. 

 

2.4.13 Size exclusion chromatography (gel filtration) 
 

Prior to gel filtration the elution buffer of protein solutions was exchanged for the 

equilibrating buffer and the columns, Superdex 75 (10/30 HR) or Superdex 200 (10/30 

HR) (Amersham Biosciences), were washed with the equilibrating buffer with a flow 

rate of 0.5 mL/min. The protein solution was concentrated to 0.5 or 1.0 mL and loaded 

onto the column. The column was connected to an ÄKTAFPLC system (GE Healthcare) 

and the protein was eluted at a flow rate of 0.5 mL/min into 1ml fractions according to 

the manufacturer’s instructions. Fractions were monitored using the online UV monitor 

measuring absorbance at 280nm and by SDS-PAGE. 
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Equilibrating buffer: 50 mM Tris.HCl pH 8.0 

    200 mM NaCl 

 

 

2.4.14   Concentrating protein samples 
 

Proteins were concentrated using Piercer concentrator 7 ml/9K and 7 ml/20K (Thermo 

Scientific) according to the manufacturer’s guidelines. 

 

 

2.4.15   Equilibrium Denaturation Studies 
 

A stock solution of guanidinium HCl (8 M) was diluted to obtain a large range of 

denaturant concentrations using a Hamilton Microlab dispenser; 100 µl of a stock 

solution of protein (9 µM) containing 450 mM phosphate, 9 mM DTT (pH 7.0) was 

added to each denaturant sample (800 µl). This gave a final buffer concentration of 50 

mM phosphate pH 7.0 and a protein concentration of 1 µM. The protein/denaturant 

solutions were pre-equilibrated at 25⁰C for at least three hours. All measurements were 

performed in a thermostatic cuvette holder at 25⁰C using Varian Cary Eclipse 

Fluorescence Spectrophotometer.  The excitation wavelength was 280 nm, band passes 

were set at 5 nm for excitation and emission and the fluorescence was measured at λmax 

for the denatured state of 352 nm. 

 

2.4.16 Dynamic Light Scattering (DLS) 
 

Dynamic light scattering was used to assess the protein sample dispersity (aggregation) 

and therefore its suitability for crystallographic studies. 50µL of protein solution was 

centrifuged at 13000rpm for 30 minutes and placed in a disposable solvent resistant 

micro cuvette (Malvern). Measurements were taken at room temperature or 4°C on a 

Zetasizer Nano ZS system (Malvern). Scattering data were analysed for peak position 

and width to identify particle size and polydispersity. 
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2.4.17    Protein crystallization screening  
 

Protein crystallization screening was performed using the hanging-drop vapor-diffusion 

method at room temperature in 24-well trays. 

1-2 µl of protein solution was mixed with an equal volume of reservoir solution on a 

CrystalClene coverslip and sealed with grease upside-down (‘hanging drop’) on the top 

of the well containing 400 µl of precipitant solution to achieve vapour equilibration. As 

the concentration of the reagent in the drop is smaller than the concentration in the 

reservoir, water leaves the drop until the two concentrations reach equilibrium and the 

protein solution reach supersaturation. At this point protein nucleation can take place 

and crystal growth can occur. Initially, a pre-crystallization screen was conducted in 

order to optimize the protein concentration. All trays were kept at 4°C and checked daily 

by microscopy.  10 ml crystallization screens, tools and accessories were purchased 

from Molecular Dimensions. 

 

 

2.4.18   Affinity purification of crude anti-sera 
 

Preparation of the affinity column 

 

Affinity purification of crude anti-sera was carried out using the AminoLinkPlus 

Coupling Gel kit (PIERCE Biotechnology). A column containing 3 ml AminoLinkPlus 

Coupling Gel was equilibrated with 3 column volumes of Coupling Buffer, pH 10. 

Purified protein (His-tagged Rad60) was diluted in a 1:3 ratio with coupling buffer, pH 

10. The diluted protein sample (final concentration of 1-20 mg/ml) was added to the 

column. The column was sealed and mixed by gentle end-over-end rocking for 4 hours 

at 4°C. The column was then washed with 3 column volumes of Coupling Buffer, pH 

7.2. 1 column volume of Coupling Buffer, pH 7.2 and 0.02 column volumes of 

cyanoborohydride solution was added to the column. The column was sealed and mixed 

overnight by gentle end-over-end rocking at 4°C. The column was allowed to drain and 

the flow through collected. Protein content was checked by Bradford assay to ensure 
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protein had been bound. To block the remaining active sites, the column was first 

washed with 2 column volumes of Quenching Buffer, and then 1 column volume of 

Quenching Buffer with 0.02 column volumes of cyanoborohydride solution. The 

column was sealed and mixed gently by end-over-end rocking for 30 minutes. The 

column was allowed to drain before being washed with 20 column volumes of Wash 

Solution. To check that the protein would not be immobilised in the elution step, the 

column was washed with 100 mM glycine, pH 2.3. The flow through was collected and 

the protein content determined by Bradford assay. To re-equilibrate, the column was 

washed with 10 column volumes of Quenching buffer followed by 10 volumes of Wash 

buffer. The column was then washed with 10 column volumes of PBS.  

 

Affinity purification of crude antisera 

 

6 ml crude anti-sera was diluted in one-tenth volume of 10x PBS and added to the 

column. The column was sealed and incubated at 4°C overnight on an end-over-end 

rocker. The column was drained and the flow-through collected. The column was then 

washed with 10 column volumes of PBS. Bound antibody was eluted with 1 column 

volume of 100 mM glycine, pH 2.3 and the flow through collected in 1 ml fractions. 

The antibody fractions were neutralised by adding 100 µl 1 M Tris-HCl, pH 7.5. The 

antibody concentration was analysed by Bradford assay and the purity checked by SDS-

PAGE (Section 2.4.1). 

 

 

2.4.18.3 Regenerating and storing the affinity column 

 

Following elution with glycine, the column was washed extensively with PBS. PBS 

containing 0.05% sodium azide was added and the column sealed. The column was 

stored upright at 4°C for future use. To regenerate the column for affinity purification, 

the column was washed extensively with PBS, followed by 10 column volumes of 

Quenching buffer, 10 volumes of Wash buffer and 10 volumes of PBS. At this stage the 

column is ready for the anti-sera to be added. 
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Coupling Buffer, pH 10 

0.1 M   sodium citrate 

0.05 M  sodium carbonate 

Solution adjusted to pH 10 and then filter sterilized 

     

Coupling Buffer, pH 7.2 

    0.1 M   sodium phosphate 

    0.15 M             NaCl 

Solution adjusted to pH 7.2 and then filter sterilized 

 

Quenching Buffer 

 1 M  Tris-HCl 

Solution adjusted to pH 7.4 and then filter sterilized. 

 

Cyanoborohydride Solution  

Supplied by PIERCE 

 

 Wash Solution: 

1 M  NaCl 

 

2.4.19  Total Cell Extracts (TCAs) 
 

S. pombe cells were grown in 10 ml appropriate medium overnight. 1 x 108 cells were 

harvested at 3,000 rpm for 5 minutes and washed in 1 ml 20% (w/v) trichloro-acetic 

acid (TCA). The cell pellet was re-suspended in 200 µl 20% TCA, transferred to a 

screw cap ribolyser tube and an equal volume of glass beads was added. The cells were 

broken to ~ 50% lysis by ribolysing for 3 x 15 seconds, with 1 minute intervals on ice. 

400 µl 5% (w/v) TCA was added and the bottom of the screw-capped tube was 

punctured with a hot needle. The cell extract was spun into a clean micro centrifuge 

tube at 3,000 rpm for 5 minutes. The extract was then spun for a further 5 minutes at 

13,000 rpm. The supernatant was discarded and the pellet re-suspended in 200 µl TCA 

sample buffer. The sample was then boiled and analysed by SDS-PAGE (Section 2.4.1).  
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TCA sample buffer 

 

250 mM   Tris HCl, pH 8.0 

5%              Glycerol 

0.4%              SDS 

2.9 mM  β-mercaptoethanol 

2%              Bromothenol blue 

 

2.4.20  In vitro sumoylation assay 
 

An in vitro sumoylation assay as described previously (Ho, 2001) was used to test the 

sumoylation status of a protein in vitro. Typically, 2 µl of translated protein was 

incubated with 2 µl 10x in vitro assay buffer, 3 µg Hus5, 0.5 µg GST-Rad31/GST-

Fub2, 0.12 U inorganic pyrophosphatase and 0.7 U creatine phosphokinase, with or 

without 10 µg His-Pmt3. The reaction was made to a final volume of 20 µl with dH2O. 

The reactions incubated at 30°C for 2 hours and analysed by SDS-PAGE (Section 

2.4.1).  

 

10x in vitro assay buffer 

500 mM  Tris-HCl, pH7.5 

50 mM  MgCl2 

50 mM  ATP 

100 mM  creatine phosphate 

 

2.4.21 In vitro GST-pull down assay 
 

A 100 ml culture of a BL21 strain carrying the GST-expression construct of choice was 

grown at 37°C, with shaking until A595 0.6 was reached. Cells were then induced with 1 

mM IPTG and grown for a further 3 hours at 37°C, with shaking. Cells were harvested 

at 5,000 rpm for 5 minutes at 4⁰C and the supernatant discarded. The cell pellet was re-

suspended in 1 ml binding buffer freshly supplemented with a protease inhibitor 

cocktail tablet (Roche). The cells were sonicated on ice for 3 x 15 seconds with 1-
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minute intervals on ice.  The cell debris was cleared at 13,000 rpm for 3 minutes at 4°C. 

The supernatant was transferred to a new microcentrifuge tube. 20 µl of this supernatant 

was added to 180 µl binding buffer and incubated for 1 hour at 4°C with 30 µl 

glutathione-sepharose beads that had been pre-equilibrated in binding buffer. The beads 

were then harvested at 3,000 rpm for 5 seconds and washed twice with 1 ml binding 

buffer containing protease inhibitors. This 200 µl sample was then added to the pre-

bound glutathione beads and incubated on a rotating wheel for 1 hour at 4C. The beads 

were harvested at 3,000 rpm for 5 seconds and a 10 µl sample of the supernatant was 

taken (unbound fraction). The rest of the supernatant was discarded and the beads were 

washed for 15 minutes in wash buffer 1, followed by 15 minutes in wash buffer 2. The 

protein was eluted by boiling in 30 µl 5 x sample buffer (bound fraction). The input, 

unbound and bound fraction were analysed by SDS-PAGE (Section 2.4.1)  

 

Binding Buffer 

25 mM   HEPES, pH 7.8 

150 mM  KCl 

0.4 mM  EDTA 

2 mM   EGTA 

3 mM   MgCl2 

8%   Glycerol 

0.1%   NP-40 

0.5 mM  PMSF 

0.2 mM  DTT 

 

Wash Buffer 1 

25 mM   HEPES, pH 7.8 

200 mM  KCl 

0.4 mM  EDTA 

2 mM   EGTA 

3 mM   MgCl2 

8%   Glycerol  

0.1%   NP-40 

0.5 mM  PMSF 
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0.2 mM  DTT 

 

Wash buffer 2 

25 mM   HEPES, pH 7.8 

100 mM  KCl 

0.4 mM  EDTA 

2 mM   EGTA 

3 mM   MgCl2 

8%   Glycerol 

0.1%   NP-40 

0.5 mM  PMSF 

0.2 mM  DTT 

 

 

2.4.22 Identification of sumoylated lysine residues by tandem mass 

spectrometry 
!
Protein mixtures from in vitro sumoylation assays (see section 2.4.20) were separated 

by SDS-PAGE. Bands corresponding to sumoylated species were excised and subjected 

to in-gel trypsin digestion (Gygi et al., 2000). Peptide fractions were loaded onto 75-µm 

inner diameter fused silica with C18 resin columns and separated using a 35-min 

gradient from 2.5 to 97.4% CAN (Denison et al., 2005). Eluting peptides were loaded 

into an HPLC system coupled to a LTQ FT (Linear Ion Trap – LTQ combined with 

Fourier Transform Ion Cyclotron – FT) mass spectrometer (ThermoScientific) (LC-

MS/MS) and full FT-MS scans (m/z range of 300 to 1,400) were acquired. Data were 

analyzed using the S. pombe NCBI database in conjunction with the MASCOT search 

algorithm (Perkins et al., 1999).  
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CHAPTER 3 

ANALYSIS OF THE SUMO-LIKE DOMAINS AND 
PUTATIVE SUMO-BINDING MOTIFS OF RAD60 

 
 

3.1 Introduction 
!
The S. pombe rad60 gene was first identified as a gene essential for cell viability that is 

involved in DNA double strand break repair (Morishita et. al., 2002). Later, the 

translation product, the Rad60 protein (fig. 3.1), was shown to have two homologues, 

Esc2 in S. cerevisiae and NIP45 in mammals. These three proteins, known as the RENi 

family of proteins, have two C-terminal SUMO-like domains (SLDs) closely related to 

SUMO-1 (Novatchkova et. al., 2005) (fig. 3.2). Moreover, at the N-terminal Rad60 has 

a S-X-S-D/E-D/E-D/E sequence that conforms with one type of SUMO interacting 

motif (SIM) (Minty et al., 2000) and three hydrophobic regions with sequences of V/I-

X-V/I-V/I and V/I-V/I-X-V/I that conform to a second type of SIM (Song et al., 2004). 

It was proposed that these latter regions, named SUMO-binding motifs (SBMs), 

facilitate Rad60 self-association by interacting with the proposed SLDs and as a result 

are required for Rad60 function (Raffa et. al., 2006).  Two of the three putative SBMs, 

SBM2 and SBM3, are within SLD1 and SLD2 respectively (fig. 3.1). 

Hypomorphic mutations of rad60+ (represented on fig. 3.1) where identified in various 

studies: rad60-1 (K263E) cells are defective in DSBs DNA repair, temperature sensitive 

for growth, defective in maintaining chromosome structure, elevated loss of a 

minichromosome, and epistatic with rhp51Sp/rad51Hs (Morishita et al., 2002); rad60-3 

(F272V) cells are sensitive to DNA damaging agents (IR and UV) and hypersensitive to 

HU (Boddy et al., 2003); rad60-4 (T72A, I232S, Q250R, K312N) is sensitive to HU 

and is not phosphorylated in response to HU due to failed interaction with 

Cds1Sp/Chk2Hs, the Rad60 specific effector kinase (Boddy et al., 2003). 

 

In this study I began an in vitro functional and structural analysis of the proposed SLDs 

and SBMs and characterized the phenotypic consequences of mutating the SBMs.  In 



Fig. 3.1 Schematic representation of Rad60 protein 

 

Highlighted are SUMO-Like Domains: SLD1 (blue) and SLD2 (red); putative 

SUMO-Binding Motifs: SBM1, SBM2 and SBM3 (green), N-terminal SXS 

motif. Characterized hypomorphic mutations are depicted ( ).  The C/C (in 

blue) represents a coil/coil domain. 



Fig. 3.1 Schematic representation of Rad60 protein 



Fig. 3.2 Sequence alignment of RENi family  proteins 

Alignment created with ClustalW and highlighting of conserved (    ) and  
semi-conserved (    ) residues created with BoxShade on-line software .  

SLD1 

SLD2 
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order to obtain a true 3D structure of the SLDs and SBMs, crystallographic studies were 

considered for the full length Rad60 (Rad60_FL).  

 

 

 

3.2 Structural characterization of Rad60 
!

3.2.1 Expression and purification of full length Rad60 
!
Rad60_FL was first expressed as a His tag fusion protein as the small His tag does not 

require removal prior to crystallographic trials.  The expression was performed with 

various concentrations of IPTG (0.1 – 1 mM) and the His-Rad60_FL was purified at 

4°C using Co2+ beads (fig. 3.3 A). The Coomassie stain of the elutions showed a large 

number of degradation products suggesting that the protein is not very stable under the 

purification conditions. Successful crystallization requires high purity protein in a 

homogeneous, monodisperse state. To further analyze the suitability of the recombinant 

His-Rad60_FL for crystallography, Dynamic Light Scattering (DLS) was used to assess 

the polydispersity of the sample and the presence of protein aggregates that might 

interfere with the crystallization process.  The results indicated that the sample was 

polydisperse and therefore unsuitable for crystallography (fig. 3.3B). 
 

Another possibility was to expressed and purify the Rad60_FL with a GST tag as 

sometimes the large GST tag (~26 kDa) stabilizes proteins in solution but requires 

thrombin cleavage prior to crystallography trials. Unfortunately, GST-Rad60_FL 

degraded into smaller fragments as well, making it unsuitable for crystallographic 

studies (fig. 3.4).  

 

 

 

 

 

 



Fig. 3.3 Purification and stability studies of His tagged  Rad60_FL 

A)  SDS PAGE of purified full length  Rad60 – His 
L = ladder;  U = cell extract unbound to column; E = elution 

B)  Dynamic Light Scattering tabulated data and spectrum showing 
 polydispersity and  average particle size respectively 
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Rad60-GST 

Fig. 3.4 Purification  of GST tagged  Rad60_FL 

A)  SDS PAGE of purified full length  Rad60 – GST 
L = ladder;  U = cell extract unbound to column; E = elution 

Degradation  
products 
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3.2.2 Residues essential for β-GRASP fold are conserved in SLD1 and 

SLD2 
!
An initial search for proteins homologous to Rad60 only revealed a match between 

SLD2 and the ubiqiutin-2 motif (Morishita et. al., 2002). The ClustalW sequence 

alignment of both SLDs against SUMO-1 (fig. 3.5 A) revealed an identity of 19.7% for 

SLD1 and 23.4% for SLD2. Further, the β-GRASP fold (ββαββαβ) shared by SUMO 

and ubiquitin can be modeled onto both SLDs using the on-line Phyre modelling 

software (Bennett-Lovsey et al., 2008). The electrostaic surfaces were determined using 

Pymol software (Liang et al., 2003), with the surface of SLD1 being positively charged, 

like ubiquitin, while that of SLD2 is negatively charged like SUMO (fig. 3.5 B)  

 

The sequence alignment of SLD1, SLD2 and SUMO-1 shows that residues essential for 

the β-GRASP fold of SUMO-1, referred to as ‘Bayer residues’ (Bayer et al., 1998),  are 

conserved/semi-conserved in the SLDs (fig. 3.6). To assess the in silico data, expression 

and purification of recombinant SLD proteins was carried out (L. Boyd, PhD thesis, 

University of Sussex). The SLD1 domain could not be expressed, while SLD2 was 

successfully expressed and purified with a His tag (fig. 3.7). Mutagenesis was carried 

out on the wild-type SLD2 construct (L. Boyd, PhD thesis, University of Sussex) to 

determine if residues required for the β-GRASP fold are essential for the SLD2 

structure. Eight single mutations of key residues at the hydrophobic core of SLD2 

matching residues essential for the β-GRASP fold of SUMO-1 (I334G, L336G, L338G, 

L346G, L348G, I350G, L359G, Y363G) were created in order to determine whether 

these residues were important for the structure of SLD2. Five of the single mutations, 

when introduced into the S. pombe genome, resulted in unviable cells (L336G, L346G, 

I350G, L359G, Y363G) while the other three (I334G, L338G, L348G) gave viable but 

sick cells (L. Boyd, PhD thesis, University of Sussex). 

 

In order to analyse the effect of these mutations on the domain, recombinant proteins for 

the viable mutants were expressed with a His tag under the conditions that SLD2 wild 

type was expressed. However they were insoluble under these conditions suggesting 

that the mutant proteins may be incorrectly folded. Since the pH, salt concentration and 

the type of buffer heavily influence proteins solubility, new buffers were designed using 



Fig. 3.5  SLD1 and SLD2 can be modelled onto H. sapiens SUMO-1 

structure 

 

A) ClustalW sequence alignment of SLD1  and SLD2  against H.sapiens 

SUMO-1 (NCIB accession number AAC50996).  Highlighted in black 

are conserved residues and in gray are semi-conserved residues. 

 

B)  Modelling of SLD1 (blue) and SLD2 (red) onto SUMO-1  structure (pdb: 

2uyz) using   PHYRE software (Bennett-Lovsey et al., 2008) . On the left: 

representation of the secondary syructures; on the right: representation of 

the surface electrostatics, using PYMOL software 
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Fig. 3.6 Essential structural residues of SUMO-1 are conserved in SLD1 and 

SLD2 

 

A) Essential structural residues of SUMO-1 (Bayer residues) highlighted on 

the sequence alignment of SUMO-1, SLD1 and SLD2. Conserved.semi-

conserved Bayer residues tabulated below 

 

B)  Cartoon representation of Bayer residues and their interactions (green) on 

the structure of SUMO-1(pdb:1A5R) and the models of SLD2 and SLD1, 

created using PYMOL software 



SUMO-1 SLD1 SLD2 

I22 S230 I334 

L24 I232  L336 

V26 L234  L338 

I34 L242  L346 

F36 F244  L348 

V38 V246 I350 

L47 V255  L359  

Y51 Y259  Y363 

A. 

SUMO-1 SLD2 SLD1 

B. 

Fig. 3.6 Essential structural residues of SUMO-1 are conserved in  

             SLD1 and SLD2 
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Fig. 3.7 Purification of His-tagged SLD2 

Coomassie stain of purified SLD2-His; L = ladder; U = cell extract unbound 

to column; E = elution 
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sodium acetate, HEPES and Tris with various concentrations of sodium chloride (0, 0.1, 

0.2, 0.3, 0.4, and 0.5 M) and at different pH (5.5, 7.5 and 8.5). All three mutant proteins 

were insoluble in all conditions (fig. 3.8, not all data shown). These results suggest that 

‘Bayer’ residues are required for the structure of SLD2, further confirming the 

hypothesis that SLD2 adopts a β-GRASP fold like SUMO-1. 

 
 

3.3 SLD2 interacts with the SUMO conjugator in vitro 
!
The phenotypic similarities of rad60 mutants, including those within the SLD2 domain, 

to mutants defective in the sumoylation pathway (L. Boyd, PhD thesis, University of 

Sussex) suggest a functional overlap, with Rad60 as an important SUMO pathway 

component. Moreover, the residues involved in the non-covalent interaction of SUMO-

1 with the SUMO conjugating enzyme, Ubc9SpHus5, (Capili and Lima, 2007) are 

conserved in SLD2 but not SLD1 (fig. 3.9). To assess the interaction between SLD2 

and Hus5 an in vitro analysis was carried out. A GST pull-down assay was carried out 

with recombinant His-SLD2 and GST-Hus5 (fig. 3.10). To check that SLD2 does not 

interact with the GST tag a pull down assay of SLD2 with GST only was carried out in 

parallel as a negative control. GST, GST-Hus5 and His-SLD2 were expressed and 

purified as described (see section 2.4) and loaded as inputs. SLD2-His was added to 

mixtures of GST and Hus5-GST with glutathione sepharose beads and incubated for 1 

hour at 4°C. After centrifugation the supernatant was kept for SDS-PAGE as the 

unbound fraction (U) and the beads, after washing, were treated with elution buffer to 

extract the bounded fractions (B).  

 

SLD2 interacts with Hus5 in vitro, as it is present in the bound fraction of GST-Hus5 + 

SLD2 (lane 5) but not in that of GST + His-SLD2 (lane 4). This positive interaction 

further implies that SLD2 structurally and functionally resembles SUMO. The 

interaction between SLD2 and Hus5 was later confirmed in vivo by S. pombe extract 

precipitation of GST-Rad60 or SLD2 with TAP-Hus5 (Prudden et al., 2009). Using the 

same method, Prudden et. al. also showed that SLD1 interacts with the sumoylation 

enzymes Fub2, (part of the activating enzyme E1), a Pli1 (an E3 ligase), and with the 

STUbL complex component Slx8. 



Fig. 3.8 Solubility trials of SLD2 mutants  

 

A) SDS-PAGE of the pellet and the supernatant of an E. coli culture 

expressing SLD2 wild type lysed in the binding buffer for Ni2+ 

purification 

 

B) SDS-PAGE of pellets and supernatants of E. coli cultures expressing 

SLD2-I334G mutant lysed in NaAc, Tris and HEPES buffers, pH 5.5, 

0.2M NaCl 

 

C)  SDS-PAGE of pellets and supernatants of E. coli cultures expressing 

SLD2-L338G mutant lysed in NaAc, Tris and HEPES buffers, pH 7.5, 

0.3M NaCl 

 

D)  SDS-PAGE of pellets and supernatants of E. coli cultures expressing 

SLD2-L348G mutant lysed in NaAc, Tris and HEPES buffers, pH 8.5, 

0.4M NaCl 

 

L = ladder; P = pellet; SN = supernatant 
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Fig. 3.9 Residues of SUMO-1 required for non-covalent interaction  
   with Ubc9 are conserved in SLD2 

A)  Sequence alignment of SUMO-1, SLD1 and SLD2. Highlighted (  ) 
      are residues required for non-covalent interaction with Ubc9. 

B) Cartoon representation of the non-covalent interaction between SUMO-1 
      and Ubc9 based on the crystal structure of the complex (pdb id 2PE6; 
     left)  and the conserved residues highlighted on the SLD2 structure  
     (pdb id 3GOE; right) 
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Fig. 3.10 SLD2 interacts with Hus5 in vitro 
 
 
 
GST pull-down assay was carried out with recombinant GST, His-SLD2 and GST-Hus5. 

Pull down assay of SLD2 with GST only was carried out in parallel as a negative control 

(lanes 1 – 4). 

GST and GST-Hus5 are represented as loads L (lanes 1 and 8) and His-SLD2 is 

represented as input I (lanes 2 and 7). 

Supernatants resulting after incubation with glutathione sepharose beads are represented as 

unbound fractions U (lanes 3 and 6).  

The fractions eluted from glutathione sepharose beads are represented as bound fractions B 

(lanes 4 and 5) 



Fig. 3.10 SLD2 interacts with Hus5 in vitro 

SDS-PAGE of  in vitro GST pull-down assay of  GST  and GST-Hus5 with 

SLD2-His.  

L = load; I = input; U = unbound; B = bound 
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3.4 Analysis of putative SBMs 
 

Apart from the SUMO-like domains and the N-terminal SXS motif, Rad60 contains 

three hydrophobic regions that correspond to amino acid sequences of SIMs, V/I-V/I-X-

V/I or V/I-X-V/I-V/I (see section 1.4.6).  It has been proposed that these regions, named 

SUMO-binding motifs (SBMs), facilitate the homodimerization of Rad60 (Raffa GD et 

al., 2006). These putative SBMs are located near or within SLD1 (SBM1 and SBM2 

respectively) and at the C-terminal of Rad60, within the SLD2 domain (SBM3) (fig. 

3.1). Pull-down assays and phenotypic characterization of key mutants were employed 

to investigate whether these putative SBMs can indeed function as SIMs and, if so, 

whether they are essential for Rad60 functions by facilitating its homodimerization. 

 

3.4.1  Putative SBMs do not facilitate Rad60 dimerization in vitro 
!
To determine whether putative SBMs facilitate Rad60 homodimerization, in vitro GST 

pull-down assays were carried out with Rad60FL, Rad60CT (deleted for SLD2) and 

SLD2. Recombinant His-Rad60FL, GST-Rad60FL, His-Rad60CT, GST-Rad60CT, 

His-SLD2 and GST-SLD2 were expressed in E. coli and purified as previously 

described (see sections 2.4.8 and 2.4.9; DNA constructs made by Dr. F.Z.Watts, 

University of Sussex). Pull-down assays of GST only and the His tagged components 

were carried out in parallel as negative controls. Firstly, to see if Rad60 homodimerises 

in vitro, the pull down of His-Rad60FL was carried out with GST-Rad60FL. This 

showed an interaction between the two proteins (fig. 3.11 A, lane 5) confirming 

previous results obtained from assays carried out on S. pombe whole cell extract (Raffa 

et al., 2006) and was used as a positive control for further pull downs of Rad60FL. If 

SBMs facilitate Rad60 dimerization by interacting with the SLDs then any fragment of 

Rad60 that contains an SBM should interact with fragments of Rad60 that contain an 

SLD, ie Rad60FL should interact with Rad60CT (fig. 3.11 B) and SLD2 (fig. 3.11 C).  

However, no interactions were observed between Rad60FL and Rad60CT (fig 3.11 B, 

lane 5) or SLD2 (fig. 3.11 C, lane 5) under the conditions that Rad60FL 

homodimerizes. Further pull-down assays of GST-Rad60CT with His-Rad60CT (fig. 



Fig. 3.11 Rad60 does not interact with Rad60CT or SLD2 in vitro 

A)  SDS-PAGE of in vitro GST pull-down assay of GST tagged 
Rad60FL and His tagged Rad60FL 

B)  SDS-PAGE of in vitro GST pull-down assay of GST tagged 
Rad60FL and His tagged Rad60CT 

C)  SDS-PAGE of in vitro GST pull-down assay of GST tagged 
Rad60FL and His tagged SLD2 

L=ladder; I/G=input GST component; I/H=input His component; 
U=unbound; B=bound; oval highlights interaction; red cross 
highlights lack of interaction 
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3.12 A) and His-SLD2 (fig. 3.12 B), and GST-SLD2 with His-SLD2 (fig. 3.12 C) 

showed no positive interactions. These data suggest that Rad60 homodimerization does 

not occur through interactions between SLDs and putative SBMs or/and that full-length 

protein is required for dimerization. 

 

 

3.4.2 Putative SBMs do not interact with SUMO in vitro 

!
Having determined that the putative SBMs do not facilitate Rad60 homodimerization in 

vitro, the question remained as to wether these hydrophobic regions with sequence 

homology with SIMs can interact with free SUMO in vitro.!GST pull-down assays of 

Rad60FL and SLD2 were carried out with recombinant Pmt3 protein (S. pombe SUMO 

homologue). As the non-covalent interaction between the SUMO conjugating enzyme 

and SUMO has been recognized (Capili and Lima, 2007, Liu et al., 1999), the in vitro 

pull-down of GST-Hus5 and His-Pmt3 was used as positive control (fig. 3.13 A). Pull-

down assays of GST-Rad60FL (fig. 3.13 B) and GST-SLD2 (fig. 3.13 C) with His-

SUMO showed no interaction, further suggesting that these putative SBMs do not 

function as SIMs. To assess the in vitro data, in vivo analysis of SBMs mutants was 

carried out. 

 

3.4.3 Effect of mutating putative SBMs 
!
If SBM2 and SBM3 are important functional elements of SLD1 and SLD2 respectively, 

then mutating them should result in phenotypes similar to those seen in rad60-SLD1Δ 

and rad60-SLD2Δ mutants, i.e. lethality and sensitivity to DNA damaging agents 

respectively. Mutations of SBM1, SBM2 and SBM3, where two valine residues of each 

SBM were replaced with alanine to obtain rad60-SBM1, rad60-SBM2 and rad60-SBM3 

strains (fig. 3.14 A; all strains created by Dr. F.Z.Watts) resulted in viable cells. This 

indicates that at least SBM2 is not involved in the essential function of SLD1. 

Interestingly rad60-SBM3 is slow growing at 36°, suggesting that SBM3 is important 

for the SLD2 structure. Phenotypic analysis of the SBMs mutants revealed that rad60-

SBM1 and rad60-SBM2 are not sensitive to HU, MMS or UV, while rad60-SBM3 
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Fig. 3.12 In vitro GST pull down assays of Rad60 fragments 

A)  SDS-PAGE of in vitro GST pull-down assay of GST tagged 
Rad60CT and His tagged Rad60CT 

B)  SDS-PAGE of in vitro GST pull-down assay of GST tagged 
Rad60CT and His tagged SLD2 

C)  SDS-PAGE of in vitro GST pull-down assay of GST tagged SLD2 
and His tagged SLD2 

L=ladder;I/G=input GST component; I/H=input His component; 
U=unbound; B=bound; red cross highlights lack of interaction 
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Fig. 3.13 Rad60 and SLD2 do not interact with SUMO in vitro 

A)  SDS-PAGE of in vitro GST pull-down assay of GST tagged 
Hus5 and His tagged SUMO 

B)  SDS-PAGE of in vitro GST pull-down assay of GST tagged 
Rad60FL and His tagged SUMO 

C)  SDS-PAGE of in vitro GST pull-down assay of GST tagged 
SLD2 and His tagged SUMO 

L=ladder; I/G=input GST component; I/H=input His component; 
U=unbound; B=bound; oval highlights interaction; red cross 
highlights lack of interaction 
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Fig. 3.14  Effect of mutating the three putative Rad60-SBMs 

A)  Table of SBMs mutants  and their response to permissive and 
restrictive temperatures. Strains were streaked onto YEA and 
incubated at the indicated temperatures for 5 days. 

B)  Phenotypic analysis of SBMs mutants and SLD2Δ in response to 
HU and MMS.        represents 10 folds reductions in 
number of cells plated. 
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displayed a phenotype more severe than that of rad60-SLD2Δ (fig. 3.14 B). This result 

was intriguing as SBM3 is within the SLD2 and, given the temperature sensitivity as 

well, further tests were carried out to identify the structural and/or functional 

importance of SBM3. 

 

3.5 Putative SBM3 is essential to maintain SLD2 structure 
 

SUMO-1, like SLD2, has an amino acid sequence at the C-terminal that conforms with 

a SIM (V/I-V/I-x-V/I) (fig. 3.15 A). The crystal structure of SUMO-1 (pdb id: 1A5R) 

shows that this region forms the β5 sheet of the β-GRASP fold of SUMO-1 (fig. 3.15 

B). The fact that SLD2 adopts the same structure as SUMO-1 suggests that the SBM3 

may be required for maintaining the β-GRASP fold of SLD2. To assess this the 

purification of a His-tagged SLD2_SBM3 mutant was conducted under the same 

purification conditions as His-tagged SLD2 wild type.  Interestingly, while the mutant 

was soluble in the lysis buffer, the elution of the mutant showed a different pattern 

compared to that of wild type SLD2, exhibiting high molecular mass species (fig. 3.16 

A).  The elute fractions of the wild type and mutant SLD2 were run on a Superdex 75 

10/300 gel filtration column and the fractions corresponding to observed peaks were 

checked by SDS PAGE (fig. 3.16 B). Consistent with the previous results, the majority 

of the mutant eluted earlier off the Superdex 75 10/300 column than the wild type. 

These fractions correspond to significantly higher molecular weight soluble aggregates. 

To confirm these results the fractions from the gel filtration were analysed by DLS. The 

spectrum of the wild type protein shows a peak at approximately 4 nm for the 

hydrodynamic radius while the mutant spectrum shows a peak at approximately 10 nm 

(fig. 3.16 C), a difference corresponding to a 16 times increase in volume, further 

suggesting that the SLD2-SBM3 mutant forms soluble aggregates.  

 

Mapping the putative SBM3 onto the crystal structure of SLD2 shows that, as in 

SUMO-1, this region forms the β5 sheet of the β-GRASP fold of SLD2 (fig. 3.17 A). 

Guanidine hydrochloride induced denaturation of SLD2 was used to measure the 

change in the stability of the SBM3 mutant relative to that of the wild type. The free 

energy of the unfolding (ΔGU-F) of wild type SLD2 was calculated from the normalized 

GuHCl induced denaturation curve (fig. 3.17 B) to be 6.2 kcal/mol (experiments and 
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B. 

Fig. 3.15 SUMO-1 has a sequence consistent with a SIM at the C-terminal 

A)  Sequence alignment of SUMO-1 and SLD2. Highlighted in red are the  
     sequences consistent with SIMs 
B) Representation of amino acids that form the β5 sheet of the SUMO-1  
     structure 



Fig. 3.16 Mutation of SBM3 results in SLD2 aggregation 

A)  SDS-PAGE of SLD2 and SLD2 with SBM3 mutated purified 
from Ni2+ agarose  (V1, V2 and V3 represent fractions from gel 
filtration) 

B)  Gel filtration chromatogram and SDS-PAGE of fractions  of 
SLD2 and SLD2 with SBM3 mutated 

C)  Dynamic Light Scattering spectra of SLD2 and SLD2 with SBM3 
mutated 
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Fig. 3.17 Crystal structure and denaturation studies of SLD2  

  confirm the structural requirement of putative SBM3  

             for Rad60 stability 

A)  Cartoon representation of SLD2 (modeled on pdb id.  

      3GOE). Highlighted are the residues of β-5 sheet. 

B) Guanidine hydrochloride-induced denaturation curve of wild 

 type  SLD2. 

A. 

B. 
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calculations carried out by Dr. E. Main). It has been shown that the extent of 

destabilization, or stabilization, of a protein is highly context dependent and the removal 

of a methylene group side chains of a hydrophobic residue will result in a 

destabilization energy of 1±0.3 kcal/mol of the protein (Main et al., 1998). Therefore 

mutation of two valine residues to two alanines removes 4 methylene groups and 

decreases the overall stability of the protein of approximately 4 kcal/mol. This would 

result in the SLD2-SBM3 mutant domain being completely unfolded. These 

biochemical data, together with the severe phenotype observed for the rad60-SBM3 

mutant strongly suggest that the SBM3 region is essential to maintain the β-GRASP fold 

of SLD2 and the overall structure of Rad60 and that an unfolded SLD2 domain is more 

damaging to the Rad60 function than the deletion of the domain. 

 

 To further identify the features of the SLD2 domain crystallography studies were 

undertaken. 

 

 

3.6 Crystallographic studies of SLD2 
!
For crystallographic trials of SLD2, protein purified on Ni2+ agarose beads (fig. 3.7) 

was further purified by FPLC. Firstly, the His elution buffer, unsuitable for FPLC, was 

exchanged to an equilibrating buffer (50 mM TrisHCl pH 8.0, 10 mM MgCl2, 300 mM 

NaCl) suitable for size-exclusion chromatography (gel filtration), using disposable PD-

10 desalting columns (GE Healthcare Life Sciences). Fractions were pooled and 

concentrated to 0.5 ml using a Pierce concentrator with MCO 3K. The protein was 

loaded into a HiLoad 16/60 Superdex 75 10/300 GL column (Amersham Biosciences) 

attached to an ÄCTAFPLC system (GE Healthcare). The column was initially washed 

with the appropriate equilibrating buffer with a flow rate of 0.5 ml/min. The protein 

solution was then loaded and fractions collected every 1.2 ml. Fractions were monitored 

using the online UV monitor measuring absorbance at 280 nm (fig. 3.18 A). Fractions 

containing SLD2 were checked by SDS-PAGE (fig. 3.18 A) and then pooled and 

concentrated to 10 mg/ml using a Pierce concentrator with MCO 3K. The resulting 

protein solution was tested by DLS and the results showed that it was monodisperse, ie 

suitable for crystallography (fig. 3.18 B).  
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Fig. 3.18 Purification and stability studies of His tagged  SLD2 

A) Chromatogram of size-exclusion purification of SLD2 and Coomassie     
stain of fractions containing pure SLD2 

B) Dynamic Light Scattering  results for SLD2: tabulated data and 
spectrum showing polydispersity and  average particle size respectively 
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Crystallography screening was conducted using the vapor diffusion ‘hanging drop’ 

technique based on equilibrating a protein solution against a reservoir containing 

crystallizing agents at higher or lower concentrations than that of the protein solution in 

the drop.  A pre-crystallization test was conducted to determine the appropriate protein 

concentration according to the manufacturer’s instructions (kit purchased from 

Hampton Research). A light amorphous precipitate was obtained with a protein 

concentration of 8 mg/ml (fig. 3.19 A) and further screening was conducted with this 

concentration with various sparse matrices (all from Molecular Dimensions). Crystals 

were obtained with Clear Strategy Screen II (CSS II) matrix, 0.8M Li2SO4, pH 6.5, and 

with Structure Screen I (SS I) matrix, 10% 2-propanol, 0.1 M Na HEPES, 20% 

PEG4000, pH7 (fig. 3.19 B). The crystals were mounted on a nylon loop of the suitable 

dimension (Hampton Research), transferred for 5-10 seconds into a stabilising solution 

containing the cryoprotectant (the reservoir solution plus 30% glycerol), flash-frozen in 

liquid nitrogen and X-rayed on a Rigaku 007HF rotating anode generator with 

VariMax-HF mirrors and Saturn 944+ CCD detector. However no diffraction pattern 

was obtained from these crystals and further optimization of the crystallization 

screening was considered. At this point, the crystal structure of SLD2 was solved at The 

Scripps Institute, USA (Prudden et.al.,2009, pdb id: 3GOE, fig. 3.20), and proved the in 

silico prediction that SLD2 adopts a β-GRASP fold like SUMO . 

 

 

3.7 Discussion 
  

In this chapter I have structurally and functionally characterised a SUMO-like domain, 

SLD2, and a putative SUMO-binding motif, SBM3, of the Rad60 protein. 

 

3.7.1 Structure and function of Rad60 
 

The crystal structure of SLD2 (Prudden et al., 2009) confirmed the in silico and in vitro 

results obtained in this study, that SLD2 mimics SUMO by adopting a β-GRASP fold 

and interacting non-covalently with the SUMO conjugating enzyme Hus5 through a 



Fig. 3.19 Crystallization of SLD2   

A)  Amorphous light precipitate of SLD2 obtained with PCT kit  
        (Hampton research) 

B)  Crystals of SLD2 protein obtained with CCSI (left) and SSI 
(right) matrices (Molecular Dimensions) 

A."

B."



Fig. 3.20 Cartoon representations of crystal structure of Sp SLD2 (pdb: 3GOE; left) and Hs 

 SUMO-1 (pdb: 1A5R, right).  

Depicted are the secondary structure elements in the β-GRASP fold."
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conserved surface. While the SLD1 sequence can be modeled onto the SUMO-1 and 

SLD2 structures, its 3D folding has yet to be defined. This is intriguing as proteins 

adopting the β-GRASP fold like ubiquitin, SUMO and now SLD2, are very stable and 

can be easily expressed and purified as recombinant proteins. This suggests that while 

SLD1 may adopt a similar fold, this is probably somewhat divergent from the classical 

β-GRASP fold or could be hydrophobic on the surface. Interestingly, a Rad60 fragment 

deleted for SLD2, Rad60CT, can be expressed and purified as His and GST-tagged 

recombinant proteins with good yields. Moreover Rad60CT can be modeled using the 

on-line PHYRE modeling engine (fig. 3.21). The model suggests that SLD1 interacts 

strongly with the N-terminal of Rad60 and this interaction could stabilize the domain. 

As a Rad60 full length recombinant protein cannot be purified with good yields and 

purity, a problem highlighted by the fact that its crystal structure has not yet been 

defined, crystallographic studies of the Rad60CT could provide insights into Rad60 

structure, homodimerization and function. 

 

3.7.2 Putative SUMO-binding motifs (SBMs) 
 

Experimental data show that the SUMO-like domains are essential for the function of 

Rad60. Deleting SLD1 results in inviable cells while rad60-SLD2Δ is sensitive to DNA 

damaging agents. Further, it has been shown that these phenotypes are not due to 

mutation of the putative SUMO-binding motifs within the SLDs (Boyd et al., 2010). 

However, further analysis of these mutants showed that the SBM3 mutant loses 

viability at 36° unlike the other two SBMs mutants or rad60-SLD2Δ and shows a more 

severe phenotype than rad60-SLD2Δ in response to genotoxins. This is interesting as 

SBM3 is within SLD2. From the crystal structure of SLD2 can be seen that SBM3 

forms the β5 sheet of the β-GRASP fold and its mutation more likely destabilizes the 

structure of SLD2, which in turn may affect the whole structure of Rad60 more than just 

deleting SLD2. Moreover, the failure of Rad60 to dimerise in these circumstances could 

be due to this structural destabilization and not to the abrogation of the interaction 

between SBMs and SLDs. Further, pull-down assays of Rad60 fragments containing 

putative SBMs show no interactions with free SUMO. Taken together, these data imply 

that, from their sequence, the hydrophobic regions appear to be SIMs but do not 

necessary function as SIMs. The only putative SBM of the RENi family of proteins 



Fig. 3.21 Structural model of Rad60CT (deleted for SLD2) 

Green = N- terminal; blue = SLD1; magenta = putative SBM1 and SBM2 

1800 
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shown to interact with SUMO is the SBM1 of Esc2, the S. cerevisiae ortholog (fig. 3.22 

A) (Yu et al., 2010). This raises the possibility that SBM1 of Rad60 may interact with 

SLD1 or SLD2. However it has been shown that the SUMO interface that interacts with 

SIMs is not conserved in SLD2 (Sekiyama et al., 2010). The model of Rad60CT 

suggests that the SBM1 forms a β-sheet that closely interacts with SLD1 (fig. 3.22 B). If 

this region is required to maintain the intramolecular structure of Rad60 it is unlikely 

that it will be available for intermolecular interactions with SUMO moieties or other 

Rad60 molecules. However, it cannot be excluded that these interactions could be 

facilitated by an allosteric behavior or environment induced conformational changes of 

the Rad60 protein. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 3.22 Only SBM1 of Esc2 protein interacts with SUMO 

A.  Sequence alignment of RENi family of proteins. Highlighted in 
      blue is the N-terminal SXS motif; in red putative SBMs; In bold,  
      SBM1 of Esc2, the only SBM shown to interact with SUMO 

B.  SBM1 of Rad60, mapped in magenta on the model structure of  
      Rad60CT, forms a β-sheet that forms hydrophobic interactions with  
      a β-sheet of SLD1 

A."

B."
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  CHAPTER 4 

SUMO CHAIN FORMATION IS REQUIRED FOR 

DNA DAMAGE RESPONSE DURING S PHASE 
 
 
 

4.1 Introduction 
!
Like ubiquitin, SUMO has been shown to form polymeric chains at lysine residues at its 

extended non-ubiquitin like N-terminal. Chains formed by human SUMO-2 and 

SUMO-3 were first identified in HeLa cells (Tatham et al., 2001) and later SUMO 

(Smt3) in S. cerevisiae  (Bylebyl et al., 2003, Takahashi et al., 2003) and Pmt3 in S. 

pombe (Ho and Watts, 2003). The first identified physiological substrate for SUMO 

chains was the histone deacetylase HDAC4 (Tatham et al., 2001).  

 

Proteomic investigations into endogenous poly-SUMO conjugates (Bruderer et al., 

2011, Golebiowski et al., 2009, Tatham et al., 2011) suggest that proteins involved in 

DNA replication and DNA damage responses modified by SUMO polymers accumulate 

in response to various stress stimuli. This is consistent with phenotypes observed for 

mutants of the sumoylation pathway components such as the SUMO conjugating 

enzyme, Hus5Ubc9, or the SUMO protease responsible for SUMO chain editing, Ulp2, 

which display hypersensitivity to a range of genotoxins. 

 

The proliferating cell nuclear antigen (PCNA) clamp protein is essential for DNA 

damage responses during replication. PCNA is one of the few targets identified as being 

ubiquitinated and sumoylated at the same lysine residues (Ulrich, 2005). The 

architecture and assembly of poly-SUMO chains on PCNA was described in S. 

cerevisiae  (Windecker and Ulrich, 2008) and mammalian cells (Gali et al., 2012). In 

humans the poly-sumoylation of PCNA is required for replication fork stabilization at 

double strand breaks (Gali et al., 2012). In S. cerevisiae SUMO polymers can co-exist 
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with ubiquitin chains on a common PCNA subunit and are dispensable for the PCNA 

functions in DNA replication and repair (Windecker and Ulrich, 2008).  

 

So far, the best characterized function of SUMO chains is targeting of proteins for 

proteasomal degradation. SUMO chains anchored to substrates interact non-covalently 

with tandem SIMs present in RNF/SLX type ubiquitin E3 ligases known as STUbLs 

(SUMO-Targeted Ubiquitin Ligases, (Prudden et al., 2007). The interaction of 

conjugated SUMO chains with STUbLs results in the degradation of the substrate 

proteins by the UPS (Ubiquitin Proteasome System) (Perry et al., 2008, Tatham et al., 

2008).  

 

In this study I began an analysis of the sequence requirements for SUMO chain 

formation in S. pombe. Having identified the lysines involved in chain formation and 

analyzed chain formation in an in vitro sumoylation assay, the phenotypic consequences 

of mutating sumoylated lysines were characterized. The gene coding for the S. pombe 

SUMO protein is referred to as pmt3, while for the translation product the general name 

SUMO was adopted. 

 

4.2 In silico analysis of sequence requirement for SUMO   

chains formation 
!
All SUMO homologues have an extended disordered N-terminus with lysine residues 

that can potentially act as substrates for polymeric chains (fig. 4.1).  In mammals 

SUMO-2 and SUMO-3 have two lysine residues at the N-terminal, K5 and K11, with 

K11 within the tetrapeptide consensus motif for SUMO attachment (ΨKxE) (fig. 4.1).  

It was shown that K11 only is a substrate for chain formation (Tatham et al., 2001). In 

S. cerevisiae SUMO has three lysine residues at the N-terminal, K11, K15 and K19, all 

within SUMO acceptor consensus sequences (fig. 4.1) and all involved in polymeric 

chain assembly (Bylebyl et al., 2003). Interestingly, the S. pombe SUMO homologue, 

Pmt3, has a significantly longer disordered N-terminal region with two lysine residues, 

K14 and K30, which are not within consensus sequences (fig. 4.1). However, 

sumoylation at lysines that are not within the consensus sequence has been observed 



Sp: Pmt3 

Hs: SUMO-2 

Sc: SMT3 

Fig. 4.1 Sp SUMO has an extended, disordered N-terminus  

A)  ClustalW sequence alignment of  Sp Pmt3, Sc SMT3, Hs SUMO-2 
      and Hs SUMO-3  

B) In silico analysis of N-termini of Sp Pmt3, Sc SMT3 and Hs SUMO-2  
    using DISOPRED2 software (Ward et al., 2004). Highlighted (   ) are lysine  
    residues involved in chain formation in Sc and Hs, and potential lysine  
    residues involved in SUMO chain formation in Sp. 

A. 

B."
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(Lin et al., 2006, Hoege et al., 2002, Pichler et al., 2005, Meulmeester et al., 2008). 

Additionally it has been shown that SUMO forms chains at K30 (Andrews et al., 2005). 

This raises the question as to whether both K14 and K30 are substrates for polymeric 

chains assembly (fig. 4.2). To assess this, recombinant SUMO-K14R, SUMO-K30R 

and SUMO-RR (both K14 and K30 mutated to arginine) mutants were probed for 

SUMO chain formation in a previously developed in vitro sumoylation assay (Ho et al., 

2001). 

 

 

4.3 Expression and purification of recombinant sumoylation   

pathway components and optimization of the in vitro 

sumoylation assay 
!
In vitro sumoylation assays have evolved as an important tool for the analysis of this 

post-translational modification (Desterro et al., 1998, Ho et al., 2001, Okuma et al., 

1999, Johnson et al., 1997) as they can be set-up as well defined systems where the 

components of the sumoylation machinery and targets can be biochemically 

characterized. Reconstituting SUMO modification in vitro requires expression and 

purification of the recombinant mature form of SUMO (SUMO-GG), the heterodimeric 

activating enzyme E1 (Rad31 + Fub2), the conjugating enzyme E2 (Hus5), the E3 

ligases (Pli1 and Nse2) and the target proteins.  

 

4.3.1 Co-expression and purification of E1 
!
The recombinant SUMO-activating enzyme has been mainly expressed and purified for 

sumoylation assays from two independent E. coli cultures expressing Fub2Uba2 and 

Rad31Aos1 either His- or GST-tagged. While this method produces the proteins in good 

quantity and free of contaminants, the enzymatic activity of the complex, probed by the 

capacity to form SUMO chains in in vitro assays, seemed to vary from batch to batch. 

As the two proteins may stabilize each other by forming a heterodimer, the variations in 

the enzymatic activity could be due to some misfolding of the components before they 
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Fig. 4.2 N-terminal lysines of SUMO proteins are required for SUMO chain formation  

Lysine residues (green) mapped on the model of SUMOSp and crystal structures of SUMO-2Hs (pdb id: 1WZ0) and Smt3Sc 

(pdb id: 1L2N) respectively. 
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dimerise. To address this problem, co-expression of the components with two different 

tags followed by two steps purification was carried out.  

 

A fub2 construct in a pGEX-KGH vector was already available (made by J. Ho). As the 

pGEX-KGH has a GST tag and the ampicillin selection marker, rad31 ORF was cloned 

into the pET28a vector which has a His tag and the kanamycin selection marker. The 

rad31 ORF was digested from the pET15b plasmid (construct made by J. Ho) using the 

NdeI and BamHI enzymes (fig. 4.3 A). The rad31 fragment was gel purified and then 

ligated in the pET28a vector that has been digested with the NdeI and BamHI enzymes 

(fig. 4.3 B). The ligation product was transformed in NM522 E. coli cells and 

transformed cells were plated onto solid medium containing kanamycin. To express the 

E1 complex, pGEX-KGH-fub2 and pET28a-rad31 constructs were co-transformed in 

BL21Codon+ cells. Transformed cells were plated on solid medium containing 

ampicillin and kanamycin to select for cells that took up both plasmids. The Fub2-

Rad31 complex was first purified on Ni2+ column as described (see section 2.4.9). The 

elution was pooled (~ 1.5ml) and the Ni2+ elution buffer was exchanged for GST 

binding buffer using a PD10 column. The resulting protein solution was incubated with 

glutathione sepharose beads for GST purification as previously described (see section 

2.4.9; fig. 4.3 C). The enzymatic activity of the purified complex was assessed by the 

capacity to form SUMO chains in in vitro sumoylation assay (fig. 4.5). 

 

4.3.2 Expression and purification of E2 and E3 enzymes and  

          SUMO-GG 
!
The SUMO conjugating enzyme Hus5, the SUMO E3 ligases Pli1 and Nse2 and the 

modified form of SUMO with the double glycine motif at the C-terminal (SUMO-GG) 

were expressed and purified from previously made DNA constructs (made by J. Ho). 

Hus5 and Nse2 were expressed from the pGEX-KGH plasmid (constructs made by J. 

Ho and E. Outwin respectively) as GST fusion proteins. GST purification was carried 

out as previously described (see section 2.4.8; fig. 4.4 B and fig. 4.6 B respectively) and 

the elutions concentration was assessed using a Bradford assay. SUMO-GG and Pli1 

were expressed from the pET15b plasmid (construct made by J. Ho) as 6 x His fusion 

proteins. Ni2+ purification was carried out as previously described (see section 2.4.9; 
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Fig. 4.3 Co-expression and purification of Fub2/Rad31 (E2) complex 

A)  Digestion of rad31 ORF from pET15b plasmid with Nde1/BamHI  
      enzymes 
B)  Ligation of rad31 ORF into pET28a plasmid digested with NdeI and 
      BamHI enzymes. 
      Lane 1: rad31 ORF digested from pET15b; lane 2: pET28a plasmid  
      digested with NdeI/BamHI; lane 3: ligation of rad31 ORF in pET28a 
C)  Coomassie stain of Ni2+ /GST purified Rad31/Fub2 complex; 
       P = pellet; FT = flow through; E = elute; 
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Fig. 4.4 Expression and purification of His-Pmt3-GG and GST-Hus5 

A)  Coomassie stain of Ni2+ purified His-Pmt3-GG 

B)  Coomassie stain of glutathione sepharose purified GST- Hus5 

L = ladder; P = pellet; FT = flow through; E = elute; 
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fig. 4.4 A and fig. 4.7 A respectively) and the elutions concentration was assessed using 

a Bradford assay.  

 

4.3.3 Optimization of the in vitro sumoylation assay 
!
Different incubation conditions have been reported for in vitro sumoylation assays: 1 

hour at 37⁰C (Xhemalce et al., 2004), 2 hours at 30⁰C (Ho et al., 2001) or 1 hour at 

30⁰C (Flotho et al., 2012). To assess the best conditions, assays were carried out at 

30⁰C and 37⁰C for 2 hours and 1 hour respectively. Samples were taken at various times 

and probed for high Mr sumoylated species (fig.  4.5).  Interestingly high Mr species are 

formed after just 20-30 minutes at both temperatures but at 30⁰C they appear gradually 

while at 37⁰C they appear abruptly. Given that the most polymeric species were 

observed at 30⁰C after 2 hours (fig. 4.5 B lane 8) and that this is the physiological 

growing temperature of S. pombe, these conditions were used for all further assays. 

!
!

4.3.4 Pli1 is more efficient than Nse2 at forming SUMO chains in vitro 

!
Previously it has been shown that E3 ligases enhance SUMO chain formation in S. 

cerevisiae (Takahashi et al., 2003, Johnson and Gupta, 2001) and mammalian cells 

(Pichler et al., 2002) Having optimized the conditions for the formation of SUMO 

chains in vitro independent of the E3 ligases, the next step was to assess whether Pli1 

and Nse2 facilitate SUMO chain formation under these conditions.  

 

His-Pli1, GST-Nse2 and GST-Nse2-SA (ligase dead mutant, fig. 4.6 C) recombinant 

proteins were expressed from pET15b for Pli1 and pGEX-KGH for Nse2 and Nse2-SA 

vectors (constructs made by J. Ho and E. Outwin respectively) and purified as 

previously described (see sections 2.4.8 and 2.4.9 respectively; fig. 4.6 A, B and D). 

The ligase activities of Pli1 and Nse2 have been previously assessed on target proteins 

(Ho et al., 2001, Andrews et al., 2005) by reducing the amount of the conjugating 

enzyme, Hus5, to a tenth, which results in reduction of sumoylation. Adding the SUMO 
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Fig. 4.5  In vitro sumoylation assay time course 

A.  Western blotting of in vitro sumoylation assay carried out at 37°C;   
 samples taken at shown times; probed with SUMO antibodies. 

B. Western blotting of in vitro sumoylation assay carried out at 30�C;   
     samples taken at shown times; probed with SUMO antibodies. 
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Fig. 4.6 Expression and purification of SUMO E3 ligases 

A)  Coomassie stain of Ni2+ purified His-Pli1 

B) Coomassie stain of glutathione sepharose purified GST-Nse2 

C) Sequence alignment of Nse2 and Nse2SA highlighting the mutated residues 

D) Coomassie stain of glutathione sepharose purified GST-Nse2-SA 
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E3 ligases can restore the levels of sumoylation. The same strategy was used to assess 

the efficiency of SUMO E3 ligases at forming SUMO chains (fig. 4.7).  Interestingly, a 

low level (5 nM) of Pli1 was sufficient to restore the levels of SUMO chains to that 

obtained using the full amount of Hus5 (fig. 4.7 lane 3) and increased quantities of Pli1 

did not further increase the levels of SUMO chains (fig. 4.7 lanes 4 and 5). In contrast, 

twenty times more (100 nM) Nse2 was required to restore the levels of polymeric 

SUMO (fig. 4.7 lane 8).  The ligase activity of wild type Nse2 was compared with that 

of Nse2-SA, which has a mutated RING domain (fig. 4.7 lane 9).   The lack of high Mr 

SUMO species when Nse2-SA was used confirms the requirement of the RING domain 

for the ligase activity. 

 

These results provide evidence that, at least in vitro, Pli1 is required in enzymatic 

quantities to sumoylate substrates, while Nse2 probably act as a scaffold protein to 

facilitate sumoylation. 

!!

4.4 In vitro SUMO chain formation occurs at K14 and K30  
!
With the in vitro sumoylation assay optimized and the activity of all components 

assessed, the next step was to determine whether SUMO chain formation occurs at K14, 

K30 or both. To achieve this, the three mutants, singles and the double, were expressed 

and purified as recombinant proteins. 

 

4.4.1 Expression and purification of SUMO chain mutants 
!
Purified His-SUMO-K30R protein was already available (work carried out by E. 

Outwin). His-SUMO-K14R and His-SUMO-RR (K14R, K30R) were expressed from 

pET15b constructs (made by F.Z.Watts) and purified as described (see section 2.4.9, 

fig. 4.8 A). The mutants were checked to determine whether they are recognized by anti 

SUMO antibodies as efficiently as wild-type SUMO (fig. 4.8 B). 

!
!
!



Fig. 4.7  Pli1 is 20x more efficient than Nse2 at facilitating in vitro SUMO  
               chain formation 

Western blotting of in vitro SUMO assay probed with SUMO antibodies. 
All components are in nanomolar quantities. 
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Fig. 4.8 Expression and purification of SUMO mutants for in vitro  
 sumoylation assays 

A.  Coomassie stain of Ni2+  purified SUMO mutants.   
      P = pellet; FT = flow through; E = elute 

B.  Western blotting of SUMO-GG and SUMO chain mutants probed 
with SUMO antibodies 
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4.4.2 Both K14 and K30 are substrates for SUMO chain formation in   

the absence of E3 ligases 
!
The sumoylation assay was carried out with the SUMO activating enzyme (E1) and the 

conjugating enzyme (E2) but no E3 ligases. The ability of the mutants to form 

polymeric chains was compared to that of the wild type protein. Both single mutants, 

SUMO-K14R and SUMO-K30R, form similar levels of SUMO chains (fig 4.9 lanes 2 

and 3), slightly less than that of the wild type SUMO (fig. 4.9 lane 1).  However, the 

double mutant, SUMO-RR, shows a drastic reduction in SUMO chains (fig. 4.9 lane 4), 

with few high Mr species visible, possibly representing SUMO conjugated forms of the 

activating and/or the conjugating enzymes. These results imply that K14 and K30 are 

the only lysine residues involved in SUMO chain formation, and that if one of them is 

unavailable for chain formation the other one is sufficient for SUMO polymerization. 

!
!

4.4.3 E3 ligases facilitate SUMO chain formation at K14 and K30 
!
Having demonstrated that SUMO chain formation occurs at both lysines independently 

of E3 ligases, the effect of mutating K14 and K30 on chain formation facilitated by E3 

ligases was assessed. In vitro sumoylation assays were carried out with reduced 

quantities of the SUMO conjugating enzyme (1/10th) and with the amount of Pli1 and 

Nse2 required to restore poly-SUMO species (fig. 4.10). 

 

Nse2 displays a drastic decrease in poly-SUMO species when both lysines are mutated 

(fig. 4.10 A lane 9) compared to SUMO wild type, and lower levels when K30 is 

mutated (fig. 4.10 A lane 7) than when K14 is mutated (fig. 4.10 A lane 5). This is 

consistent with previously published data that Nse2 facilitates SUMO chain formation 

at K30 in vitro (Andrews et al., 2005). Interestingly, Pli1 has the opposite effect with a 

decrease in poly-SUMO species when K14 (fig. 4.10 B lane 5) is mutated while 

mutated K30 (fig. 4.10 A lane 7) displays similar levels as SUMO wild type (fig. 4.10 A 

lane 3) with the double mutant, SUMO-RR, (fig. 4.10 A lane 9) showing similar levels 

as SUMO-K14R. 

 



2 SUMO 

>4 SUMO 

1 SUMO 

Hus5-SUMO 
3 SUMO 
4 SUMO 

kDa"
175"

83"
62"

47"

32"

25"

Fub2/Rad31(E1):    +     +     +   +     -      -       + 
Hus5 (E2):              +     +     +    +      +     +     - 
SUMO-GG:            +      +     +    +       -     -     - 
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Fig. 4.10 E3 ligases, Pli1 and Nse2 facilitate in vitro SUMO chain formation 

A.  Western Blotting of in vitro sumoylation assay with  SUMO chain mutants 
  and Nse2 E3 ligase 

B.  Western Blotting of in vitro sumoylation assay with  SUMO chain mutants 
  and Pli1 E3 ligase 

Probed with SUMO antibodies. 
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These data suggest that both K14 and K30 are sites of SUMO chain formation in vitro 

in the presence of E3 ligases but with different specificities, with Pli1 preferentially 

acting on K14 while Nse2 having a higher affinity for K30 than K14. 

 

4.5 In vivo analysis of SUMO chains mutants 
!
Given the results from the in vitro analysis of sequence requirements for SUMO chain 

formation, the next step was to determine whether mutating K14 and/or K30 in the 

genome affects the levels of SUMO modification or chain formation. Strains with 

mutant alleles present in cells as the sole copies of pmt3 gene (made by F.Z.Watts, fig. 

4.11) were created by site directed mutagenesis on a pET15b-SUMO construct (fig. 4.11 

A) followed by digestion of the plasmid with Nde1/BamHI restriction enzymes. The 

product was ligated into a pSTA18-pmt3 construct digested with NdeI/BamHI (fig. 4.11 

B). The pmt3 cassette was excised by digestion with Sph1 (fig. 4.11 B) and the fragment 

was used to transform a wild type strain to obtain pmt3-K14R:ura4+, SUMO-

K30R:ura4+ and pmt3-K14RK30R:ura4+  (pmt3-RR) strains. All SUMO chains mutant 

strains were viable although the double mutant, pmt3-RR, grows slower than wild type. 

The mutants are not temperature sensitive (fig. 4.12 A), suggesting that mutating K14 

and K30 to arginine does not affect the folding of the protein and therefore the 

phenotype observed is likely to be due to functional defects and not structural 

aberrations.  

 

4.5.1 K14 and K30 are substrates for SUMO chain formation in vivo 

!
To assess whether mutating K14 and/or K30 in the genome affects SUMO modification 

or chain formation whole cell extracts were prepared using TCA, separated by SDS-

PAGE and probed with anti-SUMO antibodies.  The effects of the mutations on the 

levels of sumoylation were compared with wild type sumoylation levels, pli1Δ and 

nse2-SA strains (fig. 4.12 B).  

 



Fig. 4.11 Constructs for the integration of SUMO chain mutants into  
       the genome as the sole copy of pmt3 gene 

A.  Map of the pET15b – pmt3-GG construct 
B.  Map of the pSTA18 – pmt3-RR construct used for genomic integration 
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Fig. 4.12 Effect of SUMO chain mutations on levels of high Mr sumoylated  

        species  in vivo 

A.  SUMO chain mutants are not temperature sensitive 

B.  Western blot of total cell extracts from wt, pli1-d, nse2-SA and  

SUMO chain mutant cells as indicated, probed with anti-SUMO antisera  

(upper panel) and anti-tubulin antisera (lower panel) 
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The pmt3-K14R strain has a lower level of total sumoylation compared to wild type but 

higher than pli1Δ and nse2-SA. The pmt3-K30R has lower levels than pmt3-K14R, 

similar to that of nse2-SA.  The pmt3-RR strain displays drastic reduction in the levels of 

high Mr SUMO-containing species, similar to those of pli1Δ strain.  

 

These results are consistent with those from the in vitro analysis and show that both 

lysines are required to maintain normal cellular levels of sumoylation. Further, they are 

reminiscent of the phenotype of other sumoylation mutants e.g. rad31Δ (deleted for the 

one component of the SUMO activator heterodimer) (Shayeghi et al., 1997) and hus5-

62 (defective in SUMO conjugation) (Ho and Watts, 2003). 

 

4.5.2 Phenotypic characterization of SUMO chain mutants 
!
As previously characterized sumoylation mutants display cellular and nuclear 

aberrations and are sensitive to genotoxins (Shayeghi et al., 1997, Ho and Watts, 2003) 

SUMO chain mutants were subjected to microscopic visualization of the cellular and 

nuclear structures and response to DNA damaging agents.  

!
!
4.5.2.1 SUMO chain mutant, pmt3-RR, displays aberrant cellular and nuclear 

structures 

 

pmt3-K14R and pmt3-K30R have cellular and nuclear morphologies similar to those of 

wild type cells under normal growth conditions (fig. 4.13, upper panels). However, 

mutating both lysines to arginine results in elongated cells (fig. 4.13, lower panel, a) and 

stretched and fragmented chromatin (fig. 4.13, lower panel, b), resembling 

morphologies of other sumoylation mutants (Shayeghi et al., 1997, Ho and Watts, 

2003). 

 

 

 

 

 



Fig. 4.13  SUMO chain mutant display aberrant cell and nucleus morphology 

Morphology of methanol fixed cells, stained with DAPI and calcofluor. 
     a – elongated cells; b – stretched and fragmented chromatin;  
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4.5.2.2 pmt3-RR is sensitive to hydroxyurea 

 

rad31Δ and hus5-62 sumoylation mutants are sensitive to a range of genotoxins 

(Shayeghi et al., 1997, Ho and Watts, 2003) while the pli1Δ mutant is sensitive only to 

TBZ, the microtubule inhibitor. The pmt3-K30R mutant resembles wild type cells in 

response to HU, MMS, CPT, UV and TBZ (fig. 4.14, not all data shown). The pmt3-

K14R and pmt3-RR mutant cells are not sensitive to MMS, CPT, UV or TBZ but are 

sensitive to high doses (5 mM) of HU (fig. 4.14, not all data shown, sensitivity to HU 

highlighted in red box).  

 

While the sensitivities of SUMO chain mutants are significantly lower than those of 

other sumoylation mutants, the results suggest a function for SUMO chain formation in 

the response to replication arrest. 

 

 

4.5.2.3 SUMO chain formation is required for normal cell growth when    

homologous recombination is impaired 

 

The role of sumoylation in DNA damage repair is well documented (Altmannova et al., 

2010, Dou et al., 2010). It has been shown that in S. pombe Pli1 facilitates the 

sumoylation of the homologous recombination protein Rad22Sp/Rad52Hs/Sc (Watts et al., 

2007). Nse2 is part of and facilitates the sumoylation of components of the SMC5/6 

complex, an essential element of the homologous recombination repair machinery 

(Andrews et al., 2005). To determine whether SUMO chain formation is required for 

the recombinational repair of DNA, double mutants pmt3-RR;rad22Δ and pmt3-R;nse2-

SA were created (fig. 4.15 A and B respectively) for epistasis analysis.  Interestingly, 

the double mutants  (fig. 4.15 A and B respectively, highlighted in red) are strikingly 

slower growing than the single mutants. These data indicate that pmt3-RR is not 

epistatic with rad22Δ or nse2-SA and that SUMO chain formation is required for an 

alternative DNA repair pathway when homologous recombination repair is impaired. 

Another possibility is that SUMO chains are required for the stabilization of replication 

forks and defects in both SUMO chain formation and homologous recombination will 

result in an additive phenotype. 

 



Fig. 4.14  SUMO chains mutants are sensitive to HU 

Phenotype of SUMO chain mutants. 10 µl of 10 fold serially diluted cultures were 
plated onto media as indicated, and incubated at 30°C for 3 days.!
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Fig. 4.15  SUMO chain mutant is slow growing on HR mutants background 

A.  Tetrad dissection to isolate pmt3-RR;rad22Δ double mutant 
B.  Tetrad dissection to isolate pmt3-RR;nse2SA double mutant 

Represented tetrads were chosen from a pool of 20 dissected tetrads 
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4.5.2.4 SUMO chain mutant is not a spontaneous suppressor of the ulp2Δ mutant 

phenotype 

In S. cerevisiae a SUMO chain mutant (SMT3-allR) shows no growth defect and no 

sensitivity to genotoxins but it reverses the sensitivity of the ULP2 null mutant to 

hydroxyurea and thiabendazole (Bylebyl et al., 2003). The ULP2Δ strains accumulate 

high Mr poly-SUMO species and the results suggest that its sensitivity to genotoxins is 

due to the high levels of poly-SUMO species. In S. pombe the ulp2 null mutant readily 

acquires suppressors and it was reported that a double mutant ulp2Δ;pmt3-RR reverses 

the phenotype of ulp2Δ in response to hydroxyurea (Prudden et al., 2011). To see if the 

spontaneously arising suppressor of ulp2Δ is a SUMO chain mutant, a ulp2::KAN  

strain with acquired suppressor(s) was crossed with a wild type strain and tetrads were 

dissected to isolate the ulp2Δ from the suppressor (fig. 4.16 A). The resulting strains 

(wild type, ulp2Δ;suppressor, suppressor and ulp2Δ) were assessed for their response to 

hydroxyurea fig. 4.16 B). The ulp2Δ;suppressor strain behaves like wild type while the 

ulp2Δ strain shows increased sensitivity. Interestingly, the suppressor shows slight 

sensitivity, similar to that of the pmt3-RR strain. To verify that the SUMO chain mutant 

is a spontaneous suppressor of the ulp2Δ phenotype, the pmt3 gene was amplified from 

the genomic DNA of the suppressor strain with pmt3_F (5’- 

ATGTCTGAATCACCATCAGC) and pmt3_R (5’-CTAAAGGCATAGATGGGTGC) 

primers and the PCR product was sent for sequencing. Surprisingly, the K14 and K30, 

the SUMO chain substrates, were not mutated (fig. 4.16 C), suggesting that other 

spontaneous mutations were suppressing the ulp2Δ phenotype.  One possibility could be 

a mutation of Pli1, the E3 SUMO ligase that promotes the formation of high Mr SUMO 

species.  Point mutations of its RING domain (C321S/H323A/C326S, (Xhemalce et al., 

2004) behave like a pli1 null strain with a drastic reduction of total sumoylation. 

Crossing pli1 mutants with the ulp2Δ and/or sequencing the pli1 gene of the isolated 

suppressor could provide insights into the homeostasis of SUMO chain formation. 

Further, only one colony was checked and colonies originating from different tetrads 

should be checked, as it is possible that ulp2Δ has more than one suppressor. 

!



Fig. 4.16  SUMO protease ulp2 deletion mutant has more than one  
      suppressor 

A.  Tetrad dissection to isolate ulp2Δ suppressor (represented tetrads were  
      chosen from a pool of 20 dissected tetrads) 

A.  Hydroxyurea sensitivity of the ulp2Δ suppressor 

B.  Sequence alignment of pmt3 ORF (subject) and suppressor (query). 
 Highlighted are the lysines involved in chain formation 
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!
!

4.6 Discussion 
!
In this chapter I determined the sequence requirements for SUMO chain formation in 

vitro and in vivo and phenotypically characterized the mutants defective in SUMO 

polymerization. The slight sensitivity to HU of pmt3-RR mutant suggests that SUMO 

chain formation function(s) could be S-phase specific. To identify such functio(s) 

experimental work has to be carried out on cells synchronized in S phase. This could be 

achieved by working with SUMO chain mutants in a cdc10-M17 mutant background 

which allows synchronization at G1/S. 

 

Like S. cerevisiae Smt3 and mammalian SUMO2/3, S. pombe SUMO can form chains 

at two lysines at the N-terminal. Unlike Smt3 and SUMO2/3, which have the lysines 

within a SUMO consensus sequence, the S. pombe SUMO K14 and K30 are not within 

consensus sequences. Mammalian SUMO-1 was initially believed not to form chains 

but to terminate SUMO-2/3 chains. However it has been reported that SUMO-1 forms 

polymeric chains (Yang et al., 2006, Pichler et al., 2002) and four lysines, K16, K37, 

K39 and K46, all conserved in Pmt3 (K30, K51, K53 and K60 respectively, fig. 4.17 A, 

red boxes), have been identified as substrates for chain formation in vitro (Cooper et al., 

2005). Interestingly, like S. pombe SUMO, none of these lysines are within SUMO 

consensus sequences and intriguingly only K16 (corresponding to K30 in S. pombe 

SUMO) is at the disordered N-terminal (fig. 4.17 B) while K37, K39 and K46 are part 

of the globular C-terminal albeit at the surface (fig. 4.17 B and C). The same study 

(Cooper et al., 2005) identified new sites for SUMO-2 chain formation: K5, K7 and 

K42 (corresponding to K46 in SUMO-1 and K60 in S. pombe SUMO). Interestingly the 

K51, K53 and K60 of S. pombe SUMO were identified as substrates for inefficient 

chain formation in vivo when K14 and K30 are mutated (Prudden et al., 2011). This 

suggests that while lysine residues at the globular C-terminal of SUMO can form chains 

it is unlikely that this will have functional importance, most probably due to the 

structural rigidity of the environment.   
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Fig. 4.17  SUMO-1 has potential SUMO chain substrate lysines at 
                the globular C-terminal  

A.  Sequence alignment of SUMO-1, SUMO-2 and S. pombe SUMO.  
      Highlighted are Ks identified as chain substrates in SUMO-1  

B. Mapping of Ks identified as chain substrates on the  SUMO-1 structure 

C. Mapping of conserved Ks identified as chain substrates in SUMO-1  
    on the S. pombe SUMO model. 
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In this study I demonstrated that a SUMO chains mutant (pmt3-RR) is sensitive to 

hydroxyurea and is defective in an alternative DNA damage response pathway required 

when homologous recombination repair is impaired.  
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CHAPTER 5 

INVESTIGATING THE FUNCTION OF PLI1 
 
 
 

5.1 Introduction 
!
!
!
Pli1 was identified from a yeast two-hybrid screen as an interacting partner of Sap1 

(Switch-activating protein 1), an essential protein required for chromosome stability (de 

Lahondes et al., 2003, Xhemalce et al., 2004). Unlike the other S. pombe SUMO E3 

ligase, Nse2, which is essential for cell viability, the pli1 deletion mutant has no growth 

defects and is not sensitive to DNA damaging agents despite the fact that it displays a 

drastic reduction in cellular levels of sumoylation (see section 4.5.1, fig. 4.13B). It is 

mildly sensitivite to TBZ, a microtubule inhibitor (Xhemalce et al., 2004). Further, the 

pli1 null mutant has been shown to be defective in silencing at centromeric 

heterochromatic repeat sequences and in maintaining an artificial minichromosome. 

These data, taken together with the fact that a SP-RING mutant has a phenotype similar 

to that of the deletion mutant (Xhemalce et al., 2004), suggest that Pli1-dependent 

sumoylation is required for proper centromeric function. 

 

 

5.1.1 S. pombe centromeres 
 

S. pombe centromeres contain a unique central core sequence (cnt) flanked by inverted 

repetitive structures: inner most repeats (imr) and outer most repeats (otr) (fig. 5.1)  

(Nakaseko et al., 1987, Clarke et al., 1986, Nakaseko et al., 1986). The outer most 

repeat further contains two inverted sequences, dh and dg. The dg repeat is the only 

region that is highly conserved and is essential for centromeric functions in mitosis and 



Fig. 5.1 Graphical representation of S.pombe chromosomes and the centromeric 

region of chromosome III 

 

A. Schematic representation of the S. pombe chromosomes 

B. The centromeric region of the Chromosome III as represented on the genedb 

website; 

link:http://old.genedb.org/genedb/Search?organism=pombe&name=SPCC1259.

13&isid=true 

C. Schematic representation of the centromeric repeats and the tRNA genes of the 

Chromosome III  
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Fig. 5.1 Graphical representation of S.pombe chromosomes and the centromeric region of chromosome III 
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meiosis (Baum et al., 1994). The centromeres are also flanked by single or clustered 

tRNA genes believed to function as barriers for heterochromatin (Scott et al., 2006). 

The centromeric regions have been identified as hotspots for gross genomic 

rearrangements (GCRs) that result in loss of heterozygosity (LOH), a frequent cause of 

tumorigenesis. Repetitive DNA sequences and tRNA genes are known to be replication 

fork barriers, the former through formation of unusual DNA structures (Deshpande and 

Newlon, 1996, Mirkin, 2006). For DNA damage repair and/or stalled replication fork 

restart, cells employ various mechanisms including homologous recombination; the 

repetitive structures facilitate hyper-recombination between non-allelic DNA fragments 

and this can lead to GCRs.  

 

 While S. pombe centromeres are the best characterized complex centromeres, mainly 

due to the knowledge of their nearly complete sequence (Wood et al., 2002), given the 

close relation between fork stalling and DNA damage repair by homologous 

recombination and the complex structures and mechanisms at centromeric regions, the 

mechanism by which cells prevent GCRs arising at this region remains unclear. 

 

 

5.1.2 Using the artificial minichromosome Ch16 to determine mutation 
rates 
!

The aim of this project was to establish how SUMO chains, Pli1 and Nse2 are involved 

in processes that maintain a non-essential minichromosome by analyzing spontaneous 

chromosomal rearrangements using the artificial but stable minichromosome Ch16 that 

contains the centromeric region of chromosome III  (Niwa, 1986, fig 5.2 A).  

To look at minichromosome stability, Ch16 was adapted to contain selectable marker 

genes: an ade6-M216 allele which complements the ade6-M210 allele on chromosome 

III to prevent the accumulation of a red intermediate in the adenine biosynthesis 

pathway (Leupold, 1964; fig. 5.2 B) and a kanMX6 gene that confers resistance to 

geniticin (G418) were introduced on the right arm (construct Ch16-MGH kindly 

donated by Humphrey lab, Gray Institute), and a ura4 gene was introduced on the left 

arm at the chk1 locus close to the centromere (created by Dr. F.Z.Watts, University of 



Ch. III 
cen3 

                  ade6-M216 chk1::ura4 

ade6-M210 

kanMX6 

Ch16-AGU 

Fig. 5.2 Using the minichromosome Ch16-AGU to determine spontaneous mutation rates 

A. Graphical representation of minichromosome Ch16-AGU based on chromosome III 

B. Colonies plated on selective media: red colonies denote loss of ade-216 allele (panels I and II); colonies on 5FOA 

    media lost the ura3 gene (panels II and III); colonies on G418 media retained the kanMX6 gene. 

A. 

B. 

I 

10% Ade 

II 

10% Ade + 5FOA 

III 

10% Ade + 5FOA + G418 
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Sussex). The mutant strains containing the minichromososme Ch16-AGU were created 

by crossing and tetrad analysis (see table 5.1). The mutant strains were grown for a 

minimum of thirty generations to allow for spontaneous mutations to take place. A 

predetermined number of cells was plated on medium containing a tenth of the required 

amount of adenine to identify colonies that had retained or lost the ade6-M216 allele. 

The loss or maintenance of ura4 gene was determined on medium containing 5FOA and 

medium lacking uracil respectively. Spontaneous mutation rates were calculated by 

selecting colonies that lost the ura4 gene together with the ade6-M216 allele and 

kanMX6 cassette, or that had lost the ura4 gene but maintained the ade6-M216 allele 

and the kanMX6 cassette (fig. 5.2 B). The results were expressed as relative to mutation 

rates of the wild type strain and compared with results from previous studies (table 5.2).  

Moreover, as Pli1 and Nse2 has been shown to facilitate the sumoylation of the DNA 

damage repair proteins Rad22 and Smc6 respectively (Ho et al., 2001, Andrews et al., 

2005), the mutation rates for the sumoylation mutants were compared to those 

previously determined for mutants of these proteins (table 5.3). 

Concomitant loss of ura4 and ade6-M216/kanMX6 is consistent with minichromosome 

loss while loss of ura4 and retention of ade6-m216 and kanMX6 is consistent with the 

occurrence of chromosomal rearrangements (Nakamura et al., 2008). It has to be noted 

that loss of all marker genes due to chromosomal rearrangements, while maintaining the 

minichromosome, cannot be distinguished from loss of the minichromosome in this 

assay.  However, loss of the minichromosome occurs at a rate of approximately 10-3 per 

cell per generation in wild type cells (some studies reported a lower rate; see table 5.2) 

while chromosomal rearrangements occur at rates of approximately 10-5-10-6 per cell 

per generation and therefore loss of all marker genes due to chromosomal 

rearrangements, while maintaining the minichromosome, are considered negligible and 

included in the loss of minichromosome rates. 

 

 

 

 

 

!



strain Selection Created by 

pli1::natMX6 ura4+, ade6+, KANR, NATR F.X. Ogi, University of Sussex 

nse2-SA:natMX6 ura4+, ade6+, KANR, NATR F.Z.Watts, University of Sussex 

pmt3-RR:leu1 ura4+, ade6+, leu1+, KANR this study 

rad22::natMX6 ura4+, ade6+, KANR, NATR F.Z.Watts, University of Sussex 

Table 5.1 

Table 5.1 Mutant strains containing the minichromosome Ch16-AGU 
                used in this study 



Table 5.3 

Table 5.3 Frequency of genomic rearrangements obtained by using the  
                Ch16 assay 

strain Minichromosome 
loss 

ura4 loss (GCRs) Reference 

rate Relative 
to wt 

rate Relative 
to wt 

wild type 2x10-3 1 ND ND Niwa et al., 1989 

wild type 3.4x10-5 1 2.9x10-5 1 Nakamura et al., 2008  

pli1Δ  0.012 12 10-3  >10 Xhemalce et al., 2004  

pmt3Δ 0.06 165 ND ND Tanaka et al., 1999  

rhp51rad51Δ  1.8x10-3 515 5.6x10-3 192 Nakamura et al., 2008  

swi6Δ  0.05 100 ND ND Allshire et al., 1995  

swi6Δ  1.47 >6 ND ND Ekwall et al., 1996  

clr4Δ  2.81 40 ND ND Bayne et al., 2010  

smc6-X 0.37 74 ND ND Murray et al., 1994  

ku70Δ! 1.4 x 10-3  8 ND ND Manolis et al., 2001  

Table 5.2 

Table 5.2 Published spontaneous mutations rates obtained by using  
                 the Ch16 assay 

ND = not determined 

strain Minichromosome 
loss 

ura4 loss (GCRs) Determined by 

rate Relative 
to wt 

rate Relative 
to wt 

rad22Δ 6x10-3 30 1.6x10-4 55 F.X. Ogi, University of Sussex 

rhp51Δ 2x10-3 10 9x10-5  31 F.X. Ogi, University of Sussex 

rad50Δ 0.23 133 3.6x10-5 12 F.X. Ogi, University of Sussex 

rqh1Δ 1.2x10-2 60 5.4x10-5 18 F.X. Ogi, University of Sussex 
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5.2 Sumoylation mutants show an increased mutation rate 
 

To further investigate the function of SUMO in maintaining the minichromosome, the 

rates of spontaneous loss of the ura4, ade6-216 and kanMX6 marker genes in SUMO 

mutants were compared to those of wild type.   

Cell cultures from single colonies were grown in YE liquid medium for a minimum of 

30 generations to allow spontaneous events to take place. To obtain statistically relevant 

data seven cultures from each mutant were grown concomitant with seven cultures of 

wild-type cells under the same conditions and each experiment was carried out three 

times. 500 cells were plated on 10% adenine media as a control, 105 cells were plated 

on 10% adenine and 5FOA media to select for colonies that lost ura4 gene but 

maintained the ade-216 allele (white colonies, rearrangements of CH16-AGU) and for 

colonies that lost both the ura4 gene and the ade6-216 allele (pink colonies, loss of 

Ch16-AGU). To further ensure that loss of ade-216 allele is due to loss of the 

minichromosome and not due to homologous recombination with chromosomal ade-

210 allele, 105 cells were plated on 10% adenine medium containing 5FOA and G418. 

All colonies on this medium were expected to be white, confirming that the ade-216 

allele and the kanMX6 gene are maintained or lost together and in a similar number to 

the white colonies on the 10% adenine and 5FOA media. 

!
!

5.2.1 Sumoylation mutants show an increased rate of minichromosome 

loss 
 

To determine whether the sumoylation mutants pli1Δ, nse2-SA and pmt3-RR are 

defective in maintaining the minichromosome, red colonies from the 10% adenine and 

5FOA media were counted and the relative mutation rates were calculated (table 5.4 and 

figure 5.3). The mutation rates per cell per generation was calculated by means of 

Luria-Delbrück fluctuation analysis (Luria and Delbruck, 1943) using the method of 

median (Lea DE, 1949) (tables 5.4 and 5.5). The heterogeneity of all mutation rates was 

confirmed by statistical analysis of the results by a paired t-test (95% confidence 



strain No. of 
cultures 

Nt valuea Lea-Coulson 
m valueb 

Mutation 
rate (Ch16  
loss)c 

Relative 
rate 
(mutant/wt) 

T test 
p valued 

wt 7 2x109±108 311.5 2.3x10-4 1 1 

pli1Δ 7 8x108±107 445.5 1.9x10-3 8 0.025 

nse2-SA 7 7x107±106 81.2 1.4x10-3 6 0.043 

pmt3-RR 7 6x108±107 56.0 1.6x10-3 7 0.008 

p = 0.008 

p = 0.043 

p = 0.025 

0!

2!

4!

6!

8!

10!

wt pli1Δ nse2-SA pmt3-RR 

Fig. 5.3 Graphical representation of relative rates of minichromosome  
              loss of SUMO mutants 
              Bars represent s.e.m from three independent experiments 

Table 5.4 

Table 5.4 Determination of rates of minichromosome loss of SUMO  
                 mutants by fluctuation analysis 

a Final number of cells in the culture. 
b Number of mutations per culture. 
c Probability of mutation per cell per generation 
d!T test of significant statistical differences; for p < 0.05 the distribution was considered significantly different to 
    wild type;  
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interval) and a P value of 0.05 or less was considered significant for two-way 

comparison between wild type and mutant strains (Pierron et al., 2011). 

 

All three mutants displayed the same order of magnitude of rate of minichromosome 

loss, with nse2-SA having the highest and the SUMO chain mutant, pmt3-RR, the lowest 

values. The rate for pli1Δ was similar to that of previously published data (Xhemalce et 

al., 2004) but lower than that of the homologous recombination mutant rad22Δ (table 

5.3). These results suggest that sumoylation is required for cells to maintain the 

minichromosome. 

 

 

 5.2.2 Sumoylation mutants show an increased rate of gene loss  
 

To determine whether sumoylation mutants are defective in preventing chromosomal 

rearrangements, white colonies from the 10% adenine and 5FOA and the 10% adenine, 

5FOA and G418 plates were counted and the mutation rate calculated as described 

above (table 5.5 and figure 5.4). The sumoylation mutants display similar relative 

mutation rates with nse2-SA having the highest and SUMO chain mutant, pmt3-RR, the 

lowest values. The rate for pli1Δ was similar to that previously published (Xhemalce et 

al., 2004) but lower than that of the homologous recombination mutant rad22Δ (table 

5.3). 

 

 

5.3 Different mutant backgrounds display different 

chromosomal    rearrangements  
 

The homologous recombination protein Rad22/Rad52 has been shown to prevent gross 

chromosomal rearrangements (Cullen et al., 2007). Further studies identified the 

homologous recombination proteins Rhp51/Rad51, Rhp55/Rad55 and Rhp57/Rad57 as 

having roles in break-induced isochromosome formation (Tinline-Purvis et al., 2009) 

using an induced double strand break assay. Pli1 facilitates the sumoylation of the 

homologous recombination protein Rad22. Therefore it was of interest to determine 
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whether rad22Δ and pli1Δ mutants display the same type of chromosomal 

rearrangements.  

 

Loss of the ura4 gene from the minichromosome could be the result of three different 

mechanisms (fig. 5.5): gene conversion at the chk1 locus by recombination between the 

minichromosome and endogeneous Ch. III; recombination between the DNA repeats 

from the left arm with homologous repeats on the right arm and subsequent duplication 

of the right arm (isochromosome formation) of the minichromosome; recombination 

between the DNA repeats of the minichromosome left arm with DNA repeats from the 

chromosome III left arm, followed by replication of the chromosome III left arm (break-

induced replication) (fig. 5.5) (Nakamura et al., 2008). 

 

To analyse the structure of the Ch16-AGU that lost the ura4 marker, agarose embedded 

chromosomal DNA from wild type, sumoylation mutants and rad22Δ white colonies 

from 10% adenine and 5FOA media were analyzed by PFGE using S. cerevisiae 

conditions (Herschleb et al., 2007). This allows the separation of chromosomal DNA up 

to 1500 kb. Chromosomal DNA from white colonies from 10% adenine media 

containing the unmodified Ch16-AGU was used as control and the minichromosome 

can be visualized, after ethidium bromide staining, at 530 kb (fig. 5.6 A, lane 1, all 

panels). 

 

Three outcomes can be identified from the wild type and sumoylation mutants: a 

chromosomal element at the same size as the original Ch16-AGU (Ch16-AG, fig. 5.6 A 

panel I lanes 5 and 6, panel II lane 4, pane III lane 3, panel IV lanes 2 and 3, panel V 

lane 4), a larger chromosomal element at approximately 700 kb (Ch16-AG-L, fig. 5.6 A 

panel I lanes 2, 3 and 4, panel II lane 2, 3 and 5, pane III lane 6, panel IV lanes 4, 5 and 

6, panel V lane 2) and a lack of a chromosomal element below 1500 kb (fig. 5.6 A panel 

III lanes2,  4 and 5, panel V lanes 3 and 6). A small number of samples displayed two 

chromosomal elements, a Ch16-AG together with a Ch16-AG-L (fig. 5.6 panel II, lane 

6).  Interestingly, the types of rearrangements in pli1Δ cells differ from those in the 

homologous recombination mutant rad22Δ cells. In rad22Δ cells a chromosomal 

element at the same size as the original Ch16 (Ch16AG, fig. 5.6 A, panel VI, lane 2), 

was identified but most of the samples displayed chromosomal elements of various 



ChIII 
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Ch16-AGU 

D D

Ch16-L/S 

A D

Ch3.16  

C D

Ch16-AG 

Fig. 5.5 Possible intra- and interchromosomal  rearrangements following DNA  damage that result in loss of 
             ura4 gene from the left arm (C) of Ch16-AGU and repair mechanisms involved in each type of 
             rearrangement 

Repair mechanism 

GC 

Isochromosome formation 

Break Induced Replication (BIR) 



Fig. 5.6 Different mutant backgrounds give rise to different chromosomal 

rearrangements 

A. Ethidium bromide stained chromosomal and minichromsomal DNA 

separated by PFGE under S. cerevisiae conditions. S. cerevisiae genomoc 

DNA was used as ladder. 

 

B. Ethidium bromide stained chromosomal and minichromsomal DNA 

separated by PFGE under S. pombe conditions.  



Fig. 5.6 Different mutant backgrounds give rise to different chromosomal rearrangements 
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sizes, all smaller than the original Ch16-AGU  (Ch16-AG-S, fig. 5.6 A, panel VI lanes 3 

– 6). 

 

In some DNA samples the minichromosome was not detected. However, all DNA 

samples originated from strains containing the ade-216 allele and the kanMX6 gene. 

They should therefore contain some sequences deriving from the Ch16-AGU. The 

samples when such elements could not been identified by electrophoresis using S. 

cerevisiae conditions (fig. 5.6 A, panel III lanes 2, 4 and 5, and panel V lanes 3, 5 and 

6), were re-analysed under S. pombe conditions. This allows separation of DNA up to 

5.7 Mb (fig. 5.6 B). Under these conditions, after ethidium bromide staining, the three 

endogenous S. pombe chromosomes, the original minichromosome Ch16-AGU (fig 5.6 

B, panel I, lane 1) and the modified Ch16-AG (fig 5.6 B, panel I, lane 2) can be 

identified. The samples that did not display a chromosomal element under S. cerevisiae 

conditions, display a minichromosomal element intermediate in size between the Ch.16-

AGU and the endogenous Ch.III (Ch16-3) (fig. 5.6 B, panel I, lanes 3 – 6, panel II, 

lanes 1 – 5, panel III, lane 1). These chromosomal elements are consistent with the 

occurrence of recombination event between the minichromosome and the endogenous 

Ch. III. Interestingly, the nse2-SA mutant displays a modified chromosome III not 

identified in either wild type or pli1Δ strains. These data demonstrate that pli1Δ and 

rad22Δ cells are vulnerable to different types of chromosomal rearrangements. This 

suggests that Pli1 and Rad22 proteins are involved in different mechanisms that prevent 

chromosomal rearrangements. Interestingly, the minichromosomal rearrangements in 

pli1Δ strain are similar with those that occur in wild type cells suggesting that Pli1 is 

required for a general mechanism that prevents chromosomal rearrangements. The 

rad22Δ strain displays smaller size minichromosomal rearrangements, not identified in 

wild type cells, consistent with extensive deletions of DNA sequences. This suggests 

that Rad22-dependent homologous recombination inhibits chromosomal rearrangements 

that result in DNA deletions. Further, rad22Δ cells do not exhibit rearrangements 

between the minichromosome and the endogenous Ch. III, suggesting that Rad22 

dependent homologous recombination is essential for this type of rearrangements. 
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5.4 Minichromosomal rearrangements in pli1Δ cells result in   

isochromosome formation 
!
Previous studies designed to identify spontaneous GCRs in fission yeast detected the otr 

– imr centromeric repeats as hot spots for isochromosome formation in wild type cells 

(Nakamura et al., 2008).  While the irc, otr and imr repeats are almost identical in the 

right and left arms of the chromosome, subtle differences can be identified using 

specific primers. To determine whether the same pattern of breakpoints occurs in  

minichromosomal rearrangements in pli1Δ cells, modified minichromosomes were 

recovered from agarose gels and PCR amplification was carried out with previously 

designed specific primers (fig. 5.7) as described by Nakamura et al., 2008. 

 

Amplification with irc3-F and irc-R primers (irc3-F: 5’-CATTAAAAATCAACAAGT 

CTTGTCC; irc3-R: 5’-GAAACATTTTTGAGTGTTGTTCAGG) results in a 440 bp 

fragment characteristic of the left and right arm of the chromosome (fig. 5.7 A, panel I). 

However, the left fragment has one ApoI digestion site while the right fragment has two 

ApoI digestion sites. Using the unmodified Ch16-AGU four digestion fragments were 

detected as expected (fig. 5.7 A panel II, lane 1). When the modified minichromosome 

Ch16-AG from pli1Δ cells was used only three digestion fragments were observed, as a 

347 bp fragment specific to the left arm is missing (fig. 5.7 A, panel II, lanes 2 and 3). 

The imr3-in (5’-AAGTTTTGATGCTCAACAAATGGC), cen3-L (5’-!AACCGCAAC 

AAACGATTAGC) and cen3-R (5’-CGGAATTAGAAAGATTGATGATTTG) primers 

are specific to the imr – cnt junction (cnt region is unique) and amplification results in 

two fragments: a 446 bp fragment specific to the left arm and a 622 bp fragment 

specific to the right arm (fig. 5.7 panels I and II). When the modified minichromosome 

Ch16-AG from pli1Δ cells was used as substrate both fragments were present (fig. 5.7, 

panels I and II lanes 2 and 3) as in the unmodified Ch16-AGU minichromosome (fig. 

5.7, panels I and II lane 1). These results suggest that the irc3 of the left arm of the 

modified minichromosome is missing while the imr3-cnt3 junction is retained. The 

analysis of the breakpoint was extended to the otr3-imr3 junction. Amplification using 

the dh (5’-! CGTGTAAATAAGGGACAAATAGG) and imr3-out (5’-

GTGGTTAGAATTGAC AAGC) specific primers results in two fragments: a 917 bp 

fragment specific to the left arm and a 868 bp fragment specific for the right arm as 



Fig. 5.7 Analysis of the breakpoint of Ch160-AGU in pli1Δ mutant cells by 

PCR 

 

A. Analysis of the irc3 centromeric repeats on the left and right arm of the 

minichromosome using PCR; 

 

B. Analysis of the otr3-imr3 centromeric repeats on the left and right arm of the 

minichromosome using PCR; 

 



Fig. 5.7 Analysis of the breakpoint of Ch160-AGU in pli1Δ mutant cells by PCR 

A. 

B. 

imr3-out 

cnt3 imr3L otr3L irc3L imr3R otr3R irc3R 

dh imr3-in cen3-L cen3-R imr3-in dh imr3-out 

917 bp 446 bp 622 bp 868 bp 

Apo1 

cen3 ~ 110 kb 

irc3L otr3L" imr3L cnt3 imr3R otr3R irc3R 

93 bp 136 bp 211 bp 347 bp 93 bp 

irc3-F irc3-R irc3-F irc3-R 
Apo1 Apo1 

kb 

440  

1       2       3 

1  

0.5  

bp 

L          C           pli1Δ 

PCR 

I 

347  

136  

0.5  

211  
93  

kb 
bp 

L          C           pli1Δ 

1  

1       2       3 

ApoI digestion 

II 

0.5  

1  

1       2       3 1       2       3 

kb 

446  
622  

bp 
L          C           pli1Δ L          C           pli1Δ                  

I II 
1     2      3     4 

L          C           pli1Δ 

0.5  

1  

kb 

868  
917  

bp 

III 



! 100!

observed for the unmodified Ch16-AGU minichromosome (fig. 5.7 B, panel II, lane 1). 

Interestingly some isochromosomes retained the 917 bp region specific to the left arm 

(fig. 5.7 B, panel II, lane 4), while others lost this region (fig. 5.7 B, panel II, lanes 2 

and 3). 

 

The results from this analysis of breakpoints in pli1Δ cells are consistent with previous 

results obtained for ischromosome formation in wild type cells (Nakamura et al., 2008). 

This indicates that the minichromosomal rearrangements in pli1Δ cells are 

isochromosomes and these isochromosomes involve rearrangements at the otr-imr 

centromeric repeats.   

 

!

5.5 Pli1-dependent sumoylation does not prevent isochromosome 

formation 
!
Previous studies suggest that Pli1 dependent sumoylation can prevent isochromosome 

formation (Xhemalce et al., 2004). To determine whether isochromosome formation 

occurs at higher frequency in pli1Δ cells than in wild type cells, a statistical survey was 

carried out on 100 samples of each strain.  

 

 Agarose embedded chromosomal DNA from wild type, pli1Δ and rad22Δ white 

colonies from 10% adenine and 5FOA media were analyzed by PFGE using S. 

cerevisiae and S. pombe conditions. The results from the survey are tabulated in table 

5.6. Interestingly pli1Δ cells do not show an increased frequency of isochromosome 

formation compared to wild type cells but display an increased rate of recombination 

between the minichromosome and chromosome III (fig. 5.8 A panels I and II and fig. 

5.8 B).  

 

 

 

 



Fig. 5.8 Graphical representation  of chromosomal rearrangements  
              fractions of wild type, pli1Δ and rad22Δ strains 

A.  Percentage comparison of different chromosomal rearrangements for  
      each strain 

B. Percentage comparison of different strains for each type of chromosomal 
     rearrangement 

strain No. of 
samples 

Ch16-AG Ch16L/S Ch3.16 Ch16 + 
Ch3.16 

wt 100 35 22 39 4 

pli1Δ 100 31 16 52 1 

Table 5.6 Determination of percentage of  different chromosomal  
                 rearrangements of wild-type, pli1Δ and rad22Δ strains 

A. 
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5.6 Discussion 
 

In this study I analysed the function of the SUMO E3 ligase, Pli1, in maintaining 

chromosomal stability using an artificial minichromosome. The data are consistent with 

a function of Pli1-induced sumoylation in maintaining an artificial minichromosome 

and in preventing illicit recombination between the minichromosome and endogenous 

Ch. III.  

 

The pli1 null mutant displays similar spontaneous chromosomal rearrangements to 

those observed in wild type strain but it does not exhibit an increased frequency of 

isochromosome formation as previously suggested (Xhemalce et al., 2004). This is in 

contrast with a rad22Δ strain, which displays an increased frequency of rearrangements 

of the minichromosome but no recombination between the Ch.16-AGU and the 

endogenous chromosome III. The minichromosome rearrangements detected in the 

rad22Δ cells produce species that are smaller than the isochromosomes observed in the 

pli1Δ and wild type strains and smaller than the original minichromosome, suggesting 

that this type of rearrangement occurs after chromosomal deletions. These results 

suggest that Pli1-dependent sumoylation of Rad22 does not function in preventing 

isochromosome formation, chromosomal rearrangements associated with DNA 

deletions, or in preventing illicit interchromosomal recombination. However, the 

increases rate of interchromosomal GCRs due to illicit recombination in the pli1 null 

mutant strain is consistent with previous data that identify sumoylation as an important 

mechanism in preventing deleterious recombinogenic events at damaged replication 

forks (Branzei et al., 2006).  

 

The increased loss of an artificial minichromosome is consistent with failure to repair 

double strand breaks either during replication or post-replication and/or with defects in 

chromosome segregation. The increased frequency of the pli1 null mutant in 

minichromsome loss and the sensitivity to the microtubule inhibitor TBZ suggest that 

Pli1 dependent sumoylation is required for proper chromosome segregation. The 

centromere is packed within the heterochromatin and is the site of the kinetochore.  

Mutations of heterochromatin proteins, such as Clr4 and Swi6, are characterized by 

sensitivity to TBZ (Ekwall et al., 1996) and elevated loss of chromosomes (Allshire et 
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al., 1995). Both Clr4 and Swi6 were identified as SUMO targets in vivo and defective 

sumoylation of Swi6 was shown to cause ineffective silencing at heterochromatin (Shin 

et al., 2005). While no specific SUMO E3 ligase was identified as facilitating the 

sumoylation of either Clr4 or Swi6, it cannot be excluded that Pli1 is required for 

normal levels of sumoylation of these heterochromatic proteins.  More recently, the 

sumoylation of cohesin (the Smc1/3 complex) was shown to be required for the 

establishment of sister chromatid cohesion in S. cerevisiae (Almedawar et al., 2012).  

 

Taken together, the data from this study suggest that Pli1-dependent sumoylation 

function in maintaining chromosomal stability at the heterochromatic centromeric 

repeats and this function is independent of the sumoylation of the homologous 

recombination protein Rad22 that is facilitated by Pli1. 

 
 



! 103!

CHAPTER 6  !

HUS5 SUMOYLATION REGULATES THE PATHWAY 
HOMEOSTASIS 

 
 

6.1 Introduction 
 

In recent years it has been reported that sumoylation pathway components E1, E2 and 

E3s are themselves post-translationally modified by SUMO. The first SUMO pathway 

component identified to be autosumoylated was the mammalian E3 ligase RanBP2 

believed to be specific for SUMO-1 (Pichler et al., 2002). Multiple lysine residues in 

RanBP2 were identified that were modified by single moieties or chains of SUMO-1 

and SUMO-2 using various mass spectrometry techniques (Cooper et al., 2005). The S. 

pombe and human Siz/PIAS type E3 ligases Nse2 have been shown to be 

autosumoylated in vitro but no specific modified lysine residues have been identified 

(Andrews et al., 2005, Potts and Yu, 2005). 

 

Autosumoylation of the SUMO conjugating enzyme Ubc9 at K14 in human cells was 

identified as being required for target discrimination and to by-pass the need for an E3 

ligase by creating a new interface that interacts with SIMs in the target protein 

(Knipscheer et al., 2008). The same study identified K153 as the only sumoylation site 

of the SUMO conjugating enzyme in S. cerevisiae. Later K157 was also identified as 

being modified (Ho et al., 2011). Another study reports that Rhes, a mammalian SUMO 

E3 ligase, facilitates sumoylation of human Ubc9 at K14, K49 and K153 (Subramaniam 

et al., 2010). In mammals the sumoylation of the SUMO conjugating enzyme E1 can 

facilitate or inhibit the sumoylation of a target protein (Knipscheer et al., 2008). In S. 

cerevisiae it has been shown that autosumoylation of Ubc9 reduces the sumoylation of 

septins (Ho et al., 2011). 

 

The mammalian SAE2 protein, one of the components of the SUMO activating enzyme 

heterodimer, was found to be autosumoylated at K236 in the absence of Ubc9, and 
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sumoylated in the presence of the conjugator at four further sites: K190, K257, K271 

and K275 (Truong et al., 2012). This is the first example where SUMO attaches 

covalently to a lysine residue without the need of the SUMO conjugating enzyme.  

 

While it is known that the sumoylation pathway components are sumoylated in S. 

pombe (this study, Chapter 4) (Andrews et al., 2005), no specific modified lysine 

residues have been identified to date. Having optimized the in vitro sumoylation assay 

(see Chapter 4) this work now focuses in identifying SUMO modified lysines of the 

sumoylation pathway components by mass spectrometry. After identifying one SUMO 

modified lysine residue in the SUMO conjugating enzyme Hus5 in vitro, biochemical 

and genetic characterization of the Hus5 sumoylation function was carried out. 

 

 

6.2 Strategy to identify sumoylated lysine residues by mass 

spectrometry 
 

Detection of specific post-translationally modified amino acids by tandem mass 

spectrometry coupled with liquid chromatography (LC/MS/MS) (Larsen et al., 2006) 

following enzyme digestion is a well-established technique (see section 2.4.22). 

Trypsine, an enzyme widely used for protein digestion, cuts peptide bonds at lysine and 

arginine residues but not lysines modified at the ε amino group. This results in modified 

lysines being incorporated in signature peptides.  

 

To identify sumoylated lysines by MS/MS, proteolytic digestion with trypsin was used. 

To overcome the possibility of modified lysines being incorporated into large peptides, 

a pET15b-SUMOGG construct (see Chapter 4) was modified such that the threonine 

residue preceding the di-glycine motif was changed to an arginine residue by site 

directed mutagenesis (fig 6.1 A, construct made by L. Small, University of Sussex) such 

that trypsin digestion results in a signature di-glycine motif on the SUMO modified 

lysine residues of the target protein. In vitro sumoylation assays using the SUMO-RGG 

mutant followed by trypsin digestion result in peptides containing lysine residues 

modified at ε amino group by a di-glycine tag (fig. 6.1 B).  Peptides carrying the 



Fig. 6.1 Strategy to identify sumoylated lysine residues by tandem  

             mass spectrometry (MS/MS) 

A.  Trypsin digestion of a sumoylated protein results in a signature peptide  

      with a di-glycine motif (magenta-red) from SUMO. Orange arrow  

      represent trypsin cleavage at arginine residue (green). Modified lysine  

      of target protein are coloured blue. 

B. MS/MS spectrum of a SUMO modified peptide. The GG tag changes 

     the mass of the peptide by 114.1 Da compared to the unmodified peptide.  



Fig. 6.1 Strategy to identify sumoylated lysine residues by tandem mass spectrometry (MS/MS) 

Δm (114.1 Da) 

m/z 

A. 

B. 

SpSUMO-TGG111 mutagenesis" SpSUMO-RGG111 

C. 

Peptide sumoylated at K* with SUMO-RGG111 

Trypsin 
digestion 

Peptide mixture 
Signature peptide: 114.1 Da tag on K* 
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signature di-glycine tag can be identified from mass spectra (fig. 6.1 C) following 

databases searches using MASCOT software. 

Following in vitro sumoylation assays, bands were cut out from colloidal blue stained 

SDS-PAGE and all samples were sent to the mass spectrometry services for in-gel 

trypsin digestion, LC-MS/MS run and MASCOT searches (Dr. L. Bowler and M. 

Daniels , Proteomics Department, University of Sussex). 

 

 

6.3 Sumoylation pathway components are sumoylated in vitro 

at specific lysine residues 
 

The in vitro sumoylation assay was carried out as previously described (see Chapter 4) 

but scaled up from 20 µl to 100 µl so that proteins could be visualized by colloidal blue 

staining. Two reaction mixtures, one without the SUMO E3 ligase Nse2 (fig. 6.2 A) and 

one with Nse2 (fig. 6.2 B) were separated by SDS-PAGE and bands believed to contain 

sumoylated species (fig. 6.2 red boxes) were excised and send to the mass spectrometry 

services. The lysine residues modified by SUMO identified by MS/MS are listed in 

table 6.1. This is the first time that a post-translational modification has been identified 

by mass spectrometry at the University of Sussex.  

 

6.3.1 The SUMO activating enzyme Fub2 is sumoylated in vitro at five 

lysine residues  
!
K86, K172, K176, K263 and K282 of the SUMO activating enzyme Fub2 (SAE2/Uba2) 

were identified from the MS/MS spectra, peptide mass fingerprints, sequence queries 

and MS/MS ion searches using the MASCOT search engine (see section 2.4.22; fig. 6.3, 

6.4, 6.5, 6.6 and 6.7 respectively) (Perkins et al., 1999). None of the identified 

sumoylated lysines in M. musculus or S. pombe are in a sumoylation consensus 

sequence (Ψ-K-X-E). While the modified lysines in the mammalian SAE2/Uba2 are all 

clustered in the active cysteine domain (fig. 6.8) (Truong et al., 2012), the model of S. 

pombe Fub2 suggests that K86 is located in the adenylation domain and K172, 176, 263 

and 282 are located in the active cysteine domain (fig. 6.9).  



Fig. 6.2 In vitro sumoylation assay to identify sumoylated lysine residues  
   by tandem mass spectrometry (MS/MS) 

A.  Colloidal blue staining of SDS-PAGE of in vitro sumoylation assay with  
       SUMO-RGG mutant, SAE and the  conjugating enzyme. 

B. Colloidal blue staining of SDS-PAGE of in vitro sumoylation assay with  
     SUMO-RGG mutant, SAE, the  conjugating enzyme and the E3 ligase Nse2. 

 Red boxes represents excised bands sent to mass spectrometry services. 
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Table 6.1 Sumoylated lysine residues identified in Uba2Hs/Sc/Fub2Sp,  
                Ubc9Hs/Sc/Hus5Sp and Nse2Sp/Hs/Mms21Sc 

Substrate Sumoylated 
Ks identified 
in this study  

Sumoylated Ks 
in Hs 

Sumoylated 
Ks in Sc 

Hus5/Ubc9 50 14 
Knipscheer et 
al., 2008 
146  
Hsioa et al., 
2009 
14, 49, 153 
Subramaniam et 
al., 2010 

153, 157 
Knipscheer et 
al., 2008 
Ho et al., 2011 

Fub2/Uba2 86,172, 176, 
263, 282 

190, 236, 257, 
271, 275 
Truong et al., 
2012 

Not reported 

Nse2/Mms21 134, 229, 247 Not reported Not reported 

SUMO 30 11 
Tatham et al., 
2001 

11, 15, 19 
Bylebyl et al., 
2003 



Fig. 6.3 MS/MS fragmentation of Fub2 peptide sumoylated  at K86 

Highlighted in boxes are the b and y ions corresponding to K86 

y16 y11 y9 

A I V A A K86 (GG) T A S S F Fub2 K86-SUMO peptide: 

b++6 



Fig. 6.4 MS/MS fragmentation of Fub2 peptide sumoylated  at K172 

Highlighted in boxes is the y ion corresponding to K50  

y9 y5 y3 

T E C Y D C N P  K172 (GG) E P P K  Fub2 K172-SUMO peptide: 

b9 



Fig. 6.5 MS/MS fragmentation of Fub2 peptide sumoylated  at K176 

Highlighted in boxes are the y and b ions corresponding to K176  

y9 y7 y3 

E P P K176 (GG) T Y P V C T I R Fub2 K176-SUMO peptide: 

b04 



Fig. 6.6 MS/MS fragmentation of Fub2 peptide sumoylated  at K263 

Highlighted in boxes are the b and y ions corresponding to K263  

y5 y8 y1 

M F T K263 (GG) D I V R Fub2 K263-SUMO peptide: 

b04 



Fig. 6.7 MS/MS fragmentation of Fub2 peptide sumoylated  at K282 

Highlighted in boxes are the b and y ions corresponding to K282 

y14 y12 y8 

S P P K282 (GG) E L S Y S E Fub2 K282-SUMO peptide: 

b4 



Fig. 6.8 Mammalian SAE2 is autosumoylated at five lysine residues clustered in the cysteine domain 

A.  Cartoon representation of the human SAE1-SAE2-SUMO-1 complex; SAE1 in green; SUMO-1 in pink; 

      SAE2 in red with cysteine domain in bright red; 

B. Cartoon representation of cysteine domain of SAE2.  

Highlighted in blue are sumoylated lysine residues and in yellow the active cysteine.  

Figures created using PYMOL software based on the crystal structure of the human SAE1-SAE2-SUMO-1 complex 

(pdb id.: 1Y8R) 

K190 K236 

K257 

K271 

K275 

C173 



Fig. 6.9 Comparison of the position of the sumoylated lysines of  S.pombe Fub2 and mammalian SAE2 

A.  Cartoon representation of the structural model of S. pombe Fub2. Model created by PHYRE software based  
      on the structure of human SAE2 (pdb id: 2Y8R). 
B. Cartoon representation of human SAE2 structure (pdb id: 2Y8R). 
     Addenylation domain in green, cysteine domain in yellow with the active Cys highlighted in red. 
     Highlighted in blue are sumoylated lysine residues. Figures created using PYMOL software. 
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6.3.2 The SUMO E3 ligase Nse2 is sumoylated in vitro at three lysine 

residues  
 

The SUMO E3 ligase Nse2 sumoylated lysine residues K134, K229 and K248 were 

identified from the MS/MS spectra, peptide mass fingerprints, sequence queries and 

MS/MS ion searches using the MASCOT search engine (see section 2.4.22; fig. 6.10, 

6.11 and 6.12 respectively) (Perkins et al., 1999). All three lysines are conserved in 

humans but not in S. cerevisiae (fig. 6.13), however structural representation reveals 

that the S. cerevisiae homologue Mms21 has lysine residues at similar locations within 

the 3D structure (fig. 6.14). 3D modeling of S. pombe Nse2 based on the crystal 

structure of S. cerevisiae Mms21 reveals that K134 is situated within the domain that 

interacts with Smc5 at a position close to K111 and K130 in S. cerevisiae and mammals 

respectively. K229 is situated within the RING finger domain again at a location 

approximate to K189 and K222 in S. cerevisiae and mammals respectively. K248 is 

located just after the RING finger domain at the C-terminal like K258 in S. cerevisiae 

and K242 in mammals. It has to be noted that 3D models are speculative in silico 

analyses and do not necessarily reflect the true 3D structure of the protein. As with 

Fub2, none of the modified lysines is within sumoylation consensus sequence.  

 

 

6.3.3 The SUMO conjugating enzyme Hus5 is sumoylated in vitro at 

K50 
!
Following MASCOT search of the MS/MS spectrum, peptide mass fingerprints, 

sequence queries and MS/MS ion search (Perkins et al., 1999) (fig. 6.15) only one 

residue, K50, was identified as an in vitro sumoylation site for the SUMO conjugating 

enzyme. While Hus5 is highly conserved amongst species, K50 is not conserved in 

humans or S. cerevisiae. However, mammalian Ubc9 has a surface lysine residue at 

position 49 (fig. 6.16 C) and the crystal structure of S. cerevisiae Ubc9 (pdb id.: 3ONG) 

reveals that the SUMO modified K153 is at an approximate position within the 3D 



Fig. 6.10 MS/MS fragmentation of Nse2 peptide sumoylated  at K134 

Highlighted in boxes are the b and y ions corresponding to K134  

y8 y2 y1 

Y G T Q G E Y I E F K134 (GG) K Nse2 K134-SUMO peptide: 

b11 



Fig. 6.11 MS/MS fragmentation of Nse2 peptide sumoylated  at K229 

Highlighted in boxes are  the b and y ions corresponding to K229  

y8 y6 y1 

S L L K229 (GG) E D E I L E R Nse2 K229-SUMO peptide: 

b4 



Fig. 6.12 MS/MS fragmentation of Nse2 peptide sumoylated  at K247 

Highlighted in boxes are the b and y ions corresponding to K247  

y8 y3 y1 

A Q E I S N L  K247 (GG) E A  Nse2 K247-SUMO peptide: 

y8 



Fig. 6.13  Nse2 sumoylated lysine residues are conserved in  humans but  
                 not S. cerevisiae 

Sequence alignment of PIAS type SUMO E3 ligases Nse2Sp/Hs and Mms21Sc 

Highlighted in yellow are the lysines sumoylated in S. pombe and the 

conserved lysine residues in H. sapiens. 



Fig. 6.14 Structural mapping of the sumoylated lysines of  S.pombe 

 Nse2 and structurally conserved lysines of human Nse2 and   

S. cerevisiae  Mms21 

A.  Cartoon representation of the crystal structure of S. cerevisiae Mms21  

      in complex with Smc5 (pdb id: 3HTK) 

B.  Cartoon representation of the structural model of S. pombe Nse2.  

 Model created by PHYRE software based on the structure of  

 S. cerevisiae Mms21 (pdb id: 3HTK). 

C.  Cartoon representation of the structural model of human Nse2. Model  

 created by PHYRE software based on the crystal structure of  

 S.cerevisiae complex Smc5-Mms21 (pdb id: 3HTK) 

Highlighted: 

Smc5 = blue; Nse2/Mms21 domain that interacts with Smc5 = pink; 

Nse2/Mms21 Zn finger domain = wheat; Sumoylated lysines in S.pombe 

 Nse2 and possible structurally conserved lysines in human Nse2 and S.  

cerevisiae Mms21 = red; active cysteine = yellow 



Fig. 6.14 Structural mapping of the sumoylated lysines of  S. pombe Nse2 (B) and structurally conserved lysines of  

               H. sapiens Nse2 (C) and  S. cerevisiae  Mms21 (A) 
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Fig. 6.15 MS/MS fragmentation of Hus5 peptide sumoylated  at K50 

Highlighted in boxes is the y ion corresponding to K50  

y13 y10 y9 

V G I P G K P K50 (GG) T S W E G G L Y K Hus5 K50-SUMO peptide: 



Fig. 6.16 Comparison of the position of the sumoylated lysines of the SUMO conjugator  Hus5Sp/Ubc9Hs/Sc 

A.  Cartoon representation of the structural model of S. pombe Hus5. Model created by PHYRE software based  
      on the structure of Mus musculus Ubc9 (pdb id: 2VVR). 

B. Cartoon representation of the crystal structure of S. cerevisiae Ubc9 (pdb id. 2GJD).  

C. Cartoon representation of the crystal structure of human Ubc9 (pdb id. 1A3S).  

Active cysteine residues are highlighted in yellow. Identified sumoylated lysines are highlighted in blue. 
Structurally conserved residues that are potential sumoylation sites or functionally conserved are highlighted in red. 
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structure (fig. 6.16 A and B).  None of the Hus5/Ubc9 lysine residues are within 

sumoylation consensus sequence. To further understand the role of autosumoylation, 

biochemical and genetic analysis was carried out on the SUMO modification of Hus5. 

 

 

6.4 In vitro analysis of sumoylation of Hus5 at K50  
 

Firstly, to confirm that K50 is the only sumoylated lysine, the in vitro sumoylation 

assay was carried out using a recombinant Hus5 mutant which had the lysine at position 

fifty mutated to an arginine residue. Arginine residues contribute to the structure and the 

non-covalent interactions of the protein in a similar manner to the lysine residues but 

they cannot be sumoylated and therefore are the ideal substitution for lysines when 

analyzing sumoylation. The mutant protein to be used was created from a previous 

bacterial construct of the wild-type hus5+, pGEX-KH-hus5+, by site directed 

mutagenesis (using primers 5K50-F: 5’GGAAAACCGAGAACGTCTTGG and 5K50-

R: 5’CCAAGACGTCTTCGGTTTTCC). The protein was expressed in a bacterial 

culture and purified on a glutathione sepharose column (fig. 6.17 A). The sumoylation 

assay was carried out in parallel with the wild type Hus5 conjugating enzyme and the 

Hus5-K50R mutant (fig. 6.17 B). The sumoylation assay reaction mixture carried out 

with the Hus5-K50R mutant (fig. 6.17 B lane 4) does not display a band at the size 

where the sumoylated wild type Hus5 separates. This confirms that K50 is sumoylated 

in vitro and that no other lysine residues are modified. More interestingly, most of the 

high Mr bands present when wild type Hus5 is used (fig. 6.17 B lane 2) are absent when 

the mutant is employed. This suggests that sumoylation of Hus5 at K50 is required for 

the formation of high Mr sumoylated species in vitro. To assess the in vitro results, an 

in vivo analysis of how Hus5 defective in sumoylation affects the levels the cellular 

sumoylation was carried out. 

 

 



Fig. 6.17 Hus5-K50R is not sumoylated in vitro 

A.  SDS-PAGE of  purified Hus5-K50R-GST. P = pellet; FT = flow through; 

      E = elution 

B. Colloidal blue staining of SDS-PAGE of in vitro sumoylation assay with  

       wild type Hus5 (lane 2) and mutant Hus5-K50R (lane 4) 
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6.5 hus5-K50R mutant promotes hypersumoylation in vivo 
 

For the ease of genetic manipulation of the hus5+ gene, a base strain was created (by 

Dr. F.Z. Watts, University of Sussex) employing the RMCE strategy (see section 2.1.4) 

and used to obtain the mutant strain with hus5-K50R as the sole copy of the hus5 gene 

(fig. 6.18). The hus5+ base strain and the hus5-K50R mutant grow like the wild type 

strain at the physiological S. pombe temperature (30°C) and at 37°C (fig. 6.19 A) 

signifying that the foreign DNA at the 5’ (loxP) and the 3’ (lox M) does not interfere 

with the gene function and that mutating the lysine at position 50 to arginine does not 

affect the folding of the protein.  

 

To determine whether by mutating K50 to arginine in the genome affects SUMO 

modification or formation of high Mr sumoylated species, whole cell extracts were 

prepared using TCA, analysed by SDS-PAGE and probed with anti-SUMO antibodies, 

with anti-tubulin antibodies as control.  The effect of the mutation on the levels of 

sumoylation were compared to wild type, the hus5 base strain which should behave like 

wild type, pli1Δ, which has reduced levels of cellular sumoylation, and pmt3 null 

mutant strains (fig. 6.19 B).  pli1 and pmt3 null mutant strains (lane 2 and 5 

respectively) display reduced sumoylation and no sumoylated species respectively, as 

expected.  The hus5 base strain (lane 3 and 6) has similar levels of sumoylation to the 

wild type (lane 1) strain but, unexpectedly, the hus5-K50R strain (lane 4) has elevated 

levels of total sumoylation compared to wild type. This is consistent with in vivo results 

from S. cerevisiae (Ho et al., 2011) where the ubc9-K153,K157R mutant shows 

increased levels of cellular sumoylation. This phenotype is similar to that observed in S. 

cerevisiae in a null mutant of the SUMO protease ulp2 (Bylebyl et al., 2003) and the 

STUbL mutant slx8-1 (Prudden et al., 2007). 

 

 

6.6 Phenotypic analysis of hus5-K50R mutant 
 

The phenotypic characteristics of the hus5-K50R mutant were compared to those of a 

wild type strain, the hus5 base strain, which should behave like a wild type strain, and 



Fig. 6.18  Strategy to create hus5-K50R mutant using a hus5 
      base strain (bs) 

A hus5 base strain (ura+) (I) was transformed with the pAW8 plasmid 

containing the hus5-k50R mutant (obtained by site directed mutagenesis) 

flanked by the loxP (at 5 end’) and loxM3 (at the 3’ end) (II). Cassette 

 exchange by homologous recombination results in hus5-K50R strain (ura-)  

(III)  
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Fig. 6.19  hus5-K50R mutant promotes hypersumoylation 

A.  The hus5-K50R mutant is not temperature sensitive 

10 µl of 10 fold serially diluted cultures (                      ) were plated onto 

 YEA media and incubated at 30°C and 37°C for 3 days as indicated. 

B. Western blot of total cell extract from wild type, hus5+ base strain, pli1Δ, 

pmt3Δ and hus5-K50R mutant cells as indicated, probed with anti-SUMO  

antisera (upper panel) and anti-tubulin antisera (lower panel).  

A. 

B. 
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the hus5-62 mutant of the SUMO conjugating enzyme which was comprehensively 

characterized (Ho and Watts, 2003) and is sensitive to most genotoxins. The 

microscopic analysis of the hus5-K50R mutant revealed cellular and nuclear aberrations 

and a ‘cut phenotype’ (fig. 6.20) 

 

6.6.1 hus5-K50R is not sensitive to S-phase arrest 
 

As the hus5-62 mutant is sensitive to the DNA replication inhibitors HU, MMS and 

CPT, the response of hus5+ base strain and hus5-K50R to these genotoxins was 

evaluated (fig. 6.21). The results confirm that the hus5+ base strain behaves like wild 

type. The hus5-K50R displays no sensitivities to these DNA damaging agents, 

suggesting that sumoylation of the SUMO conjugating enzyme is not required during 

DNA replication. 

 

6.6.2 Hus5 sumoylation is not required for chromosome segregation or 

protein synthesis  
 

As the null mutant of the SUMO E3 ligase pli1Δ is sensitive to the microtubules 

inhibitor thiabendazole (TBZ) (Xhemalce et al., 2004) and in the light of recent reports 

that hypersumoylation occurs in response to the inhibition of protein translation 

(Castoralova et al., 2012) the sensitivity of hus5-K50R to TBZ and cycloheximide 

(CHX), a protein synthesis inhibitor, was tested (fig. 6.22). The mutant is not sensitive 

to either inhibitor, suggesting that sumoylation of Hus5 does not function in 

chromosome segregation or in protein translation.  

 

6.6.3  hus5-K50R mutant sensitivity to IR is S phase-specific 
!
The IR sensitivity of the hus5-K50R mutant was tested on asynchronous cell cultures  

in parallel with the hus5+ base strain and wild type cells (fig. 6.23 A). hus5-K50R 

exhibits a slight sensitivity at high doses of IR suggesting that the function of the 

sumoylation of Hus5 in IR induced cellular response could be phase specific.  

 



Fig. 6.20  hus5-K50R mutant display aberrant cell and nucleus morphology 

Morphology of methanol fixed cells, stained with DAPI and calcofluor. 

Wild type 

hus5-K50R  

Elongated cells 

Stretched and fragmented  
chromatin 

‘cut’ phenotype 
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Fig. 6.21 The hus5-K50R mutant is not sensitive to S-phase genotoxins 

10 µl of 10 fold serially diluted cultures (                      ) were plated onto 

 media containing genotoxins as indicated, and incubated at 30°C for 3 days. 
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hus5.62 
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Fig. 6.22 The hus5-K50R mutant is not sensitive to protein synthesis  
                and  microtubules inhibition 

10 µl of 10 fold serially diluted cultures (                      ) were plated onto 

 media containing stressing agents as indicated, and incubated at 30°C for  

three days. 
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Fig. 6.23 The hus5-K50R sensitivity to ionizing radiation is reversed by  

                over-expression of the SUMO protease Ulp2 

A.  hus5-K50R is sensitive to high doses of ionizing radiation. IR survival  

    curves of  hus5-K50R compared to wild type and hus5+ base strain.  

    Log-phase cultures were irradiated with the stated dose and 500 cells were  

    plated onto YEA and incubated at 300C for three days to determine cell  

    viability. 

B. hus5-K50R cells synchronized in S-phase are sensitive to low doses (200  

    Gy) of ionizing radiation. Measurements were taken at 30 minutes  

    interval after release from G1 block. 500 cells were plated onto  

    YEA and incubated at 300C for three days to determine cell viability. 

C. Over-expression of Ulp2 can rescue the hus5-K50R sensitivity to ionizing 

     radiation. Log-phase cultures were irradiated with the stated dose and 500  

     cells were plated onto YEA and incubated at 300C for three days to  

     determine cell viability.  
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Fig. 6.23 The hus5-K50R sensitivity to ionizing radiation is reversed by  
               over-expression of the SUMO protease Ulp2 
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The S phase checkpoint is induced by DSBs and it delays the replication process until 

the damage is repaired. Many proteins involved in the intra-S-phase checkpoint are 

sumoylated such as ATM/ATR, BRCA1, FANC2, PCNA. To investigate if the IR 

sensitivity of hus5-K50R mutant is phase specific, cultures of hus5-K50R x cdc10-M17 

were synchronized in late G1 phase. The cdc10-M17 grows at 25°C, it blocks at late G1 

phase at 36°C and the cell cycle can be restarted by reverting to 25°C. hus5-K50R x 

cdc10-M17 cultures were blocked at 36°C for 3 hours and released at 25°C for 3 hours. 

After the release samples were taken at 30 minutes intervals and irradiated with 200 Gy 

(fig. 6.23 B; due to technical restrictions a higher dose of radiation could not be 

administered). The hus5-K50R x cdc10-M17 mutant shows a smaller percent of cell 

viability compared to cdc10-M17 single mutant and the difference is higher than that of 

the asynchronous cultures of hus5-K50R and wild type at 200 Gy. These data suggests 

that the autosumoylation of Hus5 could be required for DNA damage repair during S-

phase. 

 

Mutants that accumulate high Mr sumoylated species (slx8-1 and ulp2Δ) are sensitive to 

IR. To see if the phenotype of hus5-K50R in response to IR is due to oversumoylation, 

the Ulp2 SUMO protease was over-expressed in the hus5-K50R strain from a pREP41 

vector (Maundrell, 1993) (fig. 6.23 C).  Indeed, over-expressing Ulp2 reverses the hus5-

K50R sensitivity to IR and this is consistent with previous reports that accumulation of 

sumoylated species interferes with the cellular response to the DNA damaging agents. 

 

6.6.4 Sumoylation of Hus5 is required for cell viability when 

homologous recombination is impaired 
!
As the homologous recombination defective mutants rad22Sp/rad52Hs/ScΔ and rhp51Sp 

/rad51Hs/ScΔ  are sensitive to ionizing radiation it was interesting to see if the hus5-K50R 

mutant is epistatic with the recombination mutants. hus5-K50R strain (no marker) was 

crossed with opposite mating type of rad22Δ::NAT and rhp51Δ::KAN strains. The 

spores were dissected from asci on complete YEA media and were allowed to germinate 

for three days. The resulting colonies were replica plated onto YEA media containing 

nourseothricin (NAT) and geneticin (G418/KAN) to select for rad22Δ::NAT and 

rhp51Δ::KAN alleles (fig. 6.24). The pattern of the viable spores implies that the double 



Fig. 6.24  Sumoylation of Hus5 is required for cell viability in 

                 homologous recombination mutant backgrounds 

A.  hus5-K50R is lethal with rhp51Sp/rad51Hs/ScΔ mutant 

B.  hus5-K50R is lethal with rad22Sp/rad52Hs/ScΔ mutant 

NPD = non-parental di-type;  TT = tetra-type;  PD = parental di-type 

Represented dissected tetrads were chosen from a pool of 20 dissected tetrads. 

A. 

B. 

NPD TT    PD           NPD     TT    PD         

YEA KAN 

NPD NPD 
YEA NAT 

TT    TT         TT    TT         PD    PD         PD    PD         
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mutants hus5-K50R:rad22Δ::NAT and hus5-K50R:rhp51Δ::KAN are not viable. This 

phenotype is similar to that displayed by the null mutant of the SUMO E3 ligase Pli1, 

which is interesting as this mutant displays significant reduced levels of cellular 

sumoylation.  

 

6.6.5 Sumoylation of Hus5 is required for DNA damage response when  

sumoylation of the Smc5/6 complex is impaired 
!
Another important component of the homologous recombination repair pathway is the 

Smc5/6 complex. The Smc6 protein is sumoylated in a manner dependent on the SUMO 

E3 ligase Nse2, which is itself a component of the complex. The nse2-SA mutant, which 

is defective in Smc6 sumoylation, is sensitive to a range of genotoxins and to UV and 

IR radiation. To determine if the hus5-K50R mutant is epistatic with the nse2-SA mutant 

the hus5-K50R strain was crossed with a nse2-SA::NAT strain (fig. 6.25 A). The double 

mutant hus5-K50R:nse2-SA::NAT  is slow growing and very sensitive to low doses of 

UV, IR and HU (fig. 6.25 B, C and D). These data imply that the mutants are not 

epistatic and that sumoylation of Hus5 is required for the DNA damage response 

machinery when the sumoylation of the Smc6 is impaired. 

 

6.6.6 Sumoylation of Hus5 prevents gross chromosomal 

rearrangements  
!
Both pli1Δ and nse2-SA mutants are defective in maintaining a minichromosome and in 

preventing gross chromosomal rearrangements at centromeric repeats (this study 

Chapter 5 and (Watts et al., 2007)).  To determine if the sumoylation of Hus5 function 

in genomic maintenance, a hus5-K50R strain containing the artificial minichromosme 

Ch16-AGU (strain created as previously described in Chapter 5, section 5.1.3) was 

tested for loss of the minichromosome and loss of ura4+ gene by means of fluctuation 

tests as previously described (Chapter 5, section 5.2). Three independent experiments, 

each using 5 cultures propagated from single colonies of wild type and hus5-K50R 

strains were performed (fig. 6.26). 

 



Fig. 6.25  hus5-K50R; nse2-SA double mutant is hypersensitive to low 

     doses of UV, IR and HU 

A. hus5-K50R; nse2-SA double mutant is slow growing 

B. . hus5-K50R; nse2-SA double mutant is hypersensitive to low doses of  
       UV radiation 

C. . hus5-K50R ;nse2-SA double mutant is hypersensitive to low doses of  
       IR  

D. hus5-K50R x nse2-SA double mutant is hypersensitive to low doses of  
     hydroxyurea 

NPD = non-parental di-type;  TT = tetra-type;  PD = parental di-type. 
Represented dissected tetrads were chosen from a pool of 20 dissected tetrads. 
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Fig. 6.25  hus5-K50R x nse2-SA double mutant is hypersensitive to low 
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The hus5-K50R mutant is not defective in maintaining the minichromosome (fig.6.26 

A) but shows an increased frequency of chromosomal rearrangements compared to wild 

type (fig. 6.26 B), at levels similar to those of other sumoylation mutants (see Chapter 

5, section 5.2). These data suggests that the sumoyaltion of the SUMO conjugating 

enzyme is not involved in double strand break repair or chromosome segregation but 

has roles in maintaining the genome integrity. 

 
 

6.7 Discussion 
!
Sumoylation of the SUMO pathway components has emerged as an important 

regulatory mechanism of general cellular sumoylation levels and specific target 

discrimination. In this study, using an in vitro sumoylation assay and mass 

spectrometry, I identified specific sumoyalted lysine residues of components of the 

sumoylation pathway, carried out an in silico analysis of sumoylated lysine residues of 

the SUMO activating enzyme Fub2, the SUMO conjugating enzyme Hus5 and the 

SUMO E3 ligase Nse2, and I conducted an in vitro, in vivo and genetic characterization 

of the Hus5 sumoylation at K50. Together with newly identified lysine residues, 

sumoylated K30 of the SUMO protein was identified by mass spectrometry (fig. 6.27), 

confirming the validity of the data presented in Chapter 3 of this study. 

 

In silico analysis in this study and previous reports (Truong et al., 2012) reveal that 

SUMO isopeptide bond formation in Fub2 especially, and to some extent in Nse2, 

affect their enzymatic activity as the sumoylated lysine residues are present near the 

RING domain. It has been shown that the sumoylation of SAE2 inhibits the transfer of 

SUMO from E1 to E2 but not the Fub2/Uba2 adenylation or thioester formation at C173 

(Truong et al., 2012). Therefore sumoylation of Fub2 at K86 could be a S. pombe 

specific mechanism of SUMO self-regulation through inhibition of E1 adenylation.  

 

The sumoylated lysine, K50, of Hus5 is situated on an opposite surface to the catalytic 

cysteine and the domain involved in non-covalent interactions with target proteins, 

suggesting that it might not be involved in the conjugation function of Hus5. However it 



Fig. 6.26  hus5-K50R promotes gross chromosomal rearrangements 

A.  Graphical representation of  spontaneous loss of  minichromosome of 

         wild type and hus5-K50R strains. 

B.  Graphical representation of  spontaneous loss of ura4+ gene of wild  

 type and hus5-K50R strains. 

Bars represent s.e.m. 

High p value  (> 0.05): the sets of data are not significantly different. 

Low p value ( < 0.05): the sets of data are significantly different. 
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Fig. 6.27 MS/MS fragmentation of SUMO peptide sumoylated  at K30 

Highlighted in boxes are the b, y and y++ ions corresponding to K30  

y21 y16 y10 

 S A I T P T T G D T S Q Q D V K30 (GG) P SUMO K30-SUMO peptide: 

b16 
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is in close proximity to the SUMO interacting domain like the mammalian sumoylated 

K14 (fig. 6.28). The non-covalent interaction between Ubc9 and SUMO is important for 

the interaction of the conjugating enzyme with the E3 ligases and the formation of high 

Mr poly-SUMO chains (Capili and Lima, 2007). 

 

An in vitro sumoylation assay carried out with the Hus5-K50R mutant protein revealed 

that most high Mr sumoylated species are missing, including a band representing a 

covalent bond between the conjugating enzyme and one SUMO molecule. This is 

intriguing as the Hus5-SUMO thioester complex should still be present and the 

formation of SUMO chains should therefore not be affected. However, the thioester 

bond is transient and readily hydrolyses to facilitate the formation of the more stable 

isopeptide bond (Hershko and Ciechanover, 1998). This suggests that most of the high 

Mr sumoylated species observed in in vitro sumoylation assays are probably SUMO 

chains attached to the K50 of Hus5. The presence of the sumoylated form of Fub2 

further confirms that the sumoylation of Hus5 at K50 does not affect its catalytic 

activity. As the SUMO E3 ligases enhance isopeptide bond and SUMO chain forming it 

would be interesting to see if Pli1 and Nse2 restore the formation of high Mr 

sumoylated species when the lysine at position 50 of Hus5 is mutated to an arginine, 

especially as the mammalian E3 ligase Rhes was shown to facilitate the sumoylation of 

the conjugating enzyme at multiple lysines (Subramaniam et al., 2010) . 

!
It is interesting that, while hus5-K50R mutant has an opposite effect to total cellular 

level of sumoylation to pli1 null mutant, both strains are lethal with the homologous 

recombination mutants rad22Δ/rad52Δ and rhp51Δ/rad51Δ. This suggests that strict 

control of overall sumoylation is required for cellular viability when the homologous 

recombination repair mechanism is impaired and /or both Pli1 and sumoylated Hus5 are 

required for an alternative repair mechanism. It would be interesting as well to analyze 

the levels of Hus5 in total cell extracts of hus5-K50R mutant. 

 
 
 
 
 
 
 
 



Fig. 6.28 Structural representation of non-covalent interaction of sumoylated Ubc9 with SUMO-1 

Model created by PHYRE software based on the structures of Mus musculus Ubc9 modified by human SUMO-1 

(pdb id: 2VVR) and the non-covalent complex between Mus musculus Ubc9 and human SUMO-1 (pdb id.: 2UYZ) 
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CHAPTER 7 

SUMOYLATION OF RTF2 IS REQUIRED FOR 

RECOVERY FROM IR-INDUCED DNA 

DAMAGE DURING EARLY S PHASE 

!
!

7.1 Introduction 
!
Rtf2, Replication Termination factor 2, is required for the stabilization of replication 

forks at the RTS1 (Replication Termination Sequence 1) locus. It has been shown that 

the function of Rtf2 is dependent on its interactions with Pmt3 (S. pombe SUMO) and 

PCNA, the replication fork clamp loader (Inagawa et al., 2009). However the role of 

these interactions remains to be unveiled. 

 

The role of sumoylation of PCNA in preventing unscheduled recombination events at 

stalled replication forks is well documented in S. cerevisiae and H. sapiens (Gali et al., 

2012, Pfander et al., 2005). Rtf2 is the founder member of a newly discovered family of 

proteins (Inagawa et al., 2009) and its function is less well characterized than is that of 

PCNA. The interaction of Rtf2 with SUMO and the presence of a RING-type domain at 

its C-terminal (Inagawa et al., 2009) suggest that Rtf2 could be a sumoylation pathway 

component (ie an E3 ligase), but alternatively it could be a sumoylation substrate.  

 

The in vitro sumoylation assay, previously developed in the lab and used to study 

SUMO chain formation and sumoylation of the pathway components, was employed 

here, together with tandem mass spectroscopy, for identification of specific modified 

lysine residues in Rtf2 and PCNA as previously described (see chapter 2, section 

2.4.22) 
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!

7.2 PCNA is sumoylated at specific lysines in vitro 
!
For use of PCNA as a substrate in the in vitro sumoylation assay, the protein was 

expressed and purified from a pET15b plasmid in E. coli as a His-tagged fusion protein 

(construct made by J. Ho, University of Susssex). It has been previously shown that in 

S. cerevisiae the sumoylation of PCNA is enhanced by the E3 ligase Siz1 (Hoege et al., 

2002, Windecker and Ulrich, 2008), the homologue of S. pombe SUMO E3 ligase Pli1 . 

To identify modified lysine residue in PCNA two sumoylation assays were carried out, 

one without Pli1 and the second one with Pli1, and the results were analysed by western 

blotting (fig. 7.1). The unmodified His-PCNA is clearly visible at ~ 30 kDa and one 

band corresponding to mono-sumoylated PCNA is visible at approximately 40kDa 

(SUMO runs at ~ 10 kDa on SDS-PAGE) on the assay without Pli1. As expected 

multiple bands at 10 kDa intervals are observed in the lane corresponding to the 

sumoylation assay with Pli1. Bands corresponding to the sumoylated form of PCNA 

were excised from colloidal stained gels and sent to mass spectrometry services for in-

gel trypsin digestion, LC-MS/MS and MASCOT searches (Dr. L. Bowler and M. 

Daniels, Proteomics Department, University of Sussex). The PCNA lysine residues 

modified by SUMO identified by MS/MS in S. pombe together with those previously 

identified in S. cerevisiae and mammals are listed in table 7.1. 

 

7.3 In silico analysis of sumoylation of PCNA in S. pombe 
!
K13, K164, K176 and K253 of PCNA were identified from the MS/MS spectra, peptide 

mass fingerprints, sequence queries and MS/MS ion searches using the MASCOT 

search engine (see section 2.4.22; fig. 7.2, 7.3, 7.4 and 7.5 respectively) (Perkins et al., 

1999). K164, the main sumoylation site of PCNA in S. cerevisiae and mammals, is 

within a non-consensus sumoylation sequence. To assess if the newly identified lysine 

residues are within consensus sumoylation sites, the sequence of PCNA was analyzed 

with the SUMOsp 2.0 site specific predictor software (Ren et al., 2009). Interestingly, 



Fig. 7.1 in vitro poly-sumoylation of PCNA is facilitated by Pli1 E3 ligase 

Western blotting of in vitro sumoylation assay with PCNA as target protein. 
Probed with α-PCNA antibodies. 
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Table 7.1 Sumoylated lysine residues identified in PCNA 

Substrate Sumoylated 
Ks identified 
in this study  

Sumoylated Ks 
in Hs 

Sumoylated 
Ks in Sc 

PCNA 13, 164, 172, 
253 

164, 254 
Gali et. al., 2012 

127, 164 
Hoege et. al., 
2002  

PCNA lysine  
position 

Peptide  Type 

13 ALLKKLL Non-consensus 

164 NASKEGV Non-consensus 

172 FSCKGDI Non-consensus 

253 LAPKIGE Non-consensus 

Table 7.2 S. pombe PCNA possible sumoylation sites are within  
                non-consensus motifs 



Fig. 7.2 MS/MS fragmentation of PCNA peptide sumoylated  at K13 

Highlighted in the red boxes are the b and y ions corresponding to K13  

y4 y2 y1 

F Q Q A L L K13 (GG) K PCNA K13-SUMO peptide: 



Fig. 7.3 MS/MS fragmentation of PCNA peptide sumoylated  at K164 

Highlighted in red boxes are the b and y ions corresponding to K164  

y10 y2 y4 

  N I A L G I N L N A L S K164 (GG) Y L R PCNA K164-SUMO peptide: 

b13 



Fig. 7.4 MS/MS fragmentation of PCNA peptide sumoylated  at K172 

Highlighted in boxes are the y and b ions corresponding to K172  

y12 y8 y2 

F S C K172 (GG) G D I G N G S T T L K PCNA K176-SUMO peptide: 

b4 



Fig. 7.5 MS/MS fragmentation of PCNA peptide sumoylated  at K253 

Highlighted in red boxes are the b and y ions corresponding to K253  

y11 

b6 

y5 

 F Y L A P K253 (GG) I G E E D E E PCNA K253-SUMO peptide: 

y8 
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like K164, none of the identified sumoylated lysine residues are within consensus 

sequences (table 7.2). 

 

To evaluate the significance of the identified sumoylation sites it was important to 

determine if they are evolutionarly conserved like K164. The sequence alignment of S. 

cerevisiae, H. sapiens and S. pombe PCNA (fig. 7.6) reveals that K13 is conserved in all 

three organisms. K172 is not conserved, like S. cerevisiae K127 that was identified as a 

sumoylation site (Hoege et al., 2002).  K254 is conserved in all three organisms and was 

identified as a sumoylation site in mammalian cells (Gali et al., 2012) but not in S. 

cerevisiae. The crystal structures of S. cerevisiae and H. sapiens PCNA have been 

elucidated (Freudenthal et al., 2009, Punchihewa et al., 2012, Krishna et al., 1994), 

including the crystal structure of PCNA modified by SUMO at K164 (Armstrong et al., 

2012) and PCNA in complex with DNA (McNally et al., 2010) (fig. 7.7 A, B and D). 

To map the identified sumoylation sites, the sequence of S. pombe PCNA was modeled 

onto the crystal structure of H. sapiens PCNA (Punchihewa et al., 2012) using the 

PHYRE protein-modeling server (fig. 7.7 C). Like K164, K172 and K253 are situated 

on the external β sheets of the homotrimer, shown to be implicated in the PCNA 

protein-protein interactions, while the K13 is positioned on the internal α helices, shown 

to be important for the interactions of PCNA with DNA (fig. 7.7 D).  

  

This in silico analysis suggests that the lysine residues identified to be sumoylated in 

vitro could be important sumoylation sites in vivo with key functions in PCNA-protein 

and PCNA-DNA interactions. 

!
!

7.4 Rtf2 does not function as a SUMO E3 ligase in vitro 
!
Given the presence of a RING domain, characteristic to SUMO and ubiquitin ligases, 

and the interaction with SUMO, the possibility of Rtf2 to function as a SUMO E3 ligase 

was tested by means of in vitro sumoylation assays. 

 

The Rtf2 protein was expressed and purified from a pET-21a plasmid in E. coli as a 

MBP-6xHis tagged fusion protein (construct made by J. Daalgard, University of 



Fig. 7.6  S. pombe PCNA sumoylated lysine residues are sequentially  
               conserved in humans and S. cerevisiae 

Sequence alignment of S. pombe, H.sapiens and S. cerevisiae PCNA. 

Highlighted in blue is K164 that is ubiquitinated and sumoylated in all three  

organisms. Highlighted in yellow are other lysines identified as  

sumoylation sites.  



Fig. 7.7  Structural mapping of the sumoylated lysines and possible    

              sumoylation sites of PCNA 

A.  Cartoon representation of the crystal structure of H. sapiens PCNA 

(pdb id: 3VKX). Highlighted in blue and red are lysine residues 

identified to be sumoylated: K164 and K253 respectively. 

B. Cartoon representation of the crystal structure of S. cerevisiae PCNA 

conjugated to SUMO (in light blue) at K164 (blue) (pdb id: 3V60). 

Highlighted in red is K127 which was identified as a sumoylation site.   

C. Cartoon representation of the structural model of S. pombe PCNA. 

Model created by PHYRE software based on the crystal structure of S. 

cerevisiae PCNA (pdb id: 3V60). Highlighted in blue and red are lysine 

residues identified to be sumoylated in vitro: K164 and K13, K172 and 

K254 respectively. 

D. Cartoon representation of S. cerevisiae trimeric PCNA in complex with 

DNA (pink) (pdb id: 3K4X). Highlighted in blue is K164 residue 

identified to be sumoylated in all three organisms. Highlighted in red 

are sumoylated lysine residues specific to each organism.  
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Fig. 7.7  Structural mapping of the sumoylated lysines and possible sumoylation sites of PCNA 
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Warwick). To determine whether Rtf2 can function as a SUMO E3 ligase, the 

sumoylation assay was carried out under the conditions used to test for ligase function 

(fig. 7.8). When Rtf2 was added to the assay carried out with a tenth of the required 

amount of Hus5, the formation of the high Mr sumoylated species was not restored (fig. 

7.8 A and B, lane 6). However, when Rtf2 was added to the assay carried out with the 

full amount of Hus5 an additional band was identified above 80 kDa that could 

correspond to a sumoylated form of Rtf2 (fig. 7.8 A lane 9).  

 

The results of the in vitro sumoylation assay suggest that Rtf2 does not function as a 

SUMO E3 ligase, but it cannot be excluded that Rtf2 is a specific SUMO E3 ligase, like 

Nse2, rather than a general one, like Pli1.  In vitro, a ten-fold amount of Nse2 compared 

to Pli1 is required to restore high Mr sumoylated species when low amounts of the 

SUMO conjugating enzyme are present. To assess if this is the case for Rtf2, 

sumoylation assays were carried out with increasing amounts of Rtf2 (fig. 7.8 B) and 

compared with sumoylation assays with Pli1 and Nse2 (fig. 7.8 B lanes 3 and 7). 

Interestingly, increasing the amount of Rtf2 reduces the intensity of high Mr 

sumoylated species (fig. 7.8 B lanes 4.5 and 6) further confirming that Rtf2 does not 

function as a SUMO E3 ligase in vitro.  

 

 

7.5 Rtf2 is sumoylated in vitro at specific lysine residues  
 

The in vitro sumoylation assay was scaled up from 20 µl to 100 µl so that proteins could 

be visualized by colloidal blue staining. Bands matching the Rtf2 protein and possible 

sumoylated forms of it were excised from colloidal stained gels (fig. 7.9) and sent to 

mass spectrometry services for in-gel trypsin digestion, LC-MS/MS run and MASCOT 

search (Dr. L. Bowler and M. Daniels, Proteomics Department, University of Sussex). 

K184, K209 and K224 of Rtf2 were identified from the MS/MS spectra, peptide mass 

fingerprints, sequence queries and MS/MS ion searches using the MASCOT search 

engine (see section 2.4.22; fig. 7.10, 7.11 and 7.12 respectively) (Perkins et al., 1999).  

 

 



Fig. 7.8   Rtf2 does not function as a SUMO E3 ligase in vitro 

A.  Western blot of sumoylation assay with Rtf2. Probed with 

       anti SUMO antibodies 

B.   Western blot of sumoylation assay with E3 ligases Pli1 (lane3) and Nse2  

       (lane 7) and Rtf2 (lanes 4, 5 and 6). Probed with anti SUMO antibodies. 
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Fig. 7.8   Rtf2 does not function as a SUMO E3 ligase in vitro 



Fig. 7.9 Rtf2 is sumoylated in vitro 

 Colloidal blue staining of  sumoylation assay with Rtf2 as target protein.  
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Fig. 7.10 MS/MS fragmentation of Rtf2 peptide sumoylated  at K184 

Highlighted in boxes are the b and y ions corresponding to K184 

y16 y11 y9 

A I V A A K184 (GG) T A S S F Rtf2 K184-SUMO peptide: 

b++6 



Fig. 7.11 MS/MS fragmentation of Rtf2 peptide sumoylated  at K209 

Highlighted in boxes are the b and y ions corresponding to K209 

y14 y12 y8 

S P P K209 (GG) E L S Y S E Rtf2 K209-SUMO peptide: 

b4 



Fig. 7.12 MS/MS fragmentation of Rtf2 peptide sumoylated  at K224 

Highlighted in boxes is the y ion corresponding to K50  

y14 y11 y9 

M L D G E N Y  K224 (GG) S E Rtf2 K224-SUMO peptide: 
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7.6 In silico analysis Rtf2 
!
The three lysine residues in Rtf2 identified to be sumoylated in vitro are situated in 

different type of motifs: K184 is within a non-consensus sequence, while K209 and 

K224 are within canonical sumoylation motifs (table 7.3). Sequence alignment of S. 

pombe Rtf2 with the H. sapiens and S. japonicus homologues (fig. 7.13 A) reveals that 

K184 is conserved in all three organisms while K209 and K224 are not conserved. This 

suggests that sumoylation of Rtf2 at K184 could have an evolutionary conserved 

function. Human Rtf2 has lysine residues equivalent to the residues corresponding to 

K209 and K224, namely K254 and K269 respectively, suggesting that these residues 

could be structurally conserved. Sequence alignment of Rtf2 with the human ubiquitin 

ligase BRCA1 suggests that the C2HC2 RING domain of Rtf2 can adopt a similar fold 

as the C3HC4 RING domain of BRCA1 (Inagawa et al., 2009). It has been shown that 

the ubiquitin ligase activity of BRCA1 is stimulated by the sumoylation at a lysine 

residue situated just after the RING domain (K119) (Morris et al., 2009). Since the 

identified sumoylated lysines of Rtf2 are situated at the C-terminal just after the RING 

domain, it was interesting to determine whether extending the alignment with BRCA1 

revealed any conserved lysine residues. Indeed the K209 of Rtf2 corresponds to the 

sumoylated K119 of BRCA1 (fig. 7.13 B). This suggests that Rtf2 could be a SRUbL 

(SUMO-Regulated Ubiquitin Ligase) like BRCA1. 

 

To further understand if the K184, K209 and K224 of Rtf2 are of structural or 

functional importance, full-length Rtf2 modeling queries were submitted to PHYRE, 

SWISS-MODEL and I-TASSER protein modeling servers. Nearly all of the returned 

hits were models of the C2HC2 RING domain mostly based on RING domains of 

ubiquitin ligases, with one model based on the E3 SUMO ligase Nse2 and only the 

PHYRE server returned full length models of S. pombe and H. sapiens Rtf2 (fig. 7.14). 

Interestingly all lysines, S. pombe K184, K209 and K224, corresponding to human 

K230, K254 and K269 respectively, are surface residues that could be available for 

SUMO conjugation. More importantly they are all situated on a similar arrangement in 

S. pombe and humans in relation to the C2HC2 RING domain. 



Rtf2 lysine  
position 

Peptide  Type 

184 SLNKASK Non-consensus 

209 KHAKHEL Ψ-K-X-E 

224 ENVKSET Ψ-K-X-E 

Table 7.3 Rtf2 possible sumoylation sites are within non-consensus and 
              canonical motifs 



Fig. 7.13 Sequence alignment of Rtf2 

A.  Sequence alignment of S. pombe, S. japonicus and H. sapiens Rtf2 

  protein. Highlighted in green are the U-box and C2HC2 RING domains. 

Highlighted in blue are lysines identified to be sumoylated in vitro in S. pombe 

and sequentially conserved. Highlighted in yellow are possible structurally 

conserved sumoylated  lysines. 

B. Sequence alignment of S. pombe Rtf2 and H.sapiens BRCA1. Highlighted in 

yellow is the conserved RING domain. Boxed is the Rtf2 sumoylated  K209 

that corresponds to the sumoylation site  K119 of BRCA1.  



Fig. 7.13 Sequence alignment of Rtf2 

A. 

B. 

U-box 

C2HC2 RING 



Fig. 7.14  Structural modeling of S. pombe and H. sapiens Rtf2 protein 

A.  Cartoon representation of structural model of S. pombe Rtf2 

B.  Cartoon representation of structural model of H. sapiens Rtf2 

Highlighted in blue are sumoylated lysine residues identified in S. pombe and their corresponding lysines in H. sapiens. 

Highlighted in yellow are the C2HC2 RING domains. Structural models created using  the PHYRE server. Cartooon 

representation created using PYMOL software.  

A. B. 

K184 

K209 

K224 K230 

K254 

K269 



! 119!

 

7.7 Creating the Rtf2 sumoylation mutants from a rtf2+ base 

strain  
!
To facilitate the construction of the rtf2 sumoylation mutants, a rtf2 base strain was first 

created employing the RMCE strategy for non-essential genes (Watson et al., 2008)(see 

sections 2.1.3.2 and 2.1.4). The ura4+ gene flanked by the loxP and loxM sites was 

amplified from pAW1 plasmid with primers with homology to sequences upstream and 

downstream of loxP and loxM respectively, and to genomic sequences upstream of the 

rtf2+ promoter and downstream of the rtf2+ terminator (rtf2-W1_F: 5’ 

CAGTCGTGGAATGTAAGCGCTTCTTTGAAATATGCTTACTTAACACTACTCA

AATTTAATACACACAAGTAAACTTATAGCTACATTATACGAA and rtf2-W1_R: 

5’AAGTTGCTTTATTTATGGGTAAATTAATACACACATACATTTATCTTTTAA

AAAAAAATCTACTATGTACATTTAAATATATAGCATACATTATCGAA) (fig. 

7.15 A).  The PCR product was used to transform a wild type strain to obtain the 

rtf2::ura4 base strain. To create an rtf2+ strain the chromosomal rtf2+ gene together 

with the promoter and terminator was amplified with primers containing the sites for the 

SphI and SpeI enzymes present in the MCS of pAW8 plasmid  (rtf2-W8_F: 5’ 

GTAATATTTAATACACACAAGCATGC and rtf2-W8_R:5’ AATCTACTATGT 

ACATTACTAGT) (fig. 7.15 B). The PCR product was ligated into the MCS of pAW8 

plasmid and the rtf2+ strain was obtained by transforming the rtf2::ura4 base strain with 

the pAW8-rtf2+ plasmid due to homologous recombination between the heterospecific 

loxP and loxM sites (fig. 7.15 B). 

 

To create the rtf2 sumoylation mutants, site directed mutagenesis was carried out on 

pAW8-rtf2 to mutate K184, K209 and K224 to arginine residues. The mutated pAW8-

rtf2 plasmids were used to transform the rtf2::ura4 base strain to obtain the strains with 

one lysine mutated to arginine (rtf2-K184R, rtf2-K209R and rtf2-K224R), two lysine 

mutated to arginine (rtf2-K184R;K224R) and all three lysine residues mutated to 

arginine (rtf2-T) (fig. 7.16). Given the importance of the sumoylation of BRCA1 at 

K119, further genetical analysis was carried out on the rtf2-K209R mutant and 



Fig. 7.15  Strategy to create a rtf2+ base strain using RMCE strategy 

A.  A rtf2 deletion strain was obtained by replacing the rtf2 gene with ura4 

    gene flanked by the heterospecific sites loxP (at 5 end’) and loxM3 

    (at the 3’ end) in the S. pombe genome. 

B. A rtf2+ base strain was obtained by transforming the rtf2::ura4 strain  

    with a pAW8 plasmid containing the rtf2 gene between the heterospecific  

    sites loxP and lox M 

8" 8"8" = chromosomal DNA 
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Fig. 7.15  Strategy to create a rtf2+ base strain 
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Fig. 7.16  Strategy to create  rtf2 sumoylation mutants 

 rtf2+ sumoyaltion mutants were obtained by transforming the rtf2+ base strain  

 with a pAW8 plasmid containing the mutated rtf2 gene between the heterospecific  

 sites loxP and lox M 
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compared with the rtf2-K184R; K224R (rtf2-D), rtf2-T and rtf2::ura4 (rtf2Δ) mutant 

strains. 

!

7.8 Phenotypic characterization of rtf2+ sumoylation mutants 
!
The phenotypic characteristics of rtf2 sumoylation mutants were compared to those of 

rtf2+ strain obtained from the rtf2::ura4 base strain, rtf2Δ and rtf2-1 mutant (kindly 

donated by J. Daalgard, University of Warwick). Microscopic analysis of rtf2Δ and rtf2-

T mutants revealed cellular and nuclear aberrations such as elongated cells, with no 

nuclear division, consistent with defects in DNA replication, and stretched and 

fragmented chromatin, consistent with defects in DNA damage repair (fig. 7.17).  

 

7.8.1 Rtf2 defective in sumoylation is sensitive to MMS and IR 
!
To determine whether mutating the K184, K209 and K224 to arginine affects the 

response to restrictive temperatures, spot tests were carried out at the S. pombe 

physiological temperature (30°) and at 25°C and 37°C. The results suggest that the rtf2 

sumoylation mutants are not cold or heat sensitive (a characteristic of some sumoylation 

mutants), and that the mutations are unlikely to affect the folding of the Rtf2 protein 

(characterized by sensitivity at 37°C) (fig. 7.18 A). 

 

It has been previously shown that rtf2Δ and rtf2-1 mutants are not sensitive to 

hydroxyurea or camptothecin but are sensitive to the alkylating agent MMS (Inagawa et 

al., 2009). Since rtf2-1 has a mutation that probably affects the RING motif, it suggests 

that the sensitivity of rtf2Δ to MMS could be due to a defect in the functionality of this 

domain. To determine whether sumoylation affects the function of the C2HC2, as in 

BRCA1, the response of the rtf2 sumoylation mutants to MMS was tested (fig. 7.18 B). 

Interestingly rtf2-K209R mutant is only slightly sensitive while the rtf2-D and rtf2-T 

mutants are as sensitive as rtf2Δ at high doses of MMS. This result implies that 

sumoylation of Rtf2 is required for the cellular response to DNA alkylation and that all 

three lysine residues are important sumoylation sites.  

 



Fig. 7.17  rtf2Δ and rtf2-T mutants display aberrant cell and nucleus  
                morphology 

Morphology of methanol fixed cells, stained with DAPI and calcofluor. 

Wild type 

rtf2Δ 

Elongated cells with no 
nuclear division 

Stretched and fragmented  
chromatin 

rtff2-T 



Fig. 7.18  rtf2 sumoylation mutants are sensitive to MMS 

A.  Temperature sensitivity of rtf2 mutants. 

B.  MMS sensitivity of rtf2 mutants. 

10 µl of 10 fold serially diluted cultures (                      ) were plated onto 
media containing MMS as indicated, and incubated at 300C for 3 days. 

YEA 250C 
rtf2 bs 

rtf2-D 
rtf2-T 
 rtf2Δ 

rtf2-K209R 

YEA 300C YEA 370C 

rtf2 bs 

rtf2-D 
rtf2-T 
 rtf2Δ 

rtf2-K209R 

0.001% MMS 0.005% MMS 0.01% MMS 

A. 

B. 
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Since BRCA1 is sumoylated in response to ionizing radiation (Morris et al., 2009) it 

was of interest to determine whether rtf2 sumoylation mutants were sensitive to IR. 

Firstly, the response to IR of an asynchronous culture of rtf2+ strain, constructed from 

the rtf2::ura4 base strain, was compare to that of a wild type strain, to see if the loxP 

and loxM affect the rtf2+ gene, and with the rtf2Δ mutant (fig. 7.19 A). The rtf2 null 

mutant is sensitive to high doses of IR and the rtf2+ strain has a response similar to that 

of a wild type strain. To determine whether the sensitivity of rtf2Δ is due to defects in 

its sumoylation, the IR sensitivity of asynchronous cultures of rtf2-K184R, rtf2-K209R 

and rtf2-K224R was tested and compared to that of rtf2-T (fig. 7.19 B). Interestingly all 

single sumoylation mutants display similar IR sensitivities to that of the triple mutant, 

further suggesting that the sumoylation of all three lysine residues is required for the 

function of the Rtf2 protein. The rtf2-T is less sensitive to IR than rtf2Δ but has similar 

sensitivity as the rtf2-1 mutant (fig. 7.19 C).  

 

As Rtf2 functions during S phase, and given that asynchronous cultures of rtf2 mutants 

only shows sensitivity to high doses of IR, it was of interest to determine whether this 

sensitivity is specific to S phase. rtf2 mutants were crossed with a cdc10-M17 mutant 

which grows at 25°C and it blocks at late G1 phase at 36⁰C. Reverting to 25⁰C can 

restart the cell cycle of cdc10-M17 mutant. Firstly, the response to IR of asynchronous 

cultures of rtf2-T:cdc10-M17 and rtf2-1: cdc10-M17 double mutants were determined 

and compared to that of the cdc10-M17single mutant. Interestingly the double mutants 

are very sensitive to 200 Gy (fig. 7.20 A) and the sensitivity of S phase synchronized 

cultures was tested at this dose. Cultures of rtf2-T:cdc10-M17 and rtf2-1:cdc10-M17 

double mutants were grown in parallel with cdc10-M17 at 36°C for 3 hours and released 

at 25°C for 3 hours. After the release, samples were taken at 30 minutes intervals and 

irradiated with 200 Gy (fig. 7.20 B). The rtf2-T:cdc10-M17 and rtf2-1:cdc10-M17 

double mutants exhibit low cell viability in early S phase compared to cdc10-M17 but 

recover slightly as S phase progresses. This further suggests that sumoylation of Rtf2 is 

required during DNA replication when DNA damage is present. Since recovery of 

replication forks stalled at damaged sites requires homologous recombination, it was of 

interest to determine whether the rtf2 sumoylation mutants are epistatic with 

homologous recombination mutants. 

 

!



Fig. 7.19  rtf2 sumoylation mutants are sensitive to ionizing radiation 

A. rtf2::ura4+ deletion mutant is sensitive to ionizing radiation. IR survival  

    curves of  rtf2::ura4+ compared to wild type and rtf2+ base strain.  

    Log-phase cultures were irradiated with the stated dose and 500 cells were  

    plated onto YEA and incubated at 300C for three days to determine cell  

    viability. 

B. rtf2 sumoylation mutants are sensitive to ionizing radiation. IR survival  

    curves of  rtf2:K184R, rtf2:K184R, rtf2:K184R and rtf2:K184R; K209R; 

    K224R (rtf2-T) compared to wild type strain.  

    Log-phase cultures were irradiated with the stated dose and 500 cells were  

    plated onto YEA and incubated at 300C for three days to determine cell  

    viability. 

C. rtf2-T and rtf2-1 mutants display similar IR sensitivities. 

    Log-phase cultures were irradiated with the stated dose and 500 cells were  

    plated onto YEA and incubated at 300C for three days to determine cell  

    viability. 



Fig. 7.19 rtf2 sumoylation mutants are sensitive to ionizing radiation 
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Fig. 7.20 rtf2-T and rtf2-1 mutants are sensitive to low dose of IR during 
               early S-phase 

A. Unsynchronized  cdc17-M10 x rtf2-T  and cdc17-M10 x rtf2-T  are sensitive  

     to low doses (200 Grays) of ionizing radiation.  

     Log-phase cultures were irradiated with the stated dose and 500 cells were  

     plated onto YEA and incubated at 300C for three days to determine cell  

     viability. 

B. cdc17-M10 x rtf2-T  and cdc17-M10 x rtf2-T cells synchronized in S-phase  

   are sensitive to low doses (200 Grays) of ionizing radiation. Measurements  

   were taken at 30 minutes interval after release from G1-S phase block.  

   500 cells were plated onto YEA and incubated at 300C for three days to  

   determine cell viability. 
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7.8.2 rtf2 sumoylation mutants are lethal with recombination mutants 
!
To assess whether the rtf2 sumoylation mutants are epistatic with homologous 

recombination mutants rad22Δ/rad52Δ and rhp51Δ/rad51Δ, double mutants were 

created. Firstly, the rtf2-T strain (no marker) was crossed with rad22Δ::NAT and 

rhp51Δ::KAN strains. The spores were dissected from asci on complete YEA medium 

and were allowed to germinate for three days. The resulting colonies were replica plated 

onto YEA medium containing nourseothricin (NAT) and geneticin (G418/KAN) to 

select for rad22Δ::NAT and rhp51Δ::KAN alleles (fig. 7.21). The pattern of the viable 

spores implies that the double mutants rtf2-T, rad22Δ::NAT and rtf2-T,  rhp51Δ::KAN 

are not viable (fig. 7.21). To further determine whether a specific lysine could be 

responsible for this lethality, rtf2-K184R, rtf2-K184R and rtf2-K184R single mutants 

were crossed with rad22Δ::NAT and rhp51Δ::KAN strains (fig. 7.22). Interestingly all 

single mutants are also lethal with the homologous recombination mutants, suggesting 

that sumoylation of Rtf2 at K184, K209 and K224 is required for cell viability in 

homologous recombination mutant backgrounds.  

 

!

7.9 Discussion 

7.9.1 Sumoylation of PCNA 
!
Preliminary results in Watts lab suggested that PCNA is sumoylated is S. pombe but no 

specific sumoylated lysine residues have been reported. In this study I carried out an in 

silico analysis of the sumoylated lysine residues of S. pombe PCNA modified using an 

in vitro sumoylation assay and identified by MS/MS as K13, K164, K172 and K253. 

The in silico analysis suggests that K164 and K253 are more likely in vivo sumoylation 

sites while K172 could be a potential sumoylation site as, while not conserved amongst 

species, it is situated at a surface near K164 and K253. K13, while conserved in S. 

cerevisiae and H. sapiens, it is situated at the positively charged internal α helices of the 

clamp that interact with DNA and it has not been identified as a sumoylation site in S. 

cerevisiae or H. sapiens. However, before the sumoylation of PCNA was first detected 

in S. cerevisiae (Hoege et al., 2002), the mutation of N-terminal K13 to alanine was 



Fig. 7.21  Sumoylation of Rtf2 is required for cell viability on 
                 homologous recombination mutants background 

 rtf2-T is lethal with rhp51Sp/rad51Hs/ScΔ and rad22Sp/rad52Hs/ScΔ mutant 

NPD = non-parental di-type;  TT = tetra-type;  PD = parental di-type 
Represented dissected tetrads were chosen from a pool of 20 dissected tetrads. 

=  wt or rtf2-T 
=  rad22::NAT or rhp51::KAN 
=  rad22::NAT:rtf2-T or 
    rhp51::KAN :rtf2-T 

TT PD NPD 

rtf2-T x rad22Δ rtf2-T x rhp51Δ 

PD TT NPD TT PD PD 

YEA 

NAT 

YEA 

KAN 



Fig. 7.22  Sumoylation of  three lysine residues of Rtf2 is required for cell  
                viability on homologous recombination mutants background 

A.  hus5-K50R is lethal with rhp51Sp/rad51Hs/ScΔ mutant 

B.  hus5-K50R is lethal with rad22Sp/rad52Hs/ScΔ mutant 

NPD = non-parental di-type;  TT = tetra-type;  PD = parental di-type 
Represented dissected tetrads were chosen from a pool of 20 dissected tetrads. 

A. 

B. 

NPD TT   PD         TT 

rtf2-K184R x rad22Δ rtf2-K209R x rad22Δ 

NPD  PD 

YEA 

NAT 

NPD   TT  TT  PD 

rtf2-K224R x rad22Δ 

NPD   PD PD  TT      NPD  PD   PD  TT 

rtf2-K184R x rhp51Δ rtf2-K209R x rhp51Δ 

YEA 

G418 

rtf2-K224R x rhp51Δ 

  PD   PD  TT 

=  wt or rtf2-T 
=  rad22::NAT 
=  rad22::NAT: 
    rtf2-T 

=  wt or rtf2-T 
=  rhp51::KAN 
=  rhp51::KAN: 
    rtf2-T 
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shown to inhibit the DNA processivity of pol δ (Fukuda et al., 1995). The K253 was 

shown to be situated on an external loop involved in PCNA – protein interactions (Fien 

and Stillman, 1992). More recently the importance of all Ks and Rs cations at the N-

terminal to the activity of pol δ have been highlighted in H. sapiens (Zhou and 

Hingorani, 2012) and the same study identifies that the sequence K254-E256 is required 

for RFC ATPase activity but not for pol δ activity . The identification of K13 as a 

sumoylation site in vitro opens new avenues in exploring DNA replication, as 

sumoylation of K13 could be a regulatory factor of pol δ activity while sumoylation at 

K253 could be a regulatory factor of RFC. 

 

7.9.2 Sumoylation of Rtf2 
!
Rtf2 is the founder member of a newly identified family of proteins that contain a 

modified RING domain that is characteristic to ubiquitin and SUMO ligases. After 

identifying specific sumoyalted lysines K184, K209 and K224 by MS/MS, an in silico 

analysis reveals that these residues are partially conserved in H. sapiens and S. 

japonicus and an extended sequence alignment with the ubiquitin SUMO E3 ligase 

BRCA1 reveals that K209 corresponds to the sumoylation site K119 of BRCA1. 

Extended structural modeling of Rtf2 using multiple modeling servers shows that the 

lysine residues are situated at surfaces and not involved in interactions required to 

maintain the hydrophobic core of the protein and therefore are potential in vivo SUMO 

targets. Interestingly the I-TASSER modeling server identifies an U-box domain at the 

N-terminal (fig. 7.23 A). U-box domains share a fold with the RING domains but are 

missing the specific Cys and His residues specific to the RING motif (Ohi et al., 2003). 

More importantly U-box domains have been identified only in ubiquitin E3 ligases and 

have been specifically associated with poly-ubiquitination (Ohi et al., 2003). The 

putative U-box domain of Rtf2 can be modeled onto the U-box of the ubiquitin E3 

ligase Prp19 (fig. 7.23 B) and the sequence alignment of the domains reveals high 

similarities (fig. 7.23 C).   

 

Genetic analysis of rtf2 sumoylation mutants is consistent with previous reports of rtf2 

null mutant sensitivity to DNA alkylation, their sensitivity to IR reminisce the IR 

sensitivity of homologous recombination mutants and some sumoylation mutants 



Fig. 7.23 Rtf2 contains a N-terminal U-box domain 

A. Cartoon representation of the structural model of S. pombe Rtf2. Highlighted are the putative U-box domain (in red), 
    the C2HC2 RING domain (in yellow) and sumoylated lysines (in blue) 

B. Cartoon representation of the putative U-box domain of Rtf2 (in red) superimposed onto the U-box domain of 

     Prp19 (in blue) 

C. Sequence alignment of Rtf2 putative U-box domain and the U-box domain of the ubiquitin E3 ligase Prp19 

A. B. 

C. 
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(hus5.62 and nse2-SA). Interestingly, mutating each of the three lysine residues to 

arginine results in synthetic lethality with homologous recombination mutants like the 

sumoylation mutants pli1Δ and hus5-K50R. 

 

The above data suggest that the Rtf2 sumoylation could function in a DNA damage 

repair mechanism during S-phase when the homologous recombination is impaired and 

that its sumoylation could be facilitated by the SUMO E3 ligase Pli1. Further, Rtf2 

could function as an ubiquitin E3 ligase and this function could be dependent on its 

sumoylation, like BRCA1.  
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    CHAPTER 8 

   DISCUSSION 
!
!
!
Sumoylation has emerged as an important posttranslational modification of proteins 

involved in many biological processes required for normal cell proliferation. In this 

thesis, different approaches were employed to analyze various aspects of sumoylation in 

fission yeast. 

 

Rad60 protein contains two SUMO-like domains, SLD1 and SLD2, identified from a 

bioinformatics analysis (Novatchkova et al., 2005). Key residues that maintain the β-

grasp fold of SUMO, known as Bayer residues (Bayer et al., 1998), are conserved in the 

SLDs of Rad60. To see if these proposed SLDs adopt the stable β-grasp fold of SUMO, 

protein expression and stability assays were carried out on SLD2 with mutated Bayer 

residues. The mutants are insoluble under the conditions that SLD2 can be expressed as 

a stable protein, suggesting that the conserved Bayer residues that maintain the structure 

of SUMO are required for maintaining the structure of SLD2 and imply that SLD2 

adopts the β-grasp fold of SUMO. Further, a putative SUMO-binding motif (SBM3), 

situated within SLD2, has been proposed to be required for the function of Rad60 by 

facilitating its dimerization (Raffa et al., 2006). Using gel filtration, dynamic light 

scattering (DLS) and protein stability assays, I show that this motif is required for 

maintaining the structure of SLD2. A genetic analysis of rad60-SBM3 mutant (rad60 

with point mutations within SBM3) has a more severe phenotype than rad60-SLD2Δ, 

suggesting that a misfolded SLD2 induces greater defects than a deletion of this 

domain. A model of SLD2 was generated based on the crystal structure of mammalian 

SUMO-1 and it showed that SBM3 forms the β5 sheet of the β-grasp fold of SUMO.  

Taken together, these data suggest that SBM3 is an essential element of the 

hydrophobic core of SLD2 and unlikely to be available for intermolecular interactions. 

Recently new SUMO-like domains have been identified in the human protein UAF1 

(Yang et al., 2011).  The UAF1 protein, which is part of the USP1/UAF1 complex, has 

been shown to contain two SUMO-like domains. While the SLDs of RENi proteins are 
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more similar to SUMO-1, the SLDs of UAF1 have similarities with SUMO-2 and 

SUMO-3 and, more interestingly, they both have the diglycin motif conserved at the C-

terminal, though no proteolytic cleavage have been identified. The USP1/UAF complex 

promotes DSB repair through HR by de-ubiquitinating the Fanconi anaemia protein 

FANCD2-Ub (Murai et al., 2011) and PCNA-Ub through interactions between SLD2 

and ‘SUMO-like domain-interacting motifs’ (SLIMs) present in FANCD2 and Elg1, a 

PCNA-interacting protein, respectively. This is consistent with data presented in this 

thesis that putative SBMs present within the SLDs of Rad60 are unlikely to interact 

with the SLDs to promote Rad60 dimerisation as previously suggested. 

 

The in vitro interaction of SLD2 with the SUMO conjugating enzyme Hus5 identified 

in this work, together with the interactions of SLD1 with the SUMO components Fub2 

and Pli1 and the STUbL component Slx8, shown by Prudden et. al., suggests that 

Rad60 plays a multifaceted role in the sumoylation pathway. Given the interaction of 

Rad60 with the Smc5/6 complex, it could be that Rad60 is required for the regulation of 

the sumoylation/desumoylation of this multifunctional essential complex (fig. 8.1). The 

interaction of Rad60 with Pli1, the SUMO E3 ligase required for SUMO-chain 

formation, and Slx8, the ubiquitin E3 ligase responsible for proteasomal degradation of 

proteins marked by SUMO chains, suggests that Rad60 function is linked to the 

regulation of sumoylation. 

 

SUMO chain formation has been shown to occur in S. cerevisiae and mammals at lysine 

residues situated at the disordered N-terminal of SUMO (Bylebyl et al., 2003, Tatham et 

al., 2001). S. pombe SUMO has an extended disordered N-terminal with two lysine 

residues as potential sites of sumoylation.  In the second chapter of this thesis I show 

that in vitro and in vivo both lysine residues can be substrates for chain formation and 

that the E3 ligases facilitate SUMO chain formation, albeit Pli1 with an increased 

efficiency compared to Nse2. A genetic analysis of the mutant SUMO-RR (K14R; 

K30R) suggests that SUMO chain formation is required for the cellular responses to 

DNA replication arrest, and for DNA damage repair when the homologous 

recombination repair is defective.  

 

Pli1, the SUMO E3 ligase that facilitate SUMO chain formation, has been shown to 

function in maintaining genomic stability at heterochromatic regions (Xhemalce et al., 
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2004). An investigation into the function of Pli1 at heterochromatic centromeric 

regions, using an artificial minichromosome, was undertaken. Results from an assay to 

detect spontaneous mutations show that Pli1 is required for maintaining the 

minichromosome and for preventing minichromosomal rearrangements. PFGE was 

employed to analyse minchromosomal rearrangements, and a survey carried out on 

pli1Δ and wild type strains suggests that Pli1 is required to prevent illicit homologous 

recombination between the artificial minichromosome and the endogenous chromosome 

III. Using PCR, the centromeric repeats otr-imr were identified as the region at which 

the minichromosomal rearrangements occurred. 

 

In S. pombe and S. cerevisiae STUbL mutants defective in targeting poly-SUMO 

species for proteasomal degradation display a similar increase in poly-SUMO species 

and sensitivity to hydroxyurea like ulp2Δ mutants. In fission yeast the slx8-1 mutant 

(temperature sensitive) defect in response to hydroxyurea is suppressed in a pli1Δ 

background while the level of poly-SUMO species is reduced to that of pli1Δ rather 

than the intermediate level of a wild type strain (Prudden et al., 2007). Further, the 

sensitivity to hydroxyurea of the slx8-29I230T mutant (mutation in the E3 ubiquitin ligase 

RING domain) and the high level of poly-SUMO species are suppressed by the pli1Δ 

and pmt3-RR mutants (Prudden et al., 2011). Mutants of the slx8-rnf complex and ulp2 

gene display severe phenotypes, while pli1 and pmt3-RR mutants have mild or no 

obvious phenotypes. This suggests that SUMO chain formation can have a negative 

effect on DNA replication and/or DNA damage response mechanisms and that STUbLs 

and Ulp proteases are both required to maintain the physiological levels of SUMO 

chains.  

 !
The analysis of sumoylation, and the identification of specific modified lysine residues 

in particular, has been challenging due to the fact that, at any one point under normal 

physiological conditions, only a small fraction of a target protein exists in a sumoylated 

form.  In recent years, the development of new mass spectrometry techniques enabled 

the identification of post-translational modified amino acids present in trace quantities 

in the sample. Using an in vitro sumoylation assay and mass spectrometry techniques, 

provided by the mass spectrometry services at the University of Sussex, sumoylated 

lysine residues were detected in the SUMO activating component Fub2, the SUMO 

conjugating enzyme, Hus5, and the SUMO E3 ligase Nse2. An in vitro sumoylation 
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assay with a mutant of the conjugating enzyme that cannot be sumoylated, Hus5-K50R, 

results in a reduced level of high Mr SUMO species. This suggests that, at least in vitro, 

SUMO chains are mostly attached to the K50 of Hus5 rather than be present in a free 

form. In vivo analysis of the hus5-K50R reveals an increased level of high Mr 

sumoylated species compared to wild type. This contradicts the in vitro results but is 

consistent with data from S. cerevisiae, where a mutant of the SUMO conjugating 

enzyme that cannot be sumoylated shows increased levels of cellular sumoylation 

(Knipscheer et al., 2008). These results suggest that sumoylation of Hus5 inhibits its 

activity towards illicit sumoylation. Further in vivo analysis, carried out in the Watts lab 

with an HA (hemagglutinin) epitope tag on the wild type Hus5 and the mutant hus5-

K50R, suggests that Hus5 is mono-sumoylated in vivo and confirms experimental 

results from this work that K50 is the only lysine residue at which sumoylation can 

occur (experimental work carried out by Lauren Small, University of Sussex). A genetic 

characterization of hus5-K50R, carried out in this project, suggests that sumoylation of 

Hus5 is required for repair of IR-induced DNA damage during S-phase and for DNA 

damage repair when homologous recombination repair is defective. The latter 

phenotype is reminiscent of the phenotype of the SUMO chain formation and pli1 null 

mutants that are synthetically sick and lethal, respectively, with homologous 

recombination mutants. Taken together, these data suggests that a strict control 

sumoylation levels is required for cell viability on a homologous recombination mutant 

background, as both lower and increased levels of sumoylated species are lethal when 

homologous recombination is impaired. 

 

The optimization of the in vitro sumoylation assay, carried out during the analysis of 

SUMO chain formation, brought about a collaborative work with Dr. J. Dalgaard, 

University of Warwick, on the Rtf2 protein. Rtf2 is associated with the replication 

termination site RTS1 and it has been shown to interact with SUMO and PCNA 

(Inagawa et al., 2009). A sequence analysis of Rtf2 identified a RING domain, raising 

the possibility that Rtf2 might function as a SUMO E3ligase that might facilitate the 

sumoylation of PCNA. In vitro sumoylation assays carried put with PCNA, Rtf2 and 

Pli1 show that Pli1 facilitate the sumoylation of PCNA in vitro but Rtf2 does not. 

However, the results show that Rtf2 is sumoylated itself. Mass spectrometry analysis 

identified that sumoylation of PCNA occur at four lysine residues, including the highly 

conserved K164, while sumoylation of Rtf2 occur at three lysine residues at the C-
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terminal, proximal to the RING domain. A genetic analysis suggests that sumoylation of 

Rtf2 is required for MMS and IR-induced DNA damage repair during S phase, and for 

cell viability when homologous recombination repair is defective. A sequence analysis 

of Rtf2 suggests that, apart of the RING domain at the C-terminal, there is a U-box 

domain at the N-terminal. Tandem U-box and RING domains are a characteristic of 

some ubiquitin E3 ligases. Further, the RING domain of Rtf2, together with the 

sumoylated lysine K209, is conserved with the RING domain and the sumoylation site 

K119 of BRCA1. Sumoylation of K119 of BRCA1 is required for its activity as an 

ubiquitin E3 ligase (Morris et al., 2009). Taken together with the experimental data 

presented, these facts raise the possibility that Rtf2 can function as an ubiquitin E3 

ligase, either as a STUbL or a SRUbL (SUMO-regulated ubiquitin ligase) like BRCA1, 

and that PCNA could be the target protein. In vitro ubiquitination assays have been 

developed and this would be a first experimental step towards identifying if Rtf2 

function as an ubiquitin ligase. As Rtf2 is required to stabilize the replication fork at the 

replication termination chromosomal locus RTS1, it could be that its function is to 

modify PCNA, either by sumoylation or ubiquitination, such that the appropriate 

mechanism is employed to resume DNA replication at RTS1.   

 

The functions Rad60, SUMO chain formation, sumoylation of the E1, E2 and E3 

SUMO enzymes, modification of PCNA by SUMO and ubiquitin, and the sumoylation 

of targets, such as the Smc5/6 and Rtf2, seem to be closely interconnected. The 

experimental data from this work suggests that sumoylation has important roles in 

maintaining genomic stability by regulating many facets of the homologous 

recombination repair, especially during DNA replication. Further work should target the 

understanding of the interactions between the many factors involved. Determining the 

structure of Rad60 and the nature of its interactions with its many partner proteins 

would bring new avenues in understanding complex cellular processes such as 

replication fork progression and DNA damage repair by homologous recombination. 

Expression and purification of a stable full-length recombinant Rad60 has not been 

possible using E. coli systems. However, new protein expression systems have been 

developed, such as baculovirus systems. Further work should exploit these new systems 

in expressing not only the Rad60 protein, but also complexes of Rad60 with the 
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sumoylation pathway components, the Slx8-Rnf complex and with the Smc5/6 

complex. 

 

Many sumoylation mutants described in this thesis are defective in cellular responses to 

DNA replication perturbations, IR induced DNA damage and when homologous 

recombination is impaired. This reoccurring observation is consistent with results from 

other studies of the sumoylation functions in genomic stability. With the advance of 

mass spectrometry techniques and in vivo labeling techniques, such as SILAC, the 

identification of SUMO targets, and particularly the identification of specific 

sumoylated lysine residues, has become more accessible. Identification of specific 

sumoylated lysine residues will assist genetical and biochemical experimental work that 

could bring new insights into the role of sumoylation in maintaining genomic stability. 
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Abstract

The S. pombe Rad60 protein is required for the repair of DNA double strand breaks, recovery from replication arrest, and is
essential for cell viability. It has two SUMO-like domains (SLDs) at its C-terminus, an SXS motif and three sequences that have
been proposed to be SUMO-binding motifs (SBMs). SMB1 is located in the middle of the protein, SBM2 is in SLD1 and SBM3
is at the C-terminus of SLD2. We have probed the functions of the two SUMO-like domains, SLD1 and SLD2, and the putative
SBMs. SLD1 is essential for viability, while SLD2 is not. rad60-SLD2D cells are sensitive to DNA damaging agents and
hydroxyurea. Neither ubiquitin nor SUMO can replace SLD1 or SLD2. Cells in which either SBM1 or SBM2 has been mutated
are viable and are wild type for response to MMS and HU. In contrast mutation of SBM3 results in significant sensitivity to
MMS and HU. These results indicate that the lethality resulting from deletion of SLD1 is not due to loss of SBM2, but that
mutation of SBM3 produces a more severe phenotype than does deletion of SLD2. Using chemical denaturation studies,
FPLC and dynamic light scattering we show this is likely due to the destabilisation of SLD2. Thus we propose that the region
corresponding to the putative SBM3 forms part of the hydrophobic core of SLD2 and is not a SUMO-interacting motif. Over-
expression of Hus5, which is the SUMO conjugating enzyme and known to interact with Rad60, does not rescue rad60-
SLD2D, implying that as well as having a role in the sumoylation process as previously described [1], Rad60 has a Hus5-
independent function.
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Introduction

SUMO is a small ubiquitin-like modifier. It is implicated in
numerous cellular processes, including chromosome segregation,
DNA repair and recombination, and transcriptional control e.g.
[2,3,4,5,6]. More specifically, SUMO-modification of proteins
affects protein-protein or protein-DNA interactions e.g. between
PCNA and Srs2 in Saccharomyces cerevisiae [7,8] or between thymine
DNA glycosylase [9] or mammalian transcription factors, such as
p53, Sp3 and Elk-1 and DNA (reviewed in [6,10]). In addition, it
has recently been demonstrated that SUMO-modified proteins
interact with SUMO-targeted ubiquitin ligases (STUbLs) that target
the modified proteins for proteasomal degradation [11,12,13].

SUMO is produced as a precursor protein and processed to the
mature form to reveal a diglycine (GG) motif at the C-terminus
which is used for attachment to one or more lysine residues in
target proteins (reviewed in [10]). Sumoylation requires activation
of the mature form of SUMO by a heterodimeric activating (E1)
protein. SUMO is then passed to a SUMO conjugating (E2)
protein, called Ubc9 or Hus5 in S. pombe [14,15]. SUMO is
subsequently attached to target proteins either in a ligase-
dependent or -independent manner. In S. pombe the SUMO
ligases (E3s) are Nse2 and Pli1 [16,17].

SUMO is capable of forming both covalent and non-covalent
interactions with proteins. In many instances, formation of a

covalent bond occurs via the lysine residue within the yKxE
consensus motif e.g. [18,19]. Non-covalent interactions occur via
SUMO-interacting motifs (SIMs). The SXS motif is one of two
types of SIMs, and was first identified in a peptide derived from
the SUMO ligase PIASx in complex with human SUMO-1 [20].
The second type of SIM comprises [V/I]-X-[V/I]-[V/I], and is
present in another SUMO ligase, RanBP2, and a variety of
proteins including TTRAP and MCAF [21].

Rad60 is a founder member of the RENi (Rad60 Esc2 NIP45)
family of proteins which have two SUMO-like domains (SLDs) at
the C-terminus [22]. As the name suggests, other members of the
RENi family include S. cerevisiae Esc2 and human NIP45 [22]. The
ESC2 gene was initially identified in a screen for proteins that
restored silencing when tethered to a telomere [23] and more
recently has been shown to have a role in genome integrity [24]
and S phase repair [25,26]. NIP45 is implicated as having a
function in gene regulation [27]. S. pombe rad60 is required for
response to DNA damaging agents and recovery from S phase
arrest [28,29,30]. Unlike S. cerevisiae ESC2, rad60 is essential for
viability [28].

In addition to the SLDs, Rad60 contains an SXS motif that is
thought to be a SIM [31]. It also has three hydrophobic regions
that each contain a sequence conforming to the [V/I]-X-[V/I]-
[V/I] SIM consensus and these have been termed putative
SUMO-binding motifs (SBMs) [31].
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Rad60 was originally identified in a screen for mutants defective
in homologous recombination (24). It has been proposed that
control of Rad60 regulates recombination events when replication
is stalled. It is delocalised from the nucleus in an HU-dependent
manner on activation of Cds1, the fission yeast S phase checkpoint
kinase, but becomes essential for viability on recovery from
replication arrest [29]. Genetic and biochemical studies indicate
that Rad60 functions with the Smc5/6 (structural maintenance of
chromosomes) complex required for recombinational repair and
recovery from replication fork stalling [29,32].

The S. pombe Smc5/6 complex comprises eight tightly associated
proteins: two large proteins, Smc5 and Smc6, and six smaller, non-
SMC proteins, Nse1-6 [33,34]. All of these proteins apart from
Nse5 and Nse6, are essential for viability in S. pombe. The role of
these proteins is beginning to be elucidated. Nse1 has a RING-like
domain frequently associated with ubiquitin E3 ligase activity (e.g.
[35]) although no ligase activity has yet been demonstrated for the
protein. Nse2 is a SUMO ligase [16,36,37]. Nse4 is a kleisin that
bridges the Smc5/6 heads [38]. Nse5 and Nse6 form a
heterodimer that interacts with the hinge regions of Smc5 and
Smc6 [39]. In response to DNA damage, components of the
Smc5/6 complex are modified post-translationally by SUMO (e.g.
[16,36,37]).

In order to further our understanding of the organisation and
function of the Smc5/6 complex, we have undertaken a study into
the function of domains and motifs in the Rad60 protein. These
studies extend those of Raffa et al [31] and Prudden et al [1]. In
particular we have investigated the function(s) of the SUMO-like
domains (SLDs) and the three putative SUMO binding motifs
(SBMs). We show that SLD1 but not SLD2 is essential for viability.
Deletion of SLD2 results in sensitivity to DNA damage. We show
that while the SLDs resemble SUMO, their function cannot be

replaced by SUMO. Additionally, we have analysed the role of
three hydrophobic regions that have been proposed to be SBMs.
Genetic and biophysical studies indicate that SBM3 is not likely to
be a SUMO-interacting motif, but is part of the hydrophobic core
of SLD2.

Materials and Methods

Strains and plasmids
The strains used in this work are detailed in Table 1. rad60-

SLD2D (sp.1174) and rad60-FL (sp.1175) (created as a wild type
control for rad60-SLD2D) were created by the method of Bahler
et al [40]. The recombinase-mediated cassette exchange (RMCE)
system described by Watson et al [41] was used for the creation of
other strains. Briefly, a rad60 haploid ‘base strain’ was created as
follows: the loxP site was integrated 300bp upstream of the rad60
coding sequence, and ura4+ and the loxM3 site were integrated
immediately downstream of the rad60 coding sequence. The base
strain was checked to ensure that the rad60 gene was still
functional, and that the integration events had not disrupted the
function of adjacent genes. A diploid strain heterozygous for this
altered rad60 locus was created by crossing the haploid h2 base
strain containing the ade6-210 allele with a rad+, h+, ura4-D18, leu1-
32, ade6-216 strain. The base strain (either haploid or diploid as
required) was then transformed with wild type and mutant
versions of rad60 flanked by loxP and loxM3 loci, cloned into the
LEU2-containing plasmid pAW8, and LEU+ colonies selected.
Recombination was subsequently induced by expression of the Cre
recombinase following growth of cells in thiamine-free medium.
Strains in which the original copy of rad60 had been replaced were
selected on medium containing 5-FOA. Other plasmids used for S.
pombe transformation were based on pREP41 or pREP42 [42].

Table 1. Strains used in this study.

Strain Genotype Reference:

sp.011 ade6-704, ura4-D18, leu1-32, h2 [52]

sp.432 rhp51::ura4, ade6-704, ura4-D18, leu1-32, h+ [53]

sp.473 rqh1::ura4, ade6-704, ura4-D18, leu1-32, h2 [55]

sp.480 brc1::LEU2, ade6-704, ura4-D18, leu1-32, h2 This work

sp.714 pli1::ura4, ade6-704, ura4-D18, leu1-32, h2 [2]

sp.1123 nse2-SA, ade6-704, ura4-D18, leu1-32, h2 [16]

sp.1125 smc6-X, ade6-704, ura4-D18, leu1-32, h+ [54]

sp.1126 smc6-74, ade6-704, ura4-D18, leu1-32, h+ [46]

sp.1174 rad60-SLD2D, ade6-704, ura4-D18, leu1-32, h2 This work

sp.1175 rad60-FL:kan, ade6-704, ura4-D18, leu1-32, h2 This work

sp.1179 rad60-1, ura4-D18, leu1-32, h2 [28]

sp.1305 rad60-SLD2D, nse2-SA, ade6-704, ura4-D18, leu1-32, h2 This work

sp.1408 rad60-SLD2D, rhp51::ura4, ade6-704, ura4-D18, leu1-32, h+ This work

sp.1701 rad60 base strain, ade6-704, leu1-32, h2 This work

sp.1704 rad60-SBM2, ade6-704, ura4-D18, leu1-32, h2 This work

sp.1778 rad60-SBM1, ade6-704, ura4-D18, leu1-32, h2 This work

sp.1845 rad60 base strain heterozygous diploid, ade6-210, ade6-216, leu1-32, h+/h2 This work

sp.1925 rad60-SBM3, ade6-704, ura4-D18, leu1-32, h2 This work

sp.2026 rad60-SLD2D-SUMO, ade6-704, ura4-D18, leu1-32, h2 This work

sp.2027 rad60-SLD2D-SUMO-M, ade6-704, ura4-D18, leu1-32, h2 This work

sp.2045 rad60-SBM1,SBM2, ade6-704, ura4-D18, leu1-32, h2 This work

doi:10.1371/journal.pone.0013009.t001
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pREP41-rad60-SLD1D was created by deleting aa 227–308,
pREP41-rad60-SLD2D lacked aa 334–406 and pREP41-rad60-
SLD2D-SUMO contained the coding sequence for aa 1–109 of S.
pombe SUMO cloned in-frame with rad60-SLD2D in pREP41-
rad60-SLD2D. rad60-SLD2D-SUMO-M was created by Quik-
Change site-directed mutagenesis (Stratagene) according to the
manufacturers instructions. The hus5 gene was from A Carr (U. of
Sussex) [15].

Analysis of DNA damage responses
UV irradiation was carried out on freshly plated cells using a

Stratagene Stratalinker. Ionising radiation sensitivity was assayed
using a 137Cs source at a dose of 10 Gymin21. Sensitivities to
hydroxyurea (HU) and methyl methanesulphonate (MMS) were
analysed on YE agar (YEA) at the doses stated.

Microscopy
Methanol-fixed cells were stained with DAPI (1 mg/ml) and

viewed using an Applied Precision Deltavision Spectris microscope
with deconvolution software.

Protein purification
His-tagged proteins expressed from pET15b, were purified

using Ni2+ agarose (Novagen) according to the manufacturer’s
instructions.

Equilibrium Denaturation Studies
Preparation of samples: A stock solution of guanidinium HCl

(8 M) was diluted to obtain a large range of denaturant
concentrations using a Hamilton Microlab dispenser; 100 ml of a
stock solution of SLD2 protein (9 mM) containing 450 mM
phosphate, 9 mM DTT (pH 7.0) was added to each denaturant
sample (800 ml). This gave a final buffer concentration of 50 mM
phosphate pH 7.0 and a protein concentration of 1 mM. The
protein/denaturant solutions were pre-equilibrated at 25uC for at
least three hours (This was sufficient time for every solution to
reach equilibrium [data not shown]).

Fluorescence measurements: All measurements were performed
in a thermostatted cuvette holder at 25uC using Varian Cary
Eclipse Fluorescence Spectrophotometer. The excitation wave-
length was 280 nm, band passes were set at 5 nm for excitation
and emission and the fluorescence was measured at the lmax for
the denatured state of 352 nm.

Equilibrium data analysis
Two state folding model: The entire fluorescence monitored

denaturation of SLD2 was fitted to equation (1) using the non-
linear regression analysis program Kaleidagraph (version 4.0 Synergy
Software, PCS Inc.):

lobs~
(aNzbN ½D")z((aDzbD½D")exp((mD{N ½D"{½D"50%)))=RT

1zexp(mD{N ½D"{½D"50%)=RT
ð1Þ

where lobs is the observed fluorescence signal, aN and aD are the
intercepts, and bN and bD are the slopes of the baselines at the low
(N) and high (D) denaturant concentrations, [D]50% is the
midpoint of unfolding, [D] is the concentration of denaturant
and mD{N is a constant that is proportional to the increase in
degree of exposure of the protein on denaturation.

Size exclusion chromatography
250 ml of protein was loaded onto a superose 6 column (volume

24 ml) connected to an Amersham Biosciences FPLC and eluted

with 20 mM Tris HCl pH 7.9, 150 mM NaCl, 1 mM DTT.
Protein elutions were monitored with an in-line UV detector and
fractions collected.

Dynamic Light Scattering
50 ml samples were analyzed at 4uC using a Malvern

Instruments Nano S Dynamic Light Scattering instrument.
Samples were spun at 14k rpm for 10 minutes and allowed to
equilibrate at collection temperature for 2 minutes prior to data
collection. Scattering data were analysed for peak position and
width to identify particle size and polydispersity.

Results

Relationship of the Rad60 SLDs to ubiquitin and SUMO
Rad60 has two domains (SLD1 and SLD2) at its C-terminus

(Figure 1A) that were initially reported to be ubiquitin-like [28].
However, sequence comparisons indicate that SLD2 at least,
resembles SUMO more closely than ubiquitin. SLD1 has identity
with S. pombe ubiquitin and SUMO of 18.4% and 19.7%
respectively. For SLD2 the identity with ubiquitin and SUMO is
14.3% and 23.4% respectively. The similarity between SLD2 and
SUMO is further demonstrated by the recent publication of the
structure of S. pombe and human SLD2 [1,43]. Comparison of the
structures of SUMO, ubiquitin and SLD2 and the predicted
structure of SLD1 indicates similar overall structures (Figure
S1A,B). Interestingly, the amino acids in SLD1 and SLD2 that are
the same as, or similar to, amino acids in SUMO, are, in most
cases, not the same in the two domains (Figure S2).

SLD1, but not SLD2 is required for the essential function
of Rad60

The importance of the SLDs for Rad60 function is attested to
by the fact that the majority of the mutations within three
characterised rad60-ts mutants lie within SLD1, namely K263E
(rad60-1) [28], F272V (rad60-3), and I232S and Q250R (rad60-4)
[29] (Figure 1A) (rad60-4 also contains two mutations outside of
SLD1, T72A, and K312N) [29] (Figure 1A). This suggests that
SLD1 at least, has a key role in Rad60 function. Additionally, a
point mutation within SLD2 (rad60-E380R) [1] results in sensitivity
to DNA damaging agents. In order to investigate the roles of the
SLDs, we attempted to create strains containing versions of Rad60
deleted for both SLD1 and SLD2 and, separately, deleted for a
single domain (either SLD1 or SLD2). Using both haploid and
diploid strains (see Materials and Methods) we were unable to
produce haploid strains in which Rad60 was missing either
SLD1+SLD2 (aa 228–406) or missing solely SLD1 (aa 228–307).
In contrast, deletion of SLD2 (aa 334–406) resulted in viable cells
(rad60-SLD2D). Thus, consistent with the presence of the ts
mutations in SLD1, SLD1, but not SLD2, is essential.

SLD2 is required for response to DNA damaging agents
rad60-SLD2D is slightly temperature sensitive for growth at 36uC

(Figure 1B) when compared to wild-type and rad60-FL strains
(rad60-FL was created in parallel with rad60-SLD2D as a full length
Rad60 control), but less sensitive than rad60-1. At permissive
temperatures, rad60-SLD2D cells are slightly elongated compared
to wild-type (Figure 1C). rad60-SLD2D is slightly sensitive to UV
(Figure 1D, Figure S3B) and ionising radiation (Figure S3B).
However, it is significantly sensitive to HU, (DNA synthesis
inhibitor) and MMS (alkylating agent) (Figure 1D) similar to smc6-
X, which contains a point mutation (R706C) in the hinge region of
Smc6 [44], but more sensitive than rad60-1. This is consistent with
Rad60’s reported role in recovery from HU arrest, i.e. in

ð1Þ
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processing of intermediates following exposure to DNA damaging
agents or replication fork arrest by HU [30].

To determine whether rad60-SLD2D behaves differently to other
rad60 mutants we undertook epistasis analysis with rad60-SLD2D
and mutants defective in the Smc5/6 complex and homologous
recombination. The results are summarised in Table S1.

Consistent with the published analyses of other rad60 mutants
[1,28,29,45], rad60-SLD2D was synthetically lethal with smc6-X,
smc6-74 (contains a point mutation A151T, close to the ATP-
binding site [46]), brc1-d (deleted for a 6 BRCT domain-containing
protein [46]), rqh1-d (deleted for the S. pombe homologue of the
RecQ helicase [47]) and pli1-d (deleted for the Pli1 SUMO ligase).

Figure 1. rad60-SLD2D is ts and sensitive to DNA damaging agents. A. Organisation of the Rad60 protein, indicating the position of the SXS
motif (star), the putative SBMs (diamonds) and the rad60 mutations (*). B. rad60-SLD2D is slightly temperature-sensitive for growth at 36uC. Strains
were streaked onto YEA and incubated at the indicated temperatures for 5 days. C. Morphology of DAPI-stained cells. D. Spot tests to assess
sensitivity to HU, MMS and UV. 10 ml of serially diluted cells were spotted onto media as indicated. Plates were incubated at 25uC.
doi:10.1371/journal.pone.0013009.g001
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Additionally, it is epistatic with nse2-SA (contains 2 point
mutations, C195S, H197A, in the SP-RING domain of the Nse2
SUMO ligase [16]) and rhp51-d (deleted for the Rad51 homologue)
(Table S1 and Figure S3). Thus rad60-SLD2D is a hypomorphic
mutant which displays a similar sensitivity to DNA damaging
agents or the inhibition of replication and genetic interactions as
previously described for rad60-1.

Neither ubiquitin nor SUMO can replace the functions of
SLD1 or SLD2

The sequences and structural similarities of the SLDs with
ubiquitin and SUMO prompted us to investigate whether the SLDs
can be replaced by either ubiquitin or SUMO (both lacking the GG
motifs and C-terminal extensions downstream of the GG motifs), or
a combination of the two. Figure S4 shows the combinations that we
tested. In no case were we able to obtain viable haploid cells with
ubiquitin replacing SLD1 or SLD2. Additionally, we were unable to
obtain strains in which SLD1 was replaced by SUMO. However,
viable cells were obtained when SLD2 was replaced by SUMO
(Figure S4, construct 7, rad60-SLD2D-SUMO).

To determine whether SUMO can replace the function of
SLD2, rad60-SLD2D-SUMO was tested for sensitivity to HU and
MMS. Figure 2 indicates that rad60-SLD2D-SUMO has similar
sensitivity to HU and MMS as rad60-SLD2D. To determine why
SUMO is not capable of functionally replacing SLD2, differences
between the two were sought. While the overall structure of SLD2
resembles that of SUMO, a detailed comparison of the structure of
SLD2 with that of SUMO identified some key differences between
the two structures [1]. These are (i) that SLD2 lacks the C-terminal
tail present in the mature form of SUMO, which is required for
interaction with the SUMO activating E1 protein, and (ii) that
SUMO has a positively charged cleft formed between b-strand 2
and a-helix 1 which interacts non-covalently with SIMs on
interacting proteins. In SLD2 this is obscured by the side chains of
P351, F354, R362 and E366. Thus the inability of SUMO to
restore wild type function in Rad60-SLD2D-SUMO may be due
to inappropriate interactions involving SUMO. We therefore
introduced a series of mutations into SUMO in rad60-SLD2D-
SUMO to produce rad60-SLD2D-SUMO-M. The mutant fusion
protein lacks two amino acids at the C–terminus of SUMO,
namely Q108 and L109 (see Figure S2B) and has four substitutions
in amino acids corresponding to those in SLD2 that are proposed
to be obscuring the charged cleft, namely K53P, T56F, I64R,
R68E. rad60-SLD2D-SUMO-M was then integrated into the S.
pombe genome. Figure 2 indicates that the mutations do not restore
a wild type response to MMS or HU.

Intermolecular complementation is not observed with
rad60-SLD1 and rad60-SLD2 mutants

Rad60 has been shown to form homodimers via the SLDs [31].
This raises the question as to whether the two molecules both need
to contain SLD1 and SLD2. We investigated this by testing
whether Rad60 function could be restored through inter-

molecular complementation by two Rad60 molecules defective
in one case, in SLD1 and in the other in SLD2. Figure 3A
indicates that unlike over-expression of full length Rad60, over-
expression of Rad60-SLD1D (lacking aa 227–308) does not
complement the HU and MMS sensitive phenotypes of
rad60-SLD2D.

We extended these studies to test whether Rad60-SLD2D can
suppress the ts and DNA damage sensitive phenotypes of rad60-1
(which has a point mutation in SLD1, Figure 1A). As expected,
over-expression of full length Rad60 complements the ts and DNA
damage sensitivities of rad60-1 (Figure 3B). In contrast, over-
expression of Rad60-SLD2D rescues the temperature sensitivity of
rad60-1, but is less proficient than full length Rad60 in restoring
resistance to HU and MMS, particularly at high doses. Since these
responses to HU and MMS are similar to those observed when
Rad60-SLD2D is over-expressed in a rad60-SLD2D strain
(Figure 3A), it is likely that the growth on these plates is due
solely to the over-expression of Rad60-SLD2D rather than to
intramolecular complementation with Rad60-SLD1D.

Probing the role of three putative SUMO binding motifs
It has been proposed that Rad60 contains a SIM (SUMO-

interacting motif) in its N-terminus (SXS) [31]. Additionally, three
hydrophobic regions within the protein which conform to the [V/
I]-X-[V/I]-[V/I] SIM consensus have been identified. These have
been termed putative SBMs (SUMO binding motifs), although no
interactions with SUMO have been reported for them. Since these
putative SBMs are either in, or close to, the SLDs (SBM2 (aa 268–
271) lies within SLD1 and SBM3 (aa 401–406) comprises the last
six amino acids of SLD2, Figure 1A), we were interested in their
contribution to Rad60 function. If these putative SBMs are
important motifs it might be expected that they would be highly
conserved, at least within Schizosaccharomyces species. We therefore
compared the sequence of S. pombe Rad60 with the recently
elucidated Rad60 sequences from S. japonicus, S. cryophilus and S.
octosporus (http://www.broadinstitute.org/annotation/genome/
schizosaccharomyces_group) (Figure S5). Interestingly, while the
SLDs are highly conserved, the regions corresponding to the
proposed SBMs are not, particularly SBM1 and SBM2. For
example, in S. cryophilus and S. octosporus, the region corresponding
to the putative SBM1 contains Pro, while that corresponding to
the putative SBM2 contains Phe. SIMs generally have adjacent
acidic sequences e.g. [21]. Only in the case of the putative SBM3 is
there a significant stretch of adjacent acidic amino acids,
suggesting that SBM1 and 2 may not be SUMO-interacting
motifs. Interestingly, the corresponding sequences in S. cerevisiae
Esc2 are not conserved.

Rad60 and purified SLD2 do not interact with free SUMO
We next tested whether the putative SBMs interact with SUMO.

Using GST-pull down assays (as described in File S1) we do not detect
any interaction of full length Rad60 or SLD2 with free SUMO,
under conditions where Hus5 and SUMO interact (Figure S6).

Figure 2. SUMO is unable to functionally replace SLD2. Response of strains, as indicated, to HU and MMS. Plates were incubated at 30uC.
doi:10.1371/journal.pone.0013009.g002
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The phenotypes observed for rad60-SLD1D and
rad60-SLD2D are not due to loss of the SUMO binding
motifs SBM2 and SBM3

The three putative SBMs are not present in SUMO (Figure S2).
Thus, a possible reason for the inability of SUMO to replace the
SLDs may be their lack of SBMs. We therefore analysed the effect
of mutating SBM2 and SBM3. In addition, we were interested to
determine whether the phenotypes that we detect for rad60-SLD1D
and rad60-SLD2D (namely lethality and sensitivity to DNA
damaging agents respectively) are due to deletion of SBM2 or
SBM3. We therefore mutated SBM2 (from VVLV to VALA, to
produce rad60-SBM2), SBM3 (from VSVVLD to ASAVLD,
producing rad60-SBM3) and in parallel, SBM1 (from ISVV to
ISAA, producing rad60-SBM1). Mutagenesis of either SBM1 or
SBM2 did not have any effect on cell viability, morphology or
response to DNA damage (Figure 1C, 4A,B). Mutation of both
SBM1 and SBM2 (to produce rad60-SBM1,SBM2) also had no
effect on the response to HU, MMS or UV (Figure 4B). These
results indicate that SBM1 and SBM2 do not contribute important
functions to the recovery from S phase arrest or the DNA damage
response, and do not function redundantly with each other.

In contrast to the results with SBM1 and SBM2 mutants,
mutation of SBM3 has a severe effect on cell morphology, growth
and response to DNA damaging agents (Figure 1C and 4A,B).
rad60-SBM3 cells are both heat and cold sensitive (25uC and 36uC)
(Figure 4A), showing a greater sensitivity to high temperature than
rad60-SLD2D. Thus, mutating SBM3 has a more severe effect on
Rad60 function than deletion of the entire SLD2 domain.

Since the structure of Rad60 SLD2 has recently been
determined [1] we are able to map the positions of the amino
acids in SBM3 that we have mutated (Figure 5A). This shows that

they are located within the hydrophobic core of the protein and
are completely buried. They are both, therefore, likely to be
critical for the stability of the domain. To define the effect of these
mutations on the Rad60 protein, we determined the stability of
SLD2 using a chemical denaturation assay at 298K. We found this
to be 6.2 kcalmol21 (Figure 5B). It has been shown that removing
individual core residues generally leads to a loss of stability of at
least 1 kcalmol21 per methylene group removed [48,49,50]. Thus,
as the two amino acid substitutions in SBM3 each remove four
methylene groups, it is likely that in the rad60-SMB3 mutant, the
SLD2 domain would be completely unfolded.

To further investigate the effect of the SBM3 mutation on the
stability of SLD2, we attempted to purify SLD2-SBM3. Using our
standard conditions for over-expression in E. coli, where the majority
of wild type SLD2 is soluble, we observed that SLD2-SBM3 is
predominantly in the insoluble fraction (data not shown). However, a
small amount of soluble mutant protein was purified (Figure 5C).
Analysis of wild type and SBM3 mutant forms of SLD2 were then
analysed by size exclusion chromatography (Figure 5D). The majority
of wild type SLD2 migrated as a discrete peak (V3), while most of the
SBM3 mutant form of SLD2 eluted in the void volume (V1). SDS
PAGE (Figure 5C) confirms that the majority of wild type SLD2 is in
V3, and that the SBM3 mutant form is mainly present in high Mr
fractions (V1–V2), but not in V3 as is the case with the wild type
SLD2. This suggests that the SBM3 mutant form of SLD2 forms
soluble aggregates. This was confirmed using dynamic light scattering
(Figure 5E). The two samples clearly show peaks at different positions,
the wild type giving a calculated diameter of 4 nm and the mutant a
diameter of 10 nm. This suggests an increase in volume of 16 times.
Thus the severe phenotype that we observe for rad60-SBM3 is likely
due to misfolding of SLD2.

Figure 3. Testing the requirements for Rad60 dimerisation. A. wt and rad60-SLD2D strains were transformed with pREP41 (41), pREP41-rad60
(rad60), pREP41-rad60-SLD2D (rad60-SLD2D) or pREP41-rad60-SLD1D (rad60-SLD1D) as indicated. Cells were plated on YEA containing HU and MMS as
indicated and incubated at 30uC. B. wt or rad60-1 cells were transformed with plasmids as indicated. Top row: cells were plated on YEA and incubated
at 23uC, 30uC or 36uC as indicated. Bottom row: cells were plated on YEA containing HU or MMS at the doses stated and incubated at 25uC.
doi:10.1371/journal.pone.0013009.g003
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Genetic relationship of rad60-SLD2D with components of
the sumoylation system

The Rad60 SLDs interact with components of the sumoylation
machinery [1]. In particular, the SLD2s of Rad60, Esc2 and
Nip45 interact with the SUMO conjugating enzyme (E2), Hus5/
Ubc9 [1,25,26,43]. The hus5-62 strain is extremely slow growing
and prone to accumulate suppressors, making it unreliable to use
for epistasis analysis. To overcome these problems, we investigated
whether over-expressing Hus5 in rad60-SLD2D could rescue the
sensitivities to HU and MMS. Wild type and rad60-SLD2D cells
were transformed with pREP41-Hus5 and the effect compared
with over-expression of full-length Rad60 and Rad60-SLD2D.
Wild type cells were not affected by over-expression of any
versions of Rad60 or Hus5 (Figure 6A,B upper panel). As
expected, over-expression of full length Rad60 reverses the HU
and MMS sensitivities of rad60-SLD2D cells. However, over-
expression of Hus5 does not reverse this phenotype. This supports
the hypothesis that while SLD2 and Hus5 interact, SLD2 has
some functions independent of the sumoylation system.

Over-expression of full length Rad60 has previously been shown
to partially rescue the MMS sensitivity of smc6-X [28]. We next
investigated whether over-expression of Rad60-SLD2D has any
effect in smc6-X. We confirm that over-expression of Rad60 can
reverse the sensitivity of smc6-X to MMS, and has a slight effect on
the response to HU (Figure 6B). In contrast, over-expression of
Rad60-SLD2D is unable to rescue these sensitivities. We next
tested the effect of over-expression of Hus5. Over-expression of
Hus5 either on its own, or with Rad60, has no effect on the
response of smc6-X to HU or MMS. Additionally, over-expression
of Hus5 with Rad60-SLD2D does not restore resistance to HU or
MMS in smc6-X. This is consistent with the proposal that Rad60
has function(s) independent of the sumoylation system.

Discussion

In this study we have analysed the requirement for the SUMO-
like domains (SLDs) and the putative SBMs for Rad60 function.
We show that SLD1 is essential for cell viability under normal
growth conditions, whereas SLD2 is not. Deletion of SLD2 results

in slight temperature sensitivity and sensitivity to DNA damaging
agents, particularly MMS, and the DNA synthesis inhibitor, HU.

We show that despite the structural similarities with ubiquitin
and SUMO, the functions of SLD1 and SLD2 cannot be provided
by either ubiquitin or SUMO. Since the Rad60 SLDs interact
with components of the SUMO modification machinery [1], it is
perhaps not surprising that ubiquitin cannot substitute for either of
the SLDs. In contrast, since the SLDs more closely resemble
SUMO, the reason for the inability of SUMO to functionally
replace either or both SLDs in Rad60 is less clear, particularly
since a single copy of SUMO can functionally replace the two
SLDs in S. cerevisiae Esc2 [24].

We tested whether the inability of SUMO to replace SLD2 is
due to inappropriate interactions involving SUMO, by removing
two amino acids (Q108, L109) from the C-terminus that are
required for interaction of SUMO with the E1, and then mutated
four amino acids in the region required for interaction with
SUMO-interacting motifs (SIMs). Mutation of these regions in
SUMO in rad60-SLD2D-SUMO-M did not restore wild type
function to the hybrid molecule and thus imply a specific role for
SLD2 not undertaken by SUMO.

Two possible explanations for the ability of SUMO to replace
SLD2 in Esc2 but not in Rad60 are that either, the similarity
between S. cerevisiae SUMO and Esc2 SLD2 is greater than that
between S. pombe SUMO and Rad60 SLD2, or that Esc2 and
Rad60 have somewhat different roles in cells, such that SUMO
can replace the SLDs in Esc2, but not in Rad60. Pair wise
sequence comparisons do not indicate gross differences in
similarities between the SLDs and the respective SUMO
sequences (Esc2 SLD2 and SUMO are 17.6% identical and
40% similar, while Rad60 SLD2 and SUMO are 20% identical
and 36.9% similar). This suggests that sequence similarity may not
account for the ability of SUMO to replace the Esc2 SLDs,
although it is possible that certain key epitopes in Esc2 SLD2 may
be present in S. cerevisiae SUMO, while the same may not be true
for Rad60 SLD2 and S. pombe SUMO. Alternatively, and our
preferred hypothesis, the difference may be related to the different
functions of Esc2 and Rad60 in cells. Rad60 is essential for cell
viability, while Esc2 is not. Additionally, an esc2 null mutant is

Figure 4. Effect of mutating the three putative Rad60-SBMs. A. rad60-SBM3 is temperature sensitive. Strains were streaked onto YEA and
incubated at the indicated temperatures for 5 days. B. Response of mutants to HU, MMS and UV. 5 fold more cells were plated for rad60-SBM3 than
other strains. Plates were incubated at 30uC for 5 days.
doi:10.1371/journal.pone.0013009.g004
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Figure 5. Mutation of SBM3 affects SLD2 structure. A. Position of SBM3 in crystal structure of SLD2 = red and green [1]. SBM3 point mutations
created in this study are in green. B. Thermal stability of SLD2. C. SDS PAGE. T = SLD2 protein purified from Ni+2 agarose. In both cases (wt and SBM3),
8 ml of 500 ml eluate was loaded onto gel. V1–V3 8 ml of the FPLC fractions indicated in D, was loaded in each case. D. FPLC trace of wt SLD2 and
SLD2-SBM3 mutant on Superose 6. SBM3 shows an elution peak after 7 ml whereas the wild type shows elution peaks at 11 ml and 12 ml). E.
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sensitive to MMS but not to HU, UV or IR, unlike rad60 mutants.
It has therefore been proposed that Esc2 probably acts to prevent,
or process only limited types of DNA damage, unlike the case with
Rad60 [26]. This suggests that Rad60 may be involved in a more
complex set of molecular interactions than is Esc2. Despite the
likely similarity in structure, the two SLDs in Rad60 have been
demonstrated to be involved in distinctly different interactions
with components of the sumoylation pathway [1]. This may
account for the fact that Rad60 needs to contain two SLDs neither
of which can be replaced by SUMO,

Raffa et al [31] demonstrated that Rad60 homodimerises via
the SLDs. We observe using FPLC and GST-pulldowns (data not
shown) that SLD2 does not interact with itself. This suggests that
homodimerisation occurs either between two SLD1s or between
SLD1 and SLD2. We tested this latter possibility by investigating
whether intermolecular complementation occurred between two
mutant Rad60 proteins defective in one case in SLD1 and in the
other in SLD2. No intermolecular complementation was observed.
This suggest two possibilities. The first is that homodimerisation
occurs between two SLD1s. As SLD1 protein is not very soluble
we have been unable to test this. The second possibility is, that
since our assay is for Rad60 function and not specifically for
homodimerisation, that a Rad60 function unrelated to homo-

dimerisation, e. g. involving intramolecular folding, requires that
both SLD1 and SLD2 need to be present in the same molecule.
This issue will be resolved with the elucidation of the crystal
structure of the full-length Rad60 protein.

Raffa et al [31] proposed that three hydrophobic regions in
Rad60 were putative SUMO binding motifs (SBMs), and that
SBM3 is required for homodimerisation. We have tested the
requirement for these putative SBMs in vivo. Mutation of SBM1
and SBM2 has no effect on cell viability or DNA damage
responses. Since mutation of SBM2 results in viable cells, removal
of this SBM likely does not account for the loss of viability
observed in rad60-SLD1D cells, and the inability of SUMO to
substitute for SLD1. Since some proteins (e.g. STUbLs) contain
more than one SIM (e.g. [51] ) we tested the effect of mutating
both SBM1 and SBM2. Since the rad60-SBM1,SBM2 double
mutant grows as wild type and is not sensitive to HU or MMS, we
conclude that SBM1 and SBM2 do not function redundantly. In
contrast to the results with the SBM1 and SBM2 mutants, we see a
striking effect when we mutate two residues in SBM3. From the
published structure of SLD2 and our results from chemical
denaturation studies we propose that the mutations would
drastically affect the stability of SLD2, with the likely result that
the domain would not be correctly folded. This is also likely to be

Figure 6. Relationship of Rad60-SLD2D to Hus5. A. wt and rad60-SLD2D cells were transformed with pREP41 (41), pREP41-rad60 (rad60) or
pREP41-rad60-SLD2D (SLD2D) or pREP41-Hus5 (hus5) as indicated. Cells were plated on YEA with supplements at 30uC. B. wt and smc6-X cells were
transformed with combinations of pREP41 (41), pREP42 (42), pREP41-rad60 (rad60), pREP41-rad60-SLD2D (SLD2D), pREP42-hus5 (hus5) as indicated.
doi:10.1371/journal.pone.0013009.g006

Dynamic Light Scattering spectra showing solution sizes of wild type and SBM3. The wild type shows a peak indicating a size of diameter 4 nm
whereas SBM3 shows a peak indicating a size of diameter of 10 nm.
doi:10.1371/journal.pone.0013009.g005
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the case in [31], where 6 aa (comprising an entire b-sheet) were
deleted from the C-terminus of Rad60.

Since SLD2 interacts with Ubc9/Hus5 [1,25,26], it has been
proposed that Rad60 may recruit SUMO-charged Ubc9 to
mediate sumoylation of specific proteins, or that it may sequester
Ubc9 in an inactive complex to down-regulate sumoylation [1].
We observe that over-expression of Hus5 does not rescue the
phenotypes of rad60-SLD2D. Thus, SLD2 likely has a function, in
addition to its role in sumoylation, that is independent of Hus5.
This conclusion is supported by the fact that, while over-
expression of full length Rad60 suppresses the HU and MMS
sensitivity of smc6-X, co-over-expression of Hus5 and Rad60-
SLD2D in smc6-X does not. This suggests that Rad60 function is
not simply to recruit the SUMO conjugating enzyme Hus5 to the
Smc5/6 complex and into close proximity with the Nse2 SUMO
ligase subunit. The viability and mild DNA damage sensitivities of
the SUMO ligase dead nse2-SA mutant [16] is further support for
both Smc5/6 and Rad60 having functions independent of the
sumoylation system.

In conclusion, we have demonstrated that SLD1 but not SLD2
is required for the essential function of Rad60, and that neither
can be replaced by ubiquitin or SUMO. Mutational analysis
indicates that the inability of SUMO to functionally replace SLD2
is not due to the slightly extended C–terminus or the presence of
the SIM-interacting region. rad60-SLD2D is sensitive to HU and
MMS. Mutation of the SBMs indicates that neither SBM1 nor
SMB2 is required for the DNA damage response. Since mutation
of SBM3, which is present in the hydrophobic core of SLD2,
destabilises SLD2, we conclude that SBM3 does not interact with
SUMO, but is required for maintaining SLD2 structure. Our
over-expression studies indicate that although SLD2 interacts with
the SUMO conjugating enzyme Hus5/Ubc9, Rad60 also has a
Hus5/sumoylation-independent role.

Supporting Information

File S1 Supplementary materials and methods.
Found at: doi:10.1371/journal.pone.0013009.s001 (0.03 MB
DOC)

Table S1 Epistasis analysis of rad60-SLD2D-S. E = epistatic.
Found at: doi:10.1371/journal.pone.0013009.s002 (0.03 MB
DOC)

Figure S1 Comparison of actual structures of ubiquitin, SUMO,
Rad60-SLD2 and the predicted structure of Rad60-SLD1.

Human ubiquitin (ubiquitin): 1ubq, human SUMO-1 (SUMO):
2asq, Rad60-SLD2 (SLD2): 3GOE. The models were aligned
using the least-squares fit program for the whole polypeptide. A.
Position of a-helices and b-sheets. B. Surface charge, red negative,
blue positive.
Found at: doi:10.1371/journal.pone.0013009.s003 (1.85 MB TIF)

Figure S2 Alignment of Rad60-SLD1 and -SLD2 with SUMO
and each other. Hs = human, Sp = S. pombe. # = positions of
putative SBMs in SLD1 and SLD2. * = amino acids conserved
between SLDs but not with SUMO. $ = aa removed in Rad60-
SLD2D-SUMO-M, , = aa mutated in Rad60-SLD2D-SUMO-M.
Found at: doi:10.1371/journal.pone.0013009.s004 (0.03 MB
DOC)

Figure S3 Response of rad60-SLD2D to DNA damaging agents.
A. and B. Epistasis analysis with nse2-SA and rhp51-d. A. Spot tests.
B. Survival curves. Experiments were done in triplicate. Averages
and standard deviations plotted.
Found at: doi:10.1371/journal.pone.0013009.s005 (1.51 MB TIF)

Figure S4 Scheme indicating ubiquitin and SUMO replacement
constructs. Constructs were created in pAW8 (37) and used to
transform haploid and diploid rad60 base strains. Star = SXS
motif, diamond = putative SBM.
Found at: doi:10.1371/journal.pone.0013009.s006 (0.47 MB TIF)

Figure S5 Alignment of Rad60 sequences. Scry = S. cryophilus,
Soct = S. octosporos, Spom = S. pombe, Sjap = S. japonicus, Scer = S.
cerevisiae. # = putative SBMs.
Found at: doi:10.1371/journal.pone.0013009.s007 (0.03 MB
DOC)

Figure S6 Rad60 and SLD2 do not interact with free SUMO
GST pulldown assays. A. GST-Rad60 + His-SUMO. B. GST-
Rad60-SLD2 + His-SUMO, GST-Hus5 + His-SUMO. G = GST,
S = SUMO, I = input, U = unbound, B = bound.
Found at: doi:10.1371/journal.pone.0013009.s008 (1.09 MB TIF)
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SUMO Chain Formation Is Required for Response to
Replication Arrest in S. pombe
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Abstract

SUMO is a ubiquitin-like protein that is post-translationally attached to one or more lysine residues on target proteins.
Despite having only 18% sequence identity with ubiquitin, SUMO contains the conserved bbabbab fold present in
ubiquitin. However, SUMO differs from ubiquitin in having an extended N-terminus. In S. pombe the N-terminus of SUMO/
Pmt3 is significantly longer than those of SUMO in S. cerevisiae, human and Drosophila. Here we investigate the role of this
N-terminal region. We have used two dimensional gel electrophoresis to demonstrate that S. pombe SUMO/Pmt3 is
phosphorylated, and that this occurs on serine residues at the extreme N-terminus of the protein. Mutation of these
residues (in pmt3-1) results in a dramatic reduction in both the levels of high Mr SUMO-containing species and of total
SUMO/Pmt3, indicating that phosphorylation of SUMO/Pmt3 is required for its stability. Despite the significant reduction in
high Mr SUMO-containing species, pmt3-1 cells do not display an aberrant cell morphology or sensitivity to genotoxins or
stress. Additionally, we demonstrate that two lysine residues in the N-terminus of S. pombe SUMO/Pmt3 (K14 and K30) can
act as acceptor sites for SUMO chain formation in vitro. Inability to form SUMO chains results in aberrant cell and nuclear
morphologies, including stretched and fragmented chromatin. SUMO chain mutants are sensitive to the DNA synthesis
inhibitor, hydroxyurea (HU), but not to other genotoxins, such as UV, MMS or CPT. This implies a role for SUMO chains in the
response to replication arrest in S. pombe.
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Introduction

Post-translational modification is an efficient and rapid way of
controlling the activity of proteins. A variety of species have been
identified that can be attached post-translationally to proteins. In
many cases, modification involves small species, e.g. in the
phosphorylation, acetylation and methylation of proteins, while
in others the modifying species are larger, e.g. in the case of
ubiquitination and sumoylation, which involve the proteins
ubiquitin and SUMO respectively e.g. [1,2].

SUMO is a member of the Ubl (ubiquitin-like) family of post-
translational modifiers. Although it has only 18% sequence
identity with ubiquitin, its structure resembles that of ubiquitin,
in that it contains the conserved ubiquitin bbabbab fold [3,4].
Ubiquitin comprises 76 aa, while SUMO is larger, having an
extended N-terminus (in the order of 15–30 aa) that is not present
in ubiquitin. The major role of ubiquitin is in targeting proteins for
proteasome-mediated proteolysis (reviewed in [5]). However,
ubiquitin also has important roles in modifying the function of
individual proteins required for specific processes, e.g. ubiquitina-
tion of PCNA (proliferating cell nuclear antigen) is required for
bypass of replication blocking lesions in DNA [6,7,8]. SUMO
modification has a variety of cellular functions, including roles in
transcription, DNA damage responses, the cell cycle and nuclear
transport e.g. [9,10,11]. Recently it has been shown to be required

for STUbL- (SUMO-targeted ubiquitin ligase)-dependent ubiqui-
tination of target proteins e.g. [12,13,14].

The process of sumoylation resembles that of ubiquitination
(reviewed in [15]). Like ubiquitin, SUMO is produced as a
precursor protein that needs to be cleaved to the mature form by
one or more specific SUMO proteases (Ulps). This processing
reveals a GG motif at the C-terminus of SUMO, which is required
for its subsequent activation and conjugation to target proteins.
Mature SUMO is first activated by a heterodimeric activator
protein via the formation of a thioester linkage. It is then
transferred to a SUMO conjugator, again forming a thioester link.
From here, SUMO is attached to one or more lysine residues on
the target protein via an e2amino bond. In many cases, the
acceptor lysine is present within the context yKxE, where y is a
bulky hydrophobic amino acid and x is any residue. In some
instances attachment of SUMO to target proteins is enhanced by
one of relatively few SUMO ligases.

It is well documented that ubiquitin forms chains (e.g. [16]).
This can occur through a number of lysine residues within
ubiquitin, predominantly K6, K29, K48 and K63. Initial reports
on SUMO modification suggested that, unlike ubiquitin, SUMO
did not form chains. However, several findings have established
that SUMO is capable of forming chains, both in vitro and in vivo
[17,18,19,20]. Despite evidence for their existence in vivo, the
biological role of SUMO chains is less obvious. An S. cerevisiae
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mutant (smt3-allR) in which all potential SUMO acceptor lysines
have been mutated to alanine, shows little phenotype during
vegetative growth [20]. More recently it has been demonstrated
that SUMO chains can interact with STUbLs (via SIMs –
SUMO-interacting motifs) [21], implying that they can act as a
signal to target proteins for ubiquitin-mediated proteolysis.

The process of sumoylation is generally conserved between
eukaryotic organisms. In S. pombe, SUMO is encoded by the pmt3
gene [22]. The ubiquitin-like region of S. pombe SUMO/Pmt3
resembles SUMO in other organisms. However its N-terminus is
distinctly longer than those in S. cerevisiae SUMO/Smt3 or in
human SUMO-1/-2/-3 (Figure S1). While SUMO is essential for
viability in S. cerevisiae and mammals, deletion of the pmt3 gene is
not lethal, although null mutant cells are temperature sensitive for
growth and extremely sensitive to a range of toxins [22]. Mutants
defective in the S. pombe SUMO activator subunit (Rad31), the
SUMO conjugator (Hus5) or one of the SUMO ligases, Nse2, are
sensitive to DNA damaging agents [23,24,25,26]. In contrast, a
null mutant deleted for the S. pombe SUMO ligase Pli1 has little
phenotype, apart from a mild sensitivity to the microtubule
inhibitor thiabendazole (TBZ) [27].

Here we investigate sequence requirements for SUMO/Pmt3
function in S. pombe. We show that SUMO/Pmt3 is phosphory-
lated on serine residues at its extreme N-terminus and that
inability to phosphorylate SUMO/Pmt3 results in reduced levels
of total SUMO/Pmt3 and reduced levels of high Mr SUMO-
containing species in vivo. Additionally, we demonstrate that two
lysines (K14 and K30) are required for SUMO chain formation,
both in vitro and in vivo. A pmt3-K14R,K30R mutant shows cellular
abnormalities and sensitivity to HU, indicating that SUMO chain
formation is necessary for response to S phase arrest.

Results

S. pombe SUMO/Pmt3 is phosphorylated
As part of our investigation into sumoylated species in S. pombe

we undertook 2D PAGE. An example of a typical gel (using a low
level of protein, 50 mg, and isoelectric focussing range pH 3–6)
stained with colloidal Coomassie Blue is shown in Figure S2.
Western blotting of a similar 2D gel with anti-SUMO antisera

(Figure 1A) showed multiple species, including five which migrate
with pIs and Mr similar to that of SUMO/Pmt3. (S. pombe
SUMO/Pmt3 has a predicted pI of 4.6 and migrates at
approximately 18 kDa, e.g. [28]).

One possible explanation for the presence of these species is that
they could be intermediates arising during the processing of the
precursor form of SUMO/Pmt3 to the mature form. We therefore
compared the pattern of species in wild type and pmt3-GG cells
(where only the mature form of SUMO/Pmt3 is present)
(Figure 1B). No difference in the relative amount of the species
was observed indicating that the species do not represent
processing intermediates.

The pattern of the anti-SUMO antibody cross-reacting species
suggests that the species may represent modified forms of SUMO/
Pmt3. Since the forms are very similar in size, but have different
pIs, it could be postulated that the modifying species is/are small,
but charged. One candidate for such a modifying species is
phosphate. To determine whether any of these species represent
phosphorylated forms, we treated protein extracts with calf
intestinal phosphatase (CIP) before analysis by 2D PAGE.
Figure 1B and Figure 2 indicate that two prominent acidic forms
(A,B) are lost following CIP treatment, consistent with them being
phosphorylated forms.

We next analysed the SUMO/Pmt3 sequence for possible
phosphorylation sites (Ser or Thr residues). Figure 2 shows that
SUMO/Pmt3 has nine Ser residues and eight Thr residues
(Figure 2, left hand panel). To identify which of these residues is
phosphorylated, we created a series of mutations in pmt3 (pmt3-1 -
pmt3-8) and used 2D PAGE to analyse the pattern of species
present in each mutant (Figure 2, right hand panel). In all mutants
the Ser or Thr residues were mutated to alanine. As a control we
included a wild type extract treated with CIP. Of the eight mutants
tested, seven had a similar number of species to that observed in
wild type cells. In only one mutant, pmt3-1 (pmt3-S2A,S4A,S6A), did
the pattern of species resemble that observed following treatment
with CIP. This indicates that phosphorylation occurs at the N-
terminus of SUMO/Pmt3, likely on two of the three Ser residues
(S2, S4, S6).

We next investigated whether inability to phosphorylate the N-
terminus of SUMO/Pmt3 affected the levels of high Mr SUMO-

Figure 1. Western analysis of 2D PAGE of S. pombe proteins. A. 50 mg of a wild-type total cell extract was separated by IEF (pH 3–6) followed
by SDS-PAGE (12.5%) and Western blotted with anti-SUMO antisera. Boxed region is an expanded version of a longer exposure of the same blot. B.
Comparison of species in extracts from wt, pmt3-GG and wt extracts+CIP (5 units/50 mg protein). * presumed forms of SUMO monomer, A,B, forms
not observed after CIP treatment , # possible acetylated form.
doi:10.1371/journal.pone.0006750.g001
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containing species in cells. The pmt3-1 mutant is the only mutant
of the eight that we tested that has altered levels of these high Mr
species (Figure 3A). In pmt3-1 the level of high Mr SUMO-
containing species is similar to the level observed in pmt3-nfl cells
(encoding a version of Pmt3 deleted for the first 29 aa), but is still
greater than that observed in the SUMO ligase null mutant pli1-d.

To determine whether the reduced level of high Mr species in
pmt3-1 cells was due to reduced levels of total SUMO, or reduced
ability to incorporate SUMO into chains we compared the levels of
free SUMO/Pmt3 in the Ser/Thr mutants and pli1-d with that in
wild type (Figure 3B and data not shown). Of all the mutants tested,
only pmt3-1 has reduced levels of free SUMO/Pmt3. This was not
observed with pli1-d cells, where the absence of a SUMO ligase
reduces the level of high Mr SUMO-containing species, but not the
total amount of SUMO within cells. This suggests that the inability
to phosphorylate SUMO/Pmt3 in pmt3-1 cells affects its stability,
and hence the amount of SUMO/Pmt3 available for sumoylation.

pmt3-1 is not sensitive to DNA damaging agents
We were interested to determine whether inability to phosphor-

ylate SUMO/Pmt3 affected the response of cells to DNA damaging
agents and other stresses. pmt3-1 is not sensitive to HU, MMS, CPT
or TBZ (Figure 4) or UV, IR or 1M sorbitol (data not shown),

despite having significantly reduced levels of high Mr SUMO-
containing species and free SUMO/Pmt3. This lack of phenotype is
reminiscent of pli1-d cells which also have little sensitivity to these
agents, apart from slight sensitivity to TBZ (Figure 4 and [27])

pmt3-2 is sensitive to camptothecin and MMS
Analysis of the sensitivities of the remaining seven pmt3 mutants,

(pmt3-2 – pmt3-8) (Figure 4) indicates that pmt3-2 (pmt3-S15A) is
sensitive to the topoisomerase I inhibitor, camptothecin (CPT),
and slightly sensitive to MMS. The reason for this is not known
but may reflect a requirement for S15 in a process required for
replication of a damaged DNA template.

Sequence requirements for SUMO chain formation
The N-termini of S. cerevisiae SUMO/Smt3 and human SUMO-

2/3 contain lysine residues that are involved in SUMO chain
formation. Specifically, mutational analysis indicates that the major
branch sites used during SUMO chain formation are K15 and K11
in S. cerevisiae Smt3 and human SUMO-2/3 respectively [17,19,20].
These lysine residues both occur within the SUMO acceptor
consensus motif, yKxE. The N-terminal region of S. pombe SUMO/
Pmt3 does not contain a KxE motif (Figure S1). This suggests that
the sequence requirement(s) for SUMO chain formation may be less

Figure 2. Position of serine and threonine residues and effects of mutations in SUMO/Pmt3. Position of serine and threonine residues in
SUMO/Pmt3 are indicated by stars. Left hand panel: sites of mutations in pmt3 mutants. Right hand panel: Western analysis with anti-SUMO antisera
of 2D PAGE (1st dimension pH range 3–6, 2nd dimension 12.5% acrylamide) of extracts from wild type (wt), wild type+CIP and pmt3 mutants. A,B,
forms not observed after CIP treatment, # possible acetylated form.
doi:10.1371/journal.pone.0006750.g002
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stringent in S. pombe than in other organisms. Instead, SUMO/Pmt3
contains the sequence DVKPST (aa 28–33), adjacent to the highly
conserved region of the molecule, and which corresponds to
EVKPET (aa 17–22) in S. cerevisiae. In addition to K30, SUMO/
Pmt3 has another lysine residue (K14) in its N-terminus. We have
previously shown that K30 can act as a SUMO acceptor for chain
formation in S. pombe [26]. We also demonstrated that the SUMO
ligase, Nse2, can enhance SUMO chain formation.

We were interested in whether K14 can also be used as a SUMO
acceptor, and whether the other S. pombe SUMO ligase, Pli1, can
facilitate SUMO chain formation. Figure 5A indicates that under our
standard in vitro SUMO modification conditions in the absence of
either of the SUMO ligases, Nse2 or Pli1, mutation of lysine 14 to
arginine (Pmt3-K14R) (lane 2), results in a similar decrease in SUMO
chain formation as is observed with Pmt3-K30R (lane 3) when
compared to wild type SUMO/Pmt3 (lane 1). Replacement of both
lysine residues with arginine (Pmt3-K14R,K30R) further decreases
chain formation (lane 4). These results indicate that both K14 and K30
act as SUMO acceptors in vitro, and that it is unlikely that there are
other lysine residues within SUMO/Pmt3 involved in chain formation.

We next compared the effect of the K14R, K30R and
K14R+K30R mutations on chain formation facilitated by the

two SUMO ligases. Figure 5B shows that, as previously described
[26], using Nse2 as a ligase, chain formation is reduced with Pmt3-
K30R (lane 7) when compared to wild type Pmt3 (lane 3). Using
Pmt3-K14R (lane 5) chain formation is also reduced, but to a
somewhat lesser extent than with Pmt3-K30R (lane 7). Mutation
of both lysines (Pmt3-K14R,K30R) essentially abolishes chain
formation (lane 9). When Pli1 is used as a ligase, there is only a
small reduction in chain formation with either Pmt3-K14R
(Figure 5C, lane 4) or Pmt3-K30R (lane 6) as compared to wild
type Pmt3 (lane 2). As is observed with Nse2, mutation of both
lysine residues (Pmt3-K14R,K30R, lane 8) abolishes chain
formation. Taken together, these results show that both K14
and K30 can act as SUMO acceptor sites in vitro when chain
formation is facilitated by either of the SUMO ligases. Since
mutation of both residues abolishes chain formation, it is likely that
K14 and K30 are the only SUMO acceptor sites in SUMO/Pmt3.

Inability to form SUMO chains results in aberrant cellular
morphology and sensitivity to hydroxyurea

We were next interested in determining whether any of the pmt3
K to R mutations affect SUMO modification or chain formation
when the mutant alleles are present in cells as the sole copy of

Figure 3. Effect of pmt3 mutations on levels of sumoylated species and free SUMO/Pmt3 in vivo. A. Western blot 7.5% SDS PAG of total
cell extracts from wt, pli1-d and pmt3 mutant cells as indicated, probed with anti-SUMO antisera (upper panel) and anti-tubulin antisera (lower panel).
B. Western blot 12.5% SDS PAG of total cell extracts from wt, pli1-d and pmt3 mutant cells as indicated, probed with anti-SUMO antisera (upper panel)
and anti-tubulin antisera (lower panel).
doi:10.1371/journal.pone.0006750.g003
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SUMO/Pmt3 and whether they affect cell viability or morphol-
ogy. All three mutants are viable, although pmt3-K14R,K30R
colonies grow slightly slower than wild type (data not shown).
Western blotting with anti-SUMO antisera indicates that,
compared to wild type, pmt3-K14R has substantially reduced levels
of high Mr SUMO-containing species (Figure 6A, lanes 2),
compared to wild type cells (lanes 1,5). Cells containing pmt3-K30R
(lane 3) have a similar level of high Mr SUMO/Pmt3-containing
species to that observed in wild type cells (lanes 1,5), but the double
mutant pmt3-K14R,K30R has significantly reduced levels high Mr
species (lane 4), intermediate between those observed in pli1-d and
hus5-62 cells (defective in the SUMO conjugator, [24,25]). These
data show that K14 and, to a lesser extent, K30 are required for
SUMO chain formation in vivo.

Mutants defective in sumoylation e.g. rad31-d (deleted for one
subunit of the SUMO activator [23]) and hus5-62 have aberrant
cell and nuclear morphologies under normal growth conditions,
and are sensitive to DNA damaging agents and the DNA synthesis
inhibitor hydroxyurea (HU) [24,25]. Comparison of the morphol-
ogies of pmt3-K14R and pmt3-K30R with that of wild type cells,
indicates that replacement of a single lysine residue has no effect
on cell or nuclear morphology, as cells resemble wild type
(Figure 6B). However pmt3-K14R,K30R cells display a range of
cellular morphologies, including elongated cells, aberrant nuclear
structure (labelled a) and stretched and fragmented chromatin
(labelled b). This phenotype is reminiscent of the phenotypes of
rad31-d and hus5-62 cells [23,24,25] and indicates that SUMO
chain formation is important for normal growth under vegetative
conditions.

We next investigated whether any of these pmt3 mutants were
sensitive to HU or other toxins. All the SUMO chain mutants
resemble wild type in their response to UV, MMS, CPT and TBZ
(Figure 6C and data not shown). The pmt3-K14R and pmt3-
K14R,K30R mutants are both sensitive to HU (5 mM), while pmt3-
K30R is very slightly sensitive to HU. These data indicate that

K14, and possibly K30, is required for response of cells to
replication arrest. The HU sensitivities of pmt3-K14R and pmt3-
K14R,K30R are significantly less than that observed for hus5-62,
indicating that as well as a requirement for SUMO chains,
modification of target proteins by single SUMO/Pmt3 moieties is
also likely to be necessary for the response to S phase arrest.

Discussion

We show here that SUMO/Pmt3 is phosphorylated at its
extreme N-terminus. While this manuscript was in preparation,
results from mass spectrometry studies were published [29] which
indicate that human SUMO-1 and S. cerevisiae SUMO/Smt3 are
phosphorylated on S2. Our results described here, which show
that S. pombe SUMO/Pmt3 is likely phosphorylated on two of
three serine residues, S2, S4 and S6 (or diphosphorylated on one
of them), are consistent with these data. [29]. In addition to being
phosphorylated, Matic et al. observed that SUMO is acetylated on
its N-terminus. Acetylation of SUMO/Pmt3 would account for
the species labelled # (Figures 1 and 2) that remains after
treatment with CIP.

Interestingly, inability to phosphorylate SUMO/Pmt3 in pmt3-
1, results in a reduction in the level of high Mr SUMO containing
species. Despite this, pmt3-1 cells grow as wild type and are not
sensitive to DNA damaging agents, HU or TBZ. Another feature
of pmt3-1 cells is the reduced level of free SUMO/Pmt3 (Figure 3B)
suggesting that phosphorylation of SUMO/Pmt3 is required for
stability of the molecule. The fact that pli1-d cells have normal
levels of free SUMO/Pmt3 indicates that the low level of free
SUMO/Pmt3 in pmt3-1 is not likely to be due to the fact that in
these cells, it is inefficiently conjugated onto target molecules.

It is now well documented that SUMO is capable of forming
chains [17,18,20,30] and reviewed in [31]. We show here that S.
pombe SUMO/Pmt3 can form chains using two lysine residues in the
N-terminus (K14 and K30). Interestingly, the K30R mutation has a

Figure 4. Effect of pmt3 mutations on sensitivity to DNA damaging agents, HU and microtubule inhibitors. 10 ml of 10 fold serial
dilutions were plated onto media as indicated, and incubated at 30uC for 5 days.
doi:10.1371/journal.pone.0006750.g004
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Figure 5. Pmt3 sequence requirements for chain formation. A–C. Mutant forms of Pmt3 tested for ability to form Pmt3 chains using the in
vitro sumoylation assay in the absence of target protein. A. Lanes 1 Pmt3-GG, Lane 2 Pmt3-K14R,GG, Lane 3 Pmt3-K30R,GG, lane 4 Pmt3-
K14R,K30R,GG, lane 5 no Pmt3. Reactions were carried out with 3 mg Hus5. B. Lane 1 3 mg Hus5, Lanes 2–9 0.3 mg Hus5, otherwise as indicated. C.
Lanes 1–8 0.3 mg Hus5. * indicates cross-reaction with SAE proteins. H5-SUMO represents sumoylated Hus5.
doi:10.1371/journal.pone.0006750.g005
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somewhat greater effect on Nse2-dependent chain formation [26]
than it does on Pli1-dependent chain formation (Figure 5B,C). The
reason for this is not known, i.e. whether it reflects the fact that the

two SUMO ligases have different specificities, or whether Pli1
behaves in a more promiscuous manner and can select K14 as an
acceptor site if K30 is mutated. The sensitivities of the three SUMO

Figure 6. Phenotype of mutants defective in SUMO/Pmt3 chain formation. A. Western analysis of total cell extracts from cells containing
mutant versions of SUMO/Pmt3. Lane 1,5 wt, lane 2 pmt3-K14R, lane 3 pmt3-K30R, lane 4 pmt3-K14R,K30R, lane 6 pli1-d, lane 7 hus5-62. B. Morphology
of methanol fixed cells, stained with DAPI and calcofluor. C. Phenotype of pmt3 mutants. 10 ml of 10 fold serially diluted cultures were plated onto
media as indicated, and incubated at 25uC for 5 days.
doi:10.1371/journal.pone.0006750.g006
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chain mutants to HU, but not to a range of other genotoxins
indicates a role for SUMO chains in the cell’s response to S phase
arrest. The fact that pmt3-K14R,K30R cells have aberrant cell and
nuclear morphologies, while the two single mutants appear
morphologically wild type indicates a role for both lysine residues.
The morphology of pmt3-K14R,K30R is reminiscent of rad31-d and
hus5-62 mutants [23,24,25]. These results are in contrast to what
has been observed in S. cerevisiae, where an smt3-allR mutation has no
effect on vegetative growth or sensitivity to toxins [20].

It has recently been shown that SUMO chains interact with
STUbLs, and can be ubiquitinated by them [21]. If one of the
functions of chain formation is to facilitate the interaction of
SUMO/Pmt3 with the STUbLs it might be expected that the
phenotype of a mutant defective in chain formation would share
similarities with the phenotypes of STUbL mutants. In S. pombe the
STUbL proteins include Slx8, Rfp1 and Rfp2 [14,32]. Deletion of
slx8 or of both rfp1 and rfp2 is lethal, while a conditional mutant of
slx8 (slx8-1) is sensitive to HU, MMS and CPT [14]. pmt3-
K14R,K30R has a similar sensitivity to HU as slx8-1, but is wild
type for response to MMS and CPT. The reason for the difference in
MMS and CPT sensitivity between slx8-1 and the SUMO chain
mutants could be explained if the S. pombe STUbLs do not necessarily
need to interact with SUMO chains in order to be targeted to
substrates, but could recognise single SUMO species. This would be
consistent with the fact that unlike the human STUbL, RNF4, that
contains multiple SIMs which are proposed to recognise SUMO
chains [21], S. pombe STUbLs only contain one or two SIMs [14,32],
suggesting that they interact with mono-sumoylated species.

In summary, the N-terminus of SUMO/Pmt3 is required for
the formation of SUMO chains and is phosphorylated. Surpris-
ingly, a pmt3 allele encoding a non-phosphorylatable version of
SUMO/Pmt3 behaves as wild type. In contrast, abolition of
SUMO chain formation has a substantial effect on cell and nuclear
morphology. In particular, SUMO chain formation is required for
a process associated with S phase arrest, perhaps involving the
STUbLs. The precise role of SUMO chains in this event i.e. the
identity of protein(s) required for the response to S phase arrest,
that are modified by SUMO chains remains to be determined.

Materials and Methods

Strains and plasmids
Strains were constructed using standard genetic techniques. The

pli1-d mutant was created by deleting the ORF using the method
of Bahler et al. [33], hus5-62 was from A. Carr, Sussex [24]. Full
length pmt3 and pmt3-GG were amplified as described in [28].
pmt3-nfl, lacking the coding sequence for 29 aa at the N terminus,
was produced by PCR. pmt3 mutant alleles were produced by
Quikchange PCR mutagenesis (Stratagene) according to the
manufacturer’s instructions. Mutant pmt3 alleles were subsequently
subcloned into pET15b (Novagen) for expression in E. coli, or
integrated into the S. pombe genome along with 0.5 kb 59 and 39
pmt3 flanking sequences and the ura4 gene as selectable marker.

Protein and Immunological methods
Whole cell S. pombe extracts were prepared using TCA as

described in [34]. 1D SDS PAGE and Western blotting was carried

out as described in [35]. 2D PAGE was undertaken using standard
techniques [36]. Total cell protein from 10 OD595 units of cells were
precipitated with TCA. The precipitate was resuspended in ice-cold
acetone and protein precipitated at 4uC for 30 min. The precipitate
was harvested by centrifugation at 13 krpm for 30 min, and allowed
to dry. The pellet was resuspended in rehydration buffer (9M urea,
4% CHAPS, 2% IPG buffer (25 ml/mg pellet). DTT was added to
0.5%. 50 mg protein was added to modified rehydration buffer (6M
urea, 2M thiourea, 2% CHAPS, 2% IPG buffer) to produce a total
volume of 125 ml. 7 cm IPG strips pH 3–6 were used for the first
dimension. 12.5% acrylamide was used for the second dimension.
Anti-SUMO/Pmt3 antiserum was produced against full length
SUMO/Pmt3 using standard methods [35]. Western analysis using
purified recombinant proteins indicates that the antisera recognises
equally well full length SUMO/Pmt3, N-terminally truncated
SUMO/Pmt3 (Pmt3-nfl), Pmt3-1, and Pmt3 K to R mutants
(Figure S3). Monoclonal anti-tubulin antibodies were from Sigma.
The in vitro sumoylation assay was used as described previously [28].

Phenotypic analysis of mutants
Sensitivities to hydroxyurea (HU), methyl methanesulphonate

(MMS), camptothecin, (CPT) and thiabendazole (TBZ) were
analysed on YEP agar at the doses stated. Plates were incubated at
30uC or 25uC for 5 days as stated. Cell morphology was analysed
using methanol-fixed cells stained with DAPI (1 mg/ml) and
calcofluor (0.5 mg/ml) using an Applied Precision Deltavision
Spectris microscope.

Supporting Information

Figure S1 SUMO sequence alignments Comparison of S. pombe
(Sp), S. cerevisiae (Sc), human (Hs), D. melanogaster (Dm) and C. elegans
(Ce) SUMO sequences, created using the ClustalW program.
* indicates K14 and K30
Found at: doi:10.1371/journal.pone.0006750.s001 (9.49 MB TIF)

Figure S2 2D PAGE of total S. pombe proteins. 50 mg of a wild-
type total cell extract was separated using IEF strip pH 3–6,
followed by SDS PAGE (12.5% acrylamide). Gel was stained with
colloidal Coomassie Blue.
Found at: doi:10.1371/journal.pone.0006750.s002 (9.29 MB TIF)

Figure S3 Anti-SUMO antisera recognise wt and mutant
SUMO/Pmt3 Coomassie Brilliant Blue (CBB) staining and
western analysis of recombinant wild type and mutant SUMO/
Pmt3 with anti-SUMO antisera.
Found at: doi:10.1371/journal.pone.0006750.s003 (9.42 MB TIF)

Acknowledgments

We would like to thank Simon Morley and Jo Murray for helpful
discussions.

Author Contributions

Conceived and designed the experiments: FZW. Performed the experi-
ments: AS JCYH BM EO. Analyzed the data: AS EO. Wrote the paper:
FZW.

References

1. Sims RJ 3rd, Reinberg D (2008) Is there a code embedded in proteins that
is based on post-translational modifications? Nat Rev Mol Cell Biol 9: 815–
820.

2. Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by
ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22: 159–180.

3. Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8
A resolution. J Mol Biol 194: 531–544.

4. Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, et al. (1998) Structure
determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol 280:
275–286.

SUMO Chains

PLoS ONE | www.plosone.org 8 August 2009 | Volume 4 | Issue 8 | e6750



5. Rechsteiner M (1987) Ubiquitin-mediated pathways for intracellular proteolysis.
Annu Rev Cell Biol 3: 1–30.

6. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-
dependent DNA repair is linked to modification of PCNA by ubiquitin and
SUMO. Nature 419: 135–141.

7. Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced
mutagenesis by SUMO and ubiquitin conjugation. Nature 425: 188–191.

8. Kannouche PL, Wing J, Lehmann AR (2004) Interaction of human DNA
polymerase eta with monoubiquitinated PCNA: a possible mechanism for the
polymerase switch in response to DNA damage. Mol Cell 14: 491–500.

9. Hay RT (2005) SUMO: a history of modification. Mol Cell 18: 1–12.
10. Klein HL (2006) A SUMOry of DNA replication: synthesis, damage, and repair.

Cell 127: 455–457.
11. Watts FZ (2007) The role of SUMO in chromosome segregation. Chromosoma

116: 15–20.
12. Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, et al. (2008)

Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/
ubiquitin-mediated pathway. Nat Cell Biol 10: 547–555.

13. Mullen JR, Brill SJ (2008) Activation of the Slx5-Slx8 ubiquitin ligase by poly-
small ubiquitin-like modifier conjugates. J Biol Chem 283: 19912–19921.

14. Prudden J, Pebernard S, Raffa G, Slavin DA, Perry JJ, et al. (2007) SUMO-
targeted ubiquitin ligases in genome stability. Embo J 26: 4089–4101.

15. Hay RT (2001) Protein modification by SUMO. Trends Biochem Sci 26:
332–333.

16. Pickart CM, Fushman D (2004) Polyubiquitin chains: polymeric protein signals.
Curr Opin Chem Biol 8: 610–616.

17. Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, et al. (2001)
Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates
by SAE1/SAE2 and Ubc9. J Biol Chem 276: 35368–35374.

18. Pichler A, Gast A, Seeler JS, Dejean A, Melchior F (2002) The nucleoporin
RanBP2 has SUMO1 E3 ligase activity. Cell 108: 109–120.

19. Bencsath KP, Podgorski MS, Pagala VR, Slaughter CA, Schulman BA (2002)
Identification of a multifunctional binding site on Ubc9p required for Smt3p
conjugation. J Biol Chem 277: 47938–47945.

20. Bylebyl GR, Belichenko I, Johnson ES (2003) The SUMO isopeptidase Ulp2
prevents accumulation of SUMO chains in yeast. J Biol Chem 278:
44113–44120.

21. Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, et al. (2008)
RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced
PML degradation. Nat Cell Biol 10: 538–546.

22. Tanaka K, Nishide J, Okazaki K, Kato H, Niwa O, et al. (1999)
Characterization of a fission yeast SUMO-1 homologue, pmt3p, required for

multiple nuclear events, including the control of telomere length and
chromosome segregation. Mol Cell Biol 19: 8660–8672.

23. Shayeghi M, Doe CL, Tavassoli M, Watts FZ (1997) Characterisation of
Schizosaccharomyces pombe rad31, a UBA-related gene required for DNA
damage tolerance. Nucleic Acids Res 25: 1162–1169.

24. al-Khodairy F, Enoch T, Hagan IM, Carr AM (1995) The Schizosaccharomyces
pombe hus5 gene encodes a ubiquitin conjugating enzyme required for normal
mitosis. J Cell Sci 108: 475–486.

25. Ho JC, Watts FZ (2003) Characterization of SUMO-conjugating enzyme
mutants in Schizosaccharomyces pombe identifies a dominant-negative allele
that severely reduces SUMO conjugation. Biochem J 372: 97–104.

26. Andrews EA, Palecek J, Sergeant J, Taylor E, Lehmann AR, et al. (2005) Nse2, a
component of the Smc5-6 complex, is a SUMO ligase required for the response
to DNA damage. Mol Cell Biol 25: 185–196.

27. Xhemalce B, Seeler JS, Thon G, Dejean A, Arcangioli B (2004) Role of the
fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance.
Embo J 23: 3844–3853.

28. Ho JC, Warr NJ, Shimizu H, Watts FZ (2001) SUMO modification of Rad22,
the Schizosaccharomyces pombe homologue of the recombination protein
Rad52. Nucleic Acids Res 29: 4179–4186.

29. Matic I, Macek B, Hilger M, Walther TC, Mann M (2008) Phosphorylation of
SUMO-1 occurs in vivo and is conserved through evolution. J Proteome Res 7:
4050–4057.

30. Takahashi Y, Toh EA, Kikuchi Y (2003) Comparative Analysis of Yeast PIAS-
Type SUMO Ligases In Vivo and In Vitro. J Biochem (Tokyo) 133: 415–422.

31. Ulrich HD (2008) The fast-growing business of SUMO chains. Mol Cell 32:
301–305.

32. Sun H, Leverson JD, Hunter T (2007) Conserved function of RNF4 family
proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins.
EMBO J 26: 4102–4112.

33. Bahler J, Wu JQ, Longtine MS, Shah NG, McKenzie A 3rd, et al. (1998)
Heterologous modules for efficient and versatile PCR-based gene targeting in
Schizosaccharomyces pombe. Yeast 14: 943–951.

34. Caspari T, Dahlen M, Kanter-Smoler G, Lindsay HD, Hofmann K, et al. (2000)
Characterization of Schizosaccharomyces pombe Hus1: a PCNA-related protein
that associates with Rad1 and Rad9. Mol Cell Biol 20: 1254–1262.

35. Harlow E, Lane D (1988) Antibodies: a laboratory manual: Cold Spring Harbor
Laboratory.

36. Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, et al. (2000) The
current state of two-dimensional electrophoresis with immobilized pH gradients.
Electrophoresis 21: 1037–1053.

SUMO Chains

PLoS ONE | www.plosone.org 9 August 2009 | Volume 4 | Issue 8 | e6750


	Coversheet
	Mercer, Brenda

