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Summary

Introducing robots into human environments requires them to handle settings
designed specifically for human size and morphology, however, large, conventional
humanoid robots with stiff, high powered joint actuators pose a significant danger to
humans. By contrast, “anthropomimetic” robots mimic both human morphology and
internal structure; skeleton, muscles, compliance and high redundancy. Although far
safer, their resultant compliant structure presents a formidable challenge to
conventional control. Here we review, and seek to address, characteristic control issues
of this class of robot, whilst exploiting their biomimetic nature by drawing upon
biological motor control research. We derive a novel learning controller for discovering
effective reaching actions created through sustained activation of one or more muscle
synergies, an approach which draws upon strong, recent evidence from animal and

humans studies, but is almost unexplored to date in musculoskeletal robot literature.

Since the best synergies for a given robot will be unknown, we derive a deliberately
simple reinforcement learning approach intended to allow their emergence, in
particular those patterns which aid linearization of control. We also draw upon optimal
control theories to encourage the emergence of smoother movement by incorporating

signal dependent noise and trial repetition.

In addition, we argue the utility of developing a detailed dynamic model of a complete
robot and present a stable, physics-based model, of the anthropomimetic ECCERobot,

running in real time with 55 muscles and 88 degrees of freedom.

Using the model, we find that effective reaching actions can be learned which employ
only two sequential motor co-activation patterns, each controlled by just a single
common driving signal. Factor analysis shows the emergent muscle co-activations can
be reconstructed to significant accuracy using weighted combinations of only 13
common fragments, labelled “candidate synergies”. Using these synergies as drivable
units the same controller learns the same task both faster and better, however, other
reaching tasks perform less well, proportional to dissimilarity; we therefore propose

that modifications enabling emergence of a more generic set of synergies are required.

Finally, we propose a continuous controller for the robot, based on model predictive
control, incorporating our model as a predictive component for state estimation, delay-
compensation and planning, including merging of the robot and sensed environment
into a single model. We test the delay compensation mechanism by controlling a
second copy of the model acting as a proxy for the real robot, finding that performance
is significantly improved if a precise degree of compensation is applied and show how

rapidly an un-compensated controller fails as the model accuracy degrades.
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Chapter 1

Introduction

1.1 Glossary of Terms

In this thesis we refer to a number of common terms which are used in the bio-

mechanical and musculoskeletal robot literature but can imply a variety of meanings.

For the avoidance of doubt we therefore first define here the most important, using the

terms in which we will be using them in this thesis.

Muscle

Muscle activation

Driving signal

Muscle co-activation

Co-activation pattern

In addition to its biological meaning, in the context of
controlling the biomimetic robot in question, a muscle implies
the actuator formed by the aggregation of an electric motor,
pulley, inextensible winding cable, elastic cord and attachment
points to the “bone”, simulating the role of a true compliant

muscle in a biological body.

Implies applying a voltage-based driving signal to a motor,
causing the muscle to be correspondingly activated, generating

an actuation force between the bodies to which it is attached.

A constant or varying signal applied as a voltage waveform to

drive the activation of one (or more) muscles.

This refers generally to any simultaneous activation of two or
more muscles. However, the muscles in question might be
driven by individual driving signals or they may share a single

driving signal.

In the case where a driving signal is shared, each activated
muscle may respond in different proportions to the signal. This
proportional response can be illustrated as a pattern of relative

weightings across the set of muscles involved.



Synergy

Candidate synergy

True synergies

Hierarchical synergy

A fixed co-activation pattern spanning a subset of muscles
sharing a single driving signal. Strong evidence suggests that
superimposing a simple combination of synergies together is a
simple way to form a complex resultant overall muscle co-

activation that can perform effective motor tasks.

We use “candidate” to refer to a synergy pattern identified by
analysis (generally a variant of component or factor analysis) of
muscle activation data as recurring across multiple (often
differing) movements. Numerous biological studies have shown
that activation data can very often be largely reconstructed by a
simple superposition of only a few candidate synergies. This
post-hoc identification empirically suggests, but does not prove,
that the synergy patterns are being specifically employed as

distinct units by the controller to generate movement.

We use this to refer to a set of synergy patterns that have been
explicitly used to generate the muscle co-activations that result
in movements that are effective is solving a presented task, such

as reaching to a target.

This refers to the concept of a “synergy-of-synergies” where the
co-activation formed by the superposition of two or more
synergies might itself be treated as a synergy-like unit at a
higher level. This might conceivably generate, for example,
coordinated movements across disparate body parts, such as a

swing forward of one arm, with the swing back of another.



1.2 Thesis Overview

The useful and effective introduction of robots into human environments requires
them to manage settings and scenarios designed specifically for human size and
morphology, such as stairs or door handles. However, conventional humanoid robots,
such as the well known Asimo (Figure 1a), are equipped for precision control via high
powered, stiff joint actuators and would constitute, at life-size, a significant danger to
humans. Their engineering also makes them of little interest with regard to providing
insight into human motor control. By contrast, so-called “anthropomimetic” robots
(Holland & Knight 2006) such as ECCERobot (Wittmeier et al. 2013; Marques et al.
2010) (Figure 1c), or its predecessor, Cronos (Holland et al. 2010) (Figure 1b), attempt
to replicate not just morphology, but the internal “musculoskeletal” structure; bones,
muscles, tendons, complex joints and compliance. It is particularly this structural
compliance that makes this class of robots potentially far safer than their conventional
counterparts, however, their highly non-linear biomechanical structure presents a
formidable challenge to conventional control methods. Nevertheless, their biomimetic
nature also provides a clear opportunity for reciprocal research - we may study
biological evidence with a view to uncovering effective control approaches, whilst
conversely, functional controllers developed for these robots may make predictions
that can be tested in biology. These may in turn provide insights into human motor

control and even cognition.

(a) (b)

Figure 1. Humanoid and anthropomimetic robots — Asimo, Cronos, ECCERobot



This thesis is concerned with developing methods that address the characteristic
control issues that arise with this class of robot whilst exploiting their biomimetic
nature, both to draw upon biological motor control research and to potentially inform
our knowledge or theories of biological motor systems. The contents are structured

into five main chapters as follows:-

In Chapter 2 we review the anthropomimetic ECCERobot and its musculoskeletal peers
and discuss control methods of interest developed to date for this new class of robots,
concluding that very few of note exist as yet. We therefore take a step back to consider
the particular issues of the control problem and review at a high level a range of
potential control approaches, including evidence from biological motor systems. We
conclude that bio-inspired approaches hold the most promise for controlling such
biomimetic structures, structures that would be considered highly complex, high
dimensional control subjects by more conventional engineering control approaches or

planning search approaches.

We therefore review in greater detail a range of bio-inspired approaches, with a view
to selecting for investigation one with a strong combination of novelty, promise, and
interest. In particular, we focus on recent strong evidence from biological studies
suggesting that- in contrast to conventional theories - effective control of seemingly
highly complex structures, such as the bodies of frogs, cats or humans, is achieved
largely through advantageous, co-evolved natural dynamics (morphological
computation) combined with a relatively low number of simple, shared activation
signals each driving a number of fixed, yet precisely weighted precise muscle
groupings (synergies). We therefore derive from the review the following primary

research question.

Primary Research Question - A promising and relatively novel study would test the
hypothesis, arising from strong biological evidence, that applying a muscle group co-
activation approach to an extensive, yet biomimetic structure with potentially rich
natural dynamics - such as the ECCERobot - may allow significantly simpler learning
techniques to be deployed than the complex algorithms under development for
generic high dimensional control subjects in fields such as reinforcement learning,

force control or planning search.



Of these simpler methods, we choose to trial an approach built primarily upon
reinforcement learning fundamentals, citing as reasons its bio-inspired nature and its
“action discovery” potential for exploiting natural dynamics of the full body, over

conventional precise trajectory plotting.

We also argue that for exploring, at an early stage, potential avenues for effective
control a detailed dynamic model closely approximating the complete robot, would
prove of great benefit. This would provide a fast, convenient and realistic platform for
trialling control approaches or for extended periods of offline learning or planning
search. Secondly, such a model may also potentially form an important component in
a predictive internal-model based controller architecture, offering features such as
delay compensation and Kalman-filter optimised state estimation. Nevertheless, the
overarching goal of achieving control of the real robot remains important and
potential transference of an approach from the model to the physical robot is given

consideration whenever possible.

To construct such a model we therefore briefly review the available full body models
and musculoskeletal model building tools, concluding that none offer the necessary
direct muscle activation input nor the ability to model the robot environment — a
crucial element for motor planning in the real world. We therefore propose the use of
a fast, modern physics simulation engine for the construction of a novel, detailed
physics-based model of a complete anthropomimetic robot, incorporating the
potential to exploit full body natural dynamics and interaction with sensed

environment objects, which themselves may be modelled dynamically.

In Chapter 3 we detail our design and engineering of a complete physics-engine based
model robot, reverse-engineered from one of the anthropomimetic ECCERobot
prototypes. Custom-modelled components include the elastic muscles, motors,
gearboxes, pulleys and joint friction. A stable model is presented running in real time
with 55 muscles and 88 degrees of freedom that can act as a subject of near-equivalent
complexity to the robot for our primary investigation into the control of such

structures.



In Chapter 4 we present a design for a novel learning controller for discovering
effective reaching actions driven by the sustained, weighted activation of a set of
muscle co-activation patterns, drawing upon on the evidence from muscle group
synergy research in frogs and humans. As the most effective muscle activation
patterns and driving signals for the ECCERobot are unknown, we test a simple
reinforcement-learning based approach intended to allow effective muscle groupings
to emerge. By allowing only a simple driving signal shared in linear weighted
proportion amongst muscle groupings we seek specifically to encourage the
emergence of those activation patterns that act to linearize the control of the
underlying non-linear structure. In addition, we draw upon optimal control theories
to encourage the emergence of smoother, more natural movement, by incorporating

signal dependent noise and trial repetition into the learning cycle.

In Chapter 5 we present experiments testing this approach in learning control of the
modelled ECCERobot to perform reward-based reaching tasks, aiming to touch or
strike a series of randomly placed target objects. Notably, we find that, far from
requiring the accurate trajectory control, individual motor signals and precise high
speed sensing of conventional control, we find that reaching actions can be generated
surprisingly successfully employing only two sequential sets of motor co-activation
patterns. It is notable that each set of co-activations is simply driven, in weighted
proportion, by a single shared motor activation. We suggest that the resultant very
large reduction in the dimensionality of the search space encourages a purely reward-
driven “action discovery” approach to succeed by drawing heavily on amenable

natural dynamics of the biomimetic structure.

Furthermore, applying factor analysis techniques to the muscle activation signals
generated from trials shows that the set of activation patterns emergent during the
learning can be reconstructed to 80% accuracy using only weighted combination of 13
common fragments. We label these emergent fragments candidate synergies, since we
define a “true” synergy as a pattern that is used explicitly up front, driven as a single

unit, by the controller to generate motor signals.

To test if these candidates can act as true synergies we therefore test a reworked

controller design that drives, not individual muscles, but the identified set of



candidate synergies. We find that this controller learns the same task both faster and
with better performance, however, other related (but different) reaching tasks perform
proportionally less well. We therefore judge that, although a method alteration or
extension is required to identify a more generic (i.e. widely applicable) set of core
synergies, the candidate synergies that were located via analysis can indeed be
effectively employed as a valid set of true emergent synergies and we examine their
constituent parts to analyse whether they emerge with specific roles in generated

reaching movements.

Reinforcement learning has a potential as an action discovery mechanism, i.e.
uncovering solutions that fulfil the task through exploration rather than a
prescriptive, calculated trajectory. We therefore also present evidence that the
learning has employed amenable natural dynamics of the biomimetic structure to

generate solutions to reaching tasks.

In unreliable or noisy systems, reinforcement learning will, over repetitions,
inherently favour the most reliable solutions as they will accrue the most reward
(Wolpert et al. 2001). Using optimal control theory, Harris and Wolpert (1998) have
shown that smooth movements observed in nature, such as when reaching to grasp,
(as typified by “bell-curve” velocity profiles) can be explained by a cost function that
minimises endpoint variance (i.e. maximises reliability) when in the presence of
amplitude-related motor neuron noise (Harris & Wolpert 1998). In other words, the
movements selected are those which are most reliable over repetition, a very clear
benefit when subjected to this form of observed neural noise. We therefore test
whether we can similarly encourage the emergence of smoother movement by
incorporating both signal dependent noise and trial repetition into the learning
process. We find that for those regions where the controller has learned to
significantly slow the robot’s hand for arrival at the target, we do observe over a
period of learning a migration towards the stereotype bell-curve “signature of
optimality” velocity profile. Across all targets regions we also observe an increasing
smoothness of movement (reduction in jerk) and an increase in reliability.
Furthermore, as predicted by Harris and Wolpert (1998), these results applied when
adding signal-dependent Gaussian noise, but not for fixed-level Gaussian noise.

Compliance is a primary feature that sets both biological bodies and these

musculoskeletal robots apart from conventional stiff-jointed robots. This elasticity is



one of the key features that can potentially offer significant greater safety to humans
in proximity to a large robot but can add significantly to the complexity of
conventional control approaches. We therefore conduct some preliminary comparison
trials to inform on the effects of compliance in aiding or hindering our approach in its
control of complex musculoskeletal structures. Initial results suggest that the
compliance in our model contributes to a reduction in jerk, thereby smoothing
movement, and furthermore, acting as an energy store allowing for a reduction in
the motor force needed for direction changes, resulting in a drop in signal related
noise that causes unreliability. We discuss some potential implications for both robot

design and insights into biological motor control.

Lastly, in Chapter 6, we discuss how to implement a continuous controller for such a
robot and in particular the issues introduced by sensorimotor delays when dealing
with a highly dynamic and compliant structure. We propose a delay-compensating
continuous controller design based on the principles of model predictive control which
draws upon our physics-based model as a predictive component for state estimation,
delay-compensation and planning. It also includes employing the physics engine as a
integrated simulation container for merging of the model and sensed environment.
We demonstrate its effects on controlling a second copy of the model acting as a proxy
for the real robot, showing that performance is significantly improved if a precise
degree of delay compensation is applied. Furthermore, we show, by a controlled
degradation of our model’s accuracy, that as the model dynamics diverges from that
of the “robot” under control, a controller without compensation rapidly performs
very poorly. Finally, we discuss possible implications and questions around human

cognition and perception of “the present”.

The final Chapter 7 reviews the research, puts forward a case for its original

contributions and draws overarching conclusions from the full thesis.



1.3 Summary of Original Contributions
Here we summarise the original contributions asserted in this thesis and in resultant

publications.

* We present a complete physics-engine based simulation model of a
musculoskeletal robot, reverse-engineered from a real anthropomimetic robot
constructed using Grays Anatomy as a guide (Diamond & Holland 2012). The
dynamic model runs in real time and incorporates simulations of the muscles,
motors, gearboxes, pulleys and joint friction (Wittmeier et al. 2011). A stable
version is available with 55 elastic muscles and 88 degrees of freedom that can
act as a biomimetic structure of high complexity.

* We present a design for a novel learning controller for a complex full-body
musculoskeletal, compliant structure employing a combination of bio-inspired
approaches; namely, muscle synergies, reinforcement learning and natural
dynamics.

* We demonstrate the design as effective in learning muscle activation patterns
that control a complex physics modelled simulation of a complete
anthropomimetic robot to produce reaching to sequentially presented,
randomly positioned targets.

* Using factor analysis of 100 emergent muscle co-activation patterns we
demonstrate 13 distinct emergent fixed-weighting “candidate” synergies that
can reconstruct the original set in simple weighted combination. We
demonstrate that a faster learning and higher performing controller can be
created by driving weighted combinations of the emergent synergies instead of
individual muscles.

* An additional contribution of the study is experimental support for the use of
reward issued in repeated trials to bring about increased endpoint reliability
under signal-dependent Gaussian noise, resulting in smoother and increasingly
naturalistic movement in a biomimetic structure - as judged by chi-squared
similarity to the well known bell-curve velocity profile observed in nature.

* The studies also contribute informed opinion on the transferability of this
model-tested approach to the control of the real robot.

* We derive a control architecture for the real robot, based on the proven Model

Predictive Control, incorporating the physics model as a predictive component
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for proprioception correction, delay-compensation and planning, including the
merging in the physics simulation of the robot and sensed dynamic and static
elements from its environment.

*  We demonstrate the effect of the delay compensation mechanism by controlling
a second copy of the model acting as a proxy for the real robot, showing that
performance is significantly improved if a precise degree of delay
compensation is applied. Finally, we show by a controlled degradation of our
model that as the model dynamics diverges from that of the “robot” under

control, a controller without compensation rapidly performs very poorly.

1.4 List of publications arising from this work

1.4.1 First Author / Joint First Author Publications and Submissions

Wittmeier, S., Diamond, A. et al, 2013. Toward anthropomimetic robotics:
development, simulation, and control of a musculoskeletal torso. Artificial life, 19(1),
pp-171-93.

My contribution to this journal paper was the chapter presenting initial reaching
experiment results for the learning controller described in this thesis (See Chapters 4

and 5).

Diamond, A. et al. 2012. Anthropomimetic Robots: Concept, Construction and
Modelling. International Journal Of Advanced Robotic Systems.
My contribution to this journal paper was the section (around 50% of the total)

covering the process of building a physics model of the ECCERobot.

Diamond, A. , Holland,O., & Marques, H. 2011. The role of the predicted present in
artificial and natural cognitive systems. Proceedings of the Second Annual Meeting of the
BICA Society.

My contribution to this conference paper was the section (around 50% of the total) that
introduces a design for a delay compensating predictive controller using a physics-
based model. This design, and testing of the delay compensation, are covered in much

greater detail in Chapter 6 of this thesis.
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1.4.2 Publications submitted
A.Diamond & O.Holland. 2013. Reaching control of a full-torso, modeled musculoskeletal

robot using muscle synergies emergent under reinforcement learning. Bioinspiration &

Biomimetics , IOP Journal. Abstract accepted. Full paper in peer review as of June 2013.

This journal paper focuses on fully detailing the muscle co-activation and synergy-
based control learning approach, including both the learning algorithm (see Chapter 4)

and experiments (see Chapter 5).

1.4.3 Conference Abstracts / Posters

Diamond, A. & Holland, O. 2012. No time like the present? Potential anomalies in time
perception exposed by anthropomimetic robot control research. Association for Scientific

Study of Consciousness, ASSC16 Conference, July 2012, Poster presentation.

Diamond, A. et al. GPU-Powered Control of a Compliant Humanoid Robot. GPGPU
Technology Conference, Oct 2010, Poster presentation.

1.4.4 Contributing Author Publications

Holland,O., Diamond, et al. 2012. Real and apparent biological inspiration in cognitive

architectures. Journal of Biologically Inspired Cognitive Architectures (BICA).

Holland, O., Diamond, A., Mitra, B., & Devereux, D. 2011. The What, Why and How of
the Bl in BICA. Proc. of the Second Annual Meeting of BICA Society, pp138-145.

Devereux, D., Diamond, A. et al. 2011. Using the Microsoft Kinect to model the
environment of an anthropomimetic robot. Proc. of the 2nd IASTED Intl. Conf. on

Robotics (Robo2011).

Marques, H., Diamond, A. et al., 2010. ECCE1: the first of a series of anthropomimetic
musculoskeletal upper torsos. In 10th IEEERAS International Conference on Humanoid

Robots. IEEE, pp. 391-396.

1.4.5 Published Software
The full output of the ECCERobot project including documentation is available via

www.eccerobot.org and the software, including the physics based model of the full

robot contributed by this thesis (see Chapter 3) are available under open-source licence.
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Chapter 2 :
Background

2.1 Overview

In this chapter we review the anthropomimetic ECCERobot and other musculoskeletal

robots and discuss control methods developed to date for this new class of robots.

We discuss the particular issues of the associated control problem and consider the
suitability of a number of established or emerging control approaches, including
evidence from biological motor systems. We conclude that bio-inspired approaches
hold the most promise for controlling a biomimetic structure that would be

considered highly challenging by conventional robot controllers.

We therefore review in greater detail a range of bio-inspired approaches with a view
to selecting for investigation one with a strong combination of novelty, promise, and
interest. In particular, in contrast to prevailing theories, we focus on recent strong
evidence from biological studies demonstrating the extent to which effective motor
control of frogs, cats or humans draws heavily upon a combination of advantageous,
co-evolved natural dynamics and simple fixed-weight activations of precise muscle

groupings (synergies).

We conclude from the evidence that a promising and relatively novel study would
test the hypothesis that drawing upon a muscle group co-activation approach for an
extensive biomimetic robot structure with potentially rich natural dynamics may
facilitate significantly simpler search and learning techniques to be deployed than the
complex algorithms currently under development for generic, high-dimensional
control subjects. Of these simpler methods, we choose to trial an approach built
primarily from reinforcement learning (RL) fundamentals, citing as reasons the bio-
inspired nature and “action discovery” potential of RL for exploiting natural

dynamics of the full body.

Finally, we consider whether our selected approach should be developed against the

physical robot or a modelled approximation, at least for preliminary investigations.
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We briefly review available full body models and musculoskeletal model building
tools, concluding that none are fit for the purpose of an anthropomimetic robot
controller. We therefore propose employing a fast, modern physics simulation engine
to construct a complete physics-based model which incorporates actuation modelling,
demonstrates full body natural dynamics and can potentially predict dynamic

interaction (e.g. collision) with sensed environment objects.

2.2 Musculoskeletal Humanoid Robots
We review the anthropomimetic ECCERobot and other musculoskeletal robots and

discuss control methods developed to date for this new class of robots.
2.2.1 The ECCERobot

2.2.1.1 Introduction
The ECCERobot is the latest in a line of so-called “anthropomimetic” robots that began
with the robot Cronos (Holland & Knight 2006), and which are human-sized, human-

Figure 2. Biomechanical construction details of ECCERobot
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shaped, and have human-like biomechanical construction. A distinguishing feature of
these robots is that, as well as compliant actuation, they also look to mimic the
skeleton, joints and muscle attachment points. Each iteration of the ECCERobot has
looked to extend its biomimetic nature, using Grays Anatomy (Gray 1901) as a direct

guide to construction (Wittmeier et al. 2012; Holland et al. 2010).

2.2.1.2 Skeleton and joints

The biomechanical structure of the ECCERobot is illustrated in Figure 2. The robot
torso has a skeleton of “bones”, hand-moulded from the low melting-temperature
polymer polycaprolactone, commonly known as “polymorph”. In the majority of cases,
these bones are connected with flexible joints with up to 6 degrees of freedom (DOF)
often using kiteline or shockcord cabling to imitate ligaments, although some few, such
as the elbow, are more precise 1DOF hinges. The total degrees of freedom approaches
one hundred. The construction follows Grays Anatomy (Gray 1901) and includes
floating shoulder blades that hang from the clavicles (collar bones) and dislocateable
ball joints in the shoulders. The robot has a flexible spine with individual vertebrae and
deformable foam discs, meaning that, just as for a human, it cannot stay upright

without tensed muscles.

2.2.1.3 Muscles and motors

Figure 3 illustrates the compliant actuation used in the ECCERobot. The 50+ “muscles”
of the ECCERobot are implemented as cables formed from a length of thin inelastic
“kiteline” and attached to the bones via sections of elastic “bungee” shockcord that

provide the compliance. A muscle is tensed through shortening the cable by winding

kiteline

spindle

gearbox .
flexion

kiteline  shockcord N

. extension
elbow joint

Figure 3. Compliant muscle-based motor actuation design used in the ECCERobot
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onto the spindle of an individually-assigned high torque DC motor. Both high power,
precision Maxon motors and low-cost electric screwdriver motors have been employed
in this role. These motors are mounted on the skeleton and the cables routed, where
necessary, by a series of pulleys. Muscles are relaxed simply by unwinding the cable by
reversing the motors. However, there is no ability to vary the muscle stiffness or
compliance as humans are known to do. The coefficient of elastic of shockcord is
approximately constant up to the limit of extension, making the cable tension linearly

proportional to the extension within the working range.

2.2.1.4 Sensors

The initial version of the robot included a webcam-based vision system, this was
replaced later by a head-mounted Microsoft Kinect (Microsoft 2013) sensor enabling
real-time 3D environment capture in the form of point clouds. These are processed to
generated faceted surfaces and planes for live insertion into the Bullet Physics engine

(Coumans n.d.) for use in motor planning tasks (see Devereux et al. 2011).

The robot also includes relatively minimal proprioception in the form of tension
sensors placed in series with the muscle cables. Muscle length sensing is also available

from motor-mounted encoders.

2.2.2 Cronos
The Cronos project (Holland & Knight 2006, Holland et al. 2010) preceded the

ECCERobot, essentially forming a construction prototype for the later work, being also
truly “anthropomimetic” in design. Only rudimentary control was ever established

over the structure using a very limited set of muscles.

2.2.3 Other anthropomimetic and musculoskeletal humanoid robots

Apart from the ECCERobot and Cronos, there are no other extensive body robots at
present that attempt to so closely mimic human construction in detail. However there
are a growing number that employ musculoskeletal elements, primarily muscle-like
compliant actuation. Examples of this class are “Kojiro” (Mizuuchi et al. 2007) and
“Lucy” (Vanderborght et al. 2004). These remain in essence conventionally constructed
robots albeit with some compliant actuation. With the focus strongly on the physical
engineering challenges, control research with these robots has been limited to date,
comprising primarily classical based approaches and biomimetic and bio-inspired

approaches remain essentially unexplored. More recently, a number of robotic “passive
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walkers” with compliant actuation have been constructed focusing specifically on the
development of walking abilities. Examples of these are “Mabel” (Sreenath et al. 2009)
and “BioBiped” (Scholz et al. 2011; Radkha & von Stryk 2012). However, these are also
conventional robots with added compliant actuation and actively seek to be

mathematically tractable to facilitate classical control approaches.

2.3 The Control Problem

The ECCERobot presents an intrinsically challenging control problem with a very high
dimensional state space and significant non-linearity. It has over 100 degrees of
freedom, flexible joints with up to 6 DOF and complex structures such as floating
shoulder blades and a flexible spine. It also has relatively very poor proprioception for
its complexity, making accurate state capture impossible. Although there is significant
friction in many joints this is not by design and the robot is essentially largely

underdamped.

In fact, it can be argued that the ECCERobot presents a more formidable control subject
that a human body itself which offers damping against oscillation, good
proprioception, ultra-low friction fluid-encased joints and variable stiffness muscles. It
also benefits from fine-tuned optimisation of structure and materials through evolution
and goes through an extended period of development and growth (epigenetic staging)
from the foetus stage upwards allowing the CNS to acquire control gradually
(Lungarella et al. 2003; Bongard 2011). The full ECCERobot, by contrast, is presented

as-is to any prospective controller.

Furthermore, the robot’s kinodynamic state (kinematic plus first derivative) can change
rapidly with a highly non-linear response. As a result, any delays between sensing and
acting will cause a correspondingly large issue for any controller. Of course, this is
largely true for humans also, yet the brain, modified and informed by learning,
appears to have solved these problems. This issue is potentially critical to control of
this robot, therefore in Chapter 6 we draw upon evidence from neuroscience to drive an
investigation into the extension of controllers with predictive modelling and delay
compensation components and test their effect on a physics-based model of the

ECCERobot.
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2.4 Potential Control Approaches - An Overview

In this section we present an overview of potential control approaches for this
biomimetic subject, including evidence from biological motor systems. By doing so, we
seek to identify a control approach with sufficient promise and interest to justify

review and investigation in greater depth.

2.4.1 Classical Control

So-called “classical” methods, have been used extensively over a number of years as
engineering solutions to robot control, where stability and resistance to perturbation
are generally achieved by adding closed-loop feedback of one or more output variables
(Franklin et al. 2002; Levine 1996; Sontag 1998). At their core, these methods seek to
constrain the state space trajectory of the system to a satisfactory goal state by
following a pre-calculated path generated using a model where the inputs (e.g. motor
torques) and outputs are related by a set of differential equations. A transfer function,
directly mapping input to output can be readily obtained if these equations are linear,
but for increasingly non-linear systems correspondingly complex techniques must be
brought to bear to calculate — or estimate — a transfer function (Atherton 2006; Sontag

1998) .

In general therefore, these methods require a sufficiently tractable mathematical model
of the subject and precise high-frequency state capture, their use is consequently
largely limited to robots fulfilling such requirements, favouring the production of low-
redundancy, stiff-jointed robots driven by high powered joint actuators mounted with
precision sensors for state capture. In other words, very different from the class of

robots we are dealing with here.

For this highly non-linear, high redundancy robot structure, to even describe its
dynamics in the form required for this analysis has been proven highly challenging
(Potkonjak et al. 2010) and may prove better suited, we would argue, to modelling in
the kind of step-by-step approximation afforded by constraint-solving physics engines.
Here, on each time step, the solver iterates the new state estimate towards one which
better satisfies that set of constraints (e.g. joints) and forces (e.g. motor torques)
describing the system at that point. The setting for the number of solver iterations is
generally selected as a trade-off between performance and accuracy dependent on the

application.
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Nevertheless, a separate part of the ECCERobot project has been to ascertain the limits
of classical methods applied to this class of robots. Investigations concluded that,
although the trajectory control of a bi-articular model arm with two compliant muscles
was achievable using a puller-follower design (Potkonjak et al. 2010) a more
comprehensive, complex model with features such as floating shoulder blades could

not be effectively controlled (Potkonjak et al. 2010).

2.4.2 Motor planning search

In contrast to classical control, planning search (Choset et al. 2005; Latombe 1991;
LaValle 2006) is completely agnostic of the structure to be controlled and makes no
assumptions about the likely form a motor plan might take. It is essentially an exercise
in applying a series of test motor signals to a forward model of the system, with a view
to rapidly exploring potentially high-dimensional state spaces as widely and efficiently
as possible in a search for a route to a goal state. The rapidly-explored random tree
(RRT) approach is one of the best known of these (LaValle & Kuffner 2001). Here, a
branching “tree” of known valid paths through state space is built up by locating a
new incremental movement from the nearest point on the current tree towards a
random sample point in state space. Crucially, the combination of random new point
with nearest known point causes the exploration to always branch, on average,
towards the most unexplored regions, causing a rapid and even coverage of the space
to be generated. This approach has been proven to be effective in even in the larger
kinodynamic space ( LaValle & Kuffner 2001). Kinodynamic implies a doubling of the
dimensionality by extending the state vector beyond the kinematic state by adding the
tirst derivative of the kinematic member variables. The core RRT technique has since
been extended and accelerated. Some examples are: adding the ability to search for an
optimum solution based on a cost function (Urmson & Simmons 2003); adding a macro
search at low resolution (Sucan & Kavraki 2008); focusing the search on “useful" areas
by attaching an updateable metric to each tree node (Burns & Brock, 2007); reducing
the dimensionality by considering primarily those dimensions related to the goal task
(Shkolnik & Tedrake 2009). It has also been applied with some success to
(conventionally engineered) humanoid robotics (Kavraki et al. 1996; Kavraki 2007;

Rusu et al. 2009; Ladd & Kavraki 2004; Kagami et al. 2003).

However, although the approach addresses the issue of high state space, this technique

has core requirements that cannot be easily fulfilled for anthropomimetic robots such
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as the ECCERobot. Firstly, it must be possible to generate truly random, valid state
samples and to rapidly compare the proximity of two states. Secondly, a reliable rapid
means to generate a motor signal that will move a known state towards a new one is
needed, this requirement alone constitutes the construction of an inverse model of the
robot. Thirdly, the motor plans generated are open-loop and must maintain the robot
in a sufficiently stable state for continual use. Finally, a very fast forward model is
required to cover the amount of exploration required to be effective in a very large
state space. All of these requirements are significant issues without possessing a
mathematically tractable model, which evidence from the classical control
investigation suggests is unrealistic (Potkonjak et al. 2010). Sucan & Kavraki (2008)
have estimated that sampling kinodynamic planners can spend up to 90% of their time
in running forward propagation and sampling states. Nevertheless, it is conceivable
that, in the future, a physics-based model “turbo-powered” by state of the art GPU-
based acceleration may suffice. For now however, we turn to evidence of how biology

appears to have solved control of such structures.
2.4.3 Bio-inspired and learning approaches

2.4.3.1 Forward modelling

A predictive forward model of the system under control is widely employed as a
component in control engineering (Atherton 2006; Levine 1996). Given a current state
and a set of control signals it makes a prediction of the resultant end state. Although
seemingly of less utility than an inverse model — which can supply the set of control
signals required to move from a specified start and end state — it nevertheless finds a
considerable range of uses. These include improving state sensing through Kalman
tiltering (Balakrishnan 1978; Wan & Van Der Merwe 2001; Welch & Bishop 2006), delay
compensation (Mehta & Schaal 2002), Smith predictors (Smith 1959; Franklin et al.
2002), feedback error learning (Shibata & Schaal 2001) and optimal control where a
forward model enables exploration to locate motor plans that minimise a cost function
(Todorov 2004) . It can of course, as recently discussed, also be used in classical closed
loop control if it can be expressed as a mathematically tractable transfer function.
However, a forward model may be implemented in other ways - such as a trained
neural network or a physics-based simulation - and is often expressed thus in system

designs as an unspecified ‘black-box’. For many controlled systems a forward model is
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significantly easier to implement than an inverse model where derivation methods
such as inverse kinematics (Atherton 2006; Levine 1996) cannot easily handle
redundancy (numerous potential solutions). Indeed, one application of a forward
model is in fact to provide an error signal for the training and correction, over time, of

an inverse model (Demiris & Meltzoff 2008; Wolpert & Kawato 1998).

The widespread utility of the forward model in control engineering and robotics is one
reason that the existence of a neural correlate in the motor centres of animals has often
been championed (Miall & Wolpert 1996; Kawato 1999; Wolpert et al. 1998; Miall 1998;
Wolpert et al. 1995; Flanagan et al. 1999; Webb 2004). The forward model is often
proposed as a role of the human cerebellum (Blakemore et al. 2000; Wolpert et al. 1998;
Miall 1998). Empirical evidence for this includes the clear physical presence of neural
connections implementing motor efferent copy (Blakemore et al. 2000), a ubiquitous
element of forward control systems in engineering. The presence of predictive models
is also strongly indicated by the fact that effective reaching movements can be shown
to be generated and performed faster than if any feedback mechanism were driving
them (Desmurget & Grafton 2000). Other studies also suggest that the position of eye
saccades tracking an unseen reaching movement reflect the output of a state predictor,
rather than the actual position (Ariff et al. 2002). Stabilising grip force adjustments
suggest a predictive ability via an internal model of motor apparatus during arm
movements (Flanagan & Wing 1997). Furthermore, Kalman filter-like corrective
mechanisms (which contain a forward model by definition) are implied in a number of
phenomena including the flash-lag effect, (Nijhawan 1994; Eagleman & Sejnowski
2007), the cutaneous rabbit illusion (Kilgard & Merzenich 1995), the auditory
continuity illusion (Grossberg 1995) and phonemic restoration illusion (Grossberg &
Myers 2000). Existence of optimal control mechanisms (Todorov 2004), such as Kalman
tiltering, is evidenced by the velocity profiles of eye saccades and reaching hand
movements (Collewijn et al. 1988), a bell-curve shape predicted by a cost function
minimising endpoint variance under signal proportional motor neuron noise (Harris &

Wolpert 1998; Tanaka et al. 2004).

We therefore suggest that if a form of forward model of this complex robot can be
constructed, it may prove of significant value as a component in a overarching
controller architecture for the robot that requires motor planning, sensory correction

and delay compensation (see Chapter 6). However, as discussed, to derive the inverse
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model for control via classical methodologies is very problematical due to the
nonlinear complexity and high redundancy of the structure. Much of this research is
therefore concerned with techniques (such as learning) to acquire what could be
viewed, in system terms, as a black box inverse model (see Chapter 4). The availability

of a predictive forward model will therefore also aid significantly in achieving this.

2.4.3.2 Muscle-based control

Newer control theories have emerged over recent years that focus particularly on the
specific control opportunities presented by muscle-driven, compliant actuation rather
than treating a musculoskeletal structure as a generic control structure of high

complexity and dimensionality.

The Equilibrium Point (EP) Hypothesis (Feldman et al. 1998) was developed in
response to the apparent paradox that observed posture stabilising reflexes should also
prevent voluntary movement (Holst & Mittelstaedt 1950). EP hypothesis postulates
that, reflexes could be considered as, not hard-wired responses, but rather, tuneable
mechanisms. In this configuration, motor efferent copy could in theory be employed to
drive stabilising reflexes to reset around a new posture defined in muscle length space,
causing the change in posture to come about solely under the influence of these
updated reflexes seeking their new equilibrium point (Feldman et al. 1998). Evidence
cited includes the predicted force-length relationship observed in cat muscles
(Matthews 1969). However, the hypothesis has been disputed as over-simplistic
(Gottlieb 1998), citing evidence that motor control is acquired gradually through the
development of internal dynamic models (Hinder & Milner 2003), and that
measurements in further studies have not matched the predictions of EP (Lackner &
Dizio 1994; Gomi & Kawato 1996; Gottlieb 1998). Furthermore, in a practical EP-based
controller there is also the prerequisite of the new, target posture to be described fully
in joint or muscle space (Gu & Ballard 2006), however, for a complex robot with high

redundancy it is by no means clear how this is to be acquired.

An alternative muscle-based approach is suggested by a growing body of compelling
empirical evidence from biology strongly suggesting the existence of muscle synergy-
based modular control (Giszter et al. 1993; Kargo & Giszter 2000; d’Avella et al. 2003;
Hart & Giszter 2004; Cheung et al. 2005; D’Avella & Bizzi 2005; Hart & Giszter 2010;

Roh et al. 2011). A synergy here is defined as a fixed and distinct muscle activation
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pattern distributed between its participant muscles and driven as a single unit by a
control signal. These biological studies suggest that effective control of seemingly
highly complex structures such as the bodies of frogs, cats or humans is, in fact,
achieved largely through advantageous, co-evolved natural dynamics combined with a
small set of relatively simple signals each activating a selection of precise muscle
groupings (synergies) (Cheung et al. 2009; Ting & Macpherson 2005; Ma & Feldman
1995; Bizzi et al. 2008; Li et al. 2008). These significant findings suggest that if effective
synergy patterns could be located for the biomimetic ECCERobot, then a limited set in
simple weighted combinations might be similarly sufficient to produce effective

movement under relatively elementary control.

2.4.3.3 Trial and error learning

The effectiveness in humans of trial and error learning is readily apparent to the
layman and is commonly formally implemented in learning algorithms as reinforcement
learning (Barto 1995; Sutton & Barto 1998). Here, a binary or graded reward signal
indicates success or failure of an action, or sequence of actions. The task of the learning
is simply to adapt behaviour to obtain, over time, the largest net reward. This principle
results in an increasingly focused search towards the best solution with little or no
prior knowledge of its final form. However, whilst effective for simpler discrete
problems, in the temporal control field such algorithms have proven in practice
difficult and slow for high dimensional problem spaces and temporal sequences of
actions. This “curse of dimensionality” (Bellman 1954) comes about because the
computation and data requirements increase exponentially with the problem state size
(Moore & Atkeson 1995; Peters et al. 2003). Since muscular control of a complex
musculoskeletal body falls within this category it would thus not appear a suitable

candidate for reinforcement learning based control.

However, in apparent contradiction, there exists significant evidence in neurobiology
strongly suggesting that a good correlate of reinforcement learning does exist in motor
learning through the selective release of the neurotransmitter dopamine (acting as a
“reward”) to strengthen recently active synapses (Schultz 1998; Schultz 2002;
Izhikevich 2007; Chorley & Seth 2011). This opens the possibility that biology may have
evolved additional mechanisms to sufficiently simplify the control problem from a

generic, high dimensional, non-linear structure to one that is amenable to control
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acquired through a form of dopamine-based reinforcement learning that lies plausibly
within the brain’s abilities to acquire. Muscle synergies and evolution of amenable

natural dynamics may be examples of such mechanisms.

2.4.3.4 Morphological computation and natural dynamics

Just as conventional robots have been designed for classical control, so these theories
postulate that biological bodies have co-evolved precise and subtle biomechanics to be
as useful and amenable as possible to a brain-like CNS controller (Pfeifer & Iida 2005;
Pfeifer et al. 2007). This approach mitigates the need for a highly advanced controller
by co-evolving a more controllable body. The most cited example of this is the
phenomena of passive walking (McGeer 1990; Hitomi et al. 2006) where the natural
dynamics of an entirely unpowered set of legs allow it to walk unaided down a
gradual slope in a natural and effective manner. Since the ECCERobot is based closely
on human construction there may therefore be value in considering approaches that
leverage natural dynamics. An extension to these ideas are control theories where
control itself can “emerge” from these dynamics, driven by reinforcing information
flows between the environment, reflexes, motor signals and proprioception (Der 1999;
Te Boekhorst et al. 1999; Lungarella & Sporns 2006; Pfeifer et al. 2007; Gravato Marques
et al. 2013).

2.4.3.5 Neural networks, evolutionary algorithms and spike-timing plasticity

Animals control their complex, compliant bodies superbly not through formal
algorithms or fast search but using richly connected neural networks in their brains
and spines. It is therefore natural to look to directly ape this approach through
simulated “brains”. A partially bio-inspired approach is to train conventional artificial
neural networks to learn a non-linear control function, often using evolutionary
algorithms to search in connection weighting space for the “fittest” solution (Beer 1995;
Cliff et al. 1993; Meyer et al. 1998; Bongard 2000). Success depends heavily on the size
(dimensionality) and shape of the fitness landscape and designing an appropriate
fitness function or functions for solving more complex problems can prove very
difficult. An alternative is to construct more biologically-accurate spiking neuron
simulations - including delays and plasticity - of indicated brain regions such as the
cerebellum (Kawato & Gomi 1991; Izhikevich 2007). However, whilst relatively small

simulated spiking networks have demonstrated success in solving easier problems or
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controlling simpler robots (Luque et al. 2011; Carrillo et al. 2008), the complexity,
connectivity knowledge, and network density of that would be indicated for the
control of such a complex body as the ECCERobot are almost certainly beyond current
neuroanatomical knowledge and simulation power. We therefore conclude that a
heavily “brain-based” simulation controller is not a viable option, for the present at

least.

2.43.6 Optimal Control

The adaptation of control such that the system minimises the value of a specific cost
function is known generally as optimal control (Todorov 2004; Wolpert et al. 2001; Harris
& Wolpert 1998). Use of a particular cost function as a driver to modify behaviour can
result in associated emergent characteristic behaviours, therefore observing these in
nature can lead to inference of the underlying cost function, providing, in turn, a clue
to designing better control. We will therefore consider in the next section of the review
the evidence of optimal control in human motor control in order to potentially exploit

the use of cost functions in developing control of the ECCERobot.

2.4.4 Conclusion

To fulfil the need for an effective muscle-based motor planner (or inverse model) the
evidence suggests that conventional classical control or planning search approaches are
unlikely to withstand highly complex and very high dimensional control subjects and
that learning-based, bio-inspired approaches hold the most promise for controlling
biomimetic structures. Action discovery approaches exploiting natural dynamics and
compliance are favoured over precision trajectory planning ending at a fully pre-
specified goal state. We therefore propose that muscle-based control techniques and
reinforcement learning best merit further investigation along with exploitation of
optimal control through identification of appropriate cost functions. In the final
section of this review we therefore revisit and critically review this subset of control
approaches in greater detail, with a view to selecting for investigation a combination

with a strong mix of novelty, promise, and interest.
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2.5 Bio-inspired evidence underpinning control approach selection

2.5.1 Introduction

We consider, in some detail, evidence for success of those bio-inspired approaches
identified in the high-level review as demonstrating the greatest potential for control of

the ECCERobot.

2.5.2 Standard Reinforcement Learning
As discussed above, reinforcement (RL) learning (Sutton & Barto 1998) is a general

trial-and-error learning technique in which the task of the learning is simply to build,
over a period of trials, a policy that is able to consistently select, for a series of
presented problem states, the actions that will that lead to the most accumulated
reward over time. Selecting when and how much reward is issued is therefore a critical

element in constructing effective RL.

The reward issued, or punishment (negative reward) is attributed (attached) to the
combination of action and states (pre and post-action) that led to its issue, where it is
added to that already accumulated. The immediately preceding state-actions (the
eligibility trace) may also be rewarded, in a decreasing scale, in order to build
rewarding paths through state space. In order to avoid simply directing action
selection towards those most used to date, the policy generally employs, not the
accumulated reward, but the average reward issued per past selection of the state-
action pair. This is known as the value of the state-action, usually denoted Q. This step
is generally referred to as the policy evaluation. The change in policy reflecting an

update in Q values is referred to as the policy update step.

A policy that always selects the highest value actions is referred to as “greedy”,
however, short term gain may not lead to highest reward over time hence a standard
refinement to RL is to balance greedy selections with exploration of alternative state-
action space which may ultimately provide greater reward. For example, the Q-value
may be used to set the probability of selecting that action, this allows seemingly less
promising routes to be occasionally trialled. Another more fundamental issue is
encountered in problems with a high number of micro-states, or continuous state
spaces such as control of a real robot such as ECCERobot. As no two states measured
are identical, this creates a problem in building reusable state-action pairs. This may be

addressed using a state estimation function that attempts to increase the state
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granularity or eliminate redundant or less critical dimensions, however this is rarely a

simple problem.

Much research in RL has focused on extending these elementary approaches by adding
sophisticated methods that act, also through learning, to refine the policy function
itself. Examples include the actor-critic approach, which refines the policy parameters
while the policy iterations are in progress by judging its success; and temporal difference
(TD) learning which attempts to intelligently pre-populate its set of Q values using
estimates from a function (itself adjustable through learning) that attempts to predict
upcoming rewards. These estimates are then incrementally updated with evidence
(real rewards) from actual trials conducted. It is largely these features that act to set
reinforcement learning apart, through its ability to minimise what is termed regret; the
favouring of rewarding actions in the short term leading to the loss of greater return

later.

RL thus appears to be a proven generic learning method that can be effectively applied
to motor control via these techniques. It is also an attractive theory to account for
biological motor learning as it does not require repeated identical trials nor any explicit
representation of desirable goal states, both of which are hard to come by in the real,

noisy world.

However, in practice, although these approaches have proven successful in lower
dimensional or discrete state-action spaces, for more complex control subjects with
more than 5 or so degrees of freedom within a continuous state space, the resultant
explosion of micro states necessitates the use of approximation functions that cause
both significant performance issues — the computing cost rising exponentially - and

convergence issues for the generic forms of these algorithm ( Peters et al. 2003).

Nevertheless, as discussed, although a biological body as a system to be controlled
appears well beyond the point where standard RL becomes challenged, there is clear
evidence that RL-like, reward-based approaches are indeed employed by the brain in
motor learning. For example, patterns of synapse-strengthening dopamine release
often appear to mimic, in both amplitude and timing, reward signals expected to be
observed for RL methods (Schultz 1998; Schultz 2002). Although the exact and
complete role of dopamine is disputed (Redgrave et al. 2007; Friston et al. 2012), a

strong influence on motor control is not. Another source of empirical evidence for RL
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at work in motor learning comes from the study of the characteristics of smooth,
efficient human movement, which show evidence of optimal control (Todorov 2004) in
the velocity profiles of movements such as eye saccades or reaching (e.g. Collewijn et
al. 1988). Although the underlying cost function was believed to be minimisation of
jerk (Suzuki et al. 1996; Breteler et al. 2002) this theory has since been superseded by a
cost function minimising endpoint variance in the presence of amplitude-related motor
neuron noise (Harris & Wolpert 1998). In other words, selected movements are those
most reliable over repetition, a very clear benefit to the subject. Reinforcement learning
appears to be a mechanism that can deliver this, namely, in unreliable or noisy systems
RL will, over repetitions, inherently favour the most reliable solutions as they will
accrue the most reward (Wolpert et al. 2001). The observation of these characteristic
profiles therefore supports the presence of RL in motor learning since this inherent
shift during learning towards optimally reliable, smooth (jerk-free) movement is not a
feature of competing control theories such as equilibrium point hypothesis (Rosenstein

et al. 2006).

Therefore, in choosing a control approach for the ECCERobot, we are presented with a
contradiction. RL-like mechanisms appear well indicated in motor control biology, yet
control of the body in a continuous space appears beyond the learning abilities of
conventional RL algorithms. If we accept the former, then two possibilities to resolve
the latter present themselves; firstly that conventional RL can be refined or developed
further to handle much higher dimensionality, or that there is some other feature of the
body or brain that is acting to simplify the control problem sufficiently, for example;
increasing the linearity of the system response or reducing the dimensionality of the
problem. We therefore investigate both of these possibilities, considering first the
availability of high-dimensional RL techniques before moving on to the possibilities for
control simplification through the approaches of morphological computation and

muscle synergies.

2.5.3 Reinforcement learning for high dimensional state spaces and humanoid
robotics
Some success with learning to control high-dimensional systems in the real world, such

as humanoid robots, has recently been demonstrated by sophisticated techniques that
focus on optimizing the policy update step (Peters et al. 2003; Theodorou et al. 2010)

which have demonstrated control of robotic systems, such as (conventional) humanoid
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robots in swing up or balancing control tasks, striking a baseball with a hydraulic
muscled arm and robot weightlifting (Kober & Peters 2010b; Peters et al. 2003; Peters &
Schaal 2004; Schaal et al. 2004; Peters & Schaal 2008; Kober & Peters 2009; Kober et al.
2010; Kober & Peters 2010a; Theodorou et al. 2010; Schaal et al. 2003; Rosenstein et al.
2006).

However, although demonstrating a significant improvement in applying generic RL
to high dimensional control, much of this work has focused on solving a difficult, but
highly specific task, such as the swing up of a 2 joint actuated robot arm (Rosenstein et
al. 2006). If the task parameters are varied even slightly after training then, unless the
problem can be meta-analysed, learning must often be re-commenced (Kober et al.
2010). Relatively little work is focused on controlling or exploiting the features of
explicitly biomimetic structures, such as compliance, although there is some focused on
controlling muscle-based robots, which simply treats them as difficult control subjects
(Peters & Schaal 2008). RL-based control of multi-muscle structures with a comparable
level of redundancy as the ECCERobot is also relatively unexplored. Note also that
although the terms synergies and primitives are commonly employed in describing these
algorithms, they are generally used to refer to movement primitives which can be
temporally chained together to form a larger motor plan (e.g. Rosenstein et al. 2006; Gu
& Ballard 2006). This usage is significantly different from the biomechanical terms;
muscle synergies and motor primitives, which refer specifically to weighted co-
activations of muscles that evidence suggests provide control advantages in animals. In
summary, although these sophisticated algorithms for generic high-dimensional
systems are at the leading edge of RL research there is little evidence as yet that they

will prove applicable to structures such as the ECCERobot in the near future.

2.5.4 Morphological computation
For musculoskeletal structures, locating the set of muscle signals to achieve a goal

appears an extremely complex task due to the dimensionality, redundancy, compliance
and the nonlinear, dynamical mapping from muscle activity to movement. However,
in contrast to the class of RL problems discussed above, both morphology and
mechanical structure has co-evolved in biology alongside the controller itself. This
opens another route to easier, better control; make the body more amenable to simpler
control, for example by the tuning of natural dynamics and compliance (Pfeifer &

Bongard 2007). A well known example of this principle is illustrated by passive
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dynamic walking (McGeer 1990), and it has furthermore been demonstrated by the
natural walking motion of an unstable biped robot, which can be relatively easily
stabilised by RL-driven parameter adjustment (Hitomi et al. 2006). By contrast,
developing stable walking on a conventional humanoid robot, such as Asimo, has

proven a very significant undertaking (Choi et al. 2004; Erbatur & Kurt 2009).

An important variation to this control approach also exists. In this scenario, just a
elementary controller is available that is only able to control simpler structures with
greater linearity and lower dimensionality. The relatively elementary control signals it
produces are amenable to unsophisticated learning, such as simple RL. To allow this
controller to succeed, an extra intermediate layer is introduced between the controller
and the potentially complex, non linear body. The task of this layer is to manage or
massage the “tricky” aspects of the body to offer an interface that can accept simpler
and fewer control signals and respond more as if it were a linear control problem.

Figure 4 (centre) schematically illustrates this approach.

It is important to note that the intermediate layer, whilst functionally distinct, may be
physically implemented within either the controller or the body, or both. Furthermore
its parameters may be partly or wholly plastic, allowing for optimisation through use

and learning (see Figure 4 lowest).

Strong evidence from studies of muscle synergies combining with natural dynamics

during movements now suggests that this form of general architecture, using forms of

Non-linear controller Non-linear body

Linear controller Linearising
layer

controller HH‘Q ' body

Non-linear body

1 i

Linearising layer

Figure 4: Using an intermediate layer to linearize control
Top: a non-linear body requires a complex non-linear controller.



30

Centre: Conceptually, a simpler linear controller can be substituted by the introduction of an intermediate linearizing layer
Lower: In practice, the intermediate layer may be physically implemented within either the controller or the body, or both.

intermediate systems to add linearity and reduce dimensionality (e.g. Berniker et al.
2009; Neptune et al. 2009), may be close to that implemented by the brain and body,
thus tackling some of major issues that impede the use of less sophisticated RL to
control complex bodies. What remains less clear is the location of the implementation
of this intermediate layer and the degree of plasticity offered, indeed these may vary
significantly between species. Nevertheless, this appears a promising approach and we
therefore now review biological evidence around muscle synergies and the results of

trialling this approach in control studies.

2.5.5 Muscle synergies
A muscle synergy can be considered any co-activation of muscles that produces a net

torque on a joint or a net force vector (Flash & Hochner 2005). However, in this context
we specifically refer to muscle synergies as those co-activations that reoccur most
distinctly and frequently and generally serve a particular role in a motor action. If each
synergy can be driven by a single neural output and contains a distinct activation
distribution pattern between its participant muscles then a limited set might be
sufficient in weighted combinations to produce a wide range of movement under

relatively simple control (Flash & Hochner 2005).

Studies of muscle synergies have in recent years been primarily conducted in frogs and
humans, although earlier work has also included cats. A major boost to these studies in
recent years has been the refinement of component analysis techniques that can
accurately extract underlying synergies from compound electromyographic activity
from multiple muscles, including the detection of synergies activated with different

amplitudes or phase timing (Tresch et al. 2006).

In frogs, analysis of activity from all muscles of the hind limb has shown that every one
of a wide range of studied movements could be generated from a combination of fixed
weighting muscle synergies. Many of these synergies were found to be common across
behaviours whilst others appeared for specific behaviours alone (d” Avella & Bizzi
2005). Similar findings have been made in other frog studies (Hart & Giszter 2004;
Flash & Hochner 2005), notably that extensive synergy reuse occurs between swim,

jump and walk behaviours and that the differences in behaviour can be accounted for
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purely by variation in the amplitude and timing of the synergy activations (Bizzi et al.

2008).

Biomechanical modelling studies based on frogs have also succeeded in reproducing
coordinated characteristic “wiping” movements across a range of starting positions
using only fixed synergies adjustable only in gain and phase (Kargo et al. 2010).
Interestingly this study found that, in contrast to earlier theories (e.g. Cheung et al.
2005), if the starting position is ignored then the behaviour resembled de-afferented
frogs. The authors suggest this implies that proprioception is not used as part of a
feedback modulated movement, but instead may simply act to obtain an initial
estimate of limb position before an open loop motor plan is generated. Another
modelling study where, in this case, synergies were selectively extracted from a
detailed biomechanical model, were found to match those observed in real frogs
(Berniker et al. 2009). Pertinently, these synergies had been specifically selected to
exploit natural dynamic properties of the modelled limb, implying they generate the

movements that the limb is naturally drawn towards.

Overall, all of these studies concluded that the frog motor controller has a modular
synergy based organization, and that synergies exist which contribute to no single
behaviour but are always found in cooperation with or modulating the outputs of
behaviour specific synergies (D’Avella & Bizzi 2005). Synergies exploit natural
dynamics of the limb (Berniker et al. 2009) although evidence also suggests that, for
frogs, synergies are not learned but hardcoded as fixed modular “primitives” and that
primary activation of each does not occur in the brain but is assigned directly as a
single “module” to particular spinal interneurons (Hart & Giszter 2010; Bizzi et al.
2008). This appears to directly support the “intermediate layer” concept for control

discussed earlier (Figure 4).

In human studies, evidence for shared, distinct modular muscle synergies is also very
apparent, although where in the body or nervous system these groupings are

primarily defined, and how they arise, is currently less clear cut.

Of these studies, perhaps most relevantly Cheung et al (2009) demonstrate that the
seemingly complex muscle EMG signals captured during reaching can be accurately
reconstructed from a combination of just a few fixed (time-invariant) muscle synergy

patterns, if each is driven by a distinct, time-dependent, activating waveform. This
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muscle synergies
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Figure 5: Model of muscle pattern generation by a combination of muscle synergies (reproduced from Cheung et al, 2009)
Illustration of reconstruction of recorded EMG signals from linear combination of time-invariant synergy patterns. Each is driven
by a different time-dependent waveform acting as a coefficient. Both synergies (red and green bars) activate three model muscles;
M1, M2, and M3. The waveforms generated by scaling the synergies with their time-dependent coefficient signals are summed for
each muscle before comparing to the recorded EMGs (thick blue lines).

elegant finding is particularly relevant, therefore we reproduce it here (Figure 5),
illustrating the principle at work. Note that, in this clear separation of simple driving
signals from fixed weight groupings we see again a potential implementation of the

“intermediate layer” architecture (Figure 4).

These reconstruction findings are supported by a number of other studies (d"Avella et
al. 2006; d’Avella et al. 2008). For example, combinations of just five synergies,
extracted during fast reaching movements, were found to explain around 75% of the
signal data if appropriately scaled in amplitude and shifted in time. The same patterns
were reproduced across different loads, postures or directions. Furthermore, it has
recently been shown that the same set of synergies are simply modulated to correct

movements when a target location is changed (d’Avella et al. 2011).

Similar evidence for explaining movements through synergies has also been shown in
studies of human hand movements (Todorov & Ghahramani 2004; Weiss & Flanders
2004; Ingram et al. 2008). Of particular interest is direct evidence of the use of shared
driving signals between synergies, shown by the commonality between signals driving
the closing of each finger to form an overall grasping movement (Ingram et al. 2008).
This also supports the existence of what can be termed “hierarchical” synergies (or

“synergies-of-synergies”) where a “higher” synergy designed for grasping, recruits a
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weighted pattern of “lower” synergies that control each finger in the correct

proportion.

The potential application of such hierarchical synergies to explain full body
movements is also demonstrated by studies of reaching movements involving both
arm and trunk muscles (Ma & Feldman 1995). Here, one synergy was found to
coordinate trunk and arm movements, leaving hand position unchanged, whilst the

other produced inter-joint coordination to move the hand to the target.

Evidence from biomechanical modelling studies for synergy-based control in humans
is also strong. Neptune et al (2009) used a complex musculoskeletal model of the leg to
test if synergies alone were sufficient for effective locomotion. The synergies employed
were extracted directly from measurements taken during studies of human walking.
Only minor adjustments to the amplitude and timing shifts of the synergies were
sufficient to generate the distinct characteristic phases of a step resulting in the

formation of well-coordinated walking.

In a final example, we see the return of reinforcement learning to the table. In a study
of simulated reaching, Fagg et al (2002) used a simplified and idealized
musculoskeletal model of an arm and shoulder to demonstrate the acquiring of control
by a simplified abstraction model of the cerebellum. Eight different muscle synergies
were predefined amongst a total of six muscles. Simple reinforcement learning was
then employed to learn, via trial and error, the sequence of synergy activations
required to bring the arm to a specified target. This demonstrates how it is feasible for
elementary RL alone, when coupled with a synergy-based layer, to succeed in learning
the control of a bio-inspired musculoskeletal structure without resort to the advanced

algorithmic complexities explored at the cutting edge of RL research.

Since empirical evidence of an intermediate layer in human control appears good, we
will now also briefly consider specific evidence for its location and plasticity. In a study
of cortical stroke victims (Cheung et al. 2009) the same synergies were extracted from
muscles of both stroke-affected and unaffected arms. This suggests they must be
constructed downstream of the damaged neocortex, the authors propose they may
therefore be located in spinal inter-neuronal circuitries or the brainstem. A study of
muscle signal interaction using Bayesian networks (Li et al. 2008) also suggests that

synergies are defined outside of the motor cortex, but that they are not hardwired but
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emerge causally (e.g. Hebbian learning) from correlated interaction between motor
neurons or interneurons in networks in the spine. Thus, the neuron firing that drives
one muscle can depend upon firings of neurons driving others; the authors refer to
these as "dependent synergies”. However, it is not clear whether these networks
crystallize to form distinct patterns via action-reward mechanisms, such as spinal
dopamine receptors (Lapointe et al. 2009), or by more unsupervised mechanisms in the

manner of Hebbian learning .

Another indication of whether synergy groups are primarily learned or pre-wired is to
consider how similar they are across subjects. Here, the evidence is conflicting. Ting
and McKay (2007) claim that significant observed synergy variation across subjects in
both number and composition clearly implies that they form through adaptation. Yet
Cheung et al (2009) observe that the synergies they identify reoccurred with great
regularity across subjects. The truth may lie somewhere in between, namely, that while
the base hard wiring for the lowest synergies and reflexes is in place, they are
harnessed via higher level synergies which form sufficient plasticity to cope with a
range of natural variety of the bodies under control, each undergoing an individual

growth and learning experience.

Although the evidence for synergy-based control in humans appears compelling, we
will consider some of the contrary arguments that have been made. Firstly, similar
human studies exist of muscle-directed movements that could not be consistently
broken down by a synergy-based analysis (Kutch et al. 2008; Valero-Cuevas et al. 2009).
Unlike the fast-reaching and walking studies discussed above that suggested
significant synergy usage, these tasks required precise control through high attention
and visual feedback. It has been shown (through PET scanning) that, in contrast to
more instinctive actions, such conscious motor tasks appear to recruit additional
“higher” brain regions (Stephan et al. 2002). This therefore instils a doubt as to whether
these can be considered a like-for-like comparison. Nevertheless, we suggest that the
results at least imply that distinct synergy modules may not comprise the sole interface

to the muscles, in humans at least.

Another objection is that, while synergies appear to explain the data for the particular
tasks that have been studied, they may simply arise as consequences of the optimum

solution to the specific control problem. This solution may have been arrived at by
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other optimizing mechanisms, such as minimizing noise or other optimization criteria
(Tresch & Jarc 2009). However, we would note that that distinct synergy reuse across
tasks is widespread (Bizzi et al. 2008), suggesting that synergies are not tailor made for
each task, and that synergy-like nerve groupings have been physically located in spinal
circuits of frogs (Giszter et al. 1993), rats (Ganor & Golani 1980) and also cats (Drew et

al. 2008) - an animal particularly known for feats of balance and coordination.

2.5.6 Control approaches exploiting natural dynamics and compliance
We will return now to consider the scope for controlling structures more easily by

leveraging their natural dynamics. Two approaches are identified that can act to locate

and exploit these; action discovery and formal analysis.

2.5.6.1 Action Discovery

Action discovery approaches rely on the notion that more amenable natural dynamics
will be favoured during learning if relatively simple control signals are employed and
the search or learning is not over-constrained. For example, we would judge success by
the arrival of a hand at a target object rather than stipulating what the movement

through state space should comprise, as would be the case with classical control.

Two examples of methods that can function as action discovery approaches for
musculoskeletal structures are reinforcement learning and genetic algorithms. These
can certainly, in theory at least, be configured such that success can be judged entirely
by the outcome, not the means. In practice however, secondary techniques are often
required to attempt to avoid excessive “creativity” in the solution. For example, a
target can be struck by random violent flailings of the arm — a solution that is easy to
discover but unsatisfactory for other reasons. An example of a secondary technique
used with RL learning for robots, is to begin learning from an approximate solution
based upon an imitation of an observed human movement (Schaal 1999; Schaal et al.
2003). Another solution is to introduce secondary success criteria, for example; using
minimal energy in movements. However, in practice, this often requires a challenging

balancing act between criteria such that one does not dominate the other.

2.5.6.2 Formal Analysis
Besides action discovery, an alternative, more formal approach to employing natural
dynamics has also been demonstrated by Berniker et al (2009). Here, a technique

known as balanced truncation is used for model-order reduction to obtain a low (5)
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dimensional model of a dynamical high-dimensional, multi-muscle simulation of a
frog hind leg. The low dimensional model attempts to capture each of the dynamics
most effective in altering the task variable, such as the frog’s foot location in space. For
each dimension, the most effective muscle synergy controlling the state in that
dimension was identified. A controller employing only these synergies applied to the
low dimensional model was found to perform almost as well as a full non-linear
controller developed for the complete dynamical model, but was far faster to execute.
Finally, it was found that the synergies identified were in fact a good match for those
extracted from real frog movement. However, we note that this approach does not use
any form of fitness or cost function based on the larger goal, for example, generating
the most efficient swimming action for the frog. This task is left for the low

dimensional controller activating the extracted set of synergies.

2.6 Selection of Control Approach for ECCERobot

In conclusion, evidence suggests that conventional reinforcement learning alone will
prove insufficient to overcome the dimensionality of a structure as complex as the
ECCERobot physics model. The use of more complex advanced RL techniques appears
a viable option, but offers relatively little novelty as it will treat the structure to be a
generic n-dimensional problem, although the potential for leveraging natural dynamics
remains of possible interest. On balance, it is debateable whether attempting to apply
these techniques will add much value to the evidence base beyond demonstrating that

they do, or do not, succeed with such a structure.

By contrast, the muscle synergy approach is of significant interest to research that is
specifically concerned with the control of biomimetic structures. This is particularly
true in the robotic field where musculoskeletal work to date has largely focused on the
engineering challenge over the control one. Yet there is good evidence suggesting that,
once effective synergies have been identified, the control problem is very significantly
simplified and can exploit the morphological computation and natural dynamics
aspects of the structure. Furthermore, in the modelling field, whilst there is sufficient
work with musculoskeletal models to suggest that this approach may succeed, much of
the work to date is frog-based, employing mainly isolated limbs with little work
undertaken with full body models. Human-based models have tended to be either

generic, idealized, muscle-based structures or detailed models of a very specific part of
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human anatomy where synergies can be copied from analysis of real muscle data.
There is no synergy-based work as yet targeted at control of biomimetic robots where
effective synergies may turn out to at least resemble, if not reproduce, those of the real
animal (due to the unavoidable gap in construction methods and materials). For
example, the ECCERobot, albeit well-muscled with attachment points based on Gray’s

Anatomy, nevertheless has by necessity only a fraction of a human’s musculature.

The question arises however, if this approach were adopted, how would effective
muscle co-activation patterns be located? We note that a low dimensional
representation of an action such as that proposed by Cheung et al (2009) is sufficient to
describe real muscle-activation data during human reaching (Figure 5). Learning to use
this form of reduced parameter space to uncover the most rewarding muscle
weightings and driving signals appears potentially within the reach of conventional
reinforcement learning. Although not the only learning technique capable of this, as we
have discussed, RL brings other favourable aspects with it. Apart from being consistent
with some aspects of brain function, it can also employ action discovery to exploit
useful natural dynamics (morphological computation) and can also, in theory, lead to
optimally reliable reaching-to-target movements when under conditions of signal
dependent noise combined with Monte Carlo trialling (Sutton & Barto 1998); i.e.
randomised trial repetition generating a probability distribution of outcomes. We may
then look for emerging elements of human-like smooth movement through the

emergence of signature bell-curve velocity profiles.

Furthermore, since we are effectively compelled to employ either a relatively slow-
running model (due to its modelling complexity) or, ultimately, a slow and vulnerable
real robot, the ability of RL to learn cumulatively from every trial is also a valuable

feature.

Nevertheless, this approach still presents a number of potential issues. Firstly,
although a relatively lengthy behaviour (e.g. a reaching action) in the timescale of
seconds might be describable by relatively few parameters by employing a sustained
activation of a simple combination of fixed muscle synergies, it must still be attached to
a state to obtain state-action pairs to which reward can be assigned. Since the complete
kinodynamic state space (incorporating position and velocity) of this model is very

large there is still a requirement for state estimation techniques (Sutton & Barto 1998).
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A second issue is that in such large state spaces RL is likely to function significantly
better as an improver of an approximate, weak solution than as a reliable bootstrap
mechanism, shifting any behaviour towards the optimum region of solution space. If
this proves to be the case then consideration must be given to how learning can be

kickstarted into useable regions of solution space.

2.7 Control Target - robot or model?

Finally, we consider whether our selected approach should be developed against the

physical robot or a modelled approximation, at least for preliminary investigations.

Although the robot remains the ultimate target for control, to commence
investigations with a full sized, high powered and powerful robot brings significant
practical issues to the fore, primarily that experimental control signals may cause
excess wear and tear and even damage. One alternative is to employ a minimal robot
test chassis, perhaps a single anchored arm and shoulder, for early investigations.
However, this approach would have a significant impact on strategies that look to
exploit full natural dynamics of the body whilst also needing to overcome control
issues such as compliance-based oscillation of the body, a flexible spine that must be
supported by muscle tension and highly unconventional structures (in robotic terms

at least) such as fully floating shoulder blades.

We therefore argue that during the initial phase of exploring potential avenues for
effective control, a detailed dynamic model closely approximating the complete robot,
would prove of greater benefit. This would provide a convenient and realistic
platform for trialling control approaches or for extended periods of offline learning or
planning search. Such a forward model may also serve a second useful purpose an
important component in an overall controller architecture requiring a forward model,

offering features such as delay compensation and Kalman filtered proprioception.

Nevertheless, the goal of achieving control of the real robot remains important and
potential transference of a proposed approach from the model to the physical robot

must be given consideration whenever possible.

If a model is to be used, then consideration must be given to using existing available
models, or biomechanical model-building tools. We find that although numerous

biomechanical models of individual human body parts or small regions exist, both as
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simplified/idealised forms and as detailed biologically-based musculoskeletal
simulations, very few full-body human models exist and none of comparative
musculoskeletal robots. Those that exist (e.g. AnyBody™ ) are not designed as control
platforms, but rather as medical or sporting tools and take as input real captured
motions rather than the direct muscle activation signals we need. For the ECCERobot
we require, if possible, a relatively fast simulation model, not of a human, but of a
complex hand-built robot which, by necessity, is constructed with real materials and
constraints as an engineering approximation to a human.

However, as discussed earlier, to construct a classical control mathematical model as a
set of differential equations has already been shown to be near-impossible for this
highly non-linear, high redundancy robot structure (Potkonjak et al. 2010). The
structure may prove better suited, we would argue, to modelling in the kind of step-
by-step approximation afforded by a constraint-solving physics engine. Here, on every
time step, the solver repeatedly iterates the new state estimate towards one which
better satisfies that set of constraints (e.g. joints) and forces (e.g. motor torques)
describing the system at that point. The setting for the number of solver iterations is
generally selected as a trade-off between performance and accuracy dependent on the

application.

We therefore propose the use of a fast, modern physics simulation engine for the
construction of a detailed physics-based model of a complete anthropomimetic robot,
incorporating the potential to exploit full body natural dynamics and even plan and
test interaction with sensed environment objects, which themselves may be modelled

dynamically within the same physics “world” as the robot model.

2.8 Conclusions

To fulfil the need for a muscle-based motor planner (or inverse model) we argue that
conventional engineering control or planning search approaches are unlikely to
withstand highly complex and very high dimensional control subjects and that
learning-based, bio-inspired approaches hold the most promise for controlling
biomimetic structures. We therefore propose the design of a learning controller for
discovering effective reaching actions through weighted synergies, drawing upon

strong, recent evidence from muscle synergy research in frogs and humans; an
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approach very little explored to date in robot literature. Since effective synergy
patterns for a robot will be unknown, we propose to commence with simple
reinforcement learning approaches intending that these muscle-coactivations will be
encouraged to emerge, in particular those that aid linearization of the control. We also
propose to draw upon optimal control theories to encourage the emergence of
smoother, more natural movement by incorporating signal dependent noise and trial

repetition.

Finally, in considering whether our selected approach should be developed against
the physical robot or a modelled approximation we argue that, while exploring
potential avenues for effective control, a detailed dynamic model closely
approximating the complete robot, would prove of great benefit. This would provide a
fast, convenient and realistic platform for trialling control approaches seeking to
exploit natural dynamics of the full biomimetic structure or for extended periods of
offline learning or planning search. The same model may also serve a second role as
an important component in a predictive model based controller architecture, offering

features such as delay compensation and Kalman filtered proprioception.

We conclude from a review of available full body models and musculoskeletal model
building tools that none are fit for the purpose of an anthropomimetic robot
controller. We therefore propose employing a fast, modern physics simulation engine
to construct a complete physics-based model which incorporates actuation modelling,
demonstrates full body natural dynamics and can potentially predict dynamic

interaction (e.g. collision) with sensed environment objects.



41

Chapter 3
Developing a physics-based model of a complete
anthropomimetic torso under compliant muscle

actuation

3.1 Overview

In this chapter we present work undertaken to create a detailed, full-body, physics-
based simulation model of one generation of the anthropomimetic ECCERobot
(Holland et al. 2010; Holland & Knight 2006), known as the ECCERobot Design Study

(EDS). The model was created for three main purposes.

Firstly, to investigate whether such an extensive highly dynamic structure can be
usefully modelled within a standard physics engine, to produce a stable and
comprehensive simulation running at a real time or better speed while incorporating

the main features of interest.

Secondly, to provide a realistic, comprehensive test platform for developing effective
control methods applicable to a whole body biomimetic robot with compliant
actuation. In particular, we are interested in macro control issues or features that do
not clearly manifest themselves in studies considering minimal models of only one or

two joints (such as Wittmeier, Jantsch, et al. 2011; Potkonjak et al. 2010).

Finally, to develop a model that could be integrated as a module into a control
architecture, acting as a motor planning resource or a state-predictor within a delay

compensation mechanism (Diamond et al. 2011).

This chapter will describe in turn the four main stages of producing the physics-based
model. Note that where further detail is available from technical reports produced for
the ECCERobot project these are included as appendices and referenced. Where detail
is available in papers published by other institutions forming the ECCERobot team

these are summarised and fully referenced.
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The four main stages described are as follows:-

1) The capture of the robot morphology from the physical robot to create a static
3D CAD model in a standard format.

2) The analysis of the structure and migration process to create a passive (no-
muscles) physics-based model that can be loaded into a standard physics
engine.

3) The process to add a simulation of muscle-based actuation to the passive model
including custom components requiring development for implementing elastic
muscles, joint friction and wrapping muscle cables.

4) The testing and validation of the model, including the creation of a
preconfigured “starting state” free-standing version of the model where the
muscle lengths have been pre-tensioned to hold the torso indefinitely upright

awaiting motor commands.

3.2 Capturing robot morphology to create a static 3D model

The ECCERobot itself was constructed by hand using human anatomy as a guide and
no upfront CAD modelling was employed — for example the polymorph bones are all
hand moulded. The complete robot structure was therefore to be first reverse-
engineered into a 3D modelling tool using an array of detailed photographs and
measurements. Some examples are shown in Figure 6. A number of videos were also
recorded demonstrating the action of all the robot joints and actuation for use in the
third stage of modelling where the simulation of muscle-based actuation was added to

the passive model.

Data capture was limited to the relative positions in space and approximate shapes and
of the major components, namely the bones, motors, joints, pulleys, and muscle cable

runs and attachment points.

The modelling tool Blender was employed to create the static model. This tool is not
only very powerful but is open-source (a pre-requisite of the project) and includes the
ability to export in the industry standard 3D COLLADA format which is compatible as

an import format for most major physics engine implementations.

Each component was first approximately modelled by hand in Blender with reference

to the close up photographs. The wider view pictures were then imported into Blender
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as background images and used iteratively to adjust the relative position and
orientation of each overlaid component until all relevant photos were consistent with
the modelled version. Note that it is possible to precisely adjust the “viewpoint”
coordinates in Blender until the original camera location is reproduced. These positions
may then be saved along with the model. Note also that all photographs included a

ruler to provide a good guide to correct scaling.

r
o
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Figure 6. Selection of source material generated for reverse-engineering of ECCERobot model
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Stages in the construction of the static Blender model are shown in Figure 7. The

completed static model is fully detailed in Figure 8 and Figure 9.

Pelvis and lower spine  Add scapulae & ribs Add neck, head & clavicles Shoulders to elbows

Complete skeleton Add motors Add motor pulleys Add muscle cables and

attachment points

Figure 7. Stages in development of static model using the Blender tool
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Further details of the capture process are provided in the technical report for the
project deliverable pertaining to the modelling. The full report is attached following
the thesis as Appendix II. It should also be noted that alternate capture approaches
such as laser scanning and attachment point calibration using evolutionary algorithms
were also trialled against a minimal test rig arm with some qualified success, detailed

in (Wittmeier, Gaschler, et al. 2011).

3.3 Selection of physics engine for dynamic simulation of robot

Employing an off-the-shelf physics engine offered practical advantages over
developing a custom analytical model. These include the fact that support exists
already for a range of rigid bodies and joining constraints and dynamic models can be
constructed using existing standard modelling tools, 3D viewer libraries and file
archive formats. Large complex models are a realistic option as performance is
generally high since the engines are designed for real time game simulation and speeds
are increasing through widespread adoption of GPU acceleration. Furthermore, they
offer the substantial potential advantage for motor planning by offering direct
integration of an environment with the modelled robot for such applications as
collision-free motion planning. Indeed, later prototypes of the ECCERobot were
designed to capture and integrate the live environment via a head-mounted MS Kinect

sensor (Devereux et al. 2011).

To select the best tool a comparative review of features and performance was
conducted by the project team of the leading physics engines (PhysX, Havoc, ODE,
Bullet). The full review is available to view as Appendix II. From the review, the
modern Bullet Physics (www.bulletphysics.org) was selected as the platform offering
the best combination of a flexible, extendible C++ based architecture, open source
status and a fast impulse-based design. Impulse-based simulations are simpler —
therefore faster — than constraint-based as net forces can be calculated as the sum of
impulses over a short timestep of contributing bodies (Mirtich & Canny 1995).
Constraints such as joints are implemented by issuing resisting impulses following
constraint violation rather than solving for absolute constraint rules (Mirtich & Canny
1995). This is therefore fast, although potentially problematic as this post-hoc resistance
means that constraints or joints can behave in an elastic-like manner or even give way

under a large and sudden force.
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Figure 7A. Reverse-engineered static model of ECCERobot torso (Front and Side)
See figure 7B on next page for back and top views, plus key to muscle names.
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[1] Trapezius

[2] Lateral Deltoi
731 Supraspinatus

[4] Anterior Deltoid
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[6] Brachialis
[7] Triceps

[8] Latissimus Dorsi
[9] Linea Semilunaris

[10] Quadratus (i)
[11] Serratus Posterior

[12] Quadratus (ii

[15] Pectoralis

[16] Infraspinatus

[17] Teres Minor

)

[13] llio-Costa Lumborum |
[14] Posterior Deltoid

[18] Lower Trapez

us

Figure 8B. Reverse-engineered static model of ECCERobot torso (Back and Top)

See figure 7A for front and side views.
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Figure 9. Textured rendering of static model of ECCERobot using translucent bones to show interior
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3.4 Preparing for simulation through analysis of joints, constraints
and other issues

Prior to commencing the physics based model a detailed preparatory study was made

to collate and analyse every constraint requirement, then propose an implementation

approach for each. A particular issue was whether the constraint could be satisfactorily

addressed by the capabilities of the physics engine or whether a custom extension was

required. Further details are available in the project technical report (Appendix II). A

section of the analysis spreadsheet is shown in Figure 10.

File Edit View Insert Format Tools Data Window Help

4 [Nimbus Sans L [v][0 [v] & 4 A

o
A [ B G

1 [|Picture Name BlenderName

Clavicle Sternum Constraint __ClaviclaSternumConatr

lavicle To Clavicle Extension ¢ClavToClavExtConstr

Eguider Joint Constraint iShouidarConstraint

Lower Spine Sponge Disc 1 to 8 LowerSpinaSpongaDiscin]

Elbow Hinge Constraint ERowtingeConsirinner / Outer

7 Rotate Uina Constraint BotateUinaConstr
79
| 80
34
=

Figure 10. Screenshot of spreadsheet compiled detailing every constraint and proposed implementation
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3.5 Creating a physics-based model of the passive structure

3.5.1 Instability in the physics engine

The complete structure of the robot is very complex for the physics engine to model
whilst maintaining correct and realistic behaviour. The primary issue is not the number
of bodies (which is low on the scale for such an engine) but the number of inter-

dependent constraints that join them together in a single dynamic structure.

It is very easy for the engine to fall into a state which we will refer to as “unstable”
where the bodies exhibit sudden and highly unrealistic, extreme behaviour as the
impulses controlling its constraint mechanism appear to fall into regions of positive
feedback. Typically this results in the model “exploding” or whirling its connected

parts at high velocities.

To combat this we found that the best way is to proceed cautiously step-wise whilst
constructing the model, ensuring that every body and constraint added is well behaved

before moving on.

3.5.2 Building the model incrementally

The static model created of the robot (see Figure 8) was migrated to Bullet one body at
time and incrementally joined up with defined constraints to ultimately form a single
passive (un-actuated) structure within the physics-based simulation. The result was a
COLLADA file defining each body, its relative position and orientation and each

joining constraint.

The migration was undertaken one step at a time by exporting from Blender via the
standard XML-based COLLADA 3D file format and then adding the XML stanza
generated to the gradually growing full model file, then testing this can be loaded. The
constraint definitions are then added that attach the new body to those already in place
and it is tested again. In order to allow the structure to stand while in this interim state
a static (unmoveable) vertical pole was added behind the spine and the highest section
of the structure so far was hung from it using a 6DOF constraint acting as a surrogate
cable. The step wise construction of the model is illustrated in Figure 11. Examples of

the COLLADA XML defining the model is shown in Figure 12.
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Figure 11. Stages in the migration of the static Blender model to a definition of the physics model in the Bullet engine

The last two frames both show the completed model, first as full-mesh detailed bodies imported from Blender which will be used
for the visual display of the model and secondly as a set of simplified collision shapes composed largely of primitives for maximum
performance in collision testing, a common bottleneck area.

radius>0.9 0.9</radius>
<height>0.85</height>

fyrioid const

0.6560 16.3</translate>
X">1 0 0 -5.00000</rotate>

1.0</mass>
instance_geometry url="#SpinePost-Geometry"/> -->

<half extents>0.134 0.917 3.46</half extents>

late>-5 -0.122 20</translate>
<i shape>
</technique

</rigid_constraint> <!-- Ribcage Collision shape -->

Figure 12. Defining a physics based model as an XML file
Examples of COLLADA-based definitions of a joint constraint and a rigid body composed of multiple collision shapes

3.5.3 Implementation of specific modelling issues

3.5.3.1 Use of primitive shapes to speed collision detection

To significantly accelerate collision detection, custom mesh shapes exported from
Blender were replaced in the model file wherever practical with one or more primitive
bodies (cylinders, cuboids, spheres etc.) (see Figure 15) since an ad-hoc mesh shape

requires testing by the collision detector of the relative location of every individual
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face. Primitive shapes, by contrast, can be tested holistically. A single body can be

constructed of multiple primitives, potentially overlapping in space.

3.5.3.2 Defining body weights

The physics engine, unlike Blender, requires a weight to be defined for each body.
Bone weights were extrapolated from the material density and volume. Compound
bodies, such as metal motors mounted on polymorph bones, were modelled by a single
compound collision shape with the altered centre of mass and inertia tensor pre-
calculated based on the combined mass and shape of each (Wittmeier, Jantsch, et al.

2011).

3.5.3.3 Modelling the spine vertebrae
The upper (neck) and lower (back) spine sections are modelled by individual vertebrae
(rigid bodies) which are joined with additional constraints acting as surrogate tendons

to avoid S-curve collapses.

3.5.3.4 Modelling bodies joined by inelastic cable

A number of parts of the robot are joined solely by sections of inelastic kiteline, notably
the construction where the “floating” shoulder blades (to which the arms are joined at
the shoulder joint) are simply hung from the collarbones. These cable joints were
modelled using 6DOF constraints (Figure 13). Note that these shoulder blades are
ultimately held in place only by the muscle cables wrapping them (the next section will

discus how this was achieved in the model).

Yo—
;a8

Figure 13. Physics-based model: the floating shoulder blade and arm
The shoulder blades hang from the collarbone (red constraint), held by wrapping muscle cables (orange)
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The collarbones themselves are joined loosely to the breastbone alone by a 3DOF
constraint, the other end hanging from the trapezius muscle cable. It is important to
note that these structures are very hard to model analytically and lend themselves far
more naturally to this class of physics engine, where it can be seen, once the muscle
cable simulations are introduced to the full model, that this complex and free
moving structure settles into a stable state with a subjectively natural pose. This may
be a consequence of the close attention to detail in modelling the robot from human

anatomy.

3.5.3.5 Joint friction

The implementations of static and sliding friction are fully detailed in the project
publication (Wittmeier, Jantsch, et al. 2011). Essentially, static joint friction is simulated
using the joint motor feature of the Bullet physics engine to temporarily hold the
angular velocity at zero. Sliding joint friction is simulated by applying an opposite

angular impulse per timestep proportional to the angular velocity.

3.5.3.6 Statistics of complete passive model

Overall, the full robot model includes some 64 separate rigid bodies (independent
moving parts or assemblies) defined by 246 collision shapes. There are 63 separate
passive constraints (joints) and a total of 88 degrees of freedom in movement. This total
includes details such as fully jointed fingers — although the later versions used for
developing control omit these non-critical elements (unused in non-grasping motion
planning) to obtain the significantly higher performance available by limiting the

number of joint constraints.

3.6 Simulating the active structure
To complete the model requires the addition of actuating muscles to the passive
structure. We present an overview of the process here. As before, further details are

available in the project technical report provided as Appendix II.

3.6.1 Approach for modelling of muscle cable forces

The effects of the muscle cables acting on the body were “virtually” modelled by
introducing additional impulses to the simulation during the callback function invoked
by the engine at the end of each physics timestep. The forces were calculated by

tracking the amount of kiteline currently unwound from the motor and comparing this
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to the current distance to the attachment point. Any discrepancy was assumed to be
taken up by the elastic shockcord and the tension force was then calculated via

Hooke’s Law (see again Wittmeier, Jantsch, et al. 2011 for details).

3.6.2 Strategy for adding muscles incrementally to the passive structure

As with the passive structure, muscles were added and tested one at a time to ensure
stability is retained in the physics engine. To add a muscle the attachment points are
exported from the static Blender model and used in a defining XML stanza that is
added to the model file. This uses a custom format as such muscles are not supported
by standard COLLADA. The import of the COLLADA file into Bullet was extended to
interrogate these stanzas and add the hooks for each corresponding callback that will
introduce the appropriate actuation impulses into the simulation depending on the

model state.

3.6.3 Modelling bodies joined by elastic cable
A number of parts of the robot were identified in the review as joined solely by
sections of passive elastic shock cord. These were modelled as unmotorised virtual

muscles cables, as a 6DOF constraint (as used for inelastic cables) offer no elasticity.

3.6.4 Muscle cables that wrap bodies

For this full-body model, a critical extension was added to the engine to simulate the
effect of muscle cables wrapping around bodies. This is a vital element of the
mechanics of the robot (aping the human body), certainly more so than the effect of the
true pulleys in the structure, which primarily act to pinpoint the point at which a
muscle cable should act on a body part. For example, free floating bones such as the
scapulae are held in place by wrapping muscles and the shoulder joint in particular is
actuated by several muscles that come from the scapula and pass around the shoulder
ball joint before attaching. Without this feature the shoulder could not be actuated by

the motors and the scapula would dislocate.

Initial attempts to simulate cables as colliding “soft” bodies were rejected as unstable.
Instead a system of spherical virtual “pulleys” was introduced. These can be placed on
any rigid body and the muscle cable path will be routed around them, generating a
reaction force through the sphere centre. The principle is illustrated in Figure 14.
Although the effect only approximates the force vectors in some scenarios, such as

where the cable wraps around the arm — which is not a sphere — the improvement is
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The muscle cable acts from the

motor on Body 2, wrapping around Body 1
Body 3 before attaching to Body 3.

The virtual muscle is assumed to act

in the plane ABC, 9\ A

on which the tangent points

T1 and T2 also lie. T1

Point T1 can be \\&/

located by \\ Body 3
placing the W
triangle A-T1-C
L /
within the plane /

ABC. The lengths
AtoCandCtoT1
are known, these F

determine the angle 0.

By calculating the points

T1 and T2 we obtain the
locations where the tension
force F acts on Body 3

¥ Body2

Figure 14. Design of virtual spherical pulleys for muscle wrapping
(The author thanks and acknowledges Dr. David Devereux for his assistance in implementation of this component)

sufficient to generate realistic behaviour in most configurations of the body parts.
Nevertheless, a logical improvement would be to extend the approach in future to

cylindrical pulleys.

Models of the motors with their associated gearbox and spindle were reverse-
engineered by measuring their response to a range of conditions and using multiple
regression analysis to accurately parameterise typical engineering mathematical
models of these components. This results in the transformation of an input voltage to a
output spindle torque (see Wittmeier, Jantsch, et al. 2011 for mathematical details).
Applying Euler integration to the motor equations, the resulting net angular velocity of
the spindle dictates the shortening or lengthening of kiteline in that timestep. The
effects of spindle friction or slippage on the line, or changes in effective radius as the

line wraps the spindle, are all currently neglected.
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3.6.5 Statistics of complete actuated model

In total 36 active motors and associated muscle cables have been simultaneously
simulated. The neck and head muscles have remained as purely passive elastic cables
to date; in the robot itself their purpose is to manipulate the head for gaze direction,
and they do not participate substantially in gross motor movements, but instead are
simply pre-tensioned to maintain the head stability in an elastic structure. The
remaining motors are employed in active control of movement and stabilising posture.
The location and attachment points of these active muscles are detailed in Figure 8. In
the arm and controlling the elbow joint there are the Biceps, Triceps and Brachialis. In
the upper arm, torso and scapulae, controlling the shoulder joint there are the
Posterior/Lateral/Anterior Deltoids which wrap the upper arm. The Infraspinatus, the
Supraspinatus and the Teres Minor all wrap the shoulder ball joint. The Trapezius,
Pectoralis and Latissimus Dorsi also affect the shoulder and upper arm. In the torso
and back controlling the spine and posture there are the Linea Semilunaris, Quadratus
Lumborum (i) and (ii), Serratus Posterior, Ilio-Costa Lumborum and the Lower

Trapezius.

3.7 Validating the model

This section covers the steps taken from completing the passive model file with added
actuation definition to obtaining a version of the model file where the model is loaded
and the structure settles to a state ready to commence motor operations for training a
reaching controller, according to a two-fold criteria. Firstly, that the robot model
should indefinitely stand upright under its own supportive musculature. Secondly,
that each motor+muscle combination has been demonstrated to be responsive to
simulated voltage input and that the actuated bodies respond stably and at least
subjectively appropriately within a voltage range spanning approximately a single

order of magnitude.

3.7.1 Platform
The model was run under the ECCEOS framework (Jantsch et al. 2010; Wittmeier,

Jantsch, et al. 2011) — a C++ distributed controller developed for the ECCERobot — and
employing the Coin 3D library (www.coin3d.org) for visual rendering. (Note that all
images and videos of the model in action are taken from the simulation framework

developed for the ECCERobot project).
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3.7.2 Addressing spinal issues

It was found initially that the spine constraints, as implemented by the Bullet engine,
were unable to hold the weight of the modelled robot without giving way. The model
also suffered a number of further instabilities that could be resolved by employing a
very short timestep (< 1ms), but this meant that the model could run at only one
quarter of real time at best, even when run on a very powerful workstation. As GPU
acceleration remains, at time of writing, outside the capabilities of Bullet (in spite of its
imminent addition being promised for three years) we therefore sought to streamline

and adjust the model to obtain stability with useable performance.

By reinforcing the inter-vertebral structure, tuning the joint friction and reducing the
number of constraints in the model (such as finger joints) it was possible to raise the
physics timestep to 3ms without losing stability or collapsing. This allows the model to

run in real time on the workstation.

3.7.3 Achieving a standing state

By pre-tensioning the back and side muscles the model robot can be made, upon
loading, to settle in a stable upright stance without toppling (Figure 15). This reflects
accurately both the ECCERobot and humans themselves, neither of which can remain

upright without significantly tensioning the back muscles.

The muscles are pre-tensioned by altering the relevant muscle definitions in the model
tile to specify a starting kiteline length shorter than that from the motor spindle to the
further attachment point distance (as measured between the body positions specified
in the file). The tension settings were hand tuned by a iterative process of gradually
raising from zero the tension of all the torso and back muscles and applying small
corrections to the tensions as the model tilted and fell forward or back. To restrict the
amount of tension applied the muscle tensioning was halted as soon as the model

stood continuously upright albeit with a slight swaying.

It is interesting to note that the final set of tensions selected for upright standing are
not inconsiderable, this is not perhaps surprising since the muscles of the back in

humans are some of the largest and most powerful in the body.
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Figure 15. Stable standing under tensioned muscles
The Visual Model (left) is formed of detailed custom meshes. For performance, the simplified Collision Shape Model (right) is
formed almost exclusively of primitives

3.7.4 Testing responses to muscle control signals

With the model standing in its settled upright position. A simple ramp waveform was
applied as a simulated voltage input to each motor in turn and the response observed
and the levels noted where a clear responding movement began. It had been intended
to include a normalisation parameter with each motor to scale the response to occur for
the same order of magnitude across all motors. However, it was found that this was
unnecessary in the event and that combining no more than two cooperative muscles

was sufficient to achieve this in all cases.

3.8 Control research undertaken using the physics model
The completion of a stable complete physics-based model of the ECCERobot torso

provides a real time, convenient and realistic platform for trialling control approaches,
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including extended periods of offline learning or searching. It also potentially provides
an important component in a predictive model based controller architecture,
implementing features such as delay compensation and Kalman filtered
proprioception, this is detailed in Chapter 6. However, research with the model has
predominantly focused on the learning of reaching control using a bio-inspired
approach of muscle synergies emerging under a reinforcement learning regime. This

will be presented in detail in Chapters 4 and 5.

3.9 Conclusion

We have shown that it is possible to construct a stable and realistic model of a complete
anthropomimetic robot using a standard physics engine with some custom extensions.
The result is a muscle actuated model structure that can be usefully and realistically
employed to research, through real time simulation, control characteristics and issues
with this family of unusual robots. However, much work remains to be completed
before the model can claim to be an accurate rendition of a specific target robot. In
particular, it appears very challenging matching the imprecise behaviour of Bullet
constraints against what can be very complex real joints, often constructed using
elastic tendons to constrain hand-moulded polymorph shapes. Indeed it is debatable
whether high model accuracy can ever be achieved for such a complex ad-hoc
structure and a more realistic goal may be to use the model to develop machine
learning approaches that can then be equally applied to a robot with similar
morphology and dynamics; either begun again from scratch or as a continuation of
preliminary model-based learning. This is undoubtedly the approach taken by biology
where species-specific but adaptive mechanisms passed down genetically will shape
themselves around the unique morphology of a particular individual. The work on
reinforcement learning of motor synergies described here is one example of such an
approach. However, another potential avenue is to adaptively tune a predictive

internal model instead of - or in addition to - its control.
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Chapter 4 :
Controlled Reaching Exploiting Motor Synergies
Emergent Under Reinforcement Learning

Part I: Algorithm Development

4.1 Introduction

We describe the development and testing of a bio-inspired muscle-based approach to
controlling the compliant physics-based model of the ECCERobot (developed in
Chapter 3) to perform reaching tasks. By dint of the model’s compliant nature, elastic
muscles and numerous degrees of freedom, based closely on the robot itself, the task of
control of the model was considered similar in difficulty and interest to controlling the

robot itself.

In the Background (Chapter 2) we considered a number of avenues for locating a
promising and novel approach to controlling the anthropometric ECCERobot, which
we planned to trial on our extensive model of the ECCERobot (Chapter 3). We formed
an initial general conclusion that learning-based, bio-inspired approaches were of most
interest, in particular those incorporating means of exploiting amenable natural
dynamics and compliance through action discovery rather than prescriptive trajectory
planning. We therefore reviewed in detail the evidence for the success of some fully or
partially bio-inspired approaches to control. In particular, we pointed to recent strong
evidence from biological studies suggesting that effective control of seemingly highly
complex structures such as the bodies of frogs, cats or humans is, in fact, achieved
largely through a blend of amenable, evolved natural dynamics - morphological
computation - with simple fixed pattern activations of muscle groups — muscle synergies -

combined in simple weighted proportions.

In this chapter and the next we employ this approach to derive and test a learning-
based controller design. It is a relatively novel approach, employing simple RL
techniques to trigger the emergence of combinable muscle co-activation patterns to

reach with a hand to any randomly presented target object location. Furthermore, by
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stipulating the repetition of reward-based trials under imposed signal dependent noise
we also test theoretical relationships between reliability under noise, optimal control
theory and reinforcement learning to encourage the emergence of smoother, more

naturalistic movement.

It should be stressed again at this point that we are not seeking here to advance the
science of RL algorithms per se, such research is already conducted elsewhere. Instead,
we seek to test the theory arising from the biological evidence that a muscle co-
activation approach for a biomimetic structure (i.e. driving combinations of distinct
fixed-weighting pattern synergies with shared simple signals) potentially allows
relatively elementary search and learning techniques to be effective. Of these
techniques, we choose to trial elementary RL for our approach, as it affords the
following advantages. Firstly, every RL trial performed incrementally advances the
learning, this efficiency is particularly relevant for robot learning where high numbers
of repeated trials are costly in terms of time and wear and tear. Secondly, its bio-
inspired nature whereby RL-like mechanisms for motor control of the body are well
indicated in the CNS through the agent of dopamine. Finally, its “action discovery”
focus, exploiting amenable natural dynamics and morphological computation potential
of the full body structure, with the goal of maximising overall reward rather than

following pre-planned, tightly controlled, trajectories in state space.

4.2 Overview
We first outline, at a high level, the principles and iterative process employed for
learning control of the modelled robot. Subsequent sections will then detail in turn the

implementation of each part of that process.

Figure 16 shows a simple standard reinforcement learning cycle for acquiring
maximum reward over time through a iterative series of trials and policy
improvements (Sutton & Barto 1998). The policy selects what action to take given the
presented problem state using an estimation function that is iteratively improved by
accumulated reward data acquired over an extended series of randomised trials
(Monte Carlo approach). By issuing commensurate reward the outcome over time

should be to optimise that performance.
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Figure 16. Standard Reinforcement Learning Cycle

As discussed in the conclusion of the Background chapter, we focus on the potential for
control of biomimetic structures, such as the ECCERobot, through the use of simply
sustained co-activations of muscles, combined in simple weightings and driven by a
shared activation signal. Both the muscle co-activation pattern and the form of the
signal are selected by a policy function driving from the problem state, which comprises
the set of environmental and robot state variables intended to describe the control
problem sufficient for its solution; for example, the relative position and posture of the

robot with respect to a target object to be reached.

We choose this deliberately simple approach in order to test to what extent a realistic
control task can be addressed by the specific means of locating an effective set of
cooperating muscle co-activation patterns acting on amenable natural dynamics of the
biomimetic structure in order to minimise the introduction of complexity to the

controller.

The task of our policy is therefore be to generate, per-trial, a single net action intended
to address the problem state, triggering a sustained movement lasting a certain period
of time, accumulating as much reward as possible as it does so, in an amount
governed by a reward function. It should be stressed that, in order to test fully what can
be achieved with the appropriate sustained muscle co-activation pattern acting in
association with amenable natural dynamics, we do not look to replan actions
continually at a high frequency as the state changes. Nor do we seek to apply feedback
correction or muscle reflex behaviour to improve a poorly planned movement. These
mechanisms may be incorporated in a later, more comprehensive controller, but would
serve as obfuscation of the results if employed from the start. Instead a best new single

open-loop action is estimated by the policy directly from the problem state, based on
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the evidence of performance of past actions. The motor co-activations within the new

action should combine with the natural dynamics to generate a new movement.

The growing set of information from completed trials that is retained for the policy to
draw upon is structured according to standard RL procedure. Namely, the pairing of
problem state presented and action selected (the state-action pair) are retained alongside
the reward accrued in the trialling of the action, forming a stored State-Action-Reward
(SAR) combination (Sutton & Barto 1998). Note that in robot control scenarios we are
not presented with a discrete set of problem states for which we must choose between
a limited set of discrete actions (as in board game, for example). Instead, the problem
state space is large and continuous (and may be high dimensional) and there will be no
previous action that will have addressed a given random sample point (in problem
space) presented for trial. The policy must therefore estimate a new action drawing
upon both the sampled problem state and the set of past (now stored) state-actions. It
achieves this using a function driving from both the proximity of the sampled state to
the stored states and also the past success of the stored actions (as judged by the

amount of reward they have accrued).

In this case, since an action essentially comprise signal-driven, muscle co-activation
patterns, our overarching aim (as discussed) is thus to locate a limited set of these
patterns that are effective - specifically in linear weighted combination - in addressing
a sufficiently large region of problem state space. Therefore, although a new state-
action is created, trialled and eventually stored, those SARs that contributed to its
construction are also commensurately rewarded according to both the trial outcome
(reward obtained) and importantly, the size of their contribution. The approach is thus
very close to the established RL technique of eligibility-traces (Sutton & Barto 1998)
which is often used to commensurately reward earlier actions in a temporal sequence
that lead to a later reward, resulting in their preferential selection in later trials. Figure

17 offers a figurative illustration of the proposed learning mechanism.

Once the contributors have been rewarded, the new action must be stored away as a
SAR. As it was created through weighted combination alone, then, to encourage
exploration through the influence of new SARs, the new action is first mutated by a

small degree of of exploratory parameter creep (Gaussian-based, s.d. 5%).
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Stored state-action-reward (SAR) sets
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Figure 17: Action generation, trial and storage

Presented with a newly sensed problem state S’, the policy constructs the n" new action A, from a combination of previous state-
actions, weighted according to their proximity in state-space and past success as a reliable and effective contributor to new
actions.

The new action A, is trialled against the state S’ and a reward R’ obtained is commensurately apportioned between contributors.
To encourage exploration through the influence of new actions, A, is then reappraised by estimating the most suitable problem
state S, to pair it with. It is then trialled against S,, obtaining reward R,. The new SAR set (S, A, R,) is added to the stored actions.

Construct
new entry

Add to stored sets

The mutated action is now reappraised by estimating the most suitable problem state
to pair it with. For example, in a reaching task the original trial may reveal that the
action is actually most effective at reaching to a different location. It is therefore re-
trialled against this revised criteria, obtaining a correspondingly larger reward. Only

now is the resultant new SAR added to the stored set.

Finally, limiting the number of stored state-actions (by pruning away the least
valuable) generates a competition to be retained according to ability to act effectively
as a weighted contributor to new actions. This is intended to produce, over time, a
tuned policy function able to address new problem states using an underlying key set
of effective muscle activation data. However, there are clearly important balances to be
achieved, in the weighting and reward functions certainly, but critically between new
and established actions to achieve an effective exploration-exploitation trade-off. The

implementation of these are detailed in subsequent subsections.

To summarise therefore, the learning seeks to tune the policy function through a search
in action parameter space, explicitly favouring the emergence and dominance of
actions (driven co-activation patterns) that prove to be reliable building blocks for

effective movements when used in weighted combination with other actions. For this
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search to succeed we must limit the action parameter dimensionality sufficiently while
retaining the flexibility to generate a range of effective movements to address the
problem state space. The action parameterisation to describe both muscle co-
activations patterns and temporal driving signals must therefore be designed with

care (see section 4.3 below).

Most importantly, by pruning away the least valuable SARs, comprising both poor
performers and poor contributors to new actions, we look to encourage the emergence
of a limited distinct set of identifiable synergies (weighting patterns) than have been
tuned to act effectively in concert by simple linear combination. We may then claim to
have generated a form of linearizing layer such as that originally proposed in the
Background (section 2.5.4), whilst the necessary reduction in dimensionality for RL-
based search to succeed will have been achieved by defining actions as minimal

parameterisations of sustained muscle co-activations.

It is important to note again the extent to which we are simplifying the classical
reinforcement learning approach to a control task, which attempts to handle the
generic case that where individual signal level on each motor can be set at each
sampling interval, the robot and environment forming a new problem state at every
point . Instead, we test whether, via muscle synergy combinations and natural
biodynamics we can deal, not in micro, but in macro movements, covering a timescale
in seconds rather than tens of milliseconds and defined by relatively very few
parameters. This clearly greatly eases the learning process, but assumes however that
these macro movements, when combined with exploiting the natural dynamics of the
structure, have the flexibility to solve the set problems, however, the reviewed

biological evidence around muscle synergies suggests they do.

4.3 Problem State

In general terms the problem state S comprises a vector of both environmental and
robot state variables intended to describe the control problem sufficient for its
satisfactory solution; for example, the relative position and posture of the robot with
respect to a target object to be reached. The minimum data set may be obtained

through trial-and-error or more analytic approaches, for example, by considering
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causality or mutual information measures between member variables and the endpoint

of a reaching movement.

To compare two problem states we require a proximity function P providing a positive
scalar output pbased on the vector difference of states, i.e. p = P(S; —S;). The
particular problem states and proximity functions used are experiment-specific and
will be therefore not be defined further in this algorithm but later in the relevant

method sections.

4.4 Actions

As discussed above, for this controller an action will comprise essentially a motor co-
activation pattern driven by a single shared signal. Our overarching aim is to locate
and store a best set of past actions that, in linear weighted combination, can estimate a
new action that effectively addresses a new presented problem state. The RL-based
strategy comprises a reward-led search in action parameter space, explicitly favouring
the emergence and dominance of a set of stored state-action-rewards (SARs) that prove
to be consistently effective contributors to a new action. For this search to succeed we
must therefore limit the dimensionality of the action parameter space sufficiently while
retaining the flexibility to generate a range of effective movements to address the

problem state space.

4.4.1 Parameterising an action as a signal-driven muscle co-activation

We define a movement as the body’s response to a simple co-activation of n muscle
motors configured in a specific weighting pattern parameterised as w;_, weight values
where [-1 < w < 1]. A negative weighting implies that the motor is driven in reverse
to unwind its muscle cable, for example, this might cause a raised arm to be lowered.
This weighted set of muscle motors is activated, as a single unit, by a parameterized
driving signal m(t) that assumes the resulting waveform shape for a specified
duration T. This concept of a driven co-activation generating movement is illustrated

in Figure 18.

In order to avoid pre-empting a solution we provide the learning with significant
flexibility in defining the shape of the driving signal m(t). We parameterise with a
duration T and a simple positive gain g, plus the position of 4 waypoints (see Figure

19). We choose the number of waypoints available as a minimum that can still indicate
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a useful range of waveforms, from a single level or rising ramp to a non-linear curve
upwards or downwards. It also makes possible the use of a period of zero level at the
start or end, allowing co-activations to be potentially shifted in phase with respect to
each other. Each of the (k=4) waypoints is parameterised as a voltage level [-1 < v}, <
1] applied to the motor along with a time, held as a relative fraction [0 < t; < 1] of the

signal duration T. The kth waypoint is thus set as the point [gvy, t;T].

Finally, to avoid the unwanted high frequency artefacts inherent in the raw waypoint-
to-waypoint form of the driving signal we employ a digital low pass filtering function

(LPF) to smooth out discontinuities before a final voltage signal reaches each motor.

ACTION (DRIVEN CO-ACTIVATION) BODY
Gain  Driving weiéhting pattern or Smoothing \
g Signal m(t) “co-activation” of Low Pass Xxn Wind muscle LY
n muscle motors M1, Filters x n cables attached \\

to body

Figure 18: Anatomy of an Action; Driving a co-activation pattern of muscle motors to cause a movement by the body

A co-activation of muscle motors My, comprises a weighting pattern w;., where [-1 < w < +1 ]. Note that a negative weighting
implies that the motor is driven in reverse to unwind its muscle cable, for example, this may cause a raised arm to be lowered.

The co-activation is driven as a unit by a signal m(t) modulated by a simple positive gain g.

The n x outputs from the co-activation are each passed through a low pass filter to smooth transitions and discontinuities before
reaching each of n x motors as a voltage input signal which drives it to wind/unwind its assigned muscle cable on the robot body.

----- @ 4-waypoint driving signal d(t)

Motor voltage 0O Signal after gain/weighting
applied ( gw; )

- Smoothed signal after LPF @

» time

T T

Figure 19: Parameterised driving signal used to control waveform of the motor input voltage signal
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The final voltage value v;(t) arriving at time ¢ at the ith muscle motor is given by:-

vi(t) = ¢ (gwim(®))

where m(t) is the raw waypoint-to-waypoint form of the driving signal and the LPF

function y = ¢() is defined as:-
Vi =Yji-1t+ta(xj— yji-1)

where y; and x; are respectively the filter output and input on the jth timestep of At

. A . . .
duration, @ = —— and the time constant T = — where fis the filter cut-off frequency
T+ At 2nf
in Hz.
4.5 Policy

The policy function generates a new action based upon the problem state and SAR data

stored with previous actions. In general, the nth generated action 4,, is described by

An = f(Sn:An—ll 'Al)

Where ¢ is the policy function constructing an best estimate action 4,,, driving from the
nth problem state S;,, generated plus the data attached to the n-1 previous actions. As
actions comprise muscle co-activations and our goal is specifically to locate co-
activations that can act in concert with simple linear weightings, the policy constructs

A, from the linear weighted sum of the stored actions, i.e.

n-—1
Ap = z wiA;
i=1

where the weighting w; placed on the ith stored action 4; is given by:

w; = P(PiQi)
where Q; is the value of the action A; and p; is the scalar proximity of the states S, (new)

and S; (stored) given by the chosen proximity function P (see section 4.3).

The function 1 is a simple linear normalizing function that rescales all the p;Q; values
proportionally between 0 and 1, whilst always summing to 1. For this investigation, we
favour this linear weighting over similar non-linear tuneable functions such as

softmax (Sutton & Barto 1998), as we are specifically seeking (as discussed) to learn
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synergies that support an essentially linear weighting relationship. Thus:-

Plx) = =
X;) = ————
Yooyl

4.5.1 Actionvalue

The action value Q; is defined as the average reward over time awarded to the action
A; from its contributions to creating new actions. We use action value in preference to
the accrued reward in order to avoid the early favouring of actions which have been
over-used due to fortuitous proximity to the random sequence of problem states.
Action value also over-weights new actions, a desirable feature to encourage the
immediate trialling of these new arrivals as contributors.

reward

Q is calculated as i.e. the sum, over all learning iterations, of the reward

contribution

awarded to the stored SAR divided by the sum of the contribution weightings assigned

to this SAR, thus the value of a stored action after n learning iterations is given by:
Y7Z0R;

Qn = ! -

n-1
j=0Wji

4.5.2 Exploiting continuous state space to create noise driven exploration

For biological motor control no two problem states are ever identical, but simply more
or less similar. As our problem state space is also continuous we can also exploit this
form of “noise” driven exploration through high resolution random sampling (double
precision real numbers). This effect alone will cause the state proximity function P to
generate, from stored SARs, weighted contributions that vary randomly without
adding any further artificial probability based exploration. Furthermore, as more
actions are added and become more effective contributors, the influence of this “noise”
naturally diminishes and become more exploitation than exploration. This can be
understood metaphorically by considering new actions as “educated guesses” based
on combined past experience. During early learning, with little experience, new actions
formed by combination will be highly exploratory, rather more guess than education.
Later, after considerable “education” (learning), a new action targeted at a random
location will be far more accurate because of the available state proximity and

effectiveness of contributing SARs.

However, whilst this approach can reduce the need for artificial techniques to

encourage exploration - such as using the weighting w; as the probability for selecting
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an action (Sutton & Barto 1998) - if new stored actions are generated solely by weighted
combination of past ones, then the parameter set used is by definition restricted to the
outer limits of values used in the past. While this may generate widely exploratory
movements at early stages of learning there is a risk of convergence to non-optimal
regions of parameter space. Before storing a new action we therefore consider
triggering exploration through adding an element of purely random parameter

variation (see section 4.7.2).

4.5.3 Creating a new action from weighted combination of stored actions

Since the combination weightings sum to 1 they can be applied individually to each
parameter of the stored actions to generate a new parameter value. For example, the

new gain g, parameter that will be applied to the new driving signal is calculated as:

n—1
In = z wigi
i=0

The same formula is applied to obtain the other parameters of the new action, i.e.
signal waypoints, duration, as well as the individual motor weights within the synergy

patterns.

4.6 Trial and Reward

4.6.1 Reward Function

The reward function controls the final amount of reward issued at the end, and
potentially during, the course of a trial. The system state(s) or events considered
rewarding are specific to the control problem under consideration, thus a grasping task
might generate reward for lifting a target object. The design of the reward function, as
with the fitness function of evolutionary methods, is often critical to the success of the
learning, particularly in higher dimensional spaces where issues such as local maxima
can often cause learning to stall. There is generally a trade-off between rewarding only
a higher goal (e.g. “obtain food” ) and incorporating additional staging rewards that
may constrain solution freedom but act to smooth a more jagged reward “landscape”
by providing clearer “hill-climbing” routes for incremental learning to follow (e.g.
“move nearer to food”). The precise reward function employed by the algorithm will

be specific to the experiment and therefore detailed in the relevant method section.
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4.6.2 Trial repetition and signal dependent noise to leverage optimal control

As discussed in the Background chapter, observed smooth, efficient human
movement suggest the presence of optimal control mechanisms, acting to minimise a
cost function, resulting in the typical bell-curve velocity profiles of eye saccades or

reaching (e.g. Collewijn et al. 1988).

Although the underlying cost function employed in motor control was believed to be
minimisation of jerk (Suzuki et al. 1996; Breteler et al. 2002) this theory has since been
superseded by a cost function minimising endpoint variance in the presence of
amplitude-related motor neuron noise (Harris & Wolpert 1998; Miyamoto et al. 2004).
In other words, selected movements are those most reliable over repetition, a very
clear benefit to the subject. In unreliable or noisy systems RL will, over repetitions,
inherently favour the most reliable solutions as they will accrue the most reward
(Wolpert et al. 2001). We therefore propose to draw upon this optimal control
principle to encourage the emergence of smoother, more naturalistic movement by

incorporating signal dependent noise and trial repetition.

To this end, we artificially add signal dependent noise to the motor signal, applying a
linear relationship between the standard deviation of the motor signal and its
amplitude. Note that, although measurements have shown individual spiking units to
exhibit a log-log relationship (with a slope of close to 0.5) individual variation in
threshold level means that for a population of spiking units the slope of the log-log in
fact approaches 1.0, i.e. a linear relationship (Jones et al. 2002). Indeed, it has been
shown that for a square root relationship (slope=0.5) optimal control converges to a
bang-bang strategy (full on or full off), whereas the linear relationship optimally
predicts a smoothly varying control signal (Jones et al. 2002; Miyamoto et al. 2004), as
is observed in nature (Collewijn et al. 1988).

To create our noisy signal therefore, on each timestep, artificial noise n, is generated
and added to the motor voltage just before reaching the motor itself. Following
recommendations from motor neuron studies (Jones et al. 2002; Hamilton et al. 2004),
Gaussian distributed noise is employed (i.e. drawn from a normal distribution with
mean=0 and s.d.=1) as this has been shown to match motor neurons firing at above 5

pulses per second (pps).
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The final voltage v,,s, reaching the motors is given by:

Unoisy = (1 + kng)vclean

where [0 < k < 1] is a tuning parameter setting the noise level by controlling the
variance in the Gaussian noise. In these experiments we set k=0.2, corresponding to the

lower values observed in nature (Hamilton et al. 2004).

We then repeat the trial of an action for the same problem state N times, thus issuing N
sets of reward. Over time this should favour the emergence of actions that are both
accurate and also reliable. Note that the experimental setting of the value of N to a
practical value will be discussed in section 4.9.4 covering early trialling of the

controller.

4.7 Policy update

The policy function creates new actions to address a random sampling of problem
states and is incrementally improved using two mechanisms based on information
provided by trials of earlier actions, in the form of reward. The first mechanism is to
update, in the light of the new information, the value of the stored SAR sets which
contributed data to the formation of a trialled new action. The second mechanism is to
extend the set of stored SAR sets with an nth new entry comprising a problem state, an
action and an initial reward. The aim is, at an early stage, for the policy to explore
substantially different actions as contributors to new actions while, at a late stage, to

continually refine actions.

4.7.1 Updating values of stored SAR contributors

A new action A’ is first trialled using the randomly generated problem state S and
commensurate reward r issued as per the reward function (see section 4.6.1 above).
Trials of A’ to solve S’ are repeated N times in order to favour — i.e. generate more
reward for - actions more reliable under signal dependent noise (see section 4.6.2
above). The average reward 7 accrued per trial repetition is now divided
proportionally among the stored SARs according to their contribution to the new
action, as specified by the weighting w that was assigned by the policy (see section

4523).
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Thus, the total reward R; attached to the jth stored SAR is updated as:
Rj g Rj + (U]'T_'

However, the policy requires that we update the SAR value Q = _reward  _ %

contribution Cj

We must also therefore update the total contribution C; made by the SAR:
Cj d C] + wj

4.7.2 Constructing and reappraising new action based on best problem state

Once contributors have been rewarded according to the presented problem state we
consider the task of creating a new SAR stored entry. Although the simplest approach
would be to use the action A’, the presented problem state S’, and average reward 7

accrued in trialling (see Figure 17) this has some disadvantages.

4.7.2.1 Weighted combination alone may limit parameter space exploration

The first disadvantage is that, if new stored actions are generated solely by weighted
combination of past ones, then the parameter set used is by definition restricted to the
outer limits of values used in the past. While this may generate widely exploratory
movements at early stages of learning there is a risk of convergence to non-optimal
regions of parameter space. To address this, we re-create the new action parameters
from the original weightings whilst adding a small degree of Gaussian-based random
variation, (referred to as mutation in evolutionary algorithm parlance). For example, the

new gain g, parameter is re-calculated as:

n-1
In = (1 + kng) zwigi
i=0

where artificial Gaussian noise n, is generated, then clipped to the range [-1< ng < 1]
) and k = 0.05 is a tuning parameter scaling the maximum mutation effect to around

5% by controlling the variance in the Gaussian noise.

We raise the caveat however, that unless the noise level is significantly raised, this
approach is likely to have relatively little effect on creating actions containing
parameter values that move beyond the highest and lowest values used in the stored
set. This issue may ultimately be better addressed by providing a sufficiently wide-

ranging initial seeding set of actions or, alternatively, by employing extrapolation to
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estimate actions to address problem states outside of the region covered by the stored
set. Whilst unlikely to generate a particularly effective action this would nevertheless

serve to extend the covered region.

4.7.2.2 Problem state is sub-optimal for the new action

A second disadvantage of the simplest approach to adding a new SAR is the retention
of the original problem state S’ generated. It is highly likely, particularly in the earlier
stage of learning, that the new action A» could generate more reward if judged against
a different problem state. For example, in the early stages of learning a reaching task, a
new action might be created that causes reaching to a point P2 in space, considerably to
the left of its intended target, P1. Although it may gain some reward (depending on the
reward function) if the problem state had specified the target as being located at P: it
would have generated a much higher reward in trials. Creating a SAR stored entry
using this revised problem state and the resulting higher reward not only forms a
stronger entry but also provides a powerful exploration and action discovery element,
particularly at an early stage of learning, by shifting the problem state for the new

action away from that predicted by simple action combination.

To achieve this, the problem state is therefore reappraised from trial data of the
movement triggered by the (reconstructed) new action, aimed at identifying a problem
state that would generate more reward than the original. In practice, this will involve
primarily environment state variables (e.g. reaching target location) and should
converge towards the original problem state as the policy improves over multiple
iterations. Once again, the particular function to calculate this “better” suited problem
state is experiment-specific and will be provided in the relevant method sections. The

resulting revised problem state S» will be used in the nth stored SAR alongside Ax.

4.7.3 Assigning reward to new actions

The final task in adding a new stored SAR is to select the starting reward to assign,
placing it most appropriately in relation to older entries. Although the new action has
been trialled in isolation it remains untested in its ongoing role as a contributor to new
plans, and may or may not prove effective as such. Ideally a new action should be
overused for the short-term to test its validity and if it does not prove a good
contributor over the longer term it should fall back. To achieve this, it must therefore

enter with a high Q value.
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We can obtain this effect relatively easily by simply treating the new action as being
created by a weighted contribution w = 1.0 and reward R. obtained from its trial

judged against its revised best-fit problem state S». This allows it to begin alongside the
previous actions with a value (average reward) Q = f—’(‘) . This will comprise a relatively

high entry as it was obtained against the best-fit problem state for the action allowing
this action to contribute heavily in the short term to addressing new problem states
that are close to its own. This means it can establish itself as an strong contributor if the
new actions created prove effective. If this is not the case, then its average reward (Q)
will drop relatively more rapidly than older actions as it has undergone few

contributing iterations.

4.7.4 Limiting stored plans to encourage emergence of an effective dominant set

Over the course of numerous iterations a large number of new actions are generated
and stored. Apart from slowing down the selection and combination process, retaining
so many actions causes reward to be thinly dispersed between numerous similar
actions and prevents a clear set of dominant, effective synergy patterns from emerging.
Recall that the desirable outcome is to construct, in effect, a limited “library” of SARs
which comprise that set most effective at addressing any new problem state by means
of weighted combination, where the weighting function drives linearly from the
problem state. We therefore implement a competitive elimination process that retains
only a maximum number N, actions by removing one action on every iteration once
the maximum is reached. Identifying the minimum effective Ny and any resultant
effect on the retained plans’ characteristics as N, is reduced are points of interest that
will be considered during experiments. There are numerous criteria that might be
applied to selecting the action for removal, but we start by implementing a very simple
one, namely removal of the action with the lowest value, Q. This approach can easily
be refined if necessary, for example, ensuring an even coverage is retained in problem

state space by incorporating proximity between SARs into the removal criteria.

4.8 Complete learning algorithm
The complete learning cycle described over the previous sections is summarised

overleaf (Figure 20).
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Figure 20: The final learning flow algorithm
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4.9 Initial feasibility investigation

4.9.1 Creating functional movements using action definition and parameter set

Prior to attempting machine learning an initial feasibility investigation was conducted
to test whether the structure and parameter set of an action was sufficient to obtain
useable movements. It was found that functional reaching movements could be
manually constructed from the parameter set of an action with reasonable ease. Whilst
the final hand trajectory, or the point in space it ultimately reached, was not known in
advance, once a useable action was uncovered it could be reproduced if the robot
model began from a relatively constant starting “rest” state. Furthermore, adjustments
to the global gain setting for the same plan, also tended to produce useable
movements, as (subjectively) more or less exaggerated forms of the same movement. In
general, this process often did not degenerate movement rapidly into instability or
chaotic movement until the upper limits of gain were approached. Lowering the gain
moved relatively quickly to a point where the arm could not be lifted at all due to
insufficient force. Similarly, variations can also be easily generated by altering the
duration of plans by time stretching or compressing the activation signal. As with the

gain variation, this approach also tended to produce functional variations.

4.9.2 Testing action combination algorithm

We tested the action combination algorithm (see above), finding that merging two

11

similar actions usually generated a result in between its “parents’” outcomes, with this
outcome becoming increasingly unlikely with their dissimilarity. For example, as one
would expect, the given the non-linearity of the structure, essentially horizontal
movements combined with vertical ones do not produce an outcome “halfway up and
across”. Nevertheless, as is generally the case with solutions to non-linearity, issues
recede if we consider smaller parts of the problem at a time — in this case, when
limiting combination to small differences in the “parents” used to form new actions.

Meanwhile, combining dissimilar actions appears a useful driver to generating novel

actions during an earlier, more exploratory phase.

4.9.3 Tonic muscle activation

It was noted that during a movement it is not uncommon for some muscle cables to
become slackened if they are not actively participating in the generation of the

movement at the time that the distance from their attachment point to pulley is being
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shortened as a result of the movement. This causes issues with subsequent actions that
require participation of this muscle since driving the motor spindle has no effect until
the slack has been taken up again — a very unnatural effect. To combat this, on each
timestep, muscle cable lengths (calculated by the motor spindle simulation) are
compared to the current physical distance between anchor/pulley points. If muscle
lengths exceed the distance then a tonic +ve voltage is sent to wind the excess cable.
The speed of winding is set by the voltage such as to fully wind the loose cable and

eliminate the slack by the end of the next motor voltage timestep.

4.9.4 Trial repetition to exploit optimality theory

As discussed, action trials are to be repeated N times to investigate whether
smoothness and reliability of movement can be raised by using RL under signal
dependent noise. Note that the choice of N is an issue as it impinges directly upon on
the overall learning time as a large proportion is taken up by trialling due to the
relatively slow model speed. However, to obtain a statistically representative spread of

noise-distorted motor signals performing more repetitions is indicated.

To locate a low but usable value for N we took three sample reaching actions, each
trialled 60 times under noise, and measured the endpoint standard deviation (ESD).
Table 1 shows the standard deviation of ESD within groups of 5, 10 and 20 consecutive
trials. We use three samples as any one action alone may be more or less susceptible to

endpoint variance caused by the signal dependent noise.

The results suggests that whilst using just 5 repetitions of trials proves less consistent
than 20, it remains of the same order. As this also offers a fourfold increase in learning

rate we therefore commence experiments using N=5.

N=5 N=10 N=20
Action 1 3.53cm 2.79cm 1.83cm
Action 2 3.37cm 2.57cm 1.96cm
Action 3 4.15cm 3.83cm 3.02cm

Table 1. Stabilising statistical endpoint variation
Three sample reaching actions, each trialled 60 times under noise. After measuring the endpoint standard deviation (ESD) for each
we display the standard deviation of ESD within groups of 5, 10 and 20 consecutive trials.
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Overall, we considered these findings to be sufficiently promising to proceed to a full

experiment design to test the approach developed in this chapter.
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Chapter 5 :
Controlled Reaching Exploiting Motor Synergies
Emergent Under Reinforcement Learning

Part II: Experiments and Results

5.1 Overview

In the previous chapter we derived an algorithm approach intended to generate,
reward and combine muscle co-activation-based motor plans to progressively improve
performance of a motor task over numerous iterations. In this chapter we test the
approach, commencing with a simple reaching experiment that repeatedly offers target
objects at random locations to the complete modelled ECCERobot and issues graded

rewards for success in reaching to them.

Following positive results we present an analysis of the findings including the
performance and characteristics of the learning algorithm and the effects of compliance

on control of complex musculoskeletal structures.

By performing repeated trials under imposed signal dependent noise we also test
theoretical relationships between reliability under noise, optimal control theory,

reinforcement learning and minimum-jerk.

Most pertinently, we next draw upon factor analysis methods to examine the
emergence or otherwise of recurring muscle activation patterns - which we label
candidate synergies - within the set of muscle co-activation-based actions built up
through learning. To investigate whether these can act as “true” synergies, we
compare the performance of a revised, low-dimensional controller using these

synergies explicitly as fixed units, rather than individual muscles.

Finally, we discuss a number of extensions and other future work. The most relevant of
these is the potential for the transfer of this approach to control of real (i.e. not models)

musculoskeletal robots such as the ECCERobot itself. We therefore propose extensions
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to the learning algorithm that may sufficiently reduce the number of learning trials

required to within the wear and tear limitations of the physical ECCERobot.

Other proposals address more realistic and complex problem scenarios such as starting
from any dynamic state and incorporating the controller and model as a planner and
state prediction modules within a general control architecture (covered in detail in
Chapter 6). We also consider the potential benefit of, and scope for, creating hybrid

approaches by selectively merging this approach with other established techniques.

To conclude, we present a list of potential implications arising from this work for

theories of neurological motor control.

5.2 Learning to perform a reaching task

5.2.1 Introduction

We describe an experiment that applies the approach developed in the previous
chapter to the problem of controlling the physics-modelled ECCERobot to reach to a

target object placed at successive random locations.

5.2.2 Problem State

This experiment considered a simple control scenario with the model robot’s pelvis
anchored to a static immoveable base. Each trial commenced with a model reset to a
“ready position” such that the robot is held upright under pre-tensioned torso and
back muscles, with arms at its sides. By employing this same starting position on each
trial, the problem state simplifies to comprise solely the randomly generated position
(x,y,z) of the target object. To avoid potential subtle control dependencies caused by
precisely identical starting states we vary randomly, by up to 0.5 seconds, the timestep
when an action begins to activate. This delay causes a small but useful variation in
dynamic state since, upon loading, the model the robot remains upright but continues

to sway slightly, with its arms noticeably swinging.

5.2.3 Target Object and Placement

The target object selected for reaching was a physics-based model of an empty plastic
bottle of mass 200g. This was chosen primarily to complement the trial of the Kinect-
based vision system developed (Devereux et al. 2011) for the ECCERobot (see Chapter
6 for further details). For each reaching trial the bottle model is placed into the physics
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Figure 21: Side and top view of reaching experiment

For each trial, the centre of mass of the bottle model is placed at the target location (white cross) which is generated at random
per-trial within the zone denoted by the red lines. The green sphere centred on the white cross indicates the extended zone for
obtaining some reward by proximity of the hand to the target.

scene in front of the robot model at a random location, but within a limiting spherical

zone. The experimental setup is illustrated in Figure 21.

The bottle is balanced on a minimal static base, the intention being to support the bottle
without interfering, through collision, with movements generated by the controller.
Note that, if the bottle is dislodged by the robot, the base is immediately removed from
the scene. This simply prevents the robot arm or hand from becoming lodged on the

static base and potentially obtaining an undue amount of reward as a result.

5.2.4 Definition of a reaching movement

One of the overarching aims of the ECCERobot project was to demonstrate control of a
simple reach and grasp of an object. For this experiment we therefore define an ideal
reaching movement as reliably (i.e. with repeatability under noise) moving either hand
from its (approximately constant) starting location to a target object located at a point
(x,y,z) in space and slowing or stopping it there so as to potentially enable a successful

grasp. As the physics model employed lacks a jointed or muscled hand (for
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performance reasons - see modelling Chapter 3) we do not extend to attempting an

actual grasp at this stage.

Our approach assumes that richer behaviour can be obtained by sequencing muscle co-
activations in time, forming a compound action that produces a multi-stage
movement. Figure 22 illustrates how this chaining of co-activations is implemented,

considering the issue of the switchover point in particular.

To recap, we are seeking to test the idea that applying appropriate sustained muscle
co-activation patterns can successfully comprise much of a control solution when
combined with amenable natural dynamics. We therefore begin this reaching-based
experiment with a simple assumption that a compound movement for reach/grasp can
be achieved by only two muscle co-activation stages: the first co-activation to generate
a movement of the hand towards the target and a second to slow or hold the hand on
arrival. Note however that we will place no explicit stipulation on the roles of either
stage, beyond designing the RL reward scheme to reward both reaching to physically
touch (or strike) the target and also maintaining the hand as close as possible for as
long as possible. It may therefore quite legitimately emerge that, in some subset of
problem states, the second stage takes a different role, perhaps acting as a direction
correction mechanism in the case of movements to target locations where a single co-

activation is insufficient to generate an accurate trajectory.

>time Motor voltage

Stage I: Reach Towards Stage II: Brake/slow

Co-activation Co-activation

(a) (b)

Figure 22: Anatomy of a compound action

(a) An example of a compound action, comprising two co-activations, for triggering a potential reaching behaviour.
Each stage is the result of a separate co-activation which may be of different duration from each other.

(b) When the action is invoked the two activations (blue and green) defined for a given motor are executed consecutively, but pass
through the smoothing low pass filter before becoming a motor voltage signal (dashed trace) ,this acts to reduce transients
from the switchover.
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For the policy to estimate a new action from a weighted combination of effective past
actions we combine individually the actions of each two co-activation stages by

following the algorithm described previously (see section 4.5 and 4.5.3).

Note also that, in this first experiment, selection of which hand to use is not part of the
learning. Instead, the nearest hand to the target position is explicitly selected on each
presentation and motor signals intended for the left hand are simply issued as mirror
images of those for the right. However, it is important to note that muscles from both
sides of the body can form part of any given co-activation pattern. For example,
leaning to the side could involve an agonist-antagonist cooperation between left and

right side muscles.

5.2.5 Reward Function

Qualitatively, reward is issued as a result of (preferably lightly) touching or striking
the target. A light touch is favoured over striking at speed since this would prove most
conducive to a subsequent successful grasp of the bottle. However, early tests confirm
that learning commences and progresses considerably better if the reward “landscape”
is smoothed by providing a secondary reward for reaching to, at least, the vicinity of
the target. We do not reward for any shape or trajectory of movement other than the
indirect effect of rewarding reliability under signal noise through the use of trial
repetitions. This freedom is intended to fully exploit both conducive natural dynamics
and the extensive redundancy in the robot structure (there are an infinite number of

actions that can reach a given target).

5.2.5.1 Strike/touch reward

In these experiments with a non-jointed hand, no attempt is yet made to pre-shape the
approach or physically grasp the bottle, and reward is issued for striking, or
preferably, simply touching the bottle. A strike reward R; is therefore issued when the
strike is detected but the amount is set inversely proportional to the absolute hand
speed v at that time step. Hand speeds above vg.s; ( set to 0.5ms? ) are treated

uniformly as “fast”. Thus:

vfast) [77 = Ufast]

Rs =k [v > vfast]
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where k is a scaling parameter to set the strike reward relative to the secondary zonal

reward (see below). The ratio - Z

provides a unit-free indication of the hand speed.
fast

We set a minimum reward of k for any strike and a maximum of 2k for a perfect touch

(v =0).

5.2.5.2 Zonal reward

As discussed above, a secondary reward mechanism was found to be of considerable
help to kick-start early learning actions towards the vicinity of the target. A scaled
zonal reward R, is therefore also issued for every timestep that the centroid of the
reaching hand is located within the spherical reward zone surrounding the target (see
dotted green zone, Figure 21). This also doubles as a mechanism to reward the hand
remaining held as close as possible to the target, thus maximising the chance of a

successful grasp.

A simple linear measurement was found to be effective in scaling the amount of
reward issued per step, namely the proximity of the hand centroid to the target centre.
However, it was more effective to limit this reward to a limited zone, rather than
simply issuing suitably scaled reward at any hand location. This causes the learning to
explore until this zone is located, rather than commencing hill-climbing until
potentially lodged in local optima in regions far from the target. The full zonal reward
R, is therefore the sum of the incremental AR, reward issued per timestep that the

hand is within the zone, given by:
d
ARZ=1—7t [dy < 7]

AR, = 0 [d, > 7]

T
R, = Z AR,
t=1

where d, is the distance from the hand centroid to the target centroid on timestep t, r is
the radius of the spherical reward zone around the target (set to 20cm) and T is the

number of timesteps that the hand remains within the reward zone.

5.2.5.3 Scaling of strike and zonal reward
For scaling purposes relative to strike/touch reward, zonal reward R, is limited to a

maximum value equivalent to holding the hand at the target (d, = 0) for one second.
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The value of x in the calculation of the strike reward R; is set to provide the same

maximum reward.

5.2.5.4 Total reward

The combined reward R issued for the trial is therefore given by:
R=R,+ R,

5.2.6 Dimensionality of muscle space

Thirty-six modelled muscle motors (18 left + 18 right) were made available to form
potential muscle co-activation patterns. The location and attachment points of each
muscle are detailed in Chapter 3 (Figure 7). In the arm, controlling the elbow joint are
the Biceps, Triceps and Brachialis. In the upper arm, torso and scapulae, controlling
the shoulder joint there are the Posterior/Lateral/Anterior Deltoids which wrap the
upper arm. The Infraspinatus, the Supraspinatus and the Teres Minor all wrap the
shoulder ball joint. The Trapezius, Pectoralis and Latissimus Dorsi also affect the
shoulder and upper arm. In the torso and back controlling the spine and posture; the
Linea Semilunaris, Quadratus Lumborum (i) and (ii), Serratus Posterior, Ilio-Costa

Lumborum and the Lower Trapezius.

All of these muscles are mirrored left and right. Note that the many active muscles of
the head and neck (trapezius apart) present in the physical ECCERobot are excluded
from the controller as their main purpose is to stabilise the head and control gaze
direction, and they are not otherwise employed in task driven movements. They are
included in the physics model as they nevertheless exert some influence on the
dynamics of the structure and hence a movement generated by a motor action. They
are placed under a fixed preset tension to hold the head stable on the neck vertebrae
but are removed from the learning in order to significantly reduce dimensionality at

little cost to control.

5.2.7 Initial set of stored actions

An important consideration is the default set of motor plans that are supplied at the
beginning of learning. As discussed, in high dimensional spaces any learning approach
functions significantly better as an optimiser or improver than an explorer (Schaal
1999). This principle is widely applied already, through the use of “imitation”, in the
field of humanoid robot control. Termed “co-active learning”, reaching would be kick-

started by the researcher holding the robot’s hand and moving it to the target. This
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results in effectively focusing the learning to a region of the otherwise very large search

space, where it is likely the best solutions lie (Schaal et al. 2003).

In our case, we have a model rather than a physical robot to co-act with, but we may
still draw upon the principle of this proven approach to obtain an initial set of stored
SARs before the main RL learning cycle is commenced. Note that, in all cases described
here, each selected member of this set is tested and stored as an SAR by the same
algorithm as the new actions that will be subsequently produced by the RL cycle (see
section 4.7.2 and Figure 20).

A first set of ten functional actions were selected from those developed by hand during
the initial feasibility testing (see section 4.9). The selection focused on spanning a range
of endpoints and trajectories and ensuring that all available muscles were represented
across the selection. This focus on range reflects the recognition that the algorithm
places an emphasis on generating plans by averaged combination over the gradual

creep introduced by random noise/mutation.

“Hand-rolling” one of these initial rough muscle activations followed a simple
standard process whereby a reaching endpoint is first selected, prioritising a relatively
unexplored region of target space. Next, activation of each main muscle is trialled in
isolation or at most pairs to locate a simple muscle activation that brings the hand
closest to the target, leveraging available amenable natural dynamics. Minor activation
of other muscles is other muscles is now added to adjust the trajectory closer to the
target. Simplicity is prioritised over precision as these nominal endpoints will play

little direct role in the final controller.

A supplementary set of 20 further actions was also generated using functional
variations of the first 10 actions created by gain alterations and time stretching. A
particular emphasis was placed on generating actions that moved the hand nearer the
outer reaches of the target placement zone because the policy will perform better filling
the gaps in the problem state space, a far easier goal for combination techniques, rather
than moving away into the outer reaches, a process driven by slower noise-driven

parameter creep.

5.2.8 Policy Function

To recap (see section 4.5.3) the policy constructs the nth new action 4,, from the linear

weighted sum of the existing actions, i.e.
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n-1
An = z wiAi
i=1

where the weighting w; placed on the ith stored action 4; is given by:

w; = Y(PiQ:)
where 1) is a simple linear normalizing function that rescales all the p;Q; values
proportionally between 0 and 1, whilst always summing to 1, and p; is the scalar
measure of proximity between the new randomly selected problem state S’ and the

state S; attached to the stored action A4;.

In this experiment, the problem state comprises only the target location and excludes
more complex states, such as that of the robot itself. We therefore simply set p; to be
directly proportional to the absolute distance d; in 3D space from the new target

location [xy, ¥, Z,] to the target location [x;, y;, z;] attached to the ith stored action:

(- 75)
pbi = -
' dmax

where d;qy is the maximum distance that one target location can be from another, i.e.

equivalent to the diameter of the target placement sphere (see section 5.2.3 and Figure
21, red zone). This formula provides the desired linear dependency from problem state
to weighting that the RL will seek to conform to by its competitive selection of those

SARs that remain in store.

5.2.9 C(Creating new SAR to store

In section 4.5.3 we derived how a new SAR is created from an estimated action
generated by the policy. However, the function defining a “best” problem state Ssest to
attach was not specified since Ssest depends on the learning scenario in question. We
therefore now define Sgest (comprising solely a target location in this experiment) as
the point Swin within the target zone (red zone, Figure 21) along the reaching hand’s
trajectory where the hand speed reaches a minimum, obtained by interrogating the
hand speed while the action A is trialled. In fact, since the action is trialled multiple
times (see 4.6.2 below), we take the average of Swin to store along with the new action

and its initial value calculated from the average reward accrued.
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5.3 Implementation and experiment parameters

5.3.1 Implementation platform

The learning architecture employed was implemented in C++ as a separate module
within the ECCEOS simulation framework developed by the ECCE team (for details

see Wittmeier et al. 2011).

5.3.2 Stored SAR limit

For this experiment an initial maximum setting of N=100 SARs were retained, excess
SARs are removed by lowest Q value (see section 4.7.4). Note that a further
investigation where the setting was dropped as low as N=30 is discussed later (see

section 0).

5.3.3 Clocking rates for the simulator and physics model

The timestep for the physics model is set at 3ms (simulated), which had been identified
as providing best performance versus stability trade-off (see modelling Chapter 3). As
discussed in the previous chapter, the model can run at close to real time, but no faster

without GPU acceleration.

The control signals and learning algorithm do not require such fine granularity and are
set to update on a timestep of approximately 100ms. Every 33 physics steps the control
signals sent to motors are updated according to their underlying action parameters
(driving signal + co-activation pattern). The reward function is also triggered at the
same time, allowing it to interrogate the state of the model and issue any intermediate
reward by comparing it with the problem state. In practice, for this simple experiment

at least, this entails comparing the reaching hand position with the target location.

5.3.4 Learning trial duration and repetitions

To maximise the learning speed, each target presentation trial was set at a maximum of
3 (simulated) seconds, this being sufficient for even a slow hand speed to reach all
allowable target positions. However, if the target was struck the trial was curtailed
after 1 further second to minimise the average trial duration over time, an important
factor in overall learning duration where numerous trials must be performed with this

slow model.

Each target presentation trial is repeated 5 times, looking to exploit the effects of

raising reliability under signal dependent noise (see section 4.9.4). As discussed earlier
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(see section 4.6.2), the noise level parameter k, was set to k=0.2, corresponding to the

lower values observed in nature (Hamilton et al. 2004).

Four long extended learning trials were undertaken where the main learning cycle
(Figure 20) was set to iterate continuously while the reward issued was monitored. On
each it was found that learning (as judged by the reward distribution pattern)
plateaued in the region of 800 target presentations (see Results), trials were therefore

curtailed at 1000 target presentations.

5.4 Results

5.4.1 Reaching to the target

Results obtained when reaching to a random target location from the same starting
state are generally encouraging. To summarise, after sufficient trials the robot was able
to, at least, strike the bottle in a majority of target locations, although higher locations
were less successfully reached. Figure 23 illustrates a range of examples of successful
reaching, however the outcome can be better appreciated by viewing the video of the

robot’s reaching in action, this can be found at http://tinyurl.com/ECCE-RL1 .

Figure 23. Examples of successful reaching to the target
Screenshots showing the robot model striking the target object under muscle co-activation based motor control acquired via
reinforcement learning
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Figure 24. Distribution of trial outcomes at six stages of learning

The distribution results are shown as a percentages of the trials undertaken during each phase.

Each data point shows the mean value across the 4 extended learning trials. The error bars show the standard deviation.
A trial constitutes testing an action intended to reach to a target presented at a randomly generated location.

The outcome categories are defined as:-

No Reward - no reward was awarded during trial

Low Zonal Reward - awarded low reward (< mean zonal reward across all trials). No strikes/touches.
High Zonal Reward - awarded high reward (> mean zonal reward across all trials). No strikes/touches.
Strike - the target was struck by the hand ( hand speed > 0.1ms-") during the trial

Touch - the target was “touched” by the hand ( hand speed < 0.1ms-") during the trial,

i.e. hand was slowed for potential grasp

Figure 24 shows how, over the lifetime of the four extended learning trials, the
outcome of reaching actions changed across 5 categories (no reward, low and high
rewards via the proximity zone, striking the target and touching the target). For all the
extended trials, the distribution pattern of outcomes settled after around 800 target
presentations. After 1000 presentations, mean [strike, touch] rate - i.e. the hand reaching
to either strike or touch the bottle - was [43.2%,18.1%] with standard deviations
[5.3%,4.1%] and only failing to obtain any reward at all on 1.7% of attempts on average.
However, the ability to just touch the target, i.e. slow the hand speed at point of
striking to less than 0.1ms? (the point considered sufficiently slow for a reliable

grasp to occur) is rather less well developed at a mean of only 18.1% of trials (4.1% s.d).
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Figure 25. Average reward by type issued per trial over 1000 trials

For each type of reward, the 20 trial moving average is graphed, showing the shift in reward awarded over the course of the
learning.

GREEN SOLID: Zonal proximity reward awarded to actions estimated from the presented target location by the policy.

RED SOLID:  Strike/Touch reward awarded to actions estimated from the presented target location by the policy.

GREEN & RED DOTTED: Zonal (green) and strike reward (red) awarded to new actions during their re-assessment trials against a
better suited problem state (i.e. target location).

Study of the successful touches suggests that they appear restricted to a subset of
amenable locations. Analysis of the relevant actions suggests that these match the cases
where the hand is able to approach the target with the first co-activation alone, leaving

the second to take a greater slowing role over a corrective guiding role.

Figure 24 also shows how the primary reward driver shifts consistently from low
scoring zonal only, through high scoring zonal before becoming dominated by target
strikes or touches. To show this transition in more detail and to also illustrate the effect
of reclassifying new actions with a revised best problem state, we include a detailed
plot of reward (amount and type) issued per trial over one of the extended learning
trials completed (Figure 25). Mean zonal and strike reward issued to estimated actions
are initially zero or close to zero (red and green plots), implying that primarily

exploration is occurring. We can see that reward-led learning begins through the initial
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strike and zonal rewards awarded to new actions during their re-assessment trials
against a better suited problem state (dotted plots). As expected, this reward settles as
the policy improves the matching of action to problem state. This is also confirmed by
the eventual convergence of each form of reward. The graph also confirms that it is
zonal reward (green line) that begins the reinforcement of actions estimated by the

policy and provides a reward gradient to the commencement of strike/touch rewards.

5.4.2 Primary issues encountered

Before embarking on further detailed results analysis we will now acknowledge the
problems and issues encountered during the initial reaching experiments; most of

these appeared to be model-related.

5.4.2.1 Model issues

The slow simulation speed (only real time) meant that each of the four extended
learning trials of 1000 target presentations lasted approximately 17 hours. Running the
model faster than real time would require the GPU acceleration of the physics engine,
the machine used for these experiments is already a very powerful high end PC. Since
this acceleration remains unavailable at time of writing, and the real robot would
always run at real time in any case, we consider means to speed the learning rate by
taking more information, more intelligently from trials undertaken (see Future Work

section 5.7.4 at the end of this chapter).

Secondly, for some attempted movements the arm and the body can collide and
become entangled (Figure 26a). This appears to be a consequence of the default pose in

which the robot model was designed.

Finally, for certain target positions, particularly those high and wide, after a reaching
attempt the robot is sometimes left in an “unrecoverable” state with the arm twisted
upside down and stuck (see Figure 26b for example), i.e. a state from which the
muscles are unable to extricate it. This is not an issue for this experiment, but would
likely cause issues for a more extensive experiment in which, after reaching, the robot
had to go on to attempt another task, such as grasping and moving an object, or simply

executing another reaching action.
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Figure 26. Specific model and control issues encountered in learning

(a) Arm becomes lodged under ribcage, the muscles are unable to extricate the arm, we refer to such a state as “unrecoverable”.
(b) Left arm rotates to become twisted upside down

(c) Fails to reach a high target

5.4.2.2 Non-model issues

Even after learning has essentially plateaued, the highest targets were often still
missed, although the zonal reward region is entered (see Figure 26¢ for example). As
these movements are beyond the set of initial actions, they are not readily reached by
weighted combinations, however the mutation creep added to new actions would be

expected to eventually bring these zones fully into range.

5.4.3 Looking for emerging signatures of optimality

We consider three quantities to judge whether the learning exhibits the optimality

behaviour predicted from the use of repeated trials under RL. Firstly, increasing
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smoothness of movement by considering the amount of jerk present. Secondly,
increasing reliability under signal related noise by considering endpoint variance.
Finally we consider whether the velocity profile of the hand moves over the lifetime of
the learning towards the stereotype bell curve observed in nature for reaching to a
location followed a voluntary halt, for example to perform a grasp. As discussed, this
shape is predicted by an application of optimal control using minimisation of endpoint
variance as the cost function (Harris & Wolpert 1998; Miyamoto et al. 2004), and also

predicted when using minimum jerk as the cost function (Suzuki et al. 1996).

Figure 27a and 23b show a typical example of velocity profiles obtained for the hand
speed and jerk (first derivative of acceleration). The figures correspond to the same
region at early and late stages of learning (150 trials and 800 trials). To obtain an
indication of reliability changes we also plot the variance of the endpoint location
obtained during trial repetitions for the same target region over the course of the
learning (Figure 27c). We observe, as predicted, a reduction in jerk and a consistent
increase in reliability (reducing variance) suggesting there is an underlying optimising
process at work with, potentially, a cost function of maximum reliability that was
predicted by the use of reward based RL with repeated trialling. However, from the
velocity profile, there appears to be little shift toward a bell-curve shape over the

course of the learning.

We therefore consider the profiles for one of the target regions where the controller has
learnt to slow the hand in the vicinity of the target. The regions were identified by their
higher proximity reward and target-touch reward. Here we see (Figure 27(d-f) that
alongside the changes in jerk and reliability we also see the emergence of, subjectively,
a more bell-shape velocity profile as the hand is accelerated toward the target then

slowed during the second muscle co-activation.

To eliminate subjectivity we compare all trials for targets presented within these
“touch” regions to the same number of targets selected randomly outside these
regions. Alongside reliability (variance) we also plot conformance to a stereotype bell-
curve. To achieve this we apply the chi-squared test (Snedecor & Cochran 1989) which
provides a comparison measure between an observed and proposed distribution

function. In this case we employ the standard PDF curve (probability density function)
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Figure 27. Signatures of optimality - reaching profiles and reliability change

The two columns relate to target regions where (left) a strike action was learned and (right) a touching action was learned.

Figs. (a)(b)(d)(e) show absolute velocity (red trace) and jerk (blue) over a 2 second window starting when motor voltages are
applied. The traces are shown as a fraction of the maximum values reached over the learning cycle for that quantity.

For figures (c) and (f) each point (green cross) shows the standard deviation of the hand endpoint in cm for 5 repeated trials of
same target under signal dependent Gaussian noise. The points are plotted every 10 target presentations over the first 800
learning trials. After this point, learning has been shown to have settled (see Figure 25).

The trendline shows the best fit 3" order polynomial.
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as a simple mathematical approximation to the bell-curve distribution observed in

human motor experiments.

Figure 28a shows “bell-curve” probability density functions (PDF) approximating the
velocity profiles measured from humans, such as the saccade profiles measured by
Collewijn et al (1988). Figure 28b shows how the approximating function is fitted to
two example velocity profiles (normalised) before applying the chi-squared
comparison test. The test is scaled so that profiles such as the blue trace score around

0.6 whilst profiles such as the red score around 0.01.

The results of the chi-squared comparison are generally consistent with the two
individual trials examined previously in Figure 27. The regions in space where the
robot learns to achieve a touching action show an overall trend towards a bell-curve
shape (Figure 28c blue), and a increase in reliability (Figure 28e) — reducing endpoint
standard deviation from around 8cm down to little more than 2cm. Regions outside
these show little move towards a bell-curve (Figure 28c red) and a much smaller gain
in reliability (Figure 28f) — reducing endpoint standard deviation from around 8cm

down around 5cm.

To test if the results are due to the effect of signal-dependant noise we repeat a full
learning trial using a fixed level of Gaussian noise set at half the maximum noise level
output by the signal-dependent trials. The results are shown in Figure 28d and exhibit

a minimal reduction in endpoint variation.

In conclusion, for those target regions where the robot has learned to significantly slow
the hand on arrival we do observe that under reinforcement learning a migration
towards the stereotype bell-curve “signature of optimality” velocity profile. Across all
targets regions we also observe an increasing smoothness of movement (reduction in
jerk) and an increase in reliability. As predicted by the optimality theories put forward
by Harris and Wolpert (1998), these results applied when adding signal-dependent

Gaussian noise, but not for fixed-level Gaussian noise.

5.4.4 Exploiting biomechanical structure
We consider whether and how the actions learned are exploiting biomimetic aspects of
the robot structure, not available for a conventional robot with stiff joint-based

actuation. We consider three aspects in particular; muscle (motor cable) compliance,
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velocity profiles measured from humans (e.g. those plotted by for purpose of applying chi-squared comparison test. The
Collewijn et al, 1988) test is scaled so that profiles such as the blue trace score
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(e) Across the first 800 trials we plot the endpoint std.dev (cm)  (f) As (e) but for targets outside the “touch” regions. Sample
for 5 attempts to reach a target selected within those regions size matched to (e) by selecting the first qualifying trial
where a touch is eventually learned. immediately after an entry in (e) was made.

Figure 28. Optimality under noise; changes in reaching reliability and conformance to bell curve stereotype during learning
Across the first 800 trials we compare all trials targeting “touch” regions to the same number selected randomly outside these
regions.

Fig.(c) shows the changes in conformance to a stereotype bell-curve obtained by applying chi-squared test (Snedecor & Cochran
1989) using a best-fit PDF function as the “expected” values. To obtain a useable balance between good and poor conformance we
scale the chi-squared test so that the more bell-like curves observed emerging at the end the cycle (fig.C, blue trace) score around
0.6 in the test whilst poor conformance such as fig. (c) red trace score around 0.01.

The probability density function (PDF)was chosen as a function approximation (fig. a) to the bell-curve stereotype observed in
motor action experiments such as Collewijn et al, (1988).

Fig. (d) The effect on endpoint variance of using fixed, not signal dependent Gaussian noise.

Figs. (e) and (f) show how reliability increases (endpoint variance decreases) across a learning cycle, comparing regions where a
touch action is eventually learned (e) to other regions (f). Each point plots the standard deviation in cm of 5 repeated attempts to
the same trial target location.
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the use of full-body dynamics and evidence of so-called “morphological computation”

afforded by specific biomechanical structures such as the floating shoulder blade.

54.4.1 Compliance

The main source of compliance in the robot are the sections of elastic shockcord
employed in the muscle cable attachment. However, as spring forces play in part in all
movements it is difficult to quantify the degree to which is being specifically exploited.
We therefore examine its effect on reaching control by testing a null hypothesis,
namely that applying the learning to a model with little or no compliance produces the
same behaviour, including equivalent learning rates, reward levels and reliability

scores.

We employ a modified model where the spring constant of the elastic shockcord is
raised by approx. 100 times from that of the physical material. Note that, beyond this
point, we find that the imbalance of forces triggers the physics simulation to “explode”.
This is a known issue with impulse based simulation when managing the scaling of

very disparate forces.

After an equivalent number of learning trials, We find that reaching for targets has
been learned but with both a markedly reduced success rate (Figure 29c) and reduced
reliability (see endpoint variance graph Figure 29d). We also see that the transition
within a movement between the two muscle co-activation stages exhibits markedly
higher jerk elements (Figure 29a) than the comparable traces obtained for the
compliant model (Figure 27e). This jerk can also be discerned visually as a distinct

juddering (see video available at http://tinyurl.com/ECCE-RL2 ).

However, although minimised jerk (Suzuki et al. 1996) and maximised reliability
(Harris & Wolpert 1998) are indirectly associated as optimising cost functions that
predict biological velocity profiles there is no specific causal link suggested, i.e. higher
jerk reduces reliability. Rather, improved reliability is associated with reduced motor
signal amplitudes which then output correspondingly less noise. This then is a puzzle,
until we consider that compliance in muscles affects the power requirements for a
change in actuation through its ability to store energy (Lichtwark & Barclay 2010).
Measuring the motor signal magnitudes learned for a comparable target location
presented to both compliant and non-compliant robots shows that the compliant robot

was able to use 23.7% less force in the second stage co-activation. This will therefore
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Figure 29. Exploiting the biomimetic aspects of the of structure; compliance, full-body dynamics and biomechanical structure
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produce correspondingly less signal related noise which predicts greater endpoint
reliability. In addition, a larger change in force at the co-activation switchover also
directly relates to higher jerk (derivative of acceleration) through elementary laws of

mechanics (F=ma).

We conclude that, while detailed analysis of forces and energy has not been
undertaken, the initial results suggest that the control emergent under RL was able to
exploit motor cable (“muscle”) compliance as a spring energy store to reduce the force
required when switching between stages of a movement, resulting in more reliable

outcomes through lower noise, and smoother (less jerky) movement.

5.4.4.2 Evidence of exploiting natural dynamics

Alongside compliance, the emergent control can be seen exploiting aspects of full body
dynamics to aid performance, most prominently in the emergence of a reciprocal
backwards movement of the opposite non-reaching arm (see Figure 29b) caused by an
distinct activation of muscles (non-passive). Triggering the same action while the
opposite arm muscles are artificially disabled results in the robot over-balancing
forwards for higher target locations. This strongly suggests that this movement was

acquired to aid stabilisation through counterbalancing.

A third area of interest is to consider where the emergent control has leveraged natural
mechanical dynamic characteristics of the structure to its advantage. Although not
simple to quantify, we see a clear example in the use of the supraspinatus muscle that
runs across the top of the shoulder. This muscle would be expected to lift the arm in a
simple outward direction, yet the emergent control targets this muscle heavily at the
start of a reaching action. Testing of this muscle in isolation shows that the mechanical
elements of the shoulder, including the free shoulder blade that forms half of the
shoulder joint, interact in response to the arm-raising, causing it to swing forward as
well as outwards (see Figure 29d). This could be interpreted as an example of
morphological computation, where a simple control signal can generated a richer and
more useful movement due to the particular dynamic coupling implemented between

the muscular and mechanical systems.
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5.4.5 Emergent muscle activation patterns and synergies

We now begin to analyse the muscle co-activation patterns and driving signals that

emerge over the learning and discuss pertinent aspects.

Figure 30. Distribution of target locations linked to stored motor plans
Each dot indicates the target location attached to a stored motor plan at the end of a learning cycle. The reward (high, medium,
low) attached to the plan is shown by the boldness of the dot. For comparison, the inset illustrates a random distribution.

Figure 31. Eight reaching zones defined for muscle co-activation pattern analysis
The eight zones are labelled as:

LOW-CENTRAL-NEAR, LOW-CENTRAL-FAR, LOW-WIDE-NEAR, LOW-WIDE-FAR,
HIGH-CENTRAL-NEAR, HIGH-CENTRAL-FAR, HIGH-WIDE-NEAR, HIGH-WIDE-FAR
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5.4.5.1 Motor plan distributions by target and reward
Figure 30 illustrates a distribution of target locations linked to stored SARs after a

typical 1000 trial learning period. By considering the average Q values across different

Regions shows that more valued plans favour lower and central target positions —
reflecting most likely the greater ease of reaching these locations. However, the figure
also suggests that that the distribution of targets is more evenly spread than a random
selection of points (for an example, see Figure 30 inset figure, red dots). This is
confirmed by the standard deviation of nearest-neighbour distances which is just 9.3%
of the s.d. of the random distribution. This strongly suggests a “winner-take-all”
competitive process in action where plans with over-closely located targets tend to
block each other’s reward, creating the effect where much of the final set appear to

“have claim” over their own small target “territory”.

5.4.5.2 Emergent co-activation patterns and driving signals

To study the nature of the emergent co-activation patterns and driving signals, we
select for analysis a set of influential (valuable) actions covering a substantial
proportion of the reaching zone. We identify the most rewarded action that has an
attached target location that is closest to the centre of each cell in a grid of eight zones.
These zones are set to reflect all permutations of central/wide, near/far and high/low
(see Figure 31 for a plan). The set of 2 muscle co-activations corresponding to each
compound action are detailed as weighting graphs in Figure 33, whilst their
corresponding driving signal waveforms are shown in Figure 32. We observe that all
driving signals sent to the motors (green traces) have converged to a core template
shape comprising two smooth activation peaks, although each is shifted relatively in
time and amplitude to reflect the distance or effort to reach the target zone. It
should be recalled that the parameterisation of the driving signal (see 4.4.1 and Figure
19) does not dictate this outcome as it could describe a far wider range of activation

shapes, for example, beginning or ending at a non-zero level.

In fact, there is, interestingly, a distinct similarity between this core double peak shape
with the equivalent signals observed in human reaching by Cheung et al (see Figure 5).

However the most interesting observation is that the similarity of these driving signals
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Figure 32. Parameterised driving signals of most valued reaching actions with targets spread across eight sub-zones

Pairs of red boxes indicate consecutive parameterised signals each driving a muscle co-activation pattern (see Figure 33) learned
as a compound reaching action. The red dots indicate the 4 parameter points shaping each driving signal. The blue traces shows
the resultant output muscle signal sent at 100ms intervals. The green traces shows the signal actually sent to the motors after
smoothing has been applied through the use of a low-pass-filter.

across zones strongly suggests that it is rather the learned co-activation weighting

patterns that are the primary casual element in differentiating behaviour.

Moving on therefore to consider these weighting patterns (Figure 33), the first stage co-
activations clearly exhibit the use of a similar set of muscles across all zones, albeit in

varying relative amounts. The two main components appear to correspond to

behavioural features noted earlier (see 5.4.4.2): firstly the use of the supraspinatus and
other shoulder muscles to raise the arm (which we have already noted to cause a
forward swing by dint of the mechanical structure) and secondly, the pulling back of
the opposite arm discussed earlier that appears to provide some balancing

compensation. Second stage co-activations present markedly less commonality in their
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Figure 33. Muscle-coactivation patterns of most valued reaching actions for a target in each of eight sub-zones

The figure shows the most valued compound action for each of 8 zones (see Figure 31) as a pair of muscle co-activation patterns
that are invoked consecutively for the reaching behaviour. Length of each bar reflects strength of a muscle activation within a
particular pattern. The top half (above dashed line) of the pattern relates to the muscles of the reaching side, designated right (R-)
for convenience. The bottom half relate to non-reaching side (L-). MUSCLES: 1. Triceps, 2. Brachialis, 3. Biceps, 4. Lateral Deltoid,
5.Anterior Deltoid, 6.Posterior Deltoid, 7.Supraspinatus, 8.Infraspinatus, 9.Teres Minor, 10.Trapezius, 11.Pectoralis, 12.Latissimus
Dorsi, 13.Lower Trapezius, 14.Linea Semilunaris, 15.Serratus Posterior, 16.Quadratus (i), 17.Quadratus (ii), 18.llio-Costa Lumborum
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approach to bringing the hand to the target zone. However, there are some interesting
glimpses of common underlying elements; the antagonistic co-activation of
bicep/tricep/brachialis to pull the elbow in for centraltnear targets; the near
symmetrical use of back muscles to reach central, far targets; the high co-activation of
Teres Minor and Trapezius to reach high, wide targets. In order to identify key
common patterns (potential synergies) more clearly we trial two contrasting
approaches; firstly, reducing the number of retained actions to a minimum, and

secondly, a more formal factor analysis looking to identify candidate synergy patterns.

5.4.5.3 Minimising number of retained actions

We begin an extended learning period from scratch, comprising again 1000 target
presentations. making the significant new alteration that the maximum allowable
number of retained actions (SARs) is reduced continually over the course of the cycle
starting from the maximum, SARmax set to 100. In the results presented below SARmax

was reduced by one for every 10 target presentations.

Avg. reward / trial
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0/100 200 /80 400 /60 600 /40 800/20 1000 /0

Target Presentations/SARyax

Figure 34. Effect on learned reaching performance of continually reducing set of stored actions

Shows the performance of a learning trial where the maximum number of actions (SARwax) retained by the policy is reduced by
one every 10 trials starting from SARmax =100. Performance is quantified as before by the rolling average (20 trial window) of
reward awarded per trial. Note that reward score graphed comprises the total of zonal + strike/touch reward.

GREEN TRACE: Reproduces for comparison reward data obtained previously with SARuayx fixed at 100.

SOLID RED: SARvax reduced throughout by one every 10 trials starting from SARyax =100.

DASHED RED: As solid red trace but reduction is halted at SARyax =40
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Figure 35. Distribution of target locations with a minimised set of stored actions (40 entries)

Each dot indicates the target location attached to a stored action at the end of an extended learning period where the number of
stored actions was reduced every 10 trials from 100 to a minimum of 40 (at 600 trials) before continuing to 1000 trials.
The reward (high, medium, low) attached to the plan is shown by the boldness of the dot.

This more aggressive pruning is intended to encourage the elimination of redundancy,
and favour instead the maximum reuse of stored co-activation patterns in the weighted
combinations generated when a new target is presented. In this way we look to
encourage the emergence of distinct and diverse muscle synergies that nevertheless
combine effectively in simple linear weightings to produce successful reaching
behaviour. We find that (Figure 34), until SARmax is reduced to around 40 actions,
reaching performance (measured by the average reward awarded to new actions)
remains within 10% of that attained through previous learning trials where SARmax
was left at a constant 100. However, below approximately SARmax = 30 entries,
performance tails off rapidly. Study of a snapshot of muscle co-activation patterns
within the actions (when SARmax = 40) reveals no evidence of the sought-after
separation into a set of diverse, distinct synergies. The corresponding “cloud” of target
locations (Figure 35) associated with the actions remains even but simply further
widespread than previously (Figure 30), albeit focused more to the centre than the
extremities. Reward is more evenly spread, largely at a consistent high level. Testing,
in isolation, the individual reaching performance of a random selection of 5 stored
actions finds that they reach their associated target location more successfully than

would be expected of activation patterns representing core common component
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synergies, which we suggest should, by definition, function effectively primarily in
weighted combination and not in isolation. Figure 35 also suggests a reason for the
failure of stored actions to diversify as hoped. With our learning algorithm, plans are
heavily associated with a single target location and close matches with a new problem
target will be heavily rewarded if successful. There is thus little chance of actions
emerging that, when acting as the dominant weighted element, do not perform well in
reaching their “contract” target. We nevertheless note in passing the useful result that
the performance can be retained (within 10%) with significantly less stored actions,

namely 40 entries instead of 100.

As useful synergies have not emerged from this learning-based approach, we therefore
move on instead to a second, more direct but less elegant, approach that seeks to
identify candidate synergies using analysis techniques, aping the successful process
employed for task in biological motor experiments (e.g. Cheung et al. 2009, see

Background, section 2.5.5).

5.4.5.4 Analysis of muscle signals for candidate synergy extraction

We analyse the muscle co-activation patterns learned (Figure 33), searching for
common pattern fragments that may, in weighted combination, underpin them. Note
that, although these distinct recurring fragments are commonly referred to as “muscle
synergies” by many of the biological studies that have located such common elements
through analysis, these are, however, often primarily empirical studies (e.g. Cheung et
al. 2009; D’Avella et al. 2003; Hart & Giszter 2004; Ivanenko et al. 2005; Ting &
Macpherson 2005; D’Avella & Tresch 2002). Thus they do not necessarily show
unequivocally (e.g. anatomically) that these patterns are being explicitly employed
blockwise as “true” synergies by motor centres - only that complex data can be well
explained by this simple assumption. We will therefore refer to our own analysis
tindings as candidate synergies. Further investigation will be required to show if they

can function as true synergies.

For a suitable technique to locate potential candidate synergies we refer to the
comparative study “Evaluation of matrix factorization algorithms for the identification of
muscle synergies” (Tresch et al. 2006) where six analysis techniques (including PCA and
ICA) were tested on their ability to accurately extract known synergies from test data

comprising weighted combinations. From the recommendations of this study we select
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factor analysis (FA) for our trial as the study found it to yield high accuracy whilst
being readily available(via the factoran Matlab function). This was applied to 200 18-
muscle co-activation patterns (100 SARs x 2 co-activations each) that were learned and

stored by the policy after 1000 target presentations.

As the number of underlying candidate synergies is unknown we invoke the factoran
function repeatedly, whilst varying the common_factors parameter, specifying the
number of potential synergies that it should model for. We then plot the specific
variance returned (averaged across the data set), this indicates how much of the data is
accounted for by a weighted combination of the common factors proposed by the
function and how much is considered by the function to be unstructured noise. A
variance of 0 indicates that the full data is accounted for, whilst a value of 1 indicates

that none is. The results are shown in Figure 36.

The analysis shows that, beyond a minimum of 5 candidate synergies, the function is
able to account for a rapidly increasing proportion of the co-activation data as the
number of common factors is specified. However, beyond 13 candidate synergies the
improvement in data accounted for becomes incremental. We therefore conclude that
combinations of 13 underlying candidate synergies can effectively account for a high
proportion of the observed muscle co-activation data. The 13 patterns returned by the
analysis are shown in Figure 37. In addition, Figure 38 reproduces a selection of the
zonal co-activations detailed earlier (Figure 33) and illustrates how they can in fact be
closely reconstructed from the 13 candidate synergies using the weightings

(“loadings”) returned by the FA analysis.

5.4.5.5 Candidate synergies or true synergies?

Whilst we have shown that the 36-dimension muscle co-activations retained with the
emergent set of stored actions can be well accounted for by a weighted combination of
only 13 candidate synergy patterns, we do not yet claim to have located “true” muscle

synergies. A much stronger claim could be made if two tests can be applied.

Firstly, how much co-activation data from alternative learning runs can be accounted
for using these synergies? This would indicate how strongly the synergies are intrinsic
to the musculoskeletal structure rather than artefacts of a specific and unique ordering

of target presentations.
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Figure 36. Co-activation data accounted for by weighted combinations of candidate synergies uncovered using factor analysis
Maximum likelihood factor analysis (FA) was performed on 200 data points comprising (noise-free) co-activation weightings
learned for 36 muscles. The averaged variance returned from the factoran factor analysis function (y-axis) indicates how much of
the co-activation data can be accounted for by a weighted combination of N (x-axis) candidate synergy patterns proposed by the
function and how much is considered by the function to be unstructured noise. A variance of 0 indicates that the full data is
accounted for, whilst a value of 1 indicates that none is. The 3 additional points XXX plotted indicate the variance scores of the
same 13 candidate synergies matched against the co-activation data from three alternative learning trials.

NOTES:

Following recommendations from Tresch et al (2006), analysis was carried out using the factoran function in Matlab, specifying
varimax rotation and wls (weighted least squares) method to estimate the common factor loadings (weightings). The number of
factors that can be assessed with FA is limited by the dimensionality of the data in this case 36 dimensions sets a limit of 28
common factors.

The function is instructed to return a set of N estimated common factors (candidate synergies), and for each data point, a vector of
N loadings (weightings) that best reconstruct the data point from the common factors and a specific variance measure (indicating
the fit of the proposed model to the data point).

Note also that to maximise analysis performance the co-activation data was provided to the function noise-free, although, as
discussed, artificial signal dependent noise was added in the robot control trials. Tresch et al (2006) also test FA analysis
performance for real data where noise is unavoidable, however, this did not apply in our case.

Secondly, as discussed earlier, if we can show that these candidate synergies can be
effectively employed directly as units in what would be, in effect, a low dimensional
(n=13) controller, then we can claim to have demonstrated a method to construct a
synergy-based reaching controller for a musculoskeletal biomimetic robot. We

therefore consider each of these tests in turn.

5.4.5.6 Commonality of candidate synergies across extended learning trials
To what extent do the same set of candidate synergies emerge from any learning trial?

Close similarities would suggest that the synergies are linked to the particular dynamic
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Figure 37. Thirteen muscle synergies extracted by factor analysis of muscle co-activation patterns
Weighted combinations of only the 13 candidate synergies illustrated can account for a high proportion of muscle co-activation

patterns generated by the controller following a 1000 target presentation learning trial.
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(A) Selection of co-activation patterns reproduced (from Figure 33) alongside their reconstruction from 13 extracted synergies.
(B) Detail of 2 co-activations’ reconstruction from weighted synergies. For clarity, minimally weighted components are neglected.
(C) Breakdown of same 2 co-activations into set of weighted synergies comprising the best-fit reconstruction.
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structure under control, rather than comprising an artefact of the learning approach or

being biased heavily by the random direction taken by early steps into the state space.

Taking the co-activation data emergent from the three further extended learning trials
available, we apply the same weighted least squares (wls) method employed in the
factor analysis. This provides the variance data that indicates the fit of the co-activation

data weighted combinations of the supplied set of 13 candidate synergies. Where the

original data scores an average variance of 0.191, the data from the alternative trials

score 0.245, 0.282 and 0.298 respectively (see additional points plotted on Figure 36).

The closeness of the fit for these synergies implies that these controlling synergies may
indeed be considered expressions of the dynamics of the musculoskeletal structure -
within the constraints of a reaching task - and supports the principle of the findings of
the study of Berniker et al (2009) which directly analysed a controlled structure’s
dynamics to locate effective synergies for use in a low dimensional controller - using a
“balanced truncation” approach to ascertain dimensions with the most influence. Their
results suggest that if our 13 candidate synergies do express structural dynamics of the
robot model then a low (13) dimensional reaching controller appears a distinct
possibility and would confirm the utility of these candidate synergies as, at least, one
possible set of “true” fixed synergies available as units for potentially simplified

acquisition of effective reaching control.

5.5 Areaching controller based on fixed synergy units

5.5.1 Introduction

We test a low-dimensional controller based on the 13 fixed-weight candidate synergy
units identified using factor analysis of co-activation data (see section 5.4.5.4) and
compare its learning rate and reaching performance to our original controller that was
based on locating effective co-activations of individual muscles. Furthermore, in order
to test to what degree the candidate synergies are generic or task specific we apply the

controller to a number of task variations.

5.5.2 Method

This low-dimensional controller could potentially take a range of forms - for example,

the simplification of using whole synergies as units may bring the acquisition of
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control within the range of standard generic reinforcement learning methods such as
TD learning (see methods review in the Background chapter). However, for now at
least, we are specifically interested in direct comparison with our original controller,
we therefore retain the design of controller and learning algorithm (detailed in the
original method), but simply change the units of activation to be fixed muscle
synergies rather than individual muscles. New co-activation patterns thus become
weighted combinations of these 13 synergies rather than combinations of co-activation
patterns of the 36 separate muscles — thus simplifying the search by 23 dimensions. All
other elements of the original methods are retained. The controller is trialled with the
same reaching task as the original. As before, learning is continued for 1000 random

target presentations.

5.5.3 Results

Figure 39 compares the performance and learning rate of the synergy-based controller
with the original controller by plotting the average reward awarded per trial for both

zonal and strike reward types.

Whilst acquisition of both forms of rewards begins earlier for the new synergy-based
controller, the most striking change is the increased speed of learning. Most notably, it
improves its average strike/touch reward more than 300% faster during the first 300
target presentations and the highest levels reached by the original controller are
surpassed by 500 target presentations. The speed of performance improvement in
terms of zonal reward is less dramatic (37% faster), however it settles earlier and at a

significantly higher level than the original controller.

Overall, it is clear that the synergy controller acquires better performance faster over
the same learning period. This can also be readily observed in action, movements are
noticeably more dynamic with considerably greater use of turning the torso towards
central targets and raising the shoulder to successfully reach much higher targets,
identified as a difficult region for the original controller (see Figure 40a for example). A

video is strongly recommended to view at http://tinyurl.com/ECCE-RL3 .

These encouraging results confirm that the candidate synergies uncovered by the
factor analysis can be effectively used in a lower dimensional controller that can

acquire better performance of the same task significantly faster. However, this also
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Figure 39. Synergy-based controller - average reward by type issued per trial over 1000 target presentations

For each type of reward, the 20 trial moving average is graphed, showing the shift in reward awarded over the course of the
learning.

GREEN SOLID: Synergy-based Controller — average zonal reward awarded per trial.

GREEN DASHED: As above, but for original controller using individual muscles

RED SOLID: Synergy-based Controller — average strike/touch reward awarded per trial.

RED DASHED: As above, but for original controller using individual muscles

(a) (b) (c)

Figure 40. Synergy-based controller learning the original problem (a) and extended problems (b,c)

The figure shows screen shots from three different representative learning trials of the synergy based controller.

(a) Reaching with near hand. Synergy-based controller shows improved ability to reach high targets.

(b) Reaching with farther hand. Use of torso rotation increased. Performance degrades with distance from original target zone.
(c) Reaching with both hands. Interestingly, torso rotation is retained to aid reaching-across motion.
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raises further questions; are these uncovered synergies linked fundamentally to the
structure itself, and can now be applied to the rapid learning of any task, or are they
purely task-specific? In the latter case, how many more tasks, and of which kind, must
be first assimilated to obtain an “ideal” set that are directly effective in learning any

new tasks?

We therefore test the performance of the synergy-based controller in learning two
related reaching tasks; reaching across the body and reaching with two

simultaneously.

5.5.4 Learning different new tasks using the synergy-based controller

We undertake the learning of two task variations using the synergy-based controller.
Whilst still classified as reaching-based tasks they nevertheless require control of
different dynamics triggered in the structure. The learning process and number of
trials mirror those performed for the initial reaching tasks, and the aim remains to
reach for a target object. The change relates to which hand or hands are rewarded for
approaching the target. The performance results for these new tasks over the course of
learning are shown as a plot of average reward (striketzonal) alongside the
performance of the synergy-based controller in learning the original “nearest-hand”

task (Figure 41a).

5.5.4.1 Reaching to opposite side

We first consider an incremental change to the task, namely reaching across to a target
on the opposite side of the robot. Until now, the nearest hand to the target has been
selected, limiting the reaching range required. In this learning trial, reward is issued for

movement of the further hand to the target.

See Figure 40b for illustration of the controller in action, or more instructively, it is

recommended to view the video at http://tinyurl.com/ECCE-RL4 . The performance

results over the learning trial are shown plotted in Figure 4la (green trace). By
comparing with the blue trace we see that the synergy-based controller begins learning
to reach across at a similar rate to that it achieved with the nearest-hand task.
However, overall performance over the learning falls well short of the original task and

it is noticeable from observation (see video) that performance degrades considerably
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with the distance of the target from its original learning zone. This suggests that the

performance of the synergy set begins drop as the task diverges away from the task

used for the synergy analysis. We confirm this by a comparative plot (Figure 41b) of

average reward against distance from the original target zone (represented by the

horizontal target distance from the mid line).

5.5.4.2 Reaching for a target with both hands using the synergy-based controller

For this task, the robot must now reach for the same target with both hands at once.

This task was chosen as a variation for the synergy-based controller since it requires

similar arm movements as the previous tasks but considerably alters the dynamics and

balance of the body, with both arms moving forward. It also affects the benefit of torso

Avg. Reward (strike + zonal)

6
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Figure 37a. Performance of three reaching tasks learned by synergy-based controller

1000

For each task, the 20 trial moving average is graphed, showing the shift in average total reward (strike + zonal) awarded per trial

over 1000 target presentations.

RED :Synergy-based controller learning orignal task (reaching with near hand) used to extract the synergies employed

GREEN: Synergy-based controller with task of reaching with the farther hand.
PURPLE: Synergy-based controller with task of reaching with both hands.

Figure 37b: Reward vs. distance from centre line for reaching with farther hand
After learning to reach with the farther hand the graph shows the variation of
reward issued with the distance of the target from centre line, which is used to
indicate how far the target is from the region where the synergies employed were
learned. We plot the reward (averaged across repetitions) issued for each of

the last 100 targets generated in the learning. The trendline (black dashed) is
obtained from a 2™ order polynomial fitted to the data points.
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rotation in reaching, which is clearly leveraged by the single arm controller. Note that,
there is a potential for a local optimum “trap” for the learning where one hand only is
ever used. To avoid this we create a two-hand-reaching starting set of “rough” actions
by merging members of the original initial set used for learning single-handed
reaching. Note also that to create a valid reward figure for comparison the rewards
scored for each hand are averaged before adding to the stored actions (SARs).We find
that the controller proves surprising adaptable to this double-handed task. For
example, a notable motor feature to emerge is the continued use of torso rotation for

wider targets, but turning in the direction favouring the further, rather than the near

hand. See Figure 40c for illustration, or view video at http://tinyurl.com/ECCE-RL5 ).

From Figure 41a we see that whilst the controller learns this task better than the single
handed reaching-across task (purple vs. green traces) the performance nevertheless
falls remains considerably short of that achieved by the synergy-based controller for
the original task from which the synergies were extracted - namely single-handed

reaching to near targets (see Figure 41a - purple vs. red traces).

5.5.4.3 Conclusion

We conclude that the synergy-based controller can be successfully applied to assimilate
other reaching-related tasks requiring control of different dynamic forms triggered in
the structure. It is particularly notable that, with the large reduction in dimensionality
afforded by the synergy-based approach, when the same task is re-learned the reward
acquisition begins earlier and at a faster rate than the original controller and reaches a
higher level of performance. However, the level of performance drops commensurately
with divergence (in terms of target placement) from the original near-hand task. This is
particularly noticeable with the single-farther-hand task and implies that the synergy
set extracted are not an ideal fit for all movements. We propose therefore that the next
logical step would be to modify the learning process whereby the controller may learn
a number of tasks simultaneously, with the aim of triggering the emergence of a wider
or more flexible range of synergy patterns sufficient to assimilate new tasks without
the observed performance degradation (see 5.7.1. Future Work - Learning core synergies

applicable across tasks).



119

5.5.5 Composition of emergent synergies

We have now obtained evidence that the 13 candidate synergies extracted by factor
analysis can be considered artefacts of the dynamic structure and that they can be used
effectively unit-wise to control reaching tasks. We now consider what further insights
into the role played in movements by the individual emergent synergies may be
uncovered by a more detailed examination of their composition. In Table 2 we present
a brief discussion of each of the synergies illustrated in Figure 37, looking to identify
pertinent features. Study of the table suggest that the synergies fall into three main

categories:-

Firstly, there are those synergies (1,3,4,5,6,7,12,13) which can be considered “classical”
muscle synergies (i.e. matching the implication of the term as used in biology). Here
the activation pattern involves a weighted contraction of a local cluster of muscles with

a relatively clear effect in acting on the structure.

Secondly, there are those (2,10,11) that appear to combine two cluster synergies, each
acting locally in their own area. These appear to reflect a use for common, proportional
activation across disparate body areas and could be potentially considered a

hierarchical formation i.e. a synergy of (local) synergies.

Thirdly, there are those (9) that appear to comprise a more disparate group of muscles
without clear purpose. These may be an artefact of the analysis, although, more
interestingly, it may also be considered an example of a synergy that is effective purely
in concert with others, acting in a modulating role. Research into frog synergies has
located just such examples; synergies which contribute to no single behaviour but are
always found in cooperation with or modulating the outputs of behaviour specific

synergies (Bizzi et al. 2008).

A final set to highlight (e.g. synergy no. 8) are those that comprise solely - or primarily
- muscle extension (i.e. relaxation) rather than contraction. This is a form that is
addressed relatively little in the biological literature, yet can undoubtedly produce
effective movement under the force of gravity, such as allowing the hand to drop or to

turn the torso using combined tension and relaxation on opposite sides.
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Synergy

Discussion

1

This is clearly the primary combination used for the closing of the elbow joint through a mix
of the bicep and brachialis. However, the antagonist-like opposing action of the tricep is
notable. This synergy emerges - under various weightings - in movements to central, near
targets (both high and low).

This synergy spans body areas (torso and shoulder) and its use is therefore somewhat
obfuscated. However it may reflect an, often simultaneous, need to pull the arm into the
body (shortening the pectoralis and lattisimus dorsi) and rotate the shoulder inwards
(shortening the anterior deltoid while relaxing the posterior deltoid and infraspinatus). This
combination emerges heavily in movements to all central targets.

This synergy is focused in the back and torso but interestingly spans both sides of the body
(reaching and non-reaching sides). It appears to comprise an antagonistic stiffened leaning
back of the back but with the rear pulling muscle (lower trapezius) focused on one side,
possibly triggering a twisting movement. It emerges in movements to high,near targets.

This is focused in the shoulder and scapula muscles and may comprise a combination of
rotating the shoulder joint upwards (teres minor) whilst raising the shoulder itself with the
trapezium supported by the supraspinatus and lateral deltoid. It emerges to some degree in
all movements to high targets.

This appears similar to synergy 3 but - rather than leaning back - leaning forward and to the
side (towards the target) in a controlled, antagonistic manner. It emerges in movements to
wide, far targets.

Another back/torso combination, this time nearly balanced left and right. It may cause the
torso to lean directly forward, but in a stiff, controlled manner (agonist/antagonist). It
appears primarily in movements to distant, central targets.

This appears to be the opposite of synergy 1, namely the primary means to extend the
elbow joint by shortening the tricep whilst minimally relaxing the brachialis. However, the
bicep is also tensioned slightly, suggesting again the antagonist role. Unsurprisingly, It
appears to emerge to some degree in movements where the hand has a long distance to
travel, requiring a fuller extension of reach.

This synergy is distinct as it only contains muscles being lengthened. It appears to be
approximately the opposite of synergy 4, allowing the shoulder to drop down. It emerges in
various weightings primarily on movements to low targets.

This synergy appears to combine a relaxing of arm away from the body with a pulling back
of the shoulder. Its utility is not immediately apparent, and appears only in the
low,wide,near targets. It may be a result of limiting the number of factors allowable to the
factor analysis, alternatively its separation into localised sections may prove more
meaningful when applied to other tasks.

10

This appears to mix a clear synergy of the back muscles to allow the torso to lean back with
a more incongruous relaxing of the teres minor allowing a downward rotation of the
shoulder. This only emerges in movements to low, central, near targets.

11

This is an extensive and very wide-ranging pattern that likely comprises two main disparate
elements that are often used together, namely a outward rotation of the shoulder and a
rotation of the torso caused by relaxing and tensing opposite sides of the back muscles. The
pattern emerges in movements to central targets, bringing the shoulder towards the target.

12

13

The last two synergies extracted (12 and 13) appear to simply correspond with the two
elements that appear in the first co-activation of the two that comprise a motor plan.

The first is a simply synergy that raises the shoulder, the natural body dynamics cause it to
swing forward, initiating a reaching movement. It appears in greater weightings according to
the distance of the target.

The second synergy element causes a simply pulling back of the opposite arm, we assume
this provides a beneficial counterbalancing effect. Again, its weighting appears to correlate
with the horizontal distance of the target.

Table 2. Detail and discussion of synergy composition
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5.6 Discussion and potential implications of the findings

5.6.1 Introduction

In this section we will discuss a number of key aspects arising from this set of
experiments testing a reaching controller design based on muscle co-activations and
synergies emergent through elementary reinforcement learning exploiting amenable
dynamics in the biomimetic structure. Firstly, we discuss the potential for transfer of
this learning approach to the real robot. Next, we will discuss briefly any possible
biological implications of our findings. Finally, we will outline what we consider to be
the limitations of the study, leading into the next section, which will flesh out a number

proposals for potential future work.

5.6.2 Transfer of approach to physical robot

An major underlying purpose of this investigation has been to locate potentially
effective approaches to control a physical biomimetic, musculoskeletal robot, in this
case, the anthropomimetic ECCERobot. Do results suggest that our approach fulfils
this brief, what further work is needed for transfer from the model and how would the

learning and experiments be adapted? Two potential avenues offer themselves:-

The first, which applies to other control techniques also, is to create a sufficiently
precise and comprehensive physics model of the robot such that motor plans learned
on it are directly transferrable to the physical domain. This would provide scope for
the use of any and all computing resources to be directed offline at the problem — such
as hundreds of trials, hours of simulated learning or GPU acceleration. The problem
here, of course, is the creation of such an accurate model. Our model, whilst
comprehensive and comparably complex in its own right cannot claim to be more than
a fair approximation of the true robot. Techniques such as correction of model
parameters via hill-climbing error correction from simultaneous model/robot trials (e.g.
Wolpert & Kawato 1998; Haruno et al. 2001; Wittmeier et al. 2012) holds some promise
of improvement but cannot truly incorporate, for example, the breadth of materials,

joining techniques and complex friction that feature in the physical robot.

An extension of the model based approach would be to employ an imprecise model to
generate approximate plans but use feedback control to correct. This is a well trodden
path in control techniques (Franklin et al. 2002) but requires an extended controller to

generate and manage feedback signals and a sufficiently fast sensorimotor loop to
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avoid instability (Smith 1959; Miall et al. 1993; Franklin et al. 2002). However, these
issues are compounded by the presence of a highly dynamic and non-linear control
subject, such as a anthropomimetic robot. They can be combated with techniques such
as incorporating prediction into the feedback signal (Smith 1959), but this in turn
requires a model, thus the problem risks becoming tautological. Furthermore, the
current model runs at only a fraction of the speed required to avoid significant delay
issues for live, real time control. This would necessitate significant delay compensation
if the model were to be incorporated in a physical robot controller. A better alternative
solution may be to employ the longer feedback cycle of model predictive control (Kwon et
al. 1982; Garcia et al. 1989; Mayne & Michalska 1990; Cueli & Bordons 2008) which
additionally incorporates prediction of the environment state, critical for a robot placed
into the real world. A proposed continuous controller architecture for the physical
robot incorporating delay compensation and based on model predictive control (MPC)

is derived and trialled in Chapter 6.

The second potential avenue to pursue is to employ learning and analysis techniques
that can be applied directly to the robot itself, or at least refined “in-vivo” after using a
model to kick-start learning if numerous learning iterations to be expected. This
approach also has the potential advantage, in common with animal systems, of being
able to adapt to “plant drift” (e.g. dynamic changes due to wear and tear) as biological
bodies do also. Whilst such a model-free approach will eliminate many control
approach candidates from the field, we suggest our approach is not among these. In
theory at least, the experiment undertaken here used here could, in fact, be directly

repeated to teach target reaching to the real robot, with two provisos.

Firstly, a means to capture the hand trajectory in space is required (a fixed external
Kinect sensor could provide this) and secondly, that the number of trials needed must
be reduced sufficiently to become a realistic proposition on a high powered and
relatively delicate structure. In the future work section (5.7) we therefore discuss
possible means to significantly reduce the number of learning trials by capturing more

information from those performed.

5.6.3 Biological Implications
We consider briefly any potential implications for theories of biological motor control

arising from our findings.
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5.6.3.1 Findings support claims of fixed pattern motor synergy theories

This research found that a very complex compliant structure that challenges
conventional control approaches could be controlled to perform effective directed
reaching actions simply through the application of linear combinations of correctly
weighted muscle co-activations under simple driving signals. This practical
demonstration provides considerable further support for theories that postulate that
this form of approach is employed widely in nature, from frogs, to cats to humans,
where muscle signal analysis has previously suggested this to be the case (Ting &
McKay 2007; Verrel et al. 2010; D’Avella et al. 2003; Cheung et al. 2009; Cheung et al.
2005; D’ Avella & Tresch 2002; Tresch & Jarc 2009; Ma & Feldman 1995; Hart & Giszter
2010; Bizzi et al. 2008). Using the same analysis techniques to propose candidate
synergies from general muscle co-activations learned under reinforcement learning, we
find evidence that these can be employed directly as units in a low dimensional
controller to learn the same reaching task faster and better and - to a reasonable extent
— applied to related tasks requiring control of altered dynamics. By fitting the synergy
set to co-activations learned in alternative runs, we also find evidence suggesting that
these candidate synergies reflect dynamics within the structure rather than comprising
artefacts of the course taken by a specific learning trial. In the future work section (5.7)
we therefore propose comparison with synergies extracted from this structure through
“balanced truncation” (Berniker et al. 2009) and potential adaptations to our approach
facilitating the extraction of a more generic set of synergies applicable to a wider range

of motor tasks.

5.6.3.2 Very simple reinforcement learning is sufficient to uncover effective weighting
patterns and driving signals to provide elementary reaching control
Whilst the neural correlates of some components of reinforcement learning methods
appear to have been identified (such as dopamine release), the mechanisms that could
locate the complex muscle signals though to be needed to control the highly dynamic
compliant body have been far less obvious. However, as demonstrated by these results,
the muscle synergy approach lends itself far better to simpler learning mechanisms, the
implementation of which by the brain appears far more plausible and the neural

correlates of which may perhaps be more easily identifiable.
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5.6.3.3 Role of Compliance

By comparing the reaching performance attained through learning on a model with
significant compliance in the muscles to the performance of one with negligible
compliance (by altering the modelling of the shockcord employed in the robot muscle
cables), we observe a distinct contribution to the reduction of jerk when switching
motor activation patterns. We conclude that, while detailed analysis of forces and
energy has not been undertaken, the evidence from force measurements suggests that
the control emergent under RL was able to exploit motor cable (“muscle”) compliance
as a spring energy store to reduce the force required when switching between stages of
a movement, resulting in more reliable outcomes through lowering of signal-related

noise, and aiding smoother (lower jerk) movement.

5.6.3.4 Optimality effects of reinforcement learning on musculoskeletal, compliant
structures
The experimental results support the theory that reinforcement learning will favour
reliable actions when trials are repeated (Wolpert et al. 2001). After adding signal-
dependent Gaussian noise, (but not for fixed-level Gaussian noise) then, as predicted
by the optimality theories put forward by Harris and Wolpert (1998), for those target
regions where the robot has learned to significantly slow the hand on arrival we do
observe a migration towards the stereotype bell-curve “signature of optimality”
velocity profile, as well an increasing smoothness of movement (lowered jerk) and
reliability (lowered endpoint variance) across all target regions. However, it should be
noted that these findings were solely based upon explicitly repeating (almost) identical
problem states whilst varying only the noise, a somewhat unrealistic proposition in

nature.

5.6.3.5 Hierarchical synergies and implications for motor learning and cognition

EMG evidence from biology suggests that synergies are locally clustered (d” Avella et
al. 2006; Cheung et al. 2009) but can coordinate with clusters from other body areas
(Ma & Feldman 1995). This suggests a more hierarchical layout of synergies, with a

higher level comprising, in effect, synergies of (local cluster) synergies.

In our learning control muscle activations were allowed to include muscles across the
whole body, therefore one activation might include use of both the arm and the torso

muscles, even the opposite arm. However, under factor analysis, reuse of smaller fixed
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patterns emerges, most of these are clustered within a local area of the body, forming

an clear analogy to the biological synergies.

However, we also see patterns that appear to combine two local cluster synergies, each
from a different body area. These appear to reflect the utility of proportional activation
across disparate body areas - these could therefore be considered a emergent
hierarchical formation i.e. a synergy of (local) synergies. Such a hierarchical or layered
model may serve to explain why seemingly contradictory evidence exists that
synergies are learned (Ting & McKay 2007) against both anatomical evidence (Li et al.
2008) and EMG analysis (Cheung et al. 2009) which suggest that they are hard-wired at
a lower level. It may be that local cluster synergies are pre-wired but are themselves
synergised together into prefixed activations through motor learning. This pattern may
even repeat at one or more higher levels allowing richer behaviours to become

autonomous and subconscious, as is also proposed by Ting and McKay (2007).

5.6.3.6 Could muscle-based reaching control in the brain resemble our approach?

Finally, without attempting to be specific about anatomical detail or neural correlates,
we make a brief speculative claim that the principles of our strategy are arguably
applicable to the fast planning in the brain - followed by commencement - of a motor
behaviour such as reaching. Two elements are key to this claim. Firstly, that simply
sustained activation of the correct pattern of muscles under a simple template-based
driving signal, is sufficient to produce effective actions on a structure that has co-
evolved to offer amenable dynamics to such relatively simple control signals.
Secondly, that the vector summation of the selected muscle synergies that is required
to obtain the final output set of individual muscle contractions, could, in theory, be
achieved directly at the motor neuron cluster outputs rather that requiring the neural

implementation of some form of intermediate summing unit.

Under this approach, when a problem or task is presented, the synergy combinations
that triggered past movements re-activate as clusters through sensorimotor
associations developed from a combination of Hebbian-style association (Hebb 1950;
Bienenstock et al. 1982) and spike timing dependent plasticity (STDP) strengthened
through reward-triggered dopamine release (Izhikevich & Desai 2002; Schultz 1998).
Due in particular to the simple sustained activation of these clusters, these associations

could emerge relatively straightforwardly, without the need for neural correlates of
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the more complex learning mechanisms of distal reward, eligibility traces or temporal
difference that have been designed to enable machine learning of successful sequences

of micro-actions.

With the strengthening of these associations, the proximity of the new problem state to
those encountered in the past can be expected to trigger a greater or smaller response
within these synergy clusters, which then activate the motor neuron clusters of the
relevant individual muscles. These clusters are simultaneously activated by other
synergy groupings, each similarly weighted by this proximity. These produce a net
activation on each muscle that correlates to the weighted summation of the original

synergy patterns, i.e. weighted by their strength of association with the task.

5.6.4 Limitations of the study

In this section we will attempt to highlight shortcomings we have noted in the method,
results or conclusions claimed and how they might be defended or addressed. Some of
these lead directly into proposals for future work which form the next section of this

discussion.

5.6.4.1 Not proven as general controller - only shown for specific reaching scenarios

Whilst the study reveals the potential of motor synergies in simple combination to
control very complex, compliant biomimetic structures and the possibilities of
employing reinforcement learning to uncover them, the problem scenarios employed
are considerably simplified from any real world situation. For example work to date

has been limited to trialling reaching from an almost constant single start state.

This throws doubt on claims that this approach, in particular the learning aspect, is
applicable to progressively more complex scenarios, up to the ultimate control scenario
where the subject can perform any given task from any starting dynamic state. The
Further Work section below therefore proposes studies that extend the problem state

significantly.

Similarly, the controller is unproven for learning of movements calling for 3 or more
chained co-activations, nor has it demonstrated the ability to encompass follow-on

tasks such as grasp object, set down etc.
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5.6.4.2 Bio-mimetic claims are unproven

An important claim made is that the specifically biomimetic nature of the model
providing exploitable amenable natural dynamics leads to the success of this
surprisingly simple synergy combination approach. However, it cannot currently be
fully discounted that any musculoskeletal structure, bio-mimetic or not, could prove
controllable by the correct set of synergies. This claim would therefore be considerably
strengthened if the same approach were tested against complex, but non-biomimetic

structures, perhaps randomly generated.

5.6.4.3 Candidate synergies uncovered by analysis not proven as superior to a
random set

Claims of the emergence of effective, combinable synergies would be strengthened by

testing a null hypothesis that a randomly generated set of 13 (possibly linearly

independent) candidate synergies performs as well in a controller as the set uncovered

by factor analysis following a period of task learning using co-activations of individual

muscles.

5.6.4.4 Biology insights are limited by nature of controller

Although the model is bio-mimetic the controller essentially comprises an algorithm
rather than a biomimetic brain (such as an extensive spiking neuron simulation) and
therefore claims of insight into biological control must be treated with care. However,
even biomimetic brain simulations, whilst providing potentially valuable insight, can
also be easily argued to lack true verisimilitude in any depth. Thus points made with
regard to control principles from algorithmic evidence remain as similarly valid and
interesting as those arising from many spiking network models so long as their

limitations are acknowledged.

5.6.4.5 Alternative method for uncovering key synergies not pursued for comparison

The approach of “balanced truncation” analyses the structure dynamics directly to
extract a low dimensional model for use in key synergy identification (Berniker et al.
2009). Its findings suggest support for the general claims of this study regarding
synergy control and remains an interesting and potentially applicable method for this
model structure. A comparison of the outputs of this analysis with the results of our

learning would therefore have formed a useful check on the claims made here, and
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provided useful insight into the advantage and disadvantages of either method. Such

an extension is proposed in the Future Work section.

5.6.4.6 Unproven against physical robot

The findings are limited to the model, whereas a demonstrable means to control the
real anthropomimetic ECCERobot would be of significantly more interest. In practice
the approach might prove to be too slow with too many repetitions, or the model may

prove too different from the robot to be able to carry across findings.

5.6.4.7 Approach lends itself to overly homogenous movement profiles

Observation of the reaching in action shows immediately that any given target
location is addressed with a movement bearing a strong general resemblance of form
to many others. This homogenous nature is likely a direct result of the plan-merging
approach which quite plausibly acts to rapidly dilute distinctive movement and leads
to all tasks being addressed with a generic style of movement that may not be the best
for each task. For example, a target location directly in front of the breastbone is
responded to by a somewhat wasteful and extravagant hand movement that sweeps in
from the side, when a simple raising of the arm to the front and centre would appear
more appropriate. The extraction and subsequent freezing of synergy patterns used in

these movements will almost certainly act to exacerbate this situation.

However, in partial mitigation it should be recalled that human movements are very
often not straight and the underlying reasons remain unclear (Petreska & Billard 2009).

The use of generic synergies may even suggest a possible reason.

5.6.4.8 Optimality/reliability investigation minimal — claims may be extravagant

The study looks to draw some relatively important conclusions on the role of
reinforcement learning and reliability in generating movements that display signatures
of optimal control. However, whilst bell-curve profiles and reliability gains were
noted, the precise causes remain explored in relatively little depth and null hypotheses
are not investigated beyond reasonable doubt (for example investigating learning

outcomes without trial repetition).
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5.7 Future Work
In this section we will discuss potential further work that we believe would prove

rewarding to undertake or that may address criticisms raised in the previous section.

5.7.1 Learning core synergies applicable across tasks

We have tested the idea that a set of core synergies, once identified, can be used as
building blocks to rapidly develop actions targeting new, but as yet unattempted,
tasks. However, we found that although the synergy-based controller could rapidly
assimilate some other related tasks, the level of performance dropped with divergence
from the original simple task (from which the synergies were identified), in particular
with regard to target placement. Other techniques such as “balanced truncation”
(Berniker et al. 2009) are less task-related through their direct extraction from the
underlying structure dynamics themselves. In our case it appears that the synergies
emerging are not sufficiently generic for other roles due to the limited arena of the task

they were learnt on.

Although this can be argued to be a recognisable facet in nature also - entrenched
motor habits are notoriously difficult to unlearn (Brashers-Krug et al. 1996) - to control
the ECCERobot we would ideally wish create a better, more task-generic, controller
through an extension of the methods we have so far applied. This suggests
undertaking learning with a range of tasks with the aim of extracting a more flexible
and powerful set of synergies at the end. Three possible approaches are suggested

here.

Firstly, to use the original controller to separately learn each of a number of tasks, then
to analyse as before, but across all the learned co-activations, for a set of candidate

synergies for trial in a synergy-based controller.

Secondly, to learn more slowly a range of tasks all at the same time, in effect, setting
the task category as a dimension of the problem space. Task selection could be random
but based on a distribution favouring importance and common usage. In
implementation terms this could equate to attaching not one but a set of rewards to
each plan, each referring to its success at a different task. However, the bank pruning
would be applied to the plans with the least total reward, with the intention of

eliminating specialisation and encouraging generalisation across tasks.
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The final proposal is to learn only a single task that is nevertheless general enough to
subsume the requirements of most of the others. For example, this could involve
reaching to two different targets using both hands, thus subsuming all the other tasks
attempted to date. This requires no modification of the reward mechanism but will be
slower to learn, as it doubles the problem space to 6 dimensions covering the [x,y,z]

location of both targets.

5.7.2 Incorporation into general control architecture based on MPC

As discussed earlier when considering the potential transfer to the physical robot, in
the next chapter we propose a general delay-compensating control architecture for the
physical robot based on Model Predictive Control (MPC). A logical part of that
framework will be the potential incorporation of the synergy-based control approach
as the realisation of the envisaged generic planner module. This will be discussed at

the end of that chapter after the architecture has been introduced.

5.7.3 Extending the problem space - commencing from any state

As discussed in the limitations of the study (see 5.6.4) one reason that we cannot claim
to have produced a generic controller is that work to date has been limited to trialling
reaching from an almost constant single start state. As argued, this simplification was
intended to aid validation or otherwise of the principles of the synergy and co-
activation approach by minimising the input problem state to the target position alone.
Nevertheless, to be of genuine use in controlling a robot such as ECCERobot we must
consider how we might learn to reach a target from any necessary dimensionality of
problem state. For example, Table 3 below shows how the problem state might extend
to cover a much wider range of initial robot states. The crucial point to halt this
dimensionality growth is likely to fall where enough of the state is captured for the
controller to function effectively in a control loop where a new action can be
continually reissued as the state is periodically captured on sensors, or at least
estimated. An example of such a control system is covered in more detail in the next

chapter.

It can be seen from Table 3 that we can rapidly reach 21 dimensions in the problem
state without even beginning to consider elements such as joint angles (posture). For
the current approach to function in higher dimensions would therefore require a richer

state estimator (Sutton & Barto 1998) to be developed, and to weight the influence of
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different dimensions according to their impact on the problem. Without this, using
only a linear nearest-point measure, the closest plan to the problem state will
disproportionately dominate weightings since the other plans are simply too distant
when so many dimensions are in play. It may be possible to optimally balance these
weightings dynamically during learning, as with an actor-critic RL approach (Sutton &
Barto 1998) or to use the balanced truncation analysis discussed earlier (Berniker et al.

2009) to ascertain those dimensions with the most influence (see 5.7.5.1).

However, there are also other potentially interesting approaches to managing problem
state dimensionality, resembling the way that the current controller improves its

behaviour through the rewarding of reliability.

For example, a simple experiment would be to extend the problem to that of reaching
to a succession of targets without any state reset between trials. This shifts the learning

focus from solving the raw dimensionality of the problem state to locating strategies

PROBLEM STATE ADDED TOTAL DIMENSIONS
DIMENSIONS

Standard starting robot state at rest + target position - 3 (target xyz)

Nearest hand position, velocity discounted 3 6

Nearest hand velocity vector 3 9

As above , for both hands 6 15

centre of gravity of whole torso, relative to the base 3 18

Add velocity vector for centre of gravity 3 21

Table 3. Extending dimensions of the problem state
where the previous actions can take a direct role in maintaining a sufficiently low

dimensional (i.e. simpler) problem for the upcoming one. Thus, if the problem state
comprises only the hand and target positions, then more “cautious” reaching where
the hand and body finish in relatively stable states will reap benefits in the next
reaching task, whereas creating highly dynamic states by overly forceful movements of
the hand and body at targets often may not. Furthermore, apart from just reducing the
problem state dimensionality we are likely much nearer to the real situation for a
human or physical robot, where continual accurate state resetting is unrealistic or at

least problematical.

For a first experiment in extending the problem state we recommend a continuous (i.e.
no reset) trial of the controller extending the problem state to 9 dimensions by adding

the position and velocity vector of the nearest hand to the target. This is a relatively
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low extension of problem state but brings the advantage that the controller could
potentially now be employed in a continual re-plan mode where a new action is
iteratively generated for the current state of the hand as it approaches the target. As
discussed, a delay-compensating version of such a feedback controller is detailed in the
next chapter. A particular point of interest would be to look for the emergence of
synergies acting to stabilise the hand or torso dynamics, thus reducing the real
problem state that affects the success of an action towards the low-dimensional version

of the problem state that we are setting the controller to solve.

5.7.4 Trajectory storage approach for speeding of learning for physical robot

Although the ability to apply our control approach to a physical robot is an important
goal, we face the serious issue that even with the faster-learning synergy-based
controller a significant number of trials with the model are still currently required to
reach an acceptable level of performance. It is likely that the high power requirements,
wear and tear and current fragility of the robot make this shift potentially unrealistic at
present. Furthermore, using the synergy-based controller raises the issue that, unless
the physics-based model can be aligned considerably better to the real robot, it is
debatable whether synergies extracted from training the model will be sufficiently
effective for the real robot. We would then face the prospect of training the original

individual-muscle controller on the real robot, an even longer process.

To attempt to address this, we note that a trial of an action does not only provide a
potential route for the hand to the specified endpoint, it also gives a route to every
point along the trajectory. To date, we discard all these in favour of one single point we
consider the “best” suited endpoint to represent this action. Yet, at least during earlier
stages of learning, the action offers a reasonable attempt to reach all the other points
along its route. Recall that the RL approach is often more effective at improving and
optimising poor actions, and less effective at locating useable actions from scratch. It
therefore makes sense at the early stage of learning to bootstrap as much information

from reasonable trial movements as possible.

We would therefore propose an extension where each stored action holds not simply a
“best” target location but a mapping of the hand trajectory and its velocity profile.

When a new target is presented each stored action puts forward the best waypoint it
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can offer for that target. These are then weighted, as before, against those offered by

other stored actions.

Early trials of this approach are promising, suggesting that significantly greater reward
begins to be issued at an earlier stage in the learning. This may therefore prove a

fruitful route to transfer of the control to the physical robot.

5.7.5 Comparative studies with alternative methods

This potential future work would seek to test alternative learning methods developed
for synergy identification and synergy-based control. By applying these to the same
model and task, informative comparisons may be made regarding the validity of our
findings and conclusions, the nature of synergies located, the speed of learning and its

effectiveness.

5.7.5.1 Comparative study with low dimensional model extraction with matched
optimum synergies
AS discussed in the Limitations section, it has been stressed that the trigger for
developing this approach was the biomimetic nature of the robot. However, it has not
been shown definitively that it is specifically the biomimetic nature that creates
amenability to synergy-based control, and it may be simply that biomimetic structures
fall within the set that possess key features that make them amenable. Applying
analysis techniques such as the low dimensional model extraction developed by
(Berniker et al. 2009) against this model and other non-biomimetic musculoskeletal
structures may reveal the key differences as well as providing a useful check for the
validity of our findings and conclusions and comparison of the synergy patterns

located.

5.7.5.2 Synergy emergence from core reflexes via mutual information and natural
dynamics
As discussed in the Background chapter (see section 2.4.3) this branch of morphological
computation (Der 1999; Te Boekhorst et al. 1999; Lungarella & Sporns 2006; Pfeifer et
al. 2007) seeks gradual emergence of synergy-based control through implantation of a
minimum set of core reflexes combined with mutual information association (e.g.
Hebbian learning) formed by correlation between co-occurring proprioceptive and
motor signals (Gravato Marques et al. 2013). Current work in this area is heavily

focused on direct application to physical, but significantly simpler, biomimetic robots
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rather than software-based models. It seeks to eventually master the full complexity of
a anthropomimetic robot such as ECCERobot via a series of increasingly complex

structures.

5.7.6 Creating hybrid, synergy-based control approaches

We would propose revisiting several control approaches considered in the Background
chapter and consider their suitability to create a hybrid approach based on exploiting
the lower dimensional control offered by using analysis-extracted, synergy-based
control units rather than individual muscles. With this significant reduction in
dimensionality, we may now be able exploit these generic, proven and powerful
control approaches to create general controllers for anthropomimetic robots such as
ECCERobot. These approaches might therefore include; generic and high-dimensional
reinforcement learning , high-dimensional planning search (Shkolnik & Tedrake 2009;
Kavraki et al. 1996; Kavraki 2007; Rusu et al. 2009; Ladd & Kavraki 2004; Kagami et al.
2003), evolutionary and artificial neural network robotics (Beer 1995; Cliff et al. 1993;
Meyer et al. 1998; Bongard 2009) and control through equilibrium point (EP)
hypothesis (Gu & Ballard 2006b; Feldman et al. 1998).

5.8 Conclusion
Whilst by no means a complete control solution we suggest that the results of these
experiments strongly indicate a fruitful area of investigation for control of bio-inspired,

biomimetic structures such as the anthropomimetic robot ECCERobot.

The complex and compliant modelled control subject was not created with any
compromise for ease of engineering control and undoubtedly comprises a highly
challenging control task for well-established approaches such as classical control,
planning search, generic reinforcement learning and evolutionary/neural network

robotics.

However, in apparent contradiction of this complexity, there is strong empirical
evidence that combinations of surprisingly simple sustained signals driving a common
set of muscle activation patterns in weighted proportions have been shown to underlie
controlled movement in frogs, cats and humans. Correspondingly, we show here that
control of this complex biomimetic model is also demonstrably susceptible to this

synergy-based approach to dimension-reduction when it is applied using simple
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reinforcement learning, an originally bio-inspired trial-and-error technique that can
leverage amenable natural dynamics. Furthermore, whilst most biological studies
reveal evidence supporting the theory that synergies may be employed unit-wise by
these animals, here we demonstrate that the form of extracted muscle activation
patterns proposed as synergies by these biological studies can indeed be explicitly used

in this way to form an effective reaching controller for a complex biomimetic model.

The newer “brute force” techniques we have reviewed such as generic high
dimensional reinforcement learning and GPU-accelerated planning search do not
employ the biomimetic nature of the musculoskeletal structure to their advantage and
would therefore still face, in the case of this control subject, a potentially
insurmountable curse of dimensionality. Only specific musculoskeletal techniques
such as equilibrium point hypothesis and alternative synergy-based approaches such
as low-dimensional model extraction (Berniker et al. 2009) or reflex-based emergence
based on mutual information theory (Gravato Marques et al. 2013; Wittmeier et al.

2013) potentially offer equivalent promise.

For biomimetic structures such as our model, we have shown evidence that
reinforcement learning has acted as an action discovery mechanism, uncovering some
simplifications of a solution through exploiting amenable natural dynamics of the

biomimetic structure, which were not apparent or designed by the robot engineers.

We have demonstrated that we can apply optimality principles to encourage the
emergence of smoother movement by incorporating both signal dependent noise and
trial repetition into the learning process. Across all targets regions we observed an
increasing smoothness of movement (reduction in jerk) and an increase in reliability.
Furthermore, as predicted by Harris and Wolpert (1998), these results applied when
adding signal-dependent Gaussian noise, but not for fixed-level Gaussian noise. We
also found that, for those target regions where the controller has learned to
significantly slow the robot’s hand on arrival, we do observe under reinforcement
learning some migration towards the stereotype bell-curve “signature of optimality”
velocity profile.

Compliance is a primary feature that sets both biological bodies and these
musculoskeletal robots apart from conventional stiff-jointed robots, but adds

significant complexity when employing conventional control approaches. By
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comparing learned control of compliant and non-compliant models, we investigated
the effects of compliance on our approach. Initial results suggested that the
compliance in our model contributes to a reduction in jerk, thereby smoothing
movement, and furthermore, acting as an energy store allowing for a reduction in
the motor force needed for direction changes, resulting in a drop in the signal-related
noise that causes unreliability.

Finally, we conclude that the most compelling areas to take this work forward are
tirstly, adapting the learning process to reveal more “generic” synergies applicable
across a wider task range. Secondly, to adapt and extend the controller to transfer it to
control of the real robot. Once such extension, the adoption of a general control

architecture for continuous control, is explored in Chapter 6.
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Chapter 6
A bio-inspired continuous control architecture for an
anthropomimetic robot incorporating environment

integration and delay-compensation

6.1 Introduction

The previous chapters have focused on addressing some specific control issues for a
musculoskeletal robot when tasked with a closely defined reaching task. However, a
robot controller for the real world also requires an overarching control architecture if
the robot is to remain under continual control for a period of minutes or hours
performing a series of tasks in a dynamic environment. This chapter discusses and
proposes a design of a continuous control architecture potentially suitable for

compliant anthropomimetic robots such as the ECCERobot.

An important early decision in choosing a robotic controller is whether to follow a
model-based design. Whilst certainly a dominant approach in control engineering,
there is also considerable evidence from neurobiology that predictive modelling is
employed in the human CNS, addressing control issues such as noise, state estimation,
delays, motor planning and integrating the sampling and prediction of external
variables (the environment). For example, use of predictive mechanisms provides a
highly plausible reason for the clear physical presence of motor efferent copy nerves
(Sperry 1950; Kelso 1977). It has also been shown that faster reaching movements are
planned and performed too quickly for any feedback-led mechanism to be driving
them (Desmurget & Grafton 2000). The existence of prediction-based delay
compensation is also supported by studies suggesting that the self-perceived “current
state” employed for planning a motor task may not comprise the state captured at the
moment of sensory input but rather a prediction. For example, Ariff et al (2002) found
that the position of eye saccades tracking an unseen reaching movement appeared to
reflect the output of a state predictor, rather than the actual position of the hand after it

had been subjected (unknowingly) to a force field.
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The assumption of Kalman filter-like predictive mechanisms being used for accurate
state estimation (Balakrishnan 1978; Welch & Bishop 2006) by the CNS also predicts
several unusual observed phenomena such as the cutaneous rabbit illusion (Kilgard &
Merzenich 1995; Grush 2004) - where a series of taps on the arm appear (wrongly) to
the subject to have followed a smooth extrapolated path - and also the auditory
continuity and phonemic restoration illusions (Grossberg 1995; Grossberg & Myers
2000), where interruptions in sensory data are not perceived at all by a subject so long
as it swiftly resumes along a predictable path. Wolpert et al (1995) also found that end
point estimation data following reaching movements made in the dark was best
accounted for by a Kalman filter model combining an internal forward model with

sensory correction.

Nevertheless, non-model motor controller designs such as behaviour-based robotics
(Brooks 1991b) have enjoyed success and the need for - and evidence of - predictive
models within neurobiological motor systems remains a topic of debate, particularly in
animals with relatively simple cognitive abilities (Brooks 1991; Miall & Wolpert 1996;
Webb 2004).

However, as we have already developed a rich physics-based model of the robot, we
look to leverage this work by drawing upon established designs from control
engineering that do employ predictive forward models to address control challenges
such as noise, state estimation, delays, motor planning and integrating the sampling

and prediction of external variables (the environment).

The problem we face is that, given the complexity of the robot, the lack of
mathematically tractable model and the presence of a potentially rich dynamic
environment, there is no single control engineering design that can be applied as-is to
this problem. We therefore look to a combination of modules and technologies to form
a novel proposed controller for this family of robots. However, our design draws most
from the well established model predictive control (Kwon et al. 1982; Garcia et al. 1989;
Mayne & Michalska 1990; Cueli & Bordons 2008). This approach can be thought of as
an extrapolation of prediction-based feedback control methods - such as the Smith
Predictor (Smith 1959; Franklin et al. 2002) — but extended to encompass the predicted
future of the complete system under control and its environment in a more extended

iterative cycle.
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In particular, we look to fulfil the delay-compensation features of this approach
through the use of the physics-based model of the ECCERobot (see Chapter 3) as a
predictive component, and we demonstrate its effects whilst attempting to control a
second copy of the model acting as a proxy for the real robot. We show that
performance is indeed significantly improved if a precise degree of delay
compensation is applied and additionally that the performance of an uncompensated
controller falls off steeply if modelling accuracy is less than perfect (as would certainly

be the case when employing the real robot).

Finally, we consider an interesting potential implication of these findings for our own

conscious perception of “now”.

6.2 Issues Arising In the Design of Robot Controllers
Although a rudimentary ideal controller can be easily designed, a number of
potentially serious issues swiftly arise one when implementation is attempted for a real

robot.

Firstly, capturing not only the robot’s own state, but sufficient of the (potentially rich
and dynamic) environment state and the relative position of one to the other will be
critical to success, yet this is not a trivial task. Secondly, what form of sampled state,
and in how many dimensions, is required for a motor planner to function effectively
for a given robot? Thirdly, real sensor data will be affected by noise and inaccuracy,
translating directly to a misreading of the state. Lastly, in all systems, there is an
unavoidable delay between taking a sensor reading and the ensuing re-planned motor

signals finally reaching physical actuators.

If this delay is too large or the robot/environment states are too dynamic then the state
used to plan from will be significantly out of date resulting in control errors. This
affects both open-loop and closed-loop (feedback) controllers. Open loop controllers
must generate accurate motor plans, requiring more planning time and model
simulation time, during which the robot and environment states will have changed
from that sampled. Feedback controllers can issue more rudimentary plans and then
correct via a state error signal but this requires a very fast sensorimotor loop,
resampling the robot state to generate the error signal, else the delay will distort the

error, leading to instability (Miall et al. 1993).
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The ECCERobot itself presents a particular challenge as a control subject, having
limited proprioceptive sensor range (primarily relatively poor muscle tension sensors)
combined with a high-dimensional non-linear, elastic structure making its state both

hard to predict and fast changing.

6.3 Principles of model predictive control (MPC)

Model predictive control (Kwon et al. 1982; Garcia et al. 1989; Mayne & Michalska
1990; Cueli & Bordons 2008) can be considered an extrapolation of prediction-based
feedback control methods such as the Smith Predictor (Smith 1959; Franklin et al. 2002).
These feedback methods use a forward model of the system to generate a fast estimate
of the state from the motor signals sent out, without waiting for the real state to be
resampled, thus avoiding potential instability. This estimate is then fed back to provide

an error signal to drive correction motor signals.

In MPC this principle is extended in both scope and time to encompass the predicted
future of the complete system under control and its environment in an extended iterative
cycle. It can thus be considered a form of closed loop feedback controller but operating
over longer iterations, implying a greater need for the kind of planning and modeling

accuracy usually seen in open loop controllers.

Importantly, MPC incorporates the integrated sampling and predicting (modelling) of
independent dynamic variables (the robot’s environment in this case) and implements
a continual cycle comprising longer iterations that commence with a sample and
prediction of state up to a fixed “horizon” point in time which can be set to allow for
all delays inherent in the system (sensing, simulation time, planning time etc). Control
plans are then repeatedly revised, based upon this predicted future state. For this
reason MPC is also referred to as a receding horizon approach (Kwon et al. 1982; Mayne

& Michalska 1990).

MPC is attractive for us as we have a complex non-linear system with poor
proprioception approximately modeled by a slow physics-based simulation which is
nevertheless potentially equipped to incorporate a dynamic model of the environment,

if this can be effectively sampled.
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6.4 Use of the ECCERobot Physics-Based Model

By incorporating a model of the robot that can be updated from raw sensor readings
we can decouple the motor planner from the potentially limited, noisy and inaccurate
set of physical sensor readings. For example, if the planner requires velocity data, then
rather than measuring this directly, it can be obtained from a model that updates its

state solely from joint angle readings.

The physics-based model of the ECCERobot now developed (see Chapter 3) provides
the best estimate currently available of the kinodynamic state of the complex robot
structure under torque load. It is therefore a strong candidate to be incorporated into
this controller, not only within the planner but as part of the noise reduction and delay
compensation also. The fact that it is held within a standard physics-engine also
provides a significant opportunity to integrate, in a single “scene”, the sampled

environment state if it an appropriate sensing mechanism can be developed.

However, as it stands this model brings with it constraints of speed, accuracy and
mathematical intractability due its non-linearity. These must be allowed for in the
controller design, for example, to be able to use Kalman filtering for proprioceptive
data correction would require a specialised non-linear approach (e.g. Wan & Van Der

Merwe 2001) to function with such a model.

6.5 Proposed Design

Figure 42 shows a schematic of an initial controller design, based on the MPC principle
comprising an iterative cycle of first capturing both the system under control and its
environment into a forward model predictor, followed by a replanning based on the
new best estimate state and the goal set for the system. Note that compensation for the
delay in sensing, predicting and planning has not yet been incorporated in this design,
however, it includes important modules for integrated proprioceptive and
environment sensing, model-based prediction and motor planning. These are

discussed now in turn.

6.5.1 Addressing sensor noise and inaccuracy

A standard approach to reduce the impact of inaccurate or noisy sensor readings is the
use of Kalman filtering (Balakrishnan 1978; Welch & Bishop 2006). A forward model

estimates the system state to obtain an alternative to the direct sensor sample. The
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Figure 42. MPC-based robot controller using a physics engine to capture and predict dynamic state of robot and environment
Motor efferent copy and a model are used to generate a parallel estimate of the robots state. A Kalman filter is then used to find a
best weighting between the estimate and the directly sensed but noisy sample state.

A Kinect sensor and object extraction techniques are added to capture a representation of the environment state with dynamics
that can be merged with the physics-based robot model into a single unified “world” model. This is supplied to the planner
enabling plans that allow for the environment, such as collision avoidance, to be generated.

Kalman filter (KF) algorithm is fed both the real and estimated signals and over time it

will settle to an optimal balance, outputting the optimal estimated state.

In order for the model employed by the KF to estimate the new state it must have
access to a copy of the control signals sent to the robot. Interestingly, in neurobiology, a
copy of such motor efferent (“outwards”) nerves signals is observed (Sperry 1950;
Kelso 1977), leading to speculation that such predictive models are also at work in the

motor centres of the brain (Wolpert et al. 2001; Miall & Wolpert 1996).

Figure 42 shows that the best estimate robot state is obtained in our controller by
combining sensor readings and motor efferent copy of the signals sent from the
planner to the real robot. These signals are input a module comprising a Kalman filter
and forward model to generate a best estimate robot state in the form of the physics-

based model developed in Chapter 3.
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6.5.1.1 Kalman filtering with the ECCERobot physics-based model

Although the KF principle is sound, we must however acknowledge that a serious
challenge exists to implement this design. For individual robot sensors with a linear
response a standard Kalman filter can be applied to each for noise reduction. However,
for a robot structure where, for example, joint angles can have a non-linear
dependency on other parts of the structure, it may be necessary to apply a single
Kalman filter to the complete model alongside the full sampled state of sensor
readings. Since this system is no longer linear the standard Kalman design cannot be
employed and use of a non-linear Kalman filter is implied, such as the “unscented”
Kalman filter (Wan & Van Der Merwe 2001). This takes the standard approach to
handling non-linear systems by approximating it to an incremental set of linear
systems. However, applying this approach to embed such a complex physics-model
within a KF has not been successfully reported to date in the scientific literature and

remains a goal for the future.

6.5.2 Planning

For a planning module we propose initially the learning controller developed (Chapter
4) for reaching control. This takes as input the current state of the robot plus the goal,
as being the current location of the target object and, if desired, a designated hand. The
planner generates as output the set of signals designed to take the designated hand to
the target. However, to act as a continuous controller under this architecture we
require an extension to the reaching controller allowing it to function from different
starting states (see Chapter 4, section 4.3.5.3 Extending the problem space — commencing

from any state ).

6.5.3 Environment Capture

For a generic continuous controller to succeed then it is critical to capture not only the
robot’s own state, but sufficient of the (potentially rich and dynamic) environment
state and also the relative position of one to the other. Indeed, for much of the history
of robotics, it was arguably primarily this environment aspect that kept more complex
robots in the sanitised (and flat-floored) laboratory or factory and away from the

messy, “real” world.

In our controller design (Figure 42), the physics simulation “scene” or “world’

occupied by the robot model might also house a static, or even dynamic, model of the
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immediate surroundings, if they could be effectively sampled and processed. This
would result in a single integrated model comprising the robot situated within its
modelled surroundings, thus allowing predictions to be generated that accounted for
changes occurring outside the robot body and also those caused by interaction, such as
objects affected by collision. This is therefore a potentially powerful approach, where
even the classic “frame problem” (Korb 1998), might be reduced, if not nullified, by

this “one world” design.

6.5.3.1 Use of Kinect Sensor and object extraction algorithms

To begin to realize this design, a demonstration 3D vision system (Devereux et al. 2011)
has been developed for the ECCERobot that employs a head-mounted Kinect sensor
(Microsoft 2013) to capture unified depth map and colour photo data from the robot’s
surroundings. The depth map is transformed into a static mesh and inserted as a set of
collision shapes into the physics “world” alongside the robot model. In parallel, the
colour image and depth map are processed with object extraction algorithms to
recognize parts of the mesh that correspond to an object previously identified, for
which a dynamic model has been constructed using the same physics engine. This
section of the mesh is removed from the static model and replaced with this pre-
designed dynamic physics model. The demonstration system performs this task by
recognizing a real water bottle and replacing it in the static mesh within the physics

engine with a model that the model robot can interact with.

6.6 Delays

6.6.1 Effects of sensorimotor delay

An important observation from the ECCERobot’s anthropomimetic predecessor
Cronos, (Holland & Rob Knight 2006) was that its compliance and dynamic complexity
made it very hard to employ open-loop control specifically because of the resultant
unpredictability of its state. The body swayed and oscillated, and raising an arm or
releasing a held object had far greater effect on the kinodynamic state (kinematics plus
motion) than would be the case with a traditional stiff actuated robot. State captured
via proprioceptive sensors often bore little kinodynamic resemblance to the state only a

short while later, even without further control input. It was therefore expected that, for
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the ECCERobot, even small delays between sensing and action would also cause a

significant control issue.

6.6.2 Causes of delay

In any control system, the full delay between sensing and acting will build up across a
number of stages. For example, consider the delay in capturing sensory data,
transmitting the data for processing, updating an internal state representation and
devising a motor plan based on this state and a goal. Finally there is the delay in

transmitting the revised motor signals out to the motors or muscles.

6.6.3 Combating Delay

Conventional system feedback control systems will often look to use high frequency,
high precision sampling to directly minimise the sensorimotor delay and resultant
instabilities (Franklin et al. 2002; Levine 1996). Alternatively, if the sensorimotor loop
delay remains too large then predictive feedback approaches such as the Smith
Predictor (Smith 1959; Franklin et al. 2002) may be employed, using a fast model to
quickly estimate the feedback signal. However, in our case, the available physics-based
model and planning are too slow for such a complex, dynamic control subject. We
therefore turn again to strategies derived from Model Predictive Control. As discussed,
MPC plans its control signals in extended iterations based on the predicted world state
(robot plus environment) at a “horizon” point in the future. By allowing for the
complete system sensorimotor delay when setting the horizon, we can compensate for
slow modelling or planning elements in the loop (Valencia et al. 2011; Kobayashi &
Hiraishi 2012). In theory, so long as the these elements run faster than real-time then,
so long as the state sampling and modelling remain perfect, then this approach will
succeed. Of course, in practice this is not the case, therefore to best configure the
system we must first look to characterise changes in the sensitivity of our proposed
controller as the horizon point and modelling accuracy vary. This experiment is

reported below (section 6.7).

6.6.4 Predicting intended motor signals with an updateable “buffer”

For an MPC-based controller to function the motor efferent copy signal is not sufficient
to predict system state up to the horizon point as this lies in the future. We therefore

also need to be able to accurately predict the motor signals that will be output up to the
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Figure 43. Motor signal buffer design for an MPC-based controller for the ECCERobot

Control signals are sent to the physical robot motors continuously, read from a single master buffer or queue that stores the
current proposed motor a time series of motor signals. Each motor plan revision is loaded into the buffer, replacing the data from
the point when the new plan can take effect, i.e. after the complete sensorimotor delay has passed.

horizon point. To address this, Figure 43 illustrates a proposed design for an
updateable motor signal storage “buffer” that holds the current best motor plan as a
time series of motor signals. The buffer continually passes the actual control signals to
the physical robot whilst the planning system independently generates repeated motor
replans that are written to the buffer at the place corresponding to the current horizon

point.

The advantage of this parallel approach is that while sensors are read, predictions
made and plans revised, the robot will simply continue to move under a known set of
motor commands which comprised the best movement plan that could be generated at
that time. The predictive forward model can therefore read ahead from the buffer to
anticipate the motor signals into the future up to the chosen horizon point. This allows

it to estimate the future world state once all delays have been accounted for.

6.6.5 Delay compensating design

Figure 44 shows the controller extended to incorporate the delay compensation
mechanism. The important difference in this controller is that, as discussed, once the
estimated state at the time tg., 5, Of the sensor readings has been obtained, the motor
signal buffer can be “read ahead” into the future in order to roll forward the integrated
physics model of the world from the state Sgon5e (the output of the Kalman filter) to a

predicted future state Sy iz0n at ime thorizon-
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Figure 44. Schematic of full MPC-based controller for the ECCERobot incorporating delay compensation mechanism

We now plan a new time series of motor signals based on a starting state Sy, ,izon thus
compensating for the change of world state that will have occurred during the period
thorizon — tsense- However, this presents a problem. With a relatively slow and
inaccurate model, we do not in practise know how precisely tp,rizon must be set. Since
sensorimotor delay may be difficult to measure accurately, or may vary between
iterations, quantifying sensitivity of tpy,izon to control success is a valuable exercise. If
fact, some controller designs incorporate self-tuning compensation for this reason

(Kobayashi & Hiraishi 2012).

Logic suggests that tj,rizon should be set to the moment that a revised motor plan can
begin to reach the actuators. However we have not proven this to be the case for an
ECCERobot model-based controller, nor whether it is equally true for controllers with
differing sensorimotor delay. For example, as we consume more time in prediction and
planning, the future state Sj,iz0n Will become correspondingly more inaccurate as
modelling inadequacies are compounded. It may thus prove the case that a poorer
plan, but computed faster, in fact performs better. We therefore conduct a simulation
experiment to characterise the performance of the compensating controller of this robot

under varying system delays.
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Note also that this design neglects other potentially important factors that will affect
accuracy of prediction. Firstly, in this design we do not include a mechanism,
equivalent to the planning buffer, to predict the future of other, independent variables
in the environment. Consider how a boxer might anticipate his opponent’s moves from
sensory clues and plan his own accordingly. Secondly, we also neglect, for now, the
case where different sensors may have different delays and assume that these

differences are not sufficiently significant to affect the state estimation.

6.7 Experiment exploring delay compensation

6.7.1 Overview

Using a second copy of the model robot as a surrogate for the real robot, we describe a
relatively simple experiment to test the effect on control performance of the delay
compensation elements of the design. In particular we seek to characterise the variation
in performance with changes in the overall system delay, the compensation time and
the simulation accuracy of the predictive model — the physics-based model of the

ECCERobot in this case. Three principal findings emerge.

Firstly, the experiment clearly confirms that performance controlling this structure is

maximised when delay compensation is matched precisely to the total system delay.

Secondly, if the compensation is mismatched to the actual delay, (too much or too little
compensation), then performance degrades significantly (by approximately 40% for a

100ms mismatch).

Finally, although delay compensation has a significant effect, this is no more a factor
than modelling inaccuracy itself, performance degrading by 30% for a 10% reduction in
model accuracy (measured as the average parameter deviation imposed between
model and surrogate robot). However, even on a 97.5% accurate model, if precise delay
compensation is neglected, then the error is compounded and performance reduces
steeply as uncompensated delay increases. Nevertheless, the problems arising from
modelling accuracy call into question the use of a model-based controller for this robot
unless the simulation time required by the prediction component of the delay

compensation can be reduced to fraction of its current value.
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6.7.2 Method

In order to induce planning errors caused by out-of-date state capture, we employ a
scenario where the robot shifts from responding to a simple arm-raising motor plan to
a second plan which moves a hand accurately to a target. By varying the planning
delay, the amount of compensation applied and the model accuracy we can
characterise the performance of the controller in managing this scenario under real
world conditions where delays and model accuracy could significantly impact
performance. Figure 46 schematically illustrates the scenario and shows the effects of

using an uncompensated and a compensated plan.

To investigate this we employ two main steps. Firstly, we must train the controller to
be capable of moving the hand to the target starting from any given position along its
fixed trajectory generated by the initial arm raising plan. This training is performed
under ideal conditions of zero delay, zero compensation and a perfect model of the

surrogate robot.
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Figure 45. The impact of sensorimotor delay on planning and use of compensation

The figure provides a conceptual illustration of an experiment based upon the control scenario where we wish the robot to shift
from responding to a simple arm-raising motor plan (Plan 1) to a second plan which moves a hand accurately to a target (Plan II).
(a) TRAINING. The planner is trained on an ideal zero delay system to move the hand to a fixed target T starting from any given
position (such as a or b) along its fixed trajectory generated by the initial arm raising plan (Plan I). After training an effective plan
can be generated by inputting the sensed hand position e.g: a & Plan ll(a) , b &Plan II(b), etc.

(b) UNCOMPENSATED DELAY. The hand reaches position a , where it is sensed and passed to the planner, generating Plan I(a).
During the resultant delay TDELAY (sum of transmission, planning etc) however, the hand has continued under Plan | to reach
position b. When the plan is finally applied the hand fails to reach T accurately.

(c) COMPENSATED DELAY. The hand reaches position a, where it is sensed. Before passing to the planner the model of the robot is
clocked forward in time by a compensation period TCOMP . The predicted position X of the hand is passed to the planner,
generating a Plan ll(x) intended to be considerably closer to the ideal Plan lI(b). By varying position a, TDELAY, TCOMP and the
model accuracy we may characterise the behaviour of the controller under conditions of delay and compensation.
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The second step tests the effects of altering the delay, compensation and model

accuracy for each of 4 starting points selected along the arm-raising trajectory.

6.7.2.1 Step 1 - training under ideal conditions

The first step is therefore for the controller to learn to reach to the target from different
starting hand positions. To do this, we employ again the synergy-based controller
developed in Chapter 4. but we reverse the problem state; specifically we now use a

fixed target location but a varying start location for the reaching hand.

All learning trials commence with the arm being raised under the same fixed motor
plan Mpreser, formed from a simple combination of synergies. Each trial commences
by reaching towards the target from a different point along the preset hand trajectory
generated by Mpggspr. The problem state can therefore be represented by the scalar
distance Dgr4pr moved by the hand along this fixed trajectory until reaching movement

to the target begins (see Figure 46A).

6.7.2.2 Step 2 — testing effects of delays, compensation and model accuracy
Once the controller has been trained to reach the fixed target reliably, starting from any
position along the preset hand trajectory (see Step 1 above), we may commence testing

the delay compensation design. The underlying strategy of the test is to simulate a set
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Figure 46. Experimental configuration to characterise the performance of the delay compensation design
Figure A shows how a problem state is generated from a random generated along the preset hand lift.
Figure B shows how the controller generates a delayed reaching plan after the physics model has been rolled
forward by a compensatory amount of time.
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of four possible (total) system delay values that could exist in the sensorimotor loop,
including the time to capture sensory data, transmit it, update the model state,
combine with the environment state, predict future world state, plan a revised motor
and update the motor signal buffer. We use Tpg 4y to denote this notional total system

delay.

To characterise the behaviour under compensation we plot, for each one of the four
system delay settings, the success of the reaching behaviour over a range of
compensation values. We are interested in whether the optimum compensation setting
for this non-trivial control subject can be consistently inferred from the system delay
and also in characterising the sensitivity of success to the precision with which delay is

measured and the resultant compensation set.

The physics-based model and a second copy acting as a surrogate “robot” are reset to
the same exact starting state and a random distance Dggysr is generated, representing
the distance that the hand is to be lifted before the state is sensed. In an uncompensated
system this distance would be used directly as the problem state input to the reaching

planner.

Figure 46b now illustrates the process. The known preset motor plan Mpgrgspr is
loaded, as a time series of motor signals, into the buffer (see section 6.6.5) which
outputs the motor control signals continuously to the “robot” and also to the model
(i.e. acting as efference copy). Once the buffer begins this work, then after some period
tsense the hand will have travelled its required distance, Dsgyse. Note that the physics
timestep remains at 3ms, the largest value where model stability could be maintained

(see modelling Chapter 3, section 3.7).

At this point tggysp the simulations and the buffer feed are now paused and the
“model” alone is clocked forwards by a delay compensation period T¢omp its
behaviour determined by reading ahead, from the buffer, the upcoming motor signals.
During this period, the model hand will move an additional distance, D¢y p. Note that
we do not simply allow the buffer to drive both model and robot for this period T¢opup
because we also wish to test the behaviour where Teoyp > Tpgray, i.€. where we have

over-compensated.

The total distance Dsrarr = Dspnsg + Dcomp that the modelled hand has now travelled

is now used as the driving problem state to generate a reaching plan, drawing upon on
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the learning undertaken earlier. The new plan is now written into the buffer, but
delayed by the system delay setting Tpgpay , i.e. by overwriting the current buffered
plan starting from the time (tsgysg + Tpgray)- It is critical to note that the buffer write
always uses the system delay Tpgp 4y, not the compensation time, T¢opp Which will be

set to a different value on every trial.

With the robot simulation and the buffer feed now restarted, the robot hand continues
on its preset lifting trajectory. The signals in the buffer forming the start of the actual
reaching plan begin to take effect at time (tsgysg + Tprray). The buffer continues, as
the robot hand finally leaves its preset path to begin to reach for the target. Reward is

accrued and the motor plan completes.

The simulations are then reset to the start conditions and the trial repeated 50 times
against the same problem state with a new value of T¢opyp Which is incremented 10ms

each time from Oms to 200ms.

We test for each of four settings for the total system delay Tpg 4y (Oms, 50ms, 100ms
and 150ms). This scale was chosen to allow the furthest hand position that can be input
to the planner (including the maximum compensation value of 200ms) to remain
within the outer limit of the effective range. As we are interested in comparative
performance, we do not plot the absolute reward but the fraction of the reward score
that accrued when the same problem state was addressed using an ideal system

without delay or compensation (Tpg 4y = 0, Tcomp = 0).

Note that as we are here interested in repeatable exploitation for comparisons, not
exploration for learning, all random elements are removed from these tests, including
generation of problem state and signal noise. We also test at four fixed problem states -
corresponding to early, middle and late points in the preliminary hand-lifting stage
(Dsgnse = 5%,30%,60%,90%) - in order to control for performance changes arising

when reaching is commenced from different points.

6.7.2.3 Results

The results for the four chosen problem states (Dsgnsg = 5%,30%,60%,90%) are shown
in Figure 47. All four graphs consistently confirm that, as suggested (see section 6.6.5) ,
the peak performance is obtained where the delay compensation matches the imposed
system delay, i.e. where Tpgray = Tcomp. When compared with an ideal (no-delay)

controller, performance consistently falls off near-symmetrically for both over and
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under-compensation in a steepening response curve, falling at approximately 30
percentage points per second in the first 50ms of mis-compensation, steepening to 150

percentage points lost per second after 100ms.

We also note that, for the accurate model the slightly flattened curve preceding the
peak (e.g. see 100ms blue trace) shows that under-compensation performance holds up

marginally better than over-compensation. We suggest this may be due to a greater
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Figure 47. Delay-compensated reaching performance over a range of fixed system delays and reaching commencement
positions

Each trace shows reaching performance variation over a range of delay compensation applied to a simulated robot system with a
fixed system delay. Performance is measured relative to the reward obtained by a zero delay, zero compensation system reaching
from the start position allocated to each figure. This is the first point plotted on the zero-delay (purple) trace.

Each figure shows four traces, each for a different setting for the fixed system delay set at Oms (purple), 50ms (orange), 100ms
(blue) and 150ms (green). The four figures repeat the same test, but use a different position along the trajectory of a lifting hand
as the start point for a reaching movement to the target. The position allocated to each is indicated on the figure.
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likelihood of striking the target nevertheless even if the hand should aim too high
rather than too low. This will occur if the movement is planned using an earlier state
(under-compensation), as the hand is relatively lower down in this case. Since the
performance is measured in comparison with that obtained by an equivalent test of a
zero delay system there is little change in the peak levels of the response graphs;
however, the fall-off rate in performance varies to a small degree between the four
charts, corresponding to different reaching start points. There is no clear pattern
however, and may therefore be due to more or less performance sensitivity to the
particular synergy weighting combination selected by the planner for the different start

points.

6.7.3 Characterising Effects of Model Divergence

Up to this point, the experiment has employed a perfect match of model and surrogate
“robot” which would not be possible using a real robot as no model would match it
perfectly. We therefore also consider whether and how the relationship of Tpg 4y and
Tcomp changes with degrees of model divergence. To this end we generate three further
robot surrogates by randomly varying (using a Gaussian distribution) a subset of
model data by an average of 2.5%, 5% and 10% of their original values respectively,
resulting in models of 97.5%, 95% and 90% accuracy. Note that we select model
parameter values that can be altered without incurring lengthy modelling issues
through morphology changes. We therefore include muscle attachment points, bone
and motor weights, pulley locations and centre of gravity positions and maintain

left/right mirroring whilst avoiding morphology parameters such as limb length.

For these altered models we employ only the earliest (Dsgysg = 5% full range) of the
four problem states that were tested for the perfect model. This is to minimise the
divergence between the model and robot states before the problem state is even

reached, recalling that the planner has been trained on the perfect model.

6.7.3.1 Results
The results for performance under delay compensation for the three altered models are

shown in Figure 48 alongside the unaltered model.

The first important observation is that the performance degradation due to model
inaccuracy alone is surprisingly high for this structure, suggesting that, whilst delay

compensation has a significant effect, modelling accuracy will be a very substantial
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Figure 48. Effects of model accuracy on delay-compensated reaching performance of simulated ECCERobot reaching

Each plot shows reaching performance variation over a range of delay compensation applied to a simulated robot system with a
fixed system delay. Performance is measured relative to the reward obtained by a zero delay, zero compensation system with a
perfect (100%) model (the first point plotted on the purple trace, top left figure). Each figure shows four plots, each for a different
setting for the fixed system delay set at Oms (purple), 50ms (orange), 100ms (blue) and 150ms (green). The four figures repeat the
same test, using the same hand position for the commencement of reaching to the target, but for each a different model is used
for planning, matching the surrogate robot model with an accuracy indicated on the figures. Model variation is obtained by
randomly varying a set of the model parameters using a Gaussian distribution with a mean equating to a fixed fraction above or
below the robot model’s equivalent parameter value.

factor in the success of this controller design. For example, an optimally compensated
system with model accuracy of 90% performs at around 71% of a perfect model,
equivalent to the effect of a 104ms under-compensation for a perfect model. However
the compound effect of both a lack of delay compensation and slightly inaccurate
modelling shows a far larger drop to only 5% of a zero-delay, perfect model. This
suggests that delay-compensation must be considered a particularly important
strategy if models are not highly accurate, which is almost certain to be the case with a

real robot.
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Once again, as expected, the peak performance occurs where Tpgay = Tcomp- However,
we now see consistently steeper curves as model accuracy decreases, in particular on
the over-compensation side, showing that sensitivity to the compensation setting is
increasing. This can be explained by considering that the model state is also diverging

from the robot’s during the excess compensation period.

For each of the inaccurate models we also now note a reduction in the peak
performance as higher settings for system delay are employed, totalling on average a
5.8% drop from zero delay through to 150ms. This is not surprising if we again
consider the increasing amount that the model state is being rolled forward in time
before the reaching movement is planned. This means the real and modelled states

have diverged further causing an inaccurate reaching plan to be generated.

6.8 Discussion and Conclusion

We have derived and presented a design for a continuous controller for the
ECCERobot. The design was selected for compatibility with the model already
developed for the robot motor planner and is grounded on the proven approach of
model predictive control but contains novel elements, particularly in the context of
controlling of such a complex, musculoskeletal robot. These include a physics-based
forward model, a Kinect sensor-based vision system for 3D mesh capture of the robot’s
surroundings and identification of dynamic elements, integration of the environment

within the same physics engine and a muscle synergy based motor planner.

Although elements of the design remain unproven to date, particularly the integration
of Kalman filtering with a complex physics-based forward model, a pilot version of the
environment capture system has been developed ( Devereux et al. 2011) and the effects
of modelling accuracy and delay compensation design are characterised in experiments

presented here.

These experiments have demonstrated a significant benefit of applying delay-
compensation techniques to a model-based controller for a structure such as the
ECCERobot. The results support the principle that a precise match between
compensation and overall system delay provides the best performance and that
sensitivity is high for this complex simulated structure, the performance degrading

rapidly with over or under compensation.
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However, for such a structure, the performance degradation suffered by inaccurate
modelling is also considerable, such that doubt must cast upon the benefit of a forward
model-based controller approach in cases where the prediction and modelling
overheads themselves contribute significantly to the overall system delay. For a
physics-engine based model this is further compounded since the prediction delay is

not fixed but itself increases with the amount of time requiring simulation.

In the case of the relatively inaccurate and slow performing model of the ECCERobot
developed to date (running at approximately real time, see Chapter 3 - Modelling) a
strong case can be made for directing short term efforts towards reinforcement
learning based on the robot itself (see Chapter 4 — Future Work) and eliminating the
physics model from the controller. This approach lacks explicit delay compensation,
yet may allow indirectly for its effects by mapping reward generated directly to the
sensed starting state, regardless of how much later the motor plan actually activates.
However, for any problem where the starting state can be dynamic this would likely
require an extension of the state capture, adding some kinodynamic elements such as

the hand velocity vector (see also section 5.7.3).

Nevertheless, in the longer term, when a significantly faster simulation becomes
available- most likely via GPU acceleration - then the benefits of passing an integrated
simulated world state (robot plus environment) to the planner will likely prove the

most rewarding path.

We also suggest that where a robot under control has dynamics sufficiently simple to
allow fast physics-based modelling and Kalman filtering then this architecture -
harnessing three dimensional environment capture, a physics engine with a merged
model of the robot and environment, plus a delay compensation mechanism - holds

considerable promise as a generic control solution.

Finally, it is intriguing to consider potential parallels with human perception in motor
control tasks. As we have discussed, the brain appears far better at compensating for
delay issues than any comparable artificial controller, and we have shown that a
successful control mechanism for a complex compliant structure with high sensitivity
to sensorimotor delays can be one that drives its planning from a predicted state. A
range of studies in both cognitive science and neurobiology directly support the notion

that the self-perceived “current state” employed for planning a motor task may not
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comprise the state captured at the moment of sensory input but rather a prediction. For
example, subjects performing a motor movement were found to be more conscious of
the relevant point in their planned movement than their actual movement — which

they had been induced to unconsciously distort (Fourneret & Jeannerod 1998).

In general, supporters of this theory previously have postulated that incoming sensory
information represents an out-dated state from the past, therefore a predictive forward
model driven from motor efferent copy can be used to estimate the state “now” which

is then used for the basis of action selection.

However, what is interesting is that our controller appeared to have no need for the
state of the robot “now”. Instead, a past state is rolled directly forward to a future state
for use in planning, in order to compensate for all delays. It is therefore intriguing to
speculate that what we ourselves consciously perceive as “how things are right now”

may, in fact, comprise a prediction of the world in the near future.
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Chapter 7 :

Conclusion

7.1 Aims of the thesis

The aim of this thesis was to begin to develop and test an effective control approach for
anthropomimetic robots, such as the ECCERobot, a musculoskeletal, biomimetic
humanoid torso. This new class of robots have the potential to be deployed far more
safely in safely in human environments than their conventional stiff counterparts but

offer a significant challenge to conventional control approaches.

We therefore examined the particular issues of the associated control problem and
considered a number of established or emerging control approaches, including
evidence from biological motor systems. We conclude that bio-inspired approaches
hold the most promise for controlling a biomimetic structure that would be

considered highly challenging by conventional robot controllers.

We consequently reviewed in greater detail a range of bio-inspired approaches with a
view to selecting for investigation one with a strong combination of novelty, promise,
and interest. In particular, we focused upon recent strong evidence from biological
studies demonstrating the extent to which effective motor control of frogs, cats or
humans appears to draw heavily upon a combination of advantageous, co-evolved
natural dynamics and simple fixed-weight activations of precise muscle groupings

(synergies).

We concluded from the evidence that a promising and relatively novel study would
test the hypothesis that drawing upon a muscle group co-activation approach for an
extensive biomimetic robot structure with potentially rich natural dynamics may
facilitate significantly simpler search and learning techniques to be deployed than the
complex algorithms currently under development for generic, high-dimensional

control subjects.
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Of these simpler methods, we chose to trial an approach built primarily from
reinforcement learning (RL) fundamentals, citing as reasons its bio-inspired nature
and “action discovery” potential for exploiting natural dynamics of the full body. We
therefore proposed, since effective synergy patterns for a given musculoskeletal robot
would be unknown, to derive a simple reinforcement learning approach intended to
allow these patterns to emerge, in particular those that aid linearization of the control.
We also sought to draw upon optimal control theories to encourage the emergence of
smoother, more natural movement by incorporating signal dependent noise and trial

repetition.

We also considered whether our selected approach should be developed against the
physical robot or a modelled approximation, at least for preliminary investigations.
We briefly reviewed available full body models and musculoskeletal model building
tools, concluding that none were fit for the purpose of an anthropomimetic robot
controller. We therefore proposed employing a fast, modern physics simulation
engine to construct a complete physics-based model which incorporates actuation
modelling, demonstrates full body natural dynamics and can potentially predict

dynamic interaction (e.g. collision) with sensed environment objects.

Finally, we considered the problem of designing a continuous control architecture for
this class of robots and whether the physics model developed could be reused, not
only as a motor planner, but to assist with significant standard control issues such as

corrective state estimation and delay compensation.

7.2 Original Contributions of Thesis
Here we summarise and defend the original contributions asserted in this thesis and

associated published work.

7.2.1 A physics-based forward model of a complete musculoskeletal robot torso

Although numerous biomechanical models of individual body parts or regions exist,
both as simplified/idealised forms and detailed biologically-based musculoskeletal
simulations, very few full-body human models exist and none of comparative
musculoskeletal robots. Those tools that exist (e.g. AnyBody™ ) are not designed as
control platforms, but as medical or sporting tools and take as input real captured

motions rather than muscle activation signals. For the ECCERobot we required a open
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source based and relatively fast simulation model of a complex hand-built robot which,
by necessity, is constructed with real materials and constraints as an engineering

approximation to a human.

We have therefore developed an open-source, physics-engine based model of a
complete musculoskeletal robot torso, reverse-engineered from the anthropomimetic
ECCERobot, which was constructed using Grays Anatomy as a guide. The model is
based on the standard Bullet Physics engine (Coumans n.d.) and adds a number of
custom-modelled components include the elastic muscles, motors, gearboxes, pulleys
and joint friction. A stable model is available with 55 elastic muscles and 88 degrees of
freedom that can act as a biomimetic structure of high complexity. The model is
implemented in standard C++ and runs in real time on a standard, albeit high-end,

Linux PC (see Diamond & Holland 2012; Wittmeier et al. 2012; Wittmeier et al. 2011).

7.2.2 Simple reinforcement learning can produce reaching control of complex,
musculoskeletal robot model by using an approach of muscle co-activations,
simple shared driving signals and natural dynamics

There are few studies published to date of synergy-based controllers leveraging natural

dynamics in biomimetic musculoskeletal structures. We surmise this is because both

the controlled subject (in robotics, at least) and the synergy approach remain relatively
unconventional for now and because the biological data supporting the widespread
existence of this simple control approach in nature is relatively new and conclusions
remains disputed (Tresch & Jarc 2009; Kutch et al. 2008; Valero-Cuevas et al. 2009; Ting

& McKay 2007). Few studies consider synergies across diverse body parts, such the

arm and torso muscles (e.g. Ma & Feldman 1995). Of all the studies considered, none

address an extensive humanoid body model with associated body-wide dynamics,

focusing almost exclusively on body part models; of primarily the frog leg (e.g.

Berniker et al. 2009), the human arm (e.g. Fagg et al. 2002), or the human leg (e.g.

Neptune et al. 2009). Only one study, focused on modelling the cerebellum, combines

synergies with reinforcement learning (Fagg et al. 2002) and then only to locate

combinations of pre-rolled generic synergy patterns to control a very simplified model

of an arm. No studies located apply this approach to musculoskeletal robots.

We therefore suggest that we have devised a promising, relatively simple, but effective
control approach for a complex, full-torso, musculoskeletal, biomimetic humanoid

structures by employing a novel combination of bio-inspired approaches, namely:
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weighted muscle co-activation patterns, simple shared driving signals, reinforcement
learning and natural dynamics. The approach has been shown to be effective in
controlling a complex physics modelled simulation of a complete anthropomimetic

robot to produce reaching to sequentially presented, randomly positioned targets.

7.2.3 A low dimensional reaching controller for biomimetic musculoskeletal
modelled robot based on extracted emergent synergies

We have also demonstrated that a set of emergent set of implied “candidate synergy”
fragmentary patterns can be extracted from the learned full motor-co-activation plans
and that these may be re-used directly in the same learning controller, achieving lower
dimensionality by replacing individually activated muscles with these synergy
patterns. This was found to both speed learning and performance level of the same
task and to extend capability relatively rapidly to other reaching-related tasks
requiring control of different dynamic forms triggered in the structure. By
characterising the behaviour of this synergy-based controller when learning a range of
tasks we conclude that it may be applied to rapidly assimilate other tasks, but that the
level of performance drops commensurately with divergence from the original simple

task.

This form of muscle-based control based on extracted synergies has been primarily
studied with modelled frog legs. The stand-out comparable study of this kind
(Berniker et al. 2009) directly analyses the natural dynamics of a biomimetically-
modelled frog leg resulting in a low dimensional model. Key synergies that best
control these dimensions with a linear response are identified and employed in an
effective low dimensional controller. We suggest these results underpin and support
our own findings but without duplication as they were obtained via an alternative

approach and employed a very different, but still bio-inspired, control subject.

7.2.4 Optimal control principles can be exploited through RL trial repetition to
refine movements

We also offer some experimental evidence supporting the idea that the issuing of RL
reward across repeated trials against the same problem state can bring about increased
endpoint reliability of a reaching movement under signal-dependent Gaussian motor
noise, resulting in more naturalistic movement of a biomimetic structure - as judged by

chi-squared similarity to the well known bell-curve velocity profile observed in nature.
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7.2.5 Biological implications: support for synergy-based motor control theories

We conclude by arguing that the work offers some implications in understanding
motor learning in biology. This primarily comprises strong support for theories
espousing the effectiveness of synergy-based muscle control over highly complex,
compliant, musculoskeletal structures. We have also demonstrated that the emergence
of such synergies under relatively simple reinforcement learning, a form of learning

also strongly implicated in the brain (Schultz 1998; Schultz 2002; Chorley & Seth 2011).

7.2.6 An MPC-based design for continuous control of an anthropomimetic robot
incorporating delay compensation
We have derived a design for a continuous controller for the anthropomimetic
ECCERobot, incorporating the model already developed for the robot motor planner.
The design is grounded on the proven approach of model predictive control but
contains novel elements, particularly in the context of controlling of such a complex,
musculoskeletal robot. These include a physics-based forward model, a Kinect sensor—
based vision system for 3D mesh capture of the robot’s surroundings and
identification of dynamic elements, integration of the environment within the same
physics engine and a muscle synergy based motor planner. Whilst elements of the
design remain unproven to date, particularly the integration of Kalman filtering with a
complex physics-based forward model, a pilot version of the environment capture
system has been developed (Devereux et al. 2011) and the effects of modelling accuracy
and delay compensation design are characterised in an experiment demonstrating a
significant benefit of applying delay-compensation techniques to a model-based
controller for a structure such as the ECCERobot. We find that a precise match between
compensation and overall system delay provides the best performance but that
sensitivity is high for this complex simulated structure, the performance degrading

rapidly with over or under compensation.

We also find that with such a highly non-linear model performance degradation
suffered by inaccurate modelling is also considerable, such that doubt must cast upon
the benefit of a forward model-based controller approach in cases where the prediction
and modelling overheads themselves contribute significantly to the overall system

delay.

Finally, we suggest that where the robot under control has dynamics sufficiently

simple to allow fast physics-based modelling and Kalman filtering then the
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architecture design proposed here - harnessing a physics model, environment capture

and delay compensation - holds considerable promise as a generic control solution.

7.3 Future Work
Recommendations for future work to refine the reaching control algorithm and apply it
to the physical robot are detailed in Chapter 5 (section 5.7). Recommendations for the

MPC-based continuous controller are provided in Chapter 6 (section 6.8).



165

Chapter 8 :

References

Ariff, G. et al., 2002. A real-time state predictor in motor control: study of saccadic eye
movements during unseen reaching movements. Journal of Neuroscience, 22(17),
pp-7721-7729.

Atherton, D., 2006. Basic Nonlinear Control Systems. In E. D. Sontag & M. Thoma, eds.
Simulation. EOLSS, pp. 547-562.

Balakrishnan, A. V., 1978. The Kalman Filter J. Benesty, M. M. Sondhi, & Y. Huang,
eds. The Mathematical Intelligencer, 1(2), pp.90-92.

Barto, A., 1995. Reinforcement learning: Reinforcement learning in motor control. In M.
A. Arbib, ed. The handbook of brain theory and neural networks. MIT Press, pp. 804—
813.

Beer, R., 1995. On the Dynamics of Small Continuous-Time Recurrent Neural
Networks. Adaptive Behavior, 3(4), pp.469-509.

Bellman, R., 1954. Some Problems in the Theory of Dynamic Programming.
Econometrica, 22(1), pp.37-48.

Berniker, M. et al., 2009. Simplified and effective motor control based on muscle
synergies to exploit musculoskeletal dynamics. Proceedings of the National Academy
of Sciences of the United States of America, 106(18), pp.7601-7606.

Bienenstock, E., Cooper, L. & Munro, P., 1982. Theory for the development of neuron
selectivity: orientation specificity and binocular interaction in visual cortex.
Journal of neuroscience, 2(1), pp.32—48.

Bizzi, E. et al., 2008. Combining modules for movement. Brain research reviews, 57(1),
pp-125-33.

Blakemore, S., Wolpert, D. & Frith, C., 2000. Why can’t you tickle yourself?
NeuroReport, 11(11), pp.R11-R16.



166

Te Boekhorst, R., Lungarella, M. & Pfeifer, R., 2003. Dimensionality reduction through
sensory-motor coordination. Artificial Neural Networks and Neural Information
Processing — Lecture Notes in Computer Science, 2714, pp.496-503.

Bongard, J., 2009. Biologically Inspired Computing. IEEE Computer, 42(4), pp.95-98.

Bongard, J., 2011. Morphological change in machines accelerates the evolution of
robust behavior. Proceedings of the National Academy of Sciences of the United States of
America, 108(4), pp.1234-1239.

Brashers-Krug, T., Shadmehr, R. & Bizzi, E., 1996. Consolidation in human motor
memory. Nature, 382(6588), pp.252-255.

Brooks, R., 1991a. Intelligence Without Reason. In Artificial intelligence critical concepts.
Taylor & Francis, pp. 569-595.

Brooks, R., 1991b. Intelligence without representation. Artificial Intelligence, 47(1-3),
pp-139-159.

Burns, B. & Brock, O., 2007. Single-Query Motion Planning with Utility-Guided
Random Trees. In Proceedings 2007 IEEE International Conference on Robotics and
Automation. IEEE, pp. 3307-3312.

Carrillo, R. et al., 2008. A real-time spiking cerebellum model for learning robot control.
Bio Systems, 94(1-2), pp.18-27.

Cheung, V. et al., 2005. Central and sensory contributions to the activation and
organization of muscle synergies during natural motor behaviors. The Journal of
neuroscience : the official journal of the Society for Neuroscience, 25(27), pp.6419-34.

Cheung, V. et al., 2009. Stability of muscle synergies for voluntary actions after cortical
stroke in humans. Proceedings of the National Academy of Sciences of the United States
of America, 106(46), pp.19563-19568.

Choi, Y., You, B. & Oh, S., 2004. On the stability of indirect ZMP controller for biped
robot systems. In 2004 IEEE/RS] International Conference on Intelligent Robots and
Systems (IROS). IEEE, pp. 1966-1971.

Chorley, P. & Seth, A., 2011. Dopamine-signaled reward predictions generated by
competitive excitation and inhibition in a spiking neural network model. Frontiers
in computational neuroscience, 5(May), p.21.

Choset, H. et al., 2005. Principles of Robot Motion: Theory, Algorithms, and
Implementations [Book Review]. IEEE Robotics & Automation Magazine, 12(3),
pp-110-110.



167

Cliff, D., Harvey, I. & Husbands, P., 1993. Incremental evolution of neural network
architectures for adaptive behaviour. In Behaviour. Citeseer, pp. 39-44.

Collewijn, H., Erkelens, C. & Steinman, R., 1988. Binocular co-ordination of human
horizontal saccadic eye movements. The Journal of Physiology, 404(1), pp.157-182.

Coumans, E., Bullet Physics Engine. Available at: www .bulletphysics.org.

Cueli, J. & Bordons, C., 2008. Iterative nonlinear model predictive control. Stability,
robustness and applications. Control Engineering Practice, 16(9), pp.1023-1034.

D’Avella, A. et al., 2006. Control of fast-reaching movements by muscle synergy
combinations. The Journal of neuroscience : the official journal of the Society for
Neuroscience, 26(30), pp.7791-810.

D’Avella, A. et al., 2008. Modulation of phasic and tonic muscle synergies with
reaching direction and speed. Journal of neurophysiology, 100(3), pp.1433-54.

D’Avella, A. & Bizzi, E., 2005a. Shared and specific muscle synergies in natural motor
behaviors. Proceedings of the National Academy of Sciences of the United States of
America, 102(8), pp.3076-3081.

D’Avella, A. & Bizzi, E., 2005b. Shared and specific muscle synergies in natural motor
behaviors. Proceedings of the National Academy of Sciences of the United States of
America, 102(8), pp.3076-81.

D’Avella, A., Portone, A. & Lacquaniti, F., 2011. Superposition and modulation of
muscle synergies for reaching in response to a change in target location. Journal of
neurophysiology, 106(6), pp.2796-812.

D’Avella, A., Saltiel, P. & Bizzi, E., 2003. Combinations of muscle synergies in the
construction of a natural motor behavior. Nature neuroscience, 6(3), pp.300-8.

D’Avella, A. & Tresch, M., 2002. Modularity in the motor system: decomposition of
muscle patterns as combinations of time-varying synergies T. G. Dietterich, S.
Becker, & Z. Ghahramani, eds. Advances in Neural Information Processing Systems
14, 14, pp.141-148.

Demiris, Y. & Meltzoff, A., 2008. The Robot in the Crib: A Developmental Analysis of
Imitation Skills in Infants and Robots. Infant and child development, 17(1), pp.43-53.

Der, R., 1999. Emergent robot behavior from the principle of homeokinesis. In
Experiments with the MiniRobot Khepera Proceedings of the 1st International Khepera
Workshop99. Citeseer.



168

Desmurget, M. & Grafton, S., 2000. Forward modeling allows feedback control for fast
reaching movements. Trends in Cognitive Sciences, 4(11), pp.423-431.

Devereux, D. et al.,, 2011. Using the Microsoft Kinect to model the environment of an
anthropomimetic robot. Proc. of the 2nd IASTED Intl. Conf. on Robotics (Robo2011),
Pittsburgh, USA.

Diamond, A. et al., 2012. Anthropomimetic Robots: Concept, Construction and
Modelling. International Journal of Advanced Robotic Systems. ISBN: 1729-8806,
InTech, DOI: 10.5772/52421.

Diamond, A., Holland, O. & Marques, H., 2011. The role of the predicted present in
artificial and natural cognitive systems. Frontiers in Artificial Intelligence and
Applications, 233: Biolo, pp.88-95.

Drew, T., Kalaska, J. & Krouchev, N., 2008. Muscle synergies during locomotion in the
cat: a model for motor cortex control. The Journal of Physiology, 586(Pt 5), pp.1239-
1245.

Eagleman, D. & Sejnowski, T., 2007. Motion signals bias localization judgments : A
unified and Frohlich illusions. Neurobiology, 7, pp.1-12.

Erbatur, K. & Kurt, O., 2009. Natural ZMP Trajectories for Biped Robot Reference
Generation. IEEE Transactions on Industrial Electronics, 56(3), pp.835-845.

Fagg, A. et al.,, 2002. A model of cerebellar learning for control of arm movements
using muscle synergies. In 1997 IEEE International Symposium on Computational
Intelligence in Robotics and Automation CIRA’97. IEEE Comput. Soc. Press, pp. 6-12.

Feldman, A. et al., 1998. Tests of the Equilibrium Point Hypothesis. Motor Control, 2(3),
pp-189-205.

Flanagan, J. et al., 1999. Composition and decomposition of internal models in motor
learning under altered kinematic and dynamic environments. The Journal of
neuroscience : the official journal of the Society for Neuroscience, 19(20), p.RC34.

Flanagan, J. & Wing, A., 1997. The role of internal models in motion planning and
control: evidence from grip force adjustments during movements of hand-held
loads. The Journal of neuroscience : the official journal of the Society for Neuroscience,
17(4), pp-1519-28.

Flash, T. & Hochner, B., 2005. Motor primitives in vertebrates and invertebrates.
Current opinion in neurobiology, 15(6), pp.660-6.



169

Fourneret, P. & Jeannerod, M., 1998. Limited conscious monitoring of motor
performance in normal subjects. Neuropsychologia, 36(11), pp.1133—40.

Franklin, G., Powell, J. & Emami-Naeini, A., 2002. Feedback Control of Dynamic Systems,
Addison Wesley.

Ganor, I. & Golani, I., 1980. Coordination and integration in the hindleg step cycle of
the rat: kinematic synergies. Brain research, 195(1), pp.57-67.

Garcia, C., Prett, D. & Morari, M., 1989. Model predictive control: Theory and
practice— A survey. Automatica, 25(3), pp.335-348.

Giszter, S., Mussa-Ivaldi, F. & Bizzi, E., 1993. Convergent force fields organized in the
frog’s spinal cord. Journal of Neuroscience, 13(2), pp.467-91.

Gomi, H. & Kawato, M., 1996. Equilibrium-point control hypothesis examined by
measured arm stiffness during multijoint movement. Science, 272(5258), pp.117-
20.

Gottlieb, G., 1998. Rejecting the equilibrium-point hypothesis. Motor control, 2(1),
pp-10-2.

Gravato Marques, H. et al., 2013. Self-organization of reflexive behavior from
spontaneous motor activity. Biological cybernetics, 107(1), pp.25-37.

Gray, H., 1901. Grays Anatomy (Classic Collector’s Edition) P. T. Pick & R. Howden, eds.,
Bounty Books.

Grossberg, S., 1995. The Attentive Brain. American Scientist, 83, pp.438—449.

Grossberg, S. & Myers, C., 2000. The resonant dynamics of speech perception:
interword integration and duration-dependent backward effects. Psychological
review, 107(4), pp.735-67.

Grush, R., 2004. The emulation theory of representation: Motor control, imagery, and
perception. Behavioral and Brain Sciences, 27(03), pp.377-396.

Gu, X. & Ballard, D., 2006a. Motor Synergies for Coordinated Movements in
Humanoids. In 2006 IEEE/RS] International Conference on Intelligent Robots and
Systems. IEEE, pp. 3462-3467.

Gu, X. & Ballard, D., 2006b. Robot Movement Planning and Control Based on
Equilibrium Point Hypothesis. In 2006 IEEE Conference on Robotics, Automation and
Mechatronics. IEEE, pp. 1-6.



170

Hamilton, A., Jones, K. & Wolpert, D., 2004. The scaling of motor noise with muscle
strength and motor unit number in humans. Experimental Brain Research, 157(4),
pp-417-430.

Harris, C. & Wolpert, D., 1998a. Signal-dependent noise determines motor planning.
Nature, 394(6695), pp.780—4.

Harris, C. & Wolpert, D., 1998b. Signal-dependent noise determines motor planning.
Nature, 394(6695), pp.780—4.

Hart, C. & Giszter, S., 2010. A neural basis for motor primitives in the spinal cord. The
Journal of neuroscience : the official journal of the Society for Neuroscience, 30(4),
pp.1322-36.

Hart, C. & Giszter, S., 2004. Modular premotor drives and unit bursts as primitives for
frog motor behaviors. The Journal of neuroscience : the official journal of the Society for
Neuroscience, 24(22), pp.5269-82.

Haruno, M., Wolpert, D. & Kawato, M., 2001. Mosaic model for sensorimotor learning
and control. Neural Computation, 13(10), pp.2201-2220.

Hebb, D., 1950. The Organization of Behavior; A Neuropsychological Theory Erlbaum,
ed. The American Journal of Psychology, 63(4), p.633.

Hinder, M.R. & Milner, T.E., 2003. The case for an internal dynamics model versus
equilibrium point control in human movement. The Journal of Physiology, 549(Pt 3),
pp-953-963.

Hitomi, K. et al., 2006. Reinforcement learning for quasi-passive dynamic walking of an
unstable biped robot. Robotics and Autonomous Systems, 54(12), pp.982-988.

Holland, O. & Knight, R., 2006. The Anthropomimetic Principle. In Proceedings of the
AISB06 Symposium on Biologically Inspired Robotics.

Von Holst, E. & Mittelstaedt, H., 1950. Das Reafferenzprinzip. Naturwissenschaften,
37(20), pp-464-476.

Ingram, J. et al., 2008. The statistics of natural hand movements. Experimental Brain
Research, 188(2), pp.223-36.

Ivanenko, Y. et al., 2005. Coordination of locomotion with voluntary movements in
humans. Journal of Neuroscience, 25(31), pp.7238-7253.

Izhikevich, E., 2007. Solving the distal reward problem through linkage of STDP and
dopamine signaling. Cerebral Cortex, 17(10), pp.2443-52.



171

Izhikevich, E. & Desai, N., 2002. The Relationship Between Spike-Timing-Dependent
Plasticity (STDP) and Sliding Threshold (BCM) Synaptic Modification.
Neurosciences, pp.1-2.

Jantsch, M., Wittmeier, S. & Knoll, A., 2010. Distributed control for an anthropomimetic
robot. In 2010 IEEE/RS] International Conference on Intelligent Robots and Systems.
IEEE, pp. 5466-5471.

Jones, K., Hamilton, A. & Wolpert, D., 2002. Sources of signal-dependent noise during
isometric force production. Journal of Neurophysiology, 88(3), pp.1533-1544.

Kagami, S. et al.,, 2003. Humanoid Arm Motion Planning using Stereo Vision and RRT
Search. In Proceedings of the 2003 IEEE/RS] International Conference on Intelligent
Robots and Systems. pp. 2167-2172.

Kargo, W. et al.,, 2010. A Simple Experimentally Based Model Using Proprioceptive
Regulation of Motor Primitives Captures Adjusted Trajectory Formation in Spinal
Frogs. Journal of Neurophysiology, 103(1), pp.573-590.

Kargo, W. & Giszter, S., 2000. Rapid correction of aimed movements by summation of
force-field primitives. Journal of Neuroscience, 20(1), pp.409-26.

Kavraki, L. et al., 1996. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), pp.566—
580.

Kawato, M., 1999. Internal models for motor control and trajectory planning. Current
opinion in neurobiology, 9(6), pp.718-27.

Kawato, M. & Gomi, H., 1991. Model of four regions of the cerebellum. In Proceedings of
the 1991 IEEE International Joint Conference on Neural Networks. IEEE, pp. 410-419.

Kelso, J., 1977. Planning and efferent components in the coding of movement. Journal of
Motor Behavior, 9(1), pp.33—47.

Kilgard, M. & Merzenich, M., 1995. Anticipated stimuli across skin. Nature, 373(6516),
p.663.

Klein-Breteler, M., Meulenbroek, R. & Gielen, S.C., 2002. An evaluation of the
minimum-jerk and minimum torque-change principles at the path, trajectory, and
movement-cost levels. Motor control, 6(1), pp.69-83.

Kobayashi, K. & Hiraishi, K., 2012. Self-triggered model predictive control with delay
compensation for networked control systems. In IECON 2012 - 38th Annual
Conference on IEEE Industrial Electronics Society. IEEE, pp. 3200-3205.



172

Kober, J., Oztop, E. & Peters, J., 2010. Reinforcement learning to adjust robot
movements to new situations. Learning, pp.2650-2655.

Kober, J. & Peters, J., 2009. Learning motor primitives for robotics. In 2009 IEEE
International Conference on Robotics and Automation. IEEE, pp. 2112-2118.

Kober, J. & Peters, J., 2010a. Policy Search for Motor Primitives in Robotics. Machine
Learning, 84(1-2), pp.1-8.

Kober, J. & Peters, J., 2010b. Practical Algorithms for Motor Primitives in Robotics.
Robotics, 17(2), pp.1-8.

Korb, K.B., 1998. The frame problem: An Al fairy tale. Minds and Machines, 8(3),
pp-317-351.

Kutch, J. et al., 2008. Endpoint Force Fluctuations Reveal Flexible Rather Than
Synergistic Patterns of Muscle Cooperation. Journal of Neurophysiology, 100(5),
pp-2455-2471.

Kwon, W., Bruckstein, A. & Kailath, T., 1982. Stabilizing state-feedback design via the
moving horizon method. In 21st IEEE Conference on Decision and Control. IEEE, pp.
234-239.

Lackner, J. & Dizio, P., 1994. Rapid adaptation to Coriolis force perturbations of arm
trajectory. Journal of neurophysiology, 72(1), pp.299-313.

Ladd, A. & Kavraki, L., 2004. Fast Tree-Based Exploration of State Space for Robots
with Dynamics. In Algorithmic Foundations of Robotics VI. Springer, STAR 17, pp.
297-312.

Lapointe, N. et al., 2009. Specific role of dopamine D1 receptors in spinal network
activation and rhythmic movement induction in vertebrates. Journal of Physiology,
587(Pt 7), pp.1499-511.

Latombe, J., 1991. Robot Motion Planning. In B. Wah, ed. Wiley Encyclopedia of Computer
Science and Engineering. Kluwer Academic Publishers, pp. 2439-2446.

LaValle, S. & Kuffner, J., 2001. Randomized Kinodynamic Planning. The International
Journal of Robotics Research, 20(5), pp.378-400.

LaValle, S.M., 2006. Planning Algorithms S. M. Lavalle, ed., Cambridge: Cambridge
University Press.

Levine, W., 1996. The Control Handbook W. S. Levine, ed., CRC Press.



173

Li, J. et al., 2008. Bayesian network modeling for discovering “dependent synergies”
among muscles in reaching movements. IEEE Transactions On Bio-Medical
Engineering, 55(1), pp.298-310.

Lichtwark, G. & Barclay, C., 2010. The influence of tendon compliance on muscle
power output and efficiency during cyclic contractions. The Journal of experimental
biology, 213(5), pp.707-14.

Lungarella, M. et al., 2003. Developmental robotics: a survey. Connection Science, 15(4),
pp-151-190.

Lungarella, M. & Sporns, O., 2006. Mapping Information Flow in Sensorimotor
Networks K. Friston, ed. PLoS Computational Biology, 2(10), p.12.

Luque, N. et al., 2011. Adaptive cerebellar spiking model embedded in the control
loop: context switching and robustness against noise. International Journal of Neural
Systems, 21(05), pp.385—401.

Ma, S. & Feldman, A., 1995. Two functionally different synergies during arm reaching
movements involving the trunk. Journal of Neurophysiology, 73(5), pp.2120-2122.

Marques, H. et al., 2010. ECCE1: the first of a series of anthropomimetic
musculoskeletal upper torsos. In 10th IEEERAS International Conference on
Humanoid Robots. IEEE, pp. 391-396.

Matthews, P., 1969. Evidence that the secondary as well as the primary endings of the
muscle spindles may be responsible for the tonic stretch reflex of the decerebrate
cat. The Journal of Physiology, 204(2), pp.365-393.

Mayne, D. & Michalska, H., 1990. Receding horizon control of nonlinear systems. IEEE
Control Systems, 31(3), pp.52-65.

McGeer, T., 1990. Passive Dynamic Walking. The International Journal of Robotics
Research, 9(2), pp.62-82.

Mehta, B. & Schaal, S., 2002. Forward models in visuomotor control. Journal of
Neurophysiology, 88(2), pp.942-53.

Meyer, J., Husbands, P. & Harvey, 1., 1998. Evolutionary robotics: A survey of
applications and problems Philip Husbands & J.-A. Meyer, eds. Evolutionary
Robotics, 1468(1994), pp.1-21.

Miall, R. et al., 1993. Is the cerebellum a smith predictor? Journal of Motor Behavior,
25(3), pp-203-16.



174

Miall, R., 1998. The cerebellum, predictive control and motor coordination. Novartis
Foundation Symposium, 218, pp.272-84.

Miall, R. & Wolpert, D., 1996. Forward Models for Physiological Motor Control. Neural
Networks, 9(8), pp.1265-1279.

Microsoft, 2013. The Microsoft Kinect Sensor. Available at:
http://www.microsoft.com/en-us/kinectforwindows/ [Accessed June 10, 2013].

Mirtich, B. & Canny, J., 1995. Impulse-based simulation of rigid bodies. In Proceedings of
the 1995 symposium on Interactive 3D graphics - SI3D '95. New York, New York,
USA: ACM Press, p. 181-ff.

Miyamoto, H. et al., 2004. TOPS (Task Optimization in the Presence of Signal-
Dependent Noise) model. Systems and Computers in Japan, 35(11), pp.48-58.

Mizuuchi, I. et al., 2007. An advanced musculoskeletal humanoid Kojiro. In 2007 7th
IEEE-RAS International Conference on Humanoid Robots. IEEE, pp. 294-299.

Moore, A. & Atkeson, C., 1995. The parti-game algorithm for variable resolution
reinforcement learning in multidimensional state-spaces. Machine Learning, 21(3),
pp.199-233.

Neptune, R., Clark, D. & Kautz, S., 2009. Modular control of human walking: a
simulation study. Journal of Biomechanics, 42(9), pp.1282-1287.

Nijhawan, R., 1994. Motion extrapolation in catching. Nature, 370(6487), pp.256—7.

Peters, J. & Schaal, S., 2004. Learning Motor Primitives with Reinforcement Learning.
In 11th Joint Symposium on Neural Computation.

Peters, ]. & Schaal, S., 2008. Reinforcement learning of motor skills with policy
gradients. Neural Networks, 21(4), pp.682-97.

Peters, ]J., Vijayakumar, S. & Schaal, S., 2003. Reinforcement Learning for Humanoid
Robotics. Proceedings of the third IEEERAS international conference on humanoid
robots, 18(7), pp.1-20.

Petreska, B. & Billard, A., 2009. Movement curvature planning through force field
internal models. Biological Cybernetics, 100(5), pp.331-350.

Pfeifer, R. & Bongard, J., 2007. How the body shapes the way we think: a new view of
intelligence, MIT Press.



175

Pfeifer, R. & lida, F., 2005. Morphological computation: Connecting body, brain and
environment B. Sendhoff et al., eds. Japanese Scientific Monthly, 58(2), pp.48-54.

Pfeifer, R., Lungarella, M. & lida, F., 2007. Self-organization, embodiment, and
biologically inspired robotics. Science, 318(5853), pp.1088-93.

Potkonjak, V., Svetozarevic, B, et al., 2010. Biologically Inspired Control of a Compliant
Anthropomimetic Robot. In Proceedings of the 15th IASTED International Conference
on Robotics and Applications. ACTA Press Scientific, pp. 182-189.

Potkonjak, V., Svetozarevic, Bratislav, et al., 2010. Control Of Compliant
Anthropomimetic Robot Joint. Symposium on Computational Geometric Methods in
Multibody System Dynamics, 8(1), pp.85-95.

Radkha, K. & von Stryk, O., 2012. Human-Like Model-Based Motion Generation
Combining Feedforward and Feedback Control for Musculoskeletal Robots. In
Proc. 7th Annual Dynamic Walking Conference 2012.

Roh, J., Cheung, V. & Bizzi, E., 2011. Modules in the brain stem and spinal cord
underlying motor behaviors. Journal of Neurophysiology, 106(3), pp.1363-78.

Rosenstein, M., Barto, A. & Van Emmerik, R., 2006. Learning at the level of synergies
for a robot weightlifter. Robotics and Autonomous Systems, 54(8), pp.706-717.

Rusu, R. et al., 2009. Real-time perception-guided motion planning for a personal
robot. In 2009 IEEE/RS] International Conference on Intelligent Robots and Systems.
IEEE, pp. 4245-4252.

Schaal, S., 1999. Is imitation learning the route to humanoid robots? Trends in Cognitive
Sciences, 3(6), pp.233-242.

Schaal, S. et al., 2004. Learning movement primitives. In International Symposium of
Robotics Research. Citeseer, pp. 1-10.

Schaal, S., Ijspeert, A. & Billard, A., 2003. Computational approaches to motor learning
by imitation. Philosophical transactions of the Royal Society of London. Series B,
Biological sciences, 358(1431), pp.537-47.

Scholz, D. et al., 2011. Bio-inspired motion control of the musculoskeletal BioBiped1
robot based on a learned inverse dynamics model. In 2011 11th IEEERAS
International Conference on Humanoid Robots. IEEE, pp. 395-400.

Schultz, W., 2002. Getting formal with dopamine and reward. Neuron, 36(2), pp.241-63.



176

Schultz, W., 1998. Predictive reward signal of dopamine neurons. Journal of
Neurophysiology, 80(1), pp.1-27.

Shibata, T. & Schaal, S., 2001. Biomimetic gaze stabilization based on feedback-error-
learning with nonparametric regression networks. Neural Networks, 14(2), pp.201-
16.

Shkolnik, A. & Tedrake, R., 2009. Path planning in 1000+ dimensions using a task-space
Voronoi bias. In 2009 IEEE International Conference on Robotics and Automation.
IEEE, pp. 2061-2067.

Smith, O., 1959. A controller to overcome dead time. . IsA Journal, 6, pp.28-33.

Snedecor, G.W. & Cochran, W.G., 1989. Statistical Methods 8th Editio., lowa State
University Press.

Sontag, E., 1998. Mathematical control theory: deterministic finite dimensional systems,
Springer-Verlag.

Sperry, R.W., 1950. Neural basis of the spontaneous optokinetic response produced by
visual inversion. Journal of comparative and physiological psychology, 43(6), pp.482—
489.

Sreenath, K., Park, H. & Grizzle, J., 2009. Embedding Active Force Control within the
Compliant Hybrid Zero Dynamics to Achieve Stable, Fast Running on MABEL.
The International Journal of Robotics Research, pp.1-26.

Stephan, K. et al., 2002. Conscious and subconscious sensorimotor synchronization--
prefrontal cortex and the influence of awareness. Neurolmage, 15(2), pp.345-52.

Sucan, I. & Kavraki, L., 2008. Kinodynamic Motion Planning by Interior-Exterior Cell
Exploration. Cell, 57, pp.1-16.

Sutton, R. & Barto, A., 1998. Reinforcement Learning, An Introduction, MIT Press
Cambridge, MA, USA.

Suzuki, M. et al., 1996. Application of the minimum jerk model to formation of the
trajectory of the centre of mass during multijoint limb movements. Folia
Primatologica, 66(1-4), pp.240-252.

Tanaka, H., Tai, M. & Qian, N., 2004. Different predictions by the minimum variance
and minimum torque-change models on the skewness of movement velocity
profiles. Neural Computation, 16(10), pp.2021-2040.



177

Theodorou, E., Buchli, J. & Schaal, S., 2010. Reinforcement Learning of Motor Skills in
High Dimensions : A Path Integral Approach. Policy, 2(3), pp.2397-2403.

Ting, L. & Macpherson, J., 2005. A limited set of muscle synergies for force control
during a postural task. Journal of neurophysiology, 93(1), pp.609-13.

Ting, L. & McKay, J., 2007. Neuromechanics of muscle synergies for posture and
movement. Current opinion in neurobiology, 17(6), pp.622-8.

Todorov, E., 2004. Optimality principles in sensorimotor control. Nature Neuroscience,
7(9), pp-907-915.

Todorov, E. & Ghahramani, Z., 2004. Analysis of the synergies underlying complex
hand manipulation. Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, 6, pp.4637-40.

Tresch, M., Cheung, V. & D’Avella, A., 2006. Matrix factorization algorithms for the
identification of muscle synergies: evaluation on simulated and experimental data
sets. Journal of neurophysiology, 95(4), pp.2199-212.

Tresch, M. & Jarc, A., 2009. The case for and against muscle synergies. Current Opinion
in Neurobiology, 19(6), pp.601-607.

Tsianos, K., Sucan, I. & Kavraki, L., 2007. Sampling-Based Robot Motion Planning :
Towards Realistic Applications. Computer Science Review, 1(1), pp.2-11.

Urmson, C. & Simmons, R., 2003. Approaches for heuristically biasing RRT growth. In
Proceedings 2003 IEEE/RS] International Conference on Intelligent Robots and Systems.
IEEE, pp. 1178-1183.

Valencia, F. et al.,, 2011. Moving horizon estimator for measurement delay
compensation in model predictive control schemes. In IEEE Conference on Decision
and Control and European Control Conference. IEEE, pp. 6678-6683.

Valero-Cuevas, F., Venkadesan, M. & Todorov, E., 2009. Structured Variability of
Muscle Activations Supports the Minimal Intervention Principle of Motor Control.
Journal of Neurophysiology, 102(1), pp.59-68.

Vanderborght, B. et al., 2004. LUCY, a Bipedal Walking Robot with Pneumatic
Artificial Muscles. Mechatronics.

Verrel, J., Lovdén, M. & Lindenberger, U., 2010. Normal aging reduces motor synergies
in manual pointing. Neurobiology of Aging, 33(1), pp.1-9.



178

Wan, E. & Van Der Merwe, R., 2001. The Unscented Kalman Filter S. Haykin, ed.
Kalman Filtering and Neural Networks, 5(1), pp.221-280.

Webb, B., 2004. Neural mechanisms for prediction: do insects have forward models?
Trends in neurosciences, 27(5), pp.278-82.

Weiss, E.J. & Flanders, M., 2004. Muscular and postural synergies of the human hand.
Journal of Neurophysiology, 92(1), pp.523-35.

Welch, G. & Bishop, G., 2006. An Introduction to the Kalman Filter A.-W. Acm Press,
ed. In Practice, 7(1), pp.1-16.

Wittmeier, S. et al., 2012. Calibration of a physics-based model of an anthropomimetic
robot using Evolution Strategies. In 2012 IEEE/RS] International Conference on
Intelligent Robots and Systems. IEEE, pp. 445-450.

Wittmeier, S., Jantsch, M., et al., 2011. CALIPER: A universal robot simulation
framework for tendon-driven robots. In 2011 IEEE/RS] International Conference on
Intelligent Robots and Systems. IEEE, pp. 1063-1068.

Wittmeier, S., Jantsch, M., et al., 2011. Physics-based Modeling of an Anthropomimetic
Robot. In Proceedings IEEE/RS] International Conference on Intelligent Robots and
Systems IROS. pp. 4148-4153.

Wittmeier, S. et al., 2013. Toward anthropomimetic robotics: development, simulation,
and control of a musculoskeletal torso. Artificial life, 19(1), pp.171-93.

Wolpert, D., Ghahramani, Z. & Flanagan, J., 2001. Perspectives and problems in motor
learning. Trends in Cognitive Sciences, 5(11), pp.487-494.

Wolpert, D., Ghahramani, Z. & Jordan, M., 1995. An internal model for sensorimotor
integration. Science, 269(5232), pp.1880-1882.

Wolpert, D. & Kawato, M., 1998. Multiple paired forward and inverse models for
motor control. Neural Networks, 11(7-8), pp.1317-1329.

Wolpert, D., Miall, R. & Kawato, M., 1998. Internal models in the cerebellum. Trends in
Cognitive Sciences, 2(9), pp.338-347.



179

Chapter 9 :
Appendices




180

9.1 Appendix I: Physics engine comparison report
This tabular comparison report was produced by the ECCERobot team as a resource
for selection of the most appropriate physics based simulation software. From this

report the Bullet Physics engine was selected for use in modelling the ECCERobot.
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