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Modified gravity and cosmology

Summary

Having as a starting point the problem of dark energy described before, this
thesis studies modifications of General Relativity (GR), as possible gravitational
scenarios for the early and late time Universe, motivated by both classical as well
as quantum considerations. In particular, it focuses on modifications of GR of the
type f(R) as well as the f(R,G) ones, where R and G is the Ricci scalar and
Gauss–Bonnet term respectively. On the same time, a modification of GR based
on the Renormalisation Group approach to quantum gravity is considered, as well
as its link to f(R) gravity. The main goal of the investigations carried out in this
thesis, is to understand the structure, as well as the phenomenological implications
of non-linear modifications of GR for cosmology, at both the background as well as
the linear perturbation level.

In particular, chapter 2 presents a brief introduction to the dynamics of GR in
the presence of a “dark component” at the background, as well as at the linear
perturbation level, while chapter 3 is an introduction to the fundamental proper-
ties of non–linear modifications of GR, reviewing important results of the relevant
literature.

Chapter 4 elaborates with a fundamental property of non–linear gravity models,
namely the study of different representations of vacuum actions proportional to
f(R) as well as f(G), in view of Legendre transformations, for the case of spacetime
manifolds with a boundary. As it is explicitly shown there, although the dynamical
equivalence is always true in the bulk, it is not guaranteed on the boundary of the
spacetime manifold.

On the other hand, chapter 5 focuses on understanding the role of the effect-
ive anisotropic stress present in f(R,G) gravity models, attempting to construct
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particular models of the latter type, with a vanishingly small anisotropic stress, so
as to agree with current observations. As it turns out, suppression of the effective
anisotropic stress in this class of models is very difficult, highlighting the role of
the effective anisotropic stress as a smoking gun for testing modified gravity models
with current and future observations.

Chapter 6 serves as an introduction to the idea of the Renormalisation Group
(RG) and its applications in cosmology, while chapter 7 starts from an RG improved
Einstein–Hilbert action and studies its connection with f(R) gravity, as well as its
implications for the primordial and the late time acceleration of the Universe. It is
shown that the effective f(R) model has some remarkable properties and interesting
implications for both early and late time cosmology.
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Chapter 1

Introduction

The 2011 Nobel prize in physics was awarded to Saul Perlmutter, Brian P. Schmidt

and Adam G. Riess “for the discovery of the accelerating expansion of the Universe

through observations of distant supernovae” 1. The path for this discovery was the

study of the luminosity distant of a set of high redshift Supernovae of Type Ia (SNIa)

Riess et al. (1998); Perlmutter et al. (1999). The latter is a rather surprising obser-

vation, as one would expect that the large matter concentrations 2 in the Universe

gravitationally attract each other, yielding a slowing down the of the Universe’s ex-

pansion. In the context of Einstein–Hilbert gravity, such an accelerated expansion

could be achieved with the introduction of a new component in the equations, with

a rather special property: it should have a negative pressure, so that it counteracts

the gravitational force between the pressureless matter in the Universe, producing

this way an “antigravity” effect leading to the observed accelerated expansion of the

Universe. This mysterious yet component was termed as “dark energy”.

What makes supernovae special is the fact that they can be assumed as “stand-

ardisable candles”, in the sense that their absolute magnitude can be correlated with

their light curve, with brighter supernovae yielding broader light curves Hamuy et al.

(1996) and Amendola and Tsujikawa (2010) and references therein. This allows for

an efficient measurement of their luminosity distance, which in turn depends on the

energy–momentum content of the Universe. By studying a set of both high-redshift

as well as low redshift SN Ia data, Riess et al. (1998) showed that the dark energy

1http://www.nobelprize.org/nobel prizes/physics/laureates/2011/
2With “large matter concentrations” here we mean clusters and superclusters of galaxies, as

the acceleration of the Universe is observable only at large scales.
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component has the form of a cosmological constant Λ at the 99% confidence level.

A positive cosmological constant, as we will describe also later on, is able to produce

negative pressure, while its density ρΛ, which is constant at all times, is related to

the pressure as pΛ = −ρΛ. The old cosmological paradigm, the so–called Cold Dark

Matter (CDM) model, where the only components in the Universe were baryons,

radiation (including relativistic particle species), and the as yet undiscovered pres-

sureless dark matter, had to be extended to account for the mysterious dark energy.

In the presence of a cosmological constant, the old CDM paradigm was extended to

the so–called ΛCDM .

On the same time, the supernovae data were not the only observations indic-

ating the need for dark energy. Independent observations regarding the age of the

Universe, the large scale structure of the Universe, as well as observations of the

Cosmic Microwave Background (CMB) were leading towards the presence of a dark

energy component of the Universe, which is very close to a cosmological constant Λ,

i.e with an equation of state pDE ' −ρDE.

It is obvious that the age of the Universe should be larger than the age of any

galaxy or star. However, without the assumption of the dark energy, estimating the

age of Milky Way’s globular clusters Carretta et al. (2000); Jimenez et al. (1996);

Hansen et al. (2002) showed that there was a contradiction with the estimated age

of the Universe; while the latter was estimated to be about 10 Gyr, globular clusters

seemed to be older than 11Gyr. This crucial contradiction was resolved by the

assumption of dark energy, since as it turns out, the age of the Universe becomes

larger in the presence of a dark energy component.

On the other hand, the power spectrum of the CMB is also dependent on the

energy-momentum content of the Universe, and it provides with another independent

test of the existence of dark energy. In particular, the observed position of the

acoustic peaks, as well as the integrated Sachs–Wolfe (ISW) effect in the CMB

power spectrum, require dark energy in the form very close to the cosmological

constant.

Finally, observational evidence for dark energy comes from the large scale struc-

ture of the Universe, in particular the clustering of galaxies. The quantity describing

the strength of clustering is the matter power spectrum, and depends on the scale, i.e
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the wave number k in Fourier space. A key point here is that the scale corresponding

to the peak of the matter power spectrum is related to the wave number that entered

the cosmological (“Hubble”) horizon at the particular time of the Universe evolu-

tion, when the matter and radiation energy densities where equal. What is more,

the wave number at matter–radiation equality depends on the relative fraction of the

pressureless matter in the Universe today, Ω
(0)
m , in particular, decreases (increases)

with decreasing (increasing) Ω
(0)
m . Since by definition the sum of all the particular

fractions corresponding to the different constituents of the Universe should equal

one, the presence of dark energy affects the matter fraction Ω
(0)
m , and in turn the

position of the peak in the matter power spectrum, making the latter another test of

dark energy. For a study of the matter power spectrum from Luminous Red Galaxies

(LRG), as well as main galaxy data from the SDSS see for example Tegmark et al.

(2006).

Above three observational tests provide with independent evidence for the exist-

ence of an extra ingredient of the Universe, with the main property an antigravity

effect (negative pressure) at large scales, causing distant galaxies to recede away from

each other in an accelerating way. What is more, observations indicate that the dark

energy accounts for about the 71% of the total energy density of the Universe. As

for the remaining components, about 25% consists of the pressureless dark matter,

while a 4% of baryons, and a 0.005% corresponds to the observed CMB (black body)

radiation.

In order to get an idea about the nature of the problem of dark energy, as well

as the different resolutions suggested, one has to introduce the basic concepts of

Einstein’s General Relativity (GR), which is the fundamental framework for under-

standing the evolution of the Universe from the very early times of its evolution

up to now. For review works on the dark energy and the cosmological problem the

reader can refer to Copeland et al. (2006a); Peebles and Ratra (2003a); Frieman

et al. (2008); Perivolaropoulos (2006); Padmanabhan (2006); Durrer and Maartens

(2008); Sapone (2010); Padmanabhan (2003); Sahni (2002).
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1.1 General Relativity and alternatives

General Relativity (GR) is a theory for gravity. Its fundamental principle is the

Einstein Equivalence Principle (EPP), which in fact is the foundation of all metric

theories of gravity, not only of GR Will (1981). 3 The EPP is an extension of

the Weak Equivalence Principle (WEP), the latter stating that: If an uncharged

test body is placed at an initial event in spacetime and given an initial velocity

there, then its subsequent trajectory will be independent of its inertial structure and

composition Will (1981). The latter statement describes in a more formal language

the Newtonian Equivalence Principle that the gravitational mass equals the inertial

mass, i.e all masses fall in a gravitational field in the same way.

The great importance of the Einstein Equivalence Principle is that it generalises

the Weak one to include all laws of physics, like for example the laws of electro-

dynamics. In particular, the EEP assumes the WEP to be valid and further states

that any local nongravitational test experiment is independent of the velocity of the

freely falling laboratory, as well as from the particular point and time in the Universe,

the experiment is carried out. Independence of experiment of the particular space-

time point translates to general covariance, which forces the equations of motion to

be of tensorial character.

Following the argument in Will (1981), if a gravitational theory satisfies the EEP

it should also satisfy the three postulates of metric theories of gravity: Spacetime is

equipped with a metric gµν , test particles follow the geodesics 4 of the metric gµν ,

and that in local freely falling frames (local Lorentz frames), Special Relativity is

the description of the nongravitational laws of physics. For the explicit argument

supporting the latter statement, as well as its implications and experimental evidence

the reader is referred to Will (1981); Ort́ın (2004). Here we will only use above

postulates as our starting point to discuss the action and equations of motion of

General Relativity.

Einstein’s fundamental idea to arrive at General Relativity, was to relate the

effects of a gravitational field, with the curvature of spacetime. What is more,

the principle of general covariance implies that the equations should be relations

3In the following discussion we shall be closely following C. M. Will’s book Will (1981).
4A geodesic is the curved space analogue of a straight line on the plane.
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between tensors. In this description, spacetime is modeled as a Riemanian manifold.

A Riemanian manifold is a differentiable manifold equipped with a metric (for a

description of these notions and their connection with General Relativity please see

for example Wald (1984); Schutz (2009); Hawking and Ellis (1974)). The significance

of the metric is that it allows to measure lengths of curves on the spacetime manifold

through,

ds2 = gαβdx
αdxβ ≡

∑
α

∑
β

gαβdx
αdxβ. (1.1)

The metric is associated with a covariant derivative∇γ used to parallel transport

vectors along the spacetime manifold, and when applied on a tensor Tαβ yields

∇γT
αβ = ∂γT

αβ + ΓαµγT
µβ + ΓβµγT

αµ, (1.2)

where Γαµγ is the connection or Christoffel symbol defined in (1.4). A straightforward

generalisation of above formula to tensors with more than two indices (see for ex-

ample Wald (1984)). Above, and for the rest of this thesis, unless otherwise stated,

repeated indices will imply summation, i.e

AαB
α ≡ A0B

0 + . . .+ AkB
k. (1.3)

The object Γβµγ introduced in the expression for the covariant derivative above,

is the Christoffel symbol or the connection defined as

Γαµν =
1

2
gαβ (gβµ,ν + gβν,µ − gµν,β) , (1.4)

and is symmetric with respect to its lower indices, i.e Γαµν = Γανµ. The latter

symmetry is true only when the derivative operator ∇µ is torsion free, i.e when

∇µ∇νf = ∇ν∇µ, with f any scalar function.

An important property of the metric is that it satisfies the so–called compatibility

condition,

∇ρgµν = 0. (1.5)

We can use the covariant derivative in order to parallel transport a vector V µ

along a closed loop, in order to describe the intrinsic curvature of the manifold,
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through the Riemann tensor Rµ
ναβ as

[∇α,∇β]Vγ ≡ ∇α∇βVγ −∇β∇αV
γ = Rαβγ

δVδ, (1.6)

with the Riemann curvature tensor defined as

Rα
βγδ ≡ Γαβδ,γ − Γαβγ,δ + ΓασγΓ

σ
βδ − ΓασδΓ

σ
βγ. (1.7)

The Riemann tensor satisfies the following (anti) symmetry relations under com-

mutation of its indices

Rα
βγδ = −Rβ

α
γδ = −Rα

βδγ = Rβ
α
δγ. (1.8)

We can also define the Ricci tensor and Ricci scalar through contractions of

Rα
βγδ with the metric field as

Rαβ ≡ gµνRµανβ, (1.9)

R ≡ gαβRαβ. (1.10)

Equipped with a Riemannian manifold, as well as with the underlying principle

of GR, that the gravitational field of matter fields expresses itself as spacetime

curvature, Einstein introduced the following set of equations

Gαβ + Λgαβ = 8πGTαβ, (1.11)

with Gαβ ≡ Rαβ − 1
2
gαβR known as the Einstein tensor, and Tαβ is the energy–

momentum tensor associated with any matter fields present. Λ is the cosmological

constant to which we shall come back in a while. Notice that because of the index

symmetry of the metric both Gαβ and Tαβ are symmetric tensors.

Equations (1.11) are the fundamental field equations of GR. They describe the

way curvature (l.h.s) reacts to matter (r.h.s), and vice verse. With “matter” here

is meant any sort of matter, e.g baryonic, relativistic or dark energy as well, as we

will see later on.

By virtue of the Bianchi identities the covariant derivative of the l.h.s of (1.11)
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is identically zero, implying energy–momentum conservation of the r.h.s. What

is more, the tensorial nature of the equation makes its form independent of the

coordinate system. For details on its derivation and its significance, along with

historical remarks we refer to Schutz (2009).

The field equations (1.11) can be formally derived through a variational principle,

from the Einstein–Hilbert action (see for example Carroll (2003)),

S ≡ S[g] =

∫
d4x
√
−gR− 2Λ

16πG
+ Sm[g, ψ], (1.12)

with R being the Ricci scalar, G and Λ Newton’s and cosmological constant re-

spectively, and Sm denoting collectively the part of the action corresponding to any

matter field content.

Notice that integration in the action integral is assumed along the spacetime

manifold. A consistent initial value formulation of GR for a manifold with a bound-

ary requires the introduction of the so–called Gibbons–Hawking terms in the action

Gibbons and Hawking (1977). We leave this issue until chapter 4.

Let us get back to the problem of dark energy. As was mentioned also before,

observations indicate that there should be an extra “matter” component in the

Universe, with the peculiar property of having a negative pressure. In view of the

Einstein field equations (1.11), the problem accounts in a missing component in

the equations that could account for dark energy (let us assume for a moment that

Λ = 0 in the equations). There are two paths that have been suggested here: Either

to modify the l.h.s or the r.h.s of the equations respectively. In the first case, we are

dealing with a modification of gravity, while on the second case with the addition

of an extra energy–momentum component with the desired properties. However,

such a distinction is only a formal one, as one can always move any term from the

l.h.s to the r.h.s of the equations, interpreting it as some sort of an effective energy

momentum tensor. The equations of motion themselves are not able to make such

a distinction.

The simplest scenario for dark energy is that of a cosmological constant Λ in

equations (1.11). A cosmological constant has a constant energy density ρvac, where

“vac” stands for “vacuum”. On the one hand, it can be thought as a purely classical

term allowed by the symmetries of GR, on the other hand, from a quantum mech-



8

anical point of view, it should receive contributions from the zero-point fluctuations

of the different fields present in the Universe. In the latter case, the cosmological

constant represents the vacuum energy associated with the zero point fluctuations

of some fields, naturally those being the fundamental fields of the Standard Model

of Particle Physics. However, this assumption leads to a much larger value for the

cosmological constant than the one observed, which is also known as the problem of

magnitude.

To be more precise, all fields present in a our description of the Universe, should

fluctuate around their vacuum expectation value, first predicted by Casimir Casimir

(1948). The fluctuations are associated with a particular amount of energy, which

is expected to contribute to the Einstein equations in the semiclassical limit as the

expectation value of an energy-momentum tensor on the r.h.s, i.e

Gαβ = 8πG〈T00〉vac, (1.13)

with

< T00 >vac∼
∫ Λc

0

√
k2 +m2k2dk. (1.14)

Above integral sums up the zero point energy of some field with mass m, up to the

cut–off energy scale Λc. The latter has to be introduced, otherwise the integral will

yield an infinite result, which would not make sense physically. In fact, the cut–

off dependent, bare zero point energy (1.14) does not correspond to the observed,

renormalised one. The latter should be given as the sum of the bare and suitable

counter terms. For the expectation value < T00 >vac, it can be seen that it diverges

as the fourth power of the cut–off, i.e ∼ Λ4
c . By assuming a Planck scale cutoff, this

yields < T00 >vac' mp4c5/~2 ∼ 1076GeV 2 5. However, the observed value for the

cosmological constant is ∼ 10−47GeV 4, which is 123 orders of magnitude smaller

than the bare one. Therefore, the counter terms to be added to the bare energy to

yield the renormalised one, should be such that they cancel the very high value of

the bare part, which requires an extreme fine tuning. This is the magnitude problem

associated with the cosmological constant.

Notice that the discrepancy between the bare and the observed vacuum energy

5Notice that here we recover the speed of light c, which we had set equal to one.
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can be made smaller by choosing the cut–off at a lower scale, like the QCD scale,

but even there the difference between the bare and the observed value can be found

to be unacceptably large (∼ 40 orders of magnitude, since ΛQCD ∼ 10−3GeV 4).

The second problem associated with the cosmological constant is the so–called

coincidence problem, which is related to the fact that the present value of the cosmo-

logical constant is of the same order of magnitude. In principle, this is a surprising

observation, as a priori one would have not expected these two numbers to be re-

lated in such a way, also implying that we are living in a very special time of the

Universe evolution. 6 For interesting reviews on these issues the reader is referred

to Sahni (2002); Peebles and Ratra (2003b); Padmanabhan (2003); Copeland et al.

(2006b), as well as Hollenstein et al. (2012) for a recent and interesting discussion

on the renormalisation of zero point fluctuations.

Above two problems associated with the ΛCDM model, together with motivation

coming from particle physics, has lead cosmologists to study alternative scenarios

to describe the late time acceleration of the Universe. Many alternatives have been

suggested in the literature, which can be broadly divided in two main categories:

models that modify the r.h.s (energy-momentum part) of the Einstein equations,

and those that modify the l.h.s (gravitational part) of the equations respectively.

Typical examples of the first category are minimally coupled to gravity scalar

field models with either canonical (quintessence) Ratra and Peebles (1988) or non–

canonical (k–essence) Chiba et al. (2000); Armendariz-Picon et al. (2000) kinetic

terms. When non–minimally coupled to gravity, above models do not exhibit any im-

perfections at the linear level, like anisotropic stress or momentum flux (see chapter

2 for a definition of these terms.) Although, the positioning of a particular contri-

bution on either side of the Einstein equations is a matter of convention, we classify

these models as a modification of the r.h.s of the field equations in the sense that

their interaction with gravity is minimal, i.e they do not “mix” with gravity in any

non–trivial way as the models described below.

On the other hand, models where the modification of the equations has a purely

gravitational origin (or more formally speaking, those that modify the l.h.s of the

equations) include non–linear modifications of GR like f(R) or f(R,G) gravity mod-

6For an interesting discussion about other problems related to the ΛCDM model see Perivolaro-
poulos (2011, 2008).
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els, where G is the Gauss–Bonnet term, or scalar–tensor theories Brans and Dicke

(1961); Bergmann (1968); Wagoner (1970); Nordtvedt (1970); Amendola (1999);

Uzan (1999); Chiba (1999); Bartolo and Pietroni (1999); Perrotta et al. (1999); Fujii

and Maeda (2003); Charmousis et al. (2012) the most well known probably being

the Brans–Dicke gravity Brans and Dicke (1961) (For a review on f(R) gravity see

Sotiriou and Faraoni (2010); De Felice and Tsujikawa (2010), while for more general

models Nojiri and Odintsov (2006a); Durrer and Maartens (2008); Capozziello and

Francaviglia (2008); Clifton et al. (2012) and references therein). Non–linear modi-

fications of gravity modify the GR action to include non–linear curvature terms,

yielding equations of motion of fourth–order for the metric field, while scalar–tensor

theories introduce a non–minimal coupling between the scalar field and curvature

in the action. The non–minimal coupling to gravity is the cause of the appearance

of imperfections at the linear level, like anisotropic stress, in contrast for example

to quintessence or k–essence models. A description of the fundamental properties

and dynamics of these models, as well as of some more general ones, can be found

in chapter 3.

We stress that at the classical level there is a link between non–linear modifica-

tions of gravity and scalar–tensor theories, as the two classes of theories are formally

related via a Legendre transformation through the introduction of auxiliary fields.

We will explicitly discuss this issue in chapter 4.

Furthermore, there are models which combine both of the above formal classes,

in the sense that although they possess non–minimal couplings between a scalar

field and curvature, their non–minimal coupling to curvature cannot be eliminated

through an appropriate transformation like for example in f(R) gravity. Examples

of such theories are general scalar–tensor theories described by the Horndenski lag-

rangian Horndeski (1974), as well as kinetic gravity braidings Pujolas et al. (2011);

Deffayet et al. (2010) and galileon models Deffayet et al. (2009a,b); Silva and Koy-

ama (2009).

Another class of modifications of gravity include higher-dimensional models, like

for example braneworld models, a characteristic example being the DGP one, ac-

cording to which, our Universe is confined on a 4-dimensional (3+1) surface (brane),

embedded in a 5-dimensional bulk space. Standard model particles are restricted
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on the brane, but gravity is allowed to propagate in the bulk space. For reviews

on braneworld cosmology see for example March-Russell (2000); Langlois (2002);

Wands (2002); Brax et al. (2004); Maartens and Koyama (2010) and references

therein.

A very interesting approach to the dark energy problem has been suggested in

the context of the Renormalisation Group (RG) cosmology, where the cosmological

constant is promoted to a dynamical variable running with cosmic time. As it turns

out, this scenario can successfully account for dark energy, and will be explicitly

studied in chapters 6 and 7. This approach shares many common features with

Brans–Dicke and f(R) theories, as we will discuss in chapters 6 and 7.

Let us close this section by referring the interested reader for more details on

the theory of General Relativity and its applications in cosmology to the following

textbooks Misner et al. (1973); Wald (1984); Carroll (2003); Hawking and Ellis

(1974); Will (1981). What is more, studies of the theoretical and observational

foundations of modern cosmology can be found in Dodelson (2003); Liddle (1999);

Peebles (1993); Peacock (1999); Amendola and Tsujikawa (2010); Mukhanov (2005).

1.2 Notation and conventions

Unless otherwise stated, we will work in units where c = ~ = 1. We will also use

the metric signature (− + ++). We shall denote both Newton’s constant and the

Gauss–Bonnet term with “G”, and the distinction will be made explicit wherever

there is a danger of confusion. Newton’s G is related to the Planck mass as mp =

G−1/2 = 1.2211× 1019 GeV.

Whenever no particular reference is made about the values of indices, those are

assumed to represent abstract tensor ones. We also adopt the Einstein convention

for indices, i.e repeated indices will imply summation, unless otherwise stated.
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Chapter 2

Theory of cosmological

perturbations

In this chapter we will introduce the basic background equations of GR in a Friedmann–

Lemaitre-Robertson-Walker (FLRW) background, as well as review the theory of

(scalar) linear perturbation equations in a component language, that will be helpful

for the analysis in some of the next chapters.

The importance of perturbation theory in a cosmological context lies in the fact

that it allows us to understand how small inhomogeneities in the matter distribution

collapse to form the bound structures as we observe them in the Universe: stars,

galaxies, clusters of galaxies, and so on. At the scales of cosmological interest,

k/H � 1, where k is the wave number associated with some typical cosmological

scale, the perturbations are well described by the linear approximation, that is

ignoring terms of second and higher order in the perturbative expansion of the fields

involved.

In principle, the metric field carries tensor, vector and scalar modes. However,

in the study of cosmological perturbation theory, only tensor and scalar modes are

of interest, since vector modes decay very quickly, unless there are active sources

such as defects or primordial magnetic fields. On the other hand, tensor fluctuations

in a cosmological context are predicted by the theory of cosmological (primordial)

inflation, with their production occurring in the very early Universe, for this reason

also called “primordial gravitational waves” (for details see for example Lyth and

Liddle (2009)). Their detection poses a big challenge for observational cosmology,
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and there are prospects of being detected with future experiments Krauss et al.

(2010).

The scalar modes are of the greatest interest for late time cosmology, since they

are responsible for the formation of bound gravitational structures, i.e their role

is to act as a source for the gravitational force that makes matter inhomogeneities

collapse. On the same time, as said before, we will be interested in first (linear)

order terms in the perturbative expansion. This is justified by the fact that, at

large scales in the Universe, gravitational (or matter) fluctuations are assumed to

be small, at least small enough to be consistently described at first order.

2.1 Background equations

The action of General Relativity (GR) in the presence of (any sort of) matter fluids

is described by

S =
1

κ2

∫
d4x
√
−gR + Sm + Sb + SX, (2.1)

where R is the Ricci scalar and g denotes the determinant of the background metric

field, g ≡ det gαβ. Sm and Sb respectively stand for the part of the action describing

dark and baryonic matter respectively. The usual approach is to describe both as

perfect fluids with zero pressure.

On the other hand, SX denotes the dark component which also takes into account

a possible modification of GR. In the latter case, it will be a function of the metric

and its derivatives, and at the level of the equations of motion it can be thought as

contributing an effective energy–momentum tensor on the r.h.s of the equations.

Variation of above action with respect to the metric,

δS

δgµν
= 0, (2.2)

gives rise to the background equations of motion

Gµ
ν ≡ Rµ

ν −
1

2
gµνR =

κ2

3

(
T(b)

µ
ν + T(m)

µ
ν + T(X)

µ
ν

)
, (2.3)

which we call the Einstein equations.
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The Einstein equations satisfy the Bianchi identities,

∇µG
µ
ν = 0 = ∇µ

(
T(b)

µ
ν + T(m)

µ
ν + T(X)

µ
ν

)
, (2.4)

which come as a result of the gauge invariance of the theory, i.e they are gauge

identities due to the diffeomorphism invariance of GR. Since the l.h.s is identically

zero, the r.h.s should be as well, leading to a set of conservation equations for the

(effective) matter fields. Below we will evaluate the latter for an energy–momentum

tensor described by a perfect fluid.

Cosmological observations show that our Universe is to very high accuracy iso-

tropic and homogeneous. The line element satisfying these requirement is described

by the four-dimensional homogeneous and isotropic spacetime, called Friedmann–

Lemaitre-Robertson-Walker (FLRW) spacetime

ds2 = gµνdx
µdxν = −dt2 + a2(t)dxidxi, (2.5)

where t is cosmic time and repeated indices imply summation. We have set the

spatial curvature equal to zero, as this is the case that we will consider throughout

this thesis. In fact, there is good observational evidence that the Universe is flat to

high accuracy coming from the CMB Komatsu et al. (2011).

We can also define the metric element in terms if conformal time defined as

η ≡
∫
a−1(t)dt. (2.6)

In the following we might use one or the other definition of the time variable, and

that will be made clear in the text.

In the homogeneous and isotropic background described by the FLRW metric,

either baryonic or dark matter are modeled as perfect fluids. The energy–momentum

tensor for a perfect fluid with energy density ρ = ρ(t), pressure p = p(t) and 4-

velocity uµ reads as

T µν = (ρ+ p)uµuν + δµνp. (2.7)

In comoving coordinates, the the 4-velocity of the fluid is uµ = (−1, 0, 0, 0) and
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satisfies the timelike normalisation relation

uµuµ ≡ gµνu
µuν = −1. (2.8)

The Einstein equations according to the FLRW metric, give rise to the so called

Friedmann, acceleration equation respectively,

H2 =
κ2

3

(
ρb + ρm + T(X)

0
0

)
, (2.9)

3H2 + 2Ḣ = −κ2
(
wbρb + wmρm + T(X)

j
j

)
. (2.10)

The r.h.s of the Einstein equations has to be covariantly conserved as well,

∇µT(X)
µ
ν + T(m)

µ
ν = 0, (2.11)

where we neglected the baryons’ energy–momentum tensor for simplicity. Above

equation allows for a general coupling between dark energy and dark matter as

∇µT(X)
µ
ν = C(t), (2.12)

∇µT(m)
µ
ν = −C(t), (2.13)

and when evaluated on an FLRW background they give

ρ̇X + 3H(1 + wX)ρX = C(t), (2.14)

ρ̇m + 3H(1 + wm)ρm = −C(t), (2.15)

with no summation implied in T j(X)j and a dot denoting differentiation with respect

to cosmic time. The coupling C(t) takes into account a possible interaction between

dark matter (or baryons) and dark energy.

H = H(t) is the Hubble parameter defined as

H(t) ≡ ȧ(t)

a(t)
, (2.16)
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and the barotropic index wi with i = X,m, b, is defined as

wi(t) ≡
pi(t)

ρi(t)
. (2.17)

In principle, wi will be a function of time. Baryonic and dark matter are usually

considered to be pressure less, i.e wb = wm = 0. We can also define the Hubble

parameter with respect to conformal time as

H(η) ≡ 1

a(η)

da

dη
= H(t)a(t). (2.18)

The background behavior of a given cosmological model is completely described

by two functions, which could for example be the Hubble parameter H = H(t), and

the barotropic index wi = wi(t). H = H(t) is determined through the Friedman

equation. On the other hand, knowledge of wi and H(t) allows to solve for the matter

density evolution. Mathematically speaking, we have two (first order) equations with

two unknown variables.

2.2 Linear perturbations and the choice of gauge

In this section we will describe the formalism needed to describe departures from the

smooth, homogeneous and isotropic Universe described in the previous section. More

precisely, we will consider small, linear fluctuations around the FLRW background

for both gravitational and matter degrees of freedom. As dictated by the Einstein

equations, a fluctuation in the l.h.s of the equation will source a fluctuation in the

r.h.s and vice versa. This analysis is essential to understand how the primordial,

quantum fluctuations generated at the end of inflation in the very early Universe,

are amplified to form the bound gravitational structures observed in the late time

Universe.

Small inhomogeneities in an expanding Universe collapse gravitationally to form

galaxies, clusters of galaxies and so on. According to the theory of inflation, small de-

partures from the smooth cosmological background are generated through quantum

fluctuations of the inflaton field, which are then amplified and finally become clas-

sical Lyth and Liddle (2009). Their treatment as linear perturbations holds as long
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as the fluctuations remain small, otherwise the validity of the linear approximation

fails.

What is more, different models of dark energy which are degenerate at the back-

ground, can give different predictions at the perturbation level. Therefore, cos-

mological observables related to perturbation variables are extremely important in

making predictions about the dark fluid. For example, two very important observ-

ables at this level is the matter power spectrum and the weak lensing potential.

The first describes how much (dark) matter clusters or in other words how densely

matter is distributed in space, while the second one is the gravitational potential

that forces light from distant galaxies to bend along the line of sight.

For an explicit presentation of the theory of cosmological perturbations in both

GR and non–linear gravity models, the reader is referred to Ma and Bertschinger

(1994); Mukhanov et al. (1992); Hwang and Noh (2005).

2.2.1 Perturbed field equations

In this section, we move from cosmic time t, to conformal time η,

ds2 = dt2 − a2(t)γijdx
idxj = a2(τ)(dτ 2 − γijdxidxj). (2.19)

For the shake of simplicity, and unless otherwise stated, we will also denote the total

energy-momentum tensor as T µν , without referring to its particular constituents.

We want to consider small fluctuations around FLRW spacetime in the Einstein

equations (2.3), sourced through the field fluctuations as

gµν → gµν + δgµν , ρi → ρi + δρi. (2.20)

Notice that similar relations will hold for any other field variable present in the field

equations. In the above notation, the dark component is included in ρi.

The perturbed Einstein equations then read as

Gµ
ν + δGµ

ν = κ2 (T µν + δT µν) , (2.21)

and assuming the background equations hold, i.e Gµ
ν = κ2T µν we arrive at the
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linear perturbation equation

δGµ
ν = κ2δT µν . (2.22)

Above equation tells us that a fluctuation in the gravitational part of the Einstein

equation will generate a fluctuation in the matter part and vice versa, which is

the key idea of gravitational instability. In order to make use of it, we have to

express both sides in terms of the fields fluctuations. We shall begin with the

Einstein tensor perturbation, and later on we will also discuss the explicit form of

the energy–momentum tensor perturbation. The perturbed Einstein tensor reads as

δGµ
ν = δRµ

ν −
1

2
δµνδR, (2.23)

with δµν the Kronecker delta, which should not be confused with the variation

symbol. The Ricci tensor and scalar variations have to be calculated by varying

their explicit expressions in terms if the connection. For example, for the variation

of the Ricci scalar one finds,

δR ≡ δ
(
gαβRαβ

)
= δgαβRαβ + gαβδRαβ, (2.24)

which assumes knowledge of δRαβ. Of course, given the metric fluctuation, the first

quantity that has to be calculated is the fluctuation of the connection given by

δΓαβγ =
1

2
δgακ

(
2gκ(β,γ) − gβγ,κ

)
+

1

2
gακ
(
2δgκ(β,γ) − δgβγ,κ

)
, (2.25)

with (A,B) ≡ 1
2
(AB +BA).

Having in hand all the expressions for the perturbed curvature tensors, the next

step is to choose an explicit expression for the metric fluctuation δgµν . The metric,

being a rank two tensor field, carries in total 10 degrees of freedom, and one can

write down a general decomposition consisting of scalar, vector and tensor modes

respectively. The general decomposition of the metric perturbation reads as

δgµν = a2(η)

 −2Ψ wi

wi 2Φδij + hij

 . (2.26)

ψ and φ are spatial scalars, wi is a 3-vector and hij is a traceless spatial rank two
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tensor field, i.e δijhij = 0.

We can further decompose the components of the perturbed metric element

(2.26). The vector part wi can be decomposed into longitudinal (curl free) and

transverse (divergence free) component as

wi = w
||
i + w⊥i = ∇iw + w⊥i ≡ w,i + w⊥i , (2.27)

since the longitudinal part, being curl free, i.e ∇×w||i = 0, can be expressed as the

gradient of a scalar function.1The vector part satisfies ∇ · w⊥i = 0.

In a similar fashion, the tensor part of (2.26) can be expressed in terms of pure

scalar, vector and tensor part respectively as

hij = h
||
ij + h⊥ij + hTij, (2.28)

with T standing for transverse. h
||
ij and h⊥ij can be further decomposed into scalar

and vector parts while hTij is pure transverse and cannot be decomposed any further.

We have

h
||
ij = (∂i∂j −

1

3
∂2)h, (2.29)

h⊥ij =
1

2
(hi,j + hj,i), (2.30)

with h and hi denoting the pure scalar and vector parts respectively, and ∂2 ≡

δij∂i∂j. The following relations hold for the different components

δijh
||
ij = 0, (2.31)

δijhi,j = 0, (2.32)

δijhTij = 0, δikhTij,k = 0. (2.33)

Therefore, the scalar part h
||
ij is symmetric and traceless, the vector h⊥ij is symmetric

and traceless, and hTij is symmetric, transverse and traceless.

We can sum up all the different modes included in the perturbed element δgµν :

There are four scalars (ψ, φ, w, h), two vectors (wi, hi) and a tensor part hTij. Re-

1The comma here denotes partial derivative, i.e ,i≡ ∂i.
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member that the total degrees of freedom of the metric field add up to ten. Among

these the four scalars contribute four, the 2 vectors are subject to two constraints

and contribute two, and the tensor mode satisfies 4 constraints and contributes two

degrees of freedom respectively. Adding up, the sum gives ten, as it should. Not

all of the ten degrees of freedom are physically relevant, and in order to calculate

physically meaningful quantities one has to choose a gauge, a procedure that will

describe in the following. All we can say for now is that, choosing a gauge artifact

degrees of freedom are removed from the calculation of observables.

An important point is that at the linear perturbation level, which we are in-

terested in, the different modes, scalar, vector and tensor ones, propagate inde-

pendently, i.e there is no mixing between different modes. At the linear level, each

mode sources a different part of the perturbed energy-momentum tensor (r.h.s of

the Einstein equations) and vice versa. As mentioned also before the scalar modes

are responsible for gravitational collapse. They source perturbations in the energy

density, pressure and scalar part of the velocity of the energy-momentum tensor

on r.h.s. On the other hand, vector modes source rotational velocity perturbations

and since they decay in time, they are not of cosmological interest. Finally, tensor

modes represent gravitational waves, and in a cosmological context are suspected

to be generated at the end of the inflationary era (primordial gravitational waves),

and could be potentially observable in CMB.

2.2.2 Perturbed energy-momentum tensor

We saw in the previous section how to express the perturbed l.h.s of the Einstein

equation. In this section we will present how the r.h.s should be perturbed, which

corresponds to perturbations in the energy-momentum tensor of the fluid(s).

We will restrict ourselves to the case of the energy-momentum tensor of a perfect

fluid which is the most common case in cosmology, at least concerning baryonic and

dark matter fluids. The case of perturbations in a general energy-momentum tensor

will be described in a following chapter, where we will discuss perturbations for a

general dark fluid. Notice also that in the case that the energy-momentum tensor

Tα(X)β is of geometrical origin, in that case its explicit perturbed form is derived in

the same way as the l.h.s of the Einstein equations. (Remember that by moving an
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energy momentum tensor of purely gravitational origin to the r.h.s is just a matter of

taste, so that we can view the equation as GR on the l.h.s sourced by some effective

“fluid” on the r.h.s.)

For a general fluid, the energy momentum-tensor has the form

Tαβ = (ρ+ p)uαuβ + pδµν + (2q(αuβ) + σαβ), (2.34)

with ρ the energy density, p the pressure, uα the fluid rest frame velocity, qα the

momentum flux and σαβ the anisotropic shear. For a perfect fluid, qα = σαβ = 0.

Also notice that even for an imperfect fluid, qα and σαβ will be zero at the FLRW

background, but not at the perturbation level. The fluid velocity is a timelike vector

satisfying uαuα = −1, and at the FLRW background takes the form

uα =
1

a(η)
(−1, 0, 0, 0). (2.35)

Perturbing the energy-momentum tensor we have that

δTαβ = (δρ+ δp)uαuβ + (δρ+ δp)(δuαuβ + uαδuβ) + δpδµν , (2.36)

≡ ρ
[
δ(1 + c2

s)u
αuβ + (1 + w)(δuαuβ + uαδuβ) + c2

sδδ
µ
ν

]
, (2.37)

where the sound speed, relating the pressure with the energy perturbation, is defined

as

c2
s ≡

δp

δρ
. (2.38)

At the linear level, knowledge of the sound speed is essential as it closes the system

of equations, by relating the energy with pressure perturbations, in a similar way

the barotropic index does for pressure and energy at the background. In particular,

for the case of a barotropic fluid where p = p(ρ) the sound speed becomes c2
s ≡

dp/dρ = ṗ(ρ)/ρ̇. However, in general pressure depends on entropy too, so

c2
s ≡

δp(ρ, s)

δρ
=
∂p

∂ρ
+
∂p

∂s

∂s

∂ρ
≡ c2

s(a) + c2
s(na), (2.39)

with c2
s(a) the adiabatic and c2

s(na) the non-adiabatic part of the sound speed. Obvi-

ously, for a barotropic fluid, it is c2
s(na) = 0.
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The sound speed is associated with a characteristic length, the Jeans length λJ ,

which is defined as Padmanabhan (1993)

λJ ≡
√
π

cs

(Gρ)1/2
, (2.40)

with cs is the sound speed of the collapsing component under study, and ρ the energy

density of the dominant component in the case of a multicomponent Universe. At

a given time, the growth of modes smaller than the Jeans length, λ < λJ will be

suppressed, while the opposite will be true for modes outside the Jeans length. In

the latter case, pressure support of the matter density cannot counterbalance the

gravitational attraction and the small inhomogeneity collapses under gravity, as the

timescale for gravitational collapse tgrav ∼ (Gρm)−1/2 is smaller than the one need

for pressure re adjustment tpress ∼ λ/cs.

In fact, in a multicomponent Universe, gravitational collapse of the perturbed

species can be prevented even for modes outside the Jeans, when the background

expansion is fast enough to prevent collapse. In that case, the expansion timescale

texp ∼ (Gρdominant)
−1/2 is smaller than the timescale for gravitational collapse tgrav ∼

(Gρm)−1/2. In such situation it is texp < tgrav < tpressure Padmanabhan (1993),

(Gρdominant)
−1/2 < (Gρm)−1/2 <

λ

cs

. (2.41)

For a detailed presentation of above issue the reader is referred to the textbook

Padmanabhan (1993).

Let us now elaborate with perturbing the energy momentum tensor, which we

assume to have a perfect fluid form. Considering only scalar perturbations, the

components of the perturbed energy-momentum tensor are

δT 0
0 = −δρ, (2.42)

δT 0
i = −δT i0 = (1 + w)ρvi, (2.43)

δT ij = c2
sδρδ

i
j. (2.44)
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For the 4-velocity perturbation uα → uα + δuα we have,

uα =
1

a
(1−Ψ, vi) , uα = a (−(1 + Ψ), vi − wi) , (2.45)

with a ≡ a(η) and vi ≡ dxi/dη ≡ aui is the matter, coordinate peculiar velocity.

Notice that the timelike normalisation is preserved.

The set of the perturbed Einstein equations (2.21) is supplemented with the per-

turbation of the conservation equations for the fluid(s) energy-momentum tensor(s)

on the r.h.s. of the equations. This leads to

δ (∇αT
α
β) = 0 ≡ δ

(
Tαβ,α − ΓκβλT

λ
κ + ΓκκλT

λ
β

)
, (2.46)

∼ ∂δT + ΓδT + TδΓ, (2.47)

with the last line being a schematic representation of the kind of terms one finds

after evaluation of the variation on the first line. We will derive explicit expressions

for above equation considering particular cases for fluids in the following.

2.2.3 Choice of gauge

As mentioned before, there is gauge freedom in the perturbed, gravitational field

equations. In the context of perturbation theory in gravity, the gauge freedom lies

in the different ways one can move from the unperturbed (background) manifold to

the perturbed one. The latter corresponds to the “real”, observed Universe.

Let us look at this issue a bit more closely. Let us recall the notion of a gauge

transformation. The gauge transformation of some field variable, is the change in

that variable induced by an infinitesimal diffeomorphism, generated by a vector

field ξα. (The change in the field induced by such transformation defines the Lie

derivative.) In particular, for the metric field a gauge transformation transforms the

field as,

gαβ → gαβ + 2∇(αξβ), (2.48)

with (A,B) ≡ 1
2
(AB +BA).

In the context of perturbation theory in gravity, by doing a gauge transformation

of some field (e.g the metric), one changes the point in the background spacetime
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corresponding to a point in the physical space Ellis and Bruni (1989). Therefore,

even for quantities which are scalars under gauge transformations, the value of

the perturbation will not be invariant under the transformation if the quantity is

non-zero and position dependent in the background Ellis and Bruni (1989). This

results in the Walker-Stewart lemma Stewart and Walker (1974) which simply states

that quantities which are constant or zero in the background spacetime will be

gauge invariant. The latter is the standard approach in constructing gauge invariant

variables, especially in the covariant approach to perturbation theory of Ellis and

Bruni (1989); Bruni et al. (1992). Following Ellis and Bruni (1989), for the metric

perturbation we have,

δgαβ = gαβ − ḡαβ, (2.49)

with the bar indicating the background metric field. If from observations we were

able to fully reconstruct the “real” metric gαβ, there is no unique way of recon-

structing the idealised, background metric ḡαβ; the gauge freedom allows for different

mappings from the background to perturbed Universe. In order for the calculation

of observable quantities to be meaningful, spurious degrees of freedom have to be

removed, or in other words a particular mapping from the background (homogen-

eous) to the perturbed (inhomogeneous) spacetime has to be chosen, through the

“gauge fixing” procedure. After the gauge is fixed, the different local coordinate

transformations of the metric field are uniquely fixed, and the extra gauge degrees

of freedom are eliminated.

Let us describe the most commonly used gauge choices for scalar perturbations

in cosmology. The condition B = w = 0 2 defines the so–called Newtonian or

longitudinal gauge. The advantage of this gauge can be seen by the fact that in

the solar system limit Ψ plays the role of the Newtonian potential. Morover, it is

the combinations of Φ and Ψ that comes into Weak Lensing (WL) measurements,

making it extremely useful for calculating observables. Another important point is

that in this gauge, Φ and Ψ coincide with the gauge invariant potentials ΦGI, ΨGI

Mukhanov et al. (1992). Note also that in this gauge the 0 − 0 Einstein equation

plays the role of the generalized Poisson equation, well known from its Newtonian

gravity analogue.

2This w should not be confused with the barotropic index.
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The condition Ψ = w = 0 defines the synchronous gauge. This is the gauge

where all observers agree on the notion of time. Although the metric shift is zero,

the energy-momentum tensor includes a velocity perturbation vi in its 0 − i com-

ponent. For the metric evolution equations in this gauge see for example Ma and

Bertschinger (1994). The coordinates in this gauge are not totally fixed, leading to

the appearance of unphysical gauge modes. The latter fact requires one to be cau-

tious when interpreting results calculated in this frame Bednarz (1985); Mukhanov

et al. (1992).

One can also work with gauge invariant perturbation variables, an approach

introduced by Bardeen Bardeen (1980) (see also Mukhanov et al. (1992)). The

introduction of gauge invariant variables refers to the construction of expressions

relating perturbation variables of different gauges, in such a way that any gauge

transformation leaves them invariant.

Finally, another approach is to work in the so–called covariant formalism, which

is background independent. In this approach, one works with manifestly, gauge

invariant fluid quantities. For details of this approach one can look at Ellis and

Bruni (1989); Bruni et al. (1992) and references therein.

In this thesis, we shall work in the Newtonian gauge, which as described before is

defined through w = h = 0, and therefore characterised by the two scalar potentials

Ψ and Φ. We will refer to them as the “Newtonian potentials”. In this gauge, the

components of the perturbed Einstein equations in the presence of multiple perfect

fluids and a “dark” energy-momentum tensor T(X)
α
β take the following form

a2δG0
0

2
≡ 3H(HΨ− Φ′) +∇2Φ = −κ

2a2

2
(δρi − δT(X)

0
0) (2.50)

a2∇iδG0
i

2
≡ ∇2(Φ′ −HΨ) =

κ2a2

2

(
(1 + wi)ρiθi + δT(X)

0
i

)
(2.51)

a2δGi
j

2
≡ Φ′′ + 2HΦ′ −HΨ′ − (H2 + 2H′)Ψ = −κ

2a2

2

(
c2
siδρi + δT(X)

i
j

)
(2.52)(

δGi
j −

1

3
δGk

k

)
≡
(
∂i∂j −

1

3
∂k∂k

)
(Φ + Ψ) = −κ

2a2

2
δΠ(X), (2.53)

where δΠ(X) is the scalar anisotropic stress contribution of the dark component

X, and is defined through δΠ(X)
i
j ≡ δT(X)

i
j − 1

3
δijδT(X)

k
k =

(
∂i∂j − 1

3
∂k∂k

)
δΠ(X).

Furthermore, we have also defined the velocity gradient θ as θi ≡ ∇ivi. Notice also
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that on the r.h.s of the above equations we assume that the perfect fluid components

are summed over. i.e δρi ≡ δρ1 + δρ2 + . . .. For baryonic and dark matter we have

w = c2
s = 0.

The set of perturbation equations is not complete yet. We still have to perturb

the fluid(s) conservation equations, as shown in equation (2.46). We will do it for the

case of a perfect fluid with barotropic index and sound speed wi and csi respectively,

in the Newtonian gauge, yielding two first order equations, as follows Amendola and

Tsujikawa (2010),

δ′i + 3H(c2
si − wi)δi = −(1 + wi)(θi + 3Φ′), (2.54)

θ′i +

(
H(1− 3wi) +

w′i
1 + wi

)
θi = −∇2

(
c2
si

1 + wi
δi + Ψ

)
. (2.55)

Above equations are a result of energy and momentum conservation respectively.

One can also derive a single, second order evolution equation with respect to time,

for the fraction δi, by differentiating the energy equation with respect to time, and

then substituting the momentum one to eliminate θi and its time derivative.

Notice that for the case of pressure less matter, like for example dark matter,

where w = w′ = c2
s = 0, above equations simplify a lot.

The system of perturbation equations is now complete 3. Notice that only two

of the Einstein equations are independent. We have therefore two gravitational

equations for two gravitational variables (Φ and Ψ) and two equations for each two

fluid variables (δi and θi). In the sub horizon approximation (H2/k2 � 1), which is

the appropriate approximation when studying structure formation in the late time

Universe, the two gravitational equations that are used is the Poisson equation,

coming from the 0 − 0 component of the Einstein equations, and the anisotropy

equation. We will use this approximation in the following chapters when we will

evaluate the equations for particular models of the dark component Tα(X)β.

Relativistic species, like neutrinos, also contribute to the anisotropic stress, how-

ever their contribution becomes important at the early stages of the cosmological

evolution, and we can neglect them when studying the Universe at later times. No-

tice that in the absence of any anisotropic stress contribution, we get Φ = −Ψ,

3For the transition to Fourier from real space, given a variable f it is: f =
∫
d3kfke

ik.r, with k
the Fourier mode.
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which is a signature of GR or scalar field models like quintessence or k-essence (but

not true for galileon models). It is no longer true in non-linear gravity models like

f(R) gravity, and therefore any departure from |Φ/Ψ| ∼ 1, will signal a modification

of gravity. We will come back to this issue in a later chapter, when we will discuss

the significance of anisotropic stress as a key observable in testing modified gravity

theories.

The weak lensing potential in the Newtonian gauge is defined as

φWL ≡ Ψ− Φ. (2.56)

It is the potential to which light rays respond when passing close to some large

concentration of matter, like a cluster of galaxies. Therefore, the potential φWL

can be extracted from weak lensing surveys. In fact, the light rays correspond to

the scalar potentials and not directly to the matter concentrations. This means

that the scalar potentials might acquire modifications compared to their GR value,

either due to the presence of some unknown clustering component, or because of a

possible modification of gravity itself. This fact has to be taken into account when

constructing phenomenological dark energy parametrisations at the linear level (see

for example Amendola et al. (2008)).

The approach we used above to discuss linear perturbations is using the language

of components. In fact, complicated models of the scalar–tensor type, especially

those with second derivatives in the energy–momentum tensor, the simplest of this

case being f(R) theories, the component language can become quite complicated

when analysing the physics. A more intuitive approach one can use is the covariant

language of fluids. In this context, the dynamics of the model can be expressed

as the evolution of fluid variables like energy, provided knowledge of appropriate

closure relations between energy and pressure.

Our aim is not to discuss this subject in details, and for details we refer the reader

to the work in progress Sawicki et al. (2012), which is soon to appear. However, let

us present the fundamental equations in the context of a scalar–tensor theory.

Given a particular action, which apart from the metric included also a scalar

field 4, the starting point for a covariant fluid description is to start off by defining

4We do not make any particular assumption about the form of the kinetic term or the potential
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the scalar frame, which is the frame of an observer comoving with the fluid, with

velocity Uµ,

Uµ = − ∇
µφ√
2X

, (2.57)

with X ≡ −1
2
∂κφ∂

κφ, which is positive, X > 0, in our metric signature (− + ++).

Notice that with this definition, the velocity vector Uµ is time like. All other velocity

fields, like for example the dark matter one, can be decomposed into perpendicular

and parallel components to Uµ.

The covariant derivative of the velocity acquires the decomposition into the kin-

ematical quantities aµ, θ and σµν as

∇µUν = −Uµaν + σµν +
1

3
⊥µν θ, (2.58)

with

aν ≡ Uµ∇µUν (2.59)

the acceleration, σµν the transverse, traceless symmetric shear, and θ ≡ ∇µUµ the

expansion. In a FLRW background it is θ = 3H.

All tensor quantities can be then decomposed covariantly, into parallel and per-

pendicular components to Uµ. In particular, the energy–momentum tensor is de-

composed into its “irreducible” fluid quantities, namely energy E , pressure P , mo-

mentum flux qµ and shear τµν , according to

Tµν = EUµUν+ ⊥µν P + 2U(µqν) + τµν , (2.60)

with the projector perpendicular to the velocity Uµ defined as ⊥µν= gµν + UµUν ,

with gµν the background spacetime metric.

Covariant conservation of energy and momentum are derived by projecting out

the covariant derivative of the energy–momentum tensor appropriately,

Uµ∇νTµν = Ė + (E + P)θ − Uµq̇µ +∇µq
µ + σµντ

µν , (2.61)

⊥λ ν∇µTµν = (E + P)aλ+ ⊥µλ ∇µP +
4

3
θqλ+ ⊥µλ q̇µ + σµλq

µ+ ⊥λν ∇µτ
µν ,

(2.62)

of the scalar field here.
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while the Einstein equations are obtained in a similar fashion, for example for the

00, 0i and ij we have

UµUνGµν = UµUνTµν , (2.63)

Uµ ⊥λ νGµν = Uµ ⊥λ νTµν , (2.64)(
⊥αµ⊥βν −

1

3
⊥µν⊥αβ

)
Gµν =

(
⊥αµ⊥βν −

1

3
⊥µν⊥αβ

)
Tµν , (2.65)

with Tµν here just denoting the total energy–momentum tensor for simplicity.

It is important to note that the conservation equations (2.61)–(2.62) are true

at all orders. Evaluated at a FLRW background the first leads to the usual en-

ergy density conservation, while the second one is identically zero. To study linear

perturbations the procedure is then similar to the component approach presented

before; one chooses a gauge, and linearises the conservation equations,as well as the

gravitational ones. What is more, in the context of scalar perturbations, vector and

tensor quantities, like for example the momentum flux qµ, can be expressed as the

spatial gradient of a scalar function as

qµ =⊥κ µ∇κq, (2.66)

with q ≡ q(t) a background function dependent on cosmic time t. A similar decom-

position exists for the shear tensor τµν . We will not elaborate more on this issue

and we refer the reader to the work soon to appear in Sawicki et al. (2012).

Let us close the chapter with a little summary. We described the background

gravitational equations in the presence of multiple perfect fluids and a dark com-

ponent X for the homogeneous and isotropic FLRW metric. We then discussed how

to perturb the background equations to describe small departures from homogeneity

and isotropy, a procedure that leads to understanding gravitational instability and

therefore formation of structures in the Universe. We described the different gauge

choices and then presented the perturbation equations in the so-called Newtonian

gauge, a gauge which is very useful when calculating observables, and we will also

be using in the following.
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Chapter 3

Non-linear gravity

3.1 Introduction

We discussed in chapter 1 that in order to model the dark energy various modi-

fications of GR have been studied. In this chapter, we will focus on the case of

non-linear gravity models. The latter, modify the standard GR action through the

inclusion of non-linear curvature terms. These can be either non-linear functions of

the Ricci scalar, or more general combinations of the Riemann tensor and the metric

field. We can formally write down the most general action of this class of models in

four dimensions as

S =

∫
d4x
√
−gf(gµν , Rαβγδ) + Sm(gµν , ψi), (3.1)

with Sm denoting collectively the action of any sort of matter field present.

From above action, one can construct infinitely many scalar combinations, through

the operation of contraction. In principle, the equations of motion resulting through

variation with respect to the metric, will be of fourth order (with respect to the

metric) for this particular type of action, except for particular non-linear curvature

combinations known as the Lovelock scalars, which have the property of retaining

the second-order character of the equations of motion. The most famous of such a

scalar is probably the Gauss–Bonnet term defined as

G ≡ R2 − 4RµνRµν +RµνκλRµνκλ. (3.2)
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The Gauss-Bonnet term is the second order term in an infinite sum of curvature

combinations introduced by Lovelock Lovelock (1971).

S =

∫
ddx
√
−gRγ1δ1

α1β1
. . . Rγnδn

αnβn
δα1β1...αnβn
γ1δ1...γnδn

, (3.3)

where δα1β1...αnβn
γ1δ1...γnδn

is the alternating tensor, which is antisymmetric with respect to

the interchange of two neighboring indices, and n an integer number, n = 0, 1, 2, . . .,

and d the spacetime dimensionality. Notice that the action integral is defined in

d dimensions. For a given spacetime dimension d, not all terms of the infinite

series in above action contribute to the equations of motion. The non vanishing

components in the action are these that satisfy n ≤ d/2. This is an immediate result

of the antisymmetric properties of the alternating tensor. The terms that satisfy

the inequality n < d/2, are non-zero and contribute to the equations of motion. On

the other hand, the term with n = d/2 is non-zero, but is a total derivative, only

yielding a surface term. The latter term starts to contribute at dimension d+ 1.

In particular, for d = 4, we have n ≤ 2. The term with n = 1 corresponds simply

to the Ricci scalar, while the one with n = 2 to the Gauss–Bonnet one. One sees

that the latter will be a total derivative in d = 4, and will only start to contribute

in d = 5. The third order term, n = 3, is non-zero in d = 6 (total derivative) and

starts contributing to the equations of motion from d = 7 and on. Notice that the

cosmological constant corresponds to the trivial zeroth order term, n = 0, in above

expansion.

Although the Gauss–Bonnet term is a total derivative in four dimensions, this

is not true anymore if it is coupled to a scalar field, or enters the action in a non-

linear form. The latter case will concern us in the following where we will study

the so-called f(R,G) models. In fact, as we will see in chapter 4 the two cases are

related, i.e one can always re-express an f(R,G) model in a scalar–tensor form. A

Gauss–Bonnet term coupled to a scalar appears in the low energy limit of string

theory, where the scalar field is the dilaton Zwiebach (1985).

It is interesting to note that action (3.3) can be written as a sum of a bulk and

surface term, with a particular relation relating the two terms. This means that

knowledge of the bulk term only is enough to determine the surface one Kolekar and

Padmanabhan (2010). This is called the holographic property of the action. It is
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an important feature when studying gravity from a thermodynamical point of view

(see Padmanabhan (2011) and references therein).

Let us now go back to the more general case of action (3.1). As mentioned before,

this class of actions will give at most fourth order equations of motion for the metric

field. This implies that the structure of these theories is going to be richer than that

of GR. We will start by discussing the vacuum structure for the actions described by

(3.1). Recall that in GR without a cosmological constant, the only vacuum solution

is Minkowski spacetime, which is stable. (Anti-) de Sitter spacetime solutions are

only possible through the addition of a cosmological constant, and in that case the

solution reads as R = Λ/4. The situation is very different for the case of non-linear

models (3.1). In general, their vacuum solutions include Minkowski spacetime as well

as (anti-) de Sitter solutions, even in the absence of a cosmological constant. Vacuum

solutions are characterised by a constant Ricci-curvature, i.e R = R0 = constant,

and correspond to maximally symmetric spaces. Therefore, the Riemann tensor is

given by

Rαβγδ ≡ R0αβγδ =
1

12
R0 (gγαgβδ − gαδgβγ) , (3.4)

with “0” denoting evaluation on the vacuum solution. Substituting above expression

into the function “f”, the latter becomes a function of Ricci scalar only, i.e f = f(R0.

Then, using the equations of motion resulting form action (3.1) after variation with

respect to the metric, one can show that vacuum spacetimes are solutions of the

following equation

R0f
′(R0)− 2f(R0) = 0, (3.5)

with f ′(R0) ≡ df(R0)/dR0. Similar equations to the above hold for the more par-

ticular cases of f(gµν , Rαβ) and f(R). Now, for different forms of the function “f”

one can in principle find multiple (anti-) de Sitter solutions. Their stability can be

found by performing a linear analysis around the background solution. Obviously,

the existence of a stable de Sitter solution is the key in describing the dark energy

problem in the context of non–linear gravity models.

The question that arises is, what the criteria are for a particular form of f to be

acceptable. In order to answer this question we have first to define what we mean

by “acceptable”. From a mathematical point of view, it should be obvious that
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any scalar combination will be acceptable, since it will preserve general covariance

(of course, general covariance has deep physical implications too). The restrictions

should then come from the physics: a generally viable gravitational action should

behave correctly both at classical and quantum level. Let us start with the classical

one. There, one has to make sure the dynamics are free from: singularities and any

sort of dynamical instabilities that could endanger the phenomenological viability of

the theory. Furthermore, the theory should have the correct sequence of cosmological

eras and the proper (post) Newtonian limit. A viable cosmological evolution should

include an early de Sitter era (inflation), followed by a radiation and matter era

respectively, leading to a late time acceleration period. The particular physics of

each era pose each own restrictions to the model; during inflation the primordial

density perturbations are generated, while during radiation the light elements form,

also known as the Big Bang Nucleosynthesis (BBN). On the other hand, during

matter domination, the large scale structures form. The late time de Sitter era

correspond to the presently observed acceleration of the Universe. Consequently,

the radiation and matter eras should be stable enough, to allow for the correct

BBN and structure formation to occur. On the other hand, a crucial restriction

at the quantum level is that the theory should be ghost-free and renormalisable.

In particular, the presence of ghost-like degrees of freedom will violate unitarity

of the theory.Furthermore, renormalisability ensures that calculation of observable

quantities, like the mass or the charge of a particle, yields finite numbers.

From above discussion it turns out that it is important to understand the field

content of non–linear gravity models. In GR, the only propagating degree of freedom

is the massless, spin-two particle, the well known graviton. In models described by

action (3.1), the situation is more complex. Following Hindawi et al. (1996) we can

get an idea about the propagating fields in these theories by looking at the Cauchy

problem of the theory. Since the theory is diffeomorphism invariant, the independent

components of the metric can be reduced from ten to six, as in GR. However, the

metric field satisfies fourth-order equations of motion 1, which means that initial

data will require specification of the field itself as well as its first, second and third

1In fact, we can re-express the original fourth-order theory, in a dynamical equivalent fashion,
as a second-order one through the introduction of auxiliary fields. This will be the subject of
chapter 4.
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derivative respectively. This makes up in total twelve degrees of freedom for the

theory as defined in action (3.1). However, we know that six of these degrees of

freedom should correspond to the two helicity states of the graviton. Therefore, the

remaining six degrees of freedom should be attributed to some new fields present in

the theory.

In order to understand the new propagating fields present in the theory, we can

expand action (3.1) up to second order in curvature, around some vacuum solution

characterized by R = R0 = constant. The result is Chiba (2005a); Hindawi et al.

(1996)

S =
β

2κ2

∫
d4x
√
−g
[
R− 1

2
R0 +

1

6m2
0

R2 − 1

m2
2

(
RµνR

µν − 1

3
R2

)]
, (3.6)

with β,m2
0,m

2
2 constants. To identify the field content of above action one can

perform a linearised analysis to identify the field propagators, as was done in Stelle

(1978); Nunez and Solganik (2005a). In any case, as a first step, it is useful to re-

express it as a second-order one through the introduction of two new field variables,

χ and πµν , as was done for example in Hindawi et al. (1996); Chiba (2005a) and

after a conformal redefinition of the metric g̃µν = eχgµν arrive at the dynamically

equivalent action

S =

∫
d4x
√
−g
[
R̃(g̃)− 3

2
(∇̃χ)2 − 3

2
m2

0(1− e−χ)2 − 1

2
R0e

−2χ − G̃µν π̃
µν +

1

4
m2

2(π̃µν π̃µν − π̃2)

]
,

(3.7)

with G̃µν the Einstein tensor. We first notice that the new scalar χ is a canonical,

massive scalar field. As for π̃µν , it can be shown from the equations of motion for

the metric field, that it satisfies a transverse, traceless condition; therefore it is a

spin-two field. As a result, the last term in the action describes the interaction

between two spin-two tensor fields, g̃µν and π̃µν . The latter interaction violates the

no–go theorem Aragone and Deser (1980); Boulanger et al. (2001) which states that

the only possible ghost-free interaction between two spin-two fields is the massive

Fierz–Pauli one 2. This way, we find that π̃µν is a ghost field. From a calculation

point of view one could see this explicitly by making a field redefinition in order to

2Remember that the mass term in the massive Fierz–Pauli action, in an expansion around flat
spacetime, gµν = ηµν + hµν , is − 1

4m
2
(
hµνhµν − h2

)
. For details see for example Ort́ın (2004).
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diagonalise the kinetic terms of the spin two fields, and show that one of them will

have the wrong sign.

We conclude that the field content of general theories described by (3.1) is a

massless, spin two field (graviton), a massive spin-two ghost field, and a massive

scalar.

However, it has been shown Navarro and Van Acoleyen (2006) that for the par-

ticular theories that admit the form

S =

∫
d4x
√
−gf(R,RµνκλR

µνκλ − 4RµνR
µν), (3.8)

the spin-two ghost field disappears, i.e m−1
2 = 0 in the action (3.6). To this spe-

cial class of theories belong the cases of f(R) and f(R,G) gravities that will be

studied in more detail in the following sections. The absence of the ghost spin-two

tensor field makes these theories obviously more attractive. Notice however, that

the massive, scalar degree of freedom still exists, and one has to make sure that it

is not ghost-like or tachyonic, and it is also well “hidden” at solar system scales,

where GR is expected to be recovered. The key point here, as was further showed in

Navarro and Van Acoleyen (2006), for this type of theories the scalar mass acquires

a dependence on the background curvature and therefore its effects are suppressed

at high curvature environments like the solar system, while it becomes light at low

curvatures, e.g large scales of the order H, and can act as a source of dark en-

ergy. The latter property is essentially the chameleon mechanism first suggested in

Khoury and Weltman (2004). The idea behind it is that the mass of the scalar is

dependent on the matter background density, making it very light at cosmological

scales where the matter density is low, while at high density environments like the

solar system, the scalar becomes very massive, and therefore effectively unobserv-

able. The chameleon is not the only screening mechanism for scalar fields. The

Vainshtein Vainshtein (1972); Deffayet et al. (2002) as well as the symmetron Hin-

terbichler et al. (2011) mechanism have been also suggested as ways to screen a

scalar at high density regions. The former becomes significant in the presence of

derivative self couplings of the scalar, which dominate in high density regions, while

the latter is based on making the vacuum expectation value of the scalar dependent

on the environment mass density.
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As mentioned earlier, a viable gravity model should reproduce the correct back-

ground cosmological evolution. The analysis in Carroll et al. (2005) is one of the

first attempts to study the (late) cosmology of general models of the type

f =
µ4n+2

(aR2 + bRµνRµν + cRµνκλRµνκλ)n
, (3.9)

with a, b, c dimensionless constants and n > 0. Notice that “f” acquires a large

value at sufficiently small curvatures, which is the reason it makes it interesting

for describing the late time acceleration of the Universe. It was found that models

of this type poses an unstable late time de Sitter solution, as well as other power

law attractors that could account for the observed late time acceleration, when the

mass scale µ ∼ H0. Probably the most well studied models in the literature have

been the f(R) and R+ f(G) ones, that will be described in more detail in the next

sections. However, it is worth mentioning here that it has been found that by a

suitable choice of the function f , models of this type have the correct sequence of

cosmological eras, from scaling solutions to a late time, stable dS attractor Amendola

et al. (2007b); Zhou et al. (2009). Furthermore, in a similar context, early and late

time acceleration unifying models have been also investigated in detail in Nojiri and

Odintsov (2011). In the following, we will mainly focus on f(R) and f(R,G) models,

which are the cases that have been widely studied in the literature, as they are free

from the unwanted, ghost spin-two field.

The behavior of f(R) and f(R,G) models has been also well studied at the linear

perturbation level, where they pose some distinct signatures that distinguish them

from ΛCDM or scalar field models like quintessence or k–essence. Both class of

models enhance the growth of structure, by modifying the matter power spectrum

Gannouji et al. (2009); Bean et al. (2007); Tsujikawa (2008a); Pogosian and Silvestri

(2008); De Felice and Suyama (2011a). However, the characteristic signature of non–

linear gravity models in general, is the existence of an effective anisotropic stress,

which is a key observational quantity that can be extracted from combining galaxy

clustering with weak lensing surveys Amendola et al. (2008); Saltas and Kunz (2011).

Furthermore, because of the fourth order nature of non–linear gravity, one expects in

principle to find superluminal modes at the linear perturbation level, as was shown

for general f(R,G) gravity in De Felice and Suyama (2009). The special case of
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R+ f(G) models has been ruled out, due to a singularity present at the linear level

in the presence of matter De Felice et al. (2010b).

Non–linear gravity models suffer in principle from various types of early or

late singularities, which are absent in GR. In particular, for f(R) gravity an early

time curvature singularity was found in Starobinsky (2007) and explained in Frolov

(2008), while other types of singularities have been studied in Abdalla et al. (2005).

In principle, one expects that non–linear modifications of the GR action will

yield corrections to the corresponding solar system limit, which is what is found in

practice. For the case of the models described by (3.9), it was found in Navarro and

Van Acoleyen (2006) that they poses an acceptable Newtonian limit at small distance

from the source, but they can have observationally significant effects at galactic

scales. In particular, for the models given by (3.8), in Navarro and Van Acoleyen

(2006) it was found that the scalar degree of freedom present in the theory acquires

a dependence on the environment curvature, and effectively decouples in the vicinity

of a matter source like a star so that solar system tests are successfully passed. The

latter behavior is the so-called chameleon mechanism, and is also present in the

special case of f(R) models. For the case of R + f(G) models it was shown that

they can accept a viable solar system limit upon a suitable choice of the function f

Davis (2007a); De Felice and Tsujikawa (2009c).

Let us close our review of non–linear gravity by mentioning a special type of

non–linear gravity models, the so called conformal gravity. As its name declares,

the special thing about this type of gravity is that it is invariant under conformal

transformations of the metric. More precisely, invariance here means that both

action and equations of motion will be unaffected after conformally redefining the

metric field.

The form of a conformally invariant action for gravity depends on the spacetime

dimensionality. The very first hint for this is given by the transformation of the

action measure under a conformal transformation gαβ → Ω2(xµ)gαβ,

∫
V

dnx
√
−gL →

∫
V

dnx
√
−g̃Ω−nL̃, (3.10)

which implies that L should transform appropriately if the action has to be con-
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formally invariant. In four dimensions, the action for conformal gravity is

S = αg

∫
V

d4x
√
−gCα

βγδCα
βγδ, (3.11)

with Cα
βγδ the Weyl tensor, and αg a dimensionless coupling. The Weyl tensor is

the trace part of the Riemann tensor, and is defined as

Cα
βγδ = Rα

βγδ −
2

n− 2

(
gα[γRδ]β − gβ[γRδ]

α
)

+
2

(n− 1)(n− 2)
Rgα[γgδ]β. (3.12)

Notice that the Weyl tensor is conformally invariant when in the form with one

raised index and the rest being low, i.e Cα
βγδ, while it possesses the same symmetries

with the Riemann tensor. Expressing the Weyl tensor in terms of the Riemann tensor

and its contractions, action (3.11) can be expressed in the equivalent form

S = 2αg

∫
V

d4x
√
−g
(
RµνRµν −

1

3
R2

)
, (3.13)

where we dropped the Gauss–Bonnet term, as in four dimensions it only contributes

a surface term. The second form of the action makes obvious the connection with

the non–linear gravity theories described before.

In four dimensions, cosmological and astrophysical aspects of conformal gravity

have been studied. In particular, in this context, galactic rotation curves have been

successfully fitted, see for example Mannheim and O’Brien (2010); O’Brien and

Mannheim (2011); Mannheim (2012) and references therein. On the cosmology side,

it has been claimed that the cosmological problem accepts a solution in view of a

conformally invariant action proportional to the square of the Weyl term, Mannheim

(2012) and references therein, while for a study of the unitarity of the theory one

can look at reference Bender and Mannheim (2008).

We can find a generalisation of the conformally invariant gravity action in any

dimensions using as our starting point the Lovelock action (3.3). The flow of thinking

is as follows: the action that has to be constructed should consist of some product of

Weyl tensors. What is more, the Weyl tensor has the same symmetries under index

permutations as the Riemann tensor. Therefore, we can try to use the same form

with the Lovelock action, but with the Riemann tensor substituted by the Weyl one.
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Therefore, we can attempt to write a conformally invariant action in n dimensions

as

S =

∫
V

√
−g δ135...2n−1

246...2n C24
13C

68
57 . . . C

2n−2 2n
2n−3 2n−1, (3.14)

with 1, 2 . . . ≡ µ1, µ2, . . . for simplicity and δ135...2n−1
246...2n denotes as in the Lovelock case

the antisymmetric tensor. Above action is indeed the correct action in n dimensions,

and it has been also used in Deser and Schwimmer (1993) in an analysis of conformal

anomalies in (even) arbitrary dimensions.

In this section, we reviewed some fundamental properties of non–linear gravity

actions. In the following, we will focus on the special class of actions proportional to

f(R), and f(R,G) respectively. For detailed reviews on modified gravity models the

reader is referred to Sotiriou and Faraoni (2010); De Felice and Tsujikawa (2010);

Clifton et al. (2012); Capozziello and Francaviglia (2008); Durrer and Maartens

(2008); Nojiri and Odintsov (2006a).

3.2 f (R) gravity

3.2.1 Equations of motion and dynamics

f(R) gravity is the simplest case of the general action (3.1). It modifies GR by

promoting its action to an arbitrary function of the Ricci scalar. One of the first

studies of f(R) theory was its application to describe primordial inflation Starob-

insky (1980a), and after then it has been also suggested as a candidate for the late

time acceleration of the Universe. Different formulations of f(R) gravity have been

studied in the literature, namely the metric Buchdahl (1970), the Palatini Buch-

dahl (1970) and the metric–affine formalism Sotiriou and Liberati (2007a,b). It is

important to note that although for an action linear to the curvature R, the metric

and Palatini formalism yield the same set of equations of motion, this is not true

for the non-linear case of f(R) theories. In this thesis, we will be interested in the

metric formalism, where the only independent field variable is the metric gαβ, and

the equations of motion are of fourth–order. Below, we will first derive the equations

of motion and then we will discuss the background dynamics and reconstruction, as

well as the stability conditions for metric f(R) models.
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The action for f(R) gravity in four dimensions reads as

S =
1

2κ2

∫
d4x
√
−gf(R) + Sm(gµν , ψi), (3.15)

where Sm denotes collectively all matter fields present.

Let us for the sake of illustration derive the equations of motion for above action

explicitly by varying it with respect to the metric field. Variation of the matter part

will yield the matter energy-momentum tensor,

Tαβ ≡
−2√
−g

δSm

δgαβ
. (3.16)

Varying the gravitational part, omitting for the moment the factor 1/κ2, we get,

δSf(R) =

∫
d4x
√
−g
(
−1

2
f(R)gαβδg

αβ + fRδR

)
, (3.17)

with fR(R) ≡ df(R)/dR. For the second term in the variation we have,

∫
d4x
√
−gfRδR

=

∫
d4x
√
−gfR(R)

[
Rαβδg

αβ +∇ρ(g
αβδΓραβ − g

αρδΓµαµ)
]

≡ C1 + C2. (3.18)

Evaluating B by integration by parts we get,

C2 =

∫
∂Σ

d3x
√
−hfR(R)

(
gαβδΓραβ − g

αρδΓµαµ
)
nρ

−
∫

Σ

d4x
√
−g
(
gαβδΓραβ − g

αρδΓµαµ
)
∇ρfR(R)

≡ C3 − C4, (3.19)

with ∂Σ denoting the boundary of the four-dimensional manifold Σ. The first term

(C) is a surface term and won’t contribute to the equations of motion. In the case

the boundary is taken to be infinity, the surface term C3 can be assumed to vanish,

i.e as ∂Σ→∞, C3 → 0.

On the other hand, evaluating the Christoffel symbol variation in the bulk term
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(C4), and using integration by parts again we arrive at

C4 = −
∫
M

dM
√
−g
[
(∇κ∇αfR(R)) δgκα + (∇κ∇κfR(R)) gαβδgαβ

]
. (3.20)

Plugging above relation in the original action variation, while keeping only terms

integrated along the bulk Σ and requiring the variation to be zero we arrive at the

equations of motion,

Gαβ =
κ2

fR(R)
Tαβ +

1

fR(R)

[
(gµαgνβ − gµνgαβ)∇µ∇νfR(R) +

1

2
gαβ (f(R)−RfR(R))

]
.

(3.21)

Let us come back to the surface term (C3) derived in (3.19). After integrating

by parts and using the definition of the extrinsic curvature (A.7) it takes the form

C3 = 2

∫
∂Σ

d3x
√
−hKfR(R), (3.22)

where K ≡ Kα
α is the trace of the extrinsic curvature tensor and h ≡ hκκ is the trace

of the metric on the boundary surface ∂Σ, also known as the ”projection operator”.

It reduces to the surface term encountered in GR, for fR = 1.

For a spacetime with a boundary, the surface term (3.22) has to be cancelled in

a formal way, by introducing a suitable counter term in the original action. In GR,

the form of the appropriate term, also known as Gibbons–Hawking term Gibbons

and Hawking (1977), is that of (3.22) with fR = 1, which after variation with respect

to the metric, will cancel the normal derivatives of the metric field on the boundary

surface. However, in the case of f(R) gravity, in principle there does not exist such

a term. We will come back to this issue in chapter 4 where we will discuss the

dynamical equivalence between different action representations, and will see that

in contrary to the original representation of f(R) gravity described by (3.15), the

corresponding Jordan and Einstein frame representations always possess a Gibbons–

Hawking term.

What does the equation of motion (3.21) tell us about f(R) gravity? The first

thing to note, in contrast to GR, is that the equation is fourth order with respect

to the metric field. More precisely, it includes second derivatives of fR(R), and the
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latter in turn hides second derivatives of the metric field. This implies that the

range of solutions will be larger than in GR.

Let us take the trace of (3.21),

2fR(R)−
dVf(R)

dR
=
κ2

3
T, (3.23)

with T ≡ gαβTαβ, and

dVf(R)

dR
≡ 1

3
(2f(R)−RfR(R)) . (3.24)

Above equation is a Klein–Gordon equation for fR(R), sourced by a scalar potential

of gravitational origin and the trace of the matter energy-momentum tensor. This

tells us that in f(R) gravity there is an extra, massive scalar degree of freedom

propagating, apart from the massless spin-two tensor field, the well known graviton.

In the original f(R) action (3.15) the scalar degree of freedom, described by fR(R),

has pure gravitational origin, however it can exist as an independent, true scalar field

in the Jordan or Einstein frame representation, as we will see later. In the literature

the scalar degree of freedom of f(R) gravity has been dubbed as “scalaron”.

We can define the effective mass of the scalaron as

m2
eff ≡

d2Vf(R)

dR2
≡ 1

3

fR −RfRR
fRR

. (3.25)

Looking at the equation of motion (3.21), we see that we have moved the extra

part coming from the modification of the action to the r.h.s, while keeping GR on

the l.h.s, interpreting this way the gravitational modification as an effective energy-

momentum tensor, which we will denote as T(eff)
α
β. Notice that it corresponds to

T(X)
α
β of the previous chapters.

The degrees of freedom in metric f(R) gravity should satisfy a set of stability

conditions if the theory has to be viable. What are they? To answer this question,

let us first re-express the original action in the so-callled Jordan frame through the

introduction of a scalar field φ

SJ =

∫ √
−g [fφ(φ)R− (φfφ(φ)− f(φ))] + Sm(gµν , ψ), (3.26)
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with fφ(φ ≡ df(φ)/dφ, and original action is recovered for φ = R. We will not get

into more details on the transition to the Jordan frame action, since a more detailed

study on the subject will be made in a next chapter.

Now, looking at (3.26) we see that the Ricci scalar R has the correct sign, i.e

graviton is not a ghost, if fφ(φ) > 0. In the original representation therefore,

graviton is not a ghost for fR(R) > 0. Furthermore, the scalar fR is not a tachyon

for m2
eff > 0. The latter condition is also required for the stability of de Sitter space

Faraoni and Nadeau (2005).

3.2.2 Cosmological evolution and reconstruction

f(R) models modify the cosmological equations by introducing new, fourth order

terms with respect to the metric. In equation (3.21) we have moved them on the

r.h.s, interpreting them this way as an effective fluid, of gravitational origin. The

0− 0 and i− i components of (3.21) evaluated on a flat FLRW background read as

H2 =
κ2

3F
(ρb + ρm) +

1

3F

[
1

2
(FR− f)− 3HḞ

]
, (3.27)

2Ḣ − 3H2 =
κ2

F
(wbρb + wmρm) +

1

F

[
F̈ + 3HḞ +

1

2
(f − FR)

]
, (3.28)

where we denote fR ≡ F , f(R) ≡ f for simplicity, and dots denote derivative with

respect to cosmic time t. It is trivial therefore to extract the effective energy density

and pressure for f(R) gravity,

ρeff ≡
1

3F

[
1

2
(FR− f)− 3HḞ

]
, (3.29)

peff ≡
1

F

[
F̈ + 3HḞ +

1

2
(f − FR)

]
. (3.30)

In the standard way, one can define an index weff for the effective fluid as

weff ≡
peff

ρeff

. (3.31)

Today, weff should be close to −1, i.e mimic a cosmological constant at the back-

ground. A reconstruction method for constructing f(R) models given a background

evolution, the so-called “designer method”, will be described explicitly later.
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Cosmological evolution of f(R) models by means of a dynamical system analysis

has been studied in Amendola et al. (2007b). It has been shown that a variety of

cosmological fixed points exist, and upon a suitable choice of the function “f” one

can achieve a viable evolution from a radiation/matter domination period to a late

time de Sitter attractor.

Let us know describe the so called “designer f(R)” method, i.e how to recon-

struct, at least numerically, an f(R) model given a background expansion history

H = H(t). Because, of the higher order nature of f(R) gravity, there are multiple

forms of f(R) able to reproduce a given background expansion. The degeneracy is

only uplifted at the perturbation level.

We begin by parametrising the Friedmann equation as

H2 =
κ2

3
(ρ+ ρX), (3.32)

with ρX stands for the energy density of dark energy. Then, we define the following

dimensionless quantities as

y =
f(R)

H2
0

, E =
H2

H2
0

, (3.33)

with H0 the value of the Hubble parameter today. A simple parametrisation for the

quantity E is

E = (1− ΩDE)a−3 + Ωa−3(1+w), (3.34)

neglecting radiation and assuming constant equation of state for the dark energy

fluid. This could be generalized to account for w = w(a) or include radiation as

well. The evolution of the Ricci scalar is given by

R = 6(Ḣ + 2H2). (3.35)

Using the dimensionless quantity E we can write,

R

H2
0

= 3(E ′ + 4E),
R′

H2
0

= 3(E ′′ + 4E ′),
d

dt
= H

d

d ln a
, (3.36)
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and

∂f

∂R
≡ F =

∂f

∂ ln a

∂ln a

∂R
=
f ′

R′
=

1

3

(
y′

4E ′ + E ′′

)
. (3.37)

Here, we use the following notation for derivatives: ′ ≡ d
ln a

= a d
da

and ˙≡ d
dt

.

Using above relations and after a bit of algebra, we can re-express the Friedmann

equation 3.27 as,

y′′ −
[
1 +

1

2

E ′

E
+

4E ′′ + E(3)

(4E ′ + E ′′)2

]
y′ +

1

2

(
4E ′ + E ′′

E

)
y = − κ

2

H2
0

ρX

(
4E ′ + E ′′

E

)
.

(3.38)

The second order nature of above differential equation is related to the fourth order

nature of f(R) gravity. Being a second order differential equation, it allows for

a family of solutions depending on the initial conditions chosen, i.e there is not a

unique f(R) model corresponding to a given expansion.

As it was shown in Hu and Sawicki (2007), if y± correspond to the two solutions

of the homogeneous part of (3.38) at the high curvature regime, with y± ∝ ap± , then

p± =
−7±

√
73

4
. (3.39)

The p− branch will violate the requirement that the f(R) model will mimic GR at

high curvature, and its amplitude is set to zero. Then, at the high curvature regime

a particular solution of the full equation was shown to be

ypart =
6ΩDE

6w2 + 5w − 2
a−3(1+w), (3.40)

with w constant. Therefore, the initial conditions at some initial time ai at the high

curvature era are given by

y(ln ai) = Ay+(ln ai) + ypart(ln ai), (3.41)

y′(ln ai) = Ap+y+(ln ai)− 3(1 + w)ypart(ln ai). (3.42)

Different values of the constant A, will yield different f(R) models with the same

expansion history. The degeneracy is only uplifted at the linear perturbation level
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(see for example Hu and Sawicki (2007)).

At the level of linear, scalar perturbations around FLRW, f(R) models are char-

acterised by two main regimes, namely the regime where λfR lla2/k2 and λfR �

a2/k2 respectively. λfR denotes the Compton wavelength of the scalaron and k

is the wave number. The first regime corresponds to modes outside the scalaron

range, and in this regime the growth of structure evolves as in GR, i.e δm ∝ a ∝ t2/3

during matter domination. In the second regime, the growth of structure is en-

hanced, and grows like δm ∝ t(
√

33−1)/6. Since the scalaron Compton radius evolves

as λfR ∝ t4(n+1), a mode which initially lies in the first regime can enter in the second

one after some time during matter domination. The calculation of observationally

relevant quantities like the matter power spectrum and the ISW effect on the CMB

have been worked out in Tsujikawa (2008b).

It is important to note that, f(R) models do not modify weak lensing explicitly,

i.e the weak lensing equations has the same form as in GR, and the modifications

enter implicitly through the different evolution of the Newtonian potentials Φ and

Ψ. 3 In the Σ and Q language of Amendola et al. (2008) this means that for f(R)

gravity Q 6= 1 and Σ = 1.

3.3 f (R,G) gravity

3.3.1 Equations of motion

In this section we will be concerned with a more general class of non-linear gravity

models, these that are a function of both Ricci scalar R and Gauss–Bonnet term G.

They are described by the following action

S =

∫
M

d4x
√
−g [f(R,G) + Lmatter] , (3.43)

where R and G are the Ricci and Gauss–Bonnet scalar respectively, M denotes

the four dimensional spacetime, and Lmatter is the Lagrangian for any matter fields

or fluids present.The form of the function f is constrained by both classical and

quantum stability requirements, as well as agreement with large scale and solar

3That should be expected, since they are equivalent to Einstein gravity plus a canonical scalar
field non–minimally coupled to matter.
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system data. (We will revisit this point in Section 5.3.) In the following, we will

work in natural units where G = c = 1, unless otherwise stated.

The Gauss–Bonnet term was introduced and described in section 3.1, but let us

recall its definition for convenience,

G ≡ R2 − 4RµνRµν +RµνκλRµνκλ. (3.44)

The curvature scalars R and G are both functions of the metric and its derivat-

ives, however they enter the function f as independent degrees of freedom, in the

sense that the dependence of f on them is in principle arbitrary. Varying action

(3.43) with respect to the metric gµν , and using the Bianchi identities, we get the

equations of motion Carroll et al. (2005); De Felice and Suyama (2009)

FGµν = T (matter)
µν + T (eff)

µν , (3.45)

where T
(eff)
µν the effective energy-momentum tensor for f(R,G) gravity defined as

T (eff)
µν ≡

(
∇µ∇νF − gµν2F + 2R∇µ∇νξ − 2gµνR2ξ − 8R(µ

κ∇κ∇ν)ξ + 4Rµν2ξ

+ 4gµνR
κλ∇κ∇λξ + 4Rµκλν∇κ∇λξ − 1

2
gµνV (R,G)

)
, (3.46)

and we used the additional definitions 4

F ≡ fR
∂f(R,G)

∂R
, (3.47)

ξ ≡ fG ≡
∂f(R,G)

∂G
, (3.48)

V (R,G) ≡ RF + ξG− f(R,G). (3.49)

Taking the limits ξ → 0 and F → 1 in (3.45), we recover the f(R) and R +

f(G) equations of motion respectively. We chose here to bring all the non-GR

gravitational contributions to the l.h.s of the equations of motion, and treat them

as an effective energy-momentum tensor. However, this choice is rather a matter of

convenience.

4Here we follow the notation of De Felice and Suyama (2009).
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Looking at (3.45) one can see that the equations of motion of f(R,G) gravity

will be of fourth-order with respect to the metric field, as was expected. For their

trace, we get

(
3gµν

∂

∂λ
− 4Gµν ∂

∂σ

)
∇µ∇νf(λ, σ) + (FR + 2ξG− 2f) = T κ(matter)

κ . (3.50)

For the case where the Ricci and the Gauss–Bonnet scalar enter in a particular

combination in f through some function Ω ≡ Ω(R,G), and f(R,G) = f (Ω) then

above equation reduces to an evolution equation for the single scalar ∂f(Ω)/∂Ω.

In contrast to f(R) gravity, which can be expressed as a scalar–tensor theory

through the introduction of an auxiliary scalar, we expect that for the case of f(R,G)

models two scalars will be needed, one corresponding to the Ricci and the other to

the Gauss–Bonnet scalar respectively. Following De Felice and Suyama (2009) we

can introduce two scalar fields λ and σ and re-express the action (3.43) as

S =

∫
M

d4x
√
−g [RF (λ, σ) +Gξ(λ, σ)− V (λ, σ) + Lmatter] . (3.51)

Varying above action with respect to λ and σ we get the following equations of

motion for the scalar fields

(R− λ)Fλ + (G− σ)Fσ = 0, (3.52)

(R− λ)Fσ + (G− σ)ξσ = 0, (3.53)

with Fλ ≡ ∂F/∂λ, and so on. Above system of equations admits the solution

λ = R, σ = G, (3.54)

which can be plagued into (3.51) to recover (3.43). The equivalence holds also at

the level of the equations of motion through (3.54).

Equations 3.52 and 3.52 are independent from each other only if

Fλξσ − F 2
σ 6= 0. (3.55)

In the case condition (3.55) is satisfied the two scalar degrees of freedom λ and σ
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are independent from each other, while in the opposite case they are not. Condition

(3.55) plays a key role at the stability of linear perturbations of f(R,G) gravity as

we will discuss later in this section. One can notice that for the special cases of f(R)

and R + f(G) models condition (3.55) is not satisfied.

3.3.2 Cosmological evolution and stability

We can compute effective fluid quantities for f(R,G) gravity, as we did for the f(R)

case. We have to keep in mind in this case too that T
(eff,total)
µν although covariantly

conserved, is not an energy-momentum tensor in the usual sense, since it is a function

of the spacetime geometry and its first and second derivatives.

In the following, as usual we will be interested in homogeneous, isotropic and

flat cosmologies, described by the flat, four dimensional FLRW metric

ds2 = −dt2 + a(t)2dx2, (3.56)

with a(t) the scale factor. In this background, the two key quantities, R and G, can

be expressed purely as a function of the Hubble parameter H ≡ H(t) and its time

derivative,

R(t) = 6
(

2H2 + Ḣ
)
, (3.57)

G(t) = 24H2
(
H2 + Ḣ

)
. (3.58)

The t–t component of the f(R,G) equations of motion (3.45) gives a modified version

of the usual Friedman equation which reads as

3H2 =
1

F
T (mat)0

0 + T (eff)0
0, (3.59)

2Ḣ − 3H2 =
1

F
T (mat)i

j + T (eff)i
j. (3.60)

with the effective “fluid” components defined as

T (eff)0
0 ≡ ρeff ≡

1

F

(
−HḞ − 4H3ξ̇ +

1

6
V

)
, (3.61)

T (eff)i
j ≡ peff ≡

1

F

(
F̈ + 4H2ξ̈ + 2HḞ + 8H

ä

a
ξ̇ − 1

2
V

)
, (3.62)
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with dots denoting differentiation with respect to cosmic time t. Notice that the

above equation is of fourth order with respect to the scale factor, in contrast to the

usual Friedman equation.

We saw previously that we can reconstruct an f(R) model, in a way that it

reproduces a given background expansion using the “designer method”. For con-

sistency, in this subsection we will extend this method for the case of f(R,G) models.

Remember that as we noticed for f(R), there was in fact a class of f(R) models,

parametrised by a single parameter, that was able to reproduce a given expansion

history. We expect the same to be true for the f(R,G) case, and what is more in

this case there is an additional freedom due to the different combinations between

the curvature scalars R and G.

We can start by proceeding in a similar way as in f(R) gravity, by defining

the following dimensionless quantities in terms of the “dimensionless background”

E ≡ E(a),

G̃ ≡ G

H4
0

= 12(EE ′ + E2), (3.63)

ξ ≡ ∂f

∂G
=
f ′

G′
, F ≡ ∂f

∂R
=
f ′

R′
. (3.64)

Then, after some algebra, the Friedmann equation (3.59) can be re-written as

E1y
′′ + E2y

′ +
1

2
y = − ρm

H2
0

, (3.65)

with the functions E1 and E2 defined as

E1 = E

(
E

EE ′′ + (E ′)2 + 4EE ′
+

1

E ′′ + 4E ′

)
, (3.66)

E2 =
1

2

[
2E

E ′′ + 4E ′
− E (E ′ + 2E)

E (E ′′ + 4E ′) + E ′2
− E ′ + 4E

E ′′ + 4E ′
−

2E
(
E(3) + 4E ′′

)
(E ′′ + 4E ′)2

−
2E2

(
4E ′2 + E

(
E(3) + 4E ′′

)
+ 3E ′E ′′

)
(E (E ′′ + 4E ′) + E ′2)2

]
. (3.67)

For a given background expansion, the solution y = y(t) provides us with no
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information on the dependence of the function f(R,G) on R and G respectively,

unless we make from the start some ansatz, e.g f(R,G) = f(R+G/M2). Therefore,

in principle, and in contrast to the case of f(R) gravity, in this case there is an extra

degeneracy when trying to reconstruct the function f , coming from the different

ways R and G can be combined in f .

To set the initial conditions, we work as in f(R) gravity, by choosing a time

at the high curvature regime, where the dark energy contribution is negligible and

y ∝ ap± . We find that

p± =
−1± 12

4
, (3.68)

with only acceptable solution the positive branch, p+ = 11/4.

The background dynamics of f(R,G) gravity have been studied extensively only

for the particular case of R+f(G), first in Li et al. (2007) where it was claimed that

these models cannot reproduce arbitrary background expansion histories, because

of the change of sign of the Gauss–Bonnet term from positive on negative at a

particular time of the cosmological evolution. However, in Zhou et al. (2009) the

background evolution for these models was revisited by means of a phase space

analysis, and the problem pointed out in Li et al. (2007) was cured by replacing G

with its absolute value. It was found that they exhibit rich phase space dynamics,

and in particular they possess de Sitter, radiation as well as matter domination

cosmological solutions. There, it was also found that upon a suitable choice of

the function f(G), a viable cosmological evolution from radiation domination to

late time acceleration can be obtained. In De Felice and Tsujikawa (2009a) the

conditions for cosmological viability of f(G) models was studied, where it was found

that a stability of a radiation/matter domination as well as a de Sitter era require

that d2f(G)/d2G > 0.

At the linear level, it was shown in De Felice et al. (2010b), that for f(G)

models in the presence of a perfect fluid, the density perturbations of the latter

exhibit an UV instability irrespective of the form of the function f(G), rendering

effectively these models incompatible with large structure observations. The linear

scalar perturbations around an FLRW background for the more general f(R,G)

models was studied in De Felice and Suyama (2009) for the vacuum case. There,

it was found that for these models a new instability can arise, associated with the
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group velocity of short-wavelength modes depending linearly on the wave number

k, yielding an in principle superluminal propagation for these modes. The latter

instability was shown to persist in the presence of a perfect fluid, in De Felice et al.

(2010a). It is interesting to note that the particular subclasses of f(R,G) models,

the f(R) and f(G) ones, do not share this instability.
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Chapter 4

Dynamical equivalence of

non-linear gravity models

4.1 Introduction

In this chapter, we shall be closely following the collaborative work with M. Hind-

marsh reported in Saltas and Hindmarsh (2011).

The topic we will be elaborating on below regards a fundamental aspect of non–

linear gravity actions, namely their dynamical equivalence to different represent-

ations, an issue that has been the subject of research and intense debate in the

literature from the early days of non–linear gravity.

What the term “dynamical equivalence” means is that a particular gravitational

action can be re-expressed as a new one, with a new set of field variables, and

that there is an invertible mapping that relates the two sets of field variables, as

well as the two actions (or Lagrangians) respectively. The variational principle of

the new action will in principle require different boundary conditions and possibly

different Gibbons–Hawking (GH) terms as well. The GH terms are required for a

well posed variational principle in the case of a manifold with a boundary. Probably

the most well known example of such an equivalence is that of the f(R) action

to Brans–Dicke and Einstein–Hilbert one, the first through the introduction of an

auxiliary scalar field Higgs (1959); Bicknell (1974); Teyssandier and Tourrenc (1983);

Whitt (1984); Schmidt (1987); Wands (1994), and the second through a conformal

transformation of the metric Higgs (1959); Teyssandier and Tourrenc (1983); Whitt
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(1984), Magnano et al. (1987); Ferraris et al. (1988); Jakubiec and Kijowski (1988);

Maeda (1988); Barrow and Cotsakis (1988).

The motivation of re-expressing a gravitational action by introducing a new set

of field variables might be related mainly to two things. The first is mathematical

simplicity and convenience, if the new set of variables is to make the calculations

one wants to perform simpler. Furthermore, if one is able to move from a variational

principle that will lead to fourth order equations of motion to another that will lead

to second order ones, that could be a benefit, since second order equations are in

principle easier to handle as well as to interpret physically. The second possible

motivation is related to physics. One gets more intuition and understanding of a

gravitational theory, by studying its equivalence to other ones (like the equivalence

between f(R) and Einstein gravity).

From a physical point of view care must be taken in the interpretation of phys-

ical quantities in the two different representations. The question that often arises is

which of the two representations is the physical one. For example, in the case of the

conformal equivalence between f(R) and Einstein gravity, the inclusion of matter

in the action can raise the question of along which of the two metrics (original and

conformally transformed one) do matter particles actually fall. For some interesting

discussions on the subject one can refer to Brans (1988); Sokolowski (1989a,b); Mag-

nano et al. (1990a); Magnano and Soko lowski (1994); Sokolowski (1995); Magnano

(1995); Faraoni and Gunzig (1999); Capozziello et al. (1997); Sotiriou et al. (2008).

Given the equivalence between the bulk parts of two actions, this does not mean

that the equivalence holds for the surface parts as well. More precisely, given the

GH term of an action in one representation, then the GH term calculated using the

equivalence with the other reresentation is possible to be problematic as far as the

particular variational principle is concerned. As we will discuss later on, this is the

case for f(R) and R+ f(G) gravity, when the equivalence between the original and

the Jordan frame action is considered. As we will see, the latter equivalence breaks

on the boundary surface.

In this section, we will focus on f(R) Nojiri and Odintsov (2006a); Capozziello

and Francaviglia (2008); Sotiriou and Faraoni (2010); De Felice and Tsujikawa (2010)

and R+ f(G) Nojiri and Odintsov (2006a, 2005); Nojiri et al. (2005) models, where
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G is the Gauss–Bonnet (GB) term Lovelock (1971), also defined before in a previous

section

G ≡ R2 − 4RαβRαβ +Rα
βγδRα

βγδ, (4.1)

“f” being an in principle non linear function of its arguments. We will study the

dynamical equivalence of above theories to other representations in vacuum, using

as our main tool the rather general approach of Legendre transformation, which for

the case of f(R) coincides with the standard procedure of introducing an auxiliary

scalar field followed by a conformal transformation, something which is not true for

R+ f(G) theories, i.e. the latter cannot be conformally transformed to a minimally

coupled, scalar-tensor frame. However, for the R + f(G) theory, we will show how

using a Legendre transformation we can re-express it as a second order theory, with

a new extra rank two tensor field. We will work at the level of the action and we will

include in our analysis the relevant Gibbons–Hawking terms Gibbons and Hawking

(1977), which are important for the consistency of the initial value formulation of

the theory. Furthermore, we will calculate them explicitly wherever necessary.

Let us sketch the structure of this chapter. In Section 4.2 we will briefly describe

the approach of Legendre transforming a higher order gravitational action. In view

of the latter approach, in Section 4.3 we show the equivalence of the full (including

the relevant GH term) f(R) action to the Einstein–Hilbert one. We also discuss the

equivalence between the relevant GH terms. Then, in Section 4.5 we consider the

R + f(G) action and after calculating the GH term in the Jordan (scalar–tensor)

frame, we explicitly study the effect of conformal transformation on the full Jordan

frame action. Finally, in Section 4.6 we re-express the original R+f(G) action with

one scalar and two extra tensor fields present (apart from the metric), one of them

though being independent, and then discuss the classical dynamics of the system.

We include various useful formulas and explicit calculations in the Appendix. In

this section, we will work in natural units, c = G = 1.

4.2 Establishing dynamical equivalence

In this section we will briefly describe the idea and motivation behind Legendre

transforming a gravitational action as a tool of moving to a new, dynamically equi-
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valent variational principle of second-order, first applied in Magnano et al. (1987,

1990b).

The higher order nature of non–linear gravitational Lagrangians like the f(R)

or R + f(G) ones, comes from the fact that they are non–linear with respect to

the second derivatives of the metric, since “f” is an in principle non–linear function

with respect to its arguments, and Rα
βγδ = Rα

βγδ (g2, (∇g)2,∇2g).

However, we can try to re–express higher order gravitational Lagrangians linearly

with respect to ∇2g, by making them linear with respect to the curvature tensors 1

through the introduction of the appropriate “velocities” and “momenta”, in a similar

fashion to the ordinary Hamiltonian formalism. The new variational principle will

then lead to second order equations of motion for the new set of field variables.

The appropriate identification for the generalised “position” and “momenta” as

well as the Legendre transformed Lagrangian will read schematically as

q ↔ gαβ, q̇i ↔
(
R,Rαβ, Rα

βγδ

)
, (4.2)

L̃(−g)−1/2 = q̇ipi −
[
q̇i(q, p)pi − (−g)−1/2L(q, p)

]
≡ q̇ipi −H(q, p), (4.3)

assuming the invertibility condition holds, ∂2L/(∂q̇i∂q̇j) 6= 0. Quantities entering L̃

will be in principle tensor objects. Different gravity actions give us different options

in defining generalised “velocities” and “momenta”. This will be made clear in

Sections 4.4 and 4.6, where we will apply the above formalism for the case of f(R)

and R + f(G) gravity respectively.

4.3 Dynamical equivalence of f (R) gravity, part I

It is well known in the literature that through the introduction of an auxiliary scalar,

the f(R) action can be re-expressed as a non–minimally coupled scalar-tensor one

(also called Jordan frame action), and it is the latter that is usually conformally

transformed to the so-called Einstein frame action. In this section, we we will focus

and attempt to clarify the role of the relevant GH terms in the two representations,

original and Jordan frame one. Then, in the next subsection we will demonstrate

1This is because curvature tensors are linear with respect to ∇2g.
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the equivalence of the full action (bulk and surface part) using the general approach

of the Legendre transformation.

Starting from the bulk f(R) action on a manifold M ,

S =

∫
M

dnx
√
−gf(R), (4.4)

through the introduction of an auxiliary scalar ψ, one can re-express it in a dynam-

ically equivalent way as

SJ =

∫
M

dnx
√
−g [ΦR(g)− V (Φ)] , (4.5)

with Φ ≡ f ′(ψ), and V (Φ) ≡ Φf ′−1(Φ)− f (f ′−1(Φ)). For the latter we require that

f ′′(ψ) 6= 0, so we are able to solve for ψ = f ′−1(Φ). Action (4.5) is the so-called

Jordan frame action.

The transition to the Einstein frame action will be shown explicitly in Section

4.4 by means of a Legendre transformation.

4.3.1 The f(R) Gibbons–Hawking term in the Jordan frame

When considering gravitational actions on manifolds with boundary Σ, the variation

gives boundary terms containing normal derivatives of the metric variation∇(k)
n δgαβ.

However, a well defined variational principle requires that only a particular set of

dynamical coordinates (gαβ and possibly its derivatives up to some order depending

on the theory) is fixed on the boundary. In order to cancel the extra, unwanted

surface terms, one needs to add a so-called Gibbons-Hawking (GH) term in the

action Gibbons and Hawking (1977). The appropriate modification of the Einstein-

Hilbert action turns out to be

SEH =

∫
M

dnx
√
−gR + 2

∫
Σ

dn−1x
√
−hK, (4.6)

where h is the induced metric on the surface Σ, and K is the trace of its extrinsic

curvature. Variation of (4.6) is then performed keeping only the metric gαβ fixed on

the boundary.

In the original f(R) action (4.4) there is no natural GH term which cancels the
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extra unwanted higher derivative boundary terms, except for the particular case of

maximally symmetric spacetimes Madsen and Barrow (1989). The implication of

this is that there is no counter term that can be added in the action, in order to

cancel the normal derivatives of the metric field after variation of the action with

respect to the metric. The non–vanishing of the latter terms can pose the variational

principle of the action problematic for the case of an action defined on a manifold

with a boundary. However, if one only cares about eh local equations of motion of

the theory, it can be assumed that in the action variation, the variation of the metric

together with its first, second and third derivatives are zero. For a nice discussion

of these issues see Dyer and Hinterbichler (2009).

However, in the Jordan frame of f(R) one can find an appropriate Gibbons–

Hawking term in full generality, and then under the assumption that the dynamical

equivalence between different representations holds on the boundary surface, one is

able to re-express it in the original f(R) representation. Let us examine this more

carefully.

First we want to find the GH term in the Jordan frame, and so we vary (4.5)

with respect to the bulk metric and after discarding the bulk contributions we get

δSJ
Σ = −

∫
Σ

dn−1x
√
−h∇ρ

(
Φ gαβδΓραβ

)
= 2

∫
Σ

dn−1x
√
−hΦδK. (4.7)

Therefore, the GH term that should be added in the Jordan frame action (4.9) is

SJ
Σ = −2

∫
Σ

dn−1x
√
−hΦK, (4.8)

and variation should be performed with (δgαβ, δΦ) vanishing on Σ. After using the

correspondence between Jordan and original frame, Φ ↔ f ′(R), we find the GH

term in the original frame to be 2

SJ
Σ = −2

∫
Σ

dn−1x
√
−hf ′(R)K. (4.9)

2We obtained the GH term in the original f(R) representation by substituting the equation
of motion for Φ, V ′(Φ) = R(g), into equation (4.8). This makes clear that the equivalence is
demonstrably valid only on-shell (i.e. at the level of the classical equations of motion).
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However, variation of this boundary term generates a new term

δSΣ = −2

∫
Σ

dn−1x
√
−hf ′′(R)KδR, (4.10)

which vanishes only by requiring that δR = 0 on the boundary. In Dyer and

Hinterbichler (2009) it has been shown that the GH term (4.9) is necessary in order

to derive the correct Wald entropy for f(R) gravity. 3However, keeping R fixed on

the boundary surface can be problematic. Since R includes both the first and the

second derivatives of the metric, keeping it fixed would in principle require that the

second derivatives of the metric are held fixed too, which overconstrains the actual

formulation. The only possibility that would prevent the latter from happening

would be that the condition δR = 0 is satisfied through some special configuration

of the field variations on the boundary, something that would restrict the generality

of our variational principle.

Therefore, we see that equivalence between the two representations breaks down

at the boundary, when the consistency of the variational principle is considered. This

failure indicates that the two theories cannot be truly equivalent. Furthermore, the

two theories are inequivalent at the quantum level as well; considering the path

integral defined in the Jordan frame, the integration over Φ, will generate extra

terms in the effective action, making the latter inequivalent to the one defined in

the original representation.

4.4 Dynamical equivalence of f (R) gravity, part II

We now want to exploit the dynamical equivalence between the full f(R) and

Einstein–Hilbert action, using solely the Legendre transformation approach, presen-

ted in section 4.2, which is more general and for the f(R) case gives the same result

with the conformal transformation. This was done in Magnano et al. (1987) for the

bulk Lagrangian, discarding a total derivative. In the following we will show how to

cure this by Legendre transforming the GH term, apart from the bulk part, getting

3The Wald entropy extends the notion of entropy to black holes, and applies to any metric
theory of gravity. In particular, the Wald black hole entropy formula relates the entropy of the
black hole with the area of the black hole’s horizon, S = cA, where A is the horizon area and c a
constant. For more details see Wald (1984).
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this way the correct Einstein–Hilbert GH term as well. 4

Let us begin with the action

S =

∫
M

dnx
√
−gf(R) +

∫
Σ

dn−1x
√
−hf ′(R)K, (4.11)

including the GH term found in the previous section5. As we will see below, the

inclusion of the latter is indeed a good choice. We will need separate variables for

the boundary surface, and the Legendre transfomed action will be of the form

S̃ =

∫
M

dnx
√
−g (q̇BpB −HB) +

∫
Σ

dn−1x
√
−h (q̇ΣpΣ −HΣ) , (4.12)

with Hi ≡ Hi(q, p). Let us first naively associate for the generalised bulk velocity,

q̇ ↔ Rαβ. Then we get the bulk conjugate momentum as

pB(q, q̇)↔ g̃αβ ≡ 1√
−g

∂L

∂Rαβ

= f ′(R)gαβ. (4.13)

We see that the definition of the conjugate momentum defines a conformal relation

between two different metrics. In fact, as we will see below, g̃αβ is the metric in the

Einstein frame. However, the correct association for q̇ is not exactly Rαβ, but R,

since relation (4.13) cannot be inverted for Rαβ.

We proceed by identifying

q̇B ↔ R, q̇Σ ↔ K, (4.14)

pB(q, q̇)↔ Φ ≡ 1√
−g

∂LB
∂R(g)

= f ′(R), (4.15)

pΣ(q, q̇)↔ Φ ≡ 1√
−h

∂LΣ

∂K(h)
= f ′(R). (4.16)

Now, using the intuition gained from (4.13), and using (4.15)-(4.16), we define the

4The transition to the Einstein frame by means of a conformal transformation, including the
relevant GH terms, has been studied in Dyer and Hinterbichler (2009).

5As it was previously discussed, the GH term (4.9) can be in general problematic, however it
turns to be neccessary here in order to cancel extra surface terms after Legendre transforming the
action.
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following relations for the bulk and surface metric respectively

g̃αβ ≡ Φ
2

(n−2) gαβ and h̃αβ ≡ Φ
2

(n−2)hαβ. (4.17)

The invertibility condition is not satisfied on the boundary Σ, since ∂2LΣ/∂K
2 =

0. However, the surface part of L̃ can be still defined, with the only difference that

the surface Hamiltonian will vanish identically, HΣ = 0. The bulk Hamiltonian is

calculated after solving one of relations (4.15) forR, HB(Φ) ≡ Φf ′−1(Φ)−f(f ′−1(Φ)).

Using this together with (4.14)-(4.16), and substituting in (4.12) we arrive at

S̃ =

∫
M

dnx
√
−g [ΦR(g)−HB(Φ)] +

∫
Σ

dn−1x
√
−hΦK. (4.18)

For the transition to the Einstein frame we will use the general equations (A.26)

and (A.28) relating two Ricci (extrinsic curvature) tensors, evaluated for two dif-

ferent metrics gαβ (hαβ) and g̃αβ (h̃αβ). Defining Φ = exp[
(
1/
√

2ω
)
φ] and ω(n) ≡

(n− 1)/(n− 2) we get

S̃B = =
∫
M
dnx
√
−g̃
[
R̃(g̃)− 1

2
∂κφ∂

κφ− e
n

1−n

√
ω(n)

2
φHB(φ)

]
+ (2ω(n))1/2 ∫

Σ
dn−1x

√
−h̃(∂κφ)ñκ, (4.19)

S̃Σ =
∫

Σ
dn−1x

√
−h̃
[
2K̃(h̃)− (2ω(n))1/2 (∂κφ)ñκ

]
, (4.20)

and after summing up we arrive at

S̃ =

∫
M

dnx
√
−g̃
[
R̃(g̃)− 1

2
∂κφ∂

κφ− e
n

1−n

√
ω(n)

2
φHB(φ)

]
+ 2

∫
Σ

dn−1x
√
−h̃K̃(h̃), (4.21)

ñκ denoting the normal vector to Σ. We see that we arrive at the correct, full

Einstein–Hilbert action, following a conceptually different and more fundamental

procedure. The conformal relation between the two metrics was revealed naturally

through the definitions of the conjugate momenta.
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4.5 Dynamical equivalence of f (G) gravity, part I

In this section we will aim to express the Jordan (scalar–tensor) frame of the R +

f(G) action as a minimally–coupled theory by means of a conformal transformation.

Firstly we will derive the GH term in the Jordan frame, and then find the appropriate

one in the original frame, as dictated by the equivalence between frames. Then, in

subsection 4.5.2 we will continue with conformally transforming the full, Jordan

R + f(G) action.

Our starting point is the R + f(G) action

S =

∫
M

dnx
√
−g [αR + f(G)] , (4.22)

with G defined in (4.1) and α a dimensionless constant.

Through the introduction of an auxiliary scalar field ψ we get the Jordan frame

action as

SJ =

∫
M

dnx
√
−g [αR + ΦG− V (Φ)] , (4.23)

with Φ = f ′(ψ), and V (Φ) ≡ [Φf ′−1(Φ)− f (f ′−1(Φ))], assuming that f ′′(ψ) 6= 0.

.

4.5.1 The f(G) Gibbons–Hawking term in the Jordan frame

The motivation of this subsection is the same as in the f(R) case, as explained in

Section 4.3.1. We will derive the appropriate GH term in the original action (4.22)

as dictated by the equivalence with the Jordan frame, by first calculating the Jordan

frame one, presenting the explicit results of the surface parts of the action variation.

Some useful variation formulas and definitions used can be found in A.2.

We start from the Jordan frame action (4.23) and vary each of the Gauss–Bonnet

terms separately with respect to gαβ using relations (A.3)– (A.15). We focus on the

f(G) term, since the GH term for R is given by (4.9) for f ′(R) = 1. We will again

present only the boundary part of the variation, as well as work in Riemann and

Gaussian normal coordinates Misner et al. (1973). With the aid of integration by
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parts, and using equation (A.3), we get

δSJ
1Σ = −4

∫
Σ
dn−1x

√
−hΦRδK, (4.24)

δSJ
2Σ = −4

∫
Σ
dn−1x

√
−hΦ

[
2nβRακ∇κ − nλRαβ∇λ − nλhαβRκλ∇κ,

−nαnβnκRκλ∇λ

]
δgαβ, (4.25)

δSJ
3Σ =

∫
Σ
dn−1x

√
−hΦ

[
nλR

ακλβ∇κ

]
δgαβ. (4.26)

The geometric relevance of the above terms becomes evident if we express them in

terms of tensor objects defined on the boundary surface using the Gauss–Codacci

equations Misner et al. (1973). Doing this, and adding up all three terms together,

we arrive at

δSJ
Σ =

∫
Σ

dn−1x
√
−hΦ

[
2

(
2ĜβγδKβγ + 2Kµ

βKµγδKβγ

−2KKβγδKβγ +K2δK −KαµK
αµδK

)]
, (4.27)

with Ĝβγ the Einstein tensor defined on Σ. Since we require that δgαβ = 0 on Σ (or

δhαβ = 0), it follows that δĜαβ = 0 and δKαβ = δKαβ = δKα
β on Σ as well. Using

those facts, we can go backwards in (4.27) and check that it is the variation of the

following quantity

SJ
Σ =

∫
Σ

dn−1x
√
−h Φ

[
2
(

2ĜαβKαβ + J
)]
, (4.28)

with J ≡ 2
3
Kρ

κK
κλKλρ − KKκλK

κλ + 1
3
K3. The appropriate supplement for the

initial scalar–tensor action is therefore equation (4.28) with a minus sign instead.

The GH term for a simple Gauss–Bonnet action (L ∝
√
−gG) has been derived

under more general assumptions in a braneworld context in Davis (2003), as well as

in Myers (1987) using the calculus of differential forms.

Now, as in the f(R) case, we can use the equivalence f ′(G)↔ Φ, to find the GH

term in the original f(G) frame if the equivalence is to hold on the boundary,

SΣ = −
∫

Σ

dn−1x
√
−h f ′(G)

[
2
(

2ĜαβKαβ + J
)]
. (4.29)
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Now, variation of the action requires δgαβ = 0 and δG = 0 on Σ. The latter condition

can yield a problematic variational principle for the same reasons discussed in Section

4.3.1. Therefore, for R + f(G) theories as well, true equivalence on the boundary

surface is broken.

4.5.2 Conformal transformation of the Jordan frame action

We now want to study if the non–minimally coupled, full Jordan frame action (4.29),

can be decoupled from Φ and written in a G+ scalar field form, similar to the f(R)

case, using a conformal transformation of the metric.

Before we start with the calculations, let us introduce a notation that will make

our equations look shorter. So, only for the rest of this section, we shall define:

ni ≡ (n− i) and ri ≡ 1/ni, where n is the spacetime dimensionality. ni is not to be

confused with the surface normal nα.

We shall begin with the bulk term. Using the transformation formula (A.23)

together with the conformal factor identification

Ω = Φ1/(n−4) ≡ Φr4 , (4.30)

and omitting the potential which transforms trivially, the action (4.23) after the

redefinition Φ = exp[φ] becomes

∫
M
dnx
√
−gΦG 7→

∫
M
dnx
√
−g̃

{
G̃

−8r4n3

[
φ;̃αβ − r4n5φ

,αφ,β
]
R̃αβ − 2r4n3

[
3r4n4φ

,κφ,κ − 22̃φ− ae(1−r4n2)φ
]
R̃

+4r4
4n3n2

[
2n5n3 + nn1

4
− 3ar2

4n5n1e
(1−r4n2)φ

]
(φ,κφ

,κ)2

+4r3
4n5n3n2

[
φ,αφ,β + 2φ;̃αβ

] (
φ,αφ,β

)
+4r2

4n3n2

[
2̃φ− r4 (2n5 + n1)φ,κφ,κ + 2ar4n1e

(1−r4n2)φ

]
2̃φ

−4r2
4n3n2φ

;̃αβ φ;̃αβ

}
, (4.31)

with 2̃ ≡ ∇̃κ∇̃κ.

Identification (4.30) breaks down for n = 4, and in fact it is valid only for n ≥ 5.
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This means that we are unable to decouple the scalar Φ from the Gauss–Bonnet

term unless n ≥ 5. For n ≥ 5, the GB term is minimally coupled to the scalar

Φ = exp[φ], but there are new couplings between the derivatives of φ, the Ricci

tensor and Ricci scalar. In this case, action (4.31), plus the scalar potential term of

(4.23), describes a fourth order, non minimally coupled scalar–tensor theory.

Let us now turn attention to the conformal transformation of the relevant GH

term, calculated in A.3. One can see that the variational principle requires that we

impose apart from δg̃ = 0 and δφ = 0, the extra conditions ∇̃δg̃ = 0 and ∇̃δφ = 0 on

Σ. The R+ f(G) action cannot be expressed as a second order, minimally–coupled

scalar tensor one, in contrast with f(R) gravity.

4.6 Dynamical equivalence of f (G) gravity, part II

The richer structure of the R + f(G) action gives us more options in identifying

generalised velocities, compared to the f(R) one. In this section we want to take

advantage of the latter fact, and re-express the original R + f(G) action as a new

one with not only a new scalar, but with new tensor fields as well, by means of a

Legendre transformation. The new variational principle will be of second order.

Our starting point is the action

S =

∫
M

dnx
√
−g [αR + f(G)] . (4.32)

We proceed with defining our conjugate momenta as

p1 ↔ Ψ ≡ 1√
−g

∂L
∂R

= α + 2Rf ′(G), (4.33)

p2 ↔ g̃αβ ≡ 1√
−g

∂L
∂Rαβ

= −8f ′(G)Rαβ, (4.34)

p3 ↔ σα
βγδ ≡ 1√

−g
∂L

∂Rαβγδ
= 2f ′(G)Rα

βγδ. (4.35)

Defining Φ ≡ Φ(G) ≡ f ′(G), the inverse of the above relations read

R = 1
2Φ

(Ψ− α) , (4.36)

Rαβ = − 1
8Φ
g̃αβ, (4.37)

Rα
βγδ(Φ, g, g̃, σ) = 1

2Φ
σα

βγδ, (4.38)
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with g̃κκ ≡ gκλg̃κλ and f ′(G) 6= 0. In fact, we will use gαβ to raise and lower indices

for the rest of the section.

For the calculation of the Hamiltonian we will need to express the Gauss–Bonnet

term in terms of the new fields (Ψ, g̃αβ, σα
βγδ). Using the inverse relations (4.36)-

(4.38) we get

G ≡ R2 − 4RµνRµν +Rµ
νρσRµ

νρσ = 1
4Φ2 Γ(Ψ, g̃, σ), (4.39)

with the function Γ defined as

Γ(Ψ, g̃, σ) ≡ (Ψ− α)2 − g̃µν g̃µν
4

+ σµ
νρσσµνρσ. (4.40)

Furthermore, we assume that we can invert relation (4.39) 6 and express the Gauss–

Bonnet term in terms of the function Γ as

G = G−1(Γ) ≡ J(Γ), (4.41)

so that

f ′(G) = f ′(J(Γ)) ≡ F (Γ). (4.42)

Using all the above, we can now calculate the Hamiltonian as

H(Γ(Ψ, g̃, σ)) = ΨR(Ψ, g̃, σ) + g̃αβRαβ(Ψ, g̃, σ) + σα
βγδRα

βγδ(Ψ, g̃, σ)− (−g)−1/2L(Ψ, g̃, σ)

= Γ
2F (Γ)

− f (J(Γ)) . (4.43)

Notice that the fields (Ψ, g̃αβ, σα
βγδ) enter implicitly in the Hamiltonian through the

function Γ.

The Legendre transformed action then reads

S̃[Ψ, g, g̃, σ] =

∫
M

dnx
√
−g

[
ΨR(g) + g̃αβRαβ(g) + σα

βγδRα
βγδ(g)−H(Γ(Ψ, g̃, σ))

]
. (4.44)

To get the equations of motion we vary the action S̃ with respect to the four fields

6The necessary condition is that [(f ′ (G))
2
G]′ 6= 0, implying that f(G) 6= C1

√
G+ C2.
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(Ψ, g̃αβ, σα
βγδ, gαβ) to get

δS̃
δΨ

= R(g)− 2H ′ (Ψ− α) = 0, (4.45)

δS̃
δg̃αβ

= Rαβ(g) + 1
2
H ′g̃αβ = 0, (4.46)

δS̃
δσαβγδ

= Rα
βγδ(g)− 2H ′σαβγδ = 0, (4.47)

δS̃

δgαβ
= ΨGαβ −∇α∇βΨ + gαβ∇κ∇κΨ−∇κ∇(αg̃β)κ

+1
2
∇ρ∇ρg̃

αβ + 1
2
gαβ∇κ∇λg̃

κλ − 2∇κ∇λσ
κ(αβ)λ

−1
2
gαβ
[
g̃κλRκλ(g) + σκ

λµνRκ
λµν(g)−H(Γ)

]
−1

2
H ′
[
8σκλµ(ασβ)

µλκ − g̃κ(αg̃κ
β)
]

= 0, (4.48)

with Gαβ ≡ Rαβ − 1
2
gαβR, H ′ ≡ H ′(Γ) ≡ ∂H/∂Γ and covariant derivatives ∇α

defined with respect to gαβ.

Variation with respect to gαβ yields surface terms ∝ ∇gαβ. We want to keep only

the fields fixed on Σ and not their derivatives, so we have to add in action (4.44)

the following GH term

S̃Σ = 2

∫
Σ

dn−1x
√
−h
(

ΨK + g̃αβΓκα[κnβ] + σα
βγδΓαβ[γnδ]

)
, (4.49)

with [A,B] ≡ 1
2

(AB −BA).

If we now contract equation (4.47) with gα
γ and add it to (4.47) we get the

relation

σγαγβ ≡ σαβ = −1

4
g̃αβ. (4.50)

The latter implies that σαβγδ can be expressed as some combination of gαβ and g̃αβ

plus some traceless part, while the trace of that expression should give (4.50). To

find the latter expression we can expand the Riemann tensor in terms of he Ricci
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tensor and scalar according to

Rαβγδ = Cαβγδ − an
(
gα[δRγ]β + gβ[γRδ]α

)
− bnRgα[γgδ]β, (4.51)

with an ≡ 2
n−2

, bn ≡ 2
(n−1)(n−2)

and Cαβγδ the Weyl tensor which is traceless in all

its indices. After use of equation (4.46), relation (4.51) can be expressed as

Rαβγδ = Cαβγδ +
an
2
H ′
(
gα[δg̃γ]β + gβ[γ g̃δ]α

)
+
bn
2
H ′g̃gα[γgδ]β, (4.52)

and plugging the latter into equation (4.47) to substitute for the Riemann tensor,

we get a relation between σαβγδ, gαβ and g̃αβ

σαβγδ =
1

2H ′
Cαβγδ(g) +

an
4

(
gα[δg̃γ]β + gβ[γ g̃δ]α

)
+
bn
4
g̃gα[γgδ]β. (4.53)

Combining equations (4.45) and (4.46) we can find a similar relation for Ψ

Ψ(g, g̃) = α− 1

4
g̃, (4.54)

with g̃ ≡ gαβ g̃αβ. One would like to be able to solve equation (4.53) for σαβγδ =

σαβγδ(g̃, g). However, this is not in principle possible unless H ′ = constant (cor-

responding to the trivial case of f(G) = G) or Cαβγδ(g) = 0. The latter case

includes the case of the FLRW spacetime or maximally symmetric spacetimes like

the Minkowski one. In that case, all fields can be expressed in terms of gαβ and g̃αβ

and we can get a solution for the latter ones by solving the appropriate system of

second order differential equations, which we derive below.

Now, we want to derive a system of evolution equations for the set of fields

(gαβ, g̃αβ). The first equation we will use results from equation (4.46) after taking

its trace once, together with some simple algebra. To get the second equation, we

use relations (4.53) and (4.54) together with the Cαβγδ(g) = 0 ansatz to express

the last of the equations of motion, equation (4.48), in terms of gαβ and g̃αβ alone.

This way we arrive at the new system of second order equations for the set of fields

(gαβ, g̃αβ)

Gαβ = −1

2
H ′
(
g̃αβ −

1

2
gαβ g̃

κ
κ

)
, (4.55)
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(
P̂ κλ
µν

)(αβ)

∇κ∇λg̃
µν −H ′gαβ

[
png̃

κλg̃κλ + qng̃
2 − αg̃ − 2 H

H′

]
−H ′

[
rng̃

κ(αg̃β)
κ + sng̃g̃

αβ + 2αg̃αβ
]

= 0, (4.56)

with H ≡ H(Γ(g, g̃)) and the operator P̂ ≡ P̂ (g) defined as

(
P̂ κλ
µν

)(αβ)

≡ (1− an)
[
cng

κ(αgβ)λgµν − cngαβgκλgµν − 4gλ(αδβ)
µ δ

κ
ν + 2gκλδαµδ

β
ν + 2gαβδκµδ

λ
ν

]
,

(4.57)

while the constants an, bn, cn, pn, qn, rn, sn respectively

an ≡ 2
n−2

, bn ≡ 2
(n−1)(n−2)

, cn ≡ 1−2bn
1−an , (4.58)

pn ≡ an − a2
n

2bn
(1 + bn), qn ≡ 1

4
[1− an(an − 2bn)], (4.59)

rn ≡ 2[1− a2
n

4
(n− 4)], sn ≡ 1

2
[2an(an − 2bn)− 1]. (4.60)

To arrive at equation (4.56) we have used the following relations

Γ ≡ Γ(g, g̃) =
1

16

[(
1− 4(n− 3)

(n− 2)2(n− 1)

)
g̃2 − 4

(
n− 3

n− 2

)
g̃µν g̃µν

]
, (4.61)

and

σαµνρσβµνρ(g, g̃) =
1

8(n− 2)2

[
gαβ g̃ρµg̃ρµ + (n− 4)g̃ραg̃βρ − 2

(
n− 3

n− 1

)
g̃g̃αβ

]
, (4.62)

as well as σαβγδ(g, g̃) given by (4.53) with Cα
βγδ(g) = 0.

A look at the first equation of the new system, equation (4.55), shows that at

the level of the equations of motion we can express the dynamics as GR, minimally–

coupled to an effective energy–momentum tensor (the r.h.s of the equation) described

by the spin two field g̃αβ.

There is one extra constraint the fields satisfy, that is the Bianchi identities.

Since the l.h.s of equation (4.55) is covariantly conserved, as dictated by the Bianchi

identities, then the r.h.s should be as well,

∇α
[
H ′
(
g̃αβ −

1

2
gαβ g̃

)]
= 0. (4.63)
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The latter equation is a condition the set of fields (gαβ, g̃αβ) have to satisfy, together

with the equations of motion.

We will not seek solutions of the system described by equations (4.55)-(4.56) in

this paper, leaving this for a possible future work. However, it is easy to see that

Minkowski space is a solution for (gαβ, g̃αβ) = (ηαβ, 0).

We see that at the classical level of this representation there are two independ-

ent fields, (gαβ, g̃αβ), satisfying a system of second order equations together with

a second order condition, the Bianchi identity. These equations should be classic-

ally equivalent to the original fourth order ones, as g̃αβ is related to the second

derivatives of gαβ. It should be noted that there is no reason to expect complete

equivalence of the quantum equations, as the measure of the path integral in the

different representations can introduce new terms.

4.7 Conclusions

Let us close the chapter with a summary and some remarks on the previous ana-

lysis. It is clear, that Legendre transformations are a fundamental tool to study

the dynamical equivalence between different modified gravity actions, with the aim

of understanding better the nature of the theories under study. When working the

level of the action, a consistent analysis should take into account the appropriate

Gibbons–Hawking (GH) terms (full action). Although in a general context there are

no natural GH terms for both f(R) and R + f(G) actions, however one can define

them considering the dynamical equivalence between two different representations of

the particular action on the boundary surface, as it was done in Section 4.5.1, when

we considered the equivalence between the original action and the Jordan frame

one. However, the GH terms found through this procedure turn out to render the

variational principle inconsistent.

The disagreement between the GH terms in two different frames is associated

with the fact that the two representations are not equivalent at the quantum level,

as pointed out in Section 4.3.1.

Due to the structural simplicity of the full f(R) action, the Legendre trans-

formation yields in this case the same result as a conformal transformation of the
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original action. On the other hand, the R + f(G) Jordan (non–minimally coupled)

frame action cannot be re-expressed as a second order theory through a conformal

transformation, despite the fact that the auxiliary scalar decouples from the Gauss–

Bonnet term for dim ≥ 5. The resulting theory is still of fourth–order, as was

calculated explicitly for the full action in Section 4.5.

However, the more complex structure of the R + f(G) action, allows one to re-

express it, by means of a Legendre transformation, as a second order theory with

extra tensor fields apart from scalars. In the new representation, it turns out that

only two fields are the independent ones, the metric gαβ and the rank two field

g̃αβ. At the level of the equations of motion, we are able to recover GR, sourced

by an effective energy–momentum tensor, which is a function of g̃αβ. Although the

two representations are classically equivalent in vacuum without boundary, at the

quantum level they differ, as integrating out the extra fields generates new terms

in the effective action. We briefly comment on the physical equivalence between

different representations in the next section.

4.8 Physical equivalence between different rep-

resentations

In this section we would very briefly like to review and comment the arguments

presented previously in the literature favoring one frame instead of the other. The

physical predictions and validity of either frame has been in fact a long controversy

in the literature. We shall restrict ourselves to Brans–Dicke gravity, as it has been

the most studied theory in terms of the dynamical equivalence, on the same time

being one of the simplest cases one can consider. Notice that the case of f(R) gravity

corresponds to Brans–Dicke gravity with ω = 0.

Let us start by noting that the analysis in the previous sections was performed

for the case of vacuum, without including matter fields, as we were interested purely

in the gravitational sector of the theories. However, the introduction of matter fields

complicates things; in the original f(R) or Jordan frame representation, the matter

fields are minimally coupled to gravity, which is no longer true after performing a

conformal transformation to the Einstein frame. This implies that in the original
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representation matter fields follow the geodesics of the Jordan frame metric, but the

similar is not true for the Einstein frame.

To begin with, in Magnano and Sokolowski (1994) it is argued that the “true

physical variables are exactly those which describe the equivalent general relativistic

model” (in the case of f(R) gravity the latter implies the Einstein frame variables).

Of course, one should first define what “physical” means. According to Magnano and

Sokolowski (1994) physical is the frame defined through a “ a set of field variables

which are (at least in principle) measurable and satisfy all general requirements of

classical eld theory”. What is more, in the same work it is argued that the Weak

Energy Condition can be violated in one frame, but not in the other. Although this

could be in principle true, in Flanagan (2004) it is argued that there is no physical

observable whose predicted value in all conformal frames is the sign of Gµνu
µ for a

timelike uµ. In general, all observable quantities should be conformally invariant,

and therefore independent of the particular frame used. After all, at the classical

level a conformal transformation just accounts for a field re-definition, and of course

physical observables should be invariant.

What is more, starting from the fact that two conformally related metrics can

interact in a different way with external matter fields (e.g baryons) in the action,

in Magnano and Sokolowski (1994) it is argued that the physical metric should

be chosen such that its geodesic lines are those followed by external matter test

particles. A

In Faraoni and Gunzig (1999) it is explicitly demonstrated that in the Jordan

frame of Brans–Dicke theory, wave-like gravitational fields violate the weak energy

condition, implying an “infrared catastrophe” for scalar gravitational waves. How-

ever, again in this case the question is if there is any observable where this violation

manifests itself.

An important point regarding conformal transformations and sometimes neg-

lected in the various studies in the literature, is a point emphasized by Dicke’s

original paper Dicke (1962); a conformal transformation accounts to a change in

units. In particular, the new units run as some particular function of the conformal

factor and in turn as a function of the spacetime coordinates. This view is further

adopted in Flanagan (2004); Faraoni and Nadeau (2007) pointing out that the latter
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change of units should be always kept in mind when calculating physical observables,

and of course, physics should be independent of the choice of units.

However, it has to be stressed that one expects physical observables to be in-

dependent of the choice of variables; this means that one should always ask the

question of what is really observed before reaching any conclusions about the vi-

ability of one frame against another. An important example is the calculation of

primordial inflationary spectra in the context of non-linear gravity theories in both

Jordan and Einstein frame, yielding the same answer, Kolb et al. (1990); Kaiser

(1995) as well as De Felice and Tsujikawa (2010) and references therein.

It has been also pointed out Faraoni (2009), that different conformal frames give

a different effective mass and range for the scalar, and care must be taken when

for example confronting scalar–tensor theories with solar system experiments. In

particular, one should be careful with the definition of mass in different frames of

the same action.

One could ask the question of what happens with the physical equivalence

between different frames at the quantum level. From a path integral point of view,

different conformal frames will yield physically inequivalent theories, as the trans-

formation on the action as well as the path integral measure will yield additional

factors that will affect the path integral in a non-trivial way.

As it is argued in Flanagan (2004) the only case where two conformal frames

will yield physically equivalent theories at the quantum level is the semiclassical

case, where only the external matter fields are quantised, but not the metric and

the scalar, which should be expected as in that case the conformal transformation

accounts only for a redefinition of units.

When gravity is treated as a quantum effective field theory, i.e a quantum theory

which is accurate only up to a particular cut–off energy scale, an important role is

played by the equivalence theorem which states that the S- matrix is invariant under

non-linear, local field redefinitions (Chisholm (1961); Kamefuchi et al. (1961), as well

as Flanagan (2004); Faraoni and Nadeau (2007) and references therein). Conformal

transformations belong to this class of transformations, however the theorem only

holds at the regime where the perturbative approach is valid. As a result, calculation

of tree level quantities will yield equivalent results in different conformal frames,
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but this is not in general true beyond the effective description of the theory, i.e for

energies beyond the energy cut–off.



75

Chapter 5

Anisotropic stress and stability in

non–linear gravity models

5.1 Introduction

This chapter closely follows the collaborative work together with M. Kunz reported

in Saltas and Kunz (2011).

In particular, we will elaborate on an important feature of modified gravity mod-

els, namely the effective anisotropic stress, and will try to understand its importance

for current and future cosmological observations.

Although strictly speaking cosmological probes in general cannot provide con-

clusive proof Kunz and Sapone (2007); Kunz et al. (2008); Hu and Sawicki (2007),

the presence of a significant anisotropic stress could be a smoking gun for a modifica-

tion of GR at large scales: canonical scalar fields do not create additional anisotropic

stress, while the modified-gravity (MG) models like scalar-tensor theories, brane-

world models like the Dvali-Gabadadze-Porrati (DGP) model Dvali et al. (2000)

and f(R,G) type theories generically induce a large effective anisotropic stress.

In this chapter, we investigate one specific class of models, f(R,G) type modific-

ations of GR, and ask the question whether it is possible to construct viable models

with a vanishing, or arbitrarily small effective anisotropic stress. Or in other words,

is it possible to mimic “GR” with these models, at least up to first order in perturba-

tion theory and in the sense that the extra anisotropic stress is small enough? Since

f(R) models have many things in common with scalar-tensor theories, we expect
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that our discussion is also relevant for those models, and as we discuss later, also

for DGP and other braneworld models.

The structure of the chapter is as follows: In Section 5.2 we discuss the notion of

anisotropic stress in general, and how this plays an important role in modified gravity

models and then we investigate the possibility of a vanishing anisotropic stress in

the particular cases of f(R) and f(G) models, before we look at the more general

f(R,G) case. In Section 5.3 we identify and discuss the link between anisotropic

stress and stability in modified gravity models in the context of both homogeneous

and inhomogeneous perturbations around de Sitter space. We further derive the

relevant stability conditions. We generalize the discussion to arbitrary backgrounds

in Section 5.4 and give some results for a matter dominated evolution. In Section 5.5,

we apply the above to characteristic toy models, and then discuss our conclusions.

Some explicit intermediate calculations and formulas can be found in the Appendix.

The f(R,G) models were introduced in section (3.3), where some of their funda-

mental properties was discussed. For convenience let us recall some equations that

will need in the following. In the flat, FLRW background the two key quantities, R

and G, can be expressed purely as a function of the Hubble parameter H ≡ H(t)

and its time derivative,

R(t) = 6
(

2H2 + Ḣ
)
, (5.1)

G(t) = 24H2
(
H2 + Ḣ

)
. (5.2)

We will also use the notation F ≡ fR ≡ ∂f(R,G)
∂R

and ξ ≡ fG ≡ ∂f(R,G)
∂G

, and over dots

denoting derivative with respect to cosmic time t.

Notice also that in this section we will be using φ and ψ to denote the scalar

Newtonian potentials, and Φ and Ψ for the gauge invariant ones.

5.2 The effective anisotropic stress in higher or-

der gravity

Let us here introduce the notion of anisotropic stress in gravity. As a starting point,

we consider scalar perturbations around a flat FLRW background in the conformal
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Newtonian gauge, where the metric is of the form1

ds2 = −(1 + 2ψ)dt2 + a(t)2 (1− 2φ) dx2, (5.3)

and the gravitational potentials ψ ≡ ψ(x, t) and φ ≡ φ(x, t) are closely related to

observations: light deflection is sourced by the lensing potential φ + ψ and non-

relativistic particle motion by ψ alone.

The scalar anisotropic stress Π is then defined as the difference in the potentials

φ− ψ ≡ Π(x, t), (5.4)

or the difference of the relevant potentials in some other gauge. Equation (5.4)

is called the anisotropy equation, and can be found by calculating the ij (i 6= j)

component of the perturbed equations of motion around the FLRW metric,

δGi
j −

1

3
gijδG

κ
κ = δT (eff,total)i

j −
1

3
gijδT

(eff,total)κ
κ

≡ Π(eff)i
j, (5.5)

from which one then extracts the scalar part as usual to get

φ− ψ = Π(eff). (5.6)

We emphasize that this is the anisotropic stress one would infer by assuming GR

to hold, not only the anisotropic stress from the matter fields. Indeed, here we are

precisely interested in the contribution to φ − ψ due to a modification of gravity.

While relativistic particles do induce an anisotropic stress, it is small at late times

and we will neglect the contribution of T
(matter)
µν in equation (3.45) to φ− ψ. Notice

that because of the nature of T (eff)i
j in modified gravity theories, the r.h.s of above

equation will in principle have a spacetime dependence, i.e it will be a function of

φ, ψ as well as their first and second derivatives with respect to time (in Fourier

space), in contrast to GR, where the r.h.s is just a function of the matter content.

The usefulness of (5.6) is that it has a GR-like l.h.s., allowing to compute predictions

for cosmological observations as usual, while all the extra contributions are moved

1The general form of the perturbed line element is given in the Appendix.
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to the r.h.s. and interpreted as a “modified gravity energy-momentum tensor”.

In particular, for GR (and neglecting any relativistic species) we have Π(eff) =

0 and therefore φ = ψ at all times. Therefore, the inequality of the Newtonian

potentials is a “signature” of departures from GR on large scales Kunz and Sapone

(2007).

The ratio φ/ψ, or variables derived from it, like η(t, k) ≡ ψ
φ
−1, can be extracted

observationally by combining weak lensing experiments with e.g. galaxy surveys or

redshift space distortions, making cosmological observations a powerful test of GR

Amendola et al. (2008). In particular, one can extract the weak lensing potential

from weak lensing surveys, with the former being equal to the difference between

the two scalar potentials, φWL = ψ + φ2. On the same time, measurements of

the peculiar velocities of galaxies can provide an estimation of the scalar potential

ψ through the momentum conservation equation for the pressure less matter fluid

(Euler equation). Combining the two observations, i.e weak lensing and peculiar

velocities measurements, one can then extract the ratio ψ/φ or equivalently the

parameter η. Current limits on η are rather weak, with deviations of order unity

from η = 0 still allowed, but future probes will measure the ratio ψ/φ with an

accuracy of a few percent (e.g. Bean and Tangmatitham (2010); Daniel et al. (2010);

Zhao et al. (2010); Song et al. (2011)). For a discussion on a model independent

measurement of the parameter η see Amendola et al. (2013).

In this paper, we raise and investigate the following question: Can we construct

a viable modified gravity model with φ/ψ = 1, or in other words, is φ 6= ψ an

unavoidable consequence of modifying gravity to explain the dark energy? We will

try to answer this question step by step, by investigating the anisotropy equations

of f(R), R + f(G) as well as of the more general f(R,G) gravity models.

The equations for general spaces tend to be complex and in general do not

admit simple solutions. For this reason in this paper we will first focus on the case

of a de Sitter background. On the one hand, solutions that explain the observed

accelerated expansion usually tend towards a de Sitter fixed point, and also the

observed background expansion requires no deviation from p = −ρ for the inferred

2Notice the different form of the lensing potential compared to the one defined in 2.56. The
difference here is due to the different sign used for the potential φ in the perturbed line element
(5.3) compared the one defined before.
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dark energy component. On the other hand, the equations simplify significantly

in this limit, which allows us to give explicit solutions that we can then discuss in

detail. We comment on the behavior for other backgrounds in section 5.4, but leave

a fully general study for future work. We nonetheless expect our conclusions to be

quite generic for models that try to explain the dark energy.

5.2.1 The anisotropic stress in f(R) models

Let us begin with the special case of f(R) gravity, described by the action

S =

∫
M

d4x
√
−gf(R), (5.7)

which corresponds to the limit of ξ → 0 of the general f(R,G) models. It is well

known that these models are characterized by an extra, dynamical scalar degree of

freedom F , which is proportional to the first derivative of f(R), F ≡ fR(R) ≡ f ′(R),

and its equation of motion given in (3.23). However, unless the theory is written in

the so–called Jordan frame, the latter degree of freedom (also called “scalaron”) is

still of geometrical origin.

In f(R) gravity, the anisotropic stress equation (5.15), defined in the Newtonian

gauge, becomes

φ− ψ =
δF

F
≡ Π

(eff)
R , (5.8)

which holds for any spacetime, not just de Sitter.

Since δF = fRR(R)δR, the stress contribution is proportional to the derivative

of the extra scalar degree of freedom with respect to R, that is, it depends on the

evolution of the scalar F ≡ f ′(R). Seeking a form for the function f(R) that would

make Π(eff) vanish at all times corresponds to solving the equation fRR = 0 with

a general solution f(R) = R + Λ, i.e. of all f(R) models it is precisely GR that

satisfies this equation. In other words, the requirement of zero anisotropic stress in

f(R) theories is equivalent to suppressing the extra degree of freedom of the theory,

leading to the GR limit. (In the PPF framework of Hu and Sawicki (2007), fRR → 0

corresponds to B → 0, B being a parameter introduced to quantify the modification

from GR).

Although it is not possible to make Π(eff) exactly zero at all times without re-
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verting back to GR, one can try to make it sufficiently small for a given cosmological

period, by an appropriate choice of the model parameters. This corresponds to set-

ting fRR sufficiently small for some particular initial conditions and ensuring that

it stays small, by an approriate choice of model. This has been done for example

in Pogosian and Silvestri (2008). The price one pays is a rapid oscillatory behavior

for both the gravitational potentials and the curvature perturbation. What is more,

the amplitude of the latter can grow arbitrarily. We will come back to this this

later, when we will study the relevant stability conditions and will see that this is a

general feature of f(R,G) and other modified gravity models: the existence of an-

isotropic stress is related to the extra scalar degree of freedom of these models, and

an attempt to suppress it causes unstable behavior. In the f(R) case, suppression

of the extra scalar corresponds to fRR → 0.

As can be seen from equation (5.8), another way to force Π
(eff)
R = 0 would be to

impose the condition δR = 0. The crucial difference between δR = 0 and fRR = 0, is

that the latter is a background requirement, i.e a requirement on the particular form

of the f(R) action. On the other hand, the condition δR = 0 imposes a dynamical

condition on the potentials φ, ψ and their first and second time derivatives. If we

also take into account that in that case the l.h.s implies φ = ψ, we find the equation

φ̈+ 5Hφ̇+ 3H2

(
H2

Ḣ
+

k2

6H2a2
+ 2

)
φ = 0, (5.9)

which not only in general is unstable, but also fixes the perturbation evolution

needed to keep δR = 0, which is in general incompatible with the desired evolution

of the Universe, e.g. structure formation. In other words, the requirement δR = 0

imposes an evolution that is in principle of no phenomenological interest. For this

reason, what we seek in this paper is a condition of the first kind, i.e. a condition

on model space rather than on the evolution of the perturbations.

5.2.2 The anisotropic stress in f(G) models

Since f(R) models do not allow for a vanishing anisotropic stress, we will instead

look at the other limiting case of f(R,G) models, namely those described by the
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action

S =

∫
M

d4x
√
−g [R + f(G)] . (5.10)

These models posses an instability in the presence of a matter fluid, irrespective

of the form of the function f(G) De Felice et al. (2010b), which rules them out as

realistic scenarios, but here we just want to see whether it is possible to construct

f(G) models that contribute no additional effective anisotropic stress.

The first term in the action does not contribute any extra anisotropic stress.

In an FLRW background, these models posses an extra scalar degree of freedom,

proportional to ξ ≡ fG(G) = f ′(G). The anisotropy equation in a general spacetime

in this case reads as

φ− ψ ≡ Π
(eff)
G = 4Hξ̇ψ − 4ξ̈φ+ 4

(
H2 + Ḣ

)
δξ, (5.11)

with δξ = fGGδG. For a de Sitter background, the equation simplifies to φ − ψ =

4H2
0fGGδG. One possibility to have no anisotropic stress is to set fGG = 0 at all

times, leading to the model f(G) = G + Λ. In four dimensions G is a topological

invariant Lovelock (1971), i.e. it is a total derivative and so it has no contribution to

the equations of motion, and we are left only with R+Λ for the relevant gravitational

Lagrangian, which is equivalent to GR. Alternatively we require δG = 0 which suffers

from the same problems as δR = 0 and does not allow in general for a sensible

evolution of the perturbations.

For a general background, the similarity to the case of f(R) is spoiled by the first

two terms in the anisotropy equation. In general, the condition on the evolution of

φ and ψ imposed by those terms will again be difficult to enforce as a function of

time. On the other hand, if the background quantities vary only slowly, ξ̇, ξ̈ ≈ 0,

then the anisotropy equation can be simplified as 3

φ− ψ ≡ Π
(eff)
G = −4 (1 + 3weff) δξ, (5.12)

where we used the relation
Ḣ

H2
≈ −3

2
(1 + weff), (5.13)

3We obtain effectively the same condition on scales that are well inside the horizon, k � aH,
as δξ is in general boosted by factors of (k/(aH))2 relative to φ and ψ.
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with weff ≡ p/ρ being the effective equation of state parameter for the background

evolution. Now, the situation is again similar to the one encountered for f(R): one

has either to require either fGG = 0, δG = 0, or weff = −1/3. As discussed above,

the first condition leads to GR (in which case automatically ξ̇ = ξ̈ = 0 at all times),

while the second does not allow for an acceptable evolution of the perturbations.

The third condition, which corresponds to the evolution of a Universe dominated by

curvature, is also not very relevant given current observational results in cosmology.

5.2.3 The anisotropic stress in f(R,G) models

We saw in the previous sections that the vanishing of the anisotropic stress in f(R)

and f(G) models corresponds to either trivial or unphysical situations. We now turn

to study the more general case of f(R,G) models. Here, the function f(R,G) has

two contributions, coming from the R- and G- part respectively, and from (B.25)

the anisotropy equation reads as De Felice and Suyama (2009)

φ− ψ =
1

F

[
δF + 4Hξ̇ψ − 4ξ̈φ+ 4

(
H2 + Ḣ

)
δξ
]
. (5.14)

Unlike the f(R) case, where we simply had to demand that fRR(R) = 0, the nature

of the anisotropy equation here does again not allow us to write down an explicit

condition for the function f(R,G) that would give a zero anisotropic stress contri-

bution in a general spacetime: as in f(G) models, we find extra factors of φ, ψ and

their time derivatives. The only case for which we can find a simple condition is for

the de Sitter spacetime, and therefore we shall restrict ourselves in this case for the

time being. Furthermore, for models that try to explain the dark energy, it is at

late times that we expect modifications of gravity to become important, and that

deviations from GR should appear in observations. For such a late-time accelerating

epoch, a de Sitter spacetime is expected to provide a reasonable approximation.

The anisotropy equation in de Sitter space reads as

φ− ψ =
1

F

[
δF + 4H2

0δξ
]

≡ Π
(eff)
G + Π

(eff)
R ≡ Π

(eff)
tot , (5.15)
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where, as before, we have defined the contribution coming from the R- and G- part

of the action respectively as

Π
(eff)
R ≡ δF

F
and Π

(eff)
G ≡ 4H2

0

δξ

F
. (5.16)

Notice that this case is just the sum of the corresponding limiting cases of f(R) and

R+ f(G) gravity respectively, although now either term depends on both R and G.

We now ask the same question as before: Is it possible in this case to find a class

of f(R,G) models that give a zero anisotropic stress Π
(eff)
tot = 0, having at the same

time a sensible evolution of the perturbations? By inspection of (5.16) one can see

that in order for the total scalar anisotropic stress to be zero, we require that at all

times

Π
(eff)
R = −Π

(eff)
G . (5.17)

In other words, we require that the particular anisotropic stress contributions have

equal magnitude and opposite sign at all times, or at least for the cosmological era

of interest.

We can rewrite condition (5.17) using the relations

δF = FR(R,G)δR + FG(R,G)δG, (5.18)

δξ = ξR(R,G)δR + ξG(R,G)δG. (5.19)

In de Sitter space we have additionally

G = 4H2
0R, (5.20)

which implies that δG = 4H2
0δR. Using the last relation together with (5.18) and

(5.19) (and so limiting ourselves to de Sitter backgrounds) condition (5.17) becomes

(
fRR + 4H2

0fRG + 4H2
0fGR + 16H4

0fGG
)
δR = 0. (5.21)

If f(R,G) is an analytic function we have fRG = fGR, and requiring that the above
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equation is valid for any variation δR (see discussion in f(R) section) we arrive at

fRR + 8H2
0fRG + 16H4

0fGG = 0. (5.22)

The above equation is a second order PDE with constant coefficients, for the class

of functions f ≡ f(R,G) that give a vanishing anisotropic stress in de Sitter space.

Its general solution is

f(R,G) = f1 (Ω) +Rf2 (Ω) , (5.23)

with Ω ≡ R−G/(4H2
0 ), and f1, f2 arbitrary but analytic functions of Ω.

We specify the function f(R,G) in the action, which is agnostic of quantities like

H0. For this reason it is preferable to consider a more general class of models with

Ω ≡
(
R− G

M2

)
, (5.24)

with M a parameter with mass dimensions, so that Π(eff) → 0 corresponds to the

special case of a model with a de Sitter expansion rate of H0 = M/2. As we will

also discuss later on, the mass parameter M controls which of the two contributions

in f(R,G) dominates.

Assuming that the de Sitter point exists and is stable, we see that it is in prin-

ciple possible to find a non-trivial class of f(R,G) models that give exactly zero

anisotropic stress in de Sitter space at all times, by selecting a model in the class

(5.23). However, as we will see by studying the stability of de Sitter space below, the

case M → 2H0 corresponds to a singularity for the actual model, and therefore the

model cannot be viable. Furthermore, we will see that the anisotropic stress cannot

become arbitrarily small, since this will cause unstable behavior for the curvature

perturbations.

5.3 Anisotropic stress and stability for a de Sitter

background

There are different stability criteria that a gravitational theory aiming to describe

the late time acceleration should satisfy, each leading to a different condition for
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the form of the function f(R,G). At the background level, a viable model should

give rise to sufficiently long radiation and matter eras, as well as a transition to a

stable de Sitter era Amendola et al. (2007b); Nojiri and Odintsov (2006b); Zhou

et al. (2009). Furthermore, avoidance of singularities and of rapid collapse of per-

turbations (positivity of the sound speed) as well as agreement with local gravity

constraints should be ensured Davis (2007b); Amendola et al. (2007a); De Felice and

Tsujikawa (2009d). Of great importance is also the absence of ghost like degrees of

freedom De Felice et al. (2006); Chiba (2005b); Nunez and Solganik (2005b). For

the class of f(R,G) models the latter requirement translates into fR(R,G) > 0.

Modified gravity models of the type f(R) or R + f(G) suffer from a curvature

singularity at very early times of the cosmological evolution Starobinsky (2007);

Tsujikawa (2008b); Frolov (2008); De Felice and Tsujikawa (2009b); Sotiriou (2007).

The latter singular behavior can lead to oscillations of the scalar degree of freedom

with infinite amplitude and frequency. As explained in Frolov (2008), the singularity

lies at a finite field value and energy level and therefore is easily accessible. We will

see in the following that this singularity is a feature of f(R,G) models as well.

In this paper we are interested in the classical stability, and particularly its

connection to the effective anisotropic stress. As we will show and discuss below,

the attempt of turning off or making sufficiently small the effective anisotropic stress

for a de Sitter background leads to serious stability problems that question the actual

viability of models with vanishing Π(eff).

5.3.1 Existence of a de Sitter point

Since we will specifically study the behaviour near the de Sitter point, it is necessary

that this solution exists for the models of interest. De Sitter space is a vacuum,

maximally symmetric space described by the conditions

H = H0 = constant > 0, Ṙ = Ġ = Ḟ = ξ̇ = 0. (5.25)

Furthermore, in maximally symmetric spaces any curvature invariant can be ex-

pressed as a function of the Ricci scalar, and particularly for the Gauss–Bonnet



86

term we get

G =
R2

6
. (5.26)

We can derive the condition for the existence of the de Sitter point by taking the

trace of the equations of motion (3.45) and using relations (5.25), (5.26), to arrive

at

F (R)R + 2G(R)ξ(R)− 2f(R) = 0, (5.27)

where everything is assumed to be expressed in terms of the Ricci scalar and evalu-

ated on de Sitter space. The cases ξ = 0 and F = 1, give the relevant conditions for

f(R) and R+f(G) gravity respectively. Solving the algebraic equation given above,

we get the de Sitter point solution, which in general is not unique. Minkowski space

corresponds to the special case of R0 = H0 = 0.

For the models of the type (5.23), we find with the help of equation (5.27) that

the de Sitter point is given by solutions of the equation

f1(u) + uf2(u) = 0. (5.28)

and R = 2u. The next step in our analysis will be the study of the stability of de

Sitter space at both homogeneous and inhomogeneous level.

5.3.2 Homogeneous perturbations

Now we turn to study the stability of the de Sitter solution, first with respect to

homogeneous (background) perturbations. As we will see, there is a strong link

between effective anisotropic stress and stability in modified gravity models.

Let us consider the time–time component of the Friedman equation (3.45) and

perturb it linearly around the de Sitter solution H = H0

H(t) = H0 + δH(t). (5.29)

Under perturbation (5.29) the perturbed function f(R,G) reads as

f = f0 + F0δR + ξ0δG, (5.30)
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and similar expressions hold for the other quantities of interest. The explicit formulas

and calculations for any space can be found in the Appendix.

Now, evaluating relations (B.13)–(B.15) and using conditions (5.25), we can write

the linearized perturbed modified Friedman equation (3.59) in the form

C1δḦ + C2δḢ + C3δH = 0, (5.31)

with the constants C1, C2 and C3 defined in the Appendix. There is no constant

term since we know that de Sitter, δH ≡ 0, is a solution. This equation then admits

an exponential solution of the form

δH = Aea
+t +Bea

−t, (5.32)

with

a± ≡ 3

2
H0 ±

√
9

4
H2

0 −
(
F

3ω
− 4H2

0

)
, (5.33)

and

ω ≡ FR + 4H2
0

(
2FG + 4H2

0ξG
)
, (5.34)

where we dropped the subscript “0” from FR e.t.c for simplicity.

From solution (5.33), we can read off the condition for de Sitter space stability

with respect to homogeneous perturbations:

F

3 [FR + 4H2
0 (2FG + 4H2

0ξG)]
− 4H2

0 ≥ 0. (5.35)

The latter condition ensures that the de Sitter point is an attractor for the particular

f(R,G) model under study, which is important for the viability of a cosmological

model of gravity. The limit ξ → 0 in (5.35) gives the corresponding condition for

f(R) gravity, that has been derived before in Faraoni (2005),

F

3FR
− 4H2

0 ≥ 0, (5.36)

while when F → 1 we get a similar condition for the R+ f(G) models also derived
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in De Felice and Tsujikawa (2009b)

1

48H4
0fGG

− 4H2
0 ≥ 0. (5.37)

The stability condition (5.35) is general, but now we can check what it tells us for

the class of models that give a zero anisotropic stress, described by equation (5.24)

as M2 → 4H2
0 . We can see that in this case necessarily ω → 0, and so the eigenvalues

(5.33) tend to infinity4. In particular, when ω is exactly zero, which corresponds to

the case of a vanishing anisotropic stress, it is not possible to reach the de Sitter

state without triggering a singularity in the model: the quantity C1 = 18Hω in

equation (5.31) goes to zero as we approach de Sitter, together with C2 → 0 (see

appendix B.1). In general δḦ ∼ (C3/C1)δH → ∞ which requires δḦ to diverge

in order to satisfy the evolution equation, except possibly for a lower dimensional

and thus infinitely fine-tuned set of trajectories in specific models. We will show

and discuss this explicitly in section 5.5 considering examples for particular f(R,G)

models.

If the effective anisotropic stress is not exactly zero, but sufficiently small, in that

case the rapid and large background oscillations render the linear analysis unreliable,

i.e the evolution becomes non linear. We will come back to this again in section 5.5.

Similarly, in the f(R) and R + f(G) cases, where the zero anisotropic stress

condition was that fRR(R) = 0 and fGG(G) = 0 respectively, conditions (5.36) and

(5.37), give the obvious result that one gets infinities when trying to suppress the

extra degree of freedom. The difference with the more general f(R,G) models is

that the singularity appears for a finite value of the mass parameter M of the model,

while in f(R) and R+ f(G) the same happens for rather trivial cases. We conclude

therefore that a f(R,G) type model that has no anisotropic stress in a de Sitter

background cannot dynamically reach this background solution.

5.3.3 Inhomogeneous perturbations

In this subsection we will study the behavior of inhomogeneous perturbations in de

Sitter space and we will first show that the stability condition coincides with the

4Since the no-ghost condition requires that F > 0, the question whether the background solution
moves towards or away from de Sitter depends on whether ω → 0+ or ω → 0−.
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stability condition derived in the section on homogeneous perturbations. We will

then make the relation between anisotropic stress and stability clear by studying

the evolution of the perturbations. The full set of perturbation equations together

with some useful relations can be found in the Appendix.

We follow De Felice and Suyama (2009) and choose the gauge invariant expression

Φ ≡ 1

2F

[
δF + 4H2

0δξ
]
. (5.38)

for the gravitational potential, as it reduces to φ in the Newtonian gauge and remains

well-defined for a de Sitter background. For that background, we find that the

potential is just given by

Φ =
(fRR + 8H2

0fRG + 16H4
0fGG) δR

2F
, (5.39)

where we used the fact that fRG = fGR and that in de Sitter space we have δG =

4H2δR. From condition (5.21) we see that in de Sitter space and for models that

have no anisotropic stress, Φ is necessarily zero. However, let us assume that we are

not exactly in this limit. Then by substituting the expression of δR in terms of the

gauge invariant Φ, relation (B.31), we arrive at the evolution equation,

Φ̈ + 3H0Φ̇ +

(
k2

a2
+m2

eff

)
Φ = 0, (5.40)

with

m2
eff ≡

F

3ω
− 4H2

0 , (5.41)

for ω defined in (5.34), and a(t) ∝ exp(H0t). m
2
eff is the effective mass of the Klein–

Gordon type equation for the scalar perturbation in de Sitter space, and has a purely

geometrical origin. Equation (5.40) reduces to that of f(R) and R + f(G) for the

limits of ξ → 0 and F → 1 respectively.

As k → 0, the requirement for superhorizon stability dictates that the effective

mass is positive,

m2
eff > 0 , (5.42)

which leads to the same stability condition as derived before with the homogeneous
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analysis, equation (5.35). Therefore, the two stability criteria, with respect to homo-

geneous and inhomogeneous perturbations respectively, lead to the same conditions,

as it is the case for f(R) gravity as well Faraoni (2005).

Turning back to the effective anisotropic stress, we can see that considering again

the class of models found in (5.23) and requiring M → 2H0 (Π
(eff)
tot → 0), will make

the denominator of (5.41) go to zero so that

lim
M→2H0

m2
eff ≡ lim

ω→0

(
F

3ω
− 4H2

0

)
= ±∞, (5.43)

depending on the sign of ω as it approaches zero. In the case of positive infinity the

stability condition is not violated, while the minus infinity will obviously violate the

stability condition, as it would make the effective mass negative (tachyonic).

The effective mass going to infinity means that the scalar degree of freedom

becomes frozen and so it is effectively suppressed. This is also the case in the special

cases of f(R) and R+f(G) gravity, as can be seen by inspection of equations (5.36)

and (5.37) for fRR → 0 and fGG → 0 respectively. However, here the singularity

appears in a non trivial way, i.e for a critical value of the mass parameter M where

the two different contributions, i.e the R- and the G- contribution in (5.17) balance

each other. By consequence, in f(R,G) type models, the anisotropic stress is related

to the extra scalar degree of freedom of the theory. As the same happens in scalar-

tensor models (e.g. equation (43) of Amendola et al. (2008)), and also in DGP where

the absence of anisotropic stress requires the crossover scale to diverge, rc → ∞,

which effectively restores GR, we conjecture that this is a quite general feature of

modified gravity models. In addition, in the f(R,G) case, turning the anisotropic

stress off (or trying to make it sufficiently small) has a direct impact on the stability

and time evolution of the model.

To see what happens when the mass diverges, it is possible to study the solution

of the evolution equation (5.39) using a WKB approximation for Φ̈� 1. We discuss

the procedure in more detail in appendix B.3, where we show that the solution in

this regime, and for a sufficiently large effective mass meff , is approximately given

by

Φ(t) ≈
∑
±

C±e(−H0 ± 2imeff)t, (5.44)
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with C± constants and H0 > 0. From the above solution it can be seen that the

frequency of the oscillations is proportional to meff . Suppressing the anisotropic

stress leads to a very large effective mass and thus to a very rapid oscillation of Φ.

Although we have shown this here only for the de Sitter limit, we expect that the

result is more general, and similar oscillations have been seen for example in Pogosian

and Silvestri (2008) during matter domination for numerically reconstructed f(R)

models which mimic GR at early times.

From relation (5.41) it can be seen that a large effective mass corresponds to a

small anisotropic stress and a small potential Φ. However, this is not true for the

curvature perturbation δR (or δG) which has an amplitude that is ∝ meff ,

δR(t) = 6
(
m2

eff + 4H2
0

)
Φ(t) (5.45)

and as m2
eff � 1 one can get large curvature perturbations, that grow significantly at

earlier times. The latter behavior, occurring while we try to suppress the effective

anisotropic stress, is very similar to the one caused by the singularity found in

Starobinsky’s “disappearing cosmological constant” model, Starobinsky (2007) and

Frolov (2008). In that case, the singularity appeared in the high curvature limit of

the particular model, while in our case it appears in the model space of different

f(R,G) models respectively. The latter oscillatory behavior endangers the stability

of the actual model as has been pointed out in Starobinsky (2007) and Frolov (2008),

and for an explicit discussion on the subject the reader is referred to Starobinsky

(2007); Frolov (2008).

Another interesting aspect of the models of the type f(Ω) concerns the sound

speed. The propagation speed in de Sitter space equals the speed of light (c2
s = 1).

However, using the formula derived in De Felice and Suyama (2009) 5 we find that

the sound speed in a general background is given by

c2
s = 1 +

8Ḣ

4H2 −M2
≡ 1 +

(
2

1− γ

)
Ḣ

H2
(5.46)

where γ ≡ M2

4H2 is a dimensionless parameter (constant in a de Sitter background).

γ � 1 implies that the Ricci scalar part of the f(R,G) contribution to the aniso-

5It is relation (6.20) in De Felice and Suyama (2009).
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tropic stress dominates, while for γ � 1 the Gauss–Bonnet part is larger. γ = 1

corresponds to the case where the two contributions in f(R,G) models become equal

and cancel.

We can calculate Ḣ from the equations of motion, and for this particular class

of models we get

Ḣ =
(1− γ)(Hξ̇ − ξ̈)
8H2(F + 4Hξ̇)

, (5.47)

which can then be substituted in (5.46). However, considering an expansion char-

acterized by an effective weff , equation (5.13), the sound speed takes the form

c2
s ≈ 1− 3(1 + weff)

1− γ
. (5.48)

Assuming a background with weff 6= −1, we immediately see that as γ → 1, c2
s →∞.

The sound speed becomes negative for γ < 1 (Gauss–Bonnet part dominates) and

positive for γ > 1 (Ricci scalar part dominates) respectively. The value γ = 1,

which corresponds to the effective anisotropic stress becoming zero is the critical

value where the sound speed diverges and changes sign. In other words, if one

wishes to enforce cs ≤ 1 then one has to ensure that the model lies sufficiently far

from the regime where the two contributions balance.

5.4 General and matter-dominated background

In this section we extend the analysis to a general background evolution, and then

consider specifically the important case of matter domination. In general we have

to consider equation (5.14). In this equation, δF and δξ are functions of δR and

δG through Eqs. (5.18) and (5.19). These in turn can be expressed in terms of

the metric perturbations, φ and ψ, see e.g. De Felice and Suyama (2011b). In the

small-scale limit, k � aH, we find that φ = ψ implies

fRR + 16(H2 + Ḣ)(H2 + 2Ḣ)fGG + 4(2H2 + 3Ḣ)fRG = 0. (5.49)
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In order to re-transform this condition into one involving only R and G, we can

eliminate H and Ḣ with the help of equations (5.1) and (5.2),

H2 =
1

12

(
R +
√
R2 − 6G

)
, (5.50)

Ḣ = −1

6

√
R2 − 6G. (5.51)

Using this prescription we find for the general no-anisotropic-stress condition

0 = fRR +
2

9

(
−9G+ 2R

(
R−
√
R2 − 6G

))
fGG

+
2

3

(
R− 2

√
R2 − 6G

)
fRG. (5.52)

While it is difficult to find general solutions, we can instead study the case for a

background evolving with a given weff , as defined in (5.13). We notice that in this

case equation (5.49) can be written as

0 = fRR − 2H2(5 + 9weff)fRG

+8H4(2 + 9weff(1 + weff))fGG. (5.53)

For weff = −1 (de Sitter expansion) we recover equation (5.22), while for weff = 0

(matter dominated expansion) we find

fRR − 10H2fRG + 16H4fGG = 0. (5.54)

The Hubble parameter in the latter equation can be eliminated in favor of R and G

using equations (5.1) and (5.2) evaluated for a matter background,

R = 3H2, G = −12H4, G = −4

3
R2. (5.55)

We now try to construct an explicit example for a model that has no anisotropic

stress during matter domination. For this purpose, we make an ansatz

f(R,G) = R +Gnβ(R) (5.56)

Here we take β as an a-priori general function of R. Inserting this model into



94

equation (5.54) and using (5.55) we can re-express the condition in terms of R only.

We find that β needs to satisfy the following differential equation:

2n(n− 1)β + 5nRβ′ + 2R2β′′ = 0. (5.57)

This equation has clearly a power-law solution, β(R) = cRm, with

m1,2 =
1

4

(
2− 5n±

√
4 + n(9n− 4)

)
, (5.58)

and the general solution is of the form

f(R,G) = R + c1G
nRm1 + c2G

nRm2 (5.59)

where mi = mi(n) is given by the equations for m1 and m2 above.

A successful model with zero anisotropic stress should at the same time satisfy

the Friedmann equation as well. During matter domination we can write the latter

as

0 = R2fRR − 2G2fGG +RGfRG −
1

6
RfR +

1

6
GfG

−1

6
f +

3

4
ρ0R. (5.60)

Here we chose R and G so as to correspond to the partial derivatives, since the

choice is not unique. The final term is due to ρm(t) ∝ t−2 ∝ R. Inserting a model

of the form (5.59) but for a general exponent m, we find the condition

− 6m2 +m(7− 6n) + (n− 1)(12n− 1) = 0. (5.61)

A model of this form that satisfies simultaneously (5.58) and (5.61) allows for a

matter dominated evolution and contributes no anisotropic stress during that period.

This is the case for

n =
1

90

(
11±

√
41
)
, m =

1

180

(
61± 11

√
41
)

(5.62)

where one needs to use either both positive or both negative signs. An additional
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solution is given by m = 0 and n = 1, which is just GR.

Therefore, there is at least one model in the context of f(R,G) gravity that is

able to give a zero effective anisotropic stress, in the subhorizon limit of a matter

background. Numerically we find that the evolution of the model close to the matter

point can be stable for a significant amount of time, although the matter point is

not an attractor solution (and thus the anisotropic stress does in general not vanish

exactly).

Let us now turn attention to homogeneous perturbations around the matter

point, keeping the function f(R,G) in its general form for the start. In Appendix

B.1 we calculate the evolution of homogeneous perturbations for a general expansion

a(t) ∝ tp. For the matter case we get for p = 2/3

δḦ +

(
ω̇

ω
+ 9H

)
δḢ +m2

effδH =
δρm

18Hω
, (5.63)

with the effective mass defined as

m2
eff ≡

F

3ω
≡ F

3 [FR + 4H2 (2FG + 4H2ξG)]
. (5.64)

Equation (5.63) can be solved approximately at the WKB regime using an iter-

ative approach Starobinsky (2007); Tsujikawa (2008b),

δH = δH(osc.) + δH(ind.). (5.65)

δH(osc.) is the solution describing oscillations of the scalar degree of freedom, ob-

tained setting δρm = 0. δH(ind.) denotes the matter induced part, which is obtained

by turning off all the derivatives on the l.h.s of equation (5.63). We assume that

δH(osc.) � δH(ind.), so that the deviations from GR are sufficiently small.

Stability in this case requires, apart from the no–ghost condition F > 0, that

the effective mass is positive,

m2
eff > 0. (5.66)

Let us turn attention to the oscillatory part of the solution (5.65). It can be

obtained using the WKB approximation, by assuming the solution is a slowly varying
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quantity in time,

δH(osc) ≈ Aeiθ(t), (5.67)

with θ̈ � 1. Plugging above ansatz into (5.63), and after some algebra, we find that

δH(osc) ≈
∑
±

A± exp

[
−1

2

∫ t

t0

dt′
(

9H +
ω̇

ω

)]
× exp

[
±2i

∫ t

t0

dt′m2
eff

]
. (5.68)

with A a constant. Using the fact that H ≡ Hm(t) = 2/(3t), and performing the

integration in the first exponential we arrive at,

δH(osc) ≈
∑
±

A±
t3ω1/2

exp

[
±2i

∫ t

t0

dt′m2
eff

]
. (5.69)

The second integration can be performed after choosing a particular model. From

(5.69) one can see that the amplitude of the oscillating solution grows as one goes

backwards in time, which is exactly the behavior pointed out for f(R) models in

Starobinsky (2007); Tsujikawa (2008b); Frolov (2008), and was due to a curvature

singularity as explained in Frolov (2008). Therefore, f(R,G) models suffer from the

same problem too.

We also notice that the models of type (5.23) that have no anisotropic stress

during a de Sitter phase with specific expansion rate H0 = M/2 will pass through

ω = 0 and thus meff →∞ in any background if the expansion rate H(t) crosses this

critical value M/2.

A different, general way to decrease the anisotropic stress is to move close to GR

by decreasing the deviations from the extra f(R,G) contributions, which effectively

implies

fRR, fRG, fGG � 1. (5.70)

In this case, we also make ω small while F → 1. Again this will lead to rapid

oscillations, and we suspect that this is the reason for those seen in Pogosian and

Silvestri (2008). Once the genie of extra degrees of freedom is out of the bottle, it

is difficult to push it back in without further complications.
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5.5 Toy models

In this section we will study the de Sitter behavior for some characteristic cases of

the class of models found in (5.23). For the sake of generality we will consider

Ω = R + ε
G

M2
, (5.71)

with ε = ±1. The particular class of models with a vanishing of the anisotropic

stress, found in (5.23), correspond to ε→ −1 and M → 2H0.

First note that, for the class of models (5.23), it is possible to parametrize both

the de Sitter existence and stability conditions in terms of the parameter γ, which

controls the different regimes of the model. For simplicity and illustration let us

assume that f2 = 0. Then, the de Sitter condition (5.27) becomes

(
γ + ε

2γ + ε

)
fΩΩ0 − f(Ω0) = 0, (5.72)

with fΩ ≡ fΩ(Ω0), and

Ω0 = 6H2
0

(
2γ + ε

γ

)
. (5.73)

Furthermore, for the de Sitter stability condition (5.42) we get

(
γ2

γ2 + 2εγ + 1

)
fΩΩ

fΩ

≥ 2

(
γ

2γ + ε

)
Ω0, (5.74)

We will assume that Ω0 > 0, γ > 0 and real. The limits γ → ∞ and γ → 0

correspond to the pure f(R) and f(G) regimes respectively.

In principle, we will assume that through (5.72) we can express Ω0 in terms of

γ and the other possible parameters of the model as Ω0 = Ω0 (γ, ci), and then use

(5.74) to get a constraining condition.

5.5.1 f(Ω) = Ω + Ω ln
(
Ω/c2

)
Here, c is a positive constant of mass dimensions. This model is able to re-produce

a late-time acceleration, since at late times Ω � 1, and the logarithmic term will

dominate. In four dimensions the linear term Ω is essentially equivalent to the

Ricci scalar R since the Gauss-Bonnet term does not contribute to the equations of
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motion. The absence of a Minkowski solution makes this model rather unrealistic.

A non trivial de Sitter solution can be found using (5.27)

Ω0 = ceε/γ, (5.75)

and the Hubble parameter is then trivially given by (5.73).

The stability condition (5.74) yields

2γ2 − 1

2γ + ε
≥ 0. (5.76)

For both branches, ε = ±1, de Sitter space is stable when γ >
√

2/2.

To illustrate the singularity when trying to reach de Sitter, we set γ = 1 and for

simplicity c =
√

6e so that the de Sitter solution is given by H0 = 1. Expanding the

equation of motion in δH we find to first order,

2
(

1 + 2(δḢ)2
)
δH +O

(
(δH)2

)
= 0. (5.77)

Only in the second order term a contribution δḦ(δH)2 appears. We notice that it is

not possible to solve the first term for real δH, so that necessarily δḦ ∝ 1/δH will

diverge when we try to dynamically reach de Sitter. The only exception is δH = 0,

i.e. the solution that is always de Sitter.

5.5.2 f(Ω) = Ω + cΩn

In the context of f(R) gravity, models of this type were suggested as an explanation

for late time acceleration Capozziello et al. (2003); Carroll et al. (2004) with n < 0,

while models with n > 0 can lead to acceleration at early times and explain inflation.

Furthermore, it was found that de Sitter space is unstable unless cn < 0 Faraoni

(2005). Here, we assume that cn > 0, otherwise the no–ghost condition F > 0 could

be violated.

The de Sitter point equation (5.72) gives two solutions, namely Ω0 = 0 which

corresponds to Minkowski spacetime and a non trivial de Sitter one,

Ω0 =

[
γ

c(γ(n− 2) + ε(n− 1))

]1/(n−1)

. (5.78)
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In order for Ω0 to be real and positive one has to ensure that the quantity in the

denominator in the latter relation is positive. We shall also require that the Hubble

parameter, as given implicitly in relation (5.73), will be real and positive too.

For both branches ε = ±1, de Sitter is always unstable when n < 0. For n > 0,

it is always unstable if ε = 1, but for ε = −1, n > 2, the stability condition (5.74)

gives
n− 1

n− 2
< γ <

n+
√
n/2− 1

n− 2
, (5.79)

with both Ω and H0 being real and positive.

To avoid a superluminal sound speed, the model should lie in the f(R) regime,

characterized by γ > 1, which is satisfied here, as the right branch of above inequality

approaches the value 1+ as n→∞. Further, for n > 2, Minkowski space is always

stable.

To consider the equation of motion close to de Sitter, we set ε = −1, γ = 1

and choose c = −6(1−n), for which H0 = 1. We also assume that n 6= 1. We again

expand in δH. The lowest order equation becomes now

(
1 + 2n(δḢ)2

)
δH +O

(
(δH)2

)
= 0. (5.80)

Again the second derivative of δH appears only at order (δH)2. This time we

can in principle make the first order term vanish for n < 0, which would allow to

cross δH = 0 with a finite second derivative. However, there are two problems:

Firstly, we can only cross, not move into and stay on δH = 0, since locally we need

δH ∼ (t − t0)/
√
−2n to avoid triggering the instability, and secondly this requires

an infinite amount of fine-tuning in the initial conditions: we need to reach de Sitter

at exactly the right speed, else we are either repelled, or a catastrophe engulfs the

Universe. So in reality again it is impossible to reach de Sitter dynamically.

5.5.3 f(Ω) = Ω + c0λ
(

(1 + Ω2

c20
)−n − 1

)
This is a straightforward generalization of Starobinsky’s disappearing cosmological

constant model Starobinsky (2007). It was proposed in the context of f(R) gravity

as a late time acceleration model, that has a vanishing cosmological constant in

Minkowski spacetime. It is trivial to check that Minkowski, f(0) = 0, is indeed a
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solution, but unstable since fΩΩ(0) < 0.

The model is characterized by three parameters, c0, λ, γ > 0.

From the de Sitter point equation, one can find an expression for λ as a function

of γ, and x1 ≡ Ω0/c0

λ =
x1(g0 − 1)(1 + x2

1)n+1

[x2
1(2ng0 + 1)− (1 + x2

1)n+1 + 1]
, (5.81)

where g0 ≡ (γ + ε)/(2γ + ε). Taking the limit γ → ∞ in the above expression one

recovers the one given in Starobinsky’s paper Starobinsky (2007).

Let us assume that c0 is of the order of the de Sitter scale, Ω0/c0 ≡ x1 = 1. The

de Sitter stability condition then reads

2(γ + ε)n2 + (2γ + 1)n+ (2γ + ε)(1− 2n) ≤ 0, (5.82)

For n = 1 de Sitter is stable if

− 2γ

2γ + ε
≤ 0, (5.83)

which is never satisfied for both branches ε = ±1. However, choosing x1 = 1/2, n =

1, we find that de Sitter is stable for ε = 1 and γ > 1/2, as well as for ε = −1 and

γ > 0.68.

Stability can be established for a wide range of the model parameters, but that

would require a detailed exploration of the parameter space of {c0, λ, n}, and we are

not interested in this here.

For the critical case ε = −1, γ = 1, choosing the λ of (5.81) and in addition

c0 = 6H2
0 for simplicity, we find to first order in δH

1−
n
(
H4

0 − 2n(δḢ)2
)

(2n − 1)H4
0

 δH +O
(
(δH)2

)
= 0. (5.84)

This equation is of the same kind as the one found for the previous toy model,

and it leads to the same behaviour. The special case n = 1 leads to the equation

(δḢ)2δH = 0, which prohibits any crossing of δH = 0 as otherwise δḦ has to

diverge.
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5.6 Conclusions

In this chapter we studied the anisotropic stress in f(R,G) type modified gravity

models. In this context, we investigated the possibility of finding models that are

able to mimic GR at least in the sense that they do not create an additional, effective

contribution to the anisotropic stress, i.e φ = ψ in the Newtonian gauge. For the

needs of our analysis, we also derived the necessary background stability conditions.

We started by considering the case of a de Sitter background, since this allowed us

to find the general class of models with vanishing anisotropic stress. The de Sitter

case is in addition interesting as current observations indicate that the Universe is

approaching this state. We further considered the general case in the small-scale

limit, and in more detail the case of a matter dominated expansion.

We find that for de Sitter expansion, the anisotropic stress is inextricably linked

to the presence of an extra scalar degree of freedom. The same is true for a matter

expansion in the subhorizon limit. Suppressing the effective, geometric anisotropic

stress is equivalent to suppressing the extra degree of freedom, which either requires

the model to revert back to GR or else leads to an instability in the background

evolution. In addition, it leads problematic effects like rapid oscillations of the

gravitational potential and the curvature perturbation (with possible runaway pro-

duction of scalar particles). The same problems appear when one tries to generally

decrease the extra degrees of freedom through a model reconstruction, in order to

obtain an evolution similar to GR. We think that this has been observed for numer-

ically reconstructed f(R) models in a matter dominated background Pogosian and

Silvestri (2008), indicating that it is more general and not restricted to de Sitter.

Furthermore, our stability analysis reveals that the curvature singularity present

in f(R) models Starobinsky (2007); Tsujikawa (2008b); Frolov (2008) appears in

the more general f(R,G) case as well. What is more, its unwanted effect on the

behavior of curvature perturbation is amplified for all models that try to suppress

the anisotropic stress by decreasing fRR, fRG and fGG. In these cases we find rapid

curvature oscillations with arbitrarily high amplitude.

In the case of a pure matter dominated background, we were able to construct

an explicit model that gives a zero effective anisotropic stress in the subhorizon

limit. At late times, when the gravity modifications are expected to appear and
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the evolution ceases to be matter dominated, this model will no longer give φ = ψ.

This could possibly be avoided by constructing such models for a whole expansion

history including late-time accelerated expansion. However, such a procedure would

necessarily involve significant fine-tuning as changes in the expansion rate would

have to coincide with changes in the behavior of the function f(R,G), which would

in general depend sensitively on initial conditions. This appears to be rather difficult

to construct. In addition, as discussed above, such a model would not be able to

reach the de Sitter state without encountering a singularity.

While the link between effective anisotropic stress and the scalar degree of free-

dom of the theory was studied here in the context of f(R,G) models, it is also

present in scalar-tensor and DGP models: If a scalar-tensor model is coupled to the

Ricci scalar in the action through F (ϕ)R then the anisotropic stress is proportional

to (F ′/F )δϕ and the analogy to the f(R) case is obvious. In DGP, the effective

anisotropic stress vanishes for rc ∝ M2
4/M

3
5 → ∞ where M4 and M5 are the four-

and five-dimensional Planck scales Koyama and Maartens (2006); Lue et al. (2004).

In this limit, the 5-dimensional part of the action is suppressed and only the usual

4D Einstein-Hilbert action remains.

We conjecture that suppressing the effective anisotropic stress in modified gravity

models is difficult, if not impossible, to achieve in a realistic scenario. In models

with a single extra degree of freedom that we looked at (f(R), f(G), scalar-tensor

models and DGP) it is not possible at all to have no effective anisotropic stress

except in the GR limit. In more complicated cases like f(R,G) it is possible to

cancel the contributions to the effective anisotropic stress coming from several extra

degrees of freedom, but this appears to be fine tuned and the resulting models tend

to develop fatal singularities. This reinforces the role of the anisotropic stress as a

key observable for current and future dark energy surveys. While the observation of

a strong anisotropic stress would point towards a modification of GR, the absence of

anisotropic stress would present a significant challenge for modified gravity models

and would require strong fine-tuning, which in turn favors scenarios where the dark

energy is a cosmological constant or an extra minimally-coupled field with negative

pressure.
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Chapter 6

Introducing Renormalisation

Group cosmology

In this chapter, we will describe the basic idea behind renormalisation, and then

discuss its application as a non-perturbative approach to quantum gravity. We will

then be interested to apply it in cosmology, and understand the basic steps needed

in order for the latter implementation to be consistent, working at the level of the

equations of motion.

Before we discuss particular applications in cosmology, we will first try to provide

a brief introduction to the following three questions: What is the idea behind renor-

malisation? Why do we need renormalisation in physics? How is it applied in the

context of quantum gravity? We will try to give a basic, but intuitive description

of above questions in the following sections.

6.1 An example from quantum field theory

In this section we shall be closely following Delamotte (2004) and describe an ex-

ample of renormalisation at the perturbative level, of the kind that is typically

appearing in Quantum Field Theory (QFT).

Let us consider an abstract theory with one coupling constant, say g0, with g0

being the bare coupling. It is important to stress that this is not the observed

coupling, i.e the one that is measured in an experiment. We will come back to

this below. Let us also assume that we would like to calculate perturbatively a
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particular physical quantity which we shall denote as F (x). The quantity F (x)

could represent for example the amplitude for a particular scattering process, in

which case the variable x would denote particle energy-momentum.

Since we want to use perturbation theory we can start by expanding F (x) in

powers of the bare coupling g0 as

F (x) = g0 + g2
0F1(x) + . . .+O(gn0 ). (6.1)

In QFT, the functions Fi would correspond to loop integrals over infinite virtual

particle states in momentum space, and it is common that they are divergent. A

typical example of a divergent integral in QFT would be a logarithmically divergent

one,

F1(x) =

∫ ∞
0

dt

t+ x
. (6.2)

As said above, g0 is the bare coupling, and it is not a physical quantity. What is

measured in an experiment at x = µ is F (µ). Since there is only one coupling in

this toy theory, one measurement will be needed to fix g0 so as to reproduce the

physical quantity F (µ) at a given order in perturbation theory. In other words,

the principle idea is to start with a theory with a particular set of parameters

(couplings), calculate physical quantities (e.g scattering amplitudes) in terms of

the bare parameters, and then use experimental input to re-parametrise physical

quantities in a way that they re-produce the experimental measurements. This is

done using the renormalisation prescription,

F (µ) = gR, (6.3)

with gR denoting the renormalised coupling. The particular complications with this

procedure enter when the expansion (6.1) is singular, e.g logarithmically divergent

in our particular example.

Let us point out that we can expand the bare coupling as a power series of the

renormalised one, i.e

g0 = gR + δ2g + . . . , (6.4)

with δng ∼ O(gnR). At this point enters the question of renormalisability of the
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theory: If the theory is renormalisable, it should be possible to convert the ill-defined

perturbative expansion into a well defined (non-singular) one, by re-parametrising

in terms of measured parameters, instead of the bare ones. It should be stressed

that, in view of the perturbative expansion of a given quantity, renormalisability

should be studied at each order of perturbation theory separately.

The first step for renormalising the perturbative expansion (6.1) is by regu-

larising the expansion through the introduction of a cut-off or regulator Λ in the

UV diverging integral, and if the theory (at the particular perturbation order) is

renormalisable, then by taking the limit Λ → ∞, the original expansion should be

recovered.

Let us see this more closely. We introduce new, regularised functions Fi(x) as

Fi(x)→ Fi,Λ(x), (6.5)

such that the diverging integral(s) are well defined. The expansion (6.1) then takes

the form

F (x)→ FΛ(x)(x, g0,Λ) ≡ g0 + g2
0F1,Λ(x) + . . .+O(gn0 ). (6.6)

For example, the integral (6.2) can be written as

F1(x)→ F1,Λ(x) =

∫ Λ

0

dt

t+ x
. (6.7)

Now, we can use the renormalisation condition (6.3) together with the well-defined

expansion (6.6) to re-parametrise the latter in terms of the measured coupling gR.

If the renormalisability hypothesis holds then after this procedure we should be able

to safely take the limit Λ→∞, at a given scale x = µ and a given measurement for

the coupling gR.

As also mentioned before, given a perturbative expansion, the renormalisation

procedure should be applied order by order. Here, for illustration we shall restrict

ourselves only in the first and second order. At first order in g0,

FΛ(x) = g0 +O(g2
0), (6.8)
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and using the renormalisation condition (6.3) we have

gR = g0 +O(g2
R). (6.9)

In other words, at first order the renormalisation condition just tells us that the

bare coupling g0 should equal the measured one. i.e g0 = gR.

At second order, things become more interesting. At this order it is,

FΛ(x)(x, g0,Λ) ≡ g0 + g2
0F1,Λ(x) +O(g3

0), (6.10)

which after using the coupling expansion (6.4) yields

FΛ(x)(x, g0,Λ) ≡ gR + δ2g + g2
RF1,Λ(x) +O(g3

0). (6.11)

Using condition (6.3) we get,

δ2g = −g2
RF1,Λ(µ), (6.12)

which is explicitly equal to

δ2g = −αg2
R

∫ Λ

0

dt

t+ µ
= −αg2

Rlog
Λ + µ

µ
, (6.13)

which diverges as Λ→∞.

Plugging above expression into (6.11), to eliminate δ2g in favor of the renormal-

ised coupling we find

FΛ(x)(x, g0,Λ) ≡ gR + g2
R (F1,Λ(x)− F1,Λ(µ)) +O(g3

R) (6.14)

= gR + α(µ− x)g2
R

∫ Λ

0

dt

(t+ x)(t+ µ)
+O(g3

R), (6.15)

which is well defined for Λ→∞, i.e

lim
Λ→∞

FΛ(x)(x, gR)→ finite quantity. (6.16)

Therefore, the theory is renormalisable up to second order.
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Although we shall not continue to discuss above procedure for higher order per-

turbation theory, at this level we can still extract a couple of general features of

above procedure which are true at all orders in perturbation theory. As we saw

before, the divergence in the second order term was cancelled by a term coming

from the expansion of the first order bare coupling g0 in powers if the renormalised

one gR; this behavior is true at all orders n. The second point to be stressed out is

that it would not be possible to cancel the divergence in F1,Λ(x) using F1,λ(µ), if the

former would depend on x; in that case, one would need an extra renormalisation

condition for the divergence to be removed. For details one can refer to Delamotte

(2004).

In this section we presented a simple, but typical example of renormalisation

at the perturbative level. In the next section we will discuss it at the level of the

action, using a non-perturbative approach.

6.2 The Functional Renormalisation Group and

Asymptotic Safety

In this section we will be interested to discuss renormalisation techniques beyond

perturbation theory, i.e in a non-perturbative fashion. The main tool to do this is the

so–called Exact Renormalisation Group (ERG) or the Functional Renormalisation

Group (FRG). The word “functional” declares that the actual analysis is performed

at the level of the action, i.e using functional methods. Therefore, the starting

point is the definition of an action which describes the degrees of freedom of our

theory as well as all the interactions between them. Then the ERG approach is the

mathematical machinery to employ the following, and fundamental statement about

physical systems:

The properties of a particular physical system depend on the scale one performs an

observation on the actual system.

Above statement says something very deep about physical systems: one expects

the properties of a given physical system to be scale dependent, i.e dependent on

the energy (or length) scale on performs a particular experiment. This fact has tre-

mendous applications both in physics and mathematics, from fractals to quantum
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gravity. A simple example of this behavior can be found by looking at a gas: Mac-

roscopically, the gas can be described as a fluid with a temperature, entropy, e.t.c.

However, as one “zooms” into the fluid, i.e studying it at smaller scales, discovers

that it consists of molecules with a velocity (effectively described by Brownian mo-

tion), and even at smaller scales the molecules consist of atoms, which in turn are

built up from electrons, neutrons and protons, and so on. It can be seen that at

each particular scale, different physics sets in, e.g at large scales fluid mechanics is

sufficient to analyse the gas behavior, while at smaller scales one has to take into

the quantum properties of the particles the gas consists of.

In above example, it is important to explain the way the term “macroscopic”

is used. With the latter term, we mean the scales where the gas can be effectively

described ignoring its molecular structure; this would be true for scales much larger

than the correlation length of its particular degrees of freedom (e.g molecules), i.e

for scales λ that satisfy

λ� λsep, (6.17)

with λsep denoting the typical separation between internal degrees of freedom.

It has to be pointed out that in principle, a particular system will exhibit many

degrees of freedom per correlation length, that can range from a few to infinity.

If the interaction range is r0, and assuming locality for the interactions, then one

can then split the system into different patches of length r0. The next step is to

“coarse grain” the system over patches of characteristic length r0, and successively

apply the coarse graining procedure each time over neighboring patches. The ERG,

provides us with an analytic tool to perform such a “coarse graining”. Below, we will

discuss how this is applied to understand the non–perturbative renormalisability of

quantum gravity.

Let us now focus on the significance of the ERG for QFT, following mainly Gies

(2006). A great advantage of the ERG is that it does not require for the couplings

to be small; this is why it also termed as an non–perturbative approach. The applic-

ation of the ERG requires a functional formulation of the particular theory. Armed

with with these two, i.e a functional formulation of our theory together with the RG,

the idea is to study the fluctuations of the system successively at different scales,

in a “coarse–grained” fashion. In particular, in this context, one studies the change
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of the correlation functions of the theory, induced by an infinitesimal momentum

shell of fluctuations. Application of this procedure leads to a flow equation, which

describes the evolution of the generating functional of correlation functions, under

the process of integrating out degrees of freedom. From the flow equation, it is

then possible to extract the evolution equations for the couplings of the theory as a

function of the cut–off energy scale.

Now, we will briefly sketch the derivation of the flow equation focusing on scalar

field theory, but the extension to more complicated theories, like gravity can be

found in the work where it was first introduced Wetterich (1993). For more details

on the derivation and interpretation one should also refer to Gies (2006); Reuter

and Saueressig (2012); Litim (2008a); Reuter and Saueressig (2007a). We start with

the notion of the generating functional Z[J ] of n-point correlation functions,

Z[J ] ≡ eW [J ] =

∫
Dϕe−S[ϕ]+

∫
Jϕ. (6.18)

J ≡ J(x) is the source and we also defined

∫
Jϕ ≡

∫
dDxJ(x)ϕ(x). (6.19)

The n-point correlation functions for a scalar field theory are then derived from Z[J ]

through functional differentiation 1. W [J ] is the generating functional of the n-point

connected correlation functions.

The effective action Γ[φ] is defined through a Legendre transformation,

Γ[φ] = supJ

(∫
Jφ−W [J ]

)
, (6.20)

with “sup” standing for “supremum”, and

φ(x) ≡ 〈ϕ(x)〉J =
δWk[J ]

δJ(x)
. (6.21)

In the context of the RG, the effective action can be calculated in a very intuitive

and efficient way, by integrating out momentum modes shell by shell. To achieve

this we first define a variation of the effective action, the effective average action Γk,

1Please refer to standard QFT textbooks for details, e.g Peskin and Schroeder (1995).
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parametrised through the cut–off scale k. By definition the action Γk interpolates

between two extreme limits, the UV and the IR one, corresponding to k →∞ and

k → 0 respectively.

The action Γk can be derived through a modification of the functional Z[J ],

through an IR regulator ∆Sk as

Zk[J ] ≡ eWk[J ] ≡
∫
Dϕe−S[ϕ]−∆Sk[ϕ]+

∫
Jϕ, (6.22)

with the regulator defined as

∆Sk[ϕ] ≡ 1

2

∫
dDq

(2π)D
ϕ(−q)Rk(q)ϕ(q). (6.23)

The IR regulator term above can be viewed as a momentum-dependent mass term,

since it is of quadratic nature with respect to the field ϕ. The regulator function

Rk(q), is a matrix-valued cut-off and its form can in principle be chosen arbitrarily,

however it is subject to the following three conditions,

lim
q2/k2→0

Rk(q) > 0, (6.24)

lim
k2/q2→0

Rk(q) = 0, (6.25)

lim
k2→Λ→∞

Rk(q)→∞. (6.26)

The first condition implements the idea of an infrared regulator, i.e that the

regulator suppresses the integration over the IR momentum modes, the second one

that the regulator vanishes as k → 0, while the third one that the functional integral

is dominated by the stationary point of the action in this limit, justifying this way the

saddle-point approximation. The second condition ensures that the usual generating

functional is recovered as k → 0.

The effective average action Γk can be defined formally through a Legendre

transformation as before,

Γ[φ] = supJ

(∫
Jφ−W [J ]

)
−∆Sk[φ]. (6.27)
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One can then derive the flow equation of Γk[φ] as a function of the cut–of scale k,

∂tΓk[φ] =
1

2
Tr

[
∂tRk

(
Γ

(2)
k +Rk

)−1
]
, (6.28)

with the inverse propagator defined as

Γ
(2)
k ≡

δ2Γk
δφδφ

, (6.29)

and “Tr” standing for the trace of the r.h.s of the equation, or in other words

defining the integral over all momentum modes k. For the case of a field with index

structure, like gravity, (6.29) should be modified appropriately.

Above equation is an exact functional equation for Γk, having an 1-loop structure.

Γk can in principle include all possible operators of the field. Equation (6.28) then

interpolates between the two extreme cases: the UV case, where the bare action is

recovered, Γk→0 = Γbare, and the IR case where Γk→∞ = Γ0. Different solutions of

equation (6.28) give rise to different families of effective field theories, Γk ≡ Γk[gµν ]

with 0 < k < ∞, defining a Wilsonian RG flow on the theory space. With the

term “theory space” one means the space consisting of all diffeomorphism invariant

functionals Γk[gµν ]. The solution of (6.28) defines a curve on the “theory space,

which is the space characterised by all functionals Γk.

The existence of the regulator Rk in the denominator of (6.28), ensures that the

IR regulation, i.e that sufficiently low momenta will be suppressed. On the same

time, the term ∂tRk in the numerator, together with the conditions (6.24)-( 6.25)

takes care of the UV regulation, restricting the integration between a momentum

shell near p2 ∼ k2. This is in pure agreement with the underlying idea of the

Wilsonian procedure of integrating out momenta shell by shell.

The regulator can be in principle chosen arbitrarily, however, one has to make

sure conditions (6.24)-(6.26) are satisfied. The precise form of the trajectory on the

theory space depends on the particular form of the regulator, however the endpoint

of the trajectory should not, as implied by relations (6.24)-(6.26). As a consequence

the choice of the regulator should not influence the position of a possible non-trivial

fixed point in the UV or IR.

Once the field content, Φ(x), of the theory is defined, the theory space is defined
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as Φ 7→ Γ[Φ], i.e of all action functionals of the particular field(s) which are com-

patible with the symmetries of the particular theory. We assume that the effective

action can be expanded in a basis of operators Pi,

Γ[Φ] =
∞∑
i=1

gi(k)Pi[Φ], (6.30)

and we also define the dimensionless couplings g̃i(k) ≡ k−digi(k), with di the canon-

ical mass dimension of the dimension full coupling gi(k). No assumptions about the

smallness of couplings are made. One then defines the couplings gi(k →∞) as the

“bare” couplings, whereas g(k → 0) as the “dressed” or the “renormalised” ones.

Differentiating (6.30) with respect to “RG time” t ≡ log k, and taking into

account that the operators do not depend on the RG scale, we find,

dΓk
dt

=
∞∑
i=1

βi(g̃j, k)Pi[Φ], (6.31)

with the functions βi defined as

βi(g̃j, k) ≡ dg̃i(g̃j, k)

dt
= k

dg̃i(g̃j, k)

dk
. (6.32)

The functions βi(g̃j, k) are called the beta functions, and it is important to emphasize

on the fact that they are not restricted to small couplings as in the usual perturbation

theory. The explicit form of the beta functions can be found by expanding the r.h.s

of the RG equation (6.28) in powers of the operators Pi, and comparing with the

r.h.s of (6.31). The beta functions define a vector field ~β on the theory space, which’

integral curves are the effective functionals k 7→ Γk, running from the UV, k →∞,

to the IR, k → 0. The couplings of the action as a function of scale k is found by

solving a system of coupled, first order differential equations,

k∂kḡi = βi(g̃j), (6.33)

with j in principle running from 1 to ∞. In other words, one ends up with an

infinite set of differential equations. However, for practical calculations, the effective

action has to be truncated, i.e a particular ansatz with a finite set of operators (and
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couplings) has to be assumed. The truncation where only the linear and zeroth

order curvature terms are kept, the Ricci scalar and the cosmological respectively, is

called the Einstein–Hilbert truncation, sometimes also referred as the RG improved

Einstein–Hilbert action. In this truncation there are two couplings present, namely

Newton’s and the cosmological “constant” respectively.

Fixed points under the RG, are the points where the beta functions vanish, i.e

βi(g̃j) = 0. They can be distinguished into two main categories: Trivial fixed points

or Gaussian Fixed Points (GFP) are the ones where gi = 0 for all i’s, i.e where the

theory is “free”. It is around a GFP where usual perturbation theory applies. The

second class of fixed points are the non-trivial ones, where the couplings acquire

non-zero values.

Let us consider the linearised flow around a (non trivial) fixed point,

∂tg̃i =
∂βi
∂g̃j

(g̃j − g̃j∗) ≡M i
j(g̃j − g̃j∗), (6.34)

g̃i(k) = g̃i∗ +
∑
j

Cj
(i)B

j
(i)

(
k

k0

)−θ(i)j
, (6.35)

with g̃∗ the fixed point value, Ci integration constants, Bj are eigenvectors of the

matrix M i
j , and k0 some reference energy scale. The quantities θ(i) ≡ −λi, where λi

is an eigenvalue of M i
j are called the critical exponents.

The critical surface (also called unstable manifold) around a (non trivial) fixed

point is defined as the collection of all points in the theory space that evolve towards

the fixed point with increasing energy k (inverse RG flow). Its dimensionality is

defined by the number of attractive directions in theory space. Asymptotic Safety

requires that the dimensionality of the critical surface is finite, i.e a finite number

of relevant couplings exist in the vicinity of the UV fixed points.

The idea of Asymptotic Safety relies on the existence of a non-trivial fixed point

under the RG, in the UV, first proposed by Stephen Weinberg Hawking S. W. (1979);

if such a fixed point exists, then the limit k →∞ can be safely taken, and the theory

is UV complete, i.e is well defined at high energies and does not suffer from any UV

divergences as k →∞.

Different investigations have shown that a non-trivial UV fixed point exists in
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the Einstein-Hilbert truncation Reuter (1998); Souma (1999, 2000); Lauscher and

Reuter (2002); Litim (2004); Reuter and Saueressig (2002); Percacci and Perini

(2003b,a) (see also Litim (2004) and references therein), as well as in higher trunca-

tions Narain and Percacci (2010); Narain and Rahmede (2010); Codello et al. (2009,

2008a); Fischer and Litim (2006), providing strong evidence that quantum gravity

is renormalisable in a non-perturbative way. Recently, the existence of a non–trivial

RG fixed point in the IR has been also investigated Donkin and Pawlowski (2012);

Nagy et al. (2012).

Before we close this section let us refer the reader to Gies (2006); Reuter and

Saueressig (2012); Pawlowski (2007); Litim (2008a); Reuter and Saueressig (2007a);

Percacci (2007, 2011) for detailed reviews on RG, Asymptotic Safety and its applic-

ation to gravity.

6.2.1 The flow equation of Einstein–Hilbert gravity

Before we discuss the non–perturbative flow equation for Einstein–Hilbert gravity

under the RG, let us first pause and briefly discuss why the standard perturbation

approach to quantum Einstein–Hilbert gravity fails. We shall mainly follow the

discussions in Zee (2010), Hambert (2010), to which we refer the reader for more

details. In the context of perturbation theory, and for the case where the action is

described by the Einstein–Hilbert one 2,

S =
1

16πG

∫
dnx
√
−gR[g], (6.36)

the first step consists in expanding the spacetime metric as

gµν = ḡµν +
√

16πGhµν , (6.37)

with ḡµν being a classical background metric field, and hµν represents the quantum

fluctuation. What is more, the coupling G is the bare Newton’s constant. The

standard approach followed in the context of perturbation theory is the so–called

dimensional regularisation which accounts to performing calculations in n dimen-

sions and in the end taking the limit of n→ 4.

2Here, we assume that the cosmological constant is zero.
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Substituting above expansion for the metric field in the lagrangian, the latter

can then be expanded up to different orders in the fluctuating field, i.e

L ∼ O(h2) +O(h3) +O(h4) + Lgf + Lghost, (6.38)

with the last two terms corresponding to the gauge fixing and ghost terms respect-

ively. The introduction of the gauge fixing term makes the graviton propagator

well defined, and on the same time gives rise to the ghost part according to the

Faddeev–Popov procedure3. The quadratic part of the action will give the graviton

propagator, while the higher order terms in h the different interaction vertices of

the relevant order, and the Feynman rules then follow accordingly.

Einstein–Hilbert quantum gravity, with or without a cosmological constant, is

known to be perturbatively non–renormalisable, due to the problem of the UV

divergences. One could expect this behavior by looking at the dimensionality of

Newton’s constant which scales as

G ∼ E2−n, (6.39)

where E is an energy scale, and n the spacetime dimensions. Notice that for n > 2

Newton’s constant has negative mass dimensions, which is the root of the problem

of the UV divergences of Einstein–Hilbert quantum gravity. If with Λ we denote a

UV cut–off energy scale, the lowest order loop diagrams will be proportional to the

dimensionless product

∼ GΛn−2, (6.40)

which implies that for n > 2 loop corrections of first order will be divergent with

increasing cut–off Λ. In particular, for the case of n = 4, the 1–loop correction to

the graviton-graviton scattering we will require evaluation of the following type of

integral

∼ G2

∫ Λ

d4k(1/k2) ∼ G2Λ2, (6.41)

which is divergent as Λ → ∞. On the same time, for the amplitude M of the

3For details see for example Rivers (1987); Peskin and Schroeder (1995); Hambert (2010).
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graviton-graviton interaction it will be

M∼ G+G2Λ2 +O(G3), (6.42)

which in turn implies that the effective Newton’s constant will run as a function of

the cut–off energy scale as

G(Λ)

G
∼ 1 +GΛ +O(G2), (6.43)

which is also divergent as Λ→∞.

In general, in n spacetime dimensions the graviton propagator in momentum

space will scale as ∼ 1/k2, the vertex functions as k2, while the measure in n

dimensions as dnk, yielding for the superficial degree of divergence4

D = 2 + (n− 2)L, (6.44)

where L is the number of the loops involved. From relation (6.44) one can see

that for spacetime dimensions greater than two, n > 2, the superficial degree of

divergence D will be proportional to the number of loop corrections L.

Using above simple arguments, we see that in the context of perturbation theory

Einstein–Hilbert gravity is perturbatively non–renormalisable in n > 2, with the

root of the problem lying in the negative mass dimensions of Newton’s constant (for

n > 2). The resolution that Asymptotic Safety provides to the latter problem is the

assumption that a fixed point exists for Newton’s constant G under the RG, in the

limit of the cut–off going to infinity. If the UV fixed point exists, this means that

the dimensionless product GΛ2 in relation (6.43) tends to a finite value as Λ→∞,

ensuring on the same time that scattering amplitudes are UV finite. The flow of the

coupling(s) to the UV fixed point, if the latter exists, is a non–perturbative effect

that in principle cannot be seen with standard perturbation methods. Below, we

will discuss how one can go beyond perturbation theory using RG methods for the

case of gravity.

Let us now proceed with discussing how the non–perturbative flow for the grav-

4For a discussion of the derivation see for example Zee (2010).
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itational couplings under the RG is calculated, having as a starting point the exact

RG equation defined in (6.28). Before we focus on the particular case of an Einstein–

Hilbert action with a cosmological constant, we will discuss the more general case

of an action including higher order curvature terms in the so–called f(R) ansatz.

The first thing to point out is that in order to proceed with the evaluation of the

flow equation (6.28) for the effective action one has to assume a particular ansatz

for the latter. In gravity, general covariance dictates that all scalar curvature com-

binations compatible with it should be included in the action functional. However,

for practical calculations a specific ansatz has to be chosen, as an infinite number of

operators will yield an infinite set of beta functions, which is obviously impossible to

solve. Furthermore, simple truncations provide with valuable insight of the behavior

of metric gravity under the RG, on the same time allowing a set of equations which

is relatively easy to cope with.

In the f(R) context, an ansatz widely used in the literature has been the one

where the f(R) function is expanded in positive powers of the Ricci scalar R 5,

Γk[g] =

∫
d4x
√
−gf(R) ≡

∫ √
−gd4x

(
R− 2Λ

16πG
+ c2R

2 + c3R
3 + . . .+ cnR

n

)
.

(6.45)

An ansatz with negative power of the curvature R has been studied in Machado and

Saueressig (2008). Before we proceed, let us note that in the following, and unless

otherwise stated, we will use the letter k to denote the RG cut–off scale, and Λ the

dimension full cosmological constant respectively.

We will not get into the details of the derivation of the flow equation for above

ansatz, however let us sketch the basic steps involved in the calculation as these were

followed for example in Codello et al. (2009), and with the appropriate modifications

they apply to any action, not only a (purely) gravitational one:

• Assumption of a particular ansatz for the effective action Γk, which should be

then supplemented with the suitable gauge fixing and ghost terms. In principle,

one can consider all curvature combinations that preserve general covariance. For

example, (Codello et al. (2009)), Machado and Saueressig (2008) Codello et al.

(2008b) have investigated the asymptotic safety scenario assuming an f(R) form

5For a rather complete treatment of the RG application on f(R) gravity see Machado (2010).
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for the effective action, while (Narain and Rahmede (2010); Narain and Percacci

(2010)) assuming a general scalar–tensor one. However, inclusion of other curvature

combinations have been studied, as for example, in Benedetti et al. (2009) for the

case of an action supplemented with the square of the Weyl tensor.

After assuming a form for the gravitational part of the action, a choice for the

IR regulator function Rk has to be made. One expects that any particular regulator

choice that satisfies the general requirements described before, (6.24)–(6.26), will

not alter the qualitative features of the RG flow, like for example the fixed point

structure. In fact, the position of the fixed point fluctuates with changing the

regulator function, as well as new spurious ones are generated. A fixed point solution

to be accepted, should persist under regulator or gauge variations.

• The next step is the calculation of the second variation of the effective action

with respect to the field variables of the effective action. At this point, the metric

fluctuation is decomposed into its irreducible components, as well as the background

is fixed. A commonly used choice for the background metric is a Euclidean de Sitter

one, which is also used in Codello et al. (2009). Both the decomposition in term of

the irreducible components as well as the choice of a spherical background allow for

an exact inversion of the kinetic operator. 6Then, the inverse propagators for the

different irreducible modes are computed, and inserted together with the explicit

expression of the regulator function into the RG equation (6.28). Evaluation of the

trace over momenta on the r.h.s of the RG equation requires the use of a heat kernel

expansion. The result yields the flow equation for the particular effective action,

which is an in principle non–linear differential equation that involves the couplings

and their derivatives. The form of the flow equation can be simplified significantly

for particular choices of the gauge.

• After the flow equation has been derived, the beta functions, as well as the

fixed points and the corresponding critical exponents of the theory can be calculated,

though Taylor expanding both sides of the flow equation and comparing similar

terms. That will be made more explicit in the following for the case of a polynomial

ansatz for the effective action.

One expects that truncating the action leads to a particular error, as in this way

6In a cosmological context, spherically symmetric backgrounds play an important role too, as
both the FLRW as well as de Sitter spacetime belong to this class of backgrounds.
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the effect of higher order contributions allowed by the symmetries of the theory is

neglected. In a non–perturbative context, however, there is not any standard way of

allowing such an estimation. However, one can still get an estimation by studying

the dependence of universal quantities, like the critical exponents, on the choice of

the regulator function.

What is more, the existence of a particular type of a non–trivial fixed point un-

der the RG for a particular truncation, is not itself enough to claim its existence in

general. In fact, one has to confirm its existence and stability for different trunca-

tions, cut–off schemes, as well as gauge choices. Even a successful outcome of such

a procedure might not again provide a conclusive proof for the existence of the fixed

point, but it will still be a rather strong evidence.

Let us now present the beta functions for Einstein–Hilbert gravity, as these were

derived in Litim (2004, 2008b). They read as

∂tλ = βλ(g, λ) ≡ −2λ− 12g − 24g(3g+ 1
2

(1−3λ))
2g− 1

2
(1−2λ)2 , (6.46)

∂tg = βg(g, λ) ≡ 2g + 24g2

4g−(1−2λ)2 , (6.47)

where t ≡ ln k, and βλ, βg the beta functions, and we also defined the dimensionless

couplings

g(k) ≡ k2G(k)/24π, λ(k) ≡ Λ/k2. (6.48)

In above equations the factor of 24π is included to remove phase space factors.

Above beta functions were calculated using the optimised cut–off and a type of

harmonic background field gauge introduced in Litim (2004).

There are two fixed points of the above RG flows, a free or Gaussian one, and

an interacting one which is attractive in the UV (k →∞), with

(g∗, λ∗)GFP = (0, 0), (g∗, λ∗)UV = (0.015625, 0.25), (6.49)

(Refs Litim (2008b)-Reuter and Saueressig (2007b) and references therein). The

different types of trajectories arising from above beta functions can be seen in figure

6.1. In particular, the trajectories of type IIa define the “separatrix”, which separate

the trajectories starting off from the UV fixed point and evolving towards negative
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and positive values of λ respectively. The observationally accepted trajectories are

those of Type IIIa, leading to a positive λ at late times, and a classical regime

around the Gaussian Fixed Point.

The eigenvalues corresponding to the linearised beta functions around the UV

fixed point are complex conjugate with negative real parts, leading to the spiraling

behavior of the evolution in that regime. The sign of the real parts of the eigenvalues

imply that the UV fixed point is attractive (repelling) for increasing (decreasing)

cut–off energy k. However, the complex nature of the eigenvalues is not generally

true for higher truncations, see for example Codello et al. (2008b).

A phenomenologically viable trajectory is one that starts at high energies from

the UV fixed point and then evolves towards smaller values of g as k is lowered,

passes close to the GFP, until it turns to the right towards increasing values of λ.

A trajectory passing sufficiently close to the GFP will have a long classical regime,

i.e G ' G0, Λ ' Λ0, with “0” here denoting the present value. In other words, the

closer the trajectory passes to the GFP, the larger amount of “RG time” t it spends

close to it. In the vicinity of the GFP the couplings acquire tiny values7, leading to

a large hierarchy between classical and UV (∼ mp) scales. Under the requirement

of the existence of a classical regime, a small (and constant) cosmological constant

comes for free. From the linearised solutions around the GFP, one can see that

the dimensionless couplings in this regime scale canonically, implying constancy for

the dimensionfull ones. The classical regime covering many orders of magnitude in

scales is required by terrestrial, solar and galactic tests, as well as consistency with

cosmological evolution since Big Bang Nucleosynthesis. We shall come back with a

more detailed analysis of above beta functions in chapter 7, where we will discuss

how classical GR arises, as well as the emerging early and late time cosmology for

the RG-improved Einstein–Hilbert action. For a nice presentation of the solar and

astrophysical scales limit of the RG improved Einstein–Hilbert action see Reuter

and Weyer (2004a).

7In chapter 7 we will come back to this issue where we will also discuss the relevant orders of
magnitude for these couplings.
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Figure 6.1: The different types of trajectories of the theory space in the Einstein–
Hilbert truncation. Plot is taken from Reuter and Saueressig (2002). The obser-
vationally accepted trajectories are those of Type IIIa, spiraling around the UV
fixed point for large values of the cut–off scale k, and evolving towards the Gaussian
Fixed Point (GFP) with decreasing k. At some point very close to the GFP, the
trajectory turns right and evolves towards larger values of λ in the IR. The classical
regime, covering from earth to astrophysical scales, is realised in the vicinity of the
GFP, where both the dimension full cosmological and Newton’s constant acquire
constant values.
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6.3 The flow equation in f (R) gravity

After having presented the flow equation of Einstein–HIlbert gravity, and for the

sake of completeness, let us now go back to the ansatz (6.45), in order to present

the form of its flow equation. We will be following the approach of Codello et al.

(2009), 8

We start by trivially writing (6.45) as

Γk[g] =

∫ √
−gd4xf(R) ≡ V × f(R), (6.50)

where V denotes the volume of spacetime. Differentiating above action with respect

to RG time t ≡ log k, we get

∂tΓk = V ∂tf(R). (6.51)

It is very convenient to work with dimensionless quantities, so let us proceed by

defining

R̃ ≡ k−2R, f̃(R̃, k) ≡ k−4f(R̃, k) ≡ k−4fk(R̃, k), (6.52)

Notice that the dependence of f̃(R̃, k) on the RG scale k comes through the run-

ning couplings g̃(k), i.e f̃(R̃, k) ≡ f̃(R̃, g̃(k)). We these definitions, and remembering

that
∂

∂t
≡ ∂

∂t

∣∣∣∣
R̃

+
∂R̃

∂t

∂

∂R̃

∣∣∣∣
t

, (6.53)

with the bar implying that the corresponding variable is to be kept fixed during

differentiation, we have the following relations between dimensionless and dimension

full quantities,

∂tfR = k2
(

2f̃R̃ + 2R̃f̃R̃R̃ + ∂tf̃R̃

)
, (6.54)

∂tf = k4
(

4f̃ − 2R̃f̃R̃ + ∂kf̃
)
. (6.55)

We shall restrict ourselves to (Euclidean) spherical symmetry, as the flow equa-

tion itself is evaluated on a (Euclidean) de Sitter background, which means that the

8The reader is referred to Codello et al. (2009) for details regarding the choice of the regulator
function as well as the choice of the gauge in the derivation of the flow equation presented here.
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volume element acquires the following form

V =
384π2

R2
. (6.56)

After following the procedure schetched before, and for the regulator and gauge

conventions of Codello et al. (2009), the flow equation for f(R) gravity reads as

Codello et al. (2009)

dΓk
dt

=
384π2

30240R̃2

[
−

1008
(

511R̃2 − 360R̃− 1080
)

R̃− 3
−

2016
(

607R̃3 − 360R̃− 2160
)

R̃− 4

+ 20

(
311R̃3 − 126R̃2 − 22680R̃ + 45360

)
∂tf̃R − 252

(
R̃2 + 360R̃− 1080

)
f̃R

3f̃R − (R̃− 3)f̃R

+
[
1008

(
29R̃2 + 273R̃2 − 3240

)
f̃ ′ + 4

(
185R̃3 + 3654R̃2 + 22680R̃ + 45360

)
∂tf̃
′

− 2016
(

29R̃3 + 273R̃2 − 3240
)
∂tf̃RR − 9

(
181R̃4 + 3248R̃3 + 15288R̃2 − 90720

) ]
×[

f̃RR(R̃− 3)2 + 2f̃ + (3− 2R̃)f̃R

]−1
]
. (6.57)

Above equation is a non–linear differential equation with partial derivatives,

whose complexity makes it in general impossible to be solved analytically unless a

particular form for the function f(R) is chosen, such as an expansion in positive

powers of the curvature scalar R. Notice that the r.h.s of (6.57) is expressed solely

in terms of dimensionless quantities.

If we differentiate the effective action (6.50) with respect to t ≡ logk we get

∂tf̃ − 2R̃f̃R + 4f̃ = Ṽ −1∂tΓk. (6.58)

The beta functions can be then derived by expanding both sides with respect to

the dimensionless curvature R̃ around R̃ = 0,

dgi
dt

=
1

i!

∂i

∂R̃i

1

Ṽ

dΓk
dt

∣∣∣∣
R̃=0

, (6.59)

where it is assumed that everything is expressed in terms of dimensionless quantities.

On the fixed point, the RG derivative of the dimensionless version of f vanishes,

i.e ∂tf̃k = 0. We can work out the fixed points for a particular f(R) ansatz straight
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from above flow equation. To do this, we set all the derivatives of dimensionless

quantities with respect to t in (6.58), e.g ∂tf̃ = 0, to get

− 2R̃f̃R + 4f̃ = Ṽ −1∂tΓk. (6.60)

Expanding both sides around R̃ = 0, and comparing equal powers of the expansion,

we can arrive at a set of n× n coupled, algebraic equations, where n is the order of

the truncation, i.e the maximum power of R in the effective action.

For the case of the f(R) ansatz in a polynomial expansion in powers of R, a strong

evidence for the existence of the UV fixed point would require the investigation of as

much of the truncation space as possible, i.e by including even more powers of the

Ricci curvature (together with the associated couplings) in the truncated action. In

particular, in Codello et al. (2009), the case of a truncation up to the power i = 8 was

studied, where it was found that the fixed point value for Newton’s and cosmological

constant couplings, is stable with increasing the truncation order. What is more, in

the same work, and for the same effective action ansatz up to order i = 8, it was

found that the dimensionality of the critical surface is three.

In a following chapter we will present the explicit form of the beta functions for

the Einstein–Hilbert truncation, and we will also discuss the fixed points as well as

the phenomenologically relevant trajectories in the theory space.

6.4 RG improved Friedmann equations

As also explained before, Einstein gravity without a cosmological constant, although

successful at solar and galactic scales, is challenged by cosmological observations of

the early and late time Universe. Both early (inflation) and late time accelera-

tion of our Universe require either the introduction of an extra degree of freedom

in the action, like a scalar or tensor field, or a modification of gravity itself. On

the same time, the trivial extension of GR, i.e the introduction of a cosmological

constant, is plagued by the magnitude and coincidence problem described at an

earlier chapter. Modifications of the gravitational action like scalar-tensor actions

or non–linear extensions of Einstein–Hilbert action, probably the most famous being

the Brans–Dicke one Brans and Dicke (1961) and f(R) theories respectively Starob-
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insky (1980a); Nojiri and Odintsov (2006a); Capozziello and Francaviglia (2008);

Sotiriou and Faraoni (2010); De Felice and Tsujikawa (2010); Clifton et al. (2012).

A common characteristic among scalar-tensor and modified theories alike is that

they lead to a modification of Newton’s constant GN , which acquires a scale de-

pendence, for example in scalar-tensor theories through the coupling of gravity with

a scalar field.

GR with a cosmological constant Λ has been very successful in describing the

late time acceleration of the Universe from a phenomenological point of view, but it

is unable to account for a primordial inflationary era. One of the most challenging

problems a cosmological constant faces from a theoretical point of view is the order

of magnitude problem, i.e why it has such a tiny value, as well as the coincidence

problem, or in other words why it is only at recent times that Λ becomes dynamically

relevant. In the context of scalar field or modified gravity models, the vacuum energy

is replaced by a dynamically evolving, effective energy-momentum tensor, but this

only partly solves the problem, as any effective energy-momentum tensor has to

reproduce the tiny value of Λ today.

In this section we will briefly present the standard approach to combine the

renormalisation group with cosmology. We will work at the level of the equations

of motion, and we will discuss how the usual cosmological equations are modified

and how one can solve them. For simplicity and illustration we will focus only on

the Einstein–Hilbert truncation, where the only couplings are Newton’s G ≡ Gk(k)

and the cosmological constant Λ ≡ Λk(k), with k the renormalisation group cut-off

scale. The running of G and Λ changes the cosmological dynamics resulting from

the action, and has also been suggested as a possible resolution to the coincidence

problem Bonanno and Reuter (2002a, 2004); Weinberg (2010); Tye and Xu (2010);

Bonanno et al. (2011); Contillo (2011); Reuter and Weyer (2004a); Grande et al.

(2011). In particular, Shapiro and Sola (2000, 2002, 2008, 2009) have studied the

cosmological consequences of a running Newton’s G, while Shapiro et al. (2005);

Bauer (2005b,a) studied the case of a running cosmological constant. Comparison

with cosmological observations, including supernovae data, has been carried out in

Guberina et al. (2003); Shapiro and Sola (2004); Espana-Bonet et al. (2004); Shapiro

et al. (2005).
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6.4.1 Cut–off identification in cosmology

In a cosmological context, it is attractive to think of the cut-off energy scale k as

dynamically evolving with cosmic time Bonanno and Reuter (2002a,b); Reuter and

Saueressig (2005). There are different ways to understand this connection in an

expanding Universe. Since in the effective action modes with momentum p2 � k2

are integrated out, k defines the energy scale of the theory, i.e. the typical scale at

which the couplings in the effective action are evaluated.

This identification can be either performed at the level of the equations of motion

or the action. What is more, the identification can be done through an ansatz or in

a dynamical way. In the latter case, the identification results naturally through the

cosmological equations, by requiring that the Bianchi identities are satisfied. On

the other hand, by doing some particular ansatz, k = k(t), it is not ensured that

the Bianchi identities will be satisfied. In fact, one has to pick up an ansatz that

will not violate the satisfaction of the Bianchi identities. We will make these points

more precise in the following.

Let us start by gathering some intuition about the form of the identification k =

k(t). The typical energy of particles in an expanding Universe with temperature T at

a particular time, is directly linked with the expansion; the Universe starts off from

a hot state and cools down as it expands with cosmic time t and in particular, for a

homogeneous and isotropic Universe described by the FLRW metric, characterised

by the scale factor a(t), the typical energy of relativistic particles scales as 1/a(t).

One could then think of identifying the cut-off scale k as

k ∼ kBT (t) ∼ E0

a(t)
, (6.61)

where kB is the Boltzmann constant and E0 a constant with dimensions of energy.

Alternatively, one can think that the horizon size of the Universe dH ∼ 1/H(t),

with H ≡ ȧ(t)/a(t) the Hubble parameter, defines the typical scale of correlations

between different quantum degrees of freedom, and identify

k−1 ∼ dH(t) ∼ H−1(t). (6.62)

Notice that both identifications (6.61) and (6.62) are monotonically decreasing func-
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tions of cosmic time, in the context of a Hot Big Bang scenario. However, it is not

in principle guaranteed that a particular ansatz made at the level of the equations of

motion will prove to satisfy the Bianchi identities. The latter, provide the condition

for all consistent identifications Bonanno and Reuter (2002a); Babic et al. (2005);

Reuter and Saueressig (2005); Hindmarsh et al. (2011); Reuter and Weyer (2004b),

and in the following we shall expand on the following issue in more detail.

On the other hand, the cut-of identification can be also performed at the level of

the action, in a covariant way. In that case, the Bianchi identities will be automat-

ically be satisfied. That will be the subject of a later section, where we will identify

the cut-off scale with the scalar curvature, i.e k ∼ R.

6.4.2 Evolution equations at the background

Let us start by stating our conventions for this section: a dot will denote derivat-

ive with respect to conformal time unless otherwise stated and primes will denote

derivative with respect to the cut–off energy scale k.

Let us begin with the RG improved effective action in the Einstein–Hilbert trun-

cation

S[g, ψ] =

∫ √
−g
[

1

16πGk

(R− 2Λk) + Lmatter(gαβ, ψ)

]
, (6.63)

with Gk ≡ G(k), Λk ≡ Λ(k), and Lmatter collectively denoting all matter fluids

present.

The Einstein equations read as

Gµ
ν = 8πG(k)T µν − Λ(k)δµν . (6.64)

The cosmological constant has been moved on the r.h.s and could be interpreted as

some sort of effective fluid.

Let us turn attention to the conservation of the r.h.s of the Einstein equations.

We have

∇µ (8πG(k)T µν − Λ(k)δµν) = 0. (6.65)

In standard cosmology, where Λ and G do not depend on k above relation leads to

the usual conservation equation(s) for the matter fluid described by T µν . We assume
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that k is some function of cosmological time t, i.e k = k(t). In addition, we can

require that the energy–momentum tensor of matter fluids is separately conserved.

In this case we arrive at the following two equations

8πG(k)∇µT
µ
ν = 0, (6.66)

8πT µν∇µG(k)−∇νΛ(k) = 0. (6.67)

The second equation will be referred as the “consistency condition”.

The first equation will yield the usual matter conservation equations, while the

second one a consistency relation between Λ(k) and G(k) that will ensure that the

Bianchi identities are satisfied. One can see that the second constraint in fact implies

that the time evolution of G and Λ should be such that the Bianchi identities are

satisfied. The presence of an extra equation in our system, reflects also the fact that

there is a new variable, the RG cut–off scale k.

The consistency condition for ν = 0 yields

8πĠ+ Λ̇ = 0, (6.68)

while for ν = i we get a trivial equation, since all quantities depend only on time in

the FLRW background. The conservation of matter fluids yields the usual equation,

which we write again here for convenience

ρ̇+ 3H(1 + w)ρ = 0. (6.69)

Following the standard approach in cosmology, if we try to solve for a(t) and

ρ(t) for some given index w (assuming a single fluid for simplicity), we see that

our system is overdetermined since we have three equations, i.e the Friedmann,

matter conservation and consistency condition for two variables. In fact, one of the

equations should be used to identify the scale k as a function of time, i.e k = k(t).

Let us see how this is done below.

From the consistency condition (6.68) one can solve for ρ = ρ(k(t)),
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ρ(t) = − 1

8π

G′ (k(t))

Λ′ (k(t))
, (6.70)

where we assume that k is some function of cosmic time, that we will find later.

From the matter conservation equation we get the usual solution ρ ∝ a−3(1+w),

which after combining with (6.70) gives an expression for the scale factor

a(t) = C

[
−G

′ (k(t))

Λ′ (k(t))

] 1
3(1+w)

, (6.71)

with the constant C given by C ≡ a0(8πρ0)
1

3(1+w) .

The only unused equation so far is the Friedmann equation. We can use it to

find an expression for the identification k = k(t). Plugging (6.70) and (6.71) above

relations into the Friedman equation we arrive at an equation which’ solution will

provide k = k(t),
dk

dt
=

1

3

a(k)

a′(k)
[Λ(k) + 8πG(k)ρ(k)] . (6.72)

The system of equations (6.70), (6.71) and (6.72) is now closed. For a given tra-

jectory in the RG phase space, k → (G(k),Λ(k)), we get a background cosmological

evolution described by (6.70), (6.71), (6.72). Background quantities like the matter

density parameter Ωm and the deceleration parameter can be expressed in terms of

RG data, i.e the beta functions, the couplings and their derivatives (see for example

Reuter and Saueressig (2005)).

It is important to notice that it is not a-priori obvious if a given RG trajectory

will give a sensible cosmological evolution. In Reuter and Saueressig (2005) above

procedure was followed and was found that one can induce a physically acceptable

cosmological evolution, which starts from very high energies (UV) and asymptotes

to a de Sitter phase at late times (IR).

Let us close this section by mentioning that other approaches in the RG cos-

mology have been used in the literature. In Grande et al. (2011), in the context of

the Einstein–Hilbert truncation, a particular RG-inspired ansatz was used for the

running of G(k) and Λ(k), and it was also shown that the identification k = H, is

consistent with the Bianchi identities. The particular approach used there was an
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expansion of the form,

ρΛ = ΣnCnk
2n, (6.73)

G−1 = ΣnDnk
2n, (6.74)

with n an integer number and ρΛ ≡ Λ/(16πG). The coefficients Cn, Dn in above

expansions depend on different fields of masses Mi. For k � Mi the series are ex-

panded with respect to the small parameter k/Mi, and k is assumed to be of the

order of some characteristic energy momentum–scale in an FLRW cosmological con-

text. What is more, in the same work, it was shown that assuming the identification

k = H and a quadratic evolution law for ρλ,

ρΛ = C0 + C1H
2, (6.75)

with C0, C1 constants defined as

C0 ≡ ρΛ0 −
3ν

8π
m2
Pk

2
0, (6.76)

C1 ≡
3ν

8π
m2
P , (6.77)

one can then use the differential constraint (6.68) to obtain a suitable evolution for

G = G(k),

G(H, ν) =
G0

1 + ν ln(H2/H2
0 )
, (6.78)

with G(H0) ≡ G0 ≡ 1/m2
P . The parameter ν is defined as

ν ≡ ± 1

12π

M2

m2
P

, (6.79)

with ± corresponding to whether bosonic or fermionic fields contribute to the mass

spectrum below the Planck scale. One can see that for ν > 0 Newton’s G decreases

logarithmically with H, a slow enough evolution to account for a viable phenomen-

ology.

Let us stress that above ansatzs for ρΛ and G−1 do not arise from a particular

exact RG flow, but they are rather effective relations attempting to “catch” general

RG features, and we refer the reader to Grande et al. (2011) for a detailed present-
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ation of the issue. On the other hand, the approach we will use in chapter 7 to

study the early and late time cosmological dynamics is based on an RG flow coming

from an exact RG equation for gravity. A disadvantage of the latter approach is

the fact that in principle it does not exist an analytic solution for the running of

the couplings for the complete RG flow, however one can always resort to numerical

techniques as well as analytical methods for particular parts of the RG evolution as

we will see later.

6.4.3 Equivalence with Brans–Dicke gravity

We discussed before how we can handle a running Newton’s G and cosmological

constant at the level of the equations of motion. In this section, we will still focus

at the level of the equations of motion, but we will present how one can find a link

between the RG improved Einstein equations and Brans–Dicke gravity, as was also

shown in Reuter and Weyer (2004b); Cai and Easson (2011)

The starting point is the usual RG improved Einstein–Hilbert action (in four

dimensions),

S =

∫
d4x
√
−g
(
R− 2Λ(k)

16πG(k)

)
, (6.80)

considering vacuum for simplicity. It is important to remind here that the couplings

are functions of the cut-off k but not of the metric. This is an important point when

it comes to deriving the equations of motion. Let’s vary the action with respect to

the metric field. Schematically, we get

δS =

∫
d4x
√
−g
[

1

16πG
(δR− 2δΛ)− 1

16πG
(R− 2Λ)δG

]
−
∫
δ
√
−g
(
R− 2Λ

16πG

)
,

(6.81)

with the variation symbol here implying variation with respect to the metric, i.e

δ ≡ δg.

Since the couplings do not depend on the spacetime metric we have

δG = δΛ = 0, (6.82)

yielding

δS =

∫
d4x
√
−g 1

16πG
δR−

∫
δ
√
−g
(
R− 2Λ

16πG

)
. (6.83)
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The variation of the Ricci scalar reads schematically as

δR = O(g) +O(∇g) +O(∇2g). (6.84)

After the necessary integrations by parts, we then arrive at the equations of motion

which read as,

GD̂µνG
−1 +Gµν + Λgµν = 8πGTµν , (6.85)

with D̂µν a second order differential operator. Now, one can see that the equivalence

with Brans–Dicke is revealed through the identification φ = G−1, i.e it is G−1

that plays the role of the Brans–Dicke scalar field. Notice also, that is has mass

dimensions two, as we would expect for the Brans–Dicke scalar to have.

As we also discussed before, when performing the identification for the cut–off at

the level of the equations of motion, it has to be ensured that the Bianchi identities

are satisfied, mainly playing the role of an integrability condition for the Einstein

equations. Let’s see explicitly how this is achieved for the “Brans–Dicke” equations

of motion derived above. The latter, equation (6.85), can be trivially re-written in

the form

Rµν −
1

2
gµνR = 8πG(k)Tmµν − Λgµν +GD̂µνG

−1. (6.86)

Covariant differentiation on both sides of above equation then requires that

∇µGµν = 0 = 8πTµν∇µG− gµν∇µΛ + (∇µG)D̂µνG
−1 +G∇µD̂µνG

−1, (6.87)

since ∇µGµν = 0 identically and assuming also that the matter fields are conserved

separately. Let us focus on the ∇µD̂µνG
−1 term on the r.h.s of equation (6.87). It

yields

∇µD̂µνG
−1 ≡ ∇µ[(∇µ∇ν)G

−1]−∇ν(2G
−1) (6.88)

= (∇κ∇ν −∇ν∇κ)∇κG
−1

= Rνλ∇λG−1. (6.89)
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Using the latter relation in equation (6.87) we arrive at

G−1
[
8πGTµν +GD̂µνG

−1
]
∇µG−∇νΛ +GRνλ∇λG−1 = 0,

G−1 [Gµν + Λgµν ]∇µG−∇νΛ +GRνλ∇λG−1 = 0,

− (R− 2Λ)
G,k

G
∇νk = 2Λ,k∇νk, (6.90)

with G,k ≡ ∂G/∂k and similar definitions hold for the other quantities.

Relation (6.90) is a differential constraint equation for the running couplings

G(k), Λ(k), complementing the equations of motion. As in a cosmological context

we expect the RG scale k to be related to cosmological time t, k becomes a dynamical

variable at the level of equations of motion. Equation (6.90) then provides us with

an extra condition that dictates the consistent dependence of k on time t so that

the Bianchi identities are satisfied.

Let us make a point regarding the above way of establishing equivalence between

an RG-improved action with Brans–Dicke gravity, i.e by working at the level of the

equations of motion. Although it works for the Einstein–Hilbert truncation, in fact,

it not very helpful if we would like to see if higher truncations are still equivalent

with Brans–Dicke. To see this, let’s consider the more general action

S =

∫
d4x
√
−g
(

R

16πG
+ c2(k)R2 + c3(k)R3 +O(cn(k)Rn)

)
≡
∫
d4x
√
−gf(R),

(6.91)

Varying the action with respect to the metric field, we get schematically

δS =

∫
d4x
√
−gfR(R)δR +

∫
d4xδ
√
−gf(R) (6.92)

∼ [(∇∇)µνR + (∇∇)µνk ] fR(R) + fRG
µν + . . . , (6.93)

with (∇∇)R and (∇∇)k denoting differentiation with constant R and constant k

respectively. Now, it can be seen that the simple identification G−1 = φ that

was made in the Einstein–Hilbert truncation is not enough to provide us with the

equivalence with Brans–Dicke, due to the existence of more couplings other than

G(k).

The way out to this, is study the equivalence with BD through a covariant cut–
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off identification, like for example k2 = ρR, arriving at an f(R) model, which can

then be expressed in the Jordan frame. This cut–off identification will be performed

in a later section for the case of the Einstein–Hilbert truncation.

6.4.4 Evolution at the linear level

We discussed in the previous section how the RG improvement applies for the

Einstein–Hilbert action in an FLRW cosmology. Here, for the same theory, we

will go beyond the background, and will describe how in this context the linear,

scalar perturbation equations around FLRW are derived. As the couplings now run

with the energy scale, we will describe how that should be taken into account at the

linear level, and in fact will find that it leads us to a non-trivial modification of the

usual linearised Einstein equations.

Let us first point out that there is an important change of notation that we will

be using below: in particular, we will still represent the Fourier mode with a k, and

we will use the symbol kRG for the RG scale. Furthermore, dots and primes will

imply differentiation with respect to conformal time η and RG scale respectively.

We will be considering a perturbed FLRW background in the Newtonian gauge,

with the line element reading as

ds2 = a2(η)
[
−(1 + 2Ψ)dη2 + (1 + 2Φ)dx2

]
, (6.94)

with Φ and Ψ the scalar Newtonian potentials.

We can now proceed with perturbing the Einstein equations. Of course, we have

to take into account the running of the coupling constants,

G(t, k)→ G(t) + δG(t, k), (6.95)

Λ(t, k)→ Λ(t) + δΛ(t, k). (6.96)

Notice that the perturbed coupling constants acquire a dependence on space, or on

the mode k in Fourier space.
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We then arrive at the perturbed Einstein equations which read as

δGµ
ν = 8πG

(
T µν

δG

G
+ δT µν −

δΛ

8πG
δµν

)
. (6.97)

Furthermore, we will assume that the energy–momentum tensor of the matter

species in the Universe, like baryons or dark matter, acquires the form of a perfect

fluid with a barotropic index w ≡ pm/ρm,

T 0
0 = −ρm, T ij = wρmδ

i
j, (6.98)

δT 0
0 = −δρm, δT 0

i = (1 + w)ρm∂iv, (6.99)

with vi the velocity field which we express as the gradient of a scalar, since we

are interested in scalar perturbations only. We also define the velocity gradient as

θ ≡ ∇iv
i.

We will be interested in the evolution of small inhomogeneities at scales well

inside the horizon, i.e we will be focusing on those modes that satisfy k � H. In

this sub-horizon regime, the 0−0 part of the perturbed Einstein equations gives the

Poisson equation,

k2Φ = 4πa2Gρm

(
δG + δm +

δΛ

8πGρm

)
, (6.100)

with the definitions

δm ≡
δρm
ρm

, δG ≡
δG

G
. (6.101)

One notices here that the r.h.s of the Poisson equation, acquires a contribution of

the perturbed G and Λ apart from the matter perturbation.

On the other hand the off-diagonal part of the i − j(i 6= j) component of the

Einstein equations gives the anisotropy equation

Φ + Ψ = 0. (6.102)

The r.h.s of above equation is zero, since here we are interested in cosmological

periods well after radiation domination, where the anisotropic stress coming from

relativistic species is negligible. On the other hand, the running of the coupling
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constants does not yield any anisotropic stress contribution either.

The Poisson and the anisotropy equation are the main gravitational equations

we will need. As described in a previous section, at the linear level of an FLRW

background we also have two conservations equations, one corresponding to energy

and the another to momentum conservation respectively,

δ̇m = −θm − 3Φ̇, (6.103)

θ̇m = −Hθm − k2Ψ. (6.104)

Remember that θm ≡ ikiui is the velocity divergence of the pressure less matter

velocity field in Fourier space. Using the Poisson equation (6.101), equation (6.103)

can be written as

θ̇ = −Hθ +
3

2
Ωm (δG + δm) , (6.105)

where we neglected a θ term suppressed by k2.

The second term on the r.h.s of (6.104) can be neglected in the sub-horizon

regime we are interested in. This can be seen as follows. Differentiating the Poisson

equation (6.101) with respect to conformal time, and using the perturbed Bianchi

conditions (6.107)-(6.108), one can check that the term Φ̇ contributes four terms,

proportional to δm, δ̇m, θm, δG, all being suppressed by H2/k2, which is very small in

this regime. Therefore, equation 6.103 reduces to

δ̇m = −θm. (6.106)

However, the system of equations is not yet complete. In fact, we should also

perturb the integrability condition (6.67), which ensures that the Bianchi identities

are satisfied. Remember that in the background these equations had to be satisfied

as a result of the Bianchi identities not identically satisfied due to the running of the

couplings. Considering also relations (6.95) and (6.96), perturbing (6.67) linearly
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we arrive at the following equations (for ν = 0 and ν = i respectively),

Y (δm + δG) + ˙δG +
˙δΛ

8πĠρm
= 0, (6.107)

k2

(
wρmδG −

δΛ

8πG

)
= (1 + w)Y θ, (6.108)

where we defined the quantity Y ≡ Ġ/G, which describes the relative variation

of Newton’s G with respect to conformal time. We shall assume in the following

that the relative time variation of G is sufficiently small during matter domination,

therefore neglecting second time derivatives of G as well as terms of order Y 2.

Remembering that,

ρΛ ≡
Λ

8πG
, (6.109)

relation (6.108) can also be re-expressed in terms of ρΛ as

k2 [δG(wρm + ρΛ)− δρΛ] = ρm(1 + w)Y θ. (6.110)

Relation (6.108) tells us something very interesting. Noting that,

δG(kRG) ≡ δG =
dG(kRG)

dkRG
δkRG, δΛ(kRG) ≡ δΛ =

dΛ(kRG)

dkRG
δkRG, (6.111)

we can express the perturbed Bianchi condition (6.108) as

δkRG =
(1 + w)

w − Λ′

Λ
G
G′

ΩΛ

Ωm

k̇RG
θ

k2
. (6.112)

Above relation shows that the perturbation of the cut–off scale kRG is proportional

to the velocity gradient of the matter fluid present. A similar result has been found

in Contillo et al. (2012a) in the context of scalar field inflation. Notice that it is

δkRG = 0, for the case of a Λ-dominated Universe, i.e w = −1, as well as whenever

the background cut–off scale stops evolving, k̇RG = 0.

Apart from the two scalar potentials Φ and Ψ, there are four more variables at

the linear level, namely δm, δG, δΛ(or δρΛ) and θ. Equations (6.103)-(6.104) describe

the evolution of δm and θ respectively, while equations (6.107)–(6.108) provide us

with constrains between different variables. In particular, (6.107) relates the time
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derivative of δG with that of δΛ, while (6.108) relates δG and δΛ with the velocity

gradient θ. Therefore, taking also into account the two gravitational equations, we

have six equations and six variables.

Differentiating equation (6.108) and with the aid of the following equations

˙ρm + 3H(ρm + pm) = 0, (6.113)

˙δG ≡
(
δG

G

).
≡ ˙δG =

˙δG

G
− δGY,

G̈

G
= Ẏ + Y 2, (6.114)

we arrive at a first order evolution equation for δG,

˙δG = αY
θ

k2
+

[
3

2

Y Ωm(1 + w)

k2
+

β

1 + w
− Y

1 + w

]
δG −

Y

1 + w
δm. (6.115)

For convenience we have defined

α ≡ ẇ

1 + w
+
Ẏ

Y
+ Y − (2 + 3w)H, (6.116)

β ≡ 3w

1 + w
H− ẇ − wY. (6.117)

For consistency, we have derived above equation without fixing w, however in this

section we are interested in the case of a pressure less matter dominated Universe,

i.e w = 0. However, setting w = 0, and neglecting second derivatives of G as well

as terms of order Y 2 we get

˙δG = −2HY θ

k2
− 3

2
Y δG − Y δm. (6.118)

Equations (6.104),(6.106) and (6.118), form a closed system of coupled, first

order evolution equations for δm, θ and δG. Notice that for Y = Λ̇ = δG = δΛ = 0,

the system reduces to the ordinary linear equations with constant G and Λ.

The variation of Newton’s G affects the evolution of the system in two ways;

By affecting the scalar potential in the Poisson equation through the variation of

G, as well as the appearance of the new term δG ≡ δG/G on the r.h.s of the

equation. What is more, the variation of G implicitly affects the evolution the

Hubble parameter H. The running of Λ affects itself the scalar potential in the

Poisson equation as well.
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We notice that the way the running of the coupling constants here affects the

evolution of the linear equations shares some common features with scalar tensor

theories, where the scalar field non–minimally coupled to curvature in the action

plays the role of the effective (running) Newton’s G, while the scalar field perturb-

ation also appears on the r.h.s of the Poisson equation. An important difference in

the RG scenario we have studied and scalar-tensor theories, is that in the former, a

crucial role is play by the Bianchi identities, which provide the necessary constraint

equations to close the system.

It would be worth trying to find solutions for above equations, to understand

the way the growth of matter is affected by the evolution of the coupling constants.

We shall leave this for future work, as the main goal of this section was mainly to

only present the form of linear equations in this scenario. We shall also notice that

similar analysis has been performed in Fabris et al. (2007); Grande et al. (2010,

2011).
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Chapter 7

Effective f (R) action from running

couplings

7.1 Introduction

In this chapter, we will be closely following the work done together with Mark Hind-

marsh in Hindmarsh and Saltas (2012). In the previous chapter we introduced the

application of the RG to quantum gravity, and we also discussed its application in

cosmology. In particular, as we previously discussed, in a cosmological context, one

needs to identify the RG scale k with some function of cosmic time, focusing on the

case of the Einstein–Hilbert truncation, and working at the level of the equations of

motion. As it turned out to be, it is crucial that the identification chosen satisfies

the Bianchi identities, a fact that itself introduces significant complications to the

actual analysis.

In this chapter, we will consider a different cut–off identification, namely one

which is performed at the level of the action, motivated by an analogous procedure

which generates the effective potential for a scalar field theory. We will associate k

with the scalar curvature, i.e

k2 ∼ R, (7.1)

through which we can view the RG improved Einstein-Hilbert action as an effective

f(R) model. We will then go on to study the properties as well as the resulting

cosmology of the particular f(R) model.
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The idea of Newton’s G running with curvature has been suggested previously

Frolov and Guo (2011), although not with the correct beta-function, and here we

include the cosmological constant with the full non-perturbative beta functions for

both couplings. The resulting f(R) model does not include the renormalisation

effects of matter, or any gravitational invariants other than R, and so it should

be viewed as a prototype. However, it will turn out that it has some remarkable

properties, also allowing us to study the RG improved action in an elegant way. One

feature is that the scale identification is performed at the level of the action, in a

covariant fashion, so there is no need to add extra dynamical conditions through the

Bianchi identities as described above.

In the following, we will be working in a unit system with c = ~ = 1, unless

otherwise stated, as well as use G = m−2
p = 8πκ2. Unless otherwise stated, mass

scales will be presented in Planck units.

7.2 RG improved Einstein–Hilbert action

This section will serve as an introduction to the basic concepts and notation that

we will use in the following, reminding also briefly about notions introduced in the

previous chapter.

Our starting point is the RG improved effective action in the Einstein–Hilbert

truncation,

Γk[g, ψ] =

∫
d4x
√
−g
[(

R(g)− 2Λk

16πGk

)
+ Lmatter(ψ, g)

]
, (7.2)

with k is the renormalisation group cut-off scale, which sets the momentum scale

above which modes are integrated out. The effective, “coarse-grained” action func-

tional, Γk[g, ψ], interpolates between the true effective action in the infrared (IR,

k → 0) and the bare action defined in the UV at a cut–off scale kmax. The in-

terpolation of the effective action as a function of scale is controlled by the exact

renormalisation group equation (ERGE) Wetterich (1993). If kmax can be taken to

infinity the theory is renormalisable, signaled by a UV fixed point in the couplings

of the theory.

The quantum corrections can be encoded in the evolution of the coupling con-
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stants as a function of energy,1 whose beta-functions can be extracted from the

ERGE. The form of the latter depends on the choice of the cut-off function choice

and the gauge. We will follow the conventions of Litim (2000); Litim and Manuel

(2001), noting that different choices of cut-off function and gauge do not change the

qualitative features of the beta functions.

In the standard approach, one defines the dimensionless Newton’s and cosmolo-

gical constant as

g(k) ≡ k2G(k)/24π, λ(k) ≡ Λ/k2, (7.3)

and the running of the dimensionless couplings in d = 4 is described through the set

of first order, coupled differential equations Litim (2004, 2008b),

∂tλ = βλ(g, λ) ≡ −2λ− 12g − 24g(3g+ 1
2

(1−3λ))
2g− 1

2
(1−2λ)2 , (7.4)

∂tg = βg(g, λ) ≡ 2g + 24g2

4g−(1−2λ)2 , (7.5)

where t ≡ ln k, and βλ, βg the beta functions. In above equations the factor of 24π

is included to remove phase space factors.

There are two fixed points of the above RG flows, a free or Gaussian one, with

(g∗, λ∗)GFP = (0, 0), and an interacting one which is attractive in the UV (k →∞),

with (g∗, λ∗)UV = (0.015625, 0.25) (Litim (2008b)-Reuter and Saueressig (2007b)

and references therein). The existence of a UV fixed point points to consistent

quantum behavior of the system at high energies, realising Weinberg’s Asymptotic

Safety scenario Hawking S. W. (1979). The Gaussian fixed point (k → 0) describes

a free theory.

A phenomenologically viable solution (trajectory) of the system (7.4)-(7.5) on

the g−λ plane is one that starts at high energies from the UV fixed point and then

evolves towards smaller values of g as k is lowered, passes close to the GFP, until it

turns to the right towards increasing values of λ. A trajectory passing sufficiently

close to the GFP will subsequently have a long classical regime, i.e G ' G0, Λ ' Λ0,

with “0” here denoting the present value. The classical regime covering many orders

of magnitude in scales is required by terrestrial, solar and galactic tests, as well as

consistency with cosmological evolution since Big Bang Nucleosynthesis.

1For a cautionary note see Anber and Donoghue (2011).
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Figure 7.1: A viable RG trajectory (blue, continuous curve) on the g − λ plane in
the Einstein–Hilbert truncation for the choice ρ = 1 and the initial conditions (7.35).
It spirals around the UV RG fixed point and evolves towards the IR as curvature
R decreases. The intersection of the phase curve with the de Sitter line (black,
continouous) corresponds to a de Sitter point in the cosmological evolution, while
intersection with the dashed (black) one is where for the slow roll parameter εV = 1.
The regions where m2

eff > 0 (m2
eff < 0) are seperated by the dotted lines, with m2

eff

the Jordan frame mass squared, defined in (7.14). The dotted curve consists of two
separate curves (green and red dots) corresponding to the vanishing of the numerator
(denominator) of m2

eff . They join at the upper part of the dotted “ellipsis”, where
m2

eff remains finite and non-zero. Along the lower part of the “ellipsis” (green) m2
eff

vanishes. The dotted curves outside the “ellipsis” (red) correspond to m2
eff → ∞.

Notice that beyond the red dot at λ∗ ' 0.27 on the λ-axis, m2
eff becomes negative,

and therefore de Sitter space unstable too.

The Einstein-Hilbert truncation has a couple of features which may not be

present in all truncations. The eigenvalues of the linearised flow in the vicinity

of the UV fixed point are complex conjugate, causing oscillatory behavior of the

trajectory around it (see Figure 7.1). Also, the flow (7.4,7.5) has a singularity at

λ = 1/2, which terminates the classical regime. It has been conjectured that this

is an artifact of the truncation, and that there may actually be a non-trivial fixed

point in the IR Bonanno and Reuter (2002b).

7.3 Scale identification & effective f (R) action

As explained before, the first step in studying the cosmology of an RG improved

action is to identify the cut-off scale k with as a function of cosmic time k = k(t).
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In this section, we will work at the level of the action and use a particular ansatz

that will allow us to view the effects of RG running of the couplings as an effective

f(R) model, by identifying

k2 = ρR, (7.6)

where R is the Ricci scalar and ρ is a dimensionless constant. Here, with the

particular identification (7.6) the dimensionless couplings are defined as g(k) ≡

ρR×G(R), λ(R) ≡ Λ(R)/(ρR), and action (7.2) takes the following form

Sf(R) =

∫
d4x
√
−gR

2h(R)

384π2
+ Sm(ψ, g) (7.7)

≡
∫
d4x
√
−gf(R)

2κ̃2
+ Sm(ψ, g), (7.8)

with h(R) ≡ ρ(1−2ρλ
g

), and the extra factor of 24π appearing in the first line because

of the rescaling of g performed in the beta functions (7.4) and (7.5). We absorb it

into the factor κ̃2 = 192π2.

The quantum corrections are now expressed in the non-linear effective action,

which takes the form of an f(R) model (7.8). This provides us with a different view

of the RG effects on the Einstein–Hilbert action (7.2). What is more, the particular

scale identification preserves general covariance of the action.

We can compare this procedure with the RG-improvement of the effective poten-

tial in scalar field theory Coleman and Weinberg (1973). There, if one starts with

the tree potential V = λφ4/4!, solves the RG equation for the coupling, and makes

the identification k = αφ, one obtains at one loop

V =
1

4!

λ0

1− b(λ0) ln(αφ/k0)
φ4, (7.9)

where b(λ) = 3λ/16π2, which recovers and improves on the one-loop effective poten-

tial calculated by the standard graphical methods. The constants are constrained

by a renormalisation condition such as

d4V

dφ4

∣∣∣∣
φ0

= λr, (7.10)

where λr is the physical coupling as inferred, say, from a scattering experiment with
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the background field set at φ0. Normally, we can avoid all mention of α by writing

V = λφ4/4!, with λ = λr/(1 − b(λr) ln(φ/φ0)). However, it is still implicit in the

relationship between φ0 and the scale k0.

The renormalisation conditions for the effective Einstein-Hilbert action can be

taken as

fR|R0
=

κ̃2

8πG0

,
RfR − f

2fR

∣∣∣∣
R0

= Λ0, (7.11)

where R0 is the curvature scalar evaluated today.

Some remarks regarding the action (7.8) are in order. Firstly, we can see that

on a fixed point, where h(R) is constant, the Lagragian is effectively R2, which

is renormalisable Stelle (1977). Secondly, there is a singularity of the RG flow in

the Einstein–Hilbert truncation Litim (2008b); Reuter and Saueressig (2005): the

beta functions diverge for 4g = (λ − 1
2
)2. We will therefore restrict ourselves to

cosmological evolution which does not reach the singularity.

Finally, let us comment on the dimensionless parameter ρ, defined through our

identification (7.6), relating the RG scale k and the cosmological scale R. We will

see in equation (7.33) that it determines the scalaron mass, and so in principle could

also be fixed. However, as we do not know the scalaron mass, we will leave ρ free,

and investigate what range of values give an acceptable cosmology. As ρ describes

to what extent the RG scale k follows the curvature R, we would hope to find that

ρ ∼ 1: it is natural to think of the RG scale as the scale of the important dynamics,

which in the cosmological context is given by the curvature. It will in fact turn out

ρ ∼ 1 gives a viable cosmology.

7.4 Stability and the GR limit

7.4.1 Degrees of freedom and stability conditions

As a first step to understand the resulting effective f(R) action from the renormal-

isation group (7.8), we want to study its stability and its approach to the limiting

case of GR. Below we remind ourselves about some basic facts about f(R) gravity

that will be necessary for the rest of the chapter Starobinsky (1980a); Nojiri and

Odintsov (2006a); Capozziello and Francaviglia (2008); Sotiriou and Faraoni (2010);
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De Felice and Tsujikawa (2010); Clifton et al. (2012).

As described also in a previous chapter, it is well known that f(R) models exhibit

an extra, massive scalar degree of freedom, dubbed “scalaron”. It satisfies a Klein–

Gordon type equation, which can be found by varying action (7.8) with respect to

the metric and then taking the trace,

2fR(R) +
dVeff(R)

dfR
=
κ̃2

3
T(m), (7.12)

where 2 is the d’Alembertian associated with the metric gαβ, T(m) ≡ gµνT(m)µν is

the trace of any matter sources present, and

dVeff(R)

dfR
≡ 1

3
[RfR(R)− 2f(R)] . (7.13)

From (7.13) we can deduce the scalaron’s mass in the frame defined by action (7.8),

m2
eff ≡

d2Veff(R)

df 2
R

=
fR −RfRR

3fRR
. (7.14)

Expression (7.14) also appears as the effective mass in a stability analysis around de

Sitter spacetime Sotiriou and Faraoni (2010) (and references therein).2 Therefore,

stability of the scalaron propagation (i.e avoidance of tachyonic instability), as well

as stability of de Sitter spacetime requires that m2
eff > 0.

While an unstable scalaron just means that long-wavelength scalar fluctuations

will grow, the graviton kinetic term must certainly have the correct sign, in order

to avoid ghosts. This means that

fR > 0, (7.15)

which at small values of the couplings λ and g, is ensured through condition

ρR

g
> 0. (7.16)

In order to make the connection with the RG, we will express both stability condi-

tions, for the scalar and for the graviton, in terms of the beta functions, using the

explicit form of action (7.2).

2Note that there is another definition for the scalaron mass in the Einstein frame, which we will
present later.
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In the RG-improved Einstein–Hilbert action derivatives of f can be expressed in

terms of RG data, as

d

dR
=

∂

∂R
+

1

2R

(
βg

∂

∂g
+ βλ

∂

∂λ

)
, (7.17)

For example, for fR we have,

fR = 2R

[
h− 1

4g
(hβg + 2ρ2βλ)

]
, (7.18)

while the second derivative is

fRR =2h+
βg
4g

(
−6h+ 2h

βg
g

+ 2ρ2βλ
g
− hβg,g − 2ρ2βλ,g

)
− βλ

4g

(
8 + 4ρ2 − 2

βg
g

+ hβg,λ + 2ρ2βλ,λ

)
. (7.19)

Plugging above relations into expression (7.14), and using the beta functions (7.4,7.5),

the scalar mass m2
eff can be re-expressed as m2

eff = m2
eff(R, g, λ). The same is in prin-

ciple true for fR and other quantities of interest as we will see later.

In particular, from the explicit expression of fR in terms of the couplings, one

can check that the no-ghost condition (7.15) is always satisfied in the domain of

interest, 0 < λ < 0.5, 0 < g . 0.02 and of course R > 0. (see also Figure 7.2 for a

plot of fR and Figure 7.1 for the phase space of a viable RG trajectory.)

7.4.2 The f(R) model in the perturbative regime

Let us now see how GR is recovered in this framework. Let us remind the reader

that the phase diagram of the Einstein–HIlbert truncation was presented in section

6.2.1. If an RG trajectory is to be viable, it should have a sufficiently long classical

regime, where any quantum corrections are suppressed enough not to be observed

in astrophysical or solar system tests, and therefore the coupling constants should

be effectively constant, and acquire the values observed at these scales. Therefore,

GR is recovered in the sense that under the RG flow Newton’s constant acquires its

classical value, G ' G0 = 1/m2
p for a sufficient “RG time”, large enough to cover

the range of classical scales (earth, solar and galactic). In the classical regime, Λ
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has to have a negligible variation too. It has been shown that both requirements

are achieved if the viable RG trajectory passes sufficiently close to the GFP at

(g, λ) = (0, 0) Reuter and Weyer (2004a). It is after the close passage to the GFP

when the classical regime starts, and it turns out that the closer the trajectory passes

to it, the longer it lasts in RG time, and the greater range of scales the classical

regime covers.

We will therefore need to first linearise the system of beta functions (7.4)-(7.5)

around the GFP Reuter and Weyer (2004a). To make the analysis more clear, it

would be better to first proceed with the linearisation of the equations without

assuming any identification for k, i.e keeping k as the independent variable in (7.4)-

(7.5). We get,

∂tλ = −2λ+ 2αg, (7.20)

∂tg = 2g, (7.21)

with renormalisation group time t ≡ ln(k/k0), and k0 a reference scale. The para-

meter α cut-off function dependent, but is always positive and of order 1. For the

optimised cut–off, used to derive the beta functions (7.4)-(7.5), α = 6.

The solution of the linearised system reads

g = c1k
2 ≡ gT

k2

k2
T

(7.22)

λ =
1

2
αc1k

2 +
c2

k2
≡ 1

2
λT

(
k2

k2
T

+
k2
T

k2

)
, (7.23)

with kT the value of the cut-off scale around the turning point in the vicinity of the

GFP, and gT ≡ g(kT ), λT ≡ g(kT ). Notice also that is,

λT/gT = α, (7.24)

which implies that λT ∼ gT , since α ∼ O(1). From the above linearised relations we
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get for the dimensionful couplings,

8πG

κ̃2
= c1 =

gT
k2
T

= const. (7.25)

Λ =
1

2
αc1k

4 + c2 =
1

2
λT

k4

k2
T

+
1

2
λTk

2
T , (7.26)

following the notation of Reuter and Weyer (2004a). Equation (7.25) tells us that

in this regime, Newton’s G becomes a constant, and we identify c1 = 8πG0/κ̃
2. For

scales k � kT , Λ is also effectively constant, and we may identify c2 = Λ0. Hence

gTλT
2

=
8πG0Λ0

κ̃2
, (7.27)

and

gT =

√
16πG0Λ0

ακ̃2
, kT =

(
κ̃2Λ0

α4πG0

) 1
4

. (7.28)

From the observed values of Λ0 and G0, we have

gT ∼ λT ∼ 10−60, kT ∼ 10−30mp. (7.29)

Let us now turn to the solution of the system under the identification k2 = ρR.

The linearised equations are not enough as higher-order terms contribute already at

O(R2). An efficient way to include the higher-order terms is to substitute into the

Talyor expansion around the renormalisation point R0 (7.11)

f(R) = f(R0) + fR|R0
(R−R0) +

1

2
fRR|R0

(R−R0)2. (7.30)

We find that for the optimised cut-off where α = 6,

f(R) ' κ̃2

G0

(R− 2Λ0) + 6(2− ρ)ρ(R−R0)2. (7.31)

From the small coupling expansion of (7.14) the scalaron mass squared in the clas-

sical regime is given by

m2
eff,0 =

fR −RfRR
3fRR

∣∣∣∣
R0

' 1

36(2− ρ)

R0

g
, (7.32)
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(see also equation 7.49) and we see that it is positive provided 0 < ρ < 2. Using the

renormalisation condition (7.11) we find

m2
eff,0 '

1

36(2− ρ)

κ̃2

8πG0

, (7.33)

and observe that the scalaron mass is safely at the Planck scale, so large deviations

from GR at laboratory, solar and astrophysical scales are avoided.

To get an idea of the realistic values of the couplings in the classical regime we

can evaluate them at solar and galactic scales, taking k2 ∼ R. With R
−1/2
sol ∼ 1AU

3 and R
−1/2
gal ∼ 1021m we find that

gsol ' Rsol ×Gsol ' 10−92, ggal ' Rgal ×Ggal ' 10−112, (7.34)

assuming that Ggal = Gsol ' 10−70 m2. We see that the classical value of the

dimensionless coupling g acquires a tiny value. For λ we cannot follow the same

analysis, since Λ has been only measured at cosmological scales, k ∼ H0, with

H0 the Hubble parameter today. However, the product gλ ∼ G0Λ0, so λsol � 1.

Therefore, the values of both g and λ on solar and galactic scales lie extremely close

to the GFP. However, it is intriguing to note that by this reasoning, λ evaluated at

the Hubble scale is of order 1, where non-perturbative effects in the beta functions

are important Reuter and Weyer (2004a).

The form of a phenomenologically viable RG evolution on the g − λ plane is

given in Figure 7.1, for the choice of ρ = 1 and 4

Rmin = 8× 10−5, RT = 5× 10−3, Rmax = 50,

λ(RT ) = 10−2, g(RT ) = 10−3, (7.35)

where RT is the curvature at the turning point close to the GFP, in Planck units.

The above initial conditions are not realistic, but they allow for a good numerical

illustration. Figure 7.2 shows the evolution of the derivative fR(R) of the resulting

f(R) model, for the above choice of initial conditions.

31AU ' 1.496× 1011 m.
4Numerical solutions in this paper are obtained using Mathematica’s differential and algebraic

solvers, making use of the stiffness option as well as increasing the maximum step number when
appropriate. Plots are also produced with the same software.
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Figure 7.2: The derivative of the f(R) model for the initial conditions (7.35) (in
Planck units). For large values of R, the model effectively behaves as R2 gravity,
since fR(R) ∼ R. For smaller R, the evolution enters the classical regime near the
Gaussian fixed point. The Einstein-Hilbert term dominates, fR(R) becomes nearly
constant, with a small positive slope reflecting the positivity of the scalaron mass-
squared. At very small R (not shown) there is a departure from the Einstein-Hilbert
action due to the IR divergence in the beta functions. This part of the action is
never encountered as the system freezes at the IR de Sitter point.

7.5 Cosmological dynamics

Now, we proceed with studying the cosmological dynamics of the model, i.e the

cosmological fixed points, their stability and the transition from one cosmological

era to the other, as well as if inflation can be viable in this scenario.

A viable cosmological model, aiming to describe the background evolution of the

Universe from early to late times, should have a period of accelerated expansion at

early times (inflation), followed by a radiation and matter era respectively, evolving

asymptotically towards de Sitter at late times. Each particular period has its own

requirements in order to be viable. For example, a UV de Sitter point should be

unstable, while an IR one stable, while the matter point should be a saddle with

damped oscillation, so that strucutre formation has enough time to take place.
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7.5.1 Transition to the Einstein frame

It will be useful for the latter analysis to first calculate the Einstein frame action,

as an aid in calculating inflationary quantities, like the slow roll parameters. To do

this we will introduce an auxiliary field and then conformally transform the metric

appropriately. However, in the context of action (7.8) the latter transformation

requires care, since Newton’s G is running with curvature.

Let us see this in more detail. Our original action (7.8) is a function ofR, g(R), λ(R)

and implicitly of the metric through the Ricci scalar R. In the standard way, we

introduce auxiliary scalars σ and φ, and write our original theory in the Jordan

frame as

S =
1

2κ̃2

∫ √
−g [f ′(σ)R− (f ′(σ)σ − f(σ))] (7.36)

≡ 1

2κ̃2

∫ √
−g [φR− V (φ)] , (7.37)

with V (φ) = φσ(φ) − f(σ(φ)), and φ = f ′(σ). We require that f ′′(σ) 6= 0, so that

the function f ′ can be inverted to find σ as a function of φ. Note that the equation

of motion for σ gives the constraint which reproduces the original action, i.e σ = R.

The Jordan frame scalar φ, plays the role of the inverse of Newton’s constant in

front of R. For the transition to the Einstein frame, Newton’s constant will have to

be re-introduced through the conformal redefinition of the metric, and the question

that arises in our scenario, is which Newton’s constant should that be, since using

a running G = G(R) could lead to ambiguities. We can resolve this issue by using

Newton’s G today, denoted G = G0.

We can now perform the conformal redefinition of the metric as

g̃αβ =
8πG0φ

κ̃2
gαβ, (7.38)

combined with a redefinition on the scalar φ

φ = φ0 exp

(√
16πG0

3
Φ

)
, (7.39)

with φ0 constant. Performing above two field redefinitions in action (7.37), we finally
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Figure 7.3: The Einstein frame scalar potential (in Planck units), described by
relations (7.41)-(7.42), for ρ = 0.8 (red, dashed), ρ = 1 (back, continuous) and ρ =
1.15 (blue, dotted) respectively. Cosmological evolution starts from the maximum
of the potential, which corresponds to the unstable UV de Sitter point, and evolves
towards smaller values of the field Φ.

end up with the Einstein frame action

S̃ =

∫
d4x
√
−g̃
(

1

16πG0

R̃− 1

2
(∇Φ)2 − U(Φ)

)
+ S̃m(g̃, ψ,Φ). (7.40)

The scalaron potential in the Einstein frame is then given in parametric form as,

U(R) =
κ̃2

2 (8πG0)2

RfR(R)− f(R)

fR(R)2
, (7.41)

Φ(R) =

√
3

16πG0

ln fR(R). (7.42)

The mass of the scalar Φ is defined in the usual way through the Einstein frame

potential as

m̃2
eff =

d2U

dΦ2
. (7.43)

We will use the above two relations later when we will work out the inflationary slow

roll parameters. The Einstein frame potential for different values of ρ is plotted in

Figure 7.3. The maximum corresponds to the unstable de Sitter point in the UV,

with the cosmological evolution occurring “to the left” of it, i.e to smaller field

values.
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7.5.2 de Sitter solutions

Let us now look for the simplest cosmological solutions, which are the maximally

symmetric constant curvature ones. In f(R) gravity, they correspond to the points

where the potential in (7.12) has an extremum, i.e solution of the algebraic equation

RfR(R)− 2f(R) = 0. (7.44)

One can check that the same condition is also derived in the Einstein frame by

requiring that dU/dΦ = 0.

Using relation (7.18), condition (7.44) implies that

2ρ2gβλ + (1− 2ρλ)βg = 0. (7.45)

For βλ, βg non-zero, and a given ρ, equation (7.45) defines a family of solutions,

described by a curve in the g−λ plane, which is the locus of all de Sitter points. Any

intersection of it with the RG trajectory will imply a de Sitter era in the particular

cosmological evolution. It is interesting to note that any RG fixed point will always

satisfy the de Sitter condition (7.44) or (7.45), since there, βg = βλ = 0. This is

an identity for fixed points, as f(R) ∝ R2 there, but we can check that they are de

Sitter by inspecting the Einstein frame potential. In particular, the UV RG fixed

point is a always a de Sitter point, as the potential (7.41) stays finite as R→∞.

The location of the de Sitter line depends on the value of the parameter ρ, which

shifts the scale of both early and late time de Sitter points. As a starting point, we

can get an idea of the de Sitter points structure by setting ρ = 1 in equation (7.45)

and working out the resulting de Sitter line, which is shown in Figure 7.1. The

de Sitter line passes through the UV RG fixed point, yielding this way an infinite

number of de Sitter points. This can be seen as follows: as pointed out before, the

RG UV fixed point is a de Sitter point itself. On the same time, the behavior of the

RG evolution in the vicinity of the RG UV fixed point is described by an unstable

spiral, which circles the fixed point infinitely many times as k → ∞ (or R → ∞).

As a consequence there will be an infinite number of intersections between the de

Sitter line and the RG phase curve. The UV RG fixed point is the limiting de Sitter

point of the above infinite set of de Sitter points.
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Furthermore, as Figure 7.1 shows, there is an “outer” de Sitter point in the UV

regime, and another one in the IR. For the case ρ = 1, we find

(gdS, λdS)UV ' (0.02, 0.27), (7.46)

while it is easy to show that

(gdS, λdS)IR ' (0, 0.25). (7.47)

Notice that the “inner” UV de Sitter points cannot be accessed, since they are

protected by the outer one. At least in the Einstein–Hilbert truncation, and under

the cut–off identification considered here (k2 = ρR), this seems to be a general

behavior: There is always an infinite set of UV de Sitter points, all hidden by

the most outer one, and a de Sitter point in the IR. As a consequence, classical

cosmological evolution cannot reach the extreme UV regime around the UV RG

fixed point, i.e for k2 = ρR→∞.

We now want to understand how the de Sitter line changes as we vary the

dimensionless parameter ρ in our cut–off identification. There are two extreme

cases leading to two limiting de Sitter lines, one for ρ→∞ and another for ρ→ 0.

Solving equation (7.45) for g and taking the limit ρ → ∞ the limiting curve is

described by

gρ→∞(λ) =
1

96

(
12λ2 − 4λ− 3 +

√
144λ4 + 672λ3 − 824λ2 + 216λ+ 9

)
, (7.48)

which for a realistic RG evolution gives a de Sitter point at the UV, and another

one very close to the GFP, i.e λ ∼ g ∼ 10−35. Therefore, by tuning the parameter

ρ to very large values, both UV and IR de Sitter points are shifted towards the UV

along the RG trajectories. Notice that letting λ→ 0 in (7.48) we get gρ→∞ → 0, i.e

the curve passes through the GFP at (λ, g) = (0, 0).

On the other hand, as ρ→ 0, the de Sitter line becomes

gρ→0(λ) =
1

16
(1− 2λ)2,

which again gives a de Sitter point in the UV and a second one for (g, λ) ' (0, 0.5),
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Figure 7.4: The limiting de Sitter (continuous) and slow roll lines (dashed) respect-
ively. Red colour corresponds to ρ → ∞ (“bell” shaped curves), and the green to
ρ→ 0 respectively. For ρ→∞ both de Sitter and slow roll line go to zero as λ→ 0.

as g � 1 in the IR regime, but now both points are shifted towards the IR. The

de Sitter lines corresponding to the extreme cases described above can be seen in

Figure 7.4.

To summarise: the general trend is that by making ρ smaller, the position of the

UV de Sitter point is shifted towards smaller values of R (i.e moving away from the

RG UV fixed point), while the situation is the opposite for increasing ρ.

Let us turn attention to the stability of the de Sitter points. As said before, a de

Sitter point is (un)stable if (m2
eff < 0) m2

eff > 0. Therefore, the equation

m2
eff(R, g, λ) = 0

will in turn define a line on the g − λ plane along which the square of the mass

becomes zero. Another useful line on the g−λ plane is the one along which the square

mass diverges, i.e its denominator becoming zero. Both m2
eff = 0, and m2

eff → ∞

lines will divide the g − λ plane into regions of positive and negative mass squared.

This can be seen in Figure 7.1 for ρ = 1. If the UV de Sitter point should play

the role of an inflationary era, it should be an unstable, while the IR one should

be stable. We will see later that this can be achieved for a range of values for the

parameter ρ.

The general expression for the scalaron mass in terms of the dimensionless coup-
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lings is quite complicated, but it simplifies reasonably in the classical and IR regime,

where g � 1. In this case, the mass takes the form

m2
eff(IR) '

R(2λ− 1)3

36g (8λ3ρ+ 4λ2ρ+ λ(8− 6ρ) + ρ− 2)
, (7.49)

where we neglected terms of order g2 and higher. The critical points where the

denominator of the scalaron mass vanishes will signal a singularity, with the scalaron

mass going to infinity.

Let us study the positivity of m2
eff(IR) by first studying the special case of the

GFP regime, where in addition to g � 1, it is also λ � 1. In this case, relation

(7.49) simplifies to

m2
eff(GFP) '

R

36g (2− ρ)
, (7.50)

and the sign of it is positive when ρ < 2, while for ρ → 2 it blows up. We recall

that the renormalisation condition (7.11) fixes ρR0/g0 ∼ m2
P, so the scalaron has a

Planck-scale mass near the Gaussian fixed point.

In the IR regime, where λ ∼ O(1), we have to study the full relation (7.49).

We distinguish two regimes, one when ρ < 2 and another when ρ > 2. For ρ < 2,

the vanishing of the denominator of (7.49) has only one relevant solution λ = λ∗(ρ)

being a function of ρ.

0 < λ < λ∗ : m2
eff > 0, (7.51)

λ∗ < λ < 0.5 : m2
eff < 0. (7.52)

In the limiting case of ρ→ 0, λ∗ → 0, while as ρ→ 2−, it is λ∗ ' 0.31.

On the other hand, for ρ > 2, there are two relevant solutions, λ∗(1) and λ∗(2).

We have the following cases

0 < λ < λ∗(1) : m2
eff < 0, (7.53)

λ∗(1) < λ < λ∗(2) : m2
eff > 0, (7.54)

λ∗(2) < λ < 0.5 : m2
eff < 0, (7.55)

with both λ∗(1), λ∗(2) varying with ρ, i.e λ∗(1) ≡ λ∗(1)(ρ), λ∗(2) ≡ λ∗(2)(ρ). In particu-
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lar, we have that as ρ→ 2+ λ∗(1) = 0 and λ∗(2) ' 0.31, while for ρ→∞ λ∗(1) ' 0.2

and λ∗(2) ' 0.5.

We conclude from the above analysis that the case ρ > 2 is rejected, since m2
eff

is negative around the GFP. On the other hand, for ρ < 2 the mass m2
eff is positive

around the GFP (λ � 1) and it stays positive for λ < λ∗ with λ∗ approaching

λ∗ ' 0.3 as ρ→ 2.

An important point when ρ < 2, concerns the position of the IR de Sitter point.

From above, it is understood that both the position of de Sitter points as well as the

critical point λ∗(ρ), beyond which meff becomes negative, depend on the parameter

ρ. What it turns out to be is that the corresponding position of the IR de Sitter

point, will lie ahead of λ∗ on the λ-axis for ρ . 0.9, which means that the de Sitter

point will be unstable. As a result, all trajectories with g � 1 and ρ . 0.9, will

posses an unstable IR de Sitter point. In other words, the RG trajectory will pass

through the mass singularity point λ∗, making m2
eff negative, before the trajectory

reaches its actual terminating (de Sitter) point.

From the above stability analysis, we see that the parameter ρ has been con-

strained to be 0.9 . ρ < 2. In the next section, we will further constraint ρ by

requiring that the different cosmological periods are connected with each other in a

viable way, finding that ρ ∼ 1.

7.5.3 Dynamical evolution from UV to IR

We saw that in principle we can have de Sitter solutions, and the existence of

a classical regime ensures for a standard radiation/matter era respectively. It is

important though, that the cosmological eras are connected dynamically in a viable

way. This will be the subject of this section. More precisely, we will consider action

(7.8) in the presence of a perfect fluid with barotropic index w ≡ p/ρ, and study

its dynamics by means of a dynamical system analysis, by improving the dynamical

system for f(R) gravity, presented in Amendola et al. (2007b), to account for our

RG-inspired f(R) model.
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We can start by defining the following dimensionless variables,

x1 =
−ḟR
HfR

, (7.56)

x2 =
−f

6H2fR
, (7.57)

x3 =
R

6H2
, (7.58)

x4 =
κ̃2ρr

3H2fR
, (7.59)

with an over dot denoting derivative with respect to cosmic time. The Hubble

parameter is defined as H ≡ ȧ/a, with a the Universe scale factor. In the absence

of radiation it is x4 = 0.

Then, the background dynamics can be expressed in terms of the dynamical

system Amendola et al. (2007b),

x′1 = −1− x2 − 3x2 + x2
1 − x1x3 + x4, (7.60)

x′2 =
x1

x3

− x2(2x3 − x1 − 4), (7.61)

x′3 =
−x1x3

m
− 2x3(x3 − 2), (7.62)

x′4 = −2x3x4 + x1x4, (7.63)

with the constraint

Ωm ≡
κ̃2ρm

3H2fR
= 1− x1 − x2 − x3 − x4, (7.64)

and primes here denoting differentiation with respect to ln a.

The quantity m = m(r) is defined as

m ≡ d ln fR
d lnR

=
RfRR
fR

, (7.65)

r ≡ − d ln f

d lnR
= −RfR

f
=
x3

x2

. (7.66)

m = m(r) characterizes the particular f(R) model, and it needs to be given a priori

in order for the dynamical system to close. In principle, given a particular f(R)

model, one is able to invert r = r(R) and plug into m to get m = m(r). However, in
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our case the form of the f(R) model is dictated through the particular running of the

couplings g(R), λ(R), by solving the system of beta functions. Therefore, in order

to close the dynamical system (7.60)-(7.63) we will need to evolve the couplings with

time as well.

In addition, the effective equation of state is given by,

weff = −1

3
(2x3 − 1) . (7.67)

For the dimensionless couplings we can write,

g′ =
∂g

∂R

dR

dr

dr

dN
=

βg
2R

∂R

∂r

(
∂r

∂x2

x′2 +
∂r

∂x3

x′3

)
, (7.68)

λ′ =
∂λ

dR

dR

∂r

dr

dN
=
βλ
2R

∂R

∂r

(
∂r

∂x2

x′2 +
∂r

∂x3

x′3

)
. (7.69)

After some algebra, we get

g′ =
βg
2R

(
f 2

f 2
RR− fRf − fRRfR

)(
x′3x2 − x′2x3

x2
2

)
, (7.70)

λ′ =
βλ
2R

(
f 2

f 2
RR− fRf − fRRfR

)(
x′3x2 − x′2x3

x2
2

)
, (7.71)

where x′i ≡ x′i(xi, g, λ) through the relevant evolution equation. The complete dy-

namical set of equations is now (7.60)-(7.63) supplemented with (7.70)-(7.71). Notice

that any fixed point of (7.60)-(7.63) automatically satisfies (7.70)-(7.71) as well.

One should be reminded here that the derivatives with respect to R, e.g fR, can

be explicitly expressed using (7.8), (7.18) and (7.19). In addition, both r and m are

implicit functions of curvature R, through r ≡ r(λ(R), g(R)) and g ≡ g(λ(R), g(R)).

The RG improved dynamical system with x4 = 0 has three cosmological fixed

points: An early time de Sitter, a matter, and a late time de Sitter point respectively.

Of course, we expect that a radiation fixed point will appear by the time we introduce

x4. For a complete analysis and the fixed point structure and their stability one can

refer to Ref Amendola et al. (2007b).

The de Sitter point P1, the matter point P5 and the radiation point P7, are given
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in the general form P = (x1, x2, x3, x4) as,

P1 = (0, 1,−2, 0), (7.72)

P5 =

(
3m0

m0 + 1
,− 4m0 + 1

2(m0 + 1)2
,

4m0 + 1

2(m0 + 1)
, 0

)
, (7.73)

P6 =

(
4m0

m0 + 1
,− 2m0

(m0 + 1)2
,

2m0

m0 + 1
,
−5m2

0 − 2m0 + 1

(m0 + 1)2

)
. (7.74)

The de Sitter point P1 is characterised by r = −2, and is stable as long as

0 < m|r=−2 < 1. (7.75)

On the other hand, the points P5 and P6 define a family of fixed points parametrized

by m, all lying on the line m = −r − 1. An acceptable matter era requires that

standard GR is recovered, i.e m → 0 (fRR ' 0), yielding P5 = (0,−1/2, 1/2), and

therefore r = −1. For m ' 0, and in the presence of radiation, a radiation fixed

point will also exist in the vicinity of P5. In particular, the existence of a saddle

matter era requires that at the matter point,

m|r=−2 ' +0,
dm(r)

dr

∣∣∣∣
r=−2

> −1. (7.76)

The shape of the curve m = m(r) on the m−r plane can provide us with sufficient

information regarding the asymptotic behavior of the particular f(R) model. In

our case, we can work out the m = m(r) curve by integrating the system of beta

functions, and then evaluating both r = r(λ, g) and g = g(λ, g). By choosing a

typical RG trajectory for ρ = 1 (i.e k2 = R), and initial conditions for the system

of beta functions those of (7.35), we get the m− r curve shown in Figure 7.5. We

see that cosmological evolution begins from an unstable (r > 1) early time de Sitter

point, and then evolves towards the (radiation) matter point at (r,m) ' (−1, 0).

It then leaves the matter point and evolves towards a stable IR de Sitter point at

r = −2. Notice that the matter point is approached from positive values of m as

condition (7.76) requires.

Let us comment on a point regarding the crossing of the m = −r − 1 line on

the m − r plane, Fig. 7.5. In Amendola et al. (2007b) it is argued that the line
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m = −r− 1 cannot be crossed, and that cosmological evolution should be restricted

between successive roots on this line. In particular, it is straightforward to derive

the following equation for the evolution of r = r(N),

dr

dN
= (m+ r + 1)

1

R

dR

dN
, (7.77)

which implies that evolution of r = r(N) stops whenever m = −r − 1, provided

that dR/dN does not diverge. However, we would like to show that in our case

the derivative dm/dr diverges as the m(r) curve approaches the point (r,m) =

(−1, 0). We start by noticing that for r,m expressed in terms of g, λ, the latter

point corresponds to (g, λ) = (0, 0), and therefore we expect the couplings to be

small as the curve approaches that point on the m − r plane. On the g − λ plane,

this translates into lying close the GFP.

Under the assumption that g, λ� 1, we can neglect higher order terms to find

m ' 12g +O(g2, λ2), (7.78)

r ' −1− 2λ+O(g2, λ2). (7.79)

What is more, for the derivative dm/dr we find that

dm

dr
' − 6g

(4g + 4λ− 1)2 (6g − λ)
, (7.80)

For our present analysis the linearised expressions are enough, and we will not

present the full expressions of m(g, λ), r(g, λ), as they are rather complicated. From

(7.80) we see that when the couplings are small, the denominator becomes zero when

6g − λ = 0, which when combined with expressions (7.78)-(7.79), gives

6g − λ =
1

2
(m+ r + 1) , (7.81)

which in turn implies that the denominator will vanish when m = −r − 1, i.e when

the m(r) curve crosses the latter line. In fact, one can numerically show that the

vanishing of the denominator happens along m = −r−1 for the general expressions,

i.e not only at the linearised case. Therefore, for g 6= 0 the derivative dm/dr will
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diverge at the point (r,m) = (−1, 0) according to (7.80)

dm

dr

∣∣∣∣
m→−r−1

→∞, (7.82)

allowing to bypass condition (7.77). We can also get an analytic expression for the

curve m = m(r) around r ' −1, m ' 0, by first using (7.78), (7.79) into (7.80) to

arrive at the following expression for the derivative

dm

dr
' − m

m+ r + 1
. (7.83)

Notice first that from the linearised expression (7.78) one can see that m is of order

g in this regime, i.e much smaller than one, but not exactly zero. Therefore, as the

line m+ r+ 1 = 0 is crossed the derivative (7.83) diverges. Furthermore, differential

equation (7.83) can be solved to give

m ' −(r + 1)±
√

(r + 1)2 − (rT + 1)2, (7.84)

with rT a constant, and ± denoting the positive and negative branch of the solution,

corresponding to that part of m(r) before and after the crossing with m+ r+ 1 = 0

respectively. One can check that above solution indeed reproduces the expected

behavior, i.e as r → −1, m→ 0, and it is worth noting that although the derivative

along the line m = −r− 1 diverges, the curve m = m(r) itself is continuous, as can

be also seen in figure 7.5.

Note also that the turn-around on the m− r plane corresponds to a turn-around

on the g − λ plane. In particular, if we denote mT ≡ m(rT), with T denoting

the value at the turning point, it is straightforward to see that mT ' 12gT and

rT ' −1 − 2λT , where gT and λT are defined in (7.22) and (7.23). We also recall

that gT ∼ λT ∼
√
GTΛT from (7.28)–(7.29), allowing one to estimate how close the

turning point is to (m, r) = (0,−1). Classical GR-like evolution begins beyond the

turning point, on the lower branch. Therefore, on the g − λ plane, radiation and

matter domination occur around the turning point in the vicinity of the GFP.

For illustrative purposes, Figure 7.6 shows the cosmological evolution from the
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Figure 7.5: The m− r plane for ρ = 1 and the set of initial conditions (7.35), with
m(r) and r given by relations (7.65) and (7.66) respectively. Point A corresponds
to the unstable UV de Sitter point, point B to the saddle matter point, while C to
the stable IR de Sitter respectively, as described in section 7.5.3. The dashed lines
correspond to r = −2 and m = −r − 1 respectively.

matter to the IR de Sitter point in the coordinate space, while Figure 7.8 shows

the evolution of the effective index and slow roll parameter weff and εV respectively,

from the UV de Sitter point to the matter one.

As it turns out, under a suitable choice of initial conditions for g, λ and ρ, it is

possible to get a cosmology where the UV regime is correctly connected with the

IR one. The question that arises is if there are any bounds on the parameter ρ in

this direction. In fact, for ρ & 1.1 the behavior of the evolution on the m− r plane

starts becoming unstable, and evolution does not reach the late time de Sitter point,

after leaving the matter era. What is more, as ρ increases the matter era happens

to be approached from negative values of m, which as explained before is forbidden.

Furthermore, as was also explained in the previous section, the positivity of m2
eff in

the IR regime (stability of IR de Sitter point) as well as in the GFP regime puts the

extra restriction 0.9 . ρ < 2.

Therefore, we conclude that the viability of both the classical regime and late
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Figure 7.6: The cosmological trajectory described by the dynamical system
(7.60) - (7.63), in the space of the coordinates (x1, x2, x3), leaving the matter
point and evolving towards the IR de Sitter. In particular, it spirals around
the unstable matter point, and then evolves towards the stable de Sitter in the
IR. The initial conditions chosen are (λ0, g0) = (10−2, 10−5), and (x10, x20, x30) =
(x10(m) + 10−5, x20(m) − 10−6, x30(m) + 10−5), with (x10(m), x20(m), x30(m)) denoting
the coordinates of the matter fixed point given in (7.73), and m0 is evaluated as
m0(λ0, g0) using (7.65) and (7.18)-(7.19). Above initial conditions give r0 ' −1.02,
m0 ' 1.24 × 10−4. We also assumed that x4 = 0. The amplitude of the oscillation
along the x1 axis is of the order 10−5.
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Figure 7.7: The effective index weff and the slow roll parameter ε (relations (7.67)
and (7.88) respectively) from the UV de Sitter to matter domination for initial
conditions: (x10, x20, x30, λ0, g0) = (10−2,−1−10−3, 2−10−5, 0.26, 0.02) and ln(a0) =
−30, and ε re-expressed as ε = 2− x3.
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time cosmology restricts ρ to lie in the range

0.9 . ρ . 1.1. (7.85)

7.5.4 Inflationary dynamics

We showed that our particular f(R) model exhibits an unstable UV de Sitter point,

which can be dynamically connected with the radiation/matter era in a viable way.

We would like to understand if the UV de Sitter point, describing a primordial

inflationary era, could be observationally viable i.e if the scalar and gravitational

fluctuations amplitudes as well as the number of e-foldings are those that are required

according to observations. Recall that the only free parameter in our model is the

dimensionless parameter ρ.

Below, we will evaluate all inflationary quantities in the Einstein frame, ignoring

the non-minimal coupling between matter and the scalar field, since inflation is a

(almost) vacuum dominated period.

Let us first revise some standard notions of scalar field inflation. To start with,

the slow roll parameters ensure that the scalar field (inflaton) has a small kinetic en-

ergy during inflation, compared to the potential energy, so that the latter dominates.

The two slow roll parameters are defined as

ε ≡ Ḣ

H2
= −d lnH

dN
, (7.86)

η ≡ Φ̈

HΦ̇
= ε− 1

2ε

dε

dN
, (7.87)

with the overdot denoting differentiation with respect to cosmic time. For a scalar

field action with a kinetic term and a potential, they can be alternatively (and

equivalently to first order in ε, η) defined as

εV =
m2
p

16π

(
UΦ

U

)2

, (7.88)

ηV =
m2
p

8π

UΦΦ

U
, (7.89)

with the subscript Φ denoting differentiation with respect to the Einstein frame

scalar field Φ respectively.
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Inflation occurs as long as the slow roll condition is satisfied, i.e

εV � 1, ηV � 1, (7.90)

and ends when εV , ηV ∼ O(1). Smallness of εV ensures that the spacetime during

inflation remains sufficiently close to de Sitter, while smallness of ηV ensures that

variation of εV per e-fold is sufficiently small.

The number of e-folds is given by

N ≡ ln
af

ai

≈
∫ Φf

Φi

U

UΦ

dΦ, (7.91)

with ai, af the scale factor at the start and end of inflation respectively, and the

slow roll approximation used in the last approximation. Above integral can be of

course evaluated in terms of the couplings and curvature R through,

dΦ =

(
∂Φ

∂g

dg

dR
+
∂Φ

∂λ

dλ

dR
+
∂Φ

∂R

)
dR, (7.92)

and the integral (7.91) can be calculated between two points Ri and Rf along the

RG trajectory. Notice that in the vicinity of a de Sitter point the number of e-folds

diverges since there UΦ → 0.

Fluctuations of the scalar field during inflation, generate scalar and gravitational

perturbations, whose power spectra in the slow roll approximation are given by (see

e.g. Lyth and Liddle (2009))

Ps =
128π

3

U3

m6
pU

2
Φ

∣∣∣∣
k=aH

, (7.93)

Pg =
128

3

U

m4
p

∣∣∣∣
k=aH

, (7.94)

assuming evaluation at the horizon crossing of the relevant mode. The scalar power

spectrum becomes infinite when evaluated on a de Sitter point, reflecting the stand-

ard infra-red divergence. This behavior can be seen in Figure 7.8.

Notice that expressing the derivative of the potential as

∂U

∂Φ
=
∂U

∂R

∂R

∂Φ
=

√
16πG0

3

fR
fRR

∂U

∂R
, (7.95)
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Figure 7.8: Upper row: The scalar (left) and gravitational (right) fluctuation power
spectrum, as given by relations (7.98) and (7.99) respectively, as a function of the
couplings λ, g, and setting ρ = 1. The scalar power spectrum peaks along the de
Sitter line, as on a de Sitter point it is Ps → ∞. Lower row: The corresponding
contour plots of the scalar (left) and gravitational (right) spectrum of upper row.
In the scalar power spectrum the dotted line corresponds to the de Sitter line, along
which the power spectrum diverges. Higher values correspond to lighter shaded
areas.
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and using a similar expression for the second derivative, the slow roll parameters in

the Einstein frame can be calculated to be

εV (R) =
1

3

(
2f −RfR
f −RfR

)2

, (7.96)

ηV (R) =
2

3

f 2
R + fRRfRR− 4fRRf

fRR(RfR − f)
. (7.97)

These relations can also be viewed as a function of the scalar Φ = Φ(R), through

relation (7.42), as well as functions of g, λ, ρ through relations (7.18) and (7.19).

The equation εV (g, λ) = 1 defines a curve in the g − λ plane (“slow roll line”),

whose intersection with the RG phase curve corresponds to the end of inflation, and

is associated with the corresponding de Sitter line for a given ρ. The slow roll line

for ρ = 1 can be seen in Figure 7.1.

In general, decreasing ρ, the slow roll lines shift away from the UV RG fixed point

along the RG evolution, and vice versa as ρ → ∞. The opposite is true for the de

Sitter lines, which means that an increasing ρ increases (decreases) the scale where

inflation starts (ends), and the opposite is true for decreasing ρ. It is interesting

to note that for ρ → ∞, the low energy de Sitter point lies before the point where

εV = 1. The limiting slow roll lines for ρ→ 0,∞ are shown in Figure 7.4.

Let us now move to the power spectra, given in (7.93) and (7.94). In order to

match the scalar fluctuation amplitude according to the CMB observations Komatsu

et al. (2011), we need Ps ' 2 × 10−9, and Pg . 0.2Ps. The precise value of the

amplitudes depends on a set of values for (g, λ, ρ) evaluated at the particular scale

of interest. It will be useful first to give the explicit expressions of the spectra in

terms of g, λ and ρ, for the beta functions (7.4, 7.5). We find

Ps =
128

3ρ

A(g, λ, ρ)B(g, λ, ρ)3

C(g, λ, ρ)2D(g, λ, ρ)2
, (7.98)

Pg =
128

ρ

A(g, λ, ρ)B(g, λ, ρ)

C(g, λ, ρ)2
, (7.99)



170

with the additional definitions

A(g, λ, ρ) ≡ g
(
4g − (1− 2λ)2

)
,

B(g, λ, ρ) ≡ 96g2ρ+ g
((
−24λ2 + 4λ+ 6

)
ρ− 6

)
− (1− 2λ)2λρ,

C(g, λ, ρ) ≡ −192g2ρ+ 4g
(
3
(
4λ2 − 1

)
ρ+ 2

)
+ (1− 2λ)2

D(g, λ, ρ) ≡ −192g2ρ+ 4g
((

12λ2 − 4λ− 3
)
ρ+ 4

)
+ (1− 2λ)2(4λρ− 1). (7.100)

We arrived at relations (7.98)-(7.99), using relations (7.95) and (7.18)-(7.19) to re-

express the spectra appropriately. Analgous (but more complicated) expressions can

be derived for beta functions with other gauges and cut-off functions.

We have seen in the previous sections that stability requirements of the classical

regime (GFP regime) as well as of the late time cosmology require that 0.9 . ρ . 1.1.

Therefore, the first thing to investigate is inflation can be observationally viable for

ρ in this range.

So, let us proceed by studying the case of ρ = 1. In this case, we also know the

values of the couplings at which inflation starts and ends , Pstart ≡ (gstart, λstart) '

(0.02, 0.27) and Pend ≡ (gend, λend) ' (0.02, 0.22), with Pstart corresponding to the

UV de Sitter point, and Pend to the point where εV = 1 (see also Figure 7.1). For

the connection with observations one is in principle interested at the value of the

power spectra about 60 e-foldings before the end of inflation. Now, for ρ = 1, and

as can also be seen in Figure 7.5.4, between Pstart and Pend both power spectra are

smooth, decreasing functions of g and λ, acquiring their lowest value at Pend,

Ps ' 0.067, Pg ' 0.052. (7.101)

One sees that the (lowest) values of the power spectra (7.101), are too large to

agree with observations, yielding a non-viable inflationary period for ρ = 1. It is not

difficult to check that this behavior is true for all values of ρ between 0.9 . ρ . 1.1.

Therefore, a viable late time cosmology cannot be combined with a viable primordial
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inflation.

Having seen that an observationally viable inflationary era is not in agreement

with a viable late time cosmology, which requires ρ ∼ 1, we ask the following

question: could inflation be viable on its own for some parameter ρ, away from

ρ ∼ 1? Let us try to understand this by checking the behavior of the power spectra

(7.98) and (7.99) for the extreme cases of ρ→ 0 and ρ→∞ respectively. Assuming

a (finite) value of g and λ we find that

lim
ρ→0
Ps,Pg =∞, (7.102)

which is obviously unacceptable.

On the other extreme, i.e when ρ→∞, the power spectra go to zero,

lim
ρ→∞
Ps,Pg = 0, (7.103)

which is potentially viable. For the scalar to tensor ratio we find that

Pg
Ps

∣∣∣∣
ρ→∞

=
48 (48g2 + g (−12λ2 + 4λ+ 3)− (1− 2λ)2λ)

2

(96g2 + g (−24λ2 + 4λ+ 6)− (1− 2λ)2λ)2 . (7.104)

Remembering that when ρ� 1, the end of inflation, which is described on the phase

space of g−λ by the slow roll line, is shifted towards smaller values of the couplings,

as can also be seen in Figure 7.4. Therefore, we can get an estimate of above ratio

by assuming that the fluctuations are produced at a point in the linear regime of the

RG evolution, where g ∼ λ � 1, yielding Pg/Ps ∼ O(1), which is observationally

unacceptable.

Before concluding this section, let us comment on another possibility of under-

standing inflation in this scenario, that is modeling it as R2 inflation Starobinsky

(1980b) using the f(R) model found in (7.31) at large R:

f(R) ' κ̃2

G0

(R− 2Λ0) + 6(2− ρ)ρR2. (7.105)

Matching to the perturbation amplitude, R2 inflation can account for the observa-

tions if the coefficient of the R2 term is of order 1011 Starobinsky (1980a). Hence we

see in approximate way how tuning ρ to very large values suppresses the perturba-
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tions. However, this results in an unacceptable classical limit as well as a non-viable

late time cosmology for the reasons explained in previous sections.

To conclude this section, it turns out that primordial inflation in this scenario

cannot agree with observations unless ρ is very large, in which case the mass of

the scalaron diverges and becomes tachyonic in the subsequent evolution. Hence

the observed fluctuations must be generated at a later period of inflation, which

requires that more degrees of freedom should be introduced in the action, like for

example a scalar field. Scalar field inflation in the Asymptotic Safety scenario, and

with scale identification in the equations of motion, has been considered in Contillo

et al. (2012b). A more exotic possibility is that the extra degrees of freedom produce

a fixed point with a very small fluctuations. One notes that for small g, the tensor

power spectrum becomes

Pg ' 128gλ (7.106)

which is suggestive that a fixed point with small gλ could be viable. Note the ap-

pearance of the product gλ ∼ GΛ, which is the expected scale of tensor fluctuations

in Einstein-Hilbert gravity in a de Sitter phase with cosmological constant Λ.

Closing this section we would like to make a comment on reheating after inflation.

Any observationally viable inflationary theory should predict a period of reheating

after the end of inflation, where the scalar field driving inflation (“inflaton”) decays

into relativistic matter, and of course the same should apply for asymptotically safe

inflation. However, in our analysis we did not consider reheating as inflation turn

out to be non–viable due to the large scalar and tensor fluctuations. Therefore, the

matter content we introduced to study matter domination earlier in this chapter,

was introduced rather by hand with the aim of understanding the occurrence of a

viable matter domination in this context. A viable cosmological model describing

the Universe evolution from its early to late stages, should provide us with a re-

heating mechanism generating the matter content in the Universe after the vacuum

dominated period of inflation, while on the same time predicting the correct order

of primordial fluctuations as well as yielding a viable late time cosmology.
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7.6 Discussion and conclusions

We studied the cosmology of an f(R) model generated by the RG improvement

of the Einstein–Hilbert action. The transition to f(R) gravity was achieved by

identifying the renormalisation group scale to be proportional to scalar curvature,

k2 = ρR, (7.107)

in the non-perturbative beta-functions calculated from the exact renormalisation

group equation.

We found that the resulting f(R) model has some remarkable properties. Firstly,

it maintains the correct sign for the graviton and scalaron kinetic terms. Very close

to a non-trivial RG fixed point it behaves like R2 gravity, which is scale invariant,

while it reduces to GR in the vicinity of the Gaussian fixed point. At solar and

galactic scales, the scalaron’s mass is of the order of Planck mass, preventing ob-

servable departures from GR at these scales. On the other hand, in the vicinity of

the UV RG fixed point, the scalaron mass vanishes, reflecting the scale invariance

of the action in that regime.

The cosmological solutions of the f(R) model are also interesting. It naturally

exhibits an unstable UV de Sitter point which evolves to a stable one in the IR.

The effective cosmological constants are exponentially separated when Newton’s G

and the cosmological constant are matched to their observed values. What is more,

there are an infinite set of de Sitter points as the UV RG fixed point is approached

(R → ∞). However, classical cosmological evolution starts from the outermost de

Sitter point, and therefore the UV RG fixed point is hidden behind it, and cannot be

accessed. The Big Bang singularity is avoided, since the de Sitter point is reached

at infinite time in the past, i.e as t → −∞. The model therefore satisfies the

requirements of a successful f(R) model itemized in Nojiri and Odintsov (2011).

Introducing matter content to the cosmology, we found that the UV de Sitter

point can be connected to the IR de Sitter era through a radiation/matter era, with

a stable scalaron, provided

0.9 . ρ . 1.1. (7.108)

Unfortunately, the fluctuations generated during inflation at the outer UV de Sitter



174

point are too large to account for the observations (Section 7.5.4).

Therefore observable inflation requires extra degrees of freedom in the action, for

example a scalar field driving inflation at a lower scale. A more remote possibility

would be that the extra degrees of freedom move the fixed point to a smaller value

of gλ, which could suppress the fluctuations.

To make the comparison with previous cut-off identifications in the literature,

performed at the level of the equations of motion, our constraint for the parameter

ρ, i.e ρ ∼ 1, is broadly consistent with scale identifications made in the equations

of motion, rather than the action as here. In particular, in Reuter and Saueressig

(2005), it was numerically found that for the identification k2 ∼ cH2, the constant

c should be of order one, which is consistent with ρ ∼ 1 in our identification.

This model can be improved by extending the analysis performed in this paper to

higher truncations, i.e by including higher order curvature terms in the action. It is

interesting to ask what features are generic. The existence of a UV fixed point seems

to be a universal feature of all truncations found so far, so we expect the Einstein

frame potential of the scalaron to tend to a constant at large values of the field.

However, we do not expect the presence of an infinite number of de Sitter points to

be generic, as it arose from the complex eigenvalues of the fixed point, which are

not present for the general four-derivative truncation Benedetti et al. (2009). We

should also include matter fields in the renormalisation group equations. With these

modifications it might turn out that there is a model for which both early and late

time cosmology agrees with observations.
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Chapter 8

Conclusions and outlook

As this thesis comes to its end, let us try to think about what the current status

regarding dark energy is, and if one should be optimistic about any future surprises.

Einstein’s “biggest blunder”, that is the introduction of the cosmological constant in

his field equations, is currently the simplest description to the dark energy problem,

on the same time supported by most of the current observations. However, its success

at the phenomenological level is not shared by theory, where as we discussed before,

conceptual problems like the magnitude problem, are a yet unresolved puzzle.

We should stress that until very recently, Einstein’s theory of gravity (GR), had

been only tested at solar system scales. It is only the last years that cosmologists

have access to large scale observations of the Universe. It is not obvious at all

that GR should be the theory of gravity at large scales, and it could be possible

that this is what the observations tell us. However, if gravity behaves differently at

the very large scales, that should have a characteristic imprint on observations at

the linear level, which includes the large scale structure of the Universe, as well as

weak lensing experiments. Probably one of the most distinct signatures for some

modification of gravity, beyond the ΛCDM paradigm would be the existence of a

non–zero anisotropic stress, which implies that |Φ/Ψ| 6= 1, with Φ and Ψ the scalar

Newtonian potentials. The fact that no anisotropic stress has been yet detected

in no way does provide any conclusive proof about these models, as the current

observational bounds are weak, with deviations of order unity for the ratio |Φ/Ψ| 6= 1

still allowed. Future observations of higher precision will be needed to put tighter

constraints, with an accuracy of a few percent. As we showed in chapter 5, the
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existence of a non–zero anisotropic stress is an essential feature of non–linear gravity

models and stability requirements do not allow it to be arbitrarily small, as its

suppression endangers the stability of both background and linear evolution of the

non–linear gravity model under study. Therefore, as it turns out, anisotropic stress

is a key observable in testing gravity modifications at large scales, as apart from

ΛCDM , minimally coupled scalar field models (e.g quintessence, k–essence) predict

a zero anisotropic stress contribution.

The recent discovery of the Higgs boson might be the start for possible future

discoveries at the Large Hadron Collider (LHC) at CERN, that could open new paths

for cosmology 1. Searching for new particles at the laboratory is equally important as

studying the Universe at its largest scales, as it could be the case that the discovery

of a new particle with the properties of dark energy, could provide the answer to

the problem. What is more, the (non) discovery of the dark matter particles will

probably give strong hints about the nature of the dark energy. Furthermore, for

the case where the effects of dark matter are explained through a modification of

the gravitational law at galactic scales, the dark matter effects could be just a

manifestation of a more general gravitational law unifying both dark energy and

dark matter under the same framework.

It could be that the answer to the dark energy problem might be lying in a

combination of the current theories we have. In particular, Quantum Field Theory

predicts that the constants in Nature evolve with scale (or energy), and we know

that according to the Standard Hot Big Bang scenario the Universe’s size (and

temperature) has evolved from a tiny size of the order of Planck length up to the

current horizon scale today. Therefore, the fundamental constants of Nature are in

principle expected to vary from the very early (hot) up to the recent (cooled) state

of the Universe. In this context, it just happens that at the typical Earth and solar

system scales, they do acquire an effectively constant value, equal to the one we

observe at these scales. 2 A vacuum energy that runs with scale could provide a

way out to the magnitude problem associated with the cosmological constant, on the

1As far the Higgs boson is concerned, its large mass (125 − 126 GeV) implies that it
could not be responsible for the late time acceleration. (Higgs mass result according to
http://press.web.cern.ch/press/PressReleases/Releases2012/PR17.12E.html)

2A varying Newton’s constant G at solar scales could also have a huge impact on the stability
of the solar system.
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same time retaining the successful predictions of the ΛCDM model. What is more,

it could successfully provide a unification of the primordial with the observed late

time acceleration of the Universe, under a common framework, which is well motiv-

ated from the well known and studied methods of Quantum Field Theory. This was

the subject of chapter 7, where the running of Newton’s and cosmological constant

was suggested by the Renormalisation Group (RG) improvement of the action in

the context of the Asymptotic Safety scenario. Our analysis there revealed that

the (non–perturbative) running of the coupling constants under the RG describe

a successful background cosmology, from matter (and radiation) domination up to

recent times. An equally important result was that primordial acceleration cannot

be successful in the simplest implementation of such a scenario, due to the large

primordial fluctuations produced. The latter outcome is associated with a funda-

mental property of the theory space of the Einstein–Hilbert truncation, in particular

with the position of the UV fixed under the RG. However, that is not the end of the

story. A successful inflation in this context would call for the investigation of other

truncations, beyond the Einstein–Hilbert one, as well as the introduction of extra

degrees of freedom in the action. What is more, it is important to study and under-

stand the evolution of (linear) perturbations in this scenario, and possible distinct

signatures either at cosmological or astrophysical scales.

The hunt for the nature of primordial or late time acceleration, requires study-

ing different theories, and testing them against observations. The essence of such

a task lies not only in understanding the inflation or dark energy mystery, but also

understanding the nature of gravity itself. However, generalisations of GR, either

purely gravitational, or through the introduction of new (scalar) fields, possess in

principle a high amount of complexity, or dynamics with a whole new range of solu-

tions compared to the so far studied GR ones. Therefore, it is of great importance

to develop and investigate tools that allow us either to simplify the calculations

involved, or gain a deeper intuition about the structure of the different theories, by

comparing them with well known ones. A tool of this kind is the application of Le-

gendre transformations of higher order actions, as presented and studied in chapter

4 for the case of f(R) and f(G), with G the Gauss–Bonnet term, both suggested

in the literature as candidates for the description of the late time acceleration of
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the Universe. The equivalence of vacuum f(R) gravity with Einstein–Hilbert with

a minimally coupled canonical scalar field (Einstein frame), through a conformal

transformation, has been well known in the literature since while ago. In chapter

4 we explored a similar procedure in the context of models which are an arbitrary

function of the Gauss–Bonnet term, the so–called f(G) ones. As we showed there,

this class of fourth order theories can be re-expressed as second order ones through

the introduction of a new scalar and tensor field variable, leading to a kind of bi–

metric scalar tensor theory. The key tool for the transition to the new representation

was a Legendre transformation, which when applied in the f(R) context yields the

well known transition to the Einstein frame. What is more, as we found in the same

chapter, dynamical equivalence can be broken on the boundary spacetime. There-

fore, care must be taken when studying the dynamical equivalence between different

frames for spacetimes with boundary, as the equivalence does not always hold for

the Gibbons–Hawking terms of the two representations.

Any physical theory should have as its upper goal the confrontation with experi-

ment. The development of appropriate (unified) frameworks that allow for concrete

observational predictions about different gravitational theories is therefore of great

importance. What is more, investigating equivalent, but on the same time more in-

tuitive descriptions of gravitational theories, can reveal properties that went unseen

before, or make the prediction of observables easier. Such frameworks are especially

useful at the linear level as there one is able to break the background degeneracies

among different gravity models. In this context, a very useful tool is the covari-

ant fluid description of linear perturbations for (scalar–tensor) gravity models with

second order derivatives in their energy–momentum tensor, the most well known

example being probably f(R) or Brans–Dicke gravity. This is to be presented in an

upcoming work in Sawicki et al. (2012).

Cosmology is certainly entering a new era. Over the course of the last years, cos-

mological observations have seen a rapid development, allowing for testing (gravita-

tional) theories of both early and late time Universe, with future missions promising

an even higher accuracy of observations.

It is not the first time Einstein’s theory of gravity is in doubt. Until the year 1959

the small amount of observational evidence for GR (probably the most celebrated
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one being the deflection of light by the sun), led a number of physicists to suggest

various alternative theories for gravity. However, during the years 1959-1960 new

tests together with older ones performed with higher accuracy, enlarged significantly

the observational evidence supporting the validity of GR 3, establishing it as the

accepted (classical) relativistic theory of gravity. Today, Einstein’s theory is again

under question. The answer is probably to be revealed by the research to follow in

the years ahead.

3For a nice historical review see Will (1981).
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Appendix A

Dynamical equivalence of

non–linear gravity

A.1 Basic geometrical tools and definitions

In this section we will present some useful geometrical tools and definitions from

chapter 4.

As an aid in deriving the GH terms of sections 4.3 and 4.5, we combine two

special coordinate systems, the so–called Gauss and Riemann normal coordinates.

The first one is related with the spacetime splitting in (n − 1) + 1 form, while the

second with the coordinate choice around a point P on the (n − 1)–dimensional

hypersurface Σ.

To begin with, let (M, gαβ) be a globally hyperbolic spacetime, foliated by suc-

cessive (n−1)–dimensional spacelike Cauchy hypersurfaces Σn, parametrised by the

coordinate n. Let also nµ (or n = ∂/∂n) be the unit normal vector to the hypersur-

faces Σn. One can now use the general ADM spacetime splitting to write the metric

gαβ in terms of the lapse function and vector Misner et al. (1973). However, in or-

der to make our calculations simpler, we consider a special spacetime splitting using

Gaussian normal coordinates (GNC) in the neighborhood of the (n−1)–dimensional

surface Σn. In this splitting the metric becomes

ds2 = ε−1dn2 + gijdx
idxj, (A.1)



181

with ε ≡ nκnκ = n.n = ±1 for timelike and spacelike surface respectively. The

important property of this special spacetime splitting is that a geodesic which is

normal to a spacelike hypersurface, at some value of the parameter n, will intersect

normally to the next hypersurface, at n+dn Misner et al. (1973). The n coordinate,

in fact, measures lapse of proper time (or length) along the geodesic.

If we now pick a point P0 on a hypersurface Σ, we can always locally construct an

inertial frame, where free particles will move along straight lines (at least locally).

Such an inertial frame is described by the Riemann normal coordinates (RNC)

system. An important property of this coordinate system is that at the coordinate

centre P0 it is

Γαβγ(P0) = 0, (A.2)

or in other words, the space is locally flat. Using this property in the derivations

of the GH terms defined on the hypersurface Σ, and without losing generality, since

we are dealing with tensors, we set Γαβγ(P0) = 0.

The bulk metric gαβ induces an (n−1)–dimensional metric hαβ on the boundary

surface Σ as

hαβ = gαβ ± nαnβ, (A.3)

for a spacelike (+) and timelike (−) surface Σ respectively. Its determinant, h, is

defined as the determinant of hij, with i, j = 1 . . . (n−1). Furthermore, we associate

a covariant derivative with hαβ denoted as Dα.

We can then define a projection operator from the tangent space to the bulk

M to the tangent space to the boundary Σ at a point P0, through the projection

operator

hαβ = gαβ ± nαnβ. (A.4)

We will use the same symbol for both the induced metric and the projection

operator. The following relations hold

hαβhδ
α = hβδ , gαγhβγ = hαβ , h ≡ gαβhαβ = n− 1, (A.5)

as well as

hαβnβ = 0. (A.6)
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Notice that the projection operator hαβ sometimes is also denoted as ⊥αβ.

The extrinsic curvature Kαβ is an (n− 1)–dimensional tensor that measures the

“bending” of Σ in the bulk spacetime M , and is defined as

Kαβ =
1

2
£nhαβ = ∇αξβ = hγα∇γξβ

= hα
γ∇γnβ = hα

γ
(
∂γnβ − Γργβnρ

)
, (A.7)

where “£” is the Lie derivative, ξβ a unit tangent to the geodesic congruences

orthogonal to Σ, nβ any other normal to Σ, and ∇a defined with respect to the bulk

metric gαβ. If we express Kαβ in the special coordinate system of GNC, giving up

for a moment the abstract index notation, we get

Kij = −Γ0
ij n0

= −1

2
ε
∂

∂n
gij = −1

2
ε£nhij, (A.8)

with ε = ±1 for a timelike and spacelike surface Σ respectively. Relation (A.8)

shows that Kαβ measures the rate of change of the induced metric hij along the

geodesic congruence orthogonal to Σ.

The bulk curvature tensors are related to the extrinsic curvature of the surface Σ

and its derivatives through the Gauss-Codazzi equations Wald (1984); Misner et al.

(1973),

Rα
βγδ = R̂α

βγδ + ε (KβγKδ
α −KβδK

α
γ) , (A.9)

Rn
βγδ = εRnβγδ = ε (DδKβγ −DγKβδ) , (A.10)

with the index n in the second equation being fixed and denoting direction along

the normal nα.
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A.2 Useful formulas

A.2.1 Variation formulas

The formulas we present in this subsection are used to calculate the GH terms presen-

ted in Sections 4.3, 4.5 and 4.6. They are evaluated using the special coordinate

systems of GNC and RNC respectively.

For the variation of the Christoffel symbol and Riemann tensor respectively we

have

δΓσµν =
1

2
gσρ
(
δgν[ρ,µ] + δgρµ,ν

)
, (A.11)

δRα
βγδ = gακ

(
δgκ[δ;γ]β − δgβ[γ;δ]κ

)
, (A.12)

with [A,B] ≡ 1
2

(AB −BA). The variation of the Ricci tensor and scalar can be

found beginning from (A.12) and calculating the variation of the appropriate con-

tractions, for example, δRβδ ≡ δ(gγαR
α
βγδ).

Variation of the extrinsic curvature, A.8, with respect to gαβ gives

δKαβ = −hαγδΓδβγnδ (A.13)

= −1

2
nδ hα

γ gδρ∇[ρδgβ]γ, (A.14)

and for its trace respectively

δK ≡ δKα
α =

1

2
nρhαγ∇ρδgαγ. (A.15)

A.2.2 Conformal transformation formulas

If M is an n–dimensional manifold supplied with a metric gab, and Ω ≡ Ω(xα) is

a smooth, strictly positive function, then a conformal transformation (M, gαβ) 7→

(M, g̃αβ) is defined as gαβ 7→ g̃αβ = Ω2gαβ. It follows that,

g̃αβ = Ω−2gαβ, g̃αβ g̃βγ = gαβgβγ = δαγ, (A.16)

h̃αβ = Ω2hαβ, h̃αβ = hαβ, (A.17)√
−g̃ =

√
−gΩn,

√
−h̃ =

√
−hΩn−1, (A.18)

ñα = Ωnα, ñα = Ω−1 nα, (A.19)
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since in general, nα = (−N, 0, 0, . . . , 0) and Ñ = ΩN , N being the lapse function.

The starting point for the transformation of the curvature objects is the trans-

formation of the Christoffel symbol and using this we get the transformation of

the Ricci tensor, Ricci scalar and GB term respectively. We have Wald (1984);

Dabrowski et al. (2009),

Γγαβ = Γ̃γαβ − Ω−1 [δγαΩ,β + δγbΩ,α − gαβΩ,γ] , (A.20)

Rαβ = R̃αβ − Ω−2(n− 1)g̃αβΩ,κΩ
,κ + Ω−1 [(n− 2) Ω;̃αβ + g̃αβ2̃Ω] , (A.21)

R = Ω2
[
R̃ + 2(n− 1)Ω−12̃Ω− n(n− 1)Ω−2g̃αβΩ,αΩ,β

]
, (A.22)

G =Ω4

[
G̃− 4n3Ω−1

(
2R̃αβΩ;̃αβ − R̃2̃Ω

)
+ 2n2n3Ω−2

(
2(2̃Ω)2 − 2Ω;̃αβΩ;̃αβ − R̃Ω,κΩ

,κ
)

− n1n2n3Ω−3
(
4(2̃Ω)Ω,κΩ

,κ − nΩ−1(Ω,κΩ
,κ)2
) ]
, (A.23)

where in the last formula we use the convention ni ≡ (n− i), with n the spacetime

dimension.

Beginning from the definition of the extrinsic curvature A.7, and using property

A.6, we have

Kαβ = Ω−1
[
K̃ab − Ω−1h̃αβΩ,κñ

κ
]
. (A.24)

Contracting with hαβ we find

Kα
α ≡ K = Ω

[
K̃ − (n− 1)Ω−1Ω,κñ

κ
]
. (A.25)

For two different metrics gαβ and g̃αβ, defined on the same manifold M , and not

necessarily conformally related, we have

Rαβγ
δ(g)− R̃αβγ

δ(g̃) = ∇̃βC
δ
αγ − ∇̃αC

δ
βγ + Cκ

αγC
δ
βκ − Cκ

βγC
δ
ακ, (A.26)
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Kαβ(h)− K̃αβ(h̃) =
1

2
£nh̃αβ −

1

2
£nhαβ (A.27)

= h̃α
γ∇̃γnβ − hαγ∇γnβ = −hαγCκ

γβnκ, (A.28)

with Cα
βγ ≡ 1

2
gασ(∇̃βgγσ + ∇̃γgβσ − ∇̃σgβγ). The first relation results by starting

from the definition of the Riemman tensor and evaluating it for two different metrics.

Doing the necessary contractions in (A.26), we get similar expressions for the Ricci

tensor and scalar as well as the extrinsic curvature trace respectively. As it was

the case in Section 4.4, for two metrics conformally related, g̃αβ = Φgαβ (Ω2 ≡ Φ),

beginning from (A.26) we get for the Ricci tensor

R(g) = Φ

[
R̃(g̃)− 1

4
(n− 2)(n− 1)Φ−2∂κΦ∂

κΦ + (n− 1)∇̃κ(Φ−1∇̃κΦ)

]
, (A.29)

and similarly contracting (A.28) with h̃αβ for the trace of the extrinsic curvature

hαβKαβ = Φ

[
h̃αβ∇̃αnβ +

1

2
h̃αβnκ∇̃κgαβ

]
= Φ1/2

[
h̃αβ∇̃αñβ −

1

2
(n− 1)ñκΦ−1∇̃κΦ

]
, (A.30)

with ñα = Φ1/2nα.

A.3 Conformal transformation of the Gauss–Bonnet

GH term

Here we will present the conformal transformation of the Gauss–Bonnet GH term,

(4.28). For the two terms of (4.28) we get respectively

∫
Σ

dn−1x
√
−h J 7→

∫
Σ

dn−1x
√
−h̃ Ω4−n Φ

{
J̃ + n3Ω−1

[
K̃2 − K̃αβK̃

αβ
]

(Ω,κñ
κ)

− n3n2K̃ Ω−2 (Ω,κñ
κ)2 +

1

3
n3n2n1Ω−3 (Ω,κñ

κ)3

}
. (A.31)
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Σ

dn−1x
√
−h ΦĜαβKαβ 7→

∫
Σ

dn−1x
√
−h̃ Ω4−nΦ

{˜̂
G
αβ

K̃αβ

+ n3Ω−1

[
1

2
˜̂
R(Ω,κñ

κ) + K̃αβΩ;̃αβ − K̃2̃Ω

]
+ n3Ω−2

[n2

2
K̃(Ω,κΩ

,κ)− 2̃Ω(Ω,κñ
κ) + n12̃Ω(Ω,κñ

κ)
]

− 1

2
Ω−3n3n2n1 (Ω,κΩ

,κ)2 (Ω,λñ
λ
)}

. (A.32)

Adding up terms (A.31) and (A.32) we get the GB GH term in the conformally

transformed frame. However, boundary terms resulting by variation of action (4.31)

with respect to g̃αβ and Φ, will not be able to cancel with the GH subterms in

(A.31) and (A.32), as was the case in f(R). Consequently, we are left with terms

proportional to first and second order derivatives of both the metric and scalar

field on the boundary surface Σ, which should be held fixed in the initial value

formulation, together with gαβ and φ themselves, in order for the GH term to be

zero in the total variation.
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Appendix B

Anisotropic stress and stability in

modified gravity models

B.1 Homogeneous perturbations of f (R,G)

Below we present some additional mathematical supplement from chapter 5.

We will first present the stability analysis of any fixed point of the the f(R,G)

Friedmann equation, using homogeneous perturbations around the relevant solution.

Our starting point is the t− t equation (3.59), which for convenience we reproduce

it here again,

3H2F + 3HḞ + 12H3ξ̇ − 1

2
V − ρi = 0. (B.1)

If H ≡ H(t) is a solution of above equation then perturbing around it as H(t)→

H(t) + δH(t), and keeping up to first order terms we get for the curvature scalars

and their first time derivatives respectively

R→ R + 6
(

4HδH + ˙δH
)
, (B.2)

G→ G+ 24
[
2(2H3 + ḢH)δH +H2δḢ

]
. (B.3)

The next step is to perturb the modified Friedman equation (3.59). Particularly,



188

the scalar potential becomes

V → V +RδF +Gδξ

= V + (RFR +GξR)δR + (RFG +GξG)δG

≡ V + V(R)δR + V(G)δG, (B.4)

and after evaluating the scalar field perturbations, it takes the form

V = V + 6
(
V(R) + 4H2V(G)

)
δḢ + 24

(
HV(R) + 4H3V(G)

)
δH, (B.5)

where subscripts in brackets simply denote indices, while those outside brackets

denote derivative with respect to the corresponding variable.

Using relations given above, and after some algebra, the modified Friedman

equation becomes

C(H)δH + C(R)δR + C(G)δG+ C ˙(R)δṘ + C ˙(G)δĠ = 0, (B.6)

with

C(H) ≡ 6HF + 3Ḟ + 36H2ξ̇, (B.7)

C(R) ≡ 3H2FR + 3HḞR + 12H3ξ̇R −
1

2
V(R), (B.8)

C(G) ≡ 3H2FG + 3HḞG + 12H3ξ̇G −
1

2
V(G), (B.9)

C ˙(R) ≡ 3HFR + 12H3ξR, (B.10)

C ˙(G) ≡ 3HFG + 12H3ξG. (B.11)

Substituting for the perturbations of δR, δG and their derivatives we arrive at

C1δḦ + C2δḢ + C3δH − δρi = 0, (B.12)
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with

C1 ≡ 6
[
C ˙(R) + 4C ˙(G)H

2
]
, (B.13)

C2 ≡
[
C(R) + 4C(R)H

2 + 4C ˙(R)H + 16C ˙(G)(H
3 + ḢH)

]
, (B.14)

C3 ≡ 6
[
HF +

1

2
Ḟ + 6H2ξ̇G + 4C(R)H

+ 8C(G)(2H
3 + ḢH) + 8C ˙(G)(6H

2Ḣ + Ḣ2 + ḦḢ)
]
. (B.15)

Defining ω ≡ FR + 4H2(2FG + 4H2ξG), the generalisation of equation (5.34) for

arbitrary H, we find that always

C1 = 18Hω. (B.16)

For a polynomial background expansion, described by a(t) ∝ tp, the other coefficients

become

C2 =
18H

p

[
pω̇ + 8H3(1 + 3p)(ξR + 2H2ξG) + (1 + 3p)HFR

]
, (B.17)

C3 =
3

p2

{
p2Ḟ + 2Hp2F − 12H2

[
2p2(Hω − ω̇)

+ 4pH2(ξ̇R + 4H2ξ̇G)− 2(10p+ 4)H3(ξR + 4H2ξG)
]}
. (B.18)

For a de Sitter expansion, a(t) ∝ exp[H0t], and H = H0 = const., we get

C2 = 3H0C1 (B.19)

C3 =

(
F

3ω
− 4H2

0

)
C1. (B.20)



190

B.2 Inhomogeneous perturbations and de Sitter

stability

The general metric element for scalar perturbations around a flat FLRW background

reads

ds2 =− (1 + 2α)dt2 − 2a(t)∂iβ dt dx
i

+ a(t)2 (δij − 2φδij + 2∂i∂jγ) dxidxj. (B.21)

The general form of scalar perturbation equations around FLRW for f(R,G)

models can be found in De Felice and Suyama (2009). Here, we shall present the

full set of equations for the case of de Sitter space only.

Before we proceed, let us define the gauge invariant variable Φ as

Φ ≡ Φ(t) ≡ δF + 4H2δξ

2F
, (B.22)

with H ≡ H0 as well as the rest of the background quantities evaluated on the de

Sitter point. The perturbation equations then read as

3H2ψ +
k2

a2
(Hχ+ φ) + 3Hφ̇ = 3HΦ̇ + (

k2

a2
− 3H2)Φ, (B.23)

Hψ + φ̇ = Φ̇−HΦ, (B.24)

χ̇+Hχ+ φ− ψ = 2Φ, (B.25)

δR = −2
[
12H2ψ + 3φ̈+ 12Hφ̇+ 3Hψ̇

k2

a2
(χ̇+ 2Hχ+ 2φ− ψ)

]
, (B.26)

δG = −8
[
12H4α− 3H2φ̈+ 3H3α̇− 12H3φ̇

+
k2

a2
H2 (2Hχ+ χ− 2φ− α)

]
. (B.27)

Equations (B.23), (B.24) and (B.25) correspond to the 00, the 0i and the ij(i 6= j)
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components respectively. Particularly, equation (B.25) is the anisotropy equation,

and the choice of variable Φ is now evident: it is the r.h.s of the latter equation,

describing the effective anisotropic stress in de Sitter space, Φ = Π(eff), and therefore

is gauge invariant.

In order to re-express above equations in terms of gauge invariant variables only,

we need a second gauge invariant variable apart from Φ. Following De Felice and

Suyama (2009) we define

Ψ ≡ Φ + φ−Hχ. (B.28)

Now, using equation (B.24) in (B.23) we get

Φ = φ+Hχ, (B.29)

which can be inserted into (B.28) to give

Ψ = 0. (B.30)

Using equations (B.24), (B.25) as well as (B.29) we can re-express the curvature

perturbation in terms of the gauge invariant potential Φ

δR = −6

[
Φ̈ + 3HΦ̇ +

(
k2

a2
− 4H2

0

)]
. (B.31)

B.3 Sub-horizon solution for Φ in the WKB ap-

proximation

Considering the evolution equation (5.40) in de Sitter space for the gauge invariant

potential Φ, we assume a solution of the form

Φ = Ceiθ(t), (B.32)
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with C a constant, and θ̈(t)� 1. Then, we can calculate that

Φ(t) ≈
∑
±

C± exp

[
i

∫ t

0

dt′θ̇±(t′)

]
(B.33)

≡
∑
±

C± exp

[
−
∫ t

0

dt′
(
Ã(t′) ± iB̃(t′)

)]

with

Ã ≡ A+
2BḂ

C2
, B̃ ≡ B +

AḂ

C2
, (B.34)

A ≡ 3H0, B ≡
√

4 (k2e−2H0t′ +m2
eff)− 9H2

0 , (B.35)

C2 ≡ A2 + 4B2. (B.36)

From solution (B.33) we can calculate the limit when m2
eff � 1, which is the case

when Π(eff) → 0. In this case we have,

Ã ≈ 3H0, B̃ ≈ 2meff , (B.37)

and the solution is approximately given by

Φ(t) ≈
∑
±

C± exp [−H0t ± 2imefft] . (B.38)
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