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Summary

It is well known that quantisation of gravity within the conventional framework of quantum
field theory faces challenges. An intriguing novel prospect was put forward by S. Weinberg
in 1979 who suggested that the metric degrees of freedom of gravity could be quantised non-
pertubatively provided that the theory becomes asymptotically safe (AS) at high energies.
In this thesis we put forward a systematic search strategy to test the AS conjecture in
four dimensional quantum gravity. Using modern renormalisation group (RG) methods
and heat kernel techniques we derive the RG equations for gravitational actions that are
formed from powers of the Ricci scalar and powers of the Ricci tensor. The non-linear fixed
point equations are solved iteratively and exactly. We develop a sophisticated algorithm to
express the fixed point iteratively, and to high order, in terms of its lower order couplings.
We also evaluate universal scaling exponents and find that the relevancy of invariants at
an asymptotically safe fixed point is governed by their classical mass dimension, providing
structural support for the asymptotic safety conjecture. We also apply our findings to
the physics of higher dimensional black holes. Most notably, we find that the seminal
ultra-spinning Myers-Perry black holes cease to exist as soon as asymptotically safe RG
corrections are taken into account. Further results and implications of our findings are
discussed.
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Chapter 1

Introduction

Among the four fundamental forces of nature, gravity is singled out for its unique prop-

erties. Firstly, it is universal in the sense that every particle of matter interacts gravita-

tionally and secondly the gravitational force itself is modified by the presence of matter.

Moreover, it is described by a unique mathematical framework which provides the geomet-

rical background for every other interaction. The other three forces of nature, electromag-

netism, the weak and the strong nuclear forces are well described within the framework

of quantum field theory which arises from the combination of quantum mechanics and of

special relativity. The long standing problem of quantising gravity concerns the unific-

ation of all four forces in one description. General relativity and quantum field theory

have to be combined into a common framework which is consistent and which provides an

accurate description of gravity at the quantum level.

Macroscopically, the gravitational force is described by classical general relativity for-

mulated by Einstein in 1915. According to this theory, space and time are not independent

but form the four dimensional Lorentzian manifold of spacetime. In addition, every form

of matter or energy, curves the spacetime and the trajectories of a test particle under

gravitational interaction are simply the geodesics of the manifold. The gravitational force

is described in purely geometrical terms which can be summarised by Einstein’s field

equations

Rµν −
1

2
gµν R = 8πGNTµν . (1.1)

The LHS contains the metric gµν and geometric quantities such as the Ricci tensor of the

manifold Rµν , and the Ricci scalar curvature R, which are derived from gµν . Therefore,

it describes the curvature of the manifold and consequently the gravitational interactions.

The RHS of this equation represents the source of this curvature and is formed by the

product of Newton’s constant GN and the energy-momentum tensor Tµν , which encodes
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all the contributions of matter and energy that in turn determine the geometry of the

spacetime.

Since the advent of general relativity there have been significant advances both in

theoretical and observational sides. The first experimental verification of the theory came

in 1919 with the observation that light rays were bending when passing through strong

gravitational fields. Since then many precision tests of general relativity have confirmed

its validity to very high accuracy [145]. However, it was the theoretical research which

provided insights into its very rich structure. It was only a year after the birth of general

relativity when Schwarzschild published the first solution to Einstein’s equations [139] in

the case where the source of the gravitational potential was a point mass. A striking feature

of this solution is the existence of a characteristic length, called the Schwarzschild radius,

with the property that no particle, even the photon which is massless, can escape from the

gravitational field if it lies inside this radius. This was the first description of a black hole.

Improvements to this simplified approach included the addition of the electromagnetic

field [129, 119], the extension to rotating spacetimes [88] and more recently to higher

dimensions [144, 113]. An important breakthrough in the field of black hole physics came

with the suggestion of Bekenstein in 1973 [15] that black holes have entropy and with the

discovery by Hawking in 1975 [77] who showed that, despite their property of classically

being perfectly absorbing objects, they emit black body radiation due to quantum effects.

Consequently they can be assigned with thermodynamic properties such as temperature

and entropy and they also obey the four laws of black hole thermodynamics [13]. The

theory of general relativity has also vastly contributed to the way that we understand the

universe and its history. Modern cosmology, primordial perturbations and inflation are all

studied within the framework of general relativity [152].

On the other hand, quantum field theory has also provided significant discoveries

during the last century. Within this framework it was possible to successfully describe

the remaining three fundamental forces, namely electromagnetic, weak and strong nuclear

forces. This description is based on the fundamental axioms of quantum mechanics and

of special relativity to give accurate predictions for e.g. scattering experiments through

the computation of transition amplitudes and cross sections. Further research revealed

the very rich structure of the theory and provided us with some of the most fascinating

discoveries. The symmetries of the fields play a fundamental role in quantum field theories.

In particular, it was found that local symmetries were able to describe all the known

forces as being mediated by gauge bosons which are the carriers of each force. It was
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the work of Nambu [114] and Goldstone [64, 65] that shed light on the consequences of

symmetry breaking. These advances where applied to the field of elementary particle

physics and in 1964 the famous Higgs mechanism [80, 79, 73, 51] was proposed. According

to this, the electromagnetism and the weak force are the remaining elements of a broken

SU(2) × U(1) symmetry. With the inclusion of the strong nuclear force all the known

elementary particles were grouped in a broken SU(3)×SU(2)L×U(1)Y symmetry which

make up the Standard Model of particle physics. The discovery of the Higgs boson [1, 28]

provided the last missing piece of the Standard Model. Numerous extensions of this model

have been proposed for energy scales higher than 1 TeV and soon the LHC will provide

evidence for their validity.

A very intriguing consequence of quantum field theory is that under the inclusion of

quantum effects the coupling constants of a theory are no longer constants but become

dependent on the energy scale at which they are probed. A very powerful tool in order

to study such phenomena was developed, the renormalisation group [150, 151]. Under

infinitesimal changes of the momentum scale k, the evolution of a coupling constant g can

be summarised in a differential equation, which is called the beta function

β(g) =
∂ g

∂ lnk
. (1.2)

The corresponding flow of the coupling with varying momentum is called the renormalisa-

tion group flow. With the pioneering work of Kadanoff [85] who introduced the concept of

scaling with the block-spin representation and Wilson [156, 155, 154, 157] who introduced

a concrete mathematical framework, the ideas of renormalisation group became a standard

approach in quantum field theory. The picture of energy dependent running couplings has

been thoroughly tested and verified by experiments [83].

It is commonly believed that, in order for a theory to be defined fundamentally, all

its couplings should approach a fixed point at very high energies [156], where k → ∞.

A very good example of such a theory is that of strong interaction, Quantum Chromo-

dynamics (QCD). It was shown [126, 71] that in the ultraviolet (UV) limit the coup-

ling constant of QCD approaches a non-interacting fixed point under the renormalisation

group (β(g) = 0 ; g = 0), implying that the theory is asymptotically free. Traditionally,

quantum field theory in general and consequently the renormalisation group were stud-

ied with the techniques of perturbation theory. This supposes that the theory is weakly

coupled and therefore that coupling constants are small and beta functions are expressed

as power series in g. At high energies, QCD is weakly coupled and perturbation theory

works well, but at lower energies the theory becomes strongly coupled. The breakdown of



4

perturbation theory becomes apparent when we approach the characteristic scale of QCD,

i.e. ΛQCD. The perturbative beta function predicts a pole at this scale, while it is known

that the theory remains finite but it enters a confinement phase. This indicates the need

of a non-perturbative treatment for the system.

Now we return to gravity to find out what happens when we are trying to quantise

the theory in the usual way. It is a common belief that, at very short distances the grav-

itational force should be quantised like the other forces of nature. From the fundamental

constants of nature one can form only one energy scale where quantum gravity effects

become important and this is known as Planck mass

MP =

√
~ c
GN
≈ 1.22 · 1019 GeV (1.3)

where ~ is Planck’s constant, c is the speed of light and GN is Newton’s constant. In

natural units, which we use here, we have ~ = c = 1. The corresponding length is the

Planck length lP ≈ 1.62 · 10−35 m. These energy and length scales are far away from the

reach of current experiments. In comparison, the maximum energy that the LHC will

reach will be 14 · 103 GeV and the precision tests of general relativity are accurate up to

lengths ∼ 10−3 m. However, it has been proposed that the scale of quantum gravity could

be much less than ∼ 1019 GeV. This could be the case if there exist extra dimensions

which are either very large [7, 5] or they are wrapped [128]. Then, the scale of quantum

gravity based on current constrains could be as low as the TeV scale, i.e.

MP ∼ O(TeV). (1.4)

This opens a fascinating prospect that quantum gravity effects could be observed at current

experiments like the LHC. If this is the case, experimental data would provide the first

evidence of quantum gravity and give invaluable insights about the nature of the theory.

However, it is on the theoretical front that attempts to quantise gravity face their

most severe challenges. As it was discussed above, in order for a theory to be defined

fundamentally and to be predictive at all scales, it needs to be “renormalisable” in the

sense that there are enough parameters in order to cancel the divergences. In perturbation

theory there is a simple rule to determine if this is the case just by observing the sign of

the mass dimension of the relevant coupling constant. For instance, Newton’s constant has

negative mass dimension [GN ] = −2, indicating that perturbative quantisation of general

relativity would not be possible. This was indeed verified by explicit calculations of t’

Hooft and Veltman [142] in the case of one loop gravity coupled to matter and of Goroff

and Sagnotti [67] in the case of pure two loop gravity.
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Even though perturbatively non-renormalisable, one can still make sense of quantum

general relativity when treated as an effective field theory. In this approach, quantum

effects are encoded in the action with terms which are suppressed by a very high energy

scale, the scale at which quantum gravity is manifested. In this way, loop contributions

can be calculated as well as low energy quantum corrections to the Newtonian potential

which are independent of the details of quantum gravity [21, 20, 24] and take the form

V (r) = −GN
m1m2

r

(
1− 167

30π

GN~
r2

)
. (1.5)

Then, a natural question to ask is up to which energy scale this approach can work. One

would expect that, as we approach the Planck mass, the effects of quantum gravity become

more important and the UV completion of the theory takes over, making the effective field

theory description invalid.

The unsurpassable difficulty of quantising gravity pertubatively has led to extensive

research towards a novel theory of quantum gravity and the proposition of many can-

didates. Among them, probably the most popular and the most studied is string theory

[68, 69, 124, 125] where new fundamental degrees of freedom, the strings, are introduced.

Every known field is then described as excitations of open and closed strings. In particular,

the description of gravity through string theory comes from the closed strings that have

spin-2 excitations. Moreover, because of the conformal invariance of the string worldsheet

the description of gravity as closed strings is perturbatively renormalisable. However,

this picture does not come without a price and string theory has yet to be established

as credible theory of quantum gravity since there are still drawbacks and open questions.

Among them one should mention the difficulty to construct a viable phenomenological

model for particle physics and the choice of one unique vacuum among the vast number of

possibilities. Other very popular approaches to the problem of quantum gravity include

loop quantum gravity (LQG) [8, 138, 137] and the spin foam models [11] where a non-

perturbative formulation of quantum gravity is attempted, again with the introduction of

new degrees of freedom. Among the successes of these approaches it is important to men-

tion the accurate description of quantum black hole entropy. Finally, in addition to those

quantum gravity candidates, discrete approaches have also been formulated in the context

of causal dynamical triangulations (CDT) [4] in a similar fashion to lattice approaches of

QCD.

In this thesis we are going to be concerned with an alternative to those approaches

aforementioned called “Asymptotic safety” [148, 130]. From a certain point of view, this

is the most conservative approach to quantum gravity since, in opposite to most of the
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others, it does not require the introduction of any new degrees of freedom. The metric

degrees of freedom are the carriers of the gravitational force even at the quantum level and

the theory is UV complete. To see how this could be the case consider that, despite the fact

that gravity is perturbatively non-renormalisable, there is still the possibility that non-

perturbative effects render the theory renormalisable in a similar way that the perturbative

pole in the QCD beta function can be understood non-perturbatively. In order for that

to be true the beta functions of the couplings should approach a renormalisation group

fixed point in the UV and there should also be trajectories of the renormalisation group

flow that connect the UV fixed point to the semiclassical regime, so that general relativity

is recovered at the low energy limit. Moreover, the number of the couplings that are

attracted to the fixed point should remain finite. This is because attractive directions

represent free parameters of the theory and in order to retain predictivity there should

be only a finite number of them to be fixed by experiment. In summary, the asymptotic

safety approach to quantum gravity examines the renormalisation group flow of the theory

and tries to determine if these requirements are fulfilled.

In order to be more precise we recall how these requirements are translated when

we consider a general gravitational theory [148]. Consider a Wilsonian four-dimensional

effective action for Euclidean gravity of the form

Γk =
∑
i

∫
d4x λ̄iOi (1.6)

where the terms Oi are built out of the metric field and its derivatives in accordance with

diffeomorphism invariance, and λ̄i are the corresponding couplings which carry the energy

dependence and therefore are functions of k. Denoting the canonical mass dimension of the

couplings as [λ̄i] = di, we introduce dimensionless couplings λi = k−di λ̄i(k). If the term Oi

in the effective action contains 2mi derivatives of the metric field, we have di = 4− 2mi.

The first requirement for a theory to become asymptotically safe is that at high energies

(k →∞) the renormalisation group flow of the theory is governed by an interacting fixed

point λ∗. This means that all the couplings approach a fixed point so that

βi ≡ ∂t(λi) = 0, (1.7)

where we have defined t = ln k. Assuming that this is the case, one has to verify that the

number of attractive directions remains finite. For this we linearize the flow in the vicinity

of the fixed point

βi =
∑
j

Mij(λj − λ∗j ) +O[(λi − λ∗i )2] (1.8)
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where Mij is the stability matrix given by

Mij =
∂βi
∂λj

∣∣∣∣
λ=λ∗

. (1.9)

The most general solution of (1.8) is given by

λi(k) = λ∗i +
∑
n

cnV
n
i k

ϑn (1.10)

where ϑn are the eigenvalues of Mij , V
n are the corresponding eigenvectors and cn are

free parameters. For the directions with negative eigenvalues ϑn < 0, at the ultra-violet

limit the couplings approach the fixed point. However, for those with positive eigenvalues

ϑn > 0 the couplings diverge for k → ∞ and so for a theory to be well defined at that

limit one has to demand that the respective parameters cn vanish. This leaves us with a

number of undetermined cn which correspond to the number of negative eigenvalues. In

order for a theory to be predictive and renormalisable in the usual sense, the number of

these parameters should be finite and consequently they are to be fixed by experiment.

This translates to the second requirement for a theory to be asymptotically safe, namely

that the number of ϑn which are negative remains finite.

The original conjecture of Weinberg [148] in favour of asymptotic safety scenario was

based on the following argument. Provided that an ultra-violet fixed point exists, we can

read from the canonical mass dimensions of the couplings the following form for the beta

functions

βi = −di λi + quantum corrections. (1.11)

Assuming a free theory where there are no quantum corrections, the corresponding eigen-

values ϑn are given by −di and consequently only a finite number of them will be negative.

Then, in order to spoil the assumptions of asymptotic safety it would be required that

the contribution of quantum corrections is so strong that will change the sign of infin-

itely many eigenvalues. This is considered highly unlikely, even though only a detailed

calculation could verify it.

The first evidence for such a scenario came within perturbation theory in 2 + ε di-

mensions [59, 29, 148, 86, 3]. The gravitational flow was computed and a fixed point was

found. Even though gravity is trivial in 2 dimensions, it was argued that there might

exist a continuation to 4 dimensions so that this picture holds true. However, a value of

ε = 2 is rather big in order to trust perturbative results in a small ε expansion. Moreover,

gravity in four dimensions is qualitatively different from that in three, where there are no

propagating degrees of freedom and two, where gravity is trivial. With these considera-

tions in mind, it becomes apparent that in order to examine four dimensional quantum
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gravity one has to perform a non-perturbative calculation that in every theory is a highly

non-trivial and a very involved task.

Inspired by the work of Wilson and Kadanoff a very powerful non-perturbative flow

equation for the effective action was formulated by Wetterich [153]. A common approx-

imation scheme within this approach is the restriction of invariants in the fundamental

action. Following these advances, the first non-perturbative flow equation was derived in

1998 [130] for Einstein-Hilbert approximation and a year later the UV fixed point was first

found in 4 dimensions [141]. Since then, a significant amount of research has been devoted

to the asymptotic safety program with many new results which provide further evidence

for such a scenario [42, 92, 99, 55, 56, 41]. For the significant advances in this front one

has to mention extensions of the operator space by adding higher scalar curvature terms

starting with the marginal operator R2 [91] and continuing with an expansion in powers

of R up to order 8 [32, 33, 34, 105]. Investigations have also included the first order con-

tribution of more complicated tensor structures such as the Weyl squared term [16, 17].

Moreover, the renormalisation group for gravity under the inclusion of matter fields has

been studied [122, 121, 115, 116, 57, 43, 45, 74, 159], as well as investigations for the

quantum effects of the ghost sector [44, 46, 70].

Soon after the establishment of asymptotic safety as a candidate theory for quantum

gravity, phenomenological applications attracted a lot of interest. The most well studied

concerns the physics of black holes and their modifications if such a scenario is realised.

The first application to black holes examined the implications of the running of Newton’s

constant in the case of a Schwarzschild black hole [23]. It was followed by extensions

to rotating spacetimes where the Kerr solution [133, 134] was investigated, and also to

higher dimensional spherical symmetric black holes [54] as well as black holes coming

from higher derivative gravity [26] or from the inclusion of boundary terms [14]. The

asymptotic safety scenario has also been applied to cosmology where again the running of

the gravitational coupling was implemented in order to examine consequences on physical

quantities [131, 10, 81, 135, 35, 36, 82].

In this thesis we will systematically tackle some of the challenges that arise in the

search for asymptotic safety and we will investigate applications to the physics of black

holes. Our primary focus will be to test the requirements for asymptotic safety to as

high precision as possible. For this, we develop a novel strategy and we perform the most

advanced computation up to now by significantly extending the operator space. We are

able for the first time to examine polynomials of the Ricci scalar up to order 34 and
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to investigate their UV properties. We will also study higher order expansions of more

complicated tensor structures such as the Ricci tensor Rµν . In this way get new insights

about the structure of the theory and we are able to quantitatively investigate the effects

that higher order operators have on the asymptotic safety scenario. We will also use the

results of asymptotic safety in order to examine their implications to the physics of black

holes. We will employ the running of Newton’s constant and we will investigate how the

properties of black holes are modified due to quantum corrections.

The outline of this thesis is as follows. We begin in Chapter 2 with the theoretical

background and we recall the basics of the effective action and of the renormalisation

group equation which it obeys. We also go through the construction of the flow equation

for gravity, following the original work of [130] and we summarise the calculational setup

and the methods that we need to use in order to address such equations. In Chapter 3

we develop the technical machinery that we will use for the derivation of renormalisation

group flows. This is done in a general context by developing an algorithm which can

be adapted to investigate various gravitational approximations. In Chapter 4 we turn

back our attention to the physical problem and we investigate the UV properties of a

general function of the Ricci scalar f(R) [33, 105]. We put forward a systematic search

strategy in order to test the asymptotic safety conjecture within this approximation and

we extend the operator space to the 34th power of the Ricci scalar. The results show

great stability as we increase the order of approximation and provide valuable insights

into the structure of the UV fixed point. With these findings we are able to revisit

Weinberg’s original argument and to find strong evidence in favour of the asymptotic

safety scenario. In Chapter 5 we examine if this picture is modified when we allow more

complicated tensor structures. We choose the gravitational approximation to consist of

powers of the Ricci tensor squared and single powers of the Ricci scalar. We derive the

renormalisation group flow for this approximation and we investigate its UV properties.

We find a self-consistent fixed point and three relevant directions for every order up to order

7 in the expansion. These results provide encouraging evidence that more involved tensor

structures do not show the tendency to invalidate the asymptotic safety requirements.

Subsequently, we turn our attention to phenomenological applications of the asymptotic

safety scenario. In Chapter 6 we use as input the running of the gravitational coupling

as dictated by asymptotic safety and we examine its effects on black hole physics in the

context of rotating black holes in higher dimensions. After a brief review of classical black

hole solutions we examine the implications that the running coupling has to their horizon
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structure. Moreover, we investigate how thermodynamic quantities such as temperature

and specific heat are affected and we also comment on curvature singularities and the

possibility that they are absent in the case of asymptotic safety. Finally, we summarise

with our conclusions in Chapter 7.
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Chapter 2

The renormalisation group for

gravity

2.1 Introduction

In this Chapter we will present the theoretical background that we will subsequently use

in this thesis. We will recall the derivation of the flow equation and we will outline the

basic steps that we have to take in order to evaluate it, as well as the technical tools that

we are going to use.

We begin with the effective action which is going to be the central object of interest for

our calculations. The construction and the meaning of the effective action as a functional of

the classical field are recalled (for reviews see [25, 123, 149]). Then we adopt the Wilsonian

approach [156, 155, 154, 157] where the couplings become momentum-dependent quantities

and we re-derive [153] the renormalisation group flow for the simplest case of a scalar field.

Some approximation schemes and their dependence on the regulator are discussed and the

notion of optimisation is introduced [94, 96].

In the second part of this Chapter we are concerned with the specific form of the

renormalisation group flow in the case of gravity (for reviews see [118, 132, 120, 101]). We

follow the original work of [130] for the derivation of the flow and we begin with a discussion

of the diffeomorphism invariance and of the background field formalism. We incorporate

these aspects into our formalism and we outline the derivation of the renormalisation group

flow for gravity. We also discuss the approximation schemes that are common and the

one that we will employ here. Due to the diffeomorphism invariance the effective average

action has to be supplemented by a gauge fixing term which we present as well as the

corresponding ghost action. Possible regulator schemes are discussed and we specify the
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one that we will use. Subsequently we turn our attention to the techniques that we will

use in order to evaluate the renormalisation group flow and we review the basic aspects

of the heat kernel methods [9, 63].

2.2 Functional flow

In this section we are going to recap the basics for the effective action and we will recall the

derivation of the renormalisation group flow for the effective action [153] in the simplest

case of a scalar field φ. Here we will follow [62] to which we refer for a complete review

together with [112, 136].

2.2.1 Effective action

The most fundamental object that we are interested in is the effective action. Here we are

going to review its construction and for simplicity we are going to present the results for a

scalar field φ. We begin by recalling that in a quantum field theory all the information is

stored in n-point functions which are obtained by the generating functional which in the

Euclidean formalism takes the following form

Z[J ] = eW [J ] =

∫
Dφ exp

[∫
d4x (−L[φ]) + Jφ

]
. (2.1)

Here J is the external source and by Jφ we mean
∫
d4xJ(x)φ(x). The above quantity is

called the generating functional because by taking n functional derivatives of Z[J ] at J = 0

we obtain the n-point functions of a theory defined by the Lagrangian density L. The

functional W [J ] which appears as the exponent in (2.1) is called the generating functional

of connected diagrams. The reason for this name is the same as for the functional Z[J ].

By taking n derivatives of W [J ] with respect to the source J at J = 0 the result is the

connected n-point correlation function. A fundamental quantity coming from W [J ] comes

by taking only one functional derivative of W [J ] with respect to the source J

δW [J ]

δJ
=

1

Z[J ]

δZ[J ]

δJ
= 〈φ〉J ≡ ϕ, (2.2)

where ϕ is called the classical field and it corresponds to the expectation value of the field

φ in the presence of the source J . Now we can proceed in order to define the quantity that

we are going to use extensively, namely the effective action. This is given by the Legendre

transform of W [J ]

Γ[φ] = sup
J

(∫
Jφ−W [J ]

)
(2.3)
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where the notation supJ denotes that for every φ a special J is singled out such that∫
Jφ−W [J ] approaches its supremum. By solving (2.3) for Jsup we have φ = δW [J ]

δJ = ϕ

so that we can write

Γ[ϕ] =

∫
Jϕ−W [J ]. (2.4)

The effective action is an object which is a functional of the classical field ϕ and thus it

incorporates all the quantum fluctuations. The meaning of the effective action becomes

clear when we take a functional derivative with respect to its argument

δΓ[ϕ]

δϕ
= J(x). (2.5)

These are the quantum equations of motion by which the effective action Γ[ϕ] governs the

dynamics of the field expectation value, taking the effects of all quantum fluctuations into

account. By taking another functional derivative of the effective action with respect to

the classical field ϕ we arrive to the following expression written in matrix notation

δ2Γ[ϕ]

δϕ(x)δϕ(y)
=

(
δ2W [J ]

δJ(x)δJ(y)

)−1

≡ G(x, y)−1 (2.6)

where G(x, y) is the exact propagator of the field φ and so that the object δ2Γ[ϕ]
δϕ(x)δϕ(y) is

called the inverse propagator.

2.2.2 The flow equation

The first step towards deriving the flow equation for the effective action is to adopt the

Wilsonian approach for integrating out momentum modes shell by shell. As a result the

effective action and all the couplings of the theory are turned into momentum dependent

quantities. The price to pay is that in order to study the flow of the effective action we

should include in it all the terms that are consistent with the symmetries of the theory.

After adopting the above picture we end up with an interpolating action Γk which is called

the effective average action, such that Γk corresponds to the bare action for k → Λ and

to the full quantum action for k → 0 (see Figure 2.1). In order to define the effective

average action we proceed as before and we start with the definition of the IR regulated

generating functional

Zk[J ] = eWk[J ] =

∫
Λ
Dφ e−S[φ]−∆Sk[φ]+

∫
Jφ, (2.7)

which is the generating functional defined in (2.1) plus the regulator term ∆Sk[φ] which

plays the role of the cutoff at some energy scale k. The regulator term takes the form

∆Sk[φ] =
1

2

∫
ddq

(2π)d
φ(−q)Rk(q)φ(q) (2.8)
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Figure 2.1: The effective average action Γk interpolating between the bare action SB

k → Λ and the full quantum effective action Γ for k → 0.

so that it is quadratic in the fields and can be viewed as a momentum dependent mass

term. The regulator is in general an arbitrary momentum-dependent function, but in

order to implement correctly the IR regularisation and to ensure that the flow equation is

finite it should satisfy the following conditions

lim
q2/k2→0

Rk(q) > 0 ; lim
k2/q2→0

Rk(q) = 0 ; lim
k2→Λ,Λ→∞

Rk(q)→∞ (2.9)

The first condition is required so that the regulator term actually implements an IR

regularisation and so that no infrared divergences are encountered in the presence of

massless modes. The second condition is required in order to recover the full effective

action at the infrared limit, lim
k→0

Γk = Γ. Finally, the third is required so that the bare

action SB is recovered at the UV limit k2 → Λ and Λ→∞. In Figure 2.2 we have plotted

a typical smooth regulator and its scale derivative. It follows that the effective average

action is defined as

Γk[φ] = sup
J

(∫
Jφ−Wk[J ]

)
−∆Sk[φ] (2.10)

and by repeating the same process as before we have at the supremum of the quantity

inside the brackets that ϕ = 〈φ〉J = δWk[J ]
δJ(x) . Consequently for the full propagator we get

δϕ(x)

δJ(y)
=

δ2Wk[J ]

δJ(y)δJ(x)
≡ Gk(x− y). (2.11)

By taking one functional derivative of the effective average action we have for the quantum

equations of motion J(x) = δΓk[ϕ]
δϕ(x) + Rk(x)ϕ(x) and then by taking another functional
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Figure 2.2: A smooth exponential regulator Rk (black line) and its scale derivative k ∂kRk
(grey line) as functions of momenta q2 in units of k2. By virtue of (2.17) the regulator

provides and IR regularisation and its scale derivative a UV regularisation for the flow of

the effective average aciton.

derivative we have

δJ(x)

δϕ(y)
=

δ2Γk[ϕ]

δϕ(x)δϕ(y)
+Rk(x, y). (2.12)

This implies in operator notation that the Hessians Γ
(2)
k = δ2Γk[ϕ]

δϕ(x)δϕ(y) plus the Regulator is

the inverse of the full propagator

(
Γ

(2)
k +Rk

)−1
= Gk . (2.13)

What we are really interested in is the cutoff scale dependence of the effective average

action. For this we define t = ln k
Λ and ∂t = k d

dk and we compute the ∂t derivative of the

generating functional of connected diagrams Wk[J ]

∂tWk[J ] = −1

2

∫
ddq

(2π)d
∂tRk(q) 〈φ(−q)φ(q)〉 (2.14)

Now we have for the ∂t derivetive of the ∆Sk[ϕ] term of the classical field ϕ

∂t∆Sk[ϕ] = −1

2

∫
ddq

(2π)d
〈φ(−q)〉∂tRk(q)〈φ(q)〉 (2.15)

Combining the two expressions above and since we know that the full propagator is given

by Gk(q) = 〈φ(−q)φ(q)〉 − 〈φ(−q)〉〈φ(q)〉 = 〈φ(−q)φ(q)〉conn we can substitute in (2.14) in

order to write

∂tWk[J ] = −1

2

∫
ddq

(2π)d
∂tRk(q)Gk(q) + ∂t∆Sk[ϕ]. (2.16)
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Now we have all the ingredients that we need in order to compute the scale derivative of

the average effective action. Then we have

∂tΓk[ϕ] =− ∂tWk[J ]− ∂t∆Sk[ϕ]

=
1

2
Tr

[(
Γ

(2)
k +Rk

)−1
∂tRk

]
.

(2.17)

Here the trace denotes the sum over all indices and the integration over all momenta.

Equation (2.17) is the flow equation for the effective average action and it is central for

the study to follow in this thesis. It provides information about infinitesimal changes of

the effective average action under the momentum scale and it has the property that is both

UV and IR finite. In the UV the scale derivative of the regulator renders this equation

finite, while in the IR the regulator itself is used to regulate Γ
(2)
k . Therefore, despite the

difficulty to define the effective action one could in principle integrate the flow equation

for the effective average action.

2.2.3 Optimisation

The flow equation (2.17) is a very powerful tool for addressing non-perturbative aspects of

quantum field theories. However, these problems are often too complex to solve exactly and

we have to rely on some kind of approximation scheme. A common approximation scheme

that is used is the derivative expansion where the effective average action is expanded in

terms of the number of derivatives that act on the field [66]. Similarly one can approximate

the effective average action using the vertex expansion where a series in terms of the

number of vertices is examined. It is also common to use combination of approximation

schemes like the two mentioned here. With these considerations in mind it becomes evident

that we need to have a systematic control of the approximation in order to ensure that

the dependence of the results on it is minimised.

The truncated flows will in general depend on the regulator in a non-trivial way [12, 93,

6]. Note that this dependence disappears when we go to the infrared limit (k → 0) and we

recover the full quantum effective action. However, there can be many trajectories like the

one sketched in Figure 2.1 that connect the same endpoints SB and Γ but have a different

renormalisation group flows due to different regulators. The notion of optimisation [94, 97]

was then developed by demanding that the regulator is chosen such that the leading order

terms of the relevant expansion, will approximate the full flow in an optimised way.

For example, consider the derivative expansion of the O(N) scalar model in 3d. The

physical critical exponents νphys are expressed as the sum of additional contributions
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νi(RS) from each order of the derivative expansion i, with the argument (RS) to indicate

the dependence on the regularisation scheme

νphys = ν0(RS) + ν1(RS) + ν2(RS) + . . . (2.18)

Then it turns out [95], that using a regulator profile function which takes the form

Rk(q
2) = (k2 − q2)θ(k2 − q2). (2.19)

most of the physical information is encoded in ν0(RSopt) and that the radius of conver-

gence for such an expansion is maximised. The optimised cutoff (2.19) takes the form

of a theta function where for q2 > k2 vanishes identically, while for k2 > q2 acts like a

momentum dependent mass term. It has been shown that this regulator leads to better

stability and convergence properties of the functional flows [94, 96]. It also provides algeb-

raic simplifications for the flows which will become of great importance when we will be

concerned with gravity. For a more detailed analysis of the optimised regulator benefits

see [104] where the 3d Ising model is examined up to the fourth order in the derivative ex-

pansion. Since its introduction, the regulator (2.19) has been very popular in the context

of quantum gravity and the previous studies of f(R) gravity [33, 105] use this. It is also

the regulator profile function that we are going to use in the rest of this thesis.

2.3 Functional flow for gravity

In the first part of this Section we collect the elements in order to derive the renormalisation

group flow for gravity following the original work of [130]. In what follows we will review

the basic ingredients that we will need to use in order to derive renormalisation group flows

for gravity without relying on specific ansatz. Finally we recap the heat kernel methods

which we are going to use for the calculation of the functional trace in (2.17).

2.3.1 Diffeomorphism invariance

In order to construct the functional renormalisation group flow for gravity we have to take

into account the symmetries of the theory. In gravity this means that the effective action

is invariant under the general coordinate transformation

δgµν = Lvgµν (2.20)

where Lv is the Lie derivative with respect to the vector field vµ. In gauge theories this is

usually implemented with the aid of the Ward identities. These are expressed in the form
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of an identity for the functional Γ that satisfies an equation W [Γ] = 0. When we adopt

the Wilsonian picture and we turn to the effective average action Γk the Ward identities

become momentum dependent Wk[Γk] = 0 and the requirement that lim
k→0

Wk[Γk] = W [Γ]

is automatically satisfied provided that Γk obeys the flow equation (2.17) (see [102] for a

complete discussion in the context of QCD).

However, in gravity it is common that one makes approximations for the effective av-

erage action and therefore there is no guarantee that the Ward identities are still satisfied.

In order to implement diffeomorphism invariance in our study we employ the background

field method [2]. According to this we decompose our original field into an arbitrary fixed

background and a fluctuation field which transforms under quantum gauge transforma-

tions and also becomes the integration variable in the path integral. In the case of gravity

we decompose the metric field γµν(x) into an arbitrary constant background ḡµν(x) and a

fluctuation hµν(x) according to

γµν(x) = ḡµν(x) + hµν(x). (2.21)

Then we can replace the integration over γµν(x) with an integration over hµν(x). For a

complete discussion about the construction of Wilsonian flows using the background field

methods see [58]. As is discussed in the first application of the background field method

in RG gravity studies [130] the effective action Γk should be invariant under the general

coordinate transformation

Γk[χ+ Lvχ] = Γk[χ], (2.22)

where χ stands collectively for all the fields that Γk depends on and the Lie derivative is

with respect to the background gauge transformations. Because of the gauge symmetry

the action should be supplemented with a gauge fixing term and the respective ghost term,

the specific form of which will be presented in Section 2.3.3. Then, the background field

method guarantees that the effective average action remains gauge invariant apart from

the terms that explicitly break the symmetry.

2.3.2 The flow equation for gravity

For the construction of the flow equation for gravity we follow [130] and we start by writing

down the most general scale-dependent partition function

Zk[J ] =

∫
DhµνDCµDC̄µ exp

[
−Sgr[ḡ + h]− Sgf [h; ḡ]− Sgh[h,C, C̄; ḡ]− Ssource −∆Sk

]
(2.23)
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where Sgr is our ansatz for the gravitational action, Sgf is the gauge fixing term, Sgh is the

ghost term and Ssource is the source action. The fields C and C̄ are the Faddeev-Popov

ghosts. Now, in analogy with the classical scalar field ϕ discussed in the previous section,

we define the classical counterparts of the metric and the ghost fields to be respectively gµν

and c, c̄. Now the classical metric is split to the background and the classical fluctuation h̄

as gµν(x) = ḡµν(x) + h̄µν(x). Consequently, we write the effective average action in terms

of the classical fields

Γk[g, c, c̄ ; ḡ]. (2.24)

The conventionally defined effective action is then obtained at the limit

Γ[gµν ] = lim
k→0

Γk[gµν , 0, 0; gµν ] (2.25)

and it follows that Γ[gµν ] is invariant under the gauge transformations δgµν = Lvgµν . For

the renormalisation group flow of the effective average action we then have [130]

∂tΓk[h̄, c, c̄ ; ḡ] =
1

2
Tr

[(
Γ

(2)
k +Rk

)−1
∂tRk

]
h̄h̄

+
1

2
Tr

[(
Γ

(2)
k +Rk

)−1
∂tRk

]
c̄c

− 1

2
Tr

[(
Γ

(2)
k +Rk

)−1
∂tRk

]
cc̄

(2.26)

with the following definition for the second variation Γ
(2)
k of two fields χi and χj(

Γ
(2)
k

)
χiχj
· I · δ(x− y) =

1√
ḡ(x)

δ

δχi(x)

1√
ḡ(y)

δΓk
δχj(y)

(2.27)

and I being the unit element on the space of fields χi and χj carrying the appropriate

index structure. Note that the second variation involves derivatives of the fluctuating field

at a fixed value of the background field.

Now we have to make an appropriate choice of ansatz for the effective average action

Γk in order to solve the above flow equation. At this point there is the necessity to rely on

some approximation schemes so that we make the equation tractable. Here we describe the

three steps of approximation and the resulting flow equation. First, for the gravitational

effective action one has to truncate the theory space in order to have a system of finite

number of differential equations. Secondly, one has to address the issue of quantum effects

coming from the ghost action and having to solve bimetric equations. For this we make

an approximation ansatz for Γk as

Γk[h̄, c, c̄ ; ḡ] = Γ̄k[ḡ + h̄] + Γ̂k[h̄ ; ḡ] + Sgf [h̄; ḡ] + Sgh[h̄, c, c̄; ḡ], (2.28)

where we have defined

Γ̄k[ḡ + h̄] = Γk[ḡ, 0, 0 ; ḡ] (2.29)
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and Γ̂k[g, ḡ] encodes all the terms that violate the split symmetry of Γk for g 6= ḡ. Then

the last step of approximation is to set Γ̂k = 0. In this way one ends up with an equation

which is function only of one metric. To clarify further the benefits of this simplification

note that now the second variation (2.27) is a variation of only fluctuating fields which

makes the calculation considerably simpler. By virtue of the modified Ward identities it

was shown [130] that this is a good leading order approximation. Moreover, results with

the ghost sector included [44, 46, 70] indicate that the quantitative impact that this has

is not important. Recently, also bimetric truncations for gravity have been considered

[106, 107, 108]. The final form for the approximation of the effective average action will

then be

Γk[g, ḡ, c, c̄] = Γ̄k[g] + Sgf [h; ḡ] + Sgh[h, c, c̄; ḡ]. (2.30)

Then, the flow equation that we are interested in is given by

∂tΓ̄k[g] =
1

2
STr

[(
Γ

(2)
k +Rk

)−1

χiχj
∂t (Rk)χjχi

]
, (2.31)

where χi stand collectively for the metric and ghost degrees of freedom.

2.3.3 Gauge fixing and ghosts

Because of the diffeomorphism invariance of the metric field the effective action has to be

supplemented with a gauge fixing term so that only the physical modes of the field are

taken into account. Following [130] it is convenient to choose a gauge fixing term of the

form

Sgf =
1

2α

∫
ddx
√
ḡ ḡµνFµFν (2.32)

with the gauge fixing condition Fµ = 0. Here we will choose the function Fµ to be given

by [121]

Fµ =
√

2κ

(
∇̄νhµν −

1 + ρ

d
∇̄µh

)
, (2.33)

with κ = (32πGN )−1/2 and h = hµν ḡµν being the trace of the fluctuation. The gauge

fixing condition that was originally used in [130] corresponds to ρ = d
2 − 1. Here and from

now on barred geometrical quantities such as ∇̄ above, mean that they are constructed by

the background metric ḡµν . Then, by substituting Fµ into the gauge fixing action we get

Sgf =
κ2

α

∫
ddx
√
ḡ

[
∇̄ρhµρ∇̄λhµλ −

(
1 + ρ

d

)2

h∇̄2h+ 2
1 + ρ

d
h∇̄µ∇̄ρhµρ

]
. (2.34)

The corresponding ghost action for the above gauge fixing is

Sgh = −
√

2

∫
ddx
√
ḡC̄µMµνC

ν , (2.35)
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where in the first order of the expansion the Faddeev-Popov operator is given by

Mµν = ∇̄ρḡµν∇̄ρ + ∇̄ρḡρν∇̄µ − 2
1 + ρ

d
∇̄µḡρσ ḡρν∇̄σ. (2.36)

In Chapter 3 we are going to compute the second variation of the ghost fields from (2.35)

and the contribution to the gravitational second variation coming from the gauge fixing

term (2.35).

2.3.4 Regulator schemes

The last ingredient of the flow equation consists of the regulator term. In general the

second variation for each component field will be a function of some differential operator

O. The general prescription is that the regulator term Rφiφjk for an inverse propagator(
Γ

(2)
k

)φiφj
is chosen such that it leads to the replacement

O → O +Rk(O) (2.37)

where Rk(O) is the regulator profile function. At this stage we have some freedom for

choosing the cutoff scheme by choosing different definitions for the differential operator O.

As has been extensively discussed in the literature [34] we split the differential operator

according to O = −∇2 + E, where ∇2 represents the covariant derivative for both diffeo-

morphism invariance and all other possible gauge symmetries and E is a linear map acting

on the field. In turn we split the potential term as E = Q + Ek where Q is independent

of the couplings and Ek depends on the couplings of the theory. Then we discriminate

between three different cases for the differential operator O. If it contains only the cov-

ariant derivatives of the theory we call this regulator scheme as Type I cutoff. This was

the cutoff first used in [130]. If the regulator term contains the covariant derivatives plus

a coupling independent term Q we then call it Type II cutoff. This was the case invest-

igated in [34] where the potential Q was chosen as R
d for the gravity part and as Rµν for

the ghost fields. Finally, if in addition to ∇2 and Q the regulator scheme also contains

a potential term which depends on the couplings as Ek, then it is called Type III cutoff.

This type of cutoff was again introduced in the context of Einstein-Hilbert truncation in

[34] by stripping out the gravitational regulator from the wavefunction renormalisation.

In what follows we are going to use a Type I cutoff for our calculations.

2.3.5 Choice of background

Up to now we have left the background metric undetermined. In order to calculate the

renormalisation group flow we will use the heat kernel methods which are described in
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2.3.6. To use these techniques we eventually have to make a choice for the background

metric ḡµν . For our purposes and in order to make the evaluation of the flow simpler we

will choose our background to be a sphere. Then we have the following identities

R̄µν =
R̄

d
ḡµν ; R̄µνρσ =

R̄

d(d− 1)
(ḡµρḡνσ − ḡµσ ḡνρ) . (2.38)

This choice of background amounts to projecting all the tensorial structures to the scalar

curvature R̄. However, a non-trivial dependence of the various tensors comes into con-

sideration through the evaluation of the second variation. For a more detailed discussion

about the background dependence see [106].

2.3.6 Heat Kernel techniques

Here we are going to recall the general methods for evaluating the flow equation using

the heat kernel techniques [9, 63]. The RHS of the flow equation (2.17) consists of the

functional trace over the quantity ∂tRk(Γ
(2)
k +Rk)−1. As mentioned, the functional trace

has the meaning of the sum over all indices and the integration over all momenta. In

general, the functional trace of a function W (O) of an operator O is given by the sum

TrsW (O) =
∑
i

W (λi), (2.39)

where λi are the eigenvalues of the operator. By introducing the Laplace anti-transform

W̃ (t) we express W (t) =
∫
ds e−tsW̃ (t) and we substitute back in (2.39) in order to write

TrW (O) =

∫ ∞
0

dt W̃ (t) Trse
−tO (2.40)

where K(t) = e−tO is the heat kernel of the operator O. In equation (2.40) the subscript

s denotes the spin of the field which the operator O acts on and takes the values 0 for

scalars, 1 for vectors and 2 for 2-tensors. The trace of the heat kernel has a well known

early time (t→ 0) asymptotic expansion given by [9]

Trse
−tO =

1

(4π)d/2

∫
ddx
√
g
[
trsb0(O)t−

d
2 + trsb2(O)t−

d
2

+1 + . . .

+trsbd(O) + trsbd+2(O)t+ . . .] .

(2.41)

The coefficients bn are called the heat kernel coefficients and they are linear combinations

of curvature tensors and their derivatives of order 2n. The trace of the coefficients that

we will need in this thesis evaluated in the spherical background metric can be read in

Appendix B. Now we define Bn =
∫
ddx
√
g trsbn(O) and Qn[W ] =

∫∞
0 dt t−nW̃ (t), so

that we can write equation (2.40) in the following form

TrW (O) =
1

(4π)d/2

∞∑
n=0

Q d
2
−nB2n(O). (2.42)
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Now the functional trace is expressed as the early time expansion for the heat kernel

of the operator O instead of the spectral sum (2.39). One of the great benefits of this

representation is that by using the optimised cutoff (2.19) the series truncates because all

the Qn[W ] vanish for n < −d. Therefore with a finite number of heat kernel coefficients we

can derive the full flow. This becomes apparent when we make use of the Mellin transform

and we express the functional Qn[W ] in terms of the original function W (z). Then we

have that for every n > 0

Qn[W ] =
1

Γ(n)

∫ ∞
0

dz zn−1W (z) (2.43)

and similarly for Q−n with n ≥ 0 ∈ Z we have

Q−n[W ] = (−1)n
dnW (z)

dzn

∣∣∣∣
z=0

. (2.44)

In Chapter 3 we will develop a general algorithm for computing these functionals just with

the knowledge of the second variation. It will then become clear that the usage of the

optimised cutoff truncates the series and we end up with an exact flow.

As will become clear later, there are some cases where we have to exclude certain

modes from the trace computation due to constraints that some fields obey. Here we are

going to state the general mechanism of how this is taken into account. More details about

the specific exclusions that we are going to use can be found in the Appendix B. Since the

trace of an arbitrary smooth function W (O) can be represented as its spectral sum, the

general rule for omitting the missing modes from the trace of an operator valued function

is

Tr
′...′
s [W (−∇2)] = Trs[W (−∇2)]−

l=m∑
l=1

Dl(d, s)W (Λl(d, s)) (2.45)

where the m primes on the LHS indicate the number of modes to be subtracted and

Dl(d, s) are the degeneracies of the eigenvalues Λl(d, s). For the operator −∇2 acting on

scalars, transverse vectors and transverse-traceless symmetric tensors Dl(d, s) and Λl(d, s)

are given in Table B.1 of Appendix B.

2.4 Summary

In this Chapter we have summarised the theoretical background of this thesis and we

have gathered together all the ingredients that we will need in order to proceed with

the evaluation of the renormalisation group flow for gravity. We have briefly reviewed

the fundamental aspects of the effective average action and the equation which it obeys



24

under the renormalisation group. We then discussed the choice of the regulator function

according to the optimisation principle.

In the second part we reviewed the derivation and the form of the flow for a grav-

itational theory and we presented the form of the gauge fixing and ghost actions. Sub-

sequently we reviewed the regulator schemes that are common and we chose the one that

we will use for our computations. Finally we recalled the heat kernel methods which are

used in order to evaluate the trace which enters the flow equation.
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Chapter 3

Flow derivation

3.1 Introduction

The functional equation (2.31) provides a powerful tool for the investigation of the renor-

malisation group flow for gravity. For the derivation of such a flow we need to divide the

calculation into separate steps and to develop some technical machinery. In this chapter

we present some computational techniques for the two main elements of the flow calcu-

lation, namely, the evaluation of the second variation and of the functional trace. The

results of this chapter are kept general and they will subsequently be used in Chapter 4

and Chapter 5 for the derivation of the gravitational flow in different approximations.

In the first part we are concerned with the derivation of the second variation. It is

important to choose a representation for our field in such a way that the resulting second

variation is a function of operators with known heat kernel coefficients. For this reason

we decompose the metric field into its transverse traceless components [158, 42]. This

is a change of integration variables in the path integral which leads to the appearance

of auxiliary fields through the determinants of the transformation. After performing the

decomposition we determine the second variation for the gauge fixing action and the

corresponding ghost action. In this way we compute the Hessians for all the parts of

the effective average action (2.30) apart from the gravitational anstaz Γ̄k which will be

computed in the corresponding chapters.

In the second part of this chapter we are interested in the functional trace that appears

in (2.31). We develop a general algorithm for the evaluation of the trace which has as

input the Hessian of a field and as output a closed expression for the functions Qn[W ] in

the heat kernel expansion (2.42). We write the Hessians as power series of the operator

∇2 and we adopt the choice of cutoff type and of regulator profile as outlined in Chapter
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2. Then we proceed step by step and we derive analytic expressions for all the functions

Qn[W ]. The flow equation is then obtained simply by summing the appropriate terms in

the heat kernel expansion.

The rest of this chapter is organised as follows. In Section 3.2 we present the derivation

of the Hessians. We start in 3.2.1 by discussing the transverse traceless decomposition of

the metric field and the transverse decomposition of the ghost fields. We then substitute

in the gauge fixing action and in 3.2.2 we find the contribution to the Hessian due to the

gauge fixing. Similarly in 3.2.3 we compute the Hessian of the ghost action. Then, in

3.2.4 we examine the metric and ghost decomposition to determine the contributions in

the action of the auxiliary fields and to compute their Hessians. In Section 3.3 we present

the algorithm for the computation of the functional trace. In 3.3.1 we determine the

regulator term for a Type I cutoff and in 3.3.2 we compute the coefficients Qn[W ] for the

diagonal piece of the Hessian. In 3.3.3 we compute Qn[W ] for the non-diagonal piece of

the Hessian where we have a mixing between two components and in 3.3.4 we investigate

the case where certain modes have to be excluded from the trace. Finally, in Section 3.4

we summarise our results.

3.2 Computing the Hessians

Here we are going to derive the Hessians for all the fields that contribute to the flow

equation apart from the gravitational part which will be derived in the next chapters

according to the ansatz chosen. As explained in 2.3.2 the effective average action takes

the form

Γk[g, ḡ, c, c̄] = Γ̄k[g] + Sgf [h; ḡ] + Sgh[h, c, c̄; ḡ]. (3.1)

Here Γ̄k[g] encodes the gravity part which we leave undetermined for now, Sgf [h; ḡ] is the

contribution from the gauge fixing term and Sgh[h, c, c̄; ḡ] is the contribution from the

ghosts. The results of this section are commonly used in studies of RG gravity and they

can be found in numerous previous works [130, 91, 42, 33, 105].

3.2.1 Decompositions

In order to calculate the trace with the heat kernel methods we have to bring the second

variation into a form where Γk(z) is a function of the D’Alembertian. For this reason we

decompose our original field hµν into its transverse traceless decomposition [158] which

was first introduced in the context of the functional renormalisation group in [42]
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hµν = hTµν + ∇̄µξν + ∇̄νξµ + ∇̄µ∇̄νσ −
1

d
ḡµν∇̄2σ +

1

d
ḡµνh, (3.2)

with the various new fields that appear being subject to the constraints

ḡµνhTµν = 0, ∇̄µhTµν = 0, ∇̄µξµ = 0, h = ḡµνh
µν . (3.3)

Here h = ḡµνhµν is the trace of the fluctuation, hTµν denotes the transverse-traceless part

of hµν , ξµ is a transverse vector that together with the scalar σ make up the longitudinal-

traceless part of hµν according to (3.2). Such a decomposition is also advantageous because

it leads to partial diagonalisation of the propagator (except between h and σ) and therefore

it becomes possible to analytically invert it.

Note that after decomposing our original field hµν into its transverse traceless decom-

position it does not receive any contributions from the modes of the σ field that obey the

conformal Killing equation

∇̄µ∇̄νσ + ∇̄ν∇̄µσ =
2

d
ḡµν∇̄2σ (3.4)

and similarly from the modes of the ξµ field that obey the Killing equation

∇̄µξν + ∇̄νξµ = 0. (3.5)

These modes, when evaluated on the sphere, correspond to the lowest two modes of σ and

the lowest mode of ξµ respectively and therefore they should be excluded from the trace

evaluation. For details of the heat kernel coefficients of the constrained fields as well as

for the exclusion of lowest modes see Appendix B.

As with the metric fluctuations, it is convenient to decompose the ghost fields into

transverse (CTµ and C̄Tµ ) and longitudinal (η and η̄) parts

Cµ = CTµ + ∇̄µη, C̄µ = C̄Tµ + ∇̄µη̄. (3.6)

Here the modes that are unphysical and should be excluded from the trace evaluation

are the lowest modes of the scalars η and η̄. Moreover, by relating the spectrum of the

transverse fields to that of the original field and of the scalar we conclude that we should

also exclude the lowest mode of CTµ and C̄Tµ as well as the second lowest mode of η and η̄.

Again, more details about this construction can be found in the Appendix B.

3.2.2 Gauge fixing part

The gauge fixing action (2.34) is already quadratic in the fields. Now we can substitute the

metric decomposition (3.2) into (2.34) to express Sgf in terms of the metric components
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as

Sgf =
κ2

α

∫
ddx
√
ḡ

{
ξν

[
�̄2 + 2

R̄

d
�̄ +

R̄2

d2

]
ξν

− σ

[(
d− 1

d

)2

�̄3 + 2
R̄

d2
(d− 1)�̄2 +

R̄2

d2
�̄

]
σ

+
2

d2
h
[
(d− 1)ρ�̄2 + ρR̄ �̄

]
σ − ρ2

d2
h�̄h

}
,

(3.7)

where we have defined � = gµν∇µ∇ν . It follows that the contributions to the Hessians

(2.27) coming from the gauge fixing action take the form

(
Γ

(2)
k

)ξξ
gf

=
κ2

α

(
�2 + 2

R

d
� +

R2

d2

)
(3.8)

(
Γ

(2)
k

)σσ
gf

=
κ2

α

(
−
(
d− 1

d

)2

�3 − 2
R

d2
(d− 1)�2 − R2

d2
�

)
(3.9)

(
Γ

(2)
k

)hh
gf

=
κ2

α

(
−ρ

2

d2
�

)
(3.10)(

Γ
(2)
k

)hσ
gf

=
κ2

α

(
ρ

2

d2
(d− 1)�2 + ρ

2

d2
R�

)
(3.11)

where we have dropped the bars for notational simplicity, since after computing the Hes-

sians we set gµν = ḡµν and therefore it remains only one metric field. However, it should

be kept in mind that all the geometric quantities are constructed with the background

metric.

3.2.3 Ghost part

We now turn our attention to the ghost action. By taking two functional derivatives of

(2.35) with respect to the metric field we observe that it gives no contribution to the

Hessians

δ(2)Sgh

δgµνδgαβ
= 0. (3.12)

Consequently the only contribution comes from the part which is quadratic in the ghost

fields Cµ and C̄ν . After substituting the ghost decomposition (3.6) into the ghost action

(2.35) we have

Sgh = −
√

2

∫
ddx
√
ḡ
{
C̄µTMµνC

νT + C̄µTMµν∇̄νη + ∇̄µη̄ MµνC
νT + ∇̄µη̄ Mµν∇̄νη

}
.

(3.13)

Now we substitute the Faddeev-Popov operator (2.36) into the above equation and we

perform the second variation in order to get for the Hessians of each ghost component
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field (
Γ

(2)
k

)C̄TCT
= −

√
2�−

√
2
R

d
(3.14)(

Γ
(2)
k

)η̄η
=

2
√

2

d
[d− ρ− 1]�2 +

2
√

2

d
R� , (3.15)

where again we have dropped the bars after setting gµν = ḡµν .

3.2.4 Auxiliary fields

The metric decomposition (3.2) is merely a coordinate transformation and as such it

induces the Jacobian of the transformation Jgr. Here we are going to determine this

quantity and we will follow the Faddeev-Popov trick so that we transform the contributions

from the determinants into contributions from auxiliary fields. We begin by writing the

following relation between the original field hµν and the components of the transverse

traceless decomposition∫
ddx
√
ḡ hµνh

µν =

∫
ddx
√
ḡ

{
hTµνh

Tµν +
1

d
hh− 2 ξν

[
�̄ +

R̄

d

]
ξν + σ

[(
d− 1

d

)
�̄2 +

R̄

d
�̄

]
σ

}
.

(3.16)

Then, at the level of the path integral the Jacobian of the field transformation takes the

following form

Jgr =
(
detM(0)

)1/2 (
detM(1T )

)1/2
(3.17)

with the operators M(0) and M(1T ) coming from the contributions of the scalar σ and the

transverse vector ξµ respectively and having the following form

M(0) =

(
d− 1

d

)
�̄2 +

R̄

d
�̄ (3.18)

M(1T ) = �̄ +
R̄

d
. (3.19)

The terms containing the transverse-traceless field hTµν and the trace field h do not con-

tribute to the transformation Jacobian since they do not involve operators and under the

path integral they are simple gaussian integrals contributing only a constant. Now, we

would like to express these determinants as new contributions to the action in terms of

auxiliary fields. For this, we follow the Faddeev-Popov trick and write them as gaussian

integrals. We start with the determinant of the scalar field(
detM(0)

)1/2
=

detM(0)(
detM(0)

)1/2 =

∫
DλDλ̄Dω · exp

[
−
∫
ddx
√
ḡ
{
λ̄M(0)λ+ ωM(0)ω

}]
(3.20)

where λ and λ̄ are complex Grassmann fields coming from the numerator of the above

expression and ω is a real field coming from the denominator. Thus the action for the
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scalar auxiliary fields reads Saux(0) =
∫
ddx
√
g
[
λ̄M0λ+ 1

2ωM0ω
]

and the Hessians for λ̄,

λ and ω are given, after dropping the bars, by(
Γ

(2)
k

)λ̄λ
=
(

Γ
(2)
k

)ωω
=

(
d− 1

d

)
�2 +

R

d
� . (3.21)

Similarly for the determinant detM(1T ) coming from the contribution of the transverse

vector we have(
detM(1T )

)1/2
=

detM(1T )(
detM(1T )

)1/2 =

∫
DcTµDc̄TµDζTµ ·exp

[
−
∫
ddx
√
ḡ

{
c̄TµM(1T )c

Tµ +
1

2
ζTµM(1T )ζ

Tµ

}]
(3.22)

with cTµ and c̄Tµ being complex Grassmann transverse vector fields coming from the nu-

merator of the above expression and ζTµ a real transverse vector field coming from the

denominator. The corresponding Hessians, after dropping the bars become(
Γ

(2)
k

)c̄T cT
=
(

Γ
(2)
k

)ζT ζT
= � +

R

d
. (3.23)

In the same way that the metric decomposition (3.2) induces the Jacobian of the trans-

formation we get contributions Jgh from the decomposition of the ghost fields (3.6). Now,

the original ghost fields Cµ and C̄µ obey the following identity with the components CTµ,

C̄Tµ, η and η̄ ∫
ddx
√
ḡ C̄µC

µ =

∫
ddx
√
ḡ
{
C̄TµC

Tµ − η̄�̄η
}
. (3.24)

The fields CTµ and C̄Tµ do not involve operators and thus they contribute only a constant.

Now, in the level of path integral the Jacobian of the transformation comes only from the

scalars η and η̄ and after performing the gaussian integral it can be written

Jgh =
(
det
[
−�̄
])−1

(3.25)

As before we express this in terms of the contribution to the action of auxiliary fields, so

that it takes the form

Jgh =

∫
Ds̄Ds exp

[
−
∫
ddx
√
ḡs̄
[
−�̄
]
s

]
, (3.26)

where now the fields s̄ and s are complex conjugate scalars. The corresponding Hessian

for this auxiliary field, after dropping the bars, is given by(
Γ

(2)
k

)s̄s
= −�. (3.27)

3.3 Trace computation algorithm

For the computation of the functional trace in (2.31) we will use the heat kernel techniques.

Here we present an algorithm for computing the trace having as input the general form of
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the second variation. We then determine the form that the regulator term should have,

we move on by implementing the optimised cutoff and finally we evaluate the integrals

for the functions Qn[W ] defined in (2.43) and (2.44). We also evaluate these functions

for the case that we have off diagonal terms in the second variation with the mixing of

two components. Finally, we compute the two lowest excluded modes for a scalar and the

lowest excluded mode for a vector.

3.3.1 The Regulator term

The most general form of the second variation will take is in the form of power series in

terms of an operator 4 with maximum power p. Then we write

(
Γ

(2)
k

)φiφj
=

p∑
m=0

Aφiφjm 4m , (3.28)

where unless is needed we will drop the φiφj indices and the coefficients Am will depend

on the momentum scale k through the couplings of the theory. The next step is the

definition of the regulator term Rφiφjk . For our purposes it is enough to determine the

regulator just for type I cutoff. However, the process described here has a straightforward

generalisation to the other types of cutoffs. For Type I cutoff we define the regulator (see

2.3.4) by demanding that the addition of the regulator term Rφiφjk to the Hessian of the

corresponding field, leads everywhere to the replacement of the operator 4 by 4+Rk(4)

where Rk(4) is the profile function. So we have

p∑
m=0

Am(4+Rk)
m =

p∑
m=0

Am4m +Rφiφjk (3.29)

or solving for Rφiφjk

Rφiφjk =

p∑
m=1

Am(4+Rk)
m −

p∑
m=1

Am4m. (3.30)

Now that we have an explicit form for the regulator term we can proceed to determine

its scale derivative, which is an essential component of the flow equation (2.31). In type

I cutoff the operator 4 does not contain any couplings and thus it does not have any

momentum dependence. Therefore the ∂t derivative of the regulator reads

∂tR
φiφj
k = C1∂tRk + C2 (3.31)

where C1 is the coefficient of the profile function scale derivative and C2 contains all the

remaining momentum dependence coming form the couplings of the theory. By applying
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∂t to (3.30) we have for these coefficients the following

C1 =

p∑
m=1

mAm(4+Rk)
m−1 (3.32)

C2 =

p∑
m=1

∂tAm(4+Rk)
m −

p∑
m=1

∂tAm4m . (3.33)

3.3.2 The diagonal piece

Now, we have all the ingredients that we need in order to evaluate the trace of the flow

equation. For this split the FRGE into two parts according to (3.31). The equation for

the diagonal part reads

1

2
Tr

[
∂tR

φiφj
k

((
Γ

(2)
k

)φiφj
+Rφiφjk

)−1
]

=
1

2
Tr

[
C1

D
∂tRk

]
+

1

2
Tr

[
C2

D

]
(3.34)

where we have defined as D the denominator of the above expressions after adding the

regulator term to the Hessian. In terms of the coefficients Am and the profile function Rk

it takes the form

D =

p∑
m=0

Am(4+Rk)
m. (3.35)

In order to evaluate the integrals Qn[W ] defined in (2.43) and (2.44) we have to make a

specific choice for the profile function which determines the way that momentum modes

are cut off. For the the rest of this thesis we will adopt the optimised cutoff profile function

[94, 97] given by

Rk(y) = (k2 − y)θ(k2 − y). (3.36)

In the present setup, the use of the optimised profile function has the additional advantage

that it makes the heat kernel expansion to truncate for even dimensions. We will explicitly

see how this happens when we evaluate Qn[W ]. Now we take the scale derivative of the

profile function which reads

∂tRk(y) = 2k2θ(k2 − y) + 2k2(k2 − y)δ(k2 − y). (3.37)

It is easy to observe that both the above integrals in (3.34) will be overall multiplied by

the step function θ(k2 − y) and therefore we can change the integral limits from
∫∞

0 to∫ k2
0 and replace everywhere the step functions by 1. Then we have for the coefficients C1,

C2 and the denominator D after substituting 4 = y

C1 =

p∑
m=1

mAmk2m−2 ; C2 =

p∑
m=1

∂tAm(k2m − ym) ; D =

p∑
m=0

Amk2m (3.38)



33

Now we turn our attention to the evaluation of the integrals Qn[W ] for a positive n. Then,

from (2.43) we have that

Qn[W ] =
1

Γ(n)

∫ ∞
0

dy yn−1W (y). (3.39)

The integrand W (y) of the above equation can be split in two parts according to (3.34).

Then we define W1 = 1
2
C1
D ∂tRk and W2 = 1

2
C2
D and we evaluate the corresponding in-

tegrals Iin = Qn[Wi] separately. Note that both of these integrals are overall multiplied

by the step function θ(k2 − y) so we can change the integral limits from
∫∞

0 to
∫ k2

0 and

replace everywhere the step functions by 1. Moreover, the W1 integral has a term which

is proportional to 2k2(k2 − y)δ(k2 − y). Upon integration this term will vanish and so we

will drop it from now on. Now we have

I1
n =

k2n

Γ(n)

1

n

∑p
m=1mAmk2m∑p
m=0Amk2m

; I2
n =

k2n

2Γ(n)

1

n

∑p
m=1

m
m+n∂tAmk

2m∑p
m=0Amk2m

. (3.40)

By summing the two contributions above we get an expression for the coefficients Qn of

the heat kernel expansion for positive n

Qn =
k2n

2nΓ(n)
· 1∑p

m=0Amk2m

[
2

p∑
m=1

mAmk2m +

p∑
m=1

m

m+ n
∂tAmk2m

]
, n > 0.

(3.41)

For the evaluation of the trace in the flow equation (2.31) we also need the expression

for Qn[W ] when n is a negative integer. For a negative integer the Mellin transforms are

given by

Q−n = (−1)n
dnW (y)

dyn

∣∣∣∣
y=0

, n ∈ N. (3.42)

where the y-dependence of W (y) comes through the ∂tR
φiφj
k term so it is enough to

compute the derivative of this term. In the previous sections we have disregard the explicit

form of the θ(k2−y)-functions, since they were overall multiplied our functions and it was

an easy interpretation just by changing the integral limits and putting θ(k2 − y) = 1.

For the purposes of evaluating this quantity we note that the product of two θ(k2 − y)

distributions will result another θ(k2 − y) distribution, so for our calculation purposes we

will substitute any θ(k2 − y)n by θ(k2 − y).The derivatives which hit the θ(k2 − y) will

become δ(k2−y) and by taking the limit y = 0 it will vanish, as long as k2 6= 0. Moreover,

the overall multiplication with θ(k2 − y) will give just 1 in the limit y = 0. Then we have

dn∂tR
φiφj
k

dyn
=

[
−

p∑
m=1

m!

(m− n)!
∂tAmym−n

]
(3.43)
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so after evaluating this expression for y = 0 the only term that survives is the one with

m = n. Therefore we have for the coefficients Qn

Q−n = (−1)n+1 1

2

n!∑p
m=0Amk2m

· (∂tAn) , n > 0. (3.44)

3.3.3 The non-diagonal piece

When there are off-diagonal components of the second variation
(

Γ
(2)
k

)φiφj
we have to

find the inverse of this sub-matrix. For the case where the mixing is just between two

components φ1 and φ2 the inverse of
(

Γ
(2)
k

)φiφj
is given by((

Γ
(2)
k

)φiφj
+Rφiφjk

)−1

=
1

Det

[(
Γ

(2)
k

)φiφj
+Rφiφjk

] ·M (3.45)

with the matrix M given by

M =


(

Γ
(2)
k

)φ2φ2
+Rφ2φ2k −

(
Γ

(2)
k

)φ1φ2
−Rφ1φ2k

−
(

Γ
(2)
k

)φ2φ1
−Rφ2φ1k

(
Γ

(2)
k

)φ1φ1
+Rφ1φ1k

 (3.46)

It follows that the trace takes the form

1

2
Tr

[
∂tR

φiφj
k

(
Γ̃

(2)
φiφj

)−1
]

=
1

2
Tr

 1

Det
[
Γ̃

(2)
φiφj

]M
 (3.47)

with the expression M given by

M =
(

Γ̃
(2)
φ2φ2

∂tRφ1φ1k − Γ̃
(2)
φ1φ2

∂tRφ2φ1k − Γ̃
(2)
φ2φ1

∂tRφ1φ2k + Γ̃
(2)
φ1φ1

∂tRφ2φ2k

)
(3.48)

where we have used the abbreviation Γ̃
(2)
φiφj

=
(

Γ
(2)
k

)φiφj
+Rφiφjk . The regulator (3.30) and

the coefficients of the expansion (3.31) remain the same, but now we restore the indices

φiφj in all the expressions. After substituting for the regulator we have Γ̃
(2)
φiφj

= Dφiφj

where Dφiφj is given by the expression (3.35) for D with all the coefficients A replaced

by Aφiφj . In the following we assume that the second variation
(

Γ
(2)
k

)φiφj
is symmetric.

Then, by adopting the optimised cutoff we have everything as before multiplied by the

step function. Thus we change the integration limits and substitute θ(k2 − y) with 1.

Then, the expressions for
(

Γ
(2)
k

)φiφj
are just constants which do not enter the integration

over y. The integration over ∂tR
φiφj
k is known from the previous section and gives

Iφiφj =
k2n

n

[
2

p∑
m=1

mAφiφjm k2m +

p∑
m=1

m

m+ n
∂tA

φiφj
m k2m

]
(3.49)

so that the coefficients Qn for the non-diagonal piece are given by

Qn =
1

2 Γ(n)
· 1

Dφ1φ1Dφ2φ2 − (Dφ1φ2)2
·
[
Dφ2φ2Iφ1φ1 − 2Dφ1φ2Iφ1φ2 +Dφ1φ1Iφ2φ2

]
. (3.50)
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Similarly for the non-diagonal piece of the trace for a negative integer we get

Q−n = (−1)n+1 1

2

n!

Dφ1φ1Dφ2φ2 − (Dφ1φ2)2
·
[
Dφ2φ2Kφ1φ1 − 2Dφ1φ2Kφ1φ2 +Dφ1φ1Kφ2φ2

]
(3.51)

with n > 0 in the above equation and

Kφiφj = ∂tA
φiφj
n . (3.52)

3.3.4 Excluded modes

As explained in 2.3.6 we often encounter the trace of a function where some eigenmodes

of the −∇2 operator have to be excluded. For example we saw in 3.2.1 that after perform-

ing the decomposition of the fluctuation hµν into its components through the transverse

traceless decomposition, the lowest mode of ξµ and the two lowest modes of σ have to

be excluded. In order to incorporate this into the evaluation of the traces we follow the

general rule

Tr
′...′
s [W (−∇2)] = Trs[W (−∇2)]−

l=m∑
l=1

Dl(d, s)W (Λl(d, s)) (3.53)

where Λl(d, s) are the eigenvalues of the operator and Dl(d, s) their multiplicities given in

Table B.1. Here the primes denote the number of the lowest modes to be excluded. For

our calculation we will need the form of Tr
′

(0), Tr
′′

(0)and Tr
′

(1T ). We start with the lowest

mode of a scalar. According to Table B.1 in the Appendix B for the lowest mode of a

scalar field we have

Tr
′

(0)[W (−∇2)] = Tr(0)[W (−∇2)]−W (0). (3.54)

The part W (0) of the above equation which has to be excluded from the scalar trace is

simply evaluated by setting y = 0 in the expression for W (y). Then we denote the lowest

excluded mode of a scalar as X
′

(0) and we have

X
′

(0) = W (0) =

∑p
m=1 ∂tAmk2m∑p
m=0Amk2m

+

∑p
m=1mAmk2m∑p
m=0Amk2m

(3.55)

Similarly for the exclusion of the two lowest modes of a scalar field we have according to

the table B.1

Tr
′′

(0)[W (−∇2)] = Tr(0)[W (−∇2)]−W (0)− (d+ 1)W

(
1

d− 1
R

)
(3.56)

In general the result will involve theta functions coming from the choice of the profile

function and more precisely from (3.36) and (3.37). For the specific expression under
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consideration the theta functions are of the form θ(k2 − R
d−1). Since in the following we

are going to focus to an expansion in small R
k2

we can evaluate these theta functions at

the limit R
k2
� 1 in order to get for the exclusion of the two lowest scalar modes

X
′′

(0) = X
′

(0) + (d+ 1)
1∑p

m=0Amk2m

[
2

p∑
m=1

mAmk2m +

p∑
m=1

∂tAm
(
k2m − Rm

(d− 1)m

)]
.

(3.57)

Finally we have to determine the exclusion for lowest mode of a transverse vector. Again,

by reading the multiplicities and the eigenvalues from Table B.1 we have

Tr
′

(1T )[W (−∇2)] = Tr(1T )[W (−∇2)]− d(d+ 1)

2
W

(
R

d

)
(3.58)

As before we evaluate the theta functions coming from the profile function for the limit

R
k2
� 1 and we have for the lowest exclusion mode of the vector

X
′

(1T ) =
d(d+ 1)

2

1∑p
m=0Amk2m

[
2

p∑
m=1

mAmk2m +

p∑
m=1

∂tAm
(
k2m − Rm

dm

)]
. (3.59)

3.4 Summary

In this Chapter we have summarised the technical tools that we will use in order to derive

flow equations. We divided our calculation into two parts and we kept the content general

so that it can be applied to different approximations for the gravitational effective average

action. The results of this Chapter considerably simplify the derivation of flow equations

and their application to specific gravitational approximations is used in Chapter 4 and

Chapter 5.

In the first half we derived all the Hessians for the effective average action (2.30)

apart from those coming from the gravitational anstaz Γ̄k which will be computed at

the corresponding chapters. We decomposed the metric field according to the transverse

traceless decomposition and the second variation of the gauge fixing action was computed.

Similarly we decomposed the ghost vector fields to their transverse decomposition and

we evaluated the Hessians of the ghost action. These transformations resulted to the

appearance in the action of auxiliary fields and their Hessians were presented.

In the second part we presented an algorithm for computing the functions Qn[W ] that

appear in the heat kernel expansion (2.42). We start with the second variation of each

component field by writing it as power series of the operator ∇2 and we end up with

explicit expressions for Qn[W ] in terms of the coefficients of the ∇2 expansion. We also

calculated the same quantities in the case where the Hessians are not completely diagonal,
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but they have a mixing between two components. Finally we presented the case where

distinct modes are excluded from the functional trace.
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Chapter 4

The f(R) approximation

4.1 Introduction

Now that we have all the technical tools at our disposal we return to the physical prob-

lem that we are interested in. Our aim is to test the asymptotic safety conjecture using

the renormalisation group methods developed in Chapter 2 and Chapter 3. A reasonable

question to ask is how we can get insights given that we have to rely to an approximation,

even if this is non-perturbative. If we consider for example an asymptotically free theory

such as QCD, we know that because the theory is non-interacting at the UV, operators

with increasing mass dimension scale according to their canonical mass dimensions and

become increasingly irrelevant. Therefore, making an expansion in such operators results

in a well defined approximation scheme. For an asymptotically safe theory however, the

UV fixed point is interacting and there is no a-priori ordering principle for the scaling of

the operators. Recall from (1.11) that the critical exponents are affected by non-trivial

interactions at the UV fixed point and moreover in order for the theory to be asymptot-

ically safe these quantum corrections should not be strong enough to turn infinitely many

eigenvalues negative. Here we are going to tackle these questions by adopting a bootstrap

approach [52]. We will make the hypothesis that even for the case of a non-trivial fixed

point the operators become increasingly irrelevant with increasing mass dimension and

that therefore an expansion in powers of the operators is a reasonable approximation.

Subsequently, we perform a systematic search order by order to test the hypothesis and

by extending our technique to very high order we are able for the first time to provide

quantitative information about the validity of the approximation, such as results for the

radius of convergence and a full stability analysis.

In this chapter we will apply this method to the case where the gravitational effective
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average action is given by an arbitrary function of the scalar curvature R. Accordingly,

the approximation ansatz takes the form

Γ̄k[g] =

∫
ddx
√
g Fk(R). (4.1)

Classically, modifications of Einstein gravity of the form S =
∫
ddx
√
g f(R) have been

considered for a long time and have proven very popular with many applications in Cos-

mology [37]. At the quantum level investigating, the behaviour of a general function F (R)

is of great importance in order to check the validity of the low order approximations. In

practice, the investigation of the properties of such a function is performed by expanding

F (R) as a power series of the Ricci scalar up to a maximum order N

Γ̄k[g] =

∫
ddx
√
g
N−1∑
n=0

λ̄nR
n. (4.2)

In this context the requirements for the theory to become asymptotically safe are that

the dimensionless couplings λi = k−di λ̄i, approach fixed point values at the UV limit

and that the number of negative critical exponents remains finite. Within the approx-

imation (4.2) we will apply our bootstrap approach in order to systematically test the

requirements of asymptotic safety at every order up to Nmax = 35 [52]. Our results show

that a self-consistent UV fixed point exists at every order of the approximation and that

the number of negative eigenvalues is always three. More interestingly, it is found that

curvature invariants become increasingly irrelevant with increasing mass dimension and

that their critical exponents take almost gaussian values. These findings justify the ori-

ginal approximation hypothesis a-posteriori, by performing a detailed examination of the

properties of F (R) quantum gravity.

Previous studies that are concerned with powers of the Ricci scalar have a long and

successful history in the context of asymptotic safety. The first results in favour of the

asymptotic safety conjecture [148] were obtained in the Einstein-Hilbert approximation

for the effective action [130, 141] where a UV fixed point with two attractive directions

was discovered. Within this approximation the dependence of the fixed point structure

was examined under the inclusion of matter fields [42], under variations of the regulator

scheme [92] and also when we consider higher dimensional gravity [99, 55, 56]. However, the

Einstein-Hilbert truncation is only a leading order approximation since in the Wilsonian

approach for the effective average action we should include all the operators that are

compatible with the symmetry of diffeomorphism invariance. Therefore, extensions of the

operator space were examined by adding higher scalar curvature terms [91, 32, 33, 34, 105,

41] as well as Weyl squared terms [16, 17]. Moreover, the renormalisation group for gravity
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under the inclusion of matter fields has been studied [122, 121, 115, 116, 57, 43, 45, 74, 159],

as well as investigations for the quantum effects of the ghost sector [44, 46, 70]. Here we

are going to focus on the inclusion of scalar curvature operators in the effective action.

The flow equation for the f(R) quantum gravity in a closed form was first obtained in

[33, 105]. For analysing the results a polynomial expansion of F (R) in terms of the scalar

curvature was performed and a UV fixed point was found in every order, up to a maximum

order R6. Moreover, for every order greater than R2 a three dimensional critical surface

was observed. These results were extended [34] to order R8 were again the UV fixed point

and the three relevant directions were found and to order R10 [22] were only the fixed

point values were calculated. Already in these orders, a consistency of the results and a

relative stability of the fixed point values was observed, providing evidence that the low

order results of Einstein-Hilbert and R2 gravity were good leading order approximations.

However, some of the open questions that remained concerned the behaviour of the system

at higher orders, a full stability analysis for the fixed points and a detailed examination of

the critical exponents in the light of asymptotic safety conjecture by Weinberg [148]. Here,

we perform an analysis of the flow equation of F (R) gravity and we compute fixed point

values and critical exponents for every order in the approximation up to R34. We also

estimate the radius of convergence for the expansion and we present a stability analysis for

both the fixed points and the critical exponents. Finally we use our results to examine the

ordering principle of the eigenvalues and to determine their deviation from gaussianity.

The rest of this Chapter is organised as follows. In Section 4.2 we will compute the

second variation of the ansatz (4.1) and present the Hessians for the effective average

action. In Section 4.3 we will choose a specific gauge fixing and we will concentrate to the

case d = 4 in order to re-derive the flow equation for the function F (R) [33, 105] using the

computational algorithm for the trace evaluation that was developed in Section 3.3. In

Section 4.4 we will develop a new method which will allow us to compute the fixed point

values for high orders and in Section 4.5 we will construct the corresponding method for

the critical exponents. In Section 4.6 we will present the results of our analysis starting

from the values of the fixed points and their convergence and proceeding with the radius of

convergence for the full F (R) function, the anomalous dimension, the critical exponents,

the stability analysis of the results and finally we comment on the possibility of de-Sitter

solutions. In Section 4.7 we perform a detailed analysis for the critical exponents and we

make links with the canonical power counting. We conclude this chapter with a summary

in Section 4.8.
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4.2 Computing the Hessians

Here we are going to derive the Hessians for all the fields that contribute to our ansatz

as the first step towards calculating the renormalisation group flow of the theory. As

explained in 2.3.2 the effective average action takes the form

Γk[g, ḡ, c, c̄] = Γ̄k[g] + Sgf [h; ḡ] + Sgh[h, c, c̄; ḡ]. (4.3)

The Hessians for the ghost fields and the contribution from the gauge fixing action were

computed in Chapter 3 and are given in 3.2.2 for the gauge fixing and in 3.2.3 for the ghost

part. The missing element is the computation of the second variation for the gravitational

part.

4.2.1 Gravity part

We proceed with the second variation of the gravitational part given by (4.1). In order to

compute Γ̄
(2)
k we make an expansion

Γ̄k[ḡ + h̄; ḡ] = Γ̄k[ḡ; ḡ] +O(h̄) +
1

2
Γ̄quad
k [ḡ + h̄; ḡ] +O(h̄3) (4.4)

and we extract the quadratic part. Then we get

Γ̄quad
k =

∫
ddx

{
δ(2)(
√
g)Fk(R) + 2δ(

√
g)δ(R)F ′k(R) +

√
gδ(2)(R)F ′k(R) +

√
gF ′′k (R)δ(R)δ(R)

}
,

(4.5)

where here and form now on the primes denote derivatives with respect to the argument.

Now we substitute the expressions from Appendix A for the various variations appearing

above to get

Γ̄quad
k =

∫
ddx
√
g

{
hµν

[
−1

2
F (R) +

d− 2

d− 1

R

d
F ′(R)

]
hµν

+ h

[
F ′′(R)∇4 − 1

2
F ′(R)∇2 +

1

4
F (R)− d− 2

d− 1

R

d
F ′(R) +

R2

d2
F ′′(R)

]
h

+ h

[
−2F ′′(R)∇2 + F ′(R)− 2

R

d
F ′′(R)

]
∇µ∇νhµν

+ (∇µhµα) F ′(R) (∇νhνα) + (∇µ∇νhµν) F ′′(R)
(
∇α∇βhαβ

)}
.

(4.6)

In order to compute the trace we have to bring the second variation into a form where it

is a function of the D’Alembertian ∇2. For this we use the metric field decomposition as

defined in Section 3.2.1 and we find the Hessians in terms of each component field. These

are given in Appendix A. In Table 4.1 we summarise the contribution from each individual

component field after adding the contributions from the gauge fixing part, the ghost part

and the auxiliary fields.
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Component φiφj The Hessian Γ
(2)
φiφj

hTµνhTµν
1
2F
′
k(R)�− 1

2Fk(R)− d−2
d(d−1)RF

′
k(R)

ξµξµ
1
α�

2 +
[

2
α
R
d + Fk(R)− 2F ′k(R)Rd

]
� + 1

α
R2

d2
+ Fk(R)Rd − 2F ′k(R)R

2

d2

σσ (d−1)2

d2
�4 − d−1

2d2

[
d−1
α + (d− 2)F ′k(R)− 4RF ′′k (R)

]
�3

− 1
2d2

[
4R (d−1)

α + d(d− 1)Fk(R)−R(dF ′k(R) + 2RF ′′k (R)
]
�2

−
[
R2

d2
1
α +R (dFk(R)− 2RF ′k(R))

]
�

hh (d−1)2

d2
F ′′k (R)�2 − 1

4d2

[
4ρ

2

α + 2(d− 1) ((d− 2)F ′k(R)− 4RF ′′k (R))
]
�

+ 1
4d2

[
(d− 2)(dFk(R)− 4RF ′k(R)) + 4R2F ′′k (R)

]
hσ − (d−1)2

d2
F ′′k (R)�3 + (d−1)

d2

[
ρ
α + (d−2)

2 F ′k(R)− 2RF ′′k (R)
]
�2

+ 1
d2

[
ρ
α + (d−2)

2 F ′k(R)−RF ′′k (R)
]
R�

C̄TµC
Tµ −

√
2�−

√
2Rd

η̄η 2
√

2
d [d− ρ− 1]�2 + 2

√
2

d R�

λ̄λ
[
1− 1

d

]
�2 + R

d�

ωω
[
1− 1

d

]
�2 + R

d�

c̄Tµ c
Tµ � + R

d

ζTµ ζ
Tµ � + R

d

s̄s −�

Table 4.1: Summary of the decomposed second variation for the Fk(R) action

4.3 The flow equation

In this Section we will use the techniques we have developed in order to evaluate the

renormalisation group flow for F (R) quantum gravity. For RG studies it is convenient

to introduce dimensionless variables. In previous studies where only the first few orders

were examined, it was common to introduce the dimensionless Newton’s coupling and the

dimensionless cosmological constant through

g = Gk k
d−2 ; λ = k2−dΛk (4.7)

Here, we are going to treat Newton’s coupling and the cosmological constant just as

coming from the first two orders of the expansion of F (R). We start by introducing the

dimensionless Ricci scalar

ρ =
R

k2
(4.8)

and the dimensionless fk(R) function defined as

fk(R) = 16π k−dFk

(
R

k2

)
(4.9)
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It follows for the derivatives of the function that

f ′k(R) = 16π k−d+2F ′k

(
R

k2

)
; f ′′k (R) = 16π k−d+4F ′′k

(
R

k2

)
(4.10)

and for its scale derivatives that

16π ∂tFk(R) =kd
(
dfk(ρ) + ∂tfk(ρ)− 2ρf ′k(ρ)

)
16π ∂tF

′
k(R) =kd−2

(
(d− 2)f ′k(ρ) + ∂tf

′
k(ρ)− 2ρf ′′k (ρ)

)
16π ∂tF

′′
k (R) =kd−4

(
(d− 4)f ′′k (ρ) + ∂tf

′′
k (ρ)− 2ρf ′′′k (ρ)

) (4.11)

Thus the LHS of the flow equation in four dimensions simply reads

∂tΓ̄k =
24π

ρ2

[
∂tf(ρ)− 2ρf ′(ρ) + 4f(ρ)

]
(4.12)

Now, we can turn to the RHS and calculate the traces using the heat kernel methods. The

flow equation in terms of the traces of the various components reads

∂tΓ̄[ḡ, ḡ] =
1

2
Tr(2T )

[
∂tRh

T hT

k

Γ̄
(2)

hT hT

]
+

1

2
Tr
′

(1T )

∂tRξξk
Γ̄

(2)
ξξ

+
1

2
Tr
′′

(0)

[
∂tRσσk
Γ̄

(2)
σσ

]
+

1

2
Tr(0)

[
∂tRhhk
Γ̄

(2)
hh

]

+ Tr
′′

(0)

[
∂tRσhk
Γ̄

(2)
σh

]
− Tr

′

(1T )

[
∂tRC̄

TCT

k

Γ̄
(2)

C̄TCT

]
− Tr

′′

(0)

[
∂tRη̄ηk
Γ̄

(2)
η̄η

]
− Tr

′′

(0)

[
∂tRλ̄λk
Γ̄

(2)

λ̄λ

]

+
1

2
Tr
′′

(0)

[
∂tRωωk
Γ̄

(2)
ωω

]
− Tr

′

(1T )

[
∂tRc̄

T cT

k

Γ̄
(2)

c̄T cT

]
+

1

2
Tr
′

(1T )

∂tRζT ζTk

Γ̄
(2)

ζT ζT

+ Tr
′′

(0)

[
∂tRs̄sk
Γ̄

(2)
s̄s

]
(4.13)

In order to continue and compute the traces we have to fix the gauge and focus on a

specific spacetime dimension. For what follows we make the following choices

d = 4 ; α→ 0 ; ρ = 0. (4.14)

This choice of gauge results in two simplifications of the flow equation. Since we take the

limit α → 0 the gauge fixing terms are tending to ∞. However, since terms proportional

to 1
α are also included in the regulator, when we take the limit α → 0 at the level of the

FRGE only the terms proportional to 1
α survive.

As a result the non-diagonal term σh vanishes since it has no dependence on α (for

ρ = 0) while the denominator involves the components hh and σσ and it goes to ∞. The

second simplification which occurs is that the gravity and the gauge degrees of freedom

and the gravity degrees of freedom totally decouple. The gravity d.o.f. are encoded in

hThT and hh, while the gauge d.o.f. are in ξξ and σσ.

Now we are in the position to use the machinery developed in Section 3.3 in order

to calculate the trace. The result for the renormalisation group flow equation of f(R)

quantum gravity reads
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∂tf(ρ)− 2ρf ′(ρ) + 4f(ρ) = I[f ](ρ) . (4.15)

The RHS encodes the contributions from fluctuations and arises from the operator trace

(5.13) over all propagating fields. It generically splits into several parts,

I[f ](ρ) = I0[f ](ρ) + ∂tf
′(ρ) I1[f ](ρ) + ∂tf

′′(ρ) I2[f ](ρ) . (4.16)

The additional flow terms proportional to ∂tf
′(ρ) and ∂tf

′′(ρ) arise through the Wilsonian

momentum cutoff ∂tRk, which we have chosen to depend on the background field. Fur-

thermore, the terms I0[f ](ρ), I1[f ](ρ) and I2[f ](ρ) depend on f(ρ) and its field derivatives

f ′(ρ), f ′′(ρ) and f ′′′(ρ). There are no flow terms ∂tf
′′′(ρ) or higher because the momentum

cutoff Rk is proportional to the second variation of the action. A dependence on f ′′′(ρ) in

I0[f ] results completely from rewriting ∂tF
′′(R) in dimensionless form. In the following

expressions, we will suppress the argument ρ.

All three terms I0[f ], I1[f ], I2[f ] arise from tracing over the fluctuations of the metric

field for which we have adopted a transverse traceless decomposition. The term I0[f ] also

receives f -independent contributions from the ghosts and from the Jacobians originating

from the split of the metrical fluctuations into tensor, vector and scalar parts. To indicate

the origin of the various contributions in the expressions below, we use superscipts T ,

V , and S to refer to the transverse traceless tensorial, vectorial, and scalar origin. The

specific form of I0[f ], I1[f ], I2[f ] depends on the gauge (here the same as in section 7 in

[34]) and regulator choice (with the optimized cutoff [94, 97]).

With these considerations in mind, we write the various ingredients in (4.15) as

I0[f ] = c

(
P Vc
DV
c

+
PSc
DS
c

+
P T1

0 f ′ + P T2
0 ρ f ′′

DT
+
PS1

0 f ′ + PS2
0 f ′′ + PS3

0 ρ f ′′′

DS

)
(4.17)

I1[f ] = c

(
P T1
DT

+
PS1
DS

)
(4.18)

I2[f ] = c
PS2
DS

. (4.19)

The numerical prefactor reads c = 1/(24π). It arises from our normalisation factor 16π

introduced in (4.9), divided by the volume of the unit 4-sphere, 384π2. Note that the

factor is irrelevant for the universal exponents at the fixed point. The first two terms

in (4.17) arise from the ghosts (V ) and the Jacobians (S), while the third and fourth

arise from the tensorial (T ) and scalar (S) metric fluctuations, respectively. Both (4.18)

and (4.19) only have contributions from the tensorial and scalar metric fluctuations. The
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various denominators appearing in (4.17), (4.18) and (4.19) are given by

DT = 3f − (ρ− 3)f ′ (4.20)

DS = 2f + (3− 2ρ)f ′ + (3− ρ)2f ′′ (4.21)

DV
c = (4− ρ) (4.22)

DS
c = (3− ρ) . (4.23)

The numerators in (4.17), (4.18) and (4.19) are polynomials in ρ. They arise through the

heat kernel expansion of the traces, and are given by

P Vc =
607

15
ρ2 − 24ρ− 144 (4.24)

PSc =
511

30
ρ2 − 12ρ− 36 (4.25)

P T1
0 =

311

756
ρ3 − 1

3
ρ2 − 90ρ+ 240 (4.26)

P T2
0 = −311

756
ρ3 +

1

6
ρ2 + 30ρ− 60 (4.27)

PS1
0 =

37

756
ρ3 +

29

15
ρ2 + 18ρ+ 48 (4.28)

PS2
0 = − 37

756
ρ4 − 29

10
ρ3 − 121

5
ρ2 − 12ρ+ 216 (4.29)

PS3
0 =

181

1680
ρ4 +

29

15
ρ3 +

91

10
ρ2 − 54 (4.30)

P T1 =
311

1512
ρ3 − 1

12
ρ2 − 15ρ+ 30 (4.31)

PS1 =
37

1512
ρ3 +

29

60
ρ2 + 3ρ+ 6 (4.32)

PS2 = − 181

3360
ρ4 − 29

30
ρ3 − 91

20
ρ2 + 27 . (4.33)

From the explicit expressions it is straightforward to confirm that I0[f ] has homogeneity

degree zero in f , I0[a f ] = I0[f ] for any a 6= 0, whereas I1[f ] and I2[f ] have homogeneity

degree −1, Ii[a ·f ] = a−1 Ii[f ] (i = 1, 2). This establishes that I[f ] (4.16) has homogeneity

degree zero.

4.4 The fixed point equation

Having derived the renormalisation group flow equation for f(R) gravity (4.16), the next

step is to look for fixed point solutions. This means that we need to find solutions of the

function f(ρ) for the equation

4f(ρ)− 2 ρ f ′(ρ) = I0[f ](ρ) . (4.34)

This is a third order, non-linear differential equation and finding an analytical solution

would be a prohibited task. For this, we have to rely to some kind of approximation with
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the most common one in the literature being a polynomial expansion of the function f(ρ)

f(ρ) =
N−1∑
n=0

λn ρ
n, (4.35)

where N is the order at which we truncate the function f(ρ). Consequently, we make a

series expansion of the fixed point equation (4.34) and we equate the expressions with the

same power of the dimensionless scalar curvature ρ.

It turns out that instead of computing at every order the series coefficient and solve N

equations with N unknowns there is an iterative process which allows us to reach very high

orders in the polynomial expansion and also to solve the system of the equations. This is

based on the observation that at each order n of the expanded fixed point equation (4.34),

the highest coefficient of the expanded f(ρ) function (4.35) is always λn+2 and moreover

it is always linear. Therefore we can always analytically solve to get an expression

λn+2 = Gn(λ0, λ1, · · · , λn+1) (4.36)

Thus, starting from the zeroth order (n = 0) we get an equation of λ2 in terms of λ0 and

λ1. For the first order (n = 1) we get an equation of λ3 in terms of λ0, λ1 and λ2 and by

substituting the results of the zeroth order we end up with an equation of λ3 in terms of

λ0 and λ1 only. In this fashion we can get all the coupling in terms of the first two

λn = Fn(λ0, λ1) , n ≥ 2. (4.37)

The last two equations for the expanded fixed point equation (4.34) will then provide us

with equations for the coupling λN and λN+1. In agreement with the truncation (4.35)

we have to set these two to zero

λN = 0

λN+1 = 0.
(4.38)

Solving these two equations we find the fixed point values for λ0 and λ1 and consequently,

by substituting into (4.37) we find the fixed point values for all the other couplings.

Therefore, we have reduced the problem of solving a system of N equations to a recursive

relation plus solving a system of two equations. In what follows we are going to explicitly

derive the recursive relation for the fixed point equation.

4.4.1 General considerations

In order to find the relation for the highest coefficient in terms of all the rest it is convenient

to start by writing the fixed point equation (4.34) in one line. The crucial observation at
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this point, is that by putting the fixed point equation under this form, we can make use

of the Leibniz rule to obtain an explicit expression for the n-th derivative of (4.34) [109].

Then, in terms of the various polynomials we have

LDcDT DS − cNS DT Dc − cNT DS Dc − cN cDS DT = 0, (4.39)

where we used the denominators as defined in (4.23). We have also defined the combined

denominator of the constant mode Dc and the left hand side of the fixed point equation

L as

Dc = ρ2 − 7ρ+ 12 (4.40)

L = 4f − 2 ρ f ′. (4.41)

Finally, we have defined the numerators in terms of the polynomials as

NS = PS1
0 f ′ + PS2

0 f ′′ + PS3
0 ρ f ′′′ (4.42)

NT = P T1
0 f ′ + P T2

0 ρ f ′′ (4.43)

N c = −115

2
ρ3 +

3383

15
ρ2 + 60ρ− 576. (4.44)

The strategy that we are going to follow is to determine the form of the fixed point equation

(4.39) at each order of the series expansion. This boils down to finding the n-th derivative

of it. We start with the series expansion of the function f(ρ), which takes the form

f(ρ) =

N−1∑
n=0

1

n!
f (n)

∣∣∣
ρ=0

ρn, (4.45)

where here and from now on f (n) denotes the n-th derivative of f with respect to ρ. It

turns out to be more convenient to perform the calculation in terms of f (n) instead of λn.

However, these two are simply related by λn = 1
n!f

(n). Now, we write down the form for

the n-th derivative of the following expression when evaluated at ρ = 0

(
ρkf (m)

)(n)
∣∣∣∣
ρ=0

=
n!

(n− k)!
f (m+n−k). (4.46)

Using this it becomes straightforward to find the form of all the expressions that contribute

to the fixed point equation (4.39). Then we have
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(
DS
)(n)

=
(
n2 − 3n+ 2

)
f (n) + 3(1− 2n)f (n+1) + 9f (n+2) (4.47)(

DT
)(n)

= (3− n)f (n) + 3f (n+1) (4.48)

(L)(n) = (2− n)f (n) (4.49)(
NS
)(n)

= (216− 54n)f (n+2) + (48− 12n)f (n+1) (4.50)

+n

[
18− 121

5
(n− 1) +

91

10
(n− 1)(n− 2)

]
f (n)

+n(n− 1)

[
29

15
− 29

10
(n− 2) +

29

15
(n− 2)(n− 3)

]
f (n−1)

+n(n− 1)(n− 2)

[
37

756
− 37

756
(n− 3) +

181

1680
(n− 3)(n− 4)

]
f (n−2)

(
NT
)(n)

= −60(n− 4)f (n+1) + 30n(n− 4)f (n) +
1

6
n(n− 1)(n− 4)f (n−1) (4.51)

−311

756
n(n− 1)(n− 2)(n− 4)f (n−2)

If an expression X from those above is multiplied with a term which does not contain f ,

as N c and Dc, then it contributes only a coefficient. To see this in more detail we use the

generalised Leibniz rule and we write the contributions for coming from these terms after

taking n derivatives and evaluating at ρ = 0

(X ·N c)(n)
∣∣∣
ρ=0

= −576X(n) + 60nX(n−1) +
3383

15
n(n− 1)X(n−2) (4.52)

−115

2
n(n− 1)(n− 2)X(n−3)

(X ·Dc)(n)
∣∣∣
ρ=0

= 12X(n) − 7nX(n−1) + n(n− 1)X(n−2). (4.53)

Now we have all the ingredients we need in order to expand the fixed point equation (4.39)

and to find the recursive relation of the highest coupling in terms of all the rest.

4.4.2 The highest coefficient

As we can observe from the form of (4.39) the highest coefficient will always be f (n+2)

and it always comes linearly. The terms that contribute to it are 9f (n+2) from DS and

(216−54n)f (n+2) from NS . Now we introduce some notation in order to write the recursive

relation in an as compact form as possible.

First, we write the n-th derivative of an expression X in terms of its coefficients of the

f derivatives. Then we have

X(n) =
∑
i

xi f
(n+i), (4.54)

where for all the expressions appearing above the index i runs from −2 to 2. Here the

coefficients are denoted with the respective small letter xi. For example, the coefficients of
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the expression
(
DS
)(n)

will be denoted by dSi . The main tool that we need to use in order

to expand the fixed point equation and find the highest coupling is the generalised Leibniz

rule for two functions (f · g)(n) =
∑n

k=0

(
n
k

)
f (k)g(n−k). Now we introduce the shorthand

expression

L(f ; g)n =

n−1∑
k=0

(
n

k

)
f (n)g(n−k). (4.55)

Now it is straightforward to apply n derivatives to the fixed point equation and single out

the contributions to f (n+2). Then, the highest coefficient will be given by terms involving

(4.55) and some other single terms. The terms involving the modified Leibniz rule (4.55)

are coming from all the terms that do not involve n derivatives of DS or NS . These will

not produce a coefficient f (n+2) and for this it is now justified the modified upper limit

in (4.55) as n− 1 instead of n. The single terms come from the terms with n derivatives

acting on DS and NS but not containing f (n+2). Finally, the denominators that appear

are just the coefficients of f (n+2). The final result reads

f (n+2) =
−L(DS ;LDT Dc)n + cL(NS ;DT Dc)n + cL(DS ;NT Dc)n + cL(DS ;DT N c)n

dSn+2LD
T Dc − c nSn+2D

T Dc − c dSn+2N
T Dc − c dSn+2D

T N c

+
−
∑1

i=−2 d
S
i f

(n+i)
[
LDT Dc − cNT Dc − cDT N c

]
+
∑1

i=−2 c n
S
i f

(n+1)DT Dc

dSn+2LD
T Dc − c nSn+2D

T Dc − c dSn+2N
T Dc − c dSn+2D

T N c

(4.56)

with the various Leibniz terms having analytic expressions given by

L(DS ;LDT Dc)n =
n−1∑
k=0

(DS)(k)

{
12

n−k∑
l=0

c1 f
(l)
[
(3− n+ k + l)f (n−k−l) + 3f (n−k−l+1)

]
− 7

n−k−1∑
l=0

c2 f
(l)
[
(4− n+ k + l)f (n−k−l−1) + 3f (n−k−l)

]
+
n−k−2∑
l=0

c3 f
(l)
[
(5− n+ k + l)f (n−k−l−2) + 3f (n−k−l−1)

]}
(4.57)

with c1 = (2−l)n!
k!l!(n−k−l)! , c2 = (2−l)n!

k!l!(n−k−l−1)! and c3 = (2−l)n!
k!l!(n−k−l−2)! . The other three Leibniz

terms are considerably simpler

L(NS ;DT Dc)n =

n−1∑
k=0

(
n

k

)
(NS)(k)

[
36f (n−k+1) + (36− 33n+ 33k)f (n−k)

+(n− k)(10n− 10k − 31)f (n−k−1) − (n− k)(n− k − 1)(n− k − 5)f (n−k−2)
]

(4.58)
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and

L(DS ;NT Dc)n =

n−1∑
k=0

(
n

k

)
(DS)(k)

[
−720(c4 − 4)f (c4+1) + 60c4(13c4 − 59)f (c4)

− 2c4(134c2
4 − 835c4 + 701)f (c4−1)

+
1

126
c4

(
3011c3

4 − 28490c2
4 + 64393c4 − 38914

)
f (c4−2)

+
1

108
c4

(
329c4

4 − 3637c3
4 + 13597c2

4 − 20267c4 + 9978
)
f (c4−3)

+
311

756
c4(c5

4 − 16c4
4 + 95c3

4 − 260c2
4 + 324c4 − 144)f (c4−4)

]
(4.59)

with c4 = n− k and finally

L(DS ;DT N c)n =
n−1∑
k=0

(
n

k

)
(DS)(k)

[
−1728(c4+1) + 108(7c4 − 16)f (c4) +

1

5
c4(3083c4 − 2183)f (c4−1)

− 1

30
(11941c2

4 − 56121c4 + 44180)f (c4−2) +
115

2
c4(c4 − 1)(c4 − 2)(c4 − 6)f (c4−3)

]
.

(4.60)

Combining all the above we have an analytic expression for the highest coupling λn+2 for

the polynomial expansion and even though the final expression looks rather complicated it

allows us to reach much higher order than what we would with the conventional techniques.

In order to tackle the recursive relation we created an application using a code written

in the programming language C + +. After running the code we managed to find all the

couplings up to order

N = 35. (4.61)

The limitations of the computing memory was the main obstacle to go to even higher orders

of the approximation. The results of this calculation will be presented in the sections to

follow.

4.5 The critical exponents

Having established a systematic way to solve the fixed point equation we turn our attention

to the second important quantity that we have to compute, the critical exponents. In this

section we will follow the techniques developed in the previous section in order to find an

efficient way to compute the critical exponents.

Now we have to re-introduce the scale derivative terms and to examine the full flow

equation. We keep working with the form of the equation where everything is put in one

line and we have

U +DcDT DS ∂tf − c PS1 DT Dc∂tf
′ − c PS2 DT Dc∂tf

′′ − c P T1 DS Dc∂tf
′ = 0, (4.62)
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where U denotes the fixed point equation in one line

U = LDcDT DS − cNS DT Dc − cNT DS Dc − cN cDS DT . (4.63)

Now we follow the same strategy as we did with the fixed points and we try to determine

the form of the flow equation (4.62) after taking n derivatives. This will be given by

U (n)+
n∑
l=0

(
n

l

)
V

(l)
0 ∂tf

(n−l) =

=c

[
n∑
l=0

(
n

l

)
V

(l)
1 ∂tf

(n−l+1) +
n∑
l=0

(
n

l

)
V

(l)
2 ∂tf

(n−l+2) +
n∑
l=0

(
n

l

)
V

(l)
3 ∂tf

(n−l+1)

]
(4.64)

where we have defined the coefficients of the scale derivatives as

V0 = DcDT DS (4.65)

V1 = PS1 D
T Dc (4.66)

V2 = PS2 D
T Dc (4.67)

V3 = P T1 DS Dc (4.68)

Now it is convenient to define βi ≡ ∂tf
(i) and write the flow equation (4.62) in matrix

form

~β = V−1 · ~U , (4.69)

with ~β being the vector of the beta functions βi, the vector ~U being the vector of the

fixed point equation at each order of the expansion U (j) and V being the matrix for the

coefficients of ∂tf
(i) at each order of the series expansion j. The entries of Vij will be given

in the rest of this section.

In order to compute the critical exponents, we have to linearise the flow in the vicinity

of the fixed point g∗. Then we keep only the lowest order and we have

~β =��
��*0

~β(g∗) +
∂~β

∂f (j)

∣∣∣∣∣
g∗

· (f (j) − f (j)
∗ ). (4.70)

In principle we can solve for the beta functions ~β from (4.69) and then compute the

quantity ∂~β
∂f (j)

∣∣∣
g∗

. However, since we have first to perform the inversion of the matrix V

this task becomes impossible. In practice it is easier to start by taking derivatives of (4.69)

with respect to the couplings and then evaluate the relation at g = g∗. Then we have

∂~β

∂f (j)

∣∣∣∣∣
g∗

= V−1
∣∣
g∗
· ∂

~U

∂f (j)

∣∣∣∣∣
g∗

(4.71)
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and now the inversion of the matrix is just a numerical task. Moreover we can use the

equation (4.70) in order to find the linearised beta functions in the vicinity of the fixed

point. However, in order to compute the eigenvalues we only need the matrix Mij = ∂βi
∂f (j)

which is given by (4.71).

4.5.1 The computation of the matrices

Now we can use the machinery developed in the previous section to evaluate the matrix

(4.71). The ingredients that we need are the ρ derivatives of the ∂t terms and the f (j)

derivatives of the ~U term. We start with the ρ derivatives and we have for the expressions

at order n in the expansion when evaluated at ρ = 0

V
(n)

0 = 12(DS ·DT )(n) − 7n(DS ·DT )(n−1) + n(n− 1)(DS ·DT )(n−2) (4.72)

V
(n)

1 = 72(DT )(n) − 6n(DT )(n−1) − 46

5
n(n− 1)(DT )(n−2) (4.73)

− 113

1260
n(n− 1)(n− 2)(DT )(n−3) +

337

1080
n(n− 1)(n− 2)(n− 3)(DT )(n−4)(4.74)

+
37

1512
n(n− 1)(n− 2)(n− 3)(n− 4)(DT )(n−5) (4.75)

V
(n)

2 = 324(DT )(n) − 189n(DT )(n−1) − 138

5
n(n− 1)(DT )(n−2) (4.76)

+
81

4
n(n− 1)(n− 2)(DT )(n−3) +

1319

840
n(n− 1)(n− 2)(n− 3)(DT )(n−4)(4.77)

−283

480
n(n− 1)(n− 2)(n− 3)(n− 4)(DT )(n−5) (4.78)

− 181

3360
n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(DT )(n−6) (4.79)

V
(n)

3 = 360(DS)(n) − 390n(DS)(n−1) + 134n(n− 1)(DS)(n−2) (4.80)

−3011

252
n(n− 1)(n− 2)(DS)(n−3) − 329

216
n(n− 1)(n− 2)(n− 3)(DS)(n−4)(4.81)

+
311

1512
n(n− 1)(n− 2)(n− 3)(n− 4)(DS)(n−5). (4.82)

Now we have all we need in order to determine the matrix elements of the matrix V that

appears in (4.69). By observing which terms contribute at each order of the expansion

and for which beta function we can write

Vnm =

(
n

m

)
V

(n−m)
0 − c

(
n

m− 1

)
V

(n−m+1)
1

− c
(

n

m− 2

)
V

(n−m+2)
2 − c

(
n

m− 1

)
V

(n−m+1)
3 , 0 ≤ m ≤ n.

(4.83)

For m > n we have that Vnm = 0. Now we can construct this matrix with these elements

and evaluate it at the fixed point g = g∗ and then numerically invert it, which has become

an easy task.

Finally, we have to take derivatives with respect to the couplings of the vector ~U ,

which is nothing more than our fixed point equation. Therefore, at order n we have to
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compute the coupling derivatives of sums of two and three terms. If the sum of two terms

is written
∑n

k=0A
(k)B(n−k) then we simply use the chain rule to obtain

∂

∂f (m)

n∑
k=0

A(k)B(n−k) =

n∑
k=0

A(k)∂B
(n−k)

∂f (m)
+

n∑
k=0

∂A(k)

∂f (m)
B(n−k) (4.84)

with a similar expression for the term with the sum of the three terms. So we only have

to evaluate now ∂A(n)

∂f (m) for the various terms. This is identical to the ρ derivatives at order

n that we found in the previous section but with replacing every f (m) by the Kronecker

delta δnm.

4.6 Results

Using the methods outlined in the two previous sections, we solved the fixed point equation

and computed the critical exponents at each order of the polynomial expansion (4.35) up

to a maximum order

Nmax = 35. (4.85)

In this section we are going to present the result and to perform some quantitative analysis

starting with the fixed point values.

4.6.1 Fixed points

In Table 4.2 we summarise the fixed point couplings λ∗ for selected sets of approximations.

Notice that the signs of the couplings follow, approximately, an eight-fold periodicity in

the pattern (++++−−−−). Four consecutive couplings λ3+4i−λ6+4i come out negative

(positive) for odd (even) integer i ≥ 0, see Table 4.2. Periodicity patterns often arise due

to convergence-limiting singularities of the fixed point solution f∗(ρ) in the complex ρ-

plane, away from the real axis. This is well-known from scalar theories at criticality where

2n-fold periodicities are encountered regularly [98, 103]. In what follows we are going to

use the periodicity property for the analysis of our results. Moreover, the selection for the

sets shown in table has been made based on this observation.

We exploit the periodicity pattern to estimate the asymptotic values of couplings

λn(N → ∞) from an average over an entire cycle based on the eight highest orders in

the approximation between Nmax − 7 and Nmax,

〈X〉 =
1

8

Nmax∑
N=Nmax−7

X(N) , (4.86)
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N 35 31 27 23 19 15 11 7

λ0 0.25562 0.25555 0.25560 0.25546 0.25559 0.25522 0.25577 0.25388

λ1 −1.0272 −1.0276 −1.0276 −1.0286 −1.0281 −1.0309 −1.0289 −1.0435

λ2 0.01567 0.01549 0.01539 0.01498 0.01490 0.01369 0.01354 0.007106

λ3 −0.44158 −0.44687 −0.43997 −0.44946 −0.43455 −0.45726 −0.40246 −0.51261

λ4 −0.36453 −0.36802 −0.36684 −0.37407 −0.36981 −0.38966 −0.37114 −0.48091

λ5 −0.24057 −0.23232 −0.24584 −0.23188 −0.25927 −0.22842 −0.31678 −0.18047

λ6 −0.02717 −0.02624 −0.02286 −0.01949 −0.01564 −0.002072 −0.003987 0.12363

λ7 0.15186 0.13858 0.15894 0.13620 0.17702 0.12649 0.23680

λ8 0.23014 0.23441 0.22465 0.22904 0.21609 0.21350 0.23600

λ9 0.21610 0.23820 0.20917 0.24918 0.18830 0.28460 0.12756

λ10 0.08484 0.08207 0.092099 0.095052 0.095688 0.13722 −0.041490

λ11 −0.14551 −0.17774 −0.13348 −0.19444 −0.097057 −0.25527

λ12 −0.32505 −0.33244 −0.33242 −0.36205 −0.31812 −0.46476

λ13 −0.29699 −0.25544 −0.32410 −0.24239 −0.39520 −0.16735

λ14 −0.05608 −0.04049 −0.05633 −0.000217 −0.11204 0.16762

λ15 0.22483 0.16347 0.26944 0.14317 0.37336

λ16 0.36315 0.34000 0.37795 0.28611 0.50997

λ17 0.34098 0.44488 0.28138 0.50187 0.17199

λ18 0.18536 0.23941 0.15207 0.35074 −0.11901

λ19 −0.16304 −0.32036 −0.07588 −0.41733

λ20 −0.61457 −0.73133 −0.53776 −0.95176

λ21 −0.75346 −0.53875 −0.88929 −0.41230

λ22 −0.25160 −0.05746 −0.43756 0.29953

λ23 0.55701 0.22998 0.73065

λ24 0.93392 0.60948 1.3116

λ25 0.70608 1.2552 0.54266

λ26 0.35710 0.98891 −0.31179

λ27 −0.09106 −0.92872

λ28 −1.1758 −2.3752

λ29 −2.2845 −1.1315

λ30 −1.4145 0.64746

λ31 1.6410

λ32 3.5054

λ33 1.7098

λ34 −0.66883

Table 4.2: The coordinates of the ultraviolet fixed point in a polynomial base (4.35) for

selected orders in the expansion. We note the approximate eight-fold periodicity pattern

in the signs of couplings. The data for N = 7 and N = 11 agree with earlier findings in

[33] and [22], respectively.
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where X(N) stands for the N th order approximation for the quantity X.

Figure 4.1 shows the first six fixed point couplings as a function of the order N in the

expansion, normalised to their asymptotic value (4.86). The first two couplings λ0 and λ1

converge rapidly towards their asymptotic values, and settle on the percent level starting

from N ≈ 10.

0 5 10 15 20 25 30 35

0.5

1.0

1.5

2.0

2.5
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N

λ5

λ4

λ3

λ2

λ1

λ0

λn(N)
〈λn〉 +cn

Figure 4.1: Convergence of the first six polynomial fixed point couplings λn with increasing

order of the expansion N , (4.35). The couplings fluctuate about the asymptotic value 〈λn〉

(4.86) with decreasing amplitude and an approximate eight-fold periodicity. Note that the

convergence of the R2-coupling is slower than some of the higher-order couplings. The

shift term cn = n
3 has been added for display purposes.

As expected, the convergence is slower for the higher order couplings. An interesting

exception is the R2 coupling λ2, which only just starts settling to its asymptotic value at

the order N ≈ 20 of the expansion, and hence much later than some of the subleading

couplings. Furthermore, its value even becomes negative once, at order N = 8, see Table

4.3. The origin for this behaviour, we believe, is that the R2 coupling is the sole marginal

operator in the set-up, whereas all other operators have a non-trivial canonical dimension.
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On the level of the RG β-function a non-vanishing canonical mass dimension leads to a

term linear in the coupling, which helps stabilising the fixed point and the convergence

of the coupled system. Therefore, to establish the existence of the fixed point and its

stability, it becomes mandatory to extend the expansion to high orders N � 8.

Interestingly, the higher order couplings λ3 and λ4 converge more rapidly than λ2

and settle close to their asymptotic value starting at N ≈ 15 − 20. Notice also that

the convergence behaviour in each coupling reflects the underlying eight-fold periodicity

pattern. For the fixed point coordinates, using (4.86), we find the estimates

〈λ0〉 = 0.25574 ± 0.015%

〈λ1〉 = −1.02747 ± 0.026%

〈λ2〉 = 0.01557 ± 0.9%

〈λ3〉 = −0.4454 ± 0.70%

〈λ4〉 = −0.3668 ± 0.51%

〈λ5〉 = −0.2342 ± 2.5%

(4.87)

for the first six couplings. Clearly, the couplings λ0 and λ1 show excellent convergence

with an estimated error due to the polynomial approximation of the order of 10−3− 10−4.

The accuracy in the couplings λ2, λ3 and λ4 is below the percent level and fully acceptable

for the present study. The coupling λ5 is the first one whose accuracy level of a few percent

exceeds the one set by λ2. Notice also that the mean value over all data differs mildly

from the mean over the last cycle of eight, further supporting the stability of the result.

On the other hand, had we included all data points in the error estimate, the standard

deviation, in particular for λ2 and λ5, would grow large due to the poor fixed point values

at low orders.

The results (4.87) translate straightforwardly into fixed point values for the dimen-

sionless Newton coupling and the cosmological constant,

〈g∗〉 = 0.97327 ± 0.027%

〈λ∗〉 = 0.12437 ± 0.041% .
(4.88)

Note that because λ is given by the ratio of λ0 and λ1 its statistical error is essentially

given by the sum of theirs.

Universal quantities of interest are given by specific products of couplings. An import-

ant such quantity is the product of fixed point couplings g · λ = λ0/(2λ
2
1). It is invariant

under re-scalings of the metric field gµν → `gµν , and may serve as a measure for the

strength of the gravitational interactions [87]. We find the universal product

〈g∗ · λ∗〉 = 0.12105± 0.07%. (4.89)
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Furthermore, we find that 〈g∗ · λ∗〉 = 〈g∗〉 · 〈λ∗〉 within the same accuracy, see (4.88),

which supports the view that the cycle-averaged values have become independent of the

underlying polynomial approximation.

Now we estimate the rate of convergence for the couplings with increasing order in the

expansion. To that end we compute the number of relevant digits Dn(N) in the coupling

λn achieved at order N in the approximation, using the definition [98, 18]

10−Dn ≡
∣∣∣∣1− λn(N)

λn(Nmax)

∣∣∣∣ . (4.90)

We could have used 〈λn〉 rather than λn(Nmax) in (4.90) to estimate the asymptotic

value. Quantitatively, this makes only a small difference. The estimate for the growth

rate of (4.90) is insensitive to this choice. In Figure 4.2 we display (4.90) for the first

three couplings. Once more the eight-fold periodicity in the convergence pattern is clearly

visible. The result also confirms that the precision in the leading fixed point couplings λ0

and λ1 is about 10−3 to 10−4 at the highest order in the expansion, in agreement with

(4.87). The average slope ranges between 0.04 − 0.06, meaning that the accuracy in the

fixed point couplings increases by one decimal place for N → N + 20.
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Figure 4.2: The rate of convergence of the three leading couplings λ0, λ1 and λ2 as given

by the number of relevant digits Dn (4.90) (from top to bottom). The mean slopes range

between 0.04 − 0.06 (dashed lines), and the data points are connected through lines to

guide the eye. The curve for λ0 is shifted upwards by two units for display purposes.

We briefly comment on additional fixed point candidates besides the one discussed

above. In the search of fixed points and starting at order N = 9 we occasionally encounter
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spurious fixed points. With ‘spurious’ we refer to fixed points which either only appear

in few selected orders in the expansion and then disappear, or whose universal proper-

ties change drastically from order to order, such as a change in the number of negative

eigenvalues. In principle, the boundary conditions (4.38), which are rational functions in

the couplings, may have several real solutions λ0 and λ1. For example, at order N = 35,

the vanishing of λ36 leads to a polynomial equation of degree 264 (167) in λ0 (λ1), and

similarly for λ35, corresponding, in principle, to a large number of potential fixed points

in the complex plane. It is therefore quite remarkable that, in practice, we only find a

unique and real solution which consistently persists to all orders. We conclude that the

occasional spurious UV fixed points are artefacts of the polynomial expansion and we do

not proceed their investigation any further.

4.6.2 Radius of convergence

The polynomial expansion (4.35) has a finite radius of convergence ρc, which can be

estimated from the fixed point solution. Standard convergence tests fail due to the eight-

fold periodicity in the result, and a high-accuracy computation of ρc requires many orders

in the expansion. As a rough approximation, we adopt the root test according to which

ρc = lim
n→∞

ρc,m(n) where ρc,m(n) =

∣∣∣∣ λn
λn+m

∣∣∣∣1/m , (4.91)

with m held fixed, and provided the limit exists. It turns out that if m is taken to be

the underlying periodicity or larger, m ≥ 8, the ratios ρc,m(n) depend only weakly on m.

Since our data sets are finite, the limit 1/n → 0 can only be performed approximately.

We estimate ρc from the most advanced data set (N = 35) by computing the smallest

ρc(m) ≡ minn[ρc,m(n)] for all admissible m (8 ≤ m ≤ N −m) and then taking the average

over m. In this manner, the estimate will be insensitive to m. We find

ρc ≈ 0.82 ± 5% (4.92)

where the statistical error is due to the variation with m. The smallness of the statistical

error reflects that the value (4.92) is achieved for essentially all m ≥ 8. For illustration,

we show in Figure 4.3 the fixed point solution as a function of ρ = R/k2 to order N = 31

and N = 35. Both solutions visibly part each other’s ways at fields of the order of (4.92),

supporting our rationale.

Note that if we restrict our procedure to the first 11 fixed point couplings (by using

either the N = 11 data, or the first 11 entries from the N = 35 data set), we find

ρc ≈ 1.0± 20%. This is consistent with the estimate ρc ≈ 0.99 given in [22] based on the
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Figure 4.3: The fixed point solution f∗ to order N = 35 (blue line) and N = 31 (red line)

in the polynomial approximation.

same N = 11 data set but derived differently. The larger value for ρc at low orders is due

to the fact that a full period has just been completed for the first time at N = 11 resulting

in a slight over-estimation for ρc.

4.6.3 Anomalous dimension

We now turn to a discussion of the field-dependent anomalous dimension ηF ′ associated

to F ′ ≡ dF/dR. It is defined via the RG flow (4.15) as ∂tF
′ = ηF ′ F

′. In the fixed point

regime, we find

ηF ′ = 2− 2ρ f ′′(ρ)/f ′(ρ) , (4.93)

where f ′ ≡ df/dρ. The fixed point solution is plotted in Fig. 4.4 for N = 31 (dashed line)

and N = 35 (full line). We note that η displays a local maximum at ρ ≈ 0. Using the same

technique as before, we find that the radius of convergence ρc ≈ 0.65 ± 10% comes out

smaller than the one for f , see (4.92). The reason for this is that the anomalous dimen-

sion involves up to two derivatives of f and is therefore more sensitive to the underlying

approximation than f itself. Note that the anomalous dimension becomes small, η ≈ 0,

close to the radius of convergence ρ ≈ ρc.

We can relate the function (4.93) to the anomalous dimension of Newton’s coupling,

ηN . The latter is defined through the RG flow of Newton’s coupling, ∂tGk = ηN Gk. At

a non-trivial fixed point for the dimensionless Newton coupling g = Gk k
2 its anomalous
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Figure 4.4: Field-dependent anomalous dimension (4.93) to order N = 35 (full line) and

N = 31 (dashed line) in the polynomial approximation.

dimension takes the value

ηN = −2 (4.94)

to ensure the vanishing of ∂tg = (2 + ηN )g. Using the definitions (4.7), (4.9) we have that

g ∝ 1/f ′|ρ=0, leading to the relation

ηN = −ηF ′(ρ = 0) . (4.95)

In this light, it becomes natural to interpret the function Geff(ρ) = −1/(16π F ′(ρ)) as a

field-dependent generalisation of Newton’s coupling, which falls back onto the standard

definition in the limit ρ = 0. Away from this point in field space, however, the effective

anomalous dimension of the graviton (4.93) differs from the value (4.94) and becomes

smaller in magnitude.

4.6.4 Critical exponents

In critical phenomena, fixed point coordinates are often non-universal and not measurable

in any experiment. Instead, the scaling of couplings in the vicinity of a fixed point are

universal. In quantum gravity, universal exponents can be read off from the eigenvalues

of the stability matrix M defined in (1.9), which is, to order N in the approximation, a

real and in general non-symmetric N × N matrix, and βi ≡ ∂tλi. The computation of

(1.9) and its N eigenvalues ϑn, (n = 0, 1, · · · , N − 1) is more involved than finding the

fixed points, because the additional terms proportional to I1 and I2 in (4.15) have to be

taken into account. Using the techniques developed in Section 4.5 we have computed the
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eigenvalues for all N up to Nmax. Our results are summarised in Figure 4.5 and Table

4.3. A detailed discussion of the large-order behaviour of eigenvalues is deferred to Section

4.7.

0 5 10 15 20 25 30 35
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N

−θ3

1 + θ′′

θ′

θ2

Figure 4.5: The convergence of the first four exponents θ = θ′ ± iθ′′, θ2 and θ3, showing

θ′ (blue line), 1 + θ′′ (red line), θ2 (yellow line) and −θ3 (green) together with their mean

values (straight line).

Since M is in general a non-symmetric matrix some of its eigenvalues may become a

complex conjugate pair. At the asymptotically safe fixed point, this happens for the leading

and a few sub-leading eigenvalues. It is customary to discuss universality in terms of the

critical scaling exponents θn, to which the eigenvalues relate as θn ≡ −ϑn. The results

for the first few exponents are displayed in Figure 4.5 (see Table 4.3 for the numerical

values). The leading exponent is a complex conjugate pair θ = θ′± iθ′′. Furthermore, only

the first three exponents have a positive real part, whereas all other have a negative real

part. From Figure 4.5 we notice that the exponents oscillate about their asymptotic values

with an eight-fold periodicity and a decreasing amplitude. We estimate their asymptotic

values from an average over an entire period (4.86), leading to the exponents

〈θ′〉 = 2.51 ± 1.2%

〈θ′′〉 = 2.41 ± 1.1%

〈θ2〉 = 1.61 ± 1.3%

〈θ3〉 = −3.97 ± 0.6% .

(4.96)
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Here, the accuracy in the result has reached the percent level for the first two real and

the first pair of complex conjugate eigenvalues. The error estimate (4.96) allows us to

conclude that the ultraviolet fixed point has three relevant directions. The asymptotic

estimates 〈θ′〉, 〈θ′′〉 and 〈θ3〉 depend only mildly on whether the average is taken over

all approximations, or only the highest ones, see Table 4.3. An exception to this is the

exponent θ2. The slow convergence of the underlying fixed point λ2 has lead to a very

large eigenvalue at the order N = 3. Although the eigenvalue rapidly decreases by a factor

of nearly 20 with increasing N , its presence is responsible for the overall mean value to

deviate by 40% from 〈θ2〉, (4.96), see Table 4.3. We therefore conclude that the large

eigenvalue θ2 (N = 3) is unreliable and an artefact of the approximation N = 3.

4.6.5 Stability

Thus far we have identified fixed points and their eigenvalues by increasing the order

of expansion one by one, achieving a coherent picture for a non-trivial UV fixed point.

The stability in the fixed point coordinates with increasing order confirms that we have

identified one and the same underlying fixed point at each order in the expansion. To

clarify the role of higher-order couplings we perform the fixed point search at order N

by using a one-parameter family of boundary conditions which are informed by the non-

perturbative fixed point values (4.87), namely

λN = α · λnp
N

λN+1 = α · λnp
N+1 .

(4.97)

Here, the numbers λnp stand for the non-perturbative values of the higher order couplings

which are not part of the RG dynamics at approximation order N . We thus use the

asymptotic estimates (4.87) as input. The free parameter α is then used to interpolate

between the boundary condition (4.97) (α = 0) adopted initially to detect the fixed point,

and the improved boundary condition where the higher order couplings are identified with

the by-now known non-perturbative result (α = 1). For notational simplicity, we refer to

the approximation at order N with (4.97) as the ‘Nα-approximation’. In this convention

our results in Table 4.2 correspond to N ≡ Nα=0.

From the point of view of the RG flow, the boundary condition (4.97) with α = 1

means that we splice non-perturbative information originating from higher orders back

into a smaller sub-system of relevant couplings. The boundary condition acts like a
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‘non-perturbative background’ generated from irrelevant and non-dynamical higher-order

couplings. Evidently, by virtue of the exact recursive relations amongst the fixed point

couplings, we find that the fixed point coordinates in the approximation Nα=1 are given by

the asymptotic values (4.87). Hence, the primary effect of the non-perturbative boundary

condition is to re-align the fixed point coordinates with those achieved asymptotically.

A secondary effect is the impact of the non-dynamical higher order couplings on the

scaling exponents. We illustrate the quantitative effect of the latter for the case with

three and four independent couplings, beginning with Nα=0 = 3 where the exponent θ2

deviates substantially from the asymptotic value. Using the improved boundary condition

as described above, we find for Nα=1 = 3 the scaling exponents

θ′ = 3.0423

θ′′ = 2.0723

θ2 = 1.3893 .

(4.98)

This should be compared with the result for Nα=0 = 3, see Table 4.2. Most notably, the

exponent θ2 is vastly different from its value at N0 = 3 and all three values (4.98) are now

substantially closer to the asymptotic ones (4.96). Quantitatively, at order N0 = 3 the

exponents (θ′, θ2) differ from the asymptotic ones (4.96) by about (50%, 1700%). This is

reduced to (15%, 15%) at order Nα=1 = 3, (4.98). The universal phase θ′′ stays within

5% throughout. The remaining difference between (4.98) and (4.96) is due to the fact

that the RG dynamics of higher order couplings is not taken into account in the former.

Therefore, about 15% of the scaling exponents’ values is attributed to the dynamics of all

higher order interactions. Conversely, about 85% of their values is due to the dynamics of

the three lowest, in conjunction with the non-dynamical higher order couplings.

Turning to the approximation Nα=1 = 4, we find

θ′ = 2.9010

θ′′ = 2.3042

θ2 = 1.8336

θ3 = −2.9824 .

(4.99)

It is very encouraging that the dynamical effect of the higher-order interactions only leads

to a comparatively small quantitative shift, without affecting the qualitative result. The

result (4.98) also establishes that the fixed point of the system is already carried by a

low-order approximation. This pattern persists to higher N .
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Figure 4.6: Stability of the fixed point for R2 gravity, shown in terms of the critical

exponents θ2(α) (left panel) and θ′(α), θ′′(α) (right panel) as functions of α. The curves

smoothly interpolate between Table 4.4 (α = 0) and (4.98) (α = 1). The dependence on

α becomes very weak already around α ≈ 1.

4.6.6 Continuity

At low order in the approximation order N , in particular at N = 3, the coordinates and

scaling exponents deviate more strongly from their asymptotic value. This raises questions

as to whether these solutions are spurious rather than images of the physical fixed point,

and whether there are ways of improving the low-order results. To answer this question,

we assess the continuity of our results subject to the boundary condition. We vary α over

some range, 0 ≤ α ≤ 2 to understand how strongly the scaling exponents are affected by

the boundary condition. Our results to order N = 3 in the approximation are given in

Figure 4.6. We note that all three exponents vary strongly with α close to the boundary

condition (4.38), α < 1/2. Furthermore, the result establishes that the fixed point at order

Nα=0 = 3 is continuously connected with the result Nα=1 = 3. Most importantly, we also

find that the relative variations with α are small,

∂ ln θ′

∂ lnα
≈ −0.0339 ,

∂ ln θ′′

∂ lnα
≈ 0.0383 ,

∂ ln θ2

∂ lnα
≈ −0.761 , (4.100)

once α is of order unity. We therefore conclude that imposing non-perturbative boundary

conditions, provided they are available, improves the dynamical result at low orders. The

corresponding results for N = 4 are shown in Figure 4.7. We note that the fixed point

coordinates depend weakly on α. In addition, the universal eigenvalues show a weak and

smooth dependence on α, and the value α = 1 is not distinguished. We conclude that the

fixed point is stable under variations of the boundary condition imposed on the higher

order couplings.
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Figure 4.7: Stability of the fixed point for R3 gravity, showing the coordinates (left panel)

and the exponents (right panel) as functions of α. The result smoothly interpolates

between the data in Table 4.4 (α = 0) and (4.99) (α = 1). Note that the dependence

on α becomes very weak already around α ≈ 1.

4.6.7 De Sitter solutions

We finally turn to the possibility of de Sitter solutions to the F (R) equations of mo-

tion, which is of relevance for cosmological scenarios with inflation. De Sitter solutions

correspond to values of the dimensionless scalar curvature ρ = ρ0 which satisfy

ρf ′(ρ)− 2f(ρ)
∣∣
ρ=ρ0

= 0 . (4.101)

We can look for solutions to (4.101) at each order N in the approximation by plotting the

LHS of the equation and looking for zeros. Interestingly, solutions to (4.101) can be found

at some orders in the approximation. These may be considered as physical provided they

occur within the radius of convergence of the expansion, and persist to high orders in the

expansion.

We can use the same technique as before to calculate the radius of convergence from

the LHS of (4.101). However since ρ2 is a zero mode of (4.101) there will be no terms

proportional to ρ2 and therefore we take n ≥ 3 when determining ρc(m) ≡ minn[ρc,m(n)]

and average m over values 8 ≤ m ≤ 31. Using this method we obtain ρc ≈ 0.77 ± 5%

which is less than the value obtained from f(ρ). The reason for this is that the equation of

motion contains a derivative of f(ρ) and is therefore more sensitive to the approximation.

We find that de Sitter solutions only occur within the radius of convergence at low orders

in the approximation, without persisting to higher orders. For example at orders N = 10

and N = 11 de Sitter solutions were found previously at ρ0 ≈ 0.758 and ρ0 ≈ 0.769 [22],

but at order N = 12 no de Sitter solution is found within the radius of convergence. We
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Figure 4.8: The equation of motion (4.101) to order N = 35 (full line) and N = 31 (dashed

line) in the polynomial approximation.

conclude that there are no de Sitter solutions of the fixed point action f∗(ρ) within the

radius of convergence of a polynomial approximation.

It may be possible that de Sitter solutions exist outside the radius ρc but within the

region for which a numerical (non-polynomial) solution exists. However, we conclude that

a de Sitter solution in the fixed point regime at small R/k2 is absent. This implies that a

de Sitter phase with inflationary expansion during the fixed point regime of f(R) gravity

may require large curvature.

4.7 Canonical power counting

In a theory with a gaussian (non-interacting) UV fixed point, such as QCD, one can use

the canonical power counting method to determine if an operator is relevant, marginal or

irrelevant just by reading its canonical mass dimension. However, when a theory exhibits

a non-trivial (interacting) UV fixed point, there is no a-priori guiding principle in order

to determine what operators are relevant, marginal or irrelevant. One would expect that

the interactions at the UV fixed point could alter the ordering of the operators and as

discussed in Chapter 1 this could spoil the predictive power of the theory and consequently

the asymptotic safety scenario for gravity. In this section we are going to use the results

of our calculation in order to examine the spectrum of the operators.

We start by recalling the argument by Weinberg [148] presented in Chapter 1. Suppose
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that we have an effective average action of the form

Γk =
∑
i

∫
d4x λ̄iOi (4.102)

in terms of the operators Oi and of the dimensionfull couplings λ̄i. Then we switch to

dimensionless couplings λi with mass dimension [di] and the corresponding mass dimension

of the operators being [Oi] = 4−2n, where 2n denotes the number of derivatives contained

in Oi. The form of the beta functions for the dimensionless couplings then becomes

βi = −di λi + quantum corrections. (4.103)

If the quantum corrections are absent, as would be in a gaussian fixed point (the case of

QCD), then the eigenvalues of the stability matrix M are simply given by the canonical

mass dimensions of the couplings

ϑG,n = 2n− 4. (4.104)

In 4d gravity, only the cosmological constant and Newton’s coupling are relevant which

follows directly from dimensional analysis. Terms involving four derivatives such as R2,

�R, RµνR
µν or RµνρσR

µνρσ are marginal, and those involving more than four derivatives

such as Rn (n ≥ 2) or the seminal Goroff-Sagnotti term Rµν
ρσRρσ

λτRλτ
µν are perturbat-

ively irrelevant and their Gaussian eigenvalues (4.106) increase strongly with the number

of derivatives.

Including quantum corrections, the eigenvalue spectrum at a non-trivial fixed point is

modified. It is conceivable that some of the eigenvalues (4.106) may change sign due to

interactions, which would be in accord with the asymptotic safety scenario provided that

the set of negative eigenvalues remains finite. On the other hand, a fixed point theory

would lose its predictive power if the eigenvalues of infinitely many couplings changed their

sign due to quantum corrections. This would require substantial corrections to infinitely

many eigenvalues, nearly all of which need to be very large and with the opposite sign.

We can now proceed to analyse our results from f(R) gravity and to make quantitative

observations regarding the departure from gaussianity. We start with the two sets of

universal eigenvalues that we intend to compare. First, at order N of the approximation

we have N universal eigenvalues corresponding to each coupling

{ϑn(N), 0 ≤ n ≤ N − 1} . (4.105)

The second set of eigenvalues corresponds to the gaussian values that we would have

provided that f(R) gravity exhibits a non-interacting fixed point. These would be

{ϑG,n(N) = 2n− 4, 0 ≤ n ≤ N − 1} . (4.106)
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These eigenvalues are ordered by the number n of derivatives at each operator. Our task

is to find an ordering principle for the non-gaussian eigenvalues ϑn in order to compare

the two sets.

In our study for the critical exponents we find, occasionally, pairs of complex conjugate

eigenvalues. These complex exponents have been found in a number of studies and they

are coming from the fact that the stability matrix M, defined in (1.9), is in general real

but not symmetric. Complex eigenvalues are an indication for a degeneracy in the scaling

behaviour of the system. The degeneracy is induced by interactions, leading to large

off-diagonal terms in the stability matrix. As a consequence, the scaling of operators

becomes entangled and can no longer be distinguished, leading to complex exponents. It

is possible that these degeneracies are lifted by the inclusion of other terms, that the f(R)

approximation neglects, such as Weyl interactions or ghost interactions [16].

In any case, what determines if an operator is relevant, marginal, or irrelevant is the

real part of the eigenvalue, as can be deduced from equation (1.10). Therefore we order

the non-gaussian eigenvalues (4.105) according to the size of their real part

Reϑn(N) < Reϑn+1(N) . (4.107)

When the largest eigenvalue at fixed approximation order is a complex conjugate pair, it

is numerically more unstable, while when it is real its value is much more reliable. For

this, in Figure 4.9 we plot the largest real eigenvalue at each order of the approximation,

which we denote as

ϑmax(N) = max
n

ϑn(N) . (4.108)

The view taken here is that the largest real eigenvalue ϑ at order N is the leading

order approximation to the full eigenvalue ϑn, where n = N−1. Increasing the order from

N − 1 to N , the set of eigenvalues (4.105) of the new fixed point solution will contain a

new largest real eigenvalue ϑmax(N). It arises mainly through the addition of the invariant∫ √
det gµνR

N−1. We wish to compare this eigenvalue with the largest eigenvalue within

(4.106) in the absence of fluctuations, at the same order N ,

ϑG,max(N) = 2(N − 1)− 4 . (4.109)

In Fig. 4.9 we indicate (4.109) by the full line. For low values of N the largest real

eigenvalue ϑmax(N) differs from its classical counterpart ϑG,max(N). In particular the

perturbatively marginal operator ∝ R2 becomes a relevant operator non-perturbatively.

With increasing order N we approximately find

ϑmax(N)

ϑG,max(N)
→ 1 for 1/N → 0 . (4.110)
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Figure 4.9: The largest real eigenvalue ϑmax(N) to order N ≥ 4 in the expansion in

comparison with the corresponding Gaussian exponent ϑG,max(N) = 2(N − 1) − 4 in

the absence of fluctuations (full line). The lower panel shows our data points for all

approximation orders 4 ≤ N ≤ 35, and the lower axis shows n = N − 1. The upper panel

relates the symbols used in the lower panel to the approximation order N .

The significance of the result (4.110) is as follows. The addition of the invariant
∫ √

gRN

leads to the appearance of a new largest real eigenvalue ϑmax(N). The newly added

interaction term also feeds into the lower order couplings and eigenvalues, and vice versa.

The coupled system achieves a fixed point with ϑmax(N) ≈ ϑG(N) for all N (provided N

is not too small), stating that the UV scaling of invariants with a large canonical mass

dimension becomes mainly Gaussian, even in the vicinity of an interacting fixed point.

It remains to establish the stability of this pattern under the inclusion of further

interactions. This is assessed through a term-by-term comparison of the asymptotically

safe set of eigenvalues (4.105) retaining the complex conjugate pairs of eigenvalues, and

the Gaussian set (4.106), to sufficiently high order N in the approximation, see Table 4.4.

The data in Fig. 4.10 is complementary to Fig. 4.9 in that it shows how the eigenvalue

distribution has evolved under the inclusion of further invariants. The result states that the

eigenvalue ϑmax(n), the nth largest real eigenvalue at the order N = n+1 in the expansion

(4.35), is already a good approximation to the full nth eigenvalue ϑn(N) at a higher order

in the expansion N > n + 1. The latter is fuelled by (N − n − 1) additional operators

in the effective action. Collecting all data from the values of the critical exponents into
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Figure 4.10: The overlay of all data sets for the universal scaling exponents ϑn(N) for

2 ≤ N ≤ 35. The straight full line denotes Gaussian exponents. The exponents at N = 35

are connected by a line, to guide the eye. The upper panel relates the symbols used in the

lower panel to the approximation order N .

Figure 4.10, we find that the eigenvalues ϑn vary by about 20% due to the inclusion

of higher order invariants with N > n + 1. Furthermore, Figure 4.10 also confirms

the good numerical convergence of exponents for all n. As already noted earlier, the

largest deviations from the best estimate (N = 35) arise provided the largest eigenvalues

are a complex conjugate pair. A quantitative estimate for the deviation from Gaussian

behaviour is given in Fig. 4.11, where the relative deviation |ϑn−ϑG,n|/ϑG,n is computed.

Asymptotically, our results suggest that

Reϑn(N)

ϑG,n
→ 1 for n→∞ (4.111)

for approximations including up to N = 35. Clearly, the large eigenvalues only differ

mildly from the Gaussian ones.

To conclude, the qualitative, and largely even quantitative, similarity of Figure 4.9

and Figure 4.10 establishes the stability of the results (4.110) and (4.111) under increasing

orders in the polynomial expansion. In this light, the main effect of asymptotically safe

interactions is to induce a shift away from Gaussian eigenvalues

ϑG,n → ϑn = ϑG,n + ∆n , (4.112)

thereby generating in the UV precisely one further relevant eigenvalue in the spectrum by
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Figure 4.11: The relative variation of the non-perturbative scaling exponents ϑn(N) in

comparison with the Gaussian ones ϑG,n. The lower panel shows the data points for all

approximation orders 4 ≤ N ≤ 35. The thin line connects the data in the highest order

approximation (N = 35) to guide the eye. The upper panel relates the symbols used in

the lower panel to the approximation order N .

turning a marginal eigenvalue into a relevant one, i.e. ϑ2 = ∆2 < 0. Also, the interaction-

induced shifts ∆n come out bounded, with ∆n/ϑn ∼ ∆n/n → 0 for 1/n → 0. The

eigenvalue distribution approaches Gaussian scaling with increasing canonical dimension,

despite the fact that the underlying theory displays an interacting fixed point. Note also

that the non-perturbative shifts ∆n are mostly positive once n > 5, meaning that the

asymptotically safe interactions generate scaling operators which are more irrelevant than

their perturbative counterparts. Interestingly, this structure is more than what is needed

to ensure an asymptotic safety scenario. It is then conceivable that asymptotic safety

persists under the inclusion of further curvature invariants beyond those studied here.

4.8 Summary

In this chapter we investigated the properties of F (R) quantum gravity using renormalisa-

tion group techniques with the aim to test the asymptotic safety conjecture. We adopted

a bootstrap approach and we systematically found a self-consistent fixed point and three
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negative eigenvalues for every order in the polynomial expansion up to Nmax = 35. We

also investigated the ordering principle for critical exponents based on the observation

that curvature invariants become increasingly irrelevant with increasing mass dimension.

In the results that we presented, fixed point values showed a remarkable convergence

towards their asymptotic values with particularly small statistical errors, especially for

the case of λ0 and λ1. A notable exception of this pattern concerns the coupling λ2 of the

marginal operator R2. This coupling has much larger statistical fluctuations and much

smaller convergence rate, associated with the fact that it is the only marginal operator of

the theory. For all the quantities that were examined we observed for the first time an 8-

fold periodicity of the results and speculated that this is coming due to singularities in the

complex plane of the polynomial expansion. We also estimated the radius of convergence

for the function f(ρ) and concluded that there are no de-Sitter solutions within. Moreover,

we examined the dependence of our results to the specific boundary conditions that we

choose in order to solve the fixed point equation and found that these modifications are

unimportant. This suggests that the inclusion of higher order operators and consequently

the modification of the boundary conditions, have little effect on low order quantities.

Next we turned our attention to the evaluation of the critical exponents. In support

of the asymptotic safety scenario, we consistently find in every order of the approximation

three negative eigenvalues. The stability properties of all the eigenvalues were examined

with the three negative ones showing very good rate of convergence. Here, we observe

again the 8-fold periodicity in the quantities that we studied. Taking advantage of the

large data set that the calculation up to Nmax provides us, we sorted all the eigenvalues

at every order of the approximation according to the value of their real part. Then we

made the important observation that the highest real eigenvalue at every N takes a value

extremely close to the gaussian line and that after including the contributions from all the

higher operators they stabilise very close to that line. This result provides strong evidence

in favour of the asymptotic safety conjecture by Weinberg [148] since it shows that the

fluctuations induced by quantum interactions are not altering dramatically the canonical

scaling of the operators and consequently they do not show evidence that infinitely many

critical exponents can turn negative in order to spoil the predictive power of the theory.
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N g∗ λ∗ g∗ × λ∗ 10× λ2 θ′ θ′′ θ2 θ3

2 0.98417 0.12927 0.12722 2.3824 2.1682

3 1.5633 0.12936 0.20222 0.7612 1.3765 2.3250 26.862

4 1.0152 0.13227 0.13429 0.3528 2.7108 2.2747 2.0684 −4.2313

5 0.96644 0.12289 0.11876 0.1359 2.8643 2.4463 1.5462 −3.9106

6 0.96864 0.12346 0.11959 0.1353 2.5267 2.6884 1.7830 −4.3594

7 0.95832 0.12165 0.11658 0.07105 2.4139 2.4184 1.5003 −4.1063

8 0.94876 0.12023 0.11407 −0.01693 2.5070 2.4354 1.2387 −3.9674

9 0.95887 0.12210 0.11707 0.04406 2.4071 2.5448 1.3975 −4.1673

10 0.97160 0.12421 0.12069 0.1356 2.1792 2.1981 1.5558 −3.9338

11 0.97187 0.12429 0.12079 0.1354 2.4818 2.1913 1.3053 −3.5750

12 0.97329 0.12431 0.12099 0.1604 2.5684 2.4183 1.6224 −4.0050

13 0.97056 0.12386 0.12021 0.1420 2.6062 2.4614 1.5823 −4.0163

14 0.97165 0.12407 0.12055 0.1474 2.4482 2.4970 1.6699 −4.0770

15 0.96998 0.12378 0.12006 0.1369 2.4751 2.3844 1.5618 −3.9733

16 0.96921 0.12367 0.11987 0.1301 2.5234 2.4051 1.5269 −3.9590

17 0.97106 0.12402 0.12043 0.1398 2.5030 2.4582 1.5811 −4.0154

18 0.97285 0.12433 0.12096 0.1509 2.3736 2.3706 1.6051 −3.9487

19 0.97263 0.12430 0.12090 0.1490 2.4952 2.3323 1.5266 −3.8741

20 0.97285 0.12427 0.12090 0.1551 2.5415 2.4093 1.6038 −3.9805

21 0.97222 0.12417 0.12073 0.1504 2.5646 2.4370 1.5965 −3.9938

22 0.97277 0.12428 0.12089 0.1532 2.4772 2.4653 1.6506 −4.0332

23 0.97222 0.12418 0.12073 0.1498 2.4916 2.3853 1.5876 −3.9629

24 0.97191 0.12414 0.12065 0.1472 2.5271 2.3999 1.5711 −3.9596

25 0.97254 0.12426 0.12084 0.1503 2.5222 2.4334 1.5977 −3.9908

26 0.97335 0.12440 0.12109 0.1551 2.4328 2.4025 1.6237 −3.9734

27 0.97318 0.12437 0.12104 0.1539 2.5021 2.3587 1.5673 −3.9182

28 0.97329 0.12436 0.12104 0.1568 2.5370 2.4047 1.6050 −3.9728

29 0.97305 0.12432 0.12097 0.1549 2.5537 2.4262 1.6044 −3.9849

30 0.97337 0.12438 0.12107 0.1565 2.4951 2.4527 1.6446 −4.0165

31 0.97310 0.12434 0.12099 0.1549 2.4997 2.3865 1.5995 −3.9614

32 0.97291 0.12431 0.12094 0.1534 2.5294 2.3980 1.5882 −3.9606

33 0.97319 0.12437 0.12103 0.1547 2.5306 2.4228 1.6042 −3.9819

34 0.97367 0.12445 0.12117 0.1574 2.4660 2.4183 1.6311 −3.9846

35 0.97356 0.12443 0.12114 0.1567 2.5047 2.3682 1.5853 −3.9342

mean (all) 0.98958 0.12444 0.12320 0.1580 2.4711 2.3996 2.3513 −3.9915

mean (cycle) 0.97327 0.12437 0.12105 0.1557 2.5145 2.4097 1.6078 −3.9746

st. dev. (%) 0.02668 0.04025 0.06673 0.89727 1.122 1.085 1.265 0.603

Table 4.3: The fixed point values for the dimensionless Newton coupling g∗, the dimen-

sionless cosmological constant λ∗, the R2 coupling λ2, the universal product λ · g, and the

first four exponents to various orders in the expansion, including their mean values and

standard deviations.
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asymptotically safe fixed point

eigenvalues Gauss N = 35 31 23 15 11 7

ϑ0 −4 −2.5047 −2.4997 −2.4916 −2.4751 −2.4818 −2.4139

ϑ1 −2 −2.5047 −2.4997 −2.4916 −2.4751 −2.4818 −2.4139

ϑ2 0 −1.5853 −1.5995 −1.5876 −1.5618 −1.3053 −1.5003

ϑ3 2 3.9342 3.9614 3.9629 3.9733 3.0677 4.1063

ϑ4 4 4.9587 5.6742 5.6517 5.6176 3.0677 4.4184

ϑ5 6 4.9587 5.6742 5.6517 5.6176 3.5750 4.4184

ϑ6 8 8.3881 8.4783 8.4347 8.3587 6.8647 8.5827

ϑ7 10 11.752 12.605 12.366 12.114 10.745

ϑ8 12 11.752 12.605 12.366 12.114 10.745

ϑ9 14 14.089 15.014 15.384 15.867 13.874

ϑ10 16 17.456 17.959 18.127 18.336 16.434

ϑ11 18 19.540 20.428 20.510 20.616

ϑ12 20 22.457 23.713 23.686 24.137

ϑ13 22 25.158 25.087 23.686 27.196

ϑ14 24 26.014 25.087 23.862 27.196

ϑ15 26 26.014 26.048 26.311

ϑ16 28 27.235 28.534 28.734

ϑ17 30 30.289 31.848 32.045

ϑ18 32 33.131 34.205 34.361

ϑ19 34 35.145 36.606 36.629

ϑ20 36 38.069 39.876 40.008

ϑ21 38 40.914 42.258 49.675

ϑ22 40 42.928 44.707 49.675

ϑ23 42 45.640 48.011

ϑ24 44 48.708 50.248

ϑ25 46 49.101 52.159

ϑ26 48 49.101 52.159

ϑ27 50 50.800 52.291

ϑ28 52 53.591 55.422

ϑ29 54 56.658 56.048

ϑ30 56 58.625 56.048

ϑ31 58 60.755

ϑ32 60 63.796

ϑ33 62 69.299

ϑ34 64 69.299

Table 4.4: The large-order behaviour of asymptotically safe eigenvalues for a selection of

orders N in the polynomial expansion, in comparison with the Gaussian eigenvalues. If

the eigenvalues are a complex conjugate pair, only the real part is given.
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Chapter 5

The f (RµνRµν) approximation

5.1 Introduction

The investigation of the f(R) approximation has revealed a very encouraging and stable

picture in support of asymptotic safety scenario. A polynomial expansion in powers of R

was performed and the requirements for asymptotic safety were checked to hold true for

every order in the approximation up to Nmax = 35. An intriguing open question is how

this picture is affected by the inclusion of more complicated tensor structures, such as the

Ricci tensor Rµν .

Previous research in this direction was concentrated on the inclusion of a single Weyl

squared term [16, 17] where a UV fixed point and three real negative eigenvalues were re-

ported. This is a special case in the sense that properties of Euler’s topologically invariant

can be used in order to factor the second variation in terms of Lichnerowicz operators.

This allows for the use of a generic compact Einstein background which permits the dif-

ferentiation between the Ricci scalar and the Riemann tensor in the flow equation. When

one tries to go beyond this approximation these properties do not hold true and it is re-

quired that the background metric is chosen to be a sphere. However, dynamics of more

complicated tensor structures can be taken into account through the second variation even

when we project on the maximally symmetric background.

In this chapter we investigate the renormalisation group flow when we consider the

inclusion in the gravitational approximation of terms with powers of the Ricci curvature

squared

∼ RµνRµν . (5.1)

Ricci curvature tensor encodes more dynamics than Ricci scalar due to its non-trivial index

structure. With this inclusion we expect to capture in the renormalisation group equation
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the effects that these dynamics have. Since we project on the sphere we have to make sure

that for each mass dimension we have only one term. With increasing mass dimension

there is a growing number of candidate terms. For example using Ricci curvature tensor

and Ricci scalar with total mass dimension [d] = 6 we can form the invariants RµνR
µ
αRαν

and RRµνR
µν . Among the various possibilities we choose those terms that are pure powers

of Ricci curvature squared and those that are coupled with a single power of the Ricci

scalar. Therefore, we are interested in an expansion of the form

Γ̄k[g] =

∫
ddx
√
g
{
λ0 + λ1R+ λ2R

µνRµν + λ3RR
µνRµν + λ4RµνR

µνRαβR
αβ + . . .

}
(5.2)

With this ansatz we capture the leading order contributions of the Ricci tensor as these

are encoded in the second variation. It turns out that it is more efficient for our calculation

to consider two general functions of Ricci curvature squared with one of them coupled to

the Ricci scalar

Γ̄k[g] =

∫
ddx
√
g {Fk(RµνRµν) +RZk(RµνR

µν)} . (5.3)

The result is a renormalisation group flow for the two functions Fk and Zk in a closed form

similarly to the case of f(R). To analyse the UV properties of this system we perform a

series expansion in powers of R. We find that a self-consistent UV fixed point exists for

every step of the approximation up to order Nmax = 7. Moreover the critical exponents

are computed up to the same order and it is found that the number of attractive directions

is always three. These findings are in qualitative agreement with the previous analysis of

f(R) quantum gravity and provide evidence that the inclusion of more complicated tensor

structures do not have the tendency to invalidate the requirements of asymptotic safety.

The rest of this chapter is organised as follows. In Section 5.2 we compute the Hessians

for our gravitational ansatz and we derive the Hessians for the effective average action

taking into account the contributions of the gauge fixing action, the ghost fields and the

auxiliary fields as were calculated in Chapter 3. In Section 5.3 we compute the flow

equation for the effective average action using the general techniques and the algorithm

of Chapter 3. In Section 5.4 we present our results for the fixed points and the critical

exponents for the first 6 orders of the approximation and in Section 5.5 we sum up with

our conclusions.
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5.2 Deriving the Hessians

Here we are going to use exactly the same methods as before in order to derive the Hessians

for all the fields that contribute to our ansatz. As explained in 2.3.2 the effective average

action takes the form

Γk[g, ḡ, c, c̄] = Γ̄k[g] + Sgf [h; ḡ] + Sgh[h, c, c̄; ḡ]. (5.4)

For the gauge fixing part and the ghost part there are no modifications compared to the

case of f(R). The corresponding Hessians were computed in Chapter 3 and are given

in 3.2.2 for the gauge fixing and in 3.2.3 for the ghost part. The missing element is the

computation of the second variation for the gravitational part.

5.2.1 The gravity part

Following the discussion in 5.1 we will choose our approximation ansatz for the gravita-

tional effective average action to be formed by two functions of the Ricci squared term,

with one of them multiplied by the Ricci scalar for mass dimension consistency. Then we

have

Γ̄k[g] =

∫
√
g (Fk(RµνR

µν) +RZk(RµνR
µν)) , (5.5)

where we have defined our two functions Fk(RµνR
µν) and Zk(RµνR

µν). As was argued

in 5.1 this is a good leading order approximation for the addition to the effective average

action of more complicated tensor structures with non-trivial dynamics. In order to com-

pute the Hessians and evaluate the flow equation we need to know Γ
(2)
k as it is defined

in (2.27). We proceed the same way as with the f(R) and we make an expansion the

gravitational part Γ̄k[g] as

Γ̄k[ḡ + h̄; ḡ] = Γ̄k[ḡ; ḡ] +O(h) +
1

2
Γ̄quad
k [ḡ + h̄; ḡ] +O(h3). (5.6)

and then applying (2.27) in order to extract the quadratic part. Then the quadratic part

takes the form

Γ̄quad
k =

∫
δ(2)(
√
g) [Fk +RZk] + 2δ(

√
g)δ(RµνR

µν)
[
F ′k +RZ ′k

]
+
√
g [δ(RµνR

µν)]2
[
F ′′k +RZ ′′k

]
+
√
gδ(2)(RµνR

µν)
[
F ′k +RZ ′k

]
+
√
gδ(2)(R)Zk + 2δ(

√
g)δ(R)Zk + 2

√
gδ(R)δ(RµνR

µν)Z ′k,

(5.7)

where all the geometric quantities of the above equation are constructed from the back-

ground metric. Moreover it is understood from now on that Fk → Fk(RµνR
µν) as well as
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Zk → Zk(RµνR
µν) and that the primes denote derivatives with respect to the argument.

Using the expressions in the Appendix A we find that the quadratic part takes the form

Γ̄quad
k =

∫
√
g hµν

{
1

2
(F ′k +RZ ′k)∇4 +

[
d− 3

d− 1

R

d
(F ′k +RZ ′k) +

1

2
Zk

]
∇2

+2
d2 − 3d+ 3

(d− 1)2

R2

d2
(F ′k +RZ ′k)−

1

2
Fk

}
hµν

+
√
g h

{[
1

2
(F ′k +RZ ′k) + 4

R

d

(
R

d
F ′′k + Z ′k +

R2

d
Z ′′k

)]
∇4

+

[
− d− 5

2(d− 1)

R

d
(F ′k +RZ ′k)∇2 + 8

R2

d2

(
R

d
F ′′k + Z ′k +

R2

d
Z ′′k

)
− 1

2
Zk

]
∇2

− 2
(d− 2)2

(d− 1)2

R2

d2
(F ′k +RZ ′k) + 4

R3

d3

(
R

d
F ′′k + Z ′k +

R2

d
Z ′′k

)
+

1

4
(Fk +RZk)−

d− 2

d− 1

R

d
Zk

}
h

+
√
g(∇µ∇νhµν)

{[
−(F ′k +RZ ′k)− 8

R

d

(
R

d
F ′′k + Z ′k +

R2

d
Z ′′k

)]
∇2

+ 2
R

d
(F ′k +RZ ′k)− 8

R2

d2

(
R

d
F ′′k + Z ′k +

R2

d
Z ′′k

)
+ Zk

}
h

+
√
g(∇αhαβ)

{
[F ′k +RZ ′k]∇2 + 3

R

d
(F ′k +RZ ′k) + Zk

}
(∇µhµβ)

+ (∇µ∇νhµν)

{
F ′k +RZ ′k + 4

R

d

(
R

d
F ′′k + Z ′k +

R2

d
Z ′′k

)}
(∇α∇βhαβ).

(5.8)

As was the case also in the f(R) approximation we use the metric field decomposition as

defined in Section 3.2.1 and we find the Hessians in terms of each component field. These

are given in Appendix A. Since the decomposition we perform is the same with the one

for the f(R) the auxiliary fields and their second variations are the same as before. These

can be found in Section 3.2.4. In Table 5.1 we summarise the contribution from each

individual component field after adding the contributions from the gauge fixing part, the

ghost part and the auxiliary fields.

5.3 The flow equation

Having evaluated the second variation for our ansatz we are ready to continue and use

the machinery developed in Chapter 3 and to compute the flow equation. As always we

need to introduce dimensionless variables for the two functions that make up the effective

average action. Note that after taking the second variation and before we compute the

trace we evaluate all the expressions at the background metric, which we take to be a
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φiφj The matrix element of
(

Γ
(2)
k

)φiφj
hTµνhTµν

1
2(F ′k +RZ ′k)�

2 +
[

1
2Zk + R

d
d−3
d−1(F ′k +RZ ′k)

]
�

+2R
2

d2
d2−3d+3
(d−1)2

(F ′k +RZ ′k)−
1
2(Fk +RZk) + d−2

d(d−1)RZk

ξµξµ
1
α�

2 +
[

2
α
R
d − 4R

2

d2
(F ′k +RZ ′k) + Fk +RZk − 2RdZk

]
�

+ 1
α
R2

d2
− 4R

3

d3
(F ′k +RZ ′k) + R

d (Fk +RZk)− 2R
2

d2
Zk

σσ
[

1
2
d−1
d (F ′k +RZ ′k) + 4Rd

(
d−1
d

)2 (
Z ′k + R2

d Z
′′
k + R

d F
′′
k

)]
�4

+
[
− 1
α

(
d−1
d

)2 − R
d
d2−10d+8

2d2
(F ′k +RZ ′k) + 8R

2

d2
d−1
d

(
Z ′k + R2

d Z
′′
k + R

d F
′′
k

)
− (d−1)(d−2)

2d2
Zk

]
�3

+
[
−2(d−1)

α
R
d2

+ R2

d2
d+2
d (F ′k +RZ ′k) + 4R

3

d3

(
Z ′k + R2

d Z
′′
k + R

d F
′′
k

)
− 1

2
d−1
d (Fk +RZk) + 1

2
R
dZk

]
�2

+
[
− 1
α
R2

d2
+ 2R

3

d3
(F ′k +RZ ′k)−

1
2
R
d (Fk +RZk) + R2

d2
Zk

]
�

hh
[
d−1
2d (F ′k +RZ ′k) + 4Rd

(
d−1
d

)2 (
Z ′k + R2

d Z
′′
k + R

d F
′′
k

)]
�2

+
[
−ρ2

α
1
d2
− R

d
d2−10d+8

2d2
(F ′k +RZ ′k) + 8R

2

d2
d−1
d

(
Z ′k + R2

d Z
′′
k + R

d F
′′
k

)
− (d−1)(d−2)

2d2
Zk

]
�

−2R
2

d2
d−3
d (F ′k +RZ ′k) + 4R

3

d3

(
Z ′k + R2

d Z
′′
k + R

d F
′′
k

)
+ d−2

4d (Fk +RZk)− R
d
d−2
d Zk

hσ
[
−d−1

d (F ′k +RZ ′k)− 8 (d−1)2

d3
R
(
Z ′k + R2

d Z
′′
k + R

d F
′′
k

)]
�3

+
[
ρ
α

2(d−1)
d + R

d
d2−10d+8

d2
(F ′k +RZ ′k)− 16R

2

d2
d−1
d

(
Z ′k + R2

d Z
′′
k + R

d F
′′
k

)
+ (d−1)(d−2)

d2
Zk

]
�2

+
[
ρ
α

2R
d2

+ 2R
2

d2
d−4
d (F ′k +RZ ′k)− 8R

3

d3

(
Z ′k + R2

d Z
′′
k + R

d F
′′
k

)
+ R

d
d−2
d Zk

]
�

C̄TµC
Tµ −

√
2�−

√
2Rd

η̄η 2
√

2
d [d− ρ− 1]�2 + 2

√
2

d R�

λ̄λ
[
1− 1

d

]
�2 + R

d�

ωω
[
1− 1

d

]
�2 + R

d�

c̄Tµ c
Tµ � + R

d

ζTµ ζ
Tµ � + R

d

s̄s −�

Table 5.1: Summary of the decomposed second variation

sphere. This has already been done in (5.1). Thus the arguments of our functions become

R2

d . Then we define

fk

(
R2

k4d

)
= k−dFk

(
R2

d

)
; zk

(
R2

k4d

)
= k−d+2Zk

(
R2

d

)
(5.9)

and the dimensionless Ricci scalar curvature by ρ = R
k2

. The missing element is the scale

derivatives of the functions F and Z. Then we have

∂tF
(n)
k = kd−4n

(
(d− 4n)f

(n)
k − 4

ρ2

d
f

(n+1)
k + ∂tf

(n)
k

)
(5.10)

and similarly for the Z function

∂tZ
(n)
k = kd−4n−2

(
(d− 4n− 2)z

(n)
k − 4

ρ2

d
z

(n+1)
k + ∂tz

(n)
k

)
. (5.11)

As mentioned, after projecting to the sphere the arguments become R2

d . It is assumed that

from now on when we write F we mean F
(
R2

d

)
and similarly for Z. For the dimensionless
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functions f and z the arguments become ρ2

d . Moreover, we remind that the primes denote

derivatives with respect to the argument as always. Gathering together all the above we

can compute the L.H.S. of the flow equation for the effective average action given by (5.4).

Then we have

∂tΓ̄k =
384π2

ρ2

[
4fk + 2ρ zk − ρ2

(
f ′k + ρ z′k

)
+ ∂tfk + ρ ∂tzk

]
. (5.12)

The R.H.S. of the equation is given by the sum of the traces for the individual components

after using the algorithm described in 3.3 and subtracting the appropriate exclusion modes.

Then, in terms of the components we have

∂tΓ̄[ḡ, ḡ] =
1

2
Tr(2T )

[
∂tRh

T hT

k

Γ̄
(2)

hT hT

]
+

1

2
Tr
′

(1T )

∂tRξξk
Γ̄

(2)
ξξ

+
1

2
Tr
′′

(0)

[
∂tRσσk
Γ̄

(2)
σσ

]
+

1

2
Tr(0)

[
∂tRhhk
Γ̄

(2)
hh

]

+ Tr
′′

(0)

[
∂tRσhk
Γ̄

(2)
σh

]
− Tr

′

(1T )

[
∂tRC̄

TCT

k

Γ̄
(2)

C̄TCT

]
− Tr

′′

(0)

[
∂tRη̄ηk
Γ̄

(2)
η̄η

]
− Tr

′′

(0)

[
∂tRλ̄λk
Γ̄

(2)

λ̄λ

]

+
1

2
Tr
′′

(0)

[
∂tRωωk
Γ̄

(2)
ωω

]
− Tr

′

(1T )

[
∂tRc̄

T cT

k

Γ̄
(2)

c̄T cT

]
+

1

2
Tr
′

(1T )

∂tRζT ζTk

Γ̄
(2)

ζT ζT

+ Tr
′′

(0)

[
∂tRs̄sk
Γ̄

(2)
s̄s

]
(5.13)

where the Hessians for each field component are give in the table 5.1, the primes at the

traces denote the number of lowest modes to be excluded as described in Section 3.3

and the traces are to be computed using the algorithm for the Q’s and the relevant bn

coefficients listed in Appendix B. Moreover, the auxiliary fields have inherited the primes

from the fields which they originate.

Following the approach that we adopted for the f(R) approximation we concentrate

to the four dimensional case (d = 4) and we fix the gauge by setting

ρ = 0 ; α→ 0. (5.14)

This choice of gauge results in two simplifications of the flow equation. Since we take the

limit α → 0 the gauge fixing terms are tending to ∞. However, since terms proportional

to 1
α are also included in the regulator, when we take the limit α → 0 at the level of the

FRGE only the terms proportional to 1
α survive.

As a result the non-diagonal term σh vanishes since it has no dependence on α (for

ρ = 0) while the denominator involves the components hh and σσ and it tends to∞. The

second simplification which occurs is that the gravity and the gauge degrees of freedom

and the gravity degrees of freedom totally decouple. The gravity d.o.f. are encoded in

hThT and hh, while the gauge d.o.f. are in ξξ and σσ.
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After the trace computation we get for the flow equation

384π2
[
4f + 2ρ z − ρ2

(
f ′ + ρ z′

)
+ ∂tf + ρ ∂tz

]
= I[f, z](ρ) (5.15)

where the RHS encodes the contributions from fluctuations and it splits in several parts

as

I[f, z](ρ) =I0[f, z](ρ) + ∂tz I1[f, z](ρ) + ∂tf
′ I2[f, z](ρ) + ∂tz

′ I3[f, z](ρ)

+ ∂tf
′′ I4[f, z](ρ) + ∂tz

′′ I5[f, z](ρ)
(5.16)

The flow terms appearing (5.16) arise through the Wilsonian momentum cutoff ∂tRk,

which we have chosen to depend on the background field. All the terms I0[f, z], ..., I5[f, z]

arise from tracing over the fluctuations of the metric field for which we have adopted

the transverse traceless decomposition. The term I0[f, z] also receives f, z-independent

contributions from the ghosts and from the Jacobians originating from the split of the

metric fluctuations into tensor, vector and scalar parts. To indicate the origin of the

various contributions in the expressions below, we use superscipts T, V , and S to refer to

the transverse traceless tensorial, vectorial, and scalar origin respectively. Then we have

for the various components Ii[f, z](ρ)

I0[f, z] =
P Vc
DV
c

+
PSc
DS
c

+
P Tz00 z + P Tf1

0 f ′ + P Tz10 z′ + P T2
0 (f ′′ + ρz′′)

DT

+
PSz00 z + PSf1

0 f ′ + PSz10 z′ + PSf2
0 f ′′ + PSz20 z′′ + PS3

0 (f (3) + ρz(3))

DS
(5.17)

I1[f, z] =
P T1
DT

+
PS1
DS

(5.18)

I2[f, z] =
P T2
DT

+
PS2
DS

(5.19)

I3[f, z] =
P T3
DT

+
PS3
DS

(5.20)

I4[f, z] =
PS4
DS

(5.21)

I5[f, z] =
PS5
DS

(5.22)

with the denominators appearing in the above equations given by

DT = 36f + (24ρ+ 36)z − (7ρ2 − 6ρ+ 36)(f ′ + ρ z′) (5.23)

DS = 8f + 12z + (−2ρ2 − 8ρ+ 24)f ′ + (2ρ3 − 32ρ2 + 60ρ)z′ (5.24)

+ρ2(ρ− 3)2(f ′′ + ρ z′′)

DV
c = 4− ρ (5.25)

DS
c = 3− ρ (5.26)
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and the polynomials given in Table 5.2.

P Vc
607
15 ρ

2 − 24ρ− 144 PSc
511
30 ρ

2 − 12ρ− 36

P Tz00
311
63 ρ

3 − 4ρ2 − 1080ρ+ 2880 P Tf1
0 −ρ3

3 − 116ρ2 + 1800ρ− 4320

P Tz10
129134

189 ρ5 + ρ4 + 122ρ3 + 840ρ2 − 3240ρ P T2
0 +259201

756 ρ6 + ρ5

6 + 29ρ4 − 300ρ3 + 540ρ2

PSz00 + 37
189ρ

3 + 116
15 ρ

2 + 72ρ+ 192 PSf1
0 −116

45 ρ
3 − 248

15 ρ
2 + 96ρ+ 576

PSz10
1111
2268ρ

5 − 29
15ρ

4 − 170
3 ρ3 + 40ρ2 + 1080ρ PSf2

0 +1333
4536ρ

6 + 29
9 ρ

5 + 62
15ρ

4 − 16ρ3 + 36ρ2

PSz20 +27991
45360ρ

7 + 406
45 ρ

6 + 943
30 ρ

5 − 16ρ4 − 126ρ3 PS3
0 + 181

3360ρ
8 + 29

30ρ
7 + 91

20ρ
6 − 27ρ4

P T1 +311
126ρ

3 − ρ2 − 180ρ+ 360 PS1 + 37
378ρ

3 + 29
15ρ

2 + 12ρ+ 24

P T2 −259201
756 ρ4 − ρ3

6 − 29ρ2 + 300ρ− 540 PS2 − 127
1620ρ

4 − 58
45ρ

3 − 62
15ρ

2 + 16ρ+ 72

P T3 −259201
756 ρ5 − ρ4

6 − 29ρ3 + 300ρ2 − 540ρ PS3 −1333
4536ρ

5 − 232
45 ρ

4 − 67
3 ρ

3 + 16ρ2 + 180ρ

PS4 − 181
3360ρ

6 − 29
30ρ

5 − 91
20ρ

4 + 27ρ2 PS5 − 181
3360ρ

7 − 29
30ρ

6 − 91
20ρ

5 + 27ρ3

Table 5.2: The polynomials appearing in the flow equation

5.4 Results

Having computed the flow equation for the gravitational anstatz (5.4) we can proceed and

examine if the requirements for the asymptotic safety scenario still hold after taking into

account the non-trivial dynamics of the Ricci tensor. As before we solve the fixed point

equation

384π2
[
4f + 2ρ z − ρ2

(
f ′ + ρ z′

)
+ ∂tf + ρ ∂tz

]
= I0[f, z](ρ) (5.27)

by making an expansion in the dimensionless curvature ρ. We label the order N of the

approximation by the number of couplings that contribute to it. Then we find that at

each order of the approximation form N = 2 to N = 7 there exists a UV fixed point in

accordance with the asymptotic safety scenario. The values of the fixed point can be read

in Table 5.3.

The next task is to compute the critical exponents for the fixed point values that we

found. Again, at each order of the approximation from N = 2 to N = 7 we find that there

are always 3 attractive directions, or 3 negative eigenvalues, exactly as was the case for

the f(R) approximation up to order N = 35. The values of the critical exponents can be

read in Table 5.4. These results are encouraging and indicate that the number of negative

eigenvalues is not affected by the inclusion of more complicated tensor structures.
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N f(0) z(0) f ′(0) z′(0) f ′′(0) z′′(0) f (3)

2 0.005226 -0.020214 - - - - -

3 0.004633 -0.01356 0.00459 - - - -

4 0.006347 -0.016722 0.0037125 -0.011622 - - -

5 0.006459 -0.016536 0.0038054 -0.012477 -0.008709 - -

6 0.006476 -0.016508 0.0038208 -0.012585 -0.010126 -0.001842 -

7 0.006507 -0.016456 0.0038510 -0.012782 -0.012926 -0.006633 -0.046311

Table 5.3: Summary of the fixed point values

N Re(θ1) Im(θ1) θ3 Re(θ4) Im(θ4) θ6 θ7

2 2.38163 2.16904 - - - - -

3 1.62684 2.57034 21.2325 - - - -

4 2.45042 2.4209 1.10754 -8.27329 - - -

5 2.41456 2.28641 0.996519 -5.32054 -3.81429 - -

6 2.40478 2.27198 0.985012 -5.1241 -3.8021 -12.4043 -

7 2.39379 2.21574 0.946169 -5.12187 -3.83211 -13.7131 -20.0635

Table 5.4: Summary of the critical exponents

With the above results in hand we can make a few comments for the fixed points

and the critical exponents of the low order approximations of the ansatz (5.4). First, we

observe that there is a reasonably good stability from N = 3 and onwards. In the lowest

order N = 2 we recover the results for the Einstein-Hilbert truncation and the second

order N = 3 is the most unstable as was expected by naive power counting arguments

and as was found also in the f(R) approximation. Starting from order N = 3 we also

find spurious fixed point which either disappear in the next order or they do not have

consistently the correct number of relevant directions.

In our search we went up to the seventh order in the expansion. We note that for

the gravitational approximation given by (5.4) it is much more demanding to extend our

search to higher orders as we did with the f(R) approximation. The main obstacle for this

becomes clear with the observation that in the flow equation (5.15) the highest coefficient

in a ρ expansion is quadratic and not linear as in the case of f(R). This means that

we can still solve for the highest coefficient and set up a recursive relation but now the

result are the roots of a quadratic equation which in general involves square roots of

complicated quantities and become very cumbersome to solve using computer algorithms
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as those we developed before. The reason for the highest coupling being quadratic is the

fact that the contribution from the transverse traceless part hTµν contains the highest

coupling, something which was not the case in the f(R). In turn, the appearance of

the highest coupling in the contribution of hTµν originates from the fact that its second

variation contain a term with �2 which was absent for the f(R). However, a more careful

examination of the flow equation is currently being carried out and extension of the current

results to higher orders is left for future work.

5.5 Conclusions

In this Chapter we investigated the effects to the asymptotic safety scenario that come from

the inclusion of more complicated tensor structures as the Ricci tensor Rµν . We motivated

an extension of the gravitational ansatz that includes powers of the Ricci tensor squared

and we defined two functions with one of them being multiplied by the Ricci scalar for

mass dimension consistency. The flow equation was derived and the fixed point structure

was examined.

In order to make the evaluation of the functional trace possible, we chose our back-

ground to be a sphere. The effects of the Ricci tensor are taken into account through

the non-trivial dynamics coming from the second variation. We evaluated the second

variation and we used the trace computation algorithm that we developed in Chapter 3.

The resulting flow equation is stated and examined in Section 5.3. This is considerably

more involved than the case of f(R) and has the disadvantage that it is not linear in the

highest coefficient but quadratic. Therefore, the application of recursive techniques was

not possible.

With the flow equation at hand we moved on to examine the fixed points and the critical

exponents of our system using the conventional techniques. We find that for every order

from N = 2 to N = 7 there exist a self-consistent UV fixed point with always 3 relevant

directions. These are very encouraging results since they indicate that the underlying

structure of the asymptotic safety scenario and the fact that we always find the same

number of negative eigenvalues do not break down when we consider more complicated

tensor structures. Moreover, we find that our results look very stable even at low orders

in the approximation studied here.
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Chapter 6

Black Holes

6.1 Introduction

Black holes are classical solutions of the Einstein’s field equations with many interesting

properties and have been a central field of research since their discovery by Schwarzschild

[139]. Their most striking feature is the existence of a 2-dimensional surface, the event

horizon, which separates two causally disconnected regions. In order for black holes to

describe physically realistic situations these solutions must be extended to rotating space-

times. It took almost 40 years until such a generalisation was discovered by Kerr in

1963 [88]. Solutions in higher dimensions were found in the spherical symmetric case by

Tangherlini [144] and in the spinning case by Myers and Perry [113].

Higher dimensional black holes have been proved much richer than their four dimen-

sional counterparts and have kicked off a very active field of research. While, it was

immediately observed that rotating black holes in d ≥ 6 dimensions can have arbitrary

large rotation, it was recently suggested [48] that these solutions are unstable leading

to an extensive investigation of ultra-spinning instabilities [38, 40] and black hole phase

transitions [72, 39, 111, 47]. Another remarkable feature of higher dimensional solutions

is the discovery of black objects with non-spherical event horizons [49], which is a direct

violation of uniqueness theorems for d > 4.

While the description of black holes within general relativity is valid up to the semi-

classical level, it is expected to break down when we approach the Planck scale and

quantum gravity effects become important. The perturbative non-renormalisability of

gravity [143] brings obstacles to the inclusion of perturbative quantum effects. How-

ever, since the pioneering work of Weinberg [148] the possibility that gravity is non-

perturbatively renormalisable has arisen and numerous evidence has been since provided
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in four dimensions [130, 141, 118], higher dimensions [99, 100, 55], as well as higher

derivative terms [91, 32, 33, 34, 105, 16, 52] and under the inclusion of matter fields

[122, 121, 57, 74, 159]. This picture provides a UV completion of gravity and is based

on the existence of a non-trivial fixed point together with a flow under the renormalisa-

tion group which connects the classical regime with the high energy regime. Previous

applications to black holes include the case of four dimensional Schwarzschild [23], four

dimensional Kerr [133, 134], higher dimensional spherical symmetric black holes [54] as

well as black holes coming from higher derivative gravity [26] or from the inclusion of

boundary terms [14] and the cosmological constant [89].

In this chapter we investigate quantum corrections for higher dimensional rotating

black holes coming from the running of the Newton’s constant as dictated by the asymp-

totic safety scenario. We assume that the leading quantum corrections come from the

replacement of the gravitational coupling with the momentum dependent coupling after

an appropriate identification of the momentum and position scales. In this context we ex-

amine the modifications of the horizons and we find qualitative differences for spacetime

dimensions d ≥ 5. A significant feature of these modifications is the existence of a critical

mass Mc below which there are no black hole solutions. As a consequence the phase space

of ultra-spinning black holes is greatly reduced. Qualitative differences are found also

for the temperature and the specific heat associated with the quantum corrected black

holes again due to the existence of Mc. Moreover, the fact that the quantum corrected

metric is not a solution of the Einstein’s equations implies the existence of an effective

energy momentum tensor whose positivity properties are violated and thus allowing for

the curvature singularities to be softened or even absent. Finally, modifications of the

laws of black hole mechanics are discussed.

We organise the rest of this chapter as follows. In Section 6.2 we review classical

higher dimensional spinning black holes and we introduce our setup for the inclusion of

quantum corrections. In Section 6.3 we investigate how the horizon structure is changed

in our case and we distinguish between the three qualitatively different cases with d = 4,

d = 5 and d ≥ 6. In Section 6.4 we are concerned with the thermodynamical properties

of our corrected black holes and we examine the form of temperature and specific heat.

In Section 6.5 we compute the effective energy-momentum tensor, we examine the fate of

the curvature singularities and we evaluate the Komar mass and angular momentum of

the spacetime. Finally, in Section 6.6 we summarise with our conclusions.
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6.2 Generalities

In this section we review the classical higher dimensional rotating black hole solutions and

we establish our notation. Furthermore, we present some considerations about quantum

corrections and we define the setup we will use in this chapter.

6.2.1 Myers-Perry black holes

The first extension of solutions to Einstein’s equations in higher dimensions was made by

Tangherlini in 1963, who generalised the spherically symmetric solutions, leading to the

Schwarzschild-Tangherlini metric [144]. It was not until 1986 that spinning black holes

in higher dimensions were found by Myers and Perry [113]. Unlike the four dimensional

case, spinning black holes in higher dimensions can rotate in more than one independent

plane. For a complete review see [50]. For simplicity, here we are going to examine only

the case of rotation in a single plane. This spacetime is described by the metric

ds2 =− dt2 +GN
M

rd−5Σ
(dt− a sin2 θ dφ)2 +

Σ

∆
dr2

+ Σ dθ2 + (r2 + a2) sin2 θ dφ2 + r2 cos2 θ dΩ2
d−4,

(6.1)

where Σ and ∆ are defined by

Σ = r2 + a2 cos2 θ

∆

r2
= 1 +

a2

r2
−GN

M

rd−3

(6.2)

and d is the number of spacetime dimensions, GN the Newton’s coupling constant, dΩ2
d−4

the line element on the unit d − 4 sphere, while the reduced mass M and the parameter

a are related to the physical mass Mphys and angular momentum J by

M =
8 Γ(1

2(d− 1))

(d− 2)π(d−3)/2
Mphys (6.3)

a =
d− 2

2

J

Mphys
. (6.4)

The limit d = 4 of this spacetime is the well known Kerr solution. The horizons of

Myers-Perry solutions are found from the coordinate singularities grr = 0, or ∆ = 0. We

observe from (6.2) that d = 5 is distinguished: The centrifugal force does not depend on

the dimensionality of spacetime. On the other hand, the gravitational force is dimension-

dependent and dominates for d > 5 for small r, making (6.2) negative. This leads to

event horizons for spacetimes with arbitrary large angular momentum, the so-called ultra-

spinning black holes. It is interesting to note that ultra-spinning regions can also exist

when we have rotation in many planes [50], [113].
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The above considerations make it interesting to study separately the properties of the

three qualitatively different cases of d = 4, d = 5 and d ≥ 6. We begin with the four

dimensional case where the line element (6.1) reduces to that of the Kerr solution. The

expression ∆(r) which gives the horizons is a quadratic polynomial with two solutions

r± =
1

2

[
GNM ±

√
(GNM)2 − 4a2

]
, (6.5)

where r+ corresponds to the event horizon and r− to the inner (Cauchy) horizon. It

is evident from (6.5) that horizons exist for black hole masses large enough to satisfy

GNM ≥ 2a. We observe that in four dimensions the effect of angular momentum has two

important consequences to the structure of black holes. Firstly, black hole solutions exist

only up to a minimum mass Mc. Secondly, there exists an inner horizon.

In the five dimensional case, the term which is responsible for the gravitational attrac-

tion becomes constant and ∆(r) has only one positive root given by

r+ =
√
GNM − a2 . (6.6)

Hence, black hole solutions exist only for sufficiently large masses GN M > a2 and the

resulting spacetime has only one horizon.

In six or higher dimensions none of the two main features of the 4d Kerr black holes

are conserved: The gravitational term of ∆(r) dominates as we approach r → 0 and thus

∆(r) is always negative in this limit. This, together with the limit of ∆(r) when r →∞,

imply that there is always a horizon independently of the mass, and independently of the

angular momentum. Moreover, a check on the first derivative of ∆(r) with respect to r

reveals exactly one event horizon, and no inner horizon.

A generic feature of rotating black hole solutions is that, for given mass, their horizon

radii are always less than their non-rotating counterparts. In fact, the horizon radius of

the non-rotating Schwarzschild-Tangherlini black hole is given by

rcl = (GNM)
1
d−3 . (6.7)

Substituting (6.7) into (6.2) gives ∆(rcl) = a2 ≥ 0. For d ≥ 5, since the first derivative

∆′(r) is always positive, it follows that the horizons of spinning black holes at given mass

M (if they exist) are smaller of their non-rotating counterparts, rcl(a) < rcl. For d = 4,

this observation can be read off from the horizons of the Schwarzschild and Kerr solutions

(6.5), r+ ≤ GNM = rcl.
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case short distance index gravity horizons ∆(r → 0)

(i) s < d− 5 strong if s < 0; weak if s > 0 one or more singular

(ii) s = d− 5 strong if s < 0; weak if s > 0 none, one or more finite

(iii) s > d− 5 strong if s < 0; weak if s > 0 none, one or more a2

Table 6.1: Horizons of rotating black holes assuming a scale-dependent gravitational coup-

ling strength (6.8) at short distances for various dimensions and in dependence on the short

distance index s (see text).

6.2.2 Quantum effects

We expect that this picture changes when quantum gravity effects are taken into account

and the black hole mass approaches the fundamental scale of quantum gravity. In what

follows we will assume that the leading order quantum effects are captured from the

renormalization of the gravitational coupling, which makes it a function of the momentum

scale. We are going to extensively study these effects in the context of asymptotic safety

scenario, but before doing that we would like to gain a qualitatively picture of what is

implied from various forms of the running gravitational coupling.

Depending on the ultraviolet completion of gravity and the renormalization group,

gravity can become ”weak” or ”strong” at short distances, or superseeded by an alto-

gether different description. To investigate the behaviour of black holes for these cases,

we parametrize the putative running of Newton’s constant at short distances as

GN → G(r) = rd−2
char

(
r

rchar

)s
. (6.8)

Here, rchar denotes the characteristic length scale for the on-set of quantum corrections,

and the index s parametrizes whether the gravitational coupling remains classical (s = 0),

decreases (s > 0) or increases (s < 0) towards short distances. Then we substitute this

form of G(r) back to the expression (6.2) for ∆(r), we distinguish the following three cases

(i) s < d− 5. The strength of the gravitational contribution to ∆ increases (decreases)

for negative (positive) d − 5. The function ∆(r → 0) is unbounded from below

implying the existence of, at least, one horizon.

(ii) s = d − 5. In this case, we find a finite limit ∆(r → 0) ≡ ∆0 = a2 − r3
charM . For

∆0 < 0, this necessarily implies the existence of a horizon, similar to case (i). For

∆0 > 0, the situation is similar to case (iii).

(iii) s > d− 5. In this case the gravitational coupling becomes weaker for all d ≥ 5. For

d < 5, gravity may even become strong. In either case ∆0 = a2 > 0 implying that
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the space-time can have none, one or more horizons, depending on the precise short

distance behavior of G(r) and the other parameters of the spacetime such as the

mass and angular momentum.

The conclusions of the above considerations are summarised in Table. 6.1

6.2.3 Asymptotically safe gravity

The asymptotic safety scenario for gravity was first proposed by Weinberg [148] in 1979 and

relies on the existence of a non-trivial UV fixed point which governs the renormalisation

group flow of gravity. It was shown that this was indeed the case for Einstein gravity

in 2 + ε dimensions. Since then it was verified that also in four [141, 130] and in higher

dimensions [55, 100] the non-perturbative flow of gravity is governed by a UV fixed point.

Moreover, there exists a Gaussian (non-interacting) fixed point and a trajectory of the

flow which connects the two fixed points so that general relativity and perturbation theory

are recovered in the region of the Gaussian fixed point. Upon integration of the higher

dimensional renormalisation group flow we find an implicit equation for the momentum

dependent gravitational coupling given by

Gk
GN

=

(
1− Gk

g∗ k2−d

)δ
(6.9)

where δ = θG/θNG is the ratio of the universal scaling exponents θ at the Gaussian (non-

Gaussian) fixed point, respectively and g∗ is the value of the UV fixed point. In [99], it

was found that θG = (d− 2) and θNG = 2d d−2
d+2 , leading to

δ =
d+ 2

2d
. (6.10)

Hence, the index δ interpolates between 3
4 and 2 for d ∈ [4,∞]. In the linear approximation

θG = θNG we have δ = 1, and consequently Gk = GN/(1 + kd−2/g∗). In the quadratic

approximation, θG = 1
2θNG [60].

The input from asymptotic safety provides us with the running Newton’s coupling as a

function of momentum. However, black hole solutions are found in coordinates of curved

spacetime and we need to use a matching between momentum and position scales in order

to make a replacement of Newton’s constant, by a distance-dependent coupling

GN → G(r) (6.11)

It is the central assumption this study that the leading quantum gravity corrections ori-

ginate from this replacement. Following [54], we will identify k = ξ/r, where ξ is a non-

universal parameter which also depends on the specific RG scheme used in the derivation

of (6.9).
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For the most part of this chapter we are going to use the linear approximation δ = 1.

In this case the running of gravitational coupling (6.9) takes the form

G(r) = GN
rd−2

rd−2 + GN
g∗

(6.12)

where the parameter ξ has been absorbed into g∗.

6.3 Horizons

After these preliminaries we study the horizon structure of black holes using a running for

the Newton’s constant dictated by the asymptotic safety scenario. We saw that classical

black holes have two horizons under a condition for d = 4, one horizon under a condition

for d = 5 and always one horizon when d ≥ 6. This pattern is modified in our consideration

and the existence of horizons depends on the precise form of G(r). We start this section

by presenting an analysis about the existence of horizons and their conditions. We are also

interested to see if the possibility of ultra-spinning solutions still arises. Then, following

from the fact that in the classical case d = 5 is a critical dimensionality, we examine

separately the cases d = 4, d = 5 and d ≥ 6.

6.3.1 Horizon structure

First, we examine how many horizons our solutions have. For this, we recall the structure

of non-rotating black holes within asymptotic safety and we investigate the modifications

due to rotation, while keeping G(r) as general as possible.

We begin by looking at the relation which gives the horizons ∆(r) = 0. It is more

convenient and it provides more physical insight to look for roots of the dimensionless

function

f(r) =
∆(r)

r2
≡ 1 +

a2

r2
− M G(r)

rd−3
. (6.13)

In contrast to the classical case (6.2), the running of gravitational coupling G(r) modifies

the gravitational potential and in the context of asymptotic safety it makes it weaker at

short distances. For given mass M and angular momentum a, the RG improved horizon

radius rs(M,a) is obtained as the implicit solution(s) of

rd−3
s (M,a) = M G(rs(M,a))− a2 rd−5

s (M,a) , (6.14)

provided it exists.

Assuming that M G(r) r3−d doesn’t diverge when we approach r → 0 but instead it

vanishes, we can deduce the form of the gravitational potential V (r) = −M G(r) r3−d. Its
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Figure 6.1: Left panel: The gravitational potential −MG(r)/rd−3 (full lines) in com-

parison with the rotational barrier 1 + a2/r2 (a = 0 : dotted line, a 6= 0: dashed line).

Right panel: the function ∆(r) (6.13) for a theory where gravity becomes weaker at small

distances (d = 6 and a = 0.7M−2
Pl ). In either case, the thick (brown) line denotes the

classical limit, and thin lines denote decreasing values for M (top to bottom) in the case

where G(r) is weakening towards shorter distances.

first derivative with respect to r is given by

V ′(r) = M G(r) r2−d (d− 3 + η(r)) , (6.15)

where η(r) = −r G′(r)/G(r) is the anomalous dimension of gravity. As implied by the

previous section, in the context of asymptotic safety, η(r) is a monotonically increasing

function, which interpolates from η(0) = 2−d to η(∞) = 0. Thus, it is obvious from (6.15)

that V ′(r) changes sign once and V (r) decreases from V (0) = 0 down to a minimum value

Vmin and then it increases back to V (∞) = 0. This behaviour reflects the weakening of

gravity in our model, see Fig. 6.1.

In the absence of rotation, V (r) competes with the constant barrier 1. Thus, if Vmin <

−1 the spacetime has two horizons, if Vmin = −1 it has one degenerate horizon, while if

Vmin > −1 there are no horizons. Which of the three cases is actually realised depends on

the mass M and the precise form of G(r) [23], [54].

When we consider rotating black holes, the gravitational potential V (r) competes the

constant term enhanced by the rotational term, see Fig. 6.1. In order to examine how

many horizons we have, we look for roots of the derivative of f(r), given by

f ′(r) = r−3
[
−2a2 +M G(r) r5−d (d− 3 + η(r))

]
. (6.16)

Using the same assumptions as for the non-rotating case, we find that in four and five

dimensions f(r) has only one minimum and the spacetime can have either two, one degen-
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erate, or no horizons. For six or higher dimensions we have to know more details about

G(r), but for the running of Newton’s coupling given by (6.12), the same behaviour with

either two, one degenerate or no horizons still holds (for details see Appendix C.1). The

resulting form of ∆(r) is plotted in Fig. 6.1.

6.3.2 Critical mass

This behaviour of the function f(r), implies that black hole solutions exist only for masses

greater than a minimum mass Mc. For non-rotating black holes within asymptotic safety

there is a map between the RG parameter g∗ and a black hole which is characterised

by some Mc. As we shall see in more detail later, for rotating black holes, Mc is also a

function of angular momentum and so there is a map between ω and every Mc(a). Black

holes exist only for

M ≥Mc(a). (6.17)

For the rest of this Chapter we will write Mc for the critical mass of the non-rotating black

hole [54], while for a rotating black hole we will write explicitly Mc(a). Moreover, when

we encounter the RG parameter g∗, we will eliminate it in favour of Mc(a). This allows

us to be compatible with other theories where gravity becomes weaker at short distances

and exhibit an Mc, but they are not parametrized by the specific parameter g∗ (see for

example [117], [110]).

Keeping the function G(r) arbitrary, we solve simultaneously f(r) = 0 and f ′(r) = 0

using (6.13) and (6.16) to find

η(rc) = 3− d+ 2
a2

r2
c + a2

(6.18)

where rc is the radius of the critical (degenerate) horizon. This result is to be compared

with the non rotating case where η(rc) = 3 − d [54]. Thus, without relying on any

specific running for the Newton’s coupling, we have concluded that the graviton anomalous

dimension for a critical rotating black hole will be less than the one of the corresponding

spherical black hole and in general it will satisfy

3− d ≤ η(rc) < 5− d. (6.19)

6.3.3 Critical parameters

In order to quantitatively examine the properties of RG corrected black holes we express

the relevant equations in terms of dimensionless variables. This is achieved by dividing

every dimensionfull parameter by the appropriate power of a representative length, which
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we take to be the horizon radius of classical, non-rotating black holes, i.e. rcl = (GNM)
1
d−3 .

The mass dimensions of the parameters are [GN ] = 2− d, [a] = −1 and [M ] = 1, leading

to

x =
r

rcl
. (6.20)

The parameter x defines the ratio of the radial coordinate to the horizon of classical non-

rotating black holes rcl. If they exist, we denote the event horizon by x+, the Cauchy

(inner) horizon by x−, and the degenerate (critical) horizon by xc. The parameter

A =
a2

r2
cl

(6.21)

provides the dimensionless ratio of the angular momentum parameter a over the mass.

Finally, we introduce the parameter

Ω =
1

g∗M rcl(M)
. (6.22)

It measures the deviation from classical gravity to which our equations reduce for Ω→ 0

meaning either M/MP →∞ or g∗ →∞.

Degenerate (critical) black holes are achieved for ∆ = 0 = ∆′ as this function is defined

in (6.13). Using the expression (6.9) for the running of Netwton’s coupling together with

the above definitions, we obtain the critical values xc and Ωc for non-rotating black holes

as

xc =

(
δ

d− 3 + δ

) δ
d−3

(6.23)

Ωc =
d− 3

d− 3 + δ

(
δ

d− 3 + δ

) δ
d−3

. (6.24)

Note that Ωc = d−3
d−3+δ xc. For δ = 1, they reduce to expressions first derived in [54].

For δ as predicted by (6.10), the result is displayed in Fig. 6.2, also comparing the linear

and quadratic approximations δ = 1 and 2, respectively. We note that xc,Ωc → 1 with

increasing dimensions. In the limiting case d → 3, we have xc = exp(−1) and Ωc = 0.

With these findings, the meaning of the parameter Ω becomes clear, and we write it as

Ω =

(
Mc

M

) d−2
d−3

Ωc (6.25)

with Ωc given by (6.24). The significance of (6.25) is that black hole solutions exist for

black hole masses down to the critical mass M = Mc, but not below. The mass scale Mc

does not exist within the classical framework and is the central new ingredient here. It is

expressed as
Mc

MP
= (g∗Ωc)

− d−3
d−2 ξd−3. (6.26)
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Figure 6.2: The ratio xc of the outer horizon to the classical Schwarzschild horizon for

critical non-rotating black holes as a function of the number of dimensions based on (6.9)

in the linear approximation (dashed line, δ = 1), quadratic approximation (short dashed

line, δ = 2), and with the full RG running (6.10) (solid line).

in terms of the Planck mass and the parameters of the RG. Below, we use the critical

mass of the (non-rotating) black hole as a reference scale for the analysis of the rotating

black holes.

In the sequel, it is often sufficient to use the approximation δ = 1, in which case the

expressions for ∆̃ and Ω become

∆̃ = A+ x2 − x3

xd−2 + Ω
. (6.27)

Ω = (d− 3)(d− 2)−
d−2
d−3

(
Mc

M

) d−2
d−3

(6.28)

These equations and their solutions are the subject of the following sections.

6.3.4 Four dimensions

The RG-improved Kerr solution has been studied extensively in [134]. We recall this case

for completeness, and in order to compare with the higher-dimensional results.

Classical Kerr black holes in four dimensions posses two horizons (see Section. 6.2.1),

corresponding to A ≤ 1
4 . Consequently, for every angular momentum J there is a minimum

mass Mc(A), below which there are no classical Kerr solutions. This structure remains

unchanged even under the inclusion of RG corrections [134], except that the precise bounds

depend, additionally, on the RG parameter Ω. Specifically, by solving simultaneously
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Figure 6.3: The phase space of black hole solutions in four dimensions (left panel) and five

dimensions (right panel). The points on the 2-dimensional surface represent the horizon radii x

as a function of angular momentum A and mass Mc. The thick black line gives the radius of

the critical horizon xc. The regions with x > xc(A) (x < xc(A)) correspond to event (Cauchy)

horizons. The red (green) lines represent the classical event (Cauchy) horizon, respectively.

∆̃ = 0 and ∆̃′ ≥ 0, we find a relation between the permitted values of A and Ω,

0 ≤ 3

32
+

1

32

√
9− 32(A+ Ω)

−1

3
(A+ Ω)− 1

6

√
A2 + Ω2 + 10AΩ . (6.29)

Inspection of the above condition shows that as Ω increases the upper limit of A decreases.

This means, that as the mass of the black hole gets smaller and quantum effects become

important, the maximally allowed value of the ratio A decreases. This is in contrast to the

classical picture where the condition A ≤ 1
4 was sufficient for the existence of black holes

at all mass scales. The quantum corrected picture implies that for every black hole mass

there is a different bound of the angular momentum parameter Ac(M) as an upper limit

in order to have horizons. When we go down to the critical mass for non rotating black

holes Mc we find that the angular momentum parameter should vanish. For masses less

than this there is no allowed phase space for black holes. The horizons and the allowed

phase space of black hole solutions can be seen in Fig. 6.3.

We can view the criticality condition in the opposite way. It is evident from (6.29) that

for every value of the ratio A ≤ 1
4 , there is a maximum allowed value of Ω for which we

can have black holes. This value corresponds to the minimum mass Mc(A). Moreover, we

can deduce from (6.29) that as the angular momentum parameter A grows the minimum

required mass for the existence of horizons Mc(A) increases. For the classically critical



97

black hole with A = 1
4 we find that Ω = 0 and so that Mc(A = 1

4) → ∞ implying that

only macroscopic black holes can reach this limit.

The vanishing of (6.29) defines the relation between A and Ω when we are at criticality.

Then, we can find the radius of the critical horizon by solving ∆̃(x) = 0 and ∆̃′(x) = 0

simultaneously. This gives

xc =
3

8
+

1

8

√
9− 32(A+ Ω), (6.30)

where it should be kept in mind that A and Ω are implicitly related through the vanishing

of (6.29) and the radius of the critical horizon is a function of only one parameter, xc(A)

or xc(Ω). This reflects the two directions of criticality in rotating black holes. After some

analysis we find that the value of xc for every possible A and Ω ranges from xc = 0.5 to

xc ' 0.55.

From Fig. 6.3 we can observe how the horizons vary when we change A and Ω. As

any of these two parameters grows, the radius of the event horizon gets smaller and that

of the inner Cauchy horizon gets bigger. The two horizons meet, when we have reached

the extreme configuration, at the critical horizon xc. This behaviour is verified if we look

at the variation of the roots with respect to A and Ω

∂Ωx± = −
∂Ω∆̃|x±
∆̃′(x±)

, ∂Ax± = −
∂A∆̃|x±
∆̃′(x±)

. (6.31)

Since, ∂Ω∆̃|x± and ∂A∆̃|x± are always positive while ∆̃′(x±) is positive at x+ and negative

at x−, it is implied that ∂Ωx± and ∂Ax± are negative at the event horizon and positive at

the Cauchy horizon. Note that this result is independent of dimensionality and it is true

for every d.

6.3.5 Five dimensions

Classical Myers-Perry black holes with d = 5 is a marginal case where there is only one

horizon if a condition between angular momentum and mass is satisfied. In terms of

dimensionless variables this condition reads A ≤ 1.

Now, the result of quantum effects is both to alter the horizon structure and to modify

the condition for the existence of horizons. The horizon structure is modified as soon

as we leave the classical limit. This is seen from the equation (6.27) which gives the

horizons. As soon as Ω takes any non-zero value, spacetime develops a second (Cauchy)

horizon provided that solutions to (6.27) exist. When we reach the critical black hole

configurations these two horizons meet at xc. This structural change can be observed in

Fig. 6.3.
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The condition for the existence of horizons changes from being a simple bound on the

ratio of angular momentum over the mass to a more complicated condition which depends

on the mass scale of the black hole. We find this condition by solving simultaneously the

two equations ∆̃(x) ≤ 0 and ∆̃′(x) = 0. Then we obtain the following relation for the

allowed values of Ω and A

Ω ≤ 5−
√

24A+ 1

1 +
√

24A+ 1

(
1

6
−A+

1

6

√
24A+ 1

)3/2

. (6.32)

The relation reflects the two directions of criticality. For every angular momentum para-

meter A ≤ 1 there exist a minimum mass Mc(A) for which we can have black holes. As

A increases then Mc(A) grows and the classically critical black hole with A = 1 can be

reached only by macroscopic black holes, since in that case Mc(A = 1) → ∞. Similarly,

we can read the condition (6.32) as it defines the maximum allowed ratio Ac(M) for every

mass. The horizons and the allowed phase space of five dimensional black holes are plotted

in Fig. 6.3.

Solving for ∆̃(x) = 0 and ∆̃′(x) = 0 simultaneously we find that for the radius of

critical horizon is given by

xc =

(
1

6
−A+

1

6

√
24A+ 1

)1/2

. (6.33)

Similarly, the radius of the critical horizon can be expressed in terms of the mass scale Ω

if we solve (6.32) for A and substitue back to (6.33). In either case the critical horizon

ranges from xc =
√

6/4 to xc = 0.

The general behaviour of the horizons is the same as in four dimensions. This can be

confirmed by looking again at the equations (6.31). As either A or Ω increases the radius

of the event horizon gets smaller, the radius of the Cauchy horizon grows and they meet

when we reach Mc(A) or Ac(M).

6.3.6 Six and more dimensions

Six and higher dimensional black holes are exceptional in the classical case. This is because

they have always one horizon without any restriction to the angular momentum. As a

result, there exist black holes with arbitrary large angular momentum, the so-called ultra-

spinning black holes. Their horizon structure is similar to that of the Schwarzschild black

holes, where there is always one simple event horizon.

The result of quantum effects is to destroy both of these features. In the quantum cor-

rected picture, six or higher dimensional black holes have two horizons (an event horizon

and a Cauchy horizon) only if a condition between the mass and the angular momentum
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Figure 6.4: The allowed phase space of black hole solutions in six dimensions. The points of the

2-dimensional surface represent the radius of the horizon x, as a function of A and Mc. The thick

black line gives the radius of the critical horizon xc. The regions with x > xc(A) (x < xc(A))

correspond to event (Cauchy) horizons. The red line represents the classical event horizon.

is satisfied. An arbitrary small value of Ω implies that there is a maximum of the gravit-

ational potential (see Section 6.3.1) and so that there is a maximum value for the angular

momentum parameter A. This change of behaviour takes place as soon as we leave from

the classical limit as it is seen from the equation (6.27).

In principle, we could solve again the two relations ∆̃(x) ≤ 0 and ∆̃′(x) = 0 to obtain

the condition between A and Ω for the existence of the horizons. However, for arbitrary

dimensionality we get the expression

3− d+ 2
A

x2
c +A

− (d− 2)
Ω

xd−2
c + Ω

≤ 0 (6.34)

where we have to keep in mind that xc and A are implicitly related through the equation

1 +
2A

x2
c +A

− (d− 2)xd−5
c (x2

c +A) = 0 (6.35)

A very interesting consequence of quantum effects is that they impose an upper bound

in the angular momentum and in addition, that the smaller the black hole mass is, this

maximum angular momentum gets smaller and smaller until it should vanish. This has

as a result that ultra-spinning black holes do not exist in the presence of quantum effects.

To see this more clearly, we make the approximation A
x � 1 (which corresponds to the

ultra-spinning regime) and we solve the two relations ∆̃(x) ≤ 0 and ∆̃′(x) = 0 in order to

find the condition for the existence of horizons in this regime. Then we get



100

Ω ≤ d− 5

3

[
A

(
1 +

d− 5

3

)]− d−2
d−5

. (6.36)

It is evident from the above inequality, that for d ≥ 6 and A
x � 1 the maximum

allowed Ω gets extremely small, since it scales as an inverse power of A. This means that

ultra-spinning black holes exist only in the classical regime, where M � Mc and Ω → 0.

We can interpret this feature as the ultra-spinning black holes being unstable under small

quantum fluctuations. This behavior of d ≥ 6 black holes and their allowed phase space

of solutions can be observed in Fig. 6.4.

The behaviour of the event and Cauchy horizons as we vary the parameters A and Ω

is the same as in the four and five dimensional case. This is verified by looking at the

equations (6.31). Then, we observe that for greater A or Ω the event horizon shrinks and

the inner horizon grows until they meet for the critical values of the parameters Ac(M)

or Mc(A) at the critical horizon.

6.3.7 Ergosphere

From the form of the corrected metric ((6.1) with the substitution GN → G(r)) we observe

that it still possesses the timelike Killing vector k = ∂
∂t . The ergosphere is the region

outside the event horizon, where k becomes spacelike,

kµkµ = gtt =
a2 sin2 θ −∆(r)

Σ(r)
> 0 (6.37)

with Σ(r) and ∆(r) defined by (6.2). This is a region where an observer cannot remain

stationary. All observers in the ergosphere are forced to rotate in the direction of rotation

of the black hole. Furthermore, it has been suggested that the ergosphere can be used to

extract energy from rotating black holes through the Penrose process [30], [31].

The boundary of ergoregion is modified due to quantum corrections. First, note that

we are interested in finding the roots of a new function E(r) = a2 sin2 θ −∆(r), which is

the original ∆(r) shifted by an angular-dependent term. Revisiting the analysis of Section

6.3.1 we conclude that E(r) has either two, one or no roots, depending on the values of its

parameters. We denote (in dimensionless variables) the larger root of (6.37) as xE+ and

the smaller as xE−. Then the ergoregion will be the region x+ < x < xE+.

In order to examine the properties of xE+, we write down the function Ẽ(x) in terms

of dimensionless variables

Ẽ(x) = −x2 −A cos2 θ +
x3

xd−2 + Ω
(6.38)
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Figure 6.5: The ergosphere in six dimensions with A = 1/5 and M
Mc

= 1.56, plotted in the

dimensionless x− z plane with the angular coordinate θ starting from the axis of rotation

z. The ergoregion is represented by the shaded region between the event horizon (inner

solid line) and the boundary xE+ (outer thick line).

and we find its largest root. The form of this equation shows that the solution we are

seeking will depend on the angular coordinate θ. The analysis for ∆̃(x) is easily extended

for Ẽ(x) noticing that their only difference is the substitution of the angular momentum

term by A cos2 θ. This means that Ẽ(x) interpolates from the zero angular momentum

∆̃(x)|A=0 at the equatorial plane to the full ∆̃(x) at the poles. Moreover, we know from

the analysis of ∆̃(x) that as the angular momentum parameter A increases the largest

root x+ decrease. Thus, the outer boundary of ergoregion xE+ coincides with the event

horizon at the poles and as the angle θ grows, xE+ grows until it reaches the horizon of

the non-rotating limit at θ = π/2. The outer boundary of the ergoregion xE+ and the

event horizon are plotted in the x− z plane in Fig. 6.5.

Next, we should answer the question wether xE+ is bigger or smaller than its classical

value. This is straightforward if we consult the analysis of the previous sections. Since Ẽ(x)

is just ∆̃(x) with a different angular momentum parameter, its behaviour with varying Ω

is the same. That is, if we go to smaller masses and quantum effects become important

(Ω gets bigger) then xE+ gets smaller. This can be observed also in Fig. 6.6 where we

have plotted xE+ for different values of Ω.

Finally, we have to comment if any modifications to the structure of ergosphere are

coming from different dimensions. It should be clear by now that this is not the case. The
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Figure 6.6: The boundary of the ergoregion xE+ for rotating black holes with A = 1/4 in

six dimensions for various black hole masses in the dimensionless x − z plane. Classical,

quantum, and critical black holes are represented by a solid, dashed, and dotted line

corresponding to the parameters Mc
M → 0, M

Mc
= 2.77 and M

Mc
= 1.72, respectively.

function Ẽ(x) follows the behaviour of ∆̃(x) and it has always two, one or no horizons

for every dimensionality. Since we are interested only for the larger root xE+ of Ẽ(x), it

makes no difference if classically Ẽ(x) had only one root (as is the case for d ≥ 5) or more

(as in d = 4). Moreover, as the angular momentum term in Ẽ(x) is always less or equal to

that of ∆̃(x), the condition for the existence of the event horizon is enough to guarantee

the existence of the ergosphere. It also follows that if the function Ẽ(x) will have a second

root (as in the quantum corrected case) this will always be smaller than x− and thus will

be irrelevant for the ergosphere, which is the region x+ < x < xE+.

6.4 Thermodynamics

The second part of our analysis will deal with the thermodynamical properties of the

quantum corrected black holes. First, we present some basic properties of our spacetime,

such as the angular velocity, the area and the surface gravity of the horizon. Then, we

examine the temperature and the specific heat.
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6.4.1 Killing vectors

For studying the thermodynamical properties of black holes we make use of the Killing

vectors of the spacetime. We observe from the corrected form of (6.1) that we still have

both Killing vectors present in the classical case, namely k = ∂
∂t and m = ∂

∂φ associated

with time translations and axisymmetry, respectively. We note that the results of this

section are applicable for a generic form of the function G(r) which parametrizes the

running of Newton’s constant.

We begin by finding the null generator of the event horizon. In order to avoid a

coordinate singularity at the horizon, we proceed with the coordinate transformation

du = dt+
r2 + a2

∆
dr, dχ = dφ+

a

∆
dr. (6.39)

In these coordinates the Killing vectors are k = ∂
∂u and m = ∂

∂χ . The vector field normal

to a hypersurface S = const. is given by l = f(x) (gµν∂νS) ∂
∂xµ , where f(x) is an arbitrary

function. Using S = r − r+ we find the normal vector at the event horizon

l+ =
a2 + r2

+

r2
+ + a2 cos2 θ

· f(r+) · ξ (6.40)

where the vector ξ is given by

ξ =
∂

∂u
+

a

a2 + r2
+

· ∂
∂χ

. (6.41)

It is easy to verify that the normal vector l+ is null (l2+ = 0) and that the vector ξ is a

Killing vector of the metric transformed by (6.39). As a result, we have that the event

horizon is a Killing horizon of the Killing vector field ξ.

6.4.2 Angular velocity

The angular velocity of the horizon ΩH is found by comparing orbits of the Killing vector k

(which correspond to static particles), with orbits of the Killing vector ξ (which generates

the event horizon). We find

ΩH =
dφ

dt

∣∣∣∣
r=r+

=
a

r2
+ + a2

. (6.42)

The functional form of this quantity is identical to its classical counterpart [113], except

for the value of r+ which is different from its classical value.

6.4.3 Horizon area

An expression for the area of the horizon is given by the integral
∫ √

g(d−2)dθdφdΩd−4,

performed at the event horizon, with g(d−2) the metric which corresponds to the geometry
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of the horizon. We find

AH = rd−4
+ (r2

+ + a2)Ωd−2. (6.43)

This expression is functionally the same as the classical one upon replacing the classical

horizon radius by r+.

6.4.4 Surface gravity

For a Killing horizon of a Killing vector ξ, the surface gravity κ is defined as

ξν∇ν ξµ = κ ξµ. (6.44)

After substituting ξ as in (6.41) and performing the algebra we find the surface gravity as

κ =
∂r∆|r=r+

2(r2
+ + a2)

=
1

2r+

(
2r2

+

r2
+ + a2

+ d− 5 + η(r+)

)
, (6.45)

where η(r+) = −r+
G′(r+)
G(r+) is the anomalous dimension. The expression reduces to the

classical one if, firstly, r+ is replaced by the classical radius and, secondly, the term

proportional to the anomalous dimension is dropped. We recall that (6.18)

η(rc) = 5− d− 2
r2

c

r2
c + a2

(6.46)

in the case of a critical black hole where r+ = rc, independently of the specific RG running.

We thus conclude that critical black holes have zero surface gravity. For future use, we note

that η(r+), for a running Newton’s constant given by (6.12) is a monotonically increasing

function of g∗, starting from (6.46), when we are at Mc(α) and taking its maximum value

η(r+) = 0 in the classical limit.

6.4.5 Temperature

Using the techniques of quantum field theory in curved spacetime, Hawking showed that

black holes radiate like thermal objects with temperature T = κ/(2π), where κ is the

surface gravity of the event horizon [77]. Another method for identifying the temperature

with κ/(2π) comes from Euclidean quantum gravity techniques [61] where an identification

in imaginary time with period β = 2π/κ is required in order to produce a smooth Euclidean

manifold. In either case it is confirmed that the black hole temperature is a property of

the spacetime itself, independent of which theory of gravity determines the geometry [19],

[84].

Thus, it is straightforward to confirm that also in our case the formula for the tem-

perature of the improved black holes is obtained by dividing the surface gravity (6.45) by
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Figure 6.7: The temperature for various values of Mc(a) in d = 7 and fixed angular

momentum J = 10. The thick line corresponds to the classical temperature, while the

other lines correspond to (from left to right) Mc(a)/MPl = 1.83, Mc(a)/MPl = 2.75,

Mc(a)/MPl = 3.45 and Mc(a)/MPl = 4.6. We can verify that for smaller g∗ (larger Mc(a))

the temperature gets smaller.

2π,

T =
κ

2π
=

1

4πr+

(
2r2

+

r2
+ + a2

+ d− 5 + η(r+)

)
. (6.47)

The temperature depends on all the parameters of the spacetime. Apart from its explicit

dependence, it is also implicitly dependent on these parameters, since the event horizon

is a function of mass, angular momentum parameter a and g∗, i.e. r+ = r+(M,J, g∗).

From the expression (6.45) for surface gravity and the limit values of η(r+), we see

that for large enough masses the temperature will be positive. If there exists an extremal

black hole (i.e. ∆′(r+) = 0), then when mass gets its critical value Mc(a), the temperature

vanishes. If the spacetime does not exhibit an extremal solution, then the temperature

remains positive, and it diverges as r+ tends to zero.

We saw in the previous Sections that four and five dimensional black holes exist only up

to a critical mass Mc(a), both in the classical and the quantum regimes. Their temperature

always reaches a maximum and vanishes when their mass reaches Mc(a). However, in

six or higher dimensions there are no extreme configurations in the classical limit and

the temperature diverges as r+ → 0. The picture is modified once quantum corrections

are taken into account, since then black holes only exist up to a critical value Mc(a).

Consequently, the temperature reaches a maximum. This change of behaviour can be seen

in Fig. 6.7 where the temperature in seven dimensions is plotted both for the classical
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and the improved black holes.

It is instructive to see how the temperature varies with the mass and g∗. We begin

with the variation with respect to g∗. As explained before, this corresponds to changing

the critical mass Mc(a) at fixed angular momentum J , given by the relation

d T

d g∗
=

1

4π

[(
∆′′(r+)

r2 + a2
− 2r+∆′(r+)

(r2 + a2)2

)
∂r+

∂g∗
− 1

r+

∂η(r+)

∂g∗

]
(6.48)

It follows that for a running of the form (6.12) the above expression is always negative.

Moreover it is checked that by restoring the power γ in our matching the same holds true

for γ > (
√

2 − 1)/(2d − 4). Thus, for fixed mass and angular momentum a larger Mc(a)

implies a smaller temperature. Consequently, when quantum corrections are considered

the temperature is always smaller than the classical one, i.e. Tcl(M,J) > Tg∗(M,J). We

can observe the dependence of temperature to the critical mass Mc(a) by looking at the

Fig. 6.7.

6.4.6 Specific heat

The specific heat at constant angular momentum is defined as

CJ =
∂M

∂T

∣∣∣∣
J

. (6.49)

We are particularly interested on the sign of this quantity, since a positive specific heat

implies a thermodynamically stable system. After some algebra we find

CJ = −(d− 2)πΩd−2G(r+)
rd−3

+ (a2 + r2
+)3 T

D(r+)
, (6.50)

where T is the temperature, and D(r+) is given by

D(r+) =
[
3(d− 5)a4 − 6a2r2

+ + (d− 3)r4
+

]
G(r+)2

− r2
+(a2 + r2

+)(3a2 + r2
+)G′(r+)2 + r2

+G(r+)
[
4a2r+G

′(r+) + (a2 + r2
+)(3a2 + r2

+)G′′(r+)
]
.

(6.51)

In the classical limit we have G′(r+) = 0 = G′′(r+) and the last two terms of (6.51) vanish.

The fact that the temperature reaches a maximum and then vanishes at Mc in four and

five dimensions is reflected by a pole and a change of sign in the specific heat (see Fig.

6.8). For six or higher dimensions the temperature is a monotonically decreasing function

of mass, and the specific heat remains always negative (see Fig. 6.9).

When quantum corrections are considered in four and five dimensions the qualitative

behaviour of the specific heat is not changed. However, the point where specific heat
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Figure 6.8: The specific heat for various values of Mc(a) in d = 4 and fixed angular momentum

J = 10. The thick line corresponds to the classical specific heat, while the thin lines correspond

to (from left to right) Mc(a)/MPl = 2.4 and Mc(a)/MPl = 2.7. We observe that due to the fact

that both in the classical and quantum cases there exist an extreme black hole there is no change

in the qualitative behaviour of CJ .

becomes positive is shifted to bigger masses. For six or higher dimensions the effect of the

quantum correction terms in (6.51) is that they induce always one pole at CJ for some

value of the mass. For masses sufficiently small, the specific heat becomes positive and

vanishes at Mc(a). It is seen from (6.51) that the bigger the value of Mc is, the pole is

shifted towards bigger masses.

6.5 Mass and energy

6.5.1 Energy momentum tensor

Myers-Perry black holes represent vacuum solutions of rotating spacetimes in higher di-

mensions. However, when we consider quantum corrections, the resulting spacetimes are

not vacuum solutions of Einstein’s equations and we can think of them as arising from an

effective energy momentum tensor T
(eff)
µν . We find this tensor by substituting the improved
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Figure 6.9: The specific heat for various values of Mc(a) in d = 7 and fixed angular momentum

J = 10. The thick line corresponds to the classical specific heat which is always negative, while

the thin lines correspond to (from left to right) Mc(a)/MPl = 1.83, Mc(a)/MPl = 2.75 and have a

pole where CJ becomes positive for small masses.

metric into Einstein’s equation Gµν = 8πGNT
(eff)
µν , leading to

Tµ(eff)
ν =



T tt 0 0 T tφ 0 · · · 0

0 T rr 0 0
...

...

0 0 T θθ 0
...

...

T φt 0 0 T φφ 0
...

0 · · · · · · 0
. . . 0

...
... 0 T ii 0

0 · · · · · · · · · · · · 0
. . .


(6.52)

where 4 ≤ i ≤ d− 1 label the extra dimensions. We write a general entry of T
µ(eff)
ν as

Tµν = Uµν G
′(r) + V µ

ν G
′′(r), (6.53)

where in the classical limit G′(r) = 0 = G′′(r) and Tµν = 0 as expected. Then, we

calculate the components and we find the coefficients Uµν and V µ
ν . Their values are given

in Appendix C.2.

In order to examine the properties of the energy-momentum tensor we diagonalize

(6.52) and check the energy-conditions. After diagonalising the energy momentum tensor
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we get

T = diag(pi), i = {0, · · · , d− 1} (6.54)

where p0 ≡ −ρ is minus the energy density, p1 = pr and p2 = p3 = p⊥, and pi for i ≥ 4

arise from the higher dimensions. The energy density ρ and p3 arise after diagonalisation

of (6.52) while pr and p2 originate directly from the T rr and T θθ . We refer to the Appendix

C.2 for explicit expressions of these quantities. Note that ρ = −pr and that p2 = p⊥ = p3.

In classical general relativity many properties of the spacetime depend on the energy

conditions which are expressed as inequalities between the components of the energy mo-

mentum tensor. For this reason we compute the following relations relevant to these

conditions:

ρ ≥ 0 :
[
(d− 2)r2 + (d− 4)a2 cos2 θ

]
G′(r) ≥ 0 (6.55)

ρ+ p⊥ ≥ 0 :
[
(d− 2)r2 + (d− 6)a2 cos2 θ

]
G′(r)− r

(
r2 + a2 cos2 θ

)
G′′(r) ≥ 0 (6.56)

ρ+ pi ≥ 0 :
[
(d− 2)r2 + (d− 4)a2 cos2 θ

]
G′(r)− r

(
r2 + a2 cos2 θ

)
G′′(r) ≥ 0 (6.57)

ρ− p⊥ ≥ 0 : (d− 2)G′(r) + r G′′(r) ≥ 0 (6.58)

ρ− pi ≥ 0 :
[
(d− 2)r2 + (d− 4)a2 cos2 θ

]
G′(r) + r

(
r2 + a2 cos2 θ

)
G′′(r) ≥ 0 (6.59)

with the index i being equal or greater than 4. The sign of the above inequalities and

consequently the validity of the energy conditions strongly depend on the running of

Newton’s coupling through its first and second derivative.

We now turn to the energy conditions. For a diagonalised energy-momentum tensor

the weak energy condition reads

ρ ≥ 0 and ρ+ pi ≥ 0, 1 ≤ i ≤ d− 1. (6.60)

From the relation (6.55) we conclude that the sign of ρ depends only on the sign of G′(r)

and in our case we have that G′(r) > 0 so that the first requirement of the weak energy

condition is always satisfied. Moreover, as stated above we have that ρ + pr = 0 and

so for the validity of the weak energy condition we have to examine the remaining two

relations ρ + p⊥ ≥ 0 and ρ + pi ≥ 0 with i ≥ 4. The first of them is given by (6.56) and

for a function G(r) given by (6.12) this expression has one root (denoted by rw1). The

condition is violated for 0 < r < rw1. It is interesting to note that in the limit of zero

angular momentum this condition is not violated. Moreover, the same holds true in the

special case where θ = π/2. The second relation we need to examine takes the form (6.57).

This relation has exactly the same behaviour as ρ + p⊥ and is violated for 0 < r < rw2
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only when a 6= 0 and θ 6= π/2. Here, rw2 denotes the root of the expression on the LHS of

(6.57).

Next we examine the validity of the dominant energy condition which reads

ρ ≥ 0 and − ρ ≤ pi ≤ ρ, 1 ≤ i ≤ d− 1. (6.61)

For this condition to hold, the weak energy condition should be fulfilled. We saw that there

exist special cases that this is true. So, now we have to examine the relations ρ− pi ≥ 0.

Again, the condition ρ − pr ≥ 0 is always satisfied. The requirement that ρ − p⊥ ≥ 0

takes the form (6.58) and for G(r) given by (6.12) is violated for r > rd1, where rd1 is the

only root of this expression. The remaining relations of the dominant energy condition are

ρ− pi ≥ 0 with i ≥ 4, and they take the form of (6.59). However, for the only case where

the weak energy condition is satisfied (a = 0 or θ = π/2), the above condition reduces to

(6.58) and does not give any new information.

6.5.2 Curvature singularities

In classical general relativity, singularity theorems [75] state that whenever an event ho-

rizon is formed, a curvature singularity is hidden behind this horizon. However, their

derivation relies on the positivity conditions of any energy momentum present in the

spacetime. The fact that the RG-improved black holes violate some of these conditions

opens the possibility that the spacetime may not exhibit any singularities.

Here we are going to briefly comment on the fate of the singularities in our improved

spacetime. We compute two curvature invariants, the Ricci scalar R and the Kretschmann

invariant K = RµνρσR
µνρσ, and examine their behaviour in the region of the classical ring

singularity at r = 0 and θ = π
2 . Analytic expressions for these two quantities are given in

Appendix C.3.

We begin with the Ricci scalar where classically we have R = 0. Now, we substitute

(6.12) and find that a divergence at r = 0, θ = π
2 as

R ∼ 1

ε
(6.62)

for ε→ 0. We observe that there is a ring singularity. For the Kretschmann invariant we

have

K ∼ 1

ε2
(6.63)

for ε → 0. We observe that there is still a ring singularity at r = 0, θ = π
2 but it is

significantly softened compared to the classical case where K ∼ 1
ε2d−2 .
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In order to study the effects of different matchings between momentum and position

scales on the behaviour of the singularities we approximate the running of the gravitational

coupling near the origin by

M G(r) = µσ rσ+d−3, (6.64)

as it was done in [54], where µ is a parameter which is fixed by the renormalisation group

with dimensions of mass. Then, by substituting this into our expressions in Appendix C.3

we find that the Ricci scalar diverges as

R ∼ 1

ε2−σ
(6.65)

and the Kretschmann invariant as

K ∼ 1

ε4−2σ
. (6.66)

The above results indicate that quantum corrections have the property to significantly

soften the black hole singularities. The matching we are using in here corresponds to σ = 1

and it already brings down the divergence of the ring singularity from order 6 to order 2.

By using slightly different matchings we observe that the singularities can be cured even

further and we point out that the spacetime is regular when σ ≥ 2. This results have

already been obtained for the non-rotating case [23], [54] and we observe that the addition

of rotation does not alter this picture, apart from the fact that the singularity is now a

ring singularity at r = 0, θ = π
2 .

6.5.3 Mass and angular momentum

The notion of mass and angular momentum in general relativity is quite puzzling. However,

in stationary, asymptotically flat spacetimes we can use the Killing vectors associated with

time translations and rotations to define the total mass and angular momentum of the

spacetime, respectively. This is done by associating a conserved charge to each Killing

vector through the Komar integrals [90]

Qξ(∂Σ) = c

∮
∂Σ
∇µξνdΣµν (6.67)

where ξ is the Killing vector, Σ is a spacelike hypersurface, ∂Σ its boundary, dΣµν is the

surface element of ∂Σ and c is a constant. In order to get the total mass of the spacetime,

the boundary ∂Σ, which is a two-sphere, is taken at infinity or at any exterior vacuum

region.

This result was generalized [13] for a spacetime containing a black hole and it is now

given in terms of a boundary integral at the horizon and a hypersurface integral at the
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region between the horizon and ∂Σ∞ at infinity. After fixing the constant c, we have the

following formula for the mass of a stationary asymptotically flat spacetime in d dimensions

[113]

M = − 1

16πGN

d− 2

d− 3

[
2

∫
Σ
Rµνk

νdΣµ +

∮
H
∇µkνdΣµν

]
(6.68)

where the integral over Σ is performed from the horizon until ∂Σ∞ and dΣµ is the surface

element on Σ. We consider the first integral as it gives the contribution to the total

mass of the matter outside the event horizon and the second integral as the mass of the

black hole. Using Einstein’s equations one can express the first integral in terms of the

energy momentum tensor as
∫

Σ

(
Tµν kν − 1

2Tk
µ
)
dΣµ. Similarly, the angular momentum of

a stationary and asymptotically flat spacetime is defined as

J = − 1

16πGN

[
2

∫
Σ
Rµνm

νdΣµ +

∮
H
∇µmνdΣµν

]
. (6.69)

We note, that classical Myers-Perry black holes are vacuum solutions of Einstein’s equa-

tions. Then, it is straightforward to find that the Komar integrals performed at the

horizon return the physical mass and angular momentum of the black holes. As we saw

in the previous section, our spacetime features an effective energy momentum tensor and

we would like to know how this affects the mass and the angular momentum of the black

holes. In what follows we are going to denote the boundary integrals at the horizon by

MH =− 1

16πGN

d− 2

d− 3

∮
H
∇µkνdΣµν

JH =− 1

16πGN

∮
H
∇µmνdΣµν .

(6.70)

At first, we would like to verify that the total mass and angular momentum of the

spacetime remain the same. To do this we perform the integral (6.67) at ∂Σ∞ for

the two Killing vectors and we find that they indeed return Qk(∂Σ∞) = Mphys and

Qm(∂Σ∞) = 2
d−2 aMphys = J .

Now, it is interesting to see the modifications to the mass and angular momentum of

the black holes, due to quantum corrections. Performing the boundary integral for the

timelike Killing vector, we get the following expression for the mass of a black hole

MH = Mphys
G(r+)

GN

[
1 +

η(r+)

d− 3
· F
]
, (6.71)

where F = 2F1

(
1, 1; d−1

2 ; a2

r2++a2

)
is the Gaussian hypergeometric function. By substitut-

ing d = 4 in (6.71) we recover the Komar mass of the four dimensional black holes as

found in [134].

We note some interesting properties of this expression. Since all its parameters are

positive, the hypergeometric function in (6.71) will be positive. Thus, for a theory where
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the gravitational coupling becomes weaker (so η(r) is negative) the mass of the black hole

will be less than the physical mass Mphys.

We are now interested on how MH varies when we change the parameters a and g∗. We

find that as either of them grow the Komar mass gets smaller. Thus, the black holes will

have their minimum mass when they are in a critical configuration. Moreover, it is easily

shown that the Komar mass reaches an absolute minimum value MH = 0 when the black

holes are in one of the two following critical configurations. First, for every dimension,

for a critical non-rotating black hole we have MH = 0, since the term inside the square

brackets becomes 1 + η(rc)/(d − 3), which vanishes. The second case where the horizon

mass vanishes, is when we have a critical ultra-spinning black hole. In this case we have

rc
a → 0 and again we get from (6.71) that MH → 0.

Similarly, we can compute the Komar integral for the Killing vector m to find the

angular momentum of the black holes. This is given by the expression

JH = J
G(r+)

GN

[
1 +

1

2
η(r+)

(
r2

+

a2
+ 1

)
(F − 1)

]
. (6.72)

Again, the limit d = 4 reduces this formula to that obtained in [134] for the Komar

angular momentum of the RG-improved Kerr solution. Inspection of the above formula

shows that the angular momentum of the horizon is always less than the classical value J .

However, in contrast to the Komar mass, this formula can turn negative for some values of

the parameters, which implies that the effective rotation of the horizon is in the opposite

direction.

6.5.4 Remarks on the laws of black hole mechanics

Having reviewed the basic thermodynamical properties of the quantum corrected space-

times, we are able to discuss their implications to the laws of black hole mechanics. Here,

we are going to briefly comment on possible deviations from these classical laws.

First, we want to examine the validity of the integral formula

MH − 2ΩHJH =
κ

4π
AH . (6.73)

This is the analogue of Smarr’s formula [140] for a stationary axisymmetric spacetime

(not necessary in vacuum) which contains a black hole. Then, the values of mass, angular

momentum and area at the horizon are related through the relation (6.73). It follows

directly from the derivation of [13] that the integral formula is a concequence only of the

properties of the Killing vectors and of the constancy of surface gravity on the horizon.

Thus, we expect that in the case of quantum corrections parametrized by G(r) this will
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still hold true. Indeed, we can also verify the validity of the integral formula by using the

expressions of MH and JH obtained in the previous section.

The zeroth law states that the surface gravity of a stationary black hole is constant

over the event horizon. It is easily seen, directly from the expression for the surface gravity

κ =
1

2 r+

(
2 r2

+

r2
+ + a2

+ d− 5 + η(r+)

)
, (6.74)

that the zeroth law holds in our case. It is interesting to note, that the proof given in [13]

relies on the dominant energy condition. However, there are other proofs [27], [127], which

instead of this requirement rely on other conditions such as the existence of a bifurcate

Killing horizon. Moreover, the proofs can go the opposite way implying that if the surface

gravity is constant then there exists a bifurcate Killing horizon.

In the previous two cases we saw that classical relations hold when we consider asymp-

totically safe black holes. However, this is not in general true for the first law of black

hole mechanics. This is the differential law relating variations of the mass, the angular

momentum and the area of the black hole

dM =
κ

4π
dAH + ΩHdJ. (6.75)

In classical Einstein gravity this relation, was first used to identify the entropy of the

black hole with the area of the horizon, S = AH/(4π). Corrections to this simple form

of the entropy are well known to exist in theories of modified gravity or when quantum

corrections are considered and various techniques have been developed for its calculation

[147], [78], [84].

In what concerns us here, we note that it is evident from the original derivation [13],

that when Einstein’s equations imply an effective EM tensor, we have extra contributions,

which take the form

dM =
κ

4π
dAH + ΩHdJH + d

∫
Tµν k

νdΣµ. (6.76)

The term involving the energy-momentum tensor gives a contribution from the angular

momentum outside the horizon and also contributions from the energy density and the

pressures of the effective matter. It is evident that in general the first law doesn’t hold in

its classical form given by (6.75). For defining the entropy we should in principle include

the additional contributions following the general procedure highlighted in [61], [146]. This

is left for future work.

Recently, by studying the four dimensional Kerr black hole within asymptotic safety

[134], the authors were motivated by the requirement that there exists an exact one-form
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state function S(M,J) and they were led to the modification of the Hawking temperat-

ure. However, it was shown by [53] that using a specific class of matchings between the

momentum and position space, the first law of black hole mechanics holds in its classical

form given by (6.75).

Finally, further investigation requires also the second law of black hole mechanics [76]

which states that the area of the event horizon of a black hole does not decrease with time

dAH ≥ 0. (6.77)

The proof of the second law relies on the requirement that the energy momentum tensor

of the spacetime obeys the dominant energy condition, which is not the case for black

holes within asymptotic safety.

6.6 Conclusions

In this Chapter we have studied implications to the physics of rotating black holes due

to quantum gravity effects. We have assumed that the leading order corrections come

from the renormalisation of the Newton’s constant and we implemented a specific running

dictated by the asymptotic safety scenario for gravity. These techniques have been pre-

viously applied to four dimensional Schwarzschild [23], four dimensional Kerr [133, 134],

and higher dimensional spherical symmetric black holes [54]. Here we examined quantum

gravity effects in rotating black holes for spacetime dimensions d ≥ 4.

Our findings show that in contrast to the classical case, in every dimensionality we

get the same horizon structure. There always exist a critical mass Mc which is a function

of angular momentum and below this mass there are no black hole horizons. Rotating

black holes with exactly that mass have one degenerate horizon, while for masses above

Mc there are two horizons, an event horizon and a Cauchy horizon, just like in the four

dimensional Kerr black holes. These findings imply that there is a qualitative difference

from macroscopic black holes for dimensions d ≥ 5.

The existence of a critical mass Mc means that solutions of rotating black holes with

arbitrarily high angular momentum in six or more dimensions cease to exist as the mass

gets smaller. This can be interpreted as ultra-spinning black holes being unstable under

small quantum fluctuations. We found that the critical mass is growing as a power of

angular momentum and so that ultra-spinning black holes can only be macroscopic.

Subsequently, we computed thermodynamic quantities related to quantum corrected

black holes such as the temperature and the specific heat. Since the form of the tem-
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perature always follows the structure of the horizons we found that for every spacetime

dimension we get the same behaviour. For large masses the temperature follows the clas-

sical curve, while as we approach Mc it reaches a maximum and then vanishes resulting

in a cold remnant. Consequently the specific heat changes sign at the maximum of the

temperature and it becomes positive for small masses.

Finally, we studied the implications of the quantum corrections to the singularities

and the energy of the black holes. The ring singularity at the centre persist, although it

is significantly softened compared to the classical case. The effective energy momentum

tensor of our black holes doesn’t satisfy the weak and the dominant energy condition,

opening up the possibility that the usual laws of thermodynamics do not hold in our case.

We found that this is indeed the general case for the first law.
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Chapter 7

Conclusion

In this thesis we investigated the quantisation of metric gravity and its applications using

renormalisation group techniques. Perturbative quantisation of gravity faces challenges

which stem from the negative mass dimension of Newton’s coupling. However, since

the conjecture of Weinberg [148] and the development of non-perturbative techniques

[153], asymptotic safety emerged as a candidate theory of quantum gravity. Based on the

assumption that the renormalisation group flow of gravity approaches a non-trivial fixed

point at the UV, it provides a well defined high energy limit for the quantum system.

In addition, the requirement that the number of relevant operators remains finite in the

vicinity of the fixed point ensures that the theory retains its predictive power.

Every attempt to investigate the renormalisation group flow of gravity has relied on

some approximation scheme with the expansion in powers of the Ricci scalar being the

most popular. However, in an asymptotically safe theory there is no a-priori ordering

principle for the operators and one has to perform a detailed analysis to determine the

relevancy of each curvature invariant. Here we developed a new strategy for testing the

asymptotic safety conjecture and the validity of the approximation scheme by using a

bootstrap approach. We performed a systematic search for fixed points and critical ex-

ponents for every order of the expansion up to an unprecedent R34. A self-consistent UV

fixed point and three relevant directions were found at each order of the approximation in

support of the asymptotic safety conjecture. Moreover, we were able for the first time to

estimate the radius of convergence of the expansion and to perform a high precision ana-

lysis for the stability of the approximation. More interestingly, it was found that curvature

invariants become increasingly irrelevant with increasing mass dimension and that their

critical exponents take almost gaussian values. These results provide an ordering principle

for the operators based on their canonical dimension and indicate that the situation where
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infinitely many eigenvalues become negative is unlikely.

In order to go beyond the f(R) approximation, we investigated the effect from the

inclusion of more complicated tensor structures, other than the Ricci scalar. We considered

the square of the Ricci tensor and we successively added those terms in the effective average

action. The flow equation was computed and a self-consistent UV fixed point was found

for every order in the expansion up to order 7. The critical exponents were also calculated

and it was found that there are always three attractive directions in the vicinity of the

fixed point. These findings suggest that the dynamics of more involved tensors, like the

Ricci tensor, do not show the tendency to invalidate the requirements of asymptotic safety.

In the third part of this thesis we investigated the implications of asymptotic safety

scenario to the physics of rotating black holes. Classical black holes are fascinating objects

with very rich structure but their description within general relativity faces limitations

when we approach the scale of quantum gravity. Under the assumption that the leading

order quantum corrections come from the replacement of Newton’s constant with a mo-

mentum dependent coupling we examined the effects of a running gravitational coupling

as it is dictated by the asymptotic safety scenario. Interestingly, it was found a qualitative

difference in the horizon structure for spacetime dimensions d ≥ 5. As a result, in every

dimension we observe the same picture, with horizons existing down to a minimum mass

Mcr. Moreover, the seminal ultra-spinning black holes which are allowed classically cease

to exist under the inclusion of quantum corrections. Implications to curvature singularities

and thermodynamical properties were also discussed.

The formulation of a quantum theory for gravity remains an open challenge in theoret-

ical physics. Despite recent advances in the front of asymptotic safety, there are still many

open questions associated with the various steps of approximation. In this thesis we have

contributed to the understanding of polynomial expansions and of the physics of black

holes. Among the many directions that future research can take, we find most intriguing

the examination of background dependence, the inclusion of more complicated operators

and the investigation of the spacetime structure in the vicinity of the ultra-violet fixed

point.
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Appendix A

Variations and Hessians

A.1 Second variations

Here we present the variations for the various terms that appear in (4.5) evaluated on the

sphere. These can be read from Table A.1

δ(
√
g) 1

2

√
gh

δ(R) −R
d h+∇α∇βhαβ −∇2h

δ(RµνR
µν) −2R

2
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δ(2)(
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δ(2)(R) hµν

[
1
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]
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[
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d(d−1)

]
h

+(∇αhαβ)(∇µhµβ)

δ(2)(RµνR
µν) hµν

[
1
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d
d−3
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2 + 2R
2
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(d−1)2

]
hµν

+h
[

1
2∇

4 + R
d

3d+1
2(d−1)∇
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2d−3

(d−1)2

]
h

+(∇µ∇νhµν)[−∇2]h+ (∇αhαβ)
[
∇2 + 3R

d

]
(∇µhµβ) + (∇α∇βhαβ)2

Table A.1: Summary of the variations

A.2 The Hessians for the f(R) approximation

Here we present the Hessians that arise from the gravitational part Γ̄quad
k after substitut-

ing the metric decomposition (3.2) into the second variation (4.6). Then we get for the
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corresponding matrix elements of the transverse-traceless part(
Γ̄

(2)
k

)hT hT
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And finally for the trace part(
Γ̄

(2)
k

)hh
=

(d− 1)2

d2
F ′′k (R)�2 − 1

4d2

[
2(d− 1)

(
(d− 2)F ′k(R)− 4RF ′′k (R)

)]
�

+
1

4d2

[
(d− 2)(dFk(R)− 4RF ′k(R)) + 4R2F ′′k (R)

]
.

(A.5)

A.3 The Hessians for the f(RµνRµν)+Rz(RµνRµν) approxim-

ation

Here we present the Hessians that arise from the gravitational part Γ̄quad
k after substitut-

ing the metric decomposition (3.2) into the second variation (5.7). Then we get for the

corresponding matrix elements of the transverse-traceless part
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For the scalar part
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And finally for the trace part
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Appendix B

Heat Kernel coefficients

In this Appendix we summarise some technicalities of the heat kernel techniques. We

examine how these are affected when we consider constrained fields. For a full overview of

the heat kernel methods we refer to [9, 63]. Some of the information found here has also

been discussed in [91, 34, 105].

B.1 Constrained fields

First we need to know how the trace evaluation is modified due to the fact that we

decompose our original fields. For example, any vector field V µ can be decomposed in its

transverse and longitudinal part as

V µ = V Tµ +∇µη (B.1)

with ∇µV Tµ = 0. Similarly, any symmetric tensor hµν is decomposed according to

hµν = hTµν +∇µξν +∇νξµ +∇µ∇νσ −
1

d
gµν∇2σ +

1

d
gµνh (B.2)

subject to the constraints

gµνhTµν = 0, ∇µhTµν = 0, ∇µξµ = 0, h = gµνh
µν (B.3)

so that hTµν is the transverse-traceless part of hµν , ξµ is a transverse vector, σ is a scalar and

h is the trace part of hµν . From now on we use the notation (2T ) for a transverse-traceless

symmetric tensor, (1T ) for a transverse vector

In order to see how this affects the calculation, we need to know how the coefficients

bn are modified when the operator is restricted to act on (2T ) tensors and (1T ) vectors.

For this, we are going to relate the spectrum of the constrained fields in terms of the

unconstrained. We start with the transverse vectors and we note that the spectrum of
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every vector can be expressed as the union of the spectrum of a (1T ) vector and of the

longitudinal mode ∇µη. The spectrum of ∇µη can be related to that of the scalar field η

through the commutation relations

−∇2∇µη = −∇µ
(
∇2 +

R

d

)
η. (B.4)

We note however that for a constant scalar η, the vector V µ receives no contribution from

the longitudinal mode. So we have to subtract from the scalar trace the constant mode.

Thus we write for the trace of a transverse vector

Tr(1)

[
et∇

2
]

= Tr(1T )

[
et∇

2
]

+ Tr(0)

[
et(∇

2+R
d )
]
− et

R
d , (B.5)

where the last term corresponds to the zero mode of the scalar field. Thus we can relate

the spectrum of the transverse vector to that of the unconstrained vector.

Now we turn our attention to the constraints of the transverse traceless tensors. Then

for the symmetric tensors we use the commutation relations

−∇2 (∇µξν +∇νξµ) = ∇µ
(
−∇2 − d+ 1

d(d− 1)
R

)
ξν +∇ν

(
−∇2 − d+ 1

d(d− 1)
R

)
ξν (B.6)

and

−∇2

(
∇µ∇ν −

1

d
gµν∇2

)
σ =

(
∇µ∇ν −

1

d
gµν

)(
−∇2 − 2

d− 1
R

)
σ. (B.7)

As in the case of the transverse vector there are modes that do not contribute to the trace.

These modes are (i) the d(d+1)
2 Killing vectors for which ∇µξν +∇νξµ = 0 so that they do

not contribute to hµν . (ii) a constant scalar σ as in the case of vectors and (iii) the d+ 1

scalars which correspond to the second lowest eigenvalue of −∇2 − 2
d−1R. Thus we have

for the trace of a symmetric tensor

Tr(2)

[
et∇

2
]

=Tr(2T )

[
et∇

2
]

+ Tr(1T )

[
e
t
(
∇2+ d+1

d(d−1)
R
)]

+ Tr(0)

[
et∇

2
]

+ Tr(0)

[
et(∇

2+ 2
d−1

R)
]

− et
2
d−1

R − (d+ 1)et
1
d−1

R − d(d+ 1)

2
e
t 2
d(d−1)

R
.

(B.8)

Again we can relate the spectrum of the constrained transverse traceless tensor to that of

the 2-tensor the vector and the scalar.

In order to clarify how the contributions from the exponents play a role in our calcula-

tion we expand the exponential in powers of R such as
∑∞

m=0 cmR
m. Taking into account

that the volume of the sphere goes like V ∼ R−d/2 and that the heat kernel coefficients

like bn ∼ Rn/2 we find that ∫
ddx
√
g bn ∼ R

n−d
2 . (B.9)
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Since ultimately we are interested in comparing powers of R the exponentials contribute

when 2m = n− d and the coefficients bn receive contributions only when n ≥ d. Another

way to see where the excluded modes enter is from the expansion e−tz = 1−tz+ 1
2 t

2z2 + ....

In order for the parameter t to be included in Qi[W ] =
∫∞

0 dt t−iW̃ (t) we see directly

from (2.42) that the corresponding power m of the expansion
∑∞

m=0 cmR
m is such that

2m = n− d.

B.2 Summary

Here we summarise the trace of the heat kernel coefficients trsbn = bn|s for the fields that

we will be interested in after taking into account their constraints. We write 0 for the

scalars, 1 for the vectors and 2 for the tensors. For the scalars we have

b0|0 = 1 (B.10)

b2|0 =
1

6
R (B.11)

b4|0 =

(
5d2 − 7d+ 6

)
R2

360(d− 1)d
(B.12)

b6|0 =

(
35d4 − 112d3 + 187d2 − 110d+ 96

)
R3

45360(d− 1)2d2
(B.13)

b8|0 =

(
175d6 − 945d5 + 2389d4 − 3111d3 + 3304d2 − 516d+ 2160

)
R4

5443200(d− 1)3d3
. (B.14)

For the transverse vector fields we have

b0|1 = d− 1 (B.15)

b2|1 =
R(6δ2,d + (d− 3)(d+ 2))

6d
(B.16)

b4|1 =
R2
(
360δ2,d + 720δ4,d + 5d4 − 12d3 − 47d2 − 186d+ 180

)
360(d− 1)d2

(B.17)

b6|1 = R3

(
δ2,d

8
+
δ4,d

96

)
(B.18)

+

(
35d6 − 147d5 − 331d4 − 3825d3 − 676d2 + 10992d− 7560

)
R3

45360(d− 1)2d3

b8|1 = R4

(
δ2,d

96
+
δ4,d

768
+

δ6,d

2700
+

15δ8,d

175616

)
(B.19)

+

(
175d7 − 2345d6 − 8531d5 − 15911d4 + 16144d3 + 133924d2 − 206400d+ 75600

)
R4

75600(d− 1)3d4
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Finally for the transverse traceless tensor fields we have

b0|2 =
1

2
(d− 2)(d+ 1) (B.20)

b2|2 =
(d+ 1)(d+ 2)R(3δ2,d + d− 5)

12(d− 1)
(B.21)

b4|2 =
(d+ 1)R2

(
1440δ2,d + 3240δ4,d + 5d4 − 22d3 − 83d2 − 392d− 228

)
720(d− 1)2d

(B.22)

b6|2 = R3

(
3δ2,d

2
+

5δ4,d

36

)
(B.23)

+
(d+ 1)

(
35d6 − 217d5 − 667d4 − 7951d3 − 13564d2 − 10084d− 28032

)
R3

90720(d− 1)3d2

b8|2 = R4

(
δ2,d

2
+

5δ4,d

288
+
δ6,d

175
+

675δ8,d

175616

)
(B.24)

+

(
175d10 − 945d9 + 464d8 − 150566d7 + 478295d6 − 2028005d5

)
R4

453600(d− 1)4d4

+
(−2945774d4 − 5191124d3 − 10359960d2 − 7018560d− 181440)R4

453600(d− 1)4d4
.

Finally, in Table B.1 we summarise the eigenvalues of the operator −∇2 on scalars, trans-

verse vectors and transverse-traceless symmetric tensors and their multiplicities.

Λl(d, s) Dl(d, s)

T lmµν with l ≥ 2 l(l+d−1)−2
d(d−1) R (d+1)(d−2)(l+d)(l−1)(2l+d−1)(l+d−3)!

2(d−1)!(l+1)!

T lmµ with l ≥ 1 l(l+d−1)−1
d(d−1) R l(l+d−1)(2l+d−1)(l+d−3)!

(d−2)!(l+1)!

T lm with l ≥ 0 l(l+d−1)
d(d−1) R

(2l+d−1)(l+d−2)!
l!(d−1)!

Table B.1: Summary of the eigenvalues of the operator −∇2 on scalars, transverse vectors

and transverse-traceless symmetric tensors and their multiplicities
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Appendix C

Black Holes

C.1 Horizons

In this Appendix we are going to show that under the assumptions discussed in section

6.3.1 the spacetime has always either two horizons (an event and a Cauchy horizon), one

extreme, or no horizons at all depending on the values of its parameters.

First we want to define what are the assumptions for G(r) that we are going to use

and to extend them, so to cover the maximum possible variety of runnings. For this we

review the relation which defines the horizons for non-rotating black holes. This reads

f(r)|a=0 = 1− M G(r)

rd−3
= 0 (C.1)

and its first derivative (which is the first derivative of the gravitational potential) is given

by

V ′(r) = M G(r) r2−d [d− 3 + η(r)] . (C.2)

In order for non-rotating black holes to have the usual behavior (either two, one critical

or no horizons) we have to demand two things. First, that the limit r → 0 of the lapse

function is positive. This implies that

lim
r→0

V (r) = lim
r→0

(
−M G(r)

rd−3

)
> −1. (C.3)

If this hold true then the limits of f(r) as r → 0 and as r → ∞ are both positive. Con-

sequently, if f(r) has only one minimum, the spacetime has two horizons if this minimum

is negative, one degenerate horizon if this minimum is 0 and no horizons if it is positive.

In order to achieve this behavior we need that V ′(r) changes from negative to positive

values only once. For this to be true it is enough to postulate that the anomalous dimension

for gravity η(r) is a monotonically increasing function of r and that it satisfies

lim
r→0

η(r) < 3− d, lim
r→∞

η(r) = 0. (C.4)
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Then, it is evident that if (C.3) and (C.4) hold, the spacetime for non-rotating black holes

has the desired behavior.

In the case of asymptotic safety, the above two assumptions can be reduced to a

single assumption for the matching of momentum and position scales. If, we make the

identification

k(r) ∼ ξ

rγ
(C.5)

and use the running for G(k) implied by asymptotic safety (6.9), then the two assumptions

reduce to the single condition for the parameter γ

γ >
d− 3

d− 2
(C.6)

We note, that the matching we are commonly using for our calculations is k(r) = 1/r,

meaning γ = 1, which clearly satisfies the condition (C.6).

Now we are going to see that the above assumptions are enough to ensure that the

spacetime of rotating black holes still has the same horizon structure in four and five

dimensions. For six or higher dimensions we will see that we have to demand more details

about the behavior of G(r). Now, the relation which gives the horizons is

f(r) = 1 +
a2

r2
− M G(r)

rd−3
. (C.7)

The limits of this function for r → 0 and r → ∞ are again both positive under the

condition (C.3). Again, we need to show that this function has only one minimum and so

that its first derivative changes from negative to positive values only once. So, we turn

our attention to

r3 f ′(r) = −2a2 +M G(r) r5−d [d− 3 + η(r)] . (C.8)

In what follows we will need to find out also about the behaviour of the second term in

(C.8), so we define the function U(r) = M G(r) r5−d [d− 3 + η(r)] and we write down its

first derivative U ′(r) = −M G(r) r4−d [(d− 5 + η(r)) (d− 3 + η(r))− r η′(r)]. Moreover,

we define r1 as the value of r for which the anomalous dimension becomes η(r1) = 3 − d

and r2 when we have η(r2) = 5 − d. Now, we need to distinguish between d = 4, d = 5

and d ≥ 6 in order to find the behavior of f ′(r). We start with the four dimensional case.

d=4. Using both assumptions (C.3) and (C.4) we can see that the limit of f ′(r) as r → 0

is negative and the limit of f ′(r) as r → ∞ is positive. However, we need to know that

f ′(r) changes sign only once. For the region of r between 0 ≤ r ≤ r1, f ′(r) is always

negative. So, in order to change sign only once we have to assure that for r > r1, U(r) is
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always a growing function of r. This is easily seen by looking at its first derivative U ′(r),

since for r > r1 then η(r) > −1 and η′(r) > 0 always.

d=5. In five dimensions the limit r → 0 of f ′(r) is still negative, but the limit r → ∞

has the sign of M GN − a2. This being positive, is just the condition for the existence

of roots in the classical case. In the case where M GN − a2 > 0, the limit of f ′(r) when

r →∞ is positive and is easily checked again from U ′(r) that for r > r1, U(r) is growing

and so that the spacetime has the expected behavior. If on the other hand M GN −a2 < 0

then f ′(r) is always negative and there are no horizons.

d=6. Now the limit r → 0 of f ′(r) is still negative, but the limit r →∞ is negative too.

In order to have only one minimum for f(r) we need that f ′(r) has the most two roots.

This is satisfied if for r > r1, U(r) grows until a maximum value and then decreases to 0.

For this we have to check the sign of the expression inside square brackets in U ′(r). For

r1 < r < r2 then U(r) is positive implying that U(r) grows. Now, in order for rotating

black holes in d ≥ 6 dimensions to have the desired horizon structure we have to impose

the condition that for r > r2 the function U ′(r) has only one root. This condition is

far stronger in terms of η(r) than those that we have assumed so far, but in the case of

asymptotic safety and for a running given by (6.9) with a matching that obeys γ > d−3
d−2 it

is easily checked that this condition holds.

For completeness we state a derivation of the fact that the function of G(k) given by

(6.9) using the linear matching k ∼ 1/r gives the usual horizon structure with two, one

critical or no horizons. In what follows we use dimensionless variables and we start looking

for roots of the function ∆̃(x) (with GN substituted by G(x))

∆̃(x) = A+ x2 − x3

xd−2 + Ω
(C.9)

It is obvious, that now the limits x→ 0 and x→∞, (in contrast to the classical case for

d ≥ 6) do not guarantee the existence of a horizon in any dimensionality, since they always

return ∆̃ = A and ∆̃ =∞ respectively. The next step is to look at the first derivative of

∆̃ with respect to x, which is written

∆̃′(x) =
x

(xd−2 + Ω)2
·
[
2x2(d−2) + (d− 5)xd−1

+4Ωxd−2 − 3Ωx+ 2Ω2
] (C.10)

At first sight this doesn’t look very helpful. In order to have horizons it is necessary (but

not sufficient) that ∆′(x) becomes negative for some x. The limits x → 0 and x → ∞
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of ∆̃′(x) give 0 and ∞ respectively, providing as with no information about the roots of

∆̃′(x).

Now we note, that the roots of ∆̃′(x) are the roots of the expression in square brackets

in (C.10), which we call N(x), and moreover that the sign of ∆̃′(x) is that of N(x). A

careful study of N(x) and its derivatives shows that, for d ≥ 5, it starts from a positive

value (2Ω2), it decreases until some value N(x1) and then increases up to infinity. Whether

or not N(x1) (and therefore ∆̃′(x1)) is negative, depends (for each dimensionality d) only

on the value of Ω. If ∆̃′(x) becomes negative, then it has two roots x2 and x0, with

x2 < x1 < x0.

With this information we have what we need to determine the behavior of ∆̃(x). It

begins from the positive value A and it starts increasing. If ∆̃′(x) remains positive for every

x, then ∆̃(x) continues to increase and there are no horizons. If ∆̃′(x) becomes negative

at some interval (x2, x0), then ∆̃(x) decreases until a value ∆̃(x0) and then increases to

infinity. When ∆̃(x0) < 0 the spacetime has two horizons. If ∆̃(x0) = 0 the spacetime has

one degenerate horizon, while if ∆̃(x0) > 0 there are no horizons.

C.2 Energy-momentum tensor

The coefficients Uµν in equation (6.53) are given by

U tt =
Mr4−d

8Σ3

[
(9− 2d)a4 + 2(8− 3d)a2r2 − 4(d− 2)r4 − 2(d− 4)a2(a2 + r2) cos(2θ)− a4 cos(4θ)

]
U rr = −Mr4−d

2Σ2

[
(d− 2)r2 + (d− 4)a2 cos2 θ

]
U θθ = −Mr4−d

Σ2
a2 cos2 θ

Uφφ =
Mr4−d

8Σ3
a2
[
1/2(d− 12)a2 + 2(d− 4)r2 − 2(2a2 + dr2) cos(2θ)− 1/2(d− 4)a2 cos(4θ)

]
U tφ = −Mr4−d

2Σ3
a(a2 + r2) sin2 θ

[
(d− 2)r2 + (d− 6)a2 cos2 θ

]
Uφt =

Mr4−d

2Σ3
a
[
(d− 2)r2 + (d− 6)a2 cos2 θ

]
U ii = 0.

(C.11)

Similarly, for the coefficients V µ
ν we get the following expressions
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V t
t =

Mr4−d

2Σ2
a2r sin2 θ

V r
r = 0

V θ
θ = −Mr4−d

2Σ
r

V φ
φ = −Mr4−d

2Σ2
r(a2 + r2)

V t
φ =

Mr4−d

2Σ2
a r(a2 + r2) sin2 θ

V φ
t = −Mr4−d

2Σ2
a r

V i
i = −Mr4−d

2Σ
r.

(C.12)

To check the energy conditions we have to diagonalise the EM tensor. The resulting

diagonal T
µ(eff)
ν(diag) is

T
µ(eff)
ν(diag) =

Mr4−d

8Σ3
diag

(
T 0

0 , T
r
r , T

θ
θ , T

3
3 , T

4
4 , . . . , T

d−1
d−1

)
(C.13)

whith T 0
0 and T 3

3 being the diagonalised components given by

T 0
0 = 1

2

(
T tt + T φφ −

√(
T tt − T

φ
φ

)2
+ 4T tφT

φ
t

)
(C.14)

T 3
3 = 1

2

(
T tt + T φφ +

√(
T tt − T

φ
φ

)2
+ 4T tφT

φ
t

)
. (C.15)

After substituting the expressions for the energy momentum components from equations

(C.11) and (C.12) we get for T 0
0 and T 3

3

T 0
0 =

 −Mr4−d

2Σ2

[
(d− 2)r2 + (d− 4)a2 cos2 θ

]
G′(r) if Z(r) > 0,

−Mr4−d

2Σ2

[
2a2 cos2 θ G′(r) + rΣG′′(r)

]
if Z(r) < 0.

(C.16)

T 3
3 =

 −Mr4−d

2Σ2

[
2a2 cos2 θ G′(r) + rΣG′′(r)

]
if Z(r) > 0,

−Mr4−d

2Σ2

[
(d− 2)r2 + (d− 4)a2 cos2 θ

]
G′(r) if Z(r) < 0.

(C.17)

Here Z(r) is an expression which has always one positive real root for a matching of the

form (6.12) and is given by

Z(r) = 2
[
(d− 2)r2 + (d− 6)a2 cos2 θ

]
G′(r)− 2 rΣG′′(r). (C.18)

It is essential to know at every point of the spacetime which is the timelike component

of the diagonalised energy-momentum tensor which corresponds to the energy density.

For this, we take the eigenvectors vµ1 and vµ2 used to diagonalise T
µ(eff)
ν and we compute

gµνv
µ
1 v

ν
1 and gµνv

µ
2 v

ν
2 . We find that when r is between the two horizons, T rr is the timelike
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component. When r is not between the two horizons and Z(r) > 0 the timelike component

is T 3
3 , while when r is not between the horizons and Z(r) < 0 the timelike component is

T 0
0 . In any of these three cases the diagonal EM-tensor takes the form

T
µ(eff)
ν(diag) = diag (−ρ, pr, p⊥, p⊥, p4, . . . , pd−1) , (C.19)

where the timelike component is always given by

ρ =
M r4−d

2Σ2

[
(d− 2)r2 + (d− 4)a2 cos2 θ

]
G′(r) (C.20)

and all the other components correspond to spacelike coordinates, with

p⊥ = −M r4−d

2Σ2

[
2a2 cos2 θ G′(r) + rΣG′′(r)

]
. (C.21)

and

pr = −ρ = T rr , pi = T ii . (C.22)

C.3 Kretschmann invariant

Here, we compute two of the curvature invariants, the Ricci scalar and the Kretschmann

invariant and we examine the fate of the classical ring singularity at r = 0, θ = π/2. The

Ricci scalar in our case takes the form

R = M r4−d · r G
′′(r) + 2G′(r)

r2 + a2 cos2 θ
, (C.23)

while the Kretschmann invariant K = RµνρσR
µνρσ is given by the following formula

K =
M2 r6−2d

(r2 + a2 cos2 θ)6 ·
[
K1G(r)2 +K2G(r)G′(r) +K3G(r)G′′(r)

+K4G
′(r)2 +K5G

′(r)G′′(r) +K6G
′′(r)2

] (C.24)
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with the coefficients K1, K2, K3, K4, K5 and K6 given by

K1 =(d− 3)(d− 2)2(d− 1) r8 + 4(d− 1) (−15 + (−d+ 5)(d− 4) d) r6 a2 cos2 θ+

6 (22 + (d− 6) (7 + (d− 6) d) d) r4 a4 cos4 θ + 4(d− 5) (3 + (d− 5)(d− 4) d) r2 a6 cos6 θ+

(d− 5)(d− 4)2(d− 3) a8 cos8 θ

K2 =− 4 r (r2 + a2 cos2 θ) ·
[
(d− 3)(d− 2)2r6 + (−48 + d (64 + 3(d− 9) d)) r4 a2 cos2 θ+

(−68 + d (104 + 3(d− 11) d)) r2 a4 cos4 θ + (d− 5)(d− 4)2 a6 cos6 θ
]

K3 =2 r2(r2 + a2 cos2 θ)2 ·
[
(d− 3)(d− 2) r4 + 2(9 + (d− 7)d) r2 a2 cos2 θ+

(d− 5)(d− 4)a4 cos4 θ
]

K4 =2 r2(r2 + a2 cos2 θ) ·
[
(16 + d(2d− 11)) r4 + 2(23 + d(2d− 15)) r2 a2 cos2 θ)+

(46 + d (2d− 19)) a4 cos4 θ)
]

K5 =16 r (r2 + a2 cos2 θ) ·
[
(d− 3) r2 + (d− 5) a2 cos2 θ

]

K6 =32 r3 (r2 + a2 cos2 θ)3

(C.25)

If we approximate the running of the gravitational coupling near the origin as G(r) =

µσ rσ+d−3, we find the following expression in terms of σ

K =
16M2 µ2 r2σ

Σ6

[
384 r8 − 192r6(σ + 4)Σ + 8 r4

(
51 + 2d+ 38σ + 6σ2

)
Σ2

− 4 r2(σ + 2)(3 + 2d+ 2σ(5 + σ))Σ3

+
(
12 + 2d2 + 2d (σ − 1)(σ + 5) + σ(−20 + σ(σ + 1)(σ + 5))

)
Σ4
] (C.26)

and for the Ricci scalar

R =
M µrσ(d+ σ − 3)(d+ σ − 2)

r2 + a2 cos2 θ
. (C.27)
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