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Protein-Protein Interactions Underlying Damage Checkpoint 

Activation in S. pombe 

DNA damage can lead to the accumulation of mutations and diseases such as cancer. It 

is therefore integral for cells to identify this damaged DNA and promote its repair. To 

carry out this function eukaryotic cells have evolved signal transduction pathways 

known as the DNA structure checkpoints. Much of the molecular mechanism 

underlying these pathways is still far from understood. The work in this thesis uses the 

model organism Schizosaccharomyces pombe to investigate these mechanisms, with a 

particular focus on the TopBP1 homolog Rad4. 

TopBP1 plays an essential scaffolding role in the initiation of DNA replication, but is 

also a key protein in the DNA structure checkpoints. It has previously been shown in 

metazoans and budding yeast to stimulate the kinase activity of ATR, via its ATR 

Activation Domain (AAD), an early event in checkpoint activation. The work presented 

in here, along with initial work carried by previous members of the Carr Laboratory; 

Su-Jiun Lin and Valerie Garcia, shows that the Rad4TopBP1 AAD acts in a chromatin 

dependent pathway to amplify the checkpoint signal in G1/S-phase, where DNA 

resection is limited. A second AAD is also identified in the checkpoint clamp protein 

Rad9, which acts redundantly with the Rad4 AAD.  

As well as its AAD function, Rad4 also plays a scaffolding role in the DNA structure 

checkpoint pathways. The work in this thesis, in collaboration with the Laurence Pearl 

and Li Lin Du laboratories, identifies the molecular mechanism of the interaction 

between Rad4 and the mediator protein Crb253BP1. It is shown that sequential 

phosphorylation of Crb2 by Cdc2CDK is required for the interaction with BRCT domains 

1 and 2 of Rad4 and checkpoint activation. It is also shown that Rad4 most likely does 

not interact with Mrc1 or Slx4 in the S. pombe checkpoint pathways. 
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Chapter 1 

Introduction 
1.0 General Introduction  

An organism’s genetic information is stored as Deoxyribonucleic acid (DNA) 

within its cells and this genome encodes all of the information required for life. For 

cells to proliferate, its DNA is replicated and segregated into daughter cells in a tightly 

controlled process known as the cell cycle. It is therefore important for the cell to 

prevent changes or mutations to its DNA, either from endogenous or exogenous 

sources, which may impact on the integrity of the genome. 

In this chapter, the cell cycle, the way in which it is controlled and the checkpoints that 

are in place to prevent cell cycle progression and maintain genomic integrity in the 

event of DNA damage, will be introduced. The recent findings relating to the particular 

checkpoint protein of interest, TopBP1, will be described in more detail. The model 

organism used for this work is Schizosaccharomyces pombe, an overview of S. pombe 

and its use as a model organism, is given. Due to the complexity of the gene/ protein 

names in different organisms and to ensure that it is clear which  organism and protein 

is being discussed, in some cases, references shall be made to human proteins with an 

h, Xenopus with an x, Schizosaccharomyces pombe with sp and Saccharomyces 

cerevisiae with sc. A table of homologs is included (Table1-1). 

1.1 Schizosaccharomyces pombe; an overview 

S. pombe is a unicellular eukaryotic organism from the family of 

Schizosacchascomycetaceae fungi and is one of three main species within the 

Schizosaccharomyces genus (Sipiczki, 2000). It is as diverged from the other main yeast 

model organism S. cerevisiae as it is human cells. S. pombe diverged from S. cerevisiae 

approximately 420-330 million years ago (Yoshioka et al., 1997, Sipiczki, 2000). 
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Table 1-1. Table of homologs 
Table shows the names of Human, S. pombe and S. cerevisiae homologous 
proteins that are discussed regularly in this thesis. Proteins are grouped 
together depending on their function or the complex of which they are a 
part. 

Table 1-1 
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S. pombe has three chromosomes consisting of 4940 reported genes and a genome 

size of 14mb, which was sequenced in 2002 by Wood et al., (2002). It is a haploid 

organism, unlike S. cerevisiae which is normally a diploid (Kuramae et al., 2006, Wood 

et al., 2002). A typical S. pombe cell at the time of division is 12-15µm long and 3-4µm 

wide. A single cell cycle takes between 2 and 4 hours, with the majority of that time 

spent in G2 phase.  G2 is followed by M phase, a very short G1 phase, then S-phase 

which coincides with cell septation and cell division (Figure 1-1A).  Paradoxically S. 

cerevisiae is mainly a G1 organism and has a very short G2 phase (Figure 1-1B). 

Furthermore, S. cerevisiae divides its cytoplasm by a budding process as opposed to 

the fission process that occurs in S. pombe. This leads to the two yeasts being known 

as budding yeast and fission yeast respectively (Figure 1-1AB).  S. pombe was first used 

as a model organism in the 1940s and 1950s by U. Leupold and M. Mitchison, because 

it is cheap, easy and quick to grow, whilst allowing use of genetic techniques which 

may not be possible in higher eukaryotes.  The standard strain used in research and in 

this study is derived from Leupolds original 972 strain. This was obtained in 1946 from 

a yeast culture deposited by A.Osterwalder in the yeast collection at Delft, The 

Netherlands (Nurse, 2002).  

1.2 The Cell Cycle 

1.2.1 Cell Cycle Overview 

Cells undergo the mitotic cell cycle in order to proliferate, this cell cycle is made 

up of four main phases: G1, S, G2 and M (Mitosis). G1, S, G2 can be grouped together 

and termed interphase, as, during these phases the cells are preparing for cell division.  

G1 or Gap1 phase is between the previous M phase and the start of S phase. During G1 

the cells are growing and preparing for DNA replication. In S phase, cells replicate their 

DNA, resulting in each chromosome consisting of two sister chromatids. Following S 

phase cells enter the second gap phase, G2, where they continue to grow, ensure DNA 

replication is complete and that they are ready to enter M phase.  During M phase the 

cells undergo mitosis; the process of nuclear division, where the cells separate equally 

their two identical sets of sister chromatids into two separate nuclei (Nurse, 1997).  



A 

B 

Figure 1-1. Overview of S. pombe and S. cerevisiae cell cycles. 
A. Overview of the S. pombe cell cycle, with illustrations relating to the 
appearance of the S. pombe cells at various cell cycle stages. It can be seen that 
S.pombe cells spend ~70% of the cell cycle in G2 phase and have a very short 
G1. Also, septation (cytokinesis) occurs concurrently with S-phase. B. Overview 
of the S. cerevisiae cell cycle, with illustrations relating to the appearance of the 
S. cerevisiae cells at various cell cycle stages. S. cerevisiae cells spend the 
majority of time in G1 and have a very short G2 phase. The cells divide via a 
budding mechanism which is completed in M-phase. Adapted from Su-Jiun Lin 
(Carr lab) 

4 
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In most higher eukaryotes nuclear division is followed directly by cytokineseis; cellular 

division, however in S. pombe this does not occur until later in the cell cycle during S 

phase. In fact cytokinesis or septation, as it is known in S. pombe, occurs concurrent 

with DNA replication (Mitchison and Creanor, 1971) (Figure 1-1A).  

 

1.2.2 Regulation of Cell Cycle Progression 

  Progression through the cell cycle is tightly regulated in eukaryotic cells in order 

to ensure the correct duplication and separation of the genomic material. This 

regulation comes in the form of serine/ threonine protein kinases, known as Cyclin 

Dependent Kinases (CDKs). In both budding and fission  yeasts there is only one main 

cell cycle CDK, CDC28 and CDC2 respectively, however in human cells there are seven 

known CDKs; CDKs1-7. CDKs  phosphorylate specific targets on K/R-S/T-P-X-K/R 

consensus sites at specific points within the cell cycle to allow progression through and 

transition between cell cycle phases (Lees, 1995). For this to occur the activity of CDKs 

fluctuate during the cell cycle; during G1 phase there is little CDK activity, thus allowing 

formation of the pre replication complex (Pre-RC) on the replication origins in a 

process known as licensing, the first step of DNA replication. At the G1-S transition, 

CDK activity increases allowing the licensed origins to fire, subsequent DNA replication 

and progression through S-phase. CDK activity remains high through G2, thus 

preventing relicensing and re-replication of the genome. At the G2-M transition there 

is a further increase in CDK activity resulting in the onset of mitosis. This activity rapidly 

decreases towards the end of mitosis at a point known as the metaphase-anaphase 

transition, where the two sets of chromatids separate. This resets the CDK activity to a 

level in which licensing can occur once again (Diffley, 2004, Kiang et al., 2009).  The 

levels of the catalytic subunit of CDK stay constant throughout the cell cycle, therefore 

their changes in activity is regulated by interactions with other proteins and post 

translational modifications, such as phosphorylation. The main way in which CDKs are 

regulated is via interaction with cyclin, this is absolutely necessary for CDK activity 

(Nurse, 2002). Cyclins interact with CDKs via a highly conserved 100 amino acid motif 

within the cyclin protein, known as a cyclin-Box. This interaction causes a 

conformational change within CDK, exposing its kinase domain and therefore 

increasing its kinase activity 400,000 fold  (Lees, 1995). There are two main categories 
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of cyclins; G1 cyclins which are required for the G1-S transition ( in S. pombe these are 

Cig1 and Puc1) and G2 cyclins or B-type cyclins, required for progression through G2 

into M,( in S. pombe these are Cig2 and Cdc13). S. cerevisiae has nine cyclins and 

human cells have four main subtypes (cyclins D, E, A and B), however, there is some 

redundancy between them (Kiang et al., 2009, Pines, 1994). Cyclin levels are controlled 

by transcription and degradation, it is these changes in cyclin levels through the cell 

cycle that regulates when CDK is active. Cell cycle mediated degradation plays an 

important role in the control of B-type cyclin levels: The Anaphase promoting complex 

(APC) ubiquitylates B-type cyclins leading to their proteolysis and their rapid 

degradation at the metaphase to anaphase transition (Diffley, 2004). G1 cyclin 

degradation is not regulated in the same way, however they do have a short half-life, 

maybe due to the presence of numerous PEST (Pro,Glu, Ser, Thr) sequences which are 

thought to be signal peptides that target proteins to the proteosome (Lees, 1995). 

 

Cyclins are not the only way to control CDK activity, another level of regulation comes 

in the form of phosphorylation and dephosphorylation of CDK. For example, in humans 

CDK Activating Kinase, CAK, phosphorylates T160 on CDK2 increasing kinase activity 

further and maybe stabilising the cyclin-CDK complex. However, this is not a rate 

limiting step as the cell cycle still progresses even without this phosphorylation (Jeffrey 

et al., 1995). Another more complex example of how phosphorylation can affect CDK 

activity is that of the G2-M transition. In S. pombe CDC2-CDC13 remains inactive due to 

a phosphorylation on Tyr15 within the ATP binding loop of the kinase domain, a 

phosphorylation which is conserved up to the human protein (Gould and Nurse, 1989). 

This phosphorylation in fission yeast is carried out by Wee1 or a second kinase Mik1 

(Figure1-2). Wee1Δ cells progress through the cell cycle more quickly and give rise to 

smaller cells (hence the name wee) as they enter mitosis, before fully growing (Russell 

and Nurse, 1987b).  Wee1 activity itself is regulated throughout the cell cycle by 

phosphorylation in response to cell size. Its activity is high during interphase to prevent 

cells entering mitosis prematurely and low during early mitosis. The low activity of 

Wee1 in mitosis is mainly due to an inhibitory phosphorylation by Nim1 (Figure1-2) 

(Russell and Nurse, 1987a). Counteracting the Wee1/Mik1 phosphorylation of Cdc2 is 

the phosphatase Cdc25, which removes the Wee1/Mik1 inhibitory phosphorylation 
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from Cdc2 (Russell and Nurse, 1986). Again Cdc25 is tightly regulated and is only active 

once all DNA replication has been completed. Once activated a positive feedback loop 

comes into play where the active dephosphorylated Cdc2-Cdc13 phosphorylates 

Cdc25, increasing Cdc25 activity. This positive feedback loop allows a rapid switch- like 

mechanism of Cdc2-Cdc13 activation and subsequent entry into Mitosis (Figure 1-2) 

(Lu et al., 2012, Russell and Nurse, 1986). 

 

There are yet further levels of  CDK regulation,  for example the mutation of Y15 (the 

site of the Wee1 inhibitory phosphorylation) does not lead to the initiation of mitosis 

before DNA replication is completed, even though cyclin levels have accumulated 

sufficiently at this point. This regulation comes in the form of CDK inhibitors (CDIs) that 

bind to and inhibit Cyclin-CDK complexes and may also prevent phosphorylation of the 

complex by CAKs (Pines, 1994). The S. pombe CDK inhibitor is spRum1 which binds to 

and inhibits Cdc13-Cdc2 (Figure1-2). Over expression of Rum1 leads to massive re-

replication of the DNA, due to Cdc2 activity being lowered to that equivalent to a cell 

in G1-S, whilst it is actually in S or G2 (Correa-Bordes and Nurse, 1995, Moreno and 

Nurse, 1994). Another example of CDIs in mammalian cells is the p21 family of 

proteins. This family is made up of three proteins which mainly inhibit G1 cyclin-CDk 

complexes (Lees, 1995). 

 

Overall a complex network of kinases, phosphatases and protein interactions 

regulating CDK activity controls much of the progression through the cell cycle. This 

network of control also allows cells to halt cell cycle progression in the event of DNA 

damage via a pathway known as the DNA damage checkpoint (Figure 1-2). 

 

1.3 The DNA Damage and Replication Checkpoints 

1.3.1 Overview of the DNA Damage and Replication Checkpoints  

A cell’s DNA is constantly undergoing insult from exogenous mutagens such as 

ultraviolet light (UV), ionising radiation (IR) or chemicals, and from endogenous 

sources such as reactive oxygen species or spontaneous damage that occurs during 

replication (Lindahl, 1993). 



Cdc25 phosphatase 

Wee1 Kinase 
Mik1 Kinase 

Cdc2-
Cdc13 

Cdc2-
Cdc13 

Less Active 
G2 

More Active 
Entry into M 

NIM1 
Mitosis 

RUM1
G2 

DNA Damage/Replication Checkpoint 

Figure 1-2. Summary of Cdc2 regulation at the G2/M transition in S. pombe 
Cdc2-Cdc13 activity is kept low enough in G2 to prevent entry in M phase until 
the cell is large enough and is ready to divide. The Cdc2-Cdc13 activity is kept 
low via an inhibitory phosphorylation on Cdc2 -T15 by Wee1 and Mik1 and by 
Rum1 binding. The T15 phosphorylation is counteracted by Cdc25 
phosphatase. Once Cdc2-Cdc13 activity increases it can phosphorylate Cdc2-
Cdc13 increasing its phosphatase activity and thus leading to further Cdc2-
Cdc13 activation. Once Cdc2-Cdc13 activity is high enough for cells to enter 
M-phase NIM1 can inhibit Wee1. The DNA damage and replication 
checkpoints can prevent entry into mitosis by phosphorylating and inhibiting 
Cdc25. 
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Eukaryotic cells have evolved checkpoints that monitor the integrity of the DNA and, in 

the event of a lesion, prevent progress from one phase of the cell cycle to the next 

through the CDK regulatory network described above. This allows time for repair of the 

damaged DNA, stabilisation of replication forks, slowing of DNA replication and in 

extreme cases can promote apoptosis (Nyberg et al., 2002). The idea of a DNA damage 

checkpoint was first proposed in the 1980s with the observation that Ataxia 

Telangiectasia (AT) patient cell lines experienced less radiation induced mitotic delay, 

compared to wild type (WT) cells, and little inhibition of DNA replication after X-ray 

damage. The sensitivity of AT cells to radiation was therefore assigned to a failure in 

delaying the cell cycle in order to allow DNA repair to occur, rather than a DNA damage 

repair defect per-se (Painter and Young, 1980). The term checkpoint was first coined 

by Weinert and Hartwell (1989) following studies into a S. cerevisiae rad9 mutant, 

which showed no cell cycle delay after DNA damage. Cells continued to divide for a 

number of cell cycles before dying. If after DNA damage these cells were artificially 

delayed in G2 by the use of a mitotic spindle poison the cells would no longer 

subsequently die (Weinert and Hartwell, 1989, Weinert and Hartwell, 1988). These 

DNA checkpoints have now been split into two major categories; the DNA damage 

checkpoints and the DNA replication checkpoint (Weinert, 1992).  

The DNA damage checkpoints respond to either DNA double strand breaks(DSBs) or 

single strand lesions  and require double stranded DNA ends,  single stranded DNA 

(ssDNA)  or double strand single strand DNA junctions for activation (Cimprich and 

Cortez, 2008, Zou and Elledge, 2003). These DNA damage checkpoints can be sub-

classified into the G1-S checkpoint which responds to damage in G1, the intra S phase 

checkpoint which responds to DNA damage during S phase and the G2-M checkpoint 

which prevents entry into mitosis after damage in G2 (Nyberg et al., 2002). The 

replication checkpoint monitors the fidelity of DNA replication and requires the 

presence of a replication fork and ssDNA for its activation. Hence, it is activated in the 

event of replication stress or fork stalling (Tercero et al., 2003, Lupardus et al., 2002). A 

stalled replication fork can be classified as a replication fork which has stopped 

progressing but still has the main replication proteins (replisome) associated with it, 
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this protects the DNA from inappropriate  processing ;  the DNA thus remains 

undamaged (Lambert and Carr, 2012). Therefore, the replication checkpoint responds  

to a lack of, or, imbalance of deoxyribonucleotides (dNTPS), a DNA lesion that cannot 

be replicated through such as bulky adducts or photoproducts, secondary DNA 

structures such as G-quadruplexed DNA (G4), nucleotide repeats or DNA bound 

proteins (Lambert and Carr, 2012). Although the DNA damage and replication 

checkpoints are classified as separate entities, there is some interplay between them. 

For example a stalled replication fork may collapse, a process in which the replisome 

becomes inappropriately associated with the fork, leaving the fork accessible to DNA 

processing. This may then lead to a hand over from the replication checkpoint to the 

intra-S phase damage checkpoint (Carr, 2002, Nyberg et al., 2002).  

 

These checkpoints are elaborate networks of proteins that form complexes on, or in 

the vicinity of, the DNA lesion (Stucki and Jackson, 2006). These proteins are tightly 

regulated via protein interactions and post translational modifications and can be 

classified by the role they play within the checkpoint. Sensors are the main group of 

proteins that detect the DNA substrate and initiate the activation of the checkpoint. 

These sensors are often required to activate effector kinases, which when activated, 

phosphorylate the downstream targets involved in cell cycle arrest, inhibition of origin 

firing, replication fork stabilisation or the regulation of DNA repair. For the sensors to 

activate the effectors, “mediator” proteins are required.  Mediator proteins bring the 

effector kinases into close proximity to the sensors on the DNA via specific protein 

interactions, thus allowing interaction between the sensors and effectors (Harrison 

and Haber, 2006). The use of a particular mediator protein will determine which 

effector kinase is recruited and therefore whether the damage or replication 

checkpoint is activated (Tanaka and Russell, 2001).  

 

The DNA damage and replication checkpoints are very well conserved from yeasts to 

mammals (Rhind and Russell, 2000, Chen and Sanchez, 2004).  They are important for 

maintaining genomic integrity and do so by helping to prevent mutations from 

occurring that can be passed onto daughter cells. Defects in a number of checkpoint 

proteins can lead to a mutator phenotype, this accumulation of mutations can lead to 



11 
 

various types of cancer and/or developmental diseases (Loeb, 1991, Bartkova et al., 

2005, Kerzendorfer and O'Driscoll, 2009). 

 

Each step of the activation of the DNA damage and replication checkpoints, and the 

proteins involved will now be described in more detail, focusing on the protein 

interactions and modifications that underpin their regulation.  

 

1.3.2 The Phosphatidylinositol (PI) 3 Kinase like Kinases (PIKKs) 

Ataxia Telangiectasia Mutated (ATM) and Ataxia and Rad3 Related (ATR) are 

the protein kinases at the top of the checkpoint cascade which, along with their 

binding partners, act as the DNA damage sensors and checkpoint activators. They are 

part of an atypical protein kinase family known as the PIKKs. They are known as PIKKs 

because their sequences are similar to PI3K lipid kinases which phosphorylate 

phosphoinositides. All PIKKs have a conserved kinase domain sequence and 

phosphorylate proteins on serine or threonine residues (Lempiainen and Halazonetis, 

2009). ATR and ATM share a common consensus sequence of serine/threonine 

followed by glutamic acid (SQ/TQ motifs) and may preferentially phosphorylate SQ/TQ 

cluster domains (SCDs) (Kim et al., 1999, O'Neill et al., 2000). The PIKK family contains 

five sub families of proteins ATM, ATR, DNA-dependent protein kinase catalytic subunit 

(DNA-PKcs), Mammalian target of rapamycin (mTor) and suppressor of morphogenesis 

in genitalia (SMG-1).  There is also a sixth subfamily known as 

transformation/transcription domain-associated protein (TRRAP), however this does 

not exhibit any protein kinase activity (Figure 1-3) (Abraham, 2001, Lempiainen and 

Halazonetis, 2009). The ATM, ATR, TOR and TRRAP subfamilies are highly conserved 

from yeast to humans, with many of the  PIKKS being isolated, such as the scTor1, 

ATM, ATR genes and their homolog’s, in the early to mid-1990s (Cafferkey et al., 1994, 

Savitsky et al., 1995, Cimprich et al., 1996, Jimenez et al., 1992, Weinert et al., 1994, 

Bentley et al., 1996). However, it is only the ATM and ATR kinases and their 

corresponding yeast homolog’s Tel1 and spRad3/scMec1 respectively, that have a 

direct role in the activation of the checkpoint cascade (Nyberg et al., 2002).  

  



Figure 1-3. PIKKs share similar domain architecture 
Schematic of the 6 human PIKKs all of which contain a FAT domain (green), 
Kinase domain (orange), PRD domain (purple) and FATC domain (red). The 
proteins vary in length due to differences in the number of N-terminal 
HEAT repeats (blue). Note TRAPP has an inactive kinase domain (red cross). 
SMG-1 has more N-terminal FAT and kinase domains compared to the 
other PIKKs which have a highly conserved C-terminal domain architecture. 
Adapted from Derheimer and Kastan, (2011) 
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The other PIKK family members have no significant role in the checkpoint with DNA-

PKcs being involved in DNA repair, mTOR functioning in insulin/nutrient sensing and 

SMG-1 in RNA degradation pathways (Lempiainen and Halazonetis, 2009).  

All of the PIKKs are very large proteins, for example the ATR protein is 2644 amino 

acids and its S. pombe homolog Rad3 is 2386 amino acids. Never the less, all PIKKs 

have a highly conserved domain structure with the C-terminus being the most highly 

conserved across not only the family members of a single organism, but also between 

organisms (Bosotti et al., 2000). This C-terminus consists of a FRAP-ATM-TRRAP (FAT) 

domain, a kinase domain and a FAT-C-terminal (FATC) domain. The with FAT and FATC 

domains are always found together, one either side of the kinase domain (Figure 1-3). 

This domain orientation maybe important in their role in regulating the proteins kinase 

activity (Bosotti et al., 2000). The regulation of the kinase domain by the FAT and FATC 

domains is most probably achieved by intermolecular and intramolecular interactions 

that cause conformational changes in the protein, regulating the availability of the 

kinase domain to phosphorylate its substrates. Indeed in ATM it was seen that the FAT 

domain interacts with the kinase domain to stabilise the C-terminus of the protein. A 

similar role has also been seen for the DNA-PKcs FAT domain via structural analysis 

(Leuther et al., 1999, Bakkenist and Kastan, 2003, Llorca et al., 2003, Sibanda et al., 

2010). 

The FATC domain has been shown to be essential for the regulation of the PIKKs kinase 

activity, with hydrophobic residues within this domain being of particular importance. 

For example mutation of W2545 in mTOR completely abolished its kinase activity and 

equivalent mutations in the FATC domains of other PIKKs show similar results 

(Takahashi et al., 2000, Mordes et al., 2008a, Morita et al., 2007). The importance of 

the FATC domain is due to its ability to interact with other proteins involved in the 

activation of the kinase activity. Deletion of the ATM FATC prevents interaction with 

one of its activating proteins, Tip60, and this may explain the loss of its kinase activity 

when the FATC is mutated (Discussed in “1.4.2 The Activation of ATM” section) (Bhatti 

et al., 2011, Sun et al., 2007). However, replacement of ATMs FATC with that of DNA-

PKcs or TRRAP leads to no loss of kinase activity, suggesting a common domain 

architecture and mechanism of activation amongst PIKKs (Jiang et al., 2006).  
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More recently another domain within the C-terminus of PIKKs, which has previously 

being classified as part of the FATC,  termed the PIKK Regulatory Domain (PRD), has 

been described (Figure 1-3) (Kumagai et al., 2006, Mordes et al., 2008a). The PRD is a 

small domain of 16-82 amino acids in size, positioned between the FATC and kinase 

domain  and is not well conserved between PIKKs (Lovejoy and Cortez, 2009). 

Complete deletion of the PRD domain abolishes kinase activity, however small 

deletions in the N-terminus region of the domain have little effect,  implicating the 

more highly conserved C-terminal portion of the PRD domain in having the key role 

(Mordes et al., 2008a). The PRD domain regulates the PIKK kinase activity through 

protein-protein interactions, such as that between TopBP1 and ATR (Discussed in 

“1.6.4 TopBP1 Dependent ATR Activation” and “1.5.5 Activation of ATR Checkpoint 

Pathway” sections) and post translational modifications, such as acetylation of ATMs 

PRD (Discussed in “1.5.4 The Activation of ATM” section) (Mordes et al., 2008a, Sun et 

al., 2007). Interestingly, replacement of ATRs PRD with that of ATM leads to ATR losing 

its kinase activity, but ATM is still functional when its PRD is replaced with that of ATR 

(Mordes et al., 2008a). This suggests that the PRD domain allows some specificity with 

regard to which PIKK is activated. Overall the studies so far point to the idea that PRD 

and FATC domains act synergistically to stimulate the PIKKs kinase activity by 

interacting with other proteins and/or via post translational modifications. These most 

likely cause conformational changes in the C-terminus exposing the kinase domain,  

allowing it to phosphorylate its targets (Lempiainen and Halazonetis, 2009).  

Furthermore, without these regulatory domains the PIKKs show only basal kinase 

activity if any at all.  

The N-terminus of the PIKKs is not as well conserved and varies in length considerably 

between proteins, leading to the differences in their overall sizes (Figure 1-3). In all the 

PIKKs the N-terminus is made up of a series of alpha helices known as Huntingtin 

Elongation Factor 3 Alpha subunit and TOR1 (HEAT) repeats, this has been confirmed 

by a low resolution (6.6 Ȧ) crystal structure of DNA-PKcs and cyro EM structures of 

ATM (Figure 1-3) (Leuther et al., 1999, Bakkenist and Kastan, 2003, Llorca et al., 2003, 

Perry and Kleckner, 2003, Sibanda et al., 2010). Following bioinformatics analysis of 

DNA-PKcs and other PIKKs, it has been suggested that some of these HEAT repeats may 
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in fact be classified as other similar types of helical repeats such as tetratricopeptide 

(TPR) and Armadillo (ARM) repeats (Brewerton et al., 2004). Due to the repetitive 

nature of the PIKKs N-terminus they are able to act as a scaffolding matrix for protein-

protein interactions. For example, the N-terminus of ATM contains a NBS1 interaction 

motif, a substrate binding motif, a chromatin association domain, a nuclear localisation 

signal (NLS) and its first 30 amino acids are a Tel1/ATM N-terminal (TAN) motif, 

required for localisation to the telomere (Bhatti et al., 2011).  The lower level of 

conservation between the N-terminus of PIKKs may allow for the specificity seen in the 

protein-protein interactions that they make, thus giving the proteins their specific 

functions within the cell, and giving specificity to the targets that they phosphorylate. 

ATM, ATR and their homolog’s are the key regulators of checkpoint activation and the 

subsequent downstream checkpoint events. Each of the two proteins, the cell cycle 

phases and pathways they act in, how they are recruited to the sites of damage, how 

they are activated, their downstream targets and the outcomes of their activation will 

now be described in more detail and compared this between organisms. The ATM 

pathway will be addressed first before a more detailed account of the ATR pathway, 

which is the more prevalent pathway in the yeasts   

1.4 The ATM/Tel1 Checkpoint 

1.4.1 ATM Background 

ATM was identified in 1995 by Savitsky et al., (1995) using a positional cloning 

method (Savitsky et al., 1995). It is an inessential gene and can be knocked out in mice, 

as can the yeast homolog Tel1 (Greenwell et al., 1995, Morrow et al., 1995, Xu et al., 

1996, Naito et al., 1998). However, as previously mentioned, ATM was found to be the 

gene mutated in the autosomal recessive disorder Ataxia Telangiectasia (AT), a 

developmental disease resulting in cerebella ataxia (leading to problems with co-

ordination), telangiectasia (widened blood vessels in the skin), immune deficiency, 

sensitivity to ionising radiation (IR) and increased malignancy (Shiloh, 2003). These 

phenotypes are presumed to arise due to disruption of ATMs roles in; the DNA damage 
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checkpoint; maintenance of genome stability; the regulation of meiotic crossover and; 

the control of telomere length (Derheimer and Kastan, 2010).  

ATM is activated mainly by double strand breaks (DSB), as in most cases its activation 

requires double strand DNA ends, which are caused by IR, a number of drugs such as 

radiomimetics or from breaks arising due to replication fork breakage(Banin et al., 

1998, Canman et al., 1998). ATM can therefore activate the DNA damage checkpoint in 

G1, intra-S and G2. This can be seen from the phenotype of AT cells which exhibit IR 

insensitive replication, a process in which IR in G1/S does not prevent DNA replication 

or cell cycle progression through S-phase. AT cells also enter mitosis after IR in G2, 

demonstrating a lack of a G2 checkpoint (Painter and Young, 1980). In both the S. 

pombe and S. cerevisiae systems, Tel1 plays a much smaller role in checkpoint 

activation and its primary role is in telomere maintenance. Many of the checkpoint 

roles carried out by ATM in higher organisms are performed by the ATR homolog’s 

spRad3 and scMec1 in yeasts (Greenwell et al., 1995, Morrow et al., 1995, Naito et al., 

1998). This most probably reflects the fact that DSBs are transient in yeasts,  as they 

are rapidly resected to ssDNA ends. In mammals however, resection is restricted and 

the primary DSBs thus exist for much longer. 

1.4.2 The Activation of ATM    

The ATM protein is always present in the cell and its levels do not change upon 

DNA damage. Its regulation is therefore completely dependent on protein-protein 

interaction and post translational modifications (Kurz and Lees-Miller, 2004). Normally, 

in the undamaged cell, ATM is present as an inactive dimer, however, the active form 

of ATM is a monomer (Bakkenist and Kastan, 2003). For ATM activation and 

monomerisation a number of factors and processes are required (Figure 1-4). One of 

the main prerequisites of ATM monomerisation and activation is autophosphorylation, 

which occurs within ATMs FAT domain on S1981 (Figure 1-4). Mutation of S1981 to 

alanine leads to a checkpoint defect and failure of ATM to phosphorylate its 

downstream substrates after IR. This suggests that autophosphorylation is required for 

ATM activation (Bakkenist and Kastan, 2003).  

  



Figure 1-4. Numerous factors control activation of ATMs kinase activity. 
At a DSB ATM auto-phosphorylates leading to its monomerisation and 
activation. This auto phosphorylation can be promoted by NBS1 binding 
ATM at the damage site and acetylation of ATM by Tip60 (dotted green 
arrows). However, auto-phosphorylation is not sufficient for ATM activity. 
The binding of Nbs1, and the Tip60 dependent acetylation, also promote 
ATM activation via promoting conformational changes in the C-terminus 
of ATM.  In the absence of DNA damage ATM auto-phosphorylation is 
counteracted by PP2A phosphatase, and ATM acetylation is prevented by 
ATF2/Cul3 dependent degradation of Tip60 (red lines). 
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Furthermore, the S1981A mutant cannot complement AT patient cell lines-adding to 

the notion that it is required for ATM activation (Iijima et al., 2008). However, in vitro 

this autophosphorylation site is not required for ATM monomerisation or for kinase 

activity (Lee and Paull, 2005). Interestingly, mutation of the equivalent site in mice 

does not result in any phenotype.  This may-in part-be due to the presence of other 

auto phosphorylation sites in mouse ATM (Pellegrini et al., 2006). Indeed two more 

ATM autophosphorylation sites were later identified in human cells, one on S367 and 

the other on S1893. Although these phosphorylation sites have a less severe 

phenotype in human cells than S1981 and therefore seem to be less important, they 

are still unable to complement AT cells (Kozlov et al., 2006). This would suggest that 

ATM autophosphorylates on a number of sites and that in humans phosphorylation of 

S1981 is the most important in ATM activation. 

 It is important for cells to prevent ATM autophosphorylation in the absence of 

damage, as this may lead to inappropriate checkpoint activation. Within the cell a 

number of ATM-phosphatase complexes are found, which would prevent such a 

scenario, the most important being with PP2A. PP2A is constitutively bound to ATM in 

the absence of damage and dephosphorylates ATM should any phosphorylation occur. 

Consistent with this, expression of a dominant negative mutation in the PP2A catalytic 

domain leads to an increase in ATM S1981 phosphorylation in the absence of damage. 

After DNA damage, PP2A no longer interacts with ATM and is released, allowing ATM 

to autophosphorylate and become active. Interestingly, use of the phosphatase 

inhibitor Okadaic acid leads to an increase in ATM autophosphorylation in undamaged 

cells, but does not lead to phosphorylation of all of ATMs targets (Goodarzi et al., 

2004). This suggests that ATM autophosphorylation is necessary but not sufficient for 

its activation. 

For ATM to become fully active and phosphorylate its targets it also needs to be 

recruited to the site of damage. In most cases this may be achieved via ATM 

interacting with the MRE11-Rad50-NBS1 (MRN) complex (Uziel et al., 2003). This 

complex is a heterotrimer which binds to both ends of a DSB. It is therefore, along with 

ATM, a DNA damage sensor and bridges the two ends of the break (Williams et al., 

2008). The MRN complex has a number of roles at the site of damage in checkpoint 
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activation, DNA processing and DNA repair (Bhatti et al., 2011).  Within the complex, it 

is NBS1 which is important for both ATM recruitment and activation (Figure 1-4). NBS1 

contains an FHA domain, two BRCT domains, an Mre11 binding domain and an ATM 

interaction motif (AIM) (Iijima et al., 2008). The NBS1 AIM is critical for ATM 

recruitment and is required for the full activation of ATM (Figure 1-4). NBS1 binds 

ATMs N-terminal HEAT repeats and the AIM domain interacts with ATMs FATC domain 

which, as already discussed, is important in regulating ATMs kinase activity. The 

interaction between NBS1 and ATM stimulates ATM phosphorylation of downstream 

targets such as Chk2 and p53, suggesting it is an activator of ATMs kinase activity (Falck 

et al., 2005, Lee and Paull, 2005, You et al., 2005). 

 Interestingly, mutations in Rad50 (of the MRN complex) also lead to inefficient 

activation of ATM, suggesting that the entire MRN complex is required for ATM 

recruitment and activation at sites of damage. (Lee and Paull, 2005, Gatei et al., 2011, 

He et al., 2012). A model proposed by You et al., (2005) predicts that, once activated 

by NBS1, ATM autophosphorylates and monomerises leading to its full activation and 

release from NBS1. This then may allow more ATM to be recruited and activated 

leading to an increase in the checkpoint signal (You et al., 2005). NBS1 acts both up 

and downstream of ATM activation; as well as recruiting and potentially activating 

ATM at sites of damage, NBS1 is also a substrate of the kinase. Active ATM 

phosphorylates NBS1 on S343 and S278 and these phosphorylations are essential for 

the intra-S checkpoint and telomere maintenance (Bhatti et al., 2011).  Consistent with 

the MRN complex being important for ATM activation, a number of AT-like disease 

which harbour mutations in the complex have been described (Carney et al., 1998, 

Stewart et al., 1999, Waltes et al., 2009). 

Deletion of the AIM domain within NBS1 reduces ATMs kinase activity but does not 

abolish it. Also, the requirement for MRN in checkpoint activation can be bypassed by 

the use of high doses of IR. Therefore, while MRN plays a role in stimulating ATM 

kinase activity, it is not the only mechanism for ATM activation (Figure1-4). Indeed, 

other mechanisms of ATM activation have been described and these may play 

significant roles in fully activating the kinase (Cerosaletti and Concannon, 2004, Bhatti 

et al., 2011).  One such mechanism is via the histone acetyl transferase (HAT) Tip60 
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(Figure1-4). Tip60 is known to acetylate histone H2A and Histone H4 after IR and this is 

required for efficient DNA repair (Murr et al., 2006). Tip60 is also able to bind to ATMs 

FATC domain and acetylate ATM on S3016 within its PRD after DSB formation. This 

binding and acetylation is thought to cause a conformational change in ATM, leading 

to ATM dimer dissociation and full kinase activation. This acetylation occurs 

independently of ATMs kinase activity and is required for ATM to phosphorylate its 

downstream targets. An ATM K3016 mutant cannot rescue the IR sensitivity of AT cells, 

which together with the other data confirms Tip60 as a true ATM activator. 

Interestingly, the K3016 mutant still exhibits some ATM autophosphorylation but this 

does not lead to monomerisation (Sun et al., 2005, Jiang et al., 2006, Sun et al., 2007, 

Sun et al., 2010). It maybe that Tip60 works in tandem with other ATM activators such 

as NBS1. Indeed, Tip60 has been shown to associate with NBS1 via the kinase null PIKK; 

TRRAP (Chailleux et al., 2010).  

It is thus also important to control Tip60 in order to prevent ATM acetylation in the 

absence of damage (as it is with the ATM autophosphorylation) (Figure 1-4).  This 

control comes in the form of the ATF2, a transcription factor which is known to be part 

of the JNK/P38 stress pathway (Tsai et al., 1996). However, this function of ATF2 is 

independent of its transcription factor function in controlling Tip60 levels. ATF2 is 

always found bound to ATM-associated Tip60 in the absence of DNA damage. ATF2 

also associates with the E3 ubiquitin ligase Cul3 and apparently promotes Cul3 

dependent ubiquitylation and degradation of Tip60; knockdown of either ATF2 or Cul3 

leads to stabilisation of Tip60 and over expression of ATF2 leads to a decrease in Tip60 

levels. Thus both ATF2 and Cul3 negatively regulate Tip60 protein levels (Figure 1-4). 

This ATF2/Cul3 dependent degradation of Tip60 attenuates Tip60 acetylation and 

activation of ATM, ensuring that ATM is not activated in the absence of damage (Figure 

1-4).  Following DNA damage, the interaction between ATF2 decreases, allowing 

acetylation and activation of ATM (Bhoumik et al., 2008). Interestingly, ATF2 is also a 

target of active ATM. Following IR ATM phosphorylates ATF2 on S490 and S498, this 

phosphorylation leads to relocalisation of ATF2 to Ionising radiation induced foci (IRIF) 

on the chromatin surrounding the DSB. Recruitment of ATF2 to the chromatin is 

required for efficient MRN complex recruitment and contributes to the intra-S 
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checkpoint and DNA repair (Bhoumik et al., 2005). This has led to the model proposed 

by Bhoumik et al., (2008) whereby ATM-Tip60-ATF2 and Cul3 are in a complex under 

normal conditions, leading to Tip60 ubiquitylation and degradation. Upon IR ATF2 

dissociates from Tip60 allowing ATM acetylation and activation. This coincides with 

ATM phosphorylation of ATF2 causing its relocalisation to IRIF, where it contributes to 

DNA repair and the intra-S checkpoint by aiding recruitment of the MRN complex. This, 

in turn, leads to further ATM activation (Figure 1-4) (Bhoumik et al., 2008). 

Overall ATM can be activated after DNA DSB by a number of factors including protein-

protein interactions and posttranslational modifications. This activation of ATM is 

tightly regulated to prevent activation when it is not required. 

1.4.3 Mediators and the ATM Checkpoint Pathway 

One of the first targets of active ATM is S139 on the histone variant H2AX, 

giving rise to γH2AX (Burma et al., 2001). γH2AX IRIF are therefore commonly used as a 

marker of DSBs and checkpoint activation, although γH2AX foci do form after other 

types of DNA damage that do not activate ATM. γH2AX is important for the 

recruitment of checkpoint mediator proteins and thus for phosphorylation of 

downstream ATM targets as well as for amplifying the checkpoint signal (Derheimer 

and Kastan, 2010). H2AX null mice are radiation sensitive, growth retarded and 

immune deficient, phenotypes associated with a defect in the DNA damage 

checkpoints and/or DNA repair (Celeste et al., 2002, Celeste et al., 2003). Consistent 

with this, a number of repair and checkpoint proteins fail to form IRIF at DSBs in H2AX 

deficient cells (Celeste et al., 2003).  

One of the key mediator proteins to be recruited to γH2AX is MDC1. MDC1 is recruited 

via an interaction between its tandem BRCT domains and phosphorylated S139 on 

H2AX. Mutation of the BRCT domains within MDC1, knockdown of the protein using 

siRNA or knock out in mice cells leads to a phenotype very similar to that of the γH2AX 

S139A mutation. This implicates MDC1 as the main binding partner of γH2AX (Stewart 

et al., 2003, Stucki and Jackson, 2004, Lee et al., 2005, Stucki et al., 2005, Lou et al., 

2006). Once recruited to the chromatin, MDC1 can then recruit a number of other 

proteins within the checkpoint and DNA repair pathways. Firstly MDC1 can recruit 
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activated ATM via an interaction between ATM S1981 and the FHA domain of MDC1. 

This leads to retention of ATM and thus ATM foci formation at the site of the break. 

This ATM MDC1 interaction brings ATM into close proximity of more H2AX, leading to 

more γH2AX and more MDC1 recruitment. This positive feedback loops results in 

γH2AX spreading for mega bases either side of the DSB site (Lou et al., 2006, Savic et 

al., 2009).  

Interestingly, MDC1 also interacts with NBS1 of the MRN complex, via NBS1s FHA and 

BRCT domains. MDC1 is constitutively phosphorylated on CK2 sites. These 

phosphorylation events result in NBS1 foci that co-localise with MDC1 and γH2A 

(Chapman and Jackson, 2008, Melander et al., 2008, Spycher et al., 2008). This 

presence of NBS1 and most probably the other components of the MRN complex on 

the chromatin may be important for further activating ATM, recruiting ATM substrates 

and for DNA repair. As well as recruiting ATM to the chromatin, MDC1 is also 

phosphorylated by ATM. This phosphorylation is important for recruitment of the ring 

finger ubiquitin ligase RNF8 via its N-terminal FHA domain (Huen et al., 2007, Mailand 

et al., 2007). RNF8 ubiquitylates γH2AX, this ubiquitylation is required for the 

recruitment of mediator proteins 53BP1 and BRACA1, as well as for the recruitment of 

another ring finger ubiquitin ligase RNF168 (Doil et al., 2009, Huen et al., 2007, 

Mailand et al., 2007). Mutation of the ATM phosphorylation site on MDC1, the RNF8 

FHA domain or the RNF8 ring finger domain (required for its ubiquitylation activity) all 

result in loss of 53BP1, BRCA1 and RNF168 IRIF, but not MDC1, ATM or NBS1 foci. This 

shows that γH2AX ubiquitylation is required for recruitment of these downstream 

proteins. Furthermore, an RNF8 knock-down leads to a G2-M checkpoint defect after 

IR confirming the importance of γH2AX ubiquitylation and its downstream effects in 

maintaining the checkpoint (Huen et al., 2007, Kolas et al., 2007, Mailand et al., 2007, 

Doil et al., 2009).  

The recruitment of RNF168 by RNF8 ubiquitylated γH2AX leads to further 

ubiquitylation of γH2A. This ubiquitylation allows BRCA1 binding to the chromatin via a 

Rap80-Ubiquitin interaction (Sobhian et al., 2007, Doil et al., 2009). RNF8 

ubiquitlyation of the nucleosome is also thought to expose H4K20me2, which allows 

53BP1 to bind to the chromatin via an interaction between 53BP1s Tudor domain and 
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the methylated H4K20. (Wang et al., 2002, Ward et al., 2003, Huyen et al., 2004).  

Once recruited, BRCA1 and 53BP1 are both phosphorylated by ATM (Cortez et al., 

1999, Xia et al., 2001). These phosphorylations are important for recruitment of repair 

proteins and of additional chromatin modifiers to the site of damage and therefore for 

efficient DNA repair (Thompson, 2012). The phosphorylation of 53BP1 is also thought 

to be important for the recruitment of the effector kinase Chk2, although the 

mechanism of this recruitment is not well understood. Once recruited, Chk2 is 

phosphorylated on T68 by ATM, leading to its activation and a full checkpoint response 

(Matsuoka et al., 1998, Matsuoka et al., 2000).  

1.4.4 Downstream Cell Cycle targets of the ATM pathway 

In S-phase, one of the main targets of ATM activated Chk2 in preventing cell 

cycle progression is CDC25A. Chk2 phosphorylation of CDC25A leads to its degradation 

and thus to an increase in inhibitory phosphorylations on CDK. This reduces CDK 

activity, resulting in the prevention of origin firing and slowing of S-phase (Falck et al., 

2001). Chk2 acts in a similar manner after activation in G2, targeting CDC25 to prevent 

the G2-M transition (Matsuoka et al., 1998). The main target of ATM activation in G1 is 

the tumour suppressor p53 (Chehab et al., 1999). p53 is phosphorylated directly by 

ATM leading to p53 dependent trans-activation of genes such as the CDK inhibitor p21, 

thus preventing progression from G1-S phase (Lavin, 2008). 

1.4.5 Role of the Yeast ATM Homolog, Tel1, in Checkpoint activation 

As already mentioned, the ATM homolog (Tel1) in both budding and fission 

yeasts play a minor role in checkpoint activation compared with the metazoan 

counterpart. Tel1’s most crucial role is in telomere maintenance. tel1 in both yeast 

systems is not an essential  gene and a tel1Δ has no effect on overall cell proliferation 

(Lustig and Petes, 1986, Greenwell et al., 1995, Morrow et al., 1995, Naito et al., 1998). 

Like ATM, Tel1 can bind to the MRN complex and this is via the C-terminus of S. pombe 

NBS1 or the S. cerevisiae homolog Xrs2. In budding yeast this interaction recruits Tel1 

to DNA ends and has been shown, in vitro, to stimulate Tel1’s kinase activity (Nakada 

et al., 2003, You et al., 2005, Fukunaga et al., 2011). Moreover, enhanced Tel1 kinase 

activity can be seen following induction of dirty ended DSB, where the MRXMRN 
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complex remains bound to DNA ends for a longer period of time. This  suggests MRX 

can also stimulate Tel1 activity in vivo (Dodson and Russell, 2011). However, in both S. 

pombe  and S. cerevisiae a tel1Δ mutant cell is not sensitive to DNA damaging agents 

and Tel1 is not required for checkpoint activation in a wild type background (Willis and 

Rhind, 2010). Some data from budding yeast does suggest though that Tel1 can still 

function within the DNA damage checkpoint; over expression of Tel1 can partially 

rescue the damage sensitivity of a mec1-1ATR temperature sensitive mutant. 

Furthermore a tel1Δ mutant is synergistically sensitive with a mec1-1 mutant to DNA 

damaging agents including radio mimetics (Morrow et al., 1995). This suggests that 

Tel1 can function in the DNA damage checkpoint but its role is masked by the scMec1 

or spRad3 pathway.  

The one situation where Tel1 is important for checkpoint activation in S. pombe, is 

when resection of a DSB is prevented. As discussed in “1.5.2 The Formation of ssDNA” 

section the Rad3ATR checkpoint pathway requires the formation of ssDNA for activation 

(Limbo et al., 2011). If the formation of this ssDNA is prevented using a ctp1Δ mutant 

then Tel1 has a more significant role in checkpoint activation. A ctp1Δ strain partially 

restores the checkpoint defect in a rad3Δ background, as seen by the increased Chk1 

phosphorylation after damage when compared with that of a rad3Δ cells alone. This 

increase is dependent on Tel1. The levels of Chk1 phosphorylation are still lower than 

in wild type cells suggesting that this Tel1 pathway, in the absence of resection, is not 

as efficient as the Rad3 pathway in checkpoint activation (Limbo et al., 2011). It maybe 

that the lack of Tel1 function in S. pombe checkpoint activation may not be due to the 

inability of Tel1 to act in the checkpoint pathway per-se, but may reflect the cell cycle 

differences between S. pombe and metazoans. The fact that S. pombe resides mostly in 

G2 phase means that most DSBs are processed to give ssDNA (as discussed in “1.5.2 

The Formation of ssDNA” section).  Thus, rapid activation of the Rad3 checkpoint 

pathway bypasses the requirement for Tel1. However, the same cannot be said for S. 

cerevisiae which is mainly a G1 organism, but depends on Mec1ATR for checkpoint 

activation. Interestingly, expression of budding yeast Tel1 can partially complement 

human AT cells. Tel1 complements the telomere shortening phenotype but has no 

effect on p53 stability or phosphorylation and only partially complements the radio 
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sensitivity phenotype. This suggests it may only carry out some of the functions of ATM 

(Fritz et al., 2000).    

 

1.5 ATR/Rad3/Mec1 Pathway of Checkpoint Activation 

1.5.1 ATR/Rad3/Mec1 Background 

  S. pombe Rad3ATR was first identified in 1992 by Jimenez at al., (1992) as a 

sequence complementing a radiation sensitive mutant. This mutant strain did not 

display cell cycle arrest in G2 after IR, and subsequently it entered mitosis without 

completing DNA replication(Jimenez et al., 1992). However, it was not until 1996 that 

the full rad3 gene was cloned (Bentley et al., 1996). The S. cerevisiae homolog was 

identified by two independent groups; Weinert et al., (1994) identified Mec1ATR in a 

screen for proteins required for cell cycle arrest in S and/or G2 phase after DNA 

damage (Weinert et al., 1994). Kato and Ogawa (1994) also identified MEC1 in a screen 

for MMS sensitive mutants, naming it ERS1 (Kato and Ogawa, 1994). The human 

homolog ATR was subsequently cloned by two independent groups (Cimprich et al., 

1996, Bentley et al., 1996). ATR and its homologs are activated after a number of 

different DNA lesions that cause replication stress, such as DNA abducts, cross links 

and inhibition of DNA polymerase, as well as after DNA damage such as DSB (Zou, 

2007). All of these lesions cause the formation of ssDNA, it is this ssDNA that is 

required for the activation of the ATR (and homologs) checkpoint (MacDougall et al., 

2007). Due to this dependence on ssDNA, ATR can activate the intra S, replication and 

G2 checkpoints, but not the G1 checkpoint (see formation of ssDNA section). As 

already discussed, the ATR homologs scMec1 and spRad3 have a broad role in 

checkpoint activation because of the reduced role of the Tel1 pathway in comparison 

with that of ATM.   

ATR is an essential gene, with disruption of the mouse ATR gene leads to chromosome 

fragmentation and embryonic death before E7.5 (Brown and Baltimore, 2000, de Klein 

et al., 2000). Budding yeast MEC1 is also an essential gene, however fission yeast rad3 

is not essential and can be knocked out (Jimenez et al., 1992, Weinert et al., 1994). The 
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reason why MEC1 is essential and rad3 is not is that MEC1 has been shown to have a 

direct role in regulation of cellular dNTP pools. dNTP’s are synthesised by the reduction 

of NDP’s , a process which is catalysed by a mutlimeric protein complex called 

ribonuclease reductase (RNR) (Elledge et al., 1992). RNR activity in S. cerevisiae is 

controlled by a small inhibiting protein known as Sml1, which is normally found 

associated with RNR (Zhao et al., 1998). Sml1 has been shown to be phosphorylated by 

a downstream target of Mec1, the Dun1 kinase (Zhao et al., 2001, Zhao and Rothstein, 

2002, Uchiki et al., 2004). This phosphorylation of Sml1 by Dun1 leads to Sml1 

ubiquitylation and degradation, RNR activation and the production of dNTP’s 

(Andreson et al., 2010). The control of RNR activity by Mec1 is important after 

replication stress caused by HU or DNA damage as dNTP’s are required for the DNA 

repair and replication restart processes. However, this RNR regulation in budding yeast 

is also essential for unperturbed S-phase, as the lethality of a mec1Δ can be rescued by 

knocking out SML1 (Zhao et al., 1998). In S. pombe Rad3 does not play a direct role in 

the regulation of dNTP pools in an unperturbed cell cycle; degradation of the RNR 

inhibitor (Spd1) is controlled via the signalosome (Liu et al., 2003a).  

One reason why ATR is essential and rad3 is not maybe due to the differences in the 

genome size between higher eukaryotes and S. pombe. The human genome for 

example is estimated to be 3,200 Mbp (Lander et al., 2001) whereas the S. pombe 

genome is only approximately 12.57 Mbp. The difference in size means that the human 

genome is much more susceptible to damage and replication errors during S-phase 

that would require the activation of the ATR checkpoint (Sonoda et al., 1998). Also 

higher eukaryotes contain much more repetitive DNA sequences which are difficult to 

replicate, these sequences often lead to replication fork stalling and thus require ATR 

activation (Lander et al., 2001, Caspari et al., 2002). This notion is backed up by the fact 

that conditional knock out of ATR in either human or mouse cells leads to cells 

progressing into mitosis with chromosome breaks which subsequently lead to cell 

death (Cortez et al., 2001, Brown and Baltimore, 2003). The fact that ATR is an 

essential gene means that ATR mutations are rare in the human population. However, 

heterozygous or hypomorphic mutations in ATR lead to a rare condition known as 
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Seckle Syndrome, a developmental disease resulting in growth retardation and 

microcephaly  (O'Driscoll and Jeggo, 2003, O'Driscoll et al., 2003).  

The steps required for the activation of the ATR/Rad3/Mec1 checkpoint pathways will 

now be considered, with an emphasis on the yeast pathways and especially that of S. 

pombe, as this is directly relevant to the work presented in the results chapters 

1.5.2 The Formation of ssDNA 

For ATR, or its homologs, to recognise a DNA lesion or a stalled replication fork , 

ssDNA needs to be formed.  When a replication fork runs into a lesion it stalls. 

However, the helicase continues to unwind the DNA for a period after the fork stalling. 

This creates the single stranded DNA required for the ATR response (Byun et al., 2005, 

MacDougall et al., 2007). In the case of DSB’s in G2, the ssDNA first needs to be formed 

by resection of one of the DNA strands. It is thought that, in part, this resection is 

carried out by the MRN complex (Figure 1-5) (Paull and Gellert, 1998, Trujillo et al., 

1998). Although the entire MRN complex is required for resection, it is Mre11 which 

possesses the nuclease activity. In vitro Mre11 has been shown to have both 

endonuclease and exonuclease activity, which is dependent on four phosphodiesterase 

motifs at its N-terminus. Mre11 nuclease activity is increased when bound to Rad50 

and NBS1. Rad50 is a member of the SMC family of proteins and like other SMC 

proteins it contains walker A and B domains at its N and C terminus respectively, and 

has a zinc hook in the centre of the protein. These three domains are joined by coiled 

coils allowing the walker domains to come together giving Rad50 ATPase activity. This 

Rad50 ATPase activity stimulates Mre11’s nuclease activity via a conformational 

change (Williams et al., 2010a).  

The Mre11 exonuclease activity was shown to be in the 3’-5’ direction in vitro, but at a 

DSB in vivo resection in the 5’-3’ direction is required to form the ssDNA. Furthermore 

both the endo and exo nuclease activity of Mre11 is poor in vitro (Furuse et al., 1998, 

Paull and Gellert, 1998).  
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Figure 1-5. Overview of DNA resection after DNA damage in S. pombe 
Top panel. In G1 CDK (Cdc2) activity is very low. At a DNA DSB there is limited 
resection due to the lack of Ctp1 phosphorylation by Cdc2 and low Ctp1 
expression. Bottom Panel. In G2 Cdc2 activity is higher leading to higher Ctp1 
expression. Also at a DSB, Ctp1 is phosphorylated by Cdc2 leading to the initial 
resection of 50-100bp by MRN-Ctp1. Exo1 is then recruited, which leads to 
extensive resection of the DSB. In the absence of Exo1, DNA2 and the Rqh1 
helicase can carry out the extensive DNA resection.  
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This suggested that accessory factors and other nucleases were acting to regulate the 

resection of DSB in vivo. Sae2 in budding yeast (CtIP in mammals and Ctp1 in S. pombe) 

was shown to associate with the chromatin bound MRXMRN complex in vivo and a 

sae2∆ exhibits a similar phenotype to an mre11 nuclease dead strain. This suggests 

that Sae2 regulates Mre11 nuclease activity and may also cooperate with Mre11 in 

resection, as it also exhibits nuclease activity (Figure 1-5) (McKee and Kleckner, 1997, 

Neale et al., 2005, Lengsfeld et al., 2007). However, Sae2 and Mre11 are only required 

for the initial resection of about 50bp-100bp Figure 1-5)(Mimitou and Symington, 

2008). It is known that a 5’-3’ exonuclease Exo1 then continues this initial resection 

giving large stretches of ssDNA (Figure 1-5). Indeed, in budding yeast an mre11∆, 

exo1∆ strain resection is severely restricted but not abolished (Llorente and 

Symington, 2004, Nakada et al., 2004). This may be due to another nuclease, Dna2, 

along with the helicase Sgs1(hBLM), being functionally redundant with Exo1 in DNA 

end resection at DSB’s (Figure 1-5)(Huertas, 2010).  

This method of resection is only active in G2 when CDK activity is high (Figure 1-5). In 

yeast and human cells Sae2/CtIP are phosphorylated by CDK. This phosphorylation is 

required for the nuclease activity of the CtIP/Sae2 -MRN/X complex at DSB (Huertas et 

al., 2008, Huertas and Jackson, 2009). In G1, as mentioned earlier, CDK activity is low 

and CtIP is not phosphorylated, thus resection does not occur (Figure 1-5). In this case, 

in mammals, the checkpoint is ATM dependent rather than ATR dependent. Regulation 

of resection also determines the repair pathway; in G2 phase a sister chromatid is 

present allowing DSBs to be repaired by a homologous recombination (HR) pathway 

which is dependent on ssDNA. However, in G1 there is no sister chromatid therefore 

resection of the DSB is not desirable and the lesion is repaired via an end joining 

mechanism (Huertas et al., 2008, Mimitou and Symington, 2008). Interestingly, in 

humans ATM activity is also required for resection of a DSB, the subsequent formation 

of ssDNA and ATR dependent checkpoint activation. ATM, along with CDK activity, 

stimulates CTIP activation and this leads to the initial resection of the DSB.  The MRN 

complex and associated ATM then dissociate from the DNA allowing the Exo1 or DNA2 

dependent extensive resection. This subsequently leads to the ssDNA required for ATR 

recruitment, which gives a switch from the initial ATM activation to a ATR checkpoint 
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response in G2 (Shiotani and Zou, 2009). Overall extensive ssDNA formation is required 

for the full activation of the ATR pathway. This is most prominent in S/G2 phases and is 

formed by either the uncoupling of the DNA helicase and polymerase during 

replication, or processing of DNA lesions such as DSB’s. 

1.5.3 Recruitment of ATR to ssDNA 

Once the ssDNA has been generated either by damage, resection or uncoupling 

of the replication fork, it is immediately coated by replication protein A (RPA) (Zou and 

Elledge, 2003, Fanning et al., 2006). It is this RPA coated ssDNA which is required for 

ATR to sense and be recruited to damage. In the cell, ATR is found in a complex with 

ATRIP. This is also the case in yeasts with S. pombe Rad3ATR being found in a complex 

with Rad26ATRIP and S. cerevisiae Mec1ATR in a complex with Ddc2ATRIP (Paciotti et al., 

2000, Cortez et al., 2001, Edwards et al., 1999). The ATRIP-ATR interaction is mediated 

by a phosphorylation event dependent on NEK1, which physically interacts with the 

ATR-ATRIP heterodimer. This phosphorylation event is independent of DNA damage 

but is required for the stability of the ATR-ATRIP complex and its activity (Liu et al., 

2013). ATRIP has an important role in ATR recruitment to the RPA coated single 

stranded DNA (Cortez et al., 2001). A conserved domain within Ddc2ATRIP that is not 

required for the Ddc2 and Mec1 interaction, is required for both Mec1 and Ddc2 

recruitment to RPA. This domain forms an α- helix that specifically interacts with the 

large subunit of RPA (Zou and Elledge, 2003, Ball et al., 2007). In budding yeast the 

ddc2∆ mutant cells have the same phenotype as  mec1∆ mutants and mutations in 

RPA lead to a reduction in Ddc2 foci formation after DNA damage (Paciotti et al., 2000, 

Zou and Elledge, 2003). Furthermore, deletion of ATRIP in metazoans leads to cell 

death by chromosomal fragmentation in the same way that an ATR knockout does. 

Mutations in ATRIP can also lead to Seckle Syndrome (Ogi et al., 2012).  However, the 

effective recruitment of the heterodimer requires domains in both proteins. Mutation 

of the conserved FAT domain in Mec1 reduced both Mec1 and Ddc2 interaction with 

RPA, this FAT domain was also shown to interact with RPA in a two hybrid assay (Ball et 

al., 2005, Nakada et al., 2005). A model can therefore be envisaged in which  ATRIP is 

required for ATR recruitment to RPA ssDNA and that ATR itself can further enhance 

this recruitment or stabilise its binding to RPA, once recruited.  



31 

1.5.4 The DNA Damage Sensor 9-1-1 is Required for the ATR Dependent Checkpoint 

Although recruitment of ATR-ATRIP to sites of ssDNA is necessary for activation 

of the DNA damage checkpoint, it is not sufficient and a second DNA sensing complex 

is also required (MacDougall et al., 2007). This complex, known as the 9-1-1 complex, 

consists of three proteins; Rad9, Hus1 and Rad1, (or Ddc1, Mec3 and Rad17 in budding 

yeast). The first of these to be identified was the S. pombe rad9 gene. Mutations in 

rad9 caused cells to show sensitivity to both IR and UV, linking it with a role in the 

checkpoint response (Murray et al., 1991). Furthermore, deletion of mouse Rad9 leads 

to sensitivity to DNA damaging agents, spontaneous chromosome abrasions and 

embryonic lethality (Hopkins et al., 2004). The 9-1-1 proteins share sequence similarity 

to the proliferating cell nuclear antigen (PCNA), a homodimer replication clamp that 

forms a similar ring like structure (Venclovas and Thelen, 2000, Dore et al., 2009). Each 

of the 9-1-1 proteins contains a PCNA-like domain which consist of intra-domain loops 

(Xu et al., 2009). In PCNA these intra-domain loops act as binding surfaces for other 

proteins, and this may also be the case for the 9-1-1 complex. However, this is yet to 

be fully established (Maga and Hubscher, 2003). Importantly, the Rad9 protein within 

the complex differs from the other two proteins, as it contains a flexible C-terminal tail 

which is not required for the formation of the heterotrimeric complex. This tail most 

likely protrudes from the ring structure (Sohn and Cho, 2009). It also contains a nuclear 

localisation signal, which is required for the localisation of all three of the proteins in 

the nucleus (Hirai and Wang, 2002).The 9-1-1 complex is recruited to the 5’ ss-dsDNA 

junction and depends on RPA to create the specificity for this 5’junction (Zou et al., 

2003, Majka et al., 2006a, MacDougall et al., 2007). The recruitment and loading of the 

9-1-1 complex at the 5’ junction requires another complex of proteins, known as the 

checkpoint clamp loader, with loading occurring in a similar way to PCNA loading.  

The checkpoint clamp loader consists of the Replication factors (RFC) 2-5, which are 

also required for PCNA loading, however, Rad17 (Rad24 in budding yeast) is required 

instead of Rfc1. It is Rad17 that interacts specifically with the Rad1 subunit of the 

heterotrimer and remains bound even after loading (Sohn and Cho, 2009, Lee and 

Dunphy, 2010). The loading of the 9-1-1 clamp onto the 5’ junction requires ATP 

hydrolysis by Rad17 to open the ring, it is then thought to close the 9-1-1 complex 
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around the DNA, thereby encircling it (Bermudez et al., 2003, Ellison and Stillman, 

2003). The interface at which the complex opens is still under debate, as Xu et al.,2009 

and Dore et al., 2009 hypothesise it is the Rad9-Rad1 interface which opens, as this is 

the weakest interface between the proteins. However, Sohn and Cho (2009) believe it 

is the Hus1-Rad1 interface which is able to open and close as this most closely 

resembles the opening/closing interface of PCNA (Dore et al., 2009, Sohn and Cho, 

2009, Xu et al., 2009). Interestingly, it is predicted that the C-terminus tail of Rad9 

blocks access to the centre of the 9-1-1 ring and only moves out of the central “hole” 

of the ring upon interaction with RPA to allow the complex to load onto the DNA 

(Kemp and Sancar, 2009, Sohn and Cho, 2009). The recruitment and loading of the 9-1-

1 complex has been shown to be independent of ATR-ATIP, therefore confirming the 9-

1-1 complex as a true DNA damage sensor (Melo et al., 2001). For full checkpoint 

activation both the 9-1-1 complex and ATR-ATRIP need to be recruited to the damage 

site (Majka et al., 2006a, Parrilla-Castellar et al., 2004). 

1.5.5 The Activation of the ATR Checkpoint Pathway 

Once recruited to the site of damage, ATR and its homologs process a basal 

kinase activity that allows them to phosphorylate a number of early targets, but not 

the downstream targets such as the effector kinase.  One of the first of these 

phosphorylation events is the phosphorylation of its binding partner ATRIP on S68 and 

S72. Mutation of these phosphorylation sites did not give any obvious phenotype, as 

downstream targets of ATR were still phosphorylated. They do, however, act as a good 

initial marker for ATR recruitment and its basal kinase activity, after damage (Itakura et 

al., 2004). Another phosphorylation event dependent solely on ATR’s basal kinase 

activity but not its full activation, is an in Trans phosphorylation of ATR itself. After 

damage/replication stress, ATR becomes phosphorylated on a number of residues; 

S428, S435, possibly S436 and S437, and T1989 (Daub et al., 2008, Dephoure et al., 

2008, Liu et al., 2011). The phosphorylation of T1989 is within the FAT domain of ATR 

and has been shown to be important for the full activation of ATR (via a mechanism 

described in “1.6.4 TopBP1 Dependent ATR Activation” section). T1989 

phosphorylation depends on the recruitment of ATR-ATRIP complexes onto ssDNA, 

where multiple heterodimers will be in close proximity (Liu et al., 2011). In S. pombe 
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Rad3s basal kinase activity is also required to phosphorylate the Rad9 c-terminal tail on 

two residues T412 and S423, and this phosphorylation is important for the activation 

of the DNA damage checkpoint pathway (Figure 1-6) (Furuya et al., 2004).  

In higher eukaryotes the Rad9 C-terminal tail is also phosphorylated, however this not 

ATR dependent. The phosphorylation of two sites; S341 and S387 is dependent on CK2 

and are constitutively phosphorylated sites (St Onge et al., 2003, Takeishi et al., 2010, 

Ueda et al., 2012). There is an SQ/TQ site within the Rad9 C-terminal tail which is 

phosphorylated, however this did not give a phenotype after damage when mutated 

(Roos-Mattjus et al., 2003). The phosphorylated Rad9 C-terminal tail recruits a scaffold 

protein, TopBP1 in higher eukaryotes, (Rad4 in S. pombe or Dpb11 in S. cerevisiae) 

which is able to make contact with many of the proteins already described in this 

pathway (Figure 1-6) (Furuya et al., 2004, Puddu et al., 2008, Takeishi et al., 2010) (For 

more detail on this protein see TopBP1 review section). At this point, to phosphorylate 

its downstream targets ATR/Rad3/Mec1 needs to become fully active. The basal kinase 

activity is not adequate to phosphorylate these downstream proteins, this may be due 

to differences in the tertiary structure around the phosphorylation site, making it more 

difficult to phosphorylate.  

In the budding yeast system it has been shown that the C-terminal tail of Ddc1Rad9 is 

able to directly stimulate Mec1ATR kinase activity and activate the checkpoint. (Majka 

et al., 2006b, Bonilla et al., 2008, Navadgi-Patil and Burgers, 2009). Initially Majka et 

al., 2006b showed, in vitro, that the activation of Mec1 kinase activity required only 

the 9-1-1 clamp and specifically an interaction between Ddc1 and Mec1. However, the 

clamp needed to be loaded onto partially duplexed DNA in order to carry out this 

function.  Subsequently Bonilla et al., 2008 showed that in vivo co-recruitment of 

Mec1-Ddc2ATRIP and Ddc1 to the DNA is sufficient for Mec1 activation. To do this they 

used a LacO system, first developed in human cells by Soutoglou and Misteli (2008), in 

which 256 repeats of LacO sequence are inserted into the genome (Soutoglou and 

Misteli, 2008). Ddc2 and Ddc1 were then tagged with LacI and expressed, this causes 

Ddc2 (with associated Mec1) and Ddc1 to be recruited to the chromatin independently 

of DNA damage.  



Figure 1-6. Overview of the activation of the S.pombe DNA damage 
checkpoint 
Upon DNA damage, the DNA is processed (Figure 1-5) leading to large 
stretches of ssDNA. This is coated by RPA. The Rad3-Rad26 heterodimer 
is recruited to the RPA coated ssDNA and the 9-1-1 complex is loaded 
onto the ss-dsDNA junction. Rad3 then phosphorylates (amongst other 
targets) Rad26 and the C-terminal tail of Rad9. Rad4 is recruited to the 
phosphorylated Rad9 tail. Crb2 is recruited along with Rad4 via an 
interaction which is at least in part dependent on Cdc2 phosphorylation 
of T215 on Crb2. Rad3 then phosphorylates Crb2 leading to the 
recruitment of Chk1. Chk1 is then phosphorylated by Rad3 leading to 
Chk1 auto-phosphorylation, activation and release from the site of 
damage. Chk1 can now phosphorylate its downstream targets leading to 
a full checkpoint response. (See text for more detail). Adapted from Carr, 
(2002) 
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They observed Ddc1 dependent Mec1 dependent checkpoint activation, suggesting 

that Ddc1 alone can fully activate Mec1 (Bonilla et al., 2008).  

More recently Navadgi-Patil and Burgers, 2009 identified the key residues within Ddc1 

that were required for Mec1 activation. They showed that two tryptophan residues, 

W352 on the PCNA like domain and W544 within the unstructured C- terminal tail, 

were sufficient to activate Mec1 in both G1 and G2 of the cell cycle. Interestingly 

though, these residues were only essential for Mec1 activation in G1 (Navadgi-Patil 

and Burgers, 2009). The presence of ATR activation activity within the Ddc1 homologs 

has not been identified in any other organism to date, suggesting that there are other 

ways that ATR and its homologs can be activated. Indeed the Rad9 recruited TopBP1 

has been shown to be able to stimulate ATR/Mec1 kinase activity and phosphorylation 

of its downstream targets (Discussed in “1.6.4 TopBP1 Dependent Activation of ATR” 

section) (Kumagai et al., 2006, Delacroix et al., 2007, Lee et al., 2007, Navadgi-Patil et 

al., 2011, Pfander and Diffley, 2011). Very recently it has been suggested that NBS1 of 

the MRN complex is able to directly activate ATR in vitro and vivo, as it is ATM, and 

that this is independent of the 9-1-1 complex and Mre11: Fusion of the NBS1 C-

terminus onto the replication clamp PCNA in rad17 (9-1-1 clamp loader) null DT40 cells 

led to ATR activation. This potential activation appears to be independent of TopBP1, 

but both are required for a full checkpoint response (Kobayashi et al., 2013)      

The recruitment of S. pombe Rad4TopBP1 by Rad9 brings the mediator protein Crb2 into 

the complex. In budding yeast Dpb11TopBP1 recruits the Crb2 homolog,  scRad9 (not 

part of the 9-1-1 complex), and in higher eukaryotes an interaction between 53BP1 

and TopBP1 has been described (Figure 1-6) (Saka et al., 1997, Mochida et al., 2004, Du 

et al., 2006, Pfander and Diffley, 2011). Crb2 was first identified as Rhp9 in 1997 and 

was shown to be required for the activation of the DNA damage checkpoint, but not 

the replication checkpoint (Willson et al., 1997). Crb2 contains a pair of BRCT domains 

and a Tudor domain at its C-terminus These BRCT domains along with the 

phosphorylation of S666 within the second BRCT domain are required for Crb2 

dimerisation, a formation in which Crb2 is found even in the absence of DNA damage 

and is critical to its function (Kilkenny et al., 2008). It has also been reported that the S. 

cerevisiae homolog  scRad9 also functions as homodimer (Watts and Brissett, 2010).  
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Crb2 is recruited to Rad4 in a manner involving a CDK phosphorylation on T215 (Figure 

1-6). This is not DNA damage dependent, but as it is CDK dependent it can only occur 

when CDK activity is high in Late S-G2 phases. Mutation of the T215 site leads to mild 

DNA damage sensitivity and a checkpoint defect. This is not as severe as a crb2∆, 

suggesting that Crb2 may also be recruited by other means (Du et al., 2003, Du et al., 

2006). Once recruited, Crb2 is maintained at the damage site in a Rad1 and Rad3 

dependent manner. However, the exact mechanism of this is not fully understood (Du 

et al., 2003).  

Once stably associated at the site, Crb2 is phosphorylated by Rad3 on two SQ/TQ 

residues in its N-terminus; T73 and S80. These phosphorylated residues are required 

for recruitment of the effector kinase Chk1 and activation of the DNA damage 

checkpoint (Figure 1-6). Chk1 interacts with these two phosphorylated residues via its 

FHA domain, and mutation of these residues prevents the formation of Chk1 foci at 

the damage site. Furthermore, the requirement of Crb2 in the damage checkpoint can 

be bypassed by fusing a 19 amino acid peptide of Crb2 containing the phosphorylated 

residues to Rad4. This shows that the role of Crb2 in the checkpoint is grossly 

mediating Chk1 recruitment to DNA damage (Qu et al., 2012).  A similar pathway is 

also present in budding yeast where Mec1 phosphorylates S390, an SQ site within the 

scRad9 SCD. However, there is some functional redundancy between the SQ/TQ sites 

within the SCD and mutation of S390 can, in part, be compensated for by the other 

SQ/TQs (Emili, 1998, Vialard et al., 1998, Schwartz et al., 2002). This interaction, as in S. 

pombe, is dependent on Rad53s FHA domain in vitro and in vivo, with both of Rad53s 

FHA domains being able to bind (Sun et al., 1998, Schwartz et al., 2002).  

Once recruited, Chk1/Rad53 is phosphorylated by Rad3/ATR/Mec1 (Figure 1-6).  In the 

mammalian system, Chk1 is phosphorylated by ATR on two SQ sites, S345 and S367, 

both of these phosphorylation events are required for Chk1 activation (Guo et al., 

2000, Liu et al., 2000). In S. pombe both of these SQ sites are conserved, but only S345 

is required for Chk1 and checkpoint activation (Lopez-Girona et al., 2001). The ATR 

phosphorylation of Chk1 induces Chk1 autophosphorylation on S296 which leads to 

dimerisation and full Chk1 (Schwartz et al., 2002, Lee et al., 2003, Okita et al., 2012). 

The phosphorylation of Chk1 (or Rad53Chk2 in S. cerevisiae) is commonly used as a 
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marker of activation of the checkpoint in all organisms. Once activated, Chk1 

dissociates from the site of damage and activated Chk1 is then soluble in the nucleus; 

it can therefore diffuse throughout the nucleus and phosphorylate its substrates (Smits 

et al., 2006). The downstream targets of S. pombe Chk1 include those proteins 

involved in regulating cell cycle progression and those involved in DNA repair. 

1.5.6 ATR and the Replication Checkpoint 

The DNA replication checkpoint, as has already been mentioned, is activated in 

response to stalled replication forks (Tercero et al., 2003). This pathway depends upon 

many of the same proteins as the ATR DNA damage pathway, with a number of 

important exceptions (Figure 1-7). Once ATR-ATRIP and the 9-1-1 complex are 

recruited to a stalled fork, ATR must be activated in much the same way as in the 

damage pathway. In budding yeast this activation of the ATR homolog Mec1 has been 

shown to be dependent on the nuclease-helicase DNA2 (Kumar and Burgers, 2013). 

DNA2 is already found at the replication fork in unperturbed S-phase as it is required 

for the processing of Okazaki fragments in lagging strand synthesis (Bae and Seo, 

2000). Upon replication stress, the unstructured N-terminus of DNA2 can directly 

activate Mec1, this is dependent upon two key residues in DNA2; W128 and Y130. 

Mutation of these two residues reduced checkpoint activation, when combined with 

mutations that prevented recruitment of the other two known Mec1 activators 

(Ddc1Rad9 and Dpb11TopBP1 ), they abolished checkpoint activation (Kumar and Burgers, 

2013). Dna2 has not been shown to activate ATR in any other organisms. 

 Once active, ATR and its homologs phosphorylate a mediator protein. However, this 

mediator protein is distinct from that used in the DNA damage pathway. In the 

replication checkpoint pathway a large scaffolding protein known as Mrc1 in the yeast 

systems, and Claspin in the metazoan systems, acts as the checkpoint mediator(Figure 

1-7) (Kumagai and Dunphy, 2000, Alcasabas et al., 2001). Mrc1 was first identified in 

budding yeast and fission yeast by two independent groups in 2001 (Alcasabas et al., 

2001, Tanaka and Russell, 2001).  

It was identified in a screen for genes that showed sensitivity to HU whilst also 

displaying classical markers of a checkpoint defect (Alcasabas et al., 2001).  



Figure 1-7. Overview of the Replication checkpoint in S.pombe 
Upon encountering a lesion or protein DNA barrier (red X) the replication 
fork stalls and the helicase and polyermase become uncoupled, leading to 
the formation of ssDNA. RPA binds to the ssDNA and this leads to the 
recruitment of the Rad3-Rad26 heterodimer and the loading of the 9-1-1 
complex on the ss-dsDNA junction. Rad3 phosphorylates Rad26 and Rad4 is 
recruited to phosphorylated Rad9. Rad3 also phosphorylates the mediator 
protein Mrc1 which is associated with the replisome. This Mrc1 
phosphorylation leads to the recruitment of Cds1 which is subsequently 
phosphorylated by Rad3. Cds1 then auto phosphorylates leading to its full 
activation. (See text for further detail). Adapted from Carr, (2002) 
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It was shown that Mrc1 was required for the recruitment and activation of the effector 

kinase Cds1Chk2 in S. pombe and Rad53Chk2 in S. cerevisiae. This recruitment was 

dependent on Mrc1 phosphorylation, and the interaction was specific to S-phase 

(Figure 1-7). Mrc1 mRNA levels increased as cells entered S-phase, suggesting that 

Mrc1 is cell cycle controlled (Alcasabas et al., 2001, Tanaka and Russell, 2001). It was 

later shown that the phosphorylation of Mrc1 was dependent on spRad3ATR and 

scMec1ATR, in S. pombe these phosphorylation sites were identified as T645 and T653 

(Zhao et al., 2003, Xu et al., 2006). These phosphorylation sites are required for the 

recruitment of the replication checkpoint effector kinase Cds1 to stalled replication 

forks, and this interaction was mediated by the FHA domain within Cds1 (Figure 1-7) 

(Xu et al., 2006). Indeed, in budding yeast, co-localisation of Mec1 and Mrc1 to the 

chromatin, using a LacO-LacI recruitment system, is sufficient for activation of the 

replication checkpoint. This suggests that no other mediator proteins are required 

(Berens and Toczyski, 2012).  Interestingly, Alcasabas et al., (2001) also noted that 

mrc1Δ cells progressed through S-phase more slowly than WT and suggested that 

Mrc1 may also play a role in replication (Alcasabas et al., 2001). Consistent with this, 

Mrc1 has been shown in S. pombe to bind Swi1-Swi3 and is required for stabilising 

replication forks and for the maintenance of fork integrity; this implicates Mrc1 as 

being at the replication fork before activation of the checkpoint (Tanaka et al., 2010).  

Once recruited by phosphorylated Mrc1, Cds1 is phosphorylated by Rad3 on T11 

(Figure 1-7). This recruitment and phosphorylation of Cds1 promotes Cds1 

dimerisation and subsequent in Trans autophosphorylation on T328 (Yue et al., 2011). 

Monomeric Cds1 is unable to autophosphorylate as the C-terminus of the protein 

prevents access to the phosphorylation site; this is thought to prevent unwanted 

activation of Cds1 (Xu and Kelly, 2009). Once autophosphorylation has occurred, Cds1 

is fully active and can phosphorylate its downstream targets. Targets of Cds1 and its 

homologs include proteins that are involved in stabilising replication forks, processing 

of forks, origin firing and slowing of S-phase and cell cycle control. These include; 

Dna2, Rad60, Mus81 and Cdc25 (Zeng et al., 1998, Miyabe et al., 2009, Willis and 

Rhind, 2009, Hu et al., 2012). 
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A similar pathway of replication checkpoint activation has also been described in 

higher eukaryotes, initially in the Xenopus system. Claspin was discovered as a protein 

required for Chk1 phosphorylation and cell cycle arrest after replication stress. It was 

also shown to be bound to the Swi1-Swi3 homologs Timless-Tipin at the replication 

fork, suggesting a conserved pathway from yeast to higher eukaryotes (Kumagai and 

Dunphy, 2000, Kumagai et al., 2004, Errico et al., 2007).  However, it would seem that 

the roles of the Chk1 and Chk2 homologs have swapped over time with the Chk2 

homolog Cds1 being required in fission yeast for the replication checkpoint, whereas in 

higher eukaryotes, Chk1 functions in the replication checkpoint. Chk2, as already 

mentioned, acts in the damage checkpoint. In budding yeast it would seem that 

Rad53Chk2 carries out most of the functions of both Chk1 and Chk2 and operates in 

both the damage and replication checkpoints (Rhind and Russell, 2000).   

1.5.7 ATR Checkpoint Maintenance and Amplification 

 Once the checkpoint has been activated it is important to ensure the signal is 

strong enough to cause a full checkpoint response and that this response is maintained 

long enough to allow the DNA damage to be repaired.  Once activated, ATR and its 

homologs phosphorylate the C-terminal tail of the histone H2A on S129, or in the case 

of the higher eukaryotes the histone variant H2AX, giving γH2A/γH2AX (Ward and 

Chen, 2001). This γH2AX spreads 1Mb in the case of metazoans and 50-100kb in the 

case of yeasts, along the chromatin from the DNA damage site (Rogakou et al., 1999, 

Shroff et al., 2004). Mutation in S129 in yeasts leads to mild checkpoint defects and a 

modest decrease in viability in the presence of DNA damaging agents (Redon et al., 

2003, Nakamura et al., 2004). This checkpoint defect seems to be due to reduced 

checkpoint amplification and maintenance rather than a direct defect in checkpoint 

activation, as shown by the creation of a persistent HO induced DSB (Du et al., 2006). 

γH2A acts to recruit BRCT domain containing mediator proteins. In S. pombe these 

proteins include Crb253BP1 and Brc1. Crb2 binds γH2A via its 2nd BRCT domain. Two 

point mutations in this domain, K617E and K619E, reduce Crb2 binding to the histone. 

These mutations cause defects in the repair of IR induced DSBs (Kilkenny et al., 2008).  
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A second histone modification also plays a part in Crb2 foci formation and recruitment 

to γH2A, this modification comes in the form of H4-K20me. This methylation event is 

dependent on the methyltransferase Set9 in S. pombe, and a tudor domain within Crb2 

is required for the interaction with H4-K20me. Mutation of this tudor domain reduced 

Crb2 foci at the chromatin and gave a mild sensitivity to ionising radiation that was not 

increased in a set9Δ background (Du et al., 2006). Crb2 can then recruit Chk1, this 

leads to increased checkpoint activation and maintenance of the checkpoint during 

DNA repair where RPA is lost from ssDNA (Sofueva et al., 2010).  

Brc1, a six BRCT domain containing protein which is similar to mammalian MDC1 and 

PTIP, and budding yeast Rtt109, also interacts with γH2A. The interaction between 

γH2A and Brc1 depends on the 5th and 6th   BRCT domains of Brc1,  point mutations 

within these domains prevent damage induced Brc1 foci formation (Williams et al., 

2010b). Interestingly, it appears that Brc1 chromatin foci are most prevalent after 

hydroxy urea (HU) treatment, which causes replication fork stalling. This coincides with 

reports that show Brc1 is required for survival after DNA damaging agents that have 

their effect in S-phase (Sheedy et al., 2005, Dovey and Russell, 2007). Brc1 also plays a 

role in the unperturbed S-phase, as brc1Δ mutant cells show a significant increase in 

Rad52 foci (a protein required for DNA repair), even without the addition of genotoxic 

agents. Therefore, it could be that Brc1 may play a role in maintaining the checkpoint 

in S-phase, whereas Crb2 has more of a role after IR radiation in G2. However, Brc1 

foci can still be seen after IR and other DNA damaging agents not specific to S-phase 

and the brc1Δ crb2Δ double mutant is more sensitive to IR than crb2Δ alone (Williams 

et al., 2010b). 

1.6 TopBP1; a Review 

The work presented in this thesis mainly focuses on the TopBP1 homolog Rad4. 

Therefore a detailed review of what is already known about Rad4 and its homologs is 

included. TopBp1 and its homologs have been the subject of much research since the 

last time it was compressively reviewed in 2005 (Garcia et al., 2005). The review will 

therefore go on to focus on this more recent work. 
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1.6.1 Identification of TopBP1 and its Homologs 

TopBP1 was first discovered in S. pombe in two independent screens. The first 

identified it as rad4 in a screen for mutants that were sensitive to UV (Schupbach, 

1971). The second  identified it as having a “CUT” (Cell untimely torn) phenotype, in 

which cytokinesis occurs in the presence of unsegregated chromatids (Hirano et al., 

1986). cut5 and rad4 were later shown to be the same gene (Saka and Yanagida, 1993). 

Although these screens showed that rad4 most likely had a role in the checkpoint, they 

also identified the rad4 mutant as being inviable at 36˚C, suggesting an essential role in 

another cellular pathway. It was later shown that rad4 has an essential role in the 

initiation of DNA replication as well as functioning in the G1, S-phase and G2 

checkpoints (Garcia et al., 2005). This essential role in replication was further 

confirmed with the identification of the S. cerevisiae homolog DPB11, which was 

identified in a screen for multicopy suppressors of temperature sensitive mutants in 

the Polε subunit DPB2 (Araki et al., 1995). TopBP1 was later identified in Human cells 

in a two hybrid screen to find factors that interact with Topoisomerase IIβ (although 

the importance of this interaction is yet to be shown in vivo).  Disruption of TopBP1 in 

multi cellular model organisms such as drosophila and mouse lead to larval/ early 

embryonic lethality, thus confirming the essential role of Rad4 is conserved 

(Yamamoto et al., 2000, Jeon et al., 2011). 

1.6.2 TopBP1 Domain Architecture 

Rad4/Dpb11/TopBP1 are all scaffolding proteins which are able to make 

protein-protein interactions with many other proteins via their BRCT domains.  BRCT 

domains often come in the form of Tandem repeats and the interactions that the BRCT 

domains make are normally phospho-specific, allowing regulation over when they 

interact with their binding partners (Yu et al., 2003). These BRCT domains are 

therefore essential in TopBP1/Rad4/Dpb11s role in bringing proteins together into 

complexes under defined cellular processes such as DNA replication initiation and 

checkpoint activation. However, the number of BRCT domains varies considerably 

between the homologs (Figure 1-8).  
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Both S. pombe Rad4TopBP1 and S. cerevisiae Dpb11TopBp1 contain four BRCT domains, 

two tandem BRCT repeats, and share 38% sequence similarity and 24% identity (Figure 

1-8) (Garcia et al., 2005). Both human and Xenopus TopBP1 were originally shown to 

contain 8 BRCT domains,  with BRCTs 1+2, 4+5 and 7+8 coming in the form of tandem 

repeats. Later a 9th BRCT domain at the extreme N-terminus was identified and termed 

BRCT0 (Figure 1-8) (Garcia et al., 2005, Rappas et al., 2011). Not all of these BRCT 

domains are predicted to have phospho-binding potential. In the human protein, 

crystal structures and structural predictions have shown that only BRCT1, 2, 3, 5 and 7 

are likely to bind phosphorylated peptides. In yeast BRCT3 (which is homologous to 

BRCT4 in humans) is predicted to not contain a phospho binding pocket (Figure 1-8) 

(Leung et al., 2010, Leung et al., 2011, Rappas et al., 2011). Although Rad4/Dpb11 and 

TopBP1 act within the same cellular pathways, the similarity between the proteins is 

weak, with theTopBP1 protein being over twice the size of its yeast counter parts. 

However, the four BRCT domains of the yeast proteins are most similar to BRCTs 1+2 

and 4+5 of TopBP1 (Figure 1-8). The C.elegans and Drosophilia homologs have 6 and 7 

BRCT domains respectively, suggesting TopBP1 has acquired additional functions in 

multicellular organisms which require the extra domains (Garcia et al., 2005). 

However, the core 1+2 and 4+5 pairs are conserved in all orthologs (human 

nomenclature) (Figure 1-8).  

Interestingly xTopbp1, hTopbp1 and Dpb11 have all been shown to also contain an ATR 

Activation Domain (AAD) in their C-terminus, although no obvious sequence 

conservation between the TopBP1 and Dpb11 AADs has been observed (Figure 1-

8)(Mordes et al., 2008b). In both Xenopus and human, this AAD is located between 

BRCTs 6 and 7. In budding yeast it is found at the extreme C-terminus after BRCT4 

(Figure 1-8) (Kumagai et al., 2006, Mordes et al., 2008a, Mordes et al., 2008b). This 

domain gives another function to TopBP1 in addition to  its scaffolding role.  

1.6.3 TopBP1 as a Scaffold in the DNA Checkpoints. 

As described briefly in the “1.5.1 The Activation of the ATR Checkpoint” section, 

TopBP1 is recruited to the sites of damage and replication stress, and this can be seen 
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by foci formation (Makiniemi et al., 2001). After damage TopBP1 and its homologs are 

recruited to the DNA lesion by either damage induced (in the case of yeasts) or 

constitutively (in the case of humans and Xenopus) phosphorylated Rad9 (scDdc1). 

This puts TopBP1 downstream of ATR-ATRIP and Rad9 recruitment and 

phosphorylation, but before the recruitment of the mediator proteins (Harris et al., 

2003). The specific nature of the TopBP1-Rad9 interaction was first seen in S. pombe, 

where BRCT domains 3+4 of Rad4 were shown to interact with phosphorylated Rad9 

T412 and S423. Furthermore, this interaction was required for the activation of the 

Chk1 damage checkpoint and was needed for the recruitment of Crb2 to the site of 

damage (Furuya et al., 2004). This was later confirmed by Taricani and Wang (2006), 

who showed Rad4 BRCT3+4 were required for checkpoint activation (Taricani and 

Wang, 2006).  

A similar mechanism for Dpb11TopBP1 recruitment to Ddc1Rad9 has been seen in 

S.cereviae, where Dpb11 foci after damage in G1, S and G2 are dependent on the C-

terminus of Dpb11 and components of the 9-1-1 complex (Figure 1-8) (Germann et al., 

2011). This interaction is mediated by a Mec1ATR dependent phosphorylation on T602 

on the C-terminal tail of Ddc1. This interaction is also required for the subsequent 

recruitment of the mediator protein Rad953BP1 and Rad53Chk2 activation (Puddu et al., 

2008, Pfander and Diffley, 2011). In higher eukaryotes, the fact that Rad9 is 

constitutively phosphorylated may mean the interaction between TopBP1 and Rad9 is 

not damage dependent. In line with this, TopBp1 and Rad9 co-immunoprecipitate even 

in the absence of DNA damage (Greer et al., 2003). In human cells the interaction is 

between phosphorylated S387 on Rad9 and BRCTs 1+2 of TopBP1 (Figure 1-8). 

Mutation of human TopBP1 BRCT1 results in a big reduction in the binding affinity 

between Rad9 and TopBP1, whereas the corresponding mutation in BRCT2 has little 

effect. However, mutation of BRCT2 in a protein already harbouring a BRCT1 mutation 

has an even lower affinity for the phosphorylated Rad9 tail than the BRCT1 mutation 

alone. This suggests that BRCT2 does play a role in the interaction (Rappas et al., 

2011). Curiously it would therefore seem that the Rad9 binding ability of TopBP1 has 

switched from the second BRCT tandem repeat in yeast, to the first BRCT tandem 

repeat in human cells during evolution. A recently characterised protein Rhino is also 
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able to bind both Rad9 and TopBP1 in human cells, although it is unclear whether this 

is a TopBP1 BRCT domain dependent interaction. This interaction is important for 

checkpoint activation but the exact role it is playing is uncertain. It may stabilise the 

Rad9 TopBP1 interaction, retain TopBP1 at the site of damage after the initial 

recruitment, or even cause a conformational change in TopBP1, which could be 

important for full checkpoint activation (Cotta-Ramusino et al., 2011). 

Xenopus TopBP1 can be recruited to sites of DNA damage independently of Rad9. 

Duursma et al., (2013) showed using ss-dsDNA-Junctions as ATR-dependent checkpoint 

activation structures in Xenopus egg extracts, that the MRN complex can recruit 

TopBP1. This was necessary for ATR to phosphorylate Chk1, although the 9-1-1 

complex was still required for the phosphorylation (Duursma et al., 2013). The 

interaction between MRN and TopBP1 is also dependent on BRCT1+2 of TopBP1 and 

these make contact with the BRCT domains of NBS1 (Figure 1-8) (Yoo et al., 2009). 

Furthermore, a reduced level of TopBP1 can be seen at damage sites after depletion of 

the MRN complex (Lee and Dunphy, 2013). Recruitment of TopBP1 to the MRN 

complex is required for ATM dependent phosphorylation of TopBP1 on S1131 which is 

then required for the full activation of the ATR checkpoint (Yoo et al., 2007). 

Intriguingly, TopBP1 can also bind CtIP when it’s in a complex with MRN, and this is 

dependent on two ATR/ATM phosphorylation sites in the N-terminus of CtIP and 

BRCT1+2 of TopBP1 (Figure 1-8) (Ramirez-Lugo et al., 2011). This suggests that TopBP1 

can interact with different proteins that bind the MRN complex and these interactions 

may be regulated by phosphorylation under different circumstances.  

It is yet to be seen if TopBP1 can interact with the MRN complex or CtIP in any other 

organism, but it is possible that this could be important for a hand over from the ATM 

dependent checkpoint to the ATR checkpoint in all higher eukaryotes. TopBP1 might 

have yet another binding partner in the activation of the replication checkpoint. For 

the initiation of replication TopBP1 binds Treslin (see “1.6.6 TopBP1 and the Initiation 

of Replication” section), and this is dependent on a CDK phosphorylation event on 

Treslin. This phosphorylation of Treslin and its subsequent interaction with TopBP1 

BRCT1 and 2 has recently been shown, using a Treslin LacI-LacO tethering system, to 

be required for Chk1 activation (Figure 1-8) (Hassan et al., 2013). 
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It is not just BRCT1+2 in higher eukaryotes that are important for TopBP1 foci 

formation, BRCT5 has also been shown to be important for TopBP1 recruitment to 

sites of DNA damage and replication stress (Yamane et al., 2002).  Indeed, BRCT5, has 

been shown to bind the SDT repeat of the mediator protein Mdc1 after replication 

stress, implicating TopBP1 in the γH2AX Mdc1 signal cascade, possibly to amplify the 

checkpoint signal (Figure 1-8) (Wang et al., 2011, Leung et al., 2013). Furthermore, 

recruitment of TopBP1 to sites of damage in G1 requires not only BRCT1+2 (Rad9 

interaction),but also BRCT4+5. BRCT4 and 5 interact with 53BP1, and this interaction is 

required for a full G1 checkpoint response (Figure 1-8) (Yamane et al., 2002, Cescutti et 

al., 2010). The yeast Rad4/Dpb11TopBP1 proteins also interact with the 53BP1 homologs. 

S. pombe Rad4  interacts with Crb253BP1 via BRCTs 1+2 in a two hybrid assay, this 

interaction maybe mediated at least in part by a CDK dependent phosphorylation of 

Crb2 on T215 (Saka et al., 1997, Du et al., 2006)(See “1.5.1 The Activation of the ATR 

Checkpoint Pathway” section). A similar mechanism is seen in S. cerevisiae, with Dpb11 

interacting with scRad953BP1. Dpb11 BRCT1+2 interact with 2 CDK phosphorylation 

sites, S461 and T474, on scRad9. This interaction between Dpb11 and scRad9 is 

required for the subsequent recruitment of the effector kinase Rad53Chk2 (Figure 1-8) 

(Pfander and Diffley, 2011). This again suggests the first two tandem BRCT repeats of 

Rad4/Dpb11 and TopBP1 have swapped during evolution, although the function of the 

protein has remained consistent (Figure 1-8). Interestingly, Dpb11 has also been shown 

to bind Slx4, a DNA repair scaffold which is a subunit of a structure specific 

endonuclease required to resolve holiday junctions during homologous recombination 

(Fekairi et al., 2009, Svendsen et al., 2009). This interaction is mediated by SQ/TQ 

phosphorylations and more importantly, a CDK phosphorylation (S486) on Slx4 and 

Dpb11 BRCT1+2 (Figure 1-8). This binding to Slx4 therefore competes with the binding 

to Rad9 and is thought to attenuate Rad53 activation at stalled replication forks. This 

may be important for a local Mec1 dependent checkpoint response that allows DNA 

repair/fork restart without the full Rad53 dependent cell cycle arrest. This pathway has 

therefore been termed DAMP (dampens checkpoint adaptor-mediated phospho-

signalling) (Ohouo et al., 2010, Ohouo et al., 2013).  
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The extra Tandem BRCT repeats, BRCT7+8, seen in higher eukaryotes but not in yeast, 

are also important for making protein-protein interactions during the checkpoint 

response, since removal of these domains leads to a checkpoint defect in Xenopus 

extracts (Yan et al., 2006). Cescutti et al., (2010) showed that BRCT7+ 8 as well as 

BRCT1+2 are important for checkpoint activation after replication stress and Yan et al., 

showed they were critical for Chk1 activation (Cescutti et al., 2010, Yan and Willis, 

2013). Furthermore, TopBP1 BRCT7+8 bind to the Falconi Amenia helicase 

Bach1/FancJ, the crystal structure of this interaction has been solved, showing it is also 

a phospho-specific interaction (Figure 1-8). This interaction occurs after replication 

stress as the Bach1 phosphorylation is specific to S-phase. This Bach1 phosphorylation 

and subsequent TopBP1 interaction is required for the extension of RPA coated ssDNA 

and therefore the subsequent activation of the checkpoint (Gong et al., 2010, Leung et 

al., 2011). Also, BRCT7+8 have been shown to directly bind ATR (Figure 1-8). As 

described in the “1.5.5 The Activation of the ATR checkpoint pathway” section, ATR 

autophosphorylates once recruited to the RPA-ssDNA on T1989. TopBP1 BRCT7+8 

binds to this phosphorylation site, and this is important for the full activation of ATR 

via TopBP1, the subsequent phosphorylation of downstream targets and checkpoint 

activation (Liu et al., 2011). 

1.6.4 TopBP1 Dependent ATR Activation 

As well as bringing DNA damage sensors, mediators and effectors together at 

sites of DNA damage, TopBP1 can also directly stimulate ATRs kinase activity. The ATR 

activation properties of TopBP1 were first seen by Kumagai et al., (2006). They showed 

that recombinant TopBP1 stimulates the kinase activity of both human and Xenopus 

ATR. The segment of TopBP1 responsible for this was narrowed down to a small region 

between BRCT domains 6 and 7 which was later termed the ATR Activation Domain 

(AAD). Expression of this fragment in human cells, or addition to Xenopus egg extracts, 

lead to ectopic ATR activation as seen by Chk1 phosphorylation. Expression of the AAD 

domain harbouring a point mutation at W1138 did not lead to this ectopic ATR 

activation. Furthermore the W1138 mutation lead to a checkpoint defect after 

Aphidicolin treatment of Xenopus egg extracts, where wild type TopBP1 had been 

ablated and replaced with recombinant mutant protein (Kumagai et al., 2006).  
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Following on from this, fusion of the TopBP1 AAD domain to either PCNA or histone 

H2B was shown to be sufficient for ATR activation in DT40 chicken cells, even if the 9-

1-1 clamp loader (Rad17) was knocked out (Delacroix et al., 2007). As mentioned in 

“1.3.2 The Phosphatidylinositol (PI) 3 Kinase like Kinases (PIKKs)” section, the TopBP1 

AAD domain contacts ATR in a region next to the FATC and kinase domains (now 

termed the PRD). The PRD domain is not required for ATRs basal kinase activity, but it 

is required for full ATR activity both in vitro and in vivo. Expression of ATR with a 

mutation in this domain in ATR flox/- cell lines, where ATR can be conditional knocked 

out, leads to loss of checkpoint signalling after replication stress and loss of viability. 

This suggests that the PRD domain is crucial for ATR activation in the replication 

checkpoint and ATR activation is required for cell viability (Mordes et al., 2008a). 

Furthermore, tethering LacI-TopBP1 to LacO arrays, either in vito or in vivo, leads to 

Chk1 phosphorylation. This phosphorylation is further enhanced when Claspin is also 

recruited, further implicating the TopBP1 AAD in ATR activation in the replication 

checkpoint (Lindsey-Boltz and Sancar, 2011).  Interestingly, TopBP1 also needs to 

contact ATRs binding partner, ATRIP, to activate ATR. Mutation of the TopBP1 

interacting domain within ATRIP confers sensitivity to HU, leads to reduced viability 

and causes a G2/M checkpoint defect. The TopBP1 interacting domain within ATRIP is 

conserved in budding yeast suggesting a similar mode of binding in lower eukaryotes 

(Mordes et al., 2008a). Furthermore, using an in vitro system to reconstitute the ATR 

checkpoint Choi et al., (2010) show that it is the N-terminus of TopBP1 that interacts 

with ATRIP (Choi et al., 2010). However, the molecular mechanism of this interaction is 

yet to be seen.  

The phosphorylation of TopBP1 adjacent to the AAD by ATR/ATM is also important for 

TopBP1s ability to activate ATR (Kumagai et al., 2006, Yoo et al., 2007, Burrows and 

Elledge, 2008, Mordes et al., 2008b). A model of how TopBp1 activates ATR could now 

be envisaged:  Replication fork stalling recruits ATR-ATRIP and the 9-1-1 complex with 

associated TopBP1.  ATR auto-phosphorylates and phosphorylates ATRIP, the N-

terminus of TopBP1 interacts with ATRIP via an unknown mechanism, this brings 

TopBP1 into close proximity to ATR. TopBP1 stably binds to the auto-phosphorylation 

site (T1989) on ATR and activates it via an interaction between its AAD and ATRs PRD. 
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ATR then phosphorylates TopBP1, leading to further stimulation of ATRs kinase activity 

by TopBP1. ATR can now phosphorylate its downstream targets leading to full 

checkpoint activation. (Burrows and Elledge, 2008, Liu et al., 2011).  It is not yet clear 

whether TopBP1 can stimulate ATR kinase activity at any other stage of the cell cycle 

or after DNA damage such as DSBs. A recent study in mouse has shown that the 

TopBP1 AAD is essential for embryonic development. Deletion of the AAD shows an 

embryonic lethality phenotype similar to that of an ATR knockout, suggesting this is 

the main way in which ATR is activated, in the early stages of embryogenesis at least 

(Zhou et al., 2013).   

S. cerevisiae Dpb11TopBP1 has also been shown to activate Mec1ATR. Mordes et al., 

(2008b) showed Dpb11 interacts with Mec1-Ddc2 and activates Mec1s-kinase activity, 

this activation was dependent on Ddc2. Analogous with the higher eukaryotes, Mec1 is 

then able to phosphorylate Dpb11 on T731 further stimulating Dpb11s ability to 

activate Mec1 (Mordes et al., 2008b). It was also shown that the C-terminus of Dpb11 

is the region required to stimulate the kinase activity of Mec1 and that Dpb11 was able 

to do this in vitro, even in the absence of ssDNA (Mordes et al., 2008b). Interestingly, 

Dpb11 and Ddc1Rad9 act synergistically to stimulate Mec1s kinase activity, suggesting 

both proteins are able to activate Mec1 independently of each other’s AAD activity 

(Navadgi-Patil and Burgers, 2008)(see “1.5.5 The Activation of the ATR Checkpoint 

Pathway” section).  

Cell cycle studies originally showed that Dpb11 activated Mec1 in S phase and G2, but 

was dispensable for Mec1 activation in G1, whilst Ddc1 activated Mec1 in G1 and also 

in G2 (Mordes et al., 2008b, Navadgi-Patil and Burgers, 2009). However, the S-phase 

activation of Mec1 by Dpb11 turned out to be an artefact of the mutation used. The 

Dpb11-1 allele has a mutation adjacent to the C-terminal end of BRCT4. This even at 

permissive temperature causes a replication initiation defect leading to less replication 

forks. Therefore, after treatment with HU there is less fork stalling compared to WT 

and hence, less Rad53 activation due to the reduced number of replication forks, 

rather than an inability to activate Mec1 directly (Navadgi-Patil et al., 2011). 

Identification of the residues within Dpb11, Y735 and W700, which are required for 

Dpb11s AAD activity, and a truncation mutant, Dpb11-601 (which does not interfere 
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with the BRCT domains within Dpb11) showed that Dpb11 only plays a relatively small 

role in Mec1 activation in G2 phase of the cell cycle, acting with partial redundancy 

with the Ddc1 AAD (Navadgi-Patil et al., 2011, Pfander and Diffley, 2011). Interestingly, 

the two residues required in Dpb11 for Mec1 activation are either side of the Mec1 

phosphorylation site which, when phosphorylated, leads to an increase in Dpb11s 

ability to stimulate Mec1s kinase activity. This suggests that this phosphorylation may 

lead to a conformational change or a stronger interaction between the AAD and Mec1 

(Mordes et al., 2008b, Navadgi-Patil et al., 2011). 

Overall it would seem that the AAD within TopBP1 is more important for ATR 

activation than that in Dpb11 and also acts, a least in part, in a different cell cycle 

stage. However, many of the molecular interactions and mechanisms underlying the 

way in which TopBP1 and Dpb11 activate ATR/Mec1 are conserved. 

1.6.5 TopBP1 and DNA Repair 

In budding yeast, Dpb11TopBP1 has also been shown to play a role in the repair of 

DNA damage that is independent of its role in checkpoint activation. This was first seen 

in the dpb11-1 temperature sensitive mutant: at the permissive temperature dpb11-1 

showed a defect in the repair of MMS induced damage, but not in the activation of the 

checkpoint. The repair defect is within the homologous recombination pathway as 

dpb11-1 mutants were epistatic with rad51 and rad52 (genes required for the strand 

invasion step of HR) mutants after MMS but not HU. Furthermore, Dpb11 associates 

with the HO break site and the HML locus during mating type switching and is required 

for homologous recombination between the MAT locus and the HML locus (Ogiwara et 

al., 2006). Further confirmation of this was acquired through the identification of a 

Dpb11 separation of function mutant known as Dpb11-PF (P3A, F4A). This mutant is 

proficient in checkpoint activation and the initiation of DNA replication, but has altered 

levels of recombination at heteroallelic repeats and direct repeats. Dpb11-PF shows 

increased levels of heteroallelic recombination and reduced direct repeat 

recombination, suggesting a shift from sister chromatid to interhomolog repair. This is 

most likely to be due to slow repair kinetics. As with dpb11-1, dpb11-PF is sensitive to 

DNA damage, but the mutant protein is still able to form foci at the damage site which 
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co-localise with the Rad52 HR repair factor. Also, the dpb11-PF mutant as with the 

dpb11-1 mutant has delayed kinetics in mating type switching due delayed extension 

of the invading strand (Germann et al., 2011). This delay in extension of the invading 

strand is due to a defect in the initiation of repair DNA synthesis (Hicks et al., 2011). 

Interestingly, other proteins required for the initiation of DNA replication such as 

MCM2-7, GINS, Cdc45 and Polε are not required for initiation of repair DNA synthesis 

(Hicks et al., 2011).  

Importantly, it has been reported that hTopBP1 is also required for homologous 

recombination. Depletion of TopBp1 leads to an increase in inter sister chromatid 

exchange and a reduced level of DSB-induced HR, as seen in an I-SceI break system. 

Cells depleted of TopBP1 also exhibit sensitivity to DSB forming agents, such as IR and 

mitomycin C (Morishima et al., 2007). This suggests a conserved role for TopBP1 in 

homologous recombination. However, more work is required to understand the full 

mechanism. The role for TopBp1 in DNA repair may also extend to the repair of broken 

replication forks. Dpb11 has been shown to bind to Mec1 phosphorylated repair 

scaffold proteins Slx4 and RTT107, and this may be important for bringing repair 

proteins to the fork. Mutation of the Mec1 phosphorylation sites on Slx4 disrupts its 

interaction with Dpb11 and sensitises cells to MMS but not to HU or CPT, suggesting a 

role for Dpb11 in repair of broken forks (Ohouo et al., 2010). 

1.6.6 TopBP1 and the Initiation of DNA Replication 

As already mentioned, the essential function of TopBP1 and its homologs is in 

initiating DNA replication (Masumoto et al., 2000, Hashimoto and Takisawa, 2003). An 

early study by Araki et al (1995) showed dpb11TopBP1 genetically interacted with DNA 

polymerase II (pol epsilon), suggesting Dpb11 had a role in DNA replication (Araki et 

al., 1995). However, xTopBP1 is not required for the formation of the pre-replication 

complex (Pre-RC) which includes ORC, MCM, Cdc6 and Cdt1 (Hashimoto and Takisawa, 

2003). Two independent screens gave insight into how Dpb11 functions in the 

initiation of DNA replication. Kamimura et al., (1998) carried out a synthetic lethal with 

Dpb11 (SLD) screen and identified a number of genes that encoded proteins which 

acted within the Dpb11 pathway, including Sld1 (Pol episilon), Cdc45, Sld3, Sld2 and 
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Sld5 (a member of the GINS complex) (Kamimura et al., 1998). Sld2 was also identified 

in a screen for dosage-dependent suppressors of the temperature sensitive mutant 

dpb11-1 (Wang and Elledge, 1999). The data from these screens was backed up 

biochemically and showed that Sld2 interacted with Dpb11 and that this interaction 

was required for replication initiation (Kamimura et al., 1998, Wang and Elledge, 

1999).  

The interaction between Sld2 and Dpb11 is a CDK dependent interaction, with 

phosphorylation of a number of canonical CDK sites first being required for the 

phosphorylation of a non-canonical site, T84. This suggests that a threshold of CDK 

activity is required for replication initiation (Masumoto et al., 2002, Tak et al., 2006). 

Furthermore, this phosphorylated Sld2 interacts with Dpb11s BRCT domains 3 and 4 

(Tak et al., 2006). Sld2 was also shown to bind to Pol epsilon and associated GINS 

complex (a complex of four proteins important for the helicase activity of MCM 2-7) 

(Moyer et al., 2006). The CDK-dependent interaction between Dpb11 and Sld2 

therefore brings Dpb11-Sld2-Polε and GINS into a complex known as the Pre-Loading 

Complex (Pre-LC) (Figure 1-9B)(Araki, 2011). GINS has also recently been shown to 

interact with Dpb11 itself and interacts with the 100 amino acid inter BRCT1 and 2 

region. This interaction is required for normal cell growth, and mutation leads to 

replication defects (Tanaka et al., 2013). The interaction between Dpb11 and GINS may 

therefore be important for stabilising the Pre-LC complex (Figure 1-9B). 

 Importantly, two studies showed that Sld3 is also phosphorylated by CDK (Tanaka et 

al., 2007, Zegerman and Diffley, 2007). Sld3 is known to bind to the pre-RC, along with 

Cdc45 in a DDK phosphorylation dependent manner (Figure 1-9A, B) (Yabuuchi et al., 

2006, Heller et al., 2011). The Cdc45-Sld3 complex is also essential for replication 

initiation (Figure 1-9B) (Tercero et al., 2000, Kamimura et al., 2001). CDK 

phosphorylation of two sites on Sld3 is required for an interaction with Dpb11 (Figure 

1-9B) (Tanaka et al., 2007, Zegerman and Diffley, 2007). A fusion between Sld3 and 

Dpb11 bypassed the requirement of both of these CDK phosphorylation sites and of 

BRCT’s 1 and 2 of Dpb11, for replication initiation. If this fusion is combined with a 

phospho mimetic allele of Sld2, CDK activity is no longer required for replication 

initiation.  
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Figure 1-9. Overview of the initiation of DNA replication. 
Diagram showing each step of the initiation of DNA replication in S. 
cerevisiae. The S. cerevisiae pathway is shown as it has been most 
extensively studied. A. In late M phase ORC associates with the origins of 
replication. In Late M/G1 Cdc6 binds to ORC and this leads to the 
recruitment of Cdt1 and the associated MCM 2-7 helicase. This complex, at 
the origin of replication, is known as the pre-replication complex (Pre-RC). 
Cdc6 and Cdt1 subsequently dissociate from the origin B. As cells enter S-
phase CDK activity increases and CDK phosphorylates Sld2. Dpb11 binds 
the phosphorylated Sld2, which is in complex with Pol2 and GINS. Dpb11 
also makes contact with GINS and this Dpb11-Sld2-Pol2-GINS complex is 
known as the Pre-loading complex (Pre-LC). At the same time DDK 
phosphorylates the MCM complex leading to the recruitment of Cdc45 and 
the associated Sld3. CDK phosphorylates Sld3. C. The phosphorylation on 
Sld3 recruits the Pre-LC via an interaction with Dpb11 leading to the 
formation of the pre-initiation complex (Pre-IC). MCM-Cdc45-GINS now 
form an active helicase complex known as the CMG. Polα and Polδ are 
recruited, and Dpb11, Sld2 and Sld3 dissociate. DNA replication now 
initiates. Adapted from Araki, (2011) 
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Therefore, the minimal requirements of CDK in initiation of DNA replication in budding 

yeast is the phosphorylation of Sld2 and 3 to enable their interaction with Dpb11 

(Zegerman and Diffley, 2007). Phosphorylation of Sld3 therefore bring the Pre-LC to 

the origin and promotes replication by bringing GINs-Polε and Cdc45 together (Figure 

1-9C). GINS and Cdc45 can now interact with the MCM complex, creating the active 

helicase complex known as the CMG.  Pol α and Pol δ are then recruited and DNA 

replication can initiate (Figure 1-9C) (Moyer et al., 2006, Araki, 2011). Interestingly 

Dpb11-Sld2-Sld3 dissociate from the origin once the CMG complex forms and do not 

travel with the replication fork (Figure 1-9C) (Masumoto et al., 2002, Bruck et al., 2011, 

Bruck and Kaplan, 2011). 

A similar role for S. pombe Rad4TopBP1 in the initiation of replication has also been 

shown: Sld2 is phosphorylated on T111 by CDK and interacts with BRCT3 and 4 of 

Rad4, whilst CDK phosphorylated Sld3 binds to BRCT1 and 2. Both these interactions 

are required for replication initiation. Furthermore, a 3 hybrid analysis between Sld2-

Rad4-Sld3 showed the CDK-dependent association of Sld2-Rad4 enhanced the Sld3-

Rad4 interaction. This gives a possible mechanism by which Rad4 bound to Sld2 is 

more likely to bind the origin associated Sld3 (Fukuura et al., 2011). As with Dpb11, 

Rad4 does not travel with the replication fork (Taylor et al., 2011).  

In higher eukaryotes, TopBP1 is also essential for replication initiation but not 

elongation. However, the mechanisms for this are not so clear (Makiniemi et al., 2001, 

Hashimoto and Takisawa, 2003). The Sld2 and Sld3 homologs have been identified as 

RecQ4 and Treslin/TICCR, respectively (Matsuno et al., 2006, Kumagai et al., 2010, 

Sansam et al., 2010). Treslin is phosphorylated on S1000 and S976 by CDK2 Cyclin E in 

Xenopus, and mutation of these sites, as in yeast, leads to a deficiency in DNA 

replication (Kumagai et al., 2011). Furthermore, in human cells, the CDK 

phosphorylated Treslin binds TopBP1 BRCTs 1 and 2 in a similar way to how Sld3 binds 

BRCT3 and 4 of Dpb11 (Boos et al., 2011). Again, this adds to the notion that the first 

two tandem BRCT repeats in TopBP1 have switched around compared to those in 

yeasts. However, it was reported in HeLa cells that depletion of TopBP1 does not 

significantly reduce CMG formation, an event that does require CDK and RecQ4 (Im et 

al., 2009). It is worth noting though, that only a low level of TopBP1 is required for 
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initiation of replication and it maybe that the depletion was not efficient enough to 

prevent it. Furthermore, in Xenopus it appears that RecQ4 does not undergo the same 

CDK-dependent phosphorylation as its yeast counter parts (Matsuno et al., 2006). 

However, RecQ4 does co-IP with TopBP1, this is dependent on the N-terminus of 

RecQ4, and this N-terminal fragment can rescue the replication defect of RecQ4 

depleted extracts (Matsuno et al., 2006). Overall, more work is required to understand 

the roles of TopBP1 in regards to RecQ4 in higher eukaryotes.  BRCT6 of TopBP1 was 

also reported to be required for replication in Xenopus and in Human cells (Makiniemi 

et al., 2001, Schmidt et al., 2008). However, a truncation of TopBP1 which removes 

BRCT6, 7, 8 has also been reported to have no replication defects (Yan et al., 2006). It 

will therefore be interesting to see which BRCT domains in higher eukaryotes are 

required for DNA replication. 

Upon DNA damage in S-phase the firing of unfired, or “late” origins is prevented 

(Santocanale and Diffley, 1998, Shirahige et al., 1998, Larner et al., 1999). This is due to 

the disruption of the critical interactions between TopBP1/Dpb11/Rad4 and 

Sld3/Treslin.  In budding yeast, Rad53Chk2 phosphorylates Dbf4 (DDK) and Sld3 after S-

phase damage. The phosphorylation of Sld3 disrupts the interaction with Cdc45 and 

with Dpb11 (Lopez-Mosqueda et al., 2010, Zegerman and Diffley, 2010). This has also 

been shown to be the case in human cells, where Chk1 phosphorylation of Treslin 

prevents interaction with TopBP1 BRCT1 and 2 (Boos et al., 2011). A second 

mechanism by which the activation of the checkpoint may prevent origin firing is by 

scDdc1Rad9 competing with Sld2 for binding to Dpb11 BRCT3/4. Over expression of 

Ddc1 in a Sld2 mutant leads to inviability (Wang and Elledge, 2002). It maybe that 

phosphorylation of Ddc1 after DNA damage out-competes Sld2 for binding to Dpb11, 

therefore preventing one of the interactions required for replication initiation.  

1.6.7 TopBP1 and the Regulation of Transcription. 

As well as its more established roles in the initiation of replication and the 

activation of the DNA structure dependent checkpoints,TopBP1 is emerging as having 

an important role in the regulation of transcription.  hTopBP1 has been shown to have 

a transcription activation domain between amino acids 460 and 500, this maps to a 
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region including part of BRCT4. This region of TopBP1 was shown to up-regulate 

transcription using a Gal4 controlled luciferase reporter system (Wright et al., 2006). In 

the same study TopBP1 was also shown to have two transcription repressor domains 

which map to BRCT2 and BRCT5. These are thought to repress transcription by actively 

recruiting transcriptional repressor complexes to the promoter (Wright et al., 2006). 

BRCT6 of TopBP1 is also important for the regulation of transcription and has been 

reported to be involved in regulating the expression of a number of different genes,  

possibly by interacting with transcription factors or regulators of transcription.  

TopBP1 has been shown to interact with E2F-1, a member of the E2F family of 

transcription factors involved in the regulation of the cell cycle. E2F-1 also has an 

additional role not seen for other E2F’s in the regulation of apoptosis (Qin et al., 1994, 

Wu and Levine, 1994, Field et al., 1996).  By interacting with E2F-1, TopBP1 represses 

EF2-1s transcriptional activity. It is thought to do this by facilitating the interaction 

between E2F1 and BRG1/BRM1 (SWI/SNF) chromatin remodelers. TopBP1 is therefore 

responsible for bringing BRG1/BRM1 to E2F-1 responsive promoters and the 

subsequent formation of a repressive chromatin, the formation of which, in turn, 

prevents apoptosis by repressing the transcription of apoptosis inducing genes. Indeed 

si-RNA of TopBP1 leads to an increase in apoptosis (Liu et al., 2004). TopBP1 interacts 

with E2F-1 at the G1-S boundary, presumably to prevent apoptosis during DNA 

replication. Furthermore TopBP1 is induced by E2F-1 at the G1-S transition, therefore 

leading to a feedback regulation mechanism in preventing apoptosis during DNA 

replication (Liu et al., 2004).  

TopBP1 has also been shown to interact with E2F-1 after DNA damage, this is 

dependent on ATR/ATM phosphorylation of E2F-1 on S31 and TopBP1s BRCT6 (Lin et 

al., 2001). This interaction, again, represses the transcriptional activity of E2F-1, and in 

this case, prevents entry into S-phase. This presumably is to prevent cells from 

replicating damage DNA. It also prevents apoptosis (Liu et al., 2003b). A second 

phosphorylation event is also required for the interaction between TopBP1 and E2F-1 

and this comes in the form of an AKT-dependent phosphorylation of TopBP1. AKT 

phosphorylates TopBP1 in vitro and in vivo on S1159. This phosphorylation leads to the 

oligomerisation of TopBP1 via BRCTs 7/8, binding to E2F-1 and the subsequent 
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repression of E2F-1 mediated apoptosis. Indeed, truncation of TopBP1 BRCT7/8 

prevents interaction with E2F-1 and leads to an increase in apoptosis. Interestingly, 

phosphorylation by AKT and subsequent  oligomerisation seems  to be important in 

enabling TopBP1 to interact with most of the known transcription regulators it binds 

to, such as Miz1, SPBP and HPV16-E2 (discussed below) and seems to be a common 

theme in TopBP1s regulation of transcription (Liu et al., 2006). 

Also, in the regulation of apoptosis, TopBP1 has been reported to bind to, and 

represses, the tumour suppressor p53. This report suggests, BRCTs 7/8 bind to the p53 

DNA binding domain (DBD) and prevent p53 from binding promoter sequences. 

TopBp1 deletion up regulate p53 targets involved in cell cycle arrest and apoptosis and 

an increase in apoptosis after damage can be seen. Although, more work needs to be 

done to follow up this initial study (Liu et al., 2009).  

TopBP1 also acts as a transcriptional co-repressor regulating expression of cell cycle 

genes via inhibiting the Myc-associated zinc finger protein Miz1. Miz1 is known to 

activate transcription of p21 (see “Regulation of the Cell Cycle” section) after UV 

damage, leading to cell cycle arrest (Adhikary and Eilers, 2005). TopBP1 associates with 

Miz1 in unstressed cells and dissociates following UV damage, leading to the induction 

of p21 (Herold et al., 2002). Depletion of TopBP1 has been shown to lead to p21 

expression and inhibition of cyclinE/CDK2 in the absence of checkpoint activation and 

p53, showing that TopBP1 may indeed have a role in regulating cell cycle progression 

in the absence of damage (Jeon et al., 2007). The dissociation of TopBP1 from Miz1 

after DNA damage may be due to the ribosyltransferase PARP1. PARP1 interacts with 

BRCT6 of TopBP1 in vitro and co-IPs in vivo. Furthermore, TopBP1 is ribosylated by 

PARP1 within BRCT6 and this impairs the interaction with Miz1 after UV damage, 

therefore giving insight into the mechanism of how p21 is expressed and the cell cycle 

is halted after UV damage (Wollmann et al., 2007). BRCT6 of TopBP1 also binds to the 

Stromelysin-1 PDGF response element binding protein (SPBP). SPBP is a transcriptional 

co-regulator and the interaction between TopBP1 BRCT6 and SPBPs ePHD domain 

leads to a co-operative stimulation of ETS1 regulated promotes such as c-Myc, PIP2 

and MMP3 (Sjottem et al., 2007).  
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Finally, TopBP1 also plays a role in the regulation of viral transcription. Human 

Papilloma virus (HPV) transcription/replication factor E2 regulates the transcription 

and replication of the viral genome. Initially a two hybrid analysis for interacters of 

HPV16-E2 found TopBP1 which was shown to bind E2 in vitro and in vivo. This required 

the 3 most c-terminal BRCT domains (BRCTs 6/7/8) of TopBP1 (Boner and Morgan, 

2002, Boner et al., 2002). TopBP1 acts as a transcriptional co-activator but also 

enhances viral replication, a process dependent on TopBP1s BRCTs 1 and 2. However, 

TopBp1 is not essential for either the transcription or replication processes, and the 

mechanism and roles for these interactions are not yet fully understood (Boner et al., 

2002).  

Overall there is an emerging picture of TopBP1 having a role in the regulation of 

transcription both as a co-activator and co-repressor, many of the process that it 

regulates seem to play a role in cell cycle progression and/or apoptosis.  

1.6.8 TopBP1 and Disease 

TopBP1 has been linked to breast cancer amongst other cancer types. 

However, there have been some contradictory reports on how important changes in 

TopBP1 are in predisposition and progression of cancer. A number of studies have 

implicated aberrant expression of TopBP1 in breast cancer. A histopathological study 

of breast carcinoma tissue showed that TopBP1, which is normally a nuclear protein, 

was expressed in both the nucleus and the cytoplasm or in just the cytoplasm, in 24 

out of 61 samples tested. This compared to zero out of 12 normal tissues. Two of the 

61 breast carcinoma tissue samples saw no TopBP1 expression at all (Going et al., 

2007). Furthermore, a RT-Q-PCR study of 127 breast cancer samples from a number of 

different breast cancer types and tumour grades saw reduced expression of TopBP1 in 

hereditary breast cancers. However, the TopBP1 protein appeared to be more stable. 

The same study, in compliance with Going et al., (2007), also saw more cytoplasmic 

TopBP1 in breast cancer cells and this increased with increasing histological grade of 

the cancer (Forma et al., 2012). Slightly contradictorily to the results showing no 

TopBP1 expression in some breast cancer tissue samples, Liu et al., (2009) showed 

TopBP1 was over expressed in 46 of the 79 primary breast cancer tissues analysed, this 
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higher expression correlated with higher tumour grade and a shorter survival time for 

the patient. These effects of higher TopBP1 expression were suggested to be due to 

the increased levels of TopBP1 perturbing p53 function (see “1.6.7 TopBP1 and the 

Regulation of Transcription” section) (Liu et al., 2009). Over expression of TopBP1 has 

also been reported in Giloblastoma and the increased levels of TopBP1 expression in 

radioresistant non-small cell lung cancer cell lines correlated with reduced patient 

survival and brain metastasis (Seol et al., 2011a, Seol et al., 2011b).  

A heterozygous polymorphism of TopBP1 between BRCTs 2 and 3 leading to Arg309Cys 

was found to be linked to an increased risk of breast and/or ovarian cancer in a screen 

of 125 Finnish cancer families (15.2% of cancer families had it compared to 7.0% of 

controls) (Karppinen et al., 2006). However, a larger screen of 1064 German breast 

cancer patients and 1014 population controls showed that Arg309cys did not show any 

elevated risk of breast cancer (Blaut et al., 2010). Another study of the haplotypes of 

BRCA1 and BRCA2 mutation carriers showed TopBP1 to have no association with 

ovarian cancer in BRACA1/2 mutant carriers (Rebbeck et al., 2009). It is therefore still 

unclear if polymorphisms in TopBP1 are associated with cancer risk and whether any 

mutations in TopBP1 are commonly found in cancer cells. Changes in TopBP1 

expression do seem to be linked to breast cancer, the aggressiveness of the tumour 

and the radioresistance of other cancer types. However, more work needs to be done 

in this area of research to get a clearer picture.     

 

1.7 Aims of this Work 

The aim of this work is to try and further understand the molecular 

mechanisms and pathways in which TopBP1 (Rad4) acts, using S. pombe as a model 

organism. The role of the Rad4AAD in checkpoint activation and the pathway in which 

it is important, are identified using a LacO recruitment system and time course 

experiments. It is demonstrated that the Rad9 AAD domain is conserved from budding 

yeast and insights are made into the relative roles and importance of the Rad4 and 

Rad9 AAD’s at different cell cycle phases. The phospho dependent interaction between 

Rad4 and the mediator protein Crb2 in the activation of the DNA damage checkpoint 
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are further characterised.  Additionally, we cannot find evidence for an  interaction 

between Rad4 and Slx4 in S. pombe. Finally, it is shown that Rad4, most likely, does not 

interact with a potential Rad4 interaction motif in Mrc1 during the activation of the 

replication checkpoint.  
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Chapter 2 

Materials and Methods 
 

2.1 Media 

2.1.1 Yeast Media 

Yeast Extract (YE), Rich Media 

 5 g/l   Yeast extract 

 30 g/l  Glucose 

0.2 g/l  Adenine 

0.1 g/l  Leucine 

0.1 g/l  Uracil 

0.1 g/l  Histidine 

0.1 g/l  Arginine 

(20 g/l  Peptone, for elutriation cultures) 

 

YE Agar (YEA Plates) 

As YE plus:  

12.5 g/l   Difco Bacto Agar 

 

Yeast Nitrogen Base (YNB), Minimal Media  

1.9 g/l  Formedium YNB 

5 g/l   Ammonium Sulphate 

20 g/l   Glucose 

 

Yeast Nitrogen Base Agar (YNBA Plates) 

As YNB plus: 

0.2 ml/l  10M NaOH 

25 g/l   Difco Bacto Agar 
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YNB and YNBA were supplemented with adenine hydrochloride, histidine, leucine, 

uracil and lysine hydrochloride at a final concentration of 10 g/l depending on strain 

genotype 

 

Extremely Low Nitrogen (ELN Plates; for S. pombe crosses)  

27.3 g/l  Formedium EMM Broth (w/o Nitrogen) 

0.05 g/l  Ammonium Chloride 

0.2 g/l  Adenine 

0.1 g/l  Leucine 

0.1 g/l  Uracil 

0.1 g/l  Histidine 

0.1 g/l  Arginine 

25 g/l   Agar 

 

 

2.1.2 Bacteria Media 

Luria-Bertani (LB) 

10 g/l   Tryptone 

5 g/l   Yeast Extract 

5 g/l   Sodium Chloride 

 

Luria-Bertani Agar (LA/LB plates) 

As LB plus: 

12 g/l   Agar 

2.1.3 Chemicals and Drugs used for Selection 

The following drugs and chemicals were added to the appropriate media in order to 

select for the cells containing the appropriate genetic marker (table 2-1). 
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Table 2-1 

Drug/Chemical Media added to Concentration Supplier 

5-Fluorootic acid (5FOA) YEA 0.1% (w/v) Melford, F5001 

Geneticin disulphite (G4-18) YEA 200 µ/ml Melford, G0175 

Nourseothricin sulphate 

(NAT) 

YEA 100 µg/ml Sigma, 74667 

Kanamycin monosulphate LA 50 µg/ml Melford, K0126 

Ampicilin sodium salt LA 100 µg/ml Sigma, A9518 

Table 2-1. List of drugs and chemicals used for selection of S. pombe and E. coli strains 

 

2.2 General Molecular Techniques  

2.2.1 DNA Restriction Digests 

Restriction digests were carried out using New England Biolabs (NEB) restriction 

enzymes according to the manufacturers recommended conditions. 

Restriction digested plasmid DNA fragments were gel purified using agarose gel 

electrophoresis and a Nucleospin clean up kit (Macherey Nagel, 740609.10) 

2.2.2 Plasmid DNA Ligations 

Restricted insert DNA was incubated with 50 ng of restricted vector DNA at a 

ratio of 2:1 and ligated using the Rapid Ligation Kit (Fermentas, K1422) according to 

manufacturer’s guidelines. 

2.2.3 PCR for Molecular Cloning 

To PCR amplify genomic DNA for cloning KOD DNA Polymerase was used, due to 

its high fidelity. The standard reaction set up was as follows; 5 µl of 10x KOD Buffer, 3 

µl of 25 mM MgSO4, 5 µl of 2 mM (each) dNTPs, 1.5 µl of 10 µM forward primer,  1.5 µl 

of 10 µM reverse primer, 100-200 ng of S. pombe genomic DNA, in a total volume of 50 

µl. The MgSO4 concentration was optimised for some reactions in the range of 1.5-2.5 

mM. The standard cycling conditions for the PCR reaction were as follows; 1x 95˚C for 
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2 minutes, 29x 95˚C for 20 seconds, 55˚C for 10 seconds, 70˚C for 20seconds/kb. The 

annealing temperature was often adjusted between 50˚C and 58˚C depending on the 

primers used. 

PCR products were then purified using a Nucleospin clean up kit (Macherey Nagel, 

740609.10) 

2.2.4 Fusion PCR 

Fusion PCR can be used to join two overlapping PCR fragments together. It was 

performed using the same KOD polymerase reaction setup as above, except with equal 

molar ratio of the two PCR fragments that were to be fused. The cycling conditions 

were as follows: 1x 95˚C for 30 seconds, 8x 95˚C 10 seconds, 50˚C for 1 minute, 70˚C 

for 25 seconds/kb. Followed by 29x 95˚C for 10 seconds, 53˚C for 30 seconds, 70˚C for 

25 seconds/kb and a final elongation step of 1x 70˚C for 10 minutes. The initial eight 

cycles at the lower annealing temperature helps promote the annealing of the two PCR 

fragments, which can then be amplified more specifically in the following 29 cycles. 

The annealing temperatures can be adjusted depending on the Tm of the primers and 

the overlap between the two fragments.  

2.2.5 Site Directed Mutagenesis (SDM) 

Site directed mutagenesis was used to insert point mutants into a gene of 

interest, which had been cloned into the pAW8 vector for insertion into the genome by 

Recombination Mediated Cassette Exchange (RMCE). Overlapping forward and reverse 

primers of 30-45 bp containing a point mutation, were designed and used in the SDM 

PCR reaction. The PCR reaction was as follows: 1 µl (50 ng) of plasmid DNA, 5 µl of 10x 

PFU Turbo Buffer, 5 µl of dNTPs at 2 mM each, 1 µl of PFU Turbo polymerase,  1 µl (125 

ng) of forward primer, 1 µl (125 ng) of reverse primer , 36 µl of dH2O. The standard 

cycling conditions for the SDM PCR were: 1x 94˚C for 3 minutes, 20x 94 for 30 seconds, 

58˚C for 1 minute,68˚C for 16.5 minutes. Followed by a final elongation step of 1 x 68˚C 

for 7 minutes. The annealing temperature may have been altered depending on the 

Tm of the primers and the elongation time was adjusted in accordance with the size of 

the plasmid. 
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The template DNA was then digested using 1 µl of Dpn1 (NEB) for 1 hour at 37˚C. The 

reaction was then cleaned up using a Nucleospin clean up kit (Macherey Nagel, 

740609.10). All of the reaction was transformed into high competency DH5α cells.      

2.2.6 E. coli Transformation 

Competent DH5α E. coli cells were thawed on ice. Plasmid DNA was mixed with 

the thawed cells and incubated on ice for 30 minutes. The DNA-cell mixture was heat 

shocked at 42˚C for 90 seconds and placed back on ice for 15 minutes. 1 ml of LB was 

added and in the case of plasmids containing the Ampicilin marker, cells were plated 

straight on to LB-ampicilin plates. For plasmids containing the Kanamycin marker the 

LB-cell mix was incubated for 60 minutes at 37˚C before being plated on to LB-

Kanamycin plates. Plates were then incubated at 37˚C overnight. 

2.2.7 Extraction of Plasmid DNA from E. coli 

  For miniprep: A single colony of E. coli cells was inoculated in 5 ml of LB 

containing Amplicilin at 100 µg/ml or Kanamycin at 50 µg/ml, and incubated over night 

at 37˚C. Cells were then pelleted at 4,600 rpm for 10 minutes at room temperature. 

The plasmid DNA was then extracted using a Qiagen Miniprep Kit (27104) according to 

the manufactures instructions. The Plasmid DNA was resuspended in 50 µl of dH2O and 

the concentration measured on a Nanodrop ND-1000 spectrophotometer. 

For midiprep: A single colony of E. coli cells was inoculated in 50 ml of LB containing 

Ampicilin or Kanamycin and incubated at 37˚C over night. Cells were pelleted at 4,600 

rpm for 10 minutes at room temperature. The plasmid DNA was then extracted using a 

Qiagen Midiprep Kit (12145) according to the manufacturer’s recommendations. The 

plasmid DNA was resuspended in 200 µl of dH2O and the concentration measured on a 

Nanodrop ND-1000 spectrophotometer. 

2.3 General S. pombe Techniques 

2.3.1 Genetic Cross and Random Spore analysis 

h+ and h- cells were mixed together in a small patch on an ELN plate using 5 µl of 

H2O. The plate was incubated at 25˚C for 2 days and the crossing efficiency checked by 
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microscopy. A loop of the crossed cells was resuspended in 1 ml of H2O and 2 µl of 

Helix Promatia Juice (Biosepra, 213472) was added. The spores were incubated on a 

rotating wheel over night at room temperature. The digestion efficiency was then 

checked by microscopy and the spores counted using a Haemocytometer. The spores 

were serial diluted to 1x104 and 500-1000 spores plated onto YEA. The plates were 

incubated for 5 days at 30˚C 

2.3.2 S. pombe Transformation 

1x108 mid-logarithmically growing S. pombe cells (10 ml of 1x107 cells/ml) were 

used for each transformation. Cells were pelleted and washed once in 5 ml dH2O and 

once in 1 ml of LiAc-TE (0.1 M LiAc, 10 mM Tris-HCL, 1 mM EDTA, pH7.5). They were 

then resuspended in 100 µl LiAc-TE. 2 µl of single stranded carrier DNA (Salmon Sperm 

DNA, Invitrogen, VX15632011) and 1 µg (1-10 µl) of plasmid DNA or up to 10 µg of PCR 

product were added. This was incubated at room temperature for 10 minutes.  260 µl 

of 40% PEG-4000/LiAc-TE was added and the cell suspensions incubated for 30-60 

minutes at 30˚C. 43 µl of Dimethyl sulfoxide (DMSO) was added and the cells heat 

shocked at 42˚C for 5 minutes. Cells were then washed in 1 ml of dH20 and 

resuspended in 200 µl dH2O.  100 µl of cell suspension was plated onto YNB with the 

appropriate amino acid supplements to select for the transformants. The plates were 

incubated at 30˚C for 4-5 days until colonies had formed. 

2.3.4 Extraction of Genomic DNA from S. pombe  

Cells were grown in 10 ml of YE over night at 30˚C, pelleted and resuspended in 1 

ml of SP1 buffer (1.2M sorbitol, 50mM citric acid, 50 mM Na2HPO4, 40 mM EDTA, 

pH5,6) containing 1 mg/ml Lyticase (Sigma, L2524). Cells were incubated for 15-30 

minutes at 37˚C. Digestion efficiency was checked by spheroblasting under the 

microscope (5 µl of cells was mixed with 5 µl of 10% SDS on a slide).Once 95% 

digestion had occurred the digested cells were spun at 3000 rpm for 5 minutes and 

resuspended in 450 µl of 5X TE (5 mM EDTA, 50 mM Tris-HCL pH 7.5). 50 µl of 10% SDS 

was added and the cells incubated at room temperature for 5 minutes. 150 µl of 5M 

potassium acetate (KAc) was added to the samples and incubated on ice for 10 

minutes. The DNA was then separated from the rest of the cell debris by centrifugation 
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at 13000 rpm for 10 minutes. The supernatant was transferred to a new tube and one 

volume of isopropanol added to precipitate the DNA. This was spun at 15000 rpm for 

10 minutes at 4˚C, and the supernatant was removed. The pellet was then washed 

with 500 µl of 70% ethanol and dried. If the genomic DNA was to be used for PCR it 

was resuspended in 200 µl dH20 and 5 µl of 10 mg/ml RibonucleaseA (RNase). 

If the genomic DNA was to be used for southern blot, further purification steps were 

performed. The pellet was resuspended in 250 µl of 5x TE, 5 µl of 10 mg/ml RNase and 

incubated at 37˚C for 20 minutes. 2 µl of 10% SDS and 10µl of 5 mg/ml Proteinase K 

(Sigma, P2308) were added, and the DNA incubated at 55˚C for 60 minutes. The DNA 

was then phenol chloroform extracted twice by adding 500 µl of 

Phenol:chloroform:isoamyl alcohol (25:24:1, Sigma, 77617), spinning at 13000 rpm for 

5 minutes and the upper phase (containing the DNA) being transferred to a new tube. 

Following the second extraction the DNA was precipitated by adding 1/20 volume of 

3M NaAc, 1 volume isopropanol and incubating on ice for 10 minutes. The samples 

were then spun at 13000 rpm for 15 minutes at 4˚C and washed in 500 µl of 70% 

ethanol. The DNA was resuspended in 30 µl of dH2O.   

2.3.5 S. pombe Colony PCR 

Colony PCR was used to quickly check the genome type of strains after a cross 

where the allele of interest does not have a selective marker. For example, it was used 

to test for the presence of chk1-HA or the lox sites in strains made by RMCE. A full tip 

of freshly patched yeast cells was resuspended in 5 µl of dH2O and heated at 95˚C for 5 

minutes in a PCR machine (Biometra T3 Thermocycler).  20 µl of reaction mix was 

added, containing; 2.5 µl of 10x Buffer IV, 2.5 µl of 25mM MgCl2, 2.5 µl of 2mM (each) 

dNTPs, 0.05 µl of 100 µM forward primer, 0.05 µl of 100 µM reverse primer, 0.125 µl 

of 5U/µl Taq DNA Polymerase (Thermo Fisher Scientific, AB-0192/B) and dH2O up to a 

final volume of 20 µl per reaction. Cells were briefly spun in a minifuge and the 

following PCR reaction carried out; 29 cycles of  95˚C for 30 seconds, 50-55˚C for 30 

seconds, 72˚C for 1 minute. The 12 µl of the PCR product was then directly run on an 

agarose gel. 
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2.4 Creation of S. pombe Strains  

2.4.1 Recombination Mediated Cassette Exchange (RMCE)  

To allow the rapid integration of mutant alleles in to the S. pombe genome a 

recombination mediated cassette exchange system was used (Watson et al., 2008). In 

this system a base strain is first constructed.  For an essential gene, this involves 

placing a loxP site upstream of the gene of interest and the ura4+-loxM3 sequence 

downstream, thereby retaining the gene ORF and promoter. For a non-essential gene, 

the loxP-ura4-loxM3 cassette is integrated at the gene locus of interest replacing the 

gene promoter and ORF, resulting in a knockout strain. 

Once the base strain has been constructed, the gene promoter and ORF are cloned 

into the Cre expression plasmid pAW8 and this sequence can then be mutated using 

site directed mutagenesis (see above). After transformation of the pAW8 plasmid 

containing the mutant gene into the relevant base strain, cells are grown in YE media.  

Cre expression promotes the specific recombination between the loxP and loxM sites 

in the plasmid, with the loxP and loxM sites in the genome. This leads to the insertion 

of the mutant gene into its endogenous locus. This event can be screened for by 

determining the loss of the ura4 marker, by plating the cells onto media containing 5-

flororotic acid (5-FOA). 5-FOA specifically kills uracil prototrophic cells as it is converted 

to 5-fluorouracil, a substance toxic to cells, during uracil de novo synthesis. Therefore, 

only cells that have undergone cassette exchange and contain the mutant gene of 

interest grow, and this can be confirmed by sequencing. 

2.4.2 Creation of rad4 Mutant Strains by RMCE 

The rad4 base strain was previously constructed in the laboratory, as was the 

pAW8-rad4 plasmid (Table 2-6) (Watson et al., 2008). Therefore, these were used to 

construct all of the rad4 mutants used in this study. For mutagenesis primers see the 

list of oligos (Table 2-7) 

 

 



70 
 

2.4.3 Creation of the rad9 Base Stain and Mutants by RMCE 

To create the rad9 base strain, the loxP site was inserted 183 bp upstream of the 

rad9 ATG and the loxM3 site was inserted 33bp downstream of Rad9. To do this, the 

loxP-ura4-loxM cassette was PCR amplified from the pAW1 vector using long primers, 

rad9-S1F and rad9-S1R (Table2-7), with homology to the rad9 up and down stream 

sequences (Watson et al., 2008). This fragment was then used to transform AMC 501, 

and its integration selected for on YNBA plates lacking uracil. Correct interegration was 

confirmed by sequencing. This base strain is based on a previous base strain created by 

Thomas Caspari (University of Bangor). 

The rad9 sequence was amplified using rad9-S6 and rad9-S5.1 and cloned into pAW8 

as a Spe1/Sph1 fragment. The rad9 mutants were made using the primers listed in 

Table 2-7 

2.4.4 Creation of the crb2 Base Strain and Mutants by RMCE 

To create the crb2 base strain, the loxP site was inserted 296 bp up stream of the 

ATG and the loxM3 1 bp downstream of the stop site. The primers used to amplify the 

loxP-ura4-loxM sequence from pAW1 were Crb2 lox-ura-lox-primer-F and R. However, 

the integration of the fragment into AMC 501 did not work, therefore this fragment 

was further amplified to increase its homology to the genomic DNA using 

Crb2_increase_homology_F and R primers (Table 2-7). This increased the efficiency of 

the integration and transformants were now obtained from the YNBA plates lacking 

uracil. Correct integration was confirmed by sequencing. 

The crb2 sequence was amplified using Crb2-clone-F and R primers and cloned into 

pAW8 as an Spe1/Sph1 fragment (Tables 2-6 and 2-7). The crb2 gene sequence was 

then mutated by SDM using the primers indicated in Table 2-7 

2.4.5 Creation of mrc1-T32A Mutant by Fusion PCR 

As only one mutant of the mrc1 gene was needed, a base strain was not 

required. Instead the mrc1-T32A strain was constructed using fusion PCR. Fusion PCR 

consists of 3 reactions; reaction A amplified the upstream mrc1 sequence to the point 
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mutation using primers MRC1-408-upstream-F and MRC1-T32-Fusion-R, with the 

reverse primer incorporating the T to C base change. Reaction B amplified from the 

base change to the mrc1 downstream sequence using primers MRC1-T32-Fusion-F and 

MRC1-345-downstream-R (Table-2-7). The forward primer overlaps with the reverse 

primer of reaction A and also incorporated the base change (A to G). The products of 

reactions A and B were gel extracted using a Nucleospin clean up kit (Macherey Nagel, 

740609.10). They were then subjected to fusion PCR as described above and the 

product gel extracted. This fragment was transformed into a mrc1∆::ura4 strain 

(JMM1405) and the integration was selected for using 5-FOA plates. 

 

 2.5 S. pombe Genetic and Cell Biology Techniques 

2.5.1 Growth Curves 

Cells were grown in YE overnight to ~0.5x107 cells/ml. They were then grown for 

8-9 hours in YE at the indicated temperature, whilst being kept in exponential phase by 

dilution. Cell density was calculated every hour using a spectrophotometer (Ultraspec 

3000, Pharmacia Biotech) and adapted for the dilution factor.  

2.5.2 Spot Tests 

Mid-logrithmically growing cells were subjected to 10-fold serial dilutions from 

1x107 cells/ml to 1x103 cells/ml in dH2O. 5 µl of each of the 5 dilutions was then 

spotted onto YEA plates. The YEA plates either contained no genotoxic agents (control) 

or the indicated doses of Hydroxy Urea (HU) (Sigma, H8627), Methyl 

Methanesulfonate (MMS) (Sigma, 129925) or Camptothecin (CPT) (Acros Organics, 

27672). For UV irradiation, the YEA plates with dried spots were subjected to the 

indicated dose of UV in a Stratalinker 2400 (Stratagene). For ionising radiation (IR) the 

cells were first exposed to the gamma source (137Cs, Gamma Cell 1000) at 1x107 

cells/ml, before being serial diluted. The plates were then incubated at 30˚C (unless 

otherwise stated) for 3-4 days.  
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2.5.3 Lactose Gradient Synchronisation 

Exponentially growing cells were grown in YE to a total of 75 OD595 in 150 ml. 

Cells were pelleted at 3000 rpm for 2 minutes and re-suspended in 1ml of YE. The cells 

were placed on a lactose gradient consisting of 1 ml of 30%, 28%, 24%, 21%, 18.5%, 

15%, 13%, 10%, 7% lactose. This was spun at 1000rpm for 8 minutes. The top fraction 

containing the G2 cells was removed, resuspended in YE and exposed to either the 

indicate dose of UV or IR. The cells were then grown at 30˚C whilst being rotated in a 

Eppendorf Thermomixer hot block. 

2.5.4 cdc10-M17 Synchronisation and Irradiation 

cdc10-M17 cells were grown at 25˚C (permissive temperature) to 0.25 OD595/ml, 

then shifted to 36˚C (non-permissive temperature) for 3.5 hours. Cells were either 

irradiated with the indicated dose of gamma irradiation at 36˚C and released at 25˚C, 

or directly released to at 25˚C, and irradiated at the indicated time points after release 

2.5.5 Elutriation  

Cells were grown in YEP to early log phase, giving a total of 10x1010 cells. These 

cells were then subjected to elutriation in a Beckman J6-MC elutriator, sorting them by 

size. The G2 fraction was taken, pelleted, resuspended in YE at a concentration of 0.5 

OD595/ml and grown at 30˚C. Cells were subjected to the indicate doses of UV or IR at 

the indicated times points. 

2.5.6 Septation Index/ Mitotic Index 

30 µl of synchronous cells from the lactose gradient or elutriation were collected 

in 70 µl of ice cold absolute ethanol. The cells were pelleted for 1 minute at 3000 rpm. 

5 µl of cells from the pellet were dropped onto a slide and allowed to dry. 5 µl of 

mounting media (50% glycerol, 50% PBS, 1 µg/ml DAPI, 50 µg/ml Calcoflour) was 

added and the cells visualised on a Leitz Dialux 20 microscope. The number of cells 

with and without septum, or past mitosis was counted. At least 100 cells were counted 

per time point. 
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2.5.7 FACS analysis 

500 µl of mid logarithmically growing cells were collected into 1 ml ice cold 

absolute ethanol. The cells were washed in, and resuspended in, 500 µl of 50 mM tri-

sodium citrate containing 50 µl of 10 mg/ml RibonucleaseA (RNase). The tubes were 

incubated at 37˚C for 2-3 hours. 10 µl of 500 µg/ml propidium iodide (PI) (Sigma) was 

added to 1 ml of 50 mM tri-sodium citrate (pH7) buffer per sample. 1 ml of the PI 

sodium citrate mix was added to each of the FACS tubes, and 200 µl of the RNase 

digested cells added. The cells were then sonicated for 10 seconds at 20 % power 

(Ultra sonic Processor sonicator). Samples were analysed on FacsCanto machine using 

the FL-A setting.. 

2.5.8  Live Cell Imaging of rad52-GFP Cells 

rad52-GFP cells were grown to 1x107 in YE and exposed to 40 Gy gamma 

irradiation. 5µl of culture was mounted onto a 2.5% agar patch [Microworks] at the 

indicated time points after IR. Images were taken on a Deltavsion Microscope and the 

percentage of cells containing GFP foci calculated. 

2.5.9 Imaging of rad11-GFP Cells 

rad11-GFP cells were grown to 1x107 cells/ml in YE and exposed to 100 Gy 

gamma radiation. Cells were immediately fixed in ice cold methanol and mounted on 

to a slide. Images were taken on a Deltavsion Microscope and the number of GFP foci 

per nucleus calculated. 

2.6 Biochemical Techniques 

2.6.1 Whole Cell Protein Extracts - TCA extracts 

5 OD595 of cells were collected and resuspended in 200 µl of 20% w/v trichloro 

acetic acid (TCA). Glass beads (Sigma) were added up to the level of the TCA. The cells 

were lysed in a cell disrupter (FastPrep, MP) for 8x 30 seconds at 6.5 m/s. The tube was 

then punctured using a hot needle and the sample transferred into a fresh Eppendorf 

tube by centrifugation at 4000 rpm for two minutes. The samples were then spun for 5 

minutes at 13000 rpm and the supernatant removed. The extracts were resuspended 
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in 1X TCA sample buffer (see below) and boiled for 5 minutes. Extracts were spun for 1 

minute at 13000 rpm before use. 

1x TCA Sample Buffer:  

1 volume  4x SDS sample buffer 

1 volume  1 M Tris, pH 8 

2 volume   dH2O 

2.5%   β-mercaptoethanol 

 

4x SDS Sample Buffer 

250 mM  Tris-base, pH6.8 

20%   Glycerol 

0.004 g/ml (w/v) Bromphenol blue 

0.08 g/ml (w/v) SDS 

 

2.6.2 SDS PAGE and Immunostaining of Proteins (Western Blot) 

Whole cell protein extracts were separated by sodium dodecyl sulphate-

polyacrylamide gel electrophoresis (SDS-PAGE). For assaying Chk1-HA phosphorylation 

an 8% resolving “Magic Gel” was used. For γH2A and Tubulin a 12% separating gel was 

used (Table 2-2). Gels were run in a BIORAD Mini-POTEAN TetraCell or a C.B.S Double 

or Triple-wide electrophorsis system in 1x SDS running buffer (0.025 M Tris Base, 0.25 

M Glycine, 0.1% SDS) at 80 volts constant through the stacking gel (Table 2-3) and 100-

120 volts through the separating gel. A Prestained Protein Marker (NEB, P7708) was 

run alongside the samples. 
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Table 2-2 

Resolving  gel 8% 12% 

H2O 4.6 ml 3.3 ml 

Acrylamide:Bis ( 30% Acrylamide: 

0,8% Bis, Protogel, National 

Diagnostics) 

2.7 ml 4.0 ml 

1 M Tris (pH 8.8) 2.5 ml 2.5 ml 

10% SDS 0.1 ml 0.1 ml 

10% Ammonium persulfate (APS) 0.1 ml 0.1 ml 

Temed   0.006 ml 0.004 ml 

Table 2-2, SDS-PAGE resolving gel recipe.  
For “Magic Gel” mix the Protogel Arcylamide:Bis (30%:0.8%) was replaced with a mix of 19% 
Acrylamide:Bis (30%:0.8%, Protgel) and 81% Acrylamide (30%) no Bis (Acrylagel, National 
Diagostics)  
 
 
Table 2-3 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Table 2-3, SDS-PAGE stacking gel recipe.  
For “Magic Gel” mix the Protogel Arcylamide:Bis (30%:0.8%) was replaced with a mix of 19% 
Acrylamide:Bis (30%:0.8%, Protgel) and 81% Acrylamide (30%) no Bis (Acrylagel, National 
Diagostics)  
 

Proteins were then transferred from the gel to a Nitrocelulose membrane (GE 

Healthcare, Nitrocelulose, Hybond, RPN3032D) via wet transfer for 2 hrs at room 

temperature at 300 mA constant, or overnight at 4˚C at 10 V constant, in 1x transfer 

buffer (20 mM Tris base, 750 mM Glycine, 20% (v/v) Methanol, 0.025 % (v /v)  SDS). 

The membrane was stained with Ponceau-S solution (0.2% (w/v) Ponceau S, 3% (w/v) 

TCA) to confirm protein transfer and allow accurate cutting of the membrane. The 

Stacking gel 

H2O       3.4 ml 

Acrylamide:Bis ( 30% Acrylamide: 0,8% Bis, 

Protogel, National Diagnostics)  

0.83 ml 

1 M Tris (pH 6.8)     0.63 ml 

10% SDS      0.05 ml 

10% Ammonium persulfate (APS)   0.05 ml 

Temed      0.005 ml 
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membrane was blocked with 3% milk PBST (Marvel dried skimmed milk in phosphate 

buffered saline (PBS), 0.1% Tween (Sigma P7949)) for 1 hr at room temperature. The 

primary antibody was added (Table 2-4) to 3% milk PBST and incubated with the 

membrane for 1 hr at room temperature or 4˚C over night whilst being gently shaken. 

The primary antibody was then washed off by 3x 10 minute washes in PBST. It was 

then incubated with the appropriate secondary antibody (Table 2-4) in 3% milk PBST 

for 1 hr at room temperature whilst being gently shaken. The secondary antibody was 

washed off via 3x 10 minute washes and 1x 20 minute wash in PBST. The bound 

antibody was then detected by chemiluminescence (ECL Plus Western Lightning, 

Perkinelmer, NEL104001EA) and exposed to GE Healthcare Hyperfilm ECL 

(GZ28906837). The film was developed with a Xograph Imaging Systems Compact X4. 

Alternatively, for quantification of the western blot, the ECL reaction was imaged on a 

Image Quant LAS 4000 (GE healthcare) and analysed using Image Quant TC software 

(GE Health Care) 

Table 2-4 

Antibody Type Supplier Dilution 

Anti-HA Mouse monoclonal Santa Cruz, F-7 sc-7392 1:2500 

Anti-pS129 (γH2A) Rabbit polyclonal Abcam, ab17353 1:2500 

Anti-Tubulin Mouse monoclonal Sigma, T5168 1:25000 

Rabbit anti-Mouse HRP Rabbit polyclonal DakoCytomation, P0260 1:2500 

Swine anti-Rabbit HRP Rabbit polyclonal DakoCytomation, P0217 1:2500 

Table 2-4, Antibodies used in this study. 

 

2.6.3 Cell lysates for GST pull down. 

20 OD595 of mid-logarithmically growing S. pombe cell were grown over night and 

washed in Lysis buffer (see below). The cells were resuspended in 200 µl lysis buffer 

and lysed using glass beads and a cell disrupter (Fast Prep 24, MP) for 8x 30 seconds at 

6,500 m/s. The cell extract was separated from the glass beads by puncturing the tube 

with a hot needle and spinning into a fresh Eppendorf tube at 4000 rpm for two 

minutes. The extracts were clarified by centrifugation at 14,000 rpm at 4°C for 10 

minutes, and transferring the supernatant into a fresh tube. An additional 400µl of 
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lysis buffer was added to the cell extracts giving an approximate final protein 

concentration of 0.5 µg/µl 

 

Lysis buffer 

50mM  Tris-HCL, pH8.0 

150mM  NaCl 

5mM   EDTA 

10%   Glycerol 

0.1%   NP-40 

1mM   Dithiothritol (DTT) (Sigma) (added just before use) 

1mM   AEBSF (Sigma) (added just before use) 

1mM   Pepstatin (Sigma) (added just before use) 

1x complete EDTA Free protease inhibitor (Roche) per 50ml (added just before use) 

1x Phostop (Roche) per 10ml (added just before use) 

 
 
2.6.4 GST Pull Down of Rad4-Crb2 

Experiment performed in collaboration with Tony Oliver (Pearl Lab) 

Experiments were performed using either GST or GST-Rad4-BRCT3,4 as bait.  Each 

purified protein was immobilised on Amintra Glutathione Resin (Expedeon) at a 

sufficient concentration to fully saturate all available binding sites, then washed with 

several applications of lysis buffer to remove any residual, unbound protein.   

 

For the pull-down experiments, 100 μl of immobilised bait-resin was incubated with 

300 μl of cell extract (prey) for a period of 2 hours, with rolling/agitation, at 4°C.  The 

resin was then washed with successive applications of lysis buffer, to remove unbound 

material – typically 3 applications of 1 ml.  SDS-PAGE loading buffer was then added to 

the resin, and samples analysed by western blot (see above) using an anti-HA antibody 

(Table 2-4). 
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2.7  LacO-LacI System Experiments  

2.7.1 Overview 

The LacO-LacI tethering system used in Chapter 3 allows localisation of proteins 

on the chromatin by using components of the bacterial lactose inducible transcription 

pathway. In bacteria, in the absence of lactose, the Lac repressor (LacI) protein is 

bound to a specific DNA sequence, known as the Lac operator (LacO), preventing the 

transcription of genes required for the metabolism of lactose. By inserting repeats of 

the LacO sequence in the genome and tagging proteins of interest with the LacI 

protein, it is possible to tether proteins to a specific genomic locus. This has previously 

been done for checkpoint proteins in mammalian cells and budding yeast cells (Bonilla 

et al., 2008, Soutoglou and Misteli, 2008). As described in Chapter 3 the LacO-LacI 

system was set up in S. pombe by Takashi Morishita and Su-Jiun Lin.  256 LacO repeats 

were inserted into the ura4 locus and the main checkpoint proteins were cloned into 

pRep41 and tagged with LacI, GFP and a nuclear localisation signal (NLS) (GFP/LN). This 

allows expression of the construct upon removal of thiamine.   

 

2.7.2 LiAc Transformation of Cryopreserved S. pombe 

Due to the instability of the 256 LacO repeats in the genome, it was very 

important to ensure the cells were not growing for long periods of time, as this would 

increase the likelihood of losing some of the repeats. Therefore, the LacI plasmids 

were transformed into the LacO S. pombe strains using a rapid transformation protocol 

(Bicknell et al., 2011). In this protocol, S. pombe cells are first made competent and 

cryopreserved, allowing rapid transformation upon thawing. This was carried out by 

growing cells to 1x107 at 30°C overnight. The culture was then placed on ice for 15 

minutes and washed 3 times in ice-cold dH2O by spinning at 1600xg for 5 minutes. The 

pellet was resuspended in ice-cold 30% glycerol, 0.1 M LiAc (pH 4.9) at 1x109 cells/ml. 

50 µl aliquots of the cell suspension were then placed into Eppendorf tubes and 

incubated on ice for 30 minutes, before being placed directly into the -80°C freezer. To 

transform the cryopreserved competent cells they were quickly thawed in a 37°C 

water bath for 2 minutes. The cells were mixed with 5 µl carrier DNA (10 mg/ml), 3 µl 
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of plasmid DNA (~500 µg/ml) and 145 µl of 50% PEG-4000. This was immediately heat 

shocked at 42°C for 15 minutes. The cells were gently spun down at 3000 rpm for 1 

minute and resupended in 200 µl TE. A range of volumes (10 µl to 100 µl) of the cells 

were plated on to YNBA plates supplemented with the required amino acids and 

containing thiamine at a 15 µM concentration. Colonies were left to grow for 4 days at 

30°C.  

 

2.7.3 Expression of LacI Tagged Proteins 

Following transformation of cryopreserved competent S. pombe, one large 

transformant colony was inoculated into 10 ml of YNB supplemented with the 

appropriate amino acids and containing thiamine at 15 µM (YNB+T). Cells were grown 

over night at 30°C. The cells were then diluted into 50 ml of YNB+T and grown to 0.5 

OD595/ml (1x107 cells/ml), a no expression control sample (T0) of 5 OD595 was taken for 

TCA extract and southern blot. The cultures were then washed 2x in dH2O and 

resuspended in 50 ml YNB-no thiamine, at a concentration to give a cell density of 0.5 

OD595/ml by the following day. 5 OD595 of cells were taken at the in indicated time 

points after resuspension in YNB containing no thiamine. During this time cells were 

kept in exponential phase by dilution. 

 

2.7.4 Southern Blot Analysis of LacO 

Genomic DNA was extracted using a standard phenol-chloroform extraction 

process as described above. Concentration of DNA was measured using a Nanodrop 

and approximately 2 µg of DNA was digested using HindIII (NEB) in a final volume of 

200 µl at 36°C. Digested DNA was isoproponol precipitated and resuspended in 20 µl of 

loading buffer (30% glycerol, 0.25% (w/v) bromophenol blue, 0.25% (w/v) Xylene 

cyanol FF). All 20 µl of sample was loaded onto a 1% TE agarose gel containing 0.2 

µg/ml ethidium bromide and run at 30-80 volts for 24 hours. The run gel was washed 

for 10 minutes in depurination solution (0.25 M HCL), 45 minutes in Denaturing 

solution (1.5 M NaCl, 0.5 M NaOH) and 30 minutes in Neutralising solution (1 M Tis, pH 

7.5, 1.5 M NaCl).The  DNA was then blotted onto Gene Screen membrane [Perkin 



80 
 

Elmer] via capillary blotting in 10x SSC (300 mM sodium citrate, pH 7.0, 1 M sodium 

chloride)  and UV cross linked [UV Stratalinker 2400 Stratagene].  

 

LacO repeat DNA was radiolabelled and used to probe the southern blot. To do this 10 

ng lacO gene sequence was boiled for 5 minutes and immediately placed on ice. It was 

then radio- labelled using a High Prime [Roche] priming kit with deoxycytine 5’ 

triphosphate α32P (dCTPα32P) according to manufactures guidelines.  

 

The membrane was placed into a hybridisation tube along with Hybridisation buffer 

(6x SSC, 5x Denhardts (Ficoll 400, Polyvinylpyrrolidone , Bovine serum albumin) , 0.5% 

SDS) pre-heated to 65°C was added to a volume of approximately 0.17 ml/cm2 of 

membrane. The tube was placed in a hybridisation oven (Jencons-PLS) pre-heated to 

65°C for 15 minutes. 5-10 ng of labelled probe DNA per ml of buffer was added, and 

the membrane incubated in the hybridisation oven at 65°C overnight. The membrane 

was washed 3x 20 minutes at 65°C in 0.1% SDS 0.1x SSC, exposed to a phospho screen 

(Amersham) and visualised using a Storm 840 phospho imager (Molecular dynamics).  

 

 

2.8 Strain, Plasmid and Oligonucleotide Lists 

 

Table 2-5 

Strain Genotype 

CPW6 ade-704,ura4-D18, leu1-32, loxP-rad4-Y559R-loxM3 

CPW8 ade-704,ura4-D18, leu1-32, loxP-rad4-Y559R-loxM3 

CPW9 ade-704,ura4-D18, leu1-32, ura4::lacO:natMX6, chk1-HA, crb2-K617E 

CPW10 ade-704,ura-D18, leu1-32, ura4::lacO:natMX6, chk1-HA, crb2-K617E 

CPW11 ade-704,ura4-D18, leu1-32, ura4::lacO:natMX6, chk1-HA, crb2-K619E 

CPW12 ade-704,ura4-D18, leu1-32, ura4::lacO:natMX6, chk1-HA, cb2-K619E 

CPW13 ade-704,ura4-D18, leu1-32, ura4::lacO:natMX6, chk1-HA, rad9Δ::ura4 

CPW14 ade-704,ura4-D18, leu1-32, ura4::lacO:natMX6, chk1-HA, rad9Δ::ura4 

CPW22 ade-704,ura4-D18, leu1-32, chk1-HA, cdc10-m17 

CPW23 ade-704,ura4-D18, leu1-32, chk1-HA, cdc10-m17 

CPW24 ade-704,ura4-D18, leu1-32, loxP-rad4-Y559R-loxM3, chk1-HA, cdc10-m17 
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CPW25 ade-704,ura4-D18, leu1-32, loxP-rad4-Y559R-loxM3, chk1-HA, cdc10-m17 

CPW35 ade-704,ura4-D18, leu1-32,brc1∆::ura4, chk1-HA, ura4::lacO::natMX6 

CPW36 ade-704,ura4-D18, leu1-32, brc1∆::ura4, chk1-HA, ura4::lacO::natMX6 

CPW40 ade-704, leu1-32, ura4-D18, his-D1, loxP-rad4wt-ura4-loxM3, rad52-GFP::kanMX6 

CPW44 ade-704,ura4-D18, leu1-32, crb2 T215A, chk1-HA, ura4::lacO::natMX6 

CPW45 ade-704,ura4-D18, leu1-32, crb2 T215A, chk1-HA, ura4::lacO::natMX6 

CPW53 ura-D18, leu1-32, cpt1∆::kanMX6 

CPW56 ade-704, ura4-D18, leu1-32, ura4::lacO::natMX6, chk1-HA, rad1∆::ura4 

CPW57 ade-704, ura4-D18, leu1-32, ura4::lacO::natMX6, chk1-HA, rad1∆::ura4 

CPW58 ura-D18 ,leu1-32, cpt1∆::kanMX6 

CPW70 ade-704, leu1-32, ura4-D18, exo1∆::ura4, loxP-rad4-Y599R-loxM3, chk1-HA 

CPW71 ade-704, leu1-32, ura4-D18, exo1∆::ura4, loxP-rad4-Y599R-loxM3, chk1-HA 

CPW72 ade-704, leu1-32, ura4-D18, exo1∆::ura4, chk1-HA 

CPW73 ade-704, leu1-32, ura4-D18, exo1∆::ura4, chk1-HA 

CPW74 ade-704, leu1-32, ura4-D18, rad52-GFP::kanMX6, loxP-rad4-Y599R-loxM3, chk1-HA 

CPW76 ade-704, leu1-32, ura4-D18, rad3∆::ura4 

CPW88 
ade-704, leu1-32, ura4-D18, tel1∆::kanMX6, chk1-HA, loxP-rad4-Y599R-loxM3, 
exo1∆::ura4 

CPW107 
ade-704, leu1-32, ura4-D18, tel1∆::kanMX6, chk1-HA, loxP-rad4-Y599R-loxM3, 
exo1∆::ura4 

CPW108 ade-704, leu1-32, ura4-D18, tel1∆::kanMX6, chk1-HA, exo1∆::ura4 

CPW117 ade-704,ura4-D18, leu1-32, ura4::lacO::natMX6, chk1-HA, rad17-K118E 

CPW118 ade-704,ura4-D18, leu1-32, ura4::lacO::natMX6, chk1-HA, rad17-K118E 

CPW121 ade-704,ura4-D18, leu1-32, rhp18Δ::kanMX6, loxP-rad4-Y599R-loxM3 

CPW122 ade-704,ura4-D18, leu1-32, rhp18Δ::kanMX6, loxP-rad4-Y599R-loxM3 

CPW134 ade-704, leu1-32, ura4-D18, tel1∆::ura4, chk1-HA 

CPW135 ade-704, leu1-32, ura4-D18, tel1∆::ura4, chk1-HA 

CPW143 ade-704, leu1-32, ura4-D18, tel1∆::kanMX6, exo1∆::ura4, chk1-HA 

CPW169 ade-704, leu1-32, ura4-D18, ctp1∆::kanMX6, chk1-HA 

CPW170 ade-704, leu1-32, ura4-D18, ctp1∆::kanMX6, chk1-HA 

CPW171 ade-704, leu1-32, ura4-D18, ctp1∆::kanMX6, loxP-rad4-Y599R-loxM3, chk1-HA 

CPW172 ade-704, leu1-32, ura4-D18, ctp1∆::kanMX6, loxP-rad4-Y599R-loxM3, chk1-HA 

CPW173 ade-704, leu1-32, ura4-D18, loxP-rad4Δ::ura4-loxM3  (RMCE base strain) 

CPW176 ade-704, leu1-32, ura4-D18, loxP-rad4wt-loxM3 

CPW177 ade-704, leu1-32, ura4-D18, loxP-rad4wt-loxM3 

CPW182 ade-704, leu1-32, ura4-D18, loxP-rad4-K56A-loxM3 

CPW183 ade-704, leu1-32, ura4-D19, loxP-rad4-K56A-loxM3 

CPW184 ade-704, leu1-32, ura4-D18, loxP-rad4-K56E-loxM3 

CPW185 ade-704, leu1-32, ura4-D18, loxP-rad4-K56E-loxM3 

CPW186 ade-704, leu1-32, ura4-D18, loxP-rad4-T15V-loxM3 

CPW187 ade-704, leu1-32, ura4-D18, loxP-rad4-T15V-loxM3 

CPW188 ade-704, leu1-32, ura4-D18, loxP-rad4-R22E-loxM3 

CPW189 ade-704, leu1-32, ura4-D18, loxP-rad4-R22E-loxM3 

CPW190 ura4-D18, leu1-32, crb2Δ::ura4, chk1-9myc2HA6His-ura4 

CPW191 
ura4-D18, leu1-32, crb2Δ::ura4 chk1-9myc2HA6His-ura4, leu1-32::2xYFP-crb2 (1-
778)  
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CPW192 
ura4-D18, leu1-32, crb2Δ::ura4, chk1-9myc2HA6His-ura4, leu1-32::2xYFP-crb2 (1-
778) T187A 

CPW193 
ura4-D18, leu1-32, crb2Δ::ura4, chk1-9myc2HA6His-ura4, leu1-32::2xYFP-crb2 (1-
778) T215A 

CPW194 
ura4-D18, leu1-32, crb2Δ::ura4, chk1-9myc2HA6His-ura4, leu1-32::2xYFP-crb2 (1-
778) T235A 

CPW205 ade-704, leu1-32, ura4-D18, loxP-rad4-T15V-loxM3, chk1-HA 

CPW206 ade-704, leu1-32, ura4-D18, loxP-rad4-T15V-loxM3, chk1-HA 

CPW207 ade-704, leu1-32, ura4-D18, loxP-rad4-R22E-loxM3, chk1-HA 

CPW208 ade-704, leu1-32, ura4-D18, loxP-rad4-R22E-loxM3, chk1-HA 

CPW209 ade-704, leu1-32, ura4-D18, loxP-rad4-K56A-loxM3, chk1-HA 

CPW210 ade-704, leu1-32, ura4-D18, loxP-rad4-K56A-loxM3, chk1-HA 

CPW211 ade-704, leu1-32, ura4-D18, loxP-rad4-K56E-loxM3,chk1-HA 

CPW212 ade-704, leu1-32, ura4-D18, loxP-rad4-K56E-loxM3,chk1-HA 

CPW218 ade-704, leu1-32, ura4-D18, loxP-rad4-ura4-loxM3, chk1-HA 

CPW219 ade-704, leu1-32, ura4-D18, loxP-rad4-ura4-loxM33, chk1-HA 

CPW220 ade-704, leu1-32, ura4-D18, loxP-rad4-T15V-K56E-loxM3 

CPW221 ade-704, leu1-32, ura4-D18, loxP-rad4-T15V-K56E-loxM3 

CPW222 ade-704, leu1-32, ura4-D18, loxP-rad4-T110V-loxM3 

CPW223 ade-704, leu1-32, ura4-D18, loxP-rad4-T110V-loxM3 

CPW224 ade-704, leu1-32, ura4-D18, loxP-rad4-R117E-loxM3 

CPW225 ade-704, leu1-32, ura4-D18, loxP-rad4-R117E-loxM3 

CPW226 ade-704, leu1-32, ura4-D18, loxP-rad4-K151A-loxM3 

CPW227 ade-704, leu1-32, ura4-D18, loxP-rad4-K151A-loxM3 

CPW228 ade-704, leu1-32, ura4-D18, loxP-rad4-K151E-loxM3 

CPW229 ade-704, leu1-32, ura4-D18, loxP-rad4-K151E-loxM3 

CPW230 ade-704, leu1-32, ura4-D18, loxP-rad4-T110V-loxM3, chk1-HA 

CPW231 ade-704, leu1-32, ura4-D18, loxP-rad4-T110V-loxM3, chk1-HA 

CPW232 ade-704, leu1-32, ura4-D18, loxP-rad4-R117E-loxM3, chk1-HA 

CPW233 ade-704, leu1-32, ura4-D18, loxP-rad4-R117E-loxM3, chk1-HA 

CPW234 ade-704, leu1-32, ura4-D18, loxP-rad4-K151A-loxM3, chk1-HA 

CPW235 ade-704, leu1-32, ura4-D18, loxP-rad4-K151A-loxM3, chk1-HA 

CPW236 ade-704, leu1-32, ura4-D18, loxP-rad4-K151E-loxM3, chk1-HA 

CPW237 ade-704, leu1-32, ura4-D18, loxP-rad4-K151E-loxM3, chk1-HA 

CPW238 ade-704, leu1-32, ura4-D18, loxP-rad9∆::ura4-loxM3 (RMCE base strain) 

CPW239 ade-704, leu1-32, ura4-D18, loxP-rad9∆::ura4-loxM3 (RMCE base strain) 

CPW240 ade-704, leu1-32, ura4-D18, loxP-rad9∆::ura4-loxM3, chk1-HA 

CPW241 ade-704, leu1-32, ura4-D18, loxP-rad9∆::ura4-loxM3, chk1-HA 

CPW242 
ade-704, leu1-32, ura4-D18, loxP-rad9∆::ura4-loxM3, chk1-HA  loxP-rad4-Y599R-
loxM3 

CPW243 
ade-704, leu1-32, ura4-D18, loxP-rad9∆::ura4-loxM3, chk1-HA  loxP-rad4-Y599R-
loxM3 

CPW244 ade-704, leu1-32, ura4-D18, loxP-rad9wt-loxM3 

CPW245 ade-704, leu1-32, ura4-D18, loxP-rad9wt-loxM3 

CPW246 ade-704, leu1-32, ura4-D18, loxP-rad9wt-loxM3, chk1-HA 

CPW247 ade-704, leu1-32, ura4-D18, loxP-rad9wt-loxM3, chk1-HA 
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CPW248 ade-704, leu1-32, ura4-D18, loxP-rad9wt-loxM3, chk1-HA, loxP-rad4-Y599R-loxM3 

CPW249 ade-704, leu1-32, ura4-D18, loxP-rad9wt-loxM3, chk1-HA, loxP-rad4-Y599R-loxM3 

CPW250 ade-704, leu1-32, ura4-D18, loxP-rad9-Y271A-loxM3 

CPW251 ade-704, leu1-32, ura4-D18, loxP-rad9-Y271A-loxM3 

CPW252 ade-704, leu1-32, ura4-D18, loxP-rad9-Y271A-loxM3, chk1-HA 

CPW253 ade-704, leu1-32, ura4-D18, loxP-rad9-Y271A-loxM3, chk1-HA 

CPW254 
ade-704, leu1-32, ura4-D18, loxP-rad9-Y271A-loxM3, chk1-HA,  loxP-rad4-Y599R-
loxM3 

CPW255 
ade-704, leu1-32, ura4-D18, loxP-rad9-Y271A-loxM3, chk1-HA,  loxP-rad4-Y599R-
loxM3 

CPW258 ade-704, leu1-32, ura4-D18, loxP-rad9-W348A-loxM3, chk1-HA 

CPW259 ade-704, leu1-32, ura4-D18, loxP-rad9-W348A-loxM3, chk1-HA 

CPW260 
ade-704, leu1-32, ura4-D18, loxP-rad9-W348A-loxM3, chk1-HA,  loxP-rad4-Y599R-
loxM3 

CPW261 
ade-704, leu1-32, ura4-D18, loxP-rad9-W348A-loxM3, chk1-HA,  loxP-rad4-Y599R-
loxM3 

CPW262 ade-704, leu1-32, ura4-D18, loxP-rad9-Y271A W348A-loxM3  

CPW263 ade-704, leu1-32, ura4-D18, loxP-rad9-Y271A W348A-loxM3  

CPW264 ade-704, leu1-32, ura4-D18, loxP-rad9-Y271A W348A-loxM3, chk1-HA 

CPW265 ade-704, leu1-32, ura4-D18, loxP-rad9-Y271A W348A-loxM3, chk1-HA 

CPW266 
ade-704, leu1-32, ura4-D18, loxP-rad9-Y271A W348A-loxM3, chk1-HA,  loxP-rad4-
Y599R-loxM3 

CPW267 
ade-704, leu1-32, ura4-D18, loxP-rad9-Y271A W348A-loxM3, chk1-HA,  loxP-rad4-
Y599R-loxM3 

CPW270 ade-704, leu1-32, ura4-D18, loxP-rad9-W348A-loxM3 

CPW271 ade-704, leu1-32, ura4-D18, loxP-rad9-W348A-loxM3 

CPW272 ade-704, leu1-32, ura4-D18, loxP-rad9-Y271A W348A-loxM3, chk1-HA, cdc10-M17 

CPW273 ade-704, leu1-32, ura4-D18, loxP-rad9-Y271A W348A-loxM3, chk1-HA, cdc10-M17 

CPW274 
ade-704, leu1-32, ura4-D18, loxP-rad9-Y271A W348A-loxM3, chk1-HA, loxP-rad4-
Y599R-loxM3, cdc10-M17 

CPW275 
ade-704, leu1-32, ura4-D18, loxP-rad9-Y271A-W348A-loxM3, chk1-HA, loxP-rad4-
Y599R-loxM3, cdc10-M17 

CPW276 ade-704, leu1-32, ura4-D18, loxP-rad9-Y271A-W348A (2A)-loxM3, chk1∆:kanMX6 

CPW277 ade-704, leu1-32, ura4-D18, loxP-rad9-Y271A-W348A (2A)-loxM3, chk1∆:kanMX6 

CPW280 ade-704, leu1-32, ura4-D18, rad11-GFP::kanMX6 

CPW281 ade-704, leu1-32, ura4-D18, rad11-GFP::kanMX6 

CPW282 
ade-704, leu1-32, ura4-D18, rad9∆::kanMX6, ura4::lacO::natMX6, chk1-HA 
(remade) 

CPW283 
ade-704, leu1-32, ura4-D18, rad9∆::kanMX6, ura4::lacO::natMX6, chk1-HA 
(remade) 

CPW284 ade-704, leu1-32, ura4-D18, exo1∆::ura4, rad11-GFP::kanMX6 

CPW285 ade-704, leu1-32, ura4-D18, exo1∆::ura4, rad11-GFP::kanMX6 

CPW288 ade-704, leu1-32, ura4-D18, loxP-crb2∆::ura4-loxM3 (RMCE base strain) 

CPW289 ade-704, leu1-32, ura4-D18, loxP-crb2∆::ura4-loxM3 (RMCE base strain) 

CPW291 ade-704, leu1-32, ura4-D18, loxP-crb2wt-loxM3 

CPW292 ade-704, leu1-32, ura4-D18, loxP-crb2wt-loxM3 

CPW293 ade-704, leu1-32, ura4-D18, loxP-crb2-T187A-loxM3 

CPW294 ade-704, leu1-32, ura4-D18, loxP-crb2-T187A-loxM3 
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CPW295 ade-704, leu1-32, ura4-D18, loxP-crb2-T215A-loxM3 

CPW296 ade-704, leu1-32, ura4-D18, loxP-crb2-T215A-loxM3 

CPW297 ade-704, leu1-32, ura4-D18, loxP-crb2-T235A-loxM3 

CPW298 ade-704, leu1-32, ura4-D18, loxP-crb2-T235A-loxM3 

CPW299 ade-704, leu1-32, ura4-D18, loxP-crb2-T215A-T235A-loxM3 

CPW300 ade-704, leu1-32, ura4-D18, loxP-crb2-T215A-T235A-loxM3 

CPW301 ade-704, leu1-32, ura4-D18, loxP-crb2-V188P-loxM3 

CPW302 ade-704, leu1-32, ura4-D18, loxP-crb2-V188P-loxM3 

CPW303 ade-704, leu1-32, ura4-D18, loxP-crb2-T215A-T235A-V188P-loxM3 

CPW304 ade-704, leu1-32, ura4-D18, loxP-crb2-T215A-T235A-V188P-loxM3 

CPW305 ade-704, leu1-32, ura4-D18, loxP-crb2-V184K-loxM3 

CPW306 ade-704, leu1-32, ura4-D18, loxP-crb2-V184K-loxM3 

CPW307 ade-704, leu1-32, ura4-D18, loxP-crb2-V212K-loxM3 

CPW308 ade-704, leu1-32, ura4-D18, loxP-crb2-V212K-loxM3 

CPW309 ade-704, leu1-32, ura4-D18, loxP-crb2-V232K-loxM3 

CPW310 ade-704, leu1-32, ura4-D18, loxP-crb2-V232K-loxM3 

CPW311 ade-704, leu1-32, ura4-D18, loxP-crb2-T187A-loxM3, chk1-HA 

CPW312 ade-704, leu1-32, ura4-D18, loxP-crb2-T235A-loxM3, chk1-HA 

CPW313 ade-704, leu1-32, ura4-D18, loxP-crb2-T215A-T235A-loxM3, chk1-HA 

CPW314 ade-704, leu1-32, ura4-D18, loxP-crb2-V188P-loxM3, chk1-HA 

CPW315 ade-704, leu1-32, ura4-D18, loxP-crb2-V188P-loxM3, chk1-HA 

CPW316 ade-704, leu1-32, ura4-D18, loxP-crb2-V184K-loxM3, chk1-HA 

CPW317 ade-704, leu1-32, ura4-D18, loxP-crb2-V184K-loxM3, chk1-HA 

CPW318 ade-704, leu1-32, ura4-D18, loxP-crb2-V212K-loxM3, chk1-HA 

CPW319 ade-704, leu1-32, ura4-D18, loxP-crb2-V232K-loxM3, chk1-HA 

CPW320 ade-704, leu1-32, ura4-D18, loxP-crb2-V232K-loxM3, chk1-HA 

CPW321 ade-704, leu1-32, ura4-D18, spbc713.09∆::kanMX6, chk1-HA 

CPW322 ade-704, leu1-32, ura4-D18, spbc713.09∆::kanMX6, chk1-HA 

CPW323 ade-704, leu1-32, ura4-D18, slx4∆::kanMX6, chk1-HA 

CPW324 ade-704, leu1-32, ura4-D18, slx4∆::kanMX6, chk1-HA 

CPW325 ade-?, leu1-32, ura4-D18, spbc713.09∆::kanMX6, mrc1∆::ura4 

CPW326 ade-?, leu1-32, ura4-D18, spbc713.09∆::kanMX6, mrc1∆::ura4 

CPW327 ade-?, leu1-32, ura4-D18, slx4∆::kanMX6, mrc1∆::ura4 

CPW328  ade-?, leu1-32, ura4-D18, slx4∆::kanMX6, mrc1∆::ura4 

CPW329  ade-?, leu1-32, ura4-D18, slx1∆::kanMX6, mrc1∆::ura4 

CPW330  ade-?, leu1-32, ura4-D18, slx1∆::kanMX6, mrc1∆::ura4 

CPW331 ade-704, leu1-32, ura4-D18, loxP-crb2-T215A-loxM3, chk1-HA 

CPW332 ade-704, leu1-32, ura4-D18, loxP-crb2-T215A-loxM3, chk1-HA 

CPW333 ade-704, leu1-32, ura4-D18, loxP-crb2-T215A-T235A-V188P-loxM3, chk1-HA 

CPW334 ade-704, leu1-32, ura4-D18, loxP-crb2-T215A-T235A-V188P-loxM3, chk1-HA 

CPW335 his2, leu-1, ura-D18, cdc13-HA::ura4 

CPW337 ade-704, leu1-32, ura4-D18, loxP-crb2wt-loxM3, chk1-HA 

CPW338 ade-704, leu1-32, ura4-D18, loxP-crb2wt-loxM3, chk1-HA 

CPW359 ade-704, leu1-32, ura4-D18, loxP-crb2-V212K-V232K-loxM3 

CPW360 ade-704, leu1-32, ura4-D18, loxP-crb2-V212K-V232K-loxM3 
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CPW363 ade-704, leu1-32, ura4-D18, loxP-crb2-V212K-V232K-loxM3, chk1-HA 

CPW364 ade-704, leu1-32, ura4-D18, spbc713.09∆::kanMX6, mrc1∆::ura4, chk1-HA 

CPW365 ade-704, leu1-32, ura4-D18, spbc713.09∆::kanMX6, mrc1∆::ura4, chk1-HA 

CPW366 ade-704, leu1-32, ura4-D18, slx4∆::kanMX6, mrc1∆::ura4, chk1-HA 

CPW367 ade-704, leu1-32, ura4-D18, slx4∆::kanMX6, mrc1∆::ura4, chk1-HA 

CPW369 ade-704, leu1-32, ura4-D18, mrc1-T32 

CPW370 ade-704, leu1-32, ura4-D18, mrc1-T32 

CPW371 ade-704, leu1-32, ura4-D18, mrc1-T32 

AMC501 ade-704, leu1-32, ura4-D18 

AMC502 ade-704, leu1-32, ura4-D18 

SJ48 ade-704, leu1-32, ura4-D18, chk1-HA 

SJ56 ade-704, leu1-32, ura4-D18, chk1-HA 

SJ62 loxP-rad4-Y599R-loxM3, chk1:HA, ade6-704, ura4D-18, leu1-32 

SJ63 loxP-rad4-Y599R-loxM3, chk1:HA, ade6-704, ura4D-18, leu1-32 

SJ64 loxP-rad4wt-ura4-loxM3, chk1:HA, ade6-704, leu1-32, ura4-D18 

SJ65 loxP-rad4wt-ura4-loxM3, chk1:HA, ade6-704, leu1-32, ura4-D18 

SJ195 ura4::lacO::natMX6, chk1-HA, ura4-D18, leu1-32, ade6-704 

SJ196 ura4::lacO::natMX6, chk1-HA, ura4-D18, leu1-32, ade6-704 

SJ254 loxP-rad4-Y599R-loxM3, chk1:HA, ura4::lacO::natMX6, ura4-D18, leu1-32 

SJ330 rad17Δ::ura4, ura4::lacO::natMX6, chk1:HA, leu1-32 

SJ331 rad17Δ::ura4, ura4::lacO::natMX6, chk1:HA, leu1-32 

SJ332 crb2Δ::kanMX6, ura4::lacO::natMX6, chk1:HA, leu1-32, ura4-D18  

SJ333 crb2Δ::kanMX6, ura4::lacO::natMX6, chk1:HA, leu1-32, ura4-D18  

EST2 rad3∆::kanMX6, ura4-D18, leu1-32, ade6-704 

KAF1175 rhp18∆::kanMX6, ura4-D18, leu1-32, ade6-704 

EST12 chk1∆::kanMX6, ura4-D18, leu1-32, ade6-704 

JMM1405 mrc1∆::ura4, ura4-D18, leu1-32, ade6-704  

IM279 spbc713.09∆, ura4-D18, leu1-32, ade6-704 

IM282 slx4∆::kanMX6, ura4-D18, leu1-32, ade6-704 

Bioneer slx1∆::kanMX6, ade6-M210, ura4-D18, leu1-32 

Bioneer slx4∆::kanMX6, ade6-M210, ura4-D18, leu1-32 

Bioneer spbc713.09∆::kanMX6, ade6-M210, ura4-D18, leu1-32 

Table 2-5. List of strains used in this study. Strains from the following peoples collections 
were used in this study. CPW; Christoper Wardlaw. AMC; Antony Carr. SJ; Su-Jiun. KAF; 
Kanji Furuya. EST; Ellen Tsang. JMM; Jo Murray. IM; Izumi Miyabe. Bioneer; Bioneer 
knockout Library. ade? Refers to the strain either being ade-704 or ade-M210  
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Table 2-6 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.6, List of plasmids used in this study. Including information on how they were 
constructed (right hand columns). pCPW are from my plasmid collection, pAW plasmids 
from Adam Watson, pSJ from Su-Jiun Lin and pRep from the main Carr laboratory 
collection.  

 

 

 

 

 

 

 

Plasmid 
Number Gene Description 

Additional 
Information 

pCPW 1 rad9 pAW8+rad9 
Cloned using Spe1/ 
Sph1 sites 

pCPW 2 rad4 pAW8+rad4-K56E Mutated pSJ25 

pCPW 3 rad4 pAW8+rad4-K56A Mutated pSJ25 

pCPW 4 rad4 pAW8+rad4-T15V Mutated pSJ25  

pCPW 5 rad4 pAW8+rad4-R22E Mutated pSJ25  

pCPW 6 rad9 pAW8+rad9-Y271A Mutated  pCPW1 

pCPW 7 rad9 pAW8+rad9-W348A Mutated  pCPW1 

pCPW 8 rad9 pAW8+ rad9-Y271A,W348A Mutated pCPW1 

pCPW 9 rad4 pAW8+rad4-T15V, K56E Mutated pSJ25  

pCPW 10 rad4 pAW8+rad4-T110V Mutated pSJ25 

pCPW 11 rad4 pAW8+rad4-R117E Mutated pSJ25 

pCPW 12 rad4 pAW8+rad4-K151A Mutated pSJ25  

pCPW 13 rad4 pAW8+rad4-K151E Mutated pSJ25  

pCPW 14 crb2 pAW8+crb2  
Cloned using Spe1 
Sph1 sites 

pCPW 15 crb2 pAW8+crb2-T187A  Mutated pCPW14 

pCPW 16 crb2 pAW8+crb2-T215A  Mutated pCPW14 

pCPW 17 crb2 pAW8+crb2-T235A  Mutated pCPW14 

pCPW 18 crb2 pAW8+crb2-T215A-T235A  Mutated pCPW14 

pCPW 23 crb2 pAW8+crb2-V188P Mutated pCPW14 

pCPW 24 crb2 pAW8+crb2-T215A-T235A-V188P Mutated pCPW14 

pAW1 N/A For rad9 and crb2 base strain construction   

pAW8 N/A Cre expression plasmid containing lox sites   

pRep41 N/A nmt41 thiamine repressible promoter plasmid leu+ 

pRep42 N/A nmt41 thiamine repressible promoter plasmid ura+ 

pSJ25 rad4  pAW8+rad4 
Cloned using Sac1 
Spe1 sites 

pSJ52 rad3 pRep41+rad3-GFP/LN   

pSJ58 rad4 pRep42+rad4-GFP/LN   

pSJ59 rad9 pRep42+rad9-GFP/LN   
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Table 2-7 

 

Number gene Name Use Sequence 

1 crb2 crb2 F-650 loxP check CAACCATAGTACTAACGAGGC 

2 crb2 crb2 R+128 loxP check ATCATTACTCCTAGGAGGGG 

3 crb2 crb2 F+1635 loxM3 check CATGAGGATGCCTATGACCG 

4 crb2 Crb2+2950 loxM3 check GAAACCTGCTACGCAAGCC 

7 chk1 chk1-F chk1-HA check AATCCATGTGAAAGAACGTTGTCAG 

8 chk1 chk1-R chk1-HA check GGGAATAGGATTATTAACGCTTTGT 

14 rad9 
rad9-loxP-
reverse 

loxP check TCAACAGGACGGAATCCGGC 

15 rad9 
rad9-loxP- 
Forward 

loxP check TGCCGGATCCCCGGGATTAA 

18 rad9 
rad9-loxM-
reverse 

loxM check GATGAGGGGAATTCGAGCTCGTTTAAAC 

19 rad9 
rad9-loxM-
forward 

loxM check GCAACAACTCATTGACTGCTGTAGC 

26 rad9 rad9-S6 
cloning rad9 
(Caspari) 

 CTCGTCCAACTAGTGTAACGTATCGTATGATG
AGGG 

27 rad9 rad9-S5.1 
cloning rad9 
(Caspari) 

CGATAGTGGCATGCTAGGCATGCTAGAAAACA
CCACATTATAGATTTACC 

28 rad4 
rad4-
upstream- 2 

loxP check TCCATTTGTCAATCTTCGCAC 

29 rad4 
rad4-lox-
reverse-2 

loxP check TGATCTATAGGCAGCACCAAG 

34 rad9 Y271A-F Mutagenesis GCTCGATTTGTGCAGCTTACGGTGTCCCAG 

35 rad9 Y271A-R Mutagenesis CTGGGACACCGTAAGCTGCACAAATCGAGC 

36 rad9 W348A-F Mutagenesis TGGATCTATTGGAGCGCAAACTGATCAAAGT 

37 rad9 W348A-R Mutagenesis ACTTTGATCAGTTTGCGCTCCAATAGATCCA 

38 rad9 W348-F-2 Mutagenesis CTGGATCTATTGGAGCGCAAACTGATCAAAGT 

39 rad9 W348-R-2 Mutagenesis ACTTTGATCAGTTTGCGCTCCAATAGATCCAG 

55 rad4 K56A-F 
BRCT1 
mutagenesis 

GATACTCCAGCATACAAGGTATGTCGTAAAATC
TTACA 

56 rad4 K56A-R 
BRCT1 
mutagenesis 

TACCTTGTATGCTGGAGTATCAAAATCGCCGGC
TATAAG 

57 rad4 K56E-R 
BRCT1 
mutagenesis 

ATACCTTGTATTCTGGAGTATCAAAATCGCCGG
CTATAAG 

58 rad4 K56E-F 
BRCT1 
mutagenesis 

TGATACTCCAGAATACAAGGTATGTCGTAAAAT
CTTACA 

61 rad4 
T15V-full-
overlap-F 

BRCT1 
mutagenesis 

CTTCGTGATATGTTGTGTCAGTATCGATTTAAA
GCAA 

62 rad4 
T15V-full-
overlap-R 

BRCT1 
mutagenesis 

TTGCTTTAAATCGATACTGACACAACATATCAC
GAAG 

63 rad4 
R22E-
Fulloverlap-F 

BRCT1 
mutagenesis 

ATCGATTTAAAGCAAAGAGTAAGATTTTTGCAC
GAC 

64 rad4 
R22E-full-
overlap-R 

BRCT1 
mutagenesis 

GTCGTGCAAAAATCTTACTCTTTGCTTTAAATC
GAT 

65 rad4 T110V-F 
BRCT2 
mutagenesis 

GTTTGTCTTGTCAACATTGGCCAACCAGAGAGA
TCT 

66 rad4 T110V-R 
BRCT2 
mutagenesis 

AGATCTCTCTGGTTGGCCAATGTTGACAAGACA
AAC 

67 rad4 R117E-F 
BRCT2 
mutagenesis 

CAACATTGGCCAACCAGAGGAATCTCGTATTG
AAAATTAT 

68 rad4 R117E-R 
BRCT2 
mutagenesis 

ATAATTTTCAATACGAGATTCCTCTGGTTGGCC
AATGTTG 
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69 rad4 K151A-F 
BRCT2 
mutagenesis 

CACCTCATCGGGTCGCGCATATGAATATGCATT
A 

70 rad4 K151A-R 
BRCT2 
mutagenesis 

TAATGCATATTCATATGCGCGACCCGATGAGGT
G 

71 rad4 K151E-F 
BRCT2 
mutagenesis 

CACCTCATCGGGTCGCGAATATGAATATGCATT
A 

72 rad4 K151E-R 
BRCT2 
mutagenesis 

TAATGCATATTCATATTCGCGACCCGATGAGGT
G 

73 rad9 rad9-S1-F  
Base strain 
construction 
(Caspari) 

CGATTGATGTTGGCCATTACACTTTCGTACAAA
TTTCGGCGCGCGTGTCTATACTAATATAAGTGC
GTTAAAGCAGGTGCCGGATCCCCGGGTTAATT
AA 

74 rad9 rad9-S1-R  
Base strain 
construction 
(Caspari) 

GAATTTAATTAATTGGGTTACATTATTCACTATC
TTATTGATTTATTAGAACTACTATGTAACGTATC
GTATGATGAGGGGAATTCGAGCTCGTTTAAAC 

83 crb2 crb2-T187A-F Mutagenesis 
AAACCGTTGGAGAAGTCCTTGTACCTGAAGCC
GTAGCT 

84 crb2 crb2-T187A-R Mutagenesis 
ATCGTAAAACTTTGTCCTATGTTGAGCTACGGC
TTCAGGT 

85 crb2 crb2-T215A-F Mutagenesis 
AAATGAGACAGAAAGCGGTCAAGTAGAGACT
GCACCTACT 

86 crb2 crb2-T215A-R Mutagenesis 
TAGAGAAGTCGCCAGTCGAGTAGGTGTAGTCT
CT 

87 crb2 crb2-T235A-F Mutagenesis TTCTTTATGGTCGAGTAGAGTCCGCTCCTCCTG 

88 crb2 crb2-T235A-R Mutagenesis 
TTCGGATGTCTCTGGTAAAAAAGCAGGAGGAG
CGGACTC 

91 crb2 crb2-clone-F 
clone crb2 into 
pAW8 

AAAAGCATGCTGTAGTTTGTACATCAGGTCA 

92 crb2 crb2-Clone-R 
clone crb2 into 
pAW8 

AAAAACTAGTACTAAGTAGAAATATCAGACTG
ACTAATAAGACATTCG 

95 crb2 crb2-V188P-F Mutagenesis 
ACCGTTGGAGAAGTCCTTGTACCTGAAACCCCA
GCTCA 

96 crb2 crb2-V188P-R Mutagenesis 
TGTAATCGTAAAACTTTGTCCTATGTTGAGCTG
GGGTTTCAG 

97 crb2 
crb2-lox-Ura-
loxF 

Make base strain 

TTTAAAATTACTTCTTCAACATTACTGATTCTAA
CAACATAAATCTCCTATCG 
AACGTATTAATAAAAGTGGAAACATGCCGGAT
CCCCGGGTTAATTAA 

98 crb2 
crb2-lox-Ura-
loxR 

Make base strain 

CTAAAATTAATAAAAAGCTAAATTAATGAGGT
GAAACTCAGGGGGAGTTAGTAAAAATAACTAT
ATCAAAAAACCAAAGAATTCGAGCTCGTTTAAA
C 

108 crb2 
crb2-
homology-F 

Increase 
homology of 
fragment made 
by 97 and 98 

ATTAAACAAGCAAAATCTATTTTCTATGATTGTT
TCAAAAAGTCAAGATGAAAAGTTCAAAACTCA
AATTTAAAATTACTTCTTCAACATTACTGATTCT 

109 crb2 
crb2-homolgy-
R 

Increase 
homology of 
fragment made 
by 97 and 98 

TTTTTGTTTAATATTGAAATTGACACTTTTCGTC
AGTATTGCAAATAAATTAATAAACAACAAATAT
CTAAAATTAATAAAAAGCTAAATTAATGAGAGT 

114 mrc1 mrc1-T32-Fus-F 
Create T32A 
mutation by 
fusion PCR 

TGATCAAGAGGATATTTTAGATGCGCCTCGCAC
TAGGGTGAGGA 

115 mrc1 
mrc1-T32-Fus-
R 

Create T32A 
mutation by 
fusion PCR 

TCCTCACCCTAGTGCGAGGCGCATCTAAAATAT
CCTCTTGATCA 
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116 mrc1 Mrc1-408-up-F 
Create T32A 
mutation by 
fusion PCR 

CAAATTGCTGTATGCTGCTCGA 

117 mrc1 
mrc1-345-
down-R 

Create T32A 
mutation by 
fusion PCR 

TAACTTTACAGAGCGATATTGATGATAG 

Table 2-7. List of Oligonucleotides used in this study. (Caspari refers to oligos obtained from 
Thomas Caspari’s Laboratory) 
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Chapter 3 

The Role of the Rad4 AAD in the 
S. pombe DNA Damage 

Checkpoint 
 

3.1 Introduction 

As described in the “1.6.4 TopBP1 dependent ATR activation” section TopBP1 

(the Rad4 homolog) in higher eukaryotes has been shown able to directly activate ATRs 

kinase activity and is required for checkpoint activation. However, the pathway in 

which this TopBP1 AAD operates is not fully understood (Kumagai et al., 2006, 

Delacroix et al., 2007, Mordes et al., 2008a). In budding yeast, at the time this study 

was initiated, the C-terminus of Dpb11TopBP1 had been shown to be involved in the 

activation of the DNA damage checkpoint, but no AAD had been identified (Mordes et 

al., 2008b, Navadgi-Patil and Burgers, 2008). It was later seen that Dpb11 did indeed 

contain an AAD domain. However, this had a relatively minor role in checkpoint 

(Mec1ATR) activation and acts in a semi-redundant pathway with the Ddc1Rad9 AAD, 

after damage in G2 phase of the cell cycle (Navadgi-Patil and Burgers, 2009, Navadgi-

Patil et al., 2011, Pfander and Diffley, 2011).  

To further understand the role the TopBP1 AAD plays in the activation of the DNA 

damage checkpoint, and to fully characterise the pathways in which they operate, a 

comprehensive study to identify and characterise the S. pombe Rad4TopBP1 AAD and its 

role in checkpoint activation was initiated. The preliminary experiments in this study 

were carried out by a previous PhD student and a post doctorate researcher in the Carr 

laboratory: Su-Jiun Lin and Valerie Garcia, respectively. Initially the data obtained by 

Su-Jiun Lin is summarised, before going on to describe the findings within this project. 
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3.2 Summary of Previous Data from the Carr Laboratory 

It was previously shown, by Furuya et al. (2004), that the interaction between 

Rad4TopBP1 and Rad3ATR increases after HU-induced replication fork stalling or DNA 

damage and that this interaction was most likely required for the formation of an 

active checkpoint complex (Furuya et al., 2004). However, no obvious AAD domain had 

been identified and the nature of this interaction was not known. A sequence 

alignment of the Xenopus and human TopBP1 AAD with the yeast homologs, supplied 

by Charly Chahwan (Carr lab), identified a weakly conserved region within the 

unstructured C-terminus of Rad4. This aligned with the core of the TopBP1 AAD. The 

key tryptophan, W1138 in xTopBP1 and W1145 in hTopbp1 AAD, was conserved in all 

tested yeast homologs as another aromatic residue tyrosine (Figure 3-1A, B). This 

suggested that this domain within Rad4 could be a putative AAD and that Y599 maybe 

the corresponding residue to xW1138 and hW1145. It is therefore most likely the key 

amino acid for any Rad3 activating activity Rad4 may possess. 

To test this hypothesis, first it was demonstrated, by GST pull down assays, that the C-

terminal region of Rad4 containing the AAD could pull down Rad3 from whole cell 

extracts and that this was dependent on the Rad4 AAD, and more specifically, Y599. 

This suggested that the putative Rad4 AAD can bind directly to Rad3. Su-Jiun Lin 

therefore went on to make rad4-Y599R and rad4-AAD (deletion of the AAD domain) 

mutants at the rad4 endogenous locus using the Recombination Mediated Cassette 

Exchange method (Materials and Methods; (Watson et al., 2008). The rad4 mutants 

showed no growth defects, implying the mutations did not affect Rad4’s role in the 

initiation of DNA replication. However, they did show sensitivity to DNA damaging 

agents, as seen by spot test analysis. Both the rad4 mutants showed the same 

sensitivities to UV, 4NQO (a UV mimetic), HU and MMS (a DNA alkylating agent). This is 

consistent with the Rad4 AAD having some role in within the checkpoint. Interestingly 

the Rad4 AAD mutants did not display any significant sensitivity to IR.  

  



A 

B 

Figure 3-1. Conservation of the TopBP1 AAD in yeasts 
A. Alignment of the higher eukaryote TopBP1 AAD with the fungal 
homologs. The crucial tryptophan is replaced with a tyrosine in all the 
fungal homologs (marked with an *) B. Cartoon representation of the 
Rad4 protein showing the position of the potential AAD in the 
unstructured extreme C-terminus, distinct from the BRCT domains. 
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rad4-Y599R showed a mild reduction in cell cycle delay after UV radiation in lactose 

gradient synchronised cells, assessed by septation index and compared to wild type 

(rad4+), suggesting a checkpoint defect. This was further confirmed by a reduction in 

Cds1 kinase activity and a reduction in Chk1 phosphorylation after UV. Contrary to the 

checkpoint defect seen after UV damage, no checkpoint defect was seen after IR 

damage either by septation index or Chk1 phosphorylation. This suggested that the 

Rad4 AAD was required in S-phase as UV, MMS and 4NQO cause most of their 

checkpoint activating effect during S-phase. Conversely, IR mainly causes DSB’s, as 

asynchronous S. pombe cells are mostly G2 IR elicits most of its damage and response 

to that damage during G2 phase. To test this theory further, Su-Jiun Lin synchronised 

cells in G2 using a cdc25-22 temperature sensitive mutant, released them into a 

synchronous cell cycle and then treated cells with IR when they reached S-phase.  

Preliminary results showed the rad4-Y599R cells now exhibited a reduction in survival 

and a mild reduction in Chk1 and H2A phosphorylation after IR. Taken together, this 

data suggested that the putative Rad4 AAD has a role in Rad3 activation during S-

phase. 

The aim of the work in this chapter is to confirm the results previously shown by Su-

Jiun Lin and to further understand the mechanism, pathway and cell cycle phase in 

which the Rad4 AAD acts. 

 

3.3 The Rad4 AAD Domain is Most Important for Checkpoint Activation 

in S-phase. 

To confirm that the Rad4 AAD is required after S-phase damage a spot test in 

rad4+ (WT) and rad4-Y599R cells were subjected to IR and UV was performed (Figure 

3-2A). Consistent with the previous data, the rad4-Y599R cells showed sensitivity to 

100 J/m2 of UV, but did not show any sensitivity to 50 Gy ionising radiation. To confirm 

that rad4-Y599R is sensitive to S-phase damage, a spot test in the presence of cisplatin, 

(a DNA cross linking agent known to cause DNA damage that is mainly repaired during 

replication) was performed (Figure 3-2B).  



A 

B 

C 

Figure 3-2 rad4-Y599R is sensitive to S-phase damage and has no repair 
defect 
A.  Spot test analysis of rad4+ (wt) and rad4-Y599R (Y599R) cultures 
exposed to UV or IR damage. 10-fold serial dilutions of 1x107 cells/ml 
were either exposed to 50 Gy IR and spotted onto YEA plates, or spotted 
onto YEA plates and exposed to 100 J/m2 UV. The plates were incubated at 
30˚C for 3 days. B. spot test analysis of rad4+ (wt), rad3Δ and rad4-Y599R 
(Y599R). 10-fold serial dilutions of 1x107 cells/ml were spotted onto YEA 
plates, containing the indicated concentrations of cisplatin and incubated 
at 30˚C for 3 days. C. Average of two experiments in which Rad52-GFP foci 
were visualised before and after 40 Gy IR in rad4+ (WT) and rad4-Y599R 
cells growing exponentially in YE 
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The rad4-Y599R cells showed sensitivity to 100µM cisplatin, but this sensitivity was not 

as severe as a rad3∆ control, which was completely dead at 50µM. Again this result is 

consistent with the Rad4 AAD domain most likely acting in Rad3 activation after S-

phase damage, but not being essential for Rad3 activation. As described in Chapter 1, 

Rad4 has been linked to having a role in DNA repair, specifically homologous 

recombination (Ogiwara et al., 2006, Germann et al., 2011, Hicks et al., 2011). To 

ensure the rad4-Y599R mutant does not have a defect in HR, wild type and rad4-Y599R 

cells harbouring GFP tagged Rad22 (a protein required for the strand invasion step of 

HR) were subjected to 40 Gy IR. The repair kinetics were followed by % cells with GFP 

foci at time intervals after damage. It can be seen from Figure 3-2C that the rad4-

Y599R strain showed almost identical repair kinetics to wild type cells. It is therefore 

concluded that the Rad4 AAD domain is not important for DNA repair after ionising 

radiation. 

When undertaking cell synchronisation experiments it is important to ensure the 

results obtained are not an artefact of the synchronisation process. Therefore, to verify 

that the rad4-AAD mutants are indeed partially defective in Rad3 activation in S-phase, 

cell cycle experiments using alternative synchronisation methods to cdc25-22 arrest, 

were carried out. Cdc10 is commonly known as the S. pombe START gene and is part of 

the MBF transcription factor complex. This is required for the transcription of a 

number of genes required for cells to enter S-phase and undergo DNA replication (Aves 

et al., 1985, Simanis and Nurse, 1989). A cdc10-M17 temperature sensitive mutant 

causes cells to block at the G1-S boundary at the non-permissive temperature 36˚C, 

therefore allowing cells to be synchronously released into S-phase when shifted back 

to the permissive temperature of 25˚C (Jeong et al., 2001). rad4+ and rad4-Y599R were 

therefore crossed to a cdc10-M17 strain in order to allow G1-S synchronisation and 

assessment of Rad3 activation after damage in S-phase.  

rad4+ cdc10-M17 and rad4-Y599R cdc10-M17 cells were synchronised at 36˚C for 3.5 

hours, exposed to 80 Gy IR and released into S-phase. Chk1-HA phosphorylation was 

then assayed via western blot, as a measure of Rad3 activation. Importantly, both the 

rad4+ and Rad4 mutant cells arrested and released into S-phase with identical kinetics 

according to FACS analysis (Figure 3-3A).  
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Figure 3-3 rad4-Y599R shows a defect in Chk1-HA and H2A 
phosphorylation after IR in S-phase  
A. rad4+ (wt) and rad4-Y599R (Y599R) cells were synchronised at G1/S using 
a cdc10-M17 arrest of 3.5 hours at 36˚C. Cells were irradiated with 80Gy IR 
and immediately released into S-phase at 25˚C. Top panel; Chk1-HA 
phosphorylation was monitored by SDS PAGE using α-HA antibody. Bottom 
panel; DNA content of the cells in the top panel was monitored by FACs 
analysis, cells progress from 1C to2C DNA content. B. As A, but cells were 
irradiated with 200Gy and H2A phosphorylation was monitored by SDS PAGE 
using α-pS129 (Top panel), α-Tubulin was used as a loading control (Middle 
panel). Bottom panel shows the DNA content of the cells in the experiments 
shown in the top and middle panels. Cells progress from a 1C to 2C DNA 
content. 
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This can be seen by the majority of cells displaying a 1C peak at T0. A 1C peak occurs 

due to the cdc10-M17 mutation preventing DNA replication but not cell cycle 

progression per se, thus uncoupling DNA replication from septation. In this instance 

septation occurs without DNA replication, giving a 1C DNA content. When cells are 

released, DNA replication occurs and the FACs profile shifts to the right, giving a 2C 

peak upon completion of replication (Figure 3-3). The asynchronous cells, although 

containing a 2C DNA content are not as far right as the synchronised 2C cells due to 

drift. Drift occurs as the synchronisation process leads to cell elongation (growth) and 

therefore an increase in mitochondria and its DNA. This DNA is indistinguishable from 

genomic DNA, thus shifting the Facs peak to the right (Figure 3-3). A reduction in Chk1 

phosphorylation can be seen in the rad4-Y599R strain at the 30, 60 and possibly 90 

minute time points after IR and release, compared to rad4+. However, by the 120 

minute time point when most cells are in G2 phase, as seen by FACS analysis, the 

defect in Chk1-HA phosphorylation can no longer be seen in the rad4-Y599R. As a 

control, no apparent reduction in Chk1-HA phosphorylation can be seen in the rad4 

mutant after IR in asynchronous cells. This supports the notion that the Rad4 AAD is 

most important in S-phase (Figure 3-3A). To confirm this result, a similar experiment 

was carried out, however in this instance cells were exposed to 200Gy IR and Rad3 

kinase activity was assessed by phosphorylation of histone H2A. Consistent with the 

Chk1-HA phosphorylation data in Figure 3-3A, a defect in H2A phosphorylation can be 

seen in the rad4-Y599R mutant at the 30, 60 and 90 minute time points after IR and 

release. Again no defect in H2A phosphorylation can be seen after IR in asynchronous 

cells (Figure 3-3B).  

To assess whether this reduction in Chk1-HA phosphorylation after S-phase damage in 

cdc10-M17 synchronised cells also leads to a reduction in cell viability, a survival assay 

was performed. rad4+ and rad4-Y599R cells were once again synchronised at the G1-S 

boundary (as seen by FACS), the cultures were then split and shifted to permissive 

temperature and exposed to 50 Gy at 0 minutes after release (early S-phase as seen by 

FACS), 40 minutes after release (mid S-phase) or 100 minutes after release (late S/G2 

phase). Cells were plated onto YEA plates and incubated at 25˚C for 3 days. The 

relative survival of rad4-Y599R compared to rad4+ was then calculated. A reduction in 
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relative cell survival of ~25% can be seen in the rad4-Y599R cells after IR at T0, this is 

further increased to a ~50% reduction in survival after IR at T40. However, only a very 

minor reduction in survival can be seen after IR at T100, when the majority of cells are 

now in G2 phase (Figure 3-4A). This data is consistent with the previous data from the 

Carr laboratory which employed cdc25-22 synchronisation and confirms the role of the 

Rad4 AAD domain in the S-phase damage checkpoint.  

To further ensure there is no role for the Rad4 AAD domain in the G2 checkpoint an 

elutriation experiment was under taken to synchronise cells in G2. Elutriation is the 

gold standard in the synchronisation of S. pombe cells, as it synchronises cells based on 

size, rather than requiring a gene mutation and temperature shift. G2 cells in S. pombe 

are a smaller particle than S-phase cells, which remain as two sister cells in S-phase 

joined together. Therefore, a fraction of a population containing only small cells can be 

extracted from the elutriator giving a G2 synchronised population. Elutriation 

synchronised rad4+ and rad4-Y599R cells were followed by septation index for one cell 

cycle until they reached the following G2 (the point at which the septation index 

reaches its lowest point). This allows cells to recover from any stress they experienced 

during the elutriation process (Figure 3-5 A B). Cells were then exposed to either UV or 

IR damage and samples were taken for western blot.  From Figure 3-5C it can be seen 

that the rad4-Y599R strain shows little or no defect in Chk1-HA or H2A 

phosphorylation after 100Gy or 250Gy IR in G2 (Figure 3-5C). Confirming, beyond 

doubt, that the Rad4 AAD domain is not required for Rad3 activation in G2 phase.  

It can also be seen from Figure 3-5C that both 50 and 100 J/m2 of UV causes no 

checkpoint activation in either WT or rad4-Y599R (Figure 3-5C). Thus confirming that 

UV damage causes most of its checkpoint activation in S-phase, validating the results in 

Figures 3-2A and previous work from the laboratory which shows rad4-Y599R is 

sensitive to UV but not IR damage. It must be noted from Figure 3-5B that the rad4-

Y599R cells took 140 minutes to reach the next G2 phase whereas WT took 120 

minutes. Taking into account the previous data from Su-Jiun Lin and the data in Figures 

3-2AB, 3-3AB and Figure3-4A this is almost certainly due to a slight difference in the 

fraction of cells taken off of the elutriator and not due to a cell cycle progression 

defect (Figure 3-5B). 
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Figure 3-4. rad4-Y599R cells show reduced survival after IR in S-phase 
cdc10-M17 rad4+ (WT) and cdc10-M17 rad4-Y599R cells were 
synchronised at the G1/S boundary and exposed to 50 Gy IR either 0 
minutes (G1/S), 40 minute (S-phase) or 100 minutes (G2) after release. 
Top panel; schematic of the experimental procedure. Arrows represent 
timing of IR. Middle panel; Relative % survival of rad4-Y599R cells, 
calculated by % survival of cdc10-M17 rad4+ (WT) divided by % survival 
of cdc10-M17 rad4-Y599R. % survival was measure by colony formation. 
Error bars: standard deviation (n=3). Bottom Panel FACs profile of cells 
used for the survival assay in the middle panel (minutes after release). 
Cells progress from a 1C to 2C DNA content 
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Elutriation= G2 cells IR/UV in G2
1 cell cycle

Figure 3-5. rad4-Y599R cells show no defect in Rad3 activation after damage 
in G2 phase 
A. Diagram depicting experimental set up. Cells were synchronised in G2 
using elutriation and allowed to recover for one cell cycle before being 
exposed to IR or UV damage in G2. B. Septation index, used to follow cell 
cycle progression of rad4+ (wt) and rad4-Y599R cells. Arrow indicates when 
septation index was at its lowest (G2) and cells were exposed to DNA 
damaging agent. C.SDS PAGE of Chk1 and H2A phosphorylation (α-HA and α-
pS129) after IR/UV damage in elutriated G2 rad4+ (WT) and rad4-Y599R 
(Y599R) cells from B. α Tubulin was used as a loading control. 
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3.4 The Rad4 AAD is Most Important When ssDNA is Limited 

Having established that the Rad4 AAD is most important for Rad3 activation in S-

phase, the question of “why S-phase” needed to be addressed. To answer this 

question the differences between the activation of the checkpoint and the metabolism 

of the damaged DNA between S-phase and G2 were considered. One obvious 

difference between the checkpoints in S and G2 phases is the presence of the 

replication checkpoint in S-phase. Although previous data from the Carr laboratory 

showed rad4-Y599R had a twofold reduction in Cds1 kinase activity compared to WT, a 

reduction in Chk1 phosphorylation after damage in S-phase is also seen. This, 

therefore, points to a difference in the way in which the damage checkpoint is 

activated, between the two cell cycle phases. One difference between S-phase and G2 

is the lower levels of ssDNA formed after damage in S-phase compared to G2. This 

lower level of ssDNA in S-phase after damage may be due to a number of reasons. 

These reasons are explored in the context of the Rad4-AAD.  

The first possible reason is that damage, such as that from UV, can be bypassed by the 

replication fork, leaving small ssDNA lesions behind the fork, these are later repaired 

by a process known as post replication repair (Daigaku et al., 2010). It may be these 

small types of S-phase lesions that require the Rad4 AAD for the efficient activation of 

Rad3. To test this theory, an rhp18ΔRad18 mutant was crossed with the rad4-Y599R 

mutant. Rhp18 is an E3 ubiquitin ligase which ubiquitylates PCNA, the replicative 

sliding clamp, in order to recruit the factors required for post replication repair of the 

lesion (Verkade et al., 2001). By deleting Rhp18 these small ssDNA lesions should 

persist for longer, increasing the need for checkpoint activity and therefore the Rad4 

AAD.  If this is the case rhp18Δ should show increased sensitivity to UV in a rad4-Y599R 

background. To this end the rad4+ rhp18Δ, rad4-Y599R single mutant and the rhp18Δ 

rad4-Y599R double mutant were spot tested and exposed to UV.  It can be seen from 

Figure 3-6 that the rhp18Δ is very sensitive to UV, showing sensitivity at doses as low 

as 10 J/m2.  

  



Figure 3-6. rad4-Y599R mildly increases the UV sensitivity of rhp18∆ 
Spot test analysis of WT, rad4-Y599R, rhp18∆ and rad4-Y599R rhp18∆ 
after increasing dosage of UV. Cells were spotted as 10-fold serial 
dilutions of 1x107 cells/ml on YEA plates, UV irradiated or not and grown 
for 4 days at 30˚C. 
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The rad4-Y599R mutant shows modest sensitivity to UV damage at 100 J/m2 consistent 

with Figure 3-2A. The double rhp18Δ rad4-Y599R does exhibit a greater increase in 

sensitivity than either of the single mutants. This can be seen at 10, 15 and 25 J/m2 

(Figure 3-6).  

Whilst consistent with our hypothesis this data can still be interpreted in many ways. 

The increase in sensitivity was relatively moderate. This may not be consistent with the 

primary role of the Rad4 AAD in activating Rad3 after formation of these post 

replication repair lesions. An alternative explanation is, that by stabilising these small 

lesions in an rhp18Δ we may actually be increasing the levels of ssDNA. In an rhp18Δ 

more of the lesions persist for longer, which would reduce the requirement for the 

Rad4 AAD, if the hypothesis that Rad4 AAD is required when ssDNA is low is correct. 

From the experiment shown in Figure 3-6, it is impossible to distinguish between these 

two possibilities, therefore a different approach was undertaken. 

  After IR damage in G2 phase the DNA is processed by nucleases leading to the 

formation of large stretches of RPA coated ssDNA. This processing is dependent on the 

activity of CDC2-CDC13 (CDK-Cyclin), which is higher in G2 phase than S-phase (see 

“1.5.2 The Formation of ssDNA” and “1.2.2 Regulation Cell Cycle Progression” 

sections). Therefore, processing of DNA breaks in S-phase is reduced compared to G2 

(Limbo et al., 2007, Huertas et al., 2008, Huertas and Jackson, 2009). This is consistent 

with the results in Figures 3-3, 3-4, 3-5 which show the rad4-Y599R being important for 

Rad3 activity after IR in S-phase but not G2, even though the type of damage caused is 

presumably similar. One way to address this experimentally would be to reduce DNA 

processing after damage in G2, therefore reducing the levels of ssDNA and 

subsequently increasing the importance of the Rad4 AAD for Rad3 activity in G2.  In 

essence, this is essentially making a G2 cell similar to a S-phase cell with respect to DSB 

processing. 

 As described in the “1.5.2 The Formation of ssDNA section” one of the first nucleases 

required for the initial resection of DSBs is Ctp1CTiP, whose activity and transcription is 

regulated by Cdc2-Cdc13 activity (Limbo et al., 2007, Huertas et al., 2008, Huertas and 

Jackson, 2009, Mimitou and Symington, 2009). This made Ctp1 an obvious candidate 
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for deletion in order to reduce ssDNA formation after damage in G2, therefore 

mimicking an S-phase like damage processing state. If the Rad4 AAD is required in S-

phase due to the reduced levels of ssDNA after damage, we should see a reduction in 

Chk1 phosphorylation in the rad4-Y599R ctp1Δ after damage in G2. To test this, 

asynchronous cultures of rad4+, rad4-Y599R, ctp1Δ and rad4-Y599R ctp1Δ were 

exposed to 80 Gy IR and samples were taken either 0 minutes or 60 minutes after 

damage for western blot (Figure 3-7A). Unfortunately no significant reduction in Chk1-

HA phosphorylation can be seen in the rad4-Y599R ctp1Δ double compared to the 

single ctp1Δ at either time points. This, however, may be due to the dose of IR not 

being high enough to cause a significant level of damage for a difference in Chk1 

phosphorylation to be obvious.  

The experiment was therefore repeated with 200 Gy IR (Figure 3-7B). At low exposure, 

a reduction in Chk1-HA phosphorylation can now be observed in the double rad4-

Y599R ctp1Δ when compared with the single mutants, at both the 0 minute and 60 

minute time points (although it is more obvious at 60 minutes, due to inconsistent 

loading at the 0 minute time point). Unexpectedly, Chk1-HA phosphorylation can also 

be seen in ctp1Δ and rad4-Y599R ctp1Δ without the presence of induced DNA damage, 

suggesting that ctp1Δ cells already form endogenous DNA damage (Figure 3-7A 3-7B 

high exposure).  The presence of endogenous damage that leads to checkpoint 

activation may lead to changes in the cell cycle which, in turn, may mean that 

asynchronous ctp1Δ cells do not have the same cell cycle profile as WT, thus 

undermining the experiment. To test for this, FACS analysis was carried out on 

asynchronous cultures of each of the strains used in Figure 3-7. Indeed, it can be seen 

in both ctp1∆ and ctp1∆ rad4-Y599R cultures that the DNA content differs from that of 

rad4+ and rad4-Y599R; these cells seem to be accumulating in S-phase (Figure 3-8A).  

To further investigate the differences, growth curves were performed on each of the 

strains. Exponentially growing cells were diluted to 02. OD595/ml and grown for 8 

hours. These cultures were being diluted before reaching stationary phase to keep 

them growing exponentially. The cell density was measured every hour and adjusted 

for the dilution factor (Figure 3-8B).   



A 

B 

Figure 3-7. Analysis of Chk1 phosphorylation after IR in rad4-Y599R ctp1∆ 
cells 
Asynchronously growing rad4+ (WT), rad4-Y599R (Y599R), ctp1∆, rad4-
Y599R ctp1∆ (Y599R ctp1Δ) cells were exposed to 80 Gy IR or not and Chk1-
HA phosphorylation was assayed by SDS PAGE using α-HA either 0 minutes 
or 60 minutes after irradiation. B. As in A except cells were exposed to 
200Gy, low exposure (Top panel) and high exposures (Bottom panel) of the 
same blot are shown. 
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Consistent with the FACS and Chk1-HA phosphorylation data, the ctp1∆ and rad4-

Y599R ctp1∆ grew more slowly than the WT or rad4 Y599R alone. To see if this was 

due to activation of the checkpoint, DAPI stained cells were imaged (Figure 3-8C). In S. 

pombe, activation of the DNA damage checkpoint leads to cell elongation as the cells 

continue to grow without undergoing mitosis (Russell and Nurse, 1986, Furnari et al., 

1997). Indeed, ctp1∆ cells are slightly elongated compared to WT or rad4-Y599R cells, 

suggesting some checkpoint activation (Figure 3-8C). Taken together the results in 

Figures 3-8 A, B and C suggest the decrease in Chk1-HA phosphorylation after 200 Gy 

in the ctp1∆ rad4-Y599R could be an artefact (figure 3-7B).  

As an alternative approach to testing the theory that the Rad4 AAD is most important 

in S-phase, due to the lower levels of ssDNA after damage, a similar experiment to that 

in Figure 3-7 was carried out in a exo1∆ rather than ctp1∆ background (Figure 3-9B). 

Exo1, as described in the “1.5.2 The Formation of ssDNA” section, is responsible for 

creating the large stretches of ssDNA after the initial resection has been carried out by 

MRN and Ctp1 (Mimitou and Symington, 2008). Exo1 first requires this initial resection 

by Ctp1 before it can act upon a DSB. Therefore, its activity is also regulated by the cell 

cycle control of Ctp1 (Symington and Gautier, 2011). In exo1∆ cells a small amount of 

resection can still occur but this extends for only approximately 50-100bp, if samples 

are taken immediately after damage. Over time, Dna2 can compensate for the lack of 

Exo1 and resect the DSB, giving large stretches of ssDNA (Huertas, 2010). To ensure 

that an exo1∆ does indeed reduce resection, an exo1∆ was crossed with a rad11-GFP 

strain and the number of foci per nucleus was calculated immediately after exposure 

to 100 Gy (Figure 3-9A). Rad11 is a subunit of RPA so the number of RPA foci per 

nucleus can act as an indirect read out of the amount of ssDNA present. Indeed, in an 

exo1∆ culture, the number of Rad11-GFP foci per nucleus immediately after 100 Gy IR 

was reduced by almost half when compared to exo1+ cells, but was not affected in un-

irradiated cells (Figure 3-9B). This shows that the amount of ssDNA after IR damage in 

asynchronous cells is reduced in an exo1∆.  
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Figure 3-9. rad4-Y599R cells have reduced Rad3 activation after IR 
when resection is reduced 
A. Exponentially growing rad11RPA-GFP (WT) and exo1∆ rad11RPA-GFP 
(exo1Δ) cells were exposed to 0 GY or 100 Gy IR, fixed and assayed for the 
number of Rad11-GFP foci per nucleus by fluorescence microscopy. Error 
bars: standard deviation (n=3). B. Asynchronously growing WT, exo1Δ and 
exo1Δ tel1Δ strains with or without the rad4-Y599R mutation were 
exposed to 0 or 100 Gy and Chk1-HA phosphorylation was monitored 
immediately afterwards by SDS PADGE  using α-HA. C. Quantification of 
phosphorylated Chk1-HA from B. Phosphorylated bands (P) were 
quantified relative to unphosphorylated bands and normalised to rad4+ 
(Left panel) or rad4-Y599R (Right Panel) to understand the effect of 
limiting resection on checkpoint activation in rad4 and rad4-Y599R 
backgrounds . Error bars: standard deviation (n=3) D. Quantification of 
phosphorylated Chk1-HA relative to unphosphorylated Chk1-HA 
normalised to rad4+ after 100Gy IR in the indicated strains, as seen by SDS 
PAGE using α-HA. Error bars: standard deviation (n=3) 
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Thus, an exo1∆ background can be used to access the role the Rad4 AAD is playing 

when ssDNA is limited. It can be seen from Figure 3-9B and the quantification in Figure 

3-9C that, in rad4+ cells deletion of exo1 does not lead to a decrease in Chk1-HA 

phosphorylation compared with exo1+, after 100 Gy IR in asynchronous cells. 

However, when combined with the rad4-Y599R mutation, a 50% reduction in Chk1-HA 

phosphorylation can be seen compared with rad4-Y599R alone. This suggests that 

when resection is limited, such as in S-phase, one of the primary ways to activate Rad3 

is via the Rad4 AAD. However, 50% of the Chk1-HA phosphorylation still remains in an 

exo1∆ rad4-Y599R compared with rad4-Y599R alone. It may be possible that the 

Tel1ATM-dependent checkpoint, which is known to be involved in checkpoint activation 

at unresected DNA DSB may be contributing to Chk1-HA phosphorylation (see “1.4.5 

Role of the Yeast Homolog, Tel1, in Checkpoint activation” section.).  

To test this, tel1∆ cells were crossed with the exo1Δ and exo1Δ rad4-Y599R strains and 

Chk1-HA phosphorylation after IR was measured. As predicted, in an exo1Δ 

background tel1∆ reduced Chk1-HA phosphorylation by 50%, but has no effect in an 

otherwise WT background (Figure 3-9 C D). This is consistent with the expectation 

DSBs remain for longer and thus tel1 is involved in more signalling. In the exo1Δ rad4-

Y599R background, tel1∆ reduced the relative Chk1-HA phosphorylation by another 

50% compared with exo1Δ rad4-Y599R, leaving only ~25% of the phosphorylation seen 

in a rad4-Y599R alone. This suggests the Rad4 AAD does indeed contribute to a 

significant amount of the Rad3 activation seen when ssDNA is low and that the defect 

in rad4-Y599R is not associated with the Tel1 pathway (Figure 3-9C).  

 

3.5 The Rad4 AAD Acts in a Chromatin Dependent Pathway 

The data in the previous section suggests that the Rad4 AAD domain may be 

acting in an ssDNA independent manner to activate Rad3. One possibility is that it 

could be acting in a pathway to amplify or maintain Rad3 activity when activation via 

the canonical ssDNA dependent pathway is limited. In budding yeast it has been shown 

that a LacO tethering system, in which the recruitment of two of the main checkpoint 
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proteins to LacO repeats in the genome via the Lac repressor, bypasses the need for 

ssDNA in checkpoint activation (Bonilla et al., 2008). It was therefore plausible that a 

similar system could be used in S. pombe to further test the theory that the Rad4 AAD 

acts independently of ssDNA. To this end, a LacO tethering system similar to that used 

in budding yeast by Bonilla et al., (2008) was set up in the laboratory by Takashi 

Morishita and Su-Jiun Lin.  

In this system, 256 LacO repeats were inserted into the genome along with a NAT 

marker at the ura4 locus on chromosome III. Each of the three main checkpoint 

proteins; Rad3, Rad9 and Rad4 were tagged with the Lac repressor (LacI), GFP and a 

nuclear localisation signal (NLS) (GFP/LN) and cloned into pRep41 under the control of 

the inducible nmt41 promoter (Figure 3-10A). Su-Jiun Lin showed that expression of 

the relevant LacI construct upon removal of thiamine rescued the DNA damage 

sensitivity of rad3∆, rad9∆ and a temperature sensitivity of the Rad4 ts mutant rad4-

166. This shows the addition of the GFP/LN tag did not ablate the function of any of 

the proteins. Furthermore upon expression of each of the constructs, a single GFP 

focus could be seen within cells. This indicates that the LacI/LacO interaction was 

indeed recruiting the checkpoint protein to the chromatin. Su-Jiun Lin was also able to 

show that expression of any one of the constructs leads to checkpoint activation, as 

seen by cell elongation and Chk1-HA phosphorylation. This result differed from that 

seen in Bonilla et al., (2008), where co-expression and recruitment of a least two 

checkpoint proteins, such as Ddc1 and Ddc2, was necessary for Rad53 phosphorylation 

in budding yeast.  

To confirm Su-Jiun Lin’s result, either Rad3-GFP/LN, Rad4-GFP/LN or Rad9-GFP/LN 

were expressed  in +LacO and- LacO cells and Chk1-HA phosphorylation looked for 16-

22 hours after induction (nmt41 expression is known to occur 14-18 hours after the 

removal of thiamine) (Figure 3-10B). It can be seen that induction of any of the three 

constructs does indeed lead to Chk1-HA phosphorylation in +LacO cells but not in –

LacO cells and that this phosphorylation increases with time after induction (Figure 3-

10B). This supports the previous data from the laboratory showing that in S. pombe, 

recruitment of one checkpoint protein to the chromatin is sufficient for checkpoint 

activation.  



A 

B 

Chk1-HA 
P 

Chk1-HA 
P 

(Hrs) 

Figure 3-10. Recruitment of checkpoint proteins to the chromatin leads to 
Rad3 activation 
A. Schematic showing the Rad3/Rad4/Rad9-GFP/LN constructs and how 
they are recruited to the 256 LacO repeats in the chromatin via the LacI-
LacO interaction. B. Chk1-HA phosphorylation after expression of 
Rad3/Rad4/Rad9-GFP/LN in the LacO system.  Chk1-HA phosphorylation 
was assessed by SDS PAGE using α-HA in cells expressing Rad3-GFP/LN, 
Rad4-GFP/LN or Rad9-GFP/LN from pRep41 (nmt41 promoter) in strains 
with or without the genomic LacO array (- LacO, +LacO). Samples were 
taken at the indicated hours after induction (thiamine removal). 
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This difference between S. pombe and S. cerevisiae may be due to differences in how 

the checkpoint proteins interact and are recruited in the two organisms.  

Importantly, previous work from the laboratory showed that recruitment of Rad4-

Y599R-GFP/LN to the LacO repeats did not lead to Chk1-HA phosphorylation (result is 

confirmed in Figures 3-11B and 3-12B). Su-Jiun Lin also showed that expression of 

Rad3-GFP/LN in a rad4-Y599R background did not lead to Chk1-HA phosphorylation. 

This data implies that the Rad4 AAD is essential for checkpoint activation when no 

ssDNA is present, backing up the hypothesis made from Figure 3-9. It also shows that 

the LacO system specifically assays the Rad4 AAD-dependent checkpoint pathway, 

providing an assay system by which the other factors required may be identified. To 

characterise the requirements for Rad4-AAD activation of Rad3, Rad3-GFP/LN was 

expressed in a number of different genetic backgrounds where known checkpoint 

factors had been knocked out or mutated (Figure 3-11A, B, C). It can be seen from 

Figure 3-11B that an empty vector alone caused no checkpoint activation. This 

demonstrates that neither having the plasmid present, nor the presence of the 

genomic LacO caused Chk1 phosphorylation. Also, previous work in the laboratory has 

shown that expression of LacI alone does not cause Chk1-HA phosphorylation in the 

LacO background.   

Expression of Rad3-GFP/LN caused substantial Chk1-HA phosphorylation after 22hrs 

induction (Figure 3-11A). This is consistent with Figure 3-10B. Deletion of either Rad9 

or Rad1 of the 9-1-1 complex in the LacO system abolished this Rad3 dependent Chk1-

HA phosphorylation, suggesting that the complete 9-1-1 complex maybe involved in 

the Rad4 AAD dependent checkpoint pathway (Figure 3-11A). Furthermore, deletion of 

the 9-1-1 clamp loader protein rad17 also prevented Chk1-HA phosphorylation, thus 

suggesting that Rad17 is also required in this Rad4 AAD pathway.  Deletion of the 

mediator crb253BP1 also prevents Chk1-HA phosphorylation after Rad3-GFP/LN 

expression in the LacO system, therefore implicating Crb2 in the Rad4 AAD pathway. 

As described in the “1.5.5 The Activation of the ATR Checkpoint Pathway” and the 

“1.5.7 ATR Checkpoint Maintenance and Amplification” sections Crb2 can be recruited 

to sites of damage via two independent mechanisms.  



A 

B 

C 

(Hrs) 

Figure 3-11. Genetic requirements for Rad3 activation in the LacO system 
A. Chk-HA phosphorylation was assessed by SDS PAGE using α-HA at 0 or 
22hrs after Rad3-GFP/LN induction in the indicated genetic backgrounds. 
B. As in A. except empty vector was also used as a negative control. +EV 
indicates cells containing empty vector (pRep41), + R3 indicates cells 
containing the pRep41-Rad3-GFP/LN vector as used in A. C. As in B, but in 
the indicated strain backgrounds. 
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One depends on the histone modifications γH2A and H4K20me and is required for 

checkpoint amplification and maintenance, the other on an interaction between Rad4 

and phosphorylated T215 on Crb2, which is required for the initial checkpoint 

activation (Du et al., 2003, Du et al., 2006).  

As it was predicted that the Rad4 AAD may be required for checkpoint amplification 

and/or maintenance (and previous data from the laboratory showed that γH2A was 

required for checkpoint activation in the LacO system), crb2 BRCT domain mutants, 

K617E and K619E, (that cannot bind γH2A) were tested in the LacO system (Kilkenny et 

al., 2008)(Figure 3-11A).  K617E and K619E mutations reduced Chk1-HA 

phosphorylation compared with WT, but did not completely abolish it (Figure 3-11A). 

This may be due to residual Crb2 bound to the chromatin via the H4K20me-Crb2 Tudor 

domain interaction or to the involvement of a second γH2A binding mediator protein, 

Brc1PTiP/MDC1, which had previously been hypothesised to play a role within the S-phase 

checkpoint (Williams et al., 2010b). To test this hypothesis, Rad3-GFP/LN was 

expressed in a +LacO strain harbouring a brc1 deletion (Figure 3-11B). Surprisingly, no 

reduction in Chk1-HA phosphorylation after 22hrs of Rad3-GFP/LN expression can be 

seen, suggesting no role for Brc1 in the Rad4 AAD pathway (Figure 3-11B). To further 

investigate the role of Crb2 in the Rad4 AAD dependent checkpoint a crb2-T215A 

mutant was crossed into the LacO containing strain. Interestingly upon Rad3-GFP/LN 

expression, no Chk1-HA phosphorylation can be seen. This implies that the interaction 

between Rad4 and Crb2 is essential for Rad3 activation in this system (Figure 3-11C). 

As there is a requirement for both the Crb2 interaction with γH2A and with Rad4, it is 

possible to predict a model in which Crb2 is recruited to γH2A via its BRCT domain, and 

where phosphorylation on T215 brings Rad4 to the chromatin, where it can then 

activate more Rad3 via its AAD. 

Although it can be seen from Figure 3-11A that the 9-1-1 complex and Rad17 are 

required in the Rad4 AAD LacO checkpoint system, the exact role these proteins are 

playing in the pathway is unclear. It is known that, for the initiation of the DNA damage 

checkpoint Rad9 phosphorylation recruits Rad4 to the site of damage (Furuya et al., 

2004) (“1.5.5 The Activation of the ATR Checkpoint” section). To address this in the 

Rad4 AAD pathway, Rad3-GFP/LN and Rad4-GFP/LN were co-expressed in the LacO 
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system in order to see if the requirement of Rad9 could be bypassed. Indeed, the co-

recruitment of Rad3 and Rad4-GFP/LN, but not Rad3-GFP-L/N alone, in a rad9∆ leads 

to Chk1-HA phosphorylation (Figure 3-12A). This suggests that Rad9 is playing a role, 

perhaps with Crb2, in the recruitment or retention of Rad4 in the Rad4 AAD checkpoint 

pathway. Consistent with this, data from Su-Jiun Lin showed that the phosphorylation 

of Rad9 on T412 (which rad4 is known to bind to (Furuya et al., 2004)), is also required 

for ChK1-HA phosphorylation in the LacO system. It is clear that Rad9 is playing an 

important role in this checkpoint pathway, however the role of the rest of the 9-1-1 

complex and its loader is not known in this instance. It is possible that they are merely 

playing a structural role and are only required for bringing Rad9 to, and/or maintaining 

Rad9 at, the chromatin. Alternatively, they may be playing a more direct role within 

the pathway.  

To test between these two possibilities, Rad9-GFP/LN was expressed in rad1∆ and 

rad17∆ +LacO strains (Figure 3-12B). Similarly to Rad3-GFP/LN expression, rad9-

GFP/LN expression in rad1∆ or rad17∆ +LacO strains did not lead to any Chk1-HA 

phosphorylation, even though Rad9 is being recruited to the chromatin via the LacI-

LacO interaction (Figure 3-12B). This suggests that Rad1 and Rad17 are playing a direct 

role in the activation of the checkpoint in this system and are not just required to bring 

or maintain Rad9 at the chromatin. The precise role they are playing is still, however, 

unclear. Rad17, as described in “1.5.5 The Activation of the ATR Checkpoint Pathway” 

section, loads the 9-1-1 complex onto the ds-ssDNA junction, a process which is 

dependent on its ATPase activity (Bermudez et al., 2003, Ellison and Stillman, 2003). To 

test if Rad17s ATPase activity is the reason rad17 is required a mutant form of Rad17, 

rad17-A/D (ATPase dead), in which a key residue in the Walker A domain is mutated 

(K118E) and which thus prevents ATP hydrolysis (Griffiths et al., 1995), was crossed 

into the LacO background. Upon Rad9-GFP/LN expression, Chk1-HA phosphorylation 

was seen in the rad17-A/D background but not in the rad17∆, although 

phosphorylation was slightly reduced compared to wt. This suggests that the 

dependence of Rad17 when Rad9 is recruited is not due to its ATPase activity and 

therefore its ability to load the 9-1-1 complex.  

  



A 

B 

C 

(Hrs) 

(Hrs) 

Figure 3-12. Genetic requirements of the 9-1-1 complex and loader in the 
LacO system 
A. Chk1-HA phosphorylation in cells expressing Rad3-GFP/LN or Rad3-
GFP/LN +Rad4-GFP/LN for the indicated period of time in WT +LacO or 
rad9∆+LacO strains. Chk1-HA phosphorylation was monitored by SDS PAGE 
using α-HA. B. Chk1-HA phosphorylation was monitored in +LacO cells by 
SDS PAGE using α-HA in the indicated genetic backgrounds expressing either 
Rad3-GFP/LN (+R3), Rad9-GFP/LN (+R9) or empty vector (EV). Samples were 
taken 0 or 22 hours after induction. As in B. rad17-A/D refers to the rad17 
ATPase dead mutant K118E. 
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The highly repetitive nature of the LacO array can lead to replication problems and 

recombination between LacO repeats, leading to loss or partial loss of the array 

(Jacome and Fernandez-Capetillo, 2011). To ensure the results presented in this 

section are genuine and are not due to any loss of LacO repeats, Southern blot analysis 

using a probe against the LacO sequence (materials and methods) was carried out on 

all of the strains used (Figures 3-13 A and B). Samples for southern blot were taken 

pre-induction at T0 to ensure the LacO repeats were present at the start of the 

experiment and had not been lost in the strain creation or transformation process. 

From Figures 3-13A and B it can be seen that the number of LacO repeats between 

strains varies from the original 10.5 Kb in rad17∆ and rad17-A/D, for example, to as 

little as 3.5 Kb in the initial rad1∆ in strain Figure 3-13A. It has been established in 

budding yeast that the minimal number of LacO repeats required for checkpoint 

activation is 40 repeats, although 80 repeats (~ 3.2Kb) were required for a full Rad53 

phospho shift (Bonilla et al., 2008). With this in mind, to ensure proper comparison 

between strain backgrounds, the rad1∆ +LacO strain in Figure 3-13A which exhibits 3.5 

Kb of LacO repeats, was remade (Figure 3-13B) and this new strain with > 8 Kb of 

repeat sequence was used for all the rad1∆ +LacO experiments shown in this chapter. 

It can therefore be concluded that all the results presented in this section are genuine 

and are not due to any loss of the LacO repeats.  

 

3.6 Conclusion and Discussion 

It has been reported that the AAD domains of the Rad4 homologs are required in 

different cell cycle stages in different organisms. In budding yeast the Dpb11TopBP1 C-

terminus is most important in G2 of the cell cycle, however this still acts redundantly 

with the Ddc1Rad9 AAD (Navadgi-Patil and Burgers, 2009, Navadgi-Patil et al., 2011). In 

higher eukaryotes the TopBP1 AAD has been shown to be essential for checkpoint 

activation in S-phase especially after replication stress, but it is yet to be seen how 

important it is in other cell cycle stages (Kumagai et al., 2006, Delacroix et al., 2007, 

Burrows and Elledge, 2008, Mordes et al., 2008a).  



A B 

Figure 3-13. LacO strains used in this study have retained the LacO array. 
A. Southern blot analysis probing for the LacO sequence in the indicated 
genetic background pre Rad3-GFP/LN or empty vector (EV) expression. B. As 
in A.  
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Here we show that in S. pombe the Rad4 AAD is required for checkpoint activation 

after DNA damage in S-phase and G1/S and, unlike S.cerevisaie, not in G2 (Figures 3-3, 

3-4, 3-5). A clear reduction in Chk1 and H2A phosphorylation can be seen after gamma 

irradiation in G1/S and S-phase but not in G2 in the rad4-Y599R mutant (Figures 3-3, 3-

5). This reduction in Rad3 activation correlates with a reduction in cell survival seen in 

Figure 3-4A, suggesting that the cells are not able to fully activate the checkpoint. It is 

also supported by the fact that the rad4-Y599R cells are more sensitive to genotoxic 

agents that have their affect in S-phase (Figure 3-2). 

 The Rad4 AAD is more important in S-phase due to the reduced level of DNA resection 

after damage, as seen in Figures 3-7 and 3-9.  We propose a model in which a 

threshold level of active Rad3 is required for a full checkpoint response (Figure 3-14A). 

In G2 enough Rad3 is activated via a ssDNA dependent, but Rad4 AAD independent, 

pathway for a full checkpoint response. However, in S-phase where resection is 

reduced and less ssDNA is present, the Rad4 AAD chromatin dependent (ssDNA 

independent) pathway is required to amplify the levels of active Rad3 to gain a full 

checkpoint response (Figure 3-14A). As Tel1 has been reported to be able to bind to 

unresected DNA ends via an interaction with the MRN complex and phosphorylate 

Chk1, tel1 was knocked out in the exo1∆ and Y599R exo1∆ strains. This tel1∆ mutation 

leads to a reduction in Chk1 phosphorylation in exo1∆ and in the Y599R exo1∆ strains.  

This confirms that Tel1 is important for Chk1 phosphorylation when resection is 

reduced and shows that the Rad4 AAD is not operating in a Tel1 dependent pathway.  

The results presented in this chapter suggest there are at least 3 pathways that can 

contribute to a full DNA damage checkpoint response in S. pombe; ssDNA dependent 

activation of Rad3, Rad4 AAD dependent activation of Rad3 and a Tel1 dependent 

pathway.    

Using a LacO system to identify the components of the Rad4 AAD pathway, it can be 

seen from Figures 3-11 A, B and C that the Rad4 AAD pathway is dependent on the 9-1-

1 complex, Rad17, Crb2 (both its γH2A interacting BRCT domain and Rad4 interacting 

phosphorylated T215) but not Brc1. Previous data from this laboratory also shows that 

γH2A and phosphorylation of Rad9 on T412 are also required.  
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The requirement of Rad17 suggested that the 9-1-1 complex needed to be loaded on 

to DNA. However, the manner in which the 9-1-1 complex is loaded onto the DNA is 

difficult to envisage. This is because, presumably, there is no 5’ ss-ds-DNA junction and 

no RPA coated ssDNA at the LacO repeats. Also Rad17 is still required when Rad9-

GFP/LN is recruited, which should bypass the need for 9-1-1 loading (Figure 3-12B). 

Indeed the Rad17 ATPase activity is not required when Rad9-GFP/LN is recruited to the 

chromatin (Figure 3-12C). Therefore an alternative model for the requirement of 

Rad17 could be proposed. This is that the 9-1-1 complex is not loaded onto the DNA 

for the LacO dependent checkpoint activation; instead it may just associate with the 

dsDNA via an alternate mechanism. If this is the case Rad17 may be playing an 

important role in stabilising the 9-1-1-Rad4 interaction, which is subsequently required 

for the activation of the recruited Rad3. 

 It has been shown in Xenopus extracts that Rad17 is able to interact with TopBP1, and 

this interaction is not required for the recruitment of TopBP1 but is required for its 

accumulation and retention (Lee and Dunphy, 2010). A similar model could therefore 

be possible in S. pombe. The results in Figure 3-12B also suggest that Rad1 has a role 

other than forming the complete 9-1-1 complex as it is also required when Rad9-

GFP/LN is recruited to the LacO array. One reason for its requirement maybe due to it 

being implicated as the subunit of the 9-1-1 complex that interacts with Rad17, 

therefore its requirement may be in retaining Rad17 on the chromatin (Dore et al., 

2009). Alternatively it has also been reported that Rad1 may have a role in stabilising 

Crb2 at the chromatin and this would also explain why Rad1 is required for Rad3 

activation in the LacO system even when Rad9-LacI is recruited (Du et al., 2003). 

It had previously been shown by the Russell laboratory that Brc1 binds to γH2A via its 

BRCT domains after DNA damage in S-phase. They went on to hypothesise that one 

possibility for the sensitivity seen to S-phase damage in a brc1Δ was due to a potential 

Rad4 binding role for the protein (although no evidence was shown for this) (Williams 

et al., 2010). We therefore predicted that Brc1 may be acting as a mediator protein in 

the chromatin dependent checkpoint amplification pathway. However, this did not 

seem to be the case as a brc1Δ did not lead to reduced Chk1 phosphorylation in the 

LacO system. It is therefore likely that Brc1 is playing a role in DNA repair not in 
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checkpoint activation. Indeed a later study showed that Brc1 may be acting to repair 

damaged replication forks in parallel with the Rqh1 helicase, however the role of Brc1 

is still far from understood (Rozenzhak et al., 2010). This result does show that the 

LacO specifically assays the checkpoint pathway and not DNA repair pathways. It also 

further suggests that there is probably no DNA damage at the LacO array, despite its 

repetitive nature. This means that the LacO system could potentially be used to 

identify proteins involved in the Rad4 AAD checkpoint pathway without contamination 

from repair proteins, which may occur in other assays such as the HO break system. 

This checkpoint protein identification could be done by extracting the DNA from LacO 

cells expressing Rad3-GFP/LN. The DNA, and any associated proteins, could then be 

isolated using LacI conjugated beads, which would bind specifically to the LacO DNA. 

The proteins that were associated with the LacO DNA could then be run on an SDS gel 

and sent for mass spectrometry. This should identify proteins specifically required for 

the Rad4 AAD checkpoint pathway, and may identify proteins not previously linked to 

the checkpoint pathway due, for example, to their role in DNA repair.   

Interestingly the Rad4 AAD checkpoint pathway requires both the γH2A binding ability 

of Crb2 and its phosphorylation on T215, which has a role in binding Rad4 (Figure 3-

11A, C). It had previously been reported that the γH2A and Rad4 binding ability of Crb2 

act in two distinct pathways for Crb2 recruitment and therefore Chk1 phosphorylation. 

The evidence presented in Figures 3-11A, C suggests that there may be some overlap 

between the two pathways for Chk1 phosphorylation. It maybe that ssDNA-Rad9- Rad4 

and γH2A act to recruit Crb2 separately as previously reported (Du et al., 2006). 

However, in recruiting Crb2 to γH2A presumably Rad4 is also recruited, as the two 

interact in a cell cycle dependent manner via Cdc2 phosphorylation. This interaction 

between Crb2 and Rad4 in the γH2A dependent recruitment pathway could be 

important for stably associating Rad4 at the chromatin and thus allowing it to activate 

Rad3. This would explain why both T215 phosphorylation of Crb2 and its ability to bind 

γH2A are required for Chk1 phosphorylation in the LacO system. 

Overall from the data presented in this chapter and previous data from Su-Jiun Lin we 

can propose the following model:  The checkpoint is first activated via the canonical 

ssDNA dependent mechanism, as described in the “1.5.5 The Activation of the ATR 
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checkpoint” section, which is independent of the Rad4 AAD. This leads to 

phosphorylation of H2A which subsequently recruits Crb2 via its BRCT domain. The 

Cdc2CDK dependant T215 phosphorylation on Crb2 brings Rad4 to the chromatin. This 

interaction is stabilised via interactions between Rad4 and Rad9 phosphorylated on 

T412 by Rad3. The rest of the 9-1-1 complex and Rad17 may also form interactions 

with these checkpoint proteins and the chromatin forming a stable complex. Rad4, via 

its AAD, is then able to activate more Rad3 which in turn phosphorylates Crb2 and 

Chk1, leading to an increase in the checkpoint response. The active Rad3 can also 

phosphorylate more H2A, leading to more recruitment of the checkpoint proteins and 

more Rad4 AAD dependent Rad3 activation (Figure 3-14 B). This pathway is more 

important in S-phase when less ssDNA is present after DNA damage (Figure 3-14 A).  
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Chapter 4 

Identification and 
Characterisation of the S. pombe 

Rad9 ATR Activation Domain 
 

4.1 Introduction 

As the Rad4TopBP1 AAD only plays a relatively minor role in Rad3ATR activation, 

that is mainly to amplify the checkpoint signal in S-phase (Chapter 3), it is possible 

that other AAD containing proteins are present in S. pombe. As described in the 

“1.5.5 The Activation of the ATR checkpoint Pathway” section, in budding yeast the 

Rad9 homolog Ddc1 plays a more significant role than the Rad4 homolog, Dpb11, in 

checkpoint activation (Majka et al., 2006b, Navadgi-Patil and Burgers, 2009).The 

Ddc1 AAD is the main pathway to Mec1ATR activation in both G1 and G2, with 

Dpb11 only having a semi redundant role with the Ddc1 AAD in G2 (Navadgi-Patil 

and Burgers, 2009). It is therefore likely (given the data in Chapter 3) that spRad9 

may also have a role in Rad3 activation. It could be hypothesised that the Rad9 AAD 

may be important for Rad3 activation in G2 in S. pombe and may be required to 

stimulate the activity of Rad3 in the ssDNA dependent pathway (Figure 3-14).  

 

4.2 Identification of a Potential Rad9 AAD in S. pombe 

  To test this hypothesis an alignment between the S. cerevisiae Ddc1 AAD and 

the homologs in a number of fungal species as well as human and Xenopus was 

performed (Figure 4-1A). The Ddc1 AAD is in the C-terminus of the protein and 

contains two critical tryptophan residues, W352 and W544. These are in the PCNA-

like domain and the unstructured C-terminal tail, respectively (Figure 4-1B).  



A 

B 

Figure 4-1. Identification of a potential AAD in Rad9 
A.  Amino acid sequence alignment of the S.cerevisiae Ddc1 AAD residues 
with the S.pombe, C. glabrata, K.lactis, human and Xenopus.laevis 
homologs. The core aromatic AAD residues are marked with an *B. 
Schematic of the domain architecture of the Rad9 homologs with the 
known AAD residues (in the case of scDdc1) or potential AAD residues 
(human Rad9B and spRad9) annotated. The position of the potential AAD 
residues in S.pombe are noted as Y271 and W384.  
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Mutation of both of these to alanine is required to fully prevent Ddc1s AAD activity 

in vivo (Navadgi-Patil and Burgers, 2009). Alignment of these regions in Ddc1 shows 

that the W544 residue is conserved as W348 in S. pombe and is also present in the 

other fungal species (Figure4-1A). W348 is also positioned in the unstructured C-

terminal tail, as is the equivalent residue in Ddc1, in a region distinct from the 

damage induced phosphorylation sites (figure 4-1B).  

Perhaps surprisingly, the spW348 (scW544) residue is not conserved in the Xenopus 

or either of the human homologs. Human and mice are known to contain two Rad9 

proteins, Rad9A and Rad9B, with Rad9A carrying out the functions of spRad9 and 

scDdc1. Rad9B is essential for embryonic development and has a role in resistance 

to some DNA damaging agents during development (Dufault et al., 2003, Leloup et 

al., 2010).  It can also be seen from Figure 4-1A that Ddc1 W352 in the PCNA-like 

domain is conserved in C.glabrata and K.Lactis, but no tryptophan residue is 

present at this location in the S. pombe Rad9 PCNA like domain. However, a 

tyrosine residue (Y271) is present, which has similar properties to a tryptophan, 

being a large, polar, hydrophobic, aromatic amino acid. Therefore, it may well be, 

as with the Rad4 AAD, that this tyrosine is the corresponding residue to the 

tryptophan and is functioning as an AAD residue.  

 

4.3 rad9 AAD Mutants Have no Growth Defects and Look Like WT 

Based on the alignment data, mutations replacing rad9-Y271 and W348 with 

alanine at its endogenous locus were made, using the Recombination Mediated 

Cassette Exchange (RMCE) method (Materials and Methods, (Watson et al., 2008)).  

The Y271A and W348A mutants were crossed with the rad4-Y599R mutant, as we 

hypothesised it may be important to test the double mutants due to redundancy in 

Rad3 activation being present.  The rad9-Y271A and rad9-W348A mutants showed 

no growth defects, as seen by growth curves, either on their own or when 

combined with the rad4-Y599R mutant. This suggests that these residues do not 

play any role in normal cell cycle progression (Figure 4-2A).  
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Figure 4-2. rad9-AAD mutants grow as WT in the absence of DNA damage 
A. Exponentially growing WT (chk1-HA) rad9 AAD and rad4 AAD mutants as 
indicated were grown for 9 hours in YE at 30°C whilst being kept in 
exponential phase by dilution. Cell number was calculated every hour and 
adapted for the dilution factor. B. Light microscopy pictures of 
exponentially growing unfixed WT, rad4-Y599R, rad9-W348A and rad4-
Y599R rad9-W348A strains. 
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Microscope images of the mutants were also taken in order to ensure the rad9 

mutant cells were not elongated and therefore did not have any endogenous 

checkpoint activation, which may be associated with endogenous DNA damage and 

problems in DNA repair (Figure 4-2B). The microscope pictures of rad9-W348A and 

rad4-Y599R rad9-W348A are shown as an example that the rad9 AAD mutants both 

alone and with rad4-Y599R are not elongated and look like wild type (Figure 4-2B).  

Taken together the microscope images in Figure 4-2B and the growth curve data in 

Figure 4-2A confirm there is no cell cycle, replication or endogenous DNA damage 

problems in the rad9 mutants (Figure 4-2A, B).  

 

4.4 rad9 AAD Mutants Show Mild Sensitivities to Genotoxic Agents  

To test whether the rad9 AAD mutants were sensitive to genotoxic agents 

and therefore may be playing a role in the DNA damage and/or replication 

checkpoint, spot test analysis was carried out in the presence of a number of DNA 

damaging or replication fork stalling agents (Figure 4-3). In budding yeast the 

mutation of both of the ddc1 AAD residues shows a slightly increased sensitivity to 

UV compared to either mutant alone (Navadgi-Patil and Burgers, 2009). Therefore, 

to ensure the full role of the potential spRad9 AAD could be seen both the rad9-

Y271A and W348A mutations were combined to give rad9-2A, this double mutant 

was then used for the spot test (Figure 4-3). It can be seen from Figure 4-3 that the 

rad9-2A mutant cells show mild sensitivity to UV at 150J/m2 when compared to WT 

cells, but not to the same extent as a rad3Δ or even the rad4-Y599R mutant strains. 

rad9-2A cells also show moderate sensitivity to the RNR inhibitor HU, this 

sensitivity is similar to that seen in the rad4-Y599R mutant cells but not as severe as 

in a rad3Δ strain. However, rad9-2A cells show no sensitivity to CPT, MMS or IR at 

the doses the tested (Figure 4-3).  

To see if the potential Rad9 AAD is acting in a separate pathway to the Rad4 AAD, 

the rad9-2A rad4-Y599R strain was also spotted. Indeed, the double rad9 rad4 AAD 

mutant strain does show increased sensitivity to MMS, HU and UV compared to 

either of the rad4 or rad9 mutants cells alone (Figure 4-3).  



Figure 4-3. rad9-2A displays mild sensitivity to genotoxic agents that is 
additive with rad4-Y599R 
Spot test analysis of the indicated WT, AAD mutants and rad3Δ positive 
control in the presence of different genotoxic agents. rad9+ is a WT-like 
control strain where WT rad9 has been inserted back into the Lox site 
containing Rad9 base strain. 10-fold serial dilutions of 1x107 cells/ml were 
spotted onto YEA plates containing CPT, MMS or HU. Alternatively they 
were spotted onto YEA containing no genotoxic agents and UV irradiated. 
For IR cells were γ irradiated, serial diluted and then spotted onto YEA. 
Plates were incubated at 30°C for 4 days 
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Therefore, any Rad3 stimulating activity the potential Rad9 AAD may have is 

operating in a separate pathway to the Rad4 AAD. However, cells which combined 

the rad4-Y599R and rad9-2A mutations still did not show any sensitivity to ionising 

radiation, suggesting that neither of these AAD pathways are required after IR and 

are probably not required after damage in G2. Unfortunately, from Figure 4-3 it 

cannot be seen if the rad9-2A rad4-Y599R double mutant strain is more sensitive to 

camptothesin (CPT) than the rad4-Y599R alone, as the rad4-Y599R single mutant is 

already dead at the dose used.  To ensure the presence of the Lox sites up and 

down stream of the rad9 open reading frame (Material and Methods) were not 

responsible for the sensitivities seen, a rad9+ strain was also spotted in Figure 4-3. 

rad9+ is a strain in which WT rad9 has been placed back into the genome at its 

endogenous locus using RMCE in the same way the rad9 AAD mutants were. Figure 

4-3 shows that the rad9+ stain shows the same phenotype as the WT strain, where 

no Lox sites are present, proving that the sensitivities seen in the rad9-2A are due 

to the point mutations made and not the presence of the Lox sites.  

Overall Figure 4-3 shows that the rad-2A strain has some mild to moderate 

sensitivity to HU and UV and is additive with the rad4-Y599R, suggesting that they 

operate in separate pathways in response to these types of agent. Interestingly, the 

rad9-2A mutation also increases the sensitivity of the rad4-Y599R mutant to MMS, 

even though rad9-2A alone is not sensitive to MMS. This suggests that the rad4 

AAD can fully compensate for the loss of the rad9 AAD in this instant and that the 

Rad9 AAD pathway is semi redundant with that of the Rad4 AAD. Neither the rad9-

2A or rad4-Y599R rad9-2A cells are sensitive to IR suggesting neither play a role in 

Rad3 activation after damage in G2.  

 

4.5 The Rad9 AAD Plays a Minor Role in the Intra S-phase DNA Damage  

Checkpoint 

  To further understand whether the sensitivity of the putative Rad9 AAD to 

UV is indeed due to a checkpoint defect, a lactose gradient synchronised septation 
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index experiment was carried out (Figure 4-4). In this experiment cells are 

synchronised in G2 using a lactose gradient (Materials and Methods), these cells 

are then UV irradiated with 10 J/m2 whilst still in G2. This gives rise to a low level of 

UV damage, such a thymine dimmers, that does not activate the G2 checkpoint. 

However, some damage persists into the first S-phase where these types of lesions 

are bypassed giving rise to ssDNA gaps which then cause checkpoint activation in 

the following G2 phase. This checkpoint activation can be monitored by septation 

index; septation occurs in S-phase, following mitosis (Figure 1-1). Therefore 

activation of the G2/M checkpoint, causing a cell cycle delay, will lead to a 

subsequent delay in septum formation.  If a mutant displays a checkpoint defect 

after damage, then this checkpoint dependant cell cycle delay is reduced and 

septation will occur earlier, when compared to WT.  

This assay was used to see if the rad9 AAD mutant further reduced the checkpoint 

response of rad4-Y599R mutant in correspondence with the increased sensitivity 

seen in Figure 4-3. In a rad9+ strain, a 40 minute delay can be seen in the peak of 

septation after 10 J/m2 UV. Septation in the second cell cycle begins at 180 minutes 

in the absence of UV and peaks at 220 minutes. After UV exposure, septation starts 

after 220 minutes and peaks at 260 minutes. In comparison, consistent with a mild 

checkpoint defect, a 20 minute delay in the peak of septation can be seen in the 

rad4-Y599R strain. Septation peaks at 260 minutes in the presence of UV compared 

with 240 minutes in its absence (Figure 4-4). In the rad4-Y599R rad9-W348A strain 

(unfortunately this experiment was carried out before the creation of the rad9-2A 

strain), after 10 J/m2  a minimum 20 minute delay to the peak of septation is seen: 

Septation peaks at, or after, 260 minutes following UV treatment compared to at 

240 minutes without (Figure 4-4). This implies that sensitivity seen in the rad9 AAD 

mutants to UV is not due to a checkpoint defect.  

However, it maybe that the rad9-W348A mutant does not cause a checkpoint 

defect, as having one of the putative AAD residues present is enough for the AAD to 

function. Alternatively a weak checkpoint defect may not be seen in this particular 

assay, especially as the increase in sensitivity caused by combining rad9-2A with 

rad4-Y599R in is weak (Figure 4-3).  



Figure 4-4. rad9-W348A does not increase the checkpoint defect of rad4-
Y599R after low dose UV 
WT (top panel), rad4-Y599R (middle panel) and rad4-Y599R rad9-W348A 
(bottom panel) were synchronised in G2 by lactose gradient, split, exposed 
to no UV or 10 J/m2 and grown in YE at 30°C. Samples were taken every 20 
minutes for 300 minutes to assay cell cycle progression by septation index. 
Septation index (% cells with a septum) was assayed on fixed cells stained 
with calcofluor and DAPI by fluorescence microscopy. 
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Therefore to further test the role of the putative Rad9 AAD in Rad3 and checkpoint 

activation western blot analysis of Chk1 phosphorylation was performed after UV 

damage in asynchronous cells. It can be seen from Figure 4-5A and the 

quantification in Figure 4-5B that the rad4-Y599R mutation reduced Chk1-HA 

phosphorylation after UV by ~50% compared to WT (rad9+), consistent with the 

results in Chapter 3. The rad9-2A mutant did not cause any reduction in Chk1-HA 

phosphorylation compared with WT at any of the doses tested. There was even a 

small increase in Chk1-HA phosphorylation in some of the repeats at higher doses 

which cannot be explained. However, the rad9-2A rad4-Y599R double mutant does 

decrease the Chk1-HA phosphorylation when compared with the rad4-Y599R 

mutation alone. At 50 J/m2 the decrease in Chk1 phosphorylation in the double 

rad4 rad9 AAD mutant is relatively minor compared to rad4-Y599R mutation alone. 

However, as the dose increases the significance of the rad9 AAD increases, at 150 

J/m2 the Chk1-HA phosphorylation is only ~20% of the rad9+ and is ~30% less than 

the rad4-Y599R mutant alone. This indicates that the Rad9 AAD is involved in 

checkpoint/Rad3 activation after UV damage, however, its involvement can only be 

seen once Rad4s AAD activity has been abolished. Thus, after UV damage the Rad4 

AAD is able to fully compensate for the loss of the Rad9 AAD, but not vice versa.   

To test if this reduction in Chk1-HA phosphorylation was restricted to UV (S-phase) 

damage only, a similar experiment to that in Figure 4-5 was performed, however in 

this instance cells were exposed to IR (Figure 4-6A, B). It can be seen from this 

experiment that, consistent with the sensitivities in Figure 4-3, the rad9-2A mutant 

does not show a reduction in Chk1-HA phosphorylation after IR (Figure 4-6A, B). 

Surprisingly, a reduction in Chk1-HA phosphorylation could be seen in the rad4-

Y599R after low doses of IR but less so at higher doses. While inconsistent with the 

laboratories previous data that showed no significant effect of the rad4-Y599R 

mutation on IR induced Chk1-HA phosphorylation.  
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 Figure 4-5. The Rad9 AAD is redundant with the Rad4 AAD for Rad3 
activation after UV  
A. Asynchronous rad9+, rad4-Y599R, rad92A and rad4-Y599R rad9-2A cells 
were exposed to UV radiation at the indicated doses. Chk1-HA 
phosphorylation (P) was assayed by SDS PAGE using  α-HA  as a readout of 
Rad3 activation. B. Quantification of A. Phosphorylated Chk1-HA as a % of 
total Chk1-HA normalised to WT. Error bars: Standard deviation (n=3)  
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Figure 4-6. The Rad9 AAD has no defect in Rad3 activation after IR in 
asynchronous cells  
A. Asynchronous rad9+, rad4-Y599R, rad9-2A and rad4-Y599R rad9-2A 
cells were exposed to γ-radiation at the indicated doses. ChK1-HA 
phosphorylation (P) was assayed by SDS PAGE using  α-HA  as a readout 
of Rad3 activation. B. Quantification of A. Phosphorylated Chk1-HA as a % 
of total Chk1-HA normalised to WT. Error bars: Standard deviation (n=3)  
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None the less, the combination of the rad9-2A mutant with rad4-Y599R does not 

reduce the Chk1-HA phosphorylation any further, suggesting the Rad9 AAD has no 

role in the G2 damage checkpoint (Figure 4-6A, B).  

To confirm the role of the Rad9 AAD in the intra S damage checkpoint, but not the 

G2 checkpoint, rad9+ or rad9-2A cells were synchronised at the G1/S boundary 

using the cdc10-M17 temperature sensitive mutant and were irradiated with 80 Gy 

ionising radiation. Chk1-HA and H2A phosphorylation were monitored as cells 

progressed through S-phase into G2 as visualised by FACS analysis (Figure 4-7A, B). 

Ionising radiation of asynchronous cells, and no IR in cdc10-M17 synchronised cells 

were used as controls (Figure 4-7A, B). Consistent with the results in Figure 4-6, no 

reduction in Chk1-HA or H2A phosphorylation can be seen after IR treatment of 

asynchronous cells in the rad9-2A mutant and no phosphorylation is present in the 

no IR cdc10 synchronised control cells (Figure 4-7A). Contrary to this, a reduction in 

both Chk1-HA and (less obviously) H2A phosphorylation can be seen after IR in 

G1/S of rad9-2A mutant cells compared to rad9+. The rad9-2A mutant cells show a 

reduction in Chk1-HA phosphorylation at the 0, 30, 60 and 90 minute time points 

after IR and release. Importantly no reduction in Chk1-HA phosphorylation can be 

seen in rad9-2A as cells enter G2-phase at the 120 minute time point (Figure 4-7A, 

B). A similar pattern of H2A phosphorylation is apparent with a reduction in γH2A 

being observed at the 0, 30 and 60 minute time points after IR and release in rad9-

2A (Figure 4-7A).  

These results suggest that the Rad9 AAD is important for Rad3 activation, after 

damage, in S-phase. It also suggests that the Rad4-AAD cannot completely 

compensate for the Rad9 AAD after IR in S-phase, as it can after UV damage in 

asynchronous cells (Figure 4-5A, B, Figure 4-7A, B). Importantly, the reduction in 

H2A phosphorylation shows that it is probably a reduction in Rad3 activity, not just 

a problem with recruitment of the proteins required for Chk1 localisation. This is 

because, unlike Chk1, H2A is always at the chromatin and does not require other 

checkpoint factors for its localisation. Therefore, we can conclude that the rad9-2A 

mutant is not preventing Rad9 binding to Rad4 or any of its other binding partners, 

that are required for Chk1 localisation. 
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Figure 4-7. rad9-2A has a defect in Rad3 activation after IR in S-phase 

A. rad9+ and rad9-2A cells were synchronised at G1/S using a cdc10-
M17 arrest of 3.5 hours at 36°C. Cells were irradiated with 80Gy IR and 
immediately released into S-phase at 25°C. Chk1-HA and H2A 
phosphorylation was monitored by SDS PAGE using α-HA (top panel) or 
α-S129 (middle panel) respectively as a readout of Rad3 activation. α-
Tubulin was used as a loading control (bottom panel). B. DNA content 
of cells in A was monitored by FACs analysis as an indicator of cell cycle 
progression. Cells progress from a 1C DNA content to a 2C content. 
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4.6 The Rad9 AAD Does Not Play a Major role in the Replication 

Checkpoint 

As the rad9-2A mutant cells showed the highest sensitivity to HU when 

compared with other genotoxic agents, it is possible that the Rad9 AAD is 

important for activation of Rad3 within the replication checkpoint (as HU causes 

replication fork stalling) (Figure 4-3). Indeed Rad9 has previously been shown to be 

required for the replication checkpoint, although the downstream protein Crb2 is 

not required (Marchetti et al., 2002). Rad9 may therefore be playing a role, after 

fork stalling, other than its ability to recruit Rad4 and thus Crb2 to the chromatin-its 

roles after DNA damage. This new role may be the direct activation of Rad3. To test 

this hypothesis, the rad9-2A strain was crossed with a chk1Δ mutant and a spot test 

was performed (Figure 4-8). If the Rad9 AAD is activating Rad3 in the Cds1 

dependent replication checkpoint, crossing it with a chk1Δ will abrogate both the 

damage and replication checkpoints. This should increase the sensitivity of the 

rad9-2A mutant to replication fork stalling, as the damage checkpoint cannot 

activate if the unstabilised stalled forks collapse.  

Although the rad9-2A chk1Δ strain is more sensitive to HU than either of the single 

mutants, the increase in sensitivity is only mild. At 2 mM HU the rad9-2A and chk1Δ 

mutants alone do not show any sensitivity to HU, whereas the double mutant 

shows a slight sensitivity, but not to the extent as a cds1Δ or rad3Δ. Some UV 

damage may also lead to replication fork stalling and activation of the replication 

checkpoint as well as the damage checkpoint. Therefore, the rad9-2A chk1Δ strain 

was also spotted and UV radiated (Figure 4-8). Again the rad9-2A chk1Δ cells 

showed very little increase in sensitivity compared to the chk1Δ cells, and this 

increase can only be seen at the higher doses. Furthermore, the rad9-2A chk1Δ 

strain is not as sensitive as a rad3Δ strain to UV, and the rad9-2A mutant strain 

alone is not as sensitive as a cds1Δ strain (Figure 4-8).  

  



Figure 4-8. The Rad9 AAD plays a minor role in the replication checkpoint 
Spot test analysis of rad9+ (WT), rad9-2A and rad9-2A chk1Δ in the presence 
of the indicated doses of HU and UV. rad3Δ and cds1Δ were used as positive 
controls. 10-fold serial dilutions of 1x107 cells/ml were spotted onto YEA 
plates containing HU or alternatively onto YEA containing no genotoxic 
agents and UV irradiated. Plates were incubated for 4 days at 30°C. 
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Together the results from Figure 4-8 suggest that the Rad9-AAD does not play a 

major role in the activation of Rad3 in the replication checkpoint and is therefore 

most likely only playing a role after damage in S-phase. The sensitivity seen to HU in 

Figure 4-3 is a relatively high dose of HU, which may therefore result in fork 

collapse and thus the activation of the damage checkpoint.  

 

4.7 Conclusions and Discussion 

In this chapter, data implicating S. pombe Rad9 as a Rad3 activator has been 

presented, the ATR Activation Domain residues have been identified and 

characterised their role in the DNA damage checkpoint. Mutation of these rad9 

AAD residues, Y271 and W348, has no effect on the unperturbed cell cycle (Figure 

4-2A, B), but do show some mild sensitivity to genotoxic agents that have most of 

their effect in S-phase (Figure4-3A).At least some of this increase in sensitivity is 

likely to be due to a reduction in Rad3 activation:  a moderate reduction in Chk1 

and H2A phosphorylation can be seen in G1/S synchronised but not asynchronous 

cells after IR damage (Figure 4-7A, B; Figure 4-6A, B). Interestingly, increased 

sensitivity to genotoxic agents can be seen after combination of the rad9 AAD 

mutant with the rad4 AAD mutant, rad4-Y599R, (Figure4-3). This is also confirmed 

by the reduction in Chk1-HA phosphorylation seen in the double rad9-2A rad4-

Y599R compared with the single mutant cells alone after UV (Figure 4-5A). Indeed 

the % Chk1-HA phosphorylation at 150 J/m2 in the double mutant was only ~20% of 

the rad9+ or rad9-2A mutants alone and ~30% less than that of the rad4-Y599R 

strain (Figure 4-5B). The Rad9 AAD is therefore acting independently of the Rad4 

AAD and is playing a semi redundant role in the activation of Rad3 after DNA 

damage in S-phase.  

This role may be most important after large amounts of S-phase damage, such as 

that caused by IR in S-phase synchronised cells. This is because a reduction in Chk1-

HA phosphorylation can be seen in the rad9-2A single mutant after IR in S-phase, 

but not after UV in asynchronous cells even though UV causes most of its damage 
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in S-phase (Figure 4-7A, B and Figure 4-6A, B).  The Rad9 AAD appears not to be 

involved in the activation of Rad3 in the G2 ssDNA pathway of checkpoint 

activation, as first hypothesised. It also appears not to play a major role in the 

activation of Rad3 after replication fork stalling, although it may have a small 

contribution to this pathway (Figure 4-8).  

From the results in Chapter 3 and the results in this chapter, a model for the 

relative contributions each pathway plays in Rad3 and checkpoint activation can be 

made (Figure 4-9). After Damage in S-phase the major pathway to Rad3 activation 

is the ssDNA pathway (Figure 3-14A, B and Figure 4-9). The Rad4 AAD pathway is 

the next most important in S-phase and is required to amplify the levels of active 

Rad3 (Figure 3-14A, B and Figure 4-9).The Rad9 AAD pathway is then also required 

for Rad3 activation in S-phase, but its role can be compensated for by the Rad4 

AAD pathway, presumably by the Rad4 AAD pathway further amplifying the active 

levels of Rad3 to compensate for the loss of the Rad9 AAD. In G2 phase, the ssDNA 

pathway to Rad3 activation is required for almost all Rad3 activation; however the 

Rad4 AAD may play a small role depending on ssDNA levels (Figure 4-9). 

The conclusions drawn from this chapter for the role of the S. pombe Rad9 AAD 

differ to those previously reported for the budding yeast homolog Ddc1. The Ddc1 

AAD plays a much more important role in Mec1 (Rad3) activation than the spRad9 

AAD. In budding yeast, as already mentioned, the Dpb11 AAD plays a relatively 

minor role and is partially redundant with the Ddc1 AAD (Navadgi-Patil and 

Burgers, 2009). It would therefore seem that during evolution the importance of 

the Rad9 AAD in S. pombe has decreased, and that of the S. pombe Rad4 AAD has 

increased. In the Xenopus and mammalian systems the TopBP1 AAD seems to be 

very important for ATR activation. Furthermore it appears from Figure 4-1A that 

the Rad9 AAD residues are not conserved in Xenopus Rad9 or human Rad9A, 

suggesting that in higher eukaryotes, Rad9 does not have any ATR activating 

function.  However,  it has been shown that the residue in human Rad9A 

corresponding to Y271 in spRad9 and W352 in scDdc1 (H239) is exposed on the 

surface of the protein when mapped on to the crystal structure and a H239R 

heterozygous mutant has been found in 16% of patients with lung adenocarcinoma. 



Figure 4-9. Model: The Rad9 AAD plays a minor, semi-redundant, role in 
Rad3 activation in S-phase 
Diagram displaying a model for the relative importance of each of the 
Rad3 activation pathways in S.pombe after damage in S and G2 phases. 
Thickness of arrow represents the contribution of the Rad4 AAD, Rad9 
AAD or ssDNA dependent pathways to Rad3 activation. In S-phase all 
three pathways play some role in Rad3 activation. However, in G2 most 
of the Rad3 activation occurs via the ssDNA pathway with the Rad4 AAD 
may be playing a minor role if levels of ssDNA are low. The Rad9 AAD 
pathway plays no role in G2. See main text for further detail.  
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 This does suggest it may have an important role (Maniwa et al., 2006, Navadgi-

Patil and Burgers, 2009). It is still to be seen if this is in the stimulation of ATR 

kinase activity. 

The cell cycle dependency of the Rad9 AAD also differs between budding and 

fission yeast, with the Ddc1 AAD being most important in G1 and G2 phases and 

not being required in S-phase.  This is similar to the Rad4 (Dpb11) AAD, which also 

has distinct cell cycle role between the two organisms. The recent characterisation 

of DNA2 as the S-phase activator of Mec1 in S. cerevisiae suggests that at least one 

other Rad3 activator maybe be present in S. pombe and it is likely this may have a 

role in Rad3 activation during G2 (Kumar and Burgers, 2013).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 



144 
 

Chapter 5 

Sequential Phosphorylation of 
Crb2 by Cdc2 is Required for the 
Activation of the DNA Damage 

Checkpoint 
 

5.1 Background 

As described in the “1.5.5 The Activation of the ATR Checkpoint Pathway” and 

“1.6.3 TopBP1 as a scaffold in the DNA Checkpoints” sections, Rad4 acts as a scaffold 

protein during the activation of the DNA damage checkpoint, by coupling Rad9 (of the 

9-1-1 complex) to the mediator protein Crb2 (Garcia et al., 2005). Saka et al., (1997) 

first identified the interaction between Rad4 and Crb2 by yeast two hybrid and an in 

vitro binding assay (Saka et al., 1997). Crb2 was then shown to be phosphorylated by 

Cdc2 in a cell cycle and DNA damage dependent manner on T215 (Esashi and Yanagida, 

1999). However, a number of reports assigning different functions to the 

phosphorylation of T215 by Cdc2 have been made. Initially it was reported that the 

phosphorylation of Crb2-T215 by Cdc2 was required to turn off the DNA damage 

checkpoint and allow cells to re-enter the cell cycle after damage. It was shown that 

crb2-T215A mutant cells remained arrested with phosphorylated (active) Chk1 even 

after the DNA had been repaired. However, this study was carried out in crb2Δ cells 

with either crb2 or crb2-T215A highly over expressed from plasmids, the results may 

therefore be affected by the experimental method used.  

A later study showed that Crb2-T215 phosphorylation was required for a late stage of 

homologous recombination-dependent DNA repair in G2, therefore implicating this 

Cdc2 dependent phosphorylation in a process other than the damage checkpoint 

(Caspari et al., 2002). The T215 phosphorylation was then shown to be important for a 
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full DNA damage checkpoint response. It was shown that a crb2-T215A mutant was 

able to initiate but not sustain Chk1 phosphorylation after DNA damage. In the 

absence of T215 phosphorylation the interaction between Crb2 and γH2A became 

essential for checkpoint activation. Furthermore, in a strain where Cdc2 is inactivated 

and the H2A phosphorylation sites mutated, Chk1 phosphorylation is greatly impaired 

(Nakamura et al., 2005). This data pointed to the phosphorylation of Crb2-T215 being 

important for a second pathway of Crb2 recruitment to damage sites that is 

independent of histone modification. Indeed it was shown, by yeast two hybrid, that 

the interaction originally seen between Crb2 and Rad4 was dependent on Crb2 -T215 

phosphorylation and the BRCT1 and 2 domain containing N-terminus of Rad4. 

Furthermore, fluorescence microscopy at a HO induced double strand break showed 

that Crb2 foci can still be seen in a H2A-AQ mutant or a crb2-T215A mutant, but not in 

a strain where both mutations were present. This therefore proved that Crb2-T215 

phosphorylation by Cdc2 was important for Crb2 recruitment to damage sites and for 

the DNA damage checkpoint, in a pathway distinct from the chromatin dependent 

pathway (Du et al., 2006). However, a crb2-T215A mutant is only mildly sensitive to 

DNA damage as it only shows a very modest reduction in viability after IR (Nakamura 

et al., 2005). Also a crb2-T215A mutant combined with a set9Δ (the methylase 

required for H4-K20Me and therefore crb2’s interaction with the chromatin) is not as 

sensitive as a crb2Δ (Du et al., 2006).  

This therefore points to other additional requirements for Crb2 recruitment to damage 

sites and the subsequent recruitment and activation of Chk1. In budding yeast, a 

number of Cdk1 phosphorylation sites have been identified on the Crb2 homolog 

Rad9. Initially Granata et al., (2010) showed, by yeast two hybrid and IP, that 

Rad9Crb2S11 was required for the Rad9 interaction with Dpb11Rad4. This, as with Crb2-

T215, was required for checkpoint activation in a separate pathway to histone 

modification (Granata et al., 2010). Subsequently (as described in the “1.6.3 TopBP1 as 

a scaffold in the DNA Checkpoints” section) two more Cdk1 dependent 

phosphorylation sites were identified on Rad9Crb2, S462 and T474, and these were 

shown to be sufficient for the interaction between Rad9 and the Dpb11 N-terminus. 
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These sites are cell cycle regulated and required for checkpoint activation in G2, 

especially when the set9 homolog dot1 is deleted (Pfander and Diffley, 2011).  

 

5.2 Identification of Two Additional Cdc2 Sites on Crb2, Du Laboratory 

Data 

The conflicting data with regard to the function of Crb2-T215 phosphorylation, 

the relatively high viability seen in a crb2-T215A mutant, the sensitivity of crb2-T215A 

set9Δ being lower than a crb2Δ and the existence of multiple Cdk1 phosphorylation 

sites on budding yeast Rad9Crb2  , prompted our collaborator Li Lin Du to search for 

additional Cdc2 sites on Crb2 that maybe playing a role in checkpoint activation.  Using 

sequence alignments and truncation experiments, the Du laboratory were able to 

identify two additional potential phosphorylation sites, T187 and T235, on the N-

terminus of Crb2, one on either side of the T215 site (Figure 5-1A). T235 is a canonical 

Cdk (Cdc2) TP site, where as T187 is a TV site which is not a canonical phosphorylation 

site for any known kinase (Figure 5-1B). Using a HO DSB assay, they showed that 

mutation of T187, T215 or T235 to alanine in a reporter construct in which Crb2 has 

been truncated to remove the Tudor and BRCT domains (preventing interaction with 

the chromatin), and which had a Leucine zipper,  to still allow dimerisation (crb2 (67-

353)-LZ), prevented foci formation. i.e. T187, T215 and T235 are all required for Crb2 

localisation to a DSB, as seen by foci formation when crb2 cannot bind the chromatin, 

suggesting they may be required for checkpoint activation.  

The Du laboratory then went on show that, in this reporter construct, all three of the T 

to A mutants were sensitive to IR and UV. To see if the newly identified sites T187 and 

T235 were indeed phosphorylated, the Du laboratory had phospho-antibodies 

generated against the two sites. They showed that both sites were indeed 

phosphorylated in nda3-KM311 (G2/M) arrested cells when Cdc2 activity is highest, 

but were not phosphorylated in the alanine mutants. This also implies that no DNA 

damage is required for these phosphorylations. 
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As T187 is not a consensus site for any known kinase, it was important to identify the 

kinase that was phosphorylating this site. Using recombinant protein and a Crb2 

peptide (1-265) they showed, in vitro, that it was indeed Cdc2-Cdc13 that was 

phosphorylating T187 and not two other possible candidates; Chk1 or Cds1. 

Interestingly in vitro and in vivo T187 phosphorylation was dependent on T215 and 

T235 being available for phosphorylation. Mutation of T215 or T235 to alanine 

abolished Crb2 (67-358)-LZ T187 phosphorylation in nda3-KM311 arrested cells. In 

vitro a moderate reduction of T187 phosphorylation could be seen in a peptide 

harbouring T215A T235A mutations. This suggested that T187 phosphorylation may be 

regulated in some way by the prior phosphorylation of T215 and T235. 

As homodimerisation of Crb2 is essential for its function, it was interesting to see if 

both molecules within a dimer had to be phosphorylated on T187 for resistance to 

DNA damage and recruitment to the HO break site. To this end, the Du laboratory 

constructed a system in which crb2 (67-358) was tagged with either YFP or the GFP 

binding protein (GBP). These two constructs were co-expressed from plasmids and led 

to Crb2 foci formation which localised with Rad52 foci (a DNA repair protein) after HO 

break induction. No Crb2 foci were seen if only one of the constructs was expressed. 

This therefore showed that the YFP and GBP tags were sufficient for Crb2 dimerisation 

and thus localisation to DNA damage sites. If T187 was mutated to alanine in both or 

either one of the constructs, Crb2 foci formation after HO induction was no longer 

seen. This suggested that T187 phosphorylation was required on both Crb2 molecules 

of a dimer. Furthermore both T187 sites of the dimer had to be available for 

phosphorylation for resistance to IR or UV damage. Mutation of both T187 sites led to 

high sensitivity to DNA damage, whereas mutation of one or the other led to 

intermediate sensitivity.   

 

5.3 crb2-T187A is More Sensitive to DNA Damage Than T215A or T235A 

To confirm that full length crb2-T187A, T215A and T235A are sensitive to DNA 

damage, not just the Du laboratories reporter constructs, a Crb2 base strain was 
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constructed (materials and Methods) and the three mutants made by RMCE ((Watson 

et al., 2008); Material and Methods). A spot test was then carried out after UV or 

ionising radiation using crb2+, crb2Δ (base strain), T187A, T215A and T235A cultures. In 

this case the crb2-T187A mutant showed strong sensitivity to both UV and IR, which 

was comparable to that of the crb2Δ (Figure 5-2A). The crb2-T215A and T235A exhibit 

a mild level of sensitivity to DNA damage which is between that of crb2+ (WT) and the 

T187A or crb2Δ. This suggests that these sites may be less important than the T187 site 

(Figure 5-2A). Interestingly, if the T215A and T235A mutants are combined they now 

show sensitivity to a similar level of severity as the crb2Δ, implying that they are 

additive and maybe able to partially compensate for each other.   

 

5.4 crb2-T187A, T215A and T235A Exhibit a DNA Damage Checkpoint 

Defect 

To see if the sensitivities of the Crb2 phospho mutants to DNA damaging agents 

relate to a checkpoint defect, a G2 checkpoint assay was carried out (Figure 5-3). In 

this assay cells are synchronised in G2 by lactose gradient and exposed to either no 

damage, 100 Gy or 250 Gy of ionising radiation. The time it takes for cells to progress 

into mitosis is then measured by mitotic index (% of post mitotic cells). If there is a 

defect in the G2 DNA damage checkpoint then cells will progress into mitosis faster 

than WT and will not exhibit a robust DNA damage-dependent checkpoint delay. From 

Figure 5-3 it can be seen that crb2+ cells show a checkpoint delay of ~60 minutes after 

100 Gy compared to 0 Gy, this is then increased to ~120 minutes after 250 Gy. 

However, in the crb2-T187A mutant only a very modest delay of ~20 minutes can be 

seen after 100 Gy and this is barely increased after 250 Gy. This suggests, in this assay, 

that the crb2-T187A strain is almost entirely G2 checkpoint defective (Figure 5-3).  The 

T215A and T235A mutants show an almost identical and intermediate checkpoint 

delay with a ~50 minute delay after 100 Gy, which is not increased after 250 Gy. This is 

consistent with previous data from the Russell laboratory for T215A (Figure 5-3) 

(Nakamura et al., 2005). 



UV 

A 

B 

Figure 5-2. crb2-T187A, T215A and T235A are sensitive to DNA damaging 
agents 
A. Spot test analysis of crb2+ (WT), crb2Δ, crb2-T187A, crb2-T215A and crb2-
T235A after the indicated doses of UV or ionising radiation or after no 
damage (untreated). 10-fold serial dilutions of 1x107 cells/ml were spotted 
onto YEA plates and UV irradiated or not. Alternatively for IR cells were γ 
irradiated, serial diluted and then spotted onto YEA. Plates were incubated 
at 30°C for 4 days. B. Spot test analysis of crb2+ (WT), crb2Δ, crb2-T187A, 
crb2-T215A, crb2-T235A and crb2-T215A T235A double mutant after the 
indicated doses of UV or no damage, carried out as for UV/no damage in A. 
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Figure 5-3. crb2 T187A, T215A, T235A exhibit a checkpoint defect after 
ionising radiation 
G2 checkpoint assay. The indicated strains were synchronised in G2 via 
lactose gradient, split and treated with 0 Gy, 100 Gy or 250 Gy. Cells were 
then grown in YE at 30°C with samples being taken every 20 minutes to 
measure cell cycle progression. Cell cycle progression was monitored by 
mitotic index via fluorescence microscopy on  DAPI stained fixed cells until 
~ 80% of cells had progressed to mitosis. A reduction in time compared to 
WT indicates a G2 checkpoint defect. 
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To see if the checkpoint defects seen in the Crb2 phospho mutants are due to a 

reduction in Chk1 phosphorylation by Rad3, western blot analysis was carried out. 

Asynchonous crb2+, T187A, T215A, T235A and T215A T235A cells were exposed to 

increasing doses of IR, Chk1-HA and H2A phosphorylation was then monitored by 

western blot (Figure 5-4A). The T187A mutant shows no Chk1-HA phosphorylation 

even at the relatively high 500 Gy dose, which is consistent with the sensitivity and 

mitotic index data (Figure 5-2A, Figure 5-3, Figure 5-4A). Furthermore, the T215A and 

T235A mutants show a very similar intermediate level of Chk1-HA phosphorylation 

which is less than crb2+ but not completely abolished (Figure 5-4A). Again this is 

consistent with the spot test and mitotic index assays. However, slightly inconsistent 

with the mitotic index data, an increase in Chk1-HA phosphorylation can be seen 

between 100 Gy and 250 Gy, whereas in Figure 5-3 an increase in cell cycle delay could 

not (Figure 5-2A, Figure 5-3, Figure5-4A). One reason for this may be that the mitotic 

index experiment was carried out before the construction of the crb2 base strain and 

was therefore done in strains obtained from the Du laboratory. In these strains crb2 is 

integrated at the exogenous leu1 locus and is tagged with 2xYFP. chk1 is also tagged in 

these strains with 9myc2HA6His, this may have a mild effect on the phenotypes seen. 

None the less the T215A and T235A mutants show a consistent intermediate 

phenotype.  

Interestingly, when combined, the T215A T235A double mutant shows an additive 

reduction in Chk1-HA phosphorylation and exhibits no phosphorylation at any of the IR 

doses tested. This is similar to that in seen in the T187A mutant and consistent with 

the spot test in Figure 5-2B (Figure 5-4A). Importantly no reduction in phosphorylated 

H2A (γH2A) can be seen in any of the crb2 mutants (Figure 5-4A). This implies that 

Rad3 is still active and can phosphorylate its downstream targets (unlike that seen for 

the rad4-Y599R in Chapter 3). The checkpoint defect seen in the crb2 phospho mutants 

is most likely due to a problem in recruiting Crb2 and/or Chk1 to the damage site, not 

in Rad3 activation per se.   

A similar experiment to that in Figure 5-4A was carried out to test if the crb2 mutants 

display the same Chk1-HA phosphorylation defect to UV as they do to IR (Figure 5-4B). 



A 

B 

Figure 5-4. The crb2 phsopho-mutants show reduced Chk1-HA 
phosphorylation after damage. 
A. Checkpoint activation was assayed in the indicated strains after ionising 
radiation via Chk1-HA and H2A phosphorylation. Asynchronous crb2+, crb2-
T187A (T187A), crb2-T215A (T215A) crb2-T235A (T235A) and Crb2-
T215A/T235A (T215A T235A) cells were exposed to γ-radiation at the 
indicated doses. ChK1-HA phosphorylation (P) was assayed by SDS PAGE 
using  α-HA  (top panel) and H2A phosphorylation using α-S129. α-Tubulin 
was used as a loading control (bottom panel). B.  As in A but after UV 
radiation 
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 An almost identical pattern of both Chk1-HA and H2A phosphorylation can be seen 

after UV as it can after IR in all the crb2 phospho mutants. T187A and T215A T235A 

show no Chk1-HA phosphorylation at any dose, whereas T215A and T235A show a 

moderate reduction in Chk1-HA phosphorylation. This is also consistent with Figure 5-

2A and B (Figure 5-4B). No reduction in H2A phosphorylation can be seen in any of the 

crb2 phospho mutants after UV, as with IR (Figure 5-4B). This suggests that the 

phosphorylation of Crb2 is important for checkpoint activation after both ionising 

radiation and UV damage. 

 

5.5 Conversion of T187 to a Canonical Cdc2 Consensus Site Rescues the 

T215A T235A Checkpoint Defect 

As phosphorylation of Crb2 on the non-canonical Cdc2 site (T187) is dependent 

on the canonical T215 and T235 being available for phosphorylation, a hierarchical 

mechanism of phosphorylation may be occurring in which the phosphorylation of the 

canonical sites are required for the phosphorylation of the non-canonical T187 (Du lab 

data). To test this, V188 on crb2 was mutated via RMCE to give a canonical Cdc2 TP 

consensus site at T187 (V188P). The V188P mutant did not show any DNA damage 

sensitivity, suggesting that T187 is still phosphorylated and that converting it to a 

canonical site has no effect in an otherwise WT back ground (Figure 5-5). However, 

when the V188P mutation is made in a crb2-T215A T235A allele, the sensitivity of the 

T215A T235A mutant to DNA damage is partially rescued (Figure 5-5). The triple V188P 

T215A T235A is much less sensitive than the T215A T235A, crb2Δ and T187A and 

shows an intermediate level of sensitivity (Figure 5-5). This result suggest that there is 

indeed a hierarchical system of Crb2 phosphorylation and this is at least in part due to 

T187 being a non-canonical Cdc2 site.  

To confirm this result and to see if the V188P mutation could restore the Chk1 

phosphorylation defect seen in T215A T235A in Figure 5-4, Chk1 phosphorylation was 

assayed by western blot after DNA damage in asynchronous cells (Figure 5-6). 
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A 

B 

Figure 5-6. Conversion of crb2-T187 to a canonical Cdc2 site partially rescues 
crb2-T215A T235A Chk1-HA phosphorylation defect after DNA damage. 
A. Checkpoint activation was assayed in the indicated strains after ionising 
radiation via Chk1-HA and H2A phosphorylation. Asynchronous crb2+ (WT), 
crb2Δ, crb2-T187A (T187A), crb2-T215A (T215A), crb2-T235A (T235A), crb2-
T215A/T235A (T215A T235A), crb2-V188P (V188P) and crb2-
V188P/T215A/T235A (V188P T215A T235A) cells were exposed to γ radiation 
at the indicated doses. ChK1-HA phosphorylation (P) was assayed by SDS PAGE 
using  α-HA  (top panel) and H2A phosphorylation using α-S129. α-Tubulin was 
used as a loading control (bottom panel). B.  As in A but after UV radiation. 
Same blot as in Figure 5-4 except for V188P and V188P/T215/T235 lanes  
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 Indeed, it can be seen, after both IR and UV damage, that the triple V188P T215A 

T235A mutant exhibits a higher level of phosphorylation than T215A T235A double 

(Figure 5-6A, B). This further adds to the notion that converting T187 to a Cdc2 

consensus site partially bypasses the need for T215 and T235 phosphorylation in Chk1 

activation. Interestingly, the V188P mutant showed higher Chk1-HA phosphorylation 

after both IR and UV damage than crb2+ (Figure 5-6A, B). This may indicate that 

converting T187 to a TP site leads to a more robust checkpoint. It could, however, be 

due to loading inconsistencies between lanes, it is difficult to distinguish between 

these two possibilities using just the Tubulin loading control. The V188P mutation also 

has no effect on H2A phosphorylation as expected (Figure 5-6A, B).        

 

5.6 Conclusion and Discussion 

The data in this chapter, and that from Li Lin Du’s laboratory, have identified two 

new Cdc2 dependent phosphorylation sites on Crb2, one canonical site and one non-

canonical, that are phosphorylated in a non-damage dependent manner, both in vivo 

and in vitro (Du lab data;  Figure 5-1B). These two sites, along with the already 

identified T215 site, are required for the activation of the DNA damage checkpoint 

after both ionising radiation and UV. The T187A mutant seems to be the most 

important of the three phosphorylation sites and displays a very strong sensitivity to 

DNA damage, similar to that seen in a crb2Δ (Figure5-2A). This sensitivity relates to a 

checkpoint defect, as seen by mitotic index and Chk1 phosphorylation (Figure 5-3, 5-

4A, B). crb2-T187A displays almost no checkpoint arrest after ionising radiation and no 

visible Chk1-HA phosphorylation can be seen after IR or UV, even at high doses. This 

suggests that phosphorylation of this residue is critical for checkpoint activation 

(Figure5-3A, Figure5-4A,B).   

As with previous studies, we show that the T215A mutation only displays a mild 

sensitivity to DNA damage and a mild checkpoint defect (Nakamura et al., 2005, Du et 

al., 2006). This is not consistent with it being the critical residue for Crb2 recruitment, 

as previously thought. Furthermore, we show that mutation of T235 to alanine displays 
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a phenotype almost identical to that of T215A, suggesting they both have equal 

importance in checkpoint activation. The combination of T215A and T235A results in 

an additive phenotype, implying that these phosphorylations have overlapping 

function, co-operate in the same process and may partially compensate for the loss of 

one or the other. The T215A T235A mutant displays a similar phenotype to that of 

T187A. This, in conjunction with the fact that T187 phosphorylation is dependent on 

T215 and T235, indicates a hierarchical system of Crb2 phosphorylation. Converting 

T187 from a TV to a TP site confirmed this notion, as it partially rescued the sensitivity 

and checkpoint defect seen in T215A T235A. From this data we can therefore build a 

model in which Cdc2-Cdc13 first phosphorylates Crb2 on both the T215 T235 canonical 

sites of the Crb2 dimer, independently of DNA damage, possibly in late S-phase (Figure 

5-7A). These phosphorylations prime Crb2 for phosphorylation by Cdc2-cdc13 on the 

non-canonical T187 site, again most likely in a non-damage dependent manner, as 

phosphorylation can be seen in non-damaged G2/M arrested cells. It is this 

phosphorylation of T187 that is the most important for checkpoint activation (Figure 5-

7B). The role of Cdc2 phosphorylation of Crb2, and its importance in checkpoint 

activation has therefore been further characterised. However, from the results in this 

chapter, the molecular mechanism underlying this hierarchical phosphorylation cannot 

be identified.   

From this data, it can be predicted that the T187 phosphorylation is important for the 

interaction between Crb2 and Rad4 and maybe the critical residue for this interaction, 

rather than T215. It may be that the previous data showing a reduced interaction 

between Crb2 and Rad4 in the T215A mutant via yeast two hybrid is due to reduced 

phosphorylation of T187. This hypothesis, along with the mechanism of the 

hierarchical phosphorylation, will be explored in the next chapter.    
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Chapter 6 

Rad4 BRCT Domains 1 and 2 Bind 
Cdc2 Phosphorylated Crb2 

 

6.1 Background, Pearl and Du Laboratory Data 

The data in chapter 5 and that from the Du lab showed that Crb2 is 

phosphorylated on three sites, T187, T215, T235 by Cdc2-Cdc13, and that this was 

required for checkpoint activation after DNA damage. Furthermore, phosphorylation 

of T187 appeared to be the most important for checkpoint activation and its 

phosphorylation was dependent on phosphorylation of T215 and T235. Mutation of 

T215 and T235 gave an intermediate phenotype, however when combined, a 

phenotype similar to that in a T187A mutant was seen.  

To further understand the role of these phosphorylations and their hierarchical nature 

Mathieu Rappas and Tony Oliver of the Pearl laboratory, carried out in vitro binding 

assays and crystallography studies (Summarised in Figure 6-1A, B). The in vitro 

fluorescence polarisation (FP) studies showed that a peptide containing 

phosphorylated T187 bound to both Rad4 BRCTs 1 and 2 with high affinity, but bound 

BRCT1 most strongly. A phosphorylated T235 peptide also bound to Rad4 BRCT2, but 

with a moderate affinity, and did not bind BRCT1. Interestingly, phosphorylated T215, 

the previously characterised phosphorylation site, did not bind either BRCT1 or BRCT2 

of Rad4 with any significant affinity. However, a peptide containing phosphorylation on 

both T215 and T235 showed a high affinity to a fragment of Rad4 containing functional 

BRCTs 1 and 2. This affinity was much stronger than either of the phosphorylations 

alone, suggesting that once pT235 has bound to BRCT2, pT215 can stabilise the 

interaction by associating with BRCT1 (Figure 6-1A, B). This data is consistent with the 

phenotypes of the crb2 phospho-mutants seen in vivo. The phospho mutants that give 

the strongest checkpoint defect are the ones that bind Rad4 with the highest affinity.  
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This suggests that the phosphorylations on T187, T215 and T235 are required for the 

interaction between Crb2 and Rad4. None of the Crb2 peptides tested bound to BRCTs 

3 and 4, but peptides based on the previously characterised Rad9 phosphorylated 

residues, T412 and S423, did bind with relatively high affinity ((Furuya et al., 2004, 

Furuya et al., 2010)(Figure 6-1B).  

To confirm these phospho-dependent interactions and to gain insight into the nature 

of the interaction between Rad4 and Crb2, Mathieu Rappas and Tony Oliver carried 

out co-crystallisation studies between Rad4 BRCTs 1 and 2 and the phosphorylated 

Crb2 peptides (Summarised in Figure 6-1B). Crystals were obtained for pT187 bound to 

both BRCTs 1 and 2 and for pT235 bound to BRCT2. pT605 of Sld3, which has been 

shown to be required for initiation of replication, also bound to BRCT1, albeit with 

lower affinity than T187, and co-crystallised (Fukuura et al., 2011) (“1.6.6 TopBp1 and 

Initiation of DNA Replication” section) (Figure 6-1B). It can also be predicted that Sld3 

pT619 binds BRCT2, but no data was obtained for this.  

To understand whether the phospho-interactions between Crb2 and Rad4 seen in vitro 

were also apparent in vivo, the Du laboratory carried out pull down assays. In these 

assays Crb2 peptides containing either pT187, pT215, pT235, pT215 pT235 or no 

phosphorylation were incubated with S. pombe extracts, the peptide was then pulled 

down and Rad4 was blotted for on a western blot. The non-phosphorylated peptide 

pulled down no Rad4. Consistent with the in vitro data, pT187 pulled down a large 

quantity of Rad4, pT215 pulled down no Rad4, pT235 pulled down a very small amount 

and the double pT215/pT235 pulled down almost as much as the pT187. This data 

therefore confirmed the in vitro data from the Pearl laboratory. The phospho sites that 

interacted most strongly in vitro, pT187 and pT215/pT235, interacted most strongly ex-

vivo. It is also consistent with T187A and the T215A/T235A double having the most 

severe checkpoint defect (Chapter 5) 
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6.2 Creation of rad4 BRCT1 Mutants 

From the crystal structures obtained by the Pearl laboratory, the key residues in 

Rad4 BRCT1 required for binding to phosphorylated residues were identified. To see if 

Rad4 BRCT1 was indeed required for checkpoint activation, and to confirm that the 

phospho binding residues were binding phosphorylated Crb2, mutations were made in 

three residues within the BRCT phospho binding pocket (Figure 6-2A). The mutations 

made were T15V, R22E, K56A and K56E. As Rad4 BRCT1 also binds phosphorylated 

Sld3, and this is its essential function, there was a risk that mutation of the phospho 

binding pocket could be inviable. For this reason the K56A and K56E mutants were 

both constructed. K56E is a charge reversal mutation and should therefore prevent all 

phospho binding, whereas K56A is a charge neutralisation. K56A should give a milder 

reduction in binding and is predicted to have a less server phenotype, which is more 

likely to be viable if full disruption of the phospho-binding pocket is lethal.  

The cassette exchange efficiency of the rad4 mutants can be used as an indicator of 

the viability of the mutants. If, when inserting a mutant, the loss of the WT allele and 

associated ura4 marker at the endogenous locus by RMCE leads to ~< 2% colony 

growth on 5-FOA (kills ura+ cells), then the mutation is most likely lethal. The 

remaining ~2% survivors are probably due to gene conversion events between the 

mutant and WT gene, leading to loss of the ura4 marker but the presence of a WT rad4 

allele (2.4.1 Recombination Mediated Cassette Exchange RMCE and 2.4.2 Creation of 

rad4 Mutant Strains by RMCE) (Watson et al., 2008)). From Figure 6-2B it can be seen 

that all four mutants had a high cassette exchange efficiency and were viable. This 

suggests that BRCT1 is not essential for Rad4s role in the initiation of replication, even 

though it does bind to Sld3. Although the Rad4 BRCT1 mutants were viable, the 

mutations may still be having a significant detrimental effect on the initiation of 

replication. To ensure that this was not the case FACS analysis to obtain the cell’s DNA 

content was carried out on exponentially growing rad4+ (WT), T15V, R22E, K56A and 

K56E cells, at 30°C. It can be seen that all of the mutants have the same profile as the 

rad4+ strain. It is, therefore, unlikely that they are significantly affecting the initiation 

of DNA replication at this temperature.  



A 

B 

C 

Figure 6-2. rad4 BRCT1 phospho-binding pocket mutants are viable. 
A. Diagram showing the position of the four rad4 BRCT1 mutants, T15V, 
R22E, K56A, K56E, within Rad4. B. Table showing the cassette exchange 
efficiency for inserting WT, rad4 T15V, R22E, K56A and K56E into the Rad4 
base strain. Efficiency is calculated as the number of colonies that grew on 
5FOA plates as a percentage of the number of cells plated after cassette 
exchange. Viability was ensured by sequencing the DNA of the colonies that 
grew C. FACS profile of asynchronously growing  rad4+, rad4 T15V (T15V), 
rad4 R22E (R22E), rad4 K56A (K56A) and rad4 K56E (K56E) strains, displaying 
a 2C DNA content 
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6.3 rad4 BRCT1 Mutants Are Not Temperature Sensitive  

As a commonly used temperature sensitive rad4 mutant, rad4-116, used in the 

laboratory is at T45 and  leads to loss of viability at non permissive temperature, it is 

possible that the T15V, R22E and K56A/E mutants may also be temperature sensitive, 

due to their similar location (Fenech et al., 1991). To ensure that this is not the case, 

growth curves were carried out in WT and each of the mutant strains at 25°C and 36°C. 

If any of the mutants were temperature sensitive, and therefore had a defect in DNA 

replication initiation, then a slow growth phenotype would be observed at 36°C but 

not at 25°C. From Figure 6-3A it can be seen that the WT and all of the BRCT1 mutants 

grow at the same rate at both 25°C and 36°C. To ensure that this is the case, a spot test 

was also carried out with rad4+ and the four BRCT1 mutants at 25°C, 30°C and 36°C 

(Figure 6-3B). Again no growth phenotype can be seen in any of the mutants, at any of 

the temperatures tested, confirming that the mutations made in rad4 BRCT1 are not 

temperature sensitive for replication initiation (Figure 6-3B). Furthermore, the cells are 

not elongated in any of the mutants at 36°C, suggesting no delay in cell cycle 

progression at this temperature (Figure 6-3C). 

 

6.4 rad4 BRCT1 Mutants are Sensitive to Genotoxic Agents and Display a 

Checkpoint Defect 

To see if the Rad4 BRCT1 phospho binding mutants are involved in the activation 

of the DNA damage checkpoint, and, if so, in response to which types of DNA damage, 

spot tests were performed (Figure 6-4). It can be seen form Figure 6-4 that T15V, K56A 

and K56E are sensitive to all the genotoxic agents tested. T15V and K56E showed the 

strongest sensitivity, with K56A showing a slightly weaker phenotype (apparent after 

IR and CPT), as expected. As well as being sensitive to the DNA damaging agents, UV, 

CPT, IR and MMS T15V and K56A/E also showed sensitivity to high doses (4mM) of the 

RNR inhibitor (and therefore replication fork stalling)  HU (Figure 6-4). This may imply a 

role for Rad4 BRCT1 in the replication checkpoint, however, at these doses it maybe 

that the forks collapse and the DNA damage checkpoint is activated. 



A 

B 

C 
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Figure 6-3. rad4 BRCT domain 1 mutants have no unperturbed 
cell cycle defects and are not TS 
A. Exponentially growing rad4+, rad4-T15V (T15V), rad4-R22E 
(R22E), rad4-K56A (K56A) and rad4-K56E (K56E) strains were 
grown for 9 hours in YE at either 25°C or 36°C whilst being kept 
in exponential phase by dilution. Cell density was calculated every 
hour and adapted for the dilution factor. B. Spot test analysis of the 
rad4 strains in A. 10-fold serial dilutions of 1x107 cells/ml were 
spotted onto YEA plates and grown for 4 days at either 25°C, 30°C 
or 36°C. C. Light microscopy pictures of exponentially growing unfixed 
rad4 strains from A 36°C. 



Figure 6-4. rad4 BRCT domain 1 mutants are sensitive to genotoxic 
agents. 
Spot test analysis of rad4+, rad4-T15V, rad4-R22E, rad4-K56A, rad4-K56E 
and rad3Δ positive control in the presence of different genotoxic agents 
10-fold serial dilutions of 1x107 cells/ml were spotted onto YEA plates 
containing CPT, MMS or HU. Alternatively they were spotted onto YEA 
containing no genotoxic agents and UV irradiated. For IR cells were γ 
irradiated, serial diluted and then spotted onto YEA. Plates were 
incubated at 30°C for 4 days 
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Interestingly R22E did not show any sensitivity to any of the DNA damaging or 

replication fork stalling agents tested, when compared with rad4+. In the crystal 

structures obtained by the Pearl laboratory, R22 was positioned as though it was 

flipped out of the phospho binding pocket of BRCT1. From looking at previously solved 

crystal structures of other BRCT domains, it was thought that this positioning of R22 

may be a crystallographic artefact, and R22 is actually positioned facing into the 

phospho binding pocket in vivo (Tony Oliver personal communication). However, from 

the results in Figure 6-4 it would seem that R22 is indeed facing out of the phospho 

binding pocket and is not involved in the binding of phosphorylated residues. 

To understand if the sensitivity of rad4-T15V and K56E to the genotoxic agents in 

Figure 6-4 is due to a defect in the DNA damage checkpoint, a G2 checkpoint assay was 

performed. Cells were synchronised in G2 by lactose gradient and exposed to either 0 

Gy, 100 Gy or 250 Gy IR, cell cycle progression was then monitored by mitotic index 

(Figure 6-5). In rad4+ (WT) cells, a delay of 80 minutes and 120 minutes after 100 Gy 

and 250 Gy respectively can be seen when compared with 0 Gy, thus showing that the 

G2 checkpoint is active. In both the rad4-T15V and K56E mutants, delays of only 20 

minutes and 40 minutes after 100 Gy and 250 Gy respectively can be seen, strongly 

implying a major checkpoint defect in these mutants, as the cells barely arrest after 

damage (Figure 6-5). To understand if this is due to a reduction in Chk1 

phosphorylation by Rad3, western blot analysis was carried out in the four rad4 BRCT 

mutants after IR and UV (Figure 6-6 A, C). Consistent with the checkpoint assay in 

Figure 6-5, rad4-T15V and K56E show no visible Chk1-HA phosphorylation after 

ionising radiation even at the relatively high 500 Gy dose. Surprisingly K56A also shows 

no Chk1-HA phosphorylation, even though the sensitivity to IR in Figure 6-4 was not as 

severe K56E. This, however, may be due to a small amount of phosphorylation not 

being visible on the western blot at this exposure. As expected, rad4-R22E shows WT 

like Chk1-HA phosphorylation after IR, consistent with the lack of sensitivity to IR seen 

in Figure 6-4 (Figure 6-6A). Chk1-HA phosphorylation is also almost abolished in rad4-

T15V, K56A and K56E after UV radiation. However, a small residual level of Chk1-HA 

phosphorylation can still be seen, particularly in the K56A and K56E mutants, implying 

a low level of checkpoint activation (Figure 6-6C).  
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A 

B 

C 

D 

Figure 6-6. rad4 BRCT domain 1 mutants display reduced Chk1-HA 
phosphorylation after IR and UV.  
A. Checkpoint activation was assayed in the indicated strains after 
ionising radiation via Chk1-HA phosphorylation. Asynchronous rad4+, 
rad4-T15V, rad4-R22E, rad4-K56A and rad4-K56E cells were exposed to 
γ-radiation at the indicated doses. Chk1-HA phosphorylation (P) was 
assayed by SDS PAGE using  α-HA. B. As in A except H2A phosphorylation 
was assayed by SDS PAGE using α-S129 (top panel). α-Tubulin was used 
as a loading control (bottom panel). C.  As in A but after exposure to UV 
radiation. D. as in B except after exposure to UV radiation 
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To ensure that the lack of Chk1 phosphorylation in rad4-T15V K56A/E is due to a loss 

of the Rad4-Crb2 interaction and not a loss of Rad3 activity, which could arise due to 

the mutations made affecting Rad4s AAD activity or recruitment of Rad3 to the site of 

damage, phospho (γ) H2A was also blotted for after IR and UV. No obvious reduction in 

γH2A can be seen in any of the rad4 BRCT mutants after IR or UV. This suggests that 

loss of Chk1 phosphorylation in these mutants is due to a loss of the Rad4-Crb2 

interaction, and therefore Chk1 recruitment to the site of damage, and not to loss of 

Rad3 activity (Figure 6-6B, D).  

 

6.5 T15V and K56E Mutations do Abolish all Phospho Binding Ability of 

Rad4 BRCT1 

As the rad4 K56E and T15V mutants were viable, even though Rad4 BRCT1 has 

been shown to bind Sld3, there was concern that the mutations were not fully 

abolishing the function of the Rad4 BRCT1 phospho-binding pocket. Therefore, the 

T15V and K56E mutants were combined in the same allele of rad4 to give a rad4-T15V 

K56E strain (Materials and Methods). The rad4 T15V K56E strain was indeed viable 

even though both residues required for phosphate binding are mutated (Figure 6-7A). 

Furthermore, this strain showed a normal DNA content by FACS analysis, therefore 

suggesting there were no major DNA replication initiation problems (Figure 6-7B). 

Together this data shows that the Rad4 BRCT1 is definitely not essential for initiation 

of DNA replication in S. pombe. To see if the combination of T15V and K56E caused any 

further loss of the Rad4-Crb2 interaction when compared with the single mutants, spot 

test analysis was performed in the presence of a number of genotoxic agents (Figure 6-

8). The double rad4-T15V K56E shows the same sensitivity as both of the single 

mutants, to all the genotoxic agents tested. This suggests that the single T15V and 

K56E mutations did indeed fully prevent the interaction between Crb2 and Rad4 

(Figure 6-8). 

  



A 

B 

Figure 6-7. rad4 BRCT1 phospho binding pocket mutants are definitely 
viable. 
A. Table showing the cassette exchange efficiency for inserting WT, rad4 
T15V, R22E, K56A and K56E from Figure 6-2B and rad4-T15V/K56E double 
mutant into the Rad4 base strain. Efficiency is calculated as the number of 
colonies that grew on 5FOA plates as a percentage of the number of cells 
plated after cassette exchange. Viability was ensured by sequencing the 
DNA of the colonies that grew. C. FACS profile of asynchronously growing 
rad4+, rad4-T15V (T15V), rad4-R22E (R22E), rad4-K56A (K56A) and rad4-
K56E (K56E) strains from Figure 6-2C and the rad4-T15V/K56E (T15V-K56E) 
strain.  All of which display a 2C DNA content 
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6.6 Creation of rad4 BRCT2 Mutants 

As Crb2 phosphorylated on T187 or T235 can bind to Rad4 BRCT2, and co-crystal 

structures of this interaction were solved, it was important to see the role of these 

interactions in vivo. This was achieved by making the corresponding mutants to those 

made in rad4 BRCT1, in BRCT2, the mutants made were therefore T110V, R117E, 

K151A and K151E (Figure 6-9A).  As with the BRCT1 mutants, all of the BRCT2 mutants 

were viable after the cassette exchange step of the RMCE (Figure 6-9B). The cassette 

exchange efficiencies were slightly low, however, this may just be due to the density to 

which the cells were grown before plating on 5-FOA (Figure 6-9B). All of the BRCT2 

mutants showed a WT DNA content by FACS analysis (Figure 6-10A), suggesting they 

had no problem in the initiation of DNA replication. They also grew normally at 25˚C, 

30˚C and 36˚C, excluding any possibility they were temperature sensitive (Figure 6-

10B). 

As with the rad4 BRCT1 mutants, spot test analysis was carried out with the BRCT2 

mutants in order to test their sensitivity to genotoxic agents, and therefore any role 

they may be playing in the checkpoint (Figure 6-11). All four of the BRCT2 mutants 

show a moderate level of sensitivity to all the genotoxic agents tested (Figure 6-11). 

This sensitivity is not as strong as that seen for the BRCT1 mutants (Figure 6-4), 

therefore suggesting that BRCT2 may have a lesser role in the activation of the 

checkpoint. This coincides with the in vitro data from the Pearl laboratory, showing 

that Crb2 pT187 and pT235 bind at a lower affinity to Rad4 BRCT2, than pT187 dose to 

Rad4 BRCT1 (Figure 6-1A). Interestingly, unlike R22E in BRCT1, the corresponding 

mutation, R117E, in BRCT2 does show sensitivity to genotoxic agents and this 

sensitivity is similar to that of the T110V and K151A/E mutants. This is consistent with 

the crystal structure, where, in the case of BRCT2, the arginine residue does face into 

the phospho binding pocket and make contact with the phosphate on Crb2 (Tony 

Oliver personal communication). Also, unlike the corresponding BRCT1 mutants, the 

K151A and K151E mutants show an almost identical level of sensitivity to all of the 

genotoxic agents (Figure 6-11). 

  



A 

B 

Figure 6-9. rad4 BRCT2 phospho-binding pocket mutants are viable 
A. Diagram showing the position of the four rad4 BRCT2 mutants, T110V, 
R117E, K151A, K151E, within Rad4. B. Table showing the cassette 
exchange efficiency for inserting WT, rad4-T110V, R117E, K151A and 
K151E into the Rad4 base strain. Efficiency is calculated as the number of 
colonies that grew on 5-FOA plates as a percentage of the number of 
cells plated after cassette exchange. Viability was ensured by sequencing 
the DNA of the colonies that grew. 
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A 

B 

Figure 6-10. rad4 BRCT domain 2 mutants grow normally and are not TS 
FACS profile of asynchronously growing  rad4+, rad4-T110V (T110V), 
rad4-R117E (R177E), rad4-K151A (K151A) and rad4-K151E (K151E) 
strains, displaying a 2C DNA content. B. Spot test analysis of the rad4 
strains in A. 10-fold serial dilutions of 1x107 cells/ml were spotted onto 
YEA plates and grown for 4 days at either 25°C, 30°C or 36°C. 
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 This suggest that it is much easier to disrupt the interaction between Rad4 BRCT2 and 

phosphorylated Crb2 than it is BRCT1 and Crb2, as K to A is a much less severe 

mutation than K to E. This is also consistent with the weaker binding affinity of BRCT2 

to phopho-Crb2.   

6.7 rad4 BRCT2 Mutants Show a Moderate Checkpoint Defect. 

To understand whether the moderate level of sensitivity the Rad4 BRCT2 

mutants displayed to genotoxic agents was due to a checkpoint defect, a G2 

checkpoint assay, similar to that in Figure 6-5 for the BRCT1 mutants, was performed. 

rad4+, T115V, R117E and K151E cells were synchronised in G2 via lactose gradients 

and exposed to either 0 Gy, 100 Gy or 250 Gy IR. Cell cycle progression was measured 

via mitotic index (Figure 6-12). Consistent with the moderate sensitivities seen in 

Figure 6-11 the rad4 BRCT2 mutants also showed a moderate checkpoint defect 

(Figure 6-12). The rad4+ cells showed a 80 minute and 140 minute delay after 100 and 

250 Gy respectively, similar to that seen in Figure 6-5. The K151E mutant showed the 

strongest checkpoint defect with delays of 40 and 80 minutes, the next most severe 

was the T115V with 60 and 80 minute delays. The mutant with the least severe 

checkpoint defect was the R117E mutant, which displayed delays of 60 and 100 

minutes after 100 Gy and 250 Gy, respectively (Figure 6-12).  

Again, to see whether this checkpoint defect relates to a reduction in Chk1 

phosphorylation, and therefore most probably the interaction between Rad4 and Crb2, 

western blots were carried out against phospho Chk1-HA after IR and UV (Figure 6-13 

A, C). In line with the checkpoint defect and sensitivity data in Figures 6-12A and 6-

11A, a moderate reduction in Chk1-HA phosphorylation can be seen after IR in 

asynchronous cells (Figure 6-13A). All four of the BRCT2 mutants, T110V, R117E, K151A 

and K151E, show a similar reduction in Chk1-HA phosphorylation compared to rad4+ 

cells. It may be that the R117E mutant shows slightly more Chk1-HA phosphorylation 

than the other mutants, which would be consistent with the data in Figure 6-12. 

However this is very marginal.  After UV radiation, the BRCT2 mutants also show a 

moderate reduction Chk1-HA phosphorylation (Figure 6-13C). 

  



Figure 6-12. rad4 BRCT domain 2 mutants display a moderate checkpoint 
defect after IR. 
G2 checkpoint assay. rad4+ (top left panel), rad4-T115V (top right panel), 
rad4-R117E (bottom left panel) and rad4-K151E (bottom right panel) were 
synchronised in G2 via lactose gradient, split and treated with 0 Gy, 100 Gy 
or 250 Gy. Cells were then grown in YE at 30°C with samples being taken 
every 20 minutes to measure cell cycle progression. Cell cycle progression 
was monitored by mitotic index via fluorescence microscopy on  DAPI 
stained fixed cells until ~ 80% of cells had progressed to mitosis. A 
reduction in time compared to rad4+ indicates a G2 checkpoint defect. 
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A 

B 

C 

D 

Figure 6-13. rad4 BRCT domain 2 mutants display reduced Chk1-HA 
phosphorylation after IR and UV.   
A. Checkpoint activation was assayed in the indicated strains after ionising 
radiation via Chk1-HA phosphorylation. Asynchronous rad4+, rad4-T110V, 
rad4-R117E, rad4-K151A and rad4-K151E cells were exposed to γ radiation 
at the indicated doses. Chk1-HA phosphorylation (P) was assayed by SDS 
PAGE using  α-HA. B. As in A except H2A phosphorylation was assayed by 
SDS PAGE using α-S129 (top panel). α-Tubulin was used as a loading control 
(bottom panel). C.  As in A but after exposure to UV radiation. D. as in B 
except after exposure to UV radiation. 
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This is less than that seen for the BRCT1 mutants (Figure 6-6C) and consistent with the 

sensitivities (Figure 6-11). As with the BRCT1 mutants, this reduction in Chk1-HA 

phosphorylation after IR and UV seen in the BRCT2 mutants is most likely due to a 

reduction in the interaction of Crb2 and Rad4 and thus reduced Chk1 recruitment. This 

is because H2A phosphorylation is unaffected in all of the Rad4 BRCT2 mutants after IR 

and UV, suggesting Rad3 is still active and recruited to the site of DNA damage (Figure 

6-13B, D). 

6.8 A combination of rad4 BRCT1 and BRCT2 Mutants is Lethal. 

To further understand the roles of the Rad4 BRCTs 1 and 2 in the binding to Crb2 

and in the initiation of DNA replication, BRCT1 and BRCT2 mutants were combined in 

the same rad4 allele. If both Rad4 BRCTs 1 and 2 are not essential for the initiation of 

DNA replication the cells will be viable and may have an additive checkpoint defect. 

However, if BRCT1 and BRCT2 are required for Rad4’s essential role in initiation of DNA 

replication, the cells will be inviable. The mutants made, to ensure no phospho binding 

remained in BRCTs 1 and 2, were a K56E K151E double mutant and a K56E T15V K151E 

triple mutant (Figure 6-14A). It can be seen from figure 6-14B that the rad4 BRCT1 and 

BRCT2 combined mutants are inviable. Two cassette exchange reactions, from 

different transformation isolates, were carried out and plated onto two separate 

plates for K56E K151E and K56E T15V K151E. In all cases, the cassette exchange 

efficiency is very low - between 1.43% and 2.45%. The average exchange efficiency of 

the two transformation isolates was 1.54% for the K56E K151E and 2.10% for the K56E 

T15V K151E, compared with 70.5% for WT rad4. This suggested that the BRCT1 and 2 

combination mutants were inviable. To confirm this rad4 was sequenced in the 

colonies that did grow. All the sequences from both mutant strains came back WT 

(Figure 6-14B). Therefore, the colonies that grow on the 5-FOA were just back ground 

and the result of gene conversion events. This result therefore indicates that for rad4’s 

essential role in the initiation of replication, either BRCT1 or BRCT2 are required; 

mutation of one or the other does not lead to inviability, but mutation of both does. 

Due to this, we cannot see if mutating both BRCT1 and BRCT2 leads to an increased 

checkpoint defect compared to mutation of one or the other. 



A 

B 

Figure 6-14. rad4 harbouring mutations in BRCT domains 1 and 2 are 
inviable 
A. Diagram showing the position of the rad4 BRCT1 and 2 mutants, 
T15V, K56E and K151E within Rad4. B. Table showing the cassette 
exchange efficiency for inserting WT, rad4-K56E/K151 and 
K56E/T15V/K151E into the Rad4 base strain. Efficiency is calculated as 
the number of colonies that grew on 5-FOA plates as a percentage of the 
number of cells plated after cassette exchange. An average of two plates 
was taken and this was done for two transformation isolates, which was 
then also averaged (Average of 2 isolates). Inviability was ensured by 
sequencing the DNA of the colonies that grew. 
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6.9 Rad4 BRCT Domains Also Bind to Valine Residues in the Minus Three 

Positions from the Cdc2 Phosphorylation Sites on Crb2 

From the Rad4-Crb2 co-crystal structures it could be seen that the Rad4 BRCT1 

and 2 domains interacted with a second Crb2 residue in combination with the 

phosphorylated one. This residue was a valine residing in the minus three position 

from each of the Cdc2 phosphorylated residues. To test the importance of these Crb2 

residues in binding to Rad4 BRCTs 1 and 2, V184K, V212K, V234K and V212K V234K 

mutants were made. Spot tests were then carried out in the presence of increasing 

doses of UV and 250 Gy IR, the sensitivities were compared to WT and crb2Δ (Figure 6-

15) The sensitivities seen for the minus three position valine mutants were very similar 

to that seen for the associated phosphorylation site mutations (Figure 5-2A, B). V184K 

shows the highest sensitivity out of the single mutants, as did T187A. V212K and V232K 

show intermediate levels of sensitivity similar to that of T215A and T235A, but when 

combined in a V212K V232K double mutant the sensitivity, as with T215A T235A, is 

similar to that of the V184K and crb2Δ (Figure 6-15, Figure 5-2A, B). This suggests that 

the minus three valine is just as important as the phosphorylation of Crb2 in relation to 

its interaction with Rad4 BRCT domains 1 and 2. To confirm that this is the case, 

western blot analysis was carried out to assay Chk1-HA and H2A phosphorylation 

(Figure 6-16 A, B). It can be seen from the western blots that crb2 V184K almost 

abolishes all Chk1-HA phosphorylation after both IR and UV, as with the T187A 

mutation. The V234K shows a moderate reduction in Chk1-HA phosphorylation after IR 

and UV, which is consistent with the sensitivities in Figure 6-15 and similar that of 

T235A. 

 Surprisingly V212K shows little or no apparent reduction in Chk1-HA phosphorylation 

after IR or UV. This is different to the corresponding phosphorylation mutation at 

T215A which shows a moderate reduction in Chk1-HA phosphorylation (Figure 5-4A, 

B). It may be that the minus three valine is not important in the binding of the T215 

site to Rad4. This would be consistent with the data from the Pearl laboratory which 

shows no significant interaction between T215 and Rad4 BRCT1/2. 

  



Figure 6-15. crb2-V184K, V212K, V232K are sensitive to DNA damage. 
Spot test assay with WT, crb2+, crb2∆, crb2-V184K, crb2-V212K, crb2-V232K and 
crb2-V212K-V232K after UV, ionising radiation or no treatment.  For UV 10-fold 
serial dilutions of 1x107 cells/ml were spotted onto YEA and UV irradiated. For IR 
cells were γ irradiated, 10-fold serial diluted and then spotted onto YEA. Plates 
were incubated at 30°C for 4 days 
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A 

B 

Figure 6-16. crb2 minus three position mutants show reduced Chk1-HA 
phosphorylation   
A. Checkpoint activation was assayed in crb2+, crb2-V184K (V184K), crb2-
V212K (V212K), crb2-V232K (V232K) and crb2-V212K-V232K (V212K 
V232K) strains after ionising radiation via Chk1-HA (top panel) and H2A 
phosphorylation (middle panel) using SDS PAGE and α-HA and α-pS129 
antibodies respectively. α-Tubulin (bottom panel) was used in as a loading 
control. B. As in A but after UV radiation. 
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 However, the V212K mutant does exhibit an intermediate sensitivity to both IR and UV 

in Figure 6-15. It maybe, that the western blot assay is not sensitive enough to see a 

mild decrease in Chk1-HA phosphorylation. Furthermore, combination of the V212K 

and V232K mutants leads to a big decrease in Chk1-HA phosphorylation, almost to the 

level of the V184K mutant and more than either of the single mutants alone, after both 

IR and UV. This again is consistent with the sensitivity data in Figure 6-15 and the 

T215A T235A western blots in Figure 5-4A, B. As expected, mutating any of the minus 

three position valines had no effect on H2A phosphorylation after IR or UV (Figure 6-16 

A,B). This data shows that the minus three position valine is important for Crb2 binding 

to Rad4 and that both the valine and the Cdc2 phosphorylation are required. It also 

implies that it is not just the sequential phosphorylation of Crb2 which is required for 

the interaction with Rad4, it maybe sequential binding of Rad4 to each of the Crb2 

sites. 

 

6.10 Mechanism of Sequential Crb2 Phosphorylation and Rad4 Binding 

The data in this chapter, that from the Pearl laboratory, the Du laboratory and 

from Chapter 5, show that Crb2 is sequentially phosphorylated by Cdc2 on three sites, 

with T187 being the most important and dependent on the prior phosphorylation of 

T215 and T235. These phosphorylations bind to Rad4 BRCTs 1 and 2, with BRCT1 being 

the most important for checkpoint activation. T187 can bind both BRCT1 and 2, T235 

binds BRCT2 and this T235 binding affinity is increased by a weak interaction between 

T215 and BRCT1. This data gives two possible explanations for the sequential 

phosphorylation of Crb2: The first is that the phosphorylation of T215 and T235 causes 

a conformational change in Crb2, revealing T187. Rad4 could then make a stable 

strong interaction between its BRCT1 domain and T187. An interaction between BRCT2 

and the second T187 of the Crb2 dimer also occurs, further enhancing the binding. 

However, this model does not explain why Rad4 BRCT2 binds to pT235 on Crb2 and 

why this interaction is further enhanced by pT215 and BRCT1. It does not explain why 

mutation of V188 to proline, thus turning T187 into a canonical cdc2 site, bypasses in 

part the need for phosphorylation on T215 and T235. Also it does not explain the 
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requirement for the minus three position valine at T212 and T232. It would therefore 

seem as if Rad4 first binds to the pT215 and pT235 sites before binding to pT187. This 

leads to the second hypothesis, in which Crb2 is first phosphorylated on the canonical 

Cdc2 sites T215 and T235, as they are easier to phosphorylate than the non-canonical 

T187 site. This recruits Rad4 via the BRCT2 pT235 interaction, this binding is enhanced 

by pT215 BRCT1. Once recruited, Rad4 T187 is phosphorylated and a strong stable 

interaction between the two pT187 of the Crb2 dimer and Rad4 BRCTs1 and 2 can 

occur. However, for this model to work the preliminary binding of Rad4 to pT235 

pT215 has to enhance the phosphorylation of T187. 

 It was shown by Valerie Garcia (Carr lab) that Cdc13, the main S. pombe cyclin that 

binds and activates Cdc2, can interact with the C-terminus of Rad4 in a pull down 

assay. In collaboration with Tony Oliver from the Pearl laboratory, a similar experiment 

to further understand this interaction was carried out. A GST Rad4 fragment containing 

Rad4 BRCTs 3 and 4 (GST-BRCT3, 4) was expressed in E .coli cells and bound to a 

glutathione resin column (Figure 6-17A). Whole cell S. pombe extracts from cells 

containing HA tagged Cdc13 were then made and passed through the column. The 

protein was then eluted and run on an SDS gel for western blot analysis. It can be seen 

from Figure 6-17A that Cdc13-HA is indeed pulled down by this BRCT3,4 fragment of 

Rad4, suggesting that Cdc13 and most likely Cdc2 does bind Rad4. Furthermore, 

mutation of the BRCT4 phospho binding pocket, K452E (BRCT3 does not have a 

phospho binding pocket) does not affect the interaction between Cdc13 and the Rad4 

fragment, suggesting that this is not a phospho specific interaction (Data not shown). 

This result gives the final mechanistic step to hypothesis two (described above) and 

leads to the following model. 

 

6.11 Model and Discussion 

In late S-phase/ early G2 the Crb2 dimer is phosphorylated on the canonical, 

easy to phosphorylate, T215 and T235 by the increasingly active Cdc2-Cdc13, in a non-

damage dependant manner (Figure 6-18A).  



A B 

Figure 6-17. Cdc13 binds the C-terminal region of Rad4 containing BRCT 
domains 3 and 4 
A. GST and a purified GST-RAD4 fragment (amino acids 291-495) 
containing BRCTs 3 and 4 (GST-BRCT4,5 (WT)) used as bait for the Cdc13-
HA pull down. B. Pull down assay of Cdc13-HA using either GST or GST-
Rad4 BRCT3,4 (GST-BRCT3,4 (WT)). Eluted pulled down protein was 
subjected to SDS PAGE and Cdc13-HA probed for using α-HA antibodies. 
Input (cell extracts from cdc13-HA cells) can be seen in the left lane. M 
refers to marker.  Experiment carried out in collaboration with Tony 
Oliver (Pearl Laboratory) 
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Figure 6-18. Model for Rad4 binding to Crb2 for DNA damage 
checkpoint activation. 
A. Cdc13-Cdc2 phosphorylate the canonical T215 T235 sites on the 
Crb2 dimer in late S/G2 phase. Rad4 binds to phosphorylated T215 T235 
via its BRCT domains 1 and 2 respectively. This brings the associated 
Cdc13-Cdc2 complex into close proximity of the non-canonical T187 
site, facilitating T187 phosphorylation. C. Due to the high affinity Rad4 
BRCT1 (and 2) has to pT187 a reorganisation of the Rad4-Crb2 
interaction occurs, with Rad4 BRCTs 1 and 2 binding the two pT187 
residues of the Crb2 dimer, forming a strong stable interaction. D. Upon 
DNA damage Rad4 and the associated Crb2 are recruited to the Rad3 
phosphorylated Rad9 tail (pT412/pS423) at the site of damage via Rad4 
BRCT 4. This then leads to activation of the DNA damage checkpoint.    
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This leads to the recruitment of Rad4 via an interaction between BRCT2 and pT235, 

and BRCT1 and pT215. The recruited Rad4 has Cdc13-Cdc2 bound, thus bringing Cdc2-

Cdc13 into close proximity of the non-canonical, more difficult to phosphorylate, T187. 

Now that Cdc2 is in close proximity to Crb2 T187 it can phosphorylate both the T187 

sites of the Crb2 dimer (Figure 6-18B). Due to the high affinity Rad4 BRCT1 (and 2) has 

for T187, a re-organisation of the interaction occurs, Rad4 BRCT1 and 2 now bind 

across the two pT187 sites of the Crb2 dimer. This gives a stable strong interaction 

between the two proteins (Figure 6-18C). Upon DNA damage, Rad9 is phosphorylated 

by Rad3, leading to the recruitment of the Rad4-Crb2 complex to the site of damage 

via a Rad4 BRCT4-Rad9 pT412 interaction (Furuya et al., 2004) (Figure 6-18D). This 

model explains all of the data presented in chapters 5 and 6 and that of the 

collaborators. It incorporates the requirement for the pT215-pT235 BRCT1, 2 

interaction for T187 phosphorylation. Why the requirement for T215 and T235 

phosphorylation can be bypassed by making T187 a canonical Cdc2 site. The 

importance of the minus 3 position valine. The requirement for the phosphorylation of 

both T187 residues of the Crb2 dimer. Why it is important that BRCT1 has higher 

affinity for T187 than the other two phosphorylations and why BRCT1 and T187 have 

the strongest phenotype when mutated. However, we cannot completely rule out DDK 

or other untested kinases for T187 phosphorylation.    

The reason for such an elaborate mechanism of Rad4-Crb2 binding is not obvious. It 

maybe that it allows the cells to selectively activate the Crb2 Chk1 dependent DNA 

damage checkpoint in G2, rather than the Mrc1 Cds1 dependent replication 

checkpoint. Having such an elaborate Cdc2 phosphorylation dependent interaction 

between Crb2 and Rad4 may give cell cycle regulation over which checkpoint is 

activated. The level of Cdc2 activity required to carry out these phosphorylations may 

only be high enough as cells move into G2 phase, thus preventing undesirable DNA 

damage checkpoint activation at a stalled fork. Interestingly, it has previously been 

shown in budding yeast that Sld2 is also sequentially phosphorylated, initially on 

canonical CDK sites, which in turn lead to phosphorylation of a non-canonical site, that 

is required for the interaction with Dpb11 (Rad4). However, in this case the sequential 

phosphorylation is thought to be required for a conformational change, making the 
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third phosphorylation site available (Masumoto et al., 2002, Tak et al., 2006). 

Sequential Cdc2 phosphorylation of Rad4 interacting partners may therefore be a 

mechanism to ensure that Rad4 interacts with the correct partner at the correct cell 

cycle phase. The differences in affinity that Rad4 has for these phosphorylation sites 

may also determine binding partner choice. For example, the higher affinity for Crb2 

pT187, than Sld3 pT605, may help prevent cells from firing origins in the presence of 

DNA damage.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



192 
 

Chapter 7 

Replication Checkpoint 
Dependent Rad4 Interactions 

 

7.1 A Potential Rad4 Interacting Site on Mrc1 

As described in the “1.5.6 ATR and the Replication Checkpoint” section S. pombe 

Rad9 and Rad4 are required for the activation of the replication checkpoint as seen by 

FACS and Rad3 dependent Cds1Chk2 activation (Marchetti et al., 2002, Harris et al., 

2003, Taylor et al., 2011). However, the mediator protein Crb2 is not required and is 

dispensable for activation of the replication checkpoint (Tanaka and Russell, 2001, 

Harris et al., 2003). This therefore poses the question: What is the role of Rad4 within 

the replication checkpoint? The lack of Crb2 within this pathway means Rad4 cannot 

be acting, as it does in the damage checkpoint, to scaffold Crb2 to Rad9 on the DNA 

(Saka et al., 1997, Furuya et al., 2004) (Figure 6-18). One possibility, as described in 

Chapter 3, is that Rad4 is directly activating Rad3 in the replication checkpoint via its 

AAD. However, Su-Jiun Lin showed that only a moderate decrease in Cds1 kinase 

activity, after treatment with HU, is seen in the rad4-Y599R strain (Chapter 3, data not 

shown). This moderate decrease in Cds1 kinase activity after HU in the rad4-Y599R 

strain is not fully consistent with the requirement of Rad4 in the replication 

checkpoint. This implicates Rad4 in having an additional role in the pathway. One 

possibility is that Rad4 may be acting as a scaffold, as in the DNA damage checkpoint, 

but binding to a protein other than Crb2. An obvious candidate is Mrc1, the replication 

checkpoint specific mediator protein (Tanaka and Russell, 2001). 

In this case a model for the role of Rad4 throughout the cell cycle could be envisaged. 

In early S-phase, Rad4 binds to Sld2/3 for the initiation of DNA replication (Fukuura et 

al., 2011). In mid S-phase, Rad4 would then bind to Mrc1 for the potential activation of 

the replication checkpoint. As cells progress to late S-phase/ G2,  Rad4 then binds to 

Crb2 for the activation of the DNA damage checkpoint (Figure 6-18) (Figure 7-1A). 
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The binding partner of Rad4 may be controlled by the level of Cdc2, and possibly 

phosphatase, activity. Cdc2 may phosphorylate the different targets as its activity 

increases, with the non-canonical T187 on Crb2 being the most difficult and therefore, 

last to be phosphorylated (chapter 6) (Figure 7-1A). Also the levels of the target 

proteins may add another level of control with Mrc1 levels peaking in mid S-phase 

(Tanaka and Russell, 2001).  

For this model to be feasible Mrc1 would need to contain a Rad4 binding site. From the 

data in Chapter 6 we know that this Rad4 binding site needs to consist of a Cdc2 

phosphorylation site which is a SP/TP or, as seen with Crb2 T187, a TV or presumably 

SV. It also preferentially has a valine at the minus three position from the 

phosphorylation site. Charly Chawan in the Carr laboratory identified such a Rad4 

binding site at T32 within the N-terminus of Mrc1. This site is a canonical Cdc2 TP 

phosphorylation site and contains an isoleucine at the minus three position (Figure 7-

1B). An isoleucine, as with valine, is a non-polar, hyrdrophobic amino acid and would 

therefore fit into the phsopho-binding pocket of the BRCT domains of Rad4 (personal 

communication Tony Oliver). Furthermore the TP and surrounding residues are highly 

conserved amongst Schizosaccharomyces species, showing it is evolutionary conserved 

and may have an important function (Figure 7-B). 

To test if Mrc1-T32 is indeed a Rad4 binding site that is required for the activation of 

the DNA replication checkpoint, an mrc1-T32A mutant was constructed usingfusion 

PCR. This was then inserted over an mrc1Δ::URA4 at the endogenous mrc1 locus 

(section “2.4.5 Creation of mrc1-T32A Mutant by Fusion PCR”). Three independent 

mrc1-T32A strains were then tested for their sensitivity to HU and compared to rad3Δ, 

cds1Δ and mrc1Δ strains by a spot test assay (Figure 7-2). If Rad4 does indeed bind to 

Mrc1-T32, and this is required for the replication checkpoint, sensitivity to HU should 

be seen. The sensitivity to HU compared to the control strains used should indicate the 

importance of any interaction. If the mrc1-T32A strain is as sensitive as the rad3Δ, 

cds1Δ or mrc1Δ then the binding of Rad4 to Mrc1-T32 is essential for the activation of 

this checkpoint pathway. 
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If only a mild level of sensitivity is seen to HU in the mrc1-T32A strain, it is likely that 

any interaction between Rad4 and Mrc1-T32 is not an integral part of the pathway, 

unlike the interaction between Rad4 and Crb2 in the damage checkpoint. However, 

from Figure 7-2 it can be seen that none of the three mrc1-T32A strains show any 

sensitivity to HU at any of the doses tested compared to WT. This would therefore 

suggest that Mrc1-T32 is not required for the activation of the replication checkpoint. 

Although it cannot be ruled out that Rad4 does bind to T32, it is likely that any 

interaction is not required for activation of this checkpoint after HU. 

 

7.2 A Slx4-Rad4 Interaction in the Replication Checkpoint? 

As it would seem that Rad4 does not interact with Mrc1 for the activation of the 

replication checkpoint, it maybe that Rad4 binds another protein. As described in 

“1.6.3 TopBP1 as a scaffold in the DNA Checkpoints” section, the budding yeast 

homolog (Dpb11) binds to Slx4, an interaction that is also dependent on CDK 

phosphorylation (Ohouo et al., 2013). The Dpb11-Slx4 interaction is thought to 

compete with the Dpb11-Rad9Crb2 interaction at stalled replication forks, thus reducing 

the level of Rad53Chk1 activation (Ohouo et al., 2013). This reduction in Rad53 activity 

was reported to be important for allowing Mec1Rad3 activity at the stalled fork, without 

causing a full checkpoint response. This may allow repair of a stalled fork, or 

replication dependent lesions, without causing cell cycle arrest (Ohouo et al., 2013). 

However, as budding yeast rely upon Rad53 as the effector kinase for both the DNA 

damage and replication checkpoint, it maybe that this reduction in Rad53 activity, via 

an Dpb11-Slx4 interaction, determines the difference between a DNA damage 

checkpoint response and a replication checkpoint response.  

In S. pombe it could be hypothesised that an interaction between Rad4 and Slx4 could 

determine whether the Cds1 dependent replication checkpoint, or the Chk1 

dependent DNA damage checkpoint, is activated. It is possible that at a stalled fork 

Slx4 would bind the BRCT1 and 2 domains of Rad4 with a higher affinity than Crb2. This 

would prevent Crb2 localisation to the stalled replication fork and thus, in turn, 

prevent Chk1 recruitment and activation. This would mean that the damage 
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checkpoint is not active, and that the Rad3 activity is channelled down the Mrc1, Cds1 

dependent replication checkpoint pathway. In the presence of DNA damage in late S 

/G2 Rad4 would be bound to Crb2 via the high affinity Crb2 –pT187 dependent 

interaction (see Chapters 5 and 6), thus leading to the activation of the DNA damage 

checkpoint. This model gives an indirect role for Rad4 in the activation of Cds1 by 

preventing Chk1 activation (Figure 7-3A).  

 To test this hypothesis, a search was carried out for potential Rad4 interacting sites 

within S. pombe Slx4. In S. pombe, two proteins, Spbc713.09 and Slx4, carry out the 

functions of S. cerevisiae Slx4 (Jo Murray personal communication). When aligned with 

the S. cerevisiae Slx4 protein sequence, Spbc713.09 aligns with the N-terminus and 

Slx4 with the C-terminus (Jo Murray personal communication). It would therefore 

seem as if, in S. pombe, the slx4 locus has undergone an event in evolution leading to it 

being encoded by two separate genes. Therefore, both the Spbc713.09 and Slx4 

proteins were searched for TP/SP or TV/SV sites, which may be Cdc2 phosphorylation 

sites and Rad4 BRCT binding sites. Two TP/SP sites and nine TV/SV sites were identified 

within the two proteins (Figure 7-3B). Unfortunately none of these sites were 

associated with a minus three position valine or isoleucine, meaning that they are not 

ideal Rad4 binding sites. However, the CDK site on budding yeast Slx4, that Dpb11 

interacts with, does not have a valine or isoleucine at the minus three position. 

Furthermore, none of the sites identified in the S. pombe proteins aligned with the 

known binding site in the S. cerevisiae Slx4 (Figure 7-3B). Despite this, a number of the 

identified sites within Spbc713.09 and Slx4 did look like promising Rad4 binding sites. 

This is because a number of potential Cdc2 sites are in close proximity to one another, 

this may promote sequential phosphorylation, as with Crb2 (see Chapter 5). 

To see if either of the Slx4 proteins in S. pombe were involved in the decision to 

activate the replication or DNA damage checkpoint, knock out strains were acquired 

from both the Bioneer Library and Izumi Miyabe (Carr lab). These strains were crossed 

with an mrc1Δ strain and subjected to a spot test in the presence of HU (Figure 7-4). 

slx1Δ (the binding partner of Slx4) cells were also crossed to mrc1 cells, as a control, to 

ensure any phenotype seen was not due to the role of slx4 in recombination or any 

other process.  



A 

B 

Figure 7-3. Slx4 as a potential Rad4 interacting protein in preventing the 
activation of the DNA damage checkpoint after replication stress. 
A. A potential model for how Rad4 interactions may promote activation of 
the replication or damage checkpoints under the correct conditions. Left 
panel: During S-phase replication fork stalling may occur, which requires 
activation of the Cds1 dependent replication checkpoint but not the Chk1 
damage checkpoint. In this case Slx4 may bind to Rad4 preventing its 
interaction with Crb2, and thus preventing Chk1 recruitment and 
activation. This would allow activation of only the replication checkpoint. 
Right panel: In G2 phase the DNA damage checkpoint needs to be 
activated upon DNA damage. In G2, Slx4 may not bind to Rad4 allowing it 
to bind to Crb2, which upon damage would allow the recruitment of Chk1 
and activation of the damage checkpoint. Red line represents inhibitory 
binding, red text indicates the protein is not recruited/active. Dotted 
arrow represents phosphorylation and solid arrow represents binding. 
Black text represents recruited/active proteins. B. Schematic diagram of S. 
cerevisiae Slx4 and the two corresponding proteins (Spbc713.09 and Slx4) 
in S. pombe. Red * indicates the known Dpb11 interaction site on S. 
cerevisiae Slx4 (Ohouo et al., 2013). Black * represent TP/SP sites on S. 
pombe Spbc713.09 and Slx4. Green * represents TV/SV sites on the S. 
pombe protein. 
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If Slx4 or Spbc713.09 are involved in binding Rad4 to prevent activation of the DNA 

damage checkpoint, knocking them out should rescue the HU sensitivity of an mrc1Δ. 

This is because mrc1Δ cells are sensitive to HU due to the lack of replication checkpoint 

activation. By deleting the slx4 genes, Rad4 should now be free to bind to Crb2 and 

activate the DNA damage checkpoint. This active damage checkpoint should be able to 

partly compensate for the lack of replication checkpoint activation and rescue some of 

the mrc1Δ phenotype. From Figure 7-4 we can see that this is not the case and that the 

slx4Δ mrc1Δ and spbc713.09Δ mrc1Δ strains are just as sensitive, if not slightly more 

sensitive, than the mrc1Δ alone (Figure 7-4). Furthermore, they also show the same 

phenotype as the slx1Δ mrc1Δ mutant, suggesting that neither Slx4 nor Spbc713.09 

bind Rad4 to prevent Chk1 activation at stalled replication forks (Figure 7-4). 

To confirm the results in Figure 7-4 western blot analysis against Chk1-HA after 4 hrs 

HU treatment in the spbc713.09Δ and slx4Δ strains was performed (Figure 7-5A). If 

these proteins are indeed binding Rad4 to prevent Chk1-HA activation at stalled forks, 

the knockouts should show increased Chk1 phosphorylation after HU compared with 

WT. Consistent with the conclusions made from Figure 7-4, no increase in Chk1-HA 

phosphorylation can be seen in either slx4Δ or spbc713.09Δ strains after HU compared 

with WT (Figure 7-5A). Furthermore, only a very minor increase in Chk1-HA 

phosphorylation can be seen in the spbc713.09Δ mrc1Δ strain compared with mrc1Δ 

alone after HU, and no increase is seen  in the slx4Δ mrc1Δ strain (Figure 7-5B, 

quantification in 7-5C). As Ohou et  al., (2013) showed in budding yeast that an slx4Δ 

strain has increased Rad53 phosphorylation after MMS treatment, the levels of Chk1 

phosphorylation after MMS in the spbc713.09Δ, slx4Δ, spbc713.09Δ mrc1Δ and slx4Δ 

mrc1Δ strains were tested (Ohouo et al., 2013). It can be seen from Figures 7-5B and C 

(right hand panel) that the spbc713.09Δ strain has decreased Chk1-HA phosphorylation 

compared with WT and the spbc713.09Δ mrc1Δ has decreased Chk-1HA 

phosphorylation compared with mrc1Δ. This reduction is relatively mild and the 

opposite of what would be expected if Spbc713.09 was inhibiting Chk1 activation by 

binding Rad4. This reduction in Chk1 phosphorylation may be due to loss of another 

function of Spbc713.09, such as reduced DNA processing. 

  



A 

B 

C 

Figure 7-5 spbc713.09Δ and slx4Δ do not lead to an increase in Chk1 
phosphorylation after HU even in an mrc1Δ background. 
A. Asynchronous WT, spbc713.09Δ and slx4Δ cells were split and treated 
with 12mM HU for 4 hours or not treated (untreated). Chk1-HA 
phosphorylation was then assayed by SDS PAGE and α-HA antibodies. B.  
Asynchronous WT, spbc713.09Δ and slx4Δ ,mrc1Δ, mrc1Δ spbc713.09Δ 
and mrc1Δ slx4 Δ cells were split and treated with 12mM HU for 4 hours, 
0.001% MMS for 3 hrs or not treated (untreated). Chk1-HA 
phosphorylation was then assayed by SDS PAGE and α-HA antibodies. C. 
Quantification of B. % chk1-HA phosphorylation was calculated by Chk1-
HA phosphorylation (P) as a % of total Chk1-HA minus the % 
phosphorylation present in untreated cells.  
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Interestingly, the slx4Δ strain exhibits increased Chk1-HA phosphorylation after MMS 

compared with WT, but this is only a minor (3%) increase. The slx4Δ mrc1Δ does also 

show an increase in Chk1-HA phosphorylation after MMS compared to mrc1Δ, but 

again this is only a mild (~7%) increase. This is not enough to be consistent with a role 

for Slx4 in inhibiting the recruitment and activation of Chk1. In both Figures 7-4 and 7-5 

a small increase in Chk1-HA phosphorylation can be seen in the slx4Δ and spbc713.09Δ 

strains even without genotoxic treatment. This could be due to Rad3 activation in the 

absence of checkpoint activating DNA structures due to the lack of a Rad4-

Slx4/Spc713.09 interaction. Alternatively there may be an increase in spontaneous 

DNA damage in the slx deletes which leads to Rad3 activation. Indeed slx4 is required 

for maintenance of the rDNA repeats at the rDNA replication fork barrier (Coulon et 

al., 2006). 

 

7.3 Conclusions and Discussion 

The data in this chapter has failed to shed any further light into the role of Rad4 

during the activation of the replication checkpoint. Although Mrc1 contains a 

conserved potential Rad4 binding site at T32 (Figure 7-1B), mutation of this Cdc2 

phosphorylation site, does not lead to an increase in sensitivity to the replication forks 

stalling agent HU (7-2). From this data we cannot conclude that Rad4 does not bind 

Mrc1-T32, but it would seem that any interaction that may occur is not essential for 

activation of the replication checkpoint in an otherwise WT back ground. Further work 

could be carried out on this mutant to investigate the levels of Cds1 kinase activity or 

Rad3 dependent Cds1 phosphorylation. This would exclude the possibility that the lack 

of a sensitivity phenotype is due to activation of the damage checkpoint. Furthermore, 

Chk1 phosphorylation could also be assayed after HU treatment in the mrc1-T32A 

strain to see if Chk1 phosphorylation has increased due to loss of the replication 

checkpoint. This, however, is unlikely as both mrc1Δ and cds1Δ strains show a 

decrease in survival after HU (Figure 7-2), so if Mrc1-T32 was critical for the activation 

of the replication checkpoint a similar level of sensitivity should have been apparent. 
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The results in Figures 7-4 and 7-5 show that the role of budding yeast Slx4 in inhibiting 

the DNA damage checkpoint via binding Dpb11Rad4 and preventing its interaction with 

Rad9 is most likely not conserved in S. pombe. Knocking out either of the slx4 genes, 

spbc713.09 or slx4, does not rescue the HU sensitivity of an mrc1Δ, or lead to a 

considerable increase in Chk1-HA phosphorylation after HU or MMS treatment. It 

maybe that there is a secondary pathway that also inhibits Crb2 recruitment and that 

knocking out the slx4 genes is not enough to see a phenotype. In budding yeast Rtt107 

(a BRCT domain protein) binds to Slx4 and to H2A, thus by binding γH2A it prevents 

Rad9 recruitment to the chromatin via its BRCT domain (Ohouo et al., 2013). However, 

knocking out RTT107 or SLX4 leads to a phenotype consistent with increased Rad53 

phosphorylation in budding yeast (Ohouo et al., 2013). We should therefore see a 

phenotype in the slx4Δ or spbc713.09Δ in S. pombe, if the function of slx4 is indeed 

conserved, however, this was not the case. In may be worth knocking out the S. pombe 

RTT107 homolog, brc1, in the slx4Δ or spbc713.09Δ background, and checking for 

increased Chk1-HA phosphorylation after HU treatment. It may be that Brc1 is 

contributing more to the inhibition of the damage checkpoint in S. pombe than S. 

cerevisiae. It may also be interesting to test the slx4Δ spbc713.09Δ double mutant after 

HU, as they may be able to compensate for each other. However, the difference in the 

checkpoint pathways between budding yeast and fission yeast, offers the most likely 

explanation for the lack of phenotype in Figures 7-4 and 7-5. 
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Chapter 8 

Final Conclusions and Discussion 
8.1 Overview 

Damage to a cell’s DNA, from exogenous or endogenous factors, can lead to the 

accumulation of mutations and diseases, such as cancer. Organisms have therefore 

evolved mechanisms to help prevent such mutations occurring. One of the most 

important mechanisms for preventing mutations is the DNA damage checkpoint. This 

checkpoint is essential for the recognition of damaged DNA. Upon DNA damage the 

checkpoint, via signal transduction pathways, prevents cell cycle progression and 

promotes DNA repair. Here data has been presented, using the model organism S. 

pombe, which helps further understand the early events in the activation of the DNA 

damage checkpoint. This work makes inroads into understanding how the DNA 

damage checkpoint is activated in S. pombe. It increases our understanding of how the 

pathways and proteins involved in the checkpoint interact, the importance of these 

interactions and how they are regulated. It may also give insights into how the 

checkpoints may be functioning in higher eukaryotes. 

 

8.2 S. pombe ATR Activation Domains 

8.2.1 The Rad4 ATR Activation Domain 

As described in the “1.6.4 TopBP1 dependent ATR Activation” section TopBP1 

and the budding yeast homolog Dpb11 have been shown to have ATR activation 

activity (Kumagai et al., 2006, Mordes et al., 2008b). In budding yeast, this function of 

Dpb11 is restricted to G2 phase and is redundant with the Ddc1Rad9 AAD (Navadgi-Patil 

et al., 2011, Pfander and Diffley, 2011). In higher eukaryotes, the pathway in which the 

TopBP1 AAD operates is less well understood. However, work from the Xenopus 

system has shown that it is required for ATR activation in S-phase (Kumagai and 

Dunphy, 2006). To help further understand the role of the TopBP1 AAD, Charly Chawan 
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(Carr lab) identified, via sequence alignment, a potential AAD in the C-terminus of the 

S. pombe TopBP1 homolog Rad4 (Figure 3-1A). The key residue from the Xenopus 

TopBP1 AAD, W1138, was conserved as Y599. Data presented here, and that from 

previous lab members Su-Jiun Lin and Valerie Garcia, shows that the Rad4 AAD can 

bind to Rad3ATR and is required for a full checkpoint response in G1/S. This cell cycle 

dependency is most likely to be due to the reduced levels of resection, and therefore 

ssDNA, after DNA damage in G1/S phase compared to G2. Furthermore, using a LacI-

LacO tethering system, it is shown, in Chapter 3, that the Rad4 AAD acts in a 

chromatin-dependent pathway for checkpoint amplification. This pathway also 

depends upon γH2A, the Crb2 BRCT domains, Crb2 T215 phosphorylation, the 9-1-1 

complex and Rad17 (Figure 3-11A, B, C). Further light has, therefore, been shed on the 

role and components of the chromatin pathway in Chk1 activation. Previously, the 

Russell laboratory and others have shown that a pathway requiring γH2A, H4-K20me 

and Crb2’s BRCT and Tudor domains, is important for Chk1 activation (Du et al., 2006, 

Kilkenny et al., 2008). From the results presented here it is now known that this 

pathway requires the Rad4 AAD and can operate in G1/S phase to amplify the 

checkpoint signal initially generated by ssDNA. 

Due to the G1/S-phase dependency of this chromatin pathway, we predict a threshold 

level of Rad3 activation is required for a full checkpoint response. The lower level of 

nuclease activity, and therefore resection, after damage in G1/S, when compared with 

G2, leads to reduced ssDNA. This may mean in G1/S-phase that not enough Rad3 is 

activated via the ssDNA pathway, in order to get a full checkpoint response. Therefore, 

the chromatin-dependent Rad4 AAD pathway of checkpoint amplification becomes 

more important for a full checkpoint response (Figure 3-14A, B). An alternative model 

to the one that has been presented here, is that the threshold for checkpoint 

activation is higher in S-phase than G2. In this case more Rad3 needs to be activated in 

S-phase to get a full checkpoint response. In budding yeast such a model has been 

proposed, with the Gasser laboratory showing that more DNA damage is required in S-

phase, than in G2, to activate the checkpoint. They propose the existence of an S-

phase threshold which is important to allow the cells to tolerate the ssDNA associated 

with the replication fork, without activating the checkpoint (Shimada et al., 2002). 
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However, this is most likely not what we are seeing in S. pombe, as the chromatin-

dependent amplification pathway should bypass the need for extra ssDNA in S-phase 

for checkpoint activation.  

8.2.2 The Rad9 ATR Activation Domain 

Through sequence alignment we have identified that the budding yeast Ddc1 

AAD is conserved in the S. pombe homolog Rad9 (Figure 4-1A). However, the S. pombe 

Rad9 AAD is less important for Rad3 activation than its budding yeast counterpart, 

with it only having a redundant role with the Rad4 AAD in the S-phase damage 

checkpoint (Figure 4-9). More work could be done to further understand the role of 

the S. pombe Rad9 AAD. For example, as it is required in the same cell cycle phases as 

the Rad4 AAD, it may be interesting to assay the role of the rad9-2A mutant in the 

LacO system. This would help us to understand whether it is functioning redundantly in 

the same pathway as the Rad4 AAD, or if it is functioning in a secondary back up 

pathway. It may also be interesting to see the relative importance of the Rad4 AAD and 

the Rad9 AAD in stimulating Rad3 kinase activity in vitro. This would help us 

understand if the difference in importance between the two AAD’s is due to the 

recruitment of the proteins to Rad3, or due the Rad4 AAD being a better activator.  

An interesting question that arises from the work presented in Chapters 3 and 4 and 

that from budding yeast is; why have more than one AAD containing protein? In 

budding yeast three AAD containing proteins, Dpb11, Ddc1 and Dna2, have been 

identified so far, two of which we have also been identified in S. pombe (Navadgi-Patil 

et al., 2011, Kumar and Burgers, 2013). One reason maybe that the activation of the 

ATR homologs is such an important process that organisms have evolved to contain 

more than one activator in case one becomes mutated and dysfunctional. Although 

this may explain why both Rad4 and Rad9 contain AAD domains, as they are at least in 

part functionally redundant, it does not explain the requirement for the Dna2 AAD in S. 

cerevisiae. This is because the Dna2 AAD operates in a separate cell cycle phase, and 

therefore pathway, to the AAD domains of Ddc1 and Dpb11. There may therefore be 

numerous AADs in S. cerevisiae because of the differences in the checkpoint 

complexes in different cell cycle stages. It maybe that Ddc1 and Dpb11 are not in close 
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enough proximity to Mec1ATR at stalled fork to activate it, where Dna2 is. At a DSB in 

G2 it may be the other way around, with Dna2 not being recruited to Mec1 as 

efficiently as Ddc1 or Dpb11. Indeed, Dna2 is only required for resection of DSBs in a 

pathway that is redundant with Exo1, therefore Dna2 may not be at all G2 damage 

sites, where Ddc1 and Dpb11 are (Huertas, 2010).  More work needs to be done to 

understand the proteins that function in the Dna2 and Ddc1/Dpb11 AAD pathways and 

therefore why the Ddc1 and Dpb11 AADs do not function at stalled forks.  

The different cell cycle requirements of the S. cerevisiae AAD’s does pose the question 

of whether more proteins in S. pombe also contain AADs. One way to search for, and 

potentially identify AAD containing proteins in S. pombe is via the approach Kumar and 

Burgers (2013) used to Identify the Dna2 AAD in budding yeast. They determined that 

the AADs already identified in Ddc1 and Dpb11 are in unstructured regions of more 

than 40 amino acids and contain two aromatic residues. They could then screen 

proteins with these features for their ability to stimulate Mec1 kinase activity in vitro 

(Kumar and Burgers, 2013). However, this approach requires purification of a number 

of different proteins, and therefore may be time consuming if the purified proteins are 

not already available. An initial small scale genetic screen of genes containing the 

desired features may therefore be an alternative option. One could imagine expressing 

truncation mutants, where the unstructured domain is deleted, from a plasmid in the 

corresponding knockout strain and looking for rescue of sensitivity to genotoxic 

agents. A similar approach could be used to identify AAD containing proteins in human 

cells. It has been shown, for the TopBP1 AAD, that over expression of the AAD leads to 

checkpoint activation in the absence of damage (Kumagai et al., 2006). Therefore, the 

regions of genes corresponding to potential AADs could be over expressed in human 

cells and checkpoint activation assayed.  

It may be possible that only one AAD exists in higher eukaryotes, this is confounded by 

the fact the TopBP1 AAD mutant is embryonic lethal in mice (Zhou et al., 2013). It 

maybe that in somatic cells, ATR plays a much less prominent role in the activation of 

the checkpoint than it does in yeast, due to the increased importance of ATM. Rather 

than having an ATR activator for each cell cycle phase, as in budding yeast, human cells 

may only require one. This one activator, TopBP1, may be important in ATR activation 
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in S-phase, for the replication checkpoint, hence the reason why it is essential in the 

quickly dividing developmental stages, but possibly not in the rest of the cell cycle, 

where ATM is more important for checkpoint activation. Indeed there are numerous 

ATM activators in higher eukaryotes, as described in the “1.4.2 The Activation of ATM” 

section, which may reflect the checkpoints increased dependency on ATM activation, 

compared to that in yeast. It would therefore be interesting to see whether numerous 

Tel1 activators are present in the yeast systems or not. However, very recent 

preliminary data suggests that NBS1 may also be able to activate ATR in DT40 cells 

independently of TopBP1 (Kobayashi et al., 2013). Further work needs to be done to 

validate these results.   

 

8.3 Rad4 BRCT Domain Interactions     

For the activation of the S. pombe DNA damage checkpoint, the mediator 

protein Crb2 needs to be bound to Rad4 in order to be recruited to the damage site. 

This subsequently leads to the recruitment and activation of Chk1, via Rad3 dependent 

phosphorylation events, and checkpoint activation. For many years the nature of this 

interaction between Crb2 and Rad4 has been of much debate. The phosphorylation of 

Crb2-T215 by Cdc2 was thought to be the factor required for this interaction. However, 

mutation of this site did not give as severe checkpoint defect as might be expected.  

Data presented here, and that from the Du and Pearl laboratories, has given thorough 

mechanistic insight into the nature of the Rad4 Crb2 interaction. We show evidence for 

a model in which Crb2 is sequentially phosphorylated by Cdc2-Cdc13 (Figure 5-7A B).  

Initially, Cdc2-Cdc13 phosphorylates Crb2 on two canonical Cdc2 sites, T215 and T235, 

in a non-damage dependent manner (Figure 6-18A). This leads to association with 

Rad4, via a BRCT2-pT235 interaction, this is further stabilised by a BRCT1-pT215 

interaction. The interaction between Rad4 and Crb2-pT235 pT215 brings Cdc2 into 

close proximity to the non-canonical Crb2-T187 site, via a non-phospho specific 

interaction between Cdc13 and Rad4 BRCT3/4. Cdc2 is now able phosphorylate both 

the T187 residues of the Crb2 homodimer (Figure 6-18B). Due to the strong affinity 
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Rad4 BRCT1 (and 2) has for pT187, a reorganisation of the Rad4-Crb2 interaction 

occurs, with Rad4 now binding across the two Crb2 molecules of the dimer, via 

BRCT1+2-pT187 interactions Figure 6-18C. 

 The data leading to this model poses a number of interesting questions into how Rad4 

interacts with its binding partners and how these interactions are regulated. The first 

question that arises is; is sequential phosphorylation of Rad4 (or homolog) binding 

proteins a common theme? As already mentioned in Chapter 6 (section 6.11 Model 

and Discussion), in budding yeast, Sld2 is sequentially phosphorylated initially on, up 

to, five canonical Cdc28Cdk sites, with S100 and T214 being of most importance. This 

then leads to phosphorylation of T84, a non-canonical Cdc28 site. Although T84 is 

described as a non-canonical Cdc28 site it is still a TP site, the surrounding amino acids 

make it less favourable for phosphorylation compared with the other sites. It is 

therefore better described as a weaker Cdc28 consensus site. The authors go on to 

show, via yeast two hybrid and in vitro pull down assays, that only the phosphorylated 

T84, not the other phosphorylated sites, could bind to BRCT domains 3 and 4 of Dpb11. 

This rules out the idea that Dpb11 sequentially binds to Sld2, in manner similar to that 

seen for Rad4 and Crb2. Instead, the authors predict a conformational change model, 

in which increasing Cdc28 activity leads to phosphorylation of more TP/SP sites. This 

continues until the phosphorylations cause a large enough conformational change for 

the T84 site to be exposed, this is then phosphorylated by Cdc28 and Dpb11 binds (Tak 

et al., 2006). So, although sequential phosphorylation is important in the case of 

budding yeast Sld2, sequential binding is not. 

Furthermore, the budding yeast Crb2 homolog, Rad9, has been shown to be 

phosphorylated on three different sites by Cdc28 ((Granata et al., 2010, Pfander and 

Diffley, 2011)Table 8-1). It may be that sequential phosphorylation is also important 

for its binding to Dpb11. However, not all three of the sites have been characterised in 

the same study, making it hard to determine if this is the case (Granata et al., 2010, 

Pfander and Diffley, 2011). Interestingly, the Sld3 proteins in fission yeast, budding 

yeast and human are also phosphorylated by CDK on numerous sites, which have been 

shown to be important for their interaction Rad4/ Dpb11/ TopBP1. 



Table 8-1 
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Table 8-1. Summary of the interactions made by Rad4 and its homologs. 
Table shows the Rad4/Dpb11/TopBP1 binding protein, the 
phosphorylated residue, the kinase that phosphorylates it, the minus three 
position residue from the phosphorylation site, the Rad4/Dpb11/TopBP1 
BRCT domain that binds and the reference from which this 
information was taken. Homologous or similar interacting proteins are 
grouped together by colour. Mediator proteins are in red, proteins 
involved in initiation of DNA replication in blue, 9-1-1 proteins in 
orange and other interactions in green. N/D refers to no data and N/P 
means not phosphorylated 
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S. pombe Sld3 is phosphorylated on three sites by Cdc2, S. cerevisiae Sld3 on two sites 

and human Tresilin on two sites (Zegerman and Diffley, 2007, Boos et al., 2011, 

Fukuura et al., 2011) (Table 8-1). This could point to the notion that sequential 

phosphorylation may be important for the interaction between Sld3 and 

Rad4/Dpb11/TopBP1, but this is yet to be shown. None the less, it would seem that a 

common theme amongst at least some of the Rad4/Dpb11/TopBP1 binding partners is 

multiple phosphorylation by CDK. This is especially true for its binding partners 

involved in initiation of replication and in the yeasts the interaction with Crb2 (Table 8-

1).  

It would also seem that in yeasts the BRCT domains 1 and 2 of Rad4/Dpb11 always 

bind to CDK phosphorylated sites. From the currently published data, it may be 

construed that BRCTs 1 and 2 of Rad4/Dpb11 can only bind CDK sites. BRCT domains 4 

is also able to bind CDK phosphorylate sites, and this can be seen for the interaction 

with Sld2 (Tak et al., 2006, Fukuura et al., 2011). However, it is also able to bind other 

phosphorylation sites, this is the case for the interaction between Rad4 and Rad9 in 

fission yeast as well as Dpb11 and Ddc1 in budding yeast (Furuya et al., 2004, Rappas 

et al., 2011) (Table 8-1). Therefore, it may be that Rad4/Dpb11 BRCT4 has a less 

specific binding consensus than BRCT1 and 2. This is also the case in human cells, with 

BRCT2 binding a CK2 site on Rad9 (Rappas et al., 2011).  

From the data presented in Chapter 6, the structural data from the Pearl laboratory 

and previously published data, it is possible to further determine the consensus 

binding sequence for Rad4, and possibly S. cerevisiae Dpb11, BRCT domains 1 and 2. It 

appears that the minus three position from the phosphorylation site is important for 

the binding to Rad4, with valine and possibly Isoleucine being the preferred residues 

(Figure 6-16 A, B). All three of the phosphorylation sites in Crb2 required for the 

interaction with Rad4 have a valine at the minus three position (Figure 615, 6-16A,B). 

This is also true for all three of the Cdc2 sites required for Rad4 binding on Sld3 

(Fukuura et al., 2011). This may suggest sequential binding between Rad4 and Sld3. 

Also, the two Cdc28 sites on S. cerevisiae Sld3 are preceded at the minus three position 

by valine and isoleucine. However, only one of the sites on budding yeast Rad9Crb2 has 

an isoleucine at its minus three position. This may imply that Rad4 only binds this one 
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site and the other two are required for a conformational change, allowing 

phosphorylation of the binding site, as with Sld2. From this data, it can be predicted 

that Rad4/Dpb11 BRCTs1 and 2 binds to a V/I-X-X-pT/pS-P/V. This Rad4 binding 

consensus site could also be expanded to incorporate the binding preferences of the 

other TopBP1 BRCT domains.  It would seem that in all organisms if 

Rad4/Dpb11/TopBP1 is binding a CDK phosphorylated site it has a valine, Isoleucine or 

leucine (which has similar properties to valine/isoleucine) at the minus three position, 

regardless of the BRCT domain binding it. This can be seen for human Treslin, S. pombe 

and S. cerevisiae Sld2 and Human FancJ/Bach1 (and possibly Xenopus NBS1, if T156 is 

phosphorylated and this phosphorylation is by CDK) interactions. The only exception to 

this is the binding between budding yeast Slx4 and Dpb11, where the Slx4 Cdc28 site 

has a serine at the minus three position. 

 This potential Rad4/Dpb11/TopBp1 consensus binding site could, in theory, be used to 

help identify CDK phosphorylation dependent binding partners. For example, it could 

be used to identify an interacting partner for Rad4 in the activation of the replication 

checkpoint. Our attempt to do just this found a consensus binding site in Mrc1. 

However, mutation of this site did not lead to a checkpoint defect (Figure 7-2). This 

does not rule out the possibility that Rad4 does indeed bind Mrc1, it may just not be 

required for checkpoint activation, or that its role is redundant with another pathway. 

It may be worth searching other proteins known to be at the replication fork, or at 

stalled forks, for potential Rad4 binding sequences.  

Other questions that have arisen from this study are concerned with the Cdc13-Rad4 

interaction: what is the nature of the Cdc13-Rad4 interaction? Where does Cdc13 bind 

on Rad4 BRCT3/4? Is this interaction regulated? Does the binding of Cdc13 to Rad4 

determine which target Rad4 binds to? Further work is required to answer all of these 

questions. It could be interesting to carry out cell cycle studies to see how the binding 

of Cdc13 to Rad4 changes throughout the cell cycle, and if it simply follows Cdc13 

expression. This may also help understand whether the interaction influences which 

targets are phosphorylated by Cdc2, and bound to by Rad4. It may be that Rad4 is able 

to localise Cdc2-Cdc13 to specific targets. For example, recruitment of Rad4 to Rad3 

phosphorylated Rad9 may target Cdc13-Cdc2 to the site of damage, where it could 
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phosphorylate repair proteins.  To narrow down the Cdc13 binding region on Rad4, 

pull down assays could be performed with different sized Rad4 BRCT3/4 peptides. The 

reverse experiment could then be done to find the region of Cdc13 that binds to Rad4. 

Once these regions have been identified the presence of certain domains, motifs or 

post translational modification sites may help to shed light on the nature of the 

interaction and whether or not it is regulated.  It may also be interesting to see if 

cyclins in other organisms are able to bind to the Rad4 homologs. 

In human cells it has been shown that TopBP1 is able to bind the Crb2 homolog 53BP1, 

and that this interaction is required for the DNA damage checkpoint in G1 (Cescutti et 

al., 2010). However, the nature of this interaction is not understood. Although, TopBP1 

BRCTs 4 and 5, which functionally correspond to yeast BRCTs 1 and 2, are required for 

the interaction, no sites on 53BP1 have been identified (Cescutti et al., 2010) (Table 

8.1). It would be interesting to see if the same mechanism of binding that we see for 

Rad4 and Crb2 is true for the higher eukaryotes. A search of the 53BP1 amino acid 

sequence shows there are a number of TP/SP sites within the protein, one of which 

has a valine at the minus three position. There is also an SV site with a minus three 

position isoleucine and a TV site with a minus three leucine. It is therefore possible 

that one, or more, of these maybe a TopBP1 binding site. Also, mutants corresponding 

to those made in the Rad4 BRCT domains 1 and 2 in Figure 6-2 and 6-9 could be made 

in human TopBP1. This would help to shed light on the role of each of the BRCT 

domains in humans. It may show which BRCT domains are required for checkpoint 

activation in each of the cell cycle phases, or after certain types of damage. It may also 

show the BRCT domain requirement for replication initiation in human cells. It would 

be interesting to see if either BRCT4 or 5 are required (as with S. pombe BRCT1 and 2) 

or both.  

With the increasing level of knowledge about TopBP1 and its homologs, the role of the 

TopBP1 BRCT domains and their binding partners in disease could also become an 

important area of research. It would be interesting to see if mutations of any of the 

BRCT domains are associated with developmental diseases such as Seckel like 

syndromes. Patients with Seckel syndrome normally have mutations in the checkpoint 

proteins ATR or ATRIP, or in the DNA replication licensing protein Orc1 (O'Driscoll et 
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al., 2003, Bicknell et al., 2011, Ogi et al., 2012). As TopBP1 BRCTs 4 and 5 are involved 

in both the checkpoint and the initiation of DNA replication, it is not unfeasible to 

hypothesise that a mutation in the phospho-binding pocket of one of these BRCT 

domains that reduces binding to its targets, could lead to a Seckle like syndrome. 

However, to date no mutations have been reported in any patients.   

 Another intriguing possibility is the design of small peptide inhibitors that are able to 

specifically bind to, and inhibit, TopBP1 BRCT domains. This has already been shown to 

be possible for the BRCT domains of BRCA1 and computer modelling suggests that it 

could also be possible for TopBP1 (Yuan et al., 2011). Peptides could be made that 

resemble the Rad4 BRCT1/2 binding sequence described above. These could then be 

screened to find peptides that bind with high affinity and would thus prevent TopBP1 

from binding its targets. Due to the different binding specificities of BRCT domains of 

different proteins (for example the BRCT domains of BRCA1 bind pSXXF), or even 

within a protein, very specific peptides could be generated (Yue et al., 2011). These 

peptides could be used to help understand the roles of the different BRCT domains of 

TopBP1 without having to generate cell lines, or have the problem of inviable mutants. 

If these inhibitors could be made soluble enough, they may make good anti-cancer 

drugs. Inhibition of TopBP1 BRCT domains may target cancer cells in two ways. Firstly, 

by inhibiting initiation of DNA replication, they could prevent the rapid cell cycle 

progression and division seen in cancer cells, therefore preventing their proliferation. 

Secondly by inhibiting the checkpoint they may sensitise cells to DNA damage through 

radiation or damage causing drugs. This would be of particular use if the cancer cells 

already contained mutations in checkpoint or DNA repair pathways, as this would 

make them more susceptible to the TopBP1 inhibitors than the normal cells of the 

body.     

Overall, from this work important insights into how checkpoints work in S. Pombe have 

been made,  similarities and differences between organisms have been exposed and 

this leads the way for further study in higher eukaryotes. 
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