
   

 

A University of Sussex DPhil thesis 

Available online via Sussex Research Online: 

http://sro.sussex.ac.uk/   

This thesis is protected by copyright which belongs to the author.   

This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

Please visit Sussex Research Online for more information and further details   



CMB Lensing: Polarization, Large-Scale

Structure and the Primordial Bispectrum

Ruth Pearson

Submitted for the degree of Doctor of Philosophy

University of Sussex

March 2014



iii

UNIVERSITY OF SUSSEX

Ruth Pearson, Doctor of Philosophy

CMB Lensing: Polarization, Large-Scale Structure

and the Primordial Bispectrum

Abstract

Gravitational lensing of photons in the Cosmic Microwave Background (CMB) can be
described by an integrated potential along the line of sight, the CMB lensing potential.
Covariances in maps of the CMB are generated by the lensing effect, and are used to
reconstruct the lensing potential itself, which is a useful probe of the matter distribution.
The CMB lensing potential has been measured to high significance with CMB temperature
data. However, signal to noise for lensing reconstruction from CMB polarization data is
expected to be much better due to the presence of the lensing B-mode. Upcoming data
from ground based CMB polarization instruments will provide high resolution maps over
small patches of the sky. This will provide much better lensing reconstruction, but also
presents data analysis challenges. This thesis begins with an introduction to the field
of CMB lensing and CMB lensing reconstruction. The second chapter details the biases
present in reconstructing the lensing potential from CMB polarization maps considering
first the full sky, and then small patches of sky. It also shows that using the pure-B mode
formalism for the CMB polarization leads to improved lensing reconstruction over the naive
case on the cut sky. Given the upcoming improvement in the CMB lensing reconstruction,
it is expected that cross-correlations of the CMB lensing with other structure tracers,
such as galaxies, will yield improved information for cosmology. It is also expected that
the CMB lensing will become useful to help constrain uncertainties in the galaxy power
spectrum, and provide information on the linear galaxy bias and redshift distribution. The
third chapter of the thesis forecasts the power of cross correlation science for a number
of galactic and non-galactic parameters. Finally, the CMB lensing effects the level of
non-Gaussianity observed in the CMB. The fourth chapter of the thesis is a study of the
lensing effect on the primordial squeezed bispectrum. We conclude in the fifth chapter.
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Chapter 1

Introduction

When I was born (1988), our understanding of the universe was in its infancy. We knew

little of the geometry of the universe, nothing of the existence of dark energy, and we’d

never observed anisotropies in the cosmic microwave background (CMB). Now we’ve meas-

ured all three at better than percent level and can say with increasing confidence that all

the structure in the universe originates as quantum fluctuations soon after the big bang.

The standard model of cosmology, ΛCDM , is the best fit model of the universe to

current data. The ‘Λ’ denotes that we expect a universe with some scalar field which is

driving the expansion of the universe, (sometimes a cosmological constant). The ‘CDM ’

term describes Cold Dark Matter. We think that the universe contains mostly dark matter

— matter which does not emit light but interacts gravitationally — which does not have

much kinetic energy, hence ‘cold’. Edwin Hubble was first to observe that galaxies are

moving away from us at a rate proportional to their distance, the first evidence of an

expanding universe. If we believe that the universe is moving apart in all directions,

rewinding this picture leads to an initial state where all the matter is densely packed

into one point. This idea is the foundation of the current picture of the beginning of the

universe which we call the hot big bang model. An important consequence of big bang

cosmology is a period of nucleosynthesis in the early universe in which light elements are

created, something which is very well supported by observation.

Another cornerstone of the standard cosmology is a period of exponential expansion

know as inflation, which takes place a fraction of a second after the universe begins. The

simplest model for inflation is the standard slow roll model. In slow roll inflation there

exists a single scalar field driving the exponential expansion of the universe. This field rolls

slowly down its potential until it reaches the global minimum at which point inflation ends

and the energy is transformed into standard model particles via a period called reheating.
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A period of exponential expansion is required in our model to solve some outstanding

problems which would exist without it:

1. The Flatness Problem: A priori the geometry of the universe could be open, closed or

flat. These scenarios correspond to a curvature which is positive (Ωk > 0), negative

(Ωk < 0) or zero (Ωk = 0). Observations tell us that the universe is very close to

flat, which without inflation corresponds to having an exceedingly flat universe as

an initial condition which presents a fine tuning problem. However, if we assume a

long enough period of inflation (more than 60 e-folds), any initial geometry will look

spatially flat to an observer in a causal patch.

2. The Horizon Problem: The horizon size is the maximum distance that light can

travel in the age of the universe. Things outside of each others’ horizon are causally

disconnected. The horizon size at the surface of last scattering corresponds to an

angular size on the sky today of ∼ 2◦. However, measurements of the CMB confirm

that it is homogeneous across the whole sky to one part in 10−5. This implies that

the photons across the whole sky were once in causal contact, which makes sense in

the standard cosmology if we allow for a period of inflation.

3. The Magnetic Monopole Problem: The standard model of particle physics suggests

that we should expect to observe magnetic monopoles as a large fraction of the energy

density in the universe. Without a period of inflation, the hot big bang model is not

able to explain why we do not observe the magnetic monopole.

A slowly rolling field for inflation is the simplest model which fits current observations.

However, there is a large number of other more complicated models for inflation which can

also describe current observations, and a major challenge of modern cosmology is to dis-

tinguish between these different models. During the period of inflation, there are quantum

fluctuations in the value of the potential which become perturbations in the density field

after inflation finishes. The details of these perturbations is therefore imprinted in the

CMB and hence there is opportunity to make observations which may help to distinguish

between the many inflationary models. In fact, due to the successes in measuring the

CMB the field of cosmology has become a precision science. For full reviews of modern

cosmology see Dodelson (2003) and Liddle & Lyth (2000).

When we point our telescopes into the sky we observe a background radiation across

the whole sky which is in the microwave spectrum at a temperature of ∼ 2.7K. This is

the CMB which has yielded two Nobel prizes in physics. The photons that comprise this
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radiation come from a very specific early time in the universe, the period of so called

recombination at a redshift of around 1000, or roughly 300,000 years after the big bang.

The early universe was a hot dense opaque plasma. But as the universe expanded, the

plasma became less hot and less dense. Eventually it was cool enough that electrons and

protons were able to form stable hydrogen atoms, after which photons were able to free

stream without being constantly Compton scattered: the universe became transparent.

It was the photons released during this epoch of “last scattering” that have travelled

through the universe to be observed in our telescopes today as the CMB. In fact when

we measure the CMB we find small changes in its temperature and polarization at the

10−5 level. These small fluctuations were seeded by quantum fluctuations during inflation

which became fluctuations in the density field after reheating. As such the CMB is like

a snap shot of the universe at early times, and we can learn much about cosmology

when we analyse the CMB temperature and polarization anisotropy. There have been

three major satellite missions to date which have observed the CMB over (almost) the

full sky: COBE (NASA, 2014a), WMAP (NASA, 2014c) and Planck (ESA, 2014). A

comparison of these missions is shown in Fig. 1.1. There are many other ground based

telescopes and balloon borne missions measuring smaller fractions of the CMB sky. The

statistical properties of the CMB temperature and polarization anisotropies are described

in section 1.1.

Figure 1.1: A comparison of the resolution of the COBE (NASA, 2014a), WMAP (NASA,

2014c) and Planck (ESA, 2014) satellites measuring CMB temperature fluctuations over

a 10◦ × 10◦ patch of sky (NASA, 2014b).
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However, as the CMB photons travel through the universe, they encounter gravit-

ational potentials. The potentials deflect the path of the CMB photons. This moves

around on the sky the photons which we observe, though surface brightness is preserved.

Figure 1.2 shows how the Earth would look if 1000× the magnitude of the CMB lensing

was applied to a map of it. The CMB lensing effect introduces signals in the primary

CMB such as B mode polarization and non-Gaussianity, but is also interesting itself as it

probes the matter distribution from a high redshift source (the surface of last scattering)

until today. Since the photons are deflected by both baryonic and dark matter, the matter

distribution that the lensing traces is a combination of the two. The same quantum fluctu-

ations which gave rise to the anisotropy in the CMB also seeded the large-scale structure

of the universe. The structure of the biggest thing we know — the whole observable uni-

verse — is seeded by the smallest thing we know, quantum fluctuations. When we observe

the structure of the universe we look at galaxies and clusters of galaxies across a range

of wavelengths. Unlike for the CMB, the large-scale structure is highly non-linear and

contains 3-Dimensional information since a range of redshifts can be observed.

The CMB lensing effect is sensitive to the geometry of the universe (e.g. dark energy

and its evolution) and the shape of the matter power spectrum (affected by e.g. massive

neutrinos). It is well known that CMB lensing breaks the degeneracy between the neut-

rino mass fraction Ων and the dark energy fraction ΩΛ, and using this information CMB

lensing can be used to distinguish between cosmological models. The lensing of the CMB

photons can be described by an integrated potential along the line of sight, the CMB

lensing potential. The covariances in the CMB maps generated by the lensing are used

to reconstruct the lensing potential itself, usually using the so called quadratic estimator.

Using this method, the CMB lensing potential has been measured with CMB temperature

data, yielding high significance measurements of the lensing power spectrum. However

signal to noise for lensing reconstruction from CMB polarization data is expected to be

much better, since B modes on small scales are not present in the absence of lensing.

The statistical properties and reconstruction details for the CMB lensing are described in

section 2.1.1.

An effect of having CMB data from an incomplete sky is leakage of E mode power in

to B mode power. Upcoming data analysis from ground-based CMB polarization instru-

ments will provide high resolution maps over small patches of the sky and therefore must

account for this effect. The SPT Pol (Austermann et al., 2012), POLARBEAR (Ker-

mish et al., 2012) and ACT Pol (Niemack et al., 2010) experiments are already taking
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Figure 1.2: Top: An image of the Earth. Bottom: Top image lensed by 1000× the

magnitude of the CMB lensing potential.



6

such data, and the SPT 3G and Simons Array experiments are planned for the future.

In Chapter 2 we derive forecasts for CMB polarization lensing reconstruction from small

patches of sky, which incorporate the pure-B mode estimator to clean up this problem of

E-B leakage. We show the biases associated with full sky (periodic boundary condition)

lensing reconstruction from polarization and that using the pure-B mode formalism to

account for ambiguous modes in the E-B leakage improves the lensing reconstruction over

the naive case on the cut sky.

Since CMB lensing probes all matter, it should be well correlated with galaxy surveys

observing the large-scale structure of the universe, indeed CMB lensing was first detected

via cross correlation with a radio survey. Current experiments are good enough to detect

the CMB lensing potential without the help of an auxiliary tracer, and the cross correla-

tion between CMB lensing and large-scale structure surveys should aid in simultaneously

measuring galactic and non-galactic cosmological information. There is already a wealth

of data available for such analysis, and upcoming surveys such as LSST (Abell et al., 2009)

and DES (Abbott et al., 2005), will offer even better opportunities for cross correlation

science. Structure surveys observe light from distant galaxies. However, we know that

there is a bias between the light from galaxies and the underlying matter distribution,

discussed more in section 1.4. This bias is redshift dependent and non-linear at a scale

which is not yet fully understood. The CMB lensing traces the dark matter directly, and

so it can be analysed jointly with the galaxy information to help control uncertainties

in the linear galaxy bias. There are many other biases and systematic effects associated

with analysing galaxy survey data, whereas CMB lensing is a relatively clean probe. For

example, it has been shown that CMB lensing can break degeneracies in galaxy analysis

between power spectrum normalisation and certain systematic biases (Vallinotto, 2012).

In Chapter 3 we show that the joint analysis of these complementary probes will allow

much better measurements on parameters such as the linear galaxy bias and the galaxy

redshift distribution.

The primordial CMB fluctuations are often assumed Gaussian in nature. However,

deviations from Gaussianity in the CMB have been a hot topic of research, since any

non-Gaussian signal has the potential to teach us about conditions during inflation. Some

measurement bounds of the non-Gaussianity have promised to rule out entire classes of

models of inflation, though to date the non-Gaussianity measured from the CMB is con-

sistent with zero. Since we are now searching for very small non-Gaussian signals, it

is important to understand how the CMB lensing will change the non-Gaussian signal.
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Modelling methods can be computationally expensive, and in Chapter 4 we discuss an

approximation for the lensed bispectrum (3-point correlation function) which allows a less

computationally expensive method.

1.1 The Cosmic Microwave Background Observables

For a review of the physics of the CMB see e.g. Challinor & Peiris (2009). When we point

our telescopes at the CMB, what we actually measure are the Stokes parameters I, Q and

U. Stokes parameters describe electromagnetic radiation by splitting a correlation matrix

into intensity, linear polarization and circular polarization. An observation can be defined

in terms of an intensity correlation matrix

P = c〈EaE∗b 〉, (1.1)

where c is a constant that normalises P to be measured in temperature units and the

angle brackets denote a time average. This is a rank 2 tensor and can be decomposed into

irreducible parts

P = Pab +
1

2
δabI + V[ab]. (1.2)

Pab is the symmetric trace-free part, I is the total power intensity and V[ab] is the antisym-

metric part corresponding to circular polarization. Thomson scattering in the CMB does

not induce circular polarization, so the V[ab] is not considered further.

1.1.1 CMB temperature

The I component of the Stokes parameters corresponds to the CMB temperature which

we write in terms of spherical harmonics as

4T (n̂)

T̄
=
∑

lm

TlmYlm(n̂). (1.3)

The left hand side of the equation expresses the temperature perturbation 4T (n̂) in the

direction n̂, relative to the mean background temperature T̄ . On the right hand side of

the equation, Ylm(n̂) are the spherical harmonics and contain all the information about

direction. The Tlm are the spherical harmonic coefficients and since the temperature is

a real field T ∗lm = (−1)mTl−m. For the spherical harmonics, l ≥ 1 and −l ≤ m ≤ l.

Assuming that each Tlm is a Gaussian random variable, the 2-point correlation function

of the harmonic coefficients is

〈TlmT ∗l′m′〉 = δll′δmm′C
TT
l . (1.4)
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Since in practice we only have one sky to observe and cannot take the ensemble average,

we construct the estimator for the power spectrum

ĈTTl =
1

2l + 1

l∑

m=−l
|Tlm|2. (1.5)

This estimator is unbiased (〈ĈTTl 〉 = CTTl ) and has a variance of

V [ĈTTl ] =
2(CTTl )2

2l + 1
. (1.6)

The variance is calculated via Wick’s theorem, where for Gaussian variables all higher order

statistics can be reduced to power spectra. The variance decreases at higher multipoles,

since −l ≤ m ≤ l and there are more Tlms to average over for higher multipoles.

In practice, since many experiments only observe small patches of sky, it is often con-

venient to work in the flat-sky approximation where the temperature anisotropy becomes

T (x) =

∫
d2l

2π
T (l)eil·x (1.7)

and

T (l) =

∫
d2x

2π
T (x)e−il·x, (1.8)

where x substitutes n̂ and is the position on the plane of the sky. The best measure-

ment to date of the temperature power spectrum of the CMB has been from the Planck

satellite (Ade et al., 2013e) and is shown in Fig. 1.3.

1.1.2 CMB polarization

The Pab component of the intensity matrix is written in terms of the basis dependent

Stokes parameters Q and U:

Pab =
1

2


Q U

U −Q


 . (1.9)

Pab is a rank 2 tensor, and can be written in terms of two scalar fields PE and PB

Pab = ∇〈a∇b〉PE + εc (a∇c)∇bPB. (1.10)

The left hand side of the equation is the physical quantity, the right hand side is the

projection into scalar fields. Angle brackets around indices denote the symmetric trace-

free part, while curly brackets denote the antisymmetric part. ∇a is a covariant derivative

on the surface orthogonal to the observation direction n̂. PE describes the parity invariant

“E mode” and PB describes the curl-like “B mode”. The polarization patterns of the E

and B mode are shown in Fig 1.4. Expressed in the spherical harmonics:

(Q± iU)(n̂) =
∑

lm

(Elm ∓ iBlm)∓2Ylm(n̂), (1.11)
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Figure 1.3: The temperature power spectrum measured by Planck (Ade et al., 2013e),

where Dl ≡ l(l+1)CTTl
2π .

where ∓2Ylm(n̂) are the spin ∓2 spherical harmonics and Q and U are defined relative to

the polar-coordinate basis. The E and B mode power spectra are:

〈ElmE∗l′m′〉 = δll′δmm′C
EE
l (1.12)

and

〈BlmB∗l′m′〉 = δll′δmm′C
BB
l . (1.13)

The temperature and E mode also correlate to produce the cross-power spectrum:

〈TlmE∗l′m′〉 = δll′δmm′C
TE
l . (1.14)

Due to parity invariance there are no TB or EB correlations. As in the temperature case,

it is often useful to express the Q and U stokes parameters and the E and B modes using

the flat sky approximation:

[Q± iU ](x) = −
∫
d2l

2π
[E(l)± iB(l)]e±2iϕleil·x; (1.15)

[E(l)± iB(l)] = −
∫
d2x

2π
[Q± iU ](x)e∓2iϕle−il·x. (1.16)

This assumes a Cartesian basis for Q and U, which is a simple rotation from the polar-

coordinate basis on the full sky.
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Figure 1.4: Polarization patterns for azimuthally-symmetric E and B modes.
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1.2 CMB Lensing

1.2.1 The lensing deflection angle and the lensing potential

Figure 1.5: An illustration of the deflection of a CMB photon caused by a gravitational

potential Ψ at distance χ from the observer.

For a full review of the CMB lensing effect see Refs. Lewis & Challinor (2006) and Hanson

et al. (2010). It is well known that a gravitational potential will bend the path of light. We

would like to know how much the gravitational potentials in the universe will deflect the

CMB photons, so we start with a simple Newtonian calculation: for a photon approaching

a point mass M the gravitational potential Ψ is

Ψ =
GM

r
, (1.17)
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where G is Newton’s constant and r is the distance between the photon and point mass

M. The transverse acceleration of the photon due to the mass is

v̇⊥ = −∇⊥Ψ =
GM

r2
cos θ. (1.18)

Where θ is the angle of the photon from the mass relative to its angle at a distance of

closest approach R0. Integration over the photon path for constant speed |v| = c gives a

total (Newtonian) deflection angle:

v⊥
|v| =

2GM

c2R0
, (1.19)

where we can use natural units and set c = 1. In General Relativity, we replace the

derivative with the covariant derivative giving an acceleration of Dχv̂ = −∇Ψ where Dχ

is the covariant derivative along the photon world line. To get the deflection angle, we

must also account for the curvature of space to give a local deflection angle of

δβ = −2δχ∇⊥Ψ, (1.20)

where δχ is a small distance along the photon path. This General Relativity result is es-

sentially the Newtonian result plus an equal term due to the effect of space-time curvature.

We would like to know how a deflection in a photon’s path changes its observed angle on

the sky. The angular diameter distance fK(χ) relates comoving distances to angles via:

fK(χ) =





K−1/2 sin(K1/2χ) for K > 0, closed,

χ for K = 0, flat,

|K|−1/2 sinh(|K|1/2χ) for K < 0, open.

(1.21)

We are working under the approximation of weak lensing and in the small angle approx-

imation fK(χ∗ − χ)δβ = fK(χ∗)δθ. Solving for δθ the deflection due to the source at χ

is

δθχ =
fK(χ∗ − χ)δβ

fK(χ∗)
=
fK(χ∗ − χ)

fK(χ∗)
2δχ∇⊥Ψ. (1.22)

The total deflection angle is a sum over all of the individual deflections due to gravitational

potentials between the surface of last scattering and today:

α = −2

∫ χ∗

0
dχ

fK(χ∗ − χ)

fK(χ∗)fK(χ)
∇⊥Ψ(χn̂, η0 − χ), (1.23)

where η0−χ is the conformal time at which a photon was at position χn̂. We then define

the lensing potential:
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φ(n̂) ≡ −2

∫ χ∗

0
dχ

fK(χ∗ − χ)

fK(χ∗)fK(χ)
Ψ(χn̂, η0 − χ), (1.24)

so that α = ∇n̂φ which in the following text will be written as simply α = ∇φ. We

will assume a flat geometry where angular diameter distance fK(χ) = χ, and take last

scattering as a plane at χ = χ∗. The lensing potential looks divergent at χ = 0, but the

divergence only affects the monopole which does not contribute to the deflection angle. It

is useful to consider the 2-point correlation of the lensing potential, the lensing potential

power spectrum. To calculate this, expand the 3-dimensional gravitational potential Ψ

into harmonic space

Ψ(x, η) =

∫
d3k

(2π)3/2
Ψ(k, η)eik·x. (1.25)

Assuming the gravitational potential is statistically homogeneous, its power spectrum is

〈Ψ(k, η)Ψ∗(k′, η′)〉 =
2π2

k3
PΨ(k, η, η′)δ(k− k′), (1.26)

where η is conformal time. Taking the 2-point correlation function of Eq. (1.24) reduces

to the 2-point correlation of Eq. (1.25) and we can use the result of Eq. (1.26) to write:

〈φ(n̂)φ(n̂′)〉 = 4

∫ χ∗

0
dχ

∫ χ∗

0
dχ′
(
χ∗ − χ
χ∗χ

)(
χ∗ − χ′
χ∗χ′

)∫
d3k

(2π)3

2π2

k3
PΨ(k, η, η′)eik·xe−ik·x

′
.

(1.27)

Where x = χn̂ and x′ = χn̂′. We can use the result

eik·x = 4π
∑

lm

iljl(kχ)Y ∗lm(n̂)Ylm(k̂), (1.28)

where the spherical Bessel function jl(r) = (π/2r)1/2Jl+1/2(r) where J is the standard

Bessel function. Consider the k integral in spherical coordinates

∫
d3k =

∫
k2dkdk̂, (1.29)

and the orthogonality of the spherical harmonics

∫
dk̂Ylm(k̂)Y ∗l′m′(k̂) = δll′δmm′ . (1.30)

Using Eq. (1.29) and Eq. (1.30) the angular integral can be taken over k̂ to yield

〈φ(n̂)φ(n̂′)〉 = 16π
∑

ll′mm′

∫ χ∗

0
dχ

∫ χ∗

0
dχ′
(
χ∗ − χ
χ∗χ

)(
χ∗ − χ′
χ∗χ′

)
(1.31)

×
∫
dk

k
jl(kχ)jl(kχ

′)PΨ(k, η, η′)Ylm(n̂)Y ∗l′m′(n̂
′)δll′δmm′ .
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Expanded in spherical harmonics, the lensing potential is

φ(n̂) =
∑

lm

φlmYlm(n̂), (1.32)

and assuming statistical isotropy the power spectrum is

〈φlmφ∗l′m′〉 = δll′δmm′C
φφ
l . (1.33)

Taking the 2-point correlation of Eq. (1.32):

〈φ(n̂)φ(n̂′)〉 =
∑

ll′mm′

〈φlmφ∗l′m′〉Ylm(n̂)Ylm(n̂′) (1.34)

=
∑

ll′mm′

δll′δmm′C
φφ
l Ylm(n̂)Ylm(n̂′).

Comparing this result to Eq. (1.31) we see that

Cφφl = 16π

∫ χ∗

0
dχ

∫ χ∗

0
dχ′
(
χ∗ − χ
χ∗χ

)(
χ∗ − χ′
χ∗χ′

)
(1.35)

×
∫
dk

k
jl(kχ)jl(kχ

′)PΨ(k, η0 − χ, η0 − χ′).

This is the theoretical power spectrum for the lensing potential. Defining a linear transfer

function

Ψ(k, η) = TΨ(k; η)R(k), (1.36)

where R(k) is the primordial comoving curvature perturbation, we can write:

Cφφl = 16π

∫
dk

k
PR(k)

[ ∫ χ∗

0
dχTΨ(k; η0 − χ)jl(kχ)

(
χ∗ − χ′
χ∗χ′

)]2

. (1.37)

This power spectrum can be computed easily along with other CMB power spectra using

Boltzmann codes such as camb (Lewis et al., 2000).

1.2.2 The lensed CMB power spectra

The lensed temperature T̃ (n̂) is a remapping of the the unlensed temperature T (n̂). On

the flat sky, this looks like T̃ (x) = T (x′) = T (x +∇φ) and it can be series expanded to

T (x +∇φ) ≈ T (x) +∇aφ(x)∇aT (x) +
1

2
∇aφ(x)∇bφ(x)∇a∇bT (x) + · · · (1.38)

We can write the flat sky Fourier expansion of the lensing potential as

φ(x) =

∫
d2l

2π
φ(l)eil·x (1.39)
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and then take the x derivatives of Eq. (1.7) and Eq. (1.39) respectively:

∇T (x) = i

∫
d2l

2π
lT (l)eil·x, (1.40)

∇φ(x) = i

∫
d2l

2π
lφ(l)eil·x. (1.41)

Taking the Fourier transform of Eq. (1.38) gives to second order in φ:

T̃ (l) ≈ T (l)−
∫
d2l′

2π
l′ · (l− l′)φ(l− l′)T (l′) (1.42)

−1

2

∫
d2l1
2π

∫
d2l2
2π

l1 · [l1 + l2 − l]l1 · l2T (l1)φ(l2)φ∗(l1 + l2 − l).

CMB lensing is isotropic since it just moves points around on the sky, so the nth moment

of the temperature at any given point is unchanged under lensing on average. (Note that

for CMB power spectra homogeneity of the gravitational potential is assumed, but it is the

orthogonality of the spherical harmonics which gives the delta function due to isotropy).

Therefore the lensed temperature power spectrum is also diagonal:

〈T̃ (l)T̃ ∗(l′)〉 = δ(l− l′)C̃TTl , (1.43)

(the T-φ correlation is small on intermediate and small scales). We can use Eq. (1.42)

to write down an expression for the lensed temperature power spectrum C̃TTl . Neglecting

the T-φ correlation since it is small and remembering that φ(l) = φ∗(−l), we obtain

C̃TTl ≈ (1− l2Rφ)CTTl +

∫
d2l′

(2π)2
[l′ · (l− l′)]2Cφφ|l−l′|C

TT
l′ (1.44)

where

Rφ ≡ 1

2
〈|∇φ|2〉 =

1

4π

∫
dl

l
l4Cφφl . (1.45)

The situation is analogous but slightly more complicated for the polarization observ-

ables. The re-mapping of polarization due to lensing is written via the lensed polarization

tensor: P̃ab(x) = Pab(x
′) = Pab(x +∇φ) and it can be series expanded to

Pab(x +∇φ) ≈ Pab(x) +∇cφ(x)∇cPab(x) +
1

2
∇cφ(x)∇dφ(x)∇c∇dPab(x) + · · · (1.46)

In the absence of tensor modes the primordial B mode is zero. We are mostly interested in

the unlensed E mode which lensing converts into B mode, and so we can take the unlensed

B mode B(l) = 0. The harmonic expansion gives

Ẽ(l)± iB̃(l) ≈ E(l)−
∫
d2l′

2π
l′ · (l− l′)e±2i(ϕl′−ϕl)φ(l− l′)E(l′) (1.47)

−1

2

∫
d2l1
2π

d2l2
2π

e±2i(ϕl′−ϕl)l1 · [l1 + l2 − l] · l2E(l1)φ(l2)φ∗(l1 + l2 − l).
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To lowest order in Cφφl the polarization lensed power spectra are:

C̃EEl = (1− l2Rφ)CEEl +

∫
d2l′

(2π)2
[l′ · (l− l′)]2Cφφ|l−l′|C

EE
l′ cos2 2(ϕl′ − ϕl), (1.48)

C̃BBl =

∫
d2l′

(2π)2
[l′ · (l− l′)]2Cφφ|l−l′|C

EE
l′ sin2 2(ϕl′ − ϕl). (1.49)

The Taylor expansion is accurate when the thing that it is expanded around, in our case

α, is small. Therefore on scales where l ∼ α this approximation breaks down, and the

Taylor expansion is not very accurate for the lensed power spectra. A better technique is

to write down the lensed power spectra in terms of lensed correlation functions, a method

which is used in Chapter 4. However, since only relative deflections are important, the

Taylor expansion does do quite well in many cases.

1.2.3 Lensing reconstruction

Assuming isotropy, we have seen that harmonics with different l are uncorrelated (e.g.

Eq. (1.4), Eq. (1.12), Eq .(1.13), Eq .(1.14) and Eq .(1.33)). However, for some fixed

lensing potential the sky we observe is not isotropic and contains off-diagonal elements

in the covariance matrix. We can exploit these off-diagonal terms to build an estimator

for the lensing potential. The optimal way to reconstruct the lensing potential would be

to use a full maximum likelihood based analysis (Hirata & Seljak, 2003a). However, in

practice this is computationally expensive and the quadratic estimator is used instead.

For the temperature, we use Eq. (1.38), the series expansion in the deflection, to write

down the 2-point function of the lensed temperature averaged over the CMB:

〈T̃ (l)T̃ (l− L)〉CMB = δ(l)CTTl −
∫
d2l′

2π
[l′ · (l− l′)φ(l− l′)〈T (l′)T ∗(l− L)〉 (1.50)

+l′ · (l− L− l′)φ∗(l− L− l′)〈T (l)T ∗(l′)〉] +O(φ2)

= δ(L)CTTl +
1

2π
[(L− l) · LCTT|l−L| + l · LCTTl ]φ(L) +O(φ2).

The φ(L = 0) mode has zero gradient and is unobservable. However, the L 6= 0 probes

the lensing potential and we use a weighted average of the off-diagonal terms to construct

the quadratic estimator

φ̂(L) ≡ N(L)

∫
d2l

2π
T̃ (l)T̃ ∗(l− L)W (l,L). (1.51)

Here N(L) is a normalisation function and W (l,L) is a weighting which we can optimise.

For an unbiased estimator 〈φ̂(l)〉CMB = φ(l) and so the normalisation is

N−1(L) =

∫
d2l

(2π)2
[(L− l) · LCTT|l−L| + l · LCTTl ]W (l,L). (1.52)



17

Now we would like to choose W (l,L) to maximise signal to noise. The variance is given

by 〈|φ̂(L)− φ(L)|2〉 ∼ 〈|φ̂(L)|2〉 therefore:

〈φ̂∗(L)φ̂(L′)〉 = δ(L− L′)2N(L)2

∫
d2l

(2π)2
Cobs
l Cobs

|l−L|[W (l,L)]2 +O(φ2), (1.53)

where Cobs
l = C̃TTl +Nl where Nl is the instrumental noise. Minimising this variance gives

a weighting of

W (l,L) =
l · LCTTl
Cobs
l Cobs

|l−L|
. (1.54)

The analogously derived equations for the polarization quadratic estimator are given in

Chapter 2.

1.3 Non-Gaussianity

For zero-mean Gaussian random fields the 2-point correlation function contains all of the

statistical information since higher order connected correlators of the Gaussian vanish.

For example, if we take the 3-point correlation of the temperature harmonic coefficients

Tlm analogously to the 2-point function of Eq. (1.4)

〈TlmTl′m′Tl′′m′′〉 = 0, (1.55)

which evaluates to zero because the mean of the Gaussian 〈Tlm〉 = 0. The term ‘non-

Gaussianity’ refers to anything which is not Gaussian distributed and therefore contains

higher-order connected correlation functions. In cosmology we expect that deviations from

slow roll inflation could cause non-Gaussianities in the inflaton field. Measurements of non-

Gaussianity in the CMB and Large-Scale Structure can be traced back to non-Gaussianities

in the inflaton field, with the potential to differentiate observationally between different

inflationary models. The 3-point correlation function is known as the bispectrum and

corresponds to a skewness in the distribution. The 4-point correlation function is known

as the trispectrum and corresponds to a kurtosis (squashing/stretching) of the Gaussian

distribution.

Figure 1.6 shows schematically how non-Gaussianities in the gravitational potential Φ

correspond to non-zero 3- and 4-point correlation functions (skewness and kurtosis) in the

distribution. During matter domination, the gravitational potential Φ (evaluated in the

Newtonian gauge) can be related to the gauge invariant primordial curvature perturbation

ζ by
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Φ = −3

5
ζ. (1.56)

Figure 1.6: A schematic view of the 3- and 4-point correlation functions of a non-Gaussian

field.

In practice, we do not measure Φ or ζ. The transfer function tells us how to evolve

primordial inflationary quantities into observables. For example, the Tlm of the temper-

ature anisotropy is related to ζ via the transfer function δl(k) by

Tlm = 4π(−i)l
∫
d3kδl(k)ζ(k)Ylm(k̂). (1.57)

This relation can be used to relate the primordial bispectrum to the CMB bispectrum.

The primordial bispectrum in terms of the gravitational potentials is defined as

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ(k1 + k2 + k3)BΦ(k1, k2, k3). (1.58)

The bispectrum is a function of three k modes which must obey the triangle condition.

One limit of the bispectrum which is interesting to study is the local bispectrum also

known as the squeezed limit. In this limit there are two small-scale modes comparable

in size and one large-scale mode k1 ∼ k2 >> k3. In k-space this looks like squeezed

triangles and physically corresponds to a modulation of small-scale power by the large-
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scale mode. Figure 1.7 shows the the squeezed triangle and the modulation of small power

by a large-scale mode.

Figure 1.7: Above: The bispectrum triangle condition in the squeezed limit. Below: A real

space representation of a large-scale modulation of small-scale power. Each dot represents

some small-scale power.

In this limit the non-Gaussian gravitational potential ΦNG can be expressed via a

Gaussian potential ΦG using:

ΦNG = ΦG + fNLΦ2
G − 〈Φ2

G〉. (1.59)

This parameterises the level of non-Gaussianity in the squeezed bispectrum via the para-

meter fNL. The bispectrum can then be written down in terms of the 2-point correlation

functions of the gravitational potential in k space:

BΦ(k1, k2, k3) = 2fNL[PΦ(k1)PΦ(k2) + PΦ(k1)PΦ(k3) + PΦ(k1)PΦ(k3)], (1.60)

where

〈Φ(k1)Φ(k2)〉 = δ(k1 + k2)PΦ(k1). (1.61)

1.4 Large-Scale Structure

Like the CMB, the Large-Scale Structure (LSS) of the universe is also seeded by the

quantum fluctuations in the inflationary potential via gravitational collapse after reheat-

ing. An over-dense region will have a larger gravitational potential than an under-dense

region causing gravitational collapse in the over-dense regions but not in the under-dense
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regions. In the early universe this collapse competes with radiation pressure from photons

and neutrinos, whilst in the later universe it competes with the expansion due to dark

energy. Therefore, measurements of the LSS will yield information on the neutrino mass

sum
∑
mν and the dark energy ΩΛ as well as galaxy clustering properties. However, un-

like the CMB the LSS is highly non-linear which presents challenges for measurement. On

the other hand, the LSS contains three-dimensional information (it can be measured by

different tracers at varying redshifts), and is therefore extremely valuable for cosmology.

To measure the LSS, we can survey various tracers. The dominant contribution of

energy density of matter is in CDM and we expect the baryonic matter in the universe to

reside in the potential wells of the underlying CDM distribution. Therefore, by measuring

the clustering properties of galaxies and clusters of galaxies (as well as voids) we can probe

the underlying matter distribution. However, galaxies reside in dark matter halos and the

clustering of the halos is different to the clustering of the dark matter distribution itself.

This leads to a bias between the power spectrum of the tracer and the power spectrum

of the CDM. This is called the ‘galaxy bias’ and is an active field of research. The galaxy

bias is scale dependent, redshift dependent and tracer dependent. The full properties of

the the galaxy bias are only just beginning to be understood, and once under control,

will give us a much better handle on many cosmological observables. (E.g. see Dekel &

Lahav (1999) for a discussion of non-linearity and Smith et al. (2007) for a discussion of

scale dependence). A simple formulation of the galaxy bias is to assume a linear relation

between the galaxy density field δg and the underlying matter density field due to the

CDM δm:

δg(x) = bδm(x). (1.62)

The power spectrum relation then becomes:

Pg(k) = b2Pm(k). (1.63)

The gravitational collapse of over dense regions of the CDM field competes with the

expansion of the universe, and dark matter haloes (gravitationally collapsed clumps of

dark matter) only form when the CDM density contrast is above a critical threshold.

Therefore, where there is one dark matter halo, we expect there to be more, since the

local area is probably an over dense region. This leads to the dark matter haloes being

more strongly clustered than the underlying CDM because haloes will only form in the

peaks of a Gaussian-assumed underlying CDM field. Galaxies will form in haloes, causing

the bias to also appear in the galaxy power spectrum which we measure from observations.
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Fig. 1.8 shows a cartoon of why the dark matter haloes tend to form in clusters via the

high peak model of bias by Kaiser (1984). Theoretically, it is simplest to imagine a linearly

extrapolated growth function of the perturbations modelled by spherical collapse. In this

picture it is relatively simple to predict the power spectrum of peaks above some threshold

using Gaussian statistics, and the threshold density contrast required for haloes to form

(via non-linear gravitational collapse) is δthreshold
m = 1.686 (see e.g. Liddle & Lyth (2000)

for a derivation). Under these assumptions the halo mass function can be calculated,

which describes the abundance of haloes as a function of mass and redshift. In practice,

we have to use N-body simulations to simulate the halo mass function and see if it fits

with our theory. In the picture described, we expect haloes and therefore galaxies to be

more clustered than the underlying CDM distribution, hence usually b > 1. The rarer the

object we observe, the more biased we expect it to be. For example the largest galaxy

clusters we observe are also the most biased. In contrast, as a function of time the bias

is decreasing. The older the universe becomes, the more regions will have crossed the

density threshold for collapse. This means that lower mass and lower redshift objects are

expected to be less biased. For a comprehensive review see Bernardeau et al. (2002).

Figure 1.8: A cartoon showing perturbations in the CDM density field. Smaller perturb-

ations (shown in purple) are modulated by the large-scale mode (shown in black). In the

vicinity of the large-scale mode peak, the overall density contrast is largest and more likely

to exceed the critical density for gravitational collapse (shown by the blue line). Therefore

dark matter haloes are more likely to form near other dark matter haloes, causing cluster-

ing and the observed galaxy bias. Arrows show those regions which exceed the threshold

density and form haloes. (Kaiser, 1984)
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Chapter 2

CMB Lensing Reconstruction

from Polarization

2.1 Introduction

The contents of this chapter are based on work presented in the paper Pearson et al.

(2014) and represent work done by the author in collaboration with Blake Sherwin and

Antony Lewis. In Chapter 1 we saw that the photons of the CMB are deflected by

gravitational potentials along the line of sight as they travel from the surface of last

scattering to our telescopes. While the surface brightness of the CMB is preserved by the

remapping of individual photons on the sky, this remapping alters the statistics of the

observed CMB anisotropies. For example, CMB lensing induces lensing B modes as well

as non-Gaussianity in the data (for reviews see Lewis & Challinor (2006); Hanson et al.

(2010)). It is important to understand the CMB lensing so that its effect can be removed

and primordial physics can be measured from the observed maps. The CMB lensing signal

is also of great interest for cosmology in itself, since it traces structure from the surface

of last scattering until today and is thus a powerful probe of the matter distribution.

The particular distribution of matter in our universe introduces off-diagonal covariances

between modes in the CMB observables, and these can be used to reconstruct the lensing

potential (Hu & Okamoto, 2002).

To reconstruct the lensing potential, a full maximum likelihood based analysis is most

optimal (Hirata & Seljak, 2003b). However this is computationally challenging, and a

leading-order quadratic estimator approximation is usually used instead (Hu & Okamoto,

2002; Okamoto & Hu, 2003). These estimators are nearly optimal for current-generation

experiments once generalised for partial sky coverage and inhomogeneous noise (Hirata &
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Seljak, 2003a,b; Hanson & Lewis, 2009; Hanson et al., 2010). On the cut sky slightly less

optimal but simpler estimators can also be used which use apodized sky maps without

the numerically-expensive full inverse-variance weighting required for the perturbatively

optimal estimators. We focus on these simpler estimators, as used by various current-

generation ground-based experiments, as described in section 2.1.1.

The temperature (TT ) quadratic estimator (consisting of a quadratic combination of

two temperature modes) has been used to measure the CMB lensing potential to high

significance (Das et al., 2011, 2013; van Engelen et al., 2012), most recently at more than

20σ by the Planck collaboration (Ade et al., 2013f). The signal-to-noise ratio for lensing

reconstruction from CMB polarization data is expected to be much better in the future,

because polarization lensing is not limited by cosmic variance, with B modes on small

scales expected to be vanishingly small on the unlensed sky. First examples of CMB

lensing reconstruction from polarization data use SPT or POLARBEAR data in cross- or

auto-correlation (Hanson et al., 2013; Ade et al., 2013b,a), based on CMB polarization

observations on small patches of the sky at high resolution.

In this work we investigate the ability of such current and next-generation polarization

observations to measure the CMB lensing potential power spectrum. We begin by studying

periodic boundary conditions for the EE and EB quadratic estimators in section 2.2.

We show that the known N (0) and N (1) power spectrum biases are sufficient to model

the reconstructed lensing potential power spectrum. Since no experiment can actually

measure the full sky, we also consider the effect of using cut sky maps from small patches

of sky. Because the mapping between the observed polarization Stokes parameters (Q and

U) and the physical E and B polarization fields is non-local (involving derivatives), on a

patch of the sky E modes can leak into B modes. This provides an additional complication

for lensing reconstruction, and could, if not mitigated, significantly impair the use of B

modes to reconstruct the lensing field. In section 2.1.2 we outline the effect and review

the ‘pure’ B mode construction that can be used to project the observed data into clean

B modes that we then incorporate into our lensing reconstruction pipeline. In section 2.3

we test the EE and EB quadratic estimators when applied to 4.5◦ × 4.5◦ patches of sky

with non-periodic boundaries. We compare the performance of the EB estimator when

incorporating the pure-B mode filter to the naive reconstruction with a simple apodizing

window. We also assess the magnitude of any additional biases in the cut sky case.
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2.1.1 CMB Lensing

Since we are mainly interested in small patches of sky for this work, we will use the flat-

sky approximation, following mostly the notation of Hu & Okamoto (2002), but switching

the labelling convention of lensed and unlensed fields. Recall from Chapter 1 that the

temperature T at a position x on the plane of the sky is expanded into harmonics as

T (x) =

∫
d2l

2π
T (l)eil·x, (2.1)

and the observed Q and U Stokes parameters are expressed in terms of E and B polarization

modes as

[Q± iU ](x) = −
∫
d2l

2π
[E(l)± iB(l)]e±2iϕleil·x, (2.2)

where the plane wave vector l is the flat-sky analogue of the full-sky spherical harmonic

lm, and cosϕl = x̂ · l̂ (where x̂ is a unit vector along the x-direction). The fields at last

scattering are re-mapped by the lensing as

T̃ (x) = T (x + α(x)), [Q̃± iŨ](x) = [Q± iU](x + α(x)), (2.3)

where the tilde denotes lensed fields and α(x) is the lensing deflection field. The deflection

can be expressed as α = ∇φ, where in a flat FRW universe the lensing potential φ is given

by

φ(x) = −2

∫ χ∗

0
dχ

(χ∗ − χ)

χχ∗
Ψ(χn̂x), (2.4)

as derived in section 1.2.1. Here χ is the comoving distance along the line of sight, and

χ∗ is the distance to the last scattering surface, and Ψ(χn̂x) is the (Weyl) gravitational

potential at the photon location along the line of sight in direction n̂x on the sky.

Lensing of the CMB can be measured from the response of the lensed two point correl-

ation function to the lensing potential. We have multiple fields, so in general have multiple

quadratic combinations to consider, X̃i(l1)X̃j(l2), where X̃i could be T, E or B. Consid-

ering the lensing potential φ to be fixed, averaging over all other modes and neglecting

correlations between the lensing potential and CMB, to linear order in φ

〈X̃i(l1)X̃j(l2)〉φ ≈
∫
dL′

〈
δ

δφ(L′)

(
X̃i(l1)X̃j(l2)

)〉
φ(L′) =

1

2π
fij(l1, l2)φ(L), (2.5)

where l1 + l2 = L and L 6= 0. Here the response functions fij are defined as the average

linear response to a lensing mode φ(L) (Lewis, 2011; Lewis et al., 2011)

〈
δ

δφ(L)

(
X̃i(l1)X̃j(l2)

)〉
=

1

2π
δ(l1 + l2 − L)fij(l1, l2). (2.6)
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For a result to leading order in the particular mode φ(L), the expectation can be evaluated

over all the fields (the unlensed CMB, and non-zero lensing modes that are also present);

the result is then proportional to a delta-function by statistical homogeneity. To zeroth

order in the lensing potential the response functions fij are given by Hu & Okamoto (2002),

however because the lensing is a substantial signal, to get the normalisation right higher

order corrections must be included (Hanson et al., 2011), corresponding to including the

contribution of other lensing modes to the covariance1. Explicit exact expressions (for

Gaussian unlensed fields) are given in Lewis et al. (2011), and can be approximated quite

accurately (non-perturbatively) by using the lensed CMB power spectra in place of the

unlensed ones in the results of Hu & Okamoto (2002): to good approximation when we

look for a mode φ(L), the change induced on the sky depends on how it affects the

lensed CMB, where the lensing effect is dominated by lensing from other modes that are

also present. In the case of polarization the main non-perturbative effect that should be

modelled is the substantial effect of lensing on EE. There are also additional corrections

of O(CBBl ), but these are much smaller (just including the lensed CBBl does not include all

the terms of equivalent order (Lewis et al., 2011)). For current observations corrections of

O(CBBl /CEEl ) can probably be safely neglected; further perturbative tests of the lensed-Cl

approximation are given in Anderes (2013).

Weighting functionsW (l1, l2) can be used to sum the quadratic combinations X̃i(l1)X̃j(l2)

so that the deflection field estimators are

α̂ij(L) =
Aij(L)

L

∫
d2l1
2π

X̃i(l1)X̃j(l2)Wij(l1, l2), (2.7)

where l1 + l2 = L, and Aij(L) is a normalisation that makes the estimator unbiased when

averaged over other modes:

Aij(L) = L2

[∫
d2l1

(2π)2
fij(l1, l2)Wij(l1, l2)

]−1

. (2.8)

In Chapter 1 we introduced the quadratic estimator for the temperature reconstruction

of the lensing potential in Eq. (1.51). In this case, the normalisation is slightly different,

since we are estimating the lensing deflection, rather than the lensing potential. Figure 2.1

shows an example of one realisation of the deflection field and its reconstruction using α̂EB.

The reconstruction shows the features of the original, but also has a lot of small-scale noise,

which is the manifestation of the N (0) bias discussed below.

1An O(Cφφ) correction to the power spectrum normalisation, giving a total error O((Cφφ)2), and hence

an N (2) if neglected (Hanson et al., 2011).
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One realisation α(x) Reconstruction α̂EB(x)

Figure 2.1: Left: A real space map of one realisation of the lensing deflection on a 9◦× 9◦

patch with periodic boundaries. Right: The reconstruction of the lensing deflection in

the left panel using α̂EB, for the fiducial noise and resolution used in this work (4p =

4µKarcmin and σFWHM = 1.4arcmin, see secion 2.2 for details).

We can construct a naive estimator for the lensing power spectrum by measuring the

power spectrum of the lensing deflection estimator. On the full sky this has an expectation

value equal to the lensing potential power spectrum added to ‘noise’ bias terms:

〈α̂∗ij(L)α̂pq(L
′)〉 = δ(L− L′)

[
CddL +N

(0)
ijpq(L) +N

(1)
ijpq(L)

]
, (2.9)

to linear order in CφφL . Using the α̂EE(L) and α̂EB(L) quadratic estimators, there are 3 dif-

ferent ways to reconstruct the lensing power spectrum: 〈α̂∗EE(L)α̂EE(L′)〉, 〈α̂∗EB(L)α̂EB(L′)〉
and 〈α̂∗EB(L)α̂EE(L′)〉. The Gaussian N

(0)
ijpq(L) disconnected term is given by (Hu &

Okamoto, 2002)

N
(0)
ijpq(L) =

Aij(L)Apq(L)

L2

∫
d2l1Wij(l1, l2)

×
[
Wpq(l1, l2)Cipobs,l1

Cjqobs,l2
+Wpq(l2, l1)Ciqobs,l1

Cjpobs,l2

]
, (2.10)

where Cijobs,l are the total observed lensed CMB power spectra including (isotropic) in-

strumental noise. In the diagonal case this simplifies to N
(0)
ijij(L) = Aij(L) for optimised

weights. For the 〈α̂∗EB(L)α̂EE(L′)〉 case N
(0)
EBEE = 0.

The N (0) bias corresponds to random fluctuations in the noise and un-deflected CMB

happening to look like lensing, and has contributions from both the Gaussian lensed power

spectrum and instrumental noise. The N
(1)
ijpq(L) term (Kesden et al., 2003) is an additional
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Figure 2.2: Fractional contributions from E(l) and B(l) at l = |l| to the lensing reconstruc-

tion at L ∈ {300, 800, 1500, 2000} (four panels, where in each panel l = L is marked with a

dotted line), for the fiducial noise and resolution used in this work (4p = 4µKarcmin and

σFWHM = 1.4arcmin, see secion 2.2 for details). At the lower L the EE reconstruction

(dashed lines) is mainly from squeezed shapes with l� L, however the EB estimator the

E and especially B mode signal is important at much lower l (solid lines). Mathematically

what is plotted is Aij(L, l1) ∝
∫
l1dϕl1fij(l1, l2)Wij(l1, l2) as a function of l1, or equival-

ently for l2 in the case of the second field in the quadratic estimator, normalised to sum

to unity.

variance from first order effects in the lensing power spectrum, given by

N
(1)
ijpq(L) =

Aij(L)Apq(L)

L2

∫
d2l1d

2L′

(2π)2
CφφL′ Wij(l1, l2)

× [fip(l1, l3)fjq(l2, l4)Wpq(l3, l4) + fiq(l1, l3)fjp(l2, l4)Wpq(l4, l3)](2.11)

where l1 + l2 = L = −(l3 + l4), l1 + l3 = L′ = −(l2 + l4). These expressions show the

biases in the power spectrum of the deflection field Cddl , which is related to the power

spectrum of the lensing potential Cφφl and power spectrum of the lensing convergence Cκκl

by Cκκl = l(l+1)
4 Cddl = l2(l+1)2

4 Cφφl on the full sky, and similarly with l(l + 1) → l2 in the

flat sky approximation.

Optimal weight functions can easily be derived at lowest order by minimising the

Gaussian variance of the estimators (Hu & Okamoto, 2002). In this work we focus on
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the polarization quadratic estimators since polarization lensing reconstruction is a novel

method which has not been investigated in detail for realistic applications. The full-sky

EE and EB quadratic estimators have response functions given by

fEE(l1, l2) =
[
C̃EEl1 (L · l1) + C̃EEl2 (L · l2)

]
cos(2ϕl1l2), (2.12)

fEB(l1, l2) =
[
C̃EEl1 (L · l)− C̃BBl2 (L · l2)

]
sin(2ϕl1l2), (2.13)

where cosϕl1l2 = l̂1 · l̂2 and the optimised weight functions are

WEE(l1, l2) =
fEE(l1, l2)

2CEEobs,l1
CEEobs,l2

, WEB(l1, l2) =
fEB(l1, l2)

CEEobs,l1
CBBobs,l2

. (2.14)

Here CEEobs,l and CBBobs,l power spectra are the observed E and B mode power spectra, the

lensed power spectra plus instrument noise CEEobs,l = C̃EEl +NEE
l and CBBobs,l = C̃BBl +NBB

l .

The different trigonometric factors in the response function indicate that the contributions

to the estimators come from rather different configurations: the EE estimator has a lot of

signal in squeezed shapes with L� l1, l2 and hence l1 ∼ l2, corresponding to reconstructing

the large-scale lensing shear and convergence from the effect on the local small-scale power

spectrum; however for the EB estimator, sin(2ϕl1l2) ∼ 0 for l1 ∼ l2, and instead the

dominant signal comes from correlating lensing-induced B modes on a scale comparable

to the lensing mode. See Fig. 2.2 for the contributions to the lensing signal at various

different scales.

Foreground contamination is not considered in this work, although both galactic and

extragalactic polarization foregrounds are expected to be present. The quadratic estimator

above could be modified to deal with foregrounds by including foreground information as

an extra noise contribution in the weight functions.

2.1.2 Cut sky and E-B leakage

The CMB E and B modes are defined as a harmonic transform of the Q and U Stokes

parameters without a boundary. In the presence of a boundary (as on cut sky maps),

the harmonics are no longer orthogonal, causing power to be leaked from the dominant E

mode into the subdominant B mode if they are naively evaluated over only the observed

patch of sky. A number of methods have been developed to remove the spurious B mode

power originating from non-periodic boundary conditions on small patches of sky, e.g.

Lewis et al. (2002); Bunn et al. (2003); Smith (2006); Smith & Zaldarriaga (2007). A

clean separation into pure-B modes is effectively optimal for small noise levels where

leakage from E is dominating the variance of the contaminated observed B modes. For
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intermediate noise levels inverse variance filtering would appropriately down weight the

contaminated modes in an optimal way, and a full implementation of a nearly-optimal

lensing reconstruction method (Hirata & Seljak, 2003a,b; Hanson & Lewis, 2009) should

therefore optimally handle the mixing effect at the expense of a very numerically costly

inverse-variance filtering step.

In this work we focus on sub-optimal but simple methods for handling the cut sky as

used by some recent ground-based observations, where a window function W (x) is used

to apodize the observed area smoothly to zero at the boundaries of the observed region.

Pseudo harmonics are defined by directly transforming W (x)(Q± iU):

[Epseudo ± iBpseudo](l) ≡ −
∫
d2x

2π
W (x)[Q± iU ](x)e∓2iϕle−il·x, (2.15)

however Bpseudo will in general be a mixture of physical E and B modes since e∓2iϕle−il·x

are not orthogonal with respect to W . Quantities that depend only on E and B modes

can be obtained by choosing a general real window function w that vanishes along with

its derivative on the boundary of the observed region and outside. The quantities Ew and

Bw defined by

Ew ± iBw =

∫
d2x

2π
w(∂x ∓ i∂y)2(Q± iU) =

∫
d2x

2π
(Q± iU)(∂x ∓ i∂y)2w (2.16)

are then guaranteed to be pure-E and pure-B (Lewis et al., 2002; Bunn et al., 2003). An

essentially optimal separation can be performed by using a complete basis of window func-

tions, at the expense of considerable numerical cost. Alternatively Smith & Zaldarriaga

(2007) suggest a faster (but suboptimal) method using a set of pure modes obtained by

taking w = l−2We−il·x, which reduce to the standard harmonics in the full sky case that

W = 1 everywhere. Since the small-scale B mode signal is expected to be much smaller

than the E modes, the main concern is leakage of E into B rather than vice versa. We

therefore only consider the pure-B modes given for a particular choice of window W (x) by

Bpure(l) ≡ 1

2l2i

∫
d2x

2π

[
(Q+ iU)(∂x − i∂y)2 − (Q− iU)(∂x + i∂y)

2
]

(We−il·x). (2.17)

These modes are numerically simple to compute, and given explicitly by expanding the

derivatives:

Bpure(l) =

∫
d2x

2π
e−il·x

(
[sin(2ϕl)Q− cos(2ϕl)U ]W

+
2i

l
[(Q∂yW − U∂xW ) cosϕl + (U∂yW +Q∂xW ) sinϕl]

+
1

l2
[
U(∂2

x − ∂2
y)W − 2Q∂x∂yW

] )
. (2.18)
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One realisation of primordial B mode map
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Figure 2.3: One realisation of a B mode map compared to its reconstruction using the

Bpseudo and Bpure estimators. The window used here is that shown in section 2.3 in

Fig. 2.5.
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Figure 2.3 shows a realisation of a B mode map in real space and the resulting recon-

structions using the Bpseudo and Bpure estimators. The Bpseudo reconstruction shows a lot

of noise on the boundary, whereas the Bpure reconstructs the original well.

The leakage of E modes into B modes is determined by the shape of the window

function, with fractionally significant B modes being generated from E modes on a scale

comparable to the variation of the window. To the extent that lensing reconstruction

is using information only on scales much smaller than the variation of the window, one

might expect the impact of the mixing to be modest. However as shown in Fig. 2.2 the

EB polarization lensing reconstruction depends on B modes from a very wide range of

scales: even large-scale mixing effects are potentially important for EB-reconstruction,

even though the EE reconstruction information is mostly coming from very small scales.

In section 2.3 we compare the performance of the EB ×EB and EB ×EE lensing power

spectrum estimators with and without the projection into pure-B modes, to assess the

importance of the mixing effect and the efficiency of using pure-B modes to mitigate it

in a straightforward way. Smith & Zaldarriaga (2007) also consider optimization of the

window function, but here we just take the window to be a free function that we choose

for convenience, so the results are expected to be slightly suboptimal.

2.2 Polarization reconstruction without boundaries

In this section we present results from simulations of the lensing reconstruction on a small

patch of sky with periodic boundaries, so there are no issues of E/B mixing. Mock data

CMB maps of the Q and U polarization are generated for a 9◦ × 9◦ patch of sky with a

full width half maximum beam size of σFWHM = 1.4arcmin. Each unlensed simulation

takes a random realization of theoretical unlensed input power spectra CEEl , CBBl . These

maps get lensed according to a random realization of a theoretical input power spectrum

CddL , where the unlensed power spectra and lensing power spectrum are calculated to

linear order using camb (Lewis et al., 2000) for a ΛCDM cosmology. To simulate the

lensing, unlensed Q and U maps are first generated at two times the resolution of the

final output lensed Q and U maps. For each realization of the lensing potential, maps

of the real-space x- and y-deflections are generated, and lensed maps are produced from

the unlensed Q and U maps by bicubic interpolation of the values at the undeflected

positions. This is sufficient for pixelization artefacts in polarization lensing reconstruction

to be sub-percent. Random isotropic Gaussian beam-deconvolved detector noise is added
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Figure 2.4: The lensing reconstruction power spectra from the EE ×EE, EB ×EB and

EB × EE estimators on a 9◦ × 9◦ patch of sky with periodic boundaries. Lines show

the biased reconstruction, N
(0)
sim, and residual bias from 1000 simulations, binned with

∆L = 100. The binned one-sigma error on the reconstruction is shown by the grey band

for any single realization, while the error bars on the residual bias are Monte Carlo errors

from the simulations. Analytic values of the N (0) and N (1) biases are also shown for

comparison (dashed lines).
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with a power spectrum corresponding to 4p = 4µKarcmin:

NEE
l = NBB

l = Nl = (4p)
2el(l+1)σ2

FWHM/8 ln 2. (2.19)

The beam-deconvolved lensed noisy maps are then used as the input for the quadratic

estimator of the lensing potential, which initially returns a biased reconstruction with

expectation CddL + N (0)(L) + residual. To calculate the N (0) bias from the simulations

N
(0)
sim, we apply the quadratic estimator to unlensed maps generated with lensed power

spectra (denoted Ē(l) and B̄(l)):

α̂N0
EE(L) =

AEE(L)

L

∫
d2l

2π
Ē(l)Ē(l′)

fEE(l, l′)

2CEEobs,lC
EE
obs,l′

, (2.20)

α̂N0
EB(L) =

AEB(L)

L

∫
d2l

2π
Ē(l)B̄(l′)

fEB(l, l′)

CEEobs,lC
BB
obs,l′

. (2.21)

To get the N
(0)
sim bias power spectrum we take the power spectra of Eq. (2.20) and

Eq. (2.21) averaged over 1000 simulations, which we can use as a check of the analytic

result on the full sky. We do not use the realization-dependent N (0) subtraction here,

which may be significantly better for an actual data analysis where the theory and noise

power spectra are uncertain, and reconstruction noise correlations would otherwise need

to be modelled (Hanson et al., 2011; Schmittfull et al., 2013).

From Ĉ
dd(biased)
ijpq,L , the raw power spectrum of the deflection angle quadratic estimators

on the lensed maps, we define the residual bias r̂(L) to be the difference from the input

theoretical power spectrum after the Gaussian N
(0)
sim bias has been subtracted. This is

expected to be approximately N (1)(L), and is estimated from the simulations using

r̂ijpq(L) =
1

nsim

nsim∑

k=1

[
Ĉ
dd(biased)
ijpq,L

]
k
−N (0)

ijpq,sim(L)− CddL , (2.22)

where nsim = 1000 and ij, pq ∈ EE,EB. Figure 2.4 shows the average lensing reconstruc-

tions for the EE ×EE, EB ×EB and EE ×EB power spectrum estimators, along with

the N
(0)
sim and the residual bias as described above. For comparison we show the expected

analytic N (0) and N (1) biases as described in section 2.1.1.

The analytic N (0) biases are consistent with the simulated N
(0)
sim within binning for each

estimator. For the EB ×EE reconstruction we show the absolute value of the N (0) from

simulation |N (0)
sim|. Although the theoretical N (0) = 0 for the EB × EE power spectrum

reconstruction, in practice we find N
(0)
sim 6= 0 at a level which is small and negligible for the

total reconstruction, believed to be induced by pixelization. The N
(0)
sim biases are shown

and discussed in more detail in Fig. 2.12 in a later section.
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Furthermore, the analytic N (1) bias is broadly consistent with the residual bias r̂(L)

within the 1σ error bars from 1000 simulations. At the level of accuracy required the

N (1) bias therefore seems to be an adequate model for the residual bias for polarization

reconstruction on small periodic patches of sky. As a test that our pipeline is working

correctly, we also calculated the cross correlation power of each lensing realization map

with the reconstructed lensing map, which agreed well with the input theoretical lensing

power spectrum.

As an aside we note that the formulation of the EB estimator given in Kesden et al.

(2003) is slightly suboptimal, as it is derived with a constraint that the estimator is

symmetric under interchange of E and B. A comparison of the N (0) bias for the EB

quadratic estimator given in Kesden et al. (2003) compared to the form give by Hu &

Okamoto (2002) shows that Kesden et al. (2003) is ∼ 25% larger than Hu & Okamoto

(2002) on scales l & 2000. We use the estimators of Hu & Okamoto (2002) (updated with

lensed spectra in the weights as described in section 2.1.1), since they are perturbatively

optimal on the full sky.

2.3 Polarization reconstruction on the cut sky

In this section we examine the more realistic case of lensing reconstruction when there is a

boundary to the observed region. We simulate EE×EE, EB×EB and EB×EE lensing

power spectrum reconstruction on a cut patch of sky, and then show the improvement in

the reconstruction for EB ×EB and EB ×EE when the pure-B mode estimator is used

rather than windowing Q and U directly. The underlying quadratic estimators for the cut

sky non-periodic boundary cases are:

α̂cut
EE(L) =

AEE(L)

L

∫
d2l1
2π

Epseudo(l1)Epseudo(l2)
fEE(l1, l2)

2CEEobs,l1
CEEobs,l2

, (2.23)

α̂cut
EB(L) =

AEB(L)

L

∫
d2l1
2π

Epseudo(l1)Bpseudo(l2)
fEB(l2, l2)

CEEobs,l1
CBBobs,l2

, (2.24)

α̂pure
EB (L) =

AEB(L)

L

∫
d2l1
2π

Epseudo(l1)Bpure(l2)
fEB(l1, l2)

CEEobs,l1
CBBobs,l2

. (2.25)

To make our simulated maps non-periodic, we cut out and use one quarter of the

9◦×9◦ periodic map, which is a 4.5◦×4.5◦ patch (now with non-periodic boundaries). All

other properties of the map simulation are unchanged from those described in section 2.2.

To mitigate the effect of harmonic ringing, we use an apodization window which goes
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Figure 2.5: The apodization window.
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Figure 2.8: The mean field map for α̂pure
EB .

smoothly to zero at the edges, as required to construct the pure-B mode estimator of

Eq. (2.18). We use a window which contains mostly unit values except for a simple cosine

tapering on the edge which is one tenth the size of the cut patch. The window is shown

in Fig. 2.5. The tapering around the edge is a quarter-period cosine which is normalized

such that the tapering falls smoothly from unity in the central area to zero at the map

boundary over the one tenth edge. The cut sky patch consists of 600× 600 pixels. As the

deflection field is generated on the larger 9◦ × 9◦ patch before being cut, the cut patch

contains modes down to lmin = 20 (although after cutting the angular scale of the patch

is l = 40).

The cut sky and window introduce statistical anisotropy in the map, which gives rise

to a spurious signal in the lensing reconstruction from W (x)(Q + iU)(x). The average

map-level bias is called the mean field (Hanson & Lewis, 2009), and typically closely

follows the shape of the window that is causing it. There can also be other sources of
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Figure 2.9: Power spectra of the mean field maps shown in Figs. 2.6, 2.7 and 2.8. The

EB mean field is substantially reduced by using pure-B modes in the estimator, in good

agreement with the low level of EB mean field found by Namikawa & Takahashi (2013)

using inverse variance weighting.

mean field, like beam asymmetries and anisotropic noise, but for simplicity we restrict our

analysis to isotropic noise. For an ideal full sky measurement the lensing estimators should

average to zero, i.e. 〈α̂〉 = 〈α〉 = 0, but this is no longer the case in the presence of a

window. However, simulations can be used to estimate the mean field 〈α̂〉, which can then

be subtracted from the lensing estimator to form an unbiased reconstruction α̂− 〈α̂〉. To

obtain the mean field 1000 reconstructed lensing potential maps were averaged in the map

space. This mean field map was then removed from the reconstructed lensing potential

maps prior to taking their power spectra.

Figures. 2.6, 2.7 and 2.8 show the mean field maps from the three reconstruction estim-

ators that we simulate on the cut sky: an EE reconstruction, an EB reconstruction using

the cut sky B modes, and an EB reconstruction using pure-B modes. The corresponding

mean-field power spectra are shown in Fig. 2.9. Unsurprisingly, the mean field follows the

shape of the window and is largest in the centre. The EB mean field calculated using

the pure-B modes is much less than the EE mean field, in agreement with Namikawa &

Takahashi (2013). Without the projection into pure-B modes this is no longer true, and

the mean field is substantially larger.

The cut-sky estimators have a reduced amplitude due to the window having W (x) < 1,
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and this must be accounted for when estimating power spectra from the windowed sky. In

the limit that all the modes of interest (Q, U and lensing potential) are much smaller than

the scale of variation of the window, the window can locally be regarded as a constant,

and the lensing reconstruction estimator (which depends quadratically on Q and U) is

therefore simply the full-sky value multiplied by [W (x)]2. The local power spectrum then

scales like [W (x)]4, and the value estimated over the full patch is therefore expected to be

scaled by the average value of W 4. Likewise the variance of the power spectrum locally

scales like [W (x)]8. Following Benoit-Levy et al. (2013) we therefore use averaged fW4

and fW8 factors to account for the window in the power spectra and variance respectively,

where on the pixelized map

fWn ≡
1

Npix

∑

i

[W (xi)]
n . (2.26)

This is expected to be accurate for the intermeidate-scale reconstruction from EE (where

all the information is in small-scale E modes), but may be less accurate for the EB

reconstruction where the B-mode contribution is much less local.

All our simulated cut-sky power spectra (N
(0)
sim, residual bias, biased reconstruction and

unbiased reconstruction) have been scaled to account for the smaller sky fraction and the

effect of the window via a scaling factor fW4. For example our power spectrum estimators

for the cut sky are

Ĉ
dd(biased)
ijpq,L ≡ 1

fW4

[
Ĉ
dd(cut)
ijpq,L

]
. (2.27)

For a periodic sky patch, neglecting first order (N (1)) biases, the approximate error in the

lensing potential for the EE × EE and EB × EB power spectrum estimators is (Hu &

Okamoto, 2002):

4CddL ≈
1√

L4Lfsky

[
CddL +N (0)(L)

]
, (2.28)

and for the EB × EE power spectrum estimator:

4CddL ≈
1√

2L4Lfsky

√[
CddL +N (0)(L)

]
EE

[
CddL +N (0)(L)

]
EB

+
(
CddL

)2
, (2.29)

where ∆L is the bin size. For a windowed sky patch, the error in a measurement of the

lensing potential is modified to approximately (Benoit-Levy et al., 2013):

4Cdd−cut
L ≈

√
fW8

f2
W4

4CddL , (2.30)

if there are no issues of E/B mixing. On small scales with lower noise, the error bars

would be significantly increased due to N (1) biases which couple in cosmic variance from

larger-scale modes.
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Figure 2.10: The lensing reconstruction using the EE×EE, EB×EB and EB×EE power

spectrum estimators on a 4.5◦× 4.5◦ apodized cut patch of sky (without E/B separation).

The binned one sigma error on the reconstruction is shown by the grey band for any single

realization. The full-sky analytic N (0) bias is also shown for comparison. Results shown

are from 1000 simulations.
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Figure 2.11: The lensing reconstruction using the EB × EB and EB × EE quadratic

estimators as in Fig. 2.10, but now using pure-B modes in the estimators.

For our choice of window function the scaling factors are fW4 = 0.1826, fW8 = 0.1761,

which are less than the 0.25 value one would get from a quarter patch without apodization.

We also use a top-hat binning with size ∆L = 100. Using a bin size of e.g. ∆L = 50,

close to the window scale, led to correlations between the bins, causing the variance to be

underestimated when not accounting for covariances. Tests showed that ∆L = 100 is large

enough to prevent large correlations between bins, although for the fsky-scaled comparison

of the error bars shown later in Fig. 2.13 we use ∆L = 200 to reduce correlations to a

very low level. The cut-sky reconstructed power spectra for EE × EE, EB × EB and

EB × EE are shown in Fig. 2.10.

In all the cut-sky reconstructions, the error bars are larger than the reconstructions

without boundaries, as expected due to the significantly reduced effective area. The leak-

age of E into B modes is also expected to increase the non-lensing B mode power, and

hence increase error in the reconstructions involving cut-sky B modes. Removing this

leakage should reduce the error bars. In Fig. 2.11 we show that the the errors are indeed

significantly reduced by using pure-B modes in the EB × EB and EB × EE estimators.

Figure 2.12 shows a comparison of the N
(0)
sim bias power for the EE × EE, EB × EB

and EB × EE reconstructions in the periodic boundary and cut sky cases. The analytic

EB×EE has N
(0)
EBEE = 0 in the ideal full-sky case, but this becomes non-zero when there

is leakage from E into B. Using the pure-B modes successfully reduces N
(0)
EEEB back to a

low level. For the EB × EB reconstruction using the pure-B modes results in an N
(0)
sim
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Figure 2.12: A comparison of the N (0) bias reconstructions on the periodic and non-

periodic sky patches. Note that non-periodic cut sky power spectra have been scaled by

an fW4 factor. Left: The EE×EE and EB×EB reconstructions. Right: The EB×EE
reconstructions.
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Figure 2.13: A comparison of the lensing power spectrum reconstruction errors, which

are significantly reduced by using pure-B rather than cut-sky B modes in the estimators

involving B modes. Note that error bars on the periodic sky have been scaled to have the

same sky fraction as a periodic 4.5◦ × 4.5◦ patch, and the binning here is ∆l = 200 to

reduce correlation between bins. Left: The EE ×EE and EB ×EB reconstruction error

bars. Right: The EB × EE reconstruction error bars.
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bias roughly the same amplitude as in the ideal full-sky case (i.e. with periodic boundary

conditions). The cut-sky analysis without using pure-B modes however produces a much

larger N (0) bias, because the leakage of E into B increases the reconstruction variance

(which is sensitive to the larger pseudo-B-mode power spectrum). For the EE × EE

reconstruction the N
(0)
sim bias on the cut sky appears to be slightly lower on large scales

than for the periodic sky patch. This is probably due to the approximate fW4 scaling that

we have used being inadequate on scales approaching the scale of variation of the window

(see further discussion below). The N
(0)
sim bias on the periodic-sky EE×EE reconstruction

appears slightly high on large scales, but this is just due to the binning.

In Fig. 2.13 we show a comparison of the 1σ error bars of the various reconstructions

considered in this work. The smallest error bars come from the periodic sky reconstructions

which use B modes: the EB×EB and EB×EE reconstructions. The EB×EE estimator

does slightly better on small scales, since there is no N (0) noise term dominating at small

scales in this case. The error in the cut-sky EB × EB case is much worse, as expected

due to E/B mixing. However, using the pure-B mode reconstruction improves the cut-sky

error bars dramatically. Note that the periodic sky error bars have been scaled by a factor

of two to have the same error as expected from a 4.5◦ × 4.5◦ periodic patch. For the

comparison shown, the pure-B mode error bars are roughly the same as the periodic sky

error bars, showing that the pure-B method works very well to mitigate the loss from E/B

mixing. In Fig. 2.13 the binning used is ∆L = 200, chosen to mitigate correlation between

bins which was causing the the fsky-scaled error bars to look better than optimal for the

cut-sky. Eq.(2.30) shows that, without any spurious reduction from bin correlations, an

increase in error bar size of ∼15% is expected for the windowed sky patch compared to

the un-windowed periodic patch.

Finally, we investigate whether there are any additional biases that appear when using

apodized cut sky maps and a simple constant fW4 scaling factor. As shown in the left panel

of Fig. 2.14, we observe a substantial low bias on very large scales. Since the estimators

by construction average to zero for Gaussian fields, any bias must scale at least with the

lensing power Cddl , and we find a nearly-linear scaling consistent with Ade et al. (2013b).

The large-scale bias also affects the error bars of Fig. 2.13, where on the largest scales the

cut-sky error bars appear to be lower than in the optimal case without boundaries. This

is because we have not recalibrated the errors for the bias.

To assess the size of the small-scale residual bias we show the ratio to the input lensing

power spectrum in the right-hand panel of Fig. 2.14. On intermediate scales the analytic
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Figure 2.14: Left: The residual biases of the cut sky and pure-B mode sky reconstructions

shown in Figs. 2.10 and 2.11 compared to the input lensing power spectrum. Right:

The ratio of the residual biases shown in the left-hand panel to the input lensing power

spectrum. There is a significant negative bias on large scales, but the small-scale bias is

fit quite well by the analytic N (1) (Monte Carlo simulation error dominates on very small

scales).

N (1) is a reasonable fit to the bias. For our chosen noise level it is difficult to see the residual

bias within the reconstruction noise on very small scales, so we also looked at a simulation

with zero noise. We found that the cut-sky residual bias was similar to the full-sky bias,

and mostly still close to the analytic N (1), with corrections being small compared to the

size of the signal. This suggests that the residual bias on small scales is still fit reasonably

well by the approximate analytic N (1), although there may be some approximation error

and also a mixing and/or scaling of reconstruction modes that is not accurately accounted

for by the simple constant fW4 diagonal scaling. For current-generation data the biases

are small compared to the reconstruction noise, and the analytic N (1) model is adequate

except on large scales.

The large- and small-scale features of the residual bias are likely window dependent,

and may be somewhat mitigated with a more optimal choice of window. They are also

easily accounted for by subtracting the residual bias measured in simulations, as long as

the model assumed for the simulations accurately matches reality. Alternatively they could

be approximately modelled as an L-dependent normalization (transfer function). However

accurate parameter estimation with more sensitive lensing reconstructions should consider
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a more detailed analysis of the full scale dependence of the window function relating

the estimated and true lensing power spectra, including L-mixing due to the well-known

N (1) bias as well as cut-sky affects. More optimal estimators using full inverse variance

weighting may turn out to have simpler properties than the simple windowed estimators

considered here, however theN (1) bias is non-local in L and would still have to be modelled.

2.4 Summary

In this chapter we simulated polarization lensing reconstruction for small areas of sky.

We used these reconstruction simulations to investigate biases and signal-to-noise in both

periodic and non-periodic windowed maps, and tested the use of pure-B modes in the

standard quadratic estimator to mitigate the effects of E/B leakage on the cut sky. The

main findings are:

For a periodic patch:

• Analytic results for the N (0) and N (1) bias are adequate to model the leading re-

construction biases for current data. There is some evidence for small systematic

deviations from the analytic results, possibly arising from higher-order effects or

assumed approximations, which may require more detailed study in future.

For the cut sky:

• The large α̂EB mean field introduced by E/B mixing is greatly reduced by using

pure-B modes in the estimator (α̂pure
EB ), consistent with the low EB mean field found

by Namikawa & Takahashi (2013).

• Using pure-B modes significantly reduces the variance in the power spectrum recon-

struction, and for the simple constant noise and nearly-constant window considered

here, the reconstruction error is close to optimal.

• We confirm the finding of Ade et al. (2013b) that there is a substantial residual bias

on large scales if a simple constant normalization is assumed.

• The approach we present for reconstructing the lensing power spectrum on the cut

sky should be sufficient for current-generation CMB polarization measurements if

the residual bias is accounted for by simulation, and makes a simple alternative to

more numerically-costly perturbatively-optimal estimators.
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• Detailed characterization of the normalization biases on the cut-sky may be required

to fully exploit future more sensitive observations, where there may also be larger

gains from the use of more optimal estimators (including going beyond perturbative

leading order).
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Chapter 3

Cross Correlation with

Large-Scale Structure

3.1 Introduction

The contents of this chapter are based on work presented in Pearson & Zahn (2014) and

represent work done by the author in collaboration with Oliver Zahn. In the past few years

CMB lensing science has arisen as a promising new probe of cosmology. CMB photons

are deflected by matter fluctuations between the surface of last scattering and today. The

effect is sensitive to the geometry of the Universe (e.g., dark energy and its evolution) and

the shape of the matter power spectrum (affected by e.g., massive neutrinos). Since CMB

lensing probes all matter, it should be correlated with galaxy surveys observing the large-

scale structure of the Universe. The cross correlation between CMB lensing and such

large-scale structure surveys should aid in simultaneously measuring galactic and non-

galactic cosmological information. There is already a wealth of data available for such

analysis, and upcoming surveys will offer even better opportunities for cross correlation

science. A few examples of work to date include: CMB lensing cross correlated with

radio galaxies, LRGs and IR using Planck, NVSS Quasars, SDSS LRGs, WISE and MAX

BCG clusters (Ade et al., 2013f), CMB lensing cross correlated with radio galaxies using

WMAP and NVSS (Smith et al., 2007; Feng et al., 2012), CMB lensing cross correlated

with LRGs, quasars and radio galaxies using WMAP, NVSS and SDSS (Hirata et al.,

2008), CMB lensing cross correlated with optical and IR using SPT, BCS, WISE and

Spitzer (Bleem et al., 2012), CMB lensing cross correlated with quasars using ACT, and

SDSS (Sherwin et al., 2012), CMB lensing cross correlated with sub-millimetre wavelength

galaxies using SPT and Herschel/SPIRE (Holder et al., 2013).
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Both CMB temperature and polarization are being measured by modern experiments.

At the detector level, the polarization measurement is in terms of the Stokes parameters

Q and U, but it is usually useful to consider CMB polarization in terms of even and

odd parity modes, the E and B mode respectively. The temperature anisotropy has been

measured well down to arcminute scales (e.g. Jones et al. (2006); Hinshaw et al. (2013);

Ade et al. (2013e); Calabrese et al. (2013); Story et al. (2013)), E mode polarization has

been detected by several groups (e.g. Leitch et al. (2005); Montroy et al. (2006)), and a

first measurement of the conversion of E mode to B mode polarization by lensing has been

made (Hanson et al., 2013). An observation of large-scale B modes extra to lensing and

foreground components could be direct evidence of a primordial gravitational background,

and used to discern inflationary theories. Even without the B mode though, observations

of E mode polarization allow improved constraints on cosmological parameters compared

to temperature information alone, since they are sensitive to the epoch of reionization as

well as recombination physics. To obtain the CMB lensing signal, the quadratic estimator

method of Hu & Okamoto (2002) is usually used (see section 1.2.3 for discussion). The

CMB lensing potential can be reconstructed from various combinations of T, E and B

mode measurements. So far the lensing power spectrum has been measured using the

temperature anisotropy observed by the Atacama Cosmology Telescope (ACT) (Das et al.,

2011), (Das et al., 2013), the South Pole Telescope (SPT) (van Engelen et al., 2012), and

most recently the Planck satellite (Ade et al., 2013f) and POLARBEAR experiment (Ade

et al., 2013b). Lensing also affects the peaks and troughs in the angular power spectra (e.g.,

Keisler et al. (2011); Story et al. (2013)). Finally, CMB lensing mixes primordial E modes

into lensing-specific B modes. This allows reconstruction of the CMB lensing potential

with much smaller variance than for the temperature modes, because no primordial B

modes are expected on small scales.

A Fisher matrix calculation marginalizing over various cosmological parameters can

be used to estimate the constraining power of current and future data sets. In this work,

different CMB and galaxy survey sensitivities are explored with the goal of showing how

well cosmology can be constrained in the presence of uncertainties in the galaxy physics,

and vice-versa. In particular, we are interested in how well the parameters are con-

strained using the CMB lensing - galaxy cross correlation. Seven non-galactic parameters

are included in the analysis with the following fiducial values: physical baryon fraction

(Ωbh
2=0.02258), physical cold dark matter fraction (ΩCDMh

2=0.1109), dark energy frac-

tion (Ωλ=0.734), physical neutrino mass fraction (Ωνh
2=0.002), optical depth (τ=0.088),
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spectral index (ns=0.963), scalar amplitude (As = 2.43× 10−9); and up to three galactic

parameters: the linear galaxy bias (b), the mean of the galaxy redshift distribution (µ),

and the standard deviation of the galaxy redshift distribution (σ).

Previous work has already shown that cross-correlation of structure and CMB lensing

can constrain various biases, and thus provide useful information for cosmology (Vallinotto,

2012, 2013; Rhodes et al., 2013). In particular, CMB lensing can break degeneracy between

the matter power spectrum normalisation and systematic multiplicative biases in shear

measurements (Vallinotto, 2012), and can constrain the linear galaxy bias (Vallinotto,

2013). Our work complements the latter analysis by allowing redshift distribution para-

meters to also vary.

Section 3.2 introduces the Fisher methodology used and outlines the derivation of our

theoretical power spectra. In section 3.3 we describe some current and future CMB and

galaxy surveys as well as our data cuts. Results on cosmological parameters are given in

section 3.4 and we conclude in section 3.5.

3.2 Method

The Fisher matrix formalism provides an estimate for how well an experiment can distin-

guish the true model of the universe from other models. For a model described by N para-

meter values (which can be cosmological or astrophysical in nature) pi(i = 1, ..., N), and

a (multivariate Gaussian) likelihood of an observation given these parameters as L(O, pi),

the Fisher information matrix is given by (Spanos, 1986; Tegmark, 1997):

Fij ≡ −
〈
∂2 lnL(O, pi)

∂pi∂pj

〉
, (3.1)

where the partial derivatives and the averaging are evaluated around a fiducial (best guess

for the true) set of parameters values. The Cramer-Rao inequality states that (F−1)ii is

the smallest variance that any unbiased estimator of the parameter pi can have, and we

can generally think of F−1 as the lower bound of the covariance for estimates of the vector

pi. If there is some prior constraint on the error of a parameter σprior, this information is

added in the Fisher matrix via Fii = Fii + 1
σ2
prior

.

Dropping irrelevant constant terms, the lnL(O, pi) of Eq. (3.1) can be written down as

the natural logarithm of the determinant of the covariance matrix plus a term including

the fiducial parameter vector pi. The first derivative is zero due to construction, and the

the second derivative gives the 1σ displacement from the mean (Verde, 2007). For the case

considered here, the first term dominates and summing many modes of the CMB power
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spectra (via the trace) ensures Gaussianity via the central limit theorem. The Fisher

matrix then becomes (Tegmark, 1997; Perotto et al., 2006):

Fij =

lmax∑

l=2

∑

PP′,QQ′

∂CPP′
l

∂λi
(C−1

l )PP′QQ′
∂CQQ′

l

∂λj
, (3.2)

where Cl are power spectra. In this analysis we form two Fisher matrices. The first in-

cludes auto and cross correlations from CMB temperature and polarization: PP ′, QQ′ ∈
TT,EE, TE. The second includes auto and cross correlations of the CMB lensing poten-

tial and 2-dimensional galaxy power spectrum: PP ′, QQ′ ∈ φφ,GG, φG. Cl is the 3×3

covariance matrix between the different power spectra, and the elements are made up of

the appropriate (δCl)
2
PP ′QQ′ :

(δCl)PP ′QQ′ =

√
1

(2l + 1)fsky

(
CPQl CP

′Q′

l + CPQ
′

l CP
′Q

l

)
(3.3)

where an associated experimental noise is added to each power spectrum, e.g. for PQ =

TT , CPQl = CTTl +Cnoise
l . The factor fsky accounts for the fraction of sky covered by the

experiment. In the CMB temperature and polarization case, the Cnoise
l is taken to be the

standard Gaussian random detector noise as in Knox (1995). For the CMB lensing, Cnoise
l

is the N (0) bias as in Hu & Okamoto (2002), and described in Chapter 2. For the galaxy

power spectrum it is simple shot noise. The two Fisher matrices are added together for

the final constraint, neglecting correlations between φφ,GG, φG and the CMB spectra by

using unlensed spectra for the latter. We also neglect small correlations between CMB

temperature and lensing (Tφ) caused by the integrated Sachs-Wolfe (ISW) effect (e.g. Ade

et al. (2013d)).

The theoretical auto and cross CMB lensing and galaxy power spectra limber approx-

imated with a simple linear bias model as in Ade et al. (2013g) are:

CφφL =

∫
dχ(Kφ

L(χ))2P (k = L/χ, χ), (3.4)

Cgg
L =

∫
dχ(Kg

L(χ))2P (k = L/χ, χ), (3.5)

CφgL =

∫
dχKφ

L(χ)Kg
L(χ)P (k = L/χ, χ). (3.6)

Here χ is conformal distance and P (k, χ) is the 3D matter power spectrum at wavenumber

k and conformal look back time χ. (Note that Eq. (3.4) is the Limber approximated form

of Eq. (1.37), which does not employ the Limber approximation.) The kernels Kφ
L(χ) and

Kg
L(χ) fold in information about the lensing and the galaxy dynamics respectively:

Kφ
L(χ) = −3ΩmH

2
0

L2

χ

a

(
χ∗ − χ
χ∗χ

)
, (3.7)
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Table 3.1: CMB EXPERIMENTAL SCENARIOS

Current 3rd gen. 4th gen.

temperature noise (µK-arcmin) 30 2.5 2.5

polarization noise (µK-arcmin) 60 3.5 3.5

beam (arcmin) 7 1 1

fsky 0.75 0.1 0.5

Table 3.2: GALAXY EXPERIMENTAL SCENARIOS

fsky number density (gal/deg2)

WISE 0.75 10,000

LSST 0.5 198,000

EUCLID 0.4 108,000

Kg
L(χ) =

dN

dz

dz

dχ

b(z)

χ
. (3.8)

Eq. (3.7) depends on non-galactic cosmological parameters, whereas Eq. (3.8) depends

on both galactic and non-galactic cosmological parameters, since it includes the bias and

redshift distribution.

3.3 Data

The derivatives used in the Fisher matrix are calculated using the theoretical power spec-

tra. CMB temperature, CMB polarization, CMB lensing and galaxy power spectra were

calculated for the given parameter choice using camb sources (Challinor & Lewis, 2011).

To obtain the galaxy auto correlation (GG) and galaxy-CMB lensing cross correlation

(φG), we used a slightly modified version of the code with source and lensing type win-

dows.

Table 3.1 shows the CMB experimental scenarios we consider in this work. The current

type experiment is based on the Planck satellite, for which the blue book values (Tauber

et al., 2006) agree reasonably well with the satellite’s performance so far (Ade et al.,

2013c). The 3rd generation experiment is a survey with higher angular resolution (1

arcmin FWHM) covering 10% of the sky. We verified that a three times larger beam

would not qualitatively change any of the results. The 4th generation experiment has

the same angular resolution as the 3rd generation experiment but covers 50% of the sky.

The noise in the CMB temperature and polarization is shown in the table, and the CMB
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lensing noise is derived from these values. The 3rd generation is representative of surveys

already taking data or soon to begin observations, such as SPTpol (Austermann et al.,

2012), ACTpol (Niemack et al., 2010) and POLARBEAR (Kermish et al., 2012). The 4th

generation is representative of larger sky area surveys planned for the near future, such as

the POLARBEAR extension, the Simons-array.

Table 3.2 shows experimental scenarios for 3 galaxy surveys. The Wide-field Infrared

Survey Explorer (WISE) is a satellite experiment which observed the whole sky in the

mid-infrared. The four observing bands are centred at 3.4, 4.6, 12 and 22 µm (Wright

et al., 2010). WISE has already been used in cross correlation with various data sets such

as WMAP (Goto et al., 2012), Planck (Ade et al., 2013f) and SPT (Geach et al., 2013).

The Large Synoptic Survey Telescope (LSST) is a planned 8.4 meter optical ground based

telescope which will observe from Cerro Pachón, Chile. The predicted redshift distribution

from the LSST science book (Abell et al., 2009) is

dN

dz
=

1

2z0

(
z

z0

)2

exp(−z/z0). (3.9)

Here z0 = 0.0417i− 0.744 (where the survey has sensitivity in the i band for magnitudes

21.5 < i < 23). In section 3.4 we will use LSST as an example next generation survey for

constraints on parameters. Choosing i = 22.25 for a mid-range magnitude sample gives a

fiducial z0 = 0.183, which we use in our calculation. The LSST science book assumes a

galaxy bias evolution of b = 1 + 0.84z. Given a median redshift of around z = 1, we will

estimate the fiducial galaxy bias as b = 1.84 in our simulations. Euclid is an ESA satellite

mission due to launch in 2019. It will observe 15,000 sq deg in optical and near-infrared

using a 1.2m space telescope (Laureijs et al., 2011).

Figure 3.1 shows the redshift distributions of various cuts of these galaxy surveys along

with the CMB lensing kernel. Also shown is a Gaussian toy model with µ = 1 and σ = 0.5.

This Gaussian is fairly representative of the galaxy distribution redshift ranges, and all

redshift distributions show an overlap with the CMB lensing kernel, suggesting that they

are useful for cross correlation studies.

In Table 3.3 we show the combinations of CMB and galaxy surveys which we consider

in our Fisher calculations, labelled from A-J. To measure a cross correlation, the fractions

of sky observed by CMB and galaxy surveys must overlap. If the CMB experiment has

a smaller fsky than the galaxy survey, the smaller value must also be used for the galaxy

information in that case. We take a conservative approach, considering the same fsky

in the GG case as the φG case, rather than using the full survey area available for GG.

These details can be read from column 3 of the table. For the CMB information in
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Table 3.3: FISHER CALCULATION SCENARIOS

Scenario CMB surveys GG,φφ,Gφ surveys Parameters varied (% prior)

A Planck+4G Gaussian, 4G ΛCDMν+bias+µ+σ

B Planck+4G LSST, 4G ΛCDMν+bias+z0

C Planck+3G Gaussian 1k gal/deg2, 3G ΛCDMν+bias+µ

D Planck+4G Gaussian 1k gal/deg2, 4G ΛCDMν+bias+µ

E Planck+3G LSST, 3G ΛCDMν+bias(20%)

F Planck+4G LSST, 4G ΛCDMν+bias(20%)

G Planck+4G Gaussian, 4G ΛCDMν+bias(20%)+µ(20%)

H Planck LSST, Planck ΛCDMν+bias(20%)

I Planck LSST, Planck ΛCDM+bias(20%)

J Planck+4G LSST, 4G ΛCDM+bias(20%)

A description of the combinations of CMB and galaxy experimental scenarios we

consider in our Fisher calculations. Column 2 lists surveys which are used in the

TT,EE, TE correlations. 3G denotes a third generation experiment with 10% sky cov-

erage, 4G a fourth generation experiment with 50%. Column 3 details the surveys used

for the GG,φφ,Gφ correlations, with the sky fraction given by that of the deeper exper-

iment in column 2. LSST is estimated to have a number density of 198,000 gal/deg2.

For the Gaussian cases, we either explore different values of the number density, or

set it to 1,000 gal/deg2. In column 2, surveys are separated by addition signs. This

denotes that the Fisher information matrix was constructed for each of these surveys

and then added together. In column 3 the surveys are separated by commas. This

denotes that information from both surveys was used in one Fisher matrix to con-

struct auto and cross correlations between the CMB lensing and galaxy power spectra.

Column 4 shows what parameters have been varied, where ΛCDM(ν) was defined as

Ωbh
2 + ΩCDMh

2 + Ωλ + τ + ns + As(+Σmν). Notice that priors of 20% have been ad-

ded to the galaxy parameters in scenarios E, F, G, H, I, and J. These are added to

break degeneracies between the galactic and non-galactic parameters in order to make

the Fisher matrix invertible.
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Figure 3.1: Redshift distributions for current and upcoming galaxy survey cuts com-

pared to the CMB lensing redshift kernel. Redshift distributions shown for WISE (quasar

sample), LSST and EUCLID are taken from Geach et al. (2013), Abell et al. (2009)

and Boldrin et al. (2012) respectively. The Gaussian model has µ = 1, σ = 0.5.

the TT,EE, TE correlations, we use the maximum fsky possible for the deepest CMB

survey (3rd or 4th generation). We then include information from the current (Planck)

CMB survey, but only up to a combined fsky = 0.75, since we do not want to double

count patches of sky. This counting assumes that the remaining 25% of the sky are

contaminated by foregrounds. In scenarios E, F, G, H, I and J, we add 20% priors to the

galaxy parameters. This is to break degeneracies between the galactic and non-galactic

parameters in order to make the Fisher matrix invertible. Adding e.g. 40% priors rather

than 20% priors made negligible difference to the forecasts.

The GG and φG correlations have a sharper cut-off in multipole l, because non-linear

clustering will make recovery of cosmological information from smaller scales challenging.

The approximate onset of non-linearities at k ∼ 0.2 h/Mpc yields a projected lnon−linear &

300, assuming a galaxy population peaking at z ' 1. The φG correlation should be

less sensitive than GG to the effect of non-linearities because it narrows in on higher

redshifts. Taking this into consideration, we choose a slightly higher multipole cut-off

of lmax = 500 for GG and φG. In one simulation, we allow the GG and φG cut-off to

be as high as lmax = 1, 000 and lmax = 5, 000. This is to explore parameter constraints

for future improvements in our understanding of the nonlinear clustering regime. In the
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same simulation, we calculated the constraint using lmax = 300, the actual cut-off scale

calculated for non-linearities. We found that the constraint in this case was at most <20%

worse than that for the default cut-off of lmax = 500.

Note that we have not modelled scale dependence in the bias due to non-linearities.

Some simulations show that non-linear bias should only affect scales where k ≥ 0.7 h/Mpc

(Zarija, 2008), which is outside the range of modes that we use as our default lmax. How-

ever, other simulation (Smith et al., 2007) and survey (Sanchez et al., 2013) driven work

finds that the bias is non-linear on much larger scales. When we move beyond lmax = 1, 000

we are certainly entering this more complicated regime.

In the higher lmax cutoff case (Fig. 3.4), we are showing forecasted constraints for a

toy model Gaussian redshift distribution where we vary redshift-integrated galaxy density

as well as lmax. Note that the values of number density, redshift distribution, bias, and

lmax are not independent, as for example a change in the number density (by observing

down to lower fluxes) would likely affect the mean galaxy bias. Since we are interested in

forecasting parameter errors around a fiducial model, we can ignore such dependencies.

Note also that we do not explicitly model a redshift dependence of the bias, b(z). This

dependence is highly degenerate with the evolution of the number density N(z) when using

observables integrated over all redshifts, as we do here. The degeneracy can be reduced

by using redshift-binned galaxy auto and CMB lensing-galaxy cross power spectra. We

defer such an analysis to a future work.

3.4 Constraints on cosmological parameters

In the following sections we refer to the unlensed primary CMB information using the

notation CMB ul. This term encompasses the TT primary CMB temperature power

spectrum, the EE primary CMB E mode information and the TE cross correlation in-

formation. Using unlensed spectra ensures that we do not over-count lensing information

when the temperature and polarization power spectra are considered in conjunction with

the reconstruction-based φφ and φG spectra (see Schmittfull et al. (2013); Zahn (2014) for

more detailed treatments that quantify the shared information content between these es-

timators). In some cases we consider the lensed theoretical power spectra for the primary

CMB. This is denoted by CMB le.
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3.4.1 Galaxy properties

In this section we present constraints on parameters describing the large-scale tracer struc-

ture probed by the cross correlation with CMB lensing, for both a toy model Gaussian

case and for a specifically LSST parameterized distribution. In all cases, we allow the

full seven (non-galactic) cosmological parameters to vary. In the case of the toy model

describing the populations probed by the galaxy survey, we also vary three parameters

describing the galaxy properties: the bias (b), and the mean (µ) and standard deviation

(σ) of the assumed Gaussian redshift distribution, shown by the black curve of Fig. 3.1.

Figure 3.2 shows constraints on b, µ and σ for a scenario-A combination of surveys (a

galaxy survey with a Gaussian redshift distribution and and Planck + 4th. generation

CMB experiments). Parameter constraints are shown over a range of galaxy survey sens-

itivities (galaxy number density per square degree). Different combinations of the lensing

and galaxy auto correlations φφ, GG, and the lensing galaxy cross correlation φG and the

primary CMB are shown by lines on the plot. For all three parameters, the addition of

φG information improves constraints significantly over using CMB + GG alone (solid line

to dotted line). The constraints can be improved further by adding φφ information (bot-

tom dot-dashed lines). The addition of CMB lensing information is crucial for constraining

galaxy bias, because it helps break degeneracies between bias and other cosmological para-

meters affecting the amplitude and shape of the galaxy power spectra. The figure also

shows that for high number densities the shot noise becomes irrelevant and the forecasts

saturate.

Table 3.4 shows constraints on galaxy parameters b and z0 for an LSST type survey

(described in section 3.3 and shown in Eq. (3.9)), for the combination with a 4th generation

CMB experiment and Planck. z0 is the single parameter describing the shape of the redshift

distribution. When the cross correlation is added to the autocorrelations (CMB ul + φφ

+ GG case to CMB ul + φφ + GG + φG case), the constraints on both the bias and shape

parameter improve by ∼70%. Interestingly, the constraints on both parameters from CMB

ul + GG is only 30% improved from the constraint of CMB ul + φG. This shows that

the CMB lensing-galaxy correlation contains powerful information on galaxy dynamics, in

particular the bias, even without using the galaxy clustering auto power spectrum. The

significant improvement in the constraint on the shape parameter z0 in the combination

of all observables (last line) compared to CMB ul + GG or CMB ul + φG + φφ shows

on the other hand that the galaxy clustering auto correlation becomes much more useful

with the addition of CMB lensing information.
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Figure 3.2: Constraints on the 3 galaxy parameters b, µ and σ for a scenario-A experiment

combination. Top panel shows the galaxy bias parameter (b), centre panel shows the

mean (µ) of the Gaussian distribution, bottom panel shows the sigma (σ) of the Gaussian

distribution. The x axes show the number density of galaxies per square degree, and

constraints are shown for various combinations of GG, φφ and φG with the primary

CMB. (1,000 gal/deg2 ↔ 0.28 gal/arcmin2, 10,000 gal/deg2 ↔ 2.8 gal/arcmin2, 100,000

gal/deg2 ↔ 28 gal/arcmin2).
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Figure 3.3: 1σ (dashed line) and 2σ (solid line) ellipses for various combinations of GG,

φφ and φG with the primary CMB. Left and right panels show the comparison between

a scenario-C (3rd generation CMB) and scenario-D (4th generation CMB) experiment

combination. Galaxy survey is Gaussian with number density 1,000 gal/deg2.
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Table 3.4: δb and δz0 FOR LSST + CMB

scenario-B δz0 δb

CMB ul +GG 0.010 0.065

CMB ul + φG 0.015 0.093

CMB ul + φφ + φG 0.010 0.017

CMB ul + φG + GG 0.002 0.040

CMB ul + φφ + GG 0.007 0.060

CMB ul + φφ + GG + φG 0.002 0.016

Constraints on the galaxy parameters b and z0 for a scenario-B experiment com-

bination (LSST galaxy survey with Planck + 4th generation CMB). Values are

shown for different combinations of GG, φφ and φG with the primary CMB.

Figure 3.3 shows the 1σ and 2σ ellipses for various parameters for scenario-C and

scenario-D experiment combinations. (The galaxy survey is Gaussian with a number

density of 1,000 gal/deg2. The difference between scenario-C and scenario-D is that the

former includes a 3rd generation CMB survey, whilst the latter includes a 4th generation

CMB survey.) The top two panels show a comparison of the
∑
mν and b parameters for

both scenario-C (left) and scenario-D (right). The two parameters are highly degenerate

when only including the galaxy auto power or galaxy-lensing cross correlation. We see

again that CMB ul + φG combination does almost as well as the CMB ul + GG com-

bination. The improvement in the CMB ul + φG cross combination is ∼50% for both

parameters when upgrading to scenario-D from scenario-C. The lower two panels show a

comparison of the redshift distribution mean (µ) and bias parameter for scenario-C (left)

and scenario-D (right). The improvement in the µ parameter is ∼40% when upgrading to

scenario-D from scenario-C. In all cases we see that adding the φφ lensing auto correlation

to the CMB ul +GG (green line to blue line) or CMB ul + φG (cyan line to purple line)

improves the constraints significantly, because the lensing auto power constrains neutrino

mass more directly. There is also a good improvement in the constraints when φG is

added to the CMB ul + GG (green line to yellow line), although the improvement is more

dramatic with the addition of the lensing autocorrelation. In both choices of parameter

pairs, when comparing scenario-C and scenario-D, the CMB ul +GG constraints improve

about as much as the CMB ul + φG constraints.
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Figure 3.4: ∆
∑
mν for scenario-G. Constraints in the y axis are shown in electron volts,

the x axis shows number density of galaxies observed per square degree. Forecasts are

shown for different cutoff values of multipole lmax=500, 1,000, 5,000.

3.4.2 Massive neutrinos and reionization optical depth

In this section we present forecasts on the non-galactic cosmological parameters: the

neutrino mass sum
∑
mν , and the optical depth τ due to free electrons since the epoch of

reionization.

Figure 3.4 shows the
∑
mν constraint for scenario-G for different cutoff values, lmax =

500, lmax = 1, 000, lmax = 5, 000. For each value of lmax the primary CMB is shown

in combination with the φG cross correlation (red lines), and the cross correlation plus

lensing auto-correlation φG + φφ (black lines). These lines can be compared to that of

the primary CMB plus only the CMB lensing auto-correlation φφ (blue line). (Remember

that the primary CMB is unlensed and includes the TT , EE and TE correlations.) In

this scenario, the σ of the redshift distribution was fixed, but the b and µ parameters were

allowed to vary with a 20% prior in order to allow matrix inversions. Using a prior of e.g.,

40% made negligible difference to the constraints, as did fixing the µ parameter rather

than varying it. We see that adding the φG information to the CMB ul + φφ combination

(blue line to black lines) leads to negligible improvement unless one allows lmax = 5, 000.

For a conservative value of lmax = 500, the combination of the unlensed CMB and φG does

not give useful constraints. If we consider a less conservative lmax = 1, 000, the CMB ul
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Table 3.5: ∆
∑
mν FOR LSST + CMB

∆
∑
mν (scenario-E) ∆

∑
mν (scenario-F)

CMB ul only 0.328 0.201

CMB le 0.055 0.040

CMB ul + φφ 0.051 0.036

CMB ul + GG 0.122 0.059

CMB ul + φG 0.219 0.119

CMB ul + φφ + φG 0.051 0.035

CMB ul + GG + φG 0.114 0.058

CMB ul + φφ + GG 0.050 0.034

CMB ul + φφ + GG +φG 0.044 0.027

Constraints in electron volts on the
∑
mν parameter for an LSST type galaxy survey

(Eq. (3.9)) for scenario-E (3rd generation CMB) and scenario-F (4th generation CMB).

Constraints are shown for combinations of GG, φφ and φG with the primary CMB.

(Note that the CMB le does not include any BB correlations).

+ φG combination becomes more valuable, and if we consider an optimistic lmax = 5, 000

then the constraint becomes comparable to that of the CMB ul + φφ line. With optimistic

lmax limits, the φG cross correlation could provide a good independent check on the
∑
mν

parameter. It is worth mentioning that while the CMB ul + φG combination places better

constraints than the CMB ul does alone, what we actually measure is the lensed primary

CMB, and this constrains the
∑
mν much better than the cross correlation and almost

as well as the CMB lensing autocorrelation for very optimistic surveys (see Table 3.5).

(When we consider the φφ correlation in combination with the primary CMB, we always

use the unlensed CMB to avoid over-counting the lensing effect).

Tables 3.5 and 3.6 show constraints on the
∑
mν and τ parameters for an LSST type

galaxy survey (described in Eq. (3.9)). In this case the bias parameter was set to a fiducial

value of b = 1.84.

Table 3.5 shows constraints on
∑
mν for scenario-E and scenario-F. The only difference

between scenario-E and scenario-F is that the former includes a 3rd generation CMB

experiment, while the latter includes a 4th generation CMB experiment. In the same

trend as the Gaussian redshift distribution galaxy survey, using the lensed CMB vs the

unlensed CMB gives dramatic improvements, almost an order of magnitude in this case.
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The lensed CMB alone is much better than the CMB ul + φG, and the addition of φG to

CMB ul + φφ gives negligible improvement. However, the improvement in the neutrino

constraint from CMB ul + GG + φφ to CMB ul + GG + φφ + φG is 10% for a 3rd

generation CMB experiment and 20% for a 4th generation. This shows that when the

redshift distribution is well known, the addition of φG helps break degeneracies between

cosmological and galaxy parameters in GG.

In table 3.6, we show the constraint on τ for various scenarios. Scenario-H and scenario-

F use the full 7 parameter non-galactic cosmology where scenario-H includes Planck and

scenario-F includes a 4th generation CMB survey. Also shown are scenario-I and scenario-

J. These two scenarios include only the ΛCDM 6 non-galactic cosmology parameters,

excluding massive neutrinos. Scenario-I includes a current type CMB survey and scenario-

J includes a 4th generation CMB survey. When the neutrino mass sum is fixed, the

constraint on τ improves significantly for many cases. This highlights the importance of

including the neutrino mass sum as an unknown parameter in the analysis.

While φG reduces degeneracies between cosmological parameters inherent in TT+GG,

the improvement in the τ constraint going from TT + GG + φφ to TT + GG + φφ + φG

is small. Note that while large-scale polarization information from Planck or future exper-

iments will yield the tightest constraints on τ , the addition of φφ information alone to the

temperature power spectrum (TT ) improves the τ constraints significantly. The constraint

from a 4th generation CMB experiment without large-scale polarization information will

be comparable to that from current large-scale polarization measurements from WMAP

(Hinshaw et al., 2013) and will offer a good independent check on the constraint from

Planck polarization, to be published in 2014, which could be dominated by uncertainty in

the polarization foregrounds.

There is a geometric degeneracy in the unlensed CMB between the
∑
mν vs ΩΛ para-

meters which CMB lensing significantly helps to constrain (e.g. Stompor & Efstathiou

(1999) and Sherwin et al. (2011)). We explored whether the cross correlation could bring

any additional information to break the degeneracy further. As expected, adding the CMB

lensing auto correlation to the primary CMB improved the constraints dramatically, due

to the breaking of the geometric degeneracy. However, after the addition of the φφ cor-

relation, additional information from both GG and φG made negligible improvement to

the constraint on dark energy. In the absence of the φφ correlation, the addition of GG

or φG also made negligible improvement on the constraint from the primary CMB alone.
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Table 3.6: ∆τ FOR LSST + CMB

ΛCDMν ∆τ (scenario-H) ∆τ(scenario-F)

TT len 0.084 0.036

CMB le 0.004 0.003

TT+φφ 0.041 0.015

TT+GG 0.064 0.056

TT+φG 0.068 0.055

TT+φφ+φG 0.039 0.014

TT+GG+φG 0.037 0.025

TT+GG+φφ 0.028 0.015

TT+GG+φφ +φG 0.028 0.014

ΛCDM ∆τ (scenario-I) ∆τ(scenario-J)

TT len 0.027 0.013

CMB le 0.004 0.003

TT+φφ 0.020 0.010

TT+GG 0.019 0.018

TT+φG 0.047 0.033

TT+φφ+φG 0.020 0.010

TT+GG+φG 0.019 0.016

TT+GG+φφ 0.017 0.010

TT+GG+φφ +φG 0.016 0.007

Constraints on the τ parameter for an LSST type galaxy survey (Eq.(3.9)). Constraints

are shown for a number of scenarios for combinations of TT , CMB, φφ, GG and φG.

Scenarios H and I are Planck like, scenarios F and J are 4th generation CMB like.
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3.5 Summary

Our analysis is intended to begin to answer the open question of how much informa-

tion about cosmology is contained in the CMB lensing - galaxy cross correlation. We

have used a simple Fisher model where we included all correlations between temperature,

polarization, galaxy over-density, and CMB lensing maps. We constrain both galactic

and non-galactic cosmological parameters simultaneously, to explore degeneracies in these

spectra between the underlying cosmology and galaxy dynamics.

In the case of the galaxy parameters, the φG cross correlation is very useful. In all

cases the addition of the φG cross correlation to the φφ and GG auto correlations improves

the constraints significantly, and CMB ul + φG is comparable to CMB ul + GG. We also

find that the addition of CMB lensing information or any improvements in the primary

CMB significantly improve the constraints on galaxy parameters. This is because the

CMB lensing and primary CMB information give tighter constraints on the non-galactic

cosmological parameters, allowing degeneracies with galaxy parameters to be broken.

For non-galactic cosmology, we find that in the case of the
∑
mν , once the φφ and

GG auto correlations are considered, the φG cross correlation adds little improvement.

We have imposed a conservative lmax = 500 for the φG cross correlation however, and

see that when this is relaxed, the cross correlation does offer useful information, up to

the same level as the auto correlations for ambitious values of lmax. Although for now it

may be unrealistic to extend the cross correlation information to such small scales, with

some improvement in the non-linear modelling one could hope that the cross correlation

provides useful independent checks of constraints derived from the GG auto-correlation.

In Table 3.6 we also quantify the near future constraints available on the τ parameter when

the CMB lensing information is used. We note that the TT + φφ correlation will constrain

τ to <20%, which will provide a good independent check on the epoch of reionization, given

galactic foreground uncertainties in the polarization constraints.

Although there are a host of issues concerning the reliability of information from galaxy

surveys, we expect our most conservative scenarios to be robust. For the GG and φG

observables we have chosen a conservative lmax = 500 in all but one of our simulations.

This value is just past the scale of the onset of non-linearities (lnon−linear & 300), and

should be well modelled in the near future. Furthermore, we expect the φG to be less

sensitive to non-linear effects. Although we have not modelled the non-linearity of the

bias, our forecasts should not change much since we are only considering scales for which

simulations have shown the bias is still linear. We expect that a modelling of the redshift
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distribution of the bias would only improve our constraints, since it would help to break

a degeneracy between the redshift distribution and bias parameters.
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Chapter 4

CMB Lensing and the Primordial

Squeezed Bispecrum

The contents of this chapter are based on work presented in Pearson et al. (2012) and

represent work done by the author in collaboration with Antony Lewis and Donough

Regan. Notation in this chapter differs slightly such that the symbol φ will no longer refer

to the lensing potential. Instead the symbol φab is used to refer to the angle between

the vectors a and b. A squeezed bispectrum or trispectrum produced by local primordial

non-Gaussianity is observable in the CMB, and if observed would give a powerful way

to rule out simple single-field inflation models and strongly constrain general properties

of inflation. The local non-Gaussianity produced in the CMB can be thought of as a

modulation of small-scale perturbations by large-scale modes, so over a large overdensity

there will be more (or less) small-scale power than over an underdensity, depending on

the sign of the non-Gaussianity. However if we observe the small-scale modes they will be

gravitationally lensed, so in the squeezed limit we expect to see a modulation of the lensed

small-scale power spectrum due to large-scale modes. This may be important because

lensing smooths out acoustic structures, changing the detailed shape of the bispectrum

and trispectrum. Previous work (Hanson et al., 2009) has shown that for the temperature

bispectrum due only to local primordial non-Gaussianity, the bias due to this change in

shape is very small. However since the shape is changed, accounting for lensing might be

important to correctly identify the form of the non-Gaussianity; for example a different

shape which is orthogonal to the unlensed bispectrum will not generally be orthogonal

to the lensed bispectrum. In this work we give new simple approximations for the effect

of lensing on the squeezed CMB temperature and polarization bispectra which allow the

effects to be calculated easily. We test these approximations against simulations, and
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quantify the importance of the lensing at different levels of primordial non-Gaussianity.

Previous work has investigated the lensing bispectrum in detail, its potential bias on

local non-Gaussianity estimators, and its impact on the variance of the primordial non-

Gaussianity estimators (Smith & Zaldarriaga, 2011; Serra & Cooray, 2008; Hanson et al.,

2009; Lewis et al., 2011). The bispectrum produced by lensing turns out to be significant,

corresponding to a projection of fNL ∼ 9 onto the local shape, and should be detectable by

Planck. However the effect is easily modelled and subtracted since the detailed shape of

the lensing bispectrum is actually very different from the local shape (Lewis et al., 2011).

Here we address the different issue of how lensing affects any other primordial bispectrum

that we might want to observe, and assess whether the change due to lensing is important.

We give simple analytic forms for the CMB bispectrum that are quite accurate in the

highly squeezed limit, and show how general squeezed CMB bispectra can be decomposed

into modes of distinct angular dependence.

4.1 Lensed squeezed bispectra

Lensing deflection angles are only a few arcminutes, though coherent on degree scales. As

such, lensing only has a large effect on relatively small scales. Local bispectra depend on

three wave numbers l1, l2, l3 (we restrict to l1 ≤ l2 ≤ l3 for convenience), and most of the

signal is in squeezed triangles with l1 � l2, l3. It is therefore a good approximation in many

cases to take the largest-scale mode to be unlensed: T̃ (l1) ≈ T (l1). This approximation

greatly simplifies many calculations with very little loss of accuracy, and also makes a

non-perturbative analysis tractable, as shown for the CMB lensing bispectra in Lewis

et al. (2011). For the moment we only consider temperature bispectra in the flat-sky

approximation, and hence wish to calculate

〈T (l1)T̃ (l2)T̃ (l3)〉 ≈ 〈T̃ (l1)T̃ (l2)T̃ (l3)〉 =
1

2π
b̃l1l2l3δ(l1 + l2 + l3), (4.1)

where b̃l1l2l3 is the reduced lensed bispectrum. The approximation was previously called

the linear (unlensed) short-leg approximation. A general result can be formulated for

any shape and the result for the lensed temperature bispectrum obtained from the linear

short-leg approximation is correct to quadratic order in a squeezed expansion.

We can now proceed to calculate the lensed bispectra, following the methods and

notation used for calculating the lensed CMB power spectra via lensed correlation functions

in Lewis & Challinor (2006), with

T̃ (l) =

∫
d2x

2π
T (x + α)e−il·x (4.2)
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where a tilde denotes the lensed field and α is the lensing deflection angle. Hence in the

unlensed short-leg approximation

〈T (l1)T̃ (l2)T̃ (l3)〉 =

∫
d2x2

2π

d2x3

2π

d2l′2
2π

d2l′3
2π

(4.3)

×〈T (l1)T (l′2)T (l′3)e−il2·x2e−il3·x3eil
′
2·(x2+α2)eil

′
3·(x3+α3)〉.

The correlation between T (l1) and the lensing potentials gives rise to the lensing bispec-

trum. We are not interested in this term here, and so only keep remaining terms where α

can be taken to be uncorrelated to T . Hence

〈T (l1)T̃ (l2)T̃ (l3)〉 =
1

(2π)2

∫
d2x2

2π

d2x3

2π

d2l′2
2π

bl1l′2l′3e
ix2·(l′2−l2)eix3·(l′3−l3)〈eil′2·α2eil

′
3·α3〉

(4.4)

where l′3 = −l1 − l′2 and αi ≡ α(xi). From statistical homogeneity (isotropy on the sky)

the expectation value is only a function of r ≡ x2 − x3, so integrating out x2 + x3 we

obtain

〈T (l1)T̃ (l2)T̃ (l3)〉 =
1

(2π)
δ(l1 + l2 + l3)

∫
d2r

2π

d2l′2
2π

bl1l′2l′3e
ir·(l′2−l2)〈eil′2·α2eil

′
3·α3〉. (4.5)

This is very similar in form to what is required for lensing of the temperature power

spectrum (Seljak, 1996; Challinor & Lewis, 2005; Lewis & Challinor, 2006). Let’s define

l′ ≡ (l′2− l′3)/2 = l′2 + l1/2 and l ≡ (l2− l3)/2 = l2 + l1/2 to encode the wavevectors of the

small-scale modes, so that

l′2 ·α2 + l′3 ·α3 = l′ · (α2 −α3)− l1
2
· (α2 + α3). (4.6)

Then neglecting non-Gaussianity of the lensing potentials,

b̃l1l2l3 =

∫
d2r

2π

d2l′

2π
bl1l′2l′3e

ir·(l′−l) exp

(
−1

2

〈[
l′ · (α2 −α3)− l1

2
· (α2 + α3)

]2
〉)

(4.7)

=

∫
d2r

2π

d2l′

2π
bl1l′2l′3e

ir·(l′−l) exp

(
− 1

2

[
l′2
(
σ2(r) + cos 2φl′rCgl,2(r)

)
(4.8)

+
l21
4

(Cgl(0) + Cgl(r)− cos 2φl1rCgl,2(r))

])
,

where σ2(r32) ≡ 〈(α3 − α2)2〉/2, and Cgl,2(r), Cgl(r) are defined as in Lewis & Challinor

(2006) (sec. 4.2).

For squeezed shapes the second term in the exponential O(l21Cgl(0)) is very small (same

order as things we’ve already neglected by using the unlensed short-leg approximation)

and hence

b̃l1l2l3 ≈
∫
d2r

2π

d2l′

2π
bl1l′2l′3e

ir·(l′−l) exp

(
− l
′2

2
[σ2(r) + cos 2φl′rCgl,2(r)]

)
. (4.9)
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If bl1l′2l′3 were a function only of l1 and |l′|, this could be evaluated trivially using exactly

the same form as the result for lensing of the power spectrum.

More generally we can parameterize the bispectrum in terms of l1, l ≡ |l3 − l2|/2, φll1
instead of l1, l2, l3, where φll1 is the angle between l and l1. We can then expand the

angular dependence of the bispectrum as

bl1l2l3 =
∑

m

b̄ml1l e
miφll1 (4.10)

(see Lewis (2011) for further discussion). From rotational invariance m should be even, and

for parity-invariant fields the dependence on φl1l is only via |φl1l|, so we can equivalently

write

bl1l2l3 =
∑

m

bml1l cos (mφll1) (4.11)

where m is even and m ≥ 0.

Using the expansion of Eq. (4.10) in Eq. (4.9), the angular integrals can then be done

giving the lensed bispectrum moments in terms of integrals of modified and unmodified

Bessel functions:

b̃ml1l ≈
∫
rdrJm(lr)

∫
dl′l′bml1l′e

−l′2σ2(r)/2
∑

n

In[l′2Cgl,2(r)/2]J2n+m(l′r). (4.12)

This shows that lensing, which is on average a statistically isotropic process, does not mix

the angular dependence of the squeezed bispectra: the lensed bispectrum b̃ml1l depends only

on the unlensed bispectrum with the same m. For isotropic primordial bispectra in the

squeezed limit the angular average b0l1l is expected to dominate over other modes (unless

the large-scale modes generate local anisotropy), so to that approximation one would

be applying power spectrum lensing to angle-averaged bispectrum slices b0l1l for each l1.

Lensing of the b2l1l moments is mathematically identical to power spectrum lensing of the

CTEl power spectrum.

On the flat sky the Fisher correlation between two different bispectra is usually defined

(for small signals) by (Hu, 2000)

F (b, b′) =
1

2π2

∫
l1dl1

∫
d2l2

bl1l2l3b
′
l1l2l3

6Cl1Cl2Cl3
, (4.13)

which is zero if the bispectra are orthogonal. If the bispectra are both squeezed we can

expand in terms of angular dependence, and obtain

F (b, b′) =
1

π

∫
l1dl1

∫
ldl
∑

m

bml1lb
′m∗
l1l

6Cl1C
2
l

(
1 +O(l21/l

2)
)
. (4.14)

As might be expected bispectrum components with m 6= m′ are orthogonal in the squeezed

limit. Since lensing does not change the angular dependence, this will remain true after
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Figure 4.1: The temperature CMB bispectrum from local non-Gaussianity (fNL = 1) with

l1 = 30 (left) and l1 = 275 (right), projected into the isotropic component (solid lines),

m = 2 quadrupole (green) and m = 4 (cyan) octopole parts. Thick lines are lensed

using the approximation described in the text, thin lines show the unlensed bispectrum.

The anisotropic components are small on super-horizon scales, and on smaller scales are

relatively smooth so lensing has little effect.

lensing. If the correlation is defined without the power spectra in the denominator (or

equivalently for constant white-noise power spectra, or using the bispectrum of whitened

fields) this remains true for all triangles.

4.1.1 Local non-Gaussianity

The case of most immediate interest is when the primordial non-Gaussianity is of local

(scalar) form, parameterized by fNL. In this form of non-Gaussianity small-scale modes are

modulated by the large-scale scalar modes. In the squeezed limit, since the modulation is

scalar, the modulation is expected to be isotropic, i.e. m = 0. Specifically the bispectrum

is given in terms of 2-point correlation functions of the primordial curvature perturbation

Pζ(k) by

b(k1, k2, k3) = 2
3

5
fNL[Pζ(k1)Pζ(k2) + Pζ(k1)Pζ(k3) + Pζ(k2)Pζ(k3)]

= 4
3

5
fNLPζ(k1)Pζ(k)

[
1 +

(
k1

k

)2 9 + 15 cos(2φ)

16
+ . . .

]
, (4.15)
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where in the second line we expanded in k1/k for a scale-invariant spectrum, φ is the angle

between the long and the short-scale modes, and k ≡ (k3 − k2)/2. Thus in the squeezed

limit there is no m dependence as expected, with leading corrections of O((k1/k)2) coming

from the effect of gradients in the modulation.

Evolution until last scattering will modify this for observations of the CMB. However

for l1 corresponding to scales that are super-horizon at recombination (l1 � 100), the

corresponding perturbation can be taken to be constant across the last-scattering surface.

The small-scale temperature is then modulated by 1 + (6fNL/5)ζ∗, and hence the local

model bispectrum is

〈T (l1)T (l2)T (l3)〉 ≈ CTζ∗l1

〈
δ

δζ∗(l1)∗
(T (l2)T (l3))

〉
(4.16)

=
1

2π
δ(l1 + l2 + l3)

6

5
fNLC

Tζ∗
l1

(Cl2 + Cl3), (4.17)

where ζ∗ is the primordial curvature perturbation at last scattering, ζ∗(n̂) = ζ(n̂, r∗) and r∗

is the distance to last-scattering. We can see immediately that on the lensed sky, where the

lenses are taken to be uncorrelated to the ζ∗, the same result is obtained simply replacing

Cl with the lensed C̃l, and hence it should be no surprise that local bispectrum lensing

is well modelled by power spectrum lensing. (Note that this low l1 limit is particularly

interesting because non-linear evolution effects are under control analytically and known

to be small (Creminelli et al., 2011).)

When l1 is larger the situation is more complicated since the modulation can no longer

be approximated as being constant through last scattering. However the local bispectrum

shape is still squeezed, so we can expect that our full result of Eq. (4.12) will accurately

describe the effect of lensing where only the lowest angular bispectrum moments are re-

quired. Numerically, using the fully-sky analogue of the angular decomposition, we find

that the full sky temperature local bispectrum (calculated with camb) projected into only

its isotropic part is ∼ 96% correlated to the full result (lmax = 2000, no noise), and 99%

correlated if both the m = 0 and m = 2 (isotropic and quadrupolar) moments are re-

tained. The quadrupolar moments are more important for larger (sub-horizon) l1 & 200.

This is because the triangles with a given l have small-scale modes with transfer functions

involving l2 and l3 that vary by ±l1/2 depending on φ, the angle between l1 and l; for

l1 comparable to or larger than the separation of the acoustic peaks there is a significant

variation in these transfer functions, giving a significant m 6= 0 component to the squeezed

CMB bispectrum for larger l1. See Fig. 4.1.

The unlensed short-leg approximation is expected to be quite accurate since almost all

the signal to noise in local non-Gaussianity is at l1 . 500 for Planck sensitivity, where lens-
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ing effects are still small. We check these approximations numerically below by comparison

with full-sky simulations.

4.1.2 Polarization

To consider polarization bispectra in the flat-sky approximation we need the lensed E and

B modes given by the polarization analogue of Eq. (4.2). Taking the unlensed B modes

to be zero, it follows from the definitions given in Lewis & Challinor (2006) that:

Ẽ(l) =

∫
d2x

2π

d2l′

2π
E(l′)eil

′·αeix·(l
′−l) cos 2φl′l, (4.18)

B̃(l) =

∫
d2x

2π

d2l′

2π
E(l′)eil

′·αeix·(l
′−l) sin 2φl′l , (4.19)

and φl′l is the angle between l′ and l. We can then use the lensed E and B modes to

calculate the polarization bispectra combinations in the unlensed short-leg approximation

as before:

〈X(l1)Ỹ (l2)Z̃(l3)〉 ≈ 〈X̃(l1)Ỹ (l2)Z̃(l3)〉 =
1

2π
b̃XY Zl1l2l3 δ(l1 + l2 + l3), (4.20)

where X, Y and Z can be any of T, E and B. Since the primordial B modes are small, we

expect the effect of lensing on the bTEB and bEEB bispectra to be unimportant, and do

not calculate them here.

XTE bispectra

Following the same steps as for the temperature case, the first combination gives

〈X(l1)T̃ (l2)Ẽ(l3)〉 =

∫
d2x2

2π

d2x3

2π

d2l′2
2π

d2l′3
2π
〈X(l1)T (l′2)E(l′3) (4.21)

×e−il2·x2eil
′
2·(x2+α2)eil

′
3·α3eix3·(l′3−l3) cos(2φl′3l3)〉.

Keeping terms where α is uncorrelated to T and E, and writing the expectation value as

a function of r ≡ x2 − x3 we have

〈X(l1)T̃ (l2)Ẽ(l3)〉 =
1

(2π)
δ(l1 + l2 + l3)

∫
d2r

2π

d2l′2
2π

bXTEl1l′2l
′
3

cos(2φl′3l3)eir·(l
′
2−l2)〈eil′2·α2eil

′
3·α3〉

(4.22)

where l3′ = −l1 − l′2. In the squeezed limit, expanding around l1 gives cos(2φl′3l3) ≈
cos(2φl′l)+O(l1/l). Hence neglecting non-Gaussianity of lensing potentials and very small

terms for squeezed shapes we have

b̃XTEl1l2l3 ≈
∫
d2r

2π

d2l′

2π
bXTEl1l′2l

′
3

cos(2φl′l)e
ir·(l′−l) exp

(
− l
′2

2
[σ2(r) + cos 2φl′rCgl,2(r)]

)
. (4.23)
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Using the expansion of Eq. (4.10), the angular integrals can be done as in the temperature

case, giving a result in terms of modified and unmodified Bessel functions:

b̃
(XTE)m
l1l

≈ 1

2

∫
rdr

∫
dl′l′b

(XTE)m
l1l′

e−l
′2σ2(r)/2

∑

n

In[l′2Cgl,2(r)/2]

×
[
J2n+m+2(l′r)Jm+2(lr) + J2n+m−2(l′r)Jm−2(lr)

]
.

(4.24)

For the isotropic component b̃
(XTE)0
l1l

the two terms give equal contributions, and the result

is then mathematically the same as the result of the lensed CTEl power spectrum in terms

of the unlensed spectrum (see e.g. Lewis & Challinor (2006)). Note however that in

general m does not have to be even in the case of the XTE bispectrum, since there is

no symmetry between the two small-scale modes. Nonetheless we can expect the main

lensing effect to be described in terms of the monopole component, at least for low l1.

XEE bispectra

In the case where the two small-scale modes are of the same type, there is a symmetry

under interchange of l2 and l3, and the approximations become valid to O(l21/l
2): following

the previous argument

〈X(l1)Ẽ(l2)Ẽ(l3)〉 =

∫
d2x2

2π

d2x3

2π

d2l′2
2π

d2l′3
2π

〈
X(l1)E(l′2)E(l′3)eil

′
2·α2eix2·(l′2−l2)

×eil′3·α3eix3·(l′3−l3) cos(2φl′3l3) cos(2φl′2l2)
〉

=
1

(2π)
δ(l1 + l2 + l3)

∫
d2r

2π

d2l′2
2π

bXEEl1l′2l
′
3

cos(2φl′3l3) cos(2φl′2l2)

×eir·(l′2−l2)〈eil′2·α2eil
′
3·α3〉. (4.25)

But now in the squeezed limit, expanding in l1 gives cos(2φl′3l3) cos(2φl′2l2) = cos2(2φl′l) +

O(l21/l
2), and hence to O(l21/l

2)

b̃XEEl1l2l3 ≈
∫
d2r

2π

d2l′

2π
bXEEl1l′2l

′
3

cos2(2φl′l)e
ir·(l′−l) exp

(
− l
′2

2
[σ2(r) + cos 2φl′rCgl,2(r)]

)
. (4.26)

Using the expansion of Eq. (4.10), Eq. (4.26) can then be calculated in terms of integrals

of modified and unmodified Bessel functions:

b̃
(XEE)m
l1l

≈ 1

4

∫
rdr

∫
dl′l′b

(XEE)m
l1l′

e−l
′2σ2(r)/2

∑

n

In[l′2Cgl,2(r)/2]

×
[
2J2n+m(l′r)Jm(lr) + J2n+m+4(l′r)Jm+4(lr) + J2n+m−4(l′r)Jm−4(lr)

]
.

(4.27)

Again the isotropic component b̃
(XEE)0
l1l

is given as expected in terms of the unlensed

b
(XEE)0
l1l

in exactly the same way as the CEEl power spectrum is lensed.
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XBB bispectra

The b̃XBB bispectrum gives a similar result to b̃XEE , but we assume it is generated purely

by lensing of a primordial bXEE bispectrum:

b̃XBBl1l2l3 ≈
∫
d2r

2π

d2l′

2π
bXEEl1l′2l

′
3

sin2(2φl′l)e
ir·(l′−l) exp

(
− l
′2

2
[σ2(r) + cos 2φl′rCgl,2(r)]

)
. (4.28)

However since the unlensed XBB signal is expected to be zero for squeezed shapes it is

unlikely to be important to model this in the immediate future.

4.1.3 Full sky

So far we have only used the flat-sky approximation. This is very helpful for clarifying

the relevant physics and keeping results simple, but in reality the observations that we

have are of the full sky. Since squeezed triangles involve large-scale modes, it is therefore

important to use a full spherical analysis. It can be shown that as expected, the equivalent

of Eq. (4.10), shows that bispectra with different angular dependence remain orthogonal

in the squeezed limit. A full analysis should then consider how these are lensed. Appendix

B of Pearson et al. (2012) gives the full sky angular dependence of the bispectrum (Eq.

(B9)) and describes how it reduces to Eq. (4.11) in the flat sky limit.

Focussing on isotropic squeezed bispectra of most interest for primordial non-Gaussianity,

we can simply use the understanding from the flat sky that the effect of lensing is just

to lens the small-scale power, i.e. we apply the usual curved-sky CMB power spectrum

lensing method (Challinor & Lewis, 2005; Lewis & Challinor, 2006) to the reduced full-sky

bispectrum bml1l, where l = (l1 + l2)/2, separately for each value of l1. The computational

cost of this method is then just Nm × l1,max times more expensive than lensing the power

spectrum, and since the latter operation only costs a fraction of a second on a single CPU

this is not problematic if only one or two angular moments (Nm = 1, 2) are required. By

contrast the leading perturbative calculation (Hanson et al., 2009) is computationally very

challenging, though it has the advantage of also being directly applicable to non-squeezed

shapes. In detail we split the unlensed local bispectrum up into b0l1l and b2l1l, and a small

residual, lens the m = 0 and m = 2 bispectra for l1 < 1000 using a modification of

the standard method for lensing the full-sky temperature power spectrum (Seljak, 1996;

Challinor & Lewis, 2005), and then add back on the small (unlensed) residual part to

obtain our estimate of the full lensed bispectrum. Our approximations are not valid for

l1 � 500, and the high l1 angular moments become expensive to calculate, however most

of the signal is at lower l1, so we only apply the lensing for l1 < 1000 and approximate the
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(very small) contributions from higher l1 as being unlensed. It turns out that the m = 2

part of the bispectrum is rather smooth and not effected much by lensing, so lensing only

the m = 0 component is usually sufficient (Fig. 4.1).

Using our simple prescription for lensing the local non-Gaussianity we can then eas-

ily calculate various useful results to quantify the importance of lensing. Consider first

noise-free temperature data to lmax = 2000. We find that the lensed local bispectrum is

correlated at the > 0.999 level with the unlensed bispectrum, with the correction δb to

the bispectrum due to lensing only biasing estimators based on the unlensed shape by

∼ 0.007fNL (Hanson et al. (2009) have previously shown the bias is very small). This

confirms that the correction due to lensing is almost orthogonal to the original shape,

which should not be surprising since lensing preserves total power (see discussion below).

The change in shape due to lensing δb is detectable at one sigma for fNL ∼ 93. Including

polarization data δb would be detectable from lensing of the isotropic component alone for

fNL ∼ 22, but the bias remains small, ∼ 0.01fNL. For Planck noise the current fNL limit

is enough to rule out any chance of detecting the effect of lensing and we confirm the bias

is negligible.

4.2 Comparison with simulations

To test our new approximation we compared it with simulations. We generated 480 full-

sky Healpix (Gorski et al., 2005) maps at lmax = 2500, nside = 2048 with fNL = 100

following the method of Ref. Hanson et al. (2009). The unlensed input power spectra were

taken from camb (Lewis et al., 2000). The lensing potential power spectrum was then

used to simulate uncorrelated lensing deflection angle maps, and the unlensed maps were

then lensed using LensPix (Lewis, 2005; Hamimeche & Lewis, 2008). An estimator for the

bispectrum in each full-sky noise-free realization is

B̂ijk
l1l2l3

=
∑

m1,m2,m3


 l1 l2 l3

m1 m2 m3


 ail1m1

ajl2m2
akl3m3

, (4.29)

where i labels T, E or B, and we can relate to the reduced bispectrum bl1l2l3 defined using:

Bl1l2l3 =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π


l1 l2 l3

0 0 0


 bl1l2l3 . (4.30)

This equation holds only for the even-parity bispectra (l1 + l2 + l3 = even), which are all

we consider in this work. To reduce the variance and therefore the number of simulations

needed to average over, we follow Hanson et al. (2009) by subtracting a term that averages
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to give zero bispectrum, but removes much of the realization-dependent variance. We also

took advantage of symmetries to reduce the number of sums, using:

B̂′l1l2l3 =

l2∑

m2=0

l3∑

m3=−l3

(2− δ0m2)


 l1 l2 l3

m1 m2 m3


< [al1m1al2m2al3m3 − āl1m1 āl2m2 āl3m3 ]

(4.31)

where m1 = −m2−m3, and alm and ālm are the lensed spherical harmonic coefficients from

maps generated using the same random seeds but with fNL 6= 0 and fNL = 0 respectively.

Since we were running multiple simulations, and computational cost is nearly dominated

by calculation of the 3j symbol, for each set of {l,m} we calculated the slice contributions

from as many simulations as we could hold in memory. To avoid confusion with a lensing-

induced bispectrum, the lensing potential is generated with CTψl = CEψl = 0, so that

the subtracted term involving ā gives zero bispectrum on average. To test our bispectrum

estimation method we compared unlensed simulated bispectra slices to the theory unlensed

reduced bispectra generated by camb, with good agreement.

As a first check on polarization bispectra, we used the publicly-available simulated

non-Gaussian polarization maps from Elsner & Wandelt (2009), which have a maximum

multipole of 1024.

Simulation results

For the pure temperature bispectrum bTTTl1l2l3
simulations were run up to a maximum multi-

pole of 2000. (Although the full-sky Healpix (Gorski et al., 2005) maps were lmax = 2500,

the lensing process requires a few hundred more multipoles than the scale you want to

resolve.) The first acoustic peak of the CMB temperature power spectrum at l ∼ 200

corresponds to the scale which has just had time to maximally compress or expand by

the time of recombination. Therefore a bispectrum with l1 = 10 corresponds to very large

super-horizon modulations in the small-scale power; this modulation is roughly constant

through the surface of last scattering (the approximation of Eq. (4.17)). However a bis-

pectrum with l1 = 200 will give a modulation in small-scale power that varies significantly

through the thickness of the last-scattering surface. We have tested our lensing approxim-

ation for both the case of constant and non-constant modulation by simulating bispectra

with both l1 = 10 and l1 = 200.

Because of the closure condition, a bispectrum with equal small-scale modes (l2 = l3)

looks like an isosceles triangle, where the large-scale mode is roughly orthogonal to the

short scale modes. For l3 = l1 + l2 (eg. b10,l,l+10), the closure condition demands that
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the triangle you draw has zero area and all the modes are aligned (parallel). We test if

our lensing approximation holds for both orientations of modes by calculating bispectrum

slices for both cases where possible. Since there is a significant quadrupolar m = 2 part

of the bispectrum for l1 = 200, the slices for the different mode orientations are quite

different, and our simulations test that the decomposition of the bispectrum into modes,

and lensing just the monopole part, works consistently. For l1 = 10 the bispectrum is

nearly isotropic, so the slices are very similar.

Figure 4.2 shows the fractional change due to lensing for the reduced bispectrum

slices bTTT10,l,l+10 and bTTT10,l,l, averaged over 480 simulated maps. In these plots the simulated

fractional change has been normalized to remove variance from the large-scale l1 modes:

since l1 = 10 is a super-horizon mode, its modulation is roughly constant across last

scattering and the bispectrum is roughly proportional to CTζ∗l1
(Eq. (4.17)). In general,

variance on larger scale modes is larger, since there are less angular modes to average

over. For roughly constant large-scale modulation normalizing can help to reduce the

realisation dependent variance, which then cancels in the numerator and denominator.

Both slices agree very well with the simulations, but the bTTT10,l,l slice has more sampling

noise as discussed further below.

Figure 4.3 shows the effect of lensing on the bTTT200,l,l+200 slice, which also agrees with the

theoretical calculation despite the more complicated sub-horizon form of the bispectrum.

For larger l1 the bispectrum is no longer isotropic, so bTTT200,l,l+200 and bTTT200,l,l differ signi-

ficantly because of the large m = 2 quadrupole component. Contributions to the signal

to noise are roughly equal for every dφ of angle between the long and the short modes;

however since for squeezed shapes l3 ∼ l2 + l1 cos(φ), there are more integer l3 per unit

angle for orthogonal triangles (φ ∼ π/2, l2 ∼ l3) than parallel (φ ∼ 0, l2 ∼ l3 ± l1). The

signal to noise per slice is therefore much less for an individual slice with l2 ∼ l3 than

l2 ∼ l3 ± l1, though the overall contribution to the signal is equally important for the

different orientations.The simulation sample variance on bTTT200,l,l was too large to see the

lensing effect on a single slice (the fractional effect of lensing is also smaller for triangle

shapes to which the smooth m = 2 bispectrum component contributes significantly; c.f.

Fig. 4.1).

Polarization bispectra were estimated up to a maximum multipole of ∼ 900. Figure 4.4

shows the reduced bispectra for the polarization slices bTTE10,l,l+10 and bTEE10,l,l+10, which were

also normalized to remove large-scale variance. The agreement of the simulations with the

theory is seen by eye, as well as the characteristic smoothing of peaks due to lensing.
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Figure 4.2: The fractional change due to lensing in the reduced bispectrum slices bTTT10,l,l+10

and bTTT10,l,l. The red shows the simulated result averaged over 480 realizations. The bTTT10,l,l

slice is somewhat noisier than the bTTT10,l,l+10 slice (see discussion in text). The black line

is the theoretical approximation of this work, which agrees well with the simulations to

within sample variance.
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Figure 4.3: Bispectrum slice bTTT200,l,l+200. The top panel shows a comparison of the simulated

vs theory lensed and unlensed bispectra, averaged over 480 realizations and smoothed

over ∆l = 10. The bottom panel gives the difference between the lensed and unlensed

bispectrum for both simulations and theory, showing good agreement within the sample

variance.
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Figure 4.4: The reduced bispectrum slices bTTE10,l,l+10 and bTEE10,l,l+10 averaged over 99 realiza-

tions and smoothed over 10 l. The black and cyan lines show the simulated and normalized

unlensed and lensed bispectra. The dashed red line shows the normal theoretical unlensed

bispectrum, and the dark blue dot-dashed line shows the lensed approximation of the

bispectrum tested in this work.
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Figure 4.5: The fractional change in the reduced bispectrum slice b10,l,l+10 due to lensing.

The blue line shows the non-perturbative approximation of this work, the black line shows

the leading-order perturbative result from Hanson et al. (2009). The red lines show the

result of 1000 Monte Carlo simulations of Hanson et al. (2009) smoothed over ∆l = 5.

The new approximation only needs to lens the isotropic component of the bispectrum, and

then is both significantly more accurate on small scales and faster to compute.

Comparison with perturbative result

In Fig. 4.5 we compare our new approximation to the result from the leading perturbative

approximation of Cooray et al. (2008); Hanson et al. (2009) for a squeezed bispectrum slice.

The perturbative calculation captures the main effect, but the new approximation is more

accurate on small scales; this is essentially exactly the same as the effect of higher-order

correction on the power spectrum (Challinor & Lewis, 2005), since it is the power spectrum

that enters the squeezed form of the local bispectrum (Eq. (4.17)). Our non-perturbative

bispectrum approximation is easier to calculate since it only requires a standard CMB

power spectrum lensing calculation for each l1 (only the isotropic part of the bispectrum

needs to be lensed to good accuracy). We have only compared with one slice of the full
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leading perturbative result due to the high numerical cost of calculating the lensed spectra

that way.

4.3 Summary

We have discussed two effects of lensing. Firstly, the presence of large-scale lensing modes

modulates the small-scale CMB and hence partially mimic the effect of primordial mod-

ulations, giving rise to a bispectrum signal that is potentially a source of confusion with

primordial non-Gaussianity. The lensing effect is well-known to project onto the local

non-Gaussianity model at the significant level of fNL ∼ 9. Secondly, the effect of many

smaller-scale lensing modes changes the detailed shape of any primordial bispectrum, sim-

ilar to the smoothing effect on the power spectrum. For squeezed shapes we showed how

this effect can easily be calculated, and that it is well approximated as applying CMB

power spectrum lensing to each slice of the m = 0 isotropic part of the squeezed bispec-

trum.

The potential bias on primordial signals due to the average change in the primordial

shape due to CMB lensing is however very small. This is easily understood: since CMB

lensing just moves points around, the nth moment of the temperature at any given point

〈[T (x)]n〉 is unchanged under lensing on average, for example the total power is conserved:

〈T (x)2〉 =

∫
d ln l

l2Cl
2π

=

∫
d ln l

l2C̃l
2π

. (4.32)

Local non-Gaussianity looks like a modulation of small-scale power as a function of po-

sition. In the squeezed limit we are considering very large-scale modulations, and the

simplest way to measure the modulation is just to calculate the small-scale fluctuation

variance as a function of position. However this variance is unchanged under lensing,

and hence the non-Gaussianity estimate is unchanged under lensing on average, so it is

unbiased. The total local skewness 〈[T (x)]3〉 is also invariant under lensing on average,

giving1

〈T (x)3〉 =

∫
d2l1d2l

(2π)4
bl1l2l3 =

∫
d2l1d2l

(2π)4
b̃l1l2l3 . (4.33)

In reality the picture is a bit more complicated because estimators weight by the inverse

signal plus noise, so the estimators are not exactly unbiased, but nonetheless there is a

good reason why the bias is expected to be small for local shapes. The detailed change in

shape due to lensing could in principle be detected if fNL ≥ 20, but the change is almost

1This is consistent with the exact bispectrum lensing result because σ2(0) = Cgl,2(0) = 0. Note also

that only the isotropic part of the bispectrum contributes to the skewness.
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orthogonal to the unlensed shape and hence neglecting it is usually harmless. On the other

hand the bias due to correlation between primordial and lensing-induced non-Gaussianity

should be subtracted or consistently modelled to avoid biases. Lensing also affects the

variance of non-Gaussianity estimators; this has been calculated in Hanson et al. (2009),

and optimized bispectrum estimators accounting for this extra variance have been derived

in Lewis et al. (2011).
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Chapter 5

Discussion and Conclusions

The future of cosmology is bright. We have made tremendous progress in the last twenty-

five years, but there remains much work to be done. To better understand the distant

past, the period of inflation in the first fraction of a second, and the distant future, the

era of dark energy domination, the next frontiers include measuring the large-scale struc-

ture of the universe, searching for non-Gaussianities in the primordial perturbations, and

detecting tensor modes in the CMB. Data are pouring in from both surveys of the large-

scale structure and next generation CMB polarization instruments. With this new data

comes new challenges: to extract the maximum cosmic information from our investments

requires the construction of optimal estimators, cross-correlation, and inventive ways to

deal with noise, foregrounds and cuts.

In Chapter 2 we forecasted the ability of upcoming CMB polarisation data to recon-

struct the lensing potential using the pure-B mode estimator. The reconstruction improve-

ment afforded by CMB polarisation measurements will enable precision measurements of

the lensing power spectrum leading to improved constraints on cosmological parameters.

The lensing is sensitive to small scale effects providing an extra probe of the neutrino mass

sum
∑
mν . As such the lensing information breaks the degeneracy between the neutrino

mass sum
∑
mν and the dark energy fraction ΩΛ, leading to tighter constraints of both

parameters compared to an analysis of the CMB without lensing data. As well as im-

proving parameter constraints from the CMB, this improved measurement of the lensing

potential will be a useful probe of the underlying matter distribution of the universe hence

aiding large-scale structure analysis.

In Chapter 3 we forecast the information content of the cross-correlation of the lensing

potential with the galaxy power spectrum, a large-scale structure tracer. We find that

it leads to improved parameter constraints on both galactic and non-galactic cosmolo-
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gical parameters as compared to analysing the CMB and large-scale structure separately.

There are many opportunities to explore for exploiting the cross-correlation information,

and many logical extensions of the work presented in Chapter 3. For example, modelling

the redshift dependence of the bias and using full 3-Dimensional galaxy information. For

photometric surveys, the lack of spectra makes it difficult to measure the redshift distribu-

tion of the galaxies. When you can not measure the redshift of the sources accurately, for

any increase in power it is difficult to distinguish between more galaxies or a higher bias.

This degeneracy between the galaxy bias and the redshift distribution makes it difficult

to constrain the two parameters independently from galaxy information alone. However,

the addition of CMB lensing information and good redshift modelling could break the

degeneracy and allow the two to be constrained separately.

Another piece of information in the large-scale structure data is the weak lensing of the

galaxies themselves. The elliptical shape of the galaxy gets altered slightly by the effect of

gravitational lensing. Measurements of this will teach us much about the nature of dark

energy. This is a difficult task, since the analysis is plagued with difficult systematics; diffi-

culties in determining the point spread function (PSF) of galaxies; difficulties determining

the precise redshift of the galaxies and difficulties in understanding the intrinsic align-

ment of galaxies. It is already known that the weak lensing information can be used in

combination with CMB lensing and structure surveys to better constrain cosmology. (For

example Ref. Hall & Taylor (2014) recently found that the intrinsic alignment of galaxies

leads to an additional term in the CMB lensing and weak lensing cross power spectrum.)

However, there is much to be done in this field. The particular degeneracies which joint

analysis of data sets can break need to be found, and their physical origins understood.

Techniques must be developed to optimally analyse the data sets in combination. The

Large Synoptic Survey Telescope (LSST) will make precision measurements of the weak

lensing effect using state of the art instruments and techniques such as adaptive optics.

It will take high quality image data of galaxies and provide high precision photometric

redshift determination. It is precisely this kind of data set which will benefit from exploit-

ation of the CMB lensing information along with joint and cross correlation analysis. The

addition of CMB lensing information to LSST is likely crucial in discriminating dynamical

dark energy models.

In Chapter 4 we derived a useful analytical expression for the lensed squeezed prim-

ordial bispectrum. Although data from the Planck satellite (Ade et al., 2013h) has since

found the level of non-Gaussianity in the universe to be consistent with zero, the search
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is still on for primordial non-Gaussian signatures. If it exists, non-Gaussianity will affect

the large-scale structure as well as the CMB sky. In particular, a local non-Gaussianity

causes a change on large scales of the halo bias. As structure surveys and observations

improve, so do opportunities to observe this non-Gaussian signature.
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