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SUMMARY 

 

 

The work discussed in this thesis explores the possibility of employing the Electric 

Potential Sensor for use in healthcare and assistive technology applications with the 

same and in some cases better degrees of accuracy than those of conventional 

technologies. The Electric Potential Sensor is a generic and versatile sensing 

technology capable of working in both contact and non-contact (remote) modes.  New 

versions of the active sensor were developed for specific surface electrophysiological 

signal measurements. The requirements in terms of frequency range, electrode size 

and gain varied with the type of signal measured for each application. Real-time 

applications based on electrooculography, electroretinography and electromyography 

are discussed, as well as an application based on human movement.  

A three sensor electrooculography eye tracking system was developed which is of 

interest to eye controlled assistive technologies. The system described achieved an 

accuracy at least as good as conventional wet gel electrodes for both horizontal and 

vertical eye movements. Surface recording of the electroretinogram, used to monitor 

eye health and diagnose degenerative diseases of the retina, was achieved and 

correlated with both corneal fibre and wet gel surface electrodes. The main signal 

components of electromyography lie in a higher bandwidth and surface signals of the 

deltoid muscle were recorded over the course of rehabilitation of a subject with an 

injured arm. Surface electromyography signals of the bicep were also recorded and 

correlated with the joint dynamics of the elbow.  A related non-contact application of 

interest to assistive technologies was also developed. Hand movement within a 

defined area was mapped and used to control a mouse cursor and a predictive text 

interface. 
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1 Introduction 

 

The UK is currently facing significant growth in the elderly population aged 65 and older, with 

an estimated 47% increase by the year 2026 [1]. Life expectancies in the UK have also risen 

tremendously with projected life expectancies rising to 94.2 for males and 97.2 for females by 

2037 [2]. These two factors coupled with an increasing number of people wishing to spend 

their elderly years in the comfort of their own homes, are putting a tremendous strain onto 

resources [3]. Healthcare and monitoring is no longer situated solely in the clinical 

environment; there is a growing trend for these technologies to be available in the home.  

Quality of life is an important driving factor not only for the elderly but for disabled persons as 

well [1, 4]. Among both the elderly and disabled, the challenges of maintaining mobility and 

cognitive function make it increasingly difficult to remain living independently. As a result 

many are forced pay for home carers or to seek residence in clinical institutions in order to 

receive constant medical supervision. In efforts to minimise these situations many healthcare 

monitoring and assistive technologies (AT) have been developed. Advancements in the 

technologies must be such that the applications can easily be used by the general population 

with little to no instruction or medical background. Assistive technology and home health 

monitoring sensors find applications for monitoring temperatures, pressures, positions, and 

biological signals of patients. Sensors can play an important role in enhancing the safety and 

improving the quality of life in the healthcare arena. Sensors are increasingly being used in 

healthcare applications due to their accuracy, intelligence, capability, reliability, small size, and 

low power consumption. 

 
Sensing systems for healthcare and assistive technologies can be broadly separated into three 

categories: monitoring, mobility and communication. Monitoring applications range from 

occupancy sensing [5-8] and fall detection for the elderly [9] to clinical observation of 

biological signals for use in diagnostics [10, 11]  and rehabilitation [12-18].  Various mobility aid 

systems have been presented, including eye, brain and muscle controlled wheelchairs [19-25]. 

Mobility enhancement systems based on biological signals have been presented [26-29], 

where muscle signals are interfaced with robot exoskeletons aiming to encourage mobility 

following a stroke. Several eye controlled typing systems which aid communication have been 

developed [30-33], and there are already some commercially available systems [34]. 
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Many of these sensing systems rely on electrophysiological signals. Electrophysiology describes 

the changes in electric potential which occur within the body as a result of various biochemical 

functions and can be measured as changes in voltages or currents at the surface of the body. 

These signal levels range from micro to millivolts in amplitude, and from quasi-DC up to 5 kHz.  

Essential requirements of sensors for biopotentials and movement sensing are the ability to 

separate small amplitude signals of interest, in low frequency bands, with several types of 

environmental and biological sources of interference. To achieve these qualities the sensors 

generally rely on high gain in differential mode, low common mode gain, high input impedance 

and low noise profiles. Conventional sensing techniques employ needle or surface electrodes 

which are placed in direct electrical contact with fibres or skin. Needle electrodes are highly 

invasive and hence not suitable for AT applications. Skin electrodes on the other hand have 

been highly regarded as a great advance in the technologies underpinning developments in 

consumer AT. They provide a cheap and easy to use method for acquiring electrophysiological 

signals directly from the skin with minimal invasiveness. There are two types of surface 

electrodes: wet and dry. Wet electrodes provide a resistive DC coupling to the source, in this 

case the human body, which provides great amplification capabilities at the low-end of the 

required bandwidth. However there are significant drawbacks due to the effects of DC drift. 

There are also limiting factors with regards to long term monitoring; the use of conductive gels 

means that signal levels will degrade over time as the gel dries out.  Several forms of dry 

electrodes exist which do not require the use of conductive gels: metal-plate, textile and 

spiked. These however can suffer negative effects on signal qualities if changes in contact body 

impedances occur, resulting from sweat, body hair and temperature changes [35, 36].  

Another sensing technique that has been successful does not rely on a resistive contact 

between skin and electrode and instead capacitively couples to surface potentials, through a 

thin insulating dielectric layer [35, 37]. The insulation layer provides a high resistance between 

the subject and electrode, creating a capacitive coupling between them. A thin insulating layer 

is required in order to create a large capacitance necessary for a strong coupling to the source. 

Since acquiring signals from this type of sensor is not reliant on a resistive skin contact, skin 

preparation is not necessary and changes in contact resistance will have no effect. They can 

however still suffer the effects of movement artefacts and charge sensitivity [38]. This type of 

insulated electrode has been around since 1967, where the electrode was a plate of anodised 

aluminium and the dielectric was provided by aluminium oxide [39].  Advancements have been 

made in this sensing technology over the years, several research papers have been published 

on capacitively coupled sensors acquiring high quality electrocardiograms (ECGs) [40, 41] and 
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electroencephalograms (EEGs) [40, 42]. A direct comparison of simultaneous ECG and EEG 

measurements between capacitively coupled electric potential sensors and wet electrodes was 

presented with evidence suggesting a high correlation of data; however no details of the 

insulating capacitive coupling layer were provided [40]. A multi-channel USB powered system 

comprising of 15 capacitively coupled electrodes has also demonstrated a high correlation 

when compared to wet surface electrodes while recording ECGs. This system states that the 

insulating layer is comprised of a thin plastic layer, however no thickness or plastic 

composition details were included in the report [41]. Soft dry foam has been used as the 

insulating layer while acquiring EEG measures. The electrodes were mounted on a cap; 

however this did not provide adequate contact for high quality EEG signals. In this instance, 

there was not enough applied pressure, but when the electrodes were held firmly against the 

scalp successful measurements of the EEG signal were achieved [42].  

A capacitively coupled Electric Potential Sensor (EPS) is the basis of the work presented here. 

The EPS overcomes the limitations presented by wet and dry DC electrodes, as discussed 

above, and has been successfully applied to the non-invasive monitoring of high resolution 

electrophysiological signals [43]. High quality surface recordings of electrooculograms (EOGs), 

electromyograms (EMGs), electrocardiograms (ECGs) and electroencephalograms (EEGs) have 

been demonstrated [44-52]. It has also been possible to use the EPS as an electric field meter 

to detect human movement from the changes within the ambient electric field [53-55]. 

1.1 The Electric Potential Sensor 

The EPS is a generic electric field sensing technology that was designed, developed and 

patented at the University of Sussex [44, 56].  This thesis will discuss a range of possible 

applications concerned with assistive and healthcare technologies, employing various 

configurations of the EPS. The EPS technology has been developed using an ultra-high 

impedance amplifier design technique coupled with a capacitive input electrode structure, 

with the aim of allowing a broad range of measurement approaches.  The sensors are capable 

of detecting changes in an electric field passively, causing no disturbances to said field. This 

non-disruptive capability is due to the high input impedance and capacitive electrode at the 

input of the sensor. Effective input impedances typically as high as 1015 Ω and 10-16 F have 

been achieved through the use of several types of positive feedback, guarding and active 

electrode techniques. The EPS design maintains a stable DC bias point and hence does not 
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suffer the effects of DC drift. Figure 1.1 shows a block diagram based schematic of the EPS, 

including the positive feedback techniques employed to achieve the input impedance boost.  

 

 

Figure 1.1 Schematic block diagram of the Electric Potential Sensor 

 

Depending on specifications such as bandwidth, gain and input impedance, the EPS is capable 

of measuring a range of physical properties. These capabilities include measurements of 

biological signals, movement signals, material properties and charge detection. Operational 

bandwidths depend on the amplifier design, noise performance and coupling conditions. In 

various versions, the sensors can operate from <1 mHz to >100 MHz. Two modes of operation 

are possible: contact and non-contact [43] (shown in Figure 1.2). In contact mode, these 

electrodes are capacitively coupled probes, where the sensor input is coupled through a 

defined capacitance to a known source. When configured in non-contact mode, the electrode 

is considered an electric field probe, where the coupling capacitance is not well defined and 

there is physical space between the sensor and source. In this mode the sensor performance 

depends on a combination of the leakage capacitance between the probe and ground and the 

front end input capacitance of the sensor. The sensor operates by measuring the displacement 

current created by a change in electric field.  This change will vary in amplitude whether 

working in contact or non-contact mode with the sensor, and hence requirements of the 

sensor will change with respect to gain and input impedance.  
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Figure 1.2 Operational modes of the Electric Potential Sensor: (a) non-contact and (b) contact 

 

The application discussed in chapter 2 employs a commercially available EPS, developed under 

licence to University of Sussex by Plessey Semiconductors [57]. In this case the sensor is 

configured in non-contact mode. Full sensor details can be found Appendix A. 

When monitoring biological signals in contact mode, the EPS is configured such that it is in 

electrical isolation from the skin via a thin insulator at the surface of the electrode; hence 

there is no requirement for cutaneous electrical contact. Changes in voltage at the skin are 

monitored by sensing the displacement current that arises due to the strong capacitive nature 

of the sensor input. Two different sensors were designed in order to acquire biological signals: 

specifically, eye signals and muscle signals. The sensors have identical physical properties, 

shown in Figure 1.3. They comprise of circular anodised titanium electrodes, 5 mm in diameter 

surrounded by guarding making the full sensor contact diameter 10 mm. The amplitude and 

frequency spectrum of each type of signal investigated made the requirements for each sensor 

different. 
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 Figure 1.3 Illustration of the Electric Potential Sensor that was used for electrophysiological 

sensing applications including electrode dimensions  

 

Characterisation of the sensors required several measurements, including input impedance, 

gain and noise profiles. Input impedances were determined with measurements of frequency 

response at the sensor output, with a signal applied at the input through a known coupling 

capacitance. The input impedance of the sensor is expressed as a separate input resistance 

and capacitance, which together create a high pass filter. Extracting the corner frequency of 

the high pass roll-off enables determinations of ��� and ���. A further in-depth description of 

these measurements can be found in the literature [58]. Input impedance measurement 

results for the sensors, specifically for eye and muscle signal acquisition, are shown in Table 1.1. 

 

Table 1.1 Characteristic measured values of input impedances for eye and muscle sensors 

 ��� 	�� 

Eye sensors 52.7 GΩ 7.54 pF 

Muscle sensors 0.7 GΩ 11.15 pF 

 

The eye signals presented in this thesis range in frequency between 1 Hz and 40_Hz, with 

typical amplitudes in the microvolt range [59, 60]. Muscle signals available at the skin typically 

range from micro to millivolts and their main power spectrum lies between 10 Hz and 250 Hz. 

However EMG sensors typically allow for a much greater bandwidth [61-63].  
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Figure 1.4 shows a block diagram for the sensors. Both sensors provide a gain of x114, which is 

provided by two stages of amplification. The eye sensors have a bandwidth from 0.1 Hz to 

86_Hz and the muscle sensors have a bandwidth from 10 Hz to 3 kHz. The sensor bandwidth is 

determined by a first order bandpass filter consisting of resistor and capacitor pairs, where 

values of R and C were chosen based on transfer function associated with first order filters 

[
� = (2���)��]. 

 

 

Figure 1.4 Electric Potential Sensor block diagram demonstrating the employed configuration 

of filters and amplification 

 

Gain-frequency measurements for both sensors were achieved by injecting a signal through a 

conductive rubber pad on the input electrode. A swept sine measurement was carried out, 

results of which can be seen in Figure 1.5.  
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Figure 1.5 Sensor gain-frequency measurements for (a) eye sensors and (b) muscle sensors 

 

Figure 1.6 shows sensor noise measurements as spectral densities, which represent both 

thermal and current noise. The peaks that are present on both graphs represent 50_Hz mains 

noise and the associated harmonics. Noise measurements of the sensors were carried out by 

grounding the input electrode through the conductive rubber and observing noise levels at the 

output of the sensor. This represents a measurement scenario which is similar to the situation 

encountered when measuring on body electrophysiological signals. The conductive rubber 

sheet mimics the surface of the skin in several ways; it is flexible and has a conductivity 

of_~100 Ω/square. This provides a more realistic estimation of the system noise than 

conventional short circuit voltage or open circuit current noise measurement techniques that 

can be found in the literature [58].  
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Figure 1.6 Sensor noise measurements for (a) eye sensors and (b) muscle sensors, peaks on 

the graphs represent 50 Hz mains noise and associated harmonics within the system 

 

Table 1.2 Integrated noise voltage over the operating bandwidth 

 represented in the graphs above for eye and muscle sensors 

Eye Sensors 154 nV in 85.9 Hz ∆f 

Muscle Sensors 2.34 µV in 2990 Hz ∆f 

 

Integrated noise voltages over the sensor bandwidth are presented in Table 1.2. Results 

include a x1.57 bandwidth factor for the first order bandpass filter within the sensors. Results 

show that the noise levels presented by the sensors are far less than the expected signal levels 

of the biological signals arising from the eyes and muscles, which range from micro to millivolts 

in amplitudes. This noise can be reduced by employing additional filters, either in hardware or 

software, as they have lower bandwidth factors [64]. 
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1.2 Thesis Overview 

This section provides an overview of the work presented in this thesis and highlights the 

aspects which contribute original contributions to the field. These include the design, 

construction and testing of bespoke Electric Potential Sensors for use in contact mode, as 

discussed in the previous section. These EPS were designed for specific signal requirements as 

in chapters 3 and 4 for acquiring electrophysiological signals arising from the eyes (EOG and 

ERG) and in chapters 5 and 6 for acquiring signals arising from the muscles (EMG). In each 

instance, I also designed and developed the associated data acquisition, signal processing and 

user interface systems for a variety of healthcare and assistive technology applications. For the 

non-contact movement sensing application discussed in chapter 2, the commercially available 

EPIC1 sensors were used. My contributions to this application were to integrate the sensors 

into a complete system. This involved the configuration of the sensors, and the data 

acquisition and signal processing systems as well as interfacing to a third party predictive text 

GUI.   

Chapter 2 presents a full non-contact movement sensing application whereby perturbations of 

the ambient electric field are measured and used to infer hand positions within a defined 

space. Full coverage sensing is achieved employing a commercially available Electric Potential 

Sensor. Similar applications exist, however they are based on alternate technologies such as 

infrared and video sensing [65, 66]. The perturbation signals acquired by the EPS are then 

interfaced with a real-time position determination algorithm that maps the physical location of 

a hand within the sensing area to on-screen mouse cursor locations. The mouse cursor, 

controlled by the user, is interfaced to a predictive text program such that non-contact typing 

capabilities are achieved. 

The remaining chapters are focussed on contact applications specifically based on 

electrophysiological signals. Chapter 3 presents the first demonstration of an EOG eye tracking 

system using electric potential sensors. A number of systems utilised this type of 

electrophysiological signal, however typical EOG sensing applications employ five facial 

electrodes for full directional eye tracking [20] whereas the system presented here provides 

full coverage EOG eye tracking using only three facial sensors. 

                                                       

 
1
 EPIC sensor provided by Plessey Semiconductors Ltd 
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The EPS has already been proven capable of acquiring an evoked potential arising from the 

brain, the electroencephalogram [52].  In chapter 4 monitoring of another type of evoked 

potential, the electroretinogram (ERG) which arising from the retina, is investigated. This is the 

first demonstration of this type of signal acquisition using the EPS. Many sensing technologies 

exist to acquire this type of signal; all employ DC electrodes, most of which are invasive, 

requiring electrodes to be placed in the eye cavity [67]. Signals acquired using the EPS are 

directly compared to some of these conventional electrodes and systems.   

The results of a series of experiments related to muscle monitoring on both injured and 

healthy subjects are given in chapter 4 and chapter 5. The EPS has been used previously to 

demonstrate SEMG signal acquisition from the forearm [47]. Chapter 4 investigates the use of 

the EPS for use in a real-time biofeedback rehabilitation program. The system was used to 

monitor the SEMG signals from the right and left deltoid muscle during a course of 

rehabilitation. SEMG rehabilitation monitoring and biofeedback systems exist, however they 

are based on wet-gel electrodes [68, 69]. Chapter 5 aims to correlate SEMG signals from the 

bicep with the peak angular torque developed on a fixed trajectory motion. Many kinematic 

studies have been carried out in a similar manner but have, again, only employed wet-gel 

electrodes [70-75].  

As will be shown, using the EPS has noted benefits in each of these cases. In particular the 

commercial potential of the technology due to the ease of use, through not requiring skin 

preparation, no need for electrode replacement or reapplication of conductive gels. 
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2 Position Sensing using the Ambient 

Electric Field 

2.1 Introduction 

Position and movement sensing applications are wide ranging: systems include occupancy 

monitoring for energy efficiency [76], smart homes [5, 76] and care of the elderly [6-9] to 

security and offender management [77]. Of particular interest with respect to assistive 

technologies are hand position and gesture sensing applications [65, 66, 78-81].  Hand tracking 

can be achieved by employing many different technologies, these include wearable sensors 

such as accelerometers [79, 80] and bending sensors [82], external sensors including video 

cameras [66, 78], infrared proximity sensors [65] and electric field sensors [81]. Due to its 

commercial availability, the most prevalent technology used in hand tracking systems is the 

use of video; however it comes with drawbacks in terms of overall usability. These systems 

require the user to stand directly in front of the sensing area, with the hand placed in a 

position easily detected by the camera. If the ambient light changes, a rapid hand movement 

occurs or other skin coloured objects are detected within the scene, the system will cease to 

operate as desired [66]. Infrared reflection techniques suffer the same disadvantages, 

although they can be minimised by increasing the number of infrared receivers used, however 

this increases costs and the working range is still small compared to that of video tracking 

systems [65]. While wearable sensors can overcome these disadvantages, they come with 

drawbacks of their own. They require the user to wear electronic sensors, which need either 

lengthy cables or batteries to provide power. When running on batteries, they will be limited 

to the usable timeframe of the battery life [83]. The use of electric field sensors has been well 

known since Leon Theremin’s musical instrument [84]. There was a large pause in the 

development of this technology, up until the 1990’s, when researchers wanted to overcome 

the problems discussed above and the field sensing technologies became more affordable 

[85]. Electric field sensing has advantages over the other technologies. It does not rely on line-

of-sight, and thus can detect movement within any light or dark space. The sensors rely solely 

on detecting changes in electric fields, the processing power and data storage necessary are 

far smaller than that of infrared and video systems [85]. This method of hand tracking does not 
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require the user to wear any type of sensor, although a system has been developed where the 

user wears an electrode array [81]. Small scale, 5 to 150 square centimetre applications exist 

consisting of a transmitter and a receiver electrode, where a signal is induced into the tracking 

area creating a dipole field.  The signal strength at the receiver varies as the hand moves 

further into the field; using this configuration, absolute position sensing is achievable [85]. 

While this technology overcomes many of the problems associated with video, infrared and 

wearable tracking technologies, it increases power consumption and electronic complexity for 

the transmitting and receiving electrodes [86].  

The Electric Potential Sensor has already been proven capable of recognizing human 

movement passively by detecting changes in the amplitude of the ambient 50 Hz electric field 

[54, 55], with no requirement for an induced electric field. Absolute position sensing was 

achieved in room size space, again only using perturbations arising from human movement in 

the 50 Hz ambient electric field [53]. These experiments were carried out in the United 

Kingdom, where electricity is delivered at 50 Hz and hence it is the prevalent frequency in the 

ambient field making it highly exploitable in this setting. If these experiments were carried out 

elsewhere, the frequency of the ambient field might differ. This chapter investigates the 

scalability of the EPS position sensing system for use as a hand tracking application. 

2.2 One Dimensional Position Sensing 

2.2.1 Method 

In the case of the EPS absolute position sensing [53], an assumption was made that the object 

of interest was conducting and in contact with the earth. This assumption allowed for the 

realisation that as the earthed conductor, or human subject moved around, distortion to the 

ambient electric field would be significant. Due to the ultra-high input impedance of the EPS it 

can be consider as an ideal voltage meter, such that it has no effect on the ambient electric 

field lines. Then as the conducting object approaches and then moves away, the sensor output 

should vary in amplitude by the near field fall off relationship of 1/�, where � is the distance 

between the sensor and the conducting object. This same assumption can be applied for a 

hand position sensing experiment: hand position may then be inferred by the respective 

amplitudes of RMS voltage at the output of sensors A and B as shown in Figure 2.1.  
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Figure 2.1 Illustration of inference of a hand at position d, equidistance between two sensors 

positioned and dA at dB 

 

The voltage at sensor outputs A and B are then defined by Equations (2.1)  

�� = ��
��	�� 																						�� = ��

���� (2.1) 

 

where �� and �� are the RMS output voltages of the sensors, �� and �� are normalisation 

constants. If the sensors are placed symmetrically such that �� =	−�� the two simultaneous 

equations can be solved for �:  

�	 ∝ 	 ���� − ����2����  
(2.2) 

 

Constants �� and �� are determined by taking a measurement of the ambient 50 Hz signal 

with no conducting presence in the sensor test area. This equation can be further simplified 

since for small deviations about the origin, the denominator product will be approximately 

constant:  

�	 ∝ �� − �� (2.3) 
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Based on this theoretical approach, an experiment was designed to measure hand position in 

an active area 300 mm in length. Two Electric Potential Sensors were used for this experiment. 

The sensors provided x10 amplification over a bandwidth from 30 Hz to 20 kHz, see Appendix 

A for the data sheet. The outputs of the sensors were  at a rate of 5 kSamples per second into 

16-bit signals by a National-Instruments USB-6212 real-time data acquisition card. LabVIEW 

[87] was used to apply a 3rd order Butterworth bandpass software filter to each channel, with a 

bandwidth from 48 Hz to 52 Hz. The narrow bandwidth was chosen since we were only 

interested in the perturbations of the 50 Hz ambient field. The custom GUI was designed to 

view RMS displacement voltages occurring when a hand was placed in the active measurement 

area. Figure 2.2 shows a block diagram of the experimental set up. Real-time data was also 

recorded to data files for further off-line processing. LabVIEW program code can be found in 

Appendix B1.  

 

 

Figure 2.2 Block diagram demonstrating the configuration of  

sensors, DAQ and associated software components  

 

2.2.2 Results 

Results shown in Figure 2.3 correspond to a hand movement from left to right (Sensor A 

towards Sensor B) in the test area at 30 mm increments. The hand was placed in the sensor 
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area with the palm facing to the side, with the sensing area positioned parallel to the body. 

Since the sensors were normalised to the ambient electric field, the position equidistant from 

both sensors A and B corresponds to the origin, zero millimetres. 

 

Figure 2.3 Differential measurements between sensor A and B on the x axis, across the field 

of interest for 30 mm incremental hand positions 

 

The results show a linear relationship between ±90 mm, with a standard deviation of 5 mm. 

The increase in amplitude change at the extremities of sensor test area result due to the 

proximity of the hand to the sensors. As the hand approaches the sensor, the reduction of the 

50 Hz amplitude corresponds to the region where a steeper gradient is evident on the 1/� 

curve.  

Similar measurements were taken for the y axis; with the sensor test area rotated 90° such 

that it was positioned perpendicular to the body. The hand, palm facing towards the body, was 

placed at 30 mm increments moving from sensor A to sensor B. Sensor B was positioned such 

that it was closer to the body of the subject than sensor A. Results are shown in Figure 2.4: it 

can be seen that when the hand is closer to sensor A, a similar change in sensitivity occurs with 

the hand in close proximity to the sensor as in the x axis experiment. When the hand is 

brought closer to sensor B and subsequently closer to the body, the sensitivity of the sensor is 

reduced, this is due to the proximity of the large conducting body behind the sensor. Similar to 
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the x_axis results, the y axis results show a linear relationship between ±90 mm, with a 

standard deviation of 15.23 mm.   

 

Figure 2.4 Differential measurements between sensor A and B  (y axis), across the field of 

interest for 30 mm incremental hand positions 

 

2.3 Two Dimensional Position Sensing 

With the experimental relationship between target position and differential output 

investigated and supported by the results on both dimensions x and y, the next logical step 

was to combine the two axes to create a two dimensional hand sensing area. The immediate 

thought was to configure an area to support the triangulation of hand position using two pairs 

of sensors (Figure 2.5), each pair defining a measurement axis.  
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Figure 2.5 Configuration of four sensors on a two-dimensional plane for  

hand tracking experiments 

 

A two point calibration technique was used in order to normalise the system. First 

measurements of the ambient electric field with no conducting objects in the target area were 

taken to determine constants � for each sensor. Since the sensors were normalised to the 

ambient electric field, the position equidistant from both sensors pairs A,B and C,D 

corresponds to the origin. The user was then instructed to place their hand midpoint between 

sensor pair A,B and sensor pair C,D, the origin.  This centre point measurement is taken as half 

of the sensor maximum amplitudes for normalisation, this assumption is viable due to the 

linear relationship between hand position and differential sensor voltage output seen 

previously in Figure 2.3 and Figure 2.4. Normalised target position was then displayed 

graphically on a custom LabVIEW Graphical User Interface (GUI), the program code and GUIs 

can be found in Appendix B1. Initial observations using this configuration were that the 

sensitivity was limited; this was due to the fact that the hand is not an ideal target. The hand 

has complex geometric properties and is attached to an arm; it is not just an earthed 

conducting object within the target area. When the hand was moved around the target area, 

there were positions where the arm would saturate one of the sensors, mainly sensor D, 

closest to the body, resulting in inaccurate estimations of target position. There were also 

issues inferring target position in the four corners, since the hand was not placed between 

either of the deterministic sensor pairs. Figure 2.6 shows the resulting position vectors inferred 

by the four sensor configuration, when the hand was traced across the sensing area, from left 

to right, at three intervals. The intervals relate to normalised y positions, +0.6, 0 and -0.6, at 

the centre of the palm.  
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Figure 2.6 Inferred hand position in the target tracking area for the four sensor configuration, 

hand was traced from left to right with the palm facing to the left at y axis positions of -0.6, 0 

and -0.6. 

 

To overcome the issues presented by the four sensor configuration, the use of a single y axis 

sensor was investigated. Figure 2.7 shows the results of a single sensor, one dimension 

experiment where the hand was moved away from the sensor at 30 mm increments. The 

sensing area was positioned directly in front of the user, with the palm was facing towards the 

body.  
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Figure 2.7 Single sensor output RMS voltage measurements (y axis) across the field of 

interest for 30 mm incremental hand positions 

 

The results show a clear 1/� reduction in RMS field voltage using a single sensor, with a 

standard deviation of 20.88 mm. While this is not a linear response as is evident using the 

differential measurements, it is still a useful relationship. The use of a single sensor has the 

advantage that disturbances outside of the sensing area will have little to no effect on the 

hand sensing system. Thus a person moving around behind or beside the user will not cause 

interference to the system. In order to exploit the single sensor response to hand movements 

a more complex position determination technique was required in order to provide a close 

approximation to a linear relationship between hand position and sensor voltage. The single 

sensor was calibrated in the same way as the differential pair, with two points measured: first, 

the ambient field to determine	�, second, the hand was placed at centre point in the target 

area. This measurement was taken to be half the sensor maximum voltage for the sensing 

area. The normalised signal of the single sensor response is centred on positive one, swinging 

between the limits of zero and two.  For appropriate position inference, this must be centred 

about zero corresponding to the origin of the sensing area; the scaling was achieved by 

subtracting one from the normalised sensor value. The positive portion of the signal was 

capable of adequate coverage of the sensor area; however the negative portion needed 

additional scaling to reach the bottom extremity of the sensing area. It was found that an 
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additional scaling of times four was sufficient to cover the sensing distance required. Full 

vertical coverage was achieved by employing the following relationships: 

 

	� > 0: 	�#$% = �& (2 × �&()*+,))- − 1  (2.4) 

	� < 0:		 �#$% = 4 × (�& (2 × �&()*+,))- − 1) (2.5) 

 

Figure 2.8 shows the results of normalising and calibrating the single sensor response from 

Figure 2.7 using the relationships described by Equations (2.4) and (2.5). We can see the 

results are comparable to a linear model, with a standard deviation of 11.19 mm. 

 

 

Figure 2.8 Normalised and calibrated single sensor RMS output voltage  

measured for hand position varied over the y axis 

 

After achieving suitable results for inferring hand position using a single sensor an improved 

two-dimensional sensor configuration was developed, shown in Figure 2.9. Three single y axis 
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sensors were employed, in conjunction with a pair of differential sensors for x axis position 

detection; the full coverage sensing area was 300 mm by 250 mm.  

 

B

Y1 Y2 Y3

A

300mm

250mm

 
 

Figure 2.9 Illustration of the five sensor configuration used for two-dimensional  

hand tracking experiments 

 

Calibration of the system was achieved by the same two point calibration technique described 

previously. An amplitude priority algorithm was developed to accomplish accurate position 

determination for full coverage over the sensing area. Full coverage was achieved; the sensing 

area was segmented into four quadrants in order to determine the absolute position of the 

hand.  

 
Figure 2.10 shows the control algorithm flowchart outlining the priority method, the 

corresponding LabVIEW program code can be found in Appendix B1. The amplitude priority 

algorithm works as follows: if the x position is negative, then only sensor Y1 or Y2 can infer 

hand position on the y axis. When the x position is positive, only sensor Y2 or Y3 can infer 

y_position. The vertical sensors are scaled as per Equations (2.4) and (2.5) based on whether 

the hand is in a positive or a negative y position. Normalised hand position was graphically 

displayed on a custom LabVIEW GUI (see Appendix B1).  



23 

 

 

 

 

 

Figure 2.10 Flowchart illustrating the interpretation of normalised and calibrated sensor data 

in determining hand position 
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Figure 2.11 shows the resulting position vectors inferred by the five sensor configuration, 

when the hand was traced across the sensing area, from left to right, at three intervals. The 

intervals relate to normalised y_positions, +0.6, 0 and -0.6, at the centre of the palm. It can be 

seen from the graph that there is a clear cross-over point between the positive and negative x 

halves of the sensing area. It should be noted that the appearance of noise on the signals is 

due to using single sensors on the y axis: the noise increases as the hand is positioned further 

from the sensors. This common mode noise does not appear in the four sensor configuration 

due to the differential measurements. The trace at +0.6 on the y axis shows some non-linearity 

which is consistent with the relationship shown in Figure 2.8. 

 

Figure 2.11 Inferred hand position in the target tracking area for the five sensor 

configuration, hand was traced from left to right with the palm facing to the left at y axis 

positions of -0.6, 0 and -0.6. 

 

2.4 Mouse Control 

To finalise the hand tracking system for use as an AT application, control over a mouse cursor 

was preferred over a graphical representation of hand position. LabVIEW allows for 

communication with the computer operating system such that mouse cursor movement and 

click functionality can be controlled. The first requirement for scaling the x,y positions into 
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pixel locations was to determine the screen resolution of the device being used, this was 

accomplished using LabVIEW. Once determined, the x,y position was re-scaled to lie within a 

range between zero and one, then multiplied by the screen resolution resulting in an on-

screen pixel location. Generating a mouse click event was achieved by holding the cursor, or 

hand, in a sensitive area for the correct amount of time. The sensitive area was scalable such 

that it could change with pixel resolutions on different machines, with optimum results 

achieved with the active click pixel area between 50 and 100 square pixels. The time required 

to hold the position to initiate a mouse click was 500 ms. These variables could be changed for 

more or less resolution. Figure 2.12 shows the program flowchart for controlling the mouse 

cursor. 
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Figure 2.12 Flowchart illustrating the interpretation of real-time hand position information in 

determining mouse cursor position 

 

2.4.1 Usability Testing 

Due to the complex physical properties of the hand it is difficult to quantify errors for this 

system, thus a usability study was carried out. A group of 15 University of Sussex students; 

male and female, varying between ages 20 and 45, volunteered to try the hand tracking 

system. The usability test consisted of using the mouse control interface and a large icon 

predictive text typing program, the predictive text program was called Dynamic Keyboard and 



 

 

is shown in 

to 500 ms. All tests were carried out in an open laboratory.

 

Figure 2.13

time interface between hand position and mouse cursor control

 

Students were given a short demo of the m

mouse click functionality was implemented. The system was calibrated to the user and they 

were given as much time as they needed to be comfortable with the interface and the 

Dynamic Keyboard functionality. 

remaining students sat in a chair and either positioned themselves directly in front of the 

sensing area or slightly to the side. 

second task was to spell the sentence ‘the car is red’. Users were asked to rate the system 

numerically between one and five (1=very easy, 5=very difficult)

terms of ‘Learning’, ‘Control’, and ‘Comfort’. All users were also asked some qu

cursor coverage area, the click sensitive area and the click event timing requirement. Results of 

the usability test are tabulated below.

under one minute, the sentence was a more diffic

minutes to complete, while the remaining 25% were unable to complete or gave up on the 

task. All users commented that spelling out a sentence with their hand hovering for mouse 

shown in Figure 2.13
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cursor coverage area, the click sensitive area and the click event timing requirement. Results of 
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mouse click functionality was implemented. The system was calibrated to the user and they 
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functionality caused tiredness in their arm. Additionally, all users agreed that the click sensitive 

area and time could be decreased once familiar with the functionality of the system. 

 

Table 2.1 Feedback scores reported by usability study group for real-time hand 

sensing system with mouse control and predictive text program 

 Score 

Metric 1 2 3 4 5 Total 

Learning   5 7 3 77.3% 

Control  2 6 5 2 69.3% 

Comfort 7 4 3 1  37.3% 

 

Total score for each of the categories was determined by multiplying each score by the 

number of users who chose the score. A maximum of 75 points is available for each category. 

From the results we can see that most of the users were happy with the learning process and 

the control of the system; however comfort of use of the system scored very low.  

 

2.5 Discussion and Future Work 

In this chapter it has been demonstrated that the EPS is capable of a small scale hand position 

sensing application using an entirely passive measurement technique, by sensing changes to 

the ambient electric field. It has been shown that on a single axis hand position can easily be 

determined by a pair of sensors and a simple differential measurement. A two-dimensional 

hand tracking system was presented using two orthogonal differential sensor pairs, which 

presented some impractical limitations that were discussed. A single sensor solution was 

presented, and although the sensor response was non-linear with respect to hand position, it 

was still a viable relationship to exploit for hand position sensing within a small area. 

Agreeable results were achieved using a five sensor configuration: a differential pair for 

horizontal position detection, and three single y-axis sensors for vertical detection. Full 

coverage hand tracking over a 300 mm by 250 mm space was achieved in an open laboratory 

environment.  

A method for controlling the mouse cursor was presented which was interfaced with a large 

icon predictive text typing software.  Results of the usability test showed that the mouse 
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cursor control system was easy to learn and use. It also showed that ease of use increased 

over time. However, in general it was thought that this was not an ideal substitute for a mouse 

due to the need to hover a hand in the sensing area. This valuable feedback will lead onto 

further work on the system to incorporate gesture recognition capability where the hand 

would not have to complete complex and discrete movements for functionality.  

Further validation studies are essential if this technology is to be taken into the consumer 

space. Statistical benchmarking analysis methods are discussed in Appendix E which could be 

undertaken alongside further in-depth usability studies to increase the appeal of this novel 

sensing application. 
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3 A Three Sensor Eye Tracking System 

based on Electrooculography (EOG) 

3.1 Introduction 

The study of eye movements has been around since long before the technological advances of 

the modern PC. Initial studies, dating back to the late 19th century, used highly invasive 

techniques involving mechanical contacts with the eye. In the early 1900’s, methods were 

developed to track eye movements less invasively by observing light reflections from the 

cornea. Throughout the 1900’s, eye tracking was used passively for observation purposes only, 

it was not until the development of minicomputers that the necessary resources were 

available to track eye movements in real-time and hence lead to human computer interactions 

based on eye movements [32].  

Eye tracking is the method used to monitor eye movements with respect to head position. It is 

also used to determine where one is looking (the gaze point). Commonly used eye tracking 

techniques can be broadly separated into four categories: contact lens, pupil or corneal 

reflection, image-based video-oculography (VOG) and electrooculography (EOG) [89].  Two 

main types of eye movements are observed through these technologies: smooth pursuits and 

saccadic movements. Smooth pursuit movements are slow eye movements which occur when 

gaze is fixed on a moving target [90]. Saccades are fast eye movements that occur when a 

person quickly changes their visual target. These fast movements typically last between 30 and 

120 ms [31]. Depending on how far the eyes move, the amplitude of the saccade is 

proportional to the angular distance moved. Fixations, where the eye is stable and fixed on an 

object, are typically observed following a saccade; these can last between 200 and 600 ms 

[91].  

Contact lens eye tracking is one of the most precise methods; however it requires the subject 

to have a device such as a coil or a mirror attached to a contact lens inserted into the eye. This 

method has extremely high accuracies, down to 0.08° [92]; however it is extremely invasive 

and thus inappropriate for use in assistive technologies (AT). Pupil and corneal reflection is 

achieved by either using infrared or video cameras directed at the eye in order to capture 
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reflected light. The amount of light reflected back to a receiver relates to the position of the 

eye. Accuracies range from 0.5° to 2° for both horizontal and vertical eye movements [59, 92]. 

This technique is not as invasive as the contact lens method; however it requires a direct 

unobstructed line of sight to the naked eye, and accuracies suffer for subjects who wear 

glasses. The subject must not move, and the measuring apparatus must be directly in front of 

the eye, both of these factors make this type of eye tracking unsuitable for AT applications. 

Image based techniques (VOG) use cameras and complex algorithms to determine gaze 

positions. Accuracies have been quoted from 0.5° to 2° [92], but additional cameras and/or 

tracking techniques must be incorporated to the system to achieve such accuracies [93, 94]. 

VOG systems are the least invasive of the four groups and are often used for human 

observation studies [95, 96]; however there are significant drawbacks in terms of processing 

power for high quality images, lengthy calibration routines and the need for recalibration if the 

user moves or ambient light levels change. An eye controlled mouse based on VOG is 

commercially available, but it has a very high cost, typically $7000 (~£4616) [34]. The most 

prevalent eye tracking technology used for AT is the electrooculogram (EOG). It is slightly more 

invasive than VOG as it requires electrodes to be attached to the face around the eyes. 

However, the cost and the amount of processing power required are the least of all the 

categories of eye tracking. This eye tracking technique requires simple measurements that can 

be taken with the head in any position. Comparable accuracies to the above technologies have 

been published [19, 46, 97]. The following section provides details on these accuracies, how 

the EOG is measured and a brief review of AT applications based on EOG signals. 

3.2 The Electrooculogram 

The EOG is a signal resulting from a differential measurement across an eye or both eyes, 

either on a horizontal or a vertical plane. The front of the eye, the cornea, is at a positive 

potential with respect to the back of the eye, the retina. When the eyes move a change in 

electric potential results, this is due to the electrostatic field surrounding them. As the eyes 

rotate, the electrostatic dipole rotates with them, thus the displacement voltage can be 

measured across the eyes for both vertical and horizontal eye movements.  Historically this 

was done using a system of many DC electrodes placed around the eyes, depending on how 

much detail was required from the EOG signals [59].  The more electrodes used the more 

precise detail on eye position is achievable.  Recorded potentials are small, usually in the 

microvolt range, and have been quoted between 15 µV and 200 µV [59] and 50 µV to 3500 µV 
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[98]. Results vary due to electrode type, position and differences in individual biopotentials or 

physiological make up. It is possible to record the monopolar behaviour of the eye with the 

electrode positioned at a distance from the eye up to three times its diameter [99], which 

dictates a practical limitation for this technique. Electrodes positioned closer to the eye will 

resolve larger potential differences arising from the eye movement. In any case of electrode 

placement within the limitation, eye behaviour has been proven to be linear in the range of 

±70° [59]; this sensitivity is highly stable in the range of ±40°, becoming progressively worse at 

greater excursions. Sensitivities have been measured between 4 µV/degree and 20 µV/degree, 

with a trade-off between sensitivity and number of electrodes [59]. In practice horizontal 

sensitivities are more stable than vertical sensitivities due to muscle movements and eyelid 

interferences. These linear characteristics of EOG signals make them an easily exploitable 

physiological signal for use in AT applications. 

 

 

Figure 3.1 Typical facial electrode positions for acquiring horizontal and vertical EOG signals 

 

 
Typical EOG systems use five wet gel electrodes [19, 30, 100-102], two on either side of the 

eyes (L) and (R) positioned equidistant from the centre of the eye for horizontal 

measurements. Two electrodes are used for vertical measurements, one above an eye (U) and 

the second below that same eye (Lo). The fifth electrode is a reference electrode (Ref) and is 

placed on an electrically isolated position on the subject’s body, such as the forehead, neck or 

earlobe. The frequency range in which the EOG signals lie is from DC to 40 Hz, thus the need 

for an isolated point of reference. This is used to minimize system noise from other 

physiological signals such as EMG and EEG that lie in the same frequency range.  
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When using the EOG signals for AT applications, user experience, in terms of comfort and ease 

of use, is invaluable. Therefore a minimum number of electrodes are desirable, reducing visual 

obstruction and preparation time. Earlier eye typing studies show a high usability experience 

with low learning times [30, 100]; however the use of five electrodes is not conducive to 

comfort as one electrode is placed on the lower eye lid. A solution to the under eyelid 

electrode was presented [97], where EOG gaze detection was achieved by attaching two arrays 

of wet gel electrodes to a pair of headphones. In this experiment accuracies were not very 

good; horizontal and vertical accuracies were quoted as 4.4° and 8.3° respectively. While this 

system leaves the eyes unobstructed, it will suffer the effects of DC drift and long term signal 

degradation from the electrodes drying out. Excellent levels of control of a wheelchair have 

been achieved [19, 98], with the highest degree of accuracy in the detection of saccadic 

movement being 2° [19]. However, the wet gel electrodes used are not suitable for long term 

use since they dry out and can also cause skin irritation. Three electrode systems have been 

investigated, including a wheelchair control system [23]. However this system relied only on 

acquiring horizontal EOG signals for left and right directional control, with the third sensor 

serving only as a reference. The remaining control system was based on electromyography.  

The system designed and discussed in the remainder of this chapter relies on three electrodes 

to detect both horizontal and vertical EOG signals.  

3.3 Method 

A three Electric Potential Sensor configuration was used; the sensors were spring mounted to a 

headband for easy application. The physical arrangement of the sensors can be seen in Figure 

3.2.  Two sensors are positioned on both sides of the eyes at the temples, and the third sensor 

is placed in the centre of the forehead. By using this configuration the need for additional 

facial electrodes was eliminated. This arrangement could easily be transferred onto a pair of 

glasses or goggles providing the required skin contact points for adequate signal detection. 
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Figure 3.2 Illustration of three Electric Potential Sensors mounted to a headband, configured 

for acquiring horizontal and vertical EOG signals 

 

 
The sensors used for these experiments have been described in Chapter 1. Internally the 

sensor hardware consists of a two stage amplifier providing x114 amplification to the EOG 

signals acquired at the skin.  There is a first order bandpass filter in the sensor, providing a 

bandwidth from 0.1 Hz to 86 Hz.  The output signals from the sensors were taken to a control 

box with additional variable amplification and anti-aliasing filtering before being converted 

from analog to 16-bit digital signals by a National-Instruments USB-6212 real-time data 

acquisition card. LabVIEW software was used to acquire the data and perform all subsequent 

signal processing; program code is shown in Appendix B2. Data was sampled at 20 kSamples 

per second, then a software 3rd order 40 Hz Butterworth lowpass filter was applied to each 

data channel prior to extracting the EOG signals, thus eliminating any unwanted noise due to 

movement artifacts or EMG signals. The 40 Hz lowpass filter was chosen since all of the signal 

power and useful information in EOG signals lies below this frequency, it also attenuates any 

mains noise. The horizontal signal was determined by using a simple differential measurement, 

right sensor (R) minus the left_sensor_(L). The vertical signal was resolved by a differential 

measurement between the centre sensor (C) and reference signal created by adding the right 

sensor (R) to the left_sensor_(L). Figure 3.3 shows the block diagram of the entire system. A 

smoothing filter was applied to the final EOG signals in LabVIEW before displaying on the 

custom graphical user interface (GUI). The signals were also recorded to data files for further 

interpretation and off-line graphical representation. 
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Figure 3.3 Block diagram demonstrating the configuration of sensors, DAQ and the  

associated software components for acquiring horizontal and vertical EOG signals 

 

An experiment was designed in order to measure EOG signals over a gaze range of ±40° on 

both the horizontal and vertical planes. Initial experiments were carried out on a single user in 

an open laboratory environment. A series of horizontal and vertical eye movements were 

made, gaze was directed to circles positioned at 10°, 20°, 30° and 40° to the left from centre, 

returning to the centre position after each excursion. The procedure was repeated with the 

same eye movements to the right, up and down from centre. Figure 3.4 shows the gaze 

position grid used during the experiments. The position grid used was on a flat surface, thus 

the gaze points are not linearly spaced on the diagram. Each point corresponds to the angle 

the eye had to rotate in order to alter the gaze position. 
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Figure 3.4 Gaze position grid used during eye movement experiments; subjects were 

instructed to direct their gaze toward each of the dots as focal points 

 

3.3.1 Results 

Both the recorded horizontal and vertical EOG signals were plotted using MATLAB [103]. In 

Figure 3.5(a), data is presented for eye movements to the left of centre position followed by 

eye movements to the right of centre position. Figure 3.5(b) shows the vertical EOG signals for 

eye movements up, then down from centre position. The initial falling edge in Figure 3.5(a) at 

three seconds is the saccadic eye movement recorded corresponding to the gaze angle of 10° 

to the left of centre. Each subsequent falling edge increases in amplitude until the gaze 

direction is shifted to the right of centre (at 12 seconds). It should be noted that the decay in 

signal amplitude seen directly after the saccade is associated with gaze fixations; the decay is 

due to the capacitive nature of sensors electrode coupled to the skin.  
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Figure 3.5 Measured EOG signals for eye movements at 10° intervals 

 between 0° and ±40°, with gaze returning to centre position after each movement, 

 for horizontal eye movements (a) and vertical eye movements (b) 

 

 
It is easily seen from these graphs that as gaze angle increases EOG amplitude also increases 

and that a relationship between EOG amplitude and gaze position exists. In order to identify 

the relationship between EOG and gaze angle, the step change in amplitude is plotted against 

eye displacement. Figure 3.6 shows this relationship for both the left and right eye 

movements. The data is highly correlated with a linear relationship between the step change 

and gaze angle over the entire range of ±40°. There is also good agreement between the left 

and right data sets. From this data, the accuracy of the measured saccadic movements is 1° for 

the horizontal data. 
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Figure 3.6 Change in EOG amplitude (step size) versus gaze position angular displacement for 

horizontal eye movements: left and right 

 

 

 
Figure 3.7 shows the corresponding data set for the vertical axis where the gaze angles up to 

±40° are plotted against the step change in EOG amplitude of the measured saccades. Again 

there is a strong correlation and a linear relationship between the saccadic amplitudes and 

angles, for this subject, over the entire range. However it should be highlighted that the 

accuracy for the vertical data is not as good as for the horizontal with an accuracy of 2.5°. This 

is in agreement with much published literature that also finds the vertical is less linear at the 

extremities of vision, usually past 30° of eye deflection [19, 59, 98]. 
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Figure 3.7 Change in EOG amplitude (step size) versus gaze position angular displacement for 

vertical eye movements: up and down 

 

 
These initial experiments yielded sensitivities for the horizontal and vertical eye movements of 

10.3 µV/degree and 9.9 µV/degree, with standard deviations of 2.6° and 5.6° respectively. 

These sensitivities fall within range of published findings [59, 98]. A measure of system noise 

was taken during this experiment, the user was directed to hold the central gaze position in 

order to observe the resting potentials generated at the sensor inputs. Noise in the system is 

attributed to both electronic noise in the sensor and any muscle noise picked up by the 

sensors. The muscle noise is limited due to the system bandwidth. Throughout this experiment 

the system noise level was less than 10 µV, which is less than the level of sensitivities in these 

experiments.  
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3.4 Further Experiments 

An EOG controlled system cannot be developed based on a single set of sensitivity 

measurements from one individual. Thus to determine the potential capability of the EPS for 

an EOG based AT application the above experiment was repeated across a range of male and 

female subjects, ranging in age between 25 and 60. All experiments were carried out in an 

open laboratory environment. Some users wore glasses during the experiment, some wore 

contact lenses and others had no eye sight problems at all. Users were instructed to place the 

head band with the EOG sensors on their own heads with no assistance so that the electrodes 

were on the situated on their temples and forehead. The users were positioned in front of the 

gaze position grid shown in Figure 3.4 and instructed to make a series of horizontal and vertical 

eye movements, directing their gaze to the circles at 10°, 20°, 30° and 40° to the left from 

centre, starting at centre and returning to the centre position after each excursion. Each user 

was asked to repeat the procedure with the same eye movements to the right, up and down 

from centre. Each subject carried out three trials on each gaze direction in order to investigate 

the repeatability of measurements. Each trial was recorded to data files for further 

interpretation. 

3.4.1 Results 

The step change in amplitude at each 10° increment in eye position for each subject was 

extracted from the trial data. Then the relationship between EOG amplitude with respect to 

eye gaze position was analysed. Figure 3.8 shows the experimental results for the horizontal 

data for all eight users. It is clear from the graph that a linear relationship holds across a range 

of users; however the EOG data varies in sensitivities. In this case it was found the maximum 

sensitivity was 16.6 µV/degree (red line), compared to the minimum change of 4.7 µV/degree 

(blue line). The deviation from the linear best fit model averaged at 0.8° with the average 

accuracy of less than 1°. 
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Figure 3.8 Horizontal EOG amplitude versus gaze position angular displacement across  

eight subjects; blue line represents the lowest measured sensitivity, the red line  

represents the highest measured sensitivity 

 

Similar results were achieved on the vertical plane: the deviation from the linear best fit model 

was 2.6° and the average resolution was 2°. The corresponding minimum change in EOG signal 

amplitude per degree of eye displacement was 3.52 µV/degree (blue line), and the maximum 

was 9.86 µV/degree (red line) as seen in Figure 3.9.  
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Figure 3.9 Vertical EOG amplitude versus gaze position angular displacement across  

eight subjects; blue line represents the lowest measured sensitivity, the red line  

represents the highest measured sensitivity 

 

System noise level was also assessed during this experiment, as the users held the central gaze 

position so that the resting potentials generated at the sensor inputs could be observed. Noise 

levels during these observations for all users never exceeded 10 µV.  

Results across the subjects show the linear relationship between EOG saccades and angular 

displacement of the eye holds true. In order to exploit this relationship the EOG signals must 

be normalised such that these variations do not disrupt levels of control within an AT system. 

A calibration routine was developed and will be discussed in the following section.  

3.5 Calibration and Normalisation 

When the headband (Figure 3.2) is initially applied, the sensors need around one second to 

settle to a constant level due to the time constant associated with the high input impedance. 

Once a constant level below the noise threshold is achieved the calibration routine will run 
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automatically. The routine consists of a circle that moves to several locations on the screen. 

The gaze locations relate to maximum eye deflections on both the horizontal and vertical 

planes that are required for the system. Figure 3.10 shows the positions of the circle on screen. 

 

 

Figure 3.10 Calibration screen: during the calibration routine the user is instructed to make a 

series of eye movements between locations represented by the dots: left, right, down and 

up, starting and ending at the central resting position in the middle of the screen. 

 

Figure 3.11 shows a typical EOG signal for both the horizontal and vertical eye movements 

recorded during the calibration routine. We can see there is no cross talk between signals; 

they are completely independent from one another. The peak signal excursion is used to 

compute the deviation from the screen centre point. The amplitude of these peaks will depend 

on the position of the electrodes and the position of the user with respect to the screen. The 

signal to noise for the vertical signals is clearly lower than the horizontal, consistent with the 

lower angular resolutions seen, both with this method and others reported in the literature. 
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Figure 3.11 EOG Signals recorded during a calibration routine: (a) Horizontal EOG, negative 

signal shows the eyes looking far left, positive shows eyes far right (b) Vertical EOG, negative 

is down, positive is up. 

 

During the calibration routine, the real-time EOG signals are buffered in software until the 

routine comes to the end. At the end of the routine, the user will have completed maximum 

eye deflections for the system, and these maximum deflections can be used to normalise the 

EOG signals for use in an AT system. Depending on the position of the user, the maximum and 

minimum deflections might not be the same: if a user is slightly to the right of the origin, the 

left deflection will be larger than the right. The same relationship will hold for the vertical 

plane. Thus in order to normalise any saccadic eye movements they must be normalised to 

their individual maximum and minimum values, corresponding to gaze locations far right, left, 

up and down. Figure 3.12 shows the flow chart demonstrating how the calibration routine runs 

in order to obtain maximum and minimum EOG values for both the horizontal and vertical 

planes. 
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Figure 3.12 Flowchart showing how the calibration routine is implemented in software in 

order to normalise the real-time EOG signals 

3.6 Feature Extraction 

It is important that valid features of an EOG signal can be extracted for use in an AT system. 

Valid features of the EOG signal are the saccadic changes in EOG amplitude corresponding to 

changes in gaze locations as well as eye blinks which have not been discussed until this point. 

Eye blinks are another exploitable characteristic of EOG signals that make it exceptional for use 

in AT systems. Blinks are a combination of EMG signals and vertical saccades; they are greater 

in amplitude than the maximum amplitude on the vertical plane arising from intentional eye 

movements and they are much shorter in duration than normal saccadic eye movements. A 
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typical eye blink consists of a quick rise and fall in amplitude, the entire process lasting 

between 100 and 200 ms [104]. Since the characteristics of blinks differ greatly from saccades, 

they can easily be used as a control signal such as mouse clicks [33, 100]. Figure 3.13 shows 

EOG signals for some eye movements that occur during human computer interaction.  

 

Figure 3.13 Example EOG signals for typical eye movements occurring during human machine 

interaction, acquired by the Electric Potential Sensor: (a) Horizontal (b) Vertical 

 

The data seen in Figure 3.13 was recorded using LabVIEW; the real-time signals were fed into a 

feature extracting algorithm, the flowchart for which is shown in Figure 3.14. The algorithm 

determines the amplitude of the saccades and thus the change in gaze angle and direction of 

eye movement made by the user. It also determines if the user blinks. Features are extracted 

by identifying a valid saccade, which is one that has occurred if the change in amplitude lasts 

longer than 30 ms, as discussed in Section 3.1. The saccades are divided by the maximums 

determined during calibration: the results are values normalised to ±1. Blinks are also 

identified by this timing threshold, but are further identified by their amplitude being greater 

than maximum vertical deflection. 
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Figure 3.14 Flowchart showing how the feature extraction routine is implemented in 

software in order to identify characteristics of the real-time EOG signals 

 

The output from the feature extraction algorithm for the sequence of eye movements in 

Figure 3.13 is outlined as a time series in Table 3.1. 

Table 3.1 Output results from the EOG feature extraction algorithm with the 

 eye movement signals presented in Figure 3.13 as the input 

Time (seconds) Horizontal EOG Vertical EOG Gaze Indication 

0 to 2.5 No changes > 30ms 2x Blinks Control Signal 

2.5 Rising edge Falling edge Right and Down 

2.5 to 3.5 No change > 30ms No change > 30ms Fixation 

3.5 Falling edge Rising edge Left and Up 

3.5 to 5 No change > 30ms No change > 30ms Fixation 

5 to 6 No change > 30ms 2x Blinks Control Signal 

6.5 Falling edge Falling edge Left and Down 

6.5 to 9 No change > 30ms No change > 30ms Fixation 
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3.7 Discussion and Future Work 

Experimental work within this chapter has demonstrated the ability to acquire high quality, 

repeatable EOG signals across a variety of subjects using three Electric Potential Sensors. It has 

been shown that with the configuration used, EOG signals are comparable in resolution and 

linearity with systems previously published requiring more than three electrodes [19, 97].  

Users were required to put on the apparatus themselves, minimizing preparation time. With 

little instruction all were capable of placing the head band in a position that was appropriate 

for adequate EOG signal acquisition. 

The linearity of EOG signals with respect to eye displacement throughout all of the trials shows 

that these EOG signals are highly suitable for use in AT applications. However, due to the 

variability in sensitivities it is necessary to incorporate calibration and normalisation 

techniques so that any user can benefit from the same control algorithms.  

A method for calibrating and normalising the EOG signals was described. This technique 

demonstrates how to overcome the variability in individual eye movements. Once normalised 

to ±1, the eye movements detected within a system can be converted for any control 

algorithm. Systems can involve scaling eye movements into pixel locations, or they can be used 

as binary control inputs or state machine variable control inputs. A feature extraction method 

was also presented that discriminated between valid saccadic eye movements as well as eye 

blinks. It was shown that blinks are an easily exploitable attribute of the eyes and subsequently 

the EOG signals since they occur only on the vertical and display different characteristics than 

those of simple eye movements. Blinks can then be used for control signals such as mouse 

clicks or binary on/off control instructions etc. 

This first demonstration of an EPS based EOG eye tracking system has served as proof of 

principal. Appendix E details methodologies that would be employed for future work in order 

to verify the systems statistical significance and benchmark against other technologies. A 

method has also been presented that would be employed to test the effectiveness and 

reliability of the feature extraction algorithm (Appendix E.3).  

Applications opportunities based on these EOG signal acquisition, calibration and feature 

extraction techniques could easily be applied to any system where an assistive technology is 

based on human interaction, including communication and mobility control systems.  
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4 Surface Recording of an Evoked 

Potential: The Electroretinogram (ERG) 

4.1 Introduction 

Previous chapters have described some biopotentials and the capability of the Electric 

Potential Sensors to acquire high quality, repeatable signals non-invasively and directly from 

the skin.  The EPS has already been proven capable of acquiring high quality EEG signals, both 

in contact mode and remote mode [52]. It is for this reason that the School of Optometry and 

Vision Sciences Research Group2 [105] at Cardiff University approached the Sensor Technology 

Research Centre to investigate whether the Electric Potential Sensor was capable of acquiring 

electroretinograms. The electroretinogram (ERG) is a type of visually evoked potential arising 

from the retina in response to a light stimulus and will be described in detail in the following 

section.  

Visually evoked responses are a change in electric potential within the body caused by the 

central nervous system arising from an external visual stimulus. These responses are used 

primarily to measure the functional integrity of the visual pathways from retina via the optic 

nerves to the visual cortex of the brain. These responses differ from the previously discussed 

biopotential, EOG, whereby they cannot be controlled; they can only arise with the application 

of a visual stimulus. Evoked potentials tend to be very small in amplitude, typically in the range 

of hundreds of microvolts to millivolts [106, 107]. This feature of evoked potentials makes 

them difficult to acquire. Low noise highly sensitive electrodes are required to resolve these 

signals over other electrophysiological activity within the body. Signal averaging techniques 

must be employed to extract any useful information from these signals. Signal averaging is 

necessary and simple to achieve. Since evoked responses follow an applied stimulus that is 

often periodic, signals can then be averaged with respect to the stimuli [106, 107].  

                                                       

 
2
 I would like to acknowledge Dr Alison Binns and Dr Tom Margrain for providing the equipment and 

expertise required to run the experiments carried out in order to acquire standard ERG signals with the 

conventional systems described.   



50 

 

 

 

 

4.2 The Electroretinogram  

The electroretinogram (ERG) is the measurement of light induced electrical responses of 

different cell types in the eye, more specifically cells within the retina. Flashes of light of 

different colours or patterns are directed at a chemically dilated pupil; the cellular response is 

then recorded by electrodes. ERG recording is a widely used ocular electrophysiological test 

allowing assessment of eye health problems that may arise in both the rods and cones in the 

outer retina as well as associated pathways in the middle and inner layers of the retina [108-

111]. Figure 4.1 shows the most common human ERG response, containing the a-wave and the 

b-wave, elicited from a full field flash of light. This stimulus is called Ganzfeld stimulation which 

spans the whole visual field so that gaze direction is unimportant [67, 112].  

 

 

Figure 4.1 The basic waveform of the electroretinogram showing the a-wave arising from 

solely the rods and cones and the b-wave arising from cells of the retina , taken from [67] 

 

Sufficiently bright stimuli will elicit an ERG containing the a-wave (the initial negative 

deflection) followed by the b-wave (positive deflection). The leading edge of the a-wave is 

produced by the photoreceptors (rods and cones) [113], while the remaining portions of the 

response are produced by a mixture of cells within the retina [67].  The ERG parameters that 

are customarily measured in an ophthalmic clinic for electrodiagnosis are amplitudes and 

timings of the a-wave and b-wave, shown in Figure 4.2. 
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Figure 4.2 a- and b-wave amplitude and time measurements of the  

basic ERG waveform, taken from [67] 

 

The a-wave amplitude (a) is measured from a baseline monitored before the light 

stimulus is applied, to the trough of the negative wave.  The b-wave amplitude (b) is 

measured from the trough of the a-wave to the peak of the b-wave. While these are 

important parameters of the ERGs composition, they vary greatly with the type of 

recording electrode used [114, 115]. The temporal properties of the ERG are 

independent of the type of recording electrode used. These properties are defined by 

the time-to-peak (implicit time) of the a-wave and the b-wave. These times (La and Lb) 

are measured from the stimulus onset to the respective troughs and peaks; results will 

vary depending on stimulus rate and intensity and the state of eye adaptation. The eye 

can be light or dark adapted, yielding photopic and scotopic ERGs respectively [116]. 

These features of the ERG make it a useful tool when monitoring the neurological 

status of a patient; ERGs can be monitored when a patient is either awake or 

anesthetised. Abnormal shapes and latencies found in an ERG can lead to a diagnosis 

of various degenerative diseases of the eyes [110, 111, 117], such as Age-related 

Macular Degeneration (AMD) [118].  In 1989 a basic protocol was standardised [119] 

such that ERG recordings carried out across the world could be comparable. This 

standard was outlined and is maintained by the International Society for Clinical 

Electrophysiology of Vision (ISCEV) [60]. ISCEV outlines recommendations for five 
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retinal evoked responses for evaluation, all named according to conditions of eye 

adaptation. An outline of these standard measurements can be found in Table 4.1. 

Table 4.1 Standard ERG measurements and stimuli, as set by ISCEV [60] 

 Measurement Rate of Stimulus Indications 

1 Dark-adapted ERG 

(Scotopic)  

0.5Hz – 2 Hz Flash Rod response 

2 Typically 10 Hz Combined rod and 

cone response 

3  Typically 15 Hz Oscillatory potentials, 

arising from the 

amacrine cells [67] 

4 Light-adapted ERG 

(Photopic) 

0.5 Hz – 2 Hz Flash Cone response 

5 30 Hz Flicker Cone response 

 

These recorded ERGs result from measuring the electrical response from an eye electrode with 

respect to a reference electrode which is placed either on the forehead or on the temple. 

Several different types of DC electrodes are used for acquiring ERGs; some of the most 

common are shown in Figure 4.3.  

 

 

Figure 4.3 Different types of corneal electrodes used for acquiring ERGs (a) Contact lens         

(b) Hook (c) Cotton wick with speculum and (d) DTL fibre, images taken from [67] 
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As can be seen, all of these recording electrodes are highly invasive which is not ideal for 

primary investigations of the retinal function, especially for those of children [114, 120, 121]. 

ERGs have been recorded using Ag-AgCl electrodes placed on the orbital ring around the eye, 

and while this recording technique is preferable when investigating children or people averse 

to having electrodes placed in their eyes, factors such as the electrode position and eye lid 

movements can degrade the skin ERG. Using Ag-AgCl electrodes requires skin preparation; 

conductive gels and the electrodes must be taped on to the eye lid. These time dependent 

factors mean that an incorrectly placed electrode must be repositioned, which may further 

upset a patient [109, 121]. Adequate ERG signal detection with the Electric Potential Sensor 

could overcome these factors limiting skin electrodes, since no skin preparation is required 

when using the EPS and it can be held in place without the use of an adhesive. 

It should be noted that the experiments described here follow the clinical procedures outlined 

by ISCEV [119] for light-adapted ERG recordings. The experimental subject was the same 

throughout all experiments. The stimuli apparatus was run by a professionally trained 

Optometry specialist from the School of Optometry and Vision Sciences at Cardiff University 

[105], the same operator was used during each experiment. These specialists were also 

responsible for positioning the electrodes correctly, including the EPS, for all of the 

experimental work. Throughout the experiments, the specialists operated their own data 

acquisition systems, my contribution was to operate the data acquisition system I designed 

specifically for acquiring the ERG signals with the EPS (Figure 4.4). The aim of the experiments 

was to achieve a comparison of the quality of signal acquisition capabilities of the EPS versus 

conventional techniques. Temporal parameters acquired from the EPS are compared against 

those from some standard electrodes used for recording ERG signals [122]. All subsequent 

data processing and analysis presented was my contribution to this work with no assistance 

from Cardiff University. Results presented do not include any medical analysis.  

4.3 Initial Experiments 

4.3.1 Method 

Initial experiments were carried out in a darkened screened room; the use of a screened room 

was employed to minimize the effects of environmental noise on the sensors. The subject was 

given a drop of tropicamide to dilate the pupil, which was light adapted for 10 minutes. Stimuli 
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were generated with a miniature Ganzfeld LED stimulator, details of which can be found in 

[123, 124]. The stimulator was held between two and five centimeters from the eye; further 

details about the stimulator and the experimental protocol can be found in [118]. Two Electric 

Potential Sensors were used to acquire the ERG signals: one was held below the eye on the 

lower lid and the second acted as a reference electrode placed on the forehead. The electrode 

and system configuration can be seen in Figure 4.4.  

 

 

Figure 4.4 Block diagram demonstrating the configuration of sensors, LED  

stimulus, DAQ and the associated software components for acquiring 

 ERG, including facial EPS placements  

 

The sensors used for these experiments are the same sensors that were used for acquiring 

EOG signals, which have been described in Chapter 2. The output signals from the sensors 

were taken through a control box with an additional ten times amplification and anti-aliasing 

filtering before being converted at 20_kSamples per second from analog to 16-bit digital 

signals by a National-Instruments USB_6212 real-time data acquisition card. LabVIEW software 

was used to acquire and record the data, the program code is shown in Appendix B3. The 

signal processing required a simple differential measure of the eye electrode (Eye) minus the 

reference electrode (Ref). The trigger signal from the light stimulus was also recorded so that 

off line averages could be computed. 
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4.3.2  Results 

Experimental results are presented here for two different stimuli; both are from a light-

adapted left eye. The photopic cone responses from 5 Hz and 30 Hz full-field LED stimulation 

with maximum pupillary dilation are discussed. Five data sets for each of the two different 

stimuli frequencies were taken with the EPS in order to determine mean and standard 

deviations for implicit time measurements, as discussed in Section 4.2.  Results of the EPS 

recordings, taken from the darkened screened room, are compared to recordings that had 

been previously collected using conventional electrodes on the same subject having been 

prepared in the same way. This data, provided by Cardiff University, was acquired using DTL 

fibre electrodes as well as Ag-AgCl skin electrodes [122] in an open laboratory. Placement of 

the Ag-AgCl electrodes was the same as that used for the EPS (Figure 4.4). An Ag-AgCl 

electrode was taped to the forehead to act as the ground electrode; both the under eyelid skin 

electrode and the DTL fibre electrode were referenced to a skin electrode taped to the temple 

adjacent to the eye under investigation, in this case the left eye. These ERGs were digitised at 

1000 samples per second into 16-bit signals by an industry standard evoked potential 

monitoring system, Medelec Synergy EP [125]. The digitised signals were then filtered by the 

accompanying software: a first order highpass and a second order lowpass filter provided a 

bandwidth of 1 Hz to 100 Hz. MATLAB was used to graph all ERGs and to post-process the 

recorded EPS signals, which included signal averaging and down sampling from 20 kSamples 

per second to match the standard of 1000 samples per second. Program code is provided in 

Appendix C. The data provided by Cardiff University were specified as ERGs resulting from an 

Amber LED stimulation, as in the literature [118]. However it should be noted that this detail is 

inaccurate since there are no Amber LEDs in the Mini-Ganzfeld stimulator, the Amber was 

created by mixing spectral components from White, Red, Green and/or Blue [123, 124].   

4.3.2.1  5 Hz Response 

A 5 Hz stimulus is non-standard with regard to ISCEV, but it was chosen for initial experiments 

to ensure electrical activity within the eye had time to return to the baseline before the next 

stimulus was presented. Figure 4.5 shows a comparison of the EPS data recorded in the 

screened room and the ERGs acquired using conventional recording electrodes whilst applying 

an amber 5 Hz full-field flash stimulus. Averages were computed over a 200 ms window, with 

the trigger signal used to align the EPS data with the DTL and skin electrode recordings. 
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Figure 4.5 Comparison of photopic ERG signals resulting from a 5 Hz full-field LED  

stimulus measured by the EPS, DTL fibre and Ag-AgCl electrodes,  

signals averaged 50 times over a 200 ms period 

 

It can be seen from the graph that the EPS acquired a response from the 5Hz stimulus with a 

similar shape to those acquired with the DTL fibre and skin electrodes, although smaller in 

peak to peak amplitude with a small DC offset. The difference in amplitudes can be attributed 

to the non-invasive capacitive nature of EPS coupling to the skin as well as the differences in 

electrode types, as discussed in the literature [120, 126, 127]. In order to verify that this signal 

was indeed the evoked response, the subject was asked to close their eye during a recording 

cycle; this was taken as the control data to determine if the ERG was a valid response detected 

by the EPS. Fourier analysis was performed on two sets of non-averaged data, one with the 

eye closed and the second with the eye open, Figure 4.6 shows the results of this frequency 

domain analysis on a ten second long data set. 
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Figure 4.6 Frequency domain measurement of the 5 Hz evoked potential with 

the eye closed (a) and open (b) in order to verify the signal  

 

It can clearly be seen from the above graph that a strong 5 Hz component as well as the 

expected harmonics are present in the data when the eye is open and none of these 

components are present when the eye is closed, thus verifying that we have indeed acquired 

the 5 Hz evoked response from the retina. 

Further time domain analysis was carried out on the ERGs; Figure 4.7 shows indications of the 

a- and b-Wave implicit time (La and Lb) for all three electrode recordings. Table 4.2 outlines the 

measured means and standard deviations for comparison. 
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Figure 4.7 Implicit time indications on 5 Hz ERGs recorded from: the EPS (blue), DTL (green) 

and Ag-AgCl skin electrodes (red) 

 

Table 4.2 Implicit time measurements from 5 Hz flash ERG 

 Implicit Time 

(mean ± SD) 

Electrode Type La  (a-wave) Lb (b-wave) 

EPS 25 ± 2.2 ms  44.7 ± 3.6 ms 

DTL 22 ± 0.5 ms 38.6 ± 1.1 ms 

Skin (Ag-AgCl) 22.2 ± 0.7ms  39.2 ± 1.4ms  

 

Good results in implicit time have been observed, and the EPS measurements agree with 

previously published results [118]. The longer observed implicit times on the EPS can also be 

attributed to the filtering effects of the AC coupling at the capacitively coupled input of the 

sensor. 
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4.3.2.2 30 Hz Response 

Figure 4.8 shows a comparison of the EPS data recorded in the screened room and the flicker 

ERGs acquired using conventional recording electrodes for an amber 30 Hz full-field stimulus. 

Three cycle averages were computed over a 90 ms window; the trigger signal was used to align 

the EPS data with the DTL and skin electrode recordings. In this case the initial trigger occurs at 

the time of zero seconds, the implicit time is then measure from the trigger point to the first 

peak in ERG amplitude, as indicated on the graph. The results are in agreement for implicit 

time measurements; there is still evidence of some signal smearing on the EPS, which again 

can be attributed to the capacitive nature of the sensor input. Numerical measures (mean and 

standard deviation) of implicit time for each ERG recording can be found in Table 4.3.  

 

Figure 4.8 Comparison of implicit time measurements from photopic ERG signals resulting 

from a 30 Hz full-field LED stimulus, measured by the EPS, DTL fibre and Ag-AgCl electrodes,  

signals averaged 100 times over a 90 ms period 
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Table 4.3 Implicit time measurements from 30 Hz flicker ERG 

Electrode Type Implicit Time 

(mean ± SD) 

EPS 32.9 ± 2.7 ms  

DTL 32.3 ± 1.4 ms 

Skin (Ag-AgCl) 32.5 ± 1.6 ms  

 

Once again similar results of implicit time measurements have been observed and all results 

agree with previously published values [116, 128, 129].  

 

 

Figure 4.9 Frequency domain measurement of the 30 Hz evoked potential with 

the eye closed (a) and open (b) in order to verify the signal 

 

Figure 4.9 shows the results of the Fourier analysis of two ten-second data sets. One is a 

control set where the eye under investigation was closed while the stimulus was applied, 

compared to a data set recorded when the eye was open while the stimulus was applied. We 

can see a clear 30 Hz frequency component is present when the eye was open, and none at all 

when the eye was closed, thus verifying we have detected the cone response from a 30 Hz 

visual stimulus.  
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4.4 Further Experiments 

4.4.1 Method 

Following on from the successful ERG signal acquisition in a screened environment, 

experiments were moved to a typical ophthalmology open laboratory set up at Cardiff 

University. The same subject was used and was prepared in the same way as previously 

discussed in Section 4.3.1. The EPS electrode placement and software configurations remained 

unchanged (Figure 4.4). The aim of the secondary experiments was a direct comparison 

between EPS and DTL fibre during simultaneous recordings, therefore the subject was required 

to have two pairs of recording electrodes applied during the experiments. The DTL fibre was 

inserted into the lower lid of the eye under investigation (left); it was referenced to an Ag-AgCl 

skin electrode taped to the temple adjacent to the eye. Data acquired from the DTL fibre 

electrode was  at 1000 samples per second into 16 bit digital signals by an industry standard 

evoked potential monitoring system, Medelec Synergy EP [125]. The digitised signals were 

filtered by the accompanying software: a first order highpass and a second order lowpass filter 

providing a bandwidth of 0.1Hz to 100Hz. MATLAB was used to graph all ERGs and to post-

process the recorded EPS signals. This included signal averaging and down sampling from 20 

kSamples per second to match the standard of 1000 samples per second. Program code is 

provided in Appendix C. 

4.4.2 Results 

Experimental results are presented here for two different stimuli, both from the light-adapted 

left eye. Photopic cone responses from a 1 Hz full-field and 30 Hz flicker white LED stimulation 

with maximum pupillary dilation are discussed. In both cases the stimulator was held between 

two and five centimeters from the eye. Five data sets for each of the two different stimuli 

were taken in order to determine mean and standard deviations for timing parameters, as 

discussed in Section 4.2. 
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4.4.2.1 30 Hz Response 

Figure 4.10 shows ERGs resulting from the 30 Hz flicker stimulus; both DTL fibre and EPS data 

recorded simultaneously are compared. Table 4.4 specifies the numerical results (mean and 

standard deviation) of the implicit time measurements. 

 

Figure 4.10 Comparison of implicit time measurements from photopic ERG signals resulting 

from a 30 Hz full-field LED stimulus, measured simultaneously by the EPS and DTL fibre 

electrodes, signals averaged 10 times over a 70 ms period  

 

Table 4.4 Implicit time measurements from 30 Hz flicker ERG 

Electrode Type Implicit Time 

(mean ± SD) 

EPS 33.1 ± 2.1 ms  

DTL 32.2 ± 1.2 ms 

 

Implicit time measurements correlate well between the two different types of recording 

electrodes. Both results agree with both previously presented data (Section 4.3.2.2) and with 

previously published data [116, 128, 129].  
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Fourier analysis was carried out on data from both types of recording electrodes; results are 

presented in Figure 4.11 for one second worth of data.  We can see from the graphs that for 

both the DTL fibre and the EPS recordings, a clear 30 Hz frequency component is present, as 

well as the smaller second and third harmonics at 60 Hz and 90 Hz.  

 

Figure 4.11 Frequency domain measurement of the 30 Hz evoked potential  

comparison between signals measured with a DTL fibre (a) and the EPS (b) 

 

4.4.2.2 1 Hz Response 

Figure 4.12 shows the raw ERG and stimulus triggers acquired during a white 1 Hz full-field 

stimulation. It is clear that the ERG response follows the trigger with a trough and peak in 

amplitude as expected. Although the third response at time ~2.1 s is smaller in amplitude than 

the others, it is still discernible as an evoked response due to the timing of the b-wave peak in 

amplitude following the stimulus. Figure 4.13 shows the ERGs simultaneously recorded from 

the EPS and the DTL fibre for the 1 Hz stimulus, but no averaging has been done on the data 

due to the recording capabilities of the conventional equipment used. Also with such a slow 

stimulus, it is difficult for the subject to hold the eye open without introducing movement 

artefacts or blinks into the signal acquisition. Again we can see a slight delay of the b-wave 

peak recorded by the EPS which can be attributed to the front end characteristics. 
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Figure 4.12 EPS measurement of five ERG responses to 1 Hz stimulus over 4.5 seconds  

 

Figure 4.13 Comparison of non-averaged photopic ERG signals resulting from a 1 Hz full-field 

LED stimulus measured simultaneously by the EPS and DTL fibre electrodes 
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In Figure 4.14 implicit time measurements have been added to a magnified portion of Figure 

4.13. Table 4.5 outlines the implicit time measure in terms of mean and standard deviation. 

 

 

Figure 4.14 Comparison of implicit time measurements from photopic ERG signals  

resulting from a 1 Hz full-field LED stimulus, measured simultaneously by  

the EPS and DTL fibre electrodes 

 

Table 4.5 Implicit time measurements from the 1 Hz flash ERG 

 Implicit Time 

mean ± SD 

Electrode Type La  (a-wave) Lb (b-wave) 

EPS 17.3 ± 1.3 ms  42 ± 3.2 ms 

DTL 16.6 ± 0.5 ms 34.6 ± 0.5 ms 

 

Good results can be seen when comparing the EPS and DTL recordings; the longer b-wave 

implicit time can again be attributed to the capacitive input characteristics of the EPS. 
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4.5 Discussion and Future Work 

The research presented aimed to investigate the feasibility of using the Electric Potential 

Sensor for surface recordings of high quality electroretinograms, a visually evoked potential of 

the retina. ERGs were compared for the same subject using different stimulus colour, 

frequencies and recording electrodes. ERGs recorded with the EPS were compared to those 

recorded from some conventional style electrodes, more specifically the invasive DTL fibre and 

the non-invasive Ag-AgCl skin electrode. Comparable results of implicit time measures were 

achieved across the stimulus frequency range investigated (1 Hz, 5 Hz and 30 Hz). Throughout 

investigations a common occurrence was apparent: the EPS introduced a slight smearing effect 

or time delay in the recording of the ERG signals. This can be attributed to the capacitive input 

characteristics of the EPS. While the EPS has a 0.1 Hz hardware low frequency cut-off, the 

conventional electrodes are DC electrodes and will not be affected in this way.  

One of the main objectives of this investigation was to determine if the EPS could be a viable 

replacement for the Ag-AgCl electrodes. As discussed in Section 4.2, these electrodes are not 

ideal for children; there are time dependant factors when using these electrodes such that skin 

preparation is required and gel must be applied. The preparation process must be repeated if 

the electrodes are incorrectly positioned. While the EPS electrode in its physical form provides 

a unique alternative since no preparation is required, the signal quality at low frequencies is 

not up to a standard acceptable for clinical diagnosis. From an electronic engineering point of 

view, this experiment was successful, proving that the EPS can successfully acquire this type of 

visually evoked potential. However, in terms of acceptance of a new technology into the 

medical field, improved results would be necessary. In addition to this, statistical verification of 

the results would be necessary. This would be achieved by observing ERGs across a variety of 

subjects and determining if they are statistically significant, Appendix E outlines a protocol for 

testing the results achieved by the EPS as well as a method to benchmark this against 

conventional technologies.  

Possible future work could be to increase the input impedance at the sensor input to achieve 

an improved low frequency response. Alterations to the shape and size of the sensor housing, 

electrode and guarding could be investigated. Holding an electrode of 10 mm diameter to ones 

lower eye lid can cause difficulties achieving a full guard around the active electrode, which in 

turn degrades the signal levels and increases noise susceptibility. Decreasing the diameter 

could possibly overcome these issues. 
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5 Upper Limb Rehabilitation using 

Surface Electromyography (SEMG) and 

Real-Time Biofeedback 

5.1 Introduction 

Electromyography (EMG), the term used to describe the technique for recording and 

evaluating electrical activity produced by muscles [130], has been around since 1849 [131].  

Muscles are made up of many fibres; these fibres carry electrical impulses transferred from the 

central nervous system. Each individual fibre can be thought of as a conducting strip carrying 

the impulses. These impulses, called motor unit action potentials (MUAPs), are what cause the 

muscle to contract. The central nervous system controls the muscle force by adjusting the 

amplitude and frequency of the MUAPs sent to the muscle fibres. Figure 5.1 shows a schematic 

of the EMG signal path from the neurological origin to its summation of MUAPs innervating the 

muscle.  In early days, highly invasive techniques were used to detect these action potentials, 

whereby a needle electrode would be inserted into the muscle fibre. However, the summation 

of MUAPs causing a muscle to contract can be detected at the skin surface above the origin of 

the signal. The acquiring and evaluation of these signals from the skin is called surface 

electromyography (SEMG). 
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Figure 5.1 Illustration of how the EMG signal results from a summation of Action Potentials 

originating from the central nervous system, taken with permission from [61] 

 

Two main types of voluntary muscular contractions exist: isometric and isotonic. An isometric 

contraction occurs when there is no change in muscle length and hence there is no associated 

movement. An isotonic contraction causes dynamic movement and the muscle length shortens 

and/or lengthens. The ability to collect information about muscle contractions non-invasively 

from the skin has attracted considerable interest in the fields of medical research [10, 11, 132], 

rehabilitation [12-18, 26-29], assistive technologies [25, 133-140] and sport science [16, 141, 

142].  

5.1.1 SEMG Signal Characteristics 

Several attributes of the SEMG signals make them attractive signals for research use in the 

aforementioned fields. The main power frequency spectrum of SEMG signals typically ranges 

from 10 Hz to 250 Hz, depending on the type of contractions under investigation, it is generally 

accepted that amplifiers must provide a bandwidth up to at least 500 Hz [61, 62, 143]. Power 

spectral density (PSD) functions allow for frequency domain measures to be analysed. Mean, 

median and peak frequencies can be observed over time and are frequently used in muscle 

fatigue studies [133, 134, 144-146]. 
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The SEMG potentials detected at the skin depend on several factors, including individuals, 

sensor placements and time of observation. Time domain analysis of muscle signals can 

include raw and rectified amplitudes. While these measures can offer valuable information 

they are not typically used due to their unquantifiable and variable nature. More common 

place in SEMG time domain analysis are the moving average filter, linear envelope filter and 

root mean square (RMS) calculations. The preferred recommendation for time domain 

processing of SEMG signals is the RMS [130, 147, 148]. Time domain analyses are a highly 

exploitable characteristic of SEMG signals for use in assistive technologies; applications such as 

wheelchair control [21, 23, 24, 149, 150], prosthesis control [135, 138-140] and assistive 

robots and robots for rehabilitation [28, 136, 137, 151-162] have all been proven successful in 

research. Since SEMG amplitudes can vary greatly they may not be useful for group 

comparisons or following events over time unless a suitable reference value is available.  

Several normalisation methods employing Maximum Voluntary Isometric Contractions 

(MVICs), for use as a reference have been described and reviewed, it is generally acceptable to 

choose the method which best suits the study [163, 164]. 

The experimental work discussed in this chapter focuses on a system designed for 

rehabilitation monitoring using normalised RMS SEMG amplitudes to monitor progression 

through a program of rehabilitation. 

5.1.2 Biofeedback and Rehabilitation 

Biofeedback is a technique where a person can learn to control some types of bodily responses 

at will. The technique can aid in developing a self-awareness of the body and help it to become 

more functional. The biofeedback process provides information usually on a meter, visual 

display, auditory unit or computer screen, about various bodily functions in order to achieve 

improved regulation. The aim of a biofeedback system is to provide a user with the correct 

information to support learning to move towards better control. There is considerable interest 

in using surface electromyography for quantitative rehabilitation studies [15, 17, 18, 165] as 

well as employing real-time SEMG signals in assistive [29, 158, 166] and biofeedback systems 

[68, 69, 167].  

The systems presented in the literature [68, 69] propose a similar framework and user 

interface for ease of interpretation by a subject. In both examples the user is shown 

normalised SEMG amplitudes, acquired using surface As-AgCl electrodes, as an indication of 
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muscular force. The system presented aims to support the rehabilitation process [68], however 

provides no experimental results to support the use of their system. The second system was 

tested by 10 healthy subjects [69]; the bicep muscle EMG was monitored when the subject 

was instructed to carry out a specific task. No quantitative results have been published, 

however a usability report completed by the test subjects showed an 80% approval rate on 

potential system usability in a rehabilitation environment.   

The system proposed in this chapter is similar in framework and interface to those presented 

[68, 69]; however an opportunity presented itself to test the system on a subject alongside a 

course of rehabilitation following an injury. The aim of the following experiment was not only 

to test an EPS biofeedback system on an appropriate subject but also to examine the effects of 

limb immobilisation following injury. Long periods of inactivity, brought about by 

hospitalization or broken limbs can influence the body in a variety of ways. The general 

influence of inactivity due to immobilization on the structure and function of skeletal muscle 

can cause muscle morphology (atrophy) or a change (decrease) in muscle function.  Various 

models have been chosen to study the effects of limb inactivity on muscle function of healthy 

subjects, such as bed rest [168] and forearm immobilisation [169-172].  In the bed rest study 

[168], lower limb muscle activity was monitored. Flexion of the knee was performed prior to 

and after six weeks of bed rest, a 44% increase in normalised EMG (%MVIC) translating into a 

reduction in strength was observed at six weeks. Forearm immobilisation using casts have 

shown a range of reductions in strength, three week immobilisation studies have produced 

results ranging from  a 14.7% [169] to 27% [171] and 29.3% [170] reduction during wrist 

flexion. In a shorter study with nine days of immobilisation, wrist flexion and extension 

decreased by 19.9% and 32.5%, respectively [172].   

5.2 Method 

A 31 year old female subject was presented following severe shoulder trauma. Injury was 

sustained to the right humerus, including shoulder dislocation and a fracture of the surgical 

neck with proximal migration of the humeral shaft. Surgery was required for plate fixation on 

the humerus; the subject was immobilised in a sling for six weeks post-surgery. During the first 

six weeks, the subject was advised not to actively move the injured arm. Muscle atrophy was 

visually realised resulting from the length of inactivity of the shoulder muscles. Extensive 
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rehabilitation was required in order for the subject to regain muscle mass, function and 

strength.  

Once the subject had reached the active rehabilitation stage she agreed to weekly muscle 

monitoring sessions. Details of the SEMG monitoring system can be found in the following 

section (5.2.1); further details on the activities carried out during monitoring sessions are 

outlined in Section 5.2.2. 

5.2.1 System 

In order to monitor the rehabilitation progress a system was designed such that SEMG signals 

could be acquired and displayed in real-time on a custom GUI. The SEMG signals were acquired 

directly from the skin with the use of six Electric Potential Sensors. The sensors, which have 

been discussed previously in Chapter 1, included internal two stage amplification of x114. The 

sensors provided a bandwidth from 10 Hz to 3 kHz using a hardware first order bandpass filter. 

The output signals from the sensors were taken through a control box with an additional ten 

times amplification and anti-aliasing filtering before being converted from analog to 16-bit 

digital signals at 5 kSamples per second by a National-Instruments USB-6212 real-time data 

acquisition card. LabVIEW software was used to acquire, process and record the SEMG signals.  

Real-time signals were filtered using a 6th order Butterworth filter from 20 Hz to 500 Hz in 

order to view the main signal components of the SEMG signals. Mains noise was filtered out 

using a 6th order bandstop filter centred on 50 Hz with a 2 Hz bandwidth. 

 
Single differential measurements were taken, from each of the sensors placed over the active 

muscles under investigation, with respect to reference sensors. Reference sensors are placed 

on a part of the body, away from the measurement point, with minimal EMG activity. The 

process of taking the single differential measurement removes common mode noise from the 

electrode measurement system. The single differential measurements were fed through an 

RMS filter with a 500 ms time constant before being displayed in real time to the user. Figure 

5.2 shows a block diagram of the full system including both the hardware and software. 

LabVIEW Program code can be found in Appendix B4. 
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Figure 5.2 Block diagram demonstrating the configuration of sensors, DAQ and the  

associated software components for acquiring SEMG signals 

 

SEMG signal amplitudes were displayed in an easy to interpret graphical form. Before any 

monitoring took place, the subject was given a short tutorial on the user interface so that she 

could easily understand the results. Normalised RMS amplitudes were displayed in real time, 

as well as a bar graph indicating %MVIC. The front panel display is shown in Figure 5.3. 

 

 

Figure 5.3 Real-time Biofeedback rehabilitation graphical user interface showing muscular 

activity for the left and right side of the body 
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5.2.2 Procedure  

Rehabilitation exercises were aimed at gaining strength and range of motion during flexion and 

abduction movements of the shoulder. The normal range of motion of the shoulder can be 

seen in Figure 5.4. The deltoid muscle was chosen for observation during rehabilitation 

exercises because of visible signs of atrophy and due to the fact that it is a large close to the 

surface muscle which is highly innervated during these types of shoulder movements.  

 

 
(a) (b) 

Figure 5.4 Normal shoulder range of motion: (a) Flexion, from 0° to 180° (b) Abduction, from 

0° to 180°, taken from [173] 

 

Sensors were attached to the subjects left and right shoulders above anterior and lateral 

deltoids (Figure 5.5). Electrode locations were chosen using the SENIAM recommendations for 

sensor locations in the shoulder [143]. Two further reference electrodes were attached to each 

wrist. Reference sensors were required for both the left and the right side of the body in order 

to eliminate any ECG contamination that could arise from a cross body differential 

measurement. No skin preparation was required due to the capacitive nature of the EPS; 

sensors were attached to the shoulder using surgical tape to secure them in place. 
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Figure 5.5 EPS electrode placement for acquiring SEMG signals during rehabilitation 

 exercises, taken from [174] 

 

Prior to monitoring and measuring, the subject warmed up with some light stretching and arm 

pendulum exercises. Once she felt she was adequately warmed up MVIC measurements for 

the session were recorded. MVICs were collected during each session in order to compare the 

muscle activities over the course of rehabilitation. To obtain the MVIC for each muscle tested, 

the subject was directed to perform a series of static resisted isometric contractions. While 

standing in an upright position the arm was restricted at 0° with resistance applied close to the 

elbow. For the lateral deltoid MVIC the thumb was pointing out, for the anterior deltoid the 

palm was neutral. The subject then applied a maximal effort contraction against the restriction 

for both abduction and flexion movements. The average RMS SEMG amplitude during three 

five second contractions was used as the MVIC for normalisation. The subject was instructed 

to rest for two minutes between each MVIC measurement in order to minimise fatigue. Once 

the MVIC for each muscle was ascertained, it was entered into the program for normalising the 

SEMG signals before displaying them on screen.  

Measurements of system noise were also determined at the start of each recording session, 

the subject was instructed to stand still in an upright position while completely relaxing her 

deltoid muscles. Ten seconds of RMS data was averaged and used as the reference system 

noise for additional normalisation. Noise measurement results were consistently found to be 

20 µV RMS.  
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Two exercises were carried out by the subject during each session: side lateral raise 

(abduction) and front raise (flexion). Repetitions were completed in a slow and controlled 

manner with an aim of keeping the MVICs for both arms around the same level as much as 

possible. The subject was allowed to practice, but advised to keep the number of repetitions 

minimal including at least a two second rest between movements to avoid fatigue.   

5.3 Results 

The procedure outlined in Section 5.2.2 was repeated during each monitoring session; sessions 

were carried out at six, eight, ten, 12 and 24 weeks post-surgery.  Surface EMG data was 

collected for three repetitions of each of the movements. The data recorded using LabVIEW 

was post processed using MATLAB software. Post processing was used to compute the average 

of the SEMG amplitudes during three sustained contractions as well as graphically interpreting 

the results. During the primary stages of rehabilitation the subject was unable to raise her 

injured arm fully without the shoulder joint lifting in an irregular form. This was taken as an 

indication that incorrect muscles were being used to lift the arm and the results were 

discarded from the study. Maximum shoulder deflection, with no visual shoulder deformation, 

was recorded at each session and was used as a reference for progress. Table 5.1 shows a 

summary of the maximum deflection angles achieved (highlighted in grey) per session as well 

as the angles monitored to show the subjects progression. 

 

Table 5.1 Maximum shoulder deflection angles, where no shoulder deformation occurred, 

during monitoring of rehabilitation exercises 

Monitoring Week 6  8 10  12  24 

Maximum shoulder 

deflection achieved [°] 

30 30 30 30 30 

 60 60 60 60 

  90 90 90 

 

In each of the cases above, a wall mounted measuring tape was used to infer a reference joint 

angle on the healthy shoulder.  Before recording any data, the maximum normal deflection of 

the injured shoulder was measured at the fingertips visually along the tape. This distance was 

then used as the reference point; physical markers were used for either side of the body as 

end of movement points ensuring that both arms moved to the same angle. Calculation of the 

angle was then carried out using trigonometry and limb measurements. A shoulder to fingertip 
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measurement was taken as well as a hip to fingertip measurement in order to calculate the 

physical movement angle. 

Figure 5.6 shows the results of the left and right lateral and anterior normalised SEMG 

amplitudes over time for 30° shoulder abductions. Data points represent the mean over three 

repetitions of each of the movements; the error bars indicate the associated standard 

deviations. There is a clear indication that the right injured shoulder required a much greater 

muscular force, in terms of %MVIC, to reach the desired deflection angle. Over time, the right 

SEMG tends towards the level of the healthy left SEMG and hence the isotonic contraction 

generated in the shoulder muscle in order to cause the arm to lift to a 30° deflection angle 

reduces. 

 

 

Figure 5.6 Comparison of normalised SEMG signals for right (injured) and left (healthy) 

shoulder muscles during a 30° abduction of the arms 

 

Similar results can be found in Figure 5.7 for shoulder flexion movements. When comparing 

the SEMG amplitudes between the electrode locations, the anterior muscle appears to work 

harder than the lateral during both types of contractions. This is to be expected since the 
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anterior deltoid is responsible for joint stabilisation and will need to work harder, where the 

lateral deltoid is responsible for the physical movement. 

 

Figure 5.7 Comparison of normalised SEMG signals for right (injured) and left (healthy) 

shoulder muscles during a 30° flexion of the arms 

 

Results for left and right lateral and anterior normalised SEMG amplitude versus time for 60° 

and 90° shoulder deflections in abduction and flexion showed similar tendencies (see 0).  

Figure 5.8 to Figure 5.10 show the results of the differences between left and right lateral and 

anterior normalised SEMG amplitude versus time for 30°, 60° and 90° shoulder deflections in 

abduction and flexion. It is clear that the right injured shoulder required a much greater 

muscular effort, in terms of %MVIC, to reach the desired deflection angle during the early 

stages of rehabilitation. Over time the right SEMG tends towards the level of the healthy left 

SEMG level required to generate the isotonic contraction to cause the arm to lift to the 30°, 

60° and 90° deflection angles.  
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Figure 5.8 Comparison of the difference between the normalised SEMG amplitudes  

for the right and the left shoulder over the course of rehabilitation 

 for a 30° abduction (a) and a 30° flexion (b) 

 

Figure 5.9 Comparison of the difference between the normalised SEMG amplitudes  

for the right and the left shoulder over the course of rehabilitation 

 for a 60° abduction (a) and a 60° flexion (b) 
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Figure 5.10 Comparison of the difference between the normalised SEMG amplitudes  

for the right and the left shoulder over the course of rehabilitation 

 for a 90° abduction (a) and a 90° flexion (b) 

5.4 Discussion 

This chapter aimed to investigate the feasibility of using the Electric Potential Sensor in a real-

time biofeedback rehabilitation program. During the monitoring we were evaluating the use of 

the EPS and the legitimacy of using biofeedback in the rehabilitation process. In the opinion of 

the user she felt it was useful to see, when performing rehabilitation exercises, the intensity 

levels of the muscles being used during exercises and to quantify progression. She commented 

that the sensors were comfortable to wear throughout the monitoring process. Attaching the 

EPS was not an invasive procedure and repositioning when necessary was achieved quickly and 

painlessly. 

Further off-line results showed that there was a marked increase in isotonic contraction 

intensity for each of the desired shoulder deflection angles. A certain increase in SEMG activity 

seems logical in light of the decrease in muscle mass due to the atrophied muscle having to 

produce a larger innervation to reach the desired joint angle. This effect can be supported by 

results seen in the literature [168-172]. The differences in results can easily be attributed to 
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the fact these immobilisation studies were carried on healthy subject, for smaller 

immobilisation time durations.   

During the initial monitoring session the results indicated a clear loss of muscle function and 

hence an increased need for deltoid muscle contraction in order to cause arm movements at 

the injured shoulder, compared with that of the healthy shoulder. The right shoulder SEMG 

tended towards the same level as the left shoulder SEMG over the course of rehabilitation. An 

increase of 99.04% and 58.19% in MVIC during shoulder abduction was displayed in the injured 

shoulder at the first monitoring session. These differences decreased to just 8.96% and 7.18% 

MVIC by the final monitoring session at 24 weeks. The amplitudes are far closer in intensity, 

which we would assume is correct as the subject underwent six weeks of rehabilitation then 

went back on to normal everyday activities.  
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6 SEMG Recordings of the Bicep Muscle 

During Fixed Trajectory Movements 

6.1 Introduction 

Surface electromyography has been used widely as an information source regarding human 

movement intentions for myoelectric control of prosthesis [135, 138-140, 175, 176] and 

assistive robots for rehabilitation [13, 26-29, 136, 158, 162, 166, 167, 175] or mobility [21-23, 

149, 151, 155, 177]. Conventional research aims to produce control structures based on 

mapping muscle activity to human joint torque estimation [178]. However the performance of 

this type of control is influenced by several factors that can limit performance. These factors 

include a wide range of muscle types, ranges in muscle properties such as fibre lengths and 

densities as well limb positions used during said control algorithms [179, 180].  

In the previous chapter a study was carried out where muscle movements were monitored 

over the course of rehabilitation. However, during the study, various factors were ignored. 

External constraints such as the timing of limb movements, limb acceleration and the load 

being moved by the limb were not included in the study. In depth human movement studies 

include controllability of many of these factors. Similar experiments are carried out while 

changing the static set of variables during discrete movements of a single joint in order to 

properly verify any kinematic myoelectric relationships that may arise [70-75].  An experiment 

was designed to incorporate such external constraints, aiming to investigate the relationship 

between limb dynamics and SEMG signals acquired using the EPS, and thus identify a 

relationship between joint torque and SEMG amplitudes. An apparatus was employed that 

ensured a similar trajectory would be followed each time the limb under investigation was 

moved. The apparatus also included the ability to monitor real-time changes in joint angle 

which allowed for off line calculations of limb dynamics. 

The experimental work of this chapter relies on a single healthy male subject, 32 years old with 

no prior arm injuries. Bicep SEMGs were recorded for both sides of the body, alongside the 

physical movement information.  
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Based on Newton’s second law of motion,	: = ;<; if a torque is applied to a system in 

equilibrium, an angular acceleration will result. This is generally proportional to the second 

moment of inertia of the whole system. However in the simplified system, as long as the mass 

used is substantial enough to require a large torque to accelerate it, the effects of the smaller, 

less significant moments of inertia of the apparatus can be neglected, giving an overall torque 

for the system of: 

= = ;>? + ;5? (6.3) 

 

 

MASS

Bicep Electrode

Reference Electrode

Rotary Encoder

 

Figure 6.2 Configuration of the apparatus used to measure real-time physical joint deflection 

angles, including EPS placement locations used to measure real-time  

SEMG signals from the bicep, based on image taken from [181] 
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SEMG signals were acquired directly from the skin using the sensors and software 

configuration that was outlined in Section 5.2.1 and Figure 5.2. An EPS sensor was placed on 

the belly of the bicep with an additional reference sensor attached to the wrist (Figure 6.2).  

Angular displacement measured at the joint by the rotary encoder was  by the same system 

used for the SEMG signals. The subject was seated in front of a computer monitor that 

displayed real-time data from the rotary encoder, showing measurements of the physical joint 

angle (Figure 6.3). A large LED indicator was also on screen that would light once the subject 

had reached the target angle under test. The subject was instructed to perform 10 elbow 

flexion movements in his own time, aiming to accurately reach the target each time. Results 

were recorded for both left and right biceps while completing movements to target angles of 

18°, 36°, 54°, 72° and 90°.  The mass used for all target angles, 3.75 kg, remained constant 

throughout the experiment. All recordings were taken during one recording session where the 

electrodes remained on the subject for the duration of the experiment. 

 

 

 

Figure 6.3 Graphical user interface showing real-time joint movement measurements, 

displayed to the subject during the limb dynamics experiment  

6.3 Results 

The SEMG results presented here were RMS filtered with a 500 ms window, MVIC normalised 

and noise corrected.  SEMG data was recorded by LabVIEW; all post processing was completed 

using MATLAB. The MVIC normalisation amplitude was acquired in a similar manner to that 

outlined in Section 5.2.2. For this experiment the subject made brief MVICs with the apparatus 
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locked at 90°. Three, five-second isometric contractions in flexion were recorded. The average 

RMS SEMG during sustained contractions was used as the MVIC. Between each contraction the 

subject had two minutes rest to minimise fatigue. Measurements of system noise were taken 

while the subject was seated and at rest. He was instructed to relax for a single 10 second 

recording.  Noise levels were determined off line by averaging the RMS amplitude over the 10 

second recording. For both arms the noise was measured at 20 µV RMS. This noise represents 

noise from the full sensing system as well as any residual muscle noise presented from the 

subject at rest.  

 
Figure 6.4 shows the three stages of SEMG signal processing with a normalised 18° joint target 

angle recording for reference. The SEMG data is displayed in blue and the data from the rotary 

encoder is displayed in red. Data from the rotary encoder depicting physical joint movement 

has been normalised to an arbitrary scale for reference. Figure 6.4(a) shows the rectified SEMG 

signal from the bicep of the right arm with the physical movement signal. 

 

 

Figure 6.4 Right arm data: (a) Rectified SEMG and normalised physical limb movement,  

to 18° target (b) RMS SEMG with a 500 ms window and normalised limb movement  

(c) Normalised SEMG as %MVIC 
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Figure 6.4 (b) shows the rectified SEMG signal after RMS filtering. The RMS interpretation of 

the SEMG signal accurately represents the SEMG signal. A slight lead in SEMG activity can be 

seen compared to the physical movement, and this is due to the electro-mechanical attributes 

of limbs and muscle function [63]. The RMS signal normalised to the MVIC and noise corrected 

is shown in Figure 6.4 (c).  

 

 

Figure 6.5 Right bicep normalised SEMG amplitudes (blue) and normalised physical limb 

movements (red) to target angles of (a) 18° (b) 36° (c) 54° (d) 72° and (e) 90° 

 

Figure 6.5 shows normalised SEMG amplitudes (blue) along with scaled physical limb 

movements (red) for five different target angles. Again data from the rotary encoder depicting 

physical joint movement has been normalised to an arbitrary scale for reference.  
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Figure 6.6 Right bicep: Averaged normalised RMS SEMGs for x10 lower arm 

 movements to different target angle 

 

In Figure 6.6, above, normalised right bicep SEMG signals averaged over the 10 repetitions for 

each target angle, are displayed. Averages have been calculated from the muscle activation 

onset; this is taken as the first sustained contraction over the noise baseline [63, 182]. Similar 

results were achieved for left arm movements; these can be seen in 0. 

 
Figure 6.7 shows a comparison between normalised SEMG amplitudes for each of the joint 

target angles for each arm. There is a slightly linear correlation between normalised SEMG 

amplitude for the isotonic contractions and the corresponding joint target angle. There is also 

a notable difference between the sensitivities of the left arm (blue) and right arm (red). 

However large error bars, representing the standard deviations for each target angle trial, are 

present on the graph. The deviations, which range from 5.23 % MVIC to 12.73 % MVIC, along 

with the variation in sensitivities between arms, render the linear relationship untenable. 
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Figure 6.7 Normalised left and right bicep SEMG versus limb target angle 

 

Figure 6.8(a) shows data, from the rotary encoder, for the physical limb movements to the 

visual targets of 18°, 36°, 54°, 72° and 90°. Figure 6.8 (b), (c) and (d) are calculations of angular 

velocity, angular acceleration and torque for each of the target angles using equations (6.1) to 

(6.3). From the calculations of the torque produced by the limb, we can correlate limb target 

angle with peak joint torque. This provides a linear relationship, which is expected as the 

calculations are based on linearly changing values of angular velocity and acceleration, (see 

Figure 6.9). A relationship between peak joint torque and normalised SEMG has been 

investigated in Figure 6.10.  
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Figure 6.8 Right arm limb dynamics for fixed movement trajectory, x10 averages:  

(a) limb trajectory data (b) angular velocity (c) angular acceleration (d) joint torque 
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Figure 6.9 Peak joint torque developed during fixed trajectory movement  

versus limb  target angle 

 

 

Figure 6.10 Normalised SEMG amplitude versus peak joint torque developed during fixed 

trajectory movement: (a) Left arm (b) Right arm 
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The relationship shown in Figure 6.10 is difficult to summarise when comparing results from 

the left and right sides as the torques produced on either side of the body were not identical. 

There is a slightly linear relationship evident between the torque and SEMG signals, this being 

more evident for the right arm studies. However, there is also evidence of non-linearity due to 

the significant variability in the trials. Successful studies of both of these relationships have 

been published; there are those who support and have successfully applied control algorithms 

based on a linear relationship [175, 180] and those who have used more complex non-linear 

control structures [136, 183-185].  

6.4 Discussion and Future Work 

The analysis covered in this chapter offers both encouraging and cautionary results on the use 

of SEMG magnitude as an indicator of muscle force. SEMG magnitudes show a linear 

relationship with increasing target distance as did the joint torque output; however the 

significant variability in the SEMG amplitudes leads to speculation that this correlation may not 

be consistent under all conditions. Deviations in normalised SEMG amplitudes per target 

ranged from 5.23 %MVIC to 12.73 %MVIC. The corresponding peak joint torques deviated from 

the linear best fit model ranging from 5.13 Nm to 22.44 Nm. If we were to hypothesise that a 

linear relationship existed, in order to infer a joint torque relative to a SEMG amplitude, the 

slope would be far smaller than the statistical deviations.  

The results presented here have not been directly compared to any published work due to the 

wide variations in processing techniques. Further experiments are recommended, which 

include direct comparison to conventional technologies such as Ag-AgCl electrode recordings. 

Signal processing and SEMG normalisation protocols would need to be identical such that a 

direct comparison could be made through the application of benchmarking statistical analysis 

to better quantify the capabilities of the EPS as an SEMG sensor. Proposed statistical analysis 

methods are outlined in Appendix E.2. Supplementary to these experiments, further 

investigations would be needed to correlate the SEMG signals with the physical attributes of 

limb dynamics. Experiments would need to include a more diverse set of variables such as, 

more experimental subjects and monitored muscles, varying weights and timing parameters. 

To clarify relations between joint torque and SEMG amplitude, experimental designs where 

joint torque could be controlled would be optimal. In addition to  
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7 Conclusions 

 

The most desirable outcome when developing new applications relating to healthcare and 

assistive technologies is an improvement in quality of life. This quality of life can be established 

in several different ways, be it personal comfort during electrophysiological signal monitoring 

for health diagnostics, to cost and ease of use for assistive products for use in the home. Ease 

of use has metrics such as hardware application and configurations as well as software 

learning times. Sensors must be robust and reliable, with the capability to deliver high quality, 

low noise signal resolutions. A range of applications based on the versatile Electric Potential 

Sensor (EPS), configured in both contact and remote mode, have been presented. The aim of 

this research was to verify that employing the EPS for healthcare and assistive technologies (AT) 

can deliver the fidelity of electrophysiological signals required, along with the benefit of 

improved quality of life due to its ease of use and non-invasive properties. 

 
The first application discussed was a non-contact sensing system used to predict the position 

of a hand within a sensing area. The system benefited from detecting perturbations in the 

ambient electric field caused by a grounded target, the hand, within the sensing field. The 

method employed meant that there was no requirement for an induced electric field, and 

hence the hardware associated with the system maintained simplicity. A robust two sensor 

system, reliant on minimal signal processing, for one dimensional sensing over 300 mm was 

presented. The one dimensional sensing plane allows for detection of grounded objects 

passing through the electric field between the sensors, hence the system could be applied to 

larger sensing areas, such as a room or hall. This type of sensing has many potential 

applications for full human movement detection, such as room occupancy detection and smart 

lighting systems. A more complex system was developed such that two dimensional sensing 

was achieved; this system required a more complex control algorithm but remained solely 

reliant on the perturbations to the ambient field caused by the hand, thus the system 

maintained simplicity. The real-time two dimensional hand tracking system was interfaced 

with a PC, and simple predictive text program, such that a user could control a mouse cursor to 

type solely using the movement of the hand in the space above the sensing area. While this 

system proved easy to learn through user testing, tests were only carried on healthy 

individuals who commented that a conventional mouse was easier to use. The system would 
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be suitable for those that have difficulty using conventional PC mice; further testing on this 

demographic would be highly beneficial. 

 
The EPS was also used to acquire electrophysiological signals from the surface of the body, 

more specifically, signals originating from the eyes and the muscles. Two different versions of 

the EPS were designed to suit the amplitude and bandwidth demands of the two types of 

signals. The sensors designed to acquire signals originating from the eyes provided a 

bandwidth from 0.1 Hz to 86 Hz. The sensors for acquiring muscle signals provided a 

bandwidth from 10 Hz to 3_kHz. Both sensors provided x114 gain which proved adequate 

amplification for the low signal levels which range from micro to millivolts. The low amplitudes 

of these electrophysiological signals require that the sensors have a low noise profile. Noise 

measurements showed that the integrated noise voltages over the sensor bandwidth for the 

eye sensors was 154 nV, and for the muscle sensors was 2.34 µV. 

 
A three sensor eye tracking system, based on electrooculgraphy (EOG) was presented in 

chapter three. The three sensor configuration eliminated the need for additional facial 

electrodes as is found in typical EOG systems. Horizontal and vertical gaze positions were 

determined by measuring displacement voltages presented by the rotation of the eyes. The 

sensors were mounted on an easy to apply headband, several users were tested on their 

ability to put on the sensing device individually with little instruction. Results for horizontal and 

vertical resolutions, <1° and 2° respectively, were comparable with conventional sensing 

techniques used in similar research. It was found that depending on the subjects and the 

sensor placements, sensitivities varied but maintained linear relationships in the range of ±40°. 

To create a viable application based on EOG signals a calibration routine is required to 

normalise signal amplitudes for any user such that they could be used as inputs for control 

algorithms. A full application based on the EOG headband was not discussed; however future 

projects could include various control systems such as eye typing, vehicle control and video 

gaming. It would also be beneficial to miniaturise the sensors in order to mount them on a pair 

of glasses; this would make them easier to put on, more comfortable to wear and much more 

aesthetically pleasing. 

 
Chapter four presented a comparison between the EPS and conventional eye health 

monitoring equipment used in Ophthalmologic clinics for diagnostics. The EPS was employed 
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to record electroretinograms (ERGs) for direct comparison to typical sensing electrodes. The 

EPS was proven capable of recording these signals to a similar standard to the Ag-AgCl surface 

electrodes. Comparable results were achieved. For example, ERG signals were acquired for 

1_Hz and 5 Hz full-field flash stimuli, implicit time measurements (La and Lb) were found to be: 

17.3 ± 1.3 ms and 42 ± 3.2 ms for the 1 Hz stimulus and 25 ± 2.2 ms and 44.7 ± 3.6 ms for the 

5_Hz stimulus. Further measurements were made for implicit time, on signals acquired during 

two separate 30 Hz flicker ERG stimuli experiments, the results of which were 32.9 ± 2.7 ms 

and 33.1 ± 2.1 ms. The benefit of using the EPS being that no conductive gels or skin abrasion 

was necessary. The placement of electrodes for this type of sensing is crucial, direct contact 

with the lower eye lid is absolutely necessary in order to acquire ERGs. In this sense the EPS 

has a downfall for this type of sensing, as the sensor housing is large compared with 

conventional electrodes. Improvements to the sensor design could be made to ensure a more 

comfortable experience for the subject. As these experiments were only carried out on a single 

subject, it would be crucial to carry out further experimental trials on a range of subjects in 

order to verify the accessibility of successful infiltration into this sensing market. 

 
Chapters five and six were focused on the use of surface electromyograms for monitoring 

muscle movements. Chapter five specifically focused on a real-time biofeedback rehabilitation 

monitoring application. A unique opportunity was presented where an injured subject was 

available for SEMG monitoring throughout the course of rehabilitation. Access to this subject 

for experimental work allowed for valuable feedback to be gained on both the use of the EPS 

and the biofeedback system. Bi-weekly monitoring of rehabilitation exercises was carried out; 

during each monitoring session the electric potential sensors were applied to the subjects 

injured and healthy shoulders. Due to the extent of the injuries sustained the subject required 

assistance applying the sensors, but felt the EPS was easy to apply and comfortable during the 

monitoring sessions. The subject also noted that the real-time biofeedback system was easy to 

understand and provided helpful visual progression indicators of muscle improvements, which 

when carrying out a lengthy rehabilitation program with slow progression helped to keep up 

moral. Improvements to the sensor design would be beneficial so that a user could apply them 

individually; this could lead into the development of home rehabilitation systems and 

telehealth monitoring applications.  

 
Chapter six aimed to study and analyse the correlation, if any, between bicep SEMG signals 

and limb dynamics of the lower arm. The potential of this relationship lies in a use for complex 
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control algorithms for various systems such as mobility aids, robotic limbs and prosthetics. In 

studies of this type there are various decisions to be made regarding the sensor placements, 

and external constraints such as the limb load, positioning and movement trajectory as well as 

the associated signal processing that must be involved when extracting information from raw 

SEMG signals. Results presented somewhat supported a linear relation between joint torque 

and normalised RMS SEMG amplitude. Due to the small amount of experimental trials and 

dynamic constraints, this relationship was found to be tenuous at best; the inconclusive results 

are consistent with findings in the literature. Experimental work presented provides an initial 

glimpse into the vast subject of limb dynamics. Further investigations including a variety of 

subjects, limb loads and positions is absolutely necessary to better develop any control 

algorithms that may be transferred to an AT application based on this type of monitoring. 

 
This thesis has presented a wide variety of applications of the Electric Potential Sensor for 

healthcare and assistive technologies. Several advantages and disadvantages have been 

highlighted and it has been shown that these sensors have significant potential for future 

applications, configured both as contact or non-contact sensors. These applications could 

include, but are not limited to, occupancy monitoring, eye controlled applications for 

communication and mobility, as well as home rehabilitation and physiological monitoring 

suites.  
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Appendix A. EPIC Movement Sensor Data Sheet 
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Appendix B. LabVIEW Virtual-Instrument (VI) 

Program Code 

 

 

Appendix B1. Position Sensing VIs 
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Figure B1.1 Main LabVIEW code for one dimensional position sensing 
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Figure B1.2 LabVIEW program code for calculating sensor RMS voltage used for inferring 

hand position on a one dimensional plane 

 

 

 
 

Figure B1.3 LabVIEW program code for normalised hand position determination 

 on a one dimensional plane 

 

 

 

Figure B1.4 Graph showing inferred hand position on one dimensional plane 
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Figure B1.5 LabVIEW program code for normalised hand position determination 

 on a two dimensional plane 

 

 

 
 

Figure B1.6 Graphical display of inferred hand position on two dimensional plane 
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Figure B1.7 Hand position sensing program front panel user interface 
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Appendix B2. Eye tracking VIs 
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Figure B2.1 Main LabVIEW program code for acquiring and  

recording EOG signals 
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Figure B2.2 LabVIEW front panel display used during EOG eye-tracking program experiments 
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Figure B2.3 Eye-tracking LabVIEW sub-VI -“LOAD”: Continuously loads real-time EOG signals 

until change in amplitude occurs signifying an eye movement.  

 

 

 
 

Figure B2.4 Eye-tracking LabVIEW sub-VI - “TRACK”: Changes in EOG amplitudes are loaded 

into a buffer in order to determine the magnitude of the eye movement.  
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Figure B2.5 Eye-tracking LabVIEW sub-VI - “EOG OUTPUT”:Outputs the magnitude of the 

amplitude change that occurred during an eye movement once the eye movement is 

complete. 
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Appendix B3. Recording ERGs VIs 
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Figure B3.1 Main LabVIEW program code for acquiring and recording the  

electroretinogram (ERG)  

 

 

 

Figure B3.2 LabVIEW front panel display for electroretinogram (ERG) experiments 
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Appendix B4. SEMG monitoring VI 
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Figure B4.1 Main LabVIEW program code for acquiring and recording SEMG signals 
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Appendix C. Matlab Code 
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Figure C.1 Signal averaging and graphing MATLAB program code used for 

 the 5 Hz stimulus ERG 
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Figure C.2 Signal averaging and graphing MATLAB program code used for  

the 30 Hz stimulus ERG 
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Figure C.3 Fast Fourier Transform calculation and graphing MATLAB program code user 

during ERG signal processing  
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Appendix D. Additional Surface Electromyography 

Results 
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Figure D.1 Comparison of normalised SEMG signals for right (injured) and left (healthy) 

shoulder muscles during a 60° abduction of the arms 

 
 

Figure D.2 Comparison of normalised SEMG signals for right (injured) and left (healthy) 

shoulder muscles during a 60° flexion of the arms 
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Figure D.3 Comparison of normalised SEMG signals for right (injured) and left (healthy) 

shoulder muscles during a 90° abduction of the arms 

 
 

Figure D.4 Comparison of normalised SEMG signals for right (injured) and left (healthy) 

shoulder muscles during a 90° flexion of the arms 
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Figure D.5 Left bicep normalised SEMG Amplitudes and physical limb movement to target 

angles of (a) 18° (b) 36° (c) 54° (d) 72° and (e) 90° 
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Figure D.6 Right bicep: Averaged RMS EMGs for x10 lower arm movements to each target 

angle 
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Appendix E. System Performance Characterisation 

             

 
Throughout this thesis a variety of sensor systems based on the EPS have been investigated, 

experimental results have been discussed and in some cases directly compared to industry 

standard sensing systems.  The data observed was presented as descriptive statistics, meaning 

the metrics used only described the results for the specific set of experiments. These 

experiments provide preliminary results for which data was modelled. However, this in itself 

does not provide statistical evidence that the results are true and accurate, and hence further 

experimental trials would be required in order to interpret the results as significant. This 

appendix presents methodologies which could be followed for further work on all the 

discussed sensor systems in order to validate their significance, as well as enable 

benchmarking against industry standard technologies. 

 

1 Statistical Hypothesis Testing 

Statistical hypothesis testing is presented here as a method to validate experimental results 

achieved by the EPS. Table E.1 below outline the chapters that this method could be applied to 

and specifies the measurements and metrics that would be used for results verification. 

 

Table E.1 Table outlining the chapters, specific repeated measurements and metrics that 

would be used to validate the EPS results using a statistical hypothesis test 

Chapter Specific Repeated 

Measurement 

Metric 

Three – 

Electrooculography 

Eye-movement series  Gaze position estimation 

accuracy 

Four – 

Electroretinography 

1 Hz, 5 Hz, and 30 Hz 

ERG measurements 

Implicit time measurements 

(La and Lb) 
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In each experiment results were expressed in terms of means and standard deviations. All of 

these calculations were based on the assumption that we had a normal distribution of data 

and the results were true and accurate for the number of experimental data sets that were 

analysed. In order to validate the system model or hypothesis, and accept that these 

experimental means are true, a hypothesis test on a larger sample size (number of people) 

must be carried out. The results can then be tested against the developed hypothesis which is 

reliant on the initial experimental outcomes [186]. This can be done by the following steps for 

hypothesis verification: 

Step One:  Formulate out null and alternative hypothesis (H0 and Ha) in statistical terms.  

   H0: experimental mean is true (µ0 = µ)  

   Ha: experimental mean is false (µ0 ≠ µ) 

 

Step Two:  Set the level of significance, α, which is the probability that we might reject the 

  model results. Alpha is typically set to 0.05, corresponding to a confidence 

  level of 95%.  

 

Step Three:  Determine the sample size N, given the model standard deviation from  

  experimental data (σ), required to accurately test the hypothesis: 

A = 	B(1 − B)C8  

  Where B represents the statistical significance we want from our results. 

 

Step Four:  Select the appropriate statistical testing model.  

  For testing experimental means a two tailed test has been chosen, the  

  confidence interval for which is 95% (1-α). 
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Step Five:  Collect the data and calculate the statistic (P-value). 

  With N trials worth of data, an experimental mean value for each individual 

  can be calculated. The P-value is then determined as the percentage of the 

  resulting means that fall within the 95% confidence interval. Once all trial data 

  has been assessed, the P-value is compared against α to determine if a  

  statistically significant result has occurred. 

  P-value < α   H0 is accepted as true and statistically significant 

  P-value > α   H0 is rejected 

 

2 Benchmarking and Quality Assessment 

In order to compare the quality of one system against another benchmarking can be employed. 

Benchmarking is used to measure system performance using specific metrics to quantify errors 

resulting in a performance evaluation which can then be used to compare similar systems [187, 

188]. The table below outlines the specific chapters from this thesis with experiments that 

would be repeated using benchmarking and statistical analysis to gauge their effectiveness 

when being directly compared to industry standard systems. 

 

Table E.2 Table outlining the chapters, suggested systems for comparison and metrics that 

would be used to benchmark  using a statistical hypothesis test 

Chapter – 

Measurement Basis 

( System A ) 

Suggested Systems / Sensors 

for Comparison 

( System B ) 

Indications of 

Accuracy 

Two – Position Sensing Video  or infrared based 

tracking system 

Absolute hand 

position inference 

Three – 

Electrooculography 

Ag-AgCl electrodes Gaze position 

estimation  

Four – 

Electroretinography 

Ag-AgCl / DTL fibre electrodes Implicit time 

measurements (La 

and Lb) 

Five and Six – 

Electromyography 

Ag-AgCl electrodes Normalised SEMG 

amplitudes. 
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Power analysis is applied in order to determine an appropriate sample size and therefore the 

efficiency of the test with respect to the alternate hypothesis.  

Power (efficiency) is determined by the following:  

• Alpha level  - level of significance (α) 

• Effect Size – an estimation of the strength of a relationship (d) 

• Sample size – number of experimental data sets required (N) 

• Variance – squared standard deviation (σ2) 

• Chosen statistical testing model 

 

The aim here is to detect a truly significant event, and there is always an associated risk that 

this significant event will be missed.  The probability of this risk is called a Type II error, also 

known beta (β). In relation to Type II error, power is define as (1 – β). In other words, power is 

the probability of detecting a true significant difference; hence we must aim to design an 

experiment with a relatively high power (≥ 80%). However, if the test is too powerful, even a 

trivial difference will be mistakenly reported as a significant one. This type of error is called 

Type I error (α), this type of error must be kept below 0.05.  

For the systems discussed throughout this thesis, the methodology that was discussed in the 

previous section (Appendix E.1) is proposed. However, in this case, the means of two systems 

will be compared, such that we can define the following: 

Step One:  Formulate out null and alternative hypothesis (H0 and Ha) in statistical terms.  

   H0: experimental mean from system A is true (µ = µA)  

   Ha: experimental mean from system B is true (µ = µB) 

Step Two:  Set the level of significance, α = 0.05.  

Step Three:  Determine the sample size (N), such that the power (1- β) will remain above 

  80%. 

Step Four:  Select the appropriate statistic testing model. 

  For testing the experimental means of two different systems or models, a two 

  tailed t-test can be used, the confidence interval for which is 95% (1-α). 
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Step Five:  Collect the data and calculate our statistic (P value). 

  In this case the two systems, A and B, would be run at the same time on the 

  same subject for direct comparison. Again, with N trials worth of data, the 

  experimental mean values for each individual, ascertained with each system, 

  can be calculated. The P-value is then determined as the percentage of the 

  resulting means that fall within the 95% confidence in interval. The P-values of 

  each system can then be compared against one another. 

  P-value system A < P-value system B  H0 is accepted as more accurate 

  P-value system A > P-value system B Ha is accepted as more accurate 

 

3 Algorithm Performance Testing for Assistive Technology Applications 

Two feature extraction algorithms have been presented in this thesis: first a hand position 

localisation algorithm in chapter two and second a temporal feature extraction algorithm for 

identifying and determining intentions based on eye movements was presented in chapter 

three. To further validate both of these systems an assessment would need to be made of the 

ability of the algorithms to extract the same information repeatedly from different users, in 

different scenarios for the same set of features. In other words the algorithm needs to be 

tested for effectiveness and accuracy. There are several different tests that can be used for 

this assessment [189, 190]; the F-measure is chosen due to its simplicity in design and 

interpretation [191]. The F-measure, the number of distinct test cases to detect the first 

program failure, is an effectiveness measure for program testing strategies. The F-measure 

considers both precision (p) and recall (r) of the test to compute the score: p is the number of 

correct events extracted from the algorithm divided by the number of events detected in total 

and r is the number of correct events extracted divided by the total number of events the 

should have been detected. The resulting F-measure will range between 0 and 1, representing 

a weighted average of the precision and recall. 

 In the cases of the position determination algorithm (chapter two) and the EOG feature 

extraction algorithm (chapter three), a group of subjects would be tested while carrying out 

the same series of actions; this would be done over a number of trails in order to correctly 
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validate the experiments. We can then define the following with respect to the output of the 

feature extraction algorithm observed for each individual under test: 

True Positives (TP):  Where the feature has been identified correctly. 

False Positives (FP):  Where the feature has been incorrectly identified. 

False Negatives (FN):  Where a feature has occurred and not identified. 

We can then define precision and recall: 

D = =E
=E + :E 																									? = 		

=E
=E + :A																																			 

The F-measure is then calculated by: 

: = 2	 ×	D	 × ?D + ?  

An F-score close to one will indicate a high accuracy of the feature extraction algorithms 

capability to perform in a similar manner across a range of subjects.  

 


	DPhil Coversheet
	Steinhausen, Natasha

