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Summary

This thesis presents searches for supersymmetry in
√
s =7 TeV and 8 TeV proton-proton

collisions at the LHC using data collected by the ATLAS detector in 2011 and 2012.
Events with exactly three electrons or muons and missing transverse energy were selected,
since these can be a striking signature of supersymmetry with low Standard Model back-
ground. Additional kinematic criteria were investigated and applied in order to increase
the sensitivity to supersymmetric signals. Standard Model backgrounds were estimated
by a combination of Monte Carlo simulations and data-driven techniques. The agreement
between data and background predictions was validated before analysing data in the signal
regions. No significant excess was recorded in any of the analyses performed: the results
were therefore interpreted as lower bounds on the masses of supersymmetric particles in
a variety of different model scenarios.
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Chapter 1

Introduction

I can’t believe it’s possible to

select invaluable truths from a

lot of careening and colliding of

particles in the air, which is

completely senseless and not

worth a jot to anyone!

Stanis law Lem [2]

This thesis presents a search for supersymmetry in final states with exactly three

leptons (electrons or muons) at the ATLAS detector. Chapter 2 discusses the Standard

Model and motivates supersymmetry as a possible extension. Specific supersymmetric

models studied in this thesis are introduced here. The ATLAS detector at the LHC was

used in this search - technical details of the detector design and operation are discussed

in Chapter 3. Specialised software is used to simulate proton-proton collisions in the AT-

LAS detector and reconstruct the particles produced in real and simulated events - this is

discussed in Chapter 4. Chapter 5 introduces the three-lepton analysis. Analysis of data

from the ATLAS experiment is a collaborative activity, and this work is no exception. I

detail my contributions to the analysis below. Estimation of backgrounds by data-driven

methods and the evaluation of systematic uncertainties are both discussed in Chapter 6.

The results of the data analysis are given in Chapter 7, as is the interpretation in terms

of supersymmetric models. Comparison to analyses undertaken by CMS, an experiment

with similar search capabilities, and a discussion of the consequences for supersymmetry

as a whole, are given at the end of the Chapter.

The work in this thesis was performed within the ATLAS multilepton supersymmetry ana-

lysis group. I was responsible for the estimation of the electron conversion background in
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2011 and 2012 (Section 6.1.4.2) and contributed to the optimisation of 2012 signal regions

(Section 5.3). I evaluated systematic uncertainties on the electron conversion estimate,

and those relating to the PDF sets. The other systematic uncertainties on the background

prediction were calculated by other analysis group members and ATLAS performance

groups: I applied these to produce final plots of various quantities in the 2012 signal and

validation regions (Sections 7.1.2 and 7.2.2), made public in [3]. I also interpreted 2011

data in the GGM scenarios (Section 7.4.1), and worked on the combination of the 2011

data with results from the dilepton selection for weak SUSY searches (Section 7.4.2.1).

Plots with “ATLAS Preliminary” or “ATLAS” labels are public and cited as such. Public

plots I created are referenced as such in their caption, and all plots without ATLAS labels

are my own, and shown publicly in this thesis for the first time. Tables are my own unless

stated otherwise.
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Chapter 2

The Standard Model and

Supersymmetry

And yet its very completeness

signals that there is more to be

done.

Neal Stephenson [4]

2.1 The Standard Model

2.1.1 Introduction

A theory of Nature can be classified by its predictive power, or equivalently by the number

of free parameters within the theory. Consider a hypothetical theory containing only a

database of every experiment performed, without formulae or laws linking the results:

such a theory would have no predictive power, since every new result would have to be

introduced by hand. One goal of a scientific theory is to predict phenomena with as few

free parameters as possible: a theory with fewer free parameters which explains the same

experiments is preferable to a theory with more free parameters. The most predictive

theory imaginable (a “Theory of Everything”) would have no free parameters at all, while

correctly predicting the outcome of any physical experiment.

Perhaps the best example of a predictive theory that we have is the Standard Model

[5] (SM), which explains many distinct physical phenomena (including the behaviour of

light, radioactive decay, aspects of the structure of the elements and the burning of stars)
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with only 19 free parameters1. Some puzzles remain: for example, neutrino masses and

oscillation are not explained [7], gravity is not included in the theory [8], and there is no

explanation for dark matter [9]. Neutrino masses and gravity are not considered in this

work: dark matter is discussed in Section 2.2.2.

The Lagrangian for the SM is given by

LSM = LQCD + LElectroweak + LHiggs, (2.1)

where LQCD refers to Quantum Chromodynamics, discussed in Section 2.1.5, LElectroweak

and LHiggs refer to the electroweak theory and Higgs sector, discussed in Section 2.1.4.

When minimised, LSM gives rise to a set of dynamical equations; the behaviour of these

different aspects of the theory is discussed in the following sections. Although the SM suc-

cessfully explains many phenomena, there are good reasons to investigate SM extensions,

as discussed in Section 2.1.6. Supersymmetry, one of the best motivated extensions with

significant predictive power, is discussed in Section 2.2. The main focus of original work

presented in this thesis is a search for evidence of supersymmetry.

2.1.2 Gauge theories

Consider classical electrodynamics. This theory is invariant under the transformation of

the potential Aµ (where µ is a Lorentz index) by

Aµ → Aµ − ∂µλ. (2.2)

In classical electrodynamics, gauge invariance first emerged as a coincidental symmetry

[10], but with time it has proven to be of fundamental and far-reaching importance. In

quantum electrodynamics Aµ is promoted to a quantum field, and identified with the

photon field. The photon is the gauge boson for the theory, and the gauge symmetry in

equation (2.2) is identified with the conservation of electric charge. The group governing

the transformation is the unitary group of order one, denoted U(1). The strong and weak

forces are associated with non-abelian gauge groups: such groups have non-vanishing com-

mutators between the generators for their gauge fields ([Aµ, A
ν ] 6= 0), with the consequence

that gauge bosons can self-interact. The introduction of non-abelian gauge groups to phys-

ics is due to Yang and Mills [11]. Quantum chromodynamics (QCD) and the weak theory

are mediated by gauge bosons invariant under the non-abelian groups SU(3) and SU(2)

respectively. Both gauge symmetries conserve their own analogues of electric charge: this

is discussed in more detail in Sections 2.1.5 and 2.1.4.
1These are the charged fermion masses and mixings, coupling constants, Z boson mass and Higgs mass:

relations between the parameters allow for other choices, as well as the so-called “θ-parameter” [6].
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2.1.3 Radiative corrections

Variables in quantum field theories are frequently defined perturbatively: predictions are

defined to lowest order (“tree level”), and receive corrections by expansions in the coupling

constant of the theory. These corrections form an infinite series, but usually only the

first few terms are important, in which case the expansion may be truncated. Quantum

corrections to masses may be positive or negative: the fundamental implications of this

for the SM are discussed in Section 2.2.3, and practical implications for supersymmetric

theories are discussed in Section 2.3.1. The fundamental coupling constants of the strong,

weak and electromagnetic forces also vary as a function of energy: this is known as running

of coupling constants. The high energy behaviour of these coupling constants is discussed

in Section 2.2.4.

2.1.4 Electroweak interactions and symmetry breaking

Weak interactions (as observed in β-decay for example) initially appear very different from

electromagnetic interactions: weak interactions are short- rather than infinite-ranged. The

weak interactions also do not respect parity: only left-handed (right-handed) particles

(anti-particles) participate in the weak interaction. The special unitary group of order

two (SU(2)L) describes the weak interactions: L refers to the chiral or left-handed nature

of the theory. The conserved quantum number T 3, known as the third component of weak

isospin, is defined to equal ±1
2 for left-handed particles and zero for right-handed particles.

The non-observation of right-handed neutrinos is incorporated into the theory: left-handed

charged leptons form doublets T 3 = (+1
2 ,−1

2), (eL, νL), while the right-handed charged

leptons form T 3 = 0 singlets (eR). The three generations of quarks are similarly divided

into left-handed T 3 doublets (u, d):

L1
q =

u
d

 , L2
q =

c
s

 , L3
q =

t
b

 (2.3)

and right-handed singlets with T 3 = 0:

R1,2,3
u = uR, cR, tR (2.4)

R1,2,3
d = dR, sR, bR. (2.5)

Weak interactions are mediated by gauge bosons with T 3 = (1, 0,−1), allowing for the

conservation of T 3 at each vertex. Despite the distinctions between the electromagnetic

and weak interactions, it is possible to unify the forces into a single theory [12, 13, 14]:
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this is known as the electroweak theory and has predicted new phenomena (notably weak

neutral currents [15]) as well as accurately describing the weak and electromagnetic forces.

Unifying the electromagnetic and weak forces initially leads to a theory with three massless

gauge bosons (W i=1,2,3
µ ) mediating the weak force, and a single gauge boson (Bµ) mediating

the electromagnetic force. Additionally, this theory predicts massless charged leptons and

quarks, and two massless complex scalars, associated with the new electroweak symmetry.

The predictions of massless weak gauge bosons and massless fermions are at odds with

the observations of the weak force, which is known to act only at short range (and must

therefore be mediated by massive particles) and measurements of charged lepton and

quark masses. Several papers [16, 17, 18, 19, 20] showed a possible solution: one degree

of freedom from one complex scalar is absorbed into a single, massive boson known as the

Higgs boson. Additionally, the W i
µ and Bµ bosons mix and acquire mass This solution is

known as electroweak symmetry breaking. The W±, Z and A fields are formed from a

superposition of the W and B fields - the three remaining degrees of freedom from the two

complex scalars are “eaten” to form the longitudinal components of the W and Z fields.

The W , Z and A fields are given by

W±µ =
(W 1 ∓ iW 2)√

2
, (2.6)

Zµ =
−g′Bµ + gW 3

µ√
g2 + g′2

, (2.7)

Aµ =
gBµ + g′W 3

µ√
g2 + g′2

, (2.8)

where g = e/ cos θW and g′ = e/ cos θW are electroweak coupling parameters. The angle

θW is known as the Weinberg angle. During electroweak symmetry breaking, the bosons

acquire masses given by

mW =
gv

2
, (2.9)

mZ =
(g2 + g′2)v

2
, (2.10)

where v = 246.22 GeV is the Higgs vacuum expectation value. This does not solve the

problem of the massless fermions, and the theory is therefore not fully consistent [21] (as

well as at odds with observations). Fermions can, however, acquire mass through from the

Higgs boson - after electroweak symmetry breaking, there are Higgs-fermion interaction

terms and new Higgs-fermion mass terms. Interactions between the Higgs boson and

fermions/gauge bosons are shown in Figure 2.1.

The value of v may be determined precisely from muon decays [22] while e is known to
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Higgs

f

f̄

λf

(a) Fermionic Higgs coupling

Higgs

V

V

mV

(b) Bosonic Higgs coupling

Figure 2.1: Fermionic and bosonic Higgs couplings. In (a), λf is the Yukawa coupling,

proportional to the observed fermion mass. In (b), the Higgs only couples to the weak

gauge bosons (V = W,Z), and not the photon or gluon, with strength proportional to

mV .

high precision from various atomic measurements [23], and θW remains a free parameter

of the theory. Direct measurements of W and Z masses strongly constrain the theory:

the ratio mW /mZ is very precisely predicted. The non-zero Higgs vacuum expectation

value v means that it permeates the entire vacuum: all other known fields have zero

vacuum expectation value. The Higgs boson can in fact only account for fermion masses

if it has non-zero vacuum expectation value. The mass of the Higgs boson is a free but

highly constrained parameter of the theory. Without a Higgs boson, the SM has intrinsic

problems: the simplest problem to state is the behaviour of the vector boson scattering

amplitudes V V → V V , shown in Figure 2.2. The cross section σ increases without bound

as a function of energy [24]:

σ(V V → V V ) ≈ E4

m4
W

. (2.11)

At energies above E ≈ 1 TeV the cross section violates unitarity: the probability of the

process occurring in a collision exceeds 100%. Interactions moderated by a Higgs boson,

as shown in Figure 2.2(b), introduces additional contributions to the cross section which

cancel the electroweak contributions shown in Figure 2.2(a). The cancellation is dependent

on the mass of the Higgs boson: in order to maintain unitarity, mH must be approximately

1 TeV or lower.

There are two options: either new physics modifies the vector boson scattering cross

sections at high energies, or there is a Higgs boson with a mass less than 1 TeV. At the

time of writing, the ATLAS [25] and CMS [26] collaborations have observed a particle

with mass between 125 and 127 GeV consistent with the SM Higgs boson. Figure 2.3

shows the compatibility between the measured Higgs mass mH and other SM parameters.

The blue contours show 95% and 68% confidence levels for the W mass mW and other

electroweak parameters except mW and top mass mt, while the grey contours show 95%
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γ

W

W

W

W

(a) EW diagram

Higgs

W

W

W

W

(b) Higgs diagram

Figure 2.2: Feynman diagrams for vector boson scattering. An electroweak (EW) diagram

with an intermediate photon is shown in (a), while a diagram mediated by a Higgs boson

is shown in (b).
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Figure 2.3: The consistency between the measured W , top and Higgs masses. Taken from

[27].

and 68% confidence levels for the direct mH , mW and mt measurements. The black data

point shows the mW and mt measurements alone. The blue and grey ellipses are consistent

with the data point at 95% and 68% confidence level respectively. Excluding the direct

measurement, precision electroweak data gives a best fit value [27] of mH =94+25
−22 GeV,

consistent with the measured value. In this thesis, it is assumed that the observed particle

is either the SM Higgs boson or perhaps the lightest supersymmetric Higgs boson to

be introduced in Section 2.2.5. The final particle content of the SM before electroweak

symmetry breaking is given in Table 2.1.
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Name Symbol Spin

Mass sector

Quarks (uL, dL)

1/2

×3 families uR

dR

Leptons (νL, eL)

×3 families eR

Higgs sector

Higgs boson H0 0

Gauge sector

Gluons g

1W bosons W±, W 0

B boson B0

Table 2.1: Particle content of the Standard Model before electroweak symmetry breaking.

After electroweak symmetry breaking, the W and B bosons mix to form photons and W

and Z bosons, and the quarks and charged leptons acquire mass.
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2.1.5 Quantum chromodynamics

Quantum chromodynamics (QCD) is the theory of the strong nuclear force. It predicts

that protons and neutrons are not fundamental particles, and are in fact made up of frac-

tionally charged particles known as quarks. Interactions between quarks are mediated

by gauge bosons known as gluons, which exchange colour, the strong force analogue of

electric charge. There are three colours, usually referred to as red, green and blue (r, g, b).

Quarks carry either r,g or b charge, while anti-quarks carry anti-red, green or blue (r̄, ḡ, b̄).

Free coloured particles have never been observed [28]: only colourless “singlet” states are

observed. Colour singlet states (hadrons) are formed by a triplet of red, green and blue

quarks (baryons), or pairs of rr̄, gḡ, bb̄ (mesons). Tetraquark and pentaquark states could

in principle be realised in Nature, but have yet to be observed. Eight gluons mediate the

force: each gluon carries a linear combination of colours and anti-colours. Like W and Z

bosons, gluons carry the charge of their gauge group and hence participate in the interac-

tion: gluon self-interactions are shown in Figure 2.4(b) and 2.4(c). The gauge group for

QCD is SU(3)c.

Like the weak and EM coupling constants, the QCD coupling constant αS is dependent

on the energy of the process. The strength of the interaction decreases as energy increases

and vice versa. This weakness of coupling strength at high energy is known as asymp-

totic freedom. An important consequence of asymptotic freedom is that high-energy QCD

processes are calculable in perturbation theory, while low-energy QCD processes are not.

Phenomenological models used to approximate such effects are discussed in Section 4.1.

In addition to its constituent “valence” quarks, a hadron will contain a sea of virtual qq̄

pairs (“sea quarks”) and gluons. The total momentum of a hadron is distributed prob-

abilistically among its partons, each of which has momentum fraction x. The probability

of finding a parton of type p with momentum x is given by the parton distribution func-

tion (PDF): this distribution is not calculable perturbatively, but may be extracted from

experimental data, as discussed in Section 4.1.1. Examples of PDFs are shown in Figure

2.5.

2.1.6 Limitations of the Standard Model

As previously mentioned, the SM predicts many phenomena very precisely, but still has

several deficiencies. Dark matter, as discussed in more detail in Section 2.2.2 cannot be

identified with any known particles, the gauge couplings do not naturally unify (Section

2.2.4), and the Higgs boson mass is unstable when radiative corrections are applied (the
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Figure 2.4: QCD interactions.

0.2

0.4

0.6

0.8

1

-4
10

-3
10

-2
10

-1
10 1

0.2

0.4

0.6

0.8

1

 HERAPDF1.0 

 exp. uncert.

 model uncert.

 parametrization uncert.

 

x

x
f

2 = 10 GeV2Q

vxu

vxd

 0.05)×xS (

 0.05)×xg (

                H1 and ZEUS

0.2

0.4

0.6

0.8

1

Figure 2.5: Parton distribution functions for up and down valence quarks (uv, dv), gluons

(g) and sea quarks (S). Q2 is the energy scale squared at which the proton is probed,

while x is the momentum fraction of a given parton, and f is its PDF. Taken from [29].
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“hierarchy problem”, discussed in detail in Section 2.2.3). These difficulties may be over-

come by supersymmetry, as described in Section 2.2. In addition to these difficulties, no

deeper explanation for the values and quantity of the 19 free parameters in the SM has

been found. A more fundamental theory would have fewer free parameters, or at least

an explanation for the observed values. Finally, no quantum theory of gravity has been

developed: deviations from the classical theory of general relativity are expected at very

small length scales, but the relative weakness of the gravitational force makes it difficult

to observe such deviations: none have been observed so far [30].

2.2 Supersymmetry

Supersymmetry (SUSY) was proposed in various guises from 1966 onwards [31, 32, 33, 34,

35, 36, 37, 38, 39]. It is defined by an operator Q, which transforms bosons into fermions

and vice versa:

Q|Boson〉 = |Fermion〉 (2.12)

Q|Fermion〉 = |Boson〉 (2.13)

Particles related by this transformation are referred to as superpartners or spartners, and

a set of two superpartners is called a supermultiplet. The superpartners of SM particles

are known as superparticles or sparticles. Standard Model boson superpartners are given

the suffix “ino” (wino, bino etc) while fermion superpartners are given “s” as a prefix

(squarks, sleptons, sneutrinos). In equations, sparticles are given a tilde (W̃ for the wino,

ũ for the up squark etc).

Postulating supersymmetry for the SM almost exactly doubles its particle content - al-

though two Higgs supermultiplets are required, as discussed in Section 2.2.5. It does not

introduce any new parameters, as supersymmetric transformations do not transform any

particle quantum numbers except spin. Since baryon (B) and lepton (L) number are acci-

dental symmetries of the Standard Model (that is to say, the absence of B and L-violating

interactions appears to arise from cancellation of terms rather than a principle of sym-

metry), supersymmetry also adds the possibility of B- and L-violating interactions. Limits

on processes that violate B and L are generally very stringent, so for supersymmetry to

exist in Nature, B, L or some combination thereof must be conserved, or only slightly

violated. In all the supersymmetric models considered here, the symmetry imposed is

R-parity, where R = (−1)3(B−L)+2S (with S as the particle spin). Normal particles have

R = 1, while sparticles have R = −1. Interactions considered in this thesis are required to
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conserve R-parity multiplicatively at each vertex. This has two important phenomenolo-

gical consequences: firstly, sparticles can only be pair-produced in colliders, and secondly

the lightest supersymmetric particle (LSP) is stable. Motivations for supersymmetry are

explored in the next few sections.

2.2.1 An extra symmetry of nature

The forms of any additional symmetries in a realistic quantum field theory with chiral

interactions are highly constrained by the Coleman-Mandula theorem [40], as generalised

by Haag, Lopuszanski and Sohnius [41]. The theorem states that, in addition to Poin-

caré symmetry, the only additional continuous symmetry such a theory may exhibit is

supersymmetry.

2.2.2 Dark matter

Measurements of the rotation curves of galaxies (first performed in the 1930s [42, 43])

show that galaxies rotate more quickly than would be expected from observations of their

visible matter. There are two possible explanations: either general relativity must be

modified on galactic distance scales, or “dark matter”, i.e. matter that does not interact

electromagnetically, is responsible for the additional galactic mass. Several additional ob-

servations including gravitational lensing [44] and measurements of the cosmic microwave

background [45] are consistent with the dark matter hypothesis, although modifications

to general relativity are still investigated [46].

A possible candidate for dark matter would be a new type of particle without electro-

magnetic interactions, present throughout the universe (although there are possible al-

ternatives such as Massive Compact Halo Objects [47]). Neutrinos lack electromagnetic

interactions, but are disfavoured by cosmic microwave background data [48]. Many direct

searches for dark matter particles have been performed: the most stringent at the time of

writing were conducted by the CDMS-II [49] and XENON-100 [50] experiments.

Many models of supersymmetry (including those considered here) propose a colourless,

electrically neutral, weakly interacting LSP compatible with astronomical observations

[51, 52].



14

H

t

H
t

(a) Fermionic

H

t̃

H

(b) Scalar

Figure 2.6: One-loop corrections to the Higgs mass from (a) a fermion (the top quark)

and (b) a scalar (the top squark).

2.2.3 The hierarchy problem

The Higgs mass receives radiative corrections from all SM particles. For example, there is

a correction due to the top quark Yukawa coupling λt:

∆M2
H = −|λt|

2

8π2
Λ2
UV (2.14)

shown in Figure 2.6a). This correction is quadratically divergent proportionally to Λ2
UV :

ΛUV is the highest scale at which the theory is valid. If the SM is valid up to the Planck

scale O(1019) GeV, the correction is dramatically larger than the observed Higgs mass.

The difference between the scale of electroweak physics atO(100 GeV) and the Planck scale

(and the absence of any new phenomena at any intermediate energy scale), which manifests

in these corrections to the Higgs mass, is known as the hierarchy problem [53, 54, 55, 56].

If, however, a new scalar with mass mS exists, it gives rise to a correction of the form:

∆M2
H =

|λS |2
16π2

Λ2
UV . (2.15)

Two scalar particles with Yukawa couplings equal to that of the top quark will exactly

cancel the corrections to the Higgs mass. The same argument applies for all SM fermions,

and it has been shown that the correction continues to all orders [57, 58, 59, 60, 61, 62].

In supersymmetry, the two scalars required for each fermion are partners for the left- and

right-handed fermions.

2.2.4 Gauge coupling unification

As discussed in Section 2.1.3, the SM predicts that gauge couplings are energy-dependent,

and the change in strength as a function of the energy scale is calculable given a value

at some fixed scale. The EM and weak couplings increase with energy, while the strong

coupling constant decreases with energy. The coupling constants do not meet at any single

point in the SM, while it is possible to make them meet at high energies in the Minimal
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Figure 2.7: Running of the three gauge coupling constants with energy scale Q, in the SM

(dotted line) and SUSY (red and blue bands). From [67].

Supersymmetric SM [63, 61, 64, 65, 66] (the simplest extension to the SM, discussed in

Section 2.3. In Figure 2.7, taken from [67], the dotted lines are the SM predictions, while

the red and blue lines indicate the band of allowed values in the MSSM. Gauge coupling

unification is attractive because it allows the three independent gauge couplings to be

subsumed into a single free parameter, and may hint at a deeper level of physics. However,

gauge coupling unification is predicted to occur at 1016 GeV which is not currently directly

accessible to experiment, although it is possible that unification at this scale could have

observable effects at the TeV scale or lower such as proton decay [68].

2.2.5 The supersymmetric Higgs sector

Each SM particle has a single superpartner, except for the Higgs boson. Anomaly cancel-

lation [69] is required for a consistent field theory: in particular the sums

∑
fL

Y 3 =
∑
fL

T 2
3 Y = 0 (2.16)

over the hypercharges Y and third component of isospin (T3) of all left-handed fermions

must be satisfied. A single higgsino H̃ spoils the relation and two Higgs supermultiplets

are required instead. One of the supermultiplets is denoted (H+
u , H

0
u) and couples to up-
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type quarks only, while the other is denoted (H0
d , H

−
d ) and couples to down type quarks

only. The members of the two supermultiplets mix to form five mass eigenstates - the

lightest Higgs boson (h0) is a linear combination of H0
u and H0

d , and there are three

additional Higgs bosons: H0 (heavy, CP-even), A0 (CP-odd), H+ and H− and associated

superpartners. The up- and down-type Higgs bosons have separate vacuum expectation

values vu = v sinβ and vd = v cosβ, and the vacuum expectation value of h0 is then given

by
√
v2
u + v2

d = v, matching v = 246.22 GeV in order to reproduce the known mW and

mZ . The mixing angle β is a free parameter of the theory. The ratio of expectation values

vu/vd = tanβ is important for the sleptons and squark masses, as discussed in Section

2.3.2.

2.3 The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is defined simply as the Standard

Model with supersymmetric versions of all the matter particles, and two Higgs doublets

for theoretical consistency. The final particle content of the MSSM is given in Table 2.2.

All of the sleptons and gauginos except the gluino (as the only coloured sparticle) can

mix, so the mass eigenstates are generally not the flavour or gauge eigenstates given in

the table. Neutral higgsinos and gauginos (H̃0, W̃ 0, B̃) mix to form four neutralinos,

χ̃0
i=1,2,3,4, while the charged higgsinos and wino (H̃±, W̃±) mix to form two charginos,

χ̃±i=1,2.

2.3.1 Supersymmetric masses

Without additional assumptions, supersymmetric particles have the same quantum num-

bers as their SM counterparts, including mass. This is at odds with experiment: for in-

stance, limits on slepton masses extend to at least one hundred times the electron, muon

and tau masses [70]. This would seem initially to be a disaster for supersymmetry, but

supersymmetric particles share a common property: they are allowed to have masses in

the absence of electroweak symmetry breaking [67], while SM particles are forbidden from

having masses without electroweak symmetry breaking, as discussed in Section 2.1.4. Su-

persymmetric masses can then be added to the theory on an ad hoc basis - this is known

as explicit supersymmetry breaking [67]. In order to solve the hierarchy problem, the

Lagrangian must be expressed as

L = LSUSY + Lbreaking (2.17)
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Name Spin 0 Spin 1/2

Mass sector

Squarks, quarks (ũL, d̃L) (uL, dL)

×3 families ũR ũR

d̃R d̃R

Sleptons, leptons (ν̃L, ẽL) (νL, eL)

×3 families ẽR ẽR

Higgs sector

Higgs, higgsinos (H+
u , H0

u) (H̃+
u , H̃0

u)

(H0
d , H+

d ) (H̃0
d , H̃+

d )

Gauge sector Spin 1 Spin 1/2

Gluons, gluinos g g̃

W bosons, winos W±, W 0 W̃±, W̃ 0

B bosons, binos B0 B̃

Table 2.2: Particle content of the MSSM before EW symmetry breaking. Taken from [67].
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where LSUSY contains interactions that conserve supersymmetry (and in particular the

couplings with the Higgs sector), while Lbreaking contains new mass terms and interactions

not present in the SM. This is known as soft supersymmetry breaking. The new mass terms

give new corrections to the Higgs mass: in order for these corrections to be small the new

mass terms cannot rise much above the TeV scale [67].

The possible additional supersymmetric mass terms (using the notation and conventions

of [5]) are as follows:

1. Three gaugino masses: M1,M2,M3.

2. Five scalar masses squared for the squarks and sleptons: MQ̃L
,MŨR

,MD̃R
,ML̃L

,MẼR
.

Here Q̃L refers to the supermultiplet containing a weak doublet of left-handed up-

and down-type fermions while ŨR and D̃R refer to the supermultiplets formed by

the right-handed up- and down-type quark singlets.

3. Three Higgs interaction terms Ai for the up and down type squarks and sleptons:

AU , AD, AE respectively.

4. Three scalar masses squared: m2
1 + |µ|2, m2

2 + |µ|2, Bµ, which emerge from the

supersymmetric Higgs scalar potential [67].

These parameters determine the mixing between the flavour eigenstates and hence the phe-

nomenology of supersymmetric theories. The exact dependence of the mass eigenstates

on these terms is discussed in detail in Section 2.3.2. These extra terms may be added

to the theory “by hand”, but this increases the number of free parameters of the theory

as well as being conceptually unsatisfying. Different approaches to these extra terms are

discussed in Section 2.4.

2.3.2 Supersymmetric mass spectra

The general properties of supersymmetric mass terms and their consequences for phe-

nomenology are discussed here.

2.3.2.1 Gauginos

Since the gluino has colour charge, it cannot mix with the other gauginos. The gluino mass

is therefore given by M3. The other gauginos form linear superpositions: their masses are

given by mixing matrices, and depend on the parameters M1,M2 and µ. The chargino
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masses are found by the singular value decomposition of the following mixing matrix:

MC =

 M2
1√
2
gvu

1√
2
gvd µ

 (2.18)

which gives two observable states [71]:

M2
χ̃±1 ,χ̃

±
2

=
1

2
(|µ|2 + |M2|2 + 2m2

W ∓ [(|µ|2 + |M2|2 + 2m2
W )2

− 4|µ|2|M2|2 − 4m2
W sin2 2β + 8m2

W sin 2βRe(µM2)]1/2) (2.19)

where the ∓ on the right hand side is negative for the χ̃
±
1 and positive for the χ̃

±
2 (fixing

mχ̃±1
< mχ̃±2

). Similarly, the mixing matrix for the physical neutralino states is given by

MN =


M1 0 −1

2g
′vd

1
2g
′vu

0 M2
1
2gvd −1

2gvu

−1
2g
′vd

1
2g
′vd 0 −µ

1
2g
′vu −1

2g
′vu −µ 0


(2.20)

which may be diagonalised to give the four observable neutralino states. The exact ex-

pressions are rather lengthy but may be found in [72]. For the models considered here,

the most important features are as follows:

• If M2 is much smaller than M1 and |µ| and of the order of mZ , the χ̃
0
1 and χ̃

±
1 form

wino co-NLSPs (W̃±,W̃ 0) with degenerate or nearly degenerate masses.

• If µ > {M1,M2}, the gaugino masses are independent of µ: there is no decrease in

cross section for gaugino production as µ increases past this point.

2.3.2.2 Squarks and sleptons

The left- and right-handed charged fermions (fL, fR) represent distinct degrees of freedom

in the SM, as they have different weak quantum numbers. The left- and right-handed

charged sfermions (f̃L, f̃R), as scalars, are neither left- nor- right-handed and can therefore

mix. In general, the sfermions can form admixtures between generations: most of these

are prohibited by the requirement that supersymmetry does not introduce large flavour-

changing neutral currents [73]. The left and right-handed first and second generation

squarks form seven approximately mass-degenerate pairs which do not mix:

(ẽR, µ̃R), (ν̃e, ν̃µ), (ẽR, µ̃R), (ũR, c̃R), (d̃R, s̃R), (ũR, c̃R), (d̃R, s̃R) (2.21)

The up- and down-type quarks form distinct pairs since they respectively interact with

the Hu and Hd Higgs supermultiplets. The third generation can have far higher masses,
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due to the larger Yukawa and A-parameters, and large mixing is permitted between the

left-and right-handed stau, stop and sbottom components. This mixing is dependent on

the value of tanβ: for tanβ & 10, significant mixing is expected. Large values of tanβ

break the flavour-blindness of supersymmetry, leading to enhanced branching ratios in

supersymmetric decays to third generation particles [74].

2.3.2.3 Higgs sector

The masses of A0, H0 and H± are not bounded by theory: at tree level their mass terms

are proportional to 1/ sinβ, which can be arbitrarily large. However, there is a striking

prediction for the mass of the lightest Higgs boson, h0:

mh0 < mZ | cos 2β| (2.22)

The lightest Higgs mass is therefore bounded below the Z mass without radiative cor-

rections: the largest of these comes from the stop mass [75]. It is possible to tune these

corrections in order to meet the observed lightest Higgs mass of ≈ 126 GeV [76].

2.3.3 Supersymmetry and gravity

Despite nearly a century of effort, a complete quantum theory of gravity has not been

found. Nevertheless, the long-range and tensor nature of the gravitational force already

implies that gravity is mediated by a massless spin-2 boson, known as the graviton. Since

supersymmetry transformations reduce spin by a factor of 1/2, the superpartner of the

graviton (the gravitino G̃) has spin 3/2. A gravitino does not have weak or electromagnetic

interactions, and is therefore a possible dark matter candidate if it is the LSP.

2.4 Models of supersymmetry

The motivations and parameters of the three different types of supersymmetric models

examined in this work are discussed in detail. The models considered all lead to additional

events with three leptons not found in the SM, which is the focus of the experimental

searches presented.

Each model considered uses a distinct solution to the problem of supersymmetry breaking:

1. General Gauge Mediation (GGM) [77] postulates a hidden sector of particles which

do not interact with SM particles, but impart masses to SUSY particles. This is

discussed further in Section 2.4.1.
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2. The phenomenological MSSM [78] uses existing experimental data and conservative

assumptions to constrain the possible values for the masses. This is discussed further

in Section 2.4.2.

3. Simplified models [79, 80] set the masses of a subset of superparticles to values ac-

cessible by experiment, and the other masses to infinity (or at least to experimentally

inaccessible values). This is discussed further in Section 2.4.3.1.

Other examples of supersymmetry breaking mechanisms include minimal supergravity

[81, 82, 83, 84, 85, 86], anomaly-mediated supersymmetry breaking [87, 88] and gauge-

mediated supersymmetry breaking (GMSB) [89, 90, 91, 92, 93].

Several benchmark points for each family of models are examined in detail. By convention,

each set of benchmark points is chosen by varying two SUSY parameters while keeping

all others the same. The set of benchmark points defines a “grid” in the space of the two

parameters. The numerical simulation of the grids investigated in this work is discussed

in Sections 4.3.1.2 and 4.3.2.2.

2.4.1 General gauge mediation

Gauge-mediated supersymmetry breaking (GMSB) hypothesises the existence of a hidden

sector of heavy particles which do not interact with the SM. “Messenger” particles are

introduced, which interact with both the hidden and SM sectors. Loop diagrams involving

the messenger particles are responsible for the supersymmetric mass terms. In such models,

the gravitino is the LSP, and is approximately massless. The phenomenology of such

models is largely determined by the choice of next-to-lightest sparticle (NLSP), as all

decay chains will end with a decay of the form:

NLSP→ (SM partner of NLSP) + LSP (2.23)

General gauge mediation (GGM) makes the additional assumption that, in the limit that

the hidden and SM sectors are no longer linked by the messenger particles, the SM sector

reproduces the MSSM. Under these assumptions, seven free parameters remain in the

model:

• The three gaugino masses M1, M2 and M3, defined in Section 2.3.1

• The Higgs parameters tanβ and µ, defined in Section 2.3.1

• The choice of NLSP and corresponding mean lifetime (τ). The mean lifetime governs

whether decays are prompt or macroscopically displaced.
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Figure 2.8: Example interactions in GGM models. Here, weak and strong refer to the force

mediating each decay. Wino-like co-NLSPs are χ̃
0
1 and χ̃±1 with near-degenerate masses,

while higgsino-like NLSPs are χ̃
0
1 with predominant higgsino composition.
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2.4.1.1 Wino and higgsino NLSP GGM models

Two models are considered here: one with neutral higgsino NLSP, and one with wino co-

NLSPs. Both models assume prompt NLSP decays with cτ = 0.1 mm, which have similar

phenomenology to the other SUSY scenarios considered in this work. The phenomenology

of such models is treated in [94].

In the model with a near-degenerate χ̃0
1 (mainly W̃ 0) and χ̃±1 (mainly W̃±) co-NLSPs

which decay preferentially to ZG̃ and W±G̃. This model has |m2| � |µ| and |m2| < |m1|,
with m1 = µ = 1.5 TeV, tanβ = 2. The values of the gluino and NLSP masses in are set

to the following values to define phenomenological grids:

• The g̃ masses vary between 300 and 1000 GeV in increments of 100 GeV. The first

two W̃ masses are 120 and 150 GeV, and subsequent masses are incremented by

100 GeV, starting at 200 GeV. If this leads to equal masses, a 10 GeV cut on the W̃

mass is imposed to keep the W̃ lighter than the g̃ leading to points like (mW̃ ,mg̃) =

(390, 400) GeV.

In the model with an NLSP that is mainly higgsino h̃0, the decays χ̃
0
1 → Z + G̃ can

dominate. Intermediate decays involving χ̃±1 → W± + χ̃0
1 can lead to multilepton final

states. This model has parameters |µ| � |m1|, |m2|, and m1 = m2 = 1 TeV, with tanβ =

1.5. The values of the gluino and NLSP masses in are set to the following values to define

phenomenological grids:

• The H̃ masses vary between 110 and 890 GeV, while g̃ masses vary between 300 and 900 GeV

in increments of 100 GeV. The first few H̃ masses are 110, 115, 120 and 150 GeV,

and subsequent masses are incremented by 100 GeV, starting at 200 GeV. When

the gluino and higgsino masses are equal, 10 GeV cuts on the H̃ masses are used to

keep the H̃ lighter than the g̃.

The grid spacings and cross sections at each point are shown in Figure 2.10. The cross

sections in the wino co-NLSP model points simulated range between 2.4×10−3 and 6.9 pb,

while those for the higgsino NLSP model range between 3.7 × 10−3 and 13.5 pb. The

technical details of the cross section calculation are discussed in Section 4.3.1.2 and 4.3.2.2.

Possible decay chains are shown in Figure 2.8, and example spectra are shown in Figure

2.9.
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Figure 2.9: GGM spectra for mg̃ = 300 GeV and a) mW̃ 0,W̃± = 120 GeV and b)

mH̃ = 115 GeV. The other Higgs sector particles have masses of approximately 2 TeV

and are omitted from the plot. Generated using PySLHA [95].

2.4.2 Phenomenological alternatives to supersymmetry breaking

Models exist which do not specify the exact form of SUSY breaking mechanism, leaving the

124 free parameters of the MSSM unconstrained. The phenomenological MSSM (pMSSM)

[78] constrains the parameters by the following assumptions:

• no new flavour-changing or CP-violating interactions [73];
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Figure 2.10: Cross sections for simulated points in the two GGM models.

• the LSP is the lightest neutralino;

• the Yukawa couplings of the first two generations are negligible;

• the dark matter density observed by WMAP [96] is set as an upper bound on the

LSP density, allowing for additional possible non-SUSY sources of dark matter;



26

• contributions to the invisible width of the Z boson are ≤ 2 MeV;

With these assumptions applied, only 19 out of the original 124 parameters are left. These

are as follows:

• the three gaugino masses M1, M2 and M3;

• the Higgs parameters mA, tanβ and µ;

• the squared masses for the first and second generation squarks and sleptons: M2
Q̃12

,

M2
Ũ12

, M2
D̃12

, M2
L̃12

, M2
Ẽ12

;

• the squared masses for the third generation squarks and sleptons: M2
Q̃3

, M2
Ũ3

, M2
D̃3

,

M2
L̃3

. M2
Ẽ3

;

• the A-parameters for the third generation: At, Ab and Aτ .

2.4.2.1 Direct gaugino production in the pMSSM

A pMSSM scenario sensitive to direct gaugino production is explored. This model has

heavy (> 1 TeV) squarks and gluinos, leading to low hadronic activity. Additionally,

tanβ = 6 ensures equal branching ratios to all quark and lepton generations. Different

values of M1, M2 and µ are chosen for each grid, leading to significant variation in the

proportion of higgsino and gaugino in the charginos and neutralinos. Three values of M1

(100,140 and 250 GeV) are chosen, with M2 and µ taking the values 100, 110, 120, 140,

160, 180, 210, 250, 300 and 350 GeV. Left-handed sleptons are taken to have masses

above 1 TeV, while right-handed sleptons are placed midway between the two lightest

neutralinos:

m˜̀
R

=
mχ̃0

1
+mχ̃0

2

2
. (2.24)

The masses are degenerate across all generations and the third generation A-parameters

are set equal to zero. An example spectrum for the point M1 = 100 GeV, M1 = 160 GeV,

µ = 160 GeV is shown in Figure 2.11. The chargino masses vary across the other grid

points according to Equation (2.19), while the neutralino mixing varies as discussed in

Section 2.3.1. The parameters are chosen to exceed the LEP bounds on chargino masses

(mχ̃±1
= 103.5 GeV) [97]. The absence of light left-handed sleptons reduces the probability

of leptonic decays, but also reduces the number of free parameters required to specify the

grids: the results are therefore conservative and somewhat more general. The mass of the

lightest Higgs mh0 is set to 119.4 GeV, close to the observed Higgs-like particle mass of

125–127 GeV (the grid parameters were defined before the Higgs discovery). Higgs decays
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Figure 2.11: An example pMSSM spectrum with parameters M1 = 100 GeV,

M1 = 160 GeV, µ = 160 GeV. All other SUSY particles have masses of approximately

3 TeV and are omitted from the plot. Generated using PySLHA [95].

in any case make up a very small proportion of the events in these scenarios. The cross

sections for the pMSSM grid used vary between 0.1 and 100 pb - the cross sections for all

generated points are shown in Figure 7.11.

2.4.3 Simplified models

Only a few parameters of a theory can be explored in a realistic search: the 124 parameters

of the MSSM must therefore be reduced. In GGM and the pMSSM, this is done by

introducing additional model assumptions. An alternative is to reduce the content of

the theory to two or three particle masses and branching ratios: these characteristics

define a simplified model. Such models cannot be exactly realised in Nature, but have the

advantage of being more amenable to experimental searches, and more general, since fewer

assumptions have been made about the nature of new physics. Simplified models can also

be seen as the building blocks of realistic models: the observable sector of a given model

is determined entirely by its particle content and possible decays.

2.4.3.1 Simplified models of direct gaugino production

In these models, the χ̃
0
2 and χ̃±1 are assumed to be degenerate in mass, and to have no

entirely W̃ 0 and W̃± respectively. Two models of χ̃
0
2χ̃
±
1 production are considered in this

thesis. Firstly, “Model A” with intermediate slepton/sneutrino decays is defined. This
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model contains left-handed sleptons and sneutrinos: right-handed sleptons and sneutrinos

are ignored. All slepton generations are mass degenerate, as are sleptons and sneutrinos.

The left-handed sleptons and neutralinos satisfy the mass relation

m`L =
mχ̃0

2
+mχ̃0

1

2
(2.25)

Branching ratios to e/µ/τ are equal, as required by lepton universality and expected in

realistic models with low tanβ [74]. Benchmark points are simulated with masses from

mχ̃±1
,mχ̃0

2
= 112.5 GeV to 750 GeV, and mχ̃0

1
between 12.5 and 607.5 GeV. From equation

(2.25), the choice of mχ̃±1
,mχ̃0

2
and mχ̃0

1
determines the slepton mass: this varies between

62.5 and 625 GeV.

Secondly, “Model B” with intermediate gauge boson decays is defined. In this model, the

decays χ̃
0
2 → Z + χ̃0

1 and χ̃±1 → W± + χ̃0
1 are constrained to always occur. Benchmark

points are defined with mχ̃±1
,mχ̃0

2
masses between 100 and 500 GeV, with mχ̃0

1
between 0

and 450 GeV.

Feynman diagrams for χ̃
0
2χ̃
±
1 production in both models are shown in Figure 2.12, and

the cross sections are shown in Figure 2.13. The cross sections for Model A vary between

approximately 6.5 and 10−3 pb, while those for Model B vary between approximately 0.3

and 10−3 pb.

2.4.3.2 Alternate models and search paradigms

The models chosen here, with the exception of GGM, have heavy squarks and gluinos

(pMSSM) or none at all (simplified models). Clearly, supersymmetry with light squarks

and gluinos may be manifested in nature, and dedicated searches have been performed (see

[98] for example). These searches, and many others performed with search strategies sens-

itive to other models (for instance, those R-parity violating models) are complementary

to those presented here.

2.5 Summary

The Standard Model of particle physics has been presented in some detail, and the motiv-

ation for supersymmetry as an extension has been discussed. The supersymmetric models

considered in this work (GGM, the phenomenological MSSM and simplified models) were

discussed in some detail. In order to test the Standard Model and search for evidence

of supersymmetry or other new physics, the Large Hadron Collider (LHC) and associ-

ated detectors were constructed: the LHC and ATLAS detector are discussed in detail in



29

u

d̄

˜̄d

χ̃+
1

χ̃0
2

ν̃, ˜̀+

`+, ν

χ̃0
1

`+, ν

˜̀±, ν̃

`±, ν
ν, `±

χ̃0
1

(a) Model A

u

d̄

˜̄d

χ̃+
1

χ̃0
2

χ̃0
1

W+ ν

`+

Z

χ̃0
1

`±

`∓

(b) Model B

Figure 2.12: Feynman diagram for χ̃
0
2χ̃

+
1 production, with intermediate decays via sleptons

and sneutrinos (a) and gauge bosons (b).
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Figure 2.13: Cross sections for simulated points in the two simplified models.

Chapter 3.
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Chapter 3

The LHC and ATLAS detector

The days of simple experiments

are over.

John Fowles [99]

3.1 The LHC

The Large Hadron Collider (LHC) is a synchrotron of 27 km circumference at CERN, near

Geneva [100]. An artist’s impression of the LHC is shown in Figure 3.1. It was designed

to provide proton-proton collisions at a nominal centre of mass energy of
√
s = 14 TeV,

and is fed by a sequence of progressively more powerful accelerators. The first is the

linear accelerator Linac 2, accelerating beams up to 50 MeV, followed by the small Proton

Synchrotron Booster (PSB) at energies up to 1.4 GeV, then the Proton Synchrotron (PSB)

at energies up to 28 GeV, followed by the medium-sized Super Proton Synchrotron (SPS)

up to 450 GeV. To date, only collisions at
√
s = 7 TeV (2010–2011) and

√
s = 8 TeV

(2012) have been achieved, as well as short periods of operation at two lower energies

(
√
s = 2.36 TeV and

√
s = 2.76 TeV). Neither of the lower energy datasets is considered

in this work. The LHC has also been used to accelerate lead ions, but only results from

proton collisions are considered here. The LHC was designed to provide enough data at

high enough energy to discover or exclude the existence of a Higgs boson and physics

beyond the Standard Model. Such processes have cross sections of O( fb), so it follows

that the LHC must provide several inverse femtobarns worth of data in order to be able to

make any statements about the existence of such processes. The instantaneous luminosity

of a collider colliding two proton beams divided into distinct bunches is given by [5]:

L = f
n1n2

4πσxσy
(3.1)
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Figure 3.1: Artist’s impression of the LHC accelerator and experiments. From [101].

where f is the frequency of bunch collisions, n1 and n2 are the number of protons in bunches

1 and 2, and σx and σy are the horizontal and vertical RMS beam sizes. Clearly, in order

to maximise the number of collisions, f , n1 and n2 must be maximised, and the transverse

beam area must be minimised. In 2011 and 2012, f was 20 MHz, each bunch was composed

of approximately 1011 protons, and the linear beam sizes were both approximately 0.1 mm.

The LHC has a design instantaneous luminosity of 1.0× 1034 cm−2 s−1. It achieved peak

instantaneous luminosities of 4× 1033 cm−2 s−1 in 2011, and 7.7× 1033 cm−2 s−1 in 2012.

In 2011 the LHC delivered an integrated luminosity of over 5 fb−1, and in 2012 provided

approximately 21 fb−1. The collision of two bunches is referred to as a bunch crossing:

most of the protons in each bunch will not interact with each other: the average number

of interactions per bunch crossing (〈µ〉) of 9.1 in 2011 and 20.0 in 2012 [102], as shown in

Figure 3.2. The increase in instantaneous luminosity over time is shown in Figure 3.3. In

order to measure the properties of the collisions, four large particle detectors are situated

at collision points around the LHC, with additional smaller detectors at other locations.

The two large, multi-purpose detectors, ATLAS [103] and CMS [104], have comparable

capabilities for a wide range of Standard Model (SM) physics measurements and searches

for new physics. The other large detectors (LHCb [105], ALICE [106]) are specialised for

the study of B-physics and heavy ion physics respectively.
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Figure 3.2: Average interactions per bunch crossing (〈µ〉), normalised to the integrated

luminosity collected at a given 〈µ〉, recorded by the ATLAS detector in 2011 and 2012.

3.2 The ATLAS detector

The ATLAS (A Toroidal LHC ApparatuS) detector [103] is one of two general-purpose

detectors at the LHC. Its basic shape is that of a cylinder with axis of symmetry centred on

the beam pipe. Starting from the concentric layer closest to the beam pipe, it consists of a

central tracking system, hermetic electromagnetic and hadronic calorimeters, a solenoidal

magnet and a muon tracking system with surrounding toroidal magnets, shown in Figure

3.4. Most of the sub-detectors are separated into separate “barrels” in the centre of the

detector with additional sections at each end (“endcaps”). Generally, the barrel elements

are arranged with axial segments (relative to the beampipe), while the endcaps have radial

segments.

3.2.1 ATLAS detector geometry and kinematics

ATLAS uses a right-handed cylindrical co-ordinate system [103], with origin defined as

the nominal interaction point and the z-axis is coincident with the beam direction. The

y co-ordinate points upwards, while the x coordinate points out of the LHC ring. Since

the detector is approximately symmetric around the z-axis, detector sides are defined as

follows: side A has z > 0 and side C has z < 0. The φ angle is in the plane perpendicular

to the z-axis, while θ is the angle from the z-axis. The transverse momentum of a particle
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Figure 3.3: Peak instantaneous luminosity during 2011 and 2012 operation. Taken from

[102].

is defined as:

pT =
√
p2
x + p2

y (3.2)

where px and py are the x and y components of momentum respectively. When measuring

the kinematics of particles at a collider, it is convenient to use the rapidity, y, defined as:

y =
1

2

(
E + pz
E − pz

)
(3.3)
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where E is the particle’s energy and pz is the component of the particle momentum in

the z-direction. The sum and difference of rapidities is invariant under boosts in the

z-direction [5]. If the particle is massless, the rapidity reduces to the pseudo-rapidity, η:

η = − ln
(

tan
(
θ/2
))

(3.4)

For stable, high-pT particles produced in LHC collisions, the distinction between y and η

is negligible, and η may therefore be used as a angular coordinate instead of θ. To quantify

the distance between two particles 1 and 2, with coordinates (η1, φ1) and (η2, φ2), the

distance parameter ∆R =
√

(η1 − η2)2 + (φ1 − φ2)2 is often used. When imposing a con-

dition of spatial proximity on particles 1 and 2, the requirement ∆R < Rmax defines a

cone of radius Rmax around one of the two particles, within which the second particle

must be found for it to be declared “matched” to the particle in question.

The magnitude and direction of the longitudinal momentum |pz| of collision products de-

pend on the unknown initial momenta of the constituent quarks and gluons in each parton,

so the total momentum in an event cannot be determined. However, since the initial mo-

mentum in the transverse plane (perpendicular to the beam direction) is approximately

zero, it follows that the final transverse momentum is also zero. An imbalance in the

total transverse momentum (pvis
T ) of the visible collision products therefore indicates the

presence of additional invisible particles. The missing transverse energy (Emiss
T ) is defined

as

~Emiss
T = − ~pvis

T = −
∑
vis

~pT (3.5)

where the sum runs over all visible particles. The Emiss
T is the magnitude of the total

momentum vector of any invisible or otherwise undetected particles.

3.3 ATLAS general detector design

ATLAS is designed to measure SM processes and search for new physics. In many cases,

high momentum leptons and light and heavy-flavour jets are expected, as well as (depend-

ing on the process) significant Emiss
T . The design of ATLAS, like all collider detectors,

is based on the requirements of accurate momentum and energy measurement, hermet-

icity and fast detector readout. The momentum of charged particles is measured in an

inner tracker, and muon momentum is additionally measured in a dedicated muon spec-

trometer. The paths of charged particles in the inner tracker are bent by a 2 T solenoidal

magnet, while those of muons in the muon spectrometer are bent by toroidal magnets with

fields of up to 1 T. Electromagnetic and hadronic calorimeters measure energy deposition
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Figure 3.4: A schematic of the ATLAS detector (from [103]).

from electrons, photons, muons and hadrons. Electromagnetic and hadronic showers from

particles up to |η| < 4.9 are expected to be fully contained by the calorimeters. The calor-

imeters and muon spectrometer are both used in the trigger to reject/accept events every

bunch crossing: this requires a delicate interplay of detector and algorithm design. The

design pT and energy measurement resolutions for each subdetector are shown in Table

3.1, for both trigger-level and offline selections.

The following sections discuss in some detail the different sub-detectors which make up

the ATLAS detector, as well as the trigger system. There are additional detectors not

relevant to the work presented here: ALFA [107], used for measurements of elastic scat-

tering at very high η; the ZDC [108] situated 140 m from the interaction point; used for

forward calorimetry measurements; LUCID [107], used for luminosity measurements the

BCM [107] used to measure beam losses and luminosity; and the MBTS, used to trigger

events of interest for non-perturbative QCD.

3.4 ATLAS detector components

3.4.1 ATLAS Inner Detector

The ATLAS inner tracking system, shown in Figure 3.5, is designed to detect tracks from

charged particles within |η| < 2.5 with high momentum resolution (σpT /pT = 0.05% pT +

1%). It is made up of three concentric sub-detectors: two silicon detectors (the Pixel and

Semiconductor Tracker (SCT) detectors) and the Transition Radiation Tracker (TRT).

The cylindrical geometry of the inner detector is shown in the three-dimensional schematics
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Detector type Subdetector Section
|η| (max., min.)

Resolution type Design resolution

Trigger Offline

Tracking
ID (0, 2.5)

σpT /pT
1% + 0.05%pT

MS (0, 2.4) (0, 2.7) 10% at pT = 1 TeV

Calorimetry

ECAL (0, 2.5) (0, 3.2)

σE/E

0.7% + 10%/
√
E

HCAL
Barrel (0, 3.2) 3% + 50%/

√
E

Endcaps (3.1, 4.9) 10% + 100%/
√
E

Table 3.1: Expected resolutions of each ATLAS sub-detector. Measured resolutions are

discussed in Chapter 4. Here, the trigger and offline columns refer to whether the ap-

propriate |η| range is used by the trigger system, or available once the event has been

recorded. Taken from [103].

in Figure 3.5, while the η - z plane geometry is shown in Figure 3.6. The tracking

algorithms used in the trigger and offline tracking selection are discussed in Sections 3.5.2.3

and 4.4.1 respectively.

3.4.1.1 Pixel Detector

The Pixel detector consists of three concentric layers of silicon sensors encircling the

beampipe. It extends out to |η| < 2.5 - as may be seen in Figure 3.6, three layers will be

traversed by a charged particle. A cluster of signals on a sensor (known as a hit) defines

a space-point.

3.4.1.2 ATLAS Semiconductor Tracker

The SCT barrel consists of four concentric layers of silicon microstrips, while the endcap

consists of nine layers of silicon microstrips. The barrel extends to |η| < 1.7, while the

endcaps extend from 1.2 < |η| < 2.5. Each module consists of two identical sensors with

768 silicon strips on each side, aligned at a stereo angle of 40 mrad. In the barrel, the inner

sensor layer is oriented parallel to the beampipe, while in the endcaps the inner sensor

strips point towards the beampipe. A charged particle passing through a module will

activate one or more strips on each module side: the intersection point between activated

strips on opposite layers intersect defines a space-point.
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Figure 3.5: Cutaways of the ATLAS inner detector (from [103]).

3.4.1.3 ATLAS Transition Radiation Tracker

The Transition Radiation Tracker (TRT) is a cylindrical detector extending to |η| < 2.0

considering both barrel and endcap, and consists of nearly 300,000 straw tubes of plastic

filled with a Xe-CO2 − O2 gas mixture, with a central gold-plated tungsten wire. When
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Figure 3.6: A cross section of the ATLAS inner detector in the η - z plane (from [103]).

a charged particle traverses the straw, it ionises the gas, and the ionisation electrons drift

towards the wire.

Transition radiation occurs when a charged particle crosses between media with different

dielectric constants: the energy radiated is proportional to the Lorentz factor γ = E/mc2

of the charged particle. Transition radiation at X-ray frequencies is recorded as an addi-

tional, higher energy hit (known as a high-threshold hit) in the TRT. A significant chance

of transition radiation at X-ray frequencies occurs for electrons of approximately 1 GeV,

and for other particles only for upwards of 200 GeV due to the dependence on mass. The

probability of radiation for pions and electrons as a function of energy and Lorentz factor

is shown in Figure 3.7. Since a high-threshold hit is only likely for electrons, its presence is

used to discriminate against pions [109]. The “low” threshold required to register a hit is

300 eV, while the “high” threshold for transition radiation is between 6 and 7 keV [110].

The TRT barrel extends from |η| < 1.0, while the endcaps extend from 0.8 < |η| < 2.0.

The overlap means that, as shown in Figure 3.6, tracks with 0.8 < |η| < 1.0 can have hits

in both the TRT barrel and an endcap. A typical track will have approximately 36 hits,

which allows for improved estimation of track parameters when combined with the Pixel

and SCT hits.

3.4.2 ATLAS Magnet System

ATLAS has a two-part magnet system consisting of a solenoid and toroidal system, shown

schematically in Figure 3.8. The solenoid and toroids provide a magnetic field for the

inner detector and muon spectrometer respectively. The ATLAS solenoidal magnet is a

2 T superconducting magnet, with an inner (outer) diameter of 2.46 (2.56) m and axial

length of 5.8 m. The superconducting toroidal magnet system comprises a central barrel

and two endcap toroids, providing fields of 0.5 and 1 T respectively. The barrel toroid has
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an axial length of 25.3 m, inner diameter 9.4 m, and outer diameter 20.1 m. All solenoid

and toroid coils are made of NbTi, which maintains a high magnetic field while remaining

relatively thin [103] - this reduces unmeasured energy loss in the magnets.

3.4.3 ATLAS Calorimeter System

The ATLAS electromagnetic and hadronic calorimeters are shown in Figure 3.9, and dis-

cussed in more detail in Sections 3.4.3.1 and 3.4.3.2 respectively. Electromagnetic showers

can be measured with higher precision than hadronic showers, with design resolutions of

10%
√
E+0.7% for the electromagnetic calorimeter and up to 100%

√
E+10%. They have

a combined coverage of |η| < 4.9. Both calorimeters are “sampling” calorimeters: in each

detector, different materials are used to initiate particle showers and to measure the result-

ing energy. Particle energy is lost in one layer, then measured in the following layer, and

this pattern is repeated throughout each calorimeter. The ATLAS calorimeters are non-

compensating: namely, they respond differently to electromagnetic and hadronic showers.

The electromagnetic calorimeter is designed to measure electron and photon energy loss

through electromagnetic showers. In an electromagnetic shower, electrons and photons

lose energy through a cascade of electromagnetic interactions with the calorimeter. The

hadronic calorimeter is designed to measure the energy loss of hadrons losing energy in

hadronic showers, which are cascades of nuclear interactions with the calorimeter. The

radiation length (X0) is defined [5] as the distance over which on average an electron loses
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Figure 3.8: The ATLAS magnet system. In this drawing, the solenoid is the innermost

red ring, while the next four rings (shown in various shades of blue, orange and green) are

different sections of the electromagnetic and hadronic calorimeters. The outermost ring is

the Tile Calorimeter, which acts as a flux return yoke for the magnet due to its high steel

concentration. The large red loops are the barrel toroids, while the small red loops make

up one set of endcap toroids, with a corresponding set on the other side. From [103].

all but 1/e of its energy in a given medium, while the nuclear interaction length (λI) is

defined as the distance that a strongly interacting particle travels on average before losing

all but 1/e of its energy through nuclear interactions. The electromagnetic calorimeter is

more than 22 X0 thick in the barrel and more than 24 X0 thick in the endcap. The had-

ronic calorimeter is approximately 10 λI thick throughout the whole detector - the total

number of radiation lengths of the calorimeters (including dead material) as a function of

η are shown in Figure 3.10, derived from simulation. The other important characteristic of

the calorimeters is their granularity, defined as the smallest measurable (∆η,∆φ) segment.

Details about the calorimeters’ geometry and granularity are given in Table 3.2.

3.4.3.1 ATLAS electromagnetic calorimeter

The EM calorimeter barrel extends from 0 < |η| < 1.475, and the endcaps from 1.375 <

|η| < 2.5. The solenoidal magnet is surrounded by the EM calorimeter - in order to reduce

the amount of dead material, they share a common vacuum vessel. The EM calorimeter is

formed of consecutive layers of lead absorber plates and liquid argon (LAr) instrumented

by electrodes, arranged in an “accordion” geometry shown in Figure 3.11. Up to |η| = 1.8,
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Component Section No. layers |η| (min., max.)
Granularity (∆η ×∆φ)

Min. Max.

ECAL barrel

Presampler 1 (0, 1.52) 0.025× 0.1

Calorimeter
3 (0, 1.35)

0.025× 0.025 0.05× 0.025
2 (1.35, 1.475)

ECAL endcap

Presampler 1 (1.5, 1.8) 0.025× 0.1

Calorimeter

2 (1.375, 1.5)

0.05× 0.025 0.1× 0.13 (1.5, 2.5)

2 (2.5, 3.2)

Granularity (∆x×∆y [cm])

HCAL barrel

Calorimeter

3 (0, 1.0) 0.1× 0.1 0.2× 0.1

HCAL extended barrel 3 (0.8, 1.7) 0.1× 0.1 0.2× 0.1

HCAL endcap 4 (1.5, 3.2) 0.1× 0.1 0.2× 0.2

FCAL 3 (3.1, 4.9) 3.0× 2.6 5.4× 4.7

Table 3.2: The number of layers, extent in η and granularity of the calorimeters. Taken

from [103].
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Figure 3.9: A cutaway of the ATLAS calorimeter system. Taken from [103].
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associated systems is shown in beige, while material in the muon spectrometer is shown

in light blue. The values shown are simulated. Taken from [103].

the first layer of the calorimeter functions as a presampler. Since the presampler has no

initial lead absorbing layer, it measures particle energy before any significant showering

occurs. This helps mitigate the loss of energy in the ID and magnet system. After the

presampler, there are two or three layers (depending on η range) of sampling calorimeter
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Figure 3.11: A sketch of a cross section of the ATLAS electromagnetic calorimeter barrel.

Taken from [103].

as detailed in Table 3.2. The first sampling layer is used to distinguish between prompt

photon production and photons from neutral pion decays, by distinguishing single and

double showers. The second sampling layer contains the majority of the shower, and is

used for the main energy measurement. Higher energy showers can extend to the third

sampling layer: since hadronic showers generally deposit more energy, the absence of

deposits in this layer is used to distinguish EM and hadronic showers.

3.4.3.2 ATLAS hadronic calorimeter

The hadronic calorimeter is formed of three parts: a barrel of concentric layers of steel and

scintillating tiles, two endcaps of copper/LAr, and a forward calorimeter of alternating

layers of copper/tungsten and scintillating tiles. The central hadronic (“Tile”) calorimeter,

a section of which is shown in Figure 3.12, extends over the range 0 < |η| < 1.0, while

the two extended hadronic barrels cover the range 0.8 < |η| < 1.7. Both barrels share the

same LAr vacuum vessel as the EM calorimeter. The hadronic endcap calorimeters (HEC)

are each made of two separate wheels, extending between 1.5 < |η| < 3.2. The wheels are

made of alternating layers of tungsten and liquid argon. The forward calorimeter (FCAL)
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extends over 3.1 < |η| < 4.9. It consists of three modules: the innermost of alternating

layers of copper/LAr and the outer two comprising alternate tungsten/LAr layers.

Figure 3.12: A section of the ATLAS Tile Calorimeter. The strips of steel and scintillator

are visible in the cutaway: the offset between each plate increases the calorimeter gran-

ularity. Photomultiplier tubes and wavelength-shifting fibres provide readout. Adapted

from [103].

3.4.4 ATLAS Muon Spectrometer

Muons and neutrinos are the only particles which traverse the entire detector, but neut-

rinos are highly unlikely to interact at all during their trajectory. Muons do not interact

strongly and their electromagnetic energy loss through bremsstrahlung is suppressed re-

lative to that of electrons by a factor of (me/mµ)4 ≈ 5.4 × 10−10. Muons leave a track

in the inner detector, small energy deposits in the calorimeters, and an additional track

segment in the muon spectrometer. The bending magnetic field for the muon spectro-

meter is provided by the barrel toroids for |η| < 1.4, and by the endcap toroids between

1.6 < |η| < 2.7. In the intermediate or “transition” region, 1.4 < |η| < 1.6, the magnetic

field is provided by both the barrel and endcap toroids.

Unlike the other ATLAS sub-detectors, the muon spectrometer has separate components

for fast muon triggering online, and for precision muon reconstruction offline. Monitored

Drift Tubes (MDTs) are installed in the range 0 < |η| < 2.0. At η = 0, there is a gap in the

muon chambers required for detector access. In the barrel, the MDTs are arranged axially,
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and in the endcaps they are arranged radially, fanning out from the z-axis. The MDTs

are drift tubes of 29.970 mm diameter filled with Ar/CO2 gas, and a central wire held at

a constant potential of 3080 V. Faster multi-wire proportional chambers [111] known as

Cathode Strip Chambers (CSCs) are used at 2.0 < |η| < 2.7. The use of faster detectors

is necessitated by the higher event rate in the forward direction (i.e. closer to the beam

axis). The CSCs are arranged radially, fanning out from the z-axis, as shown in Figure

3.13. Both the MDTs and CSCs are drift chambers: the gas is ionised by the passing

muon, and ionisation electrons are then attracted to, and read out by either one (MDT)

or several (CSC) wires. The time taken for electrons to reach the wire is known as the

drift time. The drift times in the MDT and CSC chambers (approximately 100 ns), are

too long to allow the use of MDTs and CSCs in the first trigger level, which requires the

detector to be read out in less than 50 ns (the bunch crossing time). There are therefore

dedicated trigger chambers covering the range |η| < 2.7, which are again of two different

types: Resistive Plate Chambers (RPCs) at |η| < 1.05, and Thin Gap Chambers (TGCs)

at 1.05 < |η| < 2.7. The change in technology is again due to the increased rate at higher

η. The RPCs use parallel electrode-plates rather than wires to detect muons, while the

TGCs are multi-wire proportional chambers. In addition to their triggering capability, the

RPCs and TGCs are used to measure the curvature from the toroidal magnetic field, which

is in the R − θ plane. Several regions of the MS have fewer chambers. At η ≈ 0, control

systems for the ID, calorimeters and solenoidal magnet are installed, and the base of the

MS has 9 rows of “feet”, which support the entire ATLAS detector. Except in the feet

region, each RPC is paired with MDT layers: the lack of space here necessitates smaller

RPCs without paired MDTs. Additionally, in 2011 the regions between 1.1 < |η| < 1.3

had fewer chambers than the original design: the missing chambers were installed between

the 2011 and 2012 running periods.

3.5 ATLAS Trigger System

The LHC bunch crossing time was 50 ns in 2011 and 2012: this corresponds to a bunch

crossing frequency of 20 MHz. It is infeasible to process or store data generated at this

rate, so a triggering system is used in order to reject events not classed as interesting and

hence reduce the rate of accepted events to a maximum of 400 Hz, a manageable rate that

can be read out from the detector and stored. The ATLAS trigger is a three-level system

with each stage selecting progressively fewer events with a more complex selection in order

to reach the 400 Hz required. Since data not recorded by the detector are lost for good,
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Figure 3.13: A cutaway of the ATLAS muon detector system. From [103].

it is vital to select as many events with interesting properties as possible, and to try to

avoid bias in the events selected.

The three trigger levels are known as Level 1 (L1), Level 2 (L2) and Event Filter (EF).

L2 and EF together form the “High Level Trigger” (HLT). L1 is the lowest level, and uses

fast custom electronics, while the HLT uses software algorithms implemented on standard

PCs. The L1 trigger uses coarse granularity information from the calorimeters and muon

system, while the HLT has access to the full detector information. The Inner Detector is

not used at L1. The L2 only has access to the event information in a Region of Interest

(RoI), a broad region in η and φ, while the EF has access to the full event in all detector

subsystems. If an event fails any of the stages (L1, L2, EF), it is permanently rejected.

The L1 and HLT trigger systems are discussed in detail in Sections 3.5.1 and 3.5.2.

The L1 trigger system reads data directly from the subdetectors. The L1 custom electron-

ics systems pass their decision for the event to the Central Trigger Processor (CTP), which

decides whether to accept the event. During this L1 decision time, the full event data is

stored in front-end pipelines. If the L1 trigger system accepts the event, the Readout Buf-

fers (ROBs) send information in the RoIs to the L2. The L2 trigger receives information

from the calorimeter and muon systems, as well as new information from the ID. If the

L2 trigger system accepts the event, event fragments from all RoIs are combined in the

Event Builder (EB), stored in the Full Event Buffer and sent to the EF. If the EF trigger
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system accepts the event, it is sent from the Full Event Buffer to permanent storage and

further processing. This sequence of trigger operation is shown as a flowchart in Figure

3.14.

Figure 3.14: The flow of data (shown as black arrows) in the ATLAS trigger system. The

acronyms used are defined in Section 3.5. The three trigger levels are shown on the left,

while temporary and permanent storage/data processing units are shown on the right.

Adapted from [112].

3.5.1 Level 1 Trigger

3.5.1.1 Level 1 Calorimeter Trigger

The L1 calorimeter trigger system (L1Calo) [113] uses signals in coarse granularity (∆η×
∆φ = 0.1× 0.1 in the central calorimeters, and larger segments in the FCAL) segments of

the EM and hadronic calorimeters, known as trigger towers. For electrons and photons,

a 2 × 2 square of trigger towers with a local maximum (horizontal or vertical pairs of

towers) above a given threshold forms an RoI. Isolation requirements may be imposed

by requiring, for instance, an energetic 2 × 2 square surrounded by towers below a given

threshold. No isolation requirements were used for the triggers in this work. Additionally,



49

the background from jets faking electrons may be reduced by requiring low energy in the

HCAL behind an electron/photon candidate. Details of the L1Calo jet and tau triggers,

which are not used in this work, are found in [112].

3.5.1.2 Level 1 Muon Trigger

The L1 muon trigger system (L1Muon) makes use of the RPC and TGC detectors only (as

these are the only parts of the muon system that can be read out quickly enough for use).

The RPCs are used for muons seen in the barrel, while the TGCs are used for endcap

muons. Sequences of hits in three layers of TGC or RPC detectors are used to find muon

candidates. The thresholds for low-pT muons to pass the trigger are below approximately

10 GeV, while those for high-pT muons are above above GeV. The paths taken by high

and low-pT muons are shown in Figure 3.15.

Muon candidates from the barrel and endcap triggers are combined into threshold multi-

plicities - an example threshold multiplicity would be two distinct muons with pT > 6 GeV.

Up to six such threshold multiplicities can be read out for every event.

Figure 3.15: Example muon trajectories for the barrel (RPCs) and endcap (TGCs). The

first layers (TGC EI and TGC FI) are not used in the trigger, but rather for precision

tracking. From [114].

3.5.1.3 Level 1 Central Trigger Processor

The output from the L1Calo and L1Muon systems (referred to as trigger conditions) is

sent to the Central Trigger Processor (CTP) [115]. Up to 256 trigger conditions can be

processed by the CTP. In addition to the input from L1Calo and L1Muon, random and

periodic timed triggers are used for monitoring and calibration. Up to 256 combinations of
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these trigger conditions may be used to accept events. An example of such a combination

of trigger conditions would be a single EM signal above 14 GeV combined with a single

muon signal above 6 GeV. The OR of the 256 trigger combinations is used to accept events.

Once an event has been accepted (L1Accept), the CTP vetoes subsequent L1Accepts for

a short period in order to prevent too much data being sent to the front-end buffers -

this is known as a simple dead-time mechanism. Additionally, the number of L1Accepts

in a given period is limited for the same reason - this is known as a complex dead-time

mechanism. In 2011 and 2012, the simple dead-time was set to 5 bunch crossings, and the

complex dead-time limited to 8 L1Accepts in 416 bunch crossings. A diagram of the L1

trigger system is shown in Figure 3.16.

Figure 3.16: A diagram of the L1 trigger system. The flow of data to the detector front-

ends, L2 trigger and data acquisition systems are shown in red, blue and black respectively.

Information from the calorimeters and muon detectors is sent to the respective trigger

systems. The information is then combined by the CTP, which also returns timing and

control information to the detectors. If the CTP decides to accept the event, full detector

information in RoIs is sent to the L2 trigger. From [103].

3.5.2 ATLAS High Level Trigger

The High Level Trigger (HLT) uses farms of PCs running software-based algorithms to

select and reject events. As previously discussed, it is further subdivided into two levels:

Level 2 uses specialised fast algorithms, while the Event Filter uses the same selection
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algorithms as the offline event reconstruction discussed in Section 4.4. In 2011 (2012),

1193 (1205) PCs were used in the L2 farm, while 448 PCs were used in the EF farm in

both years [116].

3.5.2.1 ATLAS Level 2 Trigger System

The Level 2 (L2) trigger uses specialised fast software algorithms to further reduce the

rate to a maximum of 5.5 kHz (6.5 kHz) in 2011 (2012), with a maximum processing time

of 40–45 ms [116]. In addition to the calorimeter and muon trigger systems, the inner

detector is used at this level to further select events with tracks - tracking information is

used in the electron, muon and tau triggers. The L2 system also operates at the RoI level

only. If an event passes the L2 trigger, information from the RoI is sent to the next trigger

system, the Event Filter.

3.5.2.2 ATLAS Event Filter Trigger System

The final trigger layer is the Event Filter (EF). The output rate of the EF was 400 Hz in

2011 and 2012 [116]. It makes use of the whole detector and the same algorithms as in

ATLAS offline event reconstruction, as discussed in section 4.4, but configured to reject

or accept an event in a maximum of 1 s [116] to constrain the overall output rate.

3.5.2.3 Inner Detector High Level Trigger

Information from the inner detector systems is not used at L1: the time to process an

event increases as a function of the number of additional pileup events, as these will deposit

additional hits in the inner detector. Since the tracking algorithms used in ATLAS are

combinatoric in nature, this rise is much steeper than for the calorimeter systems, which

rely on energy thresholds. The rate in the muon tracking chambers is lower since only

muons reach the chambers. Two separate algorithm strategies [117] were used for trigger

tracking throughout 2010-2012. Both strategies start by identifying a primary vertex,

using the hit occupancy for the event, plotted as a function of z. The point with the

highest hit occupancy is taken as the primary vertex co-ordinate. The algorithms generate

final tracks from space-points using a Kalman filter [118], a general type of linear filtering

algorithm that iteratively compensates for the effect of noise on a signal. For tracking

algorithms, the signal is the true trajectory of the particle, while the noise in the system

is the effect of mis-association of space-points to the true trajectory.
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3.5.2.4 Calorimeter High Level Trigger

Electron reconstruction at L2 is performed within ∆η×∆φ = 0.4×0.4 RoIs, using trigger

towers (defined in Section 3.5.1.1) of η×φ = 0.025×0.025. Clusters of towers likely to come

from electrons are then found with the offline electron reconstruction algorithm described

in Section 4.4.4. The same procedure is followed for the EF, except that the clustering is

performed in the entire detector, rather than just the RoI. Calorimeter clusters found at L2

and EF are matched with inner detector tracks in order to identify electron candidates.

The calorimeter HLT is also used to identify jet candidates and events with significant

Emiss
T : this is described in more detail in [119, 120].

3.5.2.5 Muon High Level Trigger

The L2 and EF muon trigger makes use of the MDT and CSC systems at reduced and

full detector granularity respectively [114]. Muons found by the muon HLT are checked

for compatibility with track candidates in the inner detector: compatible candidates are

referred to as combined muons, while those found solely by the muon HLT are referred

to as standalone muons. The algorithms used in the EF muon triggers are described in

Section 4.4.5.

3.5.3 Trigger chains and menus

Since interesting physics events can have many different possible signatures, multiple trig-

ger algorithms are run in parallel at each level of the trigger. In order to be recorded,

an event must pass a combination of L1, L2 and EF algorithms known as a chain. As

an example, take the single electron trigger chain e20 medium. This chain begins with

the L1 EM14 trigger, which has a threshold of 14 GeV and uses EM trigger towers. The

detector information in the RoI provided by the L1 EM14 trigger is then sent to the

L2 e20 medium trigger, which has a 20 GeV threshold, and finally the full detector in-

formation is sent to the EF e20 medium trigger, which again has a 20 GeV threshold.

The full set of trigger chains running during data taking is known as the trigger menu.

The upper limits on the various trigger input and output rates increase with additional

collision energy and pileup: for this reason, the trigger menus changed between 2011 and

2012, and within the different 2011/2012 data taking periods. The trigger chains used in

this work are detailed in Section 5.2.2.
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Chapter 4

Simulation and reconstruction

Trying to unweave, unwind,

unravel

And piece together the past and

the future.

T. S. Eliot [121]

The ATLAS detector uses a software framework known as Athena [122], based on

the GAUDI framework [123]. The Athena framework implements event generation (see

4.1), simulation of particle interactions with the detector (see 4.2), digitisation and finally

reconstruction (see 4.4) of particle objects by a common set of Python steering commands.

The full chain of processing steps is shown in Figure 4.1, for both data and simulated

collision events.

Event

generation
Simulation Digitisation

Data

acquisition

Reconstruction Calibration

Figure 4.1: Flow chart showing the processing of real and simulated data in ATLAS.



54

4.1 Event generation

The physics processes described in Chapter 2 are simulated by computer codes known as

Monte Carlo (MC) event generators [124]. Event generators use a combination of per-

turbative and phenomenological calculations to provide randomly distributed “events” of

a given type (for example, pp→WZ → `+`−ν) with stable final state particles.

Different physics models are used for the high momentum transfer (Q2) part of the event,

known as the hard process, and for the low energy parts of the event, known as soft pro-

cesses. Since QCD is a strongly coupled theory, as discussed in Section 2.1.5, soft processes

cannot be calculated perturbatively. Instead, they are approximated by phenomenological

models including parameters determined from data. The full sequence of processes going

into a theoretical prediction, shown in Figure 4.1 is discussed in detail in the next few

sections.

4.1.1 Parton distribution functions

Parton distribution functions (PDFs) describe the probability of quarks and gluons within

the colliding protons having a given fraction x of the overall momentum. PDFs, denoted

fa(x,Q
2) are functions of the momentum fraction, parton species a and momentum trans-

fer Q2. The factorisation theorem [125] states that the differential cross section dσ of any

hard process can be written in the form

dσ =
∑
i,j

∫ 1

0
dxi

∫ 1

0
dxj dσpart

i,j fi(xi, Q
2)fj(xj , Q

2) (4.1)

Here i and j are the indices of the interacting partons with momentum fractions xi, xj and

dσparti,j is the differential cross section of the hard process between partons i and j with

momentum fractions xi, xj . Since the PDFs are functions only of the momentum fraction

they are independent of the hard process. The PDFs themselves are not calculable in

perturbation theory, but their evolution as a function of Q2 is calculable via the so-called

DGLAP equations [126, 127, 128]. To generate a set of usable PDFs, all that is needed is

an ansatz functional form for each PDF, and a set of experimental data. In practice, PDFs

are extracted from complex fits to a wide range of experimental data [129]. The main signal

and background processes in three-lepton searches have quark-antiquark initial states, so

the uncertainties on sea-quark distributions are important for the search presented here.

Uncertainties arising from PDFs are important for the search presented in this thesis, as

discussed in Section 6.3.1.3.
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4.1.2 Matrix element

Since the hard process involves a large momentum transfer, it may be calculated using

standard quantum field theory techniques - this is often referred to as the matrix element

calculation. Such calculations are performed as an expansion in αS , at increasingly high

orders of αS : leading order (LO) O(αS), next-to-leading order (NLO) at O(α2
S) and so on.

Techniques to evaluate matrix elements are discussed in detail in [130, 131] and references

therein.

4.1.3 Parton showers, hadronisation and the underlying event

Quarks radiate gluons (q → qg), while gluons can decay to quark-antiquark pairs (g → qq)

or split into two gluons (g → gg), and these processes may repeat. At high Q2, this is

calculated as an additional correction to the matrix element calculation (hard emission),

but at low Q2 this is not possible: phenomenological models known as parton showers

(PS) are used. The PS approximation is valid at Q2 above the QCD scale (O( GeV)).

PS models have been developed by the Herwig [132, 133, 134], Pythia [135, 136] and

Sherpa [137] collaborations. At intermediate Q2, gluon/quark radiation may be treated

as a hard emission or part of the PS: this can lead to double-counting of the total radiation

in a given event. The CKKW [138] and MLM [139] schemes are used to determine whether

emissions form part of the matrix element or PS.

After successive showers, the energy of the partons in the PS will fall to the threshold for

bound state production (hadronisation). Since hadrons are only formed at low energy,

only phenomenological models exist: several versions are provided by Herwig, Pythia

and Sherpa.

The underlying event (UE) [140] refers to the observed behaviour of the partons not

participating in the hard process. These “spectator” partons hadronise to form colour

singlet states: this hadronisation is described by phenomenological models developed by

the Jimmy [141], Pythia and Sherpa collaborations.

Free parameters for the different PS, UE and hadronisation models (summarised in [124])

are tuned to data. For ATLAS, these “tunes” are discussed in detail in [142, 143, 144,

145, 146]. An outline of event generation is shown in Figure 4.2.

4.1.4 Summary of event generator properties

Sherpa, Herwig++ and Pythia 6/Pythia 8 provide matrix elements at LO and have

internal PS and UE models. Herwig handles PS but lacks a UE model and is therefore
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Figure 4.2: An outline of event generation. The non-perturbative parts of the calculation

are in blue boxes, while the perturbative matrix element calculation is in pink.

always interfaced to Jimmy for UE simulation. Alpgen and MadGraph both provide

matrix elements at LO and are interfaced to Herwig/Jimmy and Pythia respectively.

mc@nlo [147] and Powheg [148] both provide matrix elements at NLO and are interfaced

to Herwig/Jimmy and Pythia respectively. mcfm [149, 150, 151] and fewz [152, 153]

are used to provide total cross sections for SM processes at NLO and NNLO respectively.

4.1.5 Storage of event generator information

Each event generator stores at least the identities and four-vectors of the initial and final

state particles, and in some cases the intermediate, possibly virtual particles (vector bo-

sons, SUSY particles etc) involved in the process. These are referred to as truth particles.

Intermediate truth particles can only represent a single possible quantum mechanical his-

tory for an event and are therefore not used directly in the analysis. Final state truth

particles are used in MC measurements of reconstruction efficiency, by checking whether

(for instance) a lepton candidate corresponds to a true lepton. In this analysis the match-

ing of truth and reconstructed particles is done geometrically, by requiring the truth and

reconstructed particles to match within ∆R < 0.1.

4.1.6 Pile-up

Each hard interaction at the LHC is accompanied by up to forty additional soft interactions

(see Figure 3.2). In order to compare data to simulation, additional interactions are added
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to simulated events. The 〈µ〉 of the MC events is designed to match the 〈µ〉 of the data

sample it is to be compared to. In practice, since simulation generally happens during

data-taking rather than afterwards, the 〈µ〉 distributions will not match exactly, and

simulated MC events will therefore be reweighted to the observed 〈µ〉 distribution in data.

This procedure is referred to as pile-up reweighting.

The cross sections for SUSY signal processes, as well as the relevant backgrounds (O( fb)),

are so small compared to those for soft interactions (O( mb) [154]) that it is vanishingly

unlikely that two hard interactions will occur in the same event. It is therefore sufficient to

simulate additional soft proton-proton interactions and overlay these onto the simulation

of the hard process.

4.2 Detector simulation

4.2.1 Full event simulation

Accurate simulation of the interaction of hadrons and charged leptons with the ATLAS

detector depends on accurate modelling of energy loss and radiation in the different sub-

detectors. The passage of particles through the detector is simulated by the geant4 [155]

framework: phenomenological parameters for the models of energy loss and radiation used

are calibrated using data from test beam experiments (see for example [156, 157, 158, 159]).

The success of this simulation is also dependent on precise knowledge of the detector

geometry. This is known approximately from the detector design, but was only fully

validated by in-situ measurements of alignment [160, 161, 162] and active/dead material

[163].

4.2.2 Trigger simulation

After the passage of the final state particles through the detector is complete, the event

is passed to a complete simulation of the ATLAS trigger. The L1, L2 and EF trigger

systems are simulated, and a set of triggers similar to that used in data acquisition is

applied. Information is stored in the event record indicating whether the event passed

each trigger simulated.

4.2.3 Fast simulation

Full event simulation can be very time-consuming: fast simulation is significantly sim-

plified and can therefore allow for the simulation of more events in the same timescale.
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This is of particular importance in cases when the total number of events simulated is a

limiting factor for the analysis, such as the production of SUSY signal samples (discussed

in Sections 4.3.1.2, 4.3.2.2). The ATLAS fast simulation package, known as AtlFast-II

[164, 165], uses parameterised response functions to model electromagnetic and hadronic

showers [166] and a simplified detector geometry and treatment of scattering to model

interactions in the ID [167].

4.2.4 Digitisation

After full or fast simulation, the response of the ATLAS detector to the simulated signals

is simulated. If a signal is above the threshold for a given readout channel it is added to

the total set of data read out from the simulated event. The effects of cross-talk, noise

and other aspects of the data acquisition systems are then simulated as detailed in [168]

and references therein.

4.3 Summary of Monte Carlo samples used in the analysis

In the following Sections, a summary of the different background samples used in 2011 and

2012 is given. The cross sections and integrated luminosities of the samples used in 2012

is shown in Table 4.1. In order to minimise the statistical error due to the sample size, the

integrated luminosity of the sample must be at least the size of the actual dataset. The

full set of samples used in 2011 and 2012, with ATLAS-specific dataset names, is given in

Appendix A.

4.3.1 Monte Carlo samples used in 2011

4.3.1.1 Background samples

Samples of WZ and ZZ production are simulated with Sherpa, while Herwig + Jimmy

is used for WW production. Sherpa correctly treats contributions from singly resonant

boson production, as well as the ordinary doubly resonant process. Production of W/Z bo-

sons in association with heavy/light flavour jets is also simulated with Alpgen interfaced

to Herwig + Jimmy. Z+jets samples are divided into “Drell-Yan”, for γ∗ production

below the Z peak (10 GeV < m`` < 60 GeV), and high mass Z+jets with m`` > 60 GeV.

MadGraph interfaced to Pythia is used for tt̄ + W , tt̄ + Z, and tt̄ + WW , processes.

The diboson (WW , WZ, ZZ) yields are normalised to the mcfm NLO calculation, while

the single and pair-produced top quark calculations are normalised to approximate NNLO
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calculations [169]. The tt̄+W , tt̄+Z, tt̄+WW , processes are normalised to NLO calcula-

tions [170, 171]. W/Z+jets processes are normalised to NNLO calculations performed by

fewz [152, 153]. WZ and ZZ samples are also produced in Powheg interfaced to Her-

wig to evaluate the theoretical uncertainty for these processes. All background samples

pass through full simulation.

4.3.1.2 Signal samples

The simplified model samples, with SUSY parameters defined in Section 2.4.3, were all

simulated in Herwig. The spectra for the pMSSM samples were generated using isasusy

[172], and the events were generated in Herwig. The GGM samples, with parameters

defined in Section 2.4.1, have spectra generated by sdecay [173] and the events generated

by Herwig.

4.3.2 Monte Carlo samples used in 2012

Only differences between the 2011 and 2012 analyses are stated here.

4.3.2.1 Background samples

All diboson processes (WW , WZ, ZZ) are simulated by Sherpa. Again, additional WZ

and ZZ samples used to treat the theoretical uncertainties on diboson production are

simulated by Powheg. Triboson processes (WWW and ZWW production) are evaluated

for the analysis, and their simulation is performed using MadGraph. Powheg interfaced

to Pythia is used instead of mc@nlo for tt̄ production, while AcerMC [174] is used for

t-channel single top production (other single top processes are still simulated in mc@nlo).

The Powheg tt̄ process is passed through ATLFAST-II rather than full simulation. Other

processes contribute negligibly to the total background.

4.3.2.2 Signal samples

The 2012 analysis focuses on the interpretation of simplified models: pMSSM and GGM

samples are not considered for this dataset.

4.4 Reconstruction and identification

Objects (electrons, muons, tau leptons, jets, and missing energy) are reconstructed from

ATLAS detector information in exactly the same way for MC and data. This initial re-

construction is loose enough that the resulting objects may be used for many different
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Process Generator Cross section pb
∫
Ldt fb−1

WZ → 3`ν

Sherpa

10.24 258.6

WW → `ν`ν 5.83 454.6

ZZ → 4` 8.74 167.2

ZZ → 2`2ν 0.54 1465.2

WWW → 3`3ν

MadGraph +Pythia 8

7.65× 10−3 9800

ZWW → 4`2ν 2.33× 10−3 32250

ZZZ → 4`2ν 0.50× 10−3 151500

tt̄+ (W → `ν)

Alpgen + Pythia 8

7.66× 10−2 1673.6

tt̄+ (W → jets) 0.15 1678.9

tt̄+ (Z → νν) 0.04 1592.3

tt̄+ (Z → ``) 0.03 1835.8

tt̄+ (WW → `ν`ν) MadGraph +Pythia 8 9.2× 10−4 10880

tt̄ (semi- and fully-leptonic) Powheg +Pythia 8 128.6 231.8

s-channel single top mc@nlo + Herwig 1.80 836.5

t-channel single top AcerMC +Pythia 8 28.4 94.8

Z + light jets (Drell-Yan)

Alpgen + Pythia 8

3448.2 118.9

Z + light jets 13094.6 445.1

Z + cc̄ 93.92 375.7

Z + bb̄ 45.68 235.5

W + light jets 3658.9 74.2

W + c 1287.0 30.1

W + cc̄ 461.1 24.0

W + bb̄ 153.2 24.9

Table 4.1: Cross sections and effective integrated luminosity of the main MC samples used

in the 2012 analysis. The cross sections are given at NLO for all processes except Z and

W + jets.
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analyses. The additional selection criteria are then applied in order to increase the purity

of the selected objects. Finally, measured object properties are calibrated and simulated

object properties are corrected in order to match this calibration. Objects used in this

analysis were reconstructed in line with official performance group guidelines from AT-

LAS.

Algorithms used for reconstruction generally behave iteratively, starting from a set of

simple objects (e.g. track hits or calorimeter deposits) and constructing a new object (e.g.

an ID track or calorimeter cluster). The iterative algorithms used to reconstruct objects

in the ID, calorimeters and MS are described below.

Algorithms to identify objects behave discriminatively, by starting with a sample of final

objects and systematically rejecting objects not matching a set of pre-defined criteria.

Discriminative algorithms are used to reduce a sample containing a combination of true

and false objects in unknown proportion to a sample containing predicted combinations

of true and false objects. Simple discriminative algorithms are also used to select the seed

objects for iterative reconstruction algorithms. Discriminative algorithms may be further

subdivided into cut-based and multivariate techniques. Cut-based techniques use a set of

criteria motivated by physical considerations and cut values determined entirely by analys-

ing pure samples of signal and background objects, and optimising the different cut values

by hand. Multivariate techniques use a large number of physically motivated variables

to generate a discriminant, a single number which summarises the final discriminatory

performance of the variables when various cuts are applied. It is generally prohibitive to

analyse so many variables by hand, so signal and background samples are fed to a multi-

dimensional optimisation algorithm seeking to simultaneously maximise the efficiency at

selecting true objects and rejecting fake objects. The two multivariate techniques used in

this work are the Artificial Neural Network [175] (ANN) and Boosted Decision Tree [176]

(BDT).

4.4.1 Inner Detector tracks

Charged particles leave tracks in the ID: these tracks are later matched to electron, muon,

hadronic tau and jet candidates. Tracks are reconstructed using three different algorithms

[177]. The inside-out algorithm starts from hits in the Pixel detector and uses a Kal-

man filter approach [118] to add hits while moving outwards through the Pixel and SCT

detectors. These tracks are then checked for compatibility with hits in the TRT, and ex-

tended into the TRT if this is the case. The inside-out algorithm is designed for primary
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particles, defined as particles produced either in the initial parton-parton interaction or

from a short-lived particle that decays before reaching the first layer of the Pixel detector.

The back-tracking algorithm essentially takes the opposite approach: tracks are recon-

structed from hits in the TRT, moving inwards, and then hits from the Pixel and SCT

detector are added. Finally, TRT-only tracks are formed using only hits in the TRT.

Tracks can be fully parameterised using the following variables, referred to as track para-

meters, which must be defined relative to an origin:

• The space co-ordinates η and φ are defined by the track direction when extrapolated

to the origin.

• d0, z0: d0 is the distance of closest approach of the track to the origin, z0 is the

component of d0 in the z plane, and z0 sin θ is the projection of d0 onto the z axis.

• The transverse momentum, pT , is defined by the bending radius R of the track in the

solenoidal magnetic field B, according to the formula pT [GeV] = 0.3×B[T ]×R[m ].

Generally, track parameters are defined relative to the position of the primary vertex,

defined in Section 4.4.2 as the likely position of the hardest interaction in the event.

The standard track selection used in this work is defined to be |η| < 2.5, d0 < 1.5 mm,

z0 sin θ < 1.0 mm (both defined relative to the primary vertex) and pT > 1 GeV, ≥ 2 hits

in the Pixel detector and ≥ 7 hits in the SCT. Additional tracking selections are listed

when used.

4.4.2 Vertices

The point in space at which two particles interact or a single particle decays is defined as a

vertex. It is only possible to reconstruct vertices with sufficient accuracy using ID tracks.

Vertices are found by extrapolating from at least two tracks back to a common interaction

point. The tracks used for vertex finding are required to have the standard selection defined

in Section 4.4.1 and pT > 500 MeV. Due to pileup, data and simulated events usually

contain several vertices, most of which are from soft interactions, as discussed in Section

4.1.6. The primary vertex, hypothesised to be the source of the hardest interaction, is

defined by finding the vertex with the greatest
∑
p2
T from the associated tracks. Decays

of particles with decay lengths measurable at ATLAS, including b-quarks and hadrons

are known as secondary particles. Such particles will generate tracks emanating from a

displaced vertex measurably displaced relative to the primary vertex: this is known as
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a secondary vertex. For the analyses discussed in this work, collision events are only

considered if they have a primary vertex with at least five associated tracks.

4.4.3 Leptons

From this point onwards, the term lepton is understood to mean electrons or muons only.

In the following sections, electron/muon identification and calibration is discussed. Two

levels of selection criteria are defined, for both electrons and muons:

• Loose leptons are identified with high efficiency and low purity

• Tight leptons are identified with low efficiency and high purity

Tight leptons are used for the final event selection, while loose leptons are used in the

background estimation (Section 6.1).

4.4.4 Electrons

Electrons leave ID tracks and energy deposits in the EM calorimeter, and are generally

not penetrating enough to reach the HCAL. Only electron candidates to which ID tracks

are associated are considered in this work. The energy deposits are used as input to a

sliding window algorithm [178] with a window size of 3 × 7 towers in the calorimeter barrel

with granularity matching the second layer of the ECAL (∆η×∆φ = 0.025× 0.025). The

window is moved around the ECAL, one step in the η or φ co-ordinate at a time, until the

whole calorimeter has been covered. Any windows with a local maximum in total energy

(> 3 GeV) are then stored as so-called pre-clusters. The pre-clusters are then geometrically

matched to inner detector tracks by requiring a minimum ∆η and ∆φ between the track

and the pre-cluster - the requirements are ∆η < 0.05 and ∆φ < 0.05 in the direction

that the extrapolated track bends due to the magnetic field and ∆φ < 0.1 in the opposite

direction. The change in ∆φ requirement helps identify bremsstrahlung: radiated photons

are emitted parallel to the electron direction before radiation, and the electron then bends

more due to its decreased momentum. The electron cluster is then reconstructed using

3 × 7 (5 × 5) towers in the barrel (endcap) centred around the originally determined

cluster centre. The electron energy is then determined using the measured energy in the

cluster and corrected for estimates of the energy deposited before the electron reaches

the calorimeter and outside the cluster (leakage). Energy deposited beyond the ECAL

is referred to as longitudinal leakage, while energy deposited outside the cluster edge is

referred to as lateral leakage. These corrections are parameterised by the energy measured
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in the presampler (up to |η| < 1.8) and in the first calorimeter layer for |η| > 1.8. The

electron φ and η are determined by the track φ and η extrapolated back to the electron

vertex.

4.4.4.1 Electron identification

Criteria to reject muons, photons (both converted and unconverted), π0 → γγ, charged

pions and other hadrons falsely reconstructed as electrons are applied. Three levels of

electron identification are used: in ATLAS jargon they are identified as loose++, me-

dium++ and tight++ [179]. The three levels apply successively stricter selection cri-

teria, and additionally include the criteria of the previous selection (making medium++

and tight++ strict subsets of loose++ and medium++ respectively). Cuts applied

at loose++ level reject hadrons and π0 → γγ through cuts on calorimetric variables

such as lateral and longitudinal leakage, and impose loose requirements on track quality

and matching to the cluster. The cuts applied at medium++ level impose tighter track

quality and matching requirements, as well as a loose cut on the ratio of high-threshold

TRT hits to total TRT hits (TRT ratio) to reject hadrons and muons in particular. The

tight++ cuts impose additional track quality and matching criteria, a tighter cut on

the TRT ratio and rejection of any electrons with a track matching either electron from

γ → e+e− candidates. Loose electrons are required to pass medium++ identification.

4.4.4.2 Electron calibration

The electron energy scale is calibrated by comparing the mass spectra of the J/ψ → ee,

W → eνe and Z → ee resonances in simulation and data [179]. Initial calibration was

performed using test-beam data [180].

4.4.4.3 Electron tight selection

Leptons from heavy flavour decays or jet misidentification are usually geometrically close

to other tracks, while the opposite is true for leptons from electroweak or SUSY processes.

This is not true for additional pileup interactions, which may coincidentally be close to

the lepton.

In 2011, the isolation requirement was

∑
∆R<0.2

ptracks
T <0.10 peT (4.2)
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while in 2012, the isolation requirement was

∑
∆R<0.3

ptrack
T <0.16 peT (4.3)

where the sum is over all tracks within ∆R < 0.2, ptrack
T is the track pT and peT is the

electron candidate pT . In both 2011 and 2012, the tracks are selected using the standard

tracking criteria defined in Section 4.4.1, which includes impact parameter cuts to re-

move tracks associated with pileup interactions. In addition to the isolation requirements,

tight electrons must pass the tight++ cuts detailed in Section 4.4.4.1. A cut on the “d0

significance” is also imposed:

|d0|
σ(d0)

< 6 (2011)

|d0|
σ(d0)

< 5 (2012) (4.4)

where σ(d0) is the error on d0 measured in the ID. This serves to remove electron candidates

with well-measured displaced vertices, and helps reduce the background from heavy flavour

decays. Figure 4.3 shows the efficiency of electron identification as a function of 〈µ〉.
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Figure 4.3: Electron reconstruction efficiency in 2012 data as a function of 〈µ〉, measured

in Z boson decays. The labels “loose”, “medium” and “tight” correspond to loose++,

medium++ and tight++ as defined in Section 4.4.4.1. From [181].

4.4.5 Muons

Muons are the only known particles which traverse and interact with the entire detector:

neutrinos pass through the detector with a negligible interaction probability. Muons leave

tracks in the ID, small energy deposits in the calorimeters and tracks in the MS. Muons are

mainly faked by charged pions - pions generally leave larger energy deposits in the calor-

imeters and rarely reach the muon spectrometer. Three muon reconstruction algorithms
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are used in ATLAS: staco, Muid and MuTag [182, 183]. Muid is not considered in this

work. The staco algorithm forms straight line track segments from hits in the precision

tracking (MDT and CSC) chambers. Due to the high efficiency of the precision tracking

chamber drift tubes, segments without a hit in a drift tube crossed by the segment are

discarded. Hits from the trigger chambers are then associated to the segment. Track

candidates are then built from segments and combined, starting from the outer chambers

and working inwards towards the centre of the detector. Track parameters are measured

in the first precision tracking chambers, and then extrapolated back to the ID, correct-

ing for energy loss in the calorimeters. ID tracks with compatible track parameters are

then associated to MS tracks. The final track parameters are then found by a statistical

combination of the ID and MS track parameters. Some regions of the MS have fewer

chambers, as discussed in Section 3.4.4. In these regions, MuTag is used. MuTag starts

from inner detector tracks and extrapolates them to single MS segments in inner stations,

correcting for energy loss as is done for staco muons. The MuTag algorithm is also

useful for muons with pT < 6 GeV, which are less likely to reach the outer chambers.

4.4.5.1 Muon identification

Muons at all |η| ranges may pass staco reconstruction, while central muons (|η| < 1.05)

may alternatively pass MuTag reconstruction. All muons are required to have ≥ 3 TGC

hits.

4.4.5.2 Muon calibration

The muon momentum scale is calibrated by comparing the invariant mass spectrum of

the J/ψ → µµ and Z → µµ boson between simulation and data. Initial calibration of the

muon momentum scale was obtained from test-beam measurements [158].

4.4.5.3 Muon tight selection

Muons are also required to be well isolated, for the reasons discussed in Section 4.4.4.3.

For 2011 data, the isolation requirement is

∑
∆R<0.2

ptracks
T < 1.8 GeV (4.5)

while for 2012 data, the isolation requirement is

∑
∆R<0.3

ptracks
T <0.16 pµT (4.6)
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As before, a d0 significance cut is applied:

|d0|
σ(d0)

< 3. (4.7)

This is more stringent than the electron d0 significance cut, since electron bremsstrahlung

leads to longer d0 tails. Muon reconstruction efficiency as a function of η is shown in

Figure 4.4.
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Figure 4.4: Muon reconstruction efficiency in 2010 data as a function of η, measured in Z

boson decays. From [184].

4.4.6 Gluon and light flavour jets

Jets are reconstructed starting from topological clusters (“topo-clusters” in ATLAS jargon)

[185]. The topo-cluster formation algorithm [178] is an iterative procedure starting from a

seed cell with a signal to noise ratio S/N ≥ 4, where S is the energy measured in the seed

cell and N is defined as the RMS of the cell energy measured in random bunch crossings.

Any neighbouring cells with S/N ≥ 2 are then added to form a cluster. Neighbouring

cells are then added to the seed to form a topo-cluster. All cells neighbouring the cluster

cells are added to form an initial topo-cluster. This cluster is then used in an additional

splitting step: every calorimeter cell with energy > 500 MeV is tested for a local maximum,

and any cell passing this criterion is used as a trial seed for a new topo-cluster. Topo-

clusters are then defined to have zero mass, energy equal to the sum of the energy of their

constituent calorimeter cells and direction determined from the weighted averages of the

φ and η of the constituent calorimeter cells, as described by equation (4.8)

(η, φ)topo-cluster =

∑
Ec(η, φ)c∑

Ec
, (4.8)
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where Ec and (η, φ)c are the total energy and (η, φ) coordinates of the constituent cells

respectively.

4.4.6.1 Jet calibration

Before being used as constituents of jets, topo-clusters are calibrated. For the analysis of

2011 data, the topo-clusters were initially calibrated as if they were formed by EM showers

only (“EM scale”), and then corrected to the energy scales of hadronic showers (jet energy

scale). For the analysis of 2012 data, local cluster weighting (LCW) calibration was used.

LCW uses an algorithm to determine whether topo-clusters originate from a hadronic or

EM shower. The energy measured in the hadronic topo-clusters is then corrected according

to the simulated response of single hadrons in the cells. Finally, corrections for energy

deposition in dead material and the effects of noise are applied. Further details about jet

calibration may be found in [186].

4.4.7 Jet reconstruction

The topo-clusters with either EM scale or LCW calibration are provided as input to the

anti-kT [187] recombination algorithm with distance parameter R = 0.4. The anti-kT

algorithm works iteratively: in the first step the distance parameter dij is calculated. The

distance parameter is defined as

dij =

(
1

kT
2
i

,
1

kT
2
j

)
∆Rij
R2

(4.9)

where i and j are topo-cluster indices, kT is the transverse momentum of each topo-

cluster, ∆Rij =
√

∆φ2
ij + ∆η2

ij is the distance between the two topo-clusters, and R is a

free parameter determining the size of reconstructed jets. The topo-clusters i and j which

minimise dij are then combined to form larger individual clusters. In the next iteration,

the larger individual clusters, as well as any remaining initial topo-clusters are combined

according to the same procedure. This is repeated until all remaining topo-cluster pairs

satisfy

∆Rij > R. (4.10)

These are the final jets returned by the algorithm [185]. In this work, jets are reconstructed

with R = 0.4.

Jets found by the anti-kT algorithm are robust against the effects of infrared and collinear

radiation, and are usually cone-shaped. Cone-shaped jets are better suited to calibration
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than more irregular shapes, as the energy deposition will tend to spread out smoothly

from the geometric centre of the reconstructed jet.

4.4.8 Heavy flavour jets

It is possible in principle to distinguish jets originating from b- and c-quark decays (heavy

flavour jets or HF) from gluon- and light (u, d, s) quark-initiated jets (light flavour jets or

HF). Discrimination is possible because heavy flavour (HF) jets differ in two important

ways from light flavour (LF) jets:

1. The b- and c-quark lifetimes are long enough that HF jets can be measured to

originate from a secondary vertex. The vertex d0 is used as a discriminant.

2. If the secondary vertex is reconstructed, tracks within the jet cone can be examined

for compatibility with b and c hadron decays

From the HF jet algorithms available, two were used in this work: the JetFitter-

CombNN and MV1 algorithms. JetFitterCombNN combines information from method

2 into a neural network to make a final decision and was used in 2011, while the MV1

algorithm combines information from methods 1 and 2 into an artificial neural network to

make a final decision and was used in 2012. The efficiencies and mis-tag rates for these

algorithms are measured using the methods detailed in [188, 189, 190], while the energy

calibration is performed using the methods detailed in [191]. Efficiencies, mis-tag rates and

associated systematics are only provided by the ATLAS flavour tagging group for MV1 >

0.122, 0.595, 0.772 and 0.980, corresponding to 85%, 75%, 70% and 60% efficiency respect-

ively. Of these, MV1 > 0.122 is used to define b-jets in this work: the choice is motivated

in Section 5.3 by considering the effect on signal and background. Similarly, efficiencies,

mis-tag rates and associated systematics are only available for four JetFitterCombNN

scores: of these, JetFitterCombNN > 1.8, which corresponds to 60% efficiency, is used

to define b-jets.

4.4.9 Tau leptons

Tau leptons are the only leptons heavy enough to decay hadronically, which they do in

approximately 60% of cases [5]. Tau decays occur within the beampipe, so leptonic decays

are effectively indistinguishable from prompt production of light leptons, and are treated

as such in this work.
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Hadronic decays may be further divided into:

τ− →π−+ ≥ 0π0 + ντ (“1-prong”, branching ratio ≈ 85%) (4.11)

τ− →π−π+π−+ ≥ 0π0 + ντ (“3-prong”, branching ratio ≈ 15%) (4.12)

While “5-prong” and higher modes exist, their low branching fractions and the difficulty

of their reconstruction make them negligible. Tau candidates are seeded starting from

anti-kT jets calibrated according to the local hadron calibration scheme. The η and φ of

the tau candidate are defined exactly as the weighted average η and φ of the seed topo-

cluster, exactly as for light jets. Tracks within ∆R = 0.2 of the seed jet with the selection

defined in Section 4.4.1 are associated to the tau candidate. The number of prongs of the

tau-candidate is equal to the number of these so-called core cone tracks. Tracks within

0.2 < ∆R < 0.4 of the jet centre (a region known as the isolation annulus) are used to

discriminate against jets reconstructed as tau candidates.

4.4.9.1 Tau identification

Jets, electrons and muons can all be falsely reconstructed as tau candidates. Jets are

distinguished from tau candidates by variables related to the width of the showers and

proportional energy deposited in the ECAL and HCAL, as well as the width of the cone

defined by the tracks in the core cone. Additionally, for 3-prong tau candidates it is

possible to reconstruct the secondary vertex corresponding to the appreciable tau time-of-

flight, although not with significant precision. Electrons are distinguished from 1-prong tau

candidates using the TRT ratio defined in Section 4.4.4, as well as the relative proportion

of energy deposited in the ECAL and HCAL. Muons generally do not deposit significant

energy in the ECAL or HCAL, but may be falsely matched to tau candidates if there is

a mis-association or the muon deposits an anomalous amount of energy. To reject muons

with mis-associated energy deposits, variables related to the proportion of cluster ET to

pT are used, since these are expected to be uncorrelated. Muons with anomalously large

energy deposits are expected to pass through the ECAL and hence leave a larger deposit

in the HCAL than a true tau candidate. In this case, variables related to the relative

proportion of energy deposits in the ECAL and HCAL are again used. BDT algorithms

are used to discriminate against jets and electrons, while a cut-based selection is used to

reject muons [192].
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Object ID type ID quality Isolation Minimum pT η (max., min.)

Electron Cut-based
Loose None

10 GeV (0,2.5)
Tight Track-based

Muon Cut-based
Loose None

10 GeV (0,2.4)
Tight Track-based

Tau Multivariate
Loose

None 20 GeV (0,2.5)
Tight

Jet Cut-based
Loose

None 20 GeV
(0,4.9)

Tight

b-jet Multivariate Tight (0, 2.5)

Table 4.2: Summary of object reconstruction properties. Note that b-jets are an additional

level of jet reconstruction.

4.4.9.2 Tau calibration

The proportion of energy deposited by tau candidates in the calorimeters is expected to

differ from that deposited by jets, due to the mixture of charged and neutral pions in the

tau decay. Tau leptons are calibrated from semi-leptonic Z → ττ decays [193].

4.4.10 Summary of object reconstruction and calibration

The reconstruction properties for electrons, muons, taus, jets and b-jets are summarised

in Table 4.2.

4.4.10.1 Overlap removal

If different objects are geometrically close (i.e. within a ∆R cone of a given size), this

can indicate a problem with reconstruction. Overlap removal is performed with loose

objects. If two electrons are found within ∆R < 0.1, this can indicate false additional

track-cluster matching: in this case, the lowest pT electron is removed from the event.

Electron candidates may also be found by jet algorithms: if an electron and jet are found

within ∆R < 0.2 of each other, only the electron is retained, which is justified by the

higher purity of electron identification. Jets may contain leptons from semi-leptonic b and

c-quark decays, as discussed in Section 4.4.8. Lepton isolation cuts are usually effective at

removing such non-prompt leptons, but only if the jet is within ∆R < 0.2 (∆R < 0.3 in

2012) of the lepton. Additional discrimination against semi-leptonic b- or c-quark decays

is achieved by requiring that all leptons are ∆R < 0.4 from jets. High energy muons can
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radiate photons, and these photons may be falsely reconstructed as electron candidates.

In this case, the muon is not well reconstructed. If an electron is found within ∆R < 0.1

of a muon, both objects are removed from the event.

4.4.11 Missing transverse energy

The missing transverse energy (Emiss
T ) is defined as the vector sum of transverse energy

measured in the ECAL and HCAL, as well as tracks from muons measured in the MS.

Clusters associated to the different objects are summed in the following order: electrons,

photons, hadronically decaying taus, jets, and finally muons. Soft jets, defined to have

10 GeV < pT < 20 GeV, as well as jets with pT > 20 GeV are used. Additionally, energy

deposits from cells not associated to object clusters are added to the Emiss
T vector. The

total calorimetric contribution to the Emiss
T is given by

Emiss,calo
x(y) = −(Eex(y) + Eγx(y) + Eτx(y) + Ejets

x(y) + Esoftjets
x(y) + Ecaloµ

x(y) + ECellOut
x(y) ) (4.13)

where for the generic particle object “obj” Eobj
x and Eobj

y are defined as

Eobj
x =

Ncell∑
i=1

Ei sin θi cosφi (4.14)

Eobj
y =

Ncell∑
i=1

Ei sin θi sinφi (4.15)

The
∑
pT from muons in the MS is added to the calorimetric Emiss

T in order to give a total

Emiss
T of :

Emiss
x(y) = Emiss,calo

x(y) − pMSµ
x(y) (4.16)

The Emiss
T magnitude and φ direction are then given by

Emiss
T =

√
(Emiss

x )2 + (Emiss
y )2 (4.17)

φEmiss
T

= arctan(Emiss
y /Emiss

x ) (4.18)

4.4.11.1 Missing energy calibration

Electrons, muons, taus and jets are calibrated as detailed in the relevant subsections (4.4.4,

4.4.5, 4.4.9 and 4.4.6 respectively), and no additional calibration is applied to the CellOut

and SoftJets terms. More details may be found in [194].

4.4.11.2 Missing energy definitions

The following objects are used to form the Emiss
T :
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• Loose jets (covering |η| < 4.9) with pT > 20 GeV;

• Loose electrons with pT > 20 GeV (10 GeV) in 2011 (2012);

• Loose muons with pT > 20 GeV.

The contributions from soft jets and additional energy deposits (discussed above) are

added to these objects to define the Emiss
T .
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Chapter 5

Overview of three-lepton

supersymmetry searches

Two analyses are presented in this chapter: an analysis of the full dataset (4.7 fb−1)

collected at
√
s = 7 TeV in 2011, and an analysis of the full dataset (20.7 fb−1) collected

at
√
s = 8 TeV in 2012. In the following, the former is referred to as the 2011 analysis, and

the latter as the 2012 analysis. The full analysis strategy is sketched here and subsequently

expanded upon.

5.1 Analysis overview

All signal regions are defined to have exactly three leptons (` = e, µ). Events with three

leptons are rare in the SM and a possible SUSY signature, as explained in Chapter 2. Since

lepton number is conserved at each vertex, both in the SM and in R-parity conserving

SUSY, an odd number of neutrinos, sleptons or sneutrinos must also be produced in each

event. The SUSY events must also contain an even number of LSPs: these increase the

possible Emiss
T . To discriminate against SM backgrounds, all signal regions require at least

50 GeV of Emiss
T , with the exact value optimised in different signal regions to improve

discrimination between signal and background.

Leptons are required to pass tight identification, and isolation cuts, as defined in Section

4.4.4.3 for electrons and 4.4.5.3 for muons. All leptons must have pT of at least 10 GeV

(higher depending upon the trigger requirements for the event (defined in Section 5.2.2).

Only events with two same flavour opposite charge sign leptons (known as SFOS pairs,

{e±, e∓} or {µ±, µ∓}) are considered: such leptons, when produced promptly, must em-

anate from the same vertex to conserve lepton number. No constraint is placed on the
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flavour or charge of the third lepton, but if it has the same flavour as the SFOS pair, it

forms a second SFOS pair ({e±, e±, e∓} or {µ±, µ±, µ∓}). All signal regions require at

least one SFOS pair, and the invariant mass of such pairs is always required to exceed

12 GeV in order to avoid low mass resonances (J/ψ, Υ etc).

To summarise, the preliminary selection for all signal regions is given by

• Exactly three leptons passing tight selection;

• At least one SFOS pair with mSFOS > 12 GeV;

• Emiss
T > 50 GeV.

The non-negligible SM backgrounds for this selection at 8 TeV and 20.7 fb−1 with this

selection are shown in Table 5.1, as well as two example benchmark SUSY points. The

dominant background is the WZ → ```ν process (usually referred to simply as WZ),

which makes up 71% of the background. The signal scenarios are representative of the

SUSY events considered in this work: they are an order of magnitude smaller than the

total SM background with this selection.

In addition to processes such as WZ and WWW → 3`3ν, there are backgrounds with four

leptons such as ZZ → 4` and ZWW → 4`νν, which only contribute if a lepton is missed

by reconstruction algorithms. Production of W/Z with associated light jets contributes if

at least one jet is falsely reconstructed as a lepton. Additionally, there are contributions

from single or double top production, and W/Z with associated semi-leptonic b- and c-jet

decays (heavy flavour), and photons converting to electron-positron pairs in the detector

(electron conversions). By contrast, leptons in the SUSY models considered here are

produced exclusively in W/Z/γ∗, leptonic tau and sparticle decays.

For the purposes of background estimation, leptons may be classified into two broad

categories depending on their origins:

• real, or prompt leptons, originating from W , Z/γ∗, leptonic tau and sparticle decays;

• fake, or non-prompt leptons, originating from conversions and light/heavy flavour.

Processes with three or more real leptons form the irreducible backgrounds, while those

with fewer than three real leptons form the reducible backgrounds - the categorisation of

different background processes is shown in Table 5.2. Kinematic variables are used to

reduce the contribution of irreducible backgrounds, as discussed in Section 5.3. Reducible

background contributions are minimised by event and lepton identification requirements

(discussed in Section 5.2), and measured in control regions to improve the prediction in
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Selection (2012 dataset) Exactly 3 leptons, SFOS pair, Emiss
T > 50 GeV

WZ → ```ν 1085.7±10.9

tt̄ 163.0±4.6

Z+jets 129.5±21.0

ZZ → ```` 89.3±2.3

tt̄+V 35.8±0.5

Tribosons 11.0±0.2

Single top 8.8±2.0

WW → `ν`ν 3.7±0.5

ZZ → ``νν 0.2±0.1

Σ SM 1528.5±24.4

Example SUSY point (Model A, via ˜̀/ν̃)

m
χ̃±
1
,mχ̃0

2
= 250 GeV 27.4±0.5

mχ̃0
1

= 0 GeV

Example SUSY point (Model B, via W/Z)

m
χ̃±
1
,mχ̃0

2
= 500 GeV 36.0±0.7

mχ̃0
1

= 0 GeV

Table 5.1: Predicted number of SM events with a preliminary selection of exactly three

leptons, at least one SFOS pair and Emiss
T > 50 GeV at

√
s = 8 TeV. Basic data quality

requirements and selection criteria are applied to the samples, as discussed in Section 5.2.

Quoted errors are statistical only.
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Category Group Process

Irreducible

Dibosons
WZ → ```ν

ZZ → ````

Tribosons

ZWW

ZZZ

WWW

Reducible

Top

Dileptonic tt̄

Wt

s/t-channel t production

Top+X

tt̄+W

tt̄+ Z

tt̄+WW

V+jets

Drell-Yan

Z+jets

W+jets

Dibosons (reducible)
ZZ → ``νν

WW → `ν`ν

Table 5.2: Summary of irreducible and reducible backgrounds, and terms used to refer to

the different backgrounds.

the signal regions, as discussed in Section 6.1. Systematic and statistical uncertainties on

the background prediction were evaluated, as discussed in Section 6.3.

The data analysis is blind : signal regions were optimised according to the simulated

background prediction, without reference to data. The background prediction was tested

in several distinct validation regions (VRs): validation regions are distinct from control

regions in that they are not used to constrain the background prediction. The validation

regions were defined with Emiss
T < 50 GeV (to remove possible signal contamination),

and additional selection criteria to enhance contributions from specific backgrounds. The

definitions of the validation regions and the resulting distributions and tables are given in

Section 7.1.

Since good agreement between data and the background prediction was observed in the

validation regions, data in the signal regions were analysed. No significant excess over

the background prediction was observed in any signal region, in 2011 or 2012: the data

were therefore interpreted as exclusions of SUSY scenario points at 95% confidence level.

Additionally, results from a separate analysis group [195] were added to the 2011 analysis
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to improve the pMSSM exclusion limits.

All of the final results presented in this thesis have previously been made public by the

ATLAS collaboration, but additional details and an emphasis on my own contributions are

given here. All the 2011 analysis results except the GGM interpretation were published in

[196]. The GGM scenarios were not included in the journal publication since they contain

contributions from both weak and strong production, while weak production alone was

the focus of the published article. However, they were made public in an earlier conference

note [197] describing the 2011 analysis. The results of the 2012 analysis shown here were

made public in [3].

5.2 Event quality requirements

A subset of the data recorded at ATLAS are discarded by data-quality selection criteria

for analysis. The criteria used to eliminate these data are listed below. Unless stated

otherwise, the same selection criteria were used in 2011 and 2012. For consistency, the

same procedures were usually applied for data and simulated events - exceptions are noted

as they appear. Additional corrections to the MC event weight to account for differences

in efficiency are covered in Section 5.2.4.

5.2.1 Dataset selection

5.2.1.1 2011

Between April and October 2011, 5.25 fb−1 worth of proton-proton collisions at
√
s =

7 TeV were recorded by the ATLAS detector. However, of these only a subset is suitable

for analysis. The event reduction is achieved by requiring that, for the selected data events,

the LHC was providing stable collisions, all subdetectors were operational, and both the

ATLAS solenoidal and toroidal magnet systems were operating at nominal conditions. The

data are then subdivided into periods labelled from A-M depending on running conditions.

The data in period A were taken with different running conditions and are therefore

excluded from the analysis. Once data quality criteria are applied, the total event statistics

for 2011 corresponds to an integrated luminosity of 4.7 fb−1.

5.2.1.2 2012

Between April and December 2012, 23.3 fb−1 at
√
s = 8 TeV were recorded by the ATLAS

detector. Similarly to the 2011 case, also for 2012 data, only a subset of the total event
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statistics are suitable for analysis. Also in this case, the data are subdivided into periods

A-M according to the running conditions. Data in periods K and M are not suitable for

the analysis and are excluded. For 2012, the total integrated luminosity considered for

further analysis amounts to 20.7 fb−1 once data quality criteria are applied.

5.2.2 Trigger

The trigger chains chosen for the analysis are based on light lepton (electron, muon)

signatures. For both electrons and muons these are unprescaled (accepting all valid events)

with the lowest pT threshold available, in order to accept as many events as possible. The

increase in instantaneous luminosity (discussed in Section 3.1 and shown in Figure 3.3)

throughout the 2011 and 2012 data taking necessitated the use of tighter triggers in the

later periods, particularly for the single electron and muon triggers. The triggers used in

2011 are defined in Table 5.3. In the electron trigger the medium selection criteria (similar

to the offline medium++ criteria discussed in Section 4.4.4.1) are applied in periods K–

M in order to reduce the background from jets faking electrons. Additionally, in period

M, electron candidates with significant energy deposits in the hadronic calorimeter are

vetoed at L1 (this is denoted vh in Table 5.3). In the context of muon triggers, loose and

medium refer to the use of 10 and 11 GeV pT thresholds for the L1 muon trigger, rather

than the tightness of the selection criteria. Leptons selected by the trigger are required to

be within the plateau of the trigger efficiency: an example trigger efficiency as a function

of reconstructed (“offline”) lepton pT is shown in Figure 5.1. Since the turn-on of the

efficiency curve is so steep, a small mis-calibration of electron energy can lead to a large

over- or under-estimate of trigger efficiency. Events are selected if they pass any of the

triggers in Table 5.3, as long as the offline lepton matched to the trigger object has pT

above the threshold given in parentheses next to the trigger.

In 2012, the adopted trigger chains were used for all data periods. In addition to the vh

cut (defined previously), isolation (denoted by i) was applied to both electrons and muons.

The sum of track pT within a cone ∆R < 0.2 around a lepton candidate is required to be

less than 10% (12%) of the electron (muon) pT for the lepton candidate to be considered

isolated. The tracks in the cone must obey the standard tracking requirements defined in

Section 4.4.1. The isolation requirements may be summarised as follows:∑
∆R<0.2

ptrack
T <0.10peT∑

∆R<0.2

ptrack
T <0.12pµT (5.1)
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Data period B–H I J K L–M

Single e e20 medium e22 medium e22vh medium1

pT threshold ( GeV) e 25

Single µ mu18 mu18 medium

pT threshold ( GeV) µ 20

Double e 2e12 medium 2e12T medium 2e12Tvh medium

pT threshold ( GeV) 2 e 17

Double µ 2mu10 loose

pT threshold ( GeV) 2 µ 12

Combined eµ e10 medium mu6

pT threshold ( GeV) e 15, µ 10

Table 5.3: Leptonic triggers used in the 2011 analysis. The pT thresholds are chosen to

be within the plateau of the trigger efficiency.

where the sum is over all tracks within ∆R < 0.2, ptrack
T is the pT for tracks in the cone

and peT (pµT ) is the electron (muon) candidate pT .

Figure 5.1: Trigger efficiency as a function of offline electron pT , for single electron triggers

in 2011. Taken from [198].
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Trigger type Detail Offline threshold [GeV]

Single isolated e el e24vhi medium1 e 25

Single isolated µ mu24i tight µ 25

Double e
2e12Tvh loose1 e 14, e 14

e24vh medium1 e7 medium1 e 25, e 10

Double µ
2mu13 µ 14, µ 14

mu18 tight mu8 µ 18, µ 10

Combined eµ
e12Tvh medium1 mu8 e 14, µ 10

mu18 tight e7 medium1 µ 18, e 10

Table 5.4: Leptonic triggers used in the 2012 analysis. The pT thresholds of the offline

leptons are chosen to be within the plateau of the trigger efficiency. Note that the same

triggers were used in all data periods.

5.2.3 Event selection for data quality purposes

Various selection criteria are applied to events before leptons, jets and all other event

objects are selected. Events are required to have a primary vertex with at least five

associated tracks. Events are vetoed if jets do not pass quality criteria defined in [199],

which seek to remove events with fake jets caused by detector noise, cosmic ray muons,

interactions between protons and residual gas left in the beam pipe, as well as interactions

away from the main interaction point. A dedicated veto for muons from cosmic rays is

imposed by requiring that reconstructed muons fail at least one of the following cuts:

• z0 sin θ >1 mm

• d0 >1 mm

Events with poorly reconstructed muons are also vetoed. Such muons have poorly meas-

ured q/p, where q is the particle charge and p is the momentum, both measured in the

ID. The criterion used to reject such events is

σq/p

|q/p|(µ) ≥ 0.2 (5.2)

where σq/p is the error on the q/p measurement provided by the track fit, d0 and z0 are the

impact parameter and the projection of the impact parameter onto the z-axis respectively

(both defined in Section 4.4.1).
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5.2.3.1 Lepton selection

So that it can have triggered the event, at least one of the three leptons in each event is

required to have pT above the offline thresholds given in Tables 5.3 and 5.4 for 2011 and

2012 respectively. Other leptons in the event must have pT above 10 GeV. In 2012, events

containing medium tau candidates (as defined in Section 4.4.9) are vetoed. An offline

lepton candidate must be found within ∆R = 0.15 of the lepton found by the trigger used

in the event. Leptons at this stage are only required to pass loose selection - tight selection

is applied in the final pre-selection detailed in Section 5.2.3.3.

5.2.3.2 Jet selection

Jets are reconstructed as detailed in Section 4.4.6 and required to have pT > 20 GeV. Jets

within the full acceptance of the forward and central calorimeters are used, corresponding

to |ηjet| < 4.9.

5.2.3.3 Final pre-selection

After overlap removal (discussed in Section 4.4.10.1), further tight selection criteria are

applied to all electrons and muons as detailed in Sections 4.4.4.3 and 4.4.5.3. SFOS pairs

with m`` <12 GeV are removed from the event, in order to remove background from low

mass resonances (Υ, J/ψ etc). The tight electrons, muons and jets are then used to

form the Emiss
T , as detailed in Section 4.4.11. In addition to these objects, clusters not

associated with jets or electrons as well as jets with pT < 20 GeV are added to the total

Emiss
T . Finally, pre-selected events are required to have exactly three leptons.

5.2.4 Corrections to MC event weights

The response and geometry of the ATLAS detector is not perfectly described by simulation,

nor are the tracks and calorimeter deposits left by simulated objects identical to those left

by objects in data. Additionally, the running conditions for a given subset of data may not

match those in a set of simulated events. Corrections for these deficiencies in simulation

are applied to reweight individual MC events - these corrections are provided by ATLAS

performance groups.

5.2.4.1 Pile-up reweighting

As discussed in Section 4.1.6, the average number of interactions per event (〈µ〉) is not

completely well modelled in Monte Carlo. Weights are therefore applied to simulated
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events so that the distribution of 〈µ〉 agrees between data and Monte Carlo.

5.2.4.2 Lepton efficiency reweighting

Scale factors to correct for data/MC differences in reconstruction efficiency are provided

by the electron [179] and muon [200] performance groups, and these are applied to all

lepton candidates. These scale factors depend on the kinematics of the observed leptons.

The product of all efficiency scale factors for the leptons in the event is then applied as

an overall event weight.

5.2.4.3 Flavour tagging efficiency reweighting

The presence or absence of b-tagged jets is used to classify events. Differences between

the flavour-tagging efficiency and misidentification rates in data and MC are accounted

for by an η- and pT -dependent scale factor. The scale factors also depend on the flavour-

tagging score (discussed in Section 4.4.8). Scale factors are provided by the flavour-tagging

performance group [188, 189, 190], and only derived at specific MV1 values over a range

of efficiencies. As is done for leptons, the product of these weights is then applied to the

event as a whole.

5.2.4.4 Trigger reweighting (2011 only)

The efficiency of the trigger simulation (discussed in Section 4.2.2) can also differ signific-

antly from the actual trigger efficiency in data. Additionally, vetoing MC events according

to a simulated trigger decision reduces the available MC event statistics. Instead of ap-

plying the trigger simulation directly, the trigger reweighting procedure circumvents these

problems - events are reweighted by η- and pT -dependent trigger efficiency scale factors

instead of being rejected. This procedure was applied in 2011 due to observed disagree-

ment in trigger efficiency and in order to retain MC event statistics.

For the selections used in this work, measured and simulated trigger efficiencies were found

to agree to within <1% in 2012, with all triggers used having close to 100% efficiency. Trig-

ger reweighting was therefore not applied to the 2012 dataset.

5.3 Signal region optimisation

The signal regions are then divided into two complementary sets: one with on-shell Z

boson candidates and one without on-shell Z boson candidates. An event is considered to

have an on-shell Z boson candidate if the mass of the candidate dilepton pair is within
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10 GeV of mZ = 91.2 GeV: (|m``−mZ | < 10 GeV). The presence or absence of a Z boson

indicates the type of SUSY decay and leads to different backgrounds. Signal regions with

a Z-candidate veto are denoted “SR1” in 2011 and “SRnoZ” in 2012, while those with a

Z-candidate veto are denoted “SR2” in 2011 and “SRZ” in 2012. Additionally, the level

of background suppression in the signal region is indicated by a,b,c in loose to tight order.

Three signal regions were defined in 2011, two with Z-candidate vetoes (SR1a, SR1b), and

one with a Z-candidate request (SR2). Six signal regions, three with Z-candidate requests

(SRZa, SRZb, SRZc), and three without (SRnoZa, SRnoZb, SRnoZc) were defined in 2012.

The naming conventions for the SRs are summarised in Table 5.5. The different loose and

tight signal regions have sensitivity to different scenarios: when statistically combined, a

single insensitive region does not affect the sensitivity of the combination, as discussed in

Section 7.3.

Analysis Name Z boson candidate Acceptance

2011

SR1a
Veto

Loose

SR1b Tight

SR2 Request Tight

2012

SRnoZa

Veto

Loose

SRnoZb Medium

SRnoZc Tight

SRZa

Request

Loose

SRZb Medium

SRZc Tight

Table 5.5: Signal region nomenclature for the 2011 and 2012 analysis.

5.3.1 Discriminating variables

Several discriminating variables are used to discriminate between signal and background,

on top of the basic selection (exactly three light leptons, at least one SFOS pair and

Emiss
T > 50 GeV). SUSY weak production of gauginos will have limited hadronic activity,

so it is possible to use jet multiplicity and flavour to reduce the background. The

presence of at least one b-tagged jet can indicate tt̄ production.

Also, the total missing transverse energy in SUSY events is expected to generally be

higher than that in Standard Model backgrounds, due to the presence of LSPs as well as
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neutrinos. This is dependent on the particular event kinematics (LSPs produced nearly

back-to-back will not contribute significantly to the Emiss
T ) and on the LSP mass.

If an SFOS pair indeed emanates from a single intermediate particle, the invariant mass

of the intermediate particle may be fully reconstructed. An invariant mass requirement

(m``) is used in order to veto or select Z boson production, as well as to reject known low-

mass resonances (J/ψ, Υ etc). Requiring an upper threshold on m`` increases sensitivity

to scenarios with low mass splitting (given by |mχ̃0
2
−mχ̃0

1
|).

The transverse mass between a visible (`) and invisible particle (Emiss
T ) is defined as

mT =
√

2(Emiss
T p`T (1− cos ∆φ(`, Emiss

T ))), (5.3)

where ∆φ(`, Emiss
T ) is the angle between the ` and Emiss

T in the transverse plane. Transverse

mass is the analogue of invariant mass in the transverse event plane. It exhibits an endpoint

and a sharp peak at the mass (mi) of the invisible particle produced. When observed,

the sharp peak is broadened by a combination of experimental and theoretical effects. In

SM W → `ν decays, the peak is at mi = mW . Selecting events with mT > mW therefore

leads to a reduction in backgrounds with real W bosons and improved sensitivity to SUSY

signals with higher mass intermediate particles. Conversely, requiring mT < mW increases

sensitivity to SUSY signals with lower mass intermediate particles.

In events with only one SFOS pair ({µ+µ−e±} or {e+e−µ±}) the lepton not forming part

of the SFOS pair is the only choice for mT(`, Emiss
T ): since the SUSY models considered in

this work do not violate flavour, the SFOS pair must come from the same leg of the decay

(unless emanating from leptonic tau decays). In uniform flavour events ({eee} or {µµµ}),
there is an ambiguity as to which lepton to use: in this case the SFOS pair with mass

closest to mZ is first searched for, and the lepton not forming part of the SFOS pair closest

to the Z mass is used to form the mT. This prescription is used for all transverse mass

calculations in these analyses. The lepton pT also has a sharp peak at half the invisible

particle mass (mi/2), but no endpoint and therefore has less rejection power than mT. It

is still useful for selecting high mass intermediate particles.

5.3.2 Optimisation procedure

The SRs are formed by maximising the expected significance ZN where

ZN = Φ−1(1− p0(S,B,∆B)). (5.4)

Here Φ−1 is the cumulative distribution of the standard Gaussian and S and B are the

number of expected signal and background events for a given scenario. ∆B is the back-
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ground uncertainty and p0 is the background-only p-value (that is, the chance of a dataset

being recorded that is more signal-like than S + B, given the background-only hypo-

thesis), as discussed in more detail in Section 7.3). The p-value is evaluated with 30%

background uncertainty, which is similar to the overall background uncertainty in the

2011 analysis. The algorithm for the approximation of the p-value is detailed in [201]. In

order to avoid problems with numerical instability, the algorithm is truncated to allow a

maximum ZN = 8.

Plots of the various event variables for signal and background are shown in the subsequent

Sections, as well as the effects of varying thresholds on these variables as a function of

ZN . Different signal benchmark points are chosen to demonstrate each cut. The decrease

in the number of signal and background events remaining as the various thresholds are

increased leads to fluctuations in the ZN plots: the final cut values chosen are far from

these points.

The final expected significance for all points in Model A and Model B, with the 30%

background uncertainty are shown in Figures 5.10, 5.10 5.12 and 5.13, and the effect of

all cuts on SM backgrounds and selected benchmark points is shown in tabular form in

Section 5.4.

5.3.3 Optimisation of jet veto

Since signal events from simplified models and pMSSM samples are not expected to have

significant hadronic activity, vetoing jets can reduce the Standard Model background. In

particular, tt̄ events will almost always contain two b-decays, and consequently up to two

correctly b-tagged jets. This motivates a veto on b-tagged jets. Details of the b-tagging

algorithm MV1 are given in Section 4.4.8. Figure 5.2(a) shows the number of b-tagged

jets, and b) the significance of a veto on events with a b-tagged jet passing MV1 > X,

as X increases. By comparison, the number of jets (c), the pT of all jets (d) and the

significance of a veto on events with pT < X GeV as X increases (e) are shown. For the

samples considered, vetoing all b-jets is found to be more effective than vetoing light jets.

The use of the MV1>0.122 threshold yields slightly higher significance than tighter b-jet

selections. The specific value MV1=0.122 is chosen, as systematic uncertainties for the

algorithm were only provided for a few points, as discussed in Section 4.4.8. All subsequent

optimisation is performed with this b-jet veto.
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Figure 5.2: In (a), the number of b-tagged jets using MV1 > 0.122 for three lepton events

with an SFOS pair and Emiss
T > 50 GeV. In (b) the significance ZN for SUSY benchmark

points as a function of the MV1 threshold for the b-jet veto. The number of jets for the

same selection (c) and the pT of the leading jet (d). The expected significance ZN for

SUSY benchmark points as the upper cut on the leading jet pT is varied (e).
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5.3.4 Optimisation of Emiss
T

As previously discussed, Emiss
T is an important discriminant between SUSY and SM events.

In order to maximise the sensitivity to as many SUSY points as possible, Emiss
T values

between 50 GeV and 120 GeV were investigated for each SR.

Figure 5.3(a) shows the Emiss
T distribution for a selection with standard preselection, a

Z-candidate veto and a b-jet veto. Figure 5.3(b) shows that Emiss
T values between 100 and

150 GeV optimise the significance for the signal points considered. Similarly, Figure 5.4

shows an optimal significance for Emiss
T values between 70 and 150 GeV. Signal regions

with Emiss
T > 75 GeV, 75 GeV < Emiss

T < 120 GeV and Emiss
T > 120 GeV are chosen in

order to maximise sensitivity to a variety of different scenarios.
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Figure 5.3: The Emiss
T distribution in three lepton events where a SFOS lepton pair is

present, Z candidates are requested and a b-jet veto is applied (a). The expected signific-

ance for SUSY benchmark points as a cut on Emiss
T is varied (b).

5.3.5 Optimisation of m``

The invariant mass of an SFOS pair from the χ̃
0
2 decay via sleptons in Model A, shown

in Figure 5.5, has a kinematic endpoint which is a function of the difference between the

χ̃0
2 and χ̃0

1 masses [202]. An upper threshold on m`` is used to select events with a low

mχ̃0
2
−mχ̃0

1
. Figure 5.6 shows (a) the m`` for SM backgrounds and selected SUSY signal

points and (b), the ZN score for the same SUSY signal points as the threshold is raised.

A signal region (SRnoZa) with an upper threshold for m`` is defined: the effect of varying

this upper threshold is shown in Figure 5.6. A cut of m`` < 60 GeV was found to be

optimal for the low mass splitting regime. An additional SR (SRnoZb) was defined with

60 GeVm`` < 81.2 GeV. Together with a third signal region (SRnoZc) with a Z-veto but
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Figure 5.4: The Emiss
T distribution in three lepton events where a SFOS lepton pair is

present, Z candidates are vetoed and a b-jet veto is applied (a). The expected significance

for SUSY benchmark points as a cut on Emiss
T is varied (b).
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Figure 5.5: SFOS pair from χ̃0
2 decays in Model A and B. The invariant mass m`` from

the SFOS pair in (a) has a kinematic endpoint related to the difference between the χ̃
0
2

and χ̃0
1 masses, as discussed further in Section 5.3.5. The invariant mass of the (possibly

off-shell) Z boson in (b) is given by mχ̃0
2
−mχ̃0

1
.
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no other m`` requirement, this retains sensitivity to all possible mass splittings.
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Figure 5.6: The m`` distribution for three lepton events where a SFOS lepton pair is

present, Emiss
T > 50 GeV, Z candidates are vetoed, and a b-jet veto is applied (a). The

expected significance ZN for SUSY benchmark points as an upper threshold on m`` is

increased (b). The ZN is truncated at ZN = 8, leading to the flat behaviour as a function

of m``.

5.3.6 Optimisation of mT and lepton pT

Figure 5.7 shows the effect of varying a lower threshold on mT: in all regions without a

Z-candidate, values around 100 GeV are preferred. For signal regions SRnoZc ,SRZb, and

SRZc, a common cut value of mT > 110 GeV is chosen: SRZa reverses this cut in order

to retain sensitivity to signals with lower mass splitting. In SRnoZc, lepton pT > 30 GeV

is required, in order to optimise sensitivity to scenarios with large mass splitting: Figures

5.7(c) and 5.7(d) motivate this choice.
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(a) SRnoZc: mT
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(c) SRnoZc: p`3T

 threshold [GeV]
T

Lepton 3 p

10 20 30 40 50 60 70 80 90 100

, 
3
0
%

 B
N

Z

­110

1

10

210

Model A (300, 200)
Model A (325, 175)
Model A (450, 300)
Model A (575, 425) = 8 TeVs

­1
L dt = 20.7 fb∫

(d) SRnoZc: p`3T optimisation

Figure 5.7: The mT distribution with a SFOS lepton pair is present, Emiss
T > 75 GeV, a

b-jet veto is applied and Z candidates are vetoed (a). The expected significance for SUSY

benchmark points as a cut on mT is varied (b). The pT distribution of the third lepton in

the same events with mT >110 GeV applied (c) and the significance for SUSY benchmark

points as a cut on p`3T is varied (d). Statistical fluctuations in the number of available

events manifest as sharp peaks and troughs in ZN , visible in (b) above approximately

mT > 130 GeV.
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Figure 5.8: The mT distribution with a SFOS lepton pair, 75 < Emiss
T < 120 GeV, a b-

jet veto is applied and Z candidates are requested (a). The expected significance for

SUSY benchmark points as a cut on mT is varied (b). Statistical fluctuations in the

number of available events manifest as sharp peaks and troughs in ZN , visible in (b)

above approximately mT > 150 GeV.
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Figure 5.9: The mT distribution for the lepton with a SFOS lepton pair is present,

Emiss
T > 120 GeV, a b-jet veto is applied and Z candidates are requested (a). The ex-

pected significance for SUSY benchmark points as a cut on mT is varied (b). Statistical

fluctuations in the number of available events manifest as sharp peaks and troughs in ZN ,

visible in (b) above approximately mT > 200 GeV.
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5.3.7 Signal region choices

The set of three signal regions (SR1a, SR1b, SR2) used in 2011 is given in Table 5.6. A

single, moderate, Emiss
T requirement (75 GeV) is used instead of the 50, 75 and 120 GeV

cuts used in the 2012 signal regions. Since tt̄ is not a dominant background in Z-request

signal regions, no b-jet veto was imposed in SR2. Relative to 2011, the 2012 mT cuts are

Selection SR1a SR1b SR2

Targeted intermediate decay l̃(∗) or Z∗ on-shell Z

m`` [ GeV] < 81.2, > 101.2 [81.2:101.2]

Emiss
T [ GeV] > 75

mT – >90 GeV

p`3T [ GeV] >10 >30 >10

Number of b-jets 0 0 –

Table 5.6: The selection requirements for the 2011 signal regions. SR1a and SR1b are not

disjoint, while SR1a and SR1b are both orthogonal with SR2.

higher (110 GeV compared to 90 GeV): the increased pileup in 2012 broadened the W mT

peak. The final set of six 2012 signal regions is given in Table 5.7.

Selection SRnoZa SRnoZb SRnoZc SRZa SRZb SRZc

Main sensitivity Model A Model B

m`` [ GeV] <60 60–81.2 <81.2 or >101.2 81.2–101.2 81.2–101.2 81.2–101.2

Emiss
T [ GeV] >50 >75 >75 75–120 75–120 >120

mT [ GeV] – – >110 <110 >110 >110

p`3T [ GeV] >10 >10 >30 >10 >10 >10

Signal region veto Not in SRnoZc – – – –

Table 5.7: The selection requirements for the 2012 signal regions. All regions are disjoint.

5.3.8 Removing overlap between signal regions

SRs used in a statistical combination (discussed in Section 7.3.6) are not allowed to have

overlapping selection criteria. Such SRs are said to be disjoint or orthogonal. Since each

SR is composed of a sequence of cuts, it is only necessary to reverse one cut (Emiss
T <

X GeV→ Emiss
T > X GeV, for example) to make the SRs disjoint. It is possible to use the

AND of several cut reversals: since several conditions have to be met, this means that

fewer events will be vetoed, thus increasing the selection efficiency of the region containing
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the veto. SRnoZa and SRnoZb explicitly veto SRnoZc by requiring that any event in

SRnoZa/b does not pass at least one of the selection criteria for SRnoZc. SRZa/b/c are

disjoint by construction, as are the SRnoZ and SRZ regions. The 2011 SRs SR1a and

SR1b are not disjoint: SR1b is a subset of SR1a. However, SR2 is disjoint with SR1a and

SR1b due to a Z-candidate request.

5.4 Cutflows for final signal regions

The sequence of cuts defining an SR is known as a cutflow. The cutflow for each back-

ground and SR at
√
s = 8 TeV with 20.7 fb−1 of data is shown separately in Tables 5.8,

5.9, 5.10, 5.11, 5.12 and 5.13. These tables demonstrate the effectiveness of the chosen

cuts at reducing the SM background. The total SM background, as well as the different

contributions is shown for each SR. SUSY points are also tabulated to demonstrate the

effectiveness of the chosen cut values. The naming convention for each point is “Model X:

mχ̃0
2
,mχ̃±1

, mχ̃0
1
”, with entries such as “Model A: 100, 0”. Underneath each SUSY point

the expected significance, ZN , is shown.

As previously discussed, the different SRs are statistically combined to produce the final

exclusion limits. This combination is ignored in the simplified ZN calculation. Figures

5.10, 5.11 and 5.12 and 5.13 show the expected ZN for the complete Model A and Model

B grids in each SR. Since all SRs are statistically combined, the true sensitivity is greater.

Overall, the SRnoZ signal regions are designed to have the greatest sensitivity to Model

A, and SRZ regions have the greatest sensitivity to Model B. As seen in Figure 5.12(a),

SRnoZa also has sensitivity to points with low mass near the diagonal.

Requiring or vetoing a Z candidate reduces the total SFOS background by a factor of

two. The softest Emiss
T cut (Emiss

T > 50 GeV in SRnoZa) reduces the total SM background

by almost a factor of ten (from 3327.5 ± 77.6 to 455.4 ± 13.2) - similar factors of back-

ground reduction are found for all other SRs. In the Z-request SRs, initially dominated

by Z+jets, the Emiss
T distribution extends to higher values, requiring higher Emiss

T cuts (up

to 120 GeV) for a similar background reduction. The application of a b-jet veto in all SRs

reduces the tt̄ and tt̄+V backgrounds by up to a factor of five (from tt̄+tt̄+V = 50.8±2.5

to 10.7± 1.2 in SRnoZa).

5.4.1 SRnoZa

Requiring that events in SRnoZa do not pass SRnoZc selection leads to a small reduction in

both signal and background events. For instance, Model A: (225, 125) falls from 164.7±7.3
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to 143.0 ± 6.8, a reduction of over 10%. The expected significance for this point changes

from ZN = 5.1 to ZN = 4.7. The invariant mass cut (m`` < 60 GeV) reduces Z +X (ZZ,

WZ and Z+jets) by more than a factor of two. SRnoZa has the best reach in Model A

close to the diagonal, where the mass splitting is small, as can be seen in Figure 5.10(a).

SRnoZa also has sensitivity to the Model B (100, 50) and (150, 100) points, as seen in

Figure 5.12(a), since the invariant mass of the Z boson produced is constrained by the

neutralino mass difference mχ̃0
2
−mχ̃0

1
(see Figure 5.5(a)). The cutflow for SRnoZa is shown

in Table 5.8.

5.4.2 SRnoZb

Since events in SRnoZb, like those in SRnoZa, are required not to pass SRnoZc selection,

there is a decrease in signal sensitivity for several points, which is recovered in the final

statistical combination. The double-sided invariant mass cut (60 GeV < m`` < 81.2 GeV)

reduces all Z + X background by more than a factor of two. SRnoZb increases the

sensitivity near to the line mχ̃0
2
− mχ̃0

1
= mZ : see for example the points (150, 50) and

(200, 100) in Figure 5.12(b). The cutflow for SRnoZb is shown in Table 5.9.

5.4.3 SRnoZc

SRnoZc imposes a tight mT requirement (mT > 110 GeV), reducing WZ (the dominant

background at this point) from 81.9 ± 3 events to 11.6 ± 1.1. At this stage, tt̄ is then

the dominant background (15.4± 1.4 events); its contributions are reduced by more than

a factor of ten by requiring p`3T > 30 GeV. SRnoZc has the lowest overall predicted

background (4.0 ± 0.6). SRnoZc has the highest predicted sensitivity across the bulk of

Model A, as seen in Figure 5.10(c). The cutflow for SRnoZc is shown in Table 5.10.

5.4.4 SRZa

Since SRZa has a moderate Emiss
T requirement (75 GeV < Emiss

T < 120 GeV) and an upper

threshold on mT (mT < 110 GeV), it is most useful as an auxiliary SR, selecting events

lost by the harder cuts in SRZb and SRZc. In particular, it is sensitive to the lowest

mass point, (100, 0), as seen in Figure 5.13(a). It also has some coincidental sensitivity to

Model A, visible in 5.11(a). The cutflow for SRZa is shown in Table 5.11.



97

5.4.5 SRZb

SRZb has the same Emiss
T requirement as SRZa but a harder mT cut (mT > 110 GeV),

reducing the dominant background WZ by a factor of ten (from 299.8±5.7 to 22.6±1.6).

SRZb has enhanced sensitivity to points near 5.13(b).

5.4.6 SRZc

SRZc has the tightest Emiss
T and mT requirements of any SR (Emiss

T > 120 GeV and

mT > 110 GeV), and consequently has a low overall SM background (6.1±0.8). SRZc has

the highest predicted sensitivity in the bulk of Model B, rising to a maximum of ZN = 3.5

for the point (200, 0), as seen in 5.13(c).

SRnoZa SFOS Z veto Emiss
T > 50 GeV m`` < 60 GeV b-jet veto Not in SRnoZc

tt̄ 249.4 ± 5.7 216.6 ± 5.3 143.8 ± 4.4 47.8 ± 2.5 10.5 ± 1.2 10.3 ± 1.2

tt̄ + V 50.9 ± 0.6 19.7 ± 0.4 15.1 ± 0.4 3.0 ± 0.2 0.2 ± 0.04 0.2 ± 0.04

WW 6.8 ± 0.6 6.1 ± 0.6 3.2 ± 0.4 0.9 ± 0.2 0.6 ± 0.2 0.6 ± 0.2

ZZ 1564.0 ± 10.2 1099.5 ± 8.6 42.7 ± 1.6 15.8 ± 1.0 13.9 ± 0.9 13.7 ± 0.9

ZZ → ``νν 0.4 ± 0.1 0.1 ± 0.05 0.1 ± 0.03 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

WZ 2398.6 ± 16.3 489.2 ± 7.3 194.0 ± 4.6 62.8 ± 2.6 50.1 ± 2.3 49.5 ± 2.3

Tribosons 16.3 ± 0.2 12.6 ± 0.2 8.4 ± 0.1 1.9 ± 0.1 1.8 ± 0.1 1.7 ± 0.1

Drell-Yan 138.3 ± 30.0 135.8 ± 29.9 1.5 ± 1.4 1.5 ± 1.4 1.5 ± 1.4 1.5 ± 1.4

Single t 14.3 ± 2.5 11.3 ± 2.2 6.9 ± 1.7 1.0 ± 0.9 0.3 ± 0.8 0.3 ± 0.8

Z + jets 2734.7 ± 98.2 1336.5 ± 70.5 39.8 ± 11.3 12.5 ± 6.9 12.5 ± 6.9 12.5 ± 6.9

Σ SM 7173.6 ± 104.7 3327.5 ± 77.6 455.4 ± 13.2 147.2 ± 8.0 91.3 ± 7.6 90.3 ± 7.6

Model A: 225,125 881.5 ± 16.9 550.7 ± 13.4 406.8 ± 11.5 185.3 ± 7.9 164.7 ± 7.3 143.0 ± 6.8

ZN 0.4 0.6 2.9 3.9 5.3 4.7

Model A: 192.5,157.5 536.8 ± 17.9 519.4 ± 17.6 187.0 ± 10.4 164.4 ± 9.8 141.1 ± 8.9 141.1 ± 8.9

ZN 0.2 0.5 1.3 3.5 4.6 4.6

Model B: 150,100 137.0 ± 3.8 130.5 ± 3.7 57.0 ± 2.4 48.3 ± 2.2 43.7 ± 2.1 43.5 ± 2.1

ZN 0.1 0.1 0.4 1.0 1.5 1.5

Model B: 100, 50 551.0 ± 16.3 530.7 ± 16.1 200.3 ± 9.8 176.3 ± 9.2 158.3 ± 8.6 158.3 ± 8.6

ZN 0.3 0.5 1.4 3.7 5.1 5.1

Table 5.8: Cutflow for SRnoZa at
√
s = 8 TeV with 20.7 fb−1 of data. Errors are statistical

only. Expected significances are calculated assuming a 30% uncertainty on the number of

background events.

5.5 Potential improvements to choice of SRs

While the manual optimisation of SRs is a transparent technique, there are other ways to

choose SRs. The signal regions chosen here are effectively “binned” in several kinematic
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SRnoZb SFOS Z veto Emiss
T > 75 GeV 60 < m`` < 81.2 GeV b-jet veto Not in SRnoZc

tt̄ 249.4 ± 5.7 216.6 ± 5.3 85.5 ± 3.4 17.2 ± 1.5 4.3 ± 0.8 4.3 ± 0.8

tt̄ + V 50.9 ± 0.6 19.7 ± 0.4 11.1 ± 0.3 1.9 ± 0.1 0.1 ± 0.03 0.1 ± 0.03

WW 6.8 ± 0.6 6.1 ± 0.6 1.8 ± 0.3 0.2 ± 0.1 0.1 ± 0.1 0.1 ± 0.1

ZZ 1564.0 ± 10.2 1099.5 ± 8.6 6.0 ± 0.6 2.1 ± 0.4 1.8 ± 0.3 1.8 ± 0.3

ZZ → ``νν 0.4 ± 0.1 0.1 ± 0.05 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

WZ 2398.6 ± 16.3 489.2 ± 7.3 81.9 ± 3.0 25.4 ± 1.7 20.0 ± 1.5 19.5 ± 1.5

Tribosons 16.3 ± 0.2 12.6 ± 0.2 5.3 ± 0.1 0.8 ± 0.05 0.8 ± 0.04 0.6 ± 0.04

Drell-Yan 138.3 ± 30.0 135.8 ± 29.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Single t 14.3 ± 2.5 11.3 ± 2.2 3.3 ± 1.2 1.2 ± 0.6 0.2 ± 0.2 0.2 ± 0.2

Z + jets 2734.7 ± 98.2 1336.5 ± 70.5 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Σ SM 7173.6 ± 104.7 3327.5 ± 77.6 195.1 ± 4.7 48.9 ± 2.4 27.4 ± 1.7 26.6 ± 1.7

Model A: 250, 0 663.3 ± 11.8 588.0 ± 11.1 431.4 ± 9.5 50.8 ± 3.3 47.1 ± 3.2 24.4 ± 2.3

ZN 0.3 0.6 6.8 2.9 4.1 2.2

Model A: 250, 100 620.4 ± 11.4 482.5 ± 10.1 308.9 ± 8.1 68.4 ± 3.8 62.2 ± 3.6 37.3 ± 2.8

ZN 0.3 0.5 4.9 3.9 5.3 3.4

Model A: 300, 200 269.8 ± 5.1 169.8 ± 4.0 93.6 ± 3.0 43.3 ± 2.0 39.0 ± 1.9 32.4 ± 1.8

ZN 0.1 0.2 1.5 2.5 3.5 2.9

Model A: 142.5, 107.5 1626.2 ± 56.2 1580.1 ± 55.5 221.0 ± 20.6 29.7 ± 7.5 27.7 ± 7.3 27.7 ± 7.3

ZN 0.8 1.6 3.6 1.7 2.6 2.6

Model B: 100, 0 1070.9 ± 22.9 88.8 ± 6.6 19.6 ± 3.1 15.8 ± 2.8 12.6 ± 2.3 12.6 ± 2.3

0.5 0.1 0.3 0.9 1.1 1.1

Table 5.9: Cutflow for SRnoZb at
√
s = 8 TeV with 20.7 fb−1 of data. Errors are statistical

only. Expected significances are calculated assuming a 30% uncertainty on the number of

background events.
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SRnoZc SFOS Z veto Emiss
T > 75 GeV mT > 110 GeV p

`3
T
> 30 GeV b-jet veto

tt̄ 249.4 ± 5.7 216.6 ± 5.3 85.5 ± 3.4 15.4 ± 1.4 1.5 ± 0.5 0.6 ± 0.3

tt̄ + V 50.9 ± 0.6 19.7 ± 0.4 11.1 ± 0.3 3.7 ± 0.2 1.8 ± 0.1 0.1 ± 0.04

WW 6.8 ± 0.6 6.1 ± 0.6 1.8 ± 0.3 0.7 ± 0.2 0.2 ± 0.1 0.1 ± 0.04

ZZ 1564.0 ± 10.2 1099.5 ± 8.6 6.0 ± 0.6 0.7 ± 0.2 0.4 ± 0.2 0.2 ± 0.1

ZZ → ``νν 0.4 ± 0.1 0.1 ± 0.05 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

WZ 2398.6 ± 16.3 489.2 ± 7.3 81.9 ± 3.0 11.6 ± 1.1 4.1 ± 0.7 2.1 ± 0.4

Tribosons 16.3 ± 0.2 12.6 ± 0.2 5.3 ± 0.1 1.9 ± 0.1 0.9 ± 0.05 0.8 ± 0.05

Drell-Yan 138.3 ± 30.0 135.8 ± 29.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Single t 14.3 ± 2.5 11.3 ± 2.2 3.3 ± 1.2 0.4 ± 0.3 0.0 ± 0.0 0.0 ± 0.0

Z + jets 2734.7 ± 98.2 1336.5 ± 70.5 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Σ SM 7173.6 ± 104.7 3327.5 ± 77.6 195.1 ± 4.7 34.5 ± 1.9 8.9 ± 0.9 4.0 ± 0.6

Model A: 350, 0 157.7 ± 2.7 147.5 ± 2.7 122.0 ± 2.4 95.9 ± 2.1 85.6 ± 2.0 77.1 ± 1.9

ZN 0.1 0.1 2.0 6.8 8.0 8.0

Model A: 425, 75 63.4 ± 1.1 59.8 ± 1.1 52.2 ± 1.0 43.3 ± 0.9 40.8 ± 0.9 37.0 ± 0.8

ZN 0.0 0.1 0.9 3.2 6.9 8.0

Model A: 500, 0 28.5 ± 0.5 27.5 ± 0.5 25.2 ± 0.5 21.6 ± 0.4 20.7 ± 0.4 18.4 ± 0.4

ZN 0.0 0.0 0.4 1.7 3.9 5.1

Model A: 450, 300 45.0 ± 0.8 35.4 ± 0.7 24.3 ± 0.6 15.5 ± 0.5 12.3 ± 0.4 10.8 ± 0.4

ZN 0.0 0.0 0.4 1.2 2.5 3.2

Model A: 500, 250 28.1 ± 0.5 25.4 ± 0.5 21.1 ± 0.4 16.6 ± 0.4 15.3 ± 0.4 13.5 ± 0.3

ZN 0.0 0.0 0.4 1.3 3.1 4.0

Model A: 625, 125 7.8 ± 0.1 7.5 ± 0.1 7.0 ± 0.1 6.1 ± 0.1 6.0 ± 0.1 5.4 ± 0.1

ZN 0.0 0.0 0.1 0.4 1.1 1.7

Table 5.10: Cutflow for SRnoZc at
√
s = 8 TeV with 20.7 fb−1 of data. Errors are

statistical only. Expected significances are calculated assuming a 30% uncertainty on the

number of background events.
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SRZa SFOS Z request Emiss
T > 75 GeV Emiss

T < 120 GeV mT < 110 GeV b-jet veto

tt̄ 249.4 ± 5.7 32.8 ± 2.1 10.9 ± 1.2 9.0 ± 1.1 7.8 ± 1.0 2.2 ± 0.5

tt̄ + V 50.9 ± 0.6 31.1 ± 0.5 13.4 ± 0.3 7.5 ± 0.2 6.3 ± 0.2 0.4 ± 0.1

WW 6.8 ± 0.6 0.7 ± 0.2 0.3 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.1 ± 0.1

ZZ 1564.0 ± 10.2 464.4 ± 5.6 14.5 ± 1.0 11.5 ± 0.9 10.3 ± 0.8 8.9 ± 0.8

ZZ → ``νν 0.4 ± 0.1 0.2 ± 0.1 0.1 ± 0.03 0.1 ± 0.03 0.0 ± 0.0 0.0 ± 0.0

WZ 2398.6 ± 16.3 1909.4 ± 14.5 403.2 ± 6.6 299.8 ± 5.7 277.2 ± 5.5 234.9 ± 5.0

Tribosons 16.3 ± 0.2 3.7 ± 0.1 1.7 ± 0.1 1.1 ± 0.04 0.6 ± 0.03 0.5 ± 0.03

Drell-Yan 138.3 ± 30.0 2.5 ± 2.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Single t 14.3 ± 2.5 3.0 ± 1.3 1.5 ± 0.9 1.5 ± 0.9 1.0 ± 0.7 1.0 ± 0.7

Z + jets 2734.7 ± 98.2 1398.2 ± 68.4 16.2 ± 8.0 16.2 ± 8.0 8.0 ± 5.5 8.0 ± 5.5

Σ SM 7173.6 ± 104.7 3846.1 ± 70.2 461.9 ± 10.6 347.0 ± 10.0 311.3 ± 7.9 256.0 ± 7.5

Model A: 112.5, 12.5 9363.4 ± 210.3 2664.9 ± 114.0 649.4 ± 55.0 440.6 ± 44.9 363.9 ± 41.0 363.8 ± 41.0

ZN 4.3 2.3 4.6 4.1 3.8 4.5

Model A: 130, 30 6138.0 ± 130.2 1952.1 ± 73.6 642.0 ± 42.3 485.4 ± 36.5 413.0 ± 33.9 392.7 ± 32.9

ZN 2.8 1.7 4.5 4.5 4.3 4.9

Model A: 155, 5 3548.6 ± 70.8 911.2 ± 36.0 433.5 ± 25.0 287.3 ± 20.6 148.5 ± 15.0 130.8 ± 13.8

ZN 1.6 0.8 3.1 2.7 1.5 1.6

Model A: 150, 50 3891.2 ± 79.0 1324.2 ± 46.4 417.7 ± 25.9 300.7 ± 22.1 231.5 ± 19.5 214.9 ± 18.6

ZN 1.8 1.1 2.9 2.8 2.4 2.7

Table 5.11: Cutflow for SRZa at
√
s = 8 TeV with 20.7 fb−1 of data. Errors are statistical

only. Expected significances are calculated assuming a 30% uncertainty on the number of

background events.
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SRZb SFOS Z request Emiss
T > 75 GeV Emiss

T < 120 GeV mT > 110 GeV b-jet veto

tt̄ 249.4 ± 5.7 32.8 ± 2.1 10.9 ± 1.2 9.0 ± 1.1 1.2 ± 0.4 0.5 ± 0.3

tt̄ + V 50.9 ± 0.6 31.1 ± 0.5 13.4 ± 0.3 7.5 ± 0.2 1.2 ± 0.1 0.1 ± 0.02

WW 6.8 ± 0.6 0.7 ± 0.2 0.3 ± 0.1 0.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0

ZZ 1564.0 ± 10.2 464.4 ± 5.6 14.5 ± 1.0 11.5 ± 0.9 1.3 ± 0.3 0.9 ± 0.2

ZZ → ``νν 0.4 ± 0.1 0.2 ± 0.1 0.1 ± 0.03 0.1 ± 0.03 0.0 ± 0.0 0.0 ± 0.0

WZ 2398.6 ± 16.3 1909.4 ± 14.5 403.2 ± 6.6 299.8 ± 5.7 22.6 ± 1.6 18.7 ± 1.4

Tribosons 16.3 ± 0.2 3.7 ± 0.1 1.7 ± 0.1 1.1 ± 0.04 0.5 ± 0.03 0.4 ± 0.03

Drell-Yan 138.3 ± 30.0 2.5 ± 2.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Single t 14.3 ± 2.5 3.0 ± 1.3 1.5 ± 0.9 1.5 ± 0.9 0.6 ± 0.6 0.0 ± 0.0

Z + jets 2734.7 ± 98.2 1398.2 ± 68.4 16.2 ± 8.0 16.2 ± 8.0 8.3 ± 5.9 8.3 ± 5.9

Σ SM 7173.6 ± 104.7 3846.1 ± 70.2 461.9 ± 10.6 347.0 ± 10.0 35.7 ± 6.1 28.9 ± 6.0

Model B: 150, 0 259.7 ± 5.2 244.2 ± 5.1 114.0 ± 3.5 73.3 ± 2.8 29.9 ± 1.8 27.8 ± 1.7

ZN 0.1 0.2 0.8 0.7 2.2 2.4

Model B: 100, 0 1070.9 ± 22.9 982.1 ± 22.0 251.1 ± 11.0 181.2 ± 9.4 11.4 ± 2.2 11.4 ± 2.2

ZN 0.5 0.8 1.8 1.7 0.9 1.0

Model B: 150, 50 261.7 ± 5.2 247.5 ± 5.1 80.3 ± 2.9 59.1 ± 2.5 13.8 ± 1.2 13.0 ± 1.2

ZN 0.1 0.2 0.6 0.6 1.0 1.1

Model B: 200, 0 92.8 ± 1.8 88.0 ± 1.7 58.7 ± 1.4 29.7 ± 1.0 14.1 ± 0.7 13.0 ± 0.7

ZN 0.0 0.1 0.4 0.3 1.0 1.1

Model B: 200, 50 92.2 ± 1.8 87.5 ± 1.7 52.1 ± 1.3 26.9 ± 1.0 13.5 ± 0.7 12.6 ± 0.6

ZN 0.0 0.1 0.4 0.2 1.0 1.1

Table 5.12: Cutflow for SRZb at
√
s = 8 TeV with 20.7 fb−1 of data. Errors are statistical

only. Expected significances are calculated assuming a 30% uncertainty on the number of

background events.
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SRZc SFOS Z request Emiss
T > 120 GeV mT > 110 GeV b-jet veto

tt̄ 249.4 ± 5.7 32.8 ± 2.1 1.9 ± 0.5 0.3 ± 0.2 0.2 ± 0.2

tt̄ + V 50.9 ± 0.6 31.1 ± 0.5 5.9 ± 0.2 1.4 ± 0.1 0.1 ± 0.03

WW 6.8 ± 0.6 0.7 ± 0.2 0.1 ± 0.1 0.1 ± 0.05 0.1 ± 0.05

ZZ 1564.0 ± 10.2 464.4 ± 5.6 3.0 ± 0.5 0.5 ± 0.2 0.4 ± 0.2

ZZ → ``νν 0.4 ± 0.1 0.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

WZ 2398.6 ± 16.3 1909.4 ± 14.5 103.3 ± 3.4 7.1 ± 0.9 5.0 ± 0.7

Tribosons 16.3 ± 0.2 3.7 ± 0.1 0.6 ± 0.03 0.3 ± 0.02 0.3 ± 0.02

Drell-Yan 138.3 ± 30.0 2.5 ± 2.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Single t 14.3 ± 2.5 3.0 ± 1.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Z + jets 2734.7 ± 98.2 1398.2 ± 68.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Σ SM 7173.6 ± 104.7 3846.1 ± 70.2 114.9 ± 3.4 9.7 ± 0.9 6.1 ± 0.8

Model B: 150, 0 259.7 ± 5.2 244.2 ± 5.1 40.7 ± 2.1 15.0 ± 1.3 13.7 ± 1.2

ZN 0.1 0.2 1.1 2.8 3.3

Model B: 200, 0 92.8 ± 1.8 88.0 ± 1.7 29.1 ± 1.0 16.5 ± 0.8 14.4 ± 0.7

ZN 0.0 0.1 0.8 3.1 3.5

Model B: 200, 50 92.2 ± 1.8 87.5 ± 1.7 25.2 ± 0.9 13.1 ± 0.7 12.3 ± 0.6

ZN 0.0 0.1 0.7 2.4 3.0

Model B: 250, 0 39.9 ± 0.7 37.5 ± 0.7 19.5 ± 0.5 13.1 ± 0.4 11.9 ± 0.4

ZN 0.0 0.0 0.5 2.4 3.0

Table 5.13: Cutflow for SRZc at
√
s = 8 TeV with 20.7 fb−1 of data. Errors are statistical

only. Expected significances are calculated assuming a 30% uncertainty on the number of

background events.
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Figure 5.10: Expected significance (ZN ) in Model A, for the 2012 SRnoZs. SRnoZa is most

effective near the diagonal, while SRnoZb is most effective slightly further away from the

diagonal. SRnoZc has good sensitivity to the bulk of the grid. Expected significances are

calculated assuming a 30% uncertainty on the number of background events.
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Figure 5.11: Expected significance (ZN ) in Model A, for the 2012 SRZs. SRZa, SRZb

and SRZc have some sensitivity to the bulk regions, but this is coincidental. Expected

significances are calculated assuming a 30% uncertainty on the number of background

events.
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(a) SRnoZa
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(b) SRnoZb
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Figure 5.12: Expected significance (ZN ) in Model B, for the 2012 SRnoZs. Only SRnoZa is

effective for signal points on the diagonal. Expected significances are calculated assuming

a 30% uncertainty on the number of background events.
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Figure 5.13: Expected significance (ZN ) in Model B, for the 2012 SRZs. SRZa, SRZb and

SRZc are sensitive to the bulk region. Expected significances are calculated assuming a

30% uncertainty on the number of background events.
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variables:

m``(SRnoZ) = {< 60, 60− 81.2, < 81.2 OR > 101.2} GeV (5.5)

mT(SRZ) = {< 110, > 110} GeV (5.6)

Emiss
T (SRZ) = {75−−120, > 120} GeV (5.7)

A more systematic approach would be to define SRs with (for example):

m`` = {< 81.2, 81.2− 101.2, > 101.2} GeV (5.8)

Emiss
T = {> 50, 75− 100, > 100} GeV (5.9)

mT = {< 110, > 110} GeV. (5.10)

There are eighteen possible combinations of m``, E
miss
T and mT, leading to eighteen SRs.

Increasing the number of SRs can increase sensitivity, but at the cost of increased compu-

tational demands, particularly for the calculation of exclusion limits. Also, the probability

to observe an excess or deficit due to a random fluctuation increases, potentially leading

to a false exclusion or discovery claim [203]. The Bonferroni correction [204] accounts for

the presence of N signal regions by, increasing the expected significance required for a

discovery by a factor of N . Systematic binning of SRs was not adopted in this work due

to computational limitations but does represent an interesting avenue for future work.

SRs may also be defined by assigning events a score according to how signal- or

background-like they are. The score may be calculated using a multivariate technique,

such as a BDT or ANN. Control and validation regions may then be defined by selecting

highly background-like events, and SRs by selecting highly signal-like events. A disadvant-

age to such techniques is that the initial signal and background samples used to train the

multivariate technique must be statistically independent from those used in the final ana-

lysis, which leads to (as a minimum) doubling of the number of simulated events required.

Again, multivariate techniques may prove fruitful for the future.
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Chapter 6

Background estimation and

systematic uncertainties

Far better an approximate

answer to the right question,

which is often vague, than an

exact answer to the wrong

question, which can always be

made precise.

John Tukey [205]

6.1 Background estimation

The sources of leptons in reducible and irreducible backgrounds are discussed in Section

6.1.1. The framework used to estimate reducible backgrounds is the matrix method, dis-

cussed in Section 6.1.2. Additionally, a control region for WZ, the largest irreducible

background, is discussed in Section 6.2.

6.1.1 Sources of leptons in SM backgrounds

The sources of electrons and muons in simulated SM backgrounds are shown in Figure

6.1. The selection used is the base selection for all the analyses presented here: exactly

three leptons are selected including at least one same flavour opposite charge sign (SFOS)

pair, and Emiss
T is required to exceed 50 GeV. Figures 6.2(a)-(c) show the proportions

of real and fake leptons, for highest, second-highest and lowest pT lepton respectively.

The proportion of fake leptons is lowest for the highest-pT leptons, which are found to be
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more than 98% composed of real leptons. For the purposes of background estimation, the

highest-pT lepton is therefore assumed to always be real.
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Figure 6.1: Sources of electrons (a) and muons (b) in simulated SM events with three

leptons and at least one same SFOS pair. Errors are statistical only.

6.1.2 Matrix method

The matrix method relates samples of loosely and tightly identified leptons (loose and

tight for brevity) to their composition in terms of real and fake leptons. The requirements

for loose and tight leptons are given in Sections 4.4.4.3 and 4.4.5.3. This composition can

be expressed in terms of

• the reconstruction efficiency ε: the probability of a real lepton passing tight identi-

fication

• the fake rate f : the probability of a fake lepton passing tight identification

Since a given lepton must either pass or fail tight identification, the other possible outcomes

may be expressed in terms of ε and f . As a concrete example, consider a sample of events

with three tight leptons NTTT . The composition of this sample may then be expressed as

a linear combination of samples with real (R) and fake (F ) leptons:

NTTT = ε3NRRR + ε2fNRRF + εf2NRFF + f3NFFF (6.1)

For brevity, it is assumed here that each lepton has the same ε and f : in general, these are

strongly dependent on the kinematics of a given lepton, as well as the type of object faking

the lepton. Higher pT leptons are generally less likely to be fake since possible sources of

fakes (hadrons, electrons from photon conversions) have a lower mass scale than W/Z/γ∗

bosons and SUSY particles.
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Figure 6.2: Sources of leptons in simulated SM events with three leptons, at least one SFOS

pair and Emiss
T > 50 GeV. Histograms (a), (b) and (c) show the background composition

for the highest, second-highest and lowest pT lepton respectively. Errors are statistical

only.

There are eight equations similar to (6.1) for the various combinations (NTTT , NTLL, NTLT

etc) of real and fake leptons, which may be expressed as a single 8×8 matrix equation. For

three lepton events with a tight leading lepton, the leading lepton was shown to be real

in > 98% of cases in Section 6.1.1. This simplification reduces the dimensionality of the

matrix to 4× 4. Under this assumption, the number of events with a leading tight lepton

and any combination of two additional tight/loose leptons (denoted 1 and 2) is given by


NTT

NTL

NLT

NLL


=


ε1ε2 ε1f2 f1ε2 f1f2

ε1(1− ε2) ε1(1− f2) f1(1− ε2) f1(1− f2)

(1− ε1)ε2 (1− ε1)f2 (1− f1)ε2 (1− f1)f2

(1− ε1)(1− ε2) (1− ε1)(1− f2) (1− f1)(1− ε2) (1− f1)(1− f2)


·


NRR

NRF

NFR

NFF


(6.2)
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Inverting equation (6.2) gives the sum of events with at least one fake lepton:

NFake = NRF +NFR +NFF =
1

(ε1 − f1)(ε2 − f2)
[(ε1ε2 − ε1f2 − f1ε2 + f1 + f2 − 1)NTT

+ (ε1ε2 − ε1f2 − f1ε2 + f2)NTL + (ε1ε2 − ε1f2 − f1ε2 + f1)NLT

+ (ε1ε2 − ε1f2 − f1ε2)NLL] (6.3)

The presence of the factors 1/(ε−f) can lead to numerical instability if the fake rates and

efficiencies are not well-separated. This instability is enhanced in the more general case

that the leading lepton may not be real, due to additional factors of 1/(ε−f), justifying the

use of this assumption. Since only tight leptons are used in the final analysis, contributions

to NFake from loose leptons are ignored. The salient prediction is therefore NFake|TT , the

number of events with at least one fake lepton, and all three leptons passing tight selection:

NFake|TT = ε1f2 ×NRF + f1ε2 ×NFR + f1f2 ×NFF . (6.4)

In summary, for the correction of MC predicted backgrounds, only the real efficiency and

the fake rates for the various different types of fake leptons are required.

6.1.3 Measurement of weighted average fake rates

The fake rate f for a given lepton depends on the type of fake (light flavour, heavy flavour

or electron conversion) as well as the lepton kinematics. The kinematics vary depending

on the process considered: for instance, the pT spectra of fake leptons from heavy flavour

produced in Z + b events are softer than those in tt̄ events due to the lower mass scale of

the Z + b process. The different compositions of the various signal and validation regions

will lead to different predictions for the various fakes.

Since the origin and type of each real and fake lepton is recorded in MC, simulated fake

rates can be found unambiguously. However, the fake rate in MC will not necessarily

match that in data. A weighted average fake rate, taking into account differences between

data and MC and the different fake proportions, is given by

f `XR = Σi,j(Si ×RijXR × f
ij
truth) (6.5)

Here XR=(SR,VR) refers either to a validation or a signal region. The index i refers to

the type of fake, j indicates the process (t decay, W , Z). Indices reflecting dependence on

pT and η are suppressed.

The scale factor Si is a scale factor for the fake rate of origin i to correct the MC

prediction to the fake rate in data.
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The fake fraction RijXR gives the proportion of different fake leptons by origin i and type

j in a given region XR.

The truth fake rate f ijtruth is the fake rate found in simulation. It is given by the ratio

of tight to loose leptons of a given origin i and type j.

The measurement of the scale factor Sconv for electron conversion is discussed in Section

6.1.4.2, and the treatment of light/heavy flavour scale factors and the real lepton efficiency,

are discussed in Sections 6.1.5.1, 6.1.5.3 and 6.1.5.2. The calculation of the truth fake rates

and final matrix method calculation was performed by another analysis group member.

6.1.4 Measurement of the electron conversion scale factor

There are two types of lepton conversion processes: internal conversion, involving a virtual

photon (γ∗ → e+e−), and external conversion, an interaction between a real photon and

detector material. Feynman diagrams for internal conversion in Z/γ∗ production are

shown in Figure 6.4. There is no observable distinction between internal and external

conversion, since both processes lead to the same final state. However, one difference is

that internal conversion is equally likely for electrons and muons (above the mass threshold

for muon pair creation), while external conversion is more likely to occur for electrons. The

kinematic properties of internal conversion also differ if the conversion is initial or final

state radiation (ISR/FSR, shown in Figure 6.4(a) and (b) respectively). The four leptons

from final state internal conversion form the invariant mass of the Z boson, while the

four leptons from initial state internal conversion can only form this by accident. Highly

asymmetric internal conversions, in which one lepton has too low pT to be reconstructed,

can form an important background to multilepton SUSY production, due to the presence

of Emiss
T from the unreconstructed lepton [206]. Since the unreconstructed lepton is soft,

the three reconstructed leptons can still have a mass close to the Z mass window if the

process is FSR. The overall strategy to estimate electron external conversion is as follows:

1. Validate MC treatment of internal conversion in a sample of asymmetric muon con-

versions, since this will be almost totally free of external conversion contamination.

2. Measure a combination of external and internal electron conversion events in data,

subtracting the internal conversion contribution from MC.

3. Extract the data/MC scale factor for external conversion, Sconv: this is the ratio

between the data and MC fake rates.
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6.1.4.1 Muon conversion validation region

Since internal conversion is insensitive to the flavour of the lepton produced, and muons

very rarely externally convert, a sample of asymmetric internal conversion events with

approximately 80% purity can be selected. The requirements for this region are as follows:

• Standard quality requirements defined in Section 5.2, but without electron triggers

(since no electrons are selected)

• Exactly three tight muons, with one opposite sign pair µ+µ−

• Trimuon invariant massmµµµ compatible with an on-shell Z decay ([81.2–101.2] GeV)

• All muon mT < 40 GeV and Emiss
T < 50 GeV (rejecting WZ)

• b-jet veto (rejecting tt̄)

The number of events in data and MC in the validation region are summarised in Table

6.1 (for the 2012 dataset), and the pT and η distributions for the lowest pT muon are

shown in Figure 6.5. The invariant mass formed by the three muons is shown in Figure

6.6. It is not possible to directly subtract the pure muon conversion sample from the real

external conversion contribution, since the acceptance and efficiency of electron and muon

reconstruction are different and, at low invariant masses, the probability of conversion of

a virtual photon to an electron-positron pair is greater than that of photon conversion

to a muon pair. There is some discrepancy between the data and MC prediction in this

region, but the errors on the MC prediction are statistical only. Systematic uncertainties,

if evaluated, would add to the error. In the case of the electron conversion control region,

detailed in Section 6.1.4, the total systematic and statistical uncertainty is 22%: since

the largest systematic uncertainty follows from increasing the Z mass window, this is also

likely to apply in the case of the muon conversion validation region. In conclusion, the

level of agreement seen between the data and MC prediction is sufficient to validate the

electron conversion control region.

6.1.4.2 Electron conversion control region

The rate of electron conversion is measured in a dedicated control region similar to the

muon conversion validation region, with selection criteria as follows:

• Standard quality requirements defined in Section 5.2

• Exactly 1 loose electron
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Selection Muon conversion validation region

tt̄ 0.3± 0.2

WZ 4.7± 0.7

ZZ 189.8± 3.8

Z + jets 42.0± 11.4

Σ SM 236.9± 12.0

Data 180

Table 6.1: Observed events in the muon conversion validation region in data and MC

samples with the 2012 dataset. Errors are statistical only.

• Trilepton invariant mass mµµe in Z mass window [81.2–101.2] GeV

• Emiss
T < 50 GeVand electron mT < 40 GeV (rejecting WZ)

• b-jet veto (rejecting tt̄)

These requirements are designed to select a sample of Z → µµ+ γ events with final state

asymmetric electron conversions. The fake rate is then defined as

fconv =
Ntight(CR)

Nloose(CR)
(6.6)

which is the fraction of events in the control region with a tight electron divided by the

fraction of events with a loose electron. The pT and η distributions of loose (left) and tight

(right) electrons for the full 2012 dataset are shown in Figure 6.7. The invariant mass of

the dimuon pair and electron conversion candidate is shown in Figure 6.8.

The scale factor between data and MC is then defined as

Sconv =
f(Data)conv − f(Real)conv

f(EC)conv
(6.7)

“Real” is a set of samples (tt̄, ZZ, WZ) containing non-external conversion electrons. The

denominator (f(EC)) contains only Z/γ∗+jets samples which include external conversions.

6.1.4.3 Systematic uncertainties for the electron conversion scale factor

Systematic uncertainties on the method were evaluated by altering the selection criteria.

The relative shifts in the event acceptance were then summed in quadrature separately

for the data and MC and then together to give a single overall systematic uncertainty on

the scale factor. The selection criteria varied were:
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• The Z mass window - this was moved by ±5 GeV increments from the central value

of [81.2–101.2] GeV, to [76.2–106.2] GeV and [86.2–96.2] GeV

• The b-jet veto was removed

• The electron mT cut was removed

The statistical uncertainties on the data and MC samples were also used. The percentage

changes in the event acceptance are summarised in Table 6.2. Here the largest uncertainties

arise from miving the Z mass window: the Z peak is sharp, so it follows that small changes

can have a large effect on the acceptance. The uncertainties were also evaluated in two

different |η| and pT bins, as shown in Figure 6.9. To within the systematic and statistical

uncertainties applied, no significant dependence on the electron η and pT was observed.

A single unbinned scale factor was extracted:

Sconv = 1.22± 0.27

and used in the matrix method. This scale factor is compatible with 1 and implies that

the treatment of conversion in this kinematic regime is well treated in MC.

Source of uncertainty Data MC

Z window up 5 GeV 17.0% 10.0%

Z window down 5 GeV -10.6% -11.6%

Remove b-jet veto 1.7% -1.5%

Remove mT cut -0.5% -1.8%

Statistical 4.6% 8.5%

Sum 20.6% 17.7%

Table 6.2: Statistical and systematic uncertainties for the electron conversion scale factor.

The systematic uncertainties are expressed as a percentage change in the event acceptance.

Systematic uncertainties are added in quadrature with the statistical errors to obtain the

total uncertainty for the data and MC fake rates, and these are then added in quadrature

to obtain the error on the scale factor.

6.1.5 Measurements of real lepton efficiency and weighted average fake

rates

As discussed in Section 6.1.2, only the fake rates for each type of fake contribution, f and

the real lepton efficiency ε are independent probabilities and must be measured in data.

The measurements of these quantities are summarised briefly here.
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6.1.5.1 Measurement of real lepton efficiency

Real lepton efficiency is measured using a tag-and-probe method. In this method, a sample

of events with two loose quality objects whose invariant mass is close to a resonance

(generally J/ψ or Z) is selected. One of the objects is then required to pass tight quality

requirements - this is referred to as the tag. The other object, known as the probe is

then required to pass/fail tight quality criteria. This then gives a reconstruction efficiency

relative to the loose identification requirement. The real lepton efficiency was measured

in a Z control region and found to be

εeReal = 0.996± 0.001

εµReal = 0.995± 0.001

where errors quoted are statistical only. No significant dependence on pT or η was observed.

6.1.5.2 Measurement of heavy flavour fake rates

Light leptons produced in semi-leptonic b and c quark (collectively Heavy Flavour, HF)

decays can form an important background to multilepton searches. Such leptons are

generally produced within a jet and can be removed by isolation and ∆R requirements,

as discussed in Section 4.4.10.1. In order to select semi-leptonic b and c quark decays, a

tag-and-probe method is used, similarly to Section 6.1.5.1.The uncertainties quoted are

the systematic uncertainty from the subtraction of backgrounds with real leptons and the

statistical uncertainty arising from the data and MC sample size. The scale factor and

associated uncertainty is applied in the matrix method.

• Standard quality requirements defined in Section 5.2

• Exactly two loose leptons

• Exactly one b-tagged jet

• Emiss
T > 60 GeV

• mT < 40 GeV

The fake rate is defined similarly to the conversion fake rate:

SHF =
fData

HF − fRMC
HF

fHFMC
HF

(6.8)

where RMC refers to real (i.e. non-heavy flavour) MC contributions and HFMC are the

bb̄ and cc̄ samples. The subtraction is performed in order to obtain a data sample pure in
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HF events. No kinematic dependence was observed, allowing the extraction of unbinned

scale factors:

SmathrmHFµ = 0.86± 0.03

SmathrmHFe = 0.75± 0.04

which are then applied in the matrix method. The uncertainties quoted are the systematic

uncertainty arising from the subtraction of real leptons and the statistical uncertainty

arising from the data and MC sample sizes.

6.1.5.3 Measurement of light flavour fake rates

Fake leptons from light flavour are sub-dominant in most signal regions, as shown in Figure

6.3. Since the contribution is small, a flat scale factor of SLF = 1.0±0.1 is applied. This is

conservatively chosen to be larger than the 3–6% uncertainties on the heavy flavour scale

factor.

6.2 WZ normalisation (2011 only)

In the 2011 analysis, the overall yield of WZ, the largest irreducible background, was

normalised to a WZ-rich control region. The advantage of this technique is to remove un-

certainties on the normalised background. The reducible backgrounds to WZ production

in the control region are estimated using the matrix method and control regions detailed

above. A scale factor is obtained by taking the ratio of the data yield (with non-WZ MC

subtracted) divided by the WZ MC yield:

sfWZNR =
NData −Nnon−WZMC −N reducible

NWZ
= 1.25± 0.12 (6.9)

This scale factor is then used to rescale the WZ yield in the signal and validation regions.

The treatment of the WZ normalisation in the statistical interpretation is discussed in

Section 7.3.5. The disadvantage of the method is that it leads to a reduction in sensitivity

to WZ-like signals - in the 2012 analysis, this was felt to outweigh the advantage of the

reduced systematic uncertainties, so the method was not used.

6.2.1 Summary of background estimation

Events with three or more real, prompt leptons (“irreducible backgrounds”) such as WZ

and ZZ production, are estimated using MC simulation only. In the 2011 analysis the

total WZ contribution was normalised to a control region, as discussed in Section 6.2.
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Contributions from events with fewer than three real, prompt leptons (“reducible back-

grounds”) such as heavy flavour decays and electron conversions, are estimated in control

regions. The various data/MC fake rate scale factors S, as well as the real lepton efficiency

ε, are given in Table 6.3. The electron conversion scale factor Sconv has the largest uncer-

tainty (22%): this is mainly due to the changes in acceptance from raising and lowering

the Z window, shown in Table 6.2.

Quantity Electron Muon

SLF 1.0± 0.1 1.0± 0.1

SHF 0.75± 0.04 0.86± 0.03

Sconv 1.22± 0.27

εReal 0.996± 0.001 0.995± 0.001

Table 6.3: Summary of scale factors and efficiencies in the 2012 analysis. The light flavour

scale factor, SLF, is an assumption chosen to have a similar degree of uncertainty to the

other scale factors.

6.3 Systematic uncertainties

Uncertainties on the irreducible and reducible background are calculated separately. Stand-

ard uncertainties for the irreducible background were provided by ATLAS performance

groups. All uncertainties are then propagated to the likelihood used to calculate limits on

SUSY scenarios and summed in quadrature bin-by-bin to produce the figures and tables in

the validation/signal regions. Unless stated otherwise, the procedures detailed are those

adopted for the 2012 analysis.

6.3.1 Uncertainties on the irreducible background

6.3.1.1 MC generator

Uncertainties arising from the theoretical description of processes were evaluated by com-

paring the kinematic distributions of the same process in two different generators. The

difference between the two predictions is then taken as the 1-σ variation. The Sherpa

WZ and ZZ samples were compared to Powheg samples. Since no alternate samples of

triboson production were available, a full 100% uncertainty was applied to these samples.
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6.3.1.2 MC cross section

For tt̄+V samples the 30% uncertainty evaluated in [170, 171] was applied. An uncertainty

of 5% for ZZ and 7% for WZ was applied: these are recommended by ATLAS and found

by comparing the results of calculations with the mcfm and mc@nlo generators and

MSTW [207] and CTEQ PDF sets. No error calculations were available for the triboson

production: the uncertainties were therefore conservatively taken to be 10% (larger than

the diboson uncertainties). The triboson uncertainties are in any case dominated by the

100% MC generator systematic.

6.3.1.3 PDF

The PDF uncertainties for the Sherpa WZ and ZZ samples were calculated using the

PDF4LHC recommendations [208]. Since WZ and ZZ are dominated by quark-antiquark

contributions, these must be precisely known. The PDF set used was provided by the

CTEQ collaboration [209]. The CTEQ PDF set is based on 26 free parameters and the

resulting 90% confidence level variations in these parameters form the “error set” {q} for

the PDF. The zeroth member of the set, q(0), is the nominal prediction of the observable,

while the odd members form the positive part of the CL interval. The even members form

the negative part of the CL interval. There are NCTEQ = 52 even and odd members in

the set. The notation O[q(i)] refers to the observable O rescaled to the prediction from

the set member q(i). Since each event will have a different parton centre of mass energy,

each observable will have, in general, a different dependence on the PDF prediction. The

total ±1σ variation in the observable is found by summing the largest variations in O in

quadrature:

σCTEQ(+)[O] =
1

C90

√√√√NCTEQ/2∑
i=1

(
max{O[q(2i−1)]−O[q(0)], O[q(2i)]−O[q(0)], 0}

)2
σCTEQ(−)[O] =

1

C90

√√√√NCTEQ/2∑
i=1

(
max{O[q(0)]−O[q(2i−1)], O[q(0)]−O[q(2i)], 0}

)2
C90 = 1.64485 is a rescaling factor to convert the 90% CL variations into 1σ variations.

For the other irreducible backgrounds, the uncertainty on the cross section also includes

the PDF uncertainty. The PDF uncertainty is applied to each bin of the distributions

shown in Sections 7.1 and 7.2, and as overall event weights for tables and interpretation

of results.
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6.3.1.4 Electrons

Electron energy scale and energy resolution were measured in selections of Z, W and J/ψ

events by the ATLAS electron performance group. The resulting uncertainties are η and

pT dependent, and the largest uncertainty is present in the 10–20 GeV pT bin, since the

statistics from W and J/ψ events are lowest in this region. An uncertainty for electron

identification efficiency is also applied.

6.3.1.5 Muons

Since muon momentum is measured in the ID and MS systems, there are two different

associated energy scale systematics. These are evaluated independently: in each case, the

muon momentum is smeared up/down according to a data-driven energy scale determin-

ation provided by the ATLAS muon performance group.

6.3.1.6 Taus

Although tau leptons are not selected for these analyses, events containing medium quality

tau leptons are vetoed to facilitate a future combination with analyses selecting tau leptons.

Changing the energy scale can therefore change the overall number of events accepted for

given signal and validation regions. The uncertainty due to the tau energy scale was

evaluated using single hadron calorimeter response measurements (as evaluated for the jet

energy scale) and correcting for the known composition of tau jets - these measurements

were performed by the ATLAS tau performance group. No systematics were evaluated for

tau identification.

6.3.1.7 Jets

The jet energy scale was estimated from the 1σ variations obtained from jet energy scale

measurements discussed in Section 4.4.6.1 performed by the ATLAS jet performance group.

To account for jet energy resolution, jet pT was smeared according to a Gaussian distri-

bution. The mean and width of the Gaussian were varied according to the pT and η of

the jet.

6.3.1.8 b-tagging efficiency

The b-tagging algorithm performance was evaluated by the ATLAS flavour-tagging per-

formance group using MC light and heavy jet samples: the associated uncertainty on the
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real efficiency and mis-tag rates for the 2011 and 2012 algorithms (JetFitterCombNN and

MV1) was then propagated as an overall scale factor.

6.3.1.9 MET

The uncertainties on electron, muon, tau and jet energy scales and resolutions are propag-

ated directly to the MET. There are additional systematics from the calorimeter cells

not associated with any objects (“CellOut” term), and from soft jets (pT < 20 GeV): in

the former case, a 5% uncertainty on the energy scale is applied, as is an uncertainty

for the resolution. Since the effect of soft jets was found to be negligible, no systematic

uncertainty was applied.

6.3.1.10 Luminosity

The uncertainty on the luminosity is 3.6% for 2012 data, and 3.9% for 2011 data. This

uncertainty was calculated using the methods detailed in [210, 211].

6.3.1.11 Trigger

Trigger reweighting was used in the 2011 analysis, and the ± 1 σ band from the statistical

error on the MC and data samples used was found to be < 1%, and applied as a systematic

uncertainty. In the 2012 analysis, trigger simulation was used directly, and a 5% systematic

uncertainty was applied to account for the small discrepancies between data and MC

observed.

6.3.1.12 WZ normalisation (2011 only)

WZ was normalised in a control region (WZNR) defined in Section 6.2: this normalisation

was then allowed to fluctuate simultaneously in each signal region as discussed in Section

7.3.5. The systematic uncertainties used were simply those detailed in Section 6.3.1.

6.3.2 Summary of irreducible background uncertainties

Tables 6.4 and 6.5 show the main systematics (any individual contributions above 10%) on

the irreducible background for the 2012 analysis: systematics with a contribution greater

than 5% are included. Full tables may be found in Appendix B. The triboson samples

have the largest (> 100%) overall systematics in most regions: this is dominated by the

100% uncertainty on the choice of MC generator. The tt̄ + V samples also have large

uncertainties: the fluctuations in each SR are due to the small overall number of MC
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events selected. This also leads to statistical fluctuations in systematic uncertainties that

change the total number of events accepted.

Triboson ZZ tt̄ + V WZ Total

SRZa

Expected events 0.54 8.88 0.43 235.05 244.9

Jet energy scale 3.3,2.64% 1.34,7.25% 26.64,21.24% 1.71,1.04% 1.74,1.3%
Jet energy resolution 2.95,2.95% 7.76,7.76% 19.64,19.64% 2.88,2.88% 3.08,3.08%

Emiss
T soft term scale -1.35,0.32% 10.88,-6.69% 0.0,0.0% 2.61,-2.35% 2.9,-2.5%

b-tagging 2.56,-2.63% 3.33,-3.43% 46.28,-56.32% 3.07,-3.17% 3.15,-3.28%
MC statistics 5.92,-5.92% 8.51,-8.51% 40.41,-40.41% 2.13,-2.13% 2.07,-2.07%
Generator 100.0 % 10.7 % 0.0 % 1.6 % 2.14%
Cross section 10.0 % 5.0 % 30.0 % 12.0 % 11.77%

Total 101.05,-101.1% 21.26,-21.24% 80.74,-85.60% 14.83,-15.62% 14.82,-15.57%

SRZb

Expected events 0.43 0.95 0.22 18.68 20.29

Electron energy scale 2.06,-2.58% 21.65,-20.82% 0.0,0.0% 2.08,-7.7% 2.97,-8.12%
Jet energy scale -0.06,3.66% 17.68,-10.14% 0.0,18.39% 1.7,7.57% 2.39,6.77%
Jet energy resolution 0.34,0.34% 15.47,15.47% 4.64,4.64% 4.84,4.84% 5.24,5.24%

Emiss
T soft term scale 1.55,-2.07% 6.16,4.82% 0.0,0.0% 13.73,-16.89% 12.97,-15.37%

b-tagging 2.95,-3.0% 1.86,-1.9% 38.4,-64.33% 3.3,-3.45% 3.61,-4.03%
MC statistics 6.62,-6.62% 25.45,-25.45% 57.33,-57.33% 7.46,-7.46% 7.0,-7.0%
Generator 100.0 % 16.8 % 0.0 % 5.9 % 8.36%
Cross section 10.0 % 5.0 % 30.0 % 12.0 % 11.83%

Total 100.99,-101.17% 45.88,-43.30% 75.64,-93.42% 22.79,-27.10% 23.15,-26.69%

SRZc

Expected events 0.29 0.39 0.1 5.01 5.79

Jet energy resolution 2.85,2.85% 4.52,4.52% 38.25,38.25% 2.77,2.77% 3.51,3.51%

Emiss
T soft term scale -0.84,1.11% 0.0,-32.99% 0.0,0.0% 3.94,-4.74% 3.37,-6.26%

Emiss
T soft term resolution -1.22,-1.22% -33.02,-33.02% 0.0,0.0% -3.3,-3.3% -5.13,-5.13%

MC statistics 6.37,-6.37% 41.46,-41.46% 95.95,-95.95% 14.22,-14.22% 12.73,-12.73%
Generator 100.0 % 35.4 % 0.0 % 12.9 % 18.55%
Cross section 10.0 % 5.0 % 30.0 % 12.0 % 11.74%

Total 101.0,-101.13% 64.98,-72.56% 108.02,-108.07% 27.62,-27.38% 29.40,-29.77%

Table 6.4: The % effect of the dominant (> 10% for any background) systematic uncer-

tainties on irreducible SM yields in SRZ for the 2012 analysis.

6.3.3 Uncertainties on the reducible background

The systematic uncertainties on the matrix method estimation of the background come

from several sources. The statistical uncertainty on data and MC samples varies between

7.3% and 71%, depending on the region considered. The highest uncertainties are found

in SRnoZc and SRZc, which have the tightest selection criteria. The fake fraction(RijXR)

is the proportion of different fake leptons by origin i and type j in a given region XR:

an uncertainty of 10% is assigned to the fake fractions from each MC sample to account

for potential differences between data and MC. An uncertainty of up to 5% on the real

lepton efficiency was also assigned by considering the largest deviation from the fitted

value as a function of η. Finally, uncertainties on the truth fake rates arising from different

proportions of fakes as a function of Emiss
T were evaluated by finding the relative differences

in truth fake rate for leptons of all origins and types in each Emiss
T bin. These uncertainties

range between 5 and 26%.
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Triboson ZZ tt̄ + V WZ Total

SRnoZa

Expected events 1.69 13.76 0.23 49.56 65.23

Jet energy resolution 0.67,0.67% 7.3,7.3% 36.0,36.0% 6.73,6.73% 6.8,6.8%

Emiss
T soft term scale -0.42,-0.46% 21.93,-15.72% 0.0,0.0% 4.27,-2.97% 7.86,-5.58%

b-tagging 2.23,-2.31% 2.94,-3.02% 61.48,-76.77% 3.11,-3.2% 3.26,-3.4%
MC statistics 3.94,-3.94% 6.37,-6.37% 54.76,-54.76% 4.59,-4.59% 3.74,-3.74%
Generator 100.0 % 49.4 % 0.0 % 6.9 % 18.25%
Cross section 10.0 % 5.0 % 30.0 % 12.0 % 10.54%

Total 100.79,-101.0% 56.50,-54.48% 94.94,-105.72% 18.31,-19.27% 25.22,-25.3%

SRnoZb

Expected events 0.63 1.76 0.21 19.52 22.11

Jet energy scale 2.78,0.09% 10.61,-7.47% 0.0,46.9% 4.31,6.1% 4.73,5.23%
Jet energy resolution 1.35,1.35% 16.77,16.77% 43.16,43.16% 6.73,6.73% 7.71,7.71%

Emiss
T soft term scale 1.57,-1.05% 34.57,-23.63% 0.0,0.0% 7.22,-1.82% 9.16,-3.52%

b-tagging 2.25,-2.29% 2.18,-2.19% 28.75,-29.03% 3.28,-3.38% 3.4,-3.49%
MC statistics 6.41,-6.41% 18.29,-18.29% 54.86,-54.86% 7.54,-7.54% 6.84,-6.84%
Generator 100.0 % 38.4 % 0.0 % 7.0 % 12.09%
Cross section 10.0 % 5.0 % 30.0 % 12.0 % 11.55%

Total 101.0,-101.08% 59.19,-53.41% 81.47,-94.123% 20.78,-20.56% 23.58,-22.60%

SRnoZc

Expected events 0.81 0.25 0.21 2.12 3.4

Jet energy resolution 3.09,3.09% 0.0,0.0% 103.23,103.23% 11.33,11.33% 14.2,14.2%

Emiss
T soft term scale -0.04,-2.1% 3.11,0.0% 0.0,0.0% 11.51,-2.32% 7.41,-1.95%

b-tagging 2.35,-2.43% 6.32,-6.32% 10.39,-10.67% 3.98,-4.12% 4.16,-4.28%
MC statistics 5.64,-5.64% 54.82,-54.82% 51.78,-51.78% 20.6,-20.6% 13.93,-13.93%
Generator 100.0 % 14.4 % 0.0 % 65.9 % 66.2%
PDF 0.0,0.0% 9.12,-8.29% 0.0,0.0% 1.86,2.27% 1.83,0.81%
Cross section 10.0 % 5.0 % 30.0 % 12.0 % 12.12%

Total 100.81,-100.9% 58.28,-68.2% 119.83,-144.83% 73.27,-72.34% 71.3,-71.54%

Table 6.5: The % effect of all systematic uncertainties on irreducible SM yields in SRZ for

the 2012 analysis.

The overall uncertainty from the reducible background estimate varied between 37 and

78% in the 2012 analysis, depending on the signal region considered. Table 6.6 shows the

different uncertainties for each signal region.

SRnoZa SRnoZb SRnoZc SRZa SRZb SRZc

Expected events 31.0 7.1 1.0 4.3 1.7 0.5

Statistics +7.3,-7.3% +12,-12% +38,-38% +34,-34% +35,-35% +71,-71%

Fake fractions +12,-12% +19,-19% +5,-14% +29,-29% +8,-9% +20,-26%

Emiss
T dependence +42,-36% +64,-64% +10,-9% +33,-26% +6,-5% +16,-13%

Scale factors +7,-6% +13,-13% +1,-1% +4,-4% +0,-0% +1,-1%

Total +45,-39% +66,-50% +40,-42% +84,-111% +37,-38% +76,-78%

Table 6.6: Systematic uncertainties for the reducible background in the signal regions.

6.3.4 Uncertainties on the SUSY signal samples

The uncertainty on the SUSY signal production includes contributions from the PDF

errors (evaluated using both the CTEQ and MSTW PDF sets) and variations in the



124

theoretical parameters used in the cross section calculation. The procedure to evaluate

these errors is detailed in [212].
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Figure 6.3: Sources of leptons in 2012 signal regions. Errors are statistical only.
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Figure 6.4: Feynman diagrams for initial and final state internal conversion. In a), the

internal conversion radiates from the initial quark leg, while in b) the internal conversion

radiates from a final state lepton.
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Figure 6.5: Data/MC comparison for the muon conversion validation region defined in

Section 6.1.4.1. Errors are statistical only.
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Figure 6.6: Invariant mass of dimuon pair and muon conversion candidate defined in

Section 6.1.4.1 in the muon conversion validation region, with all cuts except mµµµ within

the range [81.2–101.2] GeV applied. Some fluctuation is observed on either side of the

range [81.2–101.2] GeV used to define the validation region. Errors are statistical only.
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(d) Tight electrons

Figure 6.7: η (top) and pT (bottom) of electron conversion candidate in the conversion

control region. Errors are statistical only.
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Figure 6.8: Invariant mass of dimuon pair and electron conversion candidate in the con-

version control region, with all cuts except [81.2:101.2] GeV applied. Errors are statistical

only.
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Figure 6.9: Fake rates and scale factors for conversion electrons. In the fake rate plots

(left) data fake rates are shown in black, while MC fake rates are shown in red. Errors

shown are statistical and systematic, summed in quadrature.
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Chapter 7

Results and interpretation

In the beginning, there was

simply the event and its

consequences.

Paul Auster [213]

7.1 Validation of background prediction

As this is a blind analysis the background modelling, including the data-driven background

estimates for fake leptons and treatment of systematic uncertainties, is verified using

dedicated validation regions (VRs) enriched in relevant background sources, before the

analysis of the data in the signal regions.

7.1.1 2011 analysis

The selection criteria for the 2011 validation regions are summarised in Table 7.1.

Selection VR1 VR2 VR3

Targeted background Drell-Yan, WZ∗ tt̄ on-shell WZ

m`` [ GeV] < 81.2, > 101.2 Veto SFOS pairs [81.2:101.2]

Emiss
T [ GeV] 30 < Emiss

T < 75 > 50 50 < Emiss
T < 75

Table 7.1: The selection requirements for the 2011 signal regions.

7.1.2 2012 analysis

The 2012 validation regions, like the signal regions, are subdivided into Z-veto and Z-

request regions. They are then defined by reversing one of two selection criteria:
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Selection VR1 VR2 VR3

tt̄+ V 0.787±0.52 0.84±0.51 1.20±0.90

ZZ 17±15 0.10±0.05 3.9±0.6

WZ 46±8 0.93±0.29 98±12

Reducible background 50±28 13±7 3.1+4.7
−3.1

Total background 114±32 15±7 106±13

Data 126 18 109

Table 7.2: Expected numbers of events from SM backgrounds and observed numbers of

events in 2011 data, for 4.7 fb−1, in validation regions VR1, VR2 and VR3. Both statistical

and systematic uncertainties are included. Adapted from [196].

(a) Emiss
T < 50 GeV rather than the high Emiss

T selection in the signal regions (VRnoZa,

VRZa)

(b) At least one b-tagged jet, rather than the veto across all signal regions (VRnoZb,

VRZb)

The regions (VRnoZb, VRZb) with at least one b-jet preferentially select events with large

heavy flavour contributions (Z+b-jets, tt̄, tt̄+ V etc), while VRnoZa and VRZa preferen-

tially select events with large light flavour contributions. The regions are summarised in

Table 7.3.

Selection VRnoZa VRnoZb VRZa VRZb

Z candidate Veto Request

Emiss
T [ GeV] < 50 GeV > 50 GeV < 50 GeV > 50 GeV

b-jet Veto Request Veto Request

Table 7.3: The selection requirements for the 2012 signal regions.

The error bars shown for data events are, by convention, Poisson 68% upper and lower

confidence levels. As shown in Table 7.4, VRnoZa and VRZa have the largest contributions

from reducible backgrounds. WZ is the dominant background in all VRs except VRnoZa,

where ZZ is dominant. The reducible background prediction from the matrix method

can fluctuate negatively: this is visible in VRnoZa, shown in the last bin of Figure 7.1(a).

This fluctuation in the reducible background prediction is covered by uncertainties. In

Figures 7.1(b), 7.2(a) and 7.2(b), the negative prediction is spread across several bins and

therefore no longer visible. A slight excess is visible in the final bin of Figure 7.1(b):

this is compensated for by a deficit in the second bin. Figures 7.2(a) and 7.2(b) show
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Selection VRnoZa VRnoZb VRZa VRZb

Triboson 1.41± 0.19 0.51± 0.11 0.6± 0.6 0.26± 0.05

tt̄+V 2.9± 0.8 21.2± 2.1 7.4± 1.3 25.9± 2.6

ZZ 128± 24 4.5± 1.3 108± 13 6.9± 1.4

WZ 110± 17 34± 6 545± 79 138± 22

Reducible background 146± 55 72± 45 376± 138 27± 13

Total background 388± 63 132± 45 1038± 160 198± 26

Data 463 141 1131 171

Table 7.4: Expected numbers of events in the validation regions from SM backgrounds and

observed numbers of events in 2012 data. Both statistical and systematic uncertainties

are included. Adapted from [3].

slight excesses and deficits distributed across several bins. In VRnoZb there are slight

excesses between 140 GeV < mT < 280 GeV, followed by several bins with zero data

events (shown in Figure 7.3(a): these bins have a prediction of one background event or

fewer. The distribution of data events as a function of Emiss
T is smooth, as shown in Figure

7.3(b), while there are fluctuations in the m`` and p`3T distributions (Figures 7.2(a) and

7.2(b) respectively). In VRZa, as shown in Figure 7.5(a) the reducible background is seen

to have the largest contribution at low mT: this region is dominated by Z+jets, which is

expected to have low Emiss
T and hence low mT. The data in each bin of 7.5(a) and 7.5(b)

are contained within the envelope of the uncertainties on the background prediction. In

VRZb, the data events in the b-jet multiplicity distribution (Figure 7.6(b)) follow the

shape of the background prediction. Small fluctuations are visible in some bins of the mT

distribution (Figure 7.6(a)) but do not appear to follow a systematic shape.

7.1.3 Summary

Very good agreement between the background predictions and data results is observed

in both 2011 and 2012 analyses. In the 2012 analysis, all background predictions agree

with data within uncertainties. There are slight over-fluctuations in all regions except

VRnoZb, where there is an underfluctuation. The observed and expected numbers of

events are shown in Tables 7.2 and 7.4 for the 2011 and 2012 analysis respectively. Kin-

ematic distributions for the 2012 analysis are shown in Figures 7.1, 7.2, 7.3, 7.4, 7.5 and

7.6.
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Figure 7.1: The (a) mT and (b) b-jet multiplicity distributions for VRnoZa in the 2012

analysis. The uncertainty band includes both statistical and systematic uncertainties on

the SM prediction. A negative prediction from the matrix method is visible in the final

bin of histogram (a). The data plotted correspond to Table 7.4. Result made public in

[3].
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Figure 7.2: The (a) m`` and (b) p`3T distributions for VRnoZa in the 2012 analysis. The un-

certainty band includes both statistical and systematic uncertainties on the SM prediction.

The data plotted correspond to Table 7.4. Result made public in [3].
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Figure 7.3: The (a) mT and (b) Emiss
T distributions for VRnoZb. The uncertainty band

includes both statistical and systematic uncertainties on the SM prediction. A slight over-

fluctuation is visible in a single bin of (c). The data plotted correspond to Table 7.4.

Result made public in [3].
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Figure 7.4: The (a) m`` and (b) third lepton pT distributions for VRnoZb. The uncertainty

band includes both statistical and systematic uncertainties on the SM prediction. The data

plotted correspond to Table 7.4. A slight over-fluctuation is visible in a single bin of (b).

Result made public in [3].
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Figure 7.5: The (a) mT and (b) b-jet multiplicity distributions for VRZa. The uncertainty

band includes both statistical and systematic uncertainties on the SM prediction. Result

made public in [3].
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Figure 7.6: The (a) mT and (b) b-jet multiplicity distributions for VRZb. The uncertainty

band includes both statistical and systematic uncertainties on the SM prediction. The

data plotted correspond to Table 7.4. Result made public in [3].
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7.2 Results in signal regions

In the following sections the full results of 2011 and 2012 analyses in the signal region are

given. The plots with associated associated systematics are my own work, while the tables

were produced by another member of the analysis team.

7.2.1 2011 analysis

The observed events in data agree well with the background prediction, as shown in Table

7.5: this is true for all signal regions. In SR1b there is a slight underfluctuation.

Selection SR1a SR1b SR2

tt̄+V 0.43±0.29 0.13±0.008 0.70±0.51

ZZ 0.67±0.21 0.09±0.08 0.34±0.17

WZ 13.5±3.2 1.1±0.28 9.3±2.2

SM irreducible 15±3 1.3±0.29 10±2

SM reducible 10±5 0.35±0.34 0.5+1.0
−0.5

Σ SM 25±6 1.6±0.5 10.9±2.4

Data 24 0 11

Table 7.5: Expected numbers of events from SM backgrounds and observed numbers of

events in 2011 data in signal regions SR1a, SR1b and SR2. Both statistical and systematic

uncertainties are included. Adapted from [196].

7.2.2 2012 analysis

The observed events in data are in full agreement with the background prediction, as

shown in 7.6: there is a modest excess in all signal regions except SRZc, where there is a

slight underfluctuation. Of the Z-veto SRs, SRnoZa has the highest number of expected

(96 ± 17) and observed (101) events. The Emiss
T distribution is well described by the

background prediction, with every bin agreeing within uncertainties (shown in 7.7(a)).

SRnoZb has a moderate number of expected (29 ± 6) and observed (32) events. Like

SRnoZa, the Emiss
T distribution is well described by the background prediction, as shown

in Figure 7.7(b). SRnoZc is the tightest Z-veto SR, and therefore has the lowest number

of expected (4.4± 1.2) and observed (5) events. There is no event in the 110 to 150 GeV

bin, with approximately two expected (shown in Figure 7.7(d), but there is no systematic

shift towards higher Emiss
T events (shown in Figure 7.7(c)). SRZa has the highest number
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of expected (249±32) and observed (273) events in any SR. There is a slight excess in the

first mT bin, followed by a slight deficit in the third bin (shown in Figure 7.8(a)). In the

high-mT region, there is a moderate number of expected (22±5) and observed (23) events.

No significant excess or deficit is observed in the three broad mT bins shown in Figure

7.8(b). SRZc is the tightest Z-request SR, with the lowest number of expected (6.3± 1.3)

and observed (6) events. No excess or deficit is seen in the mT or Emiss
T distributions

(Figures 7.8(c) and 7.8(d) respectively).

Selection SRnoZa SRnoZb SRnoZc SRZa SRZb SRZc

tt̄+ V 0.23± 0.24 0.21± 0.19 0.21± 0.30 0.4± 0.4 0.22± 0.21 0.10± 0.11

Triboson 1.7± 1.7 0.6± 0.6 0.8± 0.8 0.5± 0.5 0.4± 0.4 0.29± 0.29

ZZ 14± 4 1.8± 0.8 0.25± 0.17 8.9± 1.7 1.0± 0.4 0.39± 0.25

WZ 50± 8 20± 4 2.1± 0.7 235± 32 19± 5 5.0± 1.2

Σ SM irreducible 65± 9 22± 4 3.4± 1.1 245± 32 20± 5 5.8± 1.2

SM reducible 31± 14 7± 5 1.0± 0.4 4± 5 1.7± 0.7 0.5± 0.4

Σ SM 96±17 29±6 4.4±1.2 249±32 22±5 6.3±1.3

Data 101 32 5 273 23 6

Table 7.6: Expected numbers of events from SM backgrounds and observed numbers of

events in data in 2012 signal regions. Both statistical and systematic uncertainties are

included. The number of signal events Nsignal and visible cross-section σvisible that can be

excluded with 95% CL are also shown. Adapted from [3].
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Figure 7.7: The Emiss
T distributions for events in signal regions (a) SRnoZa, (b) SRnoZb,

(c) SRnoZc, as well as (d) the mT distribution in SRnoZc are shown. The data plotted

correspond to Table 7.6. Preliminary result made public in [3].
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Figure 7.8: The mT distributions for events in signal regions (a) SRZa, (b) SRZb, (c)

SRZc. The data plotted correspond to Table 7.6. Preliminary result made public in [3].
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7.3 Statistical interpretation

7.3.1 Introduction

The results obtained with the 2011 and 2012 datasets are interpreted as limits on SUSY

signal scenarios. The models were discussed extensively in Sections 2.4.1.1, 2.4.2.1, 2.4.3,

and their phenomenological properties relevant to the statistical interpretation are briefly

reviewed below (Section 7.3.2). The statistical techniques used are reviewed in Section

7.3.3, while the following Sections are devoted to interpretation in specific scenarios. As

with the preceding Sections, emphasis is placed on results I had significant involvement in.

Firstly, I used the results of the 2011 analysis to derive limits in GGM scenarios (Section

7.4.1). The second interpretation (Section 7.4.2) again used the 2011 dataset, this time

to derive limits in pMSSM scenarios. I then combined these limits with a complementary

two-lepton analysis: this is discussed in Section 7.4.2.1). Finally, the results of the 2012

analysis were used to derive limits in simplified model scenarios: the optimisation of the

signal regions discussed in Chapter 5.3, substantially improved upon the 2011 analysis.

7.3.2 SUSY models

The cross section for each scenario is dependent on the mass of the intermediate particles

produced, and on the type of interaction (strong or weak). Only the GGM scenarios

contain significant contributions from strong production.

7.3.2.1 General gauge mediation

The GGM scenario was discussed in more detail in Section 2.4.1. Two scenarios are con-

sidered here: one with higgsino NLSP and one with degenerate wino co-NLSPs. The

H̃ masses vary between 110 and 890 GeV and g̃ masses between 300 and 900 GeV in in-

crements of 100 GeV. The W̃ masses vary between 120 and 790 GeV, g̃ masses between

300 and 1000 GeV in increments of 100 GeV. The first two W̃ masses are 120 and 150 GeV,

and subsequent masses are incremented by 100 GeV, starting at 200 GeV. As mg̃ increases,

weak production becomes dominant, as shown in Figures 7.9 and 7.10.

7.3.2.2 The phenomenological MSSM

The pMSSM scenarios was discussed in more detail in Section 2.4.2. The pMSSM model

considered here is parameterised by the gaugino mass parameters M1, M2 and µ defined

in Section 2.3.1. Three values are chosen for M1 (100,140 and 250 GeV), defining three
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Figure 7.9: Percentages of weak (a) and strong (b) production in GGM higgsino co-NLSP

grid.
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Figure 7.10: Percentages of weak (a) and strong (b) production in GGM wino co-NLSP

grid.

grids. The values of M2 and µ are between 100 and 500 GeV for M1 = 100 and 140 GeV,

and between 100 and 350 GeV for M1 = 250 GeV, with spacing shown in Figure 7.11. As

M1 and µ simultaneously increase, the cross section for gaugino production decreases. If

µ is greater than M1 and M2, the gaugino masses are approximately independent of µ:

there is only a slight decrease in cross section as a function of µ. This is not present in

the M1 = 250 GeV grid, since µ < M1 for most generated points. These features may be

seen in Figure 7.11, where the MC cross sections for each grid point are plotted.
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(a) M1 = 100 GeV
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(b) M1 = 140 GeV
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Figure 7.11: Cross sections for the three pMSSM scenarios

(M1=100 (a),140 (b) and 250 (c) GeV), calculated at NLO. Details about the cal-

culations used are given in Section 4.3.1.2. Taken from [196].
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7.3.2.3 Simplified models

Simplified models were discussed in more detail in Section 2.4.3.1. As previously discussed,

the phenomenology of simplified models is drastically reduced relative to GGM or the

pMSSM: only a single process (χ̃
0
2χ̃
±
1 production) is simulated, and decays are constrained

to occur via sleptons (Model A) or gauge bosons (Model B) only. The relevant model

parameters are mχ̃0
2

(constrained to equal mχ̃±1
) and mχ̃0

2
. Model A points are simulated

with mχ̃±1
,mχ̃0

2
= 112.5 GeV to 750 GeV and mχ̃0

1
between 12.5 and 607.5 GeV. Model

B points are defined with mχ̃±1
,mχ̃0

2
between 100 and 500 GeV and mχ̃0

1
between 0 and

450 GeV.

Since the χ̃
0
1 is the LSP, the models must obey mχ̃±1

,mχ̃0
2
< mχ̃0

1
. The mass difference

constrains the maximum mSFOS available as discussed in Section 5.3.5.

Benchmark points in Model A are defined with masses from mχ̃±1
,mχ̃0

2
= 112.5 GeV to

750 GeV, and mχ̃0
1

between 12.5 and 607.5 GeV.

Benchmark points in Model B are defined withmχ̃±1
,mχ̃0

2
masses between 100 and 500 GeV,

with mχ̃0
1

between 0 and 450 GeV.

7.3.3 Statistical procedure

The results are interpreted using the profile likelihood ratio formalism [214]. First, the

likelihood L(nobs|µ,b, η) is defined as

L(nobs|µS,B, η) = Pois(nobs|µS +B) ×
∏
η

Gsyst(η(0), η(α), η(−α)) (7.1)

where

• nobs is the number of observed events in data;

• µS is the number of signal events, with signal strength µ;

• B is the predicted background;

• Pois(n|µS +B) is a Poisson distribution;

• η are the associated systematic and statistical uncertainties or nuisance parameters;

• Gsyst(η(0), η(α), η(−α)) is a Gaussian centred around the estimated value η(0).

Since it is estimated from auxiliary measurements of various types (those for energy scale

uncertainties, for instance), the estimated value of the nuisance parameters, η̃, is con-

sidered to be a measured quantity. A signal strength µ = 0 corresponds to the SM without
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SUSY (the background-only hypothesis) and µ = 1 corresponds to the existence of the

SUSY model under consideration (the signal hypothesis). The notation may be condensed

by referring to the signal and background model (and associated nuisance parameters) as

ν, and the likelihood as L(µ,ν(µ)). The profile likelihood ratio, λp(µ)), is then defined as

λp(µ) =
L(µ, ˆ̂ν(µ))

L(µ̂, ν̂(µ̂))
(7.2)

The “hats” (ν̂, ˆ̂ν) refer to the optimisation procedure used to maximise each likelihood:

• The numerator is a conditional maximum likelihood fit (ˆ̂ν): ν is varied while µ is

kept fixed.

• The denominator is an unconditional maximum likelihood fit(ν̂): ν and µ are varied

simultaneously.

Each likelihood becomes independent of the nuisance parameters after this maximisation

or “profiling” procedure. The profile likelihood ratio tends to unity if the observation is

compatible with the hypothesised value of µ.

The discovery p-value, pµ is a measure of the compatibility between the signal hypothesis

and the observed data: it is defined as

pµ = P (n ≥ nobs|µ), (7.3)

that is to say, the probability of observing another dataset at least as compatible with

the signal hypothesis. In the case of zero signal (µ = 0), the background-only p-value is a

measure of the compatibility between the data and background hypothesis:

p0 = P (n ≤ nobs|µ = 0). (7.4)

In the profile log likelihood framework, the p-value is defined as a function of the test

statistic qµ, defined as follows:

qµ =


−2 lnλp(µ) µ̂ ≤ µ

0 µ̂ > µ.

(7.5)

The discovery p-value is then defined as

pµ =

∫ ∞
qµ,obs

f(qµ|µ)dqµ (7.6)

where f(qµ|µ) is the probability density function for the test statistic evaluated at a given

µ. This form for the p-value starts from an initial value of the nuisance parameters but
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becomes independent of the nuisance parameters in the large-sample limit. By convention,

signal hypotheses are said to be excluded at 95% confidence level (95% CL) if

pµ < 0.05 (7.7)

Confidence levels are not used directly in this work for the following reason: it is possible

(though unlikely) to falsely exclude a signal hypothesis to which the analysis has little or

no sensitivity. The CLs [215, 216] method averts this by reducing the signal hypothesis

CL by the background-only CL:

CLs =
CLs+b
CLb

=
ps+b

1− pb
(7.8)

While the CLs is not technically a CL, in this work hypotheses are considered to have

been excluded if CLs ≤ 0.05, and the term CL is always taken to mean CLs from now

on. Limits obtained in the CLs formalism are more conservative than those obtained

from CLs+b , since CLs ≥ CLs+b for all s and b, reducing the risk of a false exclusion.

In the analyses discussed in this work, p-values are usually evaluated by MC sampling

of the probability density function for the test statistic. Exact formulae [217] for qµ and

f(qµ|µ) exist and were used to validate the results of MC sampling. These formulae are

not used for the final results, since they are only applicable in the limit of a large number

of signal and background events, a condition not generally satisfied for the signal regions

in this work.

7.3.4 Treatment of systematic uncertainties

The different systematic uncertainties may be correlated between different regions and/or

processes (top, WZ/γ∗ etc). In each case, different nuisance parameters are introduced

into the likelihood used for limit setting. The correlations are treated by introducing four

classes of nuisance parameter:

1. A global uncertainty affecting all processes and regions equally: this is the case for

the different object energy scales and resolutions, for example. In this case, a single

nuisance parameter η is introduced for each SR and process.

2. An uncertainty correlated between regions but not processes: in this case a new

nuisance parameter is introduced for every region.

3. An uncertainty correlated between processes but not regions: in this case a new

nuisance parameter is introduced for every process.
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4. A fully uncorrelated uncertainty: in this case no correlation between processes and

regions is expected, and a new nuisance parameter for each process and region is

introduced.

The correlations between regions and processes for each nuisance parameter are as follows:

1. All uncertainties relating to electron, muon and tau energy scales, resolutions and

identification, triggers, b-tagging, Emiss
T , and luminosity are correlated between re-

gions and processes.

2. Uncertainties relating to the electron and muon fake rates are correlated between

regions only.

3. Jet energy scale and resolution uncertainties are correlated between processes only.

4. Systematic and statistical uncertainties on the reducible background estimate are

uncorrelated.

Since µS(ν) and B(ν) are known only at three values of ν from auxiliary measurements

in control regions, interpolation is used to evaluate µS(ν) and B(ν) at other values of ν.

7.3.5 Simultaneous fit

In the 2011 analysis, the largest irreducible background, WZ, was normalised to a control

region as discussed in Section 6.2). The WZ MC was normalised to the data yield in

the WZNR, and the normalisation factor was applied to the WZ yields quoted in tables

and figures, both for signal and validation regions. However, in the setting of exclusion

limits, the overall WZ yield was allowed to vary simultaneously in the WZNR and SR

and then normalised to the value best matching the data in the WZNR and SR. Exclusion

limits were also produced while keeping WZ constant in order to verify that no bias was

introduced by this procedure.

The procedure led to a decrease in sensitivity to SUSY scenarios with on-shell Z/W decays

in the 2011 analysis, as seen in Figure 7.16(b): this should be compared to Figure 7.16(b)

from the 2012 analysis, where the normalisation method was not used.

7.3.6 Combining signal regions

If a set of N SRs are disjoint (as defined in Section 5.3.8 then their combined likelihood

is given by

L(µ,ν) =
N∏
i

Li(µ,νi) (7.9)
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Here νi represents the set of nuisance parameters in SR i. Note that µ takes the same value

in each sub-likelihood: this is clearly true in the case of a hypothesis like SUSY, which

is either realised or not realised in Nature. Correlations between nuisance parameters are

accounted for in the same way as for a single SR. A combination of SRs of this type is

referred to as a statistical combination. If an SR is insensitive to the signal hypothesis,

its likelihood is no longer a function of µ so does not contribute to the overall likelihood

maximisation.

If SRs are not disjoint, it is not possible to create a combined likelihood: a different

approach is required. One option is to evaluate the p-value for each SUSY grid point

considered separately for each SR, and then choose the region with the lowest p-value

for each point. This is referred to as a graphical combination, since the overall effect is

similar to simply joining up the two 95% CL contours in the exclusion plane. Statistical

combinations are denoted in equations by ⊗, while graphical combinations are denoted by

OR. Other approaches to the combination of p-values are given in [218].

7.3.7 Model-independent limits

In addition to testing the agreement of the data with specific signal hypotheses, the agree-

ment of the data with the background-only hypothesis (µ = 0) was tested for each analysis.

Upper limits are then derived by evaluating pµ at a large (and hence easily excluded) start-

ing value of µ until pµ exceeds 0.05. This is interpreted as an upper limit on the visible

cross section, defined as the total signal cross section multiplied by the detector acceptance

and analysis efficiency:

σvis = Signal cross section×Detector acceptance×Analysis efficiency (7.10)

where the signal cross section is given by µS/L. The detector acceptance contains the

fiducial restrictions on object reconstruction or identification (η, pT thresholds etc), while

the analysis efficiency contains the specific kinematic and object multiplicity cuts used in

the analysis. The 95% CL limits on σvisible are summarised for the 2012 dataset in Table

7.7.

7.4 Interpretation in SUSY scenario grids

The signal grids defined in Section 4.3.1.2 and 4.3.2.2 define SUSY phenomenology for

specific scenarios. For each point in these grids, the CLs limit on the number of expected

events for the point is calculated, with both the expected and observed number of data
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Selection SRnoZa SRnoZb SRnoZc SRZa SRZb SRZc

Σ SM 96± 19 29± 6 4.4± 1.8 249± 35 22± 5 6.3± 1.5

Data 101 32 5 273 23 6

p-value 0.41 0.37 0.40 0.23 0.44 0.5

Nsignal excluded (exp) 39.3 16.3 6.2 67.9 13.2 6.7

Nsignal excluded (obs) 41.8 18.0 6.8 83.7 13.9 6.5

σvisible excluded (exp) [fb] 1.90 0.79 0.30 3.28 0.64 0.32

σvisible excluded (obs) [fb] 2.02 0.87 0.33 4.04 0.67 0.31

Table 7.7: Model independent limits in the 2012 analysis.

events. No nuisance parameters are applied to the signal points. Delaunay interpolation

[219] is then used to create contours of 95% CLs exclusion, in both the expected and

observed cases, with associated ±1σ bands. The two bands are defined as follows:

• The uncertainty band on the observed limit (shown in solid yellow) is calculated by

considering the effect of ±1σ variation of the SUSY signal uncertainty only.

• The uncertainty band on the expected limit (shown as a dashed red band) is calcu-

lated by considering the effect of ±1σ variation of the background model uncertain-

ties only.

Only considering theoretical uncertainties on the observed limit allows for a straightfor-

ward comparison of sensitivity to new signals and is standard practice between ATLAS

and CMS [212].

In the next few sections, interpretations in different SUSY models (with theoretical

parameters defined in Section 2.4 and model details defined in Section 4.3.1.2 and 4.3.2.2)

are shown.

7.4.1 Interpretation in GGM models

The 2011 results, while optimised principally for simplified models and the pMSSM, were

also interpreted in the GGM models defined in Section 2.4.1.1, since these also have three-

lepton final states. SR2 provides the best sensitivity to the GGM, due to on-shell Z bosons

in the higgsino and wino decays. The exclusion limits are shown in Figure 7.12. In the

higgsino model (a), the gluino is excluded with masses up to 600 GeV for higgsino masses

up to 500 GeV. In the wino co-NLSP model (b), the gluino is excluded with masses up to

520 GeV for common wino co-NLSP masses below 480 GeV. The higgsino NLSP results

have been supersede by more optimised ATLAS analyses with jet-rich SRs[220, 221], while
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the wino co-NLSP results are, to the best of my knowledge, the only LHC results in such

a scenario.
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Figure 7.12: Excluded regions in two GGM models. Result made public in [197].

7.4.2 Interpretation in the phenomenological MSSM

As discussed in Section 4.3.1.2, three pMSSM grids with M1 = 100 GeV, M1 = 140 GeV

and M1 = 250 GeV are defined. Limits in these scenarios were derived in the 2011 ana-

lysis.



149

Analyses with exactly two light leptons (two-lepton analyses) have complementary sensit-

ivities in the pMSSM. A two-lepton analysis was performed with the full 2011 dataset, and

interpreted in a variety of scenarios including the pMSSM [195]. The important features

of the two lepton analysis [195] are summarised below and the procedure used to combine

the two analyses is discussed in Section 7.4.2.1.

7.4.2.0.1 Two-lepton analysis Only one of the two-lepton signal regions (referred

to as SR-mT2 in [195] and SR2L here) has sensitivity to the direct chargino-chargino

production process

χ̃±1 χ̃
∓
1 → (`±νχ̃

0
1 `∓νχ̃

0
1). (7.11)

The estimation of backgrounds for the two-lepton analysis is generally similar to that in

the three-lepton analysis: the matrix method is used to estimate the relative contributions

of real and fake leptons, as detailed in Section 6.1.2, and the choice of control regions for

fake lepton estimation is similar. In SR2L, 20.4 ± 4.7 events were predicted, with 15

observed.

7.4.2.1 Combination of 2011 two and three-lepton pMSSM results

SR2L is statistically combined with the 2011 SR1a and SR1b, as well as the WZNR.

The different nuisance parameters in the two- and three-lepton analyses were treated as

correlated/uncorrelated as summarised in Section 7.3.4. The overall yield of WZ is allowed

to float in the three-lepton signal regions, but not the two-lepton signal regions, where it

is not a significant background. Since the 2011 SR1a and SR1b are not disjoint, the total

combinations

SR23La = (SR1a⊗ SR2L⊗WZNR) (7.12)

and

SR23Lb = (SR1b⊗ SR2L⊗WZNR) (7.13)

are also not disjoint. The graphical combination

SR23La OR SR23Lb (7.14)

is therefore used to obtain the final results.

Figures 7.13, 7.14 and 7.15 show the two- and three-lepton limits separately, followed by

the combined exclusion limits for the M1 = 100 GeV, M1 = 140 GeV and M1 = 250 GeV

respectively. As M1 and µ increase, the cross section for gaugino production decreases
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as shown in Figure 7.11 - limits at large M1 and µ are therefore less stringent. However,

when µ exceeds M1 and M2, the gaugino mass becomes independent of µ: in this case the

limit is also independent of µ, as seen in the lower right-hand corner of Figure 7.13b/c and

7.14b/c. Since µ < M1 for most generated points in the M1 = 250 GeV grid, this effect

does not occur.
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Figure 7.13: Excluded regions in the pMSSM scenario with M1 = 100 GeV, with the two-

lepton (a), three-lepton (b) and statistically combined (c) two- and three-lepton signal

regions. These plots were produced by other analysis group members. Published in [195]

(a) and [196] (b,c).
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Figure 7.14: Excluded regions in the pMSSM scenario with M1 = 140 GeV, with the two-

lepton (a), three-lepton (b) and statistically combined (c) two- and three-lepton signal

regions. These plots were produced by other analysis group members. Published in [195]

(a) and [196] (b,c). Published in [196].
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Figure 7.15: Excluded regions in the pMSSM scenario with M1 = 250 GeV, with the two-

lepton (a), three-lepton (b) and statistically combined (c) two- and three-lepton signal

regions. These plots were produced by other analysis group members. Published in [195]

(a) and [196] (b,c).
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7.4.3 Interpretation in simplified models of direct gaugino production

In the scenario with sleptons (Model A, shown in Figure 7.17b)), degenerate χ̃±1 and

χ̃0
2 masses up to 600 GeV are excluded for χ̃

0
1 masses up to 200 GeV. The production

cross section falls as the gaugino masses increase, explaining the decrease in sensitivity

in the upper sections of the plots. In the scenario with W and Z boson decays (Model

B, shown in Figure 7.17b), the limits are less stringent: degenerate χ̃
±
1 and χ̃0

2 masses up

to 320 GeV are excluded for χ̃
0
1 masses below 100 GeV. Additionally, there is a region

where mχ̃0
2
−mχ̃±1

= mZ , leading to on-shell Z boson decays: points near this line are very

difficult to distinguish from SM WZ, even with the dedicated SRnoZb. In both models,

only decays with mχ̃0
2
,mχ̃±1

> mχ̃0
1

are simulated: the dashed grey diagonal line indicates

the line of equality between the masses. As the mass splitting between the gauginos

decreases (near to this line) it becomes increasingly difficult to exclude points. SRnoZc

(in particular the cut m`` < 60 GeV) was developed in order to improve sensitivity in this

area.

 [GeV]
1

±
χ
∼m

0 100 200 300 400 500 600 700

 [
G

e
V

]
10

χ∼
m

0

50

100

150

200

250

300

350

400

450

500

1

0
χ∼

 <
 m

1

±
χ∼

m

ATLAS

­1
 L dt = 4.7 fb∫
 = 7 TeVs

)ν ν
∼l (Ll

~
 ν

∼), l ν ν
∼l (

L
l
~
 ν 

L
l
~
 → 

0

2
χ
∼ 

±

1
χ
∼

0

1
χ
∼) ν ν l l (

0

1
χ
∼ ν l →

0

2
χ
∼ = m±

1
χ
∼m

)/20

2
χ
∼ + m0

1
χ
∼m = (

 Ll
~
 

m

)
theory

SUSY
σ1 ±Observed limit (

)
exp

σ1 ±Expected limit (

SUSY ref. point 1

 3 leptons­1ATLAS 2.06 fb

 (103.5 GeV)
1

±
χ
∼LEP2 

(a) Model A: Via sleptons

 [GeV]
1

±
χ
∼m

0 50 100 150 200 250

 [
G

e
V

]
10

χ∼
m

0

50

100

150

200

250

1

0
χ
∼

 <
 m

1
±

χ
∼

m

ATLAS

 = 7 TeVs , 
­1

 L dt = 4.7 fb∫

1

0
χ
∼ 

(*)
 Z

1

0
χ
∼ 

(*)
 W→ 

0

2
χ
∼ 

±

1
χ
∼

0

2
χ
∼ = m±

1
χ
∼m

)
theory

SUSY
σ1 ±Observed limit (

)
exp

σ1 ±Expected limit (

SUSY ref. point 2

 (103.5 GeV)
1

±
χ
∼LEP2 

(b) Model B: Via W and Z bosons

Figure 7.16: Excluded regions in simplified models of direct gaugino production in the

2012 analysis. These plots were produced by other analysis group members. Published in

[3].

7.4.4 Summary of interpretations

7.4.4.1 GGM

In the higgsino model, the gluino is excluded with masses up to 600 GeV for higgsino

masses up to 500 GeV. In the wino co-NLSP model, the gluino is excluded with masses



155

 [GeV]
1

±
χ
∼, 

2

0
χ
∼m

100 200 300 400 500 600 700

 [
G

e
V

]
0 1

χ∼
m

0

100

200

300

400

500

600

0
1χ

∼

 <
 m

0

2χ∼m
1

0
χ
∼

 = 2m

2

0
χ
∼m

0

2
χ
∼ = m±

1
χ
∼m

)/20

2
χ
∼ + m0

1
χ
∼m = (

 Ll
~
 

m

)ν ν
∼l (Ll

~
 ν

∼), l ν ν
∼l(Ll

~
 ν Ll

~
 → 

0

2
χ
∼ 

±

1
χ
∼

0

1
χ
∼) ν ν l l (

0

1
χ
∼ ν l →

ATLAS Preliminary

=8 TeVs, 
­1

 L dt = 20.7 fb∫

)
theory

SUSY
σ1 ±Observed limit (

)expσ1 ±Expected limit (

 = 8 TeVs, ­1ATLAS 13.0 fb

All limits at 95% CL

(a) Model A: Via sleptons

 [GeV]
1

±
χ
∼, 

2

0
χ
∼m

100 150 200 250 300 350 400

 [
G

e
V

]
0 1

χ∼
m

0

50

100

150

200

250

300

0
1χ

∼

 <
 m

0

2χ∼m

Z

 =
 m

1

0

χ∼

 ­ 
m

2

0

χ∼m

1

0
χ
∼

 = 2m

2

0
χ
∼m

0

2
χ
∼ = m±

1
χ
∼m

1

0
χ
∼ 

(*)
 Z

1

0
χ
∼ 

(*)
 W→ 

0

2
χ
∼ 

±

1
χ
∼

ATLAS Preliminary

=8 TeVs, 
­1

 L dt = 20.7 fb∫

)
theory

SUSY
σ1 ±Observed limit (

)expσ1 ±Expected limit (

 = 8 TeVs, ­1ATLAS 13.0 fb

All limits at 95% CL

(b) Model B: Via W and Z bosons

Figure 7.17: Excluded regions in simplified models of direct gaugino production in the

2012 analysis. These plots were produced by other analysis group members. Result made

public in [3].

up to 520 GeV for common wino co-NLSP masses below 480 GeV.

7.4.4.2 pMSSM

In the M1 = 100 GeV scenario, values of µ up to 200 GeV are excluded for all values of

M2, while values of M2 between 150 and 300 GeV are excluded for all values of µ. In the

M1 = 140 GeV scenario, values of µ up to 200 GeV are again excluded for all values of

M2, while values of M2 between 200 and 300 GeV are excluded for all values of µ. The

limits in the M1 = 250 GeV are less stringent, since M1 > M2, µ for most points. In this

scenario, M2 and µ of up to 300 GeV are excluded for low µ and M2 respectively.

7.4.4.3 Simplified models

In the scenario with sleptons (Model A, shown in Figure 7.17b)), degenerate χ̃
±
1 and χ̃0

2

masses up to 600 GeV are excluded for χ̃
0
1 masses up to 200 GeV. In the scenario with W

and Z boson decays (Model B), degenerate χ̃
±
1 and χ̃

0
2 masses up to 320 GeV are excluded

for χ̃
0
1 masses below 100 GeV.

7.4.5 Comparison with CMS

A similar analysis ([1]) was performed by the CMS collaboration with 9.2 fb−1 of data.

Results are also binned in m``, mT and Emiss
T , with a total of 36 signal and validation
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Analysis ATLAS CMS

Model A chargino mass observed limit 600 GeV 650 GeV

Model B chargino mass observed limit 320 GeV 270 GeV

Table 7.8: Comparison of the analysis presented here (“ATLAS”) and a similar search by

the CMS collaboration. CMS data taken from [1].

regions to compare to the 6 SRs and 6 VRs used in the 2012 search presented here. All

signal regions are statistically combined to give final limits. A comparison of the observed

limits on chargino production in Model A and Model B for both analyses is shown in Table

7.8.

7.4.6 Implications for dark matter searches

Direct dark matter experiments are usually interpreted as a function of the mass and

nucleon-interaction cross section of the WIMP, which, as discussed in Section 2.2.2, may

be identified with the SUSY LSP. While SUSY particles may be responsible for all dark

matter, it is also possible that other particles such as axions [222] make up some proportion

of the dark matter spectrum. Cross section limits are usually expressed in cms−2 - the

most stringent limits from the XENON experiment [50], at the time of writing, are <

3.5 cms−2 at 90% CL for a WIMP mass of 45 GeV. This is an order of magnitude lower

than the exclusion limits found in this work, which are of the order of 1 fb−1. The results

presented here are complementary to direct dark matter searches, since the processes

involved in WIMP-nucleon interactions are distinct.

7.4.7 Implications for supersymmetry

The MSSM, the simplest incarnation of SUSY, is a theory with more than 100 free para-

meters, as previously discussed. The exclusion limits found in this work are found only in

two-dimensional planes of a pair of parameters, or as cross sections for any process with a

final state matching the signal region used. The results presented here have been used by

other authors in combination with other direct and indirect constraints on supersymmetric

models [223, 224]. Notably, the viable points for the pMSSM were reduced by roughly 1/3

when taking this and other results into account [225].
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7.5 Conclusions

Searches for supersymmetry in
√
s =7 TeV and 8 TeV proton-proton collisions with the

LHC at the ATLAS detector were performed. Events with exactly three light leptons

(electrons or muons) and missing transverse energy were selected, since this can be a

striking signature of supersymmetry with low background. Background Standard Model

processes were simulated by Monte Carlo event generators and several major backgrounds

were estimated using data-driven techniques. Before looking at signal regions (selections

of events with exactly three light leptons and significant missing transverse energy), the

agreement between data and background prediction was validated with selections distinct

from the signal regions. With the observation of good agreement between the data and

background prediction, the data in the signal regions were analysed. No significant excess

was recorded in any of the analyses performed: the results were therefore interpreted as

lower bounds on the masses of supersymmetric particles in a variety of different model

scenarios.
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Appendix A

Details of MC samples

Details of MC samples used in the 2012 analysis are given here. When cross sections (σ)

are given at NLO, there is a k-factor (σ(NLO)/σ(LO)) to convert the LO cross section. If

a generator filter is applied (for example, requiring exactly two leptons with pT > 7 GeV),

there is a corresponding factor to convert the cross section without this filter to the

appropriate number for the sample. This is known as the filter efficiency ε. To summarise,

the full NLO cross section is given by

σ(NLO) = σ(LO)× k × ε (A.1)

All three factors, or fewer as appropriate, may be found in the following tables, as well as

the effective integrated luminosity (
∫
Ldt) for the samples used.

Process σ [fb] k-factor
∫
Ldt fb−1

WWW (167006) 5.10 1.5 9800

ZWW (167007) 1.55 1.5 32250

ZZZ (167008) 0.33 1.5 151500

Table A.1: The triboson samples used for this thesis. The LO cross section and k-factors

(for NLO normalisation) are reported. The integrated luminosities corresponding to the

total statistics in each sample are also given.
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Process
∫
Ldt fb−1

tt̄ W (`ν) Np0 Alpgen (174233) 2.7× 10−2 1.255 443.4

tt̄ W (`ν) Np1 Alpgen (174234) 1.8× 10−2 1.255 443.0

tt̄ W (`ν) Np2 Alpgen (174235) 9.5× 10−3 1.255 421.0

tt̄ W (`ν) Np3+ Alpgen (174236) 6.5× 10−3 1.255 366.1

tt̄ W (qq) Np0 Alpgen (174238) 5.4× 10−2 1.255 440.1

tt̄ W (qq) Np1 Alpgen (174239) 3.7× 10−2 1.255 432.9

tt̄ W (qq) Np2 Alpgen (174240) 1.9× 10−2 1.255 415.5

tt̄ W (qq) Np3+ Alpgen (174241) 1.3× 10−2 1.255 390.4

tt̄ Z(νν) Np0 Alpgen (174243) 1.1× 10−2 1.277 740.0

tt̄ Z(νν) Np1 Alpgen (174244) 1.0× 10−2 1.277 390.0

tt̄ Z(νν) Np2 Alpgen (174245) 6.9× 10−3 1.277 226.0

tt̄ Z(νν) Np3+ Alpgen (174246) 5.0× 10−3 1.277 236.3

tt̄ Z(``) Np0 Alpgen (174248) 7.9× 10−3 1.277 496.6

tt̄ Z(``) Np1 Alpgen (174249) 7.7× 10−3 1.277 511.7

tt̄ Z(``) Np2 Alpgen (174250) 5.3× 10−3 1.277 443.8

tt̄ Z(``) Np3+ Alpgen (174251) 4.0× 10−3 1.277 393.7

Table A.2: The Alpgen tt̄+ V samples used for this thesis. The LO cross section are k-

factors (for NLO normalisation) are reported. The integrated luminosities corresponding

to the total statistics in each sample are also given.
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Process (ID)
∫
Ldt fb−1

ZZ (4`) Sherpa (126894) 8.74 1.00 1 167.2

ZW (3`) Sherpa (126893) 9.75 1.05 1 258.6

ZZ (2`2ν) Sherpa (126895) 0.50 1.05 1 1465.2

WW (2`2ν) Sherpa (126892) 5.50 1.06 1 454.6

(S) ZZ (4e) Powheg (126937) 0.08 1 0.91 8600.6

(S) ZZ (2e2µ) Powheg (126938) 0.18 1 0.83 4131.3

(S) ZZ (2e2τ) Powheg (126939) 0.18 1 0.58 5868.7

(S) ZZ (4µ) Powheg (126940) 0.08 1 0.91 8554.6

(S) ZZ (2µ2τ) Powheg (126941) 0.18 1 0.59 5825.0

(S) ZZ (4τ) Powheg (126942) 0.08 1 0.11 36813.5

(S) WZ (e−ν̄ee
+e−) Powheg (129477) 1.41 1 0.29 458.4

(S) WZ (e−ν̄eµ
+µ−) Powheg (129478) 0.94 1 0.35 575.1

(S) WZ (e−ν̄eτ
+τ−) Powheg (129479) 0.17 1 0.17 2609.2

(S) WZ (µ−ν̄µe
+e−) Powheg (129480) 1.40 1 0.29 462.7

(S) WZ (µ−ν̄µµ
+µ−) Powheg (129481) 0.95 1 0.35 567.0

(S) WZ (µ−ν̄µτ
+τ−) Powheg (129482) 0.17 1 0.17 2581.2

(S) WZ (τ−ν̄τe
+e−) Powheg (129483) 1.40 1 0.14 377.1

(S) WZ (τ−ν̄τµ
+µ−) Powheg (129484) 0.94 1 0.18 443.7

(S) WZ (τ−ν̄ττ
+τ−) Powheg (129485) 0.17 1 0.06 1888.8

(S) WZ (e+νee
+e−) Powheg (129486) 0.98 1 0.30 652.9

(S) WZ (e+νeµ
+µ−) Powheg (129487) 0.64 1 0.35 842.2

(S) WZ (e+νeτ
+τ−) Powheg (129488) 0.11 1 0.16 4230.4

(S) WZ (µ+νµe
+e−) Powheg (129489) 0.94 1 0.30 682.0

(S) WZ (µ+νµµ
+µ−) Powheg (129490) 0.65 1 0.35 826.9

(S) WZ (µ+νµτ
+τ−) Powheg (129491) 0.11 1 0.16 4216.1

(S) WZ (τ+ντe
+e−) Powheg (129492) 0.94 1 0.15 548.5

(S) WZ (τ+ντµ
+µ−) Powheg (129493) 0.64 1 0.19 637.4

(S) WZ (τ+νττ
+τ−) Powheg (129494) 0.11 1 0.06 3029.6

Table A.3: Diboson samples used for this thesis. The LO cross section, k-factors (for NLO

normalisation) and filter efficiencies are reported. The integrated luminosities correspond-

ing to the total statistics in each sample are also given. Samples labelled with (S) are

used for systematics studies only.
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Process
∫
Ldt fb−1

tt not all-hadronic Powheg (105861) 238.06 1 0.54 231.8

Wt MC@NLO (108346) 20.66 1.08 1 78.9

t-channel eν AcerMC (117360) 8.60 1.10 1 31.6

t-channel µν AcerMC (117361) 8.60 1.1 1 31.6

t-channel τν AcerMC (117362) 8.60 1.1 1 31.6

s-channel eν MC@NLO (108343) 0.56 1.07 1 278.9

s-channel µν MC@NLO (108344) 0.56 1.07 1 278.9

s-channel τν MC@NLO (108345) 0.56 1.07 1 278.7

Table A.4: Top-quark samples used for this thesis. The samples are generated with 0.111

W → `ν branching ratio; for setting the k-factors the BR(W → `ν) reference of 0.1080

is used (in agreement with the PDG2010 value). The tt̄ cross section is normalised to

approximate NNLO. The integrated luminosities corresponding to the total statistics in

each sample are also given.
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Process
∫
Ldt fb−1

Z+jets

(ee+Np0) (117650) 848.29 7.8 Z+jets (ee+Np0) (146830) 4154.56 0.2

(ee+Np1) (117651) 207.21 6.4

low mass

(ee+Np1) (146831) 129.99 2.3

(ee+Np2) (117652) 69.44 5.8 (ee+Np2) (146832) 63.05 7.5

(ee+Np3) (117653) 18.36 6.0 (ee+Np3) (146833) 13.50 10.7

(ee+Np4) (117654) 4.64 6.5 (ee+Np4) (146834) 3.09 11.7

(ee+Np5) (117655) 1.42 7.1 (ee+Np5) (146835) 0.83 96.2

(µµ+Np0) (117660) 848.31 7.8 (µµ+Np0) (146840) 4154.44 0.2

(µµ+Np1) (117661) 207.46 6.4 (µµ+Np1) (146841) 129.93 2.3

(µµ+Np2) (117662) 69.39 5.8 (µµ+Np2) (146842) 63.01 7.5

(µµ+Np3) (117663) 18.40 6.0 (µµ+Np3) (146843) 13.43 10.8

(µµ+Np4) (117664) 4.61 6.5 (µµ+Np4) (146844) 3.11 11.7

(µµ+Np5) (117665) 1.41 7.1 (µµ+Np5) (146845) 0.83 96.2

(ττ+Np0) (117670) 848.24 7.8 (ττ+Np0) (146850) 4154.44 0.2

(ττ+Np1) (117671) 207.48 6.4 (ττ+Np1) (146851) 129.92 2.3

(ττ+Np2) (117672) 69.18 5.9 (ττ+Np2) (146852) 63.00 7.5

(ττ+Np3) (117673) 18.30 6.0 (ττ+Np3) (146853) 13.53 10.7

(ττ+Np4) (117674) 4.66 6.4 (ττ+Np4) (146854) 3.10 70.5

(ττ+Np5) (117675) 1.39 7.2 (ττ+Np5) (146855) 0.83 96.6

Z+bb

(ee+Np0) (110817) 9.49 15.8

Z+cc

(ee+Np0) (110805) 17.83 33.9

(ee+Np1) (110818) 3.82 21.0 (ee+Np1) (110806) 8.51 30.5

(ee+Np2) (110819) 1.34 33.5 (ee+Np2) (110807) 3.58 30.7

(ee+Np3) (110820) 0.58 7.8 (ee+Np3) (110808) 1.39 28.8

(µµ+Np0) (110821) 9.49 15.8 (µµ+Np0) (110809) 17.84 33.6

(µµ+Np1) (110822) 3.79 21.1 (µµ+Np1) (110810) 8.49 31.2

(µµ+Np2) (110823) 1.35 33.5 (µµ+Np2) (110811) 3.58 32.2

(µµ+Np3) (110824) 0.60 8.3 (µµ+Np3) (110812) 1.39 28.9

(ττ+Np0) (110825) 9.48 15.8 (ττ+Np0) (110813) 17.84 33.6

(ττ+Np1) (110826) 3.81 21.0 (ττ+Np1) (110814) 8.50 31.2

(ττ+Np2) (110827) 1.35 33.3 (ττ+Np2) (110815) 3.59 32.1

(ττ+Np3) (110828) 0.58 8.6 (ττ+Np3) (110816) 1.38 29.0

Table A.5: Alpgen Z/γ∗+jets samples used for this thesis. The integrated luminosities

corresponding to the total statistics in each sample are also given.
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Process
∫
Ldt fb−1

W+jets

(eν+Np0) (117680) 9300.36 0.4

W+c

(Np0) (126601) 867.46 7.5

(eν+Np1) (117681) 2047.68 1.2 (Np1) (126602) 313.46 6.6

(eν+Np2) (117682) 619.05 6.1 (Np2) (126603) 81.88 6.4

(eν+Np3) (117683) 167.62 6.0 (Np3) (126604) 18.77 5.9

(eν+Np4) (117684) 42.63 5.9 (Np4) (126605) 5.43 3.7

(eν+Np5) (117685) 12.99 5.4

(µν+Np0) (117690) 9296.48 0.4

W+cc

(Np0) (126606) 163.53 7.8

(µν+Np1) (117691) 2049.06 1.2 (Np1) (126607) 164.23 6.4

(µν+Np2) (117692) 618.67 6.1 (Np2) (126608) 92.31 5.7

(µν+Np3) (117693) 167.44 6.0 (Np3) (126609) 41.07 4.1

(µν+Np4) (117694) 42.67 6.0

(µν+Np5) (117695) 13.05 5.0

(τν+Np0) (117700) 9299.11 0.4

W+bb

(Np0) (110801) 59.73 8.0

(τν+Np1) (117701) 2050.20 1.2 (Np1) (110802) 52.05 6.9

(τν+Np2) (117702) 618.64 6.1 (Np2) (110803) 27.06 6.5

(τν+Np3) (117703) 167.43 6.0 (Np3) (110804) 14.32 3.5

(τν+Np4) (117704) 42.59 5.9

(τν+Np5) (117705) 13.19 4.9

Table A.6: Alpgen W+jets samples used for this thesis. The integrated luminosities

corresponding to the total statistics in each sample are also given.
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Appendix B

Tables of systematics

In this appendix, the full systematic uncertainties on the irreducible backgrounds in the

2012 analysis are given in tabular form.
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Triboson ZZ tt̄V WZ Total

SRZa

Expected events 0.54 8.88 0.43 235.05 244.9

Electron energy scale 2.68,-2.12% 0.52,-2.99% 0.0,0.0% 0.39,-0.19% 0.4,-0.3%
Electron energy ratio -0.39,0.49% 1.63,0.91% 0.0,26.64% 0.06,0.04% 0.11,0.12%
Muon spectrometer track p resolution 1.17,-0.28% 0.48,0.15% 26.64,0.0% -0.13,0.11% -0.06,0.11%
Muon inner detector track p resolution 0.71,1.18% 0.0,0.15% 0.0,0.0% -0.03,0.15% -0.02,0.15%
Jet energy scale 3.3,2.64% 1.34,7.25% 26.64,21.24% 1.71,1.04% 1.74,1.3%
Jet energy resolution 2.95,2.95% 7.76,7.76% 19.64,19.64% 2.88,2.88% 3.08,3.08%

Emiss
T soft term scale -1.35,0.32% 10.88,-6.69% 0.0,0.0% 2.61,-2.35% 2.9,-2.5%

Emiss
T soft term resolution -0.5,-0.5% 1.95,1.95% -0.94,-0.94% -0.24,-0.24% -0.16,-0.16%

Trigger 5.0,-5.0% 5.0,-5.0% 5.0,-5.0% 5.0,-5.0% 5.0,-5.0%
b-tagging 2.56,-2.63% 3.33,-3.43% 46.28,-56.32% 3.07,-3.17% 3.15,-3.28%
Electron ID/reconstruction efficiency 0.36,-4.72% 0.37,-3.61% 0.07,-6.06% 0.41,-4.98% 0.41,-4.93%
Tau energy scale 0.0,0.0% 0.0,0.0% 0.0,0.0% 0.0,0.0% 0.0,0.0%
Muon ID/reconstruction efficiency -0.1,-1.05% -0.08,-1.14% 0.05,-0.82% -0.1,-1.05% -0.1,-1.05%
MC statistics 5.92,-5.92% 8.51,-8.51% 40.41,-40.41% 2.13,-2.13% 2.07,-2.07%
Luminosity 3.6,-3.6% 3.6,-3.6% 3.6,-3.6% 3.6,-3.6% 3.6,-3.6%
Generator 100.0 % 10.7 % 0.0 % 1.6 % 2.14%
PDF 0.0,0.0% 1.85,-2.01% 0.0,0.0% 1.74,2.0% 1.74,1.85%
Cross section 10.0 % 5.0 % 30.0 % 12.0 % 11.77%

Total 101.05,-101.1% 21.26,-21.24% 80.74,-85.60% 14.83,-15.62% 14.82,-15.57%

SRZb

Expected events 0.43 0.95 0.22 18.68 20.29

Electron energy scale 2.06,-2.58% 21.65,-20.82% 0.0,0.0% 2.08,-7.7% 2.97,-8.12%
Electron energy ratio -0.65,0.29% 0.0,-6.89% 0.0,0.0% 0.3,-0.31% 0.26,-0.6%
Muon spectrometer track p resolution -0.36,-0.21% 5.51,0.0% 0.0,0.0% 0.1,-0.12% 0.34,-0.12%
Muon inner detector track p resolution 0.2,-0.36% 0.0,0.0% 0.0,0.0% -1.81,-0.15% -1.66,-0.14%
Jet energy scale -0.06,3.66% 17.68,-10.14% 0.0,18.39% 1.7,7.57% 2.39,6.77%
Jet energy resolution 0.34,0.34% 15.47,15.47% 4.64,4.64% 4.84,4.84% 5.24,5.24%

Emiss
T soft term scale 1.55,-2.07% 6.16,4.82% 0.0,0.0% 13.73,-16.89% 12.97,-15.37%

Emiss
T soft term resolution 0.72,0.72% 2.67,2.67% 0.0,0.0% 3.02,3.02% 2.93,2.93%

Trigger 5.0,-5.0% 5.0,-5.0% 5.0,-5.0% 5.0,-5.0% 5.0,-5.0%
b-tagging 2.95,-3.0% 1.86,-1.9% 38.4,-64.33% 3.3,-3.45% 3.61,-4.03%
Electron ID/reconstruction efficiency 0.03,-4.37% 2.73,-3.99% 0.17,-1.53% 0.65,-3.14% 0.73,-3.19%
Muon ID/reconstruction efficiency -0.08,-1.01% -0.05,-0.91% -0.04,-1.38% -0.08,-1.13% -0.08,-1.12%
MC statistics 6.62,-6.62% 25.45,-25.45% 57.33,-57.33% 7.46,-7.46% 7.0,-7.0%
Luminosity 3.6,-3.6% 3.6,-3.6% 3.6,-3.6% 3.6,-3.6% 3.6,-3.6%
Generator 100.0 % 16.8 % 0.0 % 5.9 % 8.36%
PDF 0.0,0.0% 2.33,-2.82% 0.0,0.0% 2.0,2.15% 1.95,1.84%
Cross section 10.0 % 5.0 % 30.0 % 12.0 % 11.83%

Total 100.99,-101.17% 45.88,-43.30% 75.64,-93.42% 22.79,-27.10% 23.15,-26.69%

SRZc

Expected events 0.29 0.39 0.1 5.01 5.79

Electron energy scale 0.58,-1.0% 0.0,0.0% 0.0,0.0% 8.44,-10.02% 7.33,-8.73%
Electron energy ratio -0.02,0.49% 0.0,0.0% 0.0,0.0% 0.0,0.61% -0.0,0.55%
Muon spectrometer track p resolution 0.44,0.28% 0.0,0.0% 0.0,0.0% -0.29,0.0% -0.22,0.01%
Muon inner detector track p resolution -0.05,0.0% 0.0,0.0% 0.0,0.0% 0.0,0.0% -0.0,0.0%
Jet energy scale 0.05,2.43% -7.58,1.46% 0.0,0.0% 8.23,0.99% 6.62,1.08%
Jet energy resolution 2.85,2.85% 4.52,4.52% 38.25,38.25% 2.77,2.77% 3.51,3.51%

Emiss
T soft term scale -0.84,1.11% 0.0,-32.99% 0.0,0.0% 3.94,-4.74% 3.37,-6.26%

Emiss
T soft term resolution -1.22,-1.22% -33.02,-33.02% 0.0,0.0% -3.3,-3.3% -5.13,-5.13%

Trigger 5.0,-5.0% 5.0,-5.0% 5.0,-5.0% 5.0,-5.0% 5.0,-5.0%
b-tagging 3.34,-3.4% 2.35,-2.35% 7.74,-8.19% 6.02,-6.47% 5.67,-6.07%
Electron ID/reconstruction efficiency 0.14,-4.19% 1.04,-1.32% 0.29,-2.03% 0.96,-3.24% 0.91,-3.14%
Muon ID/reconstruction efficiency -0.04,-1.07% -0.29,-1.39% 0.03,-1.08% 0.02,-0.95% -0.01,-0.99%
MC statistics 6.37,-6.37% 41.46,-41.46% 95.95,-95.95% 14.22,-14.22% 12.73,-12.73%
Luminosity 3.6,-3.6% 3.6,-3.6% 3.6,-3.6% 3.6,-3.6% 3.6,-3.6%
Generator 100.0 % 35.4 % 0.0 % 12.9 % 18.55%
PDF 0.0,0.0% 3.43,-4.47% 0.0,0.0% 1.37,1.67% 1.41,1.15%
Cross section 10.0 % 5.0 % 30.0 % 12.0 % 11.74%

Total 101.0,-101.13% 64.98,-72.56% 108.02,-108.07% 27.62,-27.38% 29.40,-29.77%

Table B.1: The % effect of all systematic uncertainties on irreducible SM yields in SRZ

for the 2012 analysis.
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Triboson ZZ tt̄V WZ Total

SRnoZa

Expected events 1.69 13.76 0.23 49.56 65.23

Electron energy scale 0.17,-0.53% 4.92,-4.27% 0.0,0.0% 1.16,-1.31% 1.92,-1.91%
Electron energy ratio -0.16,-0.36% -0.2,0.32% 0.0,0.0% 0.44,-0.26% 0.29,-0.14%
Muon spectrometer track p resolution 0.28,0.04% 0.02,-0.35% 0.0,0.0% -0.22,0.03% -0.16,-0.05%
Muon inner detector track p resolution 0.0,-0.31% 0.0,0.02% 0.0,0.0% -0.27,0.03% -0.2,0.02%
Jet energy scale -0.06,1.76% 7.65,-4.39% 0.0,0.0% 2.3,1.42% 3.36,0.19%
Jet energy resolution 0.67,0.67% 7.3,7.3% 36.0,36.0% 6.73,6.73% 6.8,6.8%

Emiss
T soft term scale -0.42,-0.46% 21.93,-15.72% 0.0,0.0% 4.27,-2.97% 7.86,-5.58%

Emiss
T soft term resolution -0.37,-0.37% 3.39,3.39% 0.0,0.0% 0.15,0.15% 0.82,0.82%

Trigger 5.0,-5.0% 5.0,-5.0% 5.0,-5.0% 5.0,-5.0% 5.0,-5.0%
b-tagging 2.23,-2.31% 2.94,-3.02% 61.48,-76.77% 3.11,-3.2% 3.26,-3.4%
Electron ID/reconstruction efficiency 0.39,-6.0% 1.85,-7.53% -0.62,-7.02% 0.81,-6.83% 1.01,-6.96%
Tau energy scale 0.0,0.0% 0.0,0.0% 0.0,0.0% 0.0,0.0% 0.0,0.0%
Muon ID/reconstruction efficiency -0.1,-1.0% -0.09,-0.99% -0.05,-0.67% -0.1,-1.04% -0.1,-1.03%
MC statistics 3.94,-3.94% 6.37,-6.37% 54.76,-54.76% 4.59,-4.59% 3.74,-3.74%
Luminosity 3.6,-3.6% 3.6,-3.6% 3.6,-3.6% 3.6,-3.6% 3.6,-3.6%
Generator 100.0 % 49.4 % 0.0 % 6.9 % 18.25%
PDF 0.0,0.0% 2.6,-2.71% 0.0,0.0% 1.98,2.18% 2.06,1.08%
Cross section 10.0 % 5.0 % 30.0 % 12.0 % 10.54%

Total 100.79,-101.0% 56.50,-54.48% 94.94,-105.72% 18.31,-19.27% 25.22,-25.3%

SRnoZb

Expected events 0.63 1.76 0.21 19.52 22.11

Electron energy scale 1.35,-1.11% 0.0,-3.68% 0.0,0.0% 2.99,-2.28% 2.68,-2.33%
Electron energy ratio 1.08,-0.07% 0.0,-0.48% 0.0,0.0% 0.96,-1.28% 0.88,-1.17%
Muon spectrometer track p resolution -1.11,-0.11% 0.0,0.0% 0.0,0.0% -0.73,0.63% -0.67,0.55%
Muon inner detector track p resolution 0.0,-0.62% 0.0,-0.48% 0.0,0.0% 0.82,-0.06% 0.72,-0.11%
Jet energy scale 2.78,0.09% 10.61,-7.47% 0.0,46.9% 4.31,6.1% 4.73,5.23%
Jet energy resolution 1.35,1.35% 16.77,16.77% 43.16,43.16% 6.73,6.73% 7.71,7.71%

Emiss
T soft term scale 1.57,-1.05% 34.57,-23.63% 0.0,0.0% 7.22,-1.82% 9.16,-3.52%

Emiss
T soft term resolution -0.48,-0.48% -5.36,-5.36% 0.0,0.0% 0.82,0.82% 0.28,0.28%

Trigger 5.0,-5.0% 5.0,-5.0% 5.0,-5.0% 5.0,-5.0% 5.0,-5.0%
b-tagging 2.25,-2.29% 2.18,-2.19% 28.75,-29.03% 3.28,-3.38% 3.4,-3.49%
Electron ID/reconstruction efficiency 0.45,-5.22% 1.01,-5.46% -0.23,-1.84% 0.41,-4.78% 0.45,-4.82%
Tau energy scale 0.0,0.0% 0.0,0.0% 0.0,0.0% 0.0,0.0% 0.0,0.0%
Muon ID/reconstruction efficiency -0.07,-1.02% -0.14,-0.95% -0.4,-1.74% -0.11,-1.08% -0.12,-1.07%
MC statistics 6.41,-6.41% 18.29,-18.29% 54.86,-54.86% 7.54,-7.54% 6.84,-6.84%
Luminosity 3.6,-3.6% 3.6,-3.6% 3.6,-3.6% 3.6,-3.6% 3.6,-3.6%
Generator 100.0 % 38.4 % 0.0 % 7.0 % 12.09%
PDF 0.0,0.0% 2.75,-2.67% 0.0,0.0% 2.28,2.39% 2.23,1.9%
Cross section 10.0 % 5.0 % 30.0 % 12.0 % 11.55%

Total 101.0,-101.08% 59.19,-53.41% 81.47,-94.123% 20.78,-20.56% 23.58,-22.60%

SRnoZc

Expected events 0.81 0.25 0.21 2.12 3.4

Electron energy scale 1.04,-2.07% 0.0,0.0% 0.0,-29.58% 7.85,-7.57% 5.15,-7.05%
Electron energy ratio 0.58,0.21% 0.0,0.0% 0.0,29.58% 0.0,6.51% 0.14,5.94%
Muon spectrometer track p resolution 0.16,-0.02% 3.11,0.0% 0.0,0.0% 0.0,0.0% 0.27,-0.0%
Muon inner detector track p resolution 0.0,0.17% 0.0,0.0% 0.0,0.0% 5.27,0.0% 3.29,0.04%
Jet energy scale 1.05,-0.02% 0.0,35.9% 0.0,69.5% 5.5,-0.42% 3.68,6.68%
Jet energy resolution 3.09,3.09% 0.0,0.0% 103.23,103.23% 11.33,11.33% 14.2,14.2%

Emiss
T soft term scale -0.04,-2.1% 3.11,0.0% 0.0,0.0% 11.51,-2.32% 7.41,-1.95%

Emiss
T soft term resolution 0.78,0.78% 0.0,0.0% 0.0,0.0% 6.68,6.68% 4.36,4.36%

Trigger 0.0,0.0% 0.0,0.0% 0.0,0.0% 0.0,0.0% 0.0,0.0%
b-tagging 2.35,-2.43% 6.32,-6.32% 10.39,-10.67% 3.98,-4.12% 4.16,-4.28%
Electron ID/reconstruction efficiency -0.0,-3.29% 1.94,0.21% -0.18,-5.46% 0.72,-2.59% 0.58,-2.73%
Tau energy scale 0.0,0.0% 0.0,0.0% 0.0,0.0% 0.0,0.0% 0.0,0.0%
Muon ID/reconstruction efficiency -0.05,-1.04% -0.48,-1.91% 0.2,-0.37% -0.04,-1.07% -0.06,-1.08%
MC statistics 5.64,-5.64% 54.82,-54.82% 51.78,-51.78% 20.6,-20.6% 13.93,-13.93%
Luminosity 3.6,-3.6% 3.6,-3.6% 3.6,-3.6% 3.6,-3.6% 3.6,-3.6%
Generator 100.0 % 14.4 % 0.0 % 65.9 % 66.2%
PDF 0.0,0.0% 9.12,-8.29% 0.0,0.0% 1.86,2.27% 1.83,0.81%
Cross section 10.0 % 5.0 % 30.0 % 12.0 % 12.12%

Total 100.81,-100.9% 58.28,-68.2% 119.83,-144.83% 73.27,-72.34% 71.3,-71.54%

Table B.2: The % effect of all systematic uncertainties on irreducible SM yields in SRZ

for the 2012 analysis.
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[136] T. Sjöstrand, S. Mrenna, and P. Z. Skands, A Brief Introduction to PYTHIA 8.1,

Comput. Phys. Commun. 178 (2008) 852. 55

[137] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 0902 (2009) 007,

arXiv:0811.4622 [hep-ph]. 55

[138] S. Catani, F. Krauss, R. Kuhn, and B. Webber, QCD matrix elements + parton

showers, JHEP 0111 (2001) 063, arXiv:hep-ph/0109231 [hep-ph]. 55

[139] M. L. Mangano, M. Moretti, and R. Pittau, Multijet matrix elements and shower

evolution in hadronic collisions: Wbb̄ + n jets as a case study, Nucl.Phys. B632

(2002) 343–362, arXiv:hep-ph/0108069 [hep-ph]. 55

[140] CDF Collaboration, R. D. Field, The Underlying event in hard scattering

processes, eConf C010630 (2001) P501, arXiv:hep-ph/0201192 [hep-ph]. 55

[141] J. Butterworth, J. R. Forshaw, and M. Seymour, Multiparton interactions in

photoproduction at HERA, Z. Phys. C 72 (1996) 637–646, hep-ph/9601371. 55

[142] ATLAS Collaboration, Further ATLAS tunes of PYTHIA6 and Pythia 8, Tech.

Rep. ATL-PHYS-PUB-2011-014, CERN, Geneva, Nov, 2011. 55

[143] ATLAS Collaboration, Summary of ATLAS Pythia 8 tunes, Tech. Rep.

ATL-PHYS-PUB-2012-003, CERN, Geneva, Aug, 2012. 55

[144] ATLAS tunes of PYTHIA 6 and Pythia 8 for MC11, Tech. Rep.

ATL-PHYS-PUB-2011-009, CERN, Geneva, Jul, 2011. 55

[145] First tuning of HERWIG/JIMMY to ATLAS data, Tech. Rep.

ATL-PHYS-PUB-2010-014, CERN, Geneva, Oct, 2010. 55

[146] New ATLAS event generator tunes to 2010 data, Tech. Rep.

ATL-PHYS-PUB-2011-008, CERN, Geneva, Apr, 2011. 55

[147] S. Frixione and B. R. Webber, The MC@NLO 3.2 event generator,

arXiv:hep-ph/0601192. 56

http://dx.doi.org/10.1140/epjc/s10052-008-0798-9
http://dx.doi.org/10.1140/epjc/s10052-008-0798-9
http://arxiv.org/abs/0803.0883
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://arxiv.org/abs/hep-ph/0603175
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://dx.doi.org/10.1088/1126-6708/2009/02/007
http://arxiv.org/abs/0811.4622
http://arxiv.org/abs/hep-ph/0109231
http://dx.doi.org/10.1016/S0550-3213(02)00249-3
http://dx.doi.org/10.1016/S0550-3213(02)00249-3
http://arxiv.org/abs/hep-ph/0108069
http://arxiv.org/abs/hep-ph/0201192
http://arxiv.org/abs/hep-ph/9601371
http://arxiv.org/abs/hep-ph/0601192


179

[148] P. Nason, A New method for combining NLO QCD with shower Monte Carlo

algorithms, JHEP 0411 (2004) 040, arXiv:hep-ph/0409146. 56

[149] J. M. Campbell and R. K. Ellis, tt̄W+− production and decay at NLO, JHEP 1207

(2012) 052, arXiv:1204.5678 [hep-ph]. 56

[150] J. M. Campbell and R. K. Ellis, An Update on vector boson pair production at

hadron colliders, Phys. Rev. D 60 (1999) 113006, arXiv:hep-ph/9905386

[hep-ph]. 56

[151] J. M. Campbell, R. K. Ellis, and C. Williams, Vector boson pair production at the

LHC, JHEP 1107 (2011) 018, arXiv:1105.0020 [hep-ph]. 56

[152] K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron

colliders through O(alpha(s)**2), Phys. Rev. D 74 (2006) 114017,

arXiv:hep-ph/0609070 [hep-ph]. 56, 59

[153] C. Anastasiou et al., High precision QCD at hadron colliders: Electroweak gauge

boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008,

arXiv:hep-ph/0312266 [hep-ph]. 56, 59

[154] TOTEM Collaboration, The TOTEM Experiment at the CERN Large Hadron

Collider, J. Instrum. 3 (2008) S08007. 57

[155] GEANT4 Collaboration, GEANT4: A Simulation toolkit, Nucl. Instrum. Meth. A

506 (2003) 250–303. 57

[156] B. Di Girolamo, A. Dotti, V. Giangiobbe, P. Johansson, L. Pribyl, and M. Volpi,

Beamline instrumentation in the 2004 combined ATLAS testbeam, Tech. Rep.

ATL-TECH-PUB-2005-001. ATL-COM-TECH-2005-001, CERN, Geneva, 2005. 57

[157] ATLAS Collaboration, T. Cornelissen and W. Liebig, ATLAS Inner Detector

results from the 2004 combined test beam data, Nucl.Phys.Proc.Suppl. 172 (2007)

292–295. 57

[158] F. Bauer, L. Chevalier, et al., ATLAS 2004 Combined Test Beam results: Muon

Chamber Alignment and Muon Reconstruction, Tech. Rep.

ATL-MUON-PUB-2007-003. ATL-COM-MUON-2006-012, CERN, Geneva, Apr,

2006. 57, 66

http://dx.doi.org/10.1088/1126-6708/2004/11/040
http://arxiv.org/abs/hep-ph/0409146
http://dx.doi.org/10.1007/JHEP07(2012)052
http://dx.doi.org/10.1007/JHEP07(2012)052
http://arxiv.org/abs/1204.5678
http://dx.doi.org/10.1103/PhysRevD.60.113006
http://arxiv.org/abs/hep-ph/9905386
http://arxiv.org/abs/hep-ph/9905386
http://dx.doi.org/10.1007/JHEP07(2011)018
http://arxiv.org/abs/1105.0020
http://dx.doi.org/10.1103/PhysRevD.74.114017
http://arxiv.org/abs/hep-ph/0609070
http://dx.doi.org/10.1103/PhysRevD.69.094008
http://arxiv.org/abs/hep-ph/0312266
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/j.nuclphysbps.2007.08.103
http://dx.doi.org/10.1016/j.nuclphysbps.2007.08.103


180

[159] ATLAS Collaboration, Readiness of the ATLAS Tile Calorimeter for LHC

collisions, European Physical Journal C 70 (2010) 1193–1236, arXiv:1007.5423

[physics.ins-det]. 57

[160] ATLAS Collaboration, The ATLAS Inner Detector commissioning and calibration,

Eur.Phys.J. C70 (2010) 787–821, arXiv:1004.5293 [physics.ins-det]. 57

[161] ATLAS Collaboration, Commissioning of the ATLAS Muon Spectrometer with

Cosmic Rays, Eur.Phys.J. C70 (2010) 875–916, arXiv:1006.4384

[physics.ins-det]. 57

[162] ATLAS Collaboration, Alignment of the ATLAS Inner Detector Tracking System

with 2010 LHC proton-proton collisions at
√
s = 7 TeV,. 57

[163] ATLAS Collaboration, Study of the Material Budget in the ATLAS Inner Detector

with K0
S decays in collision data at

√
s=900 GeV, Tech. Rep.

ATLAS-CONF-2010-019, CERN, Geneva, Jul, 2010. 57

[164] E. Richter-Was, D. Froidevaux, and L. Poggioli, ATLFAST 2.0: a fast simulation

package for ATLAS, Tech. Rep. ATL-PHYS-98-131, CERN, Geneva, Nov, 1998. 58

[165] W. Lukas, Fast Simulation for ATLAS: Atlfast-II and ISF, Journal of Physics:

Conference Series 396 no. 2, (2012) 022031.

http://stacks.iop.org/1742-6596/396/i=2/a=022031. 58

[166] ATLAS Collaboration, T. Yamanaka, The ATLAS calorimeter simulation

FastCaloSim, J.Phys.Conf.Ser. 331 (2011) 032053. 58

[167] ATLAS Collaboration, J. Mechnich, FATRAS: The ATLAS fast track simulation

project, J.Phys.Conf.Ser. 331 (2011) 032046. 58

[168] J. Chapman, K. Assamagan, P. Calafiura, D. Chakraborty, D. Costanzo, et al.,

The ATLAS detector digitization project for 2009 data taking, J.Phys.Conf.Ser.

219 (2010) 032031. 58

[169] M. Aliev et al., HATHOR: HAdronic Top and Heavy quarks crOss section

calculatoR, Comput. Phys. Commun. 182 (2011) 1034–1046, arXiv:1007.1327

[hep-ph]. 59

[170] A. Kardos, Z. Trocsanyi, and C. Papadopoulos, Top quark pair production in

association with a Z-boson at NLO accuracy, Phys. Rev. D 85 (2012) 054015,

arXiv:1111.0610 [hep-ph]. 59, 119

http://dx.doi.org/10.1140/epjc/s10052-010-1508-y
http://arxiv.org/abs/1007.5423
http://arxiv.org/abs/1007.5423
http://dx.doi.org/10.1140/epjc/s10052-010-1366-7
http://arxiv.org/abs/1004.5293
http://dx.doi.org/10.1140/epjc/s10052-010-1415-2
http://arxiv.org/abs/1006.4384
http://arxiv.org/abs/1006.4384
http://stacks.iop.org/1742-6596/396/i=2/a=022031
http://dx.doi.org/10.1088/1742-6596/331/3/032053
http://dx.doi.org/10.1088/1742-6596/331/3/032046
http://dx.doi.org/10.1088/1742-6596/219/3/032031
http://dx.doi.org/10.1088/1742-6596/219/3/032031
http://dx.doi.org/10.1016/j.cpc.2010.12.040
http://arxiv.org/abs/1007.1327
http://arxiv.org/abs/1007.1327
http://dx.doi.org/10.1103/PhysRevD.85.054015
http://arxiv.org/abs/1111.0610


181

[171] J. M. Campbell and R. K. Ellis, tt̄W+− production and decay at NLO, JHEP 1207

(2012) 052, arXiv:1204.5678 [hep-ph]. 59, 119

[172] F. E. Paige, S. D. Protopopescu, H. Baer, and X. Tata, ISAJET 7.69: A Monte

Carlo event generator for pp, anti-p p, and e+e- reactions, arXiv:hep-ph/0312045

[hep-ph]. 59

[173] M. Muhlleitner, A. Djouadi, and Y. Mambrini, SDECAY: A Fortran code for the

decays of the supersymmetric particles in the MSSM, Comput.Phys.Commun. 168

(2005) 46–70, arXiv:hep-ph/0311167 [hep-ph]. 59

[174] B. P. Kersevan and E. Richter-Was, The Monte Carlo event generator AcerMC

version 1.0 with interfaces to PYTHIA 6.2 and HERWIG 6.3, Comput. Phys.

Commun. 149 (2003) 142–194, arXiv:hep-ph/0201302 [hep-ph]. 59

[175] S. S. Haykin, S. S. Haykin, S. S. Haykin, and S. S. Haykin, Neural networks and

learning machines, vol. 3. Prentice Hall, 2009. 61

[176] B. P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, and G. McGregor, Boosted

decision trees as an alternative to artificial neural networks for particle

identification, Nuclear Instruments and Methods in Physics Research A 543 (2005)

577–584, arXiv:physics/0408124. 61

[177] Performance of the ATLAS Inner Detector Track and Vertex Reconstruction in the

High Pile-Up LHC Environment, Tech. Rep. ATLAS-CONF-2012-042, CERN,

Geneva, Mar, 2012. 61

[178] W. Lampl, S. Laplace, D. Lelas, P. Loch, H. Ma, S. Menke, S. Rajagopalan,

D. Rousseau, S. Snyder, and G. Unal, Calorimeter Clustering Algorithms:

Description and Performance, Tech. Rep. ATL-LARG-PUB-2008-002.

ATL-COM-LARG-2008-003, CERN, Geneva, Apr, 2008. 63, 67

[179] ATLAS Collaboration, G. Aad et al., Electron performance measurements with the

ATLAS detector using the 2010 LHC proton-proton collision data, Eur.Phys.J.

C72 (2012) 1909, arXiv:1110.3174 [hep-ex]. 64, 83

[180] ATLAS Electromagnetic Barrel Calorimeter Collaboration, M. Aharrouche et al.,

Energy linearity and resolution of the ATLAS electromagnetic barrel calorimeter in

an electron test-beam, Nucl.Instrum.Meth. A568 (2006) 601–623,

arXiv:physics/0608012 [physics]. 64

http://dx.doi.org/10.1007/JHEP07(2012)052
http://dx.doi.org/10.1007/JHEP07(2012)052
http://arxiv.org/abs/1204.5678
http://arxiv.org/abs/hep-ph/0312045
http://arxiv.org/abs/hep-ph/0312045
http://dx.doi.org/10.1016/j.cpc.2005.01.012
http://dx.doi.org/10.1016/j.cpc.2005.01.012
http://arxiv.org/abs/hep-ph/0311167
http://dx.doi.org/10.1016/S0010-4655(02)00592-1
http://dx.doi.org/10.1016/S0010-4655(02)00592-1
http://arxiv.org/abs/hep-ph/0201302
http://dx.doi.org/10.1016/j.nima.2004.12.018
http://dx.doi.org/10.1016/j.nima.2004.12.018
http://arxiv.org/abs/arXiv:physics/0408124
http://dx.doi.org/10.1140/epjc/s10052-012-1909-1
http://dx.doi.org/10.1140/epjc/s10052-012-1909-1
http://arxiv.org/abs/1110.3174
http://dx.doi.org/10.1016/j.nima.2006.07.053
http://arxiv.org/abs/physics/0608012


182

[181] ATLAS Collaboration, Electron combined performance public results, 2012.

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/EGAMMA/PublicPlots/

20120611/ElectronEfficiency2012/ATL-COM-PHYS-2011-783/index.html. 65

[182] Muon Performance in Minimum Bias pp Collision Data at s = 7 TeV with

ATLAS, Tech. Rep. ATLAS-CONF-2010-036, CERN, Geneva, Jul, 2010. 66

[183] ATLAS Collaboration, ATLAS muon spectrometer: Technical Design Report.

Technical Design Report ATLAS. CERN, Geneva, 1997. distribution. 66

[184] ATLAS Collaboration, Muon combined performance public results, 2012.

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/MUON/PublicPlots/2012/

June/index.html. 67

[185] Properties of Jets and Inputs to Jet Reconstruction and Calibration with the

ATLAS Detector Using Proton-Proton Collisions at
√
s = 7 TeV, Tech. Rep.

ATLAS-CONF-2010-053, CERN, Geneva, Jul, 2010. 67, 68

[186] ATLAS Collaboration, Jet energy measurement with the ATLAS detector in

proton-proton collisions at
√
s = 7 TeV, arXiv:1112.6426 [hep-ex]. 68

[187] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet clustering algorithm,

Journal of High Energy Physics 4 (2008) 63, arXiv:0802.1189 [hep-ph]. 68

[188] Measurement of the Mistag Rate with 5 fb−1 of Data Collected by the ATLAS

Detector, Tech. Rep. ATLAS-CONF-2012-040, CERN, Geneva, Mar, 2012. 69, 83

[189] Measurement of the b-tag Efficiency in a Sample of Jets Containing Muons with

5 fb−1 of Data from the ATLAS Detector, Tech. Rep. ATLAS-CONF-2012-043,

CERN, Geneva, Mar, 2012. 69, 83

[190] Measuring the b-tag efficiency in a top-pair sample with 4.7 fb−1 of data from the

ATLAS detector, Tech. Rep. ATLAS-CONF-2012-097, CERN, Geneva, Jul, 2012.

69, 83

[191] b-jet tagging calibration on c-jets containing D∗+ mesons, Tech. Rep.

ATLAS-CONF-2012-039, CERN, Geneva, Mar, 2012. 69

[192] ATLAS Collaboration, Performance of the Reconstruction and Identification of

Hadronic Tau Decays in ATLAS with 2011 Data, Tech. Rep.

ATLAS-CONF-2012-142, CERN, Geneva, Oct, 2012. 70

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/EGAMMA/PublicPlots/20120611/ElectronEfficiency2012/ATL-COM-PHYS-2011-783/index.html
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/EGAMMA/PublicPlots/20120611/ElectronEfficiency2012/ATL-COM-PHYS-2011-783/index.html
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/MUON/PublicPlots/2012/June/index.html
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/MUON/PublicPlots/2012/June/index.html
http://arxiv.org/abs/1112.6426
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189


183

[193] Determination of the tau energy scale and the associated systematic uncertainty in

proton-proton collisions at
√
s = 8 TeV with the ATLAS detector at the LHC in

2012, Tech. Rep. ATLAS-CONF-2013-044, CERN, Geneva, Apr, 2013. 71

[194] Performance of Missing Transverse Momentum Reconstruction in ATLAS with

2011 Proton-Proton Collisions at sqrts = 7 TeV, Tech. Rep.

ATLAS-CONF-2012-101, CERN, Geneva, Jul, 2012. 72

[195] ATLAS Collaboration, Search for direct slepton and gaugino production in final

states with two leptons and missing transverse momentum with the ATLAS

detector in pp collisions at
√
s = 7 TeV, Phys.Lett. B718 (2013) 879–901,

arXiv:1208.2884 [hep-ex]. 77, 149, 151, 152, 153

[196] ATLAS Collaboration, Search for direct production of charginos and neutralinos in

events with three leptons and missing transverse momentum in pp collisions with

the ATLAS detector, Physics Letters B 718 no. 3, (2013) 841 – 859.

http://www.sciencedirect.com/science/article/pii/S037026931201204X.

78, 130, 135, 141, 151, 152, 153

[197] ATLAS Collaboration, Search for direct production of charginos and neutralinos in

events with three leptons and missing transverse momentum in
√
s = 7 TeV pp

collisions with the ATLAS detector, Tech. Rep. ATLAS-CONF-2012-077, CERN,

Geneva, Jul, 2012. 78, 148

[198] Performance of the ATLAS Electron and Photon Trigger in p-p Collisions at
√
s = 7 TeV in 2011, Tech. Rep. ATLAS-CONF-2012-048, CERN, Geneva, May,

2012. 80

[199] Selection of jets produced in proton-proton collisions with the ATLAS detector using

2011 data, Tech. Rep. ATLAS-CONF-2012-020, CERN, Geneva, Mar, 2012. 81

[200] Muon reconstruction efficiency in reprocessed 2010 LHC proton-proton collision

data recorded with the ATLAS detector, Tech. Rep. ATLAS-CONF-2011-063,

CERN, Geneva, Apr, 2011. 83

[201] J. T. Linnemann, Measures of Significance in HEP and Astrophysics,

arXiv:physics/0312059. 86

http://dx.doi.org/10.1016/j.physletb.2012.11.058
http://arxiv.org/abs/1208.2884
http://dx.doi.org/10.1016/j.physletb.2012.11.039
http://www.sciencedirect.com/science/article/pii/S037026931201204X


184

[202] C. G. Lester, M. A. Parker, and M. J. White, Determining SUSY model

parameters and masses at the LHC using cross-sections, kinematic edges and other

observables, JHEP 0601 (2006) 080, arXiv:hep-ph/0508143 [hep-ph]. 88

[203] E. Gross and O. Vitells, Trial factors for the look elsewhere effect in high energy

physics, Eur.Phys.J. C70 (2010) 525–530, arXiv:1005.1891 [physics.data-an].

107

[204] S. Holm, A Simple Sequentially Rejective Multiple Test Procedure, Scandinavian

Journal of Statistics 6 no. 2, (1979) pp. 65–70.

http://www.jstor.org/stable/4615733. 107

[205] J. Tukey, The future of data analysis, Ann. Math. Stat. 33 (1) (1962). 108

[206] R. C. Gray, C. Kilic, M. Park, S. Somalwar, and S. Thomas, Backgrounds To Higgs

Boson Searches from Wγ∗lνl(l) Asymmetric Internal Conversion,

arXiv:1110.1368 [hep-ph]. 112

[207] A. Martin, W. Stirling, R. Thorne, and G. Watt, Parton distributions for the LHC,

Eur.Phys.J. C63 (2009) 189–285, arXiv:0901.0002 [hep-ph]. 119

[208] S. Alekhin, S. Alioli, R. D. Ball, V. Bertone, J. Blumlein, et al., The PDF4LHC

Working Group Interim Report, arXiv:1101.0536 [hep-ph]. 119

[209] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, et al., New parton

distributions for collider physics, Phys.Rev. D82 (2010) 074024, arXiv:1007.2241

[hep-ph]. 119

[210] ATLAS Collaboration, Luminosity Determination in pp Collisions at
√
s = 7 TeV

using the ATLAS Detector in 2011, ATLAS-CONF-2011-116.

http://cdsweb.cern.ch/record/1376384. 121

[211] ATLAS Collaboration, G. Aad et al., Luminosity Determination in pp Collisions

at sqrt(s)=7 TeV Using the ATLAS Detector at the LHC, Eur.Phys.J. C71 (2011)

1630, arXiv:1101.2185 [hep-ex]. 121

[212] M. Kramer, A. Kulesza, R. van der Leeuw, M. Mangano, S. Padhi, et al.,

Supersymmetry production cross sections in pp collisions at
√
s = 7 TeV,

arXiv:1206.2892 [hep-ph]. 124, 147

[213] P. Auster, The New York Trilogy. Faber and Faber, 1987. 129

http://dx.doi.org/10.1088/1126-6708/2006/01/080
http://arxiv.org/abs/hep-ph/0508143
http://dx.doi.org/10.1140/epjc/s10052-010-1470-8
http://arxiv.org/abs/1005.1891
http://www.jstor.org/stable/4615733
http://arxiv.org/abs/1110.1368
http://dx.doi.org/10.1140/epjc/s10052-009-1072-5
http://arxiv.org/abs/0901.0002
http://arxiv.org/abs/1101.0536
http://dx.doi.org/10.1103/PhysRevD.82.074024
http://arxiv.org/abs/1007.2241
http://arxiv.org/abs/1007.2241
http://cdsweb.cern.ch/record/1376384
http://dx.doi.org/10.1140/epjc/s10052-011-1630-5
http://dx.doi.org/10.1140/epjc/s10052-011-1630-5
http://arxiv.org/abs/1101.2185
http://arxiv.org/abs/1206.2892


185

[214] N. Reid, Likelihood Inference in the Presence of Nuisance Parameters, eConf

C030908 (2003) THAT001. 142

[215] A. L. Read, Modified frequentist analysis of search results (the CLs method),. 144

[216] A. L. Read, Presentation of search results: the CL s technique, Journal of Physics

G: Nuclear and Particle Physics 28 no. 10, (2002) 2693.

http://stacks.iop.org/0954-3899/28/i=10/a=313. 144

[217] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for

likelihood-based tests of new physics, European Physical Journal C 71 (2011) 1554,

arXiv:1007.1727 [physics.data-an]. 144

[218] R. D. Cousins, Annotated Bibliography of Some Papers on Combining Significances

or p-values, ArXiv e-prints (2007), arXiv:0705.2209 [physics.data-an]. 146

[219] B. Delaunay, Sur la sphère vide., Bull. Acad. Sci. URSS, VII. Ser. 1934 no. 6,

(1934) 793–800. 147

[220] Search for supersymmetry in events with four or more leptons in 21 fb−1 of pp

collisions at
√
s = 8 TeV with the ATLAS detector, Tech. Rep.

ATLAS-CONF-2013-036, CERN, Geneva, Mar, 2013. 147

[221] Search for supersymmetry in final states with jets, missing transverse momentum

and a Z boson at
√
s = 8 TeV with the ATLAS detector, Tech. Rep.

ATLAS-CONF-2012-152, CERN, Geneva, Nov, 2012. 147

[222] J. E. Kim, A Review on axions and the strong CP problem, AIP Conf.Proc. 1200

(2010) 83–92, arXiv:0909.3908 [hep-ph]. 156

[223] M. Buchkremer, G. Cacciapaglia, A. Deandrea, and L. Panizzi, Model Independent

Framework for Searches of Top Partners, Nucl.Phys. B876 (2013) 376–417,

arXiv:1305.4172 [hep-ph]. 156

[224] A. Choudhury and A. Datta, Neutralino dark matter confronted by the LHC

constraints on Electroweak SUSY signals, JHEP 09 (2013) 119, arXiv:1305.0928

[hep-ph]. 156

[225] M. W. Cahill-Rowley, J. L. Hewett, A. Ismail, and T. G. Rizzo, More Energy,

More Searches, but the pMSSM Lives On, Phys.Rev. D88 (2013) 035002,

arXiv:1211.1981 [hep-ph]. 156

http://stacks.iop.org/0954-3899/28/i=10/a=313
http://dx.doi.org/10.1140/epjc/s10052-011-1554-0
http://arxiv.org/abs/1007.1727
http://arxiv.org/abs/0705.2209
http://dx.doi.org/10.1063/1.3327743
http://dx.doi.org/10.1063/1.3327743
http://arxiv.org/abs/0909.3908
http://dx.doi.org/10.1016/j.nuclphysb.2013.08.010
http://arxiv.org/abs/1305.4172
http://dx.doi.org/10.1007/JHEP09(2013)119
http://arxiv.org/abs/1305.0928
http://arxiv.org/abs/1305.0928
http://dx.doi.org/10.1103/PhysRevD.88.035002
http://arxiv.org/abs/1211.1981

	DPhil Coversheet
	Martin-Haugh, Stewart
	Contents
	List of Tables
	List of Figures
	1 Introduction
	2 The Standard Model and Supersymmetry
	2.1 The Standard Model
	2.1.1 Introduction
	2.1.2 Gauge theories
	2.1.3 Radiative corrections
	2.1.4 Electroweak interactions and symmetry breaking
	2.1.5 Quantum chromodynamics
	2.1.6 Limitations of the Standard Model

	2.2 Supersymmetry
	2.2.1 An extra symmetry of nature
	2.2.2 Dark matter
	2.2.3 The hierarchy problem
	2.2.4 Gauge coupling unification
	2.2.5 The supersymmetric Higgs sector

	2.3 The Minimal Supersymmetric Standard Model
	2.3.1 Supersymmetric masses
	2.3.2 Supersymmetric mass spectra
	2.3.3 Supersymmetry and gravity

	2.4 Models of supersymmetry
	2.4.1 General gauge mediation
	2.4.2 Phenomenological alternatives to supersymmetry breaking
	2.4.3 Simplified models

	2.5 Summary

	3 The LHC and ATLAS detector
	3.1 The LHC
	3.2 The ATLAS detector
	3.2.1 ATLAS detector geometry and kinematics

	3.3 ATLAS general detector design
	3.4 ATLAS detector components
	3.4.1 ATLAS Inner Detector
	3.4.2 ATLAS Magnet System
	3.4.3 ATLAS Calorimeter System
	3.4.4 ATLAS Muon Spectrometer

	3.5 ATLAS Trigger System
	3.5.1 Level 1 Trigger
	3.5.2 ATLAS High Level Trigger
	3.5.3 Trigger chains and menus


	4 Simulation and reconstruction
	4.1 Event generation
	4.1.1 Parton distribution functions
	4.1.2 Matrix element
	4.1.3 Parton showers, hadronisation and the underlying event
	4.1.4 Summary of event generator properties
	4.1.5 Storage of event generator information
	4.1.6 Pile-up

	4.2 Detector simulation
	4.2.1 Full event simulation
	4.2.2 Trigger simulation
	4.2.3 Fast simulation
	4.2.4 Digitisation

	4.3 Summary of Monte Carlo samples used in the analysis
	4.3.1 Monte Carlo samples used in 2011
	4.3.2 Monte Carlo samples used in 2012

	4.4 Reconstruction and identification
	4.4.1 Inner Detector tracks
	4.4.2 Vertices
	4.4.3 Leptons
	4.4.4 Electrons
	4.4.5 Muons
	4.4.6 Gluon and light flavour jets
	4.4.7 Jet reconstruction
	4.4.8 Heavy flavour jets
	4.4.9 Tau leptons
	4.4.10 Summary of object reconstruction and calibration
	4.4.11 Missing transverse energy


	5 Overview of three-lepton supersymmetry searches
	5.1 Analysis overview
	5.2 Event quality requirements
	5.2.1 Dataset selection
	5.2.2 Trigger
	5.2.3 Event selection for data quality purposes
	5.2.4 Corrections to MC event weights

	5.3 Signal region optimisation
	5.3.1 Discriminating variables
	5.3.2 Optimisation procedure
	5.3.3 Optimisation of jet veto
	5.3.4 Optimisation of ETmiss
	5.3.5 Optimisation of m
	5.3.6 Optimisation of mT and lepton pT
	5.3.7 Signal region choices
	5.3.8 Removing overlap between signal regions

	5.4 Cutflows for final signal regions
	5.4.1 SRnoZa
	5.4.2 SRnoZb
	5.4.3 SRnoZc
	5.4.4 SRZa
	5.4.5 SRZb
	5.4.6 SRZc

	5.5 Potential improvements to choice of SRs

	6 Background estimation and systematic uncertainties
	6.1 Background estimation
	6.1.1 Sources of leptons in SM backgrounds
	6.1.2 Matrix method
	6.1.3 Measurement of weighted average fake rates
	6.1.4 Measurement of the electron conversion scale factor
	6.1.5 Measurements of real lepton efficiency and weighted average fake rates

	6.2 WZ normalisation (2011 only)
	6.2.1 Summary of background estimation

	6.3 Systematic uncertainties
	6.3.1 Uncertainties on the irreducible background
	6.3.2 Summary of irreducible background uncertainties
	6.3.3 Uncertainties on the reducible background
	6.3.4 Uncertainties on the SUSY signal samples


	7 Results and interpretation
	7.1 Validation of background prediction
	7.1.1 2011 analysis
	7.1.2 2012 analysis
	7.1.3 Summary

	7.2 Results in signal regions
	7.2.1 2011 analysis
	7.2.2 2012 analysis

	7.3 Statistical interpretation
	7.3.1 Introduction
	7.3.2 SUSY models
	7.3.3 Statistical procedure
	7.3.4 Treatment of systematic uncertainties
	7.3.5 Simultaneous fit
	7.3.6 Combining signal regions
	7.3.7 Model-independent limits

	7.4 Interpretation in SUSY scenario grids
	7.4.1 Interpretation in GGM models
	7.4.2 Interpretation in the phenomenological MSSM
	7.4.3 Interpretation in simplified models of direct gaugino production
	7.4.4 Summary of interpretations
	7.4.5 Comparison with CMS
	7.4.6 Implications for dark matter searches
	7.4.7 Implications for supersymmetry

	7.5 Conclusions

	A Details of MC samples
	B Tables of systematics
	Bibliography


